1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef ARCH_X86_KVM_X86_H 3 #define ARCH_X86_KVM_X86_H 4 5 #include <linux/kvm_host.h> 6 #include <asm/mce.h> 7 #include <asm/pvclock.h> 8 #include "kvm_cache_regs.h" 9 #include "kvm_emulate.h" 10 11 void kvm_spurious_fault(void); 12 13 static __always_inline void kvm_guest_enter_irqoff(void) 14 { 15 /* 16 * VMENTER enables interrupts (host state), but the kernel state is 17 * interrupts disabled when this is invoked. Also tell RCU about 18 * it. This is the same logic as for exit_to_user_mode(). 19 * 20 * This ensures that e.g. latency analysis on the host observes 21 * guest mode as interrupt enabled. 22 * 23 * guest_enter_irqoff() informs context tracking about the 24 * transition to guest mode and if enabled adjusts RCU state 25 * accordingly. 26 */ 27 instrumentation_begin(); 28 trace_hardirqs_on_prepare(); 29 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 30 instrumentation_end(); 31 32 guest_enter_irqoff(); 33 lockdep_hardirqs_on(CALLER_ADDR0); 34 } 35 36 static __always_inline void kvm_guest_exit_irqoff(void) 37 { 38 /* 39 * VMEXIT disables interrupts (host state), but tracing and lockdep 40 * have them in state 'on' as recorded before entering guest mode. 41 * Same as enter_from_user_mode(). 42 * 43 * context_tracking_guest_exit() restores host context and reinstates 44 * RCU if enabled and required. 45 * 46 * This needs to be done immediately after VM-Exit, before any code 47 * that might contain tracepoints or call out to the greater world, 48 * e.g. before x86_spec_ctrl_restore_host(). 49 */ 50 lockdep_hardirqs_off(CALLER_ADDR0); 51 context_tracking_guest_exit(); 52 53 instrumentation_begin(); 54 trace_hardirqs_off_finish(); 55 instrumentation_end(); 56 } 57 58 #define KVM_NESTED_VMENTER_CONSISTENCY_CHECK(consistency_check) \ 59 ({ \ 60 bool failed = (consistency_check); \ 61 if (failed) \ 62 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \ 63 failed; \ 64 }) 65 66 #define KVM_DEFAULT_PLE_GAP 128 67 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096 68 #define KVM_DEFAULT_PLE_WINDOW_GROW 2 69 #define KVM_DEFAULT_PLE_WINDOW_SHRINK 0 70 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX UINT_MAX 71 #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX USHRT_MAX 72 #define KVM_SVM_DEFAULT_PLE_WINDOW 3000 73 74 static inline unsigned int __grow_ple_window(unsigned int val, 75 unsigned int base, unsigned int modifier, unsigned int max) 76 { 77 u64 ret = val; 78 79 if (modifier < 1) 80 return base; 81 82 if (modifier < base) 83 ret *= modifier; 84 else 85 ret += modifier; 86 87 return min(ret, (u64)max); 88 } 89 90 static inline unsigned int __shrink_ple_window(unsigned int val, 91 unsigned int base, unsigned int modifier, unsigned int min) 92 { 93 if (modifier < 1) 94 return base; 95 96 if (modifier < base) 97 val /= modifier; 98 else 99 val -= modifier; 100 101 return max(val, min); 102 } 103 104 #define MSR_IA32_CR_PAT_DEFAULT 0x0007040600070406ULL 105 106 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu); 107 int kvm_check_nested_events(struct kvm_vcpu *vcpu); 108 109 static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu) 110 { 111 vcpu->arch.exception.pending = false; 112 vcpu->arch.exception.injected = false; 113 } 114 115 static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector, 116 bool soft) 117 { 118 vcpu->arch.interrupt.injected = true; 119 vcpu->arch.interrupt.soft = soft; 120 vcpu->arch.interrupt.nr = vector; 121 } 122 123 static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu) 124 { 125 vcpu->arch.interrupt.injected = false; 126 } 127 128 static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu) 129 { 130 return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected || 131 vcpu->arch.nmi_injected; 132 } 133 134 static inline bool kvm_exception_is_soft(unsigned int nr) 135 { 136 return (nr == BP_VECTOR) || (nr == OF_VECTOR); 137 } 138 139 static inline bool is_protmode(struct kvm_vcpu *vcpu) 140 { 141 return kvm_read_cr0_bits(vcpu, X86_CR0_PE); 142 } 143 144 static inline int is_long_mode(struct kvm_vcpu *vcpu) 145 { 146 #ifdef CONFIG_X86_64 147 return vcpu->arch.efer & EFER_LMA; 148 #else 149 return 0; 150 #endif 151 } 152 153 static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu) 154 { 155 int cs_db, cs_l; 156 157 WARN_ON_ONCE(vcpu->arch.guest_state_protected); 158 159 if (!is_long_mode(vcpu)) 160 return false; 161 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 162 return cs_l; 163 } 164 165 static inline bool is_64_bit_hypercall(struct kvm_vcpu *vcpu) 166 { 167 /* 168 * If running with protected guest state, the CS register is not 169 * accessible. The hypercall register values will have had to been 170 * provided in 64-bit mode, so assume the guest is in 64-bit. 171 */ 172 return vcpu->arch.guest_state_protected || is_64_bit_mode(vcpu); 173 } 174 175 static inline bool x86_exception_has_error_code(unsigned int vector) 176 { 177 