xref: /openbmc/linux/arch/x86/kvm/x86.h (revision cd6d421e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_X86_H
3 #define ARCH_X86_KVM_X86_H
4 
5 #include <linux/kvm_host.h>
6 #include <asm/mce.h>
7 #include <asm/pvclock.h>
8 #include "kvm_cache_regs.h"
9 #include "kvm_emulate.h"
10 
11 #define KVM_DEFAULT_PLE_GAP		128
12 #define KVM_VMX_DEFAULT_PLE_WINDOW	4096
13 #define KVM_DEFAULT_PLE_WINDOW_GROW	2
14 #define KVM_DEFAULT_PLE_WINDOW_SHRINK	0
15 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX	UINT_MAX
16 #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX	USHRT_MAX
17 #define KVM_SVM_DEFAULT_PLE_WINDOW	3000
18 
19 static inline unsigned int __grow_ple_window(unsigned int val,
20 		unsigned int base, unsigned int modifier, unsigned int max)
21 {
22 	u64 ret = val;
23 
24 	if (modifier < 1)
25 		return base;
26 
27 	if (modifier < base)
28 		ret *= modifier;
29 	else
30 		ret += modifier;
31 
32 	return min(ret, (u64)max);
33 }
34 
35 static inline unsigned int __shrink_ple_window(unsigned int val,
36 		unsigned int base, unsigned int modifier, unsigned int min)
37 {
38 	if (modifier < 1)
39 		return base;
40 
41 	if (modifier < base)
42 		val /= modifier;
43 	else
44 		val -= modifier;
45 
46 	return max(val, min);
47 }
48 
49 #define MSR_IA32_CR_PAT_DEFAULT  0x0007040600070406ULL
50 
51 static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
52 {
53 	vcpu->arch.exception.pending = false;
54 	vcpu->arch.exception.injected = false;
55 }
56 
57 static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
58 	bool soft)
59 {
60 	vcpu->arch.interrupt.injected = true;
61 	vcpu->arch.interrupt.soft = soft;
62 	vcpu->arch.interrupt.nr = vector;
63 }
64 
65 static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
66 {
67 	vcpu->arch.interrupt.injected = false;
68 }
69 
70 static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
71 {
72 	return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected ||
73 		vcpu->arch.nmi_injected;
74 }
75 
76 static inline bool kvm_exception_is_soft(unsigned int nr)
77 {
78 	return (nr == BP_VECTOR) || (nr == OF_VECTOR);
79 }
80 
81 static inline bool is_protmode(struct kvm_vcpu *vcpu)
82 {
83 	return kvm_read_cr0_bits(vcpu, X86_CR0_PE);
84 }
85 
86 static inline int is_long_mode(struct kvm_vcpu *vcpu)
87 {
88 #ifdef CONFIG_X86_64
89 	return vcpu->arch.efer & EFER_LMA;
90 #else
91 	return 0;
92 #endif
93 }
94 
95 static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu)
96 {
97 	int cs_db, cs_l;
98 
99 	if (!is_long_mode(vcpu))
100 		return false;
101 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
102 	return cs_l;
103 }
104 
105 static inline bool is_la57_mode(struct kvm_vcpu *vcpu)
106 {
107 #ifdef CONFIG_X86_64
108 	return (vcpu->arch.efer & EFER_LMA) &&
109 		 kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
110 #else
111 	return 0;
112 #endif
113 }
114 
115 static inline bool x86_exception_has_error_code(unsigned int vector)
116 {
117 	static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) |
118 			BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) |
119 			BIT(PF_VECTOR) | BIT(AC_VECTOR);
120 
121 	return (1U << vector) & exception_has_error_code;
122 }
123 
124 static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
125 {
126 	return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
127 }
128 
129 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
130 {
131 	++vcpu->stat.tlb_flush;
132 	static_call(kvm_x86_tlb_flush_current)(vcpu);
133 }
134 
135 static inline int is_pae(struct kvm_vcpu *vcpu)
136 {
137 	return kvm_read_cr4_bits(vcpu, X86_CR4_PAE);
138 }
139 
140 static inline int is_pse(struct kvm_vcpu *vcpu)
141 {
142 	return kvm_read_cr4_bits(vcpu, X86_CR4_PSE);
143 }
144 
145 static inline int is_paging(struct kvm_vcpu *vcpu)
146 {
147 	return likely(kvm_read_cr0_bits(vcpu, X86_CR0_PG));
148 }
149 
150 static inline bool is_pae_paging(struct kvm_vcpu *vcpu)
151 {
152 	return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu);
153 }
154 
155 static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu)
156 {
157 	return kvm_read_cr4_bits(vcpu, X86_CR4_LA57) ? 57 : 48;
158 }
159 
160 static inline u64 get_canonical(u64 la, u8 vaddr_bits)
161 {
162 	return ((int64_t)la << (64 - vaddr_bits)) >> (64 - vaddr_bits);
163 }
164 
165 static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu)
166 {
167 	return get_canonical(la, vcpu_virt_addr_bits(vcpu)) != la;
168 }
169 
170 static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
171 					gva_t gva, gfn_t gfn, unsigned access)
172 {
173 	u64 gen = kvm_memslots(vcpu->kvm)->generation;
174 
175 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
176 		return;
177 
178 	/*
179 	 * If this is a shadow nested page table, the "GVA" is
180 	 * actually a nGPA.
