1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. 4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. 5 * 6 * KVM Xen emulation 7 */ 8 9 #include "x86.h" 10 #include "xen.h" 11 #include "hyperv.h" 12 #include "lapic.h" 13 14 #include <linux/eventfd.h> 15 #include <linux/kvm_host.h> 16 #include <linux/sched/stat.h> 17 18 #include <trace/events/kvm.h> 19 #include <xen/interface/xen.h> 20 #include <xen/interface/vcpu.h> 21 #include <xen/interface/version.h> 22 #include <xen/interface/event_channel.h> 23 #include <xen/interface/sched.h> 24 25 #include "trace.h" 26 27 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm); 28 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data); 29 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r); 30 31 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ); 32 33 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn) 34 { 35 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 36 struct pvclock_wall_clock *wc; 37 gpa_t gpa = gfn_to_gpa(gfn); 38 u32 *wc_sec_hi; 39 u32 wc_version; 40 u64 wall_nsec; 41 int ret = 0; 42 int idx = srcu_read_lock(&kvm->srcu); 43 44 if (gfn == GPA_INVALID) { 45 kvm_gpc_deactivate(kvm, gpc); 46 goto out; 47 } 48 49 do { 50 ret = kvm_gpc_activate(kvm, gpc, NULL, KVM_HOST_USES_PFN, gpa, 51 PAGE_SIZE); 52 if (ret) 53 goto out; 54 55 /* 56 * This code mirrors kvm_write_wall_clock() except that it writes 57 * directly through the pfn cache and doesn't mark the page dirty. 58 */ 59 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 60 61 /* It could be invalid again already, so we need to check */ 62 read_lock_irq(&gpc->lock); 63 64 if (gpc->valid) 65 break; 66 67 read_unlock_irq(&gpc->lock); 68 } while (1); 69 70 /* Paranoia checks on the 32-bit struct layout */ 71 BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900); 72 BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924); 73 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 74 75 #ifdef CONFIG_X86_64 76 /* Paranoia checks on the 64-bit struct layout */ 77 BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00); 78 BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c); 79 80 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 81 struct shared_info *shinfo = gpc->khva; 82 83 wc_sec_hi = &shinfo->wc_sec_hi; 84 wc = &shinfo->wc; 85 } else 86 #endif 87 { 88 struct compat_shared_info *shinfo = gpc->khva; 89 90 wc_sec_hi = &shinfo->arch.wc_sec_hi; 91 wc = &shinfo->wc; 92 } 93 94 /* Increment and ensure an odd value */ 95 wc_version = wc->version = (wc->version + 1) | 1; 96 smp_wmb(); 97 98 wc->nsec = do_div(wall_nsec, 1000000000); 99 wc->sec = (u32)wall_nsec; 100 *wc_sec_hi = wall_nsec >> 32; 101 smp_wmb(); 102 103 wc->version = wc_version + 1; 104 read_unlock_irq(&gpc->lock); 105 106 kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE); 107 108 out: 109 srcu_read_unlock(&kvm->srcu, idx); 110 return ret; 111 } 112 113 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu) 114 { 115 if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) { 116 struct kvm_xen_evtchn e; 117 118 e.vcpu_id = vcpu->vcpu_id; 119 e.vcpu_idx = vcpu->vcpu_idx; 120 e.port = vcpu->arch.xen.timer_virq; 121 e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 122 123 kvm_xen_set_evtchn(&e, vcpu->kvm); 124 125 vcpu->arch.xen.timer_expires = 0; 126 atomic_set(&vcpu->arch.xen.timer_pending, 0); 127 } 128 } 129 130 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer) 131 { 132 struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu, 133 arch.xen.timer); 134 if (atomic_read(&vcpu->arch.xen.timer_pending)) 135 return HRTIMER_NORESTART; 136 137 atomic_inc(&vcpu->arch.xen.timer_pending); 138 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 139 kvm_vcpu_kick(vcpu); 140 141 return HRTIMER_NORESTART; 142 } 143 144 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns) 145 { 146 atomic_set(&vcpu->arch.xen.timer_pending, 0); 147 vcpu->arch.xen.timer_expires = guest_abs; 148 149 if (delta_ns <= 0) { 150 xen_timer_callback(&vcpu->arch.xen.timer); 151 } else { 152 ktime_t ktime_now = ktime_get(); 153 hrtimer_start(&vcpu->arch.xen.timer, 154 ktime_add_ns(ktime_now, delta_ns), 155 HRTIMER_MODE_ABS_HARD); 156 } 157 } 158 159 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu) 160 { 161 hrtimer_cancel(&vcpu->arch.xen.timer); 162 vcpu->arch.xen.timer_expires = 0; 163 atomic_set(&vcpu->arch.xen.timer_pending, 0); 164 } 165 166 static void kvm_xen_init_timer(struct kvm_vcpu *vcpu) 167 { 168 hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC, 169 HRTIMER_MODE_ABS_HARD); 170 vcpu->arch.xen.timer.function = xen_timer_callback; 171 } 172 173 static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state) 174 { 175 struct kvm_vcpu_xen *vx = &v->arch.xen; 176 u64 now = get_kvmclock_ns(v->kvm); 177 u64 delta_ns = now - vx->runstate_entry_time; 178 u64 run_delay = current->sched_info.run_delay; 179 180 if (unlikely(!vx->runstate_entry_time)) 181 vx->current_runstate = RUNSTATE_offline; 182 183 /* 184 * Time waiting for the scheduler isn't "stolen" if the 185 * vCPU wasn't running anyway. 186 */ 187 if (vx->current_runstate == RUNSTATE_running) { 188 u64 steal_ns = run_delay - vx->last_steal; 189 190 delta_ns -= steal_ns; 191 192 vx->runstate_times[RUNSTATE_runnable] += steal_ns; 193 } 194 vx->last_steal = run_delay; 195 196 vx->runstate_times[vx->current_runstate] += delta_ns; 197 vx->current_runstate = state; 198 vx->runstate_entry_time = now; 199 } 200 201 void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state) 202 { 203 struct kvm_vcpu_xen *vx = &v->arch.xen; 204 struct gfn_to_pfn_cache *gpc = &vx->runstate_cache; 205 uint64_t *user_times; 206 unsigned long flags; 207 size_t user_len; 208 int *user_state; 209 210 kvm_xen_update_runstate(v, state); 211 212 if (!vx->runstate_cache.active) 213 return; 214 215 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) 216 user_len = sizeof(struct vcpu_runstate_info); 217 else 218 user_len = sizeof(struct compat_vcpu_runstate_info); 219 220 read_lock_irqsave(&gpc->lock, flags); 221 while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa, 222 user_len)) { 223 read_unlock_irqrestore(&gpc->lock, flags); 224 225 /* When invoked from kvm_sched_out() we cannot sleep */ 226 if (state == RUNSTATE_runnable) 227 return; 228 229 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa, user_len)) 230 return; 231 232 read_lock_irqsave(&gpc->lock, flags); 233 } 234 235 /* 236 * The only difference between 32-bit and 64-bit versions of the 237 * runstate struct us the alignment of uint64_t in 32-bit, which 238 * means that the 64-bit version has an additional 4 bytes of 239 * padding after the first field 'state'. 240 * 241 * So we use 'int __user *user_state' to point to the state field, 242 * and 'uint64_t __user *user_times' for runstate_entry_time. So 243 * the actual array of time[] in each state starts at user_times[1]. 