xref: /openbmc/linux/arch/x86/kvm/xen.c (revision b625fe69)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4  * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5  *
6  * KVM Xen emulation
7  */
8 
9 #include "x86.h"
10 #include "xen.h"
11 #include "hyperv.h"
12 
13 #include <linux/kvm_host.h>
14 #include <linux/sched/stat.h>
15 
16 #include <trace/events/kvm.h>
17 #include <xen/interface/xen.h>
18 #include <xen/interface/vcpu.h>
19 #include <xen/interface/event_channel.h>
20 
21 #include "trace.h"
22 
23 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
24 
25 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
26 {
27 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
28 	struct pvclock_wall_clock *wc;
29 	gpa_t gpa = gfn_to_gpa(gfn);
30 	u32 *wc_sec_hi;
31 	u32 wc_version;
32 	u64 wall_nsec;
33 	int ret = 0;
34 	int idx = srcu_read_lock(&kvm->srcu);
35 
36 	if (gfn == GPA_INVALID) {
37 		kvm_gfn_to_pfn_cache_destroy(kvm, gpc);
38 		goto out;
39 	}
40 
41 	do {
42 		ret = kvm_gfn_to_pfn_cache_init(kvm, gpc, NULL, false, true,
43 						gpa, PAGE_SIZE, false);
44 		if (ret)
45 			goto out;
46 
47 		/*
48 		 * This code mirrors kvm_write_wall_clock() except that it writes
49 		 * directly through the pfn cache and doesn't mark the page dirty.
50 		 */
51 		wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
52 
53 		/* It could be invalid again already, so we need to check */
54 		read_lock_irq(&gpc->lock);
55 
56 		if (gpc->valid)
57 			break;
58 
59 		read_unlock_irq(&gpc->lock);
60 	} while (1);
61 
62 	/* Paranoia checks on the 32-bit struct layout */
63 	BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
64 	BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
65 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
66 
67 #ifdef CONFIG_X86_64
68 	/* Paranoia checks on the 64-bit struct layout */
69 	BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
70 	BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
71 
72 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
73 		struct shared_info *shinfo = gpc->khva;
74 
75 		wc_sec_hi = &shinfo->wc_sec_hi;
76 		wc = &shinfo->wc;
77 	} else
78 #endif
79 	{
80 		struct compat_shared_info *shinfo = gpc->khva;
81 
82 		wc_sec_hi = &shinfo->arch.wc_sec_hi;
83 		wc = &shinfo->wc;
84 	}
85 
86 	/* Increment and ensure an odd value */
87 	wc_version = wc->version = (wc->version + 1) | 1;
88 	smp_wmb();
89 
90 	wc->nsec = do_div(wall_nsec,  1000000000);
91 	wc->sec = (u32)wall_nsec;
92 	*wc_sec_hi = wall_nsec >> 32;
93 	smp_wmb();
94 
95 	wc->version = wc_version + 1;
96 	read_unlock_irq(&gpc->lock);
97 
98 	kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
99 
100 out:
101 	srcu_read_unlock(&kvm->srcu, idx);
102 	return ret;
103 }
104 
105 static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
106 {
107 	struct kvm_vcpu_xen *vx = &v->arch.xen;
108 	u64 now = get_kvmclock_ns(v->kvm);
109 	u64 delta_ns = now - vx->runstate_entry_time;
110 	u64 run_delay = current->sched_info.run_delay;
111 
112 	if (unlikely(!vx->runstate_entry_time))
113 		vx->current_runstate = RUNSTATE_offline;
114 
115 	/*
116 	 * Time waiting for the scheduler isn't "stolen" if the
117 	 * vCPU wasn't running anyway.