181 	 */
182 	vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK;
183 	vcpu->arch.mmio_access = access;
184 	vcpu->arch.mmio_gfn = gfn;
185 	vcpu->arch.mmio_gen = gen;
186 }
187 
188 static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu)
189 {
190 	return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation;
191 }
192 
193 /*
194  * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we
195  * clear all mmio cache info.
196  */
197 #define MMIO_GVA_ANY (~(gva_t)0)
198 
199 static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
200 {
201 	if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
202 		return;
203 
204 	vcpu->arch.mmio_gva = 0;
205 }
206 
207 static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
208 {
209 	if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva &&
210 	      vcpu->arch.mmio_gva == (gva & PAGE_MASK))
211 		return true;
212 
213 	return false;
214 }
215 
216 static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
217 {
218 	if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn &&
219 	      vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
220 		return true;
221 
222 	return false;
223 }
224 
225 static inline unsigned long kvm_register_readl(struct kvm_vcpu *vcpu, int reg)
226 {
227 	unsigned long val = kvm_register_read(vcpu, reg);
228 
229 	return is_64_bit_mode(vcpu) ? val : (u32)val;
230 }
231 
232 static inline void kvm_register_writel(struct kvm_vcpu *vcpu,
233 				       int reg, unsigned long val)
234 {
235 	if (!is_64_bit_mode(vcpu))
236 		val = (u32)val;
237 	return kvm_register_write(vcpu, reg, val);
238 }
239 
240 static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
241 {
242 	return !(kvm->arch.disabled_quirks & quirk);
243 }
244 
245 static inline bool kvm_vcpu_latch_init(struct kvm_vcpu *vcpu)
246 {
247 	return is_smm(vcpu) || static_call(kvm_x86_apic_init_signal_blocked)(vcpu);
248 }
249 
250 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs);
251 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
252 
253 u64 get_kvmclock_ns(struct kvm *kvm);
254 
255 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
256 	gva_t addr, void *val, unsigned int bytes,
257 	struct x86_exception *exception);
258 
259 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu,
260 	gva_t addr, void *val, unsigned int bytes,
261 	struct x86_exception *exception);
262 
263 int handle_ud(struct kvm_vcpu *vcpu);
264 
265 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu);
266 
267 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu);
268 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn);
269 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data);
270 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data);
271 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
272 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
273 					  int page_num);
274 bool kvm_vector_hashing_enabled(void);
275 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code);
276 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
277 				    void *insn, int insn_len);
278 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
279 			    int emulation_type, void *insn, int insn_len);
280 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu);
281 
282 extern u64 host_xcr0;
283 extern u64 supported_xcr0;
284 extern u64 host_xss;
285 extern u64 supported_xss;
286 
287 static inline bool kvm_mpx_supported(void)
288 {
289 	return (supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
290 		== (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
291 }
292 
293 extern unsigned int min_timer_period_us;
294 
295 extern bool enable_vmware_backdoor;
296 
297 extern int pi_inject_timer;
298 
299 extern struct static_key kvm_no_apic_vcpu;
300 
301 extern bool report_ignored_msrs;
302 
303 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
304 {
305 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
306 				   vcpu->arch.virtual_tsc_shift);
307 }
308 
309 /* Same "calling convention" as do_div:
310  * - divide (n << 32) by base
311  * - put result in n
312  * - return remainder
313  */
314 #define do_shl32_div32(n, base)					\
315 	({							\
316 	    u32 __quot, __rem;					\
317 	    asm("divl %2" : "=a" (__quot), "=d" (__rem)		\
318 			: "rm" (base), "0" (0), "1" ((u32) n));	\
