xref: /openbmc/linux/arch/x86/kvm/xen.c (revision 4a0a1436)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4  * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5  *
6  * KVM Xen emulation
7  */
8 
9 #include "x86.h"
10 #include "xen.h"
11 #include "hyperv.h"
12 
13 #include <linux/kvm_host.h>
14 #include <linux/sched/stat.h>
15 
16 #include <trace/events/kvm.h>
17 #include <xen/interface/xen.h>
18 #include <xen/interface/vcpu.h>
19 #include <xen/interface/event_channel.h>
20 
21 #include "trace.h"
22 
23 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
24 
25 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
26 {
27 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
28 	struct pvclock_wall_clock *wc;
29 	gpa_t gpa = gfn_to_gpa(gfn);
30 	u32 *wc_sec_hi;
31 	u32 wc_version;
32 	u64 wall_nsec;
33 	int ret = 0;
34 	int idx = srcu_read_lock(&kvm->srcu);
35 
36 	if (gfn == GPA_INVALID) {
37 		kvm_gfn_to_pfn_cache_destroy(kvm, gpc);
38 		goto out;
39 	}
40 
41 	do {
42 		ret = kvm_gfn_to_pfn_cache_init(kvm, gpc, NULL, false, true,
43 						gpa, PAGE_SIZE, false);
44 		if (ret)
45 			goto out;
46 
47 		/*
48 		 * This code mirrors kvm_write_wall_clock() except that it writes
49 		 * directly through the pfn cache and doesn't mark the page dirty.
50 		 */
51 		wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
52 
53 		/* It could be invalid again already, so we need to check */
54 		read_lock_irq(&gpc->lock);
55 
56 		if (gpc->valid)
57 			break;
58 
59 		read_unlock_irq(&gpc->lock);
60 	} while (1);
61 
62 	/* Paranoia checks on the 32-bit struct layout */
63 	BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
64 	BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
65 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
66 
67 #ifdef CONFIG_X86_64
68 	/* Paranoia checks on the 64-bit struct layout */
69 	BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
70 	BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
71 
72 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
73 		struct shared_info *shinfo = gpc->khva;
74 
75 		wc_sec_hi = &shinfo->wc_sec_hi;
76 		wc = &shinfo->wc;
77 	} else
78 #endif
79 	{
80 		struct compat_shared_info *shinfo = gpc->khva;
81 
82 		wc_sec_hi = &shinfo->arch.wc_sec_hi;
83 		wc = &shinfo->wc;
84 	}
85 
86 	/* Increment and ensure an odd value */
87 	wc_version = wc->version = (wc->version + 1) | 1;
88 	smp_wmb();
89 
90 	wc->nsec = do_div(wall_nsec,  1000000000);
91 	wc->sec = (u32)wall_nsec;
92 	*wc_sec_hi = wall_nsec >> 32;
93 	smp_wmb();
94 
95 	wc->version = wc_version + 1;
96 	read_unlock_irq(&gpc->lock);
97 
98 	kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
99 
100 out:
101 	srcu_read_unlock(&kvm->srcu, idx);
102 	return ret;
103 }
104 
105 static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
106 {
107 	struct kvm_vcpu_xen *vx = &v->arch.xen;
108 	u64 now = get_kvmclock_ns(v->kvm);
109 	u64 delta_ns = now - vx->runstate_entry_time;
110 	u64 run_delay = current->sched_info.run_delay;
111 
112 	if (unlikely(!vx->runstate_entry_time))
113 		vx->current_runstate = RUNSTATE_offline;
114 
115 	/*
116 	 * Time waiting for the scheduler isn't "stolen" if the
117 	 * vCPU wasn't running anyway.
118 	 */
119 	if (vx->current_runstate == RUNSTATE_running) {
120 		u64 steal_ns = run_delay - vx->last_steal;
121 
122 		delta_ns -= steal_ns;
123 
124 		vx->runstate_times[RUNSTATE_runnable] += steal_ns;
125 	}
126 	vx->last_steal = run_delay;
127 
128 	vx->runstate_times[vx->current_runstate] += delta_ns;
129 	vx->current_runstate = state;
130 	vx->runstate_entry_time = now;
131 }
132 
133 void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state)
134 {
135 	struct kvm_vcpu_xen *vx = &v->arch.xen;
136 	uint64_t state_entry_time;
137 	unsigned int offset;
138 
139 	kvm_xen_update_runstate(v, state);
140 
141 	if (!vx->runstate_set)
142 		return;
143 
144 	BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
145 
146 	offset = offsetof(struct compat_vcpu_runstate_info, state_entry_time);
147 #ifdef CONFIG_X86_64
148 	/*
149 	 * The only difference is alignment of uint64_t in 32-bit.