118 	 */
119 	if (vx->current_runstate == RUNSTATE_running) {
120 		u64 steal_ns = run_delay - vx->last_steal;
121 
122 		delta_ns -= steal_ns;
123 
124 		vx->runstate_times[RUNSTATE_runnable] += steal_ns;
125 	}
126 	vx->last_steal = run_delay;
127 
128 	vx->runstate_times[vx->current_runstate] += delta_ns;
129 	vx->current_runstate = state;
130 	vx->runstate_entry_time = now;
131 }
132 
133 void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state)
134 {
135 	struct kvm_vcpu_xen *vx = &v->arch.xen;
136 	struct gfn_to_hva_cache *ghc = &vx->runstate_cache;
137 	struct kvm_memslots *slots = kvm_memslots(v->kvm);
138 	bool atomic = (state == RUNSTATE_runnable);
139 	uint64_t state_entry_time;
140 	int __user *user_state;
141 	uint64_t __user *user_times;
142 
143 	kvm_xen_update_runstate(v, state);
144 
145 	if (!vx->runstate_set)
146 		return;
147 
148 	if (unlikely(slots->generation != ghc->generation || kvm_is_error_hva(ghc->hva)) &&
149 	    kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len))
150 		return;
151 
152 	/* We made sure it fits in a single page */
153 	BUG_ON(!ghc->memslot);
154 
155 	if (atomic)
156 		pagefault_disable();
157 
158 	/*
159 	 * The only difference between 32-bit and 64-bit versions of the
160 	 * runstate struct us the alignment of uint64_t in 32-bit, which
161 	 * means that the 64-bit version has an additional 4 bytes of
162 	 * padding after the first field 'state'.
163 	 *
164 	 * So we use 'int __user *user_state' to point to the state field,
165 	 * and 'uint64_t __user *user_times' for runstate_entry_time. So
166 	 * the actual array of time[] in each state starts at user_times[1].
167 	 */
168 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
169 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
170 	user_state = (int __user *)ghc->hva;
171 
172 	BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
173 
174 	user_times = (uint64_t __user *)(ghc->hva +
175 					 offsetof(struct compat_vcpu_runstate_info,
176 						  state_entry_time));
177 #ifdef CONFIG_X86_64
178 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
179 		     offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
180 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
181 		     offsetof(struct compat_vcpu_runstate_info, time) + 4);
182 
183 	if (v->kvm->arch.xen.long_mode)
184 		user_times = (uint64_t __user *)(ghc->hva +
185 						 offsetof(struct vcpu_runstate_info,
186 							  state_entry_time));
187 #endif
188 	/*
189 	 * First write the updated state_entry_time at the appropriate
190 	 * location determined by 'offset'.
191 	 */
192 	state_entry_time = vx->runstate_entry_time;
193 	state_entry_time |= XEN_RUNSTATE_UPDATE;
194 
195 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
196 		     sizeof(state_entry_time));
197 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
198 		     sizeof(state_entry_time));
199 
200 	if (__put_user(state_entry_time, user_times))
201 		goto out;
202 	smp_wmb();
203 
204 	/*
205 	 * Next, write the new runstate. This is in the *same* place
206 	 * for 32-bit and 64-bit guests, asserted here for paranoia.
207 	 */
208 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
209 		     offsetof(struct compat_vcpu_runstate_info, state));
210 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
211 		     sizeof(vx->current_runstate));
212 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
213 		     sizeof(vx->current_runstate));
214 
215 	if (__put_user(vx->current_runstate, user_state))
216 		goto out;
217 
218 	/*
219 	 * Write the actual runstate times immediately after the
220 	 * runstate_entry_time.
221 	 */
222 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
223 		     offsetof(struct vcpu_runstate_info, time) - sizeof(u64));
224 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
225 		     offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64));
226 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
227 		     sizeof_field(struct compat_vcpu_runstate_info, time));
228 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
229 		     sizeof(vx->runstate_times));
230 
231 	if (__copy_to_user(user_times + 1, vx->runstate_times, sizeof(vx->runstate_times)))
232 		goto out;
233 	smp_wmb();
234 
235 	/*
236 	 * Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's
237 	 * runstate_entry_time field.
238 	 */
239 	state_entry_time &= ~XEN_RUNSTATE_UPDATE;
240 	__put_user(state_entry_time, user_times);
241 	smp_wmb();
242 
243  out:
244 	mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
245 
246 	if (atomic)
247 		pagefault_enable();
248 }
249 
250 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
251 {
252 	unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
253 	bool atomic = in_atomic() || !task_is_running(current);
254 	int err;
255 	u8 rc = 0;
256 
257 	/*
258 	 * If the global upcall vector (HVMIRQ_callback_vector) is set and
259 	 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
260 	 */
261 	struct gfn_to_hva_cache *ghc = &v->arch.xen.vcpu_info_cache;
262 	struct kvm_memslots *slots = kvm_memslots(v->kvm);
263 	bool ghc_valid = slots->generation == ghc->generation &&
264 		!kvm_is_error_hva(ghc->hva) && ghc->memslot;
265 
266 	unsigned int offset = offsetof(struct vcpu_info, evtchn_upcall_pending);
267 
268 	/* No need for compat handling here */
269 	BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
270 		     offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
271 	BUILD_BUG_ON(sizeof(rc) !=
272 		     sizeof_field(struct vcpu_info, evtchn_upcall_pending));
273 	BUILD_BUG_ON(sizeof(rc) !=
274 		     sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
275 
276 	/*
277 	 * For efficiency, this mirrors the checks for using the valid
278 	 * cache in kvm_read_guest_offset_cached(), but just uses
279 	 * __get_user() instead. And falls back to the slow path.
