1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. 4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. 5 * 6 * KVM Xen emulation 7 */ 8 9 #include "x86.h" 10 #include "xen.h" 11 #include "hyperv.h" 12 13 #include <linux/kvm_host.h> 14 #include <linux/sched/stat.h> 15 16 #include <trace/events/kvm.h> 17 #include <xen/interface/xen.h> 18 #include <xen/interface/vcpu.h> 19 #include <xen/interface/event_channel.h> 20 21 #include "trace.h" 22 23 DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ); 24 25 static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn) 26 { 27 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 28 struct pvclock_wall_clock *wc; 29 gpa_t gpa = gfn_to_gpa(gfn); 30 u32 *wc_sec_hi; 31 u32 wc_version; 32 u64 wall_nsec; 33 int ret = 0; 34 int idx = srcu_read_lock(&kvm->srcu); 35 36 if (gfn == GPA_INVALID) { 37 kvm_gfn_to_pfn_cache_destroy(kvm, gpc); 38 goto out; 39 } 40 41 do { 42 ret = kvm_gfn_to_pfn_cache_init(kvm, gpc, NULL, false, true, 43 gpa, PAGE_SIZE, false); 44 if (ret) 45 goto out; 46 47 /* 48 * This code mirrors kvm_write_wall_clock() except that it writes 49 * directly through the pfn cache and doesn't mark the page dirty. 50 */ 51 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 52 53 /* It could be invalid again already, so we need to check */ 54 read_lock_irq(&gpc->lock); 55 56 if (gpc->valid) 57 break; 58 59 read_unlock_irq(&gpc->lock); 60 } while (1); 61 62 /* Paranoia checks on the 32-bit struct layout */ 63 BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900); 64 BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924); 65 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 66 67 #ifdef CONFIG_X86_64 68 /* Paranoia checks on the 64-bit struct layout */ 69 BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00); 70 BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c); 71 72 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 73 struct shared_info *shinfo = gpc->khva; 74 75 wc_sec_hi = &shinfo->wc_sec_hi; 76 wc = &shinfo->wc; 77 } else 78 #endif 79 { 80 struct compat_shared_info *shinfo = gpc->khva; 81 82 wc_sec_hi = &shinfo->arch.wc_sec_hi; 83 wc = &shinfo->wc; 84 } 85 86 /* Increment and ensure an odd value */ 87 wc_version = wc->version = (wc->version + 1) | 1; 88 smp_wmb(); 89 90 wc->nsec = do_div(wall_nsec, 1000000000); 91 wc->sec = (u32)wall_nsec; 92 *wc_sec_hi = wall_nsec >> 32; 93 smp_wmb(); 94 95 wc->version = wc_version + 1; 96 read_unlock_irq(&gpc->lock); 97 98 kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE); 99 100 out: 101 srcu_read_unlock(&kvm->srcu, idx); 102 return ret; 103 } 104 105 static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state) 106 { 107 struct kvm_vcpu_xen *vx = &v->arch.xen; 108 u64 now = get_kvmclock_ns(v->kvm); 109 u64 delta_ns = now - vx->runstate_entry_time; 110 u64 run_delay = current->sched_info.run_delay; 111 112 if (unlikely(!vx->runstate_entry_time)) 113 vx->current_runstate = RUNSTATE_offline; 114 115 /* 116 * Time waiting for the scheduler isn't "stolen" if the 117 * vCPU wasn't running anyway. 118 */ 119 if (vx->current_runstate == RUNSTATE_running) { 120 u64 steal_ns = run_delay - vx->last_steal; 121 122 delta_ns -= steal_ns; 123 124 vx->runstate_times[RUNSTATE_runnable] += steal_ns; 125 } 126 vx->last_steal = run_delay; 127 128 vx->runstate_times[vx->current_runstate] += delta_ns; 129 vx->current_runstate = state; 130 vx->runstate_entry_time = now; 131 } 132 133 void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state) 134 { 135 struct kvm_vcpu_xen *vx = &v->arch.xen; 136 uint64_t state_entry_time; 137 unsigned int offset; 138 139 kvm_xen_update_runstate(v, state); 140 141 if (!vx->runstate_set) 142 return; 143 144 BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c); 145 146 offset = offsetof(struct compat_vcpu_runstate_info, state_entry_time); 147 #ifdef CONFIG_X86_64 148 /* 149 * The only difference is alignment of uint64_t in 32-bit. 150 * So the first field 'state' is accessed directly using 151 * offsetof() (where its offset happens to be zero), while the 152 * remaining fields which are all uint64_t, start at 'offset' 153 * which we tweak here by adding 4. 