1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. 4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. 5 * 6 * KVM Xen emulation 7 */ 8 9 #include "x86.h" 10 #include "xen.h" 11 #include "hyperv.h" 12 13 #include <linux/kvm_host.h> 14 #include <linux/sched/stat.h> 15 16 #include <trace/events/kvm.h> 17 #include <xen/interface/xen.h> 18 #include <xen/interface/vcpu.h> 19 #include <xen/interface/event_channel.h> 20 21 #include "trace.h" 22 23 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ); 24 25 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn) 26 { 27 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 28 struct pvclock_wall_clock *wc; 29 gpa_t gpa = gfn_to_gpa(gfn); 30 u32 *wc_sec_hi; 31 u32 wc_version; 32 u64 wall_nsec; 33 int ret = 0; 34 int idx = srcu_read_lock(&kvm->srcu); 35 36 if (gfn == GPA_INVALID) { 37 kvm_gfn_to_pfn_cache_destroy(kvm, gpc); 38 goto out; 39 } 40 41 do { 42 ret = kvm_gfn_to_pfn_cache_init(kvm, gpc, NULL, false, true, 43 gpa, PAGE_SIZE, false); 44 if (ret) 45 goto out; 46 47 /* 48 * This code mirrors kvm_write_wall_clock() except that it writes 49 * directly through the pfn cache and doesn't mark the page dirty. 50 */ 51 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 52 53 /* It could be invalid again already, so we need to check */ 54 read_lock_irq(&gpc->lock); 55 56 if (gpc->valid) 57 break; 58 59 read_unlock_irq(&gpc->lock); 60 } while (1); 61 62 /* Paranoia checks on the 32-bit struct layout */ 63 BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900); 64 BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924); 65 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 66 67 #ifdef CONFIG_X86_64 68 /* Paranoia checks on the 64-bit struct layout */ 69 BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00); 70 BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c); 71 72 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 73 struct shared_info *shinfo = gpc->khva; 74 75 wc_sec_hi = &shinfo->wc_sec_hi; 76 wc = &shinfo->wc; 77 } else 78 #endif 79 { 80 struct compat_shared_info *shinfo = gpc->khva; 81 82 wc_sec_hi = &shinfo->arch.wc_sec_hi; 83 wc = &shinfo->wc; 84 } 85 86 /* Increment and ensure an odd value */ 87 wc_version = wc->version = (wc->version + 1) | 1; 88 smp_wmb(); 89 90 wc->nsec = do_div(wall_nsec, 1000000000); 91 wc->sec = (u32)wall_nsec; 92 *wc_sec_hi = wall_nsec >> 32; 93 smp_wmb(); 94 95 wc->version = wc_version + 1; 96 read_unlock_irq(&gpc->lock); 97 98 kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE); 99 100 out: 101 srcu_read_unlock(&kvm->srcu, idx); 102 return ret; 103 } 104 105 static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state) 106 { 107 struct kvm_vcpu_xen *vx = &v->arch.xen; 108 u64 now = get_kvmclock_ns(v->kvm); 109 u64 delta_ns = now - vx->runstate_entry_time; 110 u64 run_delay = current->sched_info.run_delay; 111 112 if (unlikely(!vx->runstate_entry_time)) 113 vx->current_runstate = RUNSTATE_offline; 114 115 /* 116 * Time waiting for the scheduler isn't "stolen" if the 117 * vCPU wasn't running anyway. 118 */ 119 if (vx->current_runstate == RUNSTATE_running) { 120 u64 steal_ns = run_delay - vx->last_steal; 121 122 delta_ns -= steal_ns; 123 124 vx->runstate_times[RUNSTATE_runnable] += steal_ns; 125 } 126 vx->last_steal = run_delay; 127 128 vx->runstate_times[vx->current_runstate] += delta_ns; 129 vx->current_runstate = state; 130 vx->runstate_entry_time = now; 131 } 132 133 void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state) 134 { 135 struct kvm_vcpu_xen *vx = &v->arch.xen; 136 struct gfn_to_hva_cache *ghc = &vx->runstate_cache; 137 struct kvm_memslots *slots = kvm_memslots(v->kvm); 138 bool atomic = (state == RUNSTATE_runnable); 139 uint64_t state_entry_time; 140 int __user *user_state; 141 uint64_t __user *user_times; 142 143 kvm_xen_update_runstate(v, state); 144 145 if (!vx->runstate_set) 146 return; 147 148 if (unlikely(slots->generation != ghc->generation || kvm_is_error_hva(ghc->hva)) && 149 kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len)) 150 return; 151 152 /* We made sure it fits in a single page */ 153 BUG_ON(!ghc->memslot); 154 155 if (atomic) 156 pagefault_disable(); 157 158 /* 159 * The only difference between 32-bit and 64-bit versions of the 160 * runstate struct us the alignment of uint64_t in 32-bit, which 161 * means that the 64-bit version has an additional 4 bytes of 162 * padding after the first field 'state'. 163 * 164 * So we use 'int __user *user_state' to point to the state field, 165 * and 'uint64_t __user *user_times' for runstate_entry_time. So 166 * the actual array of time[] in each state starts at user_times[1]. 167 */ 168 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0); 169 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0); 170 user_state = (int __user *)ghc->hva; 171 172 BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c); 173 174 user_times = (uint64_t __user *)(ghc->hva + 175 offsetof(struct compat_vcpu_runstate_info, 176 state_entry_time)); 177 #ifdef CONFIG_X86_64 178 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 179 offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4); 180 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) != 181 offsetof(struct compat_vcpu_runstate_info, time) + 4); 182 183 if (v->kvm->arch.xen.long_mode) 184 user_times = (uint64_t __user *)(ghc->hva + 185 offsetof(struct vcpu_runstate_info, 186 state_entry_time)); 187 #endif 188 /* 189 * First write the updated state_entry_time at the appropriate 190 * location determined by 'offset'. 191 */ 192 state_entry_time = vx->runstate_entry_time; 193 state_entry_time |= XEN_RUNSTATE_UPDATE; 194 195 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) != 196 sizeof(state_entry_time)); 197 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) != 198 sizeof(state_entry_time)); 199 200 if (__put_user(state_entry_time, user_times)) 201 goto out; 202 smp_wmb(); 203 204 /* 205 * Next, write the new runstate. This is in the *same* place 206 * for 32-bit and 64-bit guests, asserted here for paranoia. 207 */ 208 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 209 offsetof(struct compat_vcpu_runstate_info, state)); 210 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) != 211 sizeof(vx->current_runstate)); 212 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) != 213 sizeof(vx->current_runstate)); 214 215 if (__put_user(vx->current_runstate, user_state)) 216 goto out; 217 218 /* 219 * Write the actual runstate times immediately after the 220 * runstate_entry_time. 221 */ 222 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 223 offsetof(struct vcpu_runstate_info, time) - sizeof(u64)); 224 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) != 225 offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64)); 226 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 227 sizeof_field(struct compat_vcpu_runstate_info, time)); 228 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 229 sizeof(vx->runstate_times)); 230 231 if (__copy_to_user(user_times + 1, vx->runstate_times, sizeof(vx->runstate_times))) 232 goto out; 233 smp_wmb(); 234 235 /* 236 * Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's 237 * runstate_entry_time field. 238 */ 239 state_entry_time &= ~XEN_RUNSTATE_UPDATE; 240 __put_user(state_entry_time, user_times); 241 smp_wmb(); 242 243 out: 244 mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 245 246 if (atomic) 247 pagefault_enable(); 248 } 249 250 int __kvm_xen_has_interrupt(struct kvm_vcpu *v) 251 { 252 unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel); 253 bool atomic = in_atomic() || !task_is_running(current); 254 int err; 255 u8 rc = 0; 256 257 /* 258 * If the global upcall vector (HVMIRQ_callback_vector) is set and 259 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending. 260 */ 261 struct gfn_to_hva_cache *ghc = &v->arch.xen.vcpu_info_cache; 262 struct kvm_memslots *slots = kvm_memslots(v->kvm); 263 bool ghc_valid = slots->generation == ghc->generation && 264 !kvm_is_error_hva(ghc->hva) && ghc->memslot; 265 266 unsigned int offset = offsetof(struct vcpu_info, evtchn_upcall_pending); 267 268 /* No need for compat handling here */ 269 BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) != 270 offsetof(struct compat_vcpu_info, evtchn_upcall_pending)); 271 BUILD_BUG_ON(sizeof(rc) != 272 sizeof_field(struct vcpu_info, evtchn_upcall_pending)); 273 BUILD_BUG_ON(sizeof(rc) != 274 sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending)); 275 276 /* 277 * For efficiency, this mirrors the checks for using the valid 278 * cache in kvm_read_guest_offset_cached(), but just uses 279 * __get_user() instead. And falls back to the slow path. 280 */ 281 if (!evtchn_pending_sel && ghc_valid) { 282 /* Fast path */ 283 pagefault_disable(); 284 err = __get_user(rc, (u8 __user *)ghc->hva + offset); 285 pagefault_enable(); 286 if (!err) 287 return rc; 288 } 289 290 /* Slow path */ 291 292 /* 293 * This function gets called from kvm_vcpu_block() after setting the 294 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately 295 * from a HLT. So we really mustn't sleep. If the page ended up absent 296 * at that point, just return 1 in order to trigger an immediate wake, 297 * and we'll end up getting called again from a context where we *can* 298 * fault in the page and wait for it. 299 */ 300 if (atomic) 301 return 1; 302 303 if (!ghc_valid) { 304 err = kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len); 305 if (err || !ghc->memslot) { 306 /* 307 * If this failed, userspace has screwed up the 308 * vcpu_info mapping. No interrupts for you. 309 */ 310 return 0; 311 } 312 } 313 314 /* 315 * Now we have a valid (protected by srcu) userspace HVA in 316 * ghc->hva which points to the struct vcpu_info. If there 317 * are any bits in the in-kernel evtchn_pending_sel then 318 * we need to write those to the guest vcpu_info and set 319 * its evtchn_upcall_pending flag. If there aren't any bits 320 * to add, we only want to *check* evtchn_upcall_pending. 321 */ 322 if (evtchn_pending_sel) { 323 bool long_mode = v->kvm->arch.xen.long_mode; 324 325 if (!user_access_begin((void __user *)ghc->hva, sizeof(struct vcpu_info))) 326 return 0; 327 328 if (IS_ENABLED(CONFIG_64BIT) && long_mode) { 329 struct vcpu_info __user *vi = (void __user *)ghc->hva; 330 331 /* Attempt to set the evtchn_pending_sel bits in the 332 * guest, and if that succeeds then clear the same 333 * bits in the in-kernel version. */ 334 asm volatile("1:\t" LOCK_PREFIX "orq %0, %1\n" 335 "\tnotq %0\n" 336 "\t" LOCK_PREFIX "andq %0, %2\n" 337 "2:\n" 338 _ASM_EXTABLE_UA(1b, 2b) 339 : "=r" (evtchn_pending_sel), 340 "+m" (vi->evtchn_pending_sel), 341 "+m" (v->arch.xen.evtchn_pending_sel) 342 : "0" (evtchn_pending_sel)); 343 } else { 344 struct compat_vcpu_info __user *vi = (void __user *)ghc->hva; 345 u32 evtchn_pending_sel32 = evtchn_pending_sel; 346 347 /* Attempt to set the evtchn_pending_sel bits in the 348 * guest, and if that succeeds then clear the same 349 * bits in the in-kernel version. */ 350 asm volatile("1:\t" LOCK_PREFIX "orl %0, %1\n" 351 "\tnotl %0\n" 352 "\t" LOCK_PREFIX "andl %0, %2\n" 353 "2:\n" 354 _ASM_EXTABLE_UA(1b, 2b) 355 : "=r" (evtchn_pending_sel32), 356 "+m" (vi->evtchn_pending_sel), 357 "+m" (v->arch.xen.evtchn_pending_sel) 358 : "0" (evtchn_pending_sel32)); 359 } 360 rc = 1; 361 unsafe_put_user(rc, (u8 __user *)ghc->hva + offset, err); 362 363 err: 364 user_access_end(); 365 366 mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 367 } else { 368 __get_user(rc, (u8 __user *)ghc->hva + offset); 369 } 370 371 return rc; 372 } 373 374 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 375 { 376 int r = -ENOENT; 377 378 mutex_lock(&kvm->lock); 379 380 switch (data->type) { 381 case KVM_XEN_ATTR_TYPE_LONG_MODE: 382 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) { 383 r = -EINVAL; 384 } else { 385 kvm->arch.xen.long_mode = !!data->u.long_mode; 386 r = 0; 387 } 388 break; 389 390 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 391 r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn); 392 break; 393 394 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 395 if (data->u.vector && data->u.vector < 0x10) 396 r = -EINVAL; 397 else { 398 kvm->arch.xen.upcall_vector = data->u.vector; 399 r = 0; 400 } 401 break; 402 403 default: 404 break; 405 } 406 407 mutex_unlock(&kvm->lock); 408 return r; 409 } 410 411 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 412 { 413 int r = -ENOENT; 414 415 mutex_lock(&kvm->lock); 416 417 switch (data->type) { 418 case KVM_XEN_ATTR_TYPE_LONG_MODE: 419 data->u.long_mode = kvm->arch.xen.long_mode; 420 r = 0; 421 break; 422 423 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 424 if (kvm->arch.xen.shinfo_cache.active) 425 data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa); 426 else 427 data->u.shared_info.gfn = GPA_INVALID; 428 r = 0; 429 break; 430 431 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 432 data->u.vector = kvm->arch.xen.upcall_vector; 433 r = 0; 434 break; 435 436 default: 437 break; 438 } 439 440 mutex_unlock(&kvm->lock); 441 return r; 442 } 443 444 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 445 { 446 int idx, r = -ENOENT; 447 448 mutex_lock(&vcpu->kvm->lock); 449 idx = srcu_read_lock(&vcpu->kvm->srcu); 450 451 switch (data->type) { 452 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 453 /* No compat necessary here. */ 454 BUILD_BUG_ON(sizeof(struct vcpu_info) != 455 sizeof(struct compat_vcpu_info)); 456 BUILD_BUG_ON(offsetof(struct vcpu_info, time) != 457 offsetof(struct compat_vcpu_info, time)); 458 459 if (data->u.gpa == GPA_INVALID) { 460 vcpu->arch.xen.vcpu_info_set = false; 461 r = 0; 462 break; 463 } 464 465 /* It must fit within a single page */ 466 if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct vcpu_info) > PAGE_SIZE) { 467 r = -EINVAL; 468 break; 469 } 470 471 r = kvm_gfn_to_hva_cache_init(vcpu->kvm, 472 &vcpu->arch.xen.vcpu_info_cache, 473 data->u.gpa, 474 sizeof(struct vcpu_info)); 475 if (!r) { 476 vcpu->arch.xen.vcpu_info_set = true; 477 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 478 } 479 break; 480 481 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 482 if (data->u.gpa == GPA_INVALID) { 483 vcpu->arch.xen.vcpu_time_info_set = false; 484 r = 0; 485 break; 486 } 487 488 /* It must fit within a single page */ 489 if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct pvclock_vcpu_time_info) > PAGE_SIZE) { 490 r = -EINVAL; 491 break; 492 } 493 494 r = kvm_gfn_to_hva_cache_init(vcpu->kvm, 495 &vcpu->arch.xen.vcpu_time_info_cache, 496 data->u.gpa, 497 sizeof(struct pvclock_vcpu_time_info)); 498 if (!r) { 499 vcpu->arch.xen.vcpu_time_info_set = true; 500 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 501 } 502 break; 503 504 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: 505 if (!sched_info_on()) { 506 r = -EOPNOTSUPP; 507 break; 508 } 509 if (data->u.gpa == GPA_INVALID) { 510 vcpu->arch.xen.runstate_set = false; 511 r = 0; 512 break; 513 } 514 515 /* It must fit within a single page */ 516 if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct vcpu_runstate_info) > PAGE_SIZE) { 517 r = -EINVAL; 518 break; 519 } 520 521 r = kvm_gfn_to_hva_cache_init(vcpu->kvm, 522 &vcpu->arch.xen.runstate_cache, 523 data->u.gpa, 524 sizeof(struct vcpu_runstate_info)); 525 if (!r) { 526 vcpu->arch.xen.runstate_set = true; 527 } 528 break; 529 530 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 531 if (!sched_info_on()) { 532 r = -EOPNOTSUPP; 533 break; 534 } 535 if (data->u.runstate.state > RUNSTATE_offline) { 536 r = -EINVAL; 537 break; 538 } 539 540 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 541 r = 0; 542 break; 543 544 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 545 if (!sched_info_on()) { 546 r = -EOPNOTSUPP; 547 break; 548 } 549 if (data->u.runstate.state > RUNSTATE_offline) { 550 r = -EINVAL; 551 break; 552 } 553 if (data->u.runstate.state_entry_time != 554 (data->u.runstate.time_running + 555 data->u.runstate.time_runnable + 556 data->u.runstate.time_blocked + 557 data->u.runstate.time_offline)) { 558 r = -EINVAL; 559 break; 560 } 561 if (get_kvmclock_ns(vcpu->kvm) < 562 data->u.runstate.state_entry_time) { 563 r = -EINVAL; 564 break; 565 } 566 567 vcpu->arch.xen.current_runstate = data->u.runstate.state; 568 vcpu->arch.xen.runstate_entry_time = 569 data->u.runstate.state_entry_time; 570 vcpu->arch.xen.runstate_times[RUNSTATE_running] = 571 data->u.runstate.time_running; 572 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] = 573 data->u.runstate.time_runnable; 574 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] = 575 data->u.runstate.time_blocked; 576 vcpu->arch.xen.runstate_times[RUNSTATE_offline] = 577 data->u.runstate.time_offline; 578 vcpu->arch.xen.last_steal = current->sched_info.run_delay; 579 r = 0; 580 break; 581 582 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 583 if (!sched_info_on()) { 584 r = -EOPNOTSUPP; 585 break; 586 } 587 if (data->u.runstate.state > RUNSTATE_offline && 588 data->u.runstate.state != (u64)-1) { 589 r = -EINVAL; 590 break; 591 } 592 /* The adjustment must add up */ 593 if (data->u.runstate.state_entry_time != 594 (data->u.runstate.time_running + 595 data->u.runstate.time_runnable + 596 data->u.runstate.time_blocked + 597 data->u.runstate.time_offline)) { 598 r = -EINVAL; 599 break; 600 } 601 602 if (get_kvmclock_ns(vcpu->kvm) < 603 (vcpu->arch.xen.runstate_entry_time + 604 data->u.runstate.state_entry_time)) { 605 r = -EINVAL; 606 break; 607 } 608 609 vcpu->arch.xen.runstate_entry_time += 610 data->u.runstate.state_entry_time; 611 vcpu->arch.xen.runstate_times[RUNSTATE_running] += 612 data->u.runstate.time_running; 613 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] += 614 data->u.runstate.time_runnable; 615 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] += 616 data->u.runstate.time_blocked; 617 vcpu->arch.xen.runstate_times[RUNSTATE_offline] += 618 data->u.runstate.time_offline; 619 620 if (data->u.runstate.state <= RUNSTATE_offline) 621 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 622 r = 0; 623 break; 624 625 default: 626 break; 627 } 628 629 srcu_read_unlock(&vcpu->kvm->srcu, idx); 630 mutex_unlock(&vcpu->kvm->lock); 631 return r; 632 } 633 634 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 635 { 636 int r = -ENOENT; 637 638 mutex_lock(&vcpu->kvm->lock); 639 640 switch (data->type) { 641 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 642 if (vcpu->arch.xen.vcpu_info_set) 643 data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa; 644 else 645 data->u.gpa = GPA_INVALID; 646 r = 0; 647 break; 648 649 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 650 if (vcpu->arch.xen.vcpu_time_info_set) 651 data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa; 652 else 653 data->u.gpa = GPA_INVALID; 654 r = 0; 655 break; 656 657 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: 658 if (!sched_info_on()) { 659 r = -EOPNOTSUPP; 660 break; 661 } 662 if (vcpu->arch.xen.runstate_set) { 663 data->u.gpa = vcpu->arch.xen.runstate_cache.gpa; 664 r = 0; 665 } 666 break; 667 668 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 669 if (!sched_info_on()) { 670 r = -EOPNOTSUPP; 671 break; 672 } 673 data->u.runstate.state = vcpu->arch.xen.current_runstate; 674 r = 0; 675 break; 676 677 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 678 if (!sched_info_on()) { 679 r = -EOPNOTSUPP; 680 break; 681 } 682 data->u.runstate.state = vcpu->arch.xen.current_runstate; 683 data->u.runstate.state_entry_time = 684 vcpu->arch.xen.runstate_entry_time; 685 data->u.runstate.time_running = 686 vcpu->arch.xen.runstate_times[RUNSTATE_running]; 687 data->u.runstate.time_runnable = 688 vcpu->arch.xen.runstate_times[RUNSTATE_runnable]; 689 data->u.runstate.time_blocked = 690 vcpu->arch.xen.runstate_times[RUNSTATE_blocked]; 691 data->u.runstate.time_offline = 692 vcpu->arch.xen.runstate_times[RUNSTATE_offline]; 693 r = 0; 694 break; 695 696 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 697 r = -EINVAL; 698 break; 699 700 default: 701 break; 702 } 703 704 mutex_unlock(&vcpu->kvm->lock); 705 return r; 706 } 707 708 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data) 709 { 710 struct kvm *kvm = vcpu->kvm; 711 u32 page_num = data & ~PAGE_MASK; 712 u64 page_addr = data & PAGE_MASK; 713 bool lm = is_long_mode(vcpu); 714 715 /* Latch long_mode for shared_info pages etc. */ 716 vcpu->kvm->arch.xen.long_mode = lm; 717 718 /* 719 * If Xen hypercall intercept is enabled, fill the hypercall 720 * page with VMCALL/VMMCALL instructions since that's what 721 * we catch. Else the VMM has provided the hypercall pages 722 * with instructions of its own choosing, so use those. 723 */ 724 if (kvm_xen_hypercall_enabled(kvm)) { 725 u8 instructions[32]; 726 int i; 727 728 if (page_num) 729 return 1; 730 731 /* mov imm32, %eax */ 732 instructions[0] = 0xb8; 733 734 /* vmcall / vmmcall */ 735 kvm_x86_ops.patch_hypercall(vcpu, instructions + 5); 736 737 /* ret */ 738 instructions[8] = 0xc3; 739 740 /* int3 to pad */ 741 memset(instructions + 9, 0xcc, sizeof(instructions) - 9); 742 743 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) { 744 *(u32 *)&instructions[1] = i; 745 if (kvm_vcpu_write_guest(vcpu, 746 page_addr + (i * sizeof(instructions)), 747 instructions, sizeof(instructions))) 748 return 1; 749 } 750 } else { 751 /* 752 * Note, truncation is a non-issue as 'lm' is guaranteed to be 753 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes. 754 */ 755 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64 756 : kvm->arch.xen_hvm_config.blob_addr_32; 757 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 758 : kvm->arch.xen_hvm_config.blob_size_32; 759 u8 *page; 760 761 if (page_num >= blob_size) 762 return 1; 763 764 blob_addr += page_num * PAGE_SIZE; 765 766 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE); 767 if (IS_ERR(page)) 768 return PTR_ERR(page); 769 770 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) { 771 kfree(page); 772 return 1; 773 } 774 } 775 return 0; 776 } 777 778 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc) 779 { 780 if (xhc->flags & ~KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) 781 return -EINVAL; 782 783 /* 784 * With hypercall interception the kernel generates its own 785 * hypercall page so it must not be provided. 786 */ 787 if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) && 788 (xhc->blob_addr_32 || xhc->blob_addr_64 || 789 xhc->blob_size_32 || xhc->blob_size_64)) 790 return -EINVAL; 791 792 mutex_lock(&kvm->lock); 793 794 if (xhc->msr && !kvm->arch.xen_hvm_config.msr) 795 static_branch_inc(&kvm_xen_enabled.key); 796 else if (!xhc->msr && kvm->arch.xen_hvm_config.msr) 797 static_branch_slow_dec_deferred(&kvm_xen_enabled); 798 799 memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc)); 800 801 mutex_unlock(&kvm->lock); 802 return 0; 803 } 804 805 void kvm_xen_init_vm(struct kvm *kvm) 806 { 807 } 808 809 void kvm_xen_destroy_vm(struct kvm *kvm) 810 { 811 kvm_gfn_to_pfn_cache_destroy(kvm, &kvm->arch.xen.shinfo_cache); 812 813 if (kvm->arch.xen_hvm_config.msr) 814 static_branch_slow_dec_deferred(&kvm_xen_enabled); 815 } 816 817 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) 818 { 819 kvm_rax_write(vcpu, result); 820 return kvm_skip_emulated_instruction(vcpu); 821 } 822 823 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu) 824 { 825 struct kvm_run *run = vcpu->run; 826 827 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip))) 828 return 1; 829 830 return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result); 831 } 832 833 int kvm_xen_hypercall(struct kvm_vcpu *vcpu) 834 { 835 bool longmode; 836 u64 input, params[6]; 837 838 input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX); 839 840 /* Hyper-V hypercalls get bit 31 set in EAX */ 841 if ((input & 0x80000000) && 842 kvm_hv_hypercall_enabled(vcpu)) 843 return kvm_hv_hypercall(vcpu); 844 845 longmode = is_64_bit_hypercall(vcpu); 846 if (!longmode) { 847 params[0] = (u32)kvm_rbx_read(vcpu); 848 params[1] = (u32)kvm_rcx_read(vcpu); 849 params[2] = (u32)kvm_rdx_read(vcpu); 850 params[3] = (u32)kvm_rsi_read(vcpu); 851 params[4] = (u32)kvm_rdi_read(vcpu); 852 params[5] = (u32)kvm_rbp_read(vcpu); 853 } 854 #ifdef CONFIG_X86_64 855 else { 856 params[0] = (u64)kvm_rdi_read(vcpu); 857 params[1] = (u64)kvm_rsi_read(vcpu); 858 params[2] = (u64)kvm_rdx_read(vcpu); 859 params[3] = (u64)kvm_r10_read(vcpu); 860 params[4] = (u64)kvm_r8_read(vcpu); 861 params[5] = (u64)kvm_r9_read(vcpu); 862 } 863 #endif 864 trace_kvm_xen_hypercall(input, params[0], params[1], params[2], 865 params[3], params[4], params[5]); 866 867 vcpu->run->exit_reason = KVM_EXIT_XEN; 868 vcpu->run->xen.type = KVM_EXIT_XEN_HCALL; 869 vcpu->run->xen.u.hcall.longmode = longmode; 870 vcpu->run->xen.u.hcall.cpl = kvm_x86_ops.get_cpl(vcpu); 871 vcpu->run->xen.u.hcall.input = input; 872 vcpu->run->xen.u.hcall.params[0] = params[0]; 873 vcpu->run->xen.u.hcall.params[1] = params[1]; 874 vcpu->run->xen.u.hcall.params[2] = params[2]; 875 vcpu->run->xen.u.hcall.params[3] = params[3]; 876 vcpu->run->xen.u.hcall.params[4] = params[4]; 877 vcpu->run->xen.u.hcall.params[5] = params[5]; 878 vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu); 879 vcpu->arch.complete_userspace_io = 880 kvm_xen_hypercall_complete_userspace; 881 882 return 0; 883 } 884 885 static inline int max_evtchn_port(struct kvm *kvm) 886 { 887 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) 888 return EVTCHN_2L_NR_CHANNELS; 889 else 890 return COMPAT_EVTCHN_2L_NR_CHANNELS; 891 } 892 893 /* 894 * This follows the kvm_set_irq() API, so it returns: 895 * < 0 Interrupt was ignored (masked or not delivered for other reasons) 896 * = 0 Interrupt was coalesced (previous irq is still pending) 897 * > 0 Number of CPUs interrupt was delivered to 898 */ 899 int kvm_xen_set_evtchn_fast(struct kvm_kernel_irq_routing_entry *e, 900 struct kvm *kvm) 901 { 902 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 903 struct kvm_vcpu *vcpu; 904 unsigned long *pending_bits, *mask_bits; 905 unsigned long flags; 906 int port_word_bit; 907 bool kick_vcpu = false; 908 int idx; 909 int rc; 910 911 vcpu = kvm_get_vcpu_by_id(kvm, e->xen_evtchn.vcpu); 912 if (!vcpu) 913 return -1; 914 915 if (!vcpu->arch.xen.vcpu_info_set) 916 return -1; 917 918 if (e->xen_evtchn.port >= max_evtchn_port(kvm)) 919 return -1; 920 921 rc = -EWOULDBLOCK; 922 read_lock_irqsave(&gpc->lock, flags); 923 924 idx = srcu_read_lock(&kvm->srcu); 925 if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE)) 926 goto out_rcu; 927 928 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 929 struct shared_info *shinfo = gpc->khva; 930 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 931 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 932 port_word_bit = e->xen_evtchn.port / 64; 933 } else { 934 struct compat_shared_info *shinfo = gpc->khva; 935 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 936 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 937 port_word_bit = e->xen_evtchn.port / 32; 938 } 939 940 /* 941 * If this port wasn't already set, and if it isn't masked, then 942 * we try to set the corresponding bit in the in-kernel shadow of 943 * evtchn_pending_sel for the target vCPU. And if *that* wasn't 944 * already set, then we kick the vCPU in question to write to the 945 * *real* evtchn_pending_sel in its own guest vcpu_info struct. 946 */ 947 if (test_and_set_bit(e->xen_evtchn.port, pending_bits)) { 948 rc = 0; /* It was already raised */ 949 } else if (test_bit(e->xen_evtchn.port, mask_bits)) { 950 rc = -1; /* Masked */ 951 } else { 952 rc = 1; /* Delivered. But was the vCPU waking already? */ 953 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel)) 954 kick_vcpu = true; 955 } 956 957 out_rcu: 958 srcu_read_unlock(&kvm->srcu, idx); 959 read_unlock_irqrestore(&gpc->lock, flags); 960 961 if (kick_vcpu) { 962 kvm_make_request(KVM_REQ_EVENT, vcpu); 963 kvm_vcpu_kick(vcpu); 964 } 965 966 return rc; 967 } 968 969 /* This is the version called from kvm_set_irq() as the .set function */ 970 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 971 int irq_source_id, int level, bool line_status) 972 { 973 bool mm_borrowed = false; 974 int rc; 975 976 if (!level) 977 return -1; 978 979 rc = kvm_xen_set_evtchn_fast(e, kvm); 980 if (rc != -EWOULDBLOCK) 981 return rc; 982 983 if (current->mm != kvm->mm) { 984 /* 985 * If not on a thread which already belongs to this KVM, 986 * we'd better be in the irqfd workqueue. 987 */ 988 if (WARN_ON_ONCE(current->mm)) 989 return -EINVAL; 990 991 kthread_use_mm(kvm->mm); 992 mm_borrowed = true; 993 } 994 995 /* 996 * For the irqfd workqueue, using the main kvm->lock mutex is 997 * fine since this function is invoked from kvm_set_irq() with 998 * no other lock held, no srcu. In future if it will be called 999 * directly from a vCPU thread (e.g. on hypercall for an IPI) 1000 * then it may need to switch to using a leaf-node mutex for 1001 * serializing the shared_info mapping. 1002 */ 1003 mutex_lock(&kvm->lock); 1004 1005 /* 1006 * It is theoretically possible for the page to be unmapped 1007 * and the MMU notifier to invalidate the shared_info before 1008 * we even get to use it. In that case, this looks like an 1009 * infinite loop. It was tempting to do it via the userspace 1010 * HVA instead... but that just *hides* the fact that it's 1011 * an infinite loop, because if a fault occurs and it waits 1012 * for the page to come back, it can *still* immediately 1013 * fault and have to wait again, repeatedly. 1014 * 1015 * Conversely, the page could also have been reinstated by 1016 * another thread before we even obtain the mutex above, so 1017 * check again *first* before remapping it. 1018 */ 1019 do { 1020 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 1021 int idx; 1022 1023 rc = kvm_xen_set_evtchn_fast(e, kvm); 1024 if (rc != -EWOULDBLOCK) 1025 break; 1026 1027 idx = srcu_read_lock(&kvm->srcu); 1028 rc = kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpc->gpa, 1029 PAGE_SIZE, false); 1030 srcu_read_unlock(&kvm->srcu, idx); 1031 } while(!rc); 1032 1033 mutex_unlock(&kvm->lock); 1034 1035 if (mm_borrowed) 1036 kthread_unuse_mm(kvm->mm); 1037 1038 return rc; 1039 } 1040 1041 int kvm_xen_setup_evtchn(struct kvm *kvm, 1042 struct kvm_kernel_irq_routing_entry *e, 1043 const struct kvm_irq_routing_entry *ue) 1044 1045 { 1046 if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm)) 1047 return -EINVAL; 1048 1049 /* We only support 2 level event channels for now */ 1050 if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1051 return -EINVAL; 1052 1053 e->xen_evtchn.port = ue->u.xen_evtchn.port; 1054 e->xen_evtchn.vcpu = ue->u.xen_evtchn.vcpu; 1055 e->xen_evtchn.priority = ue->u.xen_evtchn.priority; 1056 e->set = evtchn_set_fn; 1057 1058 return 0; 1059 } 1060