xref: /openbmc/linux/arch/x86/kvm/x86.h (revision 405db98b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_X86_H
3 #define ARCH_X86_KVM_X86_H
4 
5 #include <linux/kvm_host.h>
6 #include <asm/mce.h>
7 #include <asm/pvclock.h>
8 #include "kvm_cache_regs.h"
9 #include "kvm_emulate.h"
10 
11 void kvm_spurious_fault(void);
12 
13 static __always_inline void kvm_guest_enter_irqoff(void)
14 {
15 	/*
16 	 * VMENTER enables interrupts (host state), but the kernel state is
17 	 * interrupts disabled when this is invoked. Also tell RCU about
18 	 * it. This is the same logic as for exit_to_user_mode().
19 	 *
20 	 * This ensures that e.g. latency analysis on the host observes
21 	 * guest mode as interrupt enabled.
22 	 *
23 	 * guest_enter_irqoff() informs context tracking about the
24 	 * transition to guest mode and if enabled adjusts RCU state
25 	 * accordingly.
26 	 */
27 	instrumentation_begin();
28 	trace_hardirqs_on_prepare();
29 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
30 	instrumentation_end();
31 
32 	guest_enter_irqoff();
33 	lockdep_hardirqs_on(CALLER_ADDR0);
34 }
35 
36 static __always_inline void kvm_guest_exit_irqoff(void)
37 {
38 	/*
39 	 * VMEXIT disables interrupts (host state), but tracing and lockdep
40 	 * have them in state 'on' as recorded before entering guest mode.
41 	 * Same as enter_from_user_mode().
42 	 *
43 	 * context_tracking_guest_exit() restores host context and reinstates
44 	 * RCU if enabled and required.
45 	 *
46 	 * This needs to be done immediately after VM-Exit, before any code
47 	 * that might contain tracepoints or call out to the greater world,
48 	 * e.g. before x86_spec_ctrl_restore_host().
49 	 */
50 	lockdep_hardirqs_off(CALLER_ADDR0);
51 	context_tracking_guest_exit();
52 
53 	instrumentation_begin();
54 	trace_hardirqs_off_finish();
55 	instrumentation_end();
56 }
57 
58 #define KVM_NESTED_VMENTER_CONSISTENCY_CHECK(consistency_check)		\
59 ({									\
60 	bool failed = (consistency_check);				\
61 	if (failed)							\
62 		trace_kvm_nested_vmenter_failed(#consistency_check, 0);	\
63 	failed;								\
64 })
65 
66 #define KVM_DEFAULT_PLE_GAP		128
67 #define KVM_VMX_DEFAULT_PLE_WINDOW	4096
68 #define KVM_DEFAULT_PLE_WINDOW_GROW	2
69 #define KVM_DEFAULT_PLE_WINDOW_SHRINK	0
70 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX	UINT_MAX
71 #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX	USHRT_MAX
72 #define KVM_SVM_DEFAULT_PLE_WINDOW	3000
73 
74 static inline unsigned int __grow_ple_window(unsigned int val,
75 		unsigned int base, unsigned int modifier, unsigned int max)
76 {
77 	u64 ret = val;
78 
79 	if (modifier < 1)
80 		return base;
81 
82 	if (modifier < base)
83 		ret *= modifier;
84 	else
85 		ret += modifier;
86 
87 	return min(ret, (u64)max);
88 }
89 
90 static inline unsigned int __shrink_ple_window(unsigned int val,
91 		unsigned int base, unsigned int modifier, unsigned int min)
92 {
93 	if (modifier < 1)
94 		return base;
95 
96 	if (modifier < base)
97 		val /= modifier;
98 	else
99 		val -= modifier;
100 
101 	return max(val, min);
102 }
103 
104 #define MSR_IA32_CR_PAT_DEFAULT  0x0007040600070406ULL
105 
106 int kvm_check_nested_events(struct kvm_vcpu *vcpu);
107 
108 static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
109 {
110 	vcpu->arch.exception.pending = false;
111 	vcpu->arch.exception.injected = false;
112 }
113 
114 static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
115 	bool soft)
116 {
117 	vcpu->arch.interrupt.injected = true;
118 	vcpu->arch.interrupt.soft = soft;
119 	vcpu->arch.interrupt.nr = vector;
120 }
121 
122 static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
123 {