150 	 * So the first field 'state' is accessed directly using
151 	 * offsetof() (where its offset happens to be zero), while the
152 	 * remaining fields which are all uint64_t, start at 'offset'
153 	 * which we tweak here by adding 4.
154 	 */
155 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
156 		     offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
157 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
158 		     offsetof(struct compat_vcpu_runstate_info, time) + 4);
159 
160 	if (v->kvm->arch.xen.long_mode)
161 		offset = offsetof(struct vcpu_runstate_info, state_entry_time);
162 #endif
163 	/*
164 	 * First write the updated state_entry_time at the appropriate
165 	 * location determined by 'offset'.
166 	 */
167 	state_entry_time = vx->runstate_entry_time;
168 	state_entry_time |= XEN_RUNSTATE_UPDATE;
169 
170 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
171 		     sizeof(state_entry_time));
172 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
173 		     sizeof(state_entry_time));
174 
175 	if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
176 					  &state_entry_time, offset,
177 					  sizeof(state_entry_time)))
178 		return;
179 	smp_wmb();
180 
181 	/*
182 	 * Next, write the new runstate. This is in the *same* place
183 	 * for 32-bit and 64-bit guests, asserted here for paranoia.
184 	 */
185 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
186 		     offsetof(struct compat_vcpu_runstate_info, state));
187 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
188 		     sizeof(vx->current_runstate));
189 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
190 		     sizeof(vx->current_runstate));
191 
192 	if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
193 					  &vx->current_runstate,
194 					  offsetof(struct vcpu_runstate_info, state),
195 					  sizeof(vx->current_runstate)))
196 		return;
197 
198 	/*
199 	 * Write the actual runstate times immediately after the
200 	 * runstate_entry_time.
201 	 */
202 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
203 		     offsetof(struct vcpu_runstate_info, time) - sizeof(u64));
204 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
205 		     offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64));
206 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
207 		     sizeof_field(struct compat_vcpu_runstate_info, time));
208 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
209 		     sizeof(vx->runstate_times));
210 
211 	if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
212 					  &vx->runstate_times[0],
213 					  offset + sizeof(u64),
214 					  sizeof(vx->runstate_times)))
215 		return;
216 
217 	smp_wmb();
218 
219 	/*
220 	 * Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's
221 	 * runstate_entry_time field.
222 	 */
223 
224 	state_entry_time &= ~XEN_RUNSTATE_UPDATE;
225 	if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache,
226 					  &state_entry_time, offset,
227 					  sizeof(state_entry_time)))
228 		return;
229 }
230 
231 int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
232 {
233 	unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
234 	bool atomic = in_atomic() || !task_is_running(current);
235 	int err;
236 	u8 rc = 0;
237 
238 	/*
239 	 * If the global upcall vector (HVMIRQ_callback_vector) is set and
240 	 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
241 	 */
242 	struct gfn_to_hva_cache *ghc = &v->arch.xen.vcpu_info_cache;
243 	struct kvm_memslots *slots = kvm_memslots(v->kvm);
244 	bool ghc_valid = slots->generation == ghc->generation &&
245 		!kvm_is_error_hva(ghc->hva) && ghc->memslot;
246 
247 	unsigned int offset = offsetof(struct vcpu_info, evtchn_upcall_pending);
248 
249 	/* No need for compat handling here */
250 	BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
251 		     offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
252 	BUILD_BUG_ON(sizeof(rc) !=
253 		     sizeof_field(struct vcpu_info, evtchn_upcall_pending));
254 	BUILD_BUG_ON(sizeof(rc) !=
255 		     sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
256 
257 	/*
258 	 * For efficiency, this mirrors the checks for using the valid
259 	 * cache in kvm_read_guest_offset_cached(), but just uses
260 	 * __get_user() instead. And falls back to the slow path.
