1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. 4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. 5 * 6 * KVM Xen emulation 7 */ 8 9 #include "x86.h" 10 #include "xen.h" 11 #include "hyperv.h" 12 13 #include <linux/kvm_host.h> 14 #include <linux/sched/stat.h> 15 16 #include <trace/events/kvm.h> 17 #include <xen/interface/xen.h> 18 #include <xen/interface/vcpu.h> 19 #include <xen/interface/event_channel.h> 20 21 #include "trace.h" 22 23 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ); 24 25 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn) 26 { 27 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 28 struct pvclock_wall_clock *wc; 29 gpa_t gpa = gfn_to_gpa(gfn); 30 u32 *wc_sec_hi; 31 u32 wc_version; 32 u64 wall_nsec; 33 int ret = 0; 34 int idx = srcu_read_lock(&kvm->srcu); 35 36 if (gfn == GPA_INVALID) { 37 kvm_gfn_to_pfn_cache_destroy(kvm, gpc); 38 goto out; 39 } 40 41 do { 42 ret = kvm_gfn_to_pfn_cache_init(kvm, gpc, NULL, false, true, 43 gpa, PAGE_SIZE, false); 44 if (ret) 45 goto out; 46 47 /* 48 * This code mirrors kvm_write_wall_clock() except that it writes 49 * directly through the pfn cache and doesn't mark the page dirty. 50 */ 51 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 52 53 /* It could be invalid again already, so we need to check */ 54 read_lock_irq(&gpc->lock); 55 56 if (gpc->valid) 57 break; 58 59 read_unlock_irq(&gpc->lock); 60 } while (1); 61 62 /* Paranoia checks on the 32-bit struct layout */ 63 BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900); 64 BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924); 65 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 66 67 #ifdef CONFIG_X86_64 68 /* Paranoia checks on the 64-bit struct layout */ 69 BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00); 70 BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c); 71 72 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 73 struct shared_info *shinfo = gpc->khva; 74 75 wc_sec_hi = &shinfo->wc_sec_hi; 76 wc = &shinfo->wc; 77 } else 78 #endif 79 { 80 struct compat_shared_info *shinfo = gpc->khva; 81 82 wc_sec_hi = &shinfo->arch.wc_sec_hi; 83 wc = &shinfo->wc; 84 } 85 86 /* Increment and ensure an odd value */ 87 wc_version = wc->version = (wc->version + 1) | 1; 88 smp_wmb(); 89 90 wc->nsec = do_div(wall_nsec, 1000000000); 91 wc->sec = (u32)wall_nsec; 92 *wc_sec_hi = wall_nsec >> 32; 93 smp_wmb(); 94 95 wc->version = wc_version + 1; 96 read_unlock_irq(&gpc->lock); 97 98 kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE); 99 100 out: 101 srcu_read_unlock(&kvm->srcu, idx); 102 return ret; 103 } 104 105 static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state) 106 { 107 struct kvm_vcpu_xen *vx = &v->arch.xen; 108 u64 now = get_kvmclock_ns(v->kvm); 109 u64 delta_ns = now - vx->runstate_entry_time; 110 u64 run_delay = current->sched_info.run_delay; 111 112 if (unlikely(!vx->runstate_entry_time)) 113 vx->current_runstate = RUNSTATE_offline; 114 115 /* 116 * Time waiting for the scheduler isn't "stolen" if the 117 * vCPU wasn't running anyway. 118 */ 119 if (vx->current_runstate == RUNSTATE_running) { 120 u64 steal_ns = run_delay - vx->last_steal; 121 122 delta_ns -= steal_ns; 123 124 vx->runstate_times[RUNSTATE_runnable] += steal_ns; 125 } 126 vx->last_steal = run_delay; 127 128 vx->runstate_times[vx->current_runstate] += delta_ns; 129 vx->current_runstate = state; 130 vx->runstate_entry_time = now; 131 } 132 133 void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state) 134 { 135 struct kvm_vcpu_xen *vx = &v->arch.xen; 136 uint64_t state_entry_time; 137 unsigned int offset; 138 139 kvm_xen_update_runstate(v, state); 140 141 if (!vx->runstate_set) 142 return; 143 144 BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c); 145 146 offset = offsetof(struct compat_vcpu_runstate_info, state_entry_time); 147 #ifdef CONFIG_X86_64 148 /* 149 * The only difference is alignment of uint64_t in 32-bit. 150 * So the first field 'state' is accessed directly using 151 * offsetof() (where its offset happens to be zero), while the 152 * remaining fields which are all uint64_t, start at 'offset' 153 * which we tweak here by adding 4. 