319 	    n = __quot;						\
320 	    __rem;						\
321 	 })
322 
323 static inline bool kvm_mwait_in_guest(struct kvm *kvm)
324 {
325 	return kvm->arch.mwait_in_guest;
326 }
327 
328 static inline bool kvm_hlt_in_guest(struct kvm *kvm)
329 {
330 	return kvm->arch.hlt_in_guest;
331 }
332 
333 static inline bool kvm_pause_in_guest(struct kvm *kvm)
334 {
335 	return kvm->arch.pause_in_guest;
336 }
337 
338 static inline bool kvm_cstate_in_guest(struct kvm *kvm)
339 {
340 	return kvm->arch.cstate_in_guest;
341 }
342 
343 DECLARE_PER_CPU(struct kvm_vcpu *, current_vcpu);
344 
345 static inline void kvm_before_interrupt(struct kvm_vcpu *vcpu)
346 {
347 	__this_cpu_write(current_vcpu, vcpu);
348 }
349 
350 static inline void kvm_after_interrupt(struct kvm_vcpu *vcpu)
351 {
352 	__this_cpu_write(current_vcpu, NULL);
353 }
354 
355 
356 static inline bool kvm_pat_valid(u64 data)
357 {
358 	if (data & 0xF8F8F8F8F8F8F8F8ull)
359 		return false;
360 	/* 0, 1, 4, 5, 6, 7 are valid values.  */
361 	return (data | ((data & 0x0202020202020202ull) << 1)) == data;
362 }
363 
364 static inline bool kvm_dr7_valid(u64 data)
365 {
366 	/* Bits [63:32] are reserved */
367 	return !(data >> 32);
368 }
369 static inline bool kvm_dr6_valid(u64 data)
370 {
371 	/* Bits [63:32] are reserved */
372 	return !(data >> 32);
373 }
374 
375 /*
376  * Trigger machine check on the host. We assume all the MSRs are already set up
377  * by the CPU and that we still run on the same CPU as the MCE occurred on.
378  * We pass a fake environment to the machine check handler because we want
379  * the guest to be always treated like user space, no matter what context
380  * it used internally.
381  */
382 static inline void kvm_machine_check(void)
383 {
384 #if defined(CONFIG_X86_MCE)
385 	struct pt_regs regs = {
386 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
387 		.flags = X86_EFLAGS_IF,
388 	};
389 
390 	do_machine_check(&regs);
391 #endif
392 }
393 
394 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu);
395 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu);
396 int kvm_spec_ctrl_test_value(u64 value);
397 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
398 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
399 			      struct x86_exception *e);
400 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva);
401 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type);
402 
403 /*
404  * Internal error codes that are used to indicate that MSR emulation encountered
405  * an error that should result in #GP in the guest, unless userspace
406  * handles it.
407  */
408 #define  KVM_MSR_RET_INVALID	2	/* in-kernel MSR emulation #GP condition */
409 #define  KVM_MSR_RET_FILTERED	3	/* #GP due to userspace MSR filter */
410 
411 #define __cr4_reserved_bits(__cpu_has, __c)             \
412 ({                                                      \
413 	u64 __reserved_bits = CR4_RESERVED_BITS;        \
414                                                         \
415 	if (!__cpu_has(__c, X86_FEATURE_XSAVE))         \
416 		__reserved_bits |= X86_CR4_OSXSAVE;     \
417 	if (!__cpu_has(__c, X86_FEATURE_SMEP))          \
418 		__reserved_bits |= X86_CR4_SMEP;        \
419 	if (!__cpu_has(__c, X86_FEATURE_SMAP))          \
420 		__reserved_bits |= X86_CR4_SMAP;        \
421 	if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))      \
422 		__reserved_bits |= X86_CR4_FSGSBASE;    \
423 	if (!__cpu_has(__c, X86_FEATURE_PKU))           \
424 		__reserved_bits |= X86_CR4_PKE;         \
425 	if (!__cpu_has(__c, X86_FEATURE_LA57))          \
426 		__reserved_bits |= X86_CR4_LA57;        \
427 	if (!__cpu_has(__c, X86_FEATURE_UMIP))          \
428 		__reserved_bits |= X86_CR4_UMIP;        \
429 	if (!__cpu_has(__c, X86_FEATURE_VMX))           \
430 		__reserved_bits |= X86_CR4_VMXE;        \
431 	if (!__cpu_has(__c, X86_FEATURE_PCID))          \
432 		__reserved_bits |= X86_CR4_PCIDE;       \
433 	__reserved_bits;                                \
434 })
435 
436 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
437 			  void *dst);
438 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
439 			 void *dst);
440 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
441 			 unsigned int port, void *data,  unsigned int count,
442 			 int in);
443 
444 #endif
445