280 	 */
281 	if (!evtchn_pending_sel && ghc_valid) {
282 		/* Fast path */
283 		pagefault_disable();
284 		err = __get_user(rc, (u8 __user *)ghc->hva + offset);
285 		pagefault_enable();
286 		if (!err)
287 			return rc;
288 	}
289 
290 	/* Slow path */
291 
292 	/*
293 	 * This function gets called from kvm_vcpu_block() after setting the
294 	 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
295 	 * from a HLT. So we really mustn't sleep. If the page ended up absent
296 	 * at that point, just return 1 in order to trigger an immediate wake,
297 	 * and we'll end up getting called again from a context where we *can*
298 	 * fault in the page and wait for it.
299 	 */
300 	if (atomic)
301 		return 1;
302 
303 	if (!ghc_valid) {
304 		err = kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len);
305 		if (err || !ghc->memslot) {
306 			/*
307 			 * If this failed, userspace has screwed up the
308 			 * vcpu_info mapping. No interrupts for you.
309 			 */
310 			return 0;
311 		}
312 	}
313 
314 	/*
315 	 * Now we have a valid (protected by srcu) userspace HVA in
316 	 * ghc->hva which points to the struct vcpu_info. If there
317 	 * are any bits in the in-kernel evtchn_pending_sel then
318 	 * we need to write those to the guest vcpu_info and set
319 	 * its evtchn_upcall_pending flag. If there aren't any bits
320 	 * to add, we only want to *check* evtchn_upcall_pending.
321 	 */
322 	if (evtchn_pending_sel) {
323 		bool long_mode = v->kvm->arch.xen.long_mode;
324 
325 		if (!user_access_begin((void __user *)ghc->hva, sizeof(struct vcpu_info)))
326 			return 0;
327 
328 		if (IS_ENABLED(CONFIG_64BIT) && long_mode) {
329 			struct vcpu_info __user *vi = (void __user *)ghc->hva;
330 
331 			/* Attempt to set the evtchn_pending_sel bits in the
332 			 * guest, and if that succeeds then clear the same
333 			 * bits in the in-kernel version. */
334 			asm volatile("1:\t" LOCK_PREFIX "orq %0, %1\n"
335 				     "\tnotq %0\n"
336 				     "\t" LOCK_PREFIX "andq %0, %2\n"
337 				     "2:\n"
338 				     _ASM_EXTABLE_UA(1b, 2b)
339 				     : "=r" (evtchn_pending_sel),
340 				       "+m" (vi->evtchn_pending_sel),
341 				       "+m" (v->arch.xen.evtchn_pending_sel)
342 				     : "0" (evtchn_pending_sel));
343 		} else {
344 			struct compat_vcpu_info __user *vi = (void __user *)ghc->hva;
345 			u32 evtchn_pending_sel32 = evtchn_pending_sel;
346 
347 			/* Attempt to set the evtchn_pending_sel bits in the
348 			 * guest, and if that succeeds then clear the same
349 			 * bits in the in-kernel version. */
350 			asm volatile("1:\t" LOCK_PREFIX "orl %0, %1\n"
351 				     "\tnotl %0\n"
352 				     "\t" LOCK_PREFIX "andl %0, %2\n"
353 				     "2:\n"
354 				     _ASM_EXTABLE_UA(1b, 2b)
355 				     : "=r" (evtchn_pending_sel32),
356 				       "+m" (vi->evtchn_pending_sel),
357 				       "+m" (v->arch.xen.evtchn_pending_sel)
358 				     : "0" (evtchn_pending_sel32));
359 		}
360 		rc = 1;
361 		unsafe_put_user(rc, (u8 __user *)ghc->hva + offset, err);
362 
363 	err:
364 		user_access_end();
365 
366 		mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
367 	} else {
368 		__get_user(rc, (u8 __user *)ghc->hva + offset);
369 	}
370 
371 	return rc;
372 }
373 
374 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
375 {
376 	int r = -ENOENT;
377 
378 	mutex_lock(&kvm->lock);
379 
380 	switch (data->type) {
381 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
382 		if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
383 			r = -EINVAL;
384 		} else {
385 			kvm->arch.xen.long_mode = !!data->u.long_mode;
386 			r = 0;
387 		}
388 		break;
389 
390 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
391 		r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
392 		break;
393 
394 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
395 		if (data->u.vector && data->u.vector < 0x10)
396 			r = -EINVAL;
397 		else {
398 			kvm->arch.xen.upcall_vector = data->u.vector;
399 			r = 0;
400 		}
401 		break;
402 
403 	default:
404 		break;
405 	}
406 
407 	mutex_unlock(&kvm->lock);
408 	return r;
409 }
410 
411 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
412 {
413 	int r = -ENOENT;
414 
415 	mutex_lock(&kvm->lock);
416 
417 	switch (data->type) {
418 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
419 		data->u.long_mode = kvm->arch.xen.long_mode;
420 		r = 0;
421 		break;
422 
423 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
424 		if (kvm->arch.xen.shinfo_cache.active)
425 			data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
426 		else
427 			data->u.shared_info.gfn = GPA_INVALID;
428 		r = 0;
429 		break;
430 
431 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
432 		data->u.vector = kvm->arch.xen.upcall_vector;
433 		r = 0;
434 		break;
435 
436 	default:
437 		break;
438 	}
439 
440 	mutex_unlock(&kvm->lock);
441 	return r;
442 }
443 
444 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
445 {
446 	int idx, r = -ENOENT;
447 
448 	mutex_lock(&vcpu->kvm->lock);
449 	idx = srcu_read_lock(&vcpu->kvm->srcu);
450 
451 	switch (data->type) {
452 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
453 		/* No compat necessary here. */
454 		BUILD_BUG_ON(sizeof(struct vcpu_info) !=
455 			     sizeof(struct compat_vcpu_info));
456 		BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
457 			     offsetof(struct compat_vcpu_info, time));
458 
459 		if (data->u.gpa == GPA_INVALID) {
460 			vcpu->arch.xen.vcpu_info_set = false;
461 			r = 0;
462 			break;
463 		}
464 
465 		/* It must fit within a single page */
466 		if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct vcpu_info) > PAGE_SIZE) {
467 			r = -EINVAL;
468 			break;
469 		}
470 
471 		r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
472 					      &vcpu->arch.xen.vcpu_info_cache,
473 					      data->u.gpa,
474 					      sizeof(struct vcpu_info));
475 		if (!r) {
476 			vcpu->arch.xen.vcpu_info_set = true;
477 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
478 		}
479 		break;
480 
481 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
482 		if (data->u.gpa == GPA_INVALID) {
483 			vcpu->arch.xen.vcpu_time_info_set = false;
484 			r = 0;
485 			break;
486 		}
487 
488 		/* It must fit within a single page */
489 		if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct pvclock_vcpu_time_info) > PAGE_SIZE) {
490 			r = -EINVAL;
491 			break;
492 		}
493 
494 		r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
495 					      &vcpu->arch.xen.vcpu_time_info_cache,
496 					      data->u.gpa,
497 					      sizeof(struct pvclock_vcpu_time_info));
498 		if (!r) {
499 			vcpu->arch.xen.vcpu_time_info_set = true;
500 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
501 		}
502 		break;
503 
504 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
505 		if (!sched_info_on()) {
506 			r = -EOPNOTSUPP;
507 			break;
508 		}
509 		if (data->u.gpa == GPA_INVALID) {
510 			vcpu->arch.xen.runstate_set = false;
511 			r = 0;
512 			break;
513 		}
514 
515 		/* It must fit within a single page */
516 		if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct vcpu_runstate_info) > PAGE_SIZE) {
517 			r = -EINVAL;
518 			break;
519 		}
520 
521 		r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
522 					      &vcpu->arch.xen.runstate_cache,
523 					      data->u.gpa,
524 					      sizeof(struct vcpu_runstate_info));
525 		if (!r) {
526 			vcpu->arch.xen.runstate_set = true;
527 		}
528 		break;
529 