154 */ 155 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 156 offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4); 157 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) != 158 offsetof(struct compat_vcpu_runstate_info, time) + 4); 159 160 if (v->kvm->arch.xen.long_mode) 161 offset = offsetof(struct vcpu_runstate_info, state_entry_time); 162 #endif 163 /* 164 * First write the updated state_entry_time at the appropriate 165 * location determined by 'offset'. 166 */ 167 state_entry_time = vx->runstate_entry_time; 168 state_entry_time |= XEN_RUNSTATE_UPDATE; 169 170 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) != 171 sizeof(state_entry_time)); 172 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) != 173 sizeof(state_entry_time)); 174 175 if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache, 176 &state_entry_time, offset, 177 sizeof(state_entry_time))) 178 return; 179 smp_wmb(); 180 181 /* 182 * Next, write the new runstate. This is in the *same* place 183 * for 32-bit and 64-bit guests, asserted here for paranoia. 184 */ 185 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 186 offsetof(struct compat_vcpu_runstate_info, state)); 187 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) != 188 sizeof(vx->current_runstate)); 189 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) != 190 sizeof(vx->current_runstate)); 191 192 if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache, 193 &vx->current_runstate, 194 offsetof(struct vcpu_runstate_info, state), 195 sizeof(vx->current_runstate))) 196 return; 197 198 /* 199 * Write the actual runstate times immediately after the 200 * runstate_entry_time. 201 */ 202 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 203 offsetof(struct vcpu_runstate_info, time) - sizeof(u64)); 204 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) != 205 offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64)); 206 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 207 sizeof_field(struct compat_vcpu_runstate_info, time)); 208 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 209 sizeof(vx->runstate_times)); 210 211 if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache, 212 &vx->runstate_times[0], 213 offset + sizeof(u64), 214 sizeof(vx->runstate_times))) 215 return; 216 217 smp_wmb(); 218 219 /* 220 * Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's 221 * runstate_entry_time field. 222 */ 223 224 state_entry_time &= ~XEN_RUNSTATE_UPDATE; 225 if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache, 226 &state_entry_time, offset, 227 sizeof(state_entry_time))) 228 return; 229 } 230 231 int __kvm_xen_has_interrupt(struct kvm_vcpu *v) 232 { 233 unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel); 234 bool atomic = in_atomic() || !task_is_running(current); 235 int err; 236 u8 rc = 0; 237 238 /* 239 * If the global upcall vector (HVMIRQ_callback_vector) is set and 240 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending. 241 */ 242 struct gfn_to_hva_cache *ghc = &v->arch.xen.vcpu_info_cache; 243 struct kvm_memslots *slots = kvm_memslots(v->kvm); 244 bool ghc_valid = slots->generation == ghc->generation && 245 !kvm_is_error_hva(ghc->hva) && ghc->memslot; 246 247 unsigned int offset = offsetof(struct vcpu_info, evtchn_upcall_pending); 248 249 /* No need for compat handling here */ 250 BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) != 251 offsetof(struct compat_vcpu_info, evtchn_upcall_pending)); 252 BUILD_BUG_ON(sizeof(rc) != 253 sizeof_field(struct vcpu_info, evtchn_upcall_pending)); 254 BUILD_BUG_ON(sizeof(rc) != 255 sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending)); 256 257 /* 258 * For efficiency, this mirrors the checks for using the valid 259 * cache in kvm_read_guest_offset_cached(), but just uses 260 * __get_user() instead. And falls back to the slow path. 261 */ 262 if (!evtchn_pending_sel && ghc_valid) { 263 /* Fast path */ 264 pagefault_disable(); 265 err = __get_user(rc, (u8 __user *)ghc->hva + offset); 266 pagefault_enable(); 267 if (!err) 268 return rc; 269 } 270 271 /* Slow path */ 272 273 /* 274 * This function gets called from kvm_vcpu_block() after setting the 275 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately 276 * from a HLT. So we really mustn't sleep. If the page ended up absent 277 * at that point, just return 1 in order to trigger an immediate wake, 278 * and we'll end up getting called again from a context where we *can* 279 * fault in the page and wait for it. 280 */ 281 if (atomic) 282 return 1; 283 284 if (!ghc_valid) { 285 err = kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len); 286 if (err || !ghc->memslot) { 287 /* 288 * If this failed, userspace has screwed up the 289 * vcpu_info mapping. No interrupts for you. 290 */ 291 return 0; 292 } 293 } 294 295 /* 296 * Now we have a valid (protected by srcu) userspace HVA in 297 * ghc->hva which points to the struct vcpu_info. If there 298 * are any bits in the in-kernel evtchn_pending_sel then 299 * we need to write those to the guest vcpu_info and set 300 * its evtchn_upcall_pending flag. If there aren't any bits 301 * to add, we only want to *check* evtchn_upcall_pending. 302 */ 303 if (evtchn_pending_sel) { 304 bool long_mode = v->kvm->arch.xen.long_mode; 305 306 if (!user_access_begin((void __user *)ghc->hva, sizeof(struct vcpu_info))) 307 return 0; 308 309 if (IS_ENABLED(CONFIG_64BIT) && long_mode) { 310 struct vcpu_info __user *vi = (void __user *)ghc->hva; 311 312 /* Attempt to set the evtchn_pending_sel bits in the 313 * guest, and if that succeeds then clear the same 314 * bits in the in-kernel version. */ 315 asm volatile("1:\t" LOCK_PREFIX "orq %0, %1\n" 316 "\tnotq %0\n" 317 "\t" LOCK_PREFIX "andq %0, %2\n" 318 "2:\n" 319 _ASM_EXTABLE_UA(1b, 2b) 320 : "=r" (evtchn_pending_sel), 321 "+m" (vi->evtchn_pending_sel), 322 "+m" (v->arch.xen.evtchn_pending_sel) 323 : "0" (evtchn_pending_sel)); 324 } else { 325 struct compat_vcpu_info __user *vi = (void __user *)ghc->hva; 326 u32 evtchn_pending_sel32 = evtchn_pending_sel; 327 328 /* Attempt to set the evtchn_pending_sel bits in the 329 * guest, and if that succeeds then clear the same 330 * bits in the in-kernel version. */ 331 asm volatile("1:\t" LOCK_PREFIX "orl %0, %1\n" 332 "\tnotl %0\n" 333 "\t" LOCK_PREFIX "andl %0, %2\n" 334 "2:\n" 335 _ASM_EXTABLE_UA(1b, 2b) 336 : "=r" (evtchn_pending_sel32), 337 "+m" (vi->evtchn_pending_sel), 338 "+m" (v->arch.xen.evtchn_pending_sel) 339 : "0" (evtchn_pending_sel32)); 340 } 341 rc = 1; 342 unsafe_put_user(rc, (u8 __user *)ghc->hva + offset, err); 343 344 err: 345 user_access_end(); 346 347 mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 348 } else { 349 __get_user(rc, (u8 __user *)ghc->hva + offset); 350 } 351 352 return rc; 353 } 354 355 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 356 { 357 int r = -ENOENT; 358 359 mutex_lock(&kvm->lock); 360 361 switch (data->type) { 362 case KVM_XEN_ATTR_TYPE_LONG_MODE: 