244 */ 245 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0); 246 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0); 247 BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c); 248 #ifdef CONFIG_X86_64 249 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 250 offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4); 251 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) != 252 offsetof(struct compat_vcpu_runstate_info, time) + 4); 253 #endif 254 255 user_state = gpc->khva; 256 257 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) 258 user_times = gpc->khva + offsetof(struct vcpu_runstate_info, 259 state_entry_time); 260 else 261 user_times = gpc->khva + offsetof(struct compat_vcpu_runstate_info, 262 state_entry_time); 263 264 /* 265 * First write the updated state_entry_time at the appropriate 266 * location determined by 'offset'. 267 */ 268 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) != 269 sizeof(user_times[0])); 270 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) != 271 sizeof(user_times[0])); 272 273 user_times[0] = vx->runstate_entry_time | XEN_RUNSTATE_UPDATE; 274 smp_wmb(); 275 276 /* 277 * Next, write the new runstate. This is in the *same* place 278 * for 32-bit and 64-bit guests, asserted here for paranoia. 279 */ 280 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 281 offsetof(struct compat_vcpu_runstate_info, state)); 282 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) != 283 sizeof(vx->current_runstate)); 284 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) != 285 sizeof(vx->current_runstate)); 286 287 *user_state = vx->current_runstate; 288 289 /* 290 * Write the actual runstate times immediately after the 291 * runstate_entry_time. 292 */ 293 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 294 offsetof(struct vcpu_runstate_info, time) - sizeof(u64)); 295 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) != 296 offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64)); 297 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 298 sizeof_field(struct compat_vcpu_runstate_info, time)); 299 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 300 sizeof(vx->runstate_times)); 301 302 memcpy(user_times + 1, vx->runstate_times, sizeof(vx->runstate_times)); 303 smp_wmb(); 304 305 /* 306 * Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's 307 * runstate_entry_time field. 308 */ 309 user_times[0] &= ~XEN_RUNSTATE_UPDATE; 310 smp_wmb(); 311 312 read_unlock_irqrestore(&gpc->lock, flags); 313 314 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 315 } 316 317 static void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v) 318 { 319 struct kvm_lapic_irq irq = { }; 320 int r; 321 322 irq.dest_id = v->vcpu_id; 323 irq.vector = v->arch.xen.upcall_vector; 324 irq.dest_mode = APIC_DEST_PHYSICAL; 325 irq.shorthand = APIC_DEST_NOSHORT; 326 irq.delivery_mode = APIC_DM_FIXED; 327 irq.level = 1; 328 329 /* The fast version will always work for physical unicast */ 330 WARN_ON_ONCE(!kvm_irq_delivery_to_apic_fast(v->kvm, NULL, &irq, &r, NULL)); 331 } 332 333 /* 334 * On event channel delivery, the vcpu_info may not have been accessible. 335 * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which 336 * need to be marked into the vcpu_info (and evtchn_upcall_pending set). 337 * Do so now that we can sleep in the context of the vCPU to bring the 338 * page in, and refresh the pfn cache for it. 339 */ 340 void kvm_xen_inject_pending_events(struct kvm_vcpu *v) 341 { 342 unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel); 343 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; 344 unsigned long flags; 345 346 if (!evtchn_pending_sel) 347 return; 348 349 /* 350 * Yes, this is an open-coded loop. But that's just what put_user() 351 * does anyway. Page it in and retry the instruction. We're just a 352 * little more honest about it. 353 */ 354 read_lock_irqsave(&gpc->lock, flags); 355 while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa, 356 sizeof(struct vcpu_info))) { 357 read_unlock_irqrestore(&gpc->lock, flags); 358 359 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa, 360 sizeof(struct vcpu_info))) 361 return; 362 363 read_lock_irqsave(&gpc->lock, flags); 364 } 365 366 /* Now gpc->khva is a valid kernel address for the vcpu_info */ 367 if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) { 368 struct vcpu_info *vi = gpc->khva; 369 370 asm volatile(LOCK_PREFIX "orq %0, %1\n" 371 "notq %0\n" 372 LOCK_PREFIX "andq %0, %2\n" 373 : "=r" (evtchn_pending_sel), 374 "+m" (vi->evtchn_pending_sel), 375 "+m" (v->arch.xen.evtchn_pending_sel) 376 : "0" (evtchn_pending_sel)); 377 WRITE_ONCE(vi->evtchn_upcall_pending, 1); 378 } else { 379 u32 evtchn_pending_sel32 = evtchn_pending_sel; 380 struct compat_vcpu_info *vi = gpc->khva; 381 382 asm volatile(LOCK_PREFIX "orl %0, %1\n" 383 "notl %0\n" 384 LOCK_PREFIX "andl %0, %2\n" 385 : "=r" (evtchn_pending_sel32), 386 "+m" (vi->evtchn_pending_sel), 387 "+m" (v->arch.xen.evtchn_pending_sel) 388 : "0" (evtchn_pending_sel32)); 389 WRITE_ONCE(vi->evtchn_upcall_pending, 1); 390 } 391 read_unlock_irqrestore(&gpc->lock, flags); 392 393 /* For the per-vCPU lapic vector, deliver it as MSI. */ 394 if (v->arch.xen.upcall_vector) 395 kvm_xen_inject_vcpu_vector(v); 396 397 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 398 } 399 400 int __kvm_xen_has_interrupt(struct kvm_vcpu *v) 401 { 402 struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache; 403 unsigned long flags; 404 u8 rc = 0; 405 406 /* 407 * If the global upcall vector (HVMIRQ_callback_vector) is set and 408 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending. 409 */ 410 411 /* No need for compat handling here */ 412 BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) != 413 offsetof(struct compat_vcpu_info, evtchn_upcall_pending)); 414 BUILD_BUG_ON(sizeof(rc) != 415 sizeof_field(struct vcpu_info, evtchn_upcall_pending)); 416 BUILD_BUG_ON(sizeof(rc) != 417 sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending)); 418 419 read_lock_irqsave(&gpc->lock, flags); 420 while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa, 421 sizeof(struct vcpu_info))) { 422 read_unlock_irqrestore(&gpc->lock, flags); 423 424 /* 425 * This function gets called from kvm_vcpu_block() after setting the 426 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately 427 * from a HLT. So we really mustn't sleep. If the page ended up absent 428 * at that point, just return 1 in order to trigger an immediate wake, 429 * and we'll end up getting called again from a context where we *can* 430 * fault in the page and wait for it. 431 */ 432 if (in_atomic() || !task_is_running(current)) 433 return 1; 434 435 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa, 436 sizeof(struct vcpu_info))) { 437 /* 438 * If this failed, userspace has