261 	 */
262 	if (!evtchn_pending_sel && ghc_valid) {
263 		/* Fast path */
264 		pagefault_disable();
265 		err = __get_user(rc, (u8 __user *)ghc->hva + offset);
266 		pagefault_enable();
267 		if (!err)
268 			return rc;
269 	}
270 
271 	/* Slow path */
272 
273 	/*
274 	 * This function gets called from kvm_vcpu_block() after setting the
275 	 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
276 	 * from a HLT. So we really mustn't sleep. If the page ended up absent
277 	 * at that point, just return 1 in order to trigger an immediate wake,
278 	 * and we'll end up getting called again from a context where we *can*
279 	 * fault in the page and wait for it.
280 	 */
281 	if (atomic)
282 		return 1;
283 
284 	if (!ghc_valid) {
285 		err = kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len);
286 		if (err || !ghc->memslot) {
287 			/*
288 			 * If this failed, userspace has screwed up the
289 			 * vcpu_info mapping. No interrupts for you.
290 			 */
291 			return 0;
292 		}
293 	}
294 
295 	/*
296 	 * Now we have a valid (protected by srcu) userspace HVA in
297 	 * ghc->hva which points to the struct vcpu_info. If there
298 	 * are any bits in the in-kernel evtchn_pending_sel then
299 	 * we need to write those to the guest vcpu_info and set
300 	 * its evtchn_upcall_pending flag. If there aren't any bits
301 	 * to add, we only want to *check* evtchn_upcall_pending.
302 	 */
303 	if (evtchn_pending_sel) {
304 		bool long_mode = v->kvm->arch.xen.long_mode;
305 
306 		if (!user_access_begin((void __user *)ghc->hva, sizeof(struct vcpu_info)))
307 			return 0;
308 
309 		if (IS_ENABLED(CONFIG_64BIT) && long_mode) {
310 			struct vcpu_info __user *vi = (void __user *)ghc->hva;
311 
312 			/* Attempt to set the evtchn_pending_sel bits in the
313 			 * guest, and if that succeeds then clear the same
314 			 * bits in the in-kernel version. */
315 			asm volatile("1:\t" LOCK_PREFIX "orq %0, %1\n"
316 				     "\tnotq %0\n"
317 				     "\t" LOCK_PREFIX "andq %0, %2\n"
318 				     "2:\n"
319 				     _ASM_EXTABLE_UA(1b, 2b)
320 				     : "=r" (evtchn_pending_sel),
321 				       "+m" (vi->evtchn_pending_sel),
322 				       "+m" (v->arch.xen.evtchn_pending_sel)
323 				     : "0" (evtchn_pending_sel));
324 		} else {
325 			struct compat_vcpu_info __user *vi = (void __user *)ghc->hva;
326 			u32 evtchn_pending_sel32 = evtchn_pending_sel;
327 
328 			/* Attempt to set the evtchn_pending_sel bits in the
329 			 * guest, and if that succeeds then clear the same
330 			 * bits in the in-kernel version. */
331 			asm volatile("1:\t" LOCK_PREFIX "orl %0, %1\n"
332 				     "\tnotl %0\n"
333 				     "\t" LOCK_PREFIX "andl %0, %2\n"
334 				     "2:\n"
335 				     _ASM_EXTABLE_UA(1b, 2b)
336 				     : "=r" (evtchn_pending_sel32),
337 				       "+m" (vi->evtchn_pending_sel),
338 				       "+m" (v->arch.xen.evtchn_pending_sel)
339 				     : "0" (evtchn_pending_sel32));
340 		}
341 		rc = 1;
342 		unsafe_put_user(rc, (u8 __user *)ghc->hva + offset, err);
343 
344 	err:
345 		user_access_end();
346 
347 		mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
348 	} else {
349 		__get_user(rc, (u8 __user *)ghc->hva + offset);
350 	}
351 
352 	return rc;
353 }
354 
355 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
356 {
357 	int r = -ENOENT;
358 
359 	mutex_lock(&kvm->lock);
360 
361 	switch (data->type) {
362 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
363 		if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
364 			r = -EINVAL;
365 		} else {
366 			kvm->arch.xen.long_mode = !!data->u.long_mode;
367 			r = 0;
368 		}
369 		break;
370 
371 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
372 		r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
373 		break;
374 
375 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
376 		if (data->u.vector && data->u.vector < 0x10)
377 			r = -EINVAL;
378 		else {
379 			kvm->arch.xen.upcall_vector = data->u.vector;
380 			r = 0;
381 		}
382 		break;
383 
384 	default:
385 		break;
386 	}
387 
388 	mutex_unlock(&kvm->lock);
389 	return r;
390 }
391 
392 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
393 {
394 	int r = -ENOENT;
395 
396 	mutex_lock(&kvm->lock);
397 
398 	switch (data->type) {
399 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
400 		data->u.long_mode = kvm->arch.xen.long_mode;
401 		r = 0;
402 		break;
403 
404 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
405 		if (kvm->arch.xen.shinfo_cache.active)
406 			data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
407 		else
408 			data->u.shared_info.gfn = GPA_INVALID;
409 		r = 0;
410 		break;
411 
412 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
413 		data->u.vector = kvm->arch.xen.upcall_vector;
414 		r = 0;
415 		break;
416 
417 	default:
418 		break;
419 	}
420 
421 	mutex_unlock(&kvm->lock);
422 	return r;
423 }
424 
425 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
426 {
427 	int idx, r = -ENOENT;
428 
429 	mutex_lock(&vcpu->kvm->lock);
430 	idx = srcu_read_lock(&vcpu->kvm->srcu);
431 
432 	switch (data->type) {
433 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
434 		/* No compat necessary here. */
435 		BUILD_BUG_ON(sizeof(struct vcpu_info) !=
436 			     sizeof(struct compat_vcpu_info));
437 		BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
438 			     offsetof(struct compat_vcpu_info, time));
439 
440 		if (data->u.gpa == GPA_INVALID) {
441 			vcpu->arch.xen.vcpu_info_set = false;
442 			r = 0;
443 			break;
444 		}
445 
446 		r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
447 					      &vcpu->arch.xen.vcpu_info_cache,
448 					      data->u.gpa,
449 					      sizeof(struct vcpu_info));
450 		if (!r) {
451 			vcpu->arch.xen.vcpu_info_set = true;
452 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
453 		}
454 		break;
455 
456 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
457 		if (data->u.gpa == GPA_INVALID) {
458 			vcpu->arch.xen.vcpu_time_info_set = false;
459 			r = 0;
460 			break;
461 		}
462 
463 		r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
464 					      &vcpu->arch.xen.vcpu_time_info_cache,
465 					      data->u.gpa,
466 					      sizeof(struct pvclock_vcpu_time_info));
467 		if (!r) {
468 			vcpu->arch.xen.vcpu_time_info_set = true;
469 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
470 		}
471 		break;
472 
473 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
474 		if (!sched_info_on()) {
475 			r = -EOPNOTSUPP;
476 			break;
477 		}
478 		if (data->u.gpa == GPA_INVALID) {
479 			vcpu->arch.xen.runstate_set = false;
480 			r = 0;
481 			break;
482 		}
483 
484 		r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
485 					      &vcpu->arch.xen.runstate_cache,
486 					      data->u.gpa,
487 					      sizeof(struct vcpu_runstate_info));
488 		if (!r) {
489 			vcpu->arch.xen.runstate_set = true;
490 		}
491 		break;
492 
493 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
494 		if (!sched_info_on()) {
495 			r = -EOPNOTSUPP;
496 			break;
497 		}
498 		if (data->u.runstate.state > RUNSTATE_offline) {
499 			r = -EINVAL;
500 			break;
501 		}
502 
503 		kvm_xen_update_runstate(vcpu, data->u.runstate.state);
504 		r = 0;
505 		break;
506 
507 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
508 		if (!sched_info_on()) {
509 			r = -EOPNOTSUPP;
510 			break;
511 		}
512 		if (data->u.runstate.state > RUNSTATE_offline) {
513 			r = -EINVAL;
514 			break;
515 		}
516 		if (data->u.runstate.state_entry_time !=
517 		    (data->u.runstate.time_running +
518 		     data->u.runstate.time_runnable +
519 		     data->u.runstate.time_blocked +
520 		     data->u.runstate.time_offline)) {
521 			r = -EINVAL;
522 			break;
523 		}
524 		if (get_kvmclock_ns(vcpu->kvm) <
525 		    data->u.runstate.state_entry_time) {
526 			r = -EINVAL;
527 			break;
528 		}
529 
530 		vcpu->arch.xen.current_runstate = data->u.runstate.state;
531 		vcpu->arch.xen.runstate_entry_time =
532 			data->u.runstate.state_entry_time;
533 		vcpu->arch.xen.runstate_times[RUNSTATE_running] =
534 			data->u.runstate.time_running;
535 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
536 			data->u.runstate.time_runnable;
537 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
538 			data->u.runstate.time_blocked;
539 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
540 			data->u.runstate.time_offline;
541 		vcpu->arch.xen.last_steal = current->sched_info.run_delay;
542 		r = 0;
543 		break;
544 
545 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
546 		if (!sched_info_on()) {
547 			r = -EOPNOTSUPP;
548 			break;
549 		}
550 		if (data->u.runstate.state > RUNSTATE_offline &&
551 		    data->u.runstate.state != (u64)-1) {
552 			r = -EINVAL;
553 			break;
554 		}
555 		/* The adjustment must add up */
556 		if (data->u.runstate.state_entry_time !=
557 		    (data->u.runstate.time_running +
558 		     data->u.runstate.time_runnable +
559 		     data->u.runstate.time_blocked +
560 		     data->u.runstate.time_offline)) {
561 			r = -EINVAL;
562 			break;
563 		}
564 
565 		if (get_kvmclock_ns(vcpu->kvm) <
566 		    (vcpu->arch.xen.runstate_entry_time +
567 		     data->u.runstate.state_entry_time)) {
568 			r = -EINVAL;
569 			break;
570 		}
571 
572 		vcpu->arch.xen.runstate_entry_time +=
573 			data->u.runstate.state_entry_time;
574 		vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
575 			data->u.runstate.time_running;
576 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
577 			data->u.runstate.time_runnable;
578 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
579 			data->u.runstate.time_blocked;
580 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
581 			data->u.runstate.time_offline;
582 
583 		if (data->u.runstate.state <= RUNSTATE_offline)
584 			kvm_xen_update_runstate(vcpu, data->u.runstate.state);
585 		r = 0;
586 		break;
587 
588 	default:
589 		break;
590 	}
591 
592 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
593 	mutex_unlock(&vcpu->kvm->lock);
594 	return r;
595 }
596 
597 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
598 {
599 	int r = -ENOENT;
600 
601 	mutex_lock(&vcpu->kvm->lock);
602 
603 	switch (data->type) {
604 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
605 		if (vcpu->arch.xen.vcpu_info_set)
606 			data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
607 		else
608 			data->u.gpa = GPA_INVALID;
609 		r = 0;
610 		break;
611 
612 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
613 		if (vcpu->arch.xen.vcpu_time_info_set)
614 			data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
615 		else
616 			data->u.gpa = GPA_INVALID;
617 		r = 0;
618 		break;
619 
620 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
621 		if (!sched_info_on()) {
622 			r = -EOPNOTSUPP;
623 			break;
624 		}
625 		if (vcpu->arch.xen.runstate_set) {
626 			data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
627 			r = 0;
628 		}
629 		break;
630 
631 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
632 		if (!sched_info_on()) {
633 			r = -EOPNOTSUPP;
634 			break;
635 		}
636 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
637 		r = 0;
638 		break;
639 
640 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
641 		if (!sched_info_on()) {
642 			r = -EOPNOTSUPP;
643 			break;
644 		}
645 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
646 		data->u.runstate.state_entry_time =
647 			vcpu->arch.xen.runstate_entry_time;
648 		data->u.runstate.time_running =
649 			vcpu->arch.xen.runstate_times[RUNSTATE_running];
650 		data->u.runstate.time_runnable =
651 			vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
652 		data->u.runstate.time_blocked =
653 			vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
654 		data->u.runstate.time_offline =
655 			vcpu->arch.xen.runstate_times[RUNSTATE_offline];
656 		r = 0;
657 		break;
658 
659 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
660 		r = -EINVAL;
661 		break;
662 
663 	default:
664 		break;
665 	}
666 
667 	mutex_unlock(&vcpu->kvm->lock);
668 	return r;
669 }
670 
671 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
672 {
673 	struct kvm *kvm = vcpu->kvm;
674 	u32 page_num = data & ~PAGE_MASK;
675 	u64 page_addr = data & PAGE_MASK;
676 	bool lm = is_long_mode(vcpu);
677 
678 	/* Latch long_mode for shared_info pages etc. */
679 	vcpu->kvm->arch.xen.long_mode = lm;
680 
681 	/*
682 	 * If Xen hypercall intercept is enabled, fill the hypercall
683 	 * page with VMCALL/VMMCALL instructions since that's what
684 	 * we catch. Else the VMM has provided the hypercall pages
685 	 * with instructions of its own choosing, so use those.
686 	 */
687 	if (kvm_xen_hypercall_enabled(kvm)) {
688 		u8 instructions[32];
689 		int i;
690 
691 		if (page_num)
692 			return 1;
693 
694 		/* mov imm32, %eax */
695 		instructions[0] = 0xb8;
696 
697 		/* vmcall / vmmcall */
698 		kvm_x86_ops.patch_hypercall(vcpu, instructions + 5);
699 
700 		/* ret */
701 		instructions[8] = 0xc3;
702 
703 		/* int3 to pad */
704 		memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
705 
706 		for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
707 			*(u32 *)&instructions[1] = i;
708 			if (kvm_vcpu_write_guest(vcpu,
709 						 page_addr + (i * sizeof(instructions)),
710 						 instructions, sizeof(instructions)))
711 				return 1;
712 		}
713 	} else {
714 		/*
715 		 * Note, truncation is a non-issue as 'lm' is guaranteed to be
716 		 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
717 		 */
718 		hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
719 				     : kvm->arch.xen_hvm_config.blob_addr_32;
720 		u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
721 				  : kvm->arch.xen_hvm_config.blob_size_32;
722 		u8 *page;
723 
724 		if (page_num >= blob_size)
725 			return 1;
726 
727 		blob_addr += page_num * PAGE_SIZE;
728 
729 		page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
730 		if (IS_ERR(page))
731 			return PTR_ERR(page);
732 
733 		if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
734 			kfree(page);
735 			return 1;
736 		}
737 	}
738 	return 0;
739 }
740 
741 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
742 {
743 	if (xhc->flags & ~KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL)
744 		return -EINVAL;
745 
746 	/*
747 	 * With hypercall interception the kernel generates its own
748 	 * hypercall page so it must not be provided.
749 	 */
750 	if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
751 	    (xhc->blob_addr_32 || xhc->blob_addr_64 ||
752 	     xhc->blob_size_32 || xhc->blob_size_64))
753 		return -EINVAL;
754 
755 	mutex_lock(&kvm->lock);
756 
757 	if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
758 		static_branch_inc(&kvm_xen_enabled.key);
759 	else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
760 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
761 
762 	memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
763 
764 	mutex_unlock(&kvm->lock);
765 	return 0;
766 }
767 
768 void kvm_xen_init_vm(struct kvm *kvm)
769 {
770 }
771 
772 void kvm_xen_destroy_vm(struct kvm *kvm)
773 {
774 	kvm_gfn_to_pfn_cache_destroy(kvm, &kvm->arch.xen.shinfo_cache);
775 
776 	if (kvm->arch.xen_hvm_config.msr)
777 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
778 }
779 
780 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
781 {
782 	kvm_rax_write(vcpu, result);
783 	return kvm_skip_emulated_instruction(vcpu);
784 }
785 
786 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
787 {
788 	struct kvm_run *run = vcpu->run;
789 
790 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
791 		return 1;
792 
793 	return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
794 }
795 
796 int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
797 {
798 	bool longmode;
799 	u64 input, params[6];
800 
801 	input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
802 
803 	/* Hyper-V hypercalls get bit 31 set in EAX */
804 	if ((input & 0x80000000) &&
805 	    kvm_hv_hypercall_enabled(vcpu))
806 		return kvm_hv_hypercall(vcpu);
807 
808 	longmode = is_64_bit_hypercall(vcpu);
809 	if (!longmode) {
810 		params[0] = (u32)kvm_rbx_read(vcpu);
811 		params[1] = (u32)kvm_rcx_read(vcpu);
812 		params[2] = (u32)kvm_rdx_read(vcpu);
813 		params[3] = (u32)kvm_rsi_read(vcpu);
814 		params[4] = (u32)kvm_rdi_read(vcpu);
815 		params[5] = (u32)kvm_rbp_read(vcpu);
816 	}
817 #ifdef CONFIG_X86_64
818 	else {
819 		params[0] = (u64)kvm_rdi_read(vcpu);
820 		params[1] = (u64)kvm_rsi_read(vcpu);
821 		params[2] = (u64)kvm_rdx_read(vcpu);
822 		params[3] = (u64)kvm_r10_read(vcpu);
823 		params[4] = (u64)kvm_r8_read(vcpu);
824 		params[5] = (u64)kvm_r9_read(vcpu);
825 	}
826 #endif
827 	trace_kvm_xen_hypercall(input, params[0], params[1], params[2],
828 				params[3], params[4], params[5]);
829 
830 	vcpu->run->exit_reason = KVM_EXIT_XEN;
831 	vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
832 	vcpu->run->xen.u.hcall.longmode = longmode;
833 	vcpu->run->xen.u.hcall.cpl = kvm_x86_ops.get_cpl(vcpu);
834 	vcpu->run->xen.u.hcall.input = input;
835 	vcpu->run->xen.u.hcall.params[0] = params[0];
836 	vcpu->run->xen.u.hcall.params[1] = params[1];
837 	vcpu->run->xen.u.hcall.params[2] = params[2];
838 	vcpu->run->xen.u.hcall.params[3] = params[3];
839 	vcpu->run->xen.u.hcall.params[4] = params[4];
840 	vcpu->run->xen.u.hcall.params[5] = params[5];
841 	vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
842 	vcpu->arch.complete_userspace_io =
843 		kvm_xen_hypercall_complete_userspace;
844 
845 	return 0;
846 }
847 
848 static inline int max_evtchn_port(struct kvm *kvm)
849 {
850 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
851 		return EVTCHN_2L_NR_CHANNELS;
852 	else
853 		return COMPAT_EVTCHN_2L_NR_CHANNELS;
854 }
855 
856 /*
857  * This follows the kvm_set_irq() API, so it returns:
858  *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
859  *  = 0   Interrupt was coalesced (previous irq is still pending)
860  *  > 0   Number of CPUs interrupt was delivered to
861  */
862 int kvm_xen_set_evtchn_fast(struct kvm_kernel_irq_routing_entry *e,
863 			    struct kvm *kvm)
864 {
865 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
866 	struct kvm_vcpu *vcpu;
867 	unsigned long *pending_bits, *mask_bits;
868 	unsigned long flags;
869 	int port_word_bit;
870 	bool kick_vcpu = false;
871 	int idx;
872 	int rc;
873 
874 	vcpu = kvm_get_vcpu_by_id(kvm, e->xen_evtchn.vcpu);
875 	if (!vcpu)
876 		return -1;
877 
878 	if (!vcpu->arch.xen.vcpu_info_set)
879 		return -1;
880 
881 	if (e->xen_evtchn.port >= max_evtchn_port(kvm))
882 		return -1;
883 
884 	rc = -EWOULDBLOCK;
885 	read_lock_irqsave(&gpc->lock, flags);
886 
887 	idx = srcu_read_lock(&kvm->srcu);
888 	if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE))
889 		goto out_rcu;
890 
891 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
892 		struct shared_info *shinfo = gpc->khva;
893 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
894 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
895 		port_word_bit = e->xen_evtchn.port / 64;
896 	} else {
897 		struct compat_shared_info *shinfo = gpc->khva;
898 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
899 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
900 		port_word_bit = e->xen_evtchn.port / 32;
901 	}
902 
903 	/*
904 	 * If this port wasn't already set, and if it isn't masked, then
905 	 * we try to set the corresponding bit in the in-kernel shadow of
906 	 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
907 	 * already set, then we kick the vCPU in question to write to the
908 	 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
909 	 */
