xref: /openbmc/linux/arch/x86/kvm/xen.c (revision 94214f14)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4  * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5  *
6  * KVM Xen emulation
7  */
8 
9 #include "x86.h"
10 #include "xen.h"
11 #include "hyperv.h"
12 #include "lapic.h"
13 
14 #include <linux/eventfd.h>
15 #include <linux/kvm_host.h>
16 #include <linux/sched/stat.h>
17 
18 #include <trace/events/kvm.h>
19 #include <xen/interface/xen.h>
20 #include <xen/interface/vcpu.h>
21 #include <xen/interface/version.h>
22 #include <xen/interface/event_channel.h>
23 #include <xen/interface/sched.h>
24 
25 #include "trace.h"
26 
27 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
28 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
29 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
30 
31 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
32 
33 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
34 {
35 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
36 	struct pvclock_wall_clock *wc;
37 	gpa_t gpa = gfn_to_gpa(gfn);
38 	u32 *wc_sec_hi;
39 	u32 wc_version;
40 	u64 wall_nsec;
41 	int ret = 0;
42 	int idx = srcu_read_lock(&kvm->srcu);
43 
44 	if (gfn == GPA_INVALID) {
45 		kvm_gpc_deactivate(gpc);
46 		goto out;
47 	}
48 
49 	do {
50 		ret = kvm_gpc_activate(gpc, gpa, PAGE_SIZE);
51 		if (ret)
52 			goto out;
53 
54 		/*
55 		 * This code mirrors kvm_write_wall_clock() except that it writes
56 		 * directly through the pfn cache and doesn't mark the page dirty.
57 		 */
58 		wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
59 
60 		/* It could be invalid again already, so we need to check */
61 		read_lock_irq(&gpc->lock);
62 
63 		if (gpc->valid)
64 			break;
65 
66 		read_unlock_irq(&gpc->lock);
67 	} while (1);
68 
69 	/* Paranoia checks on the 32-bit struct layout */
70 	BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
71 	BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
72 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
73 
74 #ifdef CONFIG_X86_64
75 	/* Paranoia checks on the 64-bit struct layout */
76 	BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
77 	BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
78 
79 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
80 		struct shared_info *shinfo = gpc->khva;
81 
82 		wc_sec_hi = &shinfo->wc_sec_hi;
83 		wc = &shinfo->wc;
84 	} else
85 #endif
86 	{
87 		struct compat_shared_info *shinfo = gpc->khva;
88 
89 		wc_sec_hi = &shinfo->arch.wc_sec_hi;
90 		wc = &shinfo->wc;
91 	}
92 
93 	/* Increment and ensure an odd value */
94 	wc_version = wc->version = (wc->version + 1) | 1;
95 	smp_wmb();
96 
97 	wc->nsec = do_div(wall_nsec,  1000000000);
98 	wc->sec = (u32)wall_nsec;
99 	*wc_sec_hi = wall_nsec >> 32;
100 	smp_wmb();
101 
102 	wc->version = wc_version + 1;
103 	read_unlock_irq(&gpc->lock);
104 
105 	kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
106 
107 out:
108 	srcu_read_unlock(&kvm->srcu, idx);
109 	return ret;
110 }
111 
112 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
113 {
114 	if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) {
115 		struct kvm_xen_evtchn e;
116 
117 		e.vcpu_id = vcpu->vcpu_id;
118 		e.vcpu_idx = vcpu->vcpu_idx;
119 		e.port = vcpu->arch.xen.timer_virq;
120 		e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
121 
122 		kvm_xen_set_evtchn(&e, vcpu->kvm);
123 
124 		vcpu->arch.xen.timer_expires = 0;
125 		atomic_set(&vcpu->arch.xen.timer_pending, 0);
126 	}
127 }
128 
129 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
130 {
131 	struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
132 					     arch.xen.timer);
133 	if (atomic_read(&vcpu->arch.xen.timer_pending))
134 		return HRTIMER_NORESTART;
135 
136 	atomic_inc(&vcpu->arch.xen.timer_pending);
137 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
138 	kvm_vcpu_kick(vcpu);
139 
140 	return HRTIMER_NORESTART;
141 }
142 
143 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns)
144 {
145 	atomic_set(&vcpu->arch.xen.timer_pending, 0);
146 	vcpu->arch.xen.timer_expires = guest_abs;
147 
148 	if (delta_ns <= 0) {
149 		xen_timer_callback(&vcpu->arch.xen.timer);
150 	} else {
151 		ktime_t ktime_now = ktime_get();
152 		hrtimer_start(&vcpu->arch.xen.timer,
153 			      ktime_add_ns(ktime_now, delta_ns),
154 			      HRTIMER_MODE_ABS_HARD);
155 	}
156 }
157 
158 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
159 {
160 	hrtimer_cancel(&vcpu->arch.xen.timer);
161 	vcpu->arch.xen.timer_expires = 0;
162 	atomic_set(&vcpu->arch.xen.timer_pending, 0);
163 }
164 
165 static void kvm_xen_init_timer(struct kvm_vcpu *vcpu)
166 {
167 	hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC,
168 		     HRTIMER_MODE_ABS_HARD);
169 	vcpu->arch.xen.timer.function = xen_timer_callback;
170 }
171 
172 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic)
173 {
174 	struct kvm_vcpu_xen *vx = &v->arch.xen;
175 	struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache;
176 	struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache;
177 	size_t user_len, user_len1, user_len2;
178 	struct vcpu_runstate_info rs;
179 	unsigned long flags;
180 	size_t times_ofs;
181 	uint8_t *update_bit = NULL;
182 	uint64_t entry_time;
183 	uint64_t *rs_times;
184 	int *rs_state;
185 
186 	/*
187 	 * The only difference between 32-bit and 64-bit versions of the
188 	 * runstate struct is the alignment of uint64_t in 32-bit, which
189 	 * means that the 64-bit version has an additional 4 bytes of
190 	 * padding after the first field 'state'. Let's be really really
191 	 * paranoid about that, and matching it with our internal data
192 	 * structures that we memcpy into it...
193 	 */
194 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
195 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
196 	BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
197 #ifdef CONFIG_X86_64
198 	/*
199 	 * The 64-bit structure has 4 bytes of padding before 'state_entry_time'
200 	 * so each subsequent field is shifted by 4, and it's 4 bytes longer.
201 	 */
202 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
203 		     offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
204 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
205 		     offsetof(struct compat_vcpu_runstate_info, time) + 4);
206 	BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4);
207 #endif
208 	/*
209 	 * The state field is in the same place at the start of both structs,
210 	 * and is the same size (int) as vx->current_runstate.
211 	 */
212 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
213 		     offsetof(struct compat_vcpu_runstate_info, state));
214 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
215 		     sizeof(vx->current_runstate));
216 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
217 		     sizeof(vx->current_runstate));
218 
219 	/*
220 	 * The state_entry_time field is 64 bits in both versions, and the
221 	 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86
222 	 * is little-endian means that it's in the last *byte* of the word.
223 	 * That detail is important later.
224 	 */
225 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
226 		     sizeof(uint64_t));
227 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
228 		     sizeof(uint64_t));
229 	BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80);
230 
231 	/*
232 	 * The time array is four 64-bit quantities in both versions, matching
233 	 * the vx->runstate_times and immediately following state_entry_time.
234 	 */
235 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
236 		     offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t));
237 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
238 		     offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t));
239 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
240 		     sizeof_field(struct compat_vcpu_runstate_info, time));
241 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
242 		     sizeof(vx->runstate_times));
243 
244 	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
245 		user_len = sizeof(struct vcpu_runstate_info);
246 		times_ofs = offsetof(struct vcpu_runstate_info,
247 				     state_entry_time);
248 	} else {
249 		user_len = sizeof(struct compat_vcpu_runstate_info);
250 		times_ofs = offsetof(struct compat_vcpu_runstate_info,
251 				     state_entry_time);
252 	}
253 
254 	/*
255 	 * There are basically no alignment constraints. The guest can set it
256 	 * up so it crosses from one page to the next, and at arbitrary byte
257 	 * alignment (and the 32-bit ABI doesn't align the 64-bit integers
258 	 * anyway, even if the overall struct had been 64-bit aligned).
259 	 */
260 	if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) {
261 		user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK);
262 		user_len2 = user_len - user_len1;
263 	} else {
264 		user_len1 = user_len;
265 		user_len2 = 0;
266 	}
267 	BUG_ON(user_len1 + user_len2 != user_len);
268 
269  retry:
270 	/*
271 	 * Attempt to obtain the GPC lock on *both* (if there are two)
272 	 * gfn_to_pfn caches that cover the region.
273 	 */
274 	read_lock_irqsave(&gpc1->lock, flags);
275 	while (!kvm_gpc_check(gpc1, user_len1)) {
276 		read_unlock_irqrestore(&gpc1->lock, flags);
277 
278 		/* When invoked from kvm_sched_out() we cannot sleep */
279 		if (atomic)
280 			return;
281 
282 		if (kvm_gpc_refresh(gpc1, user_len1))
283 			return;
284 
285 		read_lock_irqsave(&gpc1->lock, flags);
286 	}
287 
288 	if (likely(!user_len2)) {
289 		/*
290 		 * Set up three pointers directly to the runstate_info
291 		 * struct in the guest (via the GPC).
292 		 *
293 		 *  • @rs_state   → state field
294 		 *  • @rs_times   → state_entry_time field.
295 		 *  • @update_bit → last byte of state_entry_time, which
296 		 *                  contains the XEN_RUNSTATE_UPDATE bit.
297 		 */
298 		rs_state = gpc1->khva;
299 		rs_times = gpc1->khva + times_ofs;
300 		if (v->kvm->arch.xen.runstate_update_flag)
301 			update_bit = ((void *)(&rs_times[1])) - 1;
302 	} else {
303 		/*
304 		 * The guest's runstate_info is split across two pages and we
305 		 * need to hold and validate both GPCs simultaneously. We can
306 		 * declare a lock ordering GPC1 > GPC2 because nothing else
307 		 * takes them more than one at a time.
308 		 */
309 		read_lock(&gpc2->lock);
310 
311 		if (!kvm_gpc_check(gpc2, user_len2)) {
312 			read_unlock(&gpc2->lock);
313 			read_unlock_irqrestore(&gpc1->lock, flags);
314 
315 			/* When invoked from kvm_sched_out() we cannot sleep */
316 			if (atomic)
317 				return;
318 
319 			/*
320 			 * Use kvm_gpc_activate() here because if the runstate
321 			 * area was configured in 32-bit mode and only extends
322 			 * to the second page now because the guest changed to
323 			 * 64-bit mode, the second GPC won't have been set up.
324 			 */
325 			if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1,
326 					     user_len2))
327 				return;
328 
329 			/*
330 			 * We dropped the lock on GPC1 so we have to go all the
331 			 * way back and revalidate that too.
332 			 */
333 			goto retry;
334 		}
335 
336 		/*
337 		 * In this case, the runstate_info struct will be assembled on
338 		 * the kernel stack (compat or not as appropriate) and will
339 		 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three
340 		 * rs pointers accordingly.
341 		 */
342 		rs_times = &rs.state_entry_time;
343 
344 		/*
345 		 * The rs_state pointer points to the start of what we'll
346 		 * copy to the guest, which in the case of a compat guest
347 		 * is the 32-bit field that the compiler thinks is padding.
348 		 */
349 		rs_state = ((void *)rs_times) - times_ofs;
350 
351 		/*
352 		 * The update_bit is still directly in the guest memory,
353 		 * via one GPC or the other.
354 		 */
355 		if (v->kvm->arch.xen.runstate_update_flag) {
356 			if (user_len1 >= times_ofs + sizeof(uint64_t))
357 				update_bit = gpc1->khva + times_ofs +
358 					sizeof(uint64_t) - 1;
359 			else
360 				update_bit = gpc2->khva + times_ofs +
361 					sizeof(uint64_t) - 1 - user_len1;
362 		}
363 
364 #ifdef CONFIG_X86_64
365 		/*
366 		 * Don't leak kernel memory through the padding in the 64-bit
367 		 * version of the struct.
368 		 */
369 		memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time));
370 #endif
371 	}
372 
373 	/*
374 	 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the
375 	 * state_entry_time field, directly in the guest. We need to set
376 	 * that (and write-barrier) before writing to the rest of the
377 	 * structure, and clear it last. Just as Xen does, we address the
378 	 * single *byte* in which it resides because it might be in a
379 	 * different cache line to the rest of the 64-bit word, due to
380 	 * the (lack of) alignment constraints.
381 	 */
382 	entry_time = vx->runstate_entry_time;
383 	if (update_bit) {
384 		entry_time |= XEN_RUNSTATE_UPDATE;
385 		*update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56;
386 		smp_wmb();
387 	}
388 
389 	/*
390 	 * Now assemble the actual structure, either on our kernel stack
391 	 * or directly in the guest according to how the rs_state and
392 	 * rs_times pointers were set up above.
393 	 */
394 	*rs_state = vx->current_runstate;
395 	rs_times[0] = entry_time;
396 	memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
397 
398 	/* For the split case, we have to then copy it to the guest. */
399 	if (user_len2) {
400 		memcpy(gpc1->khva, rs_state, user_len1);
401 		memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2);
402 	}
403 	smp_wmb();
404 
405 	/* Finally, clear the XEN_RUNSTATE_UPDATE bit. */
406 	if (update_bit) {
407 		entry_time &= ~XEN_RUNSTATE_UPDATE;
408 		*update_bit = entry_time >> 56;
409 		smp_wmb();
410 	}
411 
412 	if (user_len2)
413 		read_unlock(&gpc2->lock);
414 
415 	read_unlock_irqrestore(&gpc1->lock, flags);
416 
417 	mark_page_dirty_in_slot(v->kvm, gpc1->memslot, gpc1->gpa >> PAGE_SHIFT);
418 	if (user_len2)
419 		mark_page_dirty_in_slot(v->kvm, gpc2->memslot, gpc2->gpa >> PAGE_SHIFT);
420 }
421 
422 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
423 {
424 	struct kvm_vcpu_xen *vx = &v->arch.xen;
425 	u64 now = get_kvmclock_ns(v->kvm);
426 	u64 delta_ns = now - vx->runstate_entry_time;
427 	u64 run_delay = current->sched_info.run_delay;
428 
429 	if (unlikely(!vx->runstate_entry_time))
430 		vx->current_runstate = RUNSTATE_offline;
431 
432 	/*
433 	 * Time waiting for the scheduler isn't "stolen" if the
434 	 * vCPU wasn't running anyway.
435 	 */
436 	if (vx->current_runstate == RUNSTATE_running) {
437 		u64 steal_ns = run_delay - vx->last_steal;
438 
439 		delta_ns -= steal_ns;
440 
441 		vx->runstate_times[RUNSTATE_runnable] += steal_ns;
442 	}
443 	vx->last_steal = run_delay;
444 
445 	vx->runstate_times[vx->current_runstate] += delta_ns;
446 	vx->current_runstate = state;
447 	vx->runstate_entry_time = now;
448 
449 	if (vx->runstate_cache.active)
450 		kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable);
451 }
452 
453 static void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
454 {
455 	struct kvm_lapic_irq irq = { };
456 	int r;
457 
458 	irq.dest_id = v->vcpu_id;
459 	irq.vector = v->arch.xen.upcall_vector;
460 	irq.dest_mode = APIC_DEST_PHYSICAL;
461 	irq.shorthand = APIC_DEST_NOSHORT;
462 	irq.delivery_mode = APIC_DM_FIXED;
463 	irq.level = 1;
464 
465 	/* The fast version will always work for physical unicast */
466 	WARN_ON_ONCE(!kvm_irq_delivery_to_apic_fast(v->kvm, NULL, &irq, &r, NULL));
467 }
468 
469 /*
470  * On event channel delivery, the vcpu_info may not have been accessible.
471  * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
472  * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
473  * Do so now that we can sleep in the context of the vCPU to bring the
474  * page in, and refresh the pfn cache for it.
475  */
476 void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
477 {
478 	unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
479 	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
480 	unsigned long flags;
481 
482 	if (!evtchn_pending_sel)
483 		return;
484 
485 	/*
486 	 * Yes, this is an open-coded loop. But that's just what put_user()
487 	 * does anyway. Page it in and retry the instruction. We're just a
488 	 * little more honest about it.
