xref: /openbmc/linux/arch/x86/kvm/x86.c (revision ff6defa6)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56 
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 
72 #define emul_to_vcpu(ctxt) \
73 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74 
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85 
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92 
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95 
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98 
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101 
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32  kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106 
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110 
111 static bool backwards_tsc_observed = false;
112 
113 #define KVM_NR_SHARED_MSRS 16
114 
115 struct kvm_shared_msrs_global {
116 	int nr;
117 	u32 msrs[KVM_NR_SHARED_MSRS];
118 };
119 
120 struct kvm_shared_msrs {
121 	struct user_return_notifier urn;
122 	bool registered;
123 	struct kvm_shared_msr_values {
124 		u64 host;
125 		u64 curr;
126 	} values[KVM_NR_SHARED_MSRS];
127 };
128 
129 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
130 static struct kvm_shared_msrs __percpu *shared_msrs;
131 
132 struct kvm_stats_debugfs_item debugfs_entries[] = {
133 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
134 	{ "pf_guest", VCPU_STAT(pf_guest) },
135 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
136 	{ "invlpg", VCPU_STAT(invlpg) },
137 	{ "exits", VCPU_STAT(exits) },
138 	{ "io_exits", VCPU_STAT(io_exits) },
139 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
140 	{ "signal_exits", VCPU_STAT(signal_exits) },
141 	{ "irq_window", VCPU_STAT(irq_window_exits) },
142 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
143 	{ "halt_exits", VCPU_STAT(halt_exits) },
144 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
145 	{ "hypercalls", VCPU_STAT(hypercalls) },
146 	{ "request_irq", VCPU_STAT(request_irq_exits) },
147 	{ "irq_exits", VCPU_STAT(irq_exits) },
148 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
149 	{ "efer_reload", VCPU_STAT(efer_reload) },
150 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
151 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
152 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
153 	{ "irq_injections", VCPU_STAT(irq_injections) },
154 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
155 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
156 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
157 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
158 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
159 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
160 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
161 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
162 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
163 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
164 	{ "largepages", VM_STAT(lpages) },
165 	{ NULL }
166 };
167 
168 u64 __read_mostly host_xcr0;
169 
170 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
171 
172 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
173 {
174 	int i;
175 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
176 		vcpu->arch.apf.gfns[i] = ~0;
177 }
178 
179 static void kvm_on_user_return(struct user_return_notifier *urn)
180 {
181 	unsigned slot;
182 	struct kvm_shared_msrs *locals
183 		= container_of(urn, struct kvm_shared_msrs, urn);
184 	struct kvm_shared_msr_values *values;
185 
186 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
187 		values = &locals->values[slot];
188 		if (values->host != values->curr) {
189 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
190 			values->curr = values->host;
191 		}
192 	}
193 	locals->registered = false;
194 	user_return_notifier_unregister(urn);
195 }
196 
197 static void shared_msr_update(unsigned slot, u32 msr)
198 {
199 	u64 value;
200 	unsigned int cpu = smp_processor_id();
201 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
202 
203 	/* only read, and nobody should modify it at this time,
204 	 * so don't need lock */
205 	if (slot >= shared_msrs_global.nr) {
206 		printk(KERN_ERR "kvm: invalid MSR slot!");
207 		return;
208 	}
209 	rdmsrl_safe(msr, &value);
210 	smsr->values[slot].host = value;
211 	smsr->values[slot].curr = value;
212 }
213 
214 void kvm_define_shared_msr(unsigned slot, u32 msr)
215 {
216 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
217 	if (slot >= shared_msrs_global.nr)
218 		shared_msrs_global.nr = slot + 1;
219 	shared_msrs_global.msrs[slot] = msr;
220 	/* we need ensured the shared_msr_global have been updated */
221 	smp_wmb();
222 }
223 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
224 
225 static void kvm_shared_msr_cpu_online(void)
226 {
227 	unsigned i;
228 
229 	for (i = 0; i < shared_msrs_global.nr; ++i)
230 		shared_msr_update(i, shared_msrs_global.msrs[i]);
231 }
232 
233 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
234 {
235 	unsigned int cpu = smp_processor_id();
236 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
237 	int err;
238 
239 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
240 		return 0;
241 	smsr->values[slot].curr = value;
242 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
243 	if (err)
244 		return 1;
245 
246 	if (!smsr->registered) {
247 		smsr->urn.on_user_return = kvm_on_user_return;
248 		user_return_notifier_register(&smsr->urn);
249 		smsr->registered = true;
250 	}
251 	return 0;
252 }
253 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
254 
255 static void drop_user_return_notifiers(void)
256 {
257 	unsigned int cpu = smp_processor_id();
258 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
259 
260 	if (smsr->registered)
261 		kvm_on_user_return(&smsr->urn);
262 }
263 
264 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
265 {
266 	return vcpu->arch.apic_base;
267 }
268 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
269 
270 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
271 {
272 	u64 old_state = vcpu->arch.apic_base &
273 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
274 	u64 new_state = msr_info->data &
275 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
276 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
277 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
278 
279 	if (!msr_info->host_initiated &&
280 	    ((msr_info->data & reserved_bits) != 0 ||
281 	     new_state == X2APIC_ENABLE ||
282 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
283 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
284 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
285 	      old_state == 0)))
286 		return 1;
287 
288 	kvm_lapic_set_base(vcpu, msr_info->data);
289 	return 0;
290 }
291 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
292 
293 asmlinkage __visible void kvm_spurious_fault(void)
294 {
295 	/* Fault while not rebooting.  We want the trace. */
296 	BUG();
297 }
298 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
299 
300 #define EXCPT_BENIGN		0
301 #define EXCPT_CONTRIBUTORY	1
302 #define EXCPT_PF		2
303 
304 static int exception_class(int vector)
305 {
306 	switch (vector) {
307 	case PF_VECTOR:
308 		return EXCPT_PF;
309 	case DE_VECTOR:
310 	case TS_VECTOR:
311 	case NP_VECTOR:
312 	case SS_VECTOR:
313 	case GP_VECTOR:
314 		return EXCPT_CONTRIBUTORY;
315 	default:
316 		break;
317 	}
318 	return EXCPT_BENIGN;
319 }
320 
321 #define EXCPT_FAULT		0
322 #define EXCPT_TRAP		1
323 #define EXