xref: /openbmc/linux/arch/x86/kvm/x86.h (revision 4a075bd4)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_X86_H
3 #define ARCH_X86_KVM_X86_H
4 
5 #include <linux/kvm_host.h>
6 #include <asm/pvclock.h>
7 #include "kvm_cache_regs.h"
8 
9 #define KVM_DEFAULT_PLE_GAP		128
10 #define KVM_VMX_DEFAULT_PLE_WINDOW	4096
11 #define KVM_DEFAULT_PLE_WINDOW_GROW	2
12 #define KVM_DEFAULT_PLE_WINDOW_SHRINK	0
13 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX	UINT_MAX
14 #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX	USHRT_MAX
15 #define KVM_SVM_DEFAULT_PLE_WINDOW	3000
16 
17 static inline unsigned int __grow_ple_window(unsigned int val,
18 		unsigned int base, unsigned int modifier, unsigned int max)
19 {
20 	u64 ret = val;
21 
22 	if (modifier < 1)
23 		return base;
24 
25 	if (modifier < base)
26 		ret *= modifier;
27 	else
28 		ret += modifier;
29 
30 	return min(ret, (u64)max);
31 }
32 
33 static inline unsigned int __shrink_ple_window(unsigned int val,
34 		unsigned int base, unsigned int modifier, unsigned int min)
35 {
36 	if (modifier < 1)
37 		return base;
38 
39 	if (modifier < base)
40 		val /= modifier;
41 	else
42 		val -= modifier;
43 
44 	return max(val, min);
45 }
46 
47 #define MSR_IA32_CR_PAT_DEFAULT  0x0007040600070406ULL
48 
49 static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
50 {
51 	vcpu->arch.exception.pending = false;
52 	vcpu->arch.exception.injected = false;
53 }
54 
55 static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
56 	bool soft)
57 {
58 	vcpu->arch.interrupt.injected = true;
59 	vcpu->arch.interrupt.soft = soft;
60 	vcpu->arch.interrupt.nr = vector;
61 }
62 
63 static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
64 {
65 	vcpu->arch.interrupt.injected = false;
66 }
67 
68 static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
69 {
70 	return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected ||
71 		vcpu->arch.nmi_injected;
72 }
73 
74 static inline bool kvm_exception_is_soft(unsigned int nr)
75 {
76 	return (nr == BP_VECTOR) || (nr == OF_VECTOR);
77 }
78 
79 static inline bool is_protmode(struct kvm_vcpu *vcpu)
80 {
81 	return kvm_read_cr0_bits(vcpu, X86_CR0_PE);
82 }
83 
84 static inline int is_long_mode(struct kvm_vcpu *vcpu)
85 {
86 #ifdef CONFIG_X86_64
87 	return vcpu->arch.efer & EFER_LMA;
88 #else
89 	return 0;
90 #endif
91 }
92 
93 static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu)
94 {
95 	int cs_db, cs_l;
96 
97 	if (!is_long_mode(vcpu))
98 		return false;
99 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
100 	return cs_l;
101 }
102 
103 static inline bool is_la57_mode(struct kvm_vcpu *vcpu)
104 {
105 #ifdef CONFIG_X86_64
106 	return (vcpu->arch.efer & EFER_LMA) &&
107 		 kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
108 #else
109 	return 0;
110 #endif
111 }
112 
113 static inline bool x86_exception_has_error_code(unsigned int vector)
114 {
115 	static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) |
116 			BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) |
117 			BIT(PF_VECTOR) | BIT(AC_VECTOR);
118 
119 	return (1U << vector) & exception_has_error_code;
120 }
121 
122 static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
123 {
124 	return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
125 }
126 
127 static inline int is_pae(struct kvm_vcpu *vcpu)
128 {
129 	return kvm_read_cr4_bits(vcpu, X86_CR4_PAE);
130 }
131 
132 static inline int is_pse(struct kvm_vcpu *vcpu)
133 {
134 	return kvm_read_cr4_bits(vcpu, X86_CR4_PSE);
135 }
136 
137 static inline int is_paging(struct kvm_vcpu *vcpu)
138 {
139 	return likely(kvm_read_cr0_bits(vcpu, X86_CR0_PG));
140 }
141 
142 static inline u32 bit(int bitno)
143 {
144 	return 1 << (bitno & 31);
145 }
146 
147 static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu)
148 {
149 	return kvm_read_cr4_bits(vcpu, X86_CR4_LA57) ? 57 : 48;
150 }
151 
152 static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt)
153 {
154 	return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48;
155 }
156 
157 static inline u64 get_canonical(u64 la, u8 vaddr_bits)
158 {
159 	return ((int64_t)la << (64 - vaddr_bits)) >> (64 - vaddr_bits);
160 }
161 
162 static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu)
163 {
164 #ifdef CONFIG_X86_64
165 	return get_canonical(la, vcpu_virt_addr_bits(vcpu)) != la;
166 #else
167 	return false;
168 #endif
169 }
170 
171 static inline bool emul_is_noncanonical_address(u64 la,
172 						struct x86_emulate_ctxt *ctxt)
173 {
174 #ifdef CONFIG_X86_64
175 	return get_canonical(la, ctxt_virt_addr_bits(ctxt)) != la;
176 #else
177 	return false;
178 #endif
179 }
180 
181 static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
182 					gva_t gva, gfn_t gfn, unsigned access)
183 {
184 	u64 gen = kvm_memslots(vcpu->kvm)->generation;
185 
186 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
187 		return;
188 
189 	/*
190 	 * If this is a shadow nested page table, the "GVA" is
191 	 * actually a nGPA.
192 	 */
193 	vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK;
194 	vcpu->arch.access = access;
195 	vcpu->arch.mmio_gfn = gfn;
196 	vcpu->arch.mmio_gen = gen;
197 }
198 
199 static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu)
200 {
201 	return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation;
202 }
203 
204 /*
205  * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we
206  * clear all mmio cache info.
207  */
208 #define MMIO_GVA_ANY (~(gva_t)0)
209 
210 static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
211 {
212 	if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
213 		return;
214 
215 	vcpu->arch.mmio_gva = 0;
216 }
217 
218 static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
219 {
220 	if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva &&
221 	      vcpu->arch.mmio_gva == (gva & PAGE_MASK))
222 		return true;
223 
224 	return false;
225 }
226 
227 static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
228 {
229 	if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn &&
230 	      vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
231 		return true;
232 
233 	return false;
234 }
235 
236 static inline unsigned long kvm_register_readl(struct kvm_vcpu *vcpu,
237 					       enum kvm_reg reg)
238 {
239 	unsigned long val = kvm_register_read(vcpu, reg);
240 
241 	return is_64_bit_mode(vcpu) ? val : (u32)val;
242 }
243 
244 static inline void kvm_register_writel(struct kvm_vcpu *vcpu,
245 				       enum kvm_reg reg,
246 				       unsigned long val)
247 {
248 	if (!is_64_bit_mode(vcpu))
249 		val = (u32)val;
250 	return kvm_register_write(vcpu, reg, val);
251 }
252 
253 static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
254 {
255 	return !(kvm->arch.disabled_quirks & quirk);
256 }
257 
258 void kvm_set_pending_timer(struct kvm_vcpu *vcpu);
259 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
260 
261 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr);
262 u64 get_kvmclock_ns(struct kvm *kvm);
263 
264 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
265 	gva_t addr, void *val, unsigned int bytes,
266 	struct x86_exception *exception);
267 
268 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu,
269 	gva_t addr, void *val, unsigned int bytes,
270 	struct x86_exception *exception);
271 
272 int handle_ud(struct kvm_vcpu *vcpu);
273 
274 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu);
275 
276 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu);
277 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn);
278 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data);
279 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data);
280 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
281 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
282 					  int page_num);
283 bool kvm_vector_hashing_enabled(void);
284 int x86_emulate_instruction(struct kvm_vcpu *vcpu, unsigned long cr2,
285 			    int emulation_type, void *insn, int insn_len);
286 
287 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
288 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
289 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
290 				| XFEATURE_MASK_PKRU)
291 extern u64 host_xcr0;
292 
293 extern u64 kvm_supported_xcr0(void);
294 
295 extern unsigned int min_timer_period_us;
296 
297 extern bool enable_vmware_backdoor;
298 
299 extern struct static_key kvm_no_apic_vcpu;
300 
301 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
302 {
303 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
304 				   vcpu->arch.virtual_tsc_shift);
305 }
306 
307 /* Same "calling convention" as do_div:
308  * - divide (n << 32) by base
309  * - put result in n
310  * - return remainder
311  */
312 #define do_shl32_div32(n, base)					\
313 	({							\
314 	    u32 __quot, __rem;					\
315 	    asm("divl %2" : "=a" (__quot), "=d" (__rem)		\
316 			: "rm" (base), "0" (0), "1" ((u32) n));	\
317 	    n = __quot;						\
318 	    __rem;						\
319 	 })
320 
321 static inline bool kvm_mwait_in_guest(struct kvm *kvm)
322 {
323 	return kvm->arch.mwait_in_guest;
324 }
325 
326 static inline bool kvm_hlt_in_guest(struct kvm *kvm)
327 {
328 	return kvm->arch.hlt_in_guest;
329 }
330 
331 static inline bool kvm_pause_in_guest(struct kvm *kvm)
332 {
333 	return kvm->arch.pause_in_guest;
334 }
335 
336 DECLARE_PER_CPU(struct kvm_vcpu *, current_vcpu);
337 
338 static inline void kvm_before_interrupt(struct kvm_vcpu *vcpu)
339 {
340 	__this_cpu_write(current_vcpu, vcpu);
341 }
342 
343 static inline void kvm_after_interrupt(struct kvm_vcpu *vcpu)
344 {
345 	__this_cpu_write(current_vcpu, NULL);
346 }
347 
348 
349 static inline bool kvm_pat_valid(u64 data)
350 {
351 	if (data & 0xF8F8F8F8F8F8F8F8ull)
352 		return false;
353 	/* 0, 1, 4, 5, 6, 7 are valid values.  */
354 	return (data | ((data & 0x0202020202020202ull) << 1)) == data;
355 }
356 
357 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu);
358 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu);
359 
360 #endif
361