489 	 */
490 	read_lock_irqsave(&gpc->lock, flags);
491 	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
492 		read_unlock_irqrestore(&gpc->lock, flags);
493 
494 		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info)))
495 			return;
496 
497 		read_lock_irqsave(&gpc->lock, flags);
498 	}
499 
500 	/* Now gpc->khva is a valid kernel address for the vcpu_info */
501 	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
502 		struct vcpu_info *vi = gpc->khva;
503 
504 		asm volatile(LOCK_PREFIX "orq %0, %1\n"
505 			     "notq %0\n"
506 			     LOCK_PREFIX "andq %0, %2\n"
507 			     : "=r" (evtchn_pending_sel),
508 			       "+m" (vi->evtchn_pending_sel),
509 			       "+m" (v->arch.xen.evtchn_pending_sel)
510 			     : "0" (evtchn_pending_sel));
511 		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
512 	} else {
513 		u32 evtchn_pending_sel32 = evtchn_pending_sel;
514 		struct compat_vcpu_info *vi = gpc->khva;
515 
516 		asm volatile(LOCK_PREFIX "orl %0, %1\n"
517 			     "notl %0\n"
518 			     LOCK_PREFIX "andl %0, %2\n"
519 			     : "=r" (evtchn_pending_sel32),
520 			       "+m" (vi->evtchn_pending_sel),
521 			       "+m" (v->arch.xen.evtchn_pending_sel)
522 			     : "0" (evtchn_pending_sel32));
523 		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
524 	}
525 	read_unlock_irqrestore(&gpc->lock, flags);
526 
527 	/* For the per-vCPU lapic vector, deliver it as MSI. */
528 	if (v->arch.xen.upcall_vector)
529 		kvm_xen_inject_vcpu_vector(v);
530 
531 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
532 }
533 
534 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
535 {
536 	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
537 	unsigned long flags;
538 	u8 rc = 0;
539 
540 	/*
541 	 * If the global upcall vector (HVMIRQ_callback_vector) is set and
542 	 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
543 	 */
544 
545 	/* No need for compat handling here */
546 	BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
547 		     offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
548 	BUILD_BUG_ON(sizeof(rc) !=
549 		     sizeof_field(struct vcpu_info, evtchn_upcall_pending));
550 	BUILD_BUG_ON(sizeof(rc) !=
551 		     sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
552 
553 	read_lock_irqsave(&gpc->lock, flags);
554 	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
555 		read_unlock_irqrestore(&gpc->lock, flags);
556 
557 		/*
558 		 * This function gets called from kvm_vcpu_block() after setting the
559 		 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
560 		 * from a HLT. So we really mustn't sleep. If the page ended up absent
561 		 * at that point, just return 1 in order to trigger an immediate wake,
562 		 * and we'll end up getting called again from a context where we *can*
563 		 * fault in the page and wait for it.
564 		 */
565 		if (in_atomic() || !task_is_running(current))
566 			return 1;
567 
568 		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) {
569 			/*
570 			 * If this failed, userspace has screwed up the
571 			 * vcpu_info mapping. No interrupts for you.
572 			 */
573 			return 0;
574 		}
575 		read_lock_irqsave(&gpc->lock, flags);
576 	}
577 
578 	rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
579 	read_unlock_irqrestore(&gpc->lock, flags);
580 	return rc;
581 }
582 
583 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
584 {
585 	int r = -ENOENT;
586 
587 
588 	switch (data->type) {
589 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
590 		if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
591 			r = -EINVAL;
592 		} else {
593 			mutex_lock(&kvm->lock);
594 			kvm->arch.xen.long_mode = !!data->u.long_mode;
595 			mutex_unlock(&kvm->lock);
596 			r = 0;
597 		}
598 		break;
599 
600 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
601 		mutex_lock(&kvm->lock);
602 		r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
603 		mutex_unlock(&kvm->lock);
604 		break;
605 
606 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
607 		if (data->u.vector && data->u.vector < 0x10)
608 			r = -EINVAL;
609 		else {
610 			mutex_lock(&kvm->lock);
611 			kvm->arch.xen.upcall_vector = data->u.vector;
612 			mutex_unlock(&kvm->lock);
613 			r = 0;
614 		}
615 		break;
616 
617 	case KVM_XEN_ATTR_TYPE_EVTCHN:
618 		r = kvm_xen_setattr_evtchn(kvm, data);
619 		break;
620 
621 	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
622 		mutex_lock(&kvm->lock);
623 		kvm->arch.xen.xen_version = data->u.xen_version;
624 		mutex_unlock(&kvm->lock);
625 		r = 0;
626 		break;
627 
628 	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
629 		if (!sched_info_on()) {
630 			r = -EOPNOTSUPP;
631 			break;
632 		}
633 		mutex_lock(&kvm->lock);
634 		kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag;
635 		mutex_unlock(&kvm->lock);
636 		r = 0;
637 		break;
638 
639 	default:
640 		break;
641 	}
642 
643 	return r;
644 }
645 
646 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
647 {
648 	int r = -ENOENT;
649 
650 	mutex_lock(&kvm->lock);
651 
652 	switch (data->type) {
653 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
654 		data->u.long_mode = kvm->arch.xen.long_mode;
655 		r = 0;
656 		break;
657 
658 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
659 		if (kvm->arch.xen.shinfo_cache.active)
660 			data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
661 		else
662 			data->u.shared_info.gfn = GPA_INVALID;
663 		r = 0;
664 		break;
665 
666 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
667 		data->u.vector = kvm->arch.xen.upcall_vector;
668 		r = 0;
669 		break;
670 
671 	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
672 		data->u.xen_version = kvm->arch.xen.xen_version;
673 		r = 0;
674 		break;
675 
676 	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
677 		if (!sched_info_on()) {
678 			r = -EOPNOTSUPP;
679 			break;
680 		}
681 		data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag;
682 		r = 0;
683 		break;
684 
685 	default:
686 		break;
687 	}
688 
689 	mutex_unlock(&kvm->lock);
690 	return r;
691 }
692 
693 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
694 {
695 	int idx, r = -ENOENT;
696 
697 	mutex_lock(&vcpu->kvm->lock);
698 	idx = srcu_read_lock(&vcpu->kvm->srcu);
699 
700 	switch (data->type) {
701 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
702 		/* No compat necessary here. */
703 		BUILD_BUG_ON(sizeof(struct vcpu_info) !=
704 			     sizeof(struct compat_vcpu_info));
705 		BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
706 			     offsetof(struct compat_vcpu_info, time));
707 
708 		if (data->u.gpa == GPA_INVALID) {
709 			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
710 			r = 0;
711 			break;
712 		}
713 
714 		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache,
715 				     data->u.gpa, sizeof(struct vcpu_info));
716 		if (!r)
717 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
718 
719 		break;
720 
721 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
722 		if (data->u.gpa == GPA_INVALID) {
723 			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
724 			r = 0;
725 			break;
726 		}
727 
728 		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache,
729 				     data->u.gpa,
730 				     sizeof(struct pvclock_vcpu_time_info));
731 		if (!r)
732 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
733 		break;
734 
735 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: {
736 		size_t sz, sz1, sz2;
737 
738 		if (!sched_info_on()) {
739 			r = -EOPNOTSUPP;
740 			break;
741 		}
742 		if (data->u.gpa == GPA_INVALID) {
743 			r = 0;
744 		deactivate_out:
745 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
746 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
747 			break;
748 		}
749 
750 		/*
751 		 * If the guest switches to 64-bit mode after setting the runstate
752 		 * address, that's actually OK. kvm_xen_update_runstate_guest()
753 		 * will cope.
