xref: /openbmc/linux/arch/x86/kvm/xen.c (revision 62a9bbf2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4  * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5  *
6  * KVM Xen emulation
7  */
8 
9 #include "x86.h"
10 #include "xen.h"
11 #include "hyperv.h"
12 #include "lapic.h"
13 
14 #include <linux/eventfd.h>
15 #include <linux/kvm_host.h>
16 #include <linux/sched/stat.h>
17 
18 #include <trace/events/kvm.h>
19 #include <xen/interface/xen.h>
20 #include <xen/interface/vcpu.h>
21 #include <xen/interface/version.h>
22 #include <xen/interface/event_channel.h>
23 #include <xen/interface/sched.h>
24 
25 #include "trace.h"
26 
27 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
28 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
29 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
30 
31 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
32 
33 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
34 {
35 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
36 	struct pvclock_wall_clock *wc;
37 	gpa_t gpa = gfn_to_gpa(gfn);
38 	u32 *wc_sec_hi;
39 	u32 wc_version;
40 	u64 wall_nsec;
41 	int ret = 0;
42 	int idx = srcu_read_lock(&kvm->srcu);
43 
44 	if (gfn == KVM_XEN_INVALID_GFN) {
45 		kvm_gpc_deactivate(gpc);
46 		goto out;
47 	}
48 
49 	do {
50 		ret = kvm_gpc_activate(gpc, gpa, PAGE_SIZE);
51 		if (ret)
52 			goto out;
53 
54 		/*
55 		 * This code mirrors kvm_write_wall_clock() except that it writes
56 		 * directly through the pfn cache and doesn't mark the page dirty.
57 		 */
58 		wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
59 
60 		/* It could be invalid again already, so we need to check */
61 		read_lock_irq(&gpc->lock);
62 
63 		if (gpc->valid)
64 			break;
65 
66 		read_unlock_irq(&gpc->lock);
67 	} while (1);
68 
69 	/* Paranoia checks on the 32-bit struct layout */
70 	BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
71 	BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
72 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
73 
74 #ifdef CONFIG_X86_64
75 	/* Paranoia checks on the 64-bit struct layout */
76 	BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
77 	BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
78 
79 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
80 		struct shared_info *shinfo = gpc->khva;
81 
82 		wc_sec_hi = &shinfo->wc_sec_hi;
83 		wc = &shinfo->wc;
84 	} else
85 #endif
86 	{
87 		struct compat_shared_info *shinfo = gpc->khva;
88 
89 		wc_sec_hi = &shinfo->arch.wc_sec_hi;
90 		wc = &shinfo->wc;
91 	}
92 
93 	/* Increment and ensure an odd value */
94 	wc_version = wc->version = (wc->version + 1) | 1;
95 	smp_wmb();
96 
97 	wc->nsec = do_div(wall_nsec,  1000000000);
98 	wc->sec = (u32)wall_nsec;
99 	*wc_sec_hi = wall_nsec >> 32;
100 	smp_wmb();
101 
102 	wc->version = wc_version + 1;
103 	read_unlock_irq(&gpc->lock);
104 
105 	kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
106 
107 out:
108 	srcu_read_unlock(&kvm->srcu, idx);
109 	return ret;
110 }
111 
112 void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
113 {
114 	if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) {
115 		struct kvm_xen_evtchn e;
116 
117 		e.vcpu_id = vcpu->vcpu_id;
118 		e.vcpu_idx = vcpu->vcpu_idx;
119 		e.port = vcpu->arch.xen.timer_virq;
120 		e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
121 
122 		kvm_xen_set_evtchn(&e, vcpu->kvm);
123 
124 		vcpu->arch.xen.timer_expires = 0;
125 		atomic_set(&vcpu->arch.xen.timer_pending, 0);
126 	}
127 }
128 
129 static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
130 {
131 	struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
132 					     arch.xen.timer);
133 	if (atomic_read(&vcpu->arch.xen.timer_pending))
134 		return HRTIMER_NORESTART;
135 
136 	atomic_inc(&vcpu->arch.xen.timer_pending);
137 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
138 	kvm_vcpu_kick(vcpu);
139 
140 	return HRTIMER_NORESTART;
141 }
142 
143 static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns)
144 {
145 	atomic_set(&vcpu->arch.xen.timer_pending, 0);
146 	vcpu->arch.xen.timer_expires = guest_abs;
147 
148 	if (delta_ns <= 0) {
149 		xen_timer_callback(&vcpu->arch.xen.timer);
150 	} else {
151 		ktime_t ktime_now = ktime_get();
152 		hrtimer_start(&vcpu->arch.xen.timer,
153 			      ktime_add_ns(ktime_now, delta_ns),
154 			      HRTIMER_MODE_ABS_HARD);
155 	}
156 }
157 
158 static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
159 {
160 	hrtimer_cancel(&vcpu->arch.xen.timer);
161 	vcpu->arch.xen.timer_expires = 0;
162 	atomic_set(&vcpu->arch.xen.timer_pending, 0);
163 }
164 
165 static void kvm_xen_init_timer(struct kvm_vcpu *vcpu)
166 {
167 	hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC,
168 		     HRTIMER_MODE_ABS_HARD);
169 	vcpu->arch.xen.timer.function = xen_timer_callback;
170 }
171 
172 static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic)
173 {
174 	struct kvm_vcpu_xen *vx = &v->arch.xen;
175 	struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache;
176 	struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache;
177 	size_t user_len, user_len1, user_len2;
178 	struct vcpu_runstate_info rs;
179 	unsigned long flags;
180 	size_t times_ofs;
181 	uint8_t *update_bit = NULL;
182 	uint64_t entry_time;
183 	uint64_t *rs_times;
184 	int *rs_state;
185 
186 	/*
187 	 * The only difference between 32-bit and 64-bit versions of the
188 	 * runstate struct is the alignment of uint64_t in 32-bit, which
189 	 * means that the 64-bit version has an additional 4 bytes of
190 	 * padding after the first field 'state'. Let's be really really
191 	 * paranoid about that, and matching it with our internal data
192 	 * structures that we memcpy into it...
193 	 */
194 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
195 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
196 	BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
197 #ifdef CONFIG_X86_64
198 	/*
199 	 * The 64-bit structure has 4 bytes of padding before 'state_entry_time'
200 	 * so each subsequent field is shifted by 4, and it's 4 bytes longer.
201 	 */
202 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
203 		     offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
204 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
205 		     offsetof(struct compat_vcpu_runstate_info, time) + 4);
206 	BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4);
207 #endif
208 	/*
209 	 * The state field is in the same place at the start of both structs,
210 	 * and is the same size (int) as vx->current_runstate.
211 	 */
212 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
213 		     offsetof(struct compat_vcpu_runstate_info, state));
214 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
215 		     sizeof(vx->current_runstate));
216 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
217 		     sizeof(vx->current_runstate));
218 
219 	/*
220 	 * The state_entry_time field is 64 bits in both versions, and the
221 	 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86
222 	 * is little-endian means that it's in the last *byte* of the word.
223 	 * That detail is important later.
224 	 */
225 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
226 		     sizeof(uint64_t));
227 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
228 		     sizeof(uint64_t));
229 	BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80);
230 
231 	/*
232 	 * The time array is four 64-bit quantities in both versions, matching
233 	 * the vx->runstate_times and immediately following state_entry_time.
234 	 */
235 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
236 		     offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t));
237 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
238 		     offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t));
239 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
240 		     sizeof_field(struct compat_vcpu_runstate_info, time));
241 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
242 		     sizeof(vx->runstate_times));
243 
244 	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
245 		user_len = sizeof(struct vcpu_runstate_info);
246 		times_ofs = offsetof(struct vcpu_runstate_info,
247 				     state_entry_time);
248 	} else {
249 		user_len = sizeof(struct compat_vcpu_runstate_info);
250 		times_ofs = offsetof(struct compat_vcpu_runstate_info,
251 				     state_entry_time);
252 	}
253 
254 	/*
255 	 * There are basically no alignment constraints. The guest can set it
256 	 * up so it crosses from one page to the next, and at arbitrary byte
257 	 * alignment (and the 32-bit ABI doesn't align the 64-bit integers
258 	 * anyway, even if the overall struct had been 64-bit aligned).
259 	 */
260 	if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) {
261 		user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK);
262 		user_len2 = user_len - user_len1;
263 	} else {
264 		user_len1 = user_len;
265 		user_len2 = 0;
266 	}
267 	BUG_ON(user_len1 + user_len2 != user_len);
268 
269  retry:
270 	/*
271 	 * Attempt to obtain the GPC lock on *both* (if there are two)
272 	 * gfn_to_pfn caches that cover the region.
273 	 */
274 	if (atomic) {
275 		local_irq_save(flags);
276 		if (!read_trylock(&gpc1->lock)) {
277 			local_irq_restore(flags);
278 			return;
279 		}
280 	} else {
281 		read_lock_irqsave(&gpc1->lock, flags);
282 	}
283 	while (!kvm_gpc_check(gpc1, user_len1)) {
284 		read_unlock_irqrestore(&gpc1->lock, flags);
285 
286 		/* When invoked from kvm_sched_out() we cannot sleep */
287 		if (atomic)
288 			return;
289 
290 		if (kvm_gpc_refresh(gpc1, user_len1))
291 			return;
292 
293 		read_lock_irqsave(&gpc1->lock, flags);
294 	}
295 
296 	if (likely(!user_len2)) {
297 		/*
298 		 * Set up three pointers directly to the runstate_info
299 		 * struct in the guest (via the GPC).
300 		 *
301 		 *  • @rs_state   → state field
302 		 *  • @rs_times   → state_entry_time field.
303 		 *  • @update_bit → last byte of state_entry_time, which
304 		 *                  contains the XEN_RUNSTATE_UPDATE bit.
305 		 */
306 		rs_state = gpc1->khva;
307 		rs_times = gpc1->khva + times_ofs;
308 		if (v->kvm->arch.xen.runstate_update_flag)
309 			update_bit = ((void *)(&rs_times[1])) - 1;
310 	} else {
311 		/*
312 		 * The guest's runstate_info is split across two pages and we
313 		 * need to hold and validate both GPCs simultaneously. We can
314 		 * declare a lock ordering GPC1 > GPC2 because nothing else
315 		 * takes them more than one at a time. Set a subclass on the
316 		 * gpc1 lock to make lockdep shut up about it.
317 		 */
318 		lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_);
319 		if (atomic) {
320 			if (!read_trylock(&gpc2->lock)) {
321 				read_unlock_irqrestore(&gpc1->lock, flags);
322 				return;
323 			}
324 		} else {
325 			read_lock(&gpc2->lock);
326 		}
327 
328 		if (!kvm_gpc_check(gpc2, user_len2)) {
329 			read_unlock(&gpc2->lock);
330 			read_unlock_irqrestore(&gpc1->lock, flags);
331 
332 			/* When invoked from kvm_sched_out() we cannot sleep */
333 			if (atomic)
334 				return;
335 
336 			/*
337 			 * Use kvm_gpc_activate() here because if the runstate
338 			 * area was configured in 32-bit mode and only extends
339 			 * to the second page now because the guest changed to
340 			 * 64-bit mode, the second GPC won't have been set up.
341 			 */
342 			if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1,
343 					     user_len2))
344 				return;
345 
346 			/*
347 			 * We dropped the lock on GPC1 so we have to go all the
348 			 * way back and revalidate that too.
349 			 */
350 			goto retry;
351 		}
352 
353 		/*
354 		 * In this case, the runstate_info struct will be assembled on
355 		 * the kernel stack (compat or not as appropriate) and will
356 		 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three
357 		 * rs pointers accordingly.
358 		 */
359 		rs_times = &rs.state_entry_time;
360 
361 		/*
362 		 * The rs_state pointer points to the start of what we'll
363 		 * copy to the guest, which in the case of a compat guest
364 		 * is the 32-bit field that the compiler thinks is padding.
365 		 */
366 		rs_state = ((void *)rs_times) - times_ofs;
367 
368 		/*
369 		 * The update_bit is still directly in the guest memory,
370 		 * via one GPC or the other.
371 		 */
372 		if (v->kvm->arch.xen.runstate_update_flag) {
373 			if (user_len1 >= times_ofs + sizeof(uint64_t))
374 				update_bit = gpc1->khva + times_ofs +
375 					sizeof(uint64_t) - 1;
376 			else
377 				update_bit = gpc2->khva + times_ofs +
378 					sizeof(uint64_t) - 1 - user_len1;
379 		}
380 
381 #ifdef CONFIG_X86_64
382 		/*
383 		 * Don't leak kernel memory through the padding in the 64-bit
384 		 * version of the struct.
385 		 */
386 		memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time));
387 #endif
388 	}
389 
390 	/*
391 	 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the
392 	 * state_entry_time field, directly in the guest. We need to set
393 	 * that (and write-barrier) before writing to the rest of the
394 	 * structure, and clear it last. Just as Xen does, we address the
395 	 * single *byte* in which it resides because it might be in a
396 	 * different cache line to the rest of the 64-bit word, due to
397 	 * the (lack of) alignment constraints.
398 	 */
399 	entry_time = vx->runstate_entry_time;
400 	if (update_bit) {
401 		entry_time |= XEN_RUNSTATE_UPDATE;
402 		*update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56;
403 		smp_wmb();
404 	}
405 
406 	/*
407 	 * Now assemble the actual structure, either on our kernel stack
408 	 * or directly in the guest according to how the rs_state and
409 	 * rs_times pointers were set up above.
410 	 */
411 	*rs_state = vx->current_runstate;
412 	rs_times[0] = entry_time;
413 	memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
414 
415 	/* For the split case, we have to then copy it to the guest. */
416 	if (user_len2) {
417 		memcpy(gpc1->khva, rs_state, user_len1);
418 		memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2);
419 	}
420 	smp_wmb();
421 
422 	/* Finally, clear the XEN_RUNSTATE_UPDATE bit. */
423 	if (update_bit) {
424 		entry_time &= ~XEN_RUNSTATE_UPDATE;
425 		*update_bit = entry_time >> 56;
426 		smp_wmb();
427 	}
428 
429 	if (user_len2)
430 		read_unlock(&gpc2->lock);
431 
432 	read_unlock_irqrestore(&gpc1->lock, flags);
433 
434 	mark_page_dirty_in_slot(v->kvm, gpc1->memslot, gpc1->gpa >> PAGE_SHIFT);
435 	if (user_len2)
436 		mark_page_dirty_in_slot(v->kvm, gpc2->memslot, gpc2->gpa >> PAGE_SHIFT);
437 }
438 
439 void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
440 {
441 	struct kvm_vcpu_xen *vx = &v->arch.xen;
442 	u64 now = get_kvmclock_ns(v->kvm);
443 	u64 delta_ns = now - vx->runstate_entry_time;
444 	u64 run_delay = current->sched_info.run_delay;
445 
446 	if (unlikely(!vx->runstate_entry_time))
447 		vx->current_runstate = RUNSTATE_offline;
448 
449 	/*
450 	 * Time waiting for the scheduler isn't "stolen" if the
451 	 * vCPU wasn't running anyway.
452 	 */
453 	if (vx->current_runstate == RUNSTATE_running) {
454 		u64 steal_ns = run_delay - vx->last_steal;
455 
456 		delta_ns -= steal_ns;
457 
458 		vx->runstate_times[RUNSTATE_runnable] += steal_ns;
459 	}
460 	vx->last_steal = run_delay;
461 
462 	vx->runstate_times[vx->current_runstate] += delta_ns;
463 	vx->current_runstate = state;
464 	vx->runstate_entry_time = now;
465 
466 	if (vx->runstate_cache.active)
467 		kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable);
468 }
469 
470 static void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
471 {
472 	struct kvm_lapic_irq irq = { };
473 	int r;
474 
475 	irq.dest_id = v->vcpu_id;
476 	irq.vector = v->arch.xen.upcall_vector;
477 	irq.dest_mode = APIC_DEST_PHYSICAL;
478 	irq.shorthand = APIC_DEST_NOSHORT;
479 	irq.delivery_mode = APIC_DM_FIXED;
480 	irq.level = 1;
481 
482 	/* The fast version will always work for physical unicast */
483 	WARN_ON_ONCE(!kvm_irq_delivery_to_apic_fast(v->kvm, NULL, &irq, &r, NULL));
484 }
485 
486 /*
487  * On event channel delivery, the vcpu_info may not have been accessible.
488  * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
489  * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
490  * Do so now that we can sleep in the context of the vCPU to bring the
491  * page in, and refresh the pfn cache for it.
492  */
493 void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
494 {
495 	unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
496 	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
497 	unsigned long flags;
498 
499 	if (!evtchn_pending_sel)
500 		return;
501 
502 	/*
503 	 * Yes, this is an open-coded loop. But that's just what put_user()
504 	 * does anyway. Page it in and retry the instruction. We're just a
505 	 * little more honest about it.