910 	if (test_and_set_bit(e->xen_evtchn.port, pending_bits)) {
911 		rc = 0; /* It was already raised */
912 	} else if (test_bit(e->xen_evtchn.port, mask_bits)) {
913 		rc = -1; /* Masked */
914 	} else {
915 		rc = 1; /* Delivered. But was the vCPU waking already? */
916 		if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
917 			kick_vcpu = true;
918 	}
919 
920  out_rcu:
921 	srcu_read_unlock(&kvm->srcu, idx);
922 	read_unlock_irqrestore(&gpc->lock, flags);
923 
924 	if (kick_vcpu) {
925 		kvm_make_request(KVM_REQ_EVENT, vcpu);
926 		kvm_vcpu_kick(vcpu);
927 	}
928 
929 	return rc;
930 }
931 
932 /* This is the version called from kvm_set_irq() as the .set function */
933 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
934 			 int irq_source_id, int level, bool line_status)
935 {
936 	bool mm_borrowed = false;
937 	int rc;
938 
939 	if (!level)
940 		return -1;
941 
942 	rc = kvm_xen_set_evtchn_fast(e, kvm);
943 	if (rc != -EWOULDBLOCK)
944 		return rc;
945 
946 	if (current->mm != kvm->mm) {
947 		/*
948 		 * If not on a thread which already belongs to this KVM,
949 		 * we'd better be in the irqfd workqueue.
950 		 */
951 		if (WARN_ON_ONCE(current->mm))
952 			return -EINVAL;
953 
954 		kthread_use_mm(kvm->mm);
955 		mm_borrowed = true;
956 	}
957 
958 	/*
959 	 * For the irqfd workqueue, using the main kvm->lock mutex is
960 	 * fine since this function is invoked from kvm_set_irq() with
961 	 * no other lock held, no srcu. In future if it will be called
962 	 * directly from a vCPU thread (e.g. on hypercall for an IPI)
963 	 * then it may need to switch to using a leaf-node mutex for
964 	 * serializing the shared_info mapping.
965 	 */
966 	mutex_lock(&kvm->lock);
967 
968 	/*
969 	 * It is theoretically possible for the page to be unmapped
970 	 * and the MMU notifier to invalidate the shared_info before
971 	 * we even get to use it. In that case, this looks like an
972 	 * infinite loop. It was tempting to do it via the userspace
973 	 * HVA instead... but that just *hides* the fact that it's
974 	 * an infinite loop, because if a fault occurs and it waits
975 	 * for the page to come back, it can *still* immediately
976 	 * fault and have to wait again, repeatedly.
977 	 *
978 	 * Conversely, the page could also have been reinstated by
979 	 * another thread before we even obtain the mutex above, so
980 	 * check again *first* before remapping it.
981 	 */
982 	do {
983 		struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
984 		int idx;
985 
986 		rc = kvm_xen_set_evtchn_fast(e, kvm);
987 		if (rc != -EWOULDBLOCK)
988 			break;
989 
990 		idx = srcu_read_lock(&kvm->srcu);
991 		rc = kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpc->gpa,
992 						  PAGE_SIZE, false);
993 		srcu_read_unlock(&kvm->srcu, idx);
994 	} while(!rc);
995 
996 	mutex_unlock(&kvm->lock);
997 
998 	if (mm_borrowed)
999 		kthread_unuse_mm(kvm->mm);
1000 
1001 	return rc;
1002 }
1003 
1004 int kvm_xen_setup_evtchn(struct kvm *kvm,
1005 			 struct kvm_kernel_irq_routing_entry *e,
1006 			 const struct kvm_irq_routing_entry *ue)
1007 
1008 {
1009 	if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1010 		return -EINVAL;
1011 
1012 	/* We only support 2 level event channels for now */
1013 	if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1014 		return -EINVAL;
1015 
1016 	e->xen_evtchn.port = ue->u.xen_evtchn.port;
1017 	e->xen_evtchn.vcpu = ue->u.xen_evtchn.vcpu;
1018 	e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1019 	e->set = evtchn_set_fn;
1020 
1021 	return 0;
1022 }
1023