124 	vcpu->arch.interrupt.injected = false;
125 }
126 
127 static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
128 {
129 	return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected ||
130 		vcpu->arch.nmi_injected;
131 }
132 
133 static inline bool kvm_exception_is_soft(unsigned int nr)
134 {
135 	return (nr == BP_VECTOR) || (nr == OF_VECTOR);
136 }
137 
138 static inline bool is_protmode(struct kvm_vcpu *vcpu)
139 {
140 	return kvm_read_cr0_bits(vcpu, X86_CR0_PE);
141 }
142 
143 static inline int is_long_mode(struct kvm_vcpu *vcpu)
144 {
145 #ifdef CONFIG_X86_64
146 	return vcpu->arch.efer & EFER_LMA;
147 #else
148 	return 0;
149 #endif
150 }
151 
152 static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu)
153 {
154 	int cs_db, cs_l;
155 
156 	WARN_ON_ONCE(vcpu->arch.guest_state_protected);
157 
158 	if (!is_long_mode(vcpu))
159 		return false;
160 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
161 	return cs_l;
162 }
163 
164 static inline bool is_64_bit_hypercall(struct kvm_vcpu *vcpu)
165 {
166 	/*
167 	 * If running with protected guest state, the CS register is not
168 	 * accessible. The hypercall register values will have had to been
169 	 * provided in 64-bit mode, so assume the guest is in 64-bit.
170 	 */
171 	return vcpu->arch.guest_state_protected || is_64_bit_mode(vcpu);
172 }
173 
174 static inline bool x86_exception_has_error_code(unsigned int vector)
175 {
176 	static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) |
177 			BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) |
178 			BIT(PF_VECTOR) | BIT(AC_VECTOR);
179 
180 	return (1U << vector) & exception_has_error_code;
181 }
182 
183 static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
184 {
185 	return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
186 }
187 
188 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
189 {
190 	++vcpu->stat.tlb_flush;
191 	static_call(kvm_x86_tlb_flush_current)(vcpu);
192 }
193 
194 static inline int is_pae(struct kvm_vcpu *vcpu)
195 {
196 	return kvm_read_cr4_bits(vcpu, X86_CR4_PAE);
197 }
198 
199 static inline int is_pse(struct kvm_vcpu *vcpu)
200 {
201 	return kvm_read_cr4_bits(vcpu, X86_CR4_PSE);
202 }
203 
204 static inline int is_paging(struct kvm_vcpu *vcpu)
205 {
206 	return likely(kvm_read_cr0_bits(vcpu, X86_CR0_PG));
207 }
208 
209 static inline bool is_pae_paging(struct kvm_vcpu *vcpu)
210 {
211 	return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu);
212 }
213 
214 static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu)
215 {
216 	return kvm_read_cr4_bits(vcpu, X86_CR4_LA57) ? 57 : 48;
217 }
218 
219 static inline u64 get_canonical(u64 la, u8 vaddr_bits)
220 {
221 	return ((int64_t)la << (64 - vaddr_bits)) >> (64 - vaddr_bits);
222 }
223 
224 static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu)
225 {
226 	return get_canonical(la, vcpu_virt_addr_bits(vcpu)) != la;
227 }
228 
229 static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
230 					gva_t gva, gfn_t gfn, unsigned access)
231 {
232 	u64 gen = kvm_memslots(vcpu->kvm)->generation;
233 
234 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
235 		return;
236 
237 	/*
238 	 * If this is a shadow nested page table, the "GVA" is
239 	 * actually a nGPA.
240 	 */
241 	vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK;
242 	vcpu->arch.mmio_access = access;
243 	vcpu->arch.mmio_gfn = gfn;
244 	vcpu->arch.mmio_gen = gen;
245 }
246 
247 static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu)
248 {
249 	return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation;
250 }
251 
252 /*
253  * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we
254  * clear all mmio cache info.