506 	 */
507 	read_lock_irqsave(&gpc->lock, flags);
508 	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
509 		read_unlock_irqrestore(&gpc->lock, flags);
510 
511 		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info)))
512 			return;
513 
514 		read_lock_irqsave(&gpc->lock, flags);
515 	}
516 
517 	/* Now gpc->khva is a valid kernel address for the vcpu_info */
518 	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
519 		struct vcpu_info *vi = gpc->khva;
520 
521 		asm volatile(LOCK_PREFIX "orq %0, %1\n"
522 			     "notq %0\n"
523 			     LOCK_PREFIX "andq %0, %2\n"
524 			     : "=r" (evtchn_pending_sel),
525 			       "+m" (vi->evtchn_pending_sel),
526 			       "+m" (v->arch.xen.evtchn_pending_sel)
527 			     : "0" (evtchn_pending_sel));
528 		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
529 	} else {
530 		u32 evtchn_pending_sel32 = evtchn_pending_sel;
531 		struct compat_vcpu_info *vi = gpc->khva;
532 
533 		asm volatile(LOCK_PREFIX "orl %0, %1\n"
534 			     "notl %0\n"
535 			     LOCK_PREFIX "andl %0, %2\n"
536 			     : "=r" (evtchn_pending_sel32),
537 			       "+m" (vi->evtchn_pending_sel),
538 			       "+m" (v->arch.xen.evtchn_pending_sel)
539 			     : "0" (evtchn_pending_sel32));
540 		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
541 	}
542 	read_unlock_irqrestore(&gpc->lock, flags);
543 
544 	/* For the per-vCPU lapic vector, deliver it as MSI. */
545 	if (v->arch.xen.upcall_vector)
546 		kvm_xen_inject_vcpu_vector(v);
547 
548 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
549 }
550 
551 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
552 {
553 	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
554 	unsigned long flags;
555 	u8 rc = 0;
556 
557 	/*
558 	 * If the global upcall vector (HVMIRQ_callback_vector) is set and
559 	 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
560 	 */
561 
562 	/* No need for compat handling here */
563 	BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
564 		     offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
565 	BUILD_BUG_ON(sizeof(rc) !=
566 		     sizeof_field(struct vcpu_info, evtchn_upcall_pending));
567 	BUILD_BUG_ON(sizeof(rc) !=
568 		     sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
569 
570 	read_lock_irqsave(&gpc->lock, flags);
571 	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
572 		read_unlock_irqrestore(&gpc->lock, flags);
573 
574 		/*
575 		 * This function gets called from kvm_vcpu_block() after setting the
576 		 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
577 		 * from a HLT. So we really mustn't sleep. If the page ended up absent
578 		 * at that point, just return 1 in order to trigger an immediate wake,
579 		 * and we'll end up getting called again from a context where we *can*
580 		 * fault in the page and wait for it.
581 		 */
582 		if (in_atomic() || !task_is_running(current))
583 			return 1;
584 
585 		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) {
586 			/*
587 			 * If this failed, userspace has screwed up the
588 			 * vcpu_info mapping. No interrupts for you.
589 			 */
590 			return 0;
591 		}
592 		read_lock_irqsave(&gpc->lock, flags);
593 	}
594 
595 	rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
596 	read_unlock_irqrestore(&gpc->lock, flags);
597 	return rc;
598 }
599 
600 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
601 {
602 	int r = -ENOENT;
603 
604 
605 	switch (data->type) {
606 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
607 		if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
608 			r = -EINVAL;
609 		} else {
610 			mutex_lock(&kvm->arch.xen.xen_lock);
611 			kvm->arch.xen.long_mode = !!data->u.long_mode;
612 			mutex_unlock(&kvm->arch.xen.xen_lock);
613 			r = 0;
614 		}
615 		break;
616 
617 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
618 		mutex_lock(&kvm->arch.xen.xen_lock);
619 		r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
620 		mutex_unlock(&kvm->arch.xen.xen_lock);
621 		break;
622 
623 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
624 		if (data->u.vector && data->u.vector < 0x10)
625 			r = -EINVAL;
626 		else {
627 			mutex_lock(&kvm->arch.xen.xen_lock);
628 			kvm->arch.xen.upcall_vector = data->u.vector;
629 			mutex_unlock(&kvm->arch.xen.xen_lock);
630 			r = 0;
631 		}
632 		break;
633 
634 	case KVM_XEN_ATTR_TYPE_EVTCHN:
635 		r = kvm_xen_setattr_evtchn(kvm, data);
636 		break;
637 
638 	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
639 		mutex_lock(&kvm->arch.xen.xen_lock);
640 		kvm->arch.xen.xen_version = data->u.xen_version;
641 		mutex_unlock(&kvm->arch.xen.xen_lock);
642 		r = 0;
643 		break;
644 
645 	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
646 		if (!sched_info_on()) {
647 			r = -EOPNOTSUPP;
648 			break;
649 		}
650 		mutex_lock(&kvm->arch.xen.xen_lock);
651 		kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag;
652 		mutex_unlock(&kvm->arch.xen.xen_lock);
653 		r = 0;
654 		break;
655 
656 	default:
657 		break;
658 	}
659 
660 	return r;
661 }
662 
663 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
664 {
665 	int r = -ENOENT;
666 
667 	mutex_lock(&kvm->arch.xen.xen_lock);
668 
669 	switch (data->type) {
670 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
671 		data->u.long_mode = kvm->arch.xen.long_mode;
672 		r = 0;
673 		break;
674 
675 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
676 		if (kvm->arch.xen.shinfo_cache.active)
677 			data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
678 		else
679 			data->u.shared_info.gfn = KVM_XEN_INVALID_GFN;
680 		r = 0;
681 		break;
682 
683 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
684 		data->u.vector = kvm->arch.xen.upcall_vector;
685 		r = 0;
686 		break;
687 
688 	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
689 		data->u.xen_version = kvm->arch.xen.xen_version;
690 		r = 0;
691 		break;
692 
693 	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
694 		if (!sched_info_on()) {
695 			r = -EOPNOTSUPP;
696 			break;
697 		}
698 		data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag;
699 		r = 0;
700 		break;
701 
702 	default:
703 		break;
704 	}
705 
706 	mutex_unlock(&kvm->arch.xen.xen_lock);
707 	return r;
708 }
709 
710 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
711 {
712 	int idx, r = -ENOENT;
713 
714 	mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
715 	idx = srcu_read_lock(&vcpu->kvm->srcu);
716 
717 	switch (data->type) {
718 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
719 		/* No compat necessary here. */
720 		BUILD_BUG_ON(sizeof(struct vcpu_info) !=
721 			     sizeof(struct compat_vcpu_info));
722 		BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
723 			     offsetof(struct compat_vcpu_info, time));
724 
725 		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
726 			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
727 			r = 0;
728 			break;
729 		}
730 
731 		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache,
732 				     data->u.gpa, sizeof(struct vcpu_info));
733 		if (!r)
734 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
735 
736 		break;
737 
738 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
739 		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
740 			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
741 			r = 0;
742 			break;
743 		}
744 
745 		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache,
746 				     data->u.gpa,
747 				     sizeof(struct pvclock_vcpu_time_info));
748 		if (!r)
749 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
750 		break;
751 
752 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: {
753 		size_t sz, sz1, sz2;
754 
755 		if (!sched_info_on()) {
756 			r = -EOPNOTSUPP;
757 			break;
758 		}
759 		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
760 			r = 0;
761 		deactivate_out:
762 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
763 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
764 			break;
765 		}
766 
767 		/*
768 		 * If the guest switches to 64-bit mode after setting the runstate
769 		 * address, that's actually OK. kvm_xen_update_runstate_guest()
770 		 * will cope.