530 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
531 		if (!sched_info_on()) {
532 			r = -EOPNOTSUPP;
533 			break;
534 		}
535 		if (data->u.runstate.state > RUNSTATE_offline) {
536 			r = -EINVAL;
537 			break;
538 		}
539 
540 		kvm_xen_update_runstate(vcpu, data->u.runstate.state);
541 		r = 0;
542 		break;
543 
544 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
545 		if (!sched_info_on()) {
546 			r = -EOPNOTSUPP;
547 			break;
548 		}
549 		if (data->u.runstate.state > RUNSTATE_offline) {
550 			r = -EINVAL;
551 			break;
552 		}
553 		if (data->u.runstate.state_entry_time !=
554 		    (data->u.runstate.time_running +
555 		     data->u.runstate.time_runnable +
556 		     data->u.runstate.time_blocked +
557 		     data->u.runstate.time_offline)) {
558 			r = -EINVAL;
559 			break;
560 		}
561 		if (get_kvmclock_ns(vcpu->kvm) <
562 		    data->u.runstate.state_entry_time) {
563 			r = -EINVAL;
564 			break;
565 		}
566 
567 		vcpu->arch.xen.current_runstate = data->u.runstate.state;
568 		vcpu->arch.xen.runstate_entry_time =
569 			data->u.runstate.state_entry_time;
570 		vcpu->arch.xen.runstate_times[RUNSTATE_running] =
571 			data->u.runstate.time_running;
572 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
573 			data->u.runstate.time_runnable;
574 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
575 			data->u.runstate.time_blocked;
576 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
577 			data->u.runstate.time_offline;
578 		vcpu->arch.xen.last_steal = current->sched_info.run_delay;
579 		r = 0;
580 		break;
581 
582 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
583 		if (!sched_info_on()) {
584 			r = -EOPNOTSUPP;
585 			break;
586 		}
587 		if (data->u.runstate.state > RUNSTATE_offline &&
588 		    data->u.runstate.state != (u64)-1) {
589 			r = -EINVAL;
590 			break;
591 		}
592 		/* The adjustment must add up */
593 		if (data->u.runstate.state_entry_time !=
594 		    (data->u.runstate.time_running +
595 		     data->u.runstate.time_runnable +
596 		     data->u.runstate.time_blocked +
597 		     data->u.runstate.time_offline)) {
598 			r = -EINVAL;
599 			break;
600 		}
601 
602 		if (get_kvmclock_ns(vcpu->kvm) <
603 		    (vcpu->arch.xen.runstate_entry_time +
604 		     data->u.runstate.state_entry_time)) {
605 			r = -EINVAL;
606 			break;
607 		}
608 
609 		vcpu->arch.xen.runstate_entry_time +=
610 			data->u.runstate.state_entry_time;
611 		vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
612 			data->u.runstate.time_running;
613 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
614 			data->u.runstate.time_runnable;
615 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
616 			data->u.runstate.time_blocked;
617 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
618 			data->u.runstate.time_offline;
619 
620 		if (data->u.runstate.state <= RUNSTATE_offline)
621 			kvm_xen_update_runstate(vcpu, data->u.runstate.state);
622 		r = 0;
623 		break;
624 
625 	default:
626 		break;
627 	}
628 
629 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
630 	mutex_unlock(&vcpu->kvm->lock);
631 	return r;
632 }
633 
634 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
635 {
636 	int r = -ENOENT;
637 
638 	mutex_lock(&vcpu->kvm->lock);
639 
640 	switch (data->type) {
641 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
642 		if (vcpu->arch.xen.vcpu_info_set)
643 			data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
644 		else
645 			data->u.gpa = GPA_INVALID;
646 		r = 0;
647 		break;
648 
649 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
650 		if (vcpu->arch.xen.vcpu_time_info_set)
651 			data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
652 		else
653 			data->u.gpa = GPA_INVALID;
654 		r = 0;
655 		break;