screwed up the 439 * vcpu_info mapping. No interrupts for you. 440 */ 441 return 0; 442 } 443 read_lock_irqsave(&gpc->lock, flags); 444 } 445 446 rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending; 447 read_unlock_irqrestore(&gpc->lock, flags); 448 return rc; 449 } 450 451 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 452 { 453 int r = -ENOENT; 454 455 456 switch (data->type) { 457 case KVM_XEN_ATTR_TYPE_LONG_MODE: 458 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) { 459 r = -EINVAL; 460 } else { 461 mutex_lock(&kvm->lock); 462 kvm->arch.xen.long_mode = !!data->u.long_mode; 463 mutex_unlock(&kvm->lock); 464 r = 0; 465 } 466 break; 467 468 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 469 mutex_lock(&kvm->lock); 470 r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn); 471 mutex_unlock(&kvm->lock); 472 break; 473 474 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 475 if (data->u.vector && data->u.vector < 0x10) 476 r = -EINVAL; 477 else { 478 mutex_lock(&kvm->lock); 479 kvm->arch.xen.upcall_vector = data->u.vector; 480 mutex_unlock(&kvm->lock); 481 r = 0; 482 } 483 break; 484 485 case KVM_XEN_ATTR_TYPE_EVTCHN: 486 r = kvm_xen_setattr_evtchn(kvm, data); 487 break; 488 489 case KVM_XEN_ATTR_TYPE_XEN_VERSION: 490 mutex_lock(&kvm->lock); 491 kvm->arch.xen.xen_version = data->u.xen_version; 492 mutex_unlock(&kvm->lock); 493 r = 0; 494 break; 495 496 default: 497 break; 498 } 499 500 return r; 501 } 502 503 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 504 { 505 int r = -ENOENT; 506 507 mutex_lock(&kvm->lock); 508 509 switch (data->type) { 510 case KVM_XEN_ATTR_TYPE_LONG_MODE: 511 data->u.long_mode = kvm->arch.xen.long_mode; 512 r = 0; 513 break; 514 515 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 516 if (kvm->arch.xen.shinfo_cache.active) 517 data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa); 518 else 519 data->u.shared_info.gfn = GPA_INVALID; 520 r = 0; 521 break; 522 523 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 524 data->u.vector = kvm->arch.xen.upcall_vector; 525 r = 0; 526 break; 527 528 case KVM_XEN_ATTR_TYPE_XEN_VERSION: 529 data->u.xen_version = kvm->arch.xen.xen_version; 530 r = 0; 531 break; 532 533 default: 534 break; 535 } 536 537 mutex_unlock(&kvm->lock); 538 return r; 539 } 540 541 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 542 { 543 int idx, r = -ENOENT; 544 545 mutex_lock(&vcpu->kvm->lock); 546 idx = srcu_read_lock(&vcpu->kvm->srcu); 547 548 switch (data->type) { 549 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 550 /* No compat necessary here. */ 551 BUILD_BUG_ON(sizeof(struct vcpu_info) != 552 sizeof(struct compat_vcpu_info)); 553 BUILD_BUG_ON(offsetof(struct vcpu_info, time) != 554 offsetof(struct compat_vcpu_info, time)); 555 556 if (data->u.gpa == GPA_INVALID) { 557 kvm_gpc_deactivate(vcpu->kvm, &vcpu->arch.xen.vcpu_info_cache); 558 r = 0; 559 break; 560 } 561 562 r = kvm_gpc_activate(vcpu->kvm, 563 &vcpu->arch.xen.vcpu_info_cache, NULL, 564 KVM_HOST_USES_PFN, data->u.gpa, 565 sizeof(struct vcpu_info)); 566 if (!r) 567 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 568 569 break; 570 571 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 572 if (data->u.gpa == GPA_INVALID) { 573 kvm_gpc_deactivate(vcpu->kvm, 574 &vcpu->arch.xen.vcpu_time_info_cache); 575 r = 0; 576 break; 577 } 578 579 r = kvm_gpc_activate(vcpu->kvm, 580 &vcpu->arch.xen.vcpu_time_info_cache, 581 NULL, KVM_HOST_USES_PFN, data->u.gpa, 582 sizeof(struct pvclock_vcpu_time_info)); 583 if (!r) 584 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 585 break; 586 587 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: 588 if (!sched_info_on()) { 589 r = -EOPNOTSUPP; 590 break; 591 } 592 if (data->u.gpa == GPA_INVALID) { 593 kvm_gpc_deactivate(vcpu->kvm, 594 &vcpu->arch.xen.runstate_cache); 595 r = 0; 596 break; 597 } 598 599 r = kvm_gpc_activate(vcpu->kvm, &vcpu->arch.xen.runstate_cache, 600 NULL, KVM_HOST_USES_PFN, data->u.gpa, 601 sizeof(struct vcpu_runstate_info)); 602 break; 603 604 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 605 if (!sched_info_on()) { 606 r = -EOPNOTSUPP; 607 break; 608 } 609 if (data->u.runstate.state > RUNSTATE_offline) { 610 r = -EINVAL; 611 break; 612 } 613 614 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 615 r = 0; 616 break; 617 618 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 619 if (!sched_info_on()) { 620 r = -EOPNOTSUPP; 621 break; 622 } 623 if (data->u.runstate.state > RUNSTATE_offline) { 624 r = -EINVAL; 625 break; 626 } 627 if (data->u.runstate.state_entry_time != 628 (data->u.runstate.time_running + 629 data->u.runstate.time_runnable + 630 data->u.runstate.time_blocked + 631 data->u.runstate.time_offline)) { 632 r = -EINVAL; 633 break; 634 } 635 if (get_kvmclock_ns(vcpu->kvm) < 636 data->u.runstate.state_entry_time) { 637 r = -EINVAL; 638 break; 639 } 640 641 vcpu->arch.xen.current_runstate = data->u.runstate.state; 642 vcpu->arch.xen.runstate_entry_time = 643 data->u.runstate.state_entry_time; 644 vcpu->arch.xen.runstate_times[RUNSTATE_running] = 645 data->u.runstate.time_running; 646 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] = 647 data->u.runstate.time_runnable; 648 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] = 649 data->u.runstate.time_blocked; 650 vcpu->arch.xen.runstate_times[RUNSTATE_offline] = 651 data->u.runstate.time_offline; 652 vcpu->arch.xen.last_steal = current->sched_info.run_delay; 653 r = 0; 654 break; 655 656 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 657 if (!sched_info_on()) { 658 r = -EOPNOTSUPP; 659 break; 660 } 661 if (data->u.runstate.state > RUNSTATE_offline && 662 data->u.runstate.state != (u64)-1) { 663 r = -EINVAL; 664 break; 665 } 666 /* The adjustment must add up */ 667 if (data->u.runstate.state_entry_time != 668 (data->u.runstate.time_running + 669 data->u.runstate.time_runnable + 670 data->u.runstate.time_blocked + 671 data->u.runstate.time_offline)) { 672 r = -EINVAL; 673 break; 674 } 675 676 if (get_kvmclock_ns(vcpu->kvm) < 677 (vcpu->arch.xen.runstate_entry_time + 678 data->u.runstate.state_entry_time)) { 679 r = -EINVAL; 680 break; 681 } 682 683 vcpu->arch.xen.runstate_entry_time += 684 data->u.runstate.state_entry_time; 685 vcpu->arch.xen.runstate_times[RUNSTATE_running] += 686 data->u.runstate.time_running; 687 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] += 688 data->u.runstate.time_runnable; 689 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] += 690 data->u.runstate.time_blocked; 691 vcpu->arch.xen.runstate_times[RUNSTATE_offline] += 692 data->u.runstate.time_offline; 693 694 if (data->u.runstate.state <= RUNSTATE_offline) 695 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 696 r = 0; 697 break; 698 699 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: 700 if (data->u.vcpu_id >= KVM_MAX_VCPUS) 