154 */ 155 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 156 offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4); 157 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) != 158 offsetof(struct compat_vcpu_runstate_info, time) + 4); 159 160 if (v->kvm->arch.xen.long_mode) 161 offset = offsetof(struct vcpu_runstate_info, state_entry_time); 162 #endif 163 /* 164 * First write the updated state_entry_time at the appropriate 165 * location determined by 'offset'. 166 */ 167 state_entry_time = vx->runstate_entry_time; 168 state_entry_time |= XEN_RUNSTATE_UPDATE; 169 170 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) != 171 sizeof(state_entry_time)); 172 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) != 173 sizeof(state_entry_time)); 174 175 if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache, 176 &state_entry_time, offset, 177 sizeof(state_entry_time))) 178 return; 179 smp_wmb(); 180 181 /* 182 * Next, write the new runstate. This is in the *same* place 183 * for 32-bit and 64-bit guests, asserted here for paranoia. 184 */ 185 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 186 offsetof(struct compat_vcpu_runstate_info, state)); 187 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) != 188 sizeof(vx->current_runstate)); 189 BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) != 190 sizeof(vx->current_runstate)); 191 192 if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache, 193 &vx->current_runstate, 194 offsetof(struct vcpu_runstate_info, state), 195 sizeof(vx->current_runstate))) 196 return; 197 198 /* 199 * Write the actual runstate times immediately after the 200 * runstate_entry_time. 201 */ 202 BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != 203 offsetof(struct vcpu_runstate_info, time) - sizeof(u64)); 204 BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) != 205 offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64)); 206 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 207 sizeof_field(struct compat_vcpu_runstate_info, time)); 208 BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != 209 sizeof(vx->runstate_times)); 210 211 if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache, 212 &vx->runstate_times[0], 213 offset + sizeof(u64), 214 sizeof(vx->runstate_times))) 215 return; 216 217 smp_wmb(); 218 219 /* 220 * Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's 221 * runstate_entry_time field. 222 */ 223 224 state_entry_time &= ~XEN_RUNSTATE_UPDATE; 225 if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache, 226 &state_entry_time, offset, 227 sizeof(state_entry_time))) 228 return; 229 } 230 231 int __kvm_xen_has_interrupt(struct kvm_vcpu *v) 232 { 233 unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel); 234 bool atomic = in_atomic() || !task_is_running(current); 235 int err; 236 u8 rc = 0; 237 238 /* 239 * If the global upcall vector (HVMIRQ_callback_vector) is set and 240 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending. 