255  */
256 #define MMIO_GVA_ANY (~(gva_t)0)
257 
258 static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
259 {
260 	if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
261 		return;
262 
263 	vcpu->arch.mmio_gva = 0;
264 }
265 
266 static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
267 {
268 	if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva &&
269 	      vcpu->arch.mmio_gva == (gva & PAGE_MASK))
270 		return true;
271 
272 	return false;
273 }
274 
275 static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
276 {
277 	if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn &&
278 	      vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
279 		return true;
280 
281 	return false;
282 }
283 
284 static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg)
285 {
286 	unsigned long val = kvm_register_read_raw(vcpu, reg);
287 
288 	return is_64_bit_mode(vcpu) ? val : (u32)val;
289 }
290 
291 static inline void kvm_register_write(struct kvm_vcpu *vcpu,
292 				       int reg, unsigned long val)
293 {
294 	if (!is_64_bit_mode(vcpu))
295 		val = (u32)val;
296 	return kvm_register_write_raw(vcpu, reg, val);
297 }
298 
299 static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
300 {
301 	return !(kvm->arch.disabled_quirks & quirk);
302 }
303 
304 static inline bool kvm_vcpu_latch_init(struct kvm_vcpu *vcpu)
305 {
306 	return is_smm(vcpu) || static_call(kvm_x86_apic_init_signal_blocked)(vcpu);
307 }
308 
309 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs);
310 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
311 
312 u64 get_kvmclock_ns(struct kvm *kvm);
313 
314 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
315 	gva_t addr, void *val, unsigned int bytes,
316 	struct x86_exception *exception);
317 
318 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu,
319 	gva_t addr, void *val, unsigned int bytes,
320 	struct x86_exception *exception);
321 
322 int handle_ud(struct kvm_vcpu *vcpu);
323 
324 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu);
325 
326 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu);
327 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn);
328 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data);
329 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data);
330 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
331 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
332 					  int page_num);
333 bool kvm_vector_hashing_enabled(void);
334 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code);
335 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
336 				    void *insn, int insn_len);
337 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
338 			    int emulation_type, void *insn, int insn_len);
339 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu);
340 
341 extern u64 host_xcr0;
342 extern u64 supported_xcr0;
343 extern u64 host_xss;
344 extern u64 supported_xss;
345 
346 static inline bool kvm_mpx_supported(void)
347 {
348 	return (supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
349 		== (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
350 }
351 
352 extern unsigned int min_timer_period_us;
353 
354 extern bool enable_vmware_backdoor;
355 
356 extern int pi_inject_timer;
357 
358 extern bool report_ignored_msrs;
359 
360 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
361 {
362 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
363 				   vcpu->arch.virtual_tsc_shift);
364 }
365 
366 /* Same "calling convention" as do_div:
367  * - divide (n << 32) by base
368  * - put result in n
369  * - return remainder
370  */
371 #define do_shl32_div32(n, base)					\
372 	({							\
373 	    u32 __quot, __rem;					\
374 	    asm("divl %2" : "=a" (__quot), "=d" (__rem)		\
375 			: "rm" (base), "0" (0), "1" ((u32) n));	\
376 	    n = __quot;						\
377 	    __rem;						\
378 	 })
379 
380 static inline bool kvm_mwait_in_guest(struct kvm *kvm)
381 {
382 	return kvm->arch.mwait_in_guest;
383 }
384 
385 static inline bool kvm_hlt_in_guest(struct kvm *kvm)
386 {
387 	return kvm->arch.hlt_in_guest;
388 }
389 
390 static inline bool kvm_pause_in_guest(struct kvm *kvm)
391 {
392 	return kvm->arch.pause_in_guest;
393 }
394 
395 static inline bool kvm_cstate_in_guest(struct kvm *kvm)
396 {
397 	return kvm->arch.cstate_in_guest;
398 }
399 
400 DECLARE_PER_CPU(struct kvm_vcpu *, current_vcpu);
401 
402 static inline void kvm_before_interrupt(struct kvm_vcpu *vcpu)
403 {
404 	__this_cpu_write(current_vcpu, vcpu);
405 }
406 
407 static inline void kvm_after_interrupt(struct kvm_vcpu *vcpu)
408 {
409 	__this_cpu_write(current_vcpu, NULL);
410 }
411 
412 
413 static inline bool kvm_pat_valid(u64 data)
414 {
415 	if (data & 0xF8F8F8F8F8F8F8F8ull)
416 		return false;
417 	/* 0, 1, 4, 5, 6, 7 are valid values.  */
418 	return (data | ((data & 0x0202020202020202ull) << 1)) == data;
419 }
420 
421 static inline bool kvm_dr7_valid(u64 data)
422 {
423 	/* Bits [63:32] are reserved */
424 	return !(data >> 32);
425 }
426 static inline bool kvm_dr6_valid(u64 data)
427 {
428 	/* Bits [63:32] are reserved */
429 	return !(data >> 32);
430 }
431 
432 /*
433  * Trigger machine check on the host. We assume all the MSRs are already set up
434  * by the CPU and that we still run on the same CPU as the MCE occurred on.
435  * We pass a fake environment to the machine check handler because we want
436  * the guest to be always treated like user space, no matter what context
437  * it used internally.
438  */
439 static inline void kvm_machine_check(void)
440 {
441 #if defined(CONFIG_X86_MCE)
442 	struct pt_regs regs = {
443 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
444 		.flags = X86_EFLAGS_IF,
445 	};
446 
447 	do_machine_check(&regs);
448 #endif
449 }
450 
451 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu);
452 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu);
453 int kvm_spec_ctrl_test_value(u64 value);
454 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
455 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
456 			      struct x86_exception *e);
457 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva);
458 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type);
459 
460 /*
461  * Internal error codes that are used to indicate that MSR emulation encountered
462  * an error that should result in #GP in the guest, unless userspace
463  * handles it.
464  */
465 #define  KVM_MSR_RET_INVALID	2	/* in-kernel MSR emulation #GP condition */
466 #define  KVM_MSR_RET_FILTERED	3	/* #GP due to userspace MSR filter */
467 
468 #define __cr4_reserved_bits(__cpu_has, __c)             \
469 ({                                                      \
470 	u64 __reserved_bits = CR4_RESERVED_BITS;        \
471                                                         \
472 	if (!__cpu_has(__c, X86_FEATURE_XSAVE))         \
473 		__reserved_bits |= X86_CR4_OSXSAVE;     \
474 	if (!__cpu_has(__c, X86_FEATURE_SMEP))          \
475 		__reserved_bits |= X86_CR4_SMEP;        \
476 	if (!__cpu_has(__c, X86_FEATURE_SMAP))          \
477 		__reserved_bits |= X86_CR4_SMAP;        \
478 	if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))      \
479 		__reserved_bits |= X86_CR4_FSGSBASE;    \
480 	if (!__cpu_has(__c, X86_FEATURE_PKU))           \
481 		__reserved_bits |= X86_CR4_PKE;         \
482 	if (!__cpu_has(__c, X86_FEATURE_LA57))          \
483 		__reserved_bits |= X86_CR4_LA57;        \
484 	if (!__cpu_has(__c, X86_FEATURE_UMIP))          \
485 		__reserved_bits |= X86_CR4_UMIP;        \
486 	if (!__cpu_has(__c, X86_FEATURE_VMX))           \
487 		__reserved_bits |= X86_CR4_VMXE;        \
488 	if (!__cpu_has(__c, X86_FEATURE_PCID))          \
489 		__reserved_bits |= X86_CR4_PCIDE;       \
490 	__reserved_bits;                                \
491 })
492 
493 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
494 			  void *dst);
495 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
496 			 void *dst);
497 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
498 			 unsigned int port, void *data,  unsigned int count,
499 			 int in);
500 
501 #endif
502