static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) | 178 BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) | 179 BIT(PF_VECTOR) | BIT(AC_VECTOR); 180 181 return (1U << vector) & exception_has_error_code; 182 } 183 184 static inline bool mmu_is_nested(struct kvm_vcpu *vcpu) 185 { 186 return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu; 187 } 188 189 static inline int is_pae(struct kvm_vcpu *vcpu) 190 { 191 return kvm_read_cr4_bits(vcpu, X86_CR4_PAE); 192 } 193 194 static inline int is_pse(struct kvm_vcpu *vcpu) 195 { 196 return kvm_read_cr4_bits(vcpu, X86_CR4_PSE); 197 } 198 199 static inline int is_paging(struct kvm_vcpu *vcpu) 200 { 201 return likely(kvm_read_cr0_bits(vcpu, X86_CR0_PG)); 202 } 203 204 static inline bool is_pae_paging(struct kvm_vcpu *vcpu) 205 { 206 return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu); 207 } 208 209 static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu) 210 { 211 return kvm_read_cr4_bits(vcpu, X86_CR4_LA57) ? 57 : 48; 212 } 213 214 static inline u64 get_canonical(u64 la, u8 vaddr_bits) 215 { 216 return ((int64_t)la << (64 - vaddr_bits)) >> (64 - vaddr_bits); 217 } 218 219 static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu) 220 { 221 return get_canonical(la, vcpu_virt_addr_bits(vcpu)) != la; 222 } 223 224 static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu, 225 gva_t gva, gfn_t gfn, unsigned access) 226 { 227 u64 gen = kvm_memslots(vcpu->kvm)->generation; 228 229 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 230 return; 231 232 /* 233 * If this is a shadow nested page table, the "GVA" is 234 * actually a nGPA. 235 */ 236 vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK; 237 vcpu->arch.mmio_access = access; 238 vcpu->arch.mmio_gfn = gfn; 239 vcpu->arch.mmio_gen = gen; 240 } 241 242 static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu) 243 { 244 return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation; 245 } 246 247 /* 248 * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we 249 * clear all mmio cache info. 250 */ 251 #define MMIO_GVA_ANY (~(gva_t)0) 252 253 static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva) 254 { 255 if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK)) 256 return; 257 258 vcpu->arch.mmio_gva = 0; 259 } 260 261 static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva) 262 { 263 if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva && 264 vcpu->arch.mmio_gva == (gva & PAGE_MASK)) 265 return true; 266 267 return false; 268 } 269 270 static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) 271 { 272 if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn && 273 vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT) 274 return true; 275 276 return false; 277 } 278 279 static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg) 280 { 281 unsigned long val = kvm_register_read_raw(vcpu, reg); 282 283 return is_64_bit_mode(vcpu) ? val : (u32)val; 284 } 285 286 static inline void kvm_register_write(struct kvm_vcpu *vcpu, 287 int reg, unsigned long val) 288 { 289 if (!is_64_bit_mode(vcpu)) 290 val = (u32)val; 291 return kvm_register_write_raw(vcpu, reg, val); 292 } 293 294 static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk) 295 { 296 return !(kvm->arch.disabled_quirks & quirk); 297 } 298 299 static inline bool kvm_vcpu_latch_init(struct kvm_vcpu *vcpu) 300 { 301 return is_smm(vcpu) || static_call(kvm_x86_apic_init_signal_blocked)(vcpu); 302 } 303 304 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip); 305 306 u64 get_kvmclock_ns(struct kvm *kvm); 307 308 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 309 gva_t addr, void *val, unsigned int bytes, 310 struct x86_exception *exception); 311 312 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, 313 gva_t addr, void *val, unsigned int bytes, 314 struct x86_exception *exception); 315 316 int handle_ud(struct kvm_vcpu *vcpu); 317 318 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu); 319 320 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu); 321 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn); 322 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data); 323 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data); 324 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata); 325 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, 326 int page_num); 327 bool kvm_vector_hashing_enabled(void); 328 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code); 329 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 330 void *insn, int insn_len); 331 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 332 int emulation_type, void *insn, int insn_len); 333 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu); 334 335 extern u64 host_xcr0; 336 extern u64 supported_xcr0; 337 extern u64 host_xss; 338 extern u64 supported_xss; 339 extern bool enable_pmu; 340 341 static inline bool kvm_mpx_supported(void) 342 { 343 return (supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR)) 344 == (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 345 } 346 347 extern unsigned int min_timer_period_us; 348 349 extern bool enable_vmware_backdoor; 350 351 extern int pi_inject_timer; 352 353 extern bool report_ignored_msrs; 354 355 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 356 { 357 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 358 vcpu->arch.virtual_tsc_shift); 359 } 360 361 /* Same "calling convention" as do_div: 362 * - divide (n << 32) by base 363 * - put result in n 364 * - return remainder 365 */ 366 #define do_shl32_div32(n, base) \ 367 ({ \ 368 u32 __quot, __rem; \ 369 asm("divl %2" : "=a" (__quot), "=d" (__rem) \ 370 : "rm" (base), "0" (0), "1" ((u32) n)); \ 371 n = __quot; \ 372 __rem; \ 373 }) 374 375 static inline bool kvm_mwait_in_guest(struct kvm *kvm) 376 { 377 return kvm->arch.mwait_in_guest; 378 } 379 380 static inline bool kvm_hlt_in_guest(struct kvm *kvm) 381 { 382 return kvm->arch.hlt_in_guest; 383 } 384 385 static inline bool kvm_pause_in_guest(struct kvm *kvm) 386 { 387 return kvm->arch.pause_in_guest; 388 } 389 390 static inline bool kvm_cstate_in_guest(struct kvm *kvm) 391 { 392 return kvm->arch.cstate_in_guest; 393 } 394 395 enum kvm_intr_type { 396 /* Values are arbitrary, but must be non-zero. */ 397 KVM_HANDLING_IRQ = 1, 398 KVM_HANDLING_NMI, 399 }; 400 401 static inline void kvm_before_interrupt(struct kvm_vcpu *vcpu, 402 enum kvm_intr_type intr) 403 { 404 WRITE_ONCE(vcpu->arch.handling_intr_from_guest, (u8)intr); 405 } 406 407 static inline void kvm_after_interrupt(struct kvm_vcpu *vcpu) 408 { 409 WRITE_ONCE(vcpu->arch.handling_intr_from_guest, 0); 410 } 411 412 static inline bool kvm_handling_nmi_from_guest(struct kvm_vcpu *vcpu) 413 { 414 return vcpu->arch.handling_intr_from_guest == KVM_HANDLING_NMI; 415 } 416 417 static inline bool kvm_pat_valid(u64 data) 418 { 419 if (data & 0xF8F8F8F8F8F8F8F8ull) 420 return false; 421 /* 0, 1, 4, 5, 6, 7 are valid values. */ 422 return (data | ((data & 0x0202020202020202ull) << 1)) == data; 423 } 424 425 static inline bool kvm_dr7_valid(u64 data) 426 { 427 /* Bits [63:32] are reserved */ 428 return !(data >> 32); 429 } 430 static inline bool kvm_dr6_valid(u64 data) 431 { 432 /* Bits [63:32] are reserved */ 433 return !(data >> 32); 434 } 435 436 /* 437 * Trigger machine check on the host. We assume all the MSRs are already set up 438 * by the CPU and that we still run on the same CPU as the MCE occurred on. 439 * We pass a fake environment to the machine check handler because we want 440 * the guest to be always treated like user space, no matter what context 441 * it used internally. 442 */ 443 static inline void kvm_machine_check(void) 444 { 445 #if defined(CONFIG_X86_MCE) 446 struct pt_regs regs = { 447 .cs = 3, /* Fake ring 3 no matter what the guest ran on */ 448 .flags = X86_EFLAGS_IF, 449 }; 450 451 do_machine_check(®s); 452 #endif 453 } 454 455 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu); 456 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu); 457 int kvm_spec_ctrl_test_value(u64 value); 458 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 459 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 460 struct x86_exception *e); 461 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva); 462 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type); 463 464 /* 465 * Internal error codes that are used to indicate that MSR emulation encountered 466 * an error that should result in #GP in the guest, unless userspace 467 * handles it. 468 */ 469 #define KVM_MSR_RET_INVALID 2 /* in-kernel MSR emulation #GP condition */ 470 #define KVM_MSR_RET_FILTERED 3 /* #GP due to userspace MSR filter */ 471 472 #define __cr4_reserved_bits(__cpu_has, __c) \ 473 ({ \ 474 u64 __reserved_bits = CR4_RESERVED_BITS; \ 475 \ 476 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \ 477 __reserved_bits |= X86_CR4_OSXSAVE; \ 478 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \ 479 __reserved_bits |= X86_CR4_SMEP; \ 480 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \ 481 __reserved_bits |= X86_CR4_SMAP; \ 482 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \ 483 __reserved_bits |= X86_CR4_FSGSBASE; \ 484 if (!__cpu_has(__c, X86_FEATURE_PKU)) \ 485 __reserved_bits |= X86_CR4_PKE; \ 486 if (!__cpu_has(__c, X86_FEATURE_LA57)) \ 487 __reserved_bits |= X86_CR4_LA57; \ 488 if (!__cpu_has(__c, X86_FEATURE_UMIP)) \ 489 __reserved_bits |= X86_CR4_UMIP; \ 490 if (!__cpu_has(__c, X86_FEATURE_VMX)) \ 491 __reserved_bits |= X86_CR4_VMXE; \ 492 if (!__cpu_has(__c, X86_FEATURE_PCID)) \ 493 __reserved_bits |= X86_CR4_PCIDE; \ 494 __reserved_bits; \ 495 }) 496 497 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes, 498 void *dst); 499 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes, 500 void *dst); 501 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 502 unsigned int port, void *data, unsigned int count, 503 int in); 504 505 #endif 506