363 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) { 364 r = -EINVAL; 365 } else { 366 kvm->arch.xen.long_mode = !!data->u.long_mode; 367 r = 0; 368 } 369 break; 370 371 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 372 r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn); 373 break; 374 375 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 376 if (data->u.vector && data->u.vector < 0x10) 377 r = -EINVAL; 378 else { 379 kvm->arch.xen.upcall_vector = data->u.vector; 380 r = 0; 381 } 382 break; 383 384 default: 385 break; 386 } 387 388 mutex_unlock(&kvm->lock); 389 return r; 390 } 391 392 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 393 { 394 int r = -ENOENT; 395 396 mutex_lock(&kvm->lock); 397 398 switch (data->type) { 399 case KVM_XEN_ATTR_TYPE_LONG_MODE: 400 data->u.long_mode = kvm->arch.xen.long_mode; 401 r = 0; 402 break; 403 404 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 405 if (kvm->arch.xen.shinfo_cache.active) 406 data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa); 407 else 408 data->u.shared_info.gfn = GPA_INVALID; 409 r = 0; 410 break; 411 412 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 413 data->u.vector = kvm->arch.xen.upcall_vector; 414 r = 0; 415 break; 416 417 default: 418 break; 419 } 420 421 mutex_unlock(&kvm->lock); 422 return r; 423 } 424 425 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 426 { 427 int idx, r = -ENOENT; 428 429 mutex_lock(&vcpu->kvm->lock); 430 idx = srcu_read_lock(&vcpu->kvm->srcu); 431 432 switch (data->type) { 433 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 434 /* No compat necessary here. */ 435 BUILD_BUG_ON(sizeof(struct vcpu_info) != 436 sizeof(struct compat_vcpu_info)); 437 BUILD_BUG_ON(offsetof(struct vcpu_info, time) != 438 offsetof(struct compat_vcpu_info, time)); 439 440 if (data->u.gpa == GPA_INVALID) { 441 vcpu->arch.xen.vcpu_info_set = false; 442 r = 0; 443 break; 444 } 445 446 r = kvm_gfn_to_hva_cache_init(vcpu->kvm, 447 &vcpu->arch.xen.vcpu_info_cache, 448 data->u.gpa, 449 sizeof(struct vcpu_info)); 450 if (!r) { 451 vcpu->arch.xen.vcpu_info_set = true; 452 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 453 } 454 break; 455 456 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 457 if (data->u.gpa == GPA_INVALID) { 458 vcpu->arch.xen.vcpu_time_info_set = false; 459 r = 0; 460 break; 461 } 462 463 r = kvm_gfn_to_hva_cache_init(vcpu->kvm, 464 &vcpu->arch.xen.vcpu_time_info_cache, 465 data->u.gpa, 466 sizeof(struct pvclock_vcpu_time_info)); 467 if (!r) { 468 vcpu->arch.xen.vcpu_time_info_set = true; 469 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 470 } 471 break; 472 473 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: 474 if (!sched_info_on()) { 475 r = -EOPNOTSUPP; 476 break; 477 } 478 if (data->u.gpa == GPA_INVALID) { 479 vcpu->arch.xen.runstate_set = false; 480 r = 0; 481 break; 482 } 483 484 r = kvm_gfn_to_hva_cache_init(vcpu->kvm, 485 &vcpu->arch.xen.runstate_cache, 486 data->u.gpa, 487 sizeof(struct vcpu_runstate_info)); 488 if (!r) { 489 vcpu->arch.xen.runstate_set = true; 490 } 491 break; 492 493 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 494 if (!sched_info_on()) { 495 r = -EOPNOTSUPP; 496 break; 497 } 498 if (data->u.runstate.state > RUNSTATE_offline) { 499 r = -EINVAL; 500 break; 501 } 502 503 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 504 r = 0; 505 break; 506 507 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 508 if (!sched_info_on()) { 509 r = -EOPNOTSUPP; 510 break; 511 } 512 if (data->u.runstate.state > RUNSTATE_offline) { 513 r = -EINVAL; 514 break; 515 } 516 if (data->u.runstate.state_entry_time != 517 (data->u.runstate.time_running + 518 