754 		 */
755 		if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode)
756 			sz = sizeof(struct vcpu_runstate_info);
757 		else
758 			sz = sizeof(struct compat_vcpu_runstate_info);
759 
760 		/* How much fits in the (first) page? */
761 		sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK);
762 		r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache,
763 				     data->u.gpa, sz1);
764 		if (r)
765 			goto deactivate_out;
766 
767 		/* Either map the second page, or deactivate the second GPC */
768 		if (sz1 >= sz) {
769 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
770 		} else {
771 			sz2 = sz - sz1;
772 			BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK);
773 			r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache,
774 					     data->u.gpa + sz1, sz2);
775 			if (r)
776 				goto deactivate_out;
777 		}
778 
779 		kvm_xen_update_runstate_guest(vcpu, false);
780 		break;
781 	}
782 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
783 		if (!sched_info_on()) {
784 			r = -EOPNOTSUPP;
785 			break;
786 		}
787 		if (data->u.runstate.state > RUNSTATE_offline) {
788 			r = -EINVAL;
789 			break;
790 		}
791 
792 		kvm_xen_update_runstate(vcpu, data->u.runstate.state);
793 		r = 0;
794 		break;
795 
796 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
797 		if (!sched_info_on()) {
798 			r = -EOPNOTSUPP;
799 			break;
800 		}
801 		if (data->u.runstate.state > RUNSTATE_offline) {
802 			r = -EINVAL;
803 			break;
804 		}
805 		if (data->u.runstate.state_entry_time !=
806 		    (data->u.runstate.time_running +
807 		     data->u.runstate.time_runnable +
808 		     data->u.runstate.time_blocked +
809 		     data->u.runstate.time_offline)) {
810 			r = -EINVAL;
811 			break;
812 		}
813 		if (get_kvmclock_ns(vcpu->kvm) <
814 		    data->u.runstate.state_entry_time) {
815 			r = -EINVAL;
816 			break;
817 		}
818 
819 		vcpu->arch.xen.current_runstate = data->u.runstate.state;
820 		vcpu->arch.xen.runstate_entry_time =
821 			data->u.runstate.state_entry_time;
822 		vcpu->arch.xen.runstate_times[RUNSTATE_running] =
823 			data->u.runstate.time_running;
824 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
825 			data->u.runstate.time_runnable;
826 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
827 			data->u.runstate.time_blocked;
828 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
829 			data->u.runstate.time_offline;
830 		vcpu->arch.xen.last_steal = current->sched_info.run_delay;
831 		r = 0;
832 		break;
833 
834 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
835 		if (!sched_info_on()) {
836 			r = -EOPNOTSUPP;
837 			break;
838 		}
839 		if (data->u.runstate.state > RUNSTATE_offline &&
840 		    data->u.runstate.state != (u64)-1) {
841 			r = -EINVAL;
842 			break;
843 		}
844 		/* The adjustment must add up */
845 		if (data->u.runstate.state_entry_time !=
846 		    (data->u.runstate.time_running +
847 		     data->u.runstate.time_runnable +
848 		     data->u.runstate.time_blocked +
849 		     data->u.runstate.time_offline)) {
850 			r = -EINVAL;
851 			break;
852 		}
853 
854 		if (get_kvmclock_ns(vcpu->kvm) <
855 		    (vcpu->arch.xen.runstate_entry_time +
856 		     data->u.runstate.state_entry_time)) {
857 			r = -EINVAL;
858 			break;
859 		}
860 
861 		vcpu->arch.xen.runstate_entry_time +=
862 			data->u.runstate.state_entry_time;
863 		vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
864 			data->u.runstate.time_running;
865 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
866 			data->u.runstate.time_runnable;
867 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
868 			data->u.runstate.time_blocked;
869 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
870 			data->u.runstate.time_offline;
871 
872 		if (data->u.runstate.state <= RUNSTATE_offline)
873 			kvm_xen_update_runstate(vcpu, data->u.runstate.state);
874 		else if (vcpu->arch.xen.runstate_cache.active)
875 			kvm_xen_update_runstate_guest(vcpu, false);
876 		r = 0;
877 		break;
878 
879 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
880 		if (data->u.vcpu_id >= KVM_MAX_VCPUS)
881 			r = -EINVAL;
882 		else {
883 			vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
884 			r = 0;
885 		}
886 		break;
887 
888 	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
889 		if (data->u.timer.port &&
890 		    data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
891 			r = -EINVAL;
892 			break;
893 		}
894 
895 		if (!vcpu->arch.xen.timer.function)
896 			kvm_xen_init_timer(vcpu);
897 
898 		/* Stop the timer (if it's running) before changing the vector */
899 		kvm_xen_stop_timer(vcpu);
900 		vcpu->arch.xen.timer_virq = data->u.timer.port;
901 
902 		/* Start the timer if the new value has a valid vector+expiry. */
903 		if (data->u.timer.port && data->u.timer.expires_ns)
904 			kvm_xen_start_timer(vcpu, data->u.timer.expires_ns,
905 					    data->u.timer.expires_ns -
906 					    get_kvmclock_ns(vcpu->kvm));
907 
908 		r = 0;
909 		break;
910 
911 	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
912 		if (data->u.vector && data->u.vector < 0x10)
913 			r = -EINVAL;
914 		else {
915 			vcpu->arch.xen.upcall_vector = data->u.vector;
916 			r = 0;
917 		}
918 		break;
919 
920 	default:
921 		break;
922 	}
923 
924 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
925 	mutex_unlock(&vcpu->kvm->lock);
926 	return r;
927 }
928 
929 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
930 {
931 	int r = -ENOENT;
932 
933 	mutex_lock(&vcpu->kvm->lock);
934 
935 	switch (data->type) {
936 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
937 		if (vcpu->arch.xen.vcpu_info_cache.active)
938 			data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
939 		else
940 			data->u.gpa = GPA_INVALID;
941 		r = 0;
942 		break;
943 
944 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
945 		if (vcpu->arch.xen.vcpu_time_info_cache.active)
946 			data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
947 		else
948 			data->u.gpa = GPA_INVALID;
949 		r = 0;
950 		break;
951 
952 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
953 		if (!sched_info_on()) {
954 			r = -EOPNOTSUPP;
955 			break;
956 		}
957 		if (vcpu->arch.xen.runstate_cache.active) {
958 			data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
959 			r = 0;
960 		}
961 		break;
962 
963 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
964 		if (!sched_info_on()) {
965 			r = -EOPNOTSUPP;
966 			break;
967 		}
968 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
969 		r = 0;
970 		break;
971 
972 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
973 		if (!sched_info_on()) {
974 			r = -EOPNOTSUPP;
975 			break;
976 		}
977 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
978 		data->u.runstate.state_entry_time =
979 			vcpu->arch.xen.runstate_entry_time;
980 		data->u.runstate.time_running =
981 			vcpu->arch.xen.runstate_times[RUNSTATE_running];
982 		data->u.runstate.time_runnable =
983 			vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
984 		data->u.runstate.time_blocked =
985 			vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
986 		data->u.runstate.time_offline =
987 			vcpu->arch.xen.runstate_times[RUNSTATE_offline];
988 		r = 0;
989 		break;
990 
991 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
992 		r = -EINVAL;
993 		break;
994 
995 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
996 		data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
997 		r = 0;
998 		break;
999 
1000 	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1001 		data->u.timer.port = vcpu->arch.xen.timer_virq;
1002 		data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
1003 		data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
1004 		r = 0;
1005 		break;
1006 
1007 	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1008 		data->u.vector = vcpu->arch.xen.upcall_vector;
1009 		r = 0;
1010 		break;
1011 
1012 	default:
1013 		break;
1014 	}
1015 
1016 	mutex_unlock(&vcpu->kvm->lock);
1017 	return r;
1018 }
1019 
1020 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
1021 {
1022 	struct kvm *kvm = vcpu->kvm;
1023 	u32 page_num = data & ~PAGE_MASK;
1024 	u64 page_addr = data & PAGE_MASK;
1025 	bool lm = is_long_mode(vcpu);
1026 
1027 	/* Latch long_mode for shared_info pages etc. */
1028 	vcpu->kvm->arch.xen.long_mode = lm;
1029 
1030 	/*
1031 	 * If Xen hypercall intercept is enabled, fill the hypercall
1032 	 * page with VMCALL/VMMCALL instructions since that's what
1033 	 * we catch. Else the VMM has provided the hypercall pages
1034 	 * with instructions of its own choosing, so use those.
1035 	 */
1036 	if (kvm_xen_hypercall_enabled(kvm)) {
1037 		u8 instructions[32];
1038 		int i;
1039 
1040 		if (page_num)
1041 			return 1;
1042 
1043 		/* mov imm32, %eax */
1044 		instructions[0] = 0xb8;
1045 
1046 		/* vmcall / vmmcall */
1047 		static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
1048 
1049 		/* ret */
1050 		instructions[8] = 0xc3;
1051 
1052 		/* int3 to pad */
1053 		memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
1054 
1055 		for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
1056 			*(u32 *)&instructions[1] = i;
1057 			if (kvm_vcpu_write_guest(vcpu,
1058 						 page_addr + (i * sizeof(instructions)),
1059 						 instructions, sizeof(instructions)))
1060 				return 1;
1061 		}
1062 	} else {
1063 		/*
1064 		 * Note, truncation is a non-issue as 'lm' is guaranteed to be
1065 		 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
1066 		 */
1067 		hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
1068 				     : kvm->arch.xen_hvm_config.blob_addr_32;
1069 		u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1070 				  : kvm->arch.xen_hvm_config.blob_size_32;
1071 		u8 *page;
1072 
1073 		if (page_num >= blob_size)
1074 			return 1;
1075 
1076 		blob_addr += page_num * PAGE_SIZE;
1077 
1078 		page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
1079 		if (IS_ERR(page))
1080 			return PTR_ERR(page);
1081 
1082 		if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
1083 			kfree(page);
1084 			return 1;
1085 		}
1086 	}
1087 	return 0;
1088 }
1089 
1090 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
1091 {
1092 	/* Only some feature flags need to be *enabled* by userspace */
1093 	u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
1094 		KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
1095 
1096 	if (xhc->flags & ~permitted_flags)
1097 		return -EINVAL;
1098 
1099 	/*
1100 	 * With hypercall interception the kernel generates its own
1101 	 * hypercall page so it must not be provided.
1102 	 */
1103 	if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
1104 	    (xhc->blob_addr_32 || xhc->blob_addr_64 ||
1105 	     xhc->blob_size_32 || xhc->blob_size_64))
1106 		return -EINVAL;
1107 
1108 	mutex_lock(&kvm->lock);
1109 
1110 	if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
1111 		static_branch_inc(&kvm_xen_enabled.key);
1112 	else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
1113 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
1114 
1115 	memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
1116 
1117 	mutex_unlock(&kvm->lock);
1118 	return 0;
1119 }
1120 
1121 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1122 {
1123 	kvm_rax_write(vcpu, result);
1124 	return kvm_skip_emulated_instruction(vcpu);
1125 }
1126 
1127 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1128 {
1129 	struct kvm_run *run = vcpu->run;
1130 
1131 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
1132 		return 1;
1133 
1134 	return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
1135 }
1136 
1137 static inline int max_evtchn_port(struct kvm *kvm)
1138 {
1139 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1140 		return EVTCHN_2L_NR_CHANNELS;
1141 	else
1142 		return COMPAT_EVTCHN_2L_NR_CHANNELS;
1143 }
1144 
1145 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
1146 			       evtchn_port_t *ports)
1147 {
1148 	struct kvm *kvm = vcpu->kvm;
1149 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1150 	unsigned long *pending_bits;
1151 	unsigned long flags;
1152 	bool ret = true;
1153 	int idx, i;
1154 
1155 	idx = srcu_read_lock(&kvm->srcu);
1156 	read_lock_irqsave(&gpc->lock, flags);
1157 	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1158 		goto out_rcu;
1159 
1160 	ret = false;
1161 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1162 		struct shared_info *shinfo = gpc->khva;
1163 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1164 	} else {
1165 		struct compat_shared_info *shinfo = gpc->khva;
1166 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1167 	}
1168 
1169 	for (i = 0; i < nr_ports; i++) {
1170 		if (test_bit(ports[i], pending_bits)) {
1171 			ret = true;
1172 			break;
1173 		}
1174 	}
1175 
1176  out_rcu:
1177 	read_unlock_irqrestore(&gpc->lock, flags);
1178 	srcu_read_unlock(&kvm->srcu, idx);
1179 
1180 	return ret;
1181 }
1182 
1183 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
1184 				 u64 param, u64 *r)
1185 {
1186 	int idx, i;
1187 	struct sched_poll sched_poll;
1188 	evtchn_port_t port, *ports;
1189 	gpa_t gpa;
1190 
1191 	if (!lapic_in_kernel(vcpu) ||
1192 	    !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1193 		return false;
1194 
1195 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1196 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, param, NULL);
1197 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1198 	if (!gpa) {
1199 		*r = -EFAULT;
1200 		return true;
1201 	}
1202 
1203 	if (IS_ENABLED(CONFIG_64BIT) && !longmode) {
1204 		struct compat_sched_poll sp32;
1205 
1206 		/* Sanity check that the compat struct definition is correct */
1207 		BUILD_BUG_ON(sizeof(sp32) != 16);
1208 
1209 		if (kvm_vcpu_read_guest(vcpu, gpa, &sp32, sizeof(sp32))) {
1210 			*r = -EFAULT;
1211 			return true;
1212 		}
1213 
1214 		/*
1215 		 * This is a 32-bit pointer to an array of evtchn_port_t which
1216 		 * are uint32_t, so once it's converted no further compat
1217 		 * handling is needed.
1218 		 */
1219 		sched_poll.ports = (void *)(unsigned long)(sp32.ports);
1220 		sched_poll.nr_ports = sp32.nr_ports;
1221 		sched_poll.timeout = sp32.timeout;
1222 	} else {
1223 		if (kvm_vcpu_read_guest(vcpu, gpa, &sched_poll,
1224 					sizeof(sched_poll))) {
1225 			*r = -EFAULT;
1226 			return true;
1227 		}
1228 	}
1229 
1230 	if (unlikely(sched_poll.nr_ports > 1)) {
1231 		/* Xen (unofficially) limits number of pollers to 128 */
1232 		if (sched_poll.nr_ports > 128) {
1233 			*r = -EINVAL;
1234 			return true;
1235 		}
1236 
1237 		ports = kmalloc_array(sched_poll.nr_ports,
1238 				      sizeof(*ports), GFP_KERNEL);
1239 		if (!ports) {
1240 			*r = -ENOMEM;
1241 			return true;
1242 		}
1243 	} else
1244 		ports = &port;
1245 
1246 	for (i = 0; i < sched_poll.nr_ports; i++) {
1247 		idx = srcu_read_lock(&vcpu->kvm->srcu);
1248 		gpa = kvm_mmu_gva_to_gpa_system(vcpu,
1249 						(gva_t)(sched_poll.ports + i),
1250 						NULL);
1251 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
1252 
1253 		if (!gpa || kvm_vcpu_read_guest(vcpu, gpa,
1254 						&ports[i], sizeof(port))) {
1255 			*r = -EFAULT;
1256 			goto out;
1257 		}
1258 		if (ports[i] >= max_evtchn_port(vcpu->kvm)) {
1259 			*r = -EINVAL;
1260 			goto out;
1261 		}
1262 	}
1263 
1264 	if (sched_poll.nr_ports == 1)
1265 		vcpu->arch.xen.poll_evtchn = port;
1266 	else
1267 		vcpu->arch.xen.poll_evtchn = -1;
1268 
1269 	set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1270 
1271 	if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) {
1272 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
1273 
1274 		if (sched_poll.timeout)
1275 			mod_timer(&vcpu->arch.xen.poll_timer,
1276 				  jiffies + nsecs_to_jiffies(sched_poll.timeout));
1277 
1278 		kvm_vcpu_halt(vcpu);
1279 
1280 		if (sched_poll.timeout)
1281 			del_timer(&vcpu->arch.xen.poll_timer);
1282 
1283 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1284 	}
1285 
1286 	vcpu->arch.xen.poll_evtchn = 0;
1287 	*r = 0;
1288 out:
1289 	/* Really, this is only needed in case of timeout */
1290 	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1291 
1292 	if (unlikely(sched_poll.nr_ports > 1))
1293 		kfree(ports);
1294 	return true;
1295 }
1296 
1297 static void cancel_evtchn_poll(struct timer_list *t)
1298 {
1299 	struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer);
1300 
1301 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1302 	kvm_vcpu_kick(vcpu);
1303 }
1304 
1305 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1306 				   int cmd, u64 param, u64 *r)
1307 {
1308 	switch (cmd) {
1309 	case SCHEDOP_poll:
1310 		if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1311 			return true;
1312 		fallthrough;
1313 	case SCHEDOP_yield:
1314 		kvm_vcpu_on_spin(vcpu, true);
1315 		*r = 0;
1316 		return true;
1317 	default:
1318 		break;
1319 	}
1320 
1321 	return false;
1322 }
1323 
1324 struct compat_vcpu_set_singleshot_timer {
1325     uint64_t timeout_abs_ns;
1326     uint32_t flags;
1327 } __attribute__((packed));
1328 
1329 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1330 				  int vcpu_id, u64 param, u64 *r)
1331 {
1332 	struct vcpu_set_singleshot_timer oneshot;
1333 	s64 delta;
1334 	gpa_t gpa;
1335 	int idx;
1336 
1337 	if (!kvm_xen_timer_enabled(vcpu))
1338 		return false;
1339 
1340 	switch (cmd) {
1341 	case VCPUOP_set_singleshot_timer:
1342 		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1343 			*r = -EINVAL;
1344 			return true;
1345 		}
1346 		idx = srcu_read_lock(&vcpu->kvm->srcu);
1347 		gpa = kvm_mmu_gva_to_gpa_system(vcpu, param, NULL);
1348 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
1349 
1350 		/*
1351 		 * The only difference for 32-bit compat is the 4 bytes of
1352 		 * padding after the interesting part of the structure. So
1353 		 * for a faithful emulation of Xen we have to *try* to copy
1354 		 * the padding and return -EFAULT if we can't. Otherwise we
1355 		 * might as well just have copied the 12-byte 32-bit struct.
1356 		 */
1357 		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1358 			     offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1359 		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1360 			     sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1361 		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1362 			     offsetof(struct vcpu_set_singleshot_timer, flags));
1363 		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1364 			     sizeof_field(struct vcpu_set_singleshot_timer, flags));
1365 
1366 		if (!gpa ||
1367 		    kvm_vcpu_read_guest(vcpu, gpa, &oneshot, longmode ? sizeof(oneshot) :
1368 					sizeof(struct compat_vcpu_set_singleshot_timer))) {
1369 			*r = -EFAULT;
1370 			return true;
1371 		}
1372 
1373 		delta = oneshot.timeout_abs_ns - get_kvmclock_ns(vcpu->kvm);
1374 		if ((oneshot.flags & VCPU_SSHOTTMR_future) && delta < 0) {
1375 			*r = -ETIME;
1376 			return true;
1377 		}
1378 
1379 		kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, delta);
1380 		*r = 0;
1381 		return true;
1382 
1383 	case VCPUOP_stop_singleshot_timer:
1384 		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1385 			*r = -EINVAL;
1386 			return true;
1387 		}
1388 		kvm_xen_stop_timer(vcpu);
1389 		*r = 0;
1390 		return true;
1391 	}
1392 
1393 	return false;
1394 }
1395 
1396 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1397 				       u64 *r)
1398 {
1399 	if (!kvm_xen_timer_enabled(vcpu))
1400 		return false;
1401 
1402 	if (timeout) {
1403 		uint64_t guest_now = get_kvmclock_ns(vcpu->kvm);
1404 		int64_t delta = timeout - guest_now;
1405 
1406 		/* Xen has a 'Linux workaround' in do_set_timer_op() which
1407 		 * checks for negative absolute timeout values (caused by
1408 		 * integer overflow), and for values about 13 days in the
1409 		 * future (2^50ns) which would be caused by jiffies
1410 		 * overflow. For those cases, it sets the timeout 100ms in
1411 		 * the future (not *too* soon, since if a guest really did
1412 		 * set a long timeout on purpose we don't want to keep
1413 		 * churning CPU time by waking it up).
1414 		 */
1415 		if (unlikely((int64_t)timeout < 0 ||
1416 			     (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
1417 			delta = 100 * NSEC_PER_MSEC;
1418 			timeout = guest_now + delta;
1419 		}
1420 
1421 		kvm_xen_start_timer(vcpu, timeout, delta);
1422 	} else {
1423 		kvm_xen_stop_timer(vcpu);
1424 	}
1425 
1426 	*r = 0;
1427 	return true;
1428 }
1429 
1430 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1431 {
1432 	bool longmode;
1433 	u64 input, params[6], r = -ENOSYS;
1434 	bool handled = false;
1435 	u8 cpl;
1436 
1437 	input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
1438 
1439 	/* Hyper-V hypercalls get bit 31 set in EAX */
1440 	if ((input & 0x80000000) &&
1441 	    kvm_hv_hypercall_enabled(vcpu))
1442 		return kvm_hv_hypercall(vcpu);
1443 
1444 	longmode = is_64_bit_hypercall(vcpu);
1445 	if (!longmode) {
1446 		params[0] = (u32)kvm_rbx_read(vcpu);
1447 		params[1] = (u32)kvm_rcx_read(vcpu);
1448 		params[2] = (u32)kvm_rdx_read(vcpu);
1449 		params[3] = (u32)kvm_rsi_read(vcpu);
1450 		params[4] = (u32)kvm_rdi_read(vcpu);
1451 		params[5] = (u32)kvm_rbp_read(vcpu);
1452 	}
1453 #ifdef CONFIG_X86_64
1454 	else {
1455 		params[0] = (u64)kvm_rdi_read(vcpu);
1456 		params[1] = (u64)kvm_rsi_read(vcpu);
1457 		params[2] = (u64)kvm_rdx_read(vcpu);
1458 		params[3] = (u64)kvm_r10_read(vcpu);
1459 		params[4] = (u64)kvm_r8_read(vcpu);
1460 		params[5] = (u64)kvm_r9_read(vcpu);
1461 	}
1462 #endif
1463 	cpl = static_call(kvm_x86_get_cpl)(vcpu);
1464 	trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2],
1465 				params[3], params[4], params[5]);
1466 
1467 	/*
1468 	 * Only allow hypercall acceleration for CPL0. The rare hypercalls that
1469 	 * are permitted in guest userspace can be handled by the VMM.
1470 	 */
1471 	if (unlikely(cpl > 0))
1472 		goto handle_in_userspace;
1473 
1474 	switch (input) {
1475 	case __HYPERVISOR_xen_version:
1476 		if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1477 			r = vcpu->kvm->arch.xen.xen_version;
1478 			handled = true;
1479 		}
1480 		break;
1481 	case __HYPERVISOR_event_channel_op:
1482 		if (params[0] == EVTCHNOP_send)
1483 			handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r);
1484 		break;
1485 	case __HYPERVISOR_sched_op:
1486 		handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0],
1487 						 params[1], &r);
1488 		break;
1489 	case __HYPERVISOR_vcpu_op:
1490 		handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1],
1491 						params[2], &r);
1492 		break;
1493 	case __HYPERVISOR_set_timer_op: {
1494 		u64 timeout = params[0];
1495 		/* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1496 		if (!longmode)
1497 			timeout |= params[1] << 32;
1498 		handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r);
1499 		break;
1500 	}
1501 	default:
1502 		break;
1503 	}
1504 
1505 	if (handled)
1506 		return kvm_xen_hypercall_set_result(vcpu, r);
1507 
1508 handle_in_userspace:
1509 	vcpu->run->exit_reason = KVM_EXIT_XEN;
1510 	vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1511 	vcpu->run->xen.u.hcall.longmode = longmode;
1512 	vcpu->run->xen.u.hcall.cpl = cpl;
1513 	vcpu->run->xen.u.hcall.input = input;
1514 	vcpu->run->xen.u.hcall.params[0] = params[0];
1515 	vcpu->run->xen.u.hcall.params[1] = params[1];
1516 	vcpu->run->xen.u.hcall.params[2] = params[2];
1517 	vcpu->run->xen.u.hcall.params[3] = params[3];
1518 	vcpu->run->xen.u.hcall.params[4] = params[4];
1519 	vcpu->run->xen.u.hcall.params[5] = params[5];
1520 	vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1521 	vcpu->arch.complete_userspace_io =
1522 		kvm_xen_hypercall_complete_userspace;
1523 
1524 	return 0;
1525 }
1526 
1527 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1528 {
1529 	int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1530 
1531 	if ((poll_evtchn == port || poll_evtchn == -1) &&
1532 	    test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) {
1533 		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1534 		kvm_vcpu_kick(vcpu);
1535 	}
1536 }
1537 
1538 /*
1539  * The return value from this function is propagated to kvm_set_irq() API,
1540  * so it returns:
1541  *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
1542  *  = 0   Interrupt was coalesced (previous irq is still pending)
1543  *  > 0   Number of CPUs interrupt was delivered to
1544  *
1545  * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1546  * only check on its return value is a comparison with -EWOULDBLOCK'.
1547  */
1548 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1549 {
1550 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1551 	struct kvm_vcpu *vcpu;
1552 	unsigned long *pending_bits, *mask_bits;
1553 	unsigned long flags;
1554 	int port_word_bit;
1555 	bool kick_vcpu = false;
1556 	int vcpu_idx, idx, rc;
1557 
1558 	vcpu_idx = READ_ONCE(xe->vcpu_idx);
1559 	if (vcpu_idx >= 0)
1560 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1561 	else {
1562 		vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id);
1563 		if (!vcpu)
1564 			return -EINVAL;
1565 		WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1566 	}
1567 
1568 	if (!vcpu->arch.xen.vcpu_info_cache.active)
1569 		return -EINVAL;
1570 
1571 	if (xe->port >= max_evtchn_port(kvm))
1572 		return -EINVAL;
1573 
1574 	rc = -EWOULDBLOCK;
1575 
1576 	idx = srcu_read_lock(&kvm->srcu);
1577 
1578 	read_lock_irqsave(&gpc->lock, flags);
1579 	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1580 		goto out_rcu;
1581 
1582 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1583 		struct shared_info *shinfo = gpc->khva;
1584 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1585 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1586 		port_word_bit = xe->port / 64;
1587 	} else {
1588 		struct compat_shared_info *shinfo = gpc->khva;
1589 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1590 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1591 		port_word_bit = xe->port / 32;
1592 	}
1593 
1594 	/*
1595 	 * If this port wasn't already set, and if it isn't masked, then
1596 	 * we try to set the corresponding bit in the in-kernel shadow of
1597 	 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1598 	 * already set, then we kick the vCPU in question to write to the
1599 	 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1600 	 */
1601 	if (test_and_set_bit(xe->port, pending_bits)) {
1602 		rc = 0; /* It was already raised */
1603 	} else if (test_bit(xe->port, mask_bits)) {
1604 		rc = -ENOTCONN; /* Masked */
1605 		kvm_xen_check_poller(vcpu, xe->port);
1606 	} else {
1607 		rc = 1; /* Delivered to the bitmap in shared_info. */
1608 		/* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1609 		read_unlock_irqrestore(&gpc->lock, flags);
1610 		gpc = &vcpu->arch.xen.vcpu_info_cache;
1611 
1612 		read_lock_irqsave(&gpc->lock, flags);
1613 		if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
1614 			/*
1615 			 * Could not access the vcpu_info. Set the bit in-kernel
1616 			 * and prod the vCPU to deliver it for itself.
1617 			 */
1618 			if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
1619 				kick_vcpu = true;
1620 			goto out_rcu;
1621 		}
1622 
1623 		if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1624 			struct vcpu_info *vcpu_info = gpc->khva;
1625 			if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
1626 				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1627 				kick_vcpu = true;
1628 			}
1629 		} else {
1630 			struct compat_vcpu_info *vcpu_info = gpc->khva;
1631 			if (!test_and_set_bit(port_word_bit,
1632 					      (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1633 				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1634 				kick_vcpu = true;
1635 			}
1636 		}
1637 
1638 		/* For the per-vCPU lapic vector, deliver it as MSI. */
1639 		if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1640 			kvm_xen_inject_vcpu_vector(vcpu);
1641 			kick_vcpu = false;
1642 		}
1643 	}
1644 
1645  out_rcu:
1646 	read_unlock_irqrestore(&gpc->lock, flags);
1647 	srcu_read_unlock(&kvm->srcu, idx);
1648 
1649 	if (kick_vcpu) {
1650 		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1651 		kvm_vcpu_kick(vcpu);
1652 	}
1653 
1654 	return rc;
1655 }
1656 
1657 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1658 {
1659 	bool mm_borrowed = false;
1660 	int rc;
1661 
1662 	rc = kvm_xen_set_evtchn_fast(xe, kvm);
1663 	if (rc != -EWOULDBLOCK)
1664 		return rc;
1665 
1666 	if (current->mm != kvm->mm) {
1667 		/*
1668 		 * If not on a thread which already belongs to this KVM,
1669 		 * we'd better be in the irqfd workqueue.
1670 		 */
1671 		if (WARN_ON_ONCE(current->mm))
1672 			return -EINVAL;
1673 
1674 		kthread_use_mm(kvm->mm);
1675 		mm_borrowed = true;
1676 	}
1677 
1678 	/*
1679 	 * For the irqfd workqueue, using the main kvm->lock mutex is
1680 	 * fine since this function is invoked from kvm_set_irq() with
1681 	 * no other lock held, no srcu. In future if it will be called
1682 	 * directly from a vCPU thread (e.g. on hypercall for an IPI)
1683 	 * then it may need to switch to using a leaf-node mutex for
1684 	 * serializing the shared_info mapping.
1685 	 */
1686 	mutex_lock(&kvm->lock);
1687 
1688 	/*
1689 	 * It is theoretically possible for the page to be unmapped
1690 	 * and the MMU notifier to invalidate the shared_info before
1691 	 * we even get to use it. In that case, this looks like an
1692 	 * infinite loop. It was tempting to do it via the userspace
1693 	 * HVA instead... but that just *hides* the fact that it's
1694 	 * an infinite loop, because if a fault occurs and it waits
1695 	 * for the page to come back, it can *still* immediately
1696 	 * fault and have to wait again, repeatedly.
1697 	 *
1698 	 * Conversely, the page could also have been reinstated by
1699 	 * another thread before we even obtain the mutex above, so
1700 	 * check again *first* before remapping it.
1701 	 */
1702 	do {
1703 		struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1704 		int idx;
1705 
1706 		rc = kvm_xen_set_evtchn_fast(xe, kvm);
1707 		if (rc != -EWOULDBLOCK)
1708 			break;
1709 
1710 		idx = srcu_read_lock(&kvm->srcu);
1711 		rc = kvm_gpc_refresh(gpc, PAGE_SIZE);
1712 		srcu_read_unlock(&kvm->srcu, idx);
1713 	} while(!rc);
1714 
1715 	mutex_unlock(&kvm->lock);
1716 
1717 	if (mm_borrowed)
1718 		kthread_unuse_mm(kvm->mm);
1719 
1720 	return rc;
1721 }
1722 
1723 /* This is the version called from kvm_set_irq() as the .set function */
1724 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1725 			 int irq_source_id, int level, bool line_status)
1726 {
1727 	if (!level)
1728 		return -EINVAL;
1729 
1730 	return kvm_xen_set_evtchn(&e->xen_evtchn, kvm);
1731 }
1732 
1733 /*
1734  * Set up an event channel interrupt from the KVM IRQ routing table.
1735  * Used for e.g. PIRQ from passed through physical devices.
1736  */
1737 int kvm_xen_setup_evtchn(struct kvm *kvm,
1738 			 struct kvm_kernel_irq_routing_entry *e,
1739 			 const struct kvm_irq_routing_entry *ue)
1740 
1741 {
1742 	struct kvm_vcpu *vcpu;
1743 
1744 	if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1745 		return -EINVAL;
1746 
1747 	/* We only support 2 level event channels for now */
1748 	if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1749 		return -EINVAL;
1750 
1751 	/*
1752 	 * Xen gives us interesting mappings from vCPU index to APIC ID,
1753 	 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1754 	 * to find it. Do that once at setup time, instead of every time.
1755 	 * But beware that on live update / live migration, the routing
1756 	 * table might be reinstated before the vCPU threads have finished
1757 	 * recreating their vCPUs.
1758 	 */
1759 	vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu);
1760 	if (vcpu)
1761 		e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1762 	else
1763 		e->xen_evtchn.vcpu_idx = -1;
1764 
1765 	e->xen_evtchn.port = ue->u.xen_evtchn.port;
1766 	e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1767 	e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1768 	e->set = evtchn_set_fn;
1769 
1770 	return 0;
1771 }
1772 
1773 /*
1774  * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
1775  */
1776 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
1777 {
1778 	struct kvm_xen_evtchn e;
1779 	int ret;
1780 
1781 	if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
1782 		return -EINVAL;
1783 
1784 	/* We only support 2 level event channels for now */
1785 	if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1786 		return -EINVAL;
1787 
1788 	e.port = uxe->port;
1789 	e.vcpu_id = uxe->vcpu;
1790 	e.vcpu_idx = -1;
1791 	e.priority = uxe->priority;
1792 
1793 	ret = kvm_xen_set_evtchn(&e, kvm);
1794 
1795 	/*
1796 	 * None of that 'return 1 if it actually got delivered' nonsense.
1797 	 * We don't care if it was masked (-ENOTCONN) either.
1798 	 */
1799 	if (ret > 0 || ret == -ENOTCONN)
1800 		ret = 0;
1801 
1802 	return ret;
1803 }
1804 
1805 /*
1806  * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
1807  */
1808 struct evtchnfd {
1809 	u32 send_port;
1810 	u32 type;
1811 	union {
1812 		struct kvm_xen_evtchn port;
1813 		struct {
1814 			u32 port; /* zero */
1815 			struct eventfd_ctx *ctx;
1816 		} eventfd;
1817 	} deliver;
1818 };
1819 
1820 /*
1821  * Update target vCPU or priority for a registered sending channel.
1822  */
1823 static int kvm_xen_eventfd_update(struct kvm *kvm,
1824 				  struct kvm_xen_hvm_attr *data)
1825 {
1826 	u32 port = data->u.evtchn.send_port;
1827 	struct evtchnfd *evtchnfd;
1828 
1829 	if (!port || port >= max_evtchn_port(kvm))
1830 		return -EINVAL;
1831 
1832 	mutex_lock(&kvm->lock);
1833 	evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port);
1834 	mutex_unlock(&kvm->lock);
1835 
1836 	if (!evtchnfd)
1837 		return -ENOENT;
1838 
1839 	/* For an UPDATE, nothing may change except the priority/vcpu */
1840 	if (evtchnfd->type != data->u.evtchn.type)
1841 		return -EINVAL;
1842 
1843 	/*
1844 	 * Port cannot change, and if it's zero that was an eventfd
1845 	 * which can't be changed either.
1846 	 */
1847 	if (!evtchnfd->deliver.port.port ||
1848 	    evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
1849 		return -EINVAL;
1850 
1851 	/* We only support 2 level event channels for now */
1852 	if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1853 		return -EINVAL;
1854 
1855 	mutex_lock(&kvm->lock);
1856 	evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1857 	if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
1858 		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1859 		evtchnfd->deliver.port.vcpu_idx = -1;
1860 	}
1861 	mutex_unlock(&kvm->lock);
1862 	return 0;
1863 }
1864 
1865 /*
1866  * Configure the target (eventfd or local port delivery) for sending on
1867  * a given event channel.
1868  */
1869 static int kvm_xen_eventfd_assign(struct kvm *kvm,
1870 				  struct kvm_xen_hvm_attr *data)
1871 {
1872 	u32 port = data->u.evtchn.send_port;
1873 	struct eventfd_ctx *eventfd = NULL;
1874 	struct evtchnfd *evtchnfd = NULL;
1875 	int ret = -EINVAL;
1876 
1877 	if (!port || port >= max_evtchn_port(kvm))
1878 		return -EINVAL;
1879 
1880 	evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL);
1881 	if (!evtchnfd)
1882 		return -ENOMEM;
1883 
1884 	switch(data->u.evtchn.type) {
1885 	case EVTCHNSTAT_ipi:
1886 		/* IPI  must map back to the same port# */
1887 		if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
1888 			goto out_noeventfd; /* -EINVAL */
1889 		break;
1890 
1891 	case EVTCHNSTAT_interdomain:
1892 		if (data->u.evtchn.deliver.port.port) {
1893 			if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
1894 				goto out_noeventfd; /* -EINVAL */
1895 		} else {
1896 			eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd);
1897 			if (IS_ERR(eventfd)) {
1898 				ret = PTR_ERR(eventfd);
1899 				goto out_noeventfd;
1900 			}
1901 		}
1902 		break;
1903 
1904 	case EVTCHNSTAT_virq:
1905 	case EVTCHNSTAT_closed:
1906 	case EVTCHNSTAT_unbound:
1907 	case EVTCHNSTAT_pirq:
1908 	default: /* Unknown event channel type */
1909 		goto out; /* -EINVAL */
1910 	}
1911 
1912 	evtchnfd->send_port = data->u.evtchn.send_port;
1913 	evtchnfd->type = data->u.evtchn.type;
1914 	if (eventfd) {
1915 		evtchnfd->deliver.eventfd.ctx = eventfd;
1916 	} else {
1917 		/* We only support 2 level event channels for now */
1918 		if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1919 			goto out; /* -EINVAL; */
1920 
1921 		evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
1922 		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1923 		evtchnfd->deliver.port.vcpu_idx = -1;
1924 		evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1925 	}
1926 
1927 	mutex_lock(&kvm->lock);
1928 	ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1,
1929 			GFP_KERNEL);
1930 	mutex_unlock(&kvm->lock);
1931 	if (ret >= 0)
1932 		return 0;
1933 
1934 	if (ret == -ENOSPC)
1935 		ret = -EEXIST;
1936 out:
1937 	if (eventfd)
1938 		eventfd_ctx_put(eventfd);
1939 out_noeventfd:
1940 	kfree(evtchnfd);
1941 	return ret;
1942 }
1943 
1944 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
1945 {
1946 	struct evtchnfd *evtchnfd;
1947 
1948 	mutex_lock(&kvm->lock);
1949 	evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port);
1950 	mutex_unlock(&kvm->lock);
1951 
1952 	if (!evtchnfd)
1953 		return -ENOENT;
1954 
1955 	if (kvm)
1956 		synchronize_srcu(&kvm->srcu);
1957 	if (!evtchnfd->deliver.port.port)
1958 		eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
1959 	kfree(evtchnfd);
1960 	return 0;
1961 }
1962 
1963 static int kvm_xen_eventfd_reset(struct kvm *kvm)
1964 {
1965 	struct evtchnfd *evtchnfd;
1966 	int i;
1967 
1968 	mutex_lock(&kvm->lock);
1969 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
1970 		idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port);
1971 		synchronize_srcu(&kvm->srcu);
1972 		if (!evtchnfd->deliver.port.port)
1973 			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
1974 		kfree(evtchnfd);
1975 	}
1976 	mutex_unlock(&kvm->lock);
1977 
1978 	return 0;
1979 }
1980 
1981 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
1982 {
1983 	u32 port = data->u.evtchn.send_port;
1984 
1985 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
1986 		return kvm_xen_eventfd_reset(kvm);
1987 
1988 	if (!port || port >= max_evtchn_port(kvm))
1989 		return -EINVAL;
1990 
1991 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
1992 		return kvm_xen_eventfd_deassign(kvm, port);
1993 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
1994 		return kvm_xen_eventfd_update(kvm, data);
1995 	if (data->u.evtchn.flags)
1996 		return -EINVAL;
1997 
1998 	return kvm_xen_eventfd_assign(kvm, data);
1999 }
2000 
2001 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
2002 {
2003 	struct evtchnfd *evtchnfd;
2004 	struct evtchn_send send;
2005 	gpa_t gpa;
2006 	int idx;
2007 
2008 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2009 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, param, NULL);
2010 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2011 
2012 	if (!gpa || kvm_vcpu_read_guest(vcpu, gpa, &send, sizeof(send))) {
2013 		*r = -EFAULT;
2014 		return true;
2015 	}
2016 
2017 	/* The evtchn_ports idr is protected by vcpu->kvm->srcu */
2018 	evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port);
2019 	if (!evtchnfd)
2020 		return false;
2021 
2022 	if (evtchnfd->deliver.port.port) {
2023 		int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm);
2024 		if (ret < 0 && ret != -ENOTCONN)
2025 			return false;
2026 	} else {
2027 		eventfd_signal(evtchnfd->deliver.eventfd.ctx, 1);
2028 	}
2029 
2030 	*r = 0;
2031 	return true;
2032 }
2033 
2034 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
2035 {
2036 	vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
2037 	vcpu->arch.xen.poll_evtchn = 0;
2038 
2039 	timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
2040 
2041 	kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm, NULL,
2042 		     KVM_HOST_USES_PFN);
2043 	kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm, NULL,
2044 		     KVM_HOST_USES_PFN);
2045 	kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm, NULL,
2046 		     KVM_HOST_USES_PFN);
2047 	kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm, NULL,
2048 		     KVM_HOST_USES_PFN);
2049 }
2050 
2051 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
2052 {
2053 	if (kvm_xen_timer_enabled(vcpu))
2054 		kvm_xen_stop_timer(vcpu);
2055 
2056 	kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
2057 	kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
2058 	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
2059 	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
2060 
2061 	del_timer_sync(&vcpu->arch.xen.poll_timer);
2062 }
2063 
2064 void kvm_xen_init_vm(struct kvm *kvm)
2065 {
2066 	idr_init(&kvm->arch.xen.evtchn_ports);
2067 	kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm, NULL, KVM_HOST_USES_PFN);
2068 }
2069 
2070 void kvm_xen_destroy_vm(struct kvm *kvm)
2071 {
2072 	struct evtchnfd *evtchnfd;
2073 	int i;
2074 
2075 	kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
2076 
2077 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2078 		if (!evtchnfd->deliver.port.port)
2079 			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2080 		kfree(evtchnfd);
2081 	}
2082 	idr_destroy(&kvm->arch.xen.evtchn_ports);
2083 
2084 	if (kvm->arch.xen_hvm_config.msr)
2085 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
2086 }
2087