701 r = -EINVAL; 702 else { 703 vcpu->arch.xen.vcpu_id = data->u.vcpu_id; 704 r = 0; 705 } 706 break; 707 708 case KVM_XEN_VCPU_ATTR_TYPE_TIMER: 709 if (data->u.timer.port && 710 data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) { 711 r = -EINVAL; 712 break; 713 } 714 715 if (!vcpu->arch.xen.timer.function) 716 kvm_xen_init_timer(vcpu); 717 718 /* Stop the timer (if it's running) before changing the vector */ 719 kvm_xen_stop_timer(vcpu); 720 vcpu->arch.xen.timer_virq = data->u.timer.port; 721 722 /* Start the timer if the new value has a valid vector+expiry. */ 723 if (data->u.timer.port && data->u.timer.expires_ns) 724 kvm_xen_start_timer(vcpu, data->u.timer.expires_ns, 725 data->u.timer.expires_ns - 726 get_kvmclock_ns(vcpu->kvm)); 727 728 r = 0; 729 break; 730 731 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: 732 if (data->u.vector && data->u.vector < 0x10) 733 r = -EINVAL; 734 else { 735 vcpu->arch.xen.upcall_vector = data->u.vector; 736 r = 0; 737 } 738 break; 739 740 default: 741 break; 742 } 743 744 srcu_read_unlock(&vcpu->kvm->srcu, idx); 745 mutex_unlock(&vcpu->kvm->lock); 746 return r; 747 } 748 749 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 750 { 751 int r = -ENOENT; 752 753 mutex_lock(&vcpu->kvm->lock); 754 755 switch (data->type) { 756 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 757 if (vcpu->arch.xen.vcpu_info_cache.active) 758 data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa; 759 else 760 data->u.gpa = GPA_INVALID; 761 r = 0; 762 break; 763 764 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 765 if (vcpu->arch.xen.vcpu_time_info_cache.active) 766 data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa; 767 else 768 data->u.gpa = GPA_INVALID; 769 r = 0; 770 break; 771 772 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: 773 if (!sched_info_on()) { 774 r = -EOPNOTSUPP; 775 break; 776 } 777 if (vcpu->arch.xen.runstate_cache.active) { 778 data->u.gpa = vcpu->arch.xen.runstate_cache.gpa; 779 r = 0; 780 } 781 break; 782 783 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 784 if (!sched_info_on()) { 785 r = -EOPNOTSUPP; 786 break; 787 } 788 data->u.runstate.state = vcpu->arch.xen.current_runstate; 789 r = 0; 790 break; 791 792 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 793 if (!sched_info_on()) { 794 r = -EOPNOTSUPP; 795 break; 796 } 797 data->u.runstate.state = vcpu->arch.xen.current_runstate; 798 data->u.runstate.state_entry_time = 799 vcpu->arch.xen.runstate_entry_time; 800 data->u.runstate.time_running = 801 vcpu->arch.xen.runstate_times[RUNSTATE_running]; 802 data->u.runstate.time_runnable = 803 vcpu->arch.xen.runstate_times[RUNSTATE_runnable]; 804 data->u.runstate.time_blocked = 805 vcpu->arch.xen.runstate_times[RUNSTATE_blocked]; 806 data->u.runstate.time_offline = 807 vcpu->arch.xen.runstate_times[RUNSTATE_offline]; 808 r = 0; 809 break; 810 811 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 812 r = -EINVAL; 813 break; 814 815 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID: 816 data->u.vcpu_id = vcpu->arch.xen.vcpu_id; 817 r = 0; 818 break; 819 820 case KVM_XEN_VCPU_ATTR_TYPE_TIMER: 821 data->u.timer.port = vcpu->arch.xen.timer_virq; 822 data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; 823 data->u.timer.expires_ns = vcpu->arch.xen.timer_expires; 824 r = 0; 825 break; 826 827 case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR: 828 data->u.vector = vcpu->arch.xen.upcall_vector; 829 r = 0; 830 break; 831 832 default: 833 break; 834 } 835 836 mutex_unlock(&vcpu->kvm->lock); 837 return r; 838 } 839 840 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data) 841 { 842 struct kvm *kvm = vcpu->kvm; 843 u32 page_num = data & ~PAGE_MASK; 844 u64 page_addr = data & PAGE_MASK; 845 bool lm = is_long_mode(vcpu); 846 847 /* Latch long_mode for shared_info pages etc. */ 848 vcpu->kvm->arch.xen.long_mode = lm; 849 850 /* 851 * If Xen hypercall intercept is enabled, fill the hypercall 852 * page with VMCALL/VMMCALL instructions since that's what 853 * we catch. Else the VMM has provided the hypercall pages 854 * with instructions of its own choosing, so use those. 855 */ 856 if (kvm_xen_hypercall_enabled(kvm)) { 857 u8 instructions[32]; 858 int i; 859 860 if (page_num) 861 return 1; 862 863 /* mov imm32, %eax */ 864 instructions[0] = 0xb8; 865 866 /* vmcall / vmmcall */ 867 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5); 868 869 /* ret */ 870 instructions[8] = 0xc3; 871 872 /* int3 to pad */ 873 memset(instructions + 9, 0xcc, sizeof(instructions) - 9); 874 875 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) { 876 *(u32 *)&instructions[1] = i; 877 if (kvm_vcpu_write_guest(vcpu, 878 page_addr + (i * sizeof(instructions)), 879 instructions, sizeof(instructions))) 880 return 1; 881 } 882 } else { 883 /* 884 * Note, truncation is a non-issue as 'lm' is guaranteed to be 885 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes. 886 */ 887 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64 888 : kvm->arch.xen_hvm_config.blob_addr_32; 889 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 890 : kvm->arch.xen_hvm_config.blob_size_32; 891 u8 *page; 892 893 if (page_num >= blob_size) 894 return 1; 895 896 blob_addr += page_num * PAGE_SIZE; 897 898 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE); 899 if (IS_ERR(page)) 900 return PTR_ERR(page); 901 902 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) { 903 kfree(page); 904 return 1; 905 } 906 } 907 return 0; 908 } 909 910 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc) 911 { 912 /* Only some feature flags need to be *enabled* by userspace */ 913 u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 914 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 915 916 if (xhc->flags & ~permitted_flags) 917 return -EINVAL; 918 919 /* 920 * With hypercall interception the kernel generates its own 921 * hypercall page so it must not be provided. 