241 */ 242 struct gfn_to_hva_cache *ghc = &v->arch.xen.vcpu_info_cache; 243 struct kvm_memslots *slots = kvm_memslots(v->kvm); 244 bool ghc_valid = slots->generation == ghc->generation && 245 !kvm_is_error_hva(ghc->hva) && ghc->memslot; 246 247 unsigned int offset = offsetof(struct vcpu_info, evtchn_upcall_pending); 248 249 /* No need for compat handling here */ 250 BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) != 251 offsetof(struct compat_vcpu_info, evtchn_upcall_pending)); 252 BUILD_BUG_ON(sizeof(rc) != 253 sizeof_field(struct vcpu_info, evtchn_upcall_pending)); 254 BUILD_BUG_ON(sizeof(rc) != 255 sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending)); 256 257 /* 258 * For efficiency, this mirrors the checks for using the valid 259 * cache in kvm_read_guest_offset_cached(), but just uses 260 * __get_user() instead. And falls back to the slow path. 261 */ 262 if (!evtchn_pending_sel && ghc_valid) { 263 /* Fast path */ 264 pagefault_disable(); 265 err = __get_user(rc, (u8 __user *)ghc->hva + offset); 266 pagefault_enable(); 267 if (!err) 268 return rc; 269 } 270 271 /* Slow path */ 272 273 /* 274 * This function gets called from kvm_vcpu_block() after setting the 275 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately 276 * from a HLT. So we really mustn't sleep. If the page ended up absent 277 * at that point, just return 1 in order to trigger an immediate wake, 278 * and we'll end up getting called again from a context where we *can* 279 * fault in the page and wait for it. 280 */ 281 if (atomic) 282 return 1; 283 284 if (!ghc_valid) { 285 err = kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len); 286 if (err || !ghc->memslot) { 287 /* 288 * If this failed, userspace has screwed up the 289 * vcpu_info mapping. No interrupts for you. 290 */ 291 return 0; 292 } 293 } 294 295 /* 296 * Now we have a valid (protected by srcu) userspace HVA in 297 * ghc->hva which points to the struct vcpu_info. If there 298 * are any bits in the in-kernel evtchn_pending_sel then 299 * we need to write those to the guest vcpu_info and set 300 * its evtchn_upcall_pending flag. If there aren't any bits 301 * to add, we only want to *check* evtchn_upcall_pending. 302 */ 303 if (evtchn_pending_sel) { 304 bool long_mode = v->kvm->arch.xen.long_mode; 305 306 if (!user_access_begin((void __user *)ghc->hva, sizeof(struct vcpu_info))) 307 return 0; 308 309 if (IS_ENABLED(CONFIG_64BIT) && long_mode) { 310 struct vcpu_info __user *vi = (void __user *)ghc->hva; 311 312 /* Attempt to set the evtchn_pending_sel bits in the 313 * guest, and if that succeeds then clear the same 314 * bits in the in-kernel version. */ 315 asm volatile("1:\t" LOCK_PREFIX "orq %0, %1\n" 316 "\tnotq %0\n" 317 "\t" LOCK_PREFIX "andq %0, %2\n" 318 "2:\n" 319 "\t.section .fixup,\"ax\"\n" 320 "3:\tjmp\t2b\n" 321 "\t.previous\n" 322 _ASM_EXTABLE_UA(1b, 3b) 323 : "=r" (evtchn_pending_sel), 324 "+m" (vi->evtchn_pending_sel), 325 "+m" (v->arch.xen.evtchn_pending_sel) 326 : "0" (evtchn_pending_sel)); 327 } else { 328 struct compat_vcpu_info __user *vi = (void __user *)ghc->hva; 329 u32 evtchn_pending_sel32 = evtchn_pending_sel; 330 331 /* Attempt to set the evtchn_pending_sel bits in the 332 * guest, and if that succeeds then clear the same 333 * bits in the in-kernel version. */ 334 asm volatile("1:\t" LOCK_PREFIX "orl %0, %1\n" 335 "\tnotl %0\n" 336 "\t" LOCK_PREFIX "andl %0, %2\n" 337 "2:\n" 338 "\t.section .fixup,\"ax\"\n" 339 "3:\tjmp\t2b\n" 340 "\t.previous\n" 341 _ASM_EXTABLE_UA(1b, 3b) 342 : "=r" (evtchn_pending_sel32), 343 "+m" (vi->evtchn_pending_sel), 344 "+m" (v->arch.xen.evtchn_pending_sel) 345 : "0" (evtchn_pending_sel32)); 346 } 347 rc = 1; 348 unsafe_put_user(rc, (u8 __user *)ghc->hva + offset, err); 349 350 err: 351 user_access_end(); 352 353 mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 354 } else { 355 __get_user(rc, (u8 __user *)ghc->hva + offset); 356 } 357 358 return rc; 359 } 360 361 int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 362 { 363 int r = -ENOENT; 364 365 mutex_lock(&kvm->lock); 366 367 switch (data->type) { 368 case KVM_XEN_ATTR_TYPE_LONG_MODE: 369 if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) { 370 r = -EINVAL; 371 } else { 372 kvm->arch.xen.long_mode = !!data->u.long_mode; 373 r = 0; 374 } 375 break; 376 377 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 378 r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn); 379 break; 380 381 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 382 if (data->u.vector && data->u.vector < 0x10) 383 r = -EINVAL; 384 else { 385 kvm->arch.xen.upcall_vector = data->u.vector; 386 r = 0; 387 } 388 break; 389 390 default: 391 break; 392 } 393 394 mutex_unlock(&kvm->lock); 395 return r; 396 } 397 398 int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) 399 { 400 int r = -ENOENT; 401 402 mutex_lock(&kvm->lock); 403 404 switch (data->type) { 405 case KVM_XEN_ATTR_TYPE_LONG_MODE: 406 data->u.long_mode = kvm->arch.xen.long_mode; 407 r = 0; 408 break; 409 410 case KVM_XEN_ATTR_TYPE_SHARED_INFO: 411 if (kvm->arch.xen.shinfo_cache.active) 412 data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa); 413 else 414 data->u.shared_info.gfn = GPA_INVALID; 415 r = 0; 416 break; 417 418 case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: 419 data->u.vector = kvm->arch.xen.upcall_vector; 420 r = 0; 421 break; 422 423 default: 424 break; 425 } 426 427 mutex_unlock(&kvm->lock); 428 return r; 429 } 430 431 int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 432 { 433 int idx, r = -ENOENT; 434 435 mutex_lock(&vcpu->kvm->lock); 436 idx = srcu_read_lock(&vcpu->kvm->srcu); 437 438 switch (data->type) { 439 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 440 /* No compat necessary here. */ 441 BUILD_BUG_ON(sizeof(struct vcpu_info) != 442 sizeof(struct compat_vcpu_info)); 443 BUILD_BUG_ON(offsetof(struct vcpu_info, time) != 444 offsetof(struct compat_vcpu_info, time)); 445 446 if (data->u.gpa == GPA_INVALID) { 447 vcpu->arch.xen.vcpu_info_set = false; 448 r = 0; 449 break; 450 } 451 452 r = kvm_gfn_to_hva_cache_init(vcpu->kvm, 453 &vcpu->arch.xen.vcpu_info_cache, 454 data->u.gpa, 455 sizeof(struct vcpu_info)); 456 if (!r) { 457 vcpu->arch.xen.vcpu_info_set = true; 458 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 459 } 460 break; 461 462 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 463 if (data->u.gpa == GPA_INVALID) { 464 vcpu->arch.xen.vcpu_time_info_set = false; 465 r = 0; 466 break; 467 } 468 469 r = kvm_gfn_to_hva_cache_init(vcpu->kvm, 470 &vcpu->arch.xen.vcpu_time_info_cache, 471 data->u.gpa, 472 sizeof(struct pvclock_vcpu_time_info)); 473 if (!r) { 474 vcpu->arch.xen.vcpu_time_info_set = true; 475 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 476 } 477 break; 478 479 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: 480 if (!sched_info_on()) { 481 r = -EOPNOTSUPP; 482 break; 483 } 484 if (data->u.gpa == GPA_INVALID) { 485 vcpu->arch.xen.runstate_set = false; 486 r = 0; 487 break; 488 } 489 490 r = kvm_gfn_to_hva_cache_init(vcpu->kvm, 491 &vcpu->arch.xen.runstate_cache, 492 data->u.gpa, 493 sizeof(struct vcpu_runstate_info)); 494 if (!r) { 495 vcpu->arch.xen.runstate_set = true; 496 } 497 break; 498 499 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 500 if (!sched_info_on()) { 501 r = -EOPNOTSUPP; 502 break; 503 } 504 if (data->u.runstate.state > RUNSTATE_offline) { 505 r = -EINVAL; 506 break; 507 } 508 509 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 510 r = 0; 511 break; 512 513 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 514 if (!sched_info_on()) { 515 r = -EOPNOTSUPP; 516 break; 517 } 518 if (data->u.runstate.state > RUNSTATE_offline) { 519 r = -EINVAL; 520 break; 521 } 522 if (data->u.runstate.state_entry_time != 523 (data->u.runstate.time_running + 524 data->u.runstate.time_runnable + 525 data->u.runstate.time_blocked + 526 data->u.runstate.time_offline)) { 527 r = -EINVAL; 528 break; 529 } 530 if (get_kvmclock_ns(vcpu->kvm) < 531 data->u.runstate.state_entry_time) { 532 r = -EINVAL; 533 break; 534 } 535 536 vcpu->arch.xen.current_runstate = data->u.runstate.state; 537 vcpu->arch.xen.runstate_entry_time = 538 data->u.runstate.state_entry_time; 539 vcpu->arch.xen.runstate_times[RUNSTATE_running] = 540 data->u.runstate.time_running; 541 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] = 542 data->u.runstate.time_runnable; 543 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] = 544 data->u.runstate.time_blocked; 545 vcpu->arch.xen.runstate_times[RUNSTATE_offline] = 546 data->u.runstate.time_offline; 547 vcpu->arch.xen.last_steal = current->sched_info.run_delay; 548 r = 0; 549 break; 550 551 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 552 if (!sched_info_on()) { 553 r = -EOPNOTSUPP; 554 break; 555 } 556 if (data->u.runstate.state > RUNSTATE_offline && 557 data->u.runstate.state != (u64)-1) { 558 r = -EINVAL; 559 break; 560 } 561 /* The adjustment must add up */ 562 if (data->u.runstate.state_entry_time != 563 (data->u.runstate.time_running + 564 data->u.runstate.time_runnable + 565 data->u.runstate.time_blocked + 566 data->u.runstate.time_offline)) { 567 r = -EINVAL; 568 break; 569 } 570 571 if (get_kvmclock_ns(vcpu->kvm) < 572 (vcpu->arch.xen.runstate_entry_time + 573 data->u.runstate.state_entry_time)) { 574 r = -EINVAL; 575 break; 576 } 577 578 vcpu->arch.xen.runstate_entry_time += 579 data->u.runstate.state_entry_time; 580 vcpu->arch.xen.runstate_times[RUNSTATE_running] += 581 data->u.runstate.time_running; 582 vcpu->arch.xen.runstate_times[RUNSTATE_runnable] += 583 data->u.runstate.time_runnable; 584 vcpu->arch.xen.runstate_times[RUNSTATE_blocked] += 585 data->u.runstate.time_blocked; 586 vcpu->arch.xen.runstate_times[RUNSTATE_offline] += 587 data->u.runstate.time_offline; 588 589 if (data->u.runstate.state <= RUNSTATE_offline) 590 kvm_xen_update_runstate(vcpu, data->u.runstate.state); 591 r = 0; 592 break; 593 594 default: 595 break; 596 } 597 598 srcu_read_unlock(&vcpu->kvm->srcu, idx); 599 mutex_unlock(&vcpu->kvm->lock); 600 return r; 601 } 602 603 int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) 604 { 605 int r = -ENOENT; 606 607 mutex_lock(&vcpu->kvm->lock); 608 609 switch (data->type) { 610 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: 611 if (vcpu->arch.xen.vcpu_info_set) 612 data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa; 613 else 614 data->u.gpa = GPA_INVALID; 615 r = 0; 616 break; 617 618 case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: 619 if (vcpu->arch.xen.vcpu_time_info_set) 620 data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa; 621 else 622 data->u.gpa = GPA_INVALID; 623 r = 0; 624 break; 625 626 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: 627 if (!sched_info_on()) { 628 r = -EOPNOTSUPP; 629 break; 630 } 631 if (vcpu->arch.xen.runstate_set) { 632 data->u.gpa = vcpu->arch.xen.runstate_cache.gpa; 633 r = 0; 634 } 635 break; 636 637 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: 638 if (!sched_info_on()) { 639 r = -EOPNOTSUPP; 640 break; 641 } 642 data->u.runstate.state = vcpu->arch.xen.current_runstate; 643 r = 0; 644 break; 645 646 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: 647 if (!sched_info_on()) { 648 r = -EOPNOTSUPP; 649 break; 650 } 651 data->u.runstate.state = vcpu->arch.xen.current_runstate; 652 data->u.runstate.state_entry_time = 653 vcpu->arch.xen.runstate_entry_time; 654 data->u.runstate.time_running = 655 vcpu->arch.xen.runstate_times[RUNSTATE_running]; 656 data->u.runstate.time_runnable = 657 vcpu->arch.xen.runstate_times[RUNSTATE_runnable]; 658 data->u.runstate.time_blocked = 659 vcpu->arch.xen.runstate_times[RUNSTATE_blocked]; 660 data->u.runstate.time_offline = 661 vcpu->arch.xen.runstate_times[RUNSTATE_offline]; 662 r = 0; 663 break; 664 665 case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: 666 r = -EINVAL; 667 break; 668 669 default: 670 break; 671 } 672 673 mutex_unlock(&vcpu->kvm->lock); 674 return r; 675 } 676 677 int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data) 678 { 679 struct kvm *kvm = vcpu->kvm; 680 u32 page_num = data & ~PAGE_MASK; 681 u64 page_addr = data & PAGE_MASK; 682 bool lm = is_long_mode(vcpu); 683 684 /* Latch long_mode for shared_info pages etc. */ 685 vcpu->kvm->arch.xen.long_mode = lm; 686 687 /* 688 * If Xen hypercall intercept is enabled, fill the hypercall 689 * page with VMCALL/VMMCALL instructions since that's what 690 * we catch. Else the VMM has provided the hypercall pages 691 * with instructions of its own choosing, so use those. 692 */ 693 if (kvm_xen_hypercall_enabled(kvm)) { 694 u8 instructions[32]; 695 int i; 696 697 if (page_num) 698 return 1; 699 700 /* mov imm32, %eax */ 701 instructions[0] = 0xb8; 702 703 /* vmcall / vmmcall */ 704 kvm_x86_ops.patch_hypercall(vcpu, instructions + 5); 705 706 /* ret */ 707 instructions[8] = 0xc3; 708 709 /* int3 to pad */ 710 memset(instructions + 9, 0xcc, sizeof(instructions) - 9); 711 712 for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) { 713 *(u32 *)&instructions[1] = i; 714 if (kvm_vcpu_write_guest(vcpu, 715 page_addr + (i * sizeof(instructions)), 716 instructions, sizeof(instructions))) 717 return 1; 718 } 719 } else { 720 /* 721 * Note, truncation is a non-issue as 'lm' is guaranteed to be 722 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes. 723 */ 724 hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64 725 : kvm->arch.xen_hvm_config.blob_addr_32; 726 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 727 : kvm->arch.xen_hvm_config.blob_size_32; 728 u8 *page; 729 730 if (page_num >= blob_size) 731 return 1; 732 733 blob_addr += page_num * PAGE_SIZE; 734 735 page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE); 736 if (IS_ERR(page)) 737 return PTR_ERR(page); 738 739 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) { 740 kfree(page); 741 return 1; 742 } 743 } 744 return 0; 745 } 746 747 int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc) 748 { 749 if (xhc->flags & ~KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) 750 return -EINVAL; 751 752 /* 753 * With hypercall interception the kernel generates its own 754 * hypercall page so it must not be provided. 755 */ 756 if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) && 757 (xhc->blob_addr_32 || xhc->blob_addr_64 || 758 xhc->blob_size_32 || xhc->blob_size_64)) 759 return -EINVAL; 760 761 mutex_lock(&kvm->lock); 762 763 if (xhc->msr && !kvm->arch.xen_hvm_config.msr) 764 static_branch_inc(&kvm_xen_enabled.key); 765 else if (!xhc->msr && kvm->arch.xen_hvm_config.msr) 766 static_branch_slow_dec_deferred(&kvm_xen_enabled); 767 768 memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc)); 769 770 mutex_unlock(&kvm->lock); 771 return 0; 772 } 773 774 void kvm_xen_init_vm(struct kvm *kvm) 775 { 776 } 777 778 void kvm_xen_destroy_vm(struct kvm *kvm) 779 { 780 kvm_gfn_to_pfn_cache_destroy(kvm, &kvm->arch.xen.shinfo_cache); 781 782 if (kvm->arch.xen_hvm_config.msr) 783 static_branch_slow_dec_deferred(&kvm_xen_enabled); 784 } 785 786 static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) 787 { 788 kvm_rax_write(vcpu, result); 789 return kvm_skip_emulated_instruction(vcpu); 790 } 791 792 static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu) 793 { 794 struct kvm_run *run = vcpu->run; 795 796 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip))) 797 return 1; 798 799 return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result); 800 } 801 802 int kvm_xen_hypercall(struct kvm_vcpu *vcpu) 803 { 804 bool longmode; 805 u64 input, params[6]; 806 807 input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX); 808 809 /* Hyper-V hypercalls get bit 31 set in EAX */ 810 if ((input & 0x80000000) && 811 kvm_hv_hypercall_enabled(vcpu)) 812 return kvm_hv_hypercall(vcpu); 813 814 longmode = is_64_bit_hypercall(vcpu); 815 if (!longmode) { 816 params[0] = (u32)kvm_rbx_read(vcpu); 817 params[1] = (u32)kvm_rcx_read(vcpu); 818 params[2] = (u32)kvm_rdx_read(vcpu); 819 params[3] = (u32)kvm_rsi_read(vcpu); 820 params[4] = (u32)kvm_rdi_read(vcpu); 821 params[5] = (u32)kvm_rbp_read(vcpu); 822 } 823 #ifdef CONFIG_X86_64 824 else { 825 params[0] = (u64)kvm_rdi_read(vcpu); 826 params[1] = (u64)kvm_rsi_read(vcpu); 827 params[2] = (u64)kvm_rdx_read(vcpu); 828 params[3] = (u64)kvm_r10_read(vcpu); 829 params[4] = (u64)kvm_r8_read(vcpu); 830 params[5] = (u64)kvm_r9_read(vcpu); 831 } 832 #endif 833 trace_kvm_xen_hypercall(input, params[0], params[1], params[2], 834 params[3], params[4], params[5]); 835 836 vcpu->run->exit_reason = KVM_EXIT_XEN; 837 vcpu->run->xen.type = KVM_EXIT_XEN_HCALL; 838 vcpu->run->xen.u.hcall.longmode = longmode; 839 vcpu->run->xen.u.hcall.cpl = kvm_x86_ops.get_cpl(vcpu); 840 vcpu->run->xen.u.hcall.input = input; 841 vcpu->run->xen.u.hcall.params[0] = params[0]; 842 vcpu->run->xen.u.hcall.params[1] = params[1]; 843 vcpu->run->xen.u.hcall.params[2] = params[2]; 844 vcpu->run->xen.u.hcall.params[3] = params[3]; 845 vcpu->run->xen.u.hcall.params[4] = params[4]; 846 vcpu->run->xen.u.hcall.params[5] = params[5]; 847 vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu); 848 vcpu->arch.complete_userspace_io = 849 kvm_xen_hypercall_complete_userspace; 850 851 return 0; 852 } 853 854 static inline int max_evtchn_port(struct kvm *kvm) 855 { 856 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) 857 return EVTCHN_2L_NR_CHANNELS; 858 else 859 return COMPAT_EVTCHN_2L_NR_CHANNELS; 860 } 861 862 /* 863 * This follows the kvm_set_irq() API, so it returns: 864 * < 0 Interrupt was ignored (masked or not delivered for other reasons) 865 * = 0 Interrupt was coalesced (previous irq is still pending) 866 * > 0 Number of CPUs interrupt was delivered to 867 */ 868 int kvm_xen_set_evtchn_fast(struct kvm_kernel_irq_routing_entry *e, 869 struct kvm *kvm) 870 { 871 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 872 struct kvm_vcpu *vcpu; 873 unsigned long *pending_bits, *mask_bits; 874 unsigned long flags; 875 int port_word_bit; 876 bool kick_vcpu = false; 877 int idx; 878 int rc; 879 880 vcpu = kvm_get_vcpu_by_id(kvm, e->xen_evtchn.vcpu); 881 if (!vcpu) 882 return -1; 883 884 if (!vcpu->arch.xen.vcpu_info_set) 885 return -1; 886 887 if (e->xen_evtchn.port >= max_evtchn_port(kvm)) 888 return -1; 889 890 rc = -EWOULDBLOCK; 891 read_lock_irqsave(&gpc->lock, flags); 892 893 idx = srcu_read_lock(&kvm->srcu); 894 if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE)) 895 goto out_rcu; 896 897 if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { 898 struct shared_info *shinfo = gpc->khva; 899 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 900 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 901 port_word_bit = e->xen_evtchn.port / 64; 902 } else { 903 struct compat_shared_info *shinfo = gpc->khva; 904 pending_bits = (unsigned long *)&shinfo->evtchn_pending; 905 mask_bits = (unsigned long *)&shinfo->evtchn_mask; 906 port_word_bit = e->xen_evtchn.port / 32; 907 } 908 909 /* 910 * If this port wasn't already set, and if it isn't masked, then 911 * we try to set the corresponding bit in the in-kernel shadow of 912 * evtchn_pending_sel for the target vCPU. And if *that* wasn't 913 * already set, then we kick the vCPU in question to write to the 914 * *real* evtchn_pending_sel in its own guest vcpu_info struct. 915 */ 916 if (test_and_set_bit(e->xen_evtchn.port, pending_bits)) { 917 rc = 0; /* It was already raised */ 918 } else if (test_bit(e->xen_evtchn.port, mask_bits)) { 919 rc = -1; /* Masked */ 920 } else { 921 rc = 1; /* Delivered. But was the vCPU waking already? */ 922 if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel)) 923 kick_vcpu = true; 924 } 925 926 out_rcu: 927 srcu_read_unlock(&kvm->srcu, idx); 928 read_unlock_irqrestore(&gpc->lock, flags); 929 930 if (kick_vcpu) { 931 kvm_make_request(KVM_REQ_EVENT, vcpu); 932 kvm_vcpu_kick(vcpu); 933 } 934 935 return rc; 936 } 937 938 /* This is the version called from kvm_set_irq() as the .set function */ 939 static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 940 int irq_source_id, int level, bool line_status) 941 { 942 bool mm_borrowed = false; 943 int rc; 944 945 if (!level) 946 return -1; 947 948 rc = kvm_xen_set_evtchn_fast(e, kvm); 949 if (rc != -EWOULDBLOCK) 950 return rc; 951 952 if (current->mm != kvm->mm) { 953 /* 954 * If not on a thread which already belongs to this KVM, 955 * we'd better be in the irqfd workqueue. 956 */ 957 if (WARN_ON_ONCE(current->mm)) 958 return -EINVAL; 959 960 kthread_use_mm(kvm->mm); 961 mm_borrowed = true; 962 } 963 964 /* 965 * For the irqfd workqueue, using the main kvm->lock mutex is 966 * fine since this function is invoked from kvm_set_irq() with 967 * no other lock held, no srcu. In future if it will be called 968 * directly from a vCPU thread (e.g. on hypercall for an IPI) 969 * then it may need to switch to using a leaf-node mutex for 970 * serializing the shared_info mapping. 971 */ 972 mutex_lock(&kvm->lock); 973 974 /* 975 * It is theoretically possible for the page to be unmapped 976 * and the MMU notifier to invalidate the shared_info before 977 * we even get to use it. In that case, this looks like an 978 * infinite loop. It was tempting to do it via the userspace 979 * HVA instead... but that just *hides* the fact that it's 980 * an infinite loop, because if a fault occurs and it waits 981 * for the page to come back, it can *still* immediately 982 * fault and have to wait again, repeatedly. 983 * 984 * Conversely, the page could also have been reinstated by 985 * another thread before we even obtain the mutex above, so 986 * check again *first* before remapping it. 987 */ 988 do { 989 struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; 990 int idx; 991 992 rc = kvm_xen_set_evtchn_fast(e, kvm); 993 if (rc != -EWOULDBLOCK) 994 break; 995 996 idx = srcu_read_lock(&kvm->srcu); 997 rc = kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpc->gpa, 998 PAGE_SIZE, false); 999 srcu_read_unlock(&kvm->srcu, idx); 1000 } while(!rc); 1001 1002 mutex_unlock(&kvm->lock); 1003 1004 if (mm_borrowed) 1005 kthread_unuse_mm(kvm->mm); 1006 1007 return rc; 1008 } 1009 1010 int kvm_xen_setup_evtchn(struct kvm *kvm, 1011 struct kvm_kernel_irq_routing_entry *e, 1012 const struct kvm_irq_routing_entry *ue) 1013 1014 { 1015 if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm)) 1016 return -EINVAL; 1017 1018 /* We only support 2 level event channels for now */ 1019 if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) 1020 return -EINVAL; 1021 1022 e->xen_evtchn.port = ue->u.xen_evtchn.port; 1023 e->xen_evtchn.vcpu = ue->u.xen_evtchn.vcpu; 1024 e->xen_evtchn.priority = ue->u.xen_evtchn.priority; 1025 e->set = evtchn_set_fn; 1026 1027 return 0; 1028 } 1029