771 		 */
772 		if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode)
773 			sz = sizeof(struct vcpu_runstate_info);
774 		else
775 			sz = sizeof(struct compat_vcpu_runstate_info);
776 
777 		/* How much fits in the (first) page? */
778 		sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK);
779 		r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache,
780 				     data->u.gpa, sz1);
781 		if (r)
782 			goto deactivate_out;
783 
784 		/* Either map the second page, or deactivate the second GPC */
785 		if (sz1 >= sz) {
786 			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
787 		} else {
788 			sz2 = sz - sz1;
789 			BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK);
790 			r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache,
791 					     data->u.gpa + sz1, sz2);
792 			if (r)
793 				goto deactivate_out;
794 		}
795 
796 		kvm_xen_update_runstate_guest(vcpu, false);
797 		break;
798 	}
799 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
800 		if (!sched_info_on()) {
801 			r = -EOPNOTSUPP;
802 			break;
803 		}
804 		if (data->u.runstate.state > RUNSTATE_offline) {
805 			r = -EINVAL;
806 			break;
807 		}
808 
809 		kvm_xen_update_runstate(vcpu, data->u.runstate.state);
810 		r = 0;
811 		break;
812 
813 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
814 		if (!sched_info_on()) {
815 			r = -EOPNOTSUPP;
816 			break;
817 		}
818 		if (data->u.runstate.state > RUNSTATE_offline) {
819 			r = -EINVAL;
820 			break;
821 		}
822 		if (data->u.runstate.state_entry_time !=
823 		    (data->u.runstate.time_running +
824 		     data->u.runstate.time_runnable +
825 		     data->u.runstate.time_blocked +
826 		     data->u.runstate.time_offline)) {
827 			r = -EINVAL;
828 			break;
829 		}
830 		if (get_kvmclock_ns(vcpu->kvm) <
831 		    data->u.runstate.state_entry_time) {
832 			r = -EINVAL;
833 			break;
834 		}
835 
836 		vcpu->arch.xen.current_runstate = data->u.runstate.state;
837 		vcpu->arch.xen.runstate_entry_time =
838 			data->u.runstate.state_entry_time;
839 		vcpu->arch.xen.runstate_times[RUNSTATE_running] =
840 			data->u.runstate.time_running;
841 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
842 			data->u.runstate.time_runnable;
843 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
844 			data->u.runstate.time_blocked;
845 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
846 			data->u.runstate.time_offline;
847 		vcpu->arch.xen.last_steal = current->sched_info.run_delay;
848 		r = 0;
849 		break;
850 
851 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
852 		if (!sched_info_on()) {
853 			r = -EOPNOTSUPP;
854 			break;
855 		}
856 		if (data->u.runstate.state > RUNSTATE_offline &&
857 		    data->u.runstate.state != (u64)-1) {
858 			r = -EINVAL;
859 			break;
860 		}
861 		/* The adjustment must add up */
862 		if (data->u.runstate.state_entry_time !=
863 		    (data->u.runstate.time_running +
864 		     data->u.runstate.time_runnable +
865 		     data->u.runstate.time_blocked +
866 		     data->u.runstate.time_offline)) {
867 			r = -EINVAL;
868 			break;
869 		}
870 
871 		if (get_kvmclock_ns(vcpu->kvm) <
872 		    (vcpu->arch.xen.runstate_entry_time +
873 		     data->u.runstate.state_entry_time)) {
874 			r = -EINVAL;
875 			break;
876 		}
877 
878 		vcpu->arch.xen.runstate_entry_time +=
879 			data->u.runstate.state_entry_time;
880 		vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
881 			data->u.runstate.time_running;
882 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
883 			data->u.runstate.time_runnable;
884 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
885 			data->u.runstate.time_blocked;
886 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
887 			data->u.runstate.time_offline;
888 
889 		if (data->u.runstate.state <= RUNSTATE_offline)
890 			kvm_xen_update_runstate(vcpu, data->u.runstate.state);
891 		else if (vcpu->arch.xen.runstate_cache.active)
892 			kvm_xen_update_runstate_guest(vcpu, false);
893 		r = 0;
894 		break;
895 
896 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
897 		if (data->u.vcpu_id >= KVM_MAX_VCPUS)
898 			r = -EINVAL;
899 		else {
900 			vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
901 			r = 0;
902 		}
903 		break;
904 
905 	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
906 		if (data->u.timer.port &&
907 		    data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
908 			r = -EINVAL;
909 			break;
910 		}
911 
912 		if (!vcpu->arch.xen.timer.function)
913 			kvm_xen_init_timer(vcpu);
914 
915 		/* Stop the timer (if it's running) before changing the vector */
916 		kvm_xen_stop_timer(vcpu);
917 		vcpu->arch.xen.timer_virq = data->u.timer.port;
918 
919 		/* Start the timer if the new value has a valid vector+expiry. */
920 		if (data->u.timer.port && data->u.timer.expires_ns)
921 			kvm_xen_start_timer(vcpu, data->u.timer.expires_ns,
922 					    data->u.timer.expires_ns -
923 					    get_kvmclock_ns(vcpu->kvm));
924 
925 		r = 0;
926 		break;
927 
928 	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
929 		if (data->u.vector && data->u.vector < 0x10)
930 			r = -EINVAL;
931 		else {
932 			vcpu->arch.xen.upcall_vector = data->u.vector;
933 			r = 0;
934 		}
935 		break;
936 
937 	default:
938 		break;
939 	}
940 
941 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
942 	mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
943 	return r;
944 }
945 
946 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
947 {
948 	int r = -ENOENT;
949 
950 	mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
951 
952 	switch (data->type) {
953 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
954 		if (vcpu->arch.xen.vcpu_info_cache.active)
955 			data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
956 		else
957 			data->u.gpa = KVM_XEN_INVALID_GPA;
958 		r = 0;
959 		break;
960 
961 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
962 		if (vcpu->arch.xen.vcpu_time_info_cache.active)
963 			data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
964 		else
965 			data->u.gpa = KVM_XEN_INVALID_GPA;
966 		r = 0;
967 		break;
968 
969 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
970 		if (!sched_info_on()) {
971 			r = -EOPNOTSUPP;
972 			break;
973 		}
974 		if (vcpu->arch.xen.runstate_cache.active) {
975 			data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
976 			r = 0;
977 		}
978 		break;
979 
980 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
981 		if (!sched_info_on()) {
982 			r = -EOPNOTSUPP;
983 			break;
984 		}
985 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
986 		r = 0;
987 		break;
988 
989 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
990 		if (!sched_info_on()) {
991 			r = -EOPNOTSUPP;
992 			break;
993 		}
994 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
995 		data->u.runstate.state_entry_time =
996 			vcpu->arch.xen.runstate_entry_time;
997 		data->u.runstate.time_running =
998 			vcpu->arch.xen.runstate_times[RUNSTATE_running];
999 		data->u.runstate.time_runnable =
1000 			vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
1001 		data->u.runstate.time_blocked =
1002 			vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
1003 		data->u.runstate.time_offline =
1004 			vcpu->arch.xen.runstate_times[RUNSTATE_offline];
1005 		r = 0;
1006 		break;
1007 
1008 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1009 		r = -EINVAL;
1010 		break;
1011 
1012 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1013 		data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
1014 		r = 0;
1015 		break;
1016 
1017 	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1018 		data->u.timer.port = vcpu->arch.xen.timer_virq;
1019 		data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
1020 		data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
1021 		r = 0;
1022 		break;
1023 
1024 	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1025 		data->u.vector = vcpu->arch.xen.upcall_vector;
1026 		r = 0;
1027 		break;
1028 
1029 	default:
1030 		break;
1031 	}
1032 
1033 	mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1034 	return r;
1035 }
1036 
1037 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
1038 {
1039 	struct kvm *kvm = vcpu->kvm;
1040 	u32 page_num = data & ~PAGE_MASK;
1041 	u64 page_addr = data & PAGE_MASK;
1042 	bool lm = is_long_mode(vcpu);
1043 
1044 	/* Latch long_mode for shared_info pages etc. */
1045 	vcpu->kvm->arch.xen.long_mode = lm;
1046 
1047 	/*
1048 	 * If Xen hypercall intercept is enabled, fill the hypercall
1049 	 * page with VMCALL/VMMCALL instructions since that's what
1050 	 * we catch. Else the VMM has provided the hypercall pages
1051 	 * with instructions of its own choosing, so use those.
1052 	 */
1053 	if (kvm_xen_hypercall_enabled(kvm)) {
1054 		u8 instructions[32];
1055 		int i;
1056 
1057 		if (page_num)
1058 			return 1;
1059 
1060 		/* mov imm32, %eax */
1061 		instructions[0] = 0xb8;
1062 
1063 		/* vmcall / vmmcall */
1064 		static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
1065 
1066 		/* ret */
1067 		instructions[8] = 0xc3;
1068 
1069 		/* int3 to pad */
1070 		memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
1071 
1072 		for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
1073 			*(u32 *)&instructions[1] = i;
1074 			if (kvm_vcpu_write_guest(vcpu,
1075 						 page_addr + (i * sizeof(instructions)),
1076 						 instructions, sizeof(instructions)))
1077 				return 1;
1078 		}
1079 	} else {
1080 		/*
1081 		 * Note, truncation is a non-issue as 'lm' is guaranteed to be
1082 		 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
1083 		 */
1084 		hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
1085 				     : kvm->arch.xen_hvm_config.blob_addr_32;
1086 		u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1087 				  : kvm->arch.xen_hvm_config.blob_size_32;
1088 		u8 *page;
1089 		int ret;
1090 
1091 		if (page_num >= blob_size)
1092 			return 1;
1093 
1094 		blob_addr += page_num * PAGE_SIZE;
1095 
1096 		page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
1097 		if (IS_ERR(page))
1098 			return PTR_ERR(page);
1099 
1100 		ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE);
1101 		kfree(page);
1102 		if (ret)
1103 			return 1;
1104 	}
1105 	return 0;
1106 }
1107 
1108 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
1109 {
1110 	/* Only some feature flags need to be *enabled* by userspace */
1111 	u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
1112 		KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
1113 
1114 	if (xhc->flags & ~permitted_flags)
1115 		return -EINVAL;
1116 
1117 	/*
1118 	 * With hypercall interception the kernel generates its own
1119 	 * hypercall page so it must not be provided.
1120 	 */
1121 	if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
1122 	    (xhc->blob_addr_32 || xhc->blob_addr_64 ||
1123 	     xhc->blob_size_32 || xhc->blob_size_64))
1124 		return -EINVAL;
1125 
1126 	mutex_lock(&kvm->arch.xen.xen_lock);
1127 
1128 	if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
1129 		static_branch_inc(&kvm_xen_enabled.key);
1130 	else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
1131 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
1132 
1133 	memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
1134 
1135 	mutex_unlock(&kvm->arch.xen.xen_lock);
1136 	return 0;
1137 }
1138 
1139 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1140 {
1141 	kvm_rax_write(vcpu, result);
1142 	return kvm_skip_emulated_instruction(vcpu);
1143 }
1144 
1145 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1146 {
1147 	struct kvm_run *run = vcpu->run;
1148 
1149 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
1150 		return 1;
1151 
1152 	return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
1153 }
1154 
1155 static inline int max_evtchn_port(struct kvm *kvm)
1156 {
1157 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1158 		return EVTCHN_2L_NR_CHANNELS;
1159 	else
1160 		return COMPAT_EVTCHN_2L_NR_CHANNELS;
1161 }
1162 
1163 static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
1164 			       evtchn_port_t *ports)
1165 {
1166 	struct kvm *kvm = vcpu->kvm;
1167 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1168 	unsigned long *pending_bits;
1169 	unsigned long flags;
1170 	bool ret = true;
1171 	int idx, i;
1172 
1173 	idx = srcu_read_lock(&kvm->srcu);
1174 	read_lock_irqsave(&gpc->lock, flags);
1175 	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1176 		goto out_rcu;
1177 
1178 	ret = false;
1179 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1180 		struct shared_info *shinfo = gpc->khva;
1181 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1182 	} else {
1183 		struct compat_shared_info *shinfo = gpc->khva;
1184 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1185 	}
1186 
1187 	for (i = 0; i < nr_ports; i++) {
1188 		if (test_bit(ports[i], pending_bits)) {
1189 			ret = true;
1190 			break;
1191 		}
1192 	}
1193 
1194  out_rcu:
1195 	read_unlock_irqrestore(&gpc->lock, flags);
1196 	srcu_read_unlock(&kvm->srcu, idx);
1197 
1198 	return ret;
1199 }
1200 
1201 static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
1202 				 u64 param, u64 *r)
1203 {
1204 	struct sched_poll sched_poll;
1205 	evtchn_port_t port, *ports;
1206 	struct x86_exception e;
1207 	int i;
1208 
1209 	if (!lapic_in_kernel(vcpu) ||
1210 	    !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1211 		return false;
1212 
1213 	if (IS_ENABLED(CONFIG_64BIT) && !longmode) {
1214 		struct compat_sched_poll sp32;
1215 
1216 		/* Sanity check that the compat struct definition is correct */
1217 		BUILD_BUG_ON(sizeof(sp32) != 16);
1218 
1219 		if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) {
1220 			*r = -EFAULT;
1221 			return true;
1222 		}
1223 
1224 		/*
1225 		 * This is a 32-bit pointer to an array of evtchn_port_t which
1226 		 * are uint32_t, so once it's converted no further compat
1227 		 * handling is needed.
1228 		 */
1229 		sched_poll.ports = (void *)(unsigned long)(sp32.ports);
1230 		sched_poll.nr_ports = sp32.nr_ports;
1231 		sched_poll.timeout = sp32.timeout;
1232 	} else {
1233 		if (kvm_read_guest_virt(vcpu, param, &sched_poll,
1234 					sizeof(sched_poll), &e)) {
1235 			*r = -EFAULT;
1236 			return true;
1237 		}
1238 	}
1239 
1240 	if (unlikely(sched_poll.nr_ports > 1)) {
1241 		/* Xen (unofficially) limits number of pollers to 128 */
1242 		if (sched_poll.nr_ports > 128) {
1243 			*r = -EINVAL;
1244 			return true;
1245 		}
1246 
1247 		ports = kmalloc_array(sched_poll.nr_ports,
1248 				      sizeof(*ports), GFP_KERNEL);
1249 		if (!ports) {
1250 			*r = -ENOMEM;
1251 			return true;
1252 		}
1253 	} else
1254 		ports = &port;
1255 
1256 	if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports,
1257 				sched_poll.nr_ports * sizeof(*ports), &e)) {
1258 		*r = -EFAULT;
1259 		return true;
1260 	}
1261 
1262 	for (i = 0; i < sched_poll.nr_ports; i++) {
1263 		if (ports[i] >= max_evtchn_port(vcpu->kvm)) {
1264 			*r = -EINVAL;
1265 			goto out;
1266 		}
1267 	}
1268 
1269 	if (sched_poll.nr_ports == 1)
1270 		vcpu->arch.xen.poll_evtchn = port;
1271 	else
1272 		vcpu->arch.xen.poll_evtchn = -1;
1273 
1274 	set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1275 
1276 	if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) {
1277 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
1278 
1279 		if (sched_poll.timeout)
1280 			mod_timer(&vcpu->arch.xen.poll_timer,
1281 				  jiffies + nsecs_to_jiffies(sched_poll.timeout));
1282 
1283 		kvm_vcpu_halt(vcpu);
1284 
1285 		if (sched_poll.timeout)
1286 			del_timer(&vcpu->arch.xen.poll_timer);
1287 
1288 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1289 	}
1290 
1291 	vcpu->arch.xen.poll_evtchn = 0;
1292 	*r = 0;
1293 out:
1294 	/* Really, this is only needed in case of timeout */
1295 	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1296 
1297 	if (unlikely(sched_poll.nr_ports > 1))
1298 		kfree(ports);
1299 	return true;
1300 }
1301 
1302 static void cancel_evtchn_poll(struct timer_list *t)
1303 {
1304 	struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer);
1305 
1306 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1307 	kvm_vcpu_kick(vcpu);
1308 }
1309 
1310 static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1311 				   int cmd, u64 param, u64 *r)
1312 {
1313 	switch (cmd) {
1314 	case SCHEDOP_poll:
1315 		if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1316 			return true;
1317 		fallthrough;
1318 	case SCHEDOP_yield:
1319 		kvm_vcpu_on_spin(vcpu, true);
1320 		*r = 0;
1321 		return true;
1322 	default:
1323 		break;
1324 	}
1325 
1326 	return false;
1327 }
1328 
1329 struct compat_vcpu_set_singleshot_timer {
1330     uint64_t timeout_abs_ns;
1331     uint32_t flags;
1332 } __attribute__((packed));
1333 
1334 static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1335 				  int vcpu_id, u64 param, u64 *r)
1336 {
1337 	struct vcpu_set_singleshot_timer oneshot;
1338 	struct x86_exception e;
1339 	s64 delta;
1340 
1341 	if (!kvm_xen_timer_enabled(vcpu))
1342 		return false;
1343 
1344 	switch (cmd) {
1345 	case VCPUOP_set_singleshot_timer:
1346 		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1347 			*r = -EINVAL;
1348 			return true;
1349 		}
1350 
1351 		/*
1352 		 * The only difference for 32-bit compat is the 4 bytes of
1353 		 * padding after the interesting part of the structure. So
1354 		 * for a faithful emulation of Xen we have to *try* to copy
1355 		 * the padding and return -EFAULT if we can't. Otherwise we
1356 		 * might as well just have copied the 12-byte 32-bit struct.
1357 		 */
1358 		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1359 			     offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1360 		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1361 			     sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1362 		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1363 			     offsetof(struct vcpu_set_singleshot_timer, flags));
1364 		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1365 			     sizeof_field(struct vcpu_set_singleshot_timer, flags));
1366 
1367 		if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) :
1368 					sizeof(struct compat_vcpu_set_singleshot_timer), &e)) {
1369 			*r = -EFAULT;
1370 			return true;
1371 		}
1372 
1373 		delta = oneshot.timeout_abs_ns - get_kvmclock_ns(vcpu->kvm);
1374 		if ((oneshot.flags & VCPU_SSHOTTMR_future) && delta < 0) {
1375 			*r = -ETIME;
1376 			return true;
1377 		}
1378 
1379 		kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, delta);
1380 		*r = 0;
1381 		return true;
1382 
1383 	case VCPUOP_stop_singleshot_timer:
1384 		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1385 			*r = -EINVAL;
1386 			return true;
1387 		}
1388 		kvm_xen_stop_timer(vcpu);
1389 		*r = 0;
1390 		return true;
1391 	}
1392 
1393 	return false;
1394 }
1395 
1396 static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1397 				       u64 *r)
1398 {
1399 	if (!kvm_xen_timer_enabled(vcpu))
1400 		return false;
1401 
1402 	if (timeout) {
1403 		uint64_t guest_now = get_kvmclock_ns(vcpu->kvm);
1404 		int64_t delta = timeout - guest_now;
1405 
1406 		/* Xen has a 'Linux workaround' in do_set_timer_op() which
1407 		 * checks for negative absolute timeout values (caused by
1408 		 * integer overflow), and for values about 13 days in the
1409 		 * future (2^50ns) which would be caused by jiffies
1410 		 * overflow. For those cases, it sets the timeout 100ms in
1411 		 * the future (not *too* soon, since if a guest really did
1412 		 * set a long timeout on purpose we don't want to keep
1413 		 * churning CPU time by waking it up).
1414 		 */
1415 		if (unlikely((int64_t)timeout < 0 ||
1416 			     (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
1417 			delta = 100 * NSEC_PER_MSEC;
1418 			timeout = guest_now + delta;
1419 		}
1420 
1421 		kvm_xen_start_timer(vcpu, timeout, delta);
1422 	} else {
1423 		kvm_xen_stop_timer(vcpu);
1424 	}
1425 
1426 	*r = 0;
1427 	return true;
1428 }
1429 
1430 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1431 {
1432 	bool longmode;
1433 	u64 input, params[6], r = -ENOSYS;
1434 	bool handled = false;
1435 	u8 cpl;
1436 
1437 	input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
1438 
1439 	/* Hyper-V hypercalls get bit 31 set in EAX */
1440 	if ((input & 0x80000000) &&
1441 	    kvm_hv_hypercall_enabled(vcpu))
1442 		return kvm_hv_hypercall(vcpu);
1443 
1444 	longmode = is_64_bit_hypercall(vcpu);
1445 	if (!longmode) {
1446 		params[0] = (u32)kvm_rbx_read(vcpu);
1447 		params[1] = (u32)kvm_rcx_read(vcpu);
1448 		params[2] = (u32)kvm_rdx_read(vcpu);
1449 		params[3] = (u32)kvm_rsi_read(vcpu);
1450 		params[4] = (u32)kvm_rdi_read(vcpu);
1451 		params[5] = (u32)kvm_rbp_read(vcpu);
1452 	}
1453 #ifdef CONFIG_X86_64
1454 	else {
1455 		params[0] = (u64)kvm_rdi_read(vcpu);
1456 		params[1] = (u64)kvm_rsi_read(vcpu);
1457 		params[2] = (u64)kvm_rdx_read(vcpu);
1458 		params[3] = (u64)kvm_r10_read(vcpu);
1459 		params[4] = (u64)kvm_r8_read(vcpu);
1460 		params[5] = (u64)kvm_r9_read(vcpu);
1461 	}
1462 #endif
1463 	cpl = static_call(kvm_x86_get_cpl)(vcpu);
1464 	trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2],
1465 				params[3], params[4], params[5]);
1466 
1467 	/*
1468 	 * Only allow hypercall acceleration for CPL0. The rare hypercalls that
1469 	 * are permitted in guest userspace can be handled by the VMM.
1470 	 */
1471 	if (unlikely(cpl > 0))
1472 		goto handle_in_userspace;
1473 
1474 	switch (input) {
1475 	case __HYPERVISOR_xen_version:
1476 		if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1477 			r = vcpu->kvm->arch.xen.xen_version;
1478 			handled = true;
1479 		}
1480 		break;
1481 	case __HYPERVISOR_event_channel_op:
1482 		if (params[0] == EVTCHNOP_send)
1483 			handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r);
1484 		break;
1485 	case __HYPERVISOR_sched_op:
1486 		handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0],
1487 						 params[1], &r);
1488 		break;
1489 	case __HYPERVISOR_vcpu_op:
1490 		handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1],
1491 						params[2], &r);
1492 		break;
1493 	case __HYPERVISOR_set_timer_op: {
1494 		u64 timeout = params[0];
1495 		/* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1496 		if (!longmode)
1497 			timeout |= params[1] << 32;
1498 		handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r);
1499 		break;
1500 	}
1501 	default:
1502 		break;
1503 	}
1504 
1505 	if (handled)
1506 		return kvm_xen_hypercall_set_result(vcpu, r);
1507 
1508 handle_in_userspace:
1509 	vcpu->run->exit_reason = KVM_EXIT_XEN;
1510 	vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1511 	vcpu->run->xen.u.hcall.longmode = longmode;
1512 	vcpu->run->xen.u.hcall.cpl = cpl;
1513 	vcpu->run->xen.u.hcall.input = input;
1514 	vcpu->run->xen.u.hcall.params[0] = params[0];
1515 	vcpu->run->xen.u.hcall.params[1] = params[1];
1516 	vcpu->run->xen.u.hcall.params[2] = params[2];
1517 	vcpu->run->xen.u.hcall.params[3] = params[3];
1518 	vcpu->run->xen.u.hcall.params[4] = params[4];
1519 	vcpu->run->xen.u.hcall.params[5] = params[5];
1520 	vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1521 	vcpu->arch.complete_userspace_io =
1522 		kvm_xen_hypercall_complete_userspace;
1523 
1524 	return 0;
1525 }
1526 
1527 static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1528 {
1529 	int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1530 
1531 	if ((poll_evtchn == port || poll_evtchn == -1) &&
1532 	    test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) {
1533 		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1534 		kvm_vcpu_kick(vcpu);
1535 	}
1536 }
1537 
1538 /*
1539  * The return value from this function is propagated to kvm_set_irq() API,
1540  * so it returns:
1541  *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
1542  *  = 0   Interrupt was coalesced (previous irq is still pending)
1543  *  > 0   Number of CPUs interrupt was delivered to
1544  *
1545  * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1546  * only check on its return value is a comparison with -EWOULDBLOCK'.
1547  */
1548 int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1549 {
1550 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1551 	struct kvm_vcpu *vcpu;
1552 	unsigned long *pending_bits, *mask_bits;
1553 	unsigned long flags;
1554 	int port_word_bit;
1555 	bool kick_vcpu = false;
1556 	int vcpu_idx, idx, rc;
1557 
1558 	vcpu_idx = READ_ONCE(xe->vcpu_idx);
1559 	if (vcpu_idx >= 0)
1560 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1561 	else {
1562 		vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id);
1563 		if (!vcpu)
1564 			return -EINVAL;
1565 		WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1566 	}
1567 
1568 	if (!vcpu->arch.xen.vcpu_info_cache.active)
1569 		return -EINVAL;
1570 
1571 	if (xe->port >= max_evtchn_port(kvm))
1572 		return -EINVAL;
1573 
1574 	rc = -EWOULDBLOCK;
1575 
1576 	idx = srcu_read_lock(&kvm->srcu);
1577 
1578 	read_lock_irqsave(&gpc->lock, flags);
1579 	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1580 		goto out_rcu;
1581 
1582 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1583 		struct shared_info *shinfo = gpc->khva;
1584 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1585 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1586 		port_word_bit = xe->port / 64;
1587 	} else {
1588 		struct compat_shared_info *shinfo = gpc->khva;
1589 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1590 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1591 		port_word_bit = xe->port / 32;
1592 	}
1593 
1594 	/*
1595 	 * If this port wasn't already set, and if it isn't masked, then
1596 	 * we try to set the corresponding bit in the in-kernel shadow of
1597 	 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1598 	 * already set, then we kick the vCPU in question to write to the
1599 	 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1600 	 */
1601 	if (test_and_set_bit(xe->port, pending_bits)) {
1602 		rc = 0; /* It was already raised */
1603 	} else if (test_bit(xe->port, mask_bits)) {
1604 		rc = -ENOTCONN; /* Masked */
1605 		kvm_xen_check_poller(vcpu, xe->port);
1606 	} else {
1607 		rc = 1; /* Delivered to the bitmap in shared_info. */
1608 		/* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1609 		read_unlock_irqrestore(&gpc->lock, flags);
1610 		gpc = &vcpu->arch.xen.vcpu_info_cache;
1611 
1612 		read_lock_irqsave(&gpc->lock, flags);
1613 		if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
1614 			/*
1615 			 * Could not access the vcpu_info. Set the bit in-kernel
1616 			 * and prod the vCPU to deliver it for itself.
1617 			 */
1618 			if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
1619 				kick_vcpu = true;
1620 			goto out_rcu;
1621 		}
1622 
1623 		if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1624 			struct vcpu_info *vcpu_info = gpc->khva;
1625 			if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
1626 				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1627 				kick_vcpu = true;
1628 			}
1629 		} else {
1630 			struct compat_vcpu_info *vcpu_info = gpc->khva;
1631 			if (!test_and_set_bit(port_word_bit,
1632 					      (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1633 				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1634 				kick_vcpu = true;
1635 			}
1636 		}
1637 
1638 		/* For the per-vCPU lapic vector, deliver it as MSI. */
1639 		if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1640 			kvm_xen_inject_vcpu_vector(vcpu);
1641 			kick_vcpu = false;
1642 		}
1643 	}
1644 
1645  out_rcu:
1646 	read_unlock_irqrestore(&gpc->lock, flags);
1647 	srcu_read_unlock(&kvm->srcu, idx);
1648 
1649 	if (kick_vcpu) {
1650 		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1651 		kvm_vcpu_kick(vcpu);
1652 	}
1653 
1654 	return rc;
1655 }
1656 
1657 static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1658 {
1659 	bool mm_borrowed = false;
1660 	int rc;
1661 
1662 	rc = kvm_xen_set_evtchn_fast(xe, kvm);
1663 	if (rc != -EWOULDBLOCK)
1664 		return rc;
1665 
1666 	if (current->mm != kvm->mm) {
1667 		/*
1668 		 * If not on a thread which already belongs to this KVM,
1669 		 * we'd better be in the irqfd workqueue.
1670 		 */
1671 		if (WARN_ON_ONCE(current->mm))
1672 			return -EINVAL;
1673 
1674 		kthread_use_mm(kvm->mm);
1675 		mm_borrowed = true;
1676 	}
1677 
1678 	mutex_lock(&kvm->arch.xen.xen_lock);
1679 
1680 	/*
1681 	 * It is theoretically possible for the page to be unmapped
1682 	 * and the MMU notifier to invalidate the shared_info before
1683 	 * we even get to use it. In that case, this looks like an
1684 	 * infinite loop. It was tempting to do it via the userspace
1685 	 * HVA instead... but that just *hides* the fact that it's
1686 	 * an infinite loop, because if a fault occurs and it waits
1687 	 * for the page to come back, it can *still* immediately
1688 	 * fault and have to wait again, repeatedly.
1689 	 *
1690 	 * Conversely, the page could also have been reinstated by
1691 	 * another thread before we even obtain the mutex above, so
1692 	 * check again *first* before remapping it.
1693 	 */
1694 	do {
1695 		struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1696 		int idx;
1697 
1698 		rc = kvm_xen_set_evtchn_fast(xe, kvm);
1699 		if (rc != -EWOULDBLOCK)
1700 			break;
1701 
1702 		idx = srcu_read_lock(&kvm->srcu);
1703 		rc = kvm_gpc_refresh(gpc, PAGE_SIZE);
1704 		srcu_read_unlock(&kvm->srcu, idx);
1705 	} while(!rc);
1706 
1707 	mutex_unlock(&kvm->arch.xen.xen_lock);
1708 
1709 	if (mm_borrowed)
1710 		kthread_unuse_mm(kvm->mm);
1711 
1712 	return rc;
1713 }
1714 
1715 /* This is the version called from kvm_set_irq() as the .set function */
1716 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1717 			 int irq_source_id, int level, bool line_status)
1718 {
1719 	if (!level)
1720 		return -EINVAL;
1721 
1722 	return kvm_xen_set_evtchn(&e->xen_evtchn, kvm);
1723 }
1724 
1725 /*
1726  * Set up an event channel interrupt from the KVM IRQ routing table.
1727  * Used for e.g. PIRQ from passed through physical devices.
1728  */
1729 int kvm_xen_setup_evtchn(struct kvm *kvm,
1730 			 struct kvm_kernel_irq_routing_entry *e,
1731 			 const struct kvm_irq_routing_entry *ue)
1732 
1733 {
1734 	struct kvm_vcpu *vcpu;
1735 
1736 	if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1737 		return -EINVAL;
1738 
1739 	/* We only support 2 level event channels for now */
1740 	if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1741 		return -EINVAL;
1742 
1743 	/*
1744 	 * Xen gives us interesting mappings from vCPU index to APIC ID,
1745 	 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1746 	 * to find it. Do that once at setup time, instead of every time.
1747 	 * But beware that on live update / live migration, the routing
1748 	 * table might be reinstated before the vCPU threads have finished
1749 	 * recreating their vCPUs.
1750 	 */
1751 	vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu);
1752 	if (vcpu)
1753 		e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1754 	else
1755 		e->xen_evtchn.vcpu_idx = -1;
1756 
1757 	e->xen_evtchn.port = ue->u.xen_evtchn.port;
1758 	e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1759 	e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1760 	e->set = evtchn_set_fn;
1761 
1762 	return 0;
1763 }
1764 
1765 /*
1766  * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
1767  */
1768 int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
1769 {
1770 	struct kvm_xen_evtchn e;
1771 	int ret;
1772 
1773 	if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
1774 		return -EINVAL;
1775 
1776 	/* We only support 2 level event channels for now */
1777 	if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1778 		return -EINVAL;
1779 
1780 	e.port = uxe->port;
1781 	e.vcpu_id = uxe->vcpu;
1782 	e.vcpu_idx = -1;
1783 	e.priority = uxe->priority;
1784 
1785 	ret = kvm_xen_set_evtchn(&e, kvm);
1786 
1787 	/*
1788 	 * None of that 'return 1 if it actually got delivered' nonsense.
1789 	 * We don't care if it was masked (-ENOTCONN) either.
1790 	 */
1791 	if (ret > 0 || ret == -ENOTCONN)
1792 		ret = 0;
1793 
1794 	return ret;
1795 }
1796 
1797 /*
1798  * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
1799  */
1800 struct evtchnfd {
1801 	u32 send_port;
1802 	u32 type;
1803 	union {
1804 		struct kvm_xen_evtchn port;
1805 		struct {
1806 			u32 port; /* zero */
1807 			struct eventfd_ctx *ctx;
1808 		} eventfd;
1809 	} deliver;
1810 };
1811 
1812 /*
1813  * Update target vCPU or priority for a registered sending channel.
1814  */
1815 static int kvm_xen_eventfd_update(struct kvm *kvm,
1816 				  struct kvm_xen_hvm_attr *data)
1817 {
1818 	u32 port = data->u.evtchn.send_port;
1819 	struct evtchnfd *evtchnfd;
1820 	int ret;
1821 
1822 	/* Protect writes to evtchnfd as well as the idr lookup.  */
1823 	mutex_lock(&kvm->arch.xen.xen_lock);
1824 	evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port);
1825 
1826 	ret = -ENOENT;
1827 	if (!evtchnfd)
1828 		goto out_unlock;
1829 
1830 	/* For an UPDATE, nothing may change except the priority/vcpu */
1831 	ret = -EINVAL;
1832 	if (evtchnfd->type != data->u.evtchn.type)
1833 		goto out_unlock;
1834 
1835 	/*
1836 	 * Port cannot change, and if it's zero that was an eventfd
1837 	 * which can't be changed either.