922 */ 923 if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) && 924 (xhc->blob_addr_32 || xhc->blob_addr_64 || 925 xhc->blob_size_32 || xhc->blob_size_64)) 926 return -EINVAL; 927 928 mutex_lock(&kvm->lock); 929 930 if (xhc->msr && !kvm->arch.xen_hvm_config.msr) 931 static_branch_inc(&kvm_xen_enabled.key); 932 else if (!xhc->msr && kvm->arch.xen_hvm_config.msr) 933 static_branch_slow_dec_deferred(&kvm_xen_enabled); 934 935 memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc)); 936 937 mutex_unlock(&kvm->lock); 938 return 0; 939 } 940 941 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) 942 { 943 kvm_rax_write(vcpu, result); 944 return kvm_skip_emulated_instruction(vcpu); 945 } 946 947 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu) 948 { 949 struct kvm_run *run = vcpu->run; 950 951 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip))) 952 return 1; 953 954 return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result); 955 } 956 957 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports, 958 evtchn_port_t *ports) 959 { 960 struct kvm *kvm = vcpu->kvm; 961 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 962 unsigned long *pending_bits; 963 unsigned long flags; 964 bool ret = true; 965 int idx, i; 966 967 read_lock_irqsave(&gpc->lock, flags); 968 idx = srcu_read_lock(&kvm->srcu); 969 if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE)) 970 goto out_rcu; 971 972 ret = false; 973 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 974 struct shared_info *shinfo = gpc->khva; 975 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 976 } else { 977 struct compat_shared_info *shinfo = gpc->khva; 978 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 979 } 980 981 for (i = 0; i < nr_ports; i++) { 982 if (test_bit(ports[i], pending_bits)) { 983 ret = true; 984 break; 985 } 986 } 987 988 out_rcu: 989 srcu_read_unlock(&kvm->srcu, idx); 990 read_unlock_irqrestore(&gpc->lock, flags); 991 992 return ret; 993 } 994 995 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode, 996 u64 param, u64 *r) 997 { 998 int idx, i; 999 struct sched_poll sched_poll; 1000 evtchn_port_t port, *ports; 1001 gpa_t gpa; 1002 1003 if (!longmode || !lapic_in_kernel(vcpu) || 1004 !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND)) 1005 return false; 1006 1007 idx = srcu_read_lock(&vcpu->kvm->srcu); 1008 gpa = kvm_mmu_gva_to_gpa_system(vcpu, param, NULL); 1009 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1010 1011 if (!gpa || kvm_vcpu_read_guest(vcpu, gpa, &sched_poll, 1012 sizeof(sched_poll))) { 1013 *r = -EFAULT; 1014 return true; 1015 } 1016 1017 if (unlikely(sched_poll.nr_ports > 1)) { 1018 /* Xen (unofficially) limits number of pollers to 128 */ 1019 if (sched_poll.nr_ports > 128) { 1020 *r = -EINVAL; 1021 return true; 1022 } 1023 1024 ports = kmalloc_array(sched_poll.nr_ports, 1025 sizeof(*ports), GFP_KERNEL); 1026 if (!ports) { 1027 *r = -ENOMEM; 1028 return true; 1029 } 1030 } else 1031 ports = &port; 1032 1033 for (i = 0; i < sched_poll.nr_ports; i++) { 1034 idx = srcu_read_lock(&vcpu->kvm->srcu); 1035 gpa = kvm_mmu_gva_to_gpa_system(vcpu, 1036 (gva_t)(sched_poll.ports + i), 1037 NULL); 1038 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1039 1040 if (!gpa || kvm_vcpu_read_guest(vcpu, gpa, 1041 &ports[i], sizeof(port))) { 1042 *r = -EFAULT; 1043 goto out; 1044 } 1045 } 1046 1047 if (sched_poll.nr_ports == 1) 1048 vcpu->arch.xen.poll_evtchn = port; 1049 else 1050 vcpu->arch.xen.poll_evtchn = -1; 1051 1052 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); 1053 1054 if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) { 1055 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 1056 1057 if (sched_poll.timeout) 1058 mod_timer(&vcpu->arch.xen.poll_timer, 1059 jiffies + nsecs_to_jiffies(sched_poll.timeout)); 1060 1061 kvm_vcpu_halt(vcpu); 1062 1063 if (sched_poll.timeout) 1064 del_timer(&vcpu->arch.xen.poll_timer); 1065 1066 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 1067 } 1068 1069 vcpu->arch.xen.poll_evtchn = 0; 1070 *r = 0; 1071 out: 1072 /* Really, this is only needed in case of timeout */ 1073 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask); 1074 1075 if (unlikely(sched_poll.nr_ports > 1)) 1076 kfree(ports); 1077 return true; 1078 } 1079 1080 static void cancel_evtchn_poll(struct timer_list *t) 1081 { 1082 struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer); 1083 1084 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1085 kvm_vcpu_kick(vcpu); 1086 } 1087 1088 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode, 1089 int cmd, u64 param, u64 *r) 1090 { 1091 switch (cmd) { 1092 case SCHEDOP_poll: 1093 if (kvm_xen_schedop_poll(vcpu, longmode, param, r)) 1094 return true; 1095 fallthrough; 1096 case SCHEDOP_yield: 1097 kvm_vcpu_on_spin(vcpu, true); 1098 *r = 0; 1099 return true; 1100 default: 1101 break; 1102 } 1103 1104 return false; 1105 } 1106 1107 struct compat_vcpu_set_singleshot_timer { 1108 uint64_t timeout_abs_ns; 1109 uint32_t flags; 1110 } __attribute__((packed)); 1111 1112 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd, 1113 int vcpu_id, u64 param, u64 *r) 1114 { 1115 struct vcpu_set_singleshot_timer oneshot; 1116 s64 delta; 1117 gpa_t gpa; 1118 int idx; 1119 1120 if (!kvm_xen_timer_enabled(vcpu)) 1121 return false; 1122 1123 switch (cmd) { 1124 case VCPUOP_set_singleshot_timer: 1125 if (vcpu->arch.xen.vcpu_id != vcpu_id) { 1126 *r = -EINVAL; 1127 return true; 1128 } 1129 idx = srcu_read_lock(&vcpu->kvm->srcu); 1130 gpa = kvm_mmu_gva_to_gpa_system(vcpu, param, NULL); 1131 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1132 1133 /* 1134 * The only difference for 32-bit compat is the 4 bytes of 1135 * padding after the interesting part of the structure. So 1136 * for a faithful emulation of Xen we have to *try* to copy 1137 * the padding and return -EFAULT if we can't. Otherwise we 1138 * might as well just have copied the 12-byte 32-bit struct. 1139 */ 1140 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != 1141 offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns)); 1142 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) != 1143 sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns)); 1144 BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) != 1145 offsetof(struct vcpu_set_singleshot_timer, flags)); 1146 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) != 1147 sizeof_field(struct vcpu_set_singleshot_timer, flags)); 1148 1149 if (!gpa || 1150 kvm_vcpu_read_guest(vcpu, gpa, &oneshot, longmode ? sizeof(oneshot) : 1151 sizeof(struct compat_vcpu_set_singleshot_timer))) { 1152 *r = -EFAULT; 1153 return true; 1154 } 1155 1156 delta = oneshot.timeout_abs_ns - get_kvmclock_ns(vcpu->kvm); 1157 if ((oneshot.flags & VCPU_SSHOTTMR_future) && delta < 0) { 1158 *r = -ETIME; 1159 return true; 1160 } 1161 1162 kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, delta); 1163 *r = 0; 1164 return true; 1165 1166 case VCPUOP_stop_singleshot_timer: 1167 if (vcpu->arch.xen.vcpu_id != vcpu_id) { 1168 *r = -EINVAL; 1169 return true; 1170 } 1171 kvm_xen_stop_timer(vcpu); 1172 *r = 0; 1173 return true; 1174 } 1175 1176 return false; 1177 } 1178 1179 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout, 1180 u64 *r) 1181 { 1182 if (!kvm_xen_timer_enabled(vcpu)) 1183 return false; 1184 1185 if (timeout) { 1186 uint64_t guest_now = get_kvmclock_ns(vcpu->kvm); 1187 int64_t delta = timeout - guest_now; 1188 1189 /* Xen has a 'Linux workaround' in do_set_timer_op() which 1190 * checks for negative absolute timeout values (caused by 1191 * integer overflow), and for values about 13 days in the 1192 * future (2^50ns) which would be caused by jiffies 1193 * overflow. For those cases, it sets the timeout 100ms in 1194 * the future (not *too* soon, since if a guest really did 1195 * set a long timeout on purpose we don't want to keep 1196 * churning CPU time by waking it up). 