656 
657 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
658 		if (!sched_info_on()) {
659 			r = -EOPNOTSUPP;
660 			break;
661 		}
662 		if (vcpu->arch.xen.runstate_set) {
663 			data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
664 			r = 0;
665 		}
666 		break;
667 
668 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
669 		if (!sched_info_on()) {
670 			r = -EOPNOTSUPP;
671 			break;
672 		}
673 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
674 		r = 0;
675 		break;
676 
677 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
678 		if (!sched_info_on()) {
679 			r = -EOPNOTSUPP;
680 			break;
681 		}
682 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
683 		data->u.runstate.state_entry_time =
684 			vcpu->arch.xen.runstate_entry_time;
685 		data->u.runstate.time_running =
686 			vcpu->arch.xen.runstate_times[RUNSTATE_running];
687 		data->u.runstate.time_runnable =
688 			vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
689 		data->u.runstate.time_blocked =
690 			vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
691 		data->u.runstate.time_offline =
692 			vcpu->arch.xen.runstate_times[RUNSTATE_offline];
693 		r = 0;
694 		break;
695 
696 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
697 		r = -EINVAL;
698 		break;
699 
700 	default:
701 		break;
702 	}
703 
704 	mutex_unlock(&vcpu->kvm->lock);
705 	return r;
706 }
707 
708 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
709 {
710 	struct kvm *kvm = vcpu->kvm;
711 	u32 page_num = data & ~PAGE_MASK;
712 	u64 page_addr = data & PAGE_MASK;
713 	bool lm = is_long_mode(vcpu);
714 
715 	/* Latch long_mode for shared_info pages etc. */
716 	vcpu->kvm->arch.xen.long_mode = lm;
717 
718 	/*
719 	 * If Xen hypercall intercept is enabled, fill the hypercall
720 	 * page with VMCALL/VMMCALL instructions since that's what
721 	 * we catch. Else the VMM has provided the hypercall pages
722 	 * with instructions of its own choosing, so use those.
723 	 */
724 	if (kvm_xen_hypercall_enabled(kvm)) {
725 		u8 instructions[32];
726 		int i;
727 
728 		if (page_num)
729 			return 1;
730 
731 		/* mov imm32, %eax */
732 		instructions[0] = 0xb8;
733 
734 		/* vmcall / vmmcall */
735 		kvm_x86_ops.patch_hypercall(vcpu, instructions + 5);
736 
737 		/* ret */
738 		instructions[8] = 0xc3;
739 
740 		/* int3 to pad */
741 		memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
742 
743 		for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
744 			*(u32 *)&instructions[1] = i;
745 			if (kvm_vcpu_write_guest(vcpu,
746 						 page_addr + (i * sizeof(instructions)),
747 						 instructions, sizeof(instructions)))
748 				return 1;
749 		}
750 	} else {
751 		/*
752 		 * Note, truncation is a non-issue as 'lm' is guaranteed to be
753 		 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
754 		 */
755 		hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
756 				     : kvm->arch.xen_hvm_config.blob_addr_32;
757 		u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
758 				  : kvm->arch.xen_hvm_config.blob_size_32;
759 		u8 *page;
760 
761 		if (page_num >= blob_size)
762 			return 1;
763 
764 		blob_addr += page_num * PAGE_SIZE;
765 
766 		page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
767 		if (IS_ERR(page))
768 			return PTR_ERR(page);
769 
770 		if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
771 			kfree(page);
772 			return 1;
773 		}
774 	}
775 	return 0;
776 }
777 
778 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
779 {
780 	if (xhc->flags & ~KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL)
781 		return -EINVAL;
782 
783 	/*
784 	 * With hypercall interception the kernel generates its own
785 	 * hypercall page so it must not be provided.