data->u.runstate.time_runnable + 519 data->u.runstate.time_blocked + 520 data->u.runstate.time_offline)) { 521 r = -EINVAL; 522 break; 523 } 524 if (get_kvmclock_ns(vcpu->kvm) < 525 data->u.runstate.state_entry_time) { 526 r = -EINVAL; 527 break; 528 } 529 530 vcpu->arch.xen.current_runstate = data->u.runstate.state; 531 vcpu->arch.xen.runstate_entry_time = 532 data->u.runstate.state_entry_time; 533 vcpu->arch.xen.runstate_times[RUNSTATE_running] = 534 data->u.runstate.time_running; 535 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] = 536 data->u.runstate.time_runnable; 537 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] = 538 data->u.runstate.time_blocked; 539 vcpu->arch.xen.runstate_times[RUNSTATE_offline] = 540 data->u.runstate.time_offline; 541 vcpu->arch.xen.last_steal = current->sched_info.run_delay; 542 r = 0; 543 break; 544 545 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 546 if (!sched_info_on()) { 547 r = -EOPNOTSUPP; 548 break; 549 } 550 if (data->u.runstate.state > RUNSTATE_offline && 551 data->u.runstate.state != (u64)-1) { 552 r = -EINVAL; 553 break; 554 } 555 /* The adjustment must add up */ 556 if (data->u.runstate.state_entry_time != 557 (data->u.runstate.time_running + 558 data->u.runstate.time_runnable + 559 data->u.runstate.time_blocked + 560 data->u.runstate.time_offline)) { 561 r = -EINVAL; 562 break; 563 } 564 565 if (get_kvmclock_ns(vcpu->kvm) < 566 (vcpu->arch.xen.runstate_entry_time + 567 data->u.runstate.state_entry_time)) { 568 r = -EINVAL; 569 break; 570 } 571 572 vcpu->arch.xen.runstate_entry_time += 573 data->u.runstate.state_entry_time; 574 vcpu->arch.xen.runstate_times[RUNSTATE_running] += 575 data->u.runstate.time_running; 576 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] += 577 data->u.runstate.time_runnable; 578 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] += 579 data->u.runstate.time_blocked; 580 vcpu->arch.xen.runstate_times[RUNSTATE_offline] += 581 data->u.runstate.time_offline; 582 583 if (data->u.runstate.state <= RUNSTATE_offline) 584 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 585 r = 0; 586 break; 587 588 default: 589 break; 590 } 591 592 srcu_read_unlock(&vcpu->kvm->srcu, idx); 593 mutex_unlock(&vcpu->kvm->lock); 594 return r; 595 } 596 597 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 598 { 599 int r = -ENOENT; 600 601 mutex_lock(&vcpu->kvm->lock); 602 603 switch (data->type) { 604 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 605 if (vcpu->arch.xen.vcpu_info_set) 606 data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa; 607 else 608 data->u.gpa = GPA_INVALID; 609 r = 0; 610 break; 611 612 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 613 if (vcpu->arch.xen.vcpu_time_info_set) 614 data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa; 615 else 616 data->u.gpa = GPA_INVALID; 617 r = 0; 618 break; 619 620 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: 621 if (!sched_info_on()) { 622 r = -EOPNOTSUPP; 623 break; 624 } 625 if (vcpu->arch.xen.runstate_set) { 626 data->u.gpa = vcpu->arch.xen.runstate_cache.gpa; 627 r = 0; 628 } 629 break; 630 631 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 632 if (!sched_info_on()) { 633 r = -EOPNOTSUPP; 634 break; 635 } 636 data->u.runstate.state = vcpu->arch.xen.current_runstate; 637 r = 0; 638 break; 639 640 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 641 if (!sched_info_on()) { 642 r = -EOPNOTSUPP; 643 break; 644 } 645 data->u.runstate.state = vcpu->arch.xen.current_runstate; 646 data->u.runstate.state_entry_time = 647 vcpu->arch.xen.runstate_entry_time; 648 data->u.runstate.time_running = 649 vcpu->arch.xen.runstate_times[RUNSTATE_running]; 650 data->u.runstate.time_runnable = 651 vcpu->arch.xen.runstate_times[RUNSTATE_runnable]; 652 data->u.runstate.time_blocked = 653 vcpu->arch.xen.runstate_times[RUNSTATE_blocked]; 654 data->u.runstate.time_offline = 655 vcpu->arch.xen.runstate_times[RUNSTATE_offline]; 656 r = 0; 657 break; 658 659 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 660 r = -EINVAL; 661 break; 662 663 default: 664 break; 665 } 666 667 mutex_unlock(&vcpu->kvm->lock); 668 return r; 669 } 670 671 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data) 672 { 673 struct kvm *kvm = vcpu->kvm; 674 u32 page_num = data & ~PAGE_MASK; 675 u64 page_addr = data & PAGE_MASK; 676 bool lm = is_long_mode(vcpu); 677 678 /* Latch long_mode for shared_info pages etc. */ 679 vcpu->kvm->arch.xen.long_mode = lm; 680 681 /* 682 * If Xen hypercall intercept is enabled, fill the hypercall 683 * page with VMCALL/VMMCALL instructions since that's what 684 * we catch. Else the VMM has provided the hypercall pages 685 * with instructions of its own choosing, so use those. 686 */ 687 if (kvm_xen_hypercall_enabled(kvm)) { 688 u8 instructions[32]; 689 int i; 690 691 if (page_num) 692 return 1; 693 694 /* mov imm32, %eax */ 695 instructions[0] = 0xb8; 696 697 /* vmcall / vmmcall */ 698 kvm_x86_ops.patch_hypercall(vcpu, instructions + 5); 699 700 /* ret */ 701 instructions[8] = 0xc3; 702 703 /* int3 to pad */ 704 memset(instructions + 9, 0xcc, sizeof(instructions) - 9); 705 706 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) { 707 *(u32 *)&instructions[1] = i; 708 if (kvm_vcpu_write_guest(vcpu, 709 page_addr + (i * sizeof(instructions)), 710 instructions, sizeof(instructions))) 711 return 1; 712 } 713 } else { 714 /* 715 * Note, truncation is a non-issue as 'lm' is guaranteed to be 716 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes. 717 */ 718 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64 719 : kvm->arch.xen_hvm_config.blob_addr_32; 720 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 721 : kvm->arch.xen_hvm_config.blob_size_32; 722 u8 *page; 723 724 if (page_num >= blob_size) 725 return 1; 726 727 blob_addr += page_num * PAGE_SIZE; 728 729 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE); 730 if (IS_ERR(page)) 731 return PTR_ERR(page); 732 733 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) { 734 kfree(page); 735 return 1; 736 } 737 } 738 return 0; 739 } 740 741 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc) 742 { 743 if (xhc->flags & ~KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) 744 return -EINVAL; 745 746 /* 747 * With hypercall interception the kernel generates its own 748 * hypercall page so it must not be provided. 749 */ 750 if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) && 751 (xhc->blob_addr_32 || xhc->blob_addr_64 || 752 xhc->blob_size_32 || xhc->blob_size_64)) 753 return -EINVAL; 754 755 mutex_lock(&kvm->lock); 756 757 if (xhc->msr && !kvm->arch.xen_hvm_config.msr) 758 static_branch_inc(&kvm_xen_enabled.key); 759 else if (!xhc->msr && kvm->arch.xen_hvm_config.msr) 760 static_branch_slow_dec_deferred(&kvm_xen_enabled); 761 762 memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc)); 763 764 mutex_unlock(&kvm->lock); 765 return 0; 766 } 767 768 void kvm_xen_init_vm(struct kvm *kvm) 769 { 770 } 771 772 void kvm_xen_destroy_vm(struct kvm *kvm) 773 { 774 kvm_gfn_to_pfn_cache_destroy(kvm, &kvm->arch.xen.shinfo_cache); 775 776 if (kvm->arch.xen_hvm_config.msr) 777 static_branch_slow_dec_deferred(&kvm_xen_enabled); 778 } 779 780 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) 781 { 782 kvm_rax_write(vcpu, result); 783 return kvm_skip_emulated_instruction(vcpu); 784 } 785 786 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu) 787 { 788 struct kvm_run *run = vcpu->run; 789 790 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip))) 791 return 1; 792 793 return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result); 794 } 795 796 int kvm_xen_hypercall(struct kvm_vcpu *vcpu) 797 { 798 bool longmode; 799 u64 input, params[6]; 800 801 input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX); 802 803 /* Hyper-V hypercalls get bit 31 set in EAX */ 804 if ((input & 0x80000000) && 805 kvm_hv_hypercall_enabled(vcpu)) 806 return kvm_hv_hypercall(vcpu); 807 808 longmode = is_64_bit_hypercall(vcpu); 809 if (!longmode) { 810 params[0] = (u32)kvm_rbx_read(vcpu); 811 params[1] = (u32)kvm_rcx_read(vcpu); 812 params[2] = (u32)kvm_rdx_read(vcpu); 813 params[3] = (u32)kvm_rsi_read(vcpu); 814 params[4] = (u32)kvm_rdi_read(vcpu); 815 params[5] = (u32)kvm_rbp_read(vcpu); 816 } 817 #ifdef CONFIG_X86_64 818 else { 819 params[0] = (u64)kvm_rdi_read(vcpu); 820 params[1] = (u64)kvm_rsi_read(vcpu); 821 params[2] = (u64)kvm_rdx_read(vcpu); 822 params[3] = (u64)kvm_r10_read(vcpu); 823 params[4] = (u64)kvm_r8_read(vcpu); 824 params[5] = (u64)kvm_r9_read(vcpu); 825 } 826 #endif 827 trace_kvm_xen_hypercall(input, params[0], params[1], params[2], 828 params[3], params[4], params[5]); 829 830 vcpu->run->exit_reason = KVM_EXIT_XEN; 831 vcpu->run->xen.type = KVM_EXIT_XEN_HCALL; 832 vcpu->run->xen.u.hcall.longmode = longmode; 833 vcpu->run->xen.u.hcall.cpl = kvm_x86_ops.get_cpl(vcpu); 834 vcpu->run->xen.u.hcall.input = input; 835 vcpu->run->xen.u.hcall.params[0] = params[0]; 836 vcpu->run->xen.u.hcall.params[1] = params[1]; 837 vcpu->run->xen.u.hcall.params[2] = params[2]; 838 vcpu->run->xen.u.hcall.params[3] = params[3]; 839 vcpu->run->xen.u.hcall.params[4] = params[4]; 840 vcpu->run->xen.u.hcall.params[5] = params[5]; 841 vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu); 842 vcpu->arch.complete_userspace_io = 843 kvm_xen_hypercall_complete_userspace; 844 845 return 0; 846 } 847 848 static inline int max_evtchn_port(struct kvm *kvm) 849 { 850 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) 851 return EVTCHN_2L_NR_CHANNELS; 852 else 853 return COMPAT_EVTCHN_2L_NR_CHANNELS; 854 } 855 856 /* 857 * This follows the kvm_set_irq() API, so it returns: 858 * < 0 Interrupt was ignored (masked or not delivered for other reasons) 859 * = 0 Interrupt was coalesced (previous irq is still pending) 860 * > 0 Number of CPUs interrupt was delivered to 861 */ 862 int kvm_xen_set_evtchn_fast(struct kvm_kernel_irq_routing_entry *e, 863 struct kvm *kvm) 864 { 865 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 866 struct kvm_vcpu *vcpu; 867 unsigned long *pending_bits, *mask_bits; 868 unsigned long flags; 869 int port_word_bit; 870 bool kick_vcpu = false; 871 int idx; 872 int rc; 873 874 vcpu = kvm_get_vcpu_by_id(kvm, e->xen_evtchn.vcpu); 875 if (!vcpu) 876 return -1; 877 878 if (!vcpu->arch.xen.vcpu_info_set) 879 return -1; 880 881 if (e->xen_evtchn.port >= max_evtchn_port(kvm)) 882 return -1; 883 884 rc = -EWOULDBLOCK; 885 read_lock_irqsave(&gpc->lock, flags); 886 887 idx = srcu_read_lock(&kvm->srcu); 888 if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE)) 889 goto out_rcu; 890 891 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 892 struct shared_info *shinfo = gpc->khva; 893 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 894 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 895 port_word_bit = e->xen_evtchn.port / 64; 896 } else { 897 struct compat_shared_info *shinfo = gpc->khva; 898 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 899 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 900 port_word_bit = e->xen_evtchn.port / 32; 901 } 902 903 /* 904 * If this port wasn't already set, and if it isn't masked, then 905 * we try to set the corresponding bit in the in-kernel shadow of 906 * evtchn_pending_sel for the target vCPU. And if *that* wasn't 907 * already set, then we kick the vCPU in question to write to the 908 * *real* evtchn_pending_sel in its own guest vcpu_info struct. 909 */ 910 if (test_and_set_bit(e->xen_evtchn.port, pending_bits)) { 911 rc = 0; /* It was already raised */ 912 } else if (test_bit(e->xen_evtchn.port, mask_bits)) { 913 rc = -1; /* Masked */ 914 } else { 915 rc = 1; /* Delivered. But was the vCPU waking already? */ 916 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel)) 917 kick_vcpu = true; 918 } 919 920 out_rcu: 921 srcu_read_unlock(&kvm->srcu, idx); 922 read_unlock_irqrestore(&gpc->lock, flags); 923 924 if (kick_vcpu) { 925 kvm_make_request(KVM_REQ_EVENT, vcpu); 926 kvm_vcpu_kick(vcpu); 927 } 928 929 return rc; 930 } 931 932 /* This is the version called from kvm_set_irq() as the .set function */ 933 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 934 int irq_source_id, int level, bool line_status) 935 { 936 bool mm_borrowed = false; 937 int rc; 938 939 if (!level) 940 return -1; 941 942 rc = kvm_xen_set_evtchn_fast(e, kvm); 943 if (rc != -EWOULDBLOCK) 944 return rc; 945 946 if (current->mm != kvm->mm) { 947 /* 948 * If not on a thread which already belongs to this KVM, 949 * we'd better be in the irqfd workqueue. 950 */ 951 if (WARN_ON_ONCE(current->mm)) 952 return -EINVAL; 953 954 kthread_use_mm(kvm->mm); 955 mm_borrowed = true; 956 } 957 958 /* 959 * For the irqfd workqueue, using the main kvm->lock mutex is 960 * fine since this function is invoked from kvm_set_irq() with 961 * no other lock held, no srcu. In future if it will be called 962 * directly from a vCPU thread (e.g. on hypercall for an IPI) 963 * then it may need to switch to using a leaf-node mutex for 964 * serializing the shared_info mapping. 965 */ 966 mutex_lock(&kvm->lock); 967 968 /* 969 * It is theoretically possible for the page to be unmapped 970 * and the MMU notifier to invalidate the shared_info before 971 * we even get to use it. In that case, this looks like an 972 * infinite loop. It was tempting to do it via the userspace 973 * HVA instead... but that just *hides* the fact that it's 974 * an infinite loop, because if a fault occurs and it waits 975 * for the page to come back, it can *still* immediately 976 * fault and have to wait again, repeatedly. 977 * 978 * Conversely, the page could also have been reinstated by 979 * another thread before we even obtain the mutex above, so 980 * check again *first* before remapping it. 981 */ 982 do { 983 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 984 int idx; 985 986 rc = kvm_xen_set_evtchn_fast(e, kvm); 987 if (rc != -EWOULDBLOCK) 988 break; 989 990 idx = srcu_read_lock(&kvm->srcu); 991 rc = kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpc->gpa, 992 PAGE_SIZE, false); 993 srcu_read_unlock(&kvm->srcu, idx); 994 } while(!rc); 995 996 mutex_unlock(&kvm->lock); 997 998 if (mm_borrowed) 999 kthread_unuse_mm(kvm->mm); 1000 1001 return rc; 1002 } 1003 1004 int kvm_xen_setup_evtchn(struct kvm *kvm, 1005 struct kvm_kernel_irq_routing_entry *e, 1006 const struct kvm_irq_routing_entry *ue) 1007 1008 { 1009 if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm)) 1010 return -EINVAL; 1011 1012 /* We only support 2 level event channels for now */ 1013 if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1014 return -EINVAL; 1015 1016 e->xen_evtchn.port = ue->u.xen_evtchn.port; 1017 e->xen_evtchn.vcpu = ue->u.xen_evtchn.vcpu; 1018 e->xen_evtchn.priority = ue->u.xen_evtchn.priority; 1019 e->set = evtchn_set_fn; 1020 1021 return 0; 1022 } 1023