1197 */ 1198 if (unlikely((int64_t)timeout < 0 || 1199 (delta > 0 && (uint32_t) (delta >> 50) != 0))) { 1200 delta = 100 * NSEC_PER_MSEC; 1201 timeout = guest_now + delta; 1202 } 1203 1204 kvm_xen_start_timer(vcpu, timeout, delta); 1205 } else { 1206 kvm_xen_stop_timer(vcpu); 1207 } 1208 1209 *r = 0; 1210 return true; 1211 } 1212 1213 int kvm_xen_hypercall(struct kvm_vcpu *vcpu) 1214 { 1215 bool longmode; 1216 u64 input, params[6], r = -ENOSYS; 1217 bool handled = false; 1218 1219 input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX); 1220 1221 /* Hyper-V hypercalls get bit 31 set in EAX */ 1222 if ((input & 0x80000000) && 1223 kvm_hv_hypercall_enabled(vcpu)) 1224 return kvm_hv_hypercall(vcpu); 1225 1226 longmode = is_64_bit_hypercall(vcpu); 1227 if (!longmode) { 1228 params[0] = (u32)kvm_rbx_read(vcpu); 1229 params[1] = (u32)kvm_rcx_read(vcpu); 1230 params[2] = (u32)kvm_rdx_read(vcpu); 1231 params[3] = (u32)kvm_rsi_read(vcpu); 1232 params[4] = (u32)kvm_rdi_read(vcpu); 1233 params[5] = (u32)kvm_rbp_read(vcpu); 1234 } 1235 #ifdef CONFIG_X86_64 1236 else { 1237 params[0] = (u64)kvm_rdi_read(vcpu); 1238 params[1] = (u64)kvm_rsi_read(vcpu); 1239 params[2] = (u64)kvm_rdx_read(vcpu); 1240 params[3] = (u64)kvm_r10_read(vcpu); 1241 params[4] = (u64)kvm_r8_read(vcpu); 1242 params[5] = (u64)kvm_r9_read(vcpu); 1243 } 1244 #endif 1245 trace_kvm_xen_hypercall(input, params[0], params[1], params[2], 1246 params[3], params[4], params[5]); 1247 1248 switch (input) { 1249 case __HYPERVISOR_xen_version: 1250 if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) { 1251 r = vcpu->kvm->arch.xen.xen_version; 1252 handled = true; 1253 } 1254 break; 1255 case __HYPERVISOR_event_channel_op: 1256 if (params[0] == EVTCHNOP_send) 1257 handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r); 1258 break; 1259 case __HYPERVISOR_sched_op: 1260 handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0], 1261 params[1], &r); 1262 break; 1263 case __HYPERVISOR_vcpu_op: 1264 handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1], 1265 params[2], &r); 1266 break; 1267 case __HYPERVISOR_set_timer_op: { 1268 u64 timeout = params[0]; 1269 /* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */ 1270 if (!longmode) 1271 timeout |= params[1] << 32; 1272 handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r); 1273 break; 1274 } 1275 default: 1276 break; 1277 } 1278 1279 if (handled) 1280 return kvm_xen_hypercall_set_result(vcpu, r); 1281 1282 vcpu->run->exit_reason = KVM_EXIT_XEN; 1283 vcpu->run->xen.type = KVM_EXIT_XEN_HCALL; 1284 vcpu->run->xen.u.hcall.longmode = longmode; 1285 vcpu->run->xen.u.hcall.cpl = static_call(kvm_x86_get_cpl)(vcpu); 1286 vcpu->run->xen.u.hcall.input = input; 1287 vcpu->run->xen.u.hcall.params[0] = params[0]; 1288 vcpu->run->xen.u.hcall.params[1] = params[1]; 1289 vcpu->run->xen.u.hcall.params[2] = params[2]; 1290 vcpu->run->xen.u.hcall.params[3] = params[3]; 1291 vcpu->run->xen.u.hcall.params[4] = params[4]; 1292 vcpu->run->xen.u.hcall.params[5] = params[5]; 1293 vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu); 1294 vcpu->arch.complete_userspace_io = 1295 kvm_xen_hypercall_complete_userspace; 1296 1297 return 0; 1298 } 1299 1300 static inline int max_evtchn_port(struct kvm *kvm) 1301 { 1302 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) 1303 return EVTCHN_2L_NR_CHANNELS; 1304 else 1305 return COMPAT_EVTCHN_2L_NR_CHANNELS; 1306 } 1307 1308 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port) 1309 { 1310 int poll_evtchn = vcpu->arch.xen.poll_evtchn; 1311 1312 if ((poll_evtchn == port || poll_evtchn == -1) && 1313 test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) { 1314 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1315 kvm_vcpu_kick(vcpu); 1316 } 1317 } 1318 1319 /* 1320 * The return value from this function is propagated to kvm_set_irq() API, 1321 * so it returns: 1322 * < 0 Interrupt was ignored (masked or not delivered for other reasons) 1323 * = 0 Interrupt was coalesced (previous irq is still pending) 1324 * > 0 Number of CPUs interrupt was delivered to 1325 * 1326 * It is also called directly from kvm_arch_set_irq_inatomic(), where the 1327 * only check on its return value is a comparison with -EWOULDBLOCK'. 1328 */ 1329 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm) 1330 { 1331 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1332 struct kvm_vcpu *vcpu; 1333 unsigned long *pending_bits, *mask_bits; 1334 unsigned long flags; 1335 int port_word_bit; 1336 bool kick_vcpu = false; 1337 int vcpu_idx, idx, rc; 1338 1339 vcpu_idx = READ_ONCE(xe->vcpu_idx); 1340 if (vcpu_idx >= 0) 1341 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 1342 else { 1343 vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id); 1344 if (!vcpu) 1345 return -EINVAL; 1346 WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx); 1347 } 1348 1349 if (!vcpu->arch.xen.vcpu_info_cache.active) 1350 return -EINVAL; 1351 1352 if (xe->port >= max_evtchn_port(kvm)) 1353 return -EINVAL; 1354 1355 rc = -EWOULDBLOCK; 1356 1357 idx = srcu_read_lock(&kvm->srcu); 1358 1359 read_lock_irqsave(&gpc->lock, flags); 1360 if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE)) 1361 goto out_rcu; 1362 1363 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1364 struct shared_info *shinfo = gpc->khva; 1365 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1366 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 1367 port_word_bit = xe->port / 64; 1368 } else { 1369 struct compat_shared_info *shinfo = gpc->khva; 1370 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 1371 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 1372 port_word_bit = xe->port / 32; 1373 } 1374 1375 /* 1376 * If this port wasn't already set, and if it isn't masked, then 1377 * we try to set the corresponding bit in the in-kernel shadow of 1378 * evtchn_pending_sel for the target vCPU. And if *that* wasn't 1379 * already set, then we kick the vCPU in question to write to the 1380 * *real* evtchn_pending_sel in its own guest vcpu_info struct. 1381 */ 1382 if (test_and_set_bit(xe->port, pending_bits)) { 1383 rc = 0; /* It was already raised */ 1384 } else if (test_bit(xe->port, mask_bits)) { 1385 rc = -ENOTCONN; /* Masked */ 1386 kvm_xen_check_poller(vcpu, xe->port); 1387 } else { 1388 rc = 1; /* Delivered to the bitmap in shared_info. */ 1389 /* Now switch to the vCPU's vcpu_info to set the index and pending_sel */ 1390 read_unlock_irqrestore(&gpc->lock, flags); 1391 gpc = &vcpu->arch.xen.vcpu_info_cache; 1392 1393 read_lock_irqsave(&gpc->lock, flags); 1394 if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, sizeof(struct vcpu_info))) { 1395 /* 1396 * Could not access the vcpu_info. Set the bit in-kernel 1397 * and prod the vCPU to deliver it for itself. 