786 	 */
787 	if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
788 	    (xhc->blob_addr_32 || xhc->blob_addr_64 ||
789 	     xhc->blob_size_32 || xhc->blob_size_64))
790 		return -EINVAL;
791 
792 	mutex_lock(&kvm->lock);
793 
794 	if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
795 		static_branch_inc(&kvm_xen_enabled.key);
796 	else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
797 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
798 
799 	memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
800 
801 	mutex_unlock(&kvm->lock);
802 	return 0;
803 }
804 
805 void kvm_xen_init_vm(struct kvm *kvm)
806 {
807 }
808 
809 void kvm_xen_destroy_vm(struct kvm *kvm)
810 {
811 	kvm_gfn_to_pfn_cache_destroy(kvm, &kvm->arch.xen.shinfo_cache);
812 
813 	if (kvm->arch.xen_hvm_config.msr)
814 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
815 }
816 
817 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
818 {
819 	kvm_rax_write(vcpu, result);
820 	return kvm_skip_emulated_instruction(vcpu);
821 }
822 
823 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
824 {
825 	struct kvm_run *run = vcpu->run;
826 
827 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
828 		return 1;
829 
830 	return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
831 }
832 
833 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
834 {
835 	bool longmode;
836 	u64 input, params[6];
837 
838 	input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
839 
840 	/* Hyper-V hypercalls get bit 31 set in EAX */
841 	if ((input & 0x80000000) &&
842 	    kvm_hv_hypercall_enabled(vcpu))
843 		return kvm_hv_hypercall(vcpu);
844 
845 	longmode = is_64_bit_hypercall(vcpu);
846 	if (!longmode) {
847 		params[0] = (u32)kvm_rbx_read(vcpu);
848 		params[1] = (u32)kvm_rcx_read(vcpu);
849 		params[2] = (u32)kvm_rdx_read(vcpu);
850 		params[3] = (u32)kvm_rsi_read(vcpu);
851 		params[4] = (u32)kvm_rdi_read(vcpu);
852 		params[5] = (u32)kvm_rbp_read(vcpu);
853 	}
854 #ifdef CONFIG_X86_64
855 	else {
856 		params[0] = (u64)kvm_rdi_read(vcpu);
857 		params[1] = (u64)kvm_rsi_read(vcpu);
858 		params[2] = (u64)kvm_rdx_read(vcpu);
859 		params[3] = (u64)kvm_r10_read(vcpu);
860 		params[4] = (u64)kvm_r8_read(vcpu);
861 		params[5] = (u64)kvm_r9_read(vcpu);
862 	}
863 #endif
864 	trace_kvm_xen_hypercall(input, params[0], params[1], params[2],
865 				params[3], params[4], params[5]);
866 
867 	vcpu->run->exit_reason = KVM_EXIT_XEN;
868 	vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
869 	vcpu->run->xen.u.hcall.longmode = longmode;
870 	vcpu->run->xen.u.hcall.cpl = kvm_x86_ops.get_cpl(vcpu);
871 	vcpu->run->xen.u.hcall.input = input;
872 	vcpu->run->xen.u.hcall.params[0] = params[0];
873 	vcpu->run->xen.u.hcall.params[1] = params[1];
874 	vcpu->run->xen.u.hcall.params[2] = params[2];
875 	vcpu->run->xen.u.hcall.params[3] = params[3];
876 	vcpu->run->xen.u.hcall.params[4] = params[4];
877 	vcpu->run->xen.u.hcall.params[5] = params[5];
878 	vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
879 	vcpu->arch.complete_userspace_io =
880 		kvm_xen_hypercall_complete_userspace;
881 
882 	return 0;
883 }
884 
885 static inline int max_evtchn_port(struct kvm *kvm)
886 {
887 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
888 		return EVTCHN_2L_NR_CHANNELS;
889 	else
890 		return COMPAT_EVTCHN_2L_NR_CHANNELS;
891 }
892 
893 /*
894  * This follows the kvm_set_irq() API, so it returns:
895  *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
896  *  = 0   Interrupt was coalesced (previous irq is still pending)
897  *  > 0   Number of CPUs interrupt was delivered to
898  */
899 int kvm_xen_set_evtchn_fast(struct kvm_kernel_irq_routing_entry *e,
900 			    struct kvm *kvm)
901 {
902 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
903 	struct kvm_vcpu *vcpu;
904 	unsigned long *pending_bits, *mask_bits;
905 	unsigned long flags;
906 	int port_word_bit;
907 	bool kick_vcpu = false;
908 	int idx;
909 	int rc;
910 
911 	vcpu = kvm_get_vcpu_by_id(kvm, e->xen_evtchn.vcpu);
912 	if (!vcpu)
913 		return -1;
914 
915 	if (!vcpu->arch.xen.vcpu_info_set)
916 		return -1;
917 
918 	if (e->xen_evtchn.port >= max_evtchn_port(kvm))
919 		return -1;
920 
921 	rc = -EWOULDBLOCK;
922 	read_lock_irqsave(&gpc->lock, flags);
923 
924 	idx = srcu_read_lock(&kvm->srcu);
925 	if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE))
926 		goto out_rcu;
927 