1838 	 */
1839 	if (!evtchnfd->deliver.port.port ||
1840 	    evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
1841 		goto out_unlock;
1842 
1843 	/* We only support 2 level event channels for now */
1844 	if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1845 		goto out_unlock;
1846 
1847 	evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1848 	if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
1849 		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1850 		evtchnfd->deliver.port.vcpu_idx = -1;
1851 	}
1852 	ret = 0;
1853 out_unlock:
1854 	mutex_unlock(&kvm->arch.xen.xen_lock);
1855 	return ret;
1856 }
1857 
1858 /*
1859  * Configure the target (eventfd or local port delivery) for sending on
1860  * a given event channel.
1861  */
1862 static int kvm_xen_eventfd_assign(struct kvm *kvm,
1863 				  struct kvm_xen_hvm_attr *data)
1864 {
1865 	u32 port = data->u.evtchn.send_port;
1866 	struct eventfd_ctx *eventfd = NULL;
1867 	struct evtchnfd *evtchnfd;
1868 	int ret = -EINVAL;
1869 
1870 	evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL);
1871 	if (!evtchnfd)
1872 		return -ENOMEM;
1873 
1874 	switch(data->u.evtchn.type) {
1875 	case EVTCHNSTAT_ipi:
1876 		/* IPI  must map back to the same port# */
1877 		if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
1878 			goto out_noeventfd; /* -EINVAL */
1879 		break;
1880 
1881 	case EVTCHNSTAT_interdomain:
1882 		if (data->u.evtchn.deliver.port.port) {
1883 			if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
1884 				goto out_noeventfd; /* -EINVAL */
1885 		} else {
1886 			eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd);
1887 			if (IS_ERR(eventfd)) {
1888 				ret = PTR_ERR(eventfd);
1889 				goto out_noeventfd;
1890 			}
1891 		}
1892 		break;
1893 
1894 	case EVTCHNSTAT_virq:
1895 	case EVTCHNSTAT_closed:
1896 	case EVTCHNSTAT_unbound:
1897 	case EVTCHNSTAT_pirq:
1898 	default: /* Unknown event channel type */
1899 		goto out; /* -EINVAL */
1900 	}
1901 
1902 	evtchnfd->send_port = data->u.evtchn.send_port;
1903 	evtchnfd->type = data->u.evtchn.type;
1904 	if (eventfd) {
1905 		evtchnfd->deliver.eventfd.ctx = eventfd;
1906 	} else {
1907 		/* We only support 2 level event channels for now */
1908 		if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1909 			goto out; /* -EINVAL; */
1910 
1911 		evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
1912 		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1913 		evtchnfd->deliver.port.vcpu_idx = -1;
1914 		evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1915 	}
1916 
1917 	mutex_lock(&kvm->arch.xen.xen_lock);
1918 	ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1,
1919 			GFP_KERNEL);
1920 	mutex_unlock(&kvm->arch.xen.xen_lock);
1921 	if (ret >= 0)
1922 		return 0;
1923 
1924 	if (ret == -ENOSPC)
1925 		ret = -EEXIST;
1926 out:
1927 	if (eventfd)
1928 		eventfd_ctx_put(eventfd);
1929 out_noeventfd:
1930 	kfree(evtchnfd);
1931 	return ret;
1932 }
1933 
1934 static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
1935 {
1936 	struct evtchnfd *evtchnfd;
1937 
1938 	mutex_lock(&kvm->arch.xen.xen_lock);
1939 	evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port);
1940 	mutex_unlock(&kvm->arch.xen.xen_lock);
1941 
1942 	if (!evtchnfd)
1943 		return -ENOENT;
1944 
1945 	synchronize_srcu(&kvm->srcu);
1946 	if (!evtchnfd->deliver.port.port)
1947 		eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
1948 	kfree(evtchnfd);
1949 	return 0;
1950 }
1951 
1952 static int kvm_xen_eventfd_reset(struct kvm *kvm)
1953 {
1954 	struct evtchnfd *evtchnfd, **all_evtchnfds;
1955 	int i;
1956 	int n = 0;
1957 
1958 	mutex_lock(&kvm->arch.xen.xen_lock);
1959 
1960 	/*
1961 	 * Because synchronize_srcu() cannot be called inside the
1962 	 * critical section, first collect all the evtchnfd objects
1963 	 * in an array as they are removed from evtchn_ports.
1964 	 */
1965 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i)
1966 		n++;
1967 
1968 	all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL);
1969 	if (!all_evtchnfds) {
1970 		mutex_unlock(&kvm->arch.xen.xen_lock);
1971 		return -ENOMEM;
1972 	}
1973 
1974 	n = 0;
1975 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
1976 		all_evtchnfds[n++] = evtchnfd;
1977 		idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port);
1978 	}
1979 	mutex_unlock(&kvm->arch.xen.xen_lock);
1980 
1981 	synchronize_srcu(&kvm->srcu);
1982 
1983 	while (n--) {
1984 		evtchnfd = all_evtchnfds[n];
1985 		if (!evtchnfd->deliver.port.port)
1986 			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
1987 		kfree(evtchnfd);
1988 	}
1989 	kfree(all_evtchnfds);
1990 
1991 	return 0;
1992 }
1993 
1994 static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
1995 {
1996 	u32 port = data->u.evtchn.send_port;
1997 
1998 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
1999 		return kvm_xen_eventfd_reset(kvm);
2000 
2001 	if (!port || port >= max_evtchn_port(kvm))
2002 		return -EINVAL;
2003 
2004 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
2005 		return kvm_xen_eventfd_deassign(kvm, port);
2006 	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
2007 		return kvm_xen_eventfd_update(kvm, data);
2008 	if (data->u.evtchn.flags)
2009 		return -EINVAL;
2010 
2011 	return kvm_xen_eventfd_assign(kvm, data);
2012 }
2013 
2014 static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
2015 {
2016 	struct evtchnfd *evtchnfd;
2017 	struct evtchn_send send;
2018 	struct x86_exception e;
2019 
2020 	/* Sanity check: this structure is the same for 32-bit and 64-bit */
2021 	BUILD_BUG_ON(sizeof(send) != 4);
2022 	if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) {
2023 		*r = -EFAULT;
2024 		return true;
2025 	}
2026 
2027 	/*
2028 	 * evtchnfd is protected by kvm->srcu; the idr lookup instead
2029 	 * is protected by RCU.
2030 	 */
2031 	rcu_read_lock();
2032 	evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port);
2033 	rcu_read_unlock();
2034 	if (!evtchnfd)
2035 		return false;
2036 
2037 	if (evtchnfd->deliver.port.port) {
2038 		int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm);
2039 		if (ret < 0 && ret != -ENOTCONN)
2040 			return false;
2041 	} else {
2042 		eventfd_signal(evtchnfd->deliver.eventfd.ctx, 1);
2043 	}
2044 
2045 	*r = 0;
2046 	return true;
2047 }
2048 
2049 void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
2050 {
2051 	vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
2052 	vcpu->arch.xen.poll_evtchn = 0;
2053 
2054 	timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
2055 
2056 	kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm, NULL,
2057 		     KVM_HOST_USES_PFN);
2058 	kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm, NULL,
2059 		     KVM_HOST_USES_PFN);
2060 	kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm, NULL,
2061 		     KVM_HOST_USES_PFN);
2062 	kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm, NULL,
2063 		     KVM_HOST_USES_PFN);
2064 }
2065 
2066 void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
2067 {
2068 	if (kvm_xen_timer_enabled(vcpu))
2069 		kvm_xen_stop_timer(vcpu);
2070 
2071 	kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
2072 	kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
2073 	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
2074 	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
2075 
2076 	del_timer_sync(&vcpu->arch.xen.poll_timer);
2077 }
2078 
2079 void kvm_xen_init_vm(struct kvm *kvm)
2080 {
2081 	mutex_init(&kvm->arch.xen.xen_lock);
2082 	idr_init(&kvm->arch.xen.evtchn_ports);
2083 	kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm, NULL, KVM_HOST_USES_PFN);
2084 }
2085 
2086 void kvm_xen_destroy_vm(struct kvm *kvm)
2087 {
2088 	struct evtchnfd *evtchnfd;
2089 	int i;
2090 
2091 	kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
2092 
2093 	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2094 		if (!evtchnfd->deliver.port.port)
2095 			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2096 		kfree(evtchnfd);
2097 	}
2098 	idr_destroy(&kvm->arch.xen.evtchn_ports);
2099 
2100 	if (kvm->arch.xen_hvm_config.msr)
2101 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
2102 }
2103