1398 */ 1399 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel)) 1400 kick_vcpu = true; 1401 goto out_rcu; 1402 } 1403 1404 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 1405 struct vcpu_info *vcpu_info = gpc->khva; 1406 if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) { 1407 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); 1408 kick_vcpu = true; 1409 } 1410 } else { 1411 struct compat_vcpu_info *vcpu_info = gpc->khva; 1412 if (!test_and_set_bit(port_word_bit, 1413 (unsigned long *)&vcpu_info->evtchn_pending_sel)) { 1414 WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1); 1415 kick_vcpu = true; 1416 } 1417 } 1418 1419 /* For the per-vCPU lapic vector, deliver it as MSI. */ 1420 if (kick_vcpu && vcpu->arch.xen.upcall_vector) { 1421 kvm_xen_inject_vcpu_vector(vcpu); 1422 kick_vcpu = false; 1423 } 1424 } 1425 1426 out_rcu: 1427 read_unlock_irqrestore(&gpc->lock, flags); 1428 srcu_read_unlock(&kvm->srcu, idx); 1429 1430 if (kick_vcpu) { 1431 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1432 kvm_vcpu_kick(vcpu); 1433 } 1434 1435 return rc; 1436 } 1437 1438 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm) 1439 { 1440 bool mm_borrowed = false; 1441 int rc; 1442 1443 rc = kvm_xen_set_evtchn_fast(xe, kvm); 1444 if (rc != -EWOULDBLOCK) 1445 return rc; 1446 1447 if (current->mm != kvm->mm) { 1448 /* 1449 * If not on a thread which already belongs to this KVM, 1450 * we'd better be in the irqfd workqueue. 1451 */ 1452 if (WARN_ON_ONCE(current->mm)) 1453 return -EINVAL; 1454 1455 kthread_use_mm(kvm->mm); 1456 mm_borrowed = true; 1457 } 1458 1459 /* 1460 * For the irqfd workqueue, using the main kvm->lock mutex is 1461 * fine since this function is invoked from kvm_set_irq() with 1462 * no other lock held, no srcu. In future if it will be called 1463 * directly from a vCPU thread (e.g. on hypercall for an IPI) 1464 * then it may need to switch to using a leaf-node mutex for 1465 * serializing the shared_info mapping. 1466 */ 1467 mutex_lock(&kvm->lock); 1468 1469 /* 1470 * It is theoretically possible for the page to be unmapped 1471 * and the MMU notifier to invalidate the shared_info before 1472 * we even get to use it. In that case, this looks like an 1473 * infinite loop. It was tempting to do it via the userspace 1474 * HVA instead... but that just *hides* the fact that it's 1475 * an infinite loop, because if a fault occurs and it waits 1476 * for the page to come back, it can *still* immediately 1477 * fault and have to wait again, repeatedly. 1478 * 1479 * Conversely, the page could also have been reinstated by 1480 * another thread before we even obtain the mutex above, so 1481 * check again *first* before remapping it. 1482 */ 1483 do { 1484 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1485 int idx; 1486 1487 rc = kvm_xen_set_evtchn_fast(xe, kvm); 1488 if (rc != -EWOULDBLOCK) 1489 break; 1490 1491 idx = srcu_read_lock(&kvm->srcu); 1492 rc = kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpc->gpa, PAGE_SIZE); 1493 srcu_read_unlock(&kvm->srcu, idx); 1494 } while(!rc); 1495 1496 mutex_unlock(&kvm->lock); 1497 1498 if (mm_borrowed) 1499 kthread_unuse_mm(kvm->mm); 1500 1501 return rc; 1502 } 1503 1504 /* This is the version called from kvm_set_irq() as the .set function */ 1505 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 1506 int irq_source_id, int level, bool line_status) 1507 { 1508 if (!level) 1509 return -EINVAL; 1510 1511 return kvm_xen_set_evtchn(&e->xen_evtchn, kvm); 1512 } 1513 1514 /* 1515 * Set up an event channel interrupt from the KVM IRQ routing table. 1516 * Used for e.g. PIRQ from passed through physical devices. 1517 */ 1518 int kvm_xen_setup_evtchn(struct kvm *kvm, 1519 struct kvm_kernel_irq_routing_entry *e, 1520 const struct kvm_irq_routing_entry *ue) 1521 1522 { 1523 struct kvm_vcpu *vcpu; 1524 1525 if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm)) 1526 return -EINVAL; 1527 1528 /* We only support 2 level event channels for now */ 1529 if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1530 return -EINVAL; 1531 1532 /* 1533 * Xen gives us interesting mappings from vCPU index to APIC ID, 1534 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs 1535 * to find it. Do that once at setup time, instead of every time. 1536 * But beware that on live update / live migration, the routing 1537 * table might be reinstated before the vCPU threads have finished 1538 * recreating their vCPUs. 1539 */ 1540 vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu); 1541 if (vcpu) 1542 e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx; 1543 else 1544 e->xen_evtchn.vcpu_idx = -1; 1545 1546 e->xen_evtchn.port = ue->u.xen_evtchn.port; 1547 e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu; 1548 e->xen_evtchn.priority = ue->u.xen_evtchn.priority; 1549 e->set = evtchn_set_fn; 1550 1551 return 0; 1552 } 1553 1554 /* 1555 * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl. 1556 */ 1557 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe) 1558 { 1559 struct kvm_xen_evtchn e; 1560 int ret; 1561 1562 if (!uxe->port || uxe->port >= max_evtchn_port(kvm)) 1563 return -EINVAL; 1564 1565 /* We only support 2 level event channels for now */ 1566 if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1567 return -EINVAL; 1568 1569 e.port = uxe->port; 1570 e.vcpu_id = uxe->vcpu; 1571 e.vcpu_idx = -1; 1572 e.priority = uxe->priority; 1573 1574 ret = kvm_xen_set_evtchn(&e, kvm); 1575 1576 /* 1577 * None of that 'return 1 if it actually got delivered' nonsense. 1578 * We don't care if it was masked (-ENOTCONN) either. 1579 */ 1580 if (ret > 0 || ret == -ENOTCONN) 1581 ret = 0; 1582 1583 return ret; 1584 } 1585 1586 /* 1587 * Support for *outbound* event channel events via the EVTCHNOP_send hypercall. 1588 */ 1589 struct evtchnfd { 1590 u32 send_port; 1591 u32 type; 1592 union { 1593 struct kvm_xen_evtchn port; 1594 struct { 1595 u32 port; /* zero */ 1596 struct eventfd_ctx *ctx; 1597 } eventfd; 1598 } deliver; 1599 }; 1600 1601 /* 1602 * Update target vCPU or priority for a registered sending channel. 1603 */ 1604 static int kvm_xen_eventfd_update(struct kvm *kvm, 1605 struct kvm_xen_hvm_attr *data) 1606 { 1607 u32 port = data->u.evtchn.send_port; 1608 struct evtchnfd *evtchnfd; 1609 1610 if (!port || port >= max_evtchn_port(kvm)) 1611 return -EINVAL; 1612 1613 mutex_lock(&kvm->lock); 1614 evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port); 1615 mutex_unlock(&kvm->lock); 1616 1617 if (!evtchnfd) 1618 return -ENOENT; 1619 1620 /* For an UPDATE, nothing may change except the priority/vcpu */ 1621 if (evtchnfd->type != data->u.evtchn.type) 1622 return -EINVAL; 1623 1624 /* 1625 * Port cannot change, and if it's zero that was an eventfd 1626 * which can't be changed either. 