928 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
929 		struct shared_info *shinfo = gpc->khva;
930 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
931 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
932 		port_word_bit = e->xen_evtchn.port / 64;
933 	} else {
934 		struct compat_shared_info *shinfo = gpc->khva;
935 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
936 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
937 		port_word_bit = e->xen_evtchn.port / 32;
938 	}
939 
940 	/*
941 	 * If this port wasn't already set, and if it isn't masked, then
942 	 * we try to set the corresponding bit in the in-kernel shadow of
943 	 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
944 	 * already set, then we kick the vCPU in question to write to the
945 	 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
946 	 */
947 	if (test_and_set_bit(e->xen_evtchn.port, pending_bits)) {
948 		rc = 0; /* It was already raised */
949 	} else if (test_bit(e->xen_evtchn.port, mask_bits)) {
950 		rc = -1; /* Masked */
951 	} else {
952 		rc = 1; /* Delivered. But was the vCPU waking already? */
953 		if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
954 			kick_vcpu = true;
955 	}
956 
957  out_rcu:
958 	srcu_read_unlock(&kvm->srcu, idx);
959 	read_unlock_irqrestore(&gpc->lock, flags);
960 
961 	if (kick_vcpu) {
962 		kvm_make_request(KVM_REQ_EVENT, vcpu);
963 		kvm_vcpu_kick(vcpu);
964 	}
965 
966 	return rc;
967 }
968 
969 /* This is the version called from kvm_set_irq() as the .set function */
970 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
971 			 int irq_source_id, int level, bool line_status)
972 {
973 	bool mm_borrowed = false;
974 	int rc;
975 
976 	if (!level)
977 		return -1;
978 
979 	rc = kvm_xen_set_evtchn_fast(e, kvm);
980 	if (rc != -EWOULDBLOCK)
981 		return rc;
982 
983 	if (current->mm != kvm->mm) {
984 		/*
985 		 * If not on a thread which already belongs to this KVM,
986 		 * we'd better be in the irqfd workqueue.
987 		 */
988 		if (WARN_ON_ONCE(current->mm))
989 			return -EINVAL;
990 
991 		kthread_use_mm(kvm->mm);
992 		mm_borrowed = true;
993 	}
994 
995 	/*
996 	 * For the irqfd workqueue, using the main kvm->lock mutex is
997 	 * fine since this function is invoked from kvm_set_irq() with
998 	 * no other lock held, no srcu. In future if it will be called
999 	 * directly from a vCPU thread (e.g. on hypercall for an IPI)
1000 	 * then it may need to switch to using a leaf-node mutex for
1001 	 * serializing the shared_info mapping.
1002 	 */
1003 	mutex_lock(&kvm->lock);
1004 
1005 	/*
1006 	 * It is theoretically possible for the page to be unmapped
1007 	 * and the MMU notifier to invalidate the shared_info before
1008 	 * we even get to use it. In that case, this looks like an
1009 	 * infinite loop. It was tempting to do it via the userspace
1010 	 * HVA instead... but that just *hides* the fact that it's
1011 	 * an infinite loop, because if a fault occurs and it waits
1012 	 * for the page to come back, it can *still* immediately
1013 	 * fault and have to wait again, repeatedly.
1014 	 *
1015 	 * Conversely, the page could also have been reinstated by
1016 	 * another thread before we even obtain the mutex above, so
1017 	 * check again *first* before remapping it.
1018 	 */
1019 	do {
1020 		struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1021 		int idx;
1022 
1023 		rc = kvm_xen_set_evtchn_fast(e, kvm);
1024 		if (rc != -EWOULDBLOCK)
1025 			break;
1026 
1027 		idx = srcu_read_lock(&kvm->srcu);
1028 		rc = kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpc->gpa,
1029 						  PAGE_SIZE, false);
1030 		srcu_read_unlock(&kvm->srcu, idx);
1031 	} while(!rc);
1032 
1033 	mutex_unlock(&kvm->lock);
1034 
1035 	if (mm_borrowed)
1036 		kthread_unuse_mm(kvm->mm);
1037 
1038 	return rc;
1039 }
1040 
1041 int kvm_xen_setup_evtchn(struct kvm *kvm,
1042 			 struct kvm_kernel_irq_routing_entry *e,
1043 			 const struct kvm_irq_routing_entry *ue)
1044 
1045 {
1046 	if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1047 		return -EINVAL;
1048 
1049 	/* We only support 2 level event channels for now */
1050 	if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1051 		return -EINVAL;
1052 
1053 	e->xen_evtchn.port = ue->u.xen_evtchn.port;
1054 	e->xen_evtchn.vcpu = ue->u.xen_evtchn.vcpu;
1055 	e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1056 	e->set = evtchn_set_fn;
1057 
1058 	return 0;
1059 }
1060