1627 */ 1628 if (!evtchnfd->deliver.port.port || 1629 evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port) 1630 return -EINVAL; 1631 1632 /* We only support 2 level event channels for now */ 1633 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1634 return -EINVAL; 1635 1636 mutex_lock(&kvm->lock); 1637 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; 1638 if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) { 1639 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; 1640 evtchnfd->deliver.port.vcpu_idx = -1; 1641 } 1642 mutex_unlock(&kvm->lock); 1643 return 0; 1644 } 1645 1646 /* 1647 * Configure the target (eventfd or local port delivery) for sending on 1648 * a given event channel. 1649 */ 1650 static int kvm_xen_eventfd_assign(struct kvm *kvm, 1651 struct kvm_xen_hvm_attr *data) 1652 { 1653 u32 port = data->u.evtchn.send_port; 1654 struct eventfd_ctx *eventfd = NULL; 1655 struct evtchnfd *evtchnfd = NULL; 1656 int ret = -EINVAL; 1657 1658 if (!port || port >= max_evtchn_port(kvm)) 1659 return -EINVAL; 1660 1661 evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL); 1662 if (!evtchnfd) 1663 return -ENOMEM; 1664 1665 switch(data->u.evtchn.type) { 1666 case EVTCHNSTAT_ipi: 1667 /* IPI must map back to the same port# */ 1668 if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port) 1669 goto out_noeventfd; /* -EINVAL */ 1670 break; 1671 1672 case EVTCHNSTAT_interdomain: 1673 if (data->u.evtchn.deliver.port.port) { 1674 if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm)) 1675 goto out_noeventfd; /* -EINVAL */ 1676 } else { 1677 eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd); 1678 if (IS_ERR(eventfd)) { 1679 ret = PTR_ERR(eventfd); 1680 goto out_noeventfd; 1681 } 1682 } 1683 break; 1684 1685 case EVTCHNSTAT_virq: 1686 case EVTCHNSTAT_closed: 1687 case EVTCHNSTAT_unbound: 1688 case EVTCHNSTAT_pirq: 1689 default: /* Unknown event channel type */ 1690 goto out; /* -EINVAL */ 1691 } 1692 1693 evtchnfd->send_port = data->u.evtchn.send_port; 1694 evtchnfd->type = data->u.evtchn.type; 1695 if (eventfd) { 1696 evtchnfd->deliver.eventfd.ctx = eventfd; 1697 } else { 1698 /* We only support 2 level event channels for now */ 1699 if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1700 goto out; /* -EINVAL; */ 1701 1702 evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port; 1703 evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu; 1704 evtchnfd->deliver.port.vcpu_idx = -1; 1705 evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority; 1706 } 1707 1708 mutex_lock(&kvm->lock); 1709 ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1, 1710 GFP_KERNEL); 1711 mutex_unlock(&kvm->lock); 1712 if (ret >= 0) 1713 return 0; 1714 1715 if (ret == -ENOSPC) 1716 ret = -EEXIST; 1717 out: 1718 if (eventfd) 1719 eventfd_ctx_put(eventfd); 1720 out_noeventfd: 1721 kfree(evtchnfd); 1722 return ret; 1723 } 1724 1725 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port) 1726 { 1727 struct evtchnfd *evtchnfd; 1728 1729 mutex_lock(&kvm->lock); 1730 evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port); 1731 mutex_unlock(&kvm->lock); 1732 1733 if (!evtchnfd) 1734 return -ENOENT; 1735 1736 if (kvm) 1737 synchronize_srcu(&kvm->srcu); 1738 if (!evtchnfd->deliver.port.port) 1739 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 1740 kfree(evtchnfd); 1741 return 0; 1742 } 1743 1744 static int kvm_xen_eventfd_reset(struct kvm *kvm) 1745 { 1746 struct evtchnfd *evtchnfd; 1747 int i; 1748 1749 mutex_lock(&kvm->lock); 1750 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { 1751 idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port); 1752 synchronize_srcu(&kvm->srcu); 1753 if (!evtchnfd->deliver.port.port) 1754 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 1755 kfree(evtchnfd); 1756 } 1757 mutex_unlock(&kvm->lock); 1758 1759 return 0; 1760 } 1761 1762 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 1763 { 1764 u32 port = data->u.evtchn.send_port; 1765 1766 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET) 1767 return kvm_xen_eventfd_reset(kvm); 1768 1769 if (!port || port >= max_evtchn_port(kvm)) 1770 return -EINVAL; 1771 1772 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN) 1773 return kvm_xen_eventfd_deassign(kvm, port); 1774 if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE) 1775 return kvm_xen_eventfd_update(kvm, data); 1776 if (data->u.evtchn.flags) 1777 return -EINVAL; 1778 1779 return kvm_xen_eventfd_assign(kvm, data); 1780 } 1781 1782 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r) 1783 { 1784 struct evtchnfd *evtchnfd; 1785 struct evtchn_send send; 1786 gpa_t gpa; 1787 int idx; 1788 1789 idx = srcu_read_lock(&vcpu->kvm->srcu); 1790 gpa = kvm_mmu_gva_to_gpa_system(vcpu, param, NULL); 1791 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1792 1793 if (!gpa || kvm_vcpu_read_guest(vcpu, gpa, &send, sizeof(send))) { 1794 *r = -EFAULT; 1795 return true; 1796 } 1797 1798 /* The evtchn_ports idr is protected by vcpu->kvm->srcu */ 1799 evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port); 1800 if (!evtchnfd) 1801 return false; 1802 1803 if (evtchnfd->deliver.port.port) { 1804 int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm); 1805 if (ret < 0 && ret != -ENOTCONN) 1806 return false; 1807 } else { 1808 eventfd_signal(evtchnfd->deliver.eventfd.ctx, 1); 1809 } 1810 1811 *r = 0; 1812 return true; 1813 } 1814 1815 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu) 1816 { 1817 vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx; 1818 vcpu->arch.xen.poll_evtchn = 0; 1819 1820 timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0); 1821 1822 kvm_gpc_init(&vcpu->arch.xen.runstate_cache); 1823 kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache); 1824 kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache); 1825 } 1826 1827 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu) 1828 { 1829 if (kvm_xen_timer_enabled(vcpu)) 1830 kvm_xen_stop_timer(vcpu); 1831 1832 kvm_gpc_deactivate(vcpu->kvm, &vcpu->arch.xen.runstate_cache); 1833 kvm_gpc_deactivate(vcpu->kvm, &vcpu->arch.xen.vcpu_info_cache); 1834 kvm_gpc_deactivate(vcpu->kvm, &vcpu->arch.xen.vcpu_time_info_cache); 1835 1836 del_timer_sync(&vcpu->arch.xen.poll_timer); 1837 } 1838 1839 void kvm_xen_init_vm(struct kvm *kvm) 1840 { 1841 idr_init(&kvm->arch.xen.evtchn_ports); 1842 kvm_gpc_init(&kvm->arch.xen.shinfo_cache); 1843 } 1844 1845 void kvm_xen_destroy_vm(struct kvm *kvm) 1846 { 1847 struct evtchnfd *evtchnfd; 1848 int i; 1849 1850 kvm_gpc_deactivate(kvm, &kvm->arch.xen.shinfo_cache); 1851 1852 idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) { 1853 if (!evtchnfd->deliver.port.port) 1854 eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx); 1855 kfree(evtchnfd); 1856 } 1857 idr_destroy(&kvm->arch.xen.evtchn_ports); 1858 1859 if (kvm->arch.xen_hvm_config.msr) 1860 static_branch_slow_dec_deferred(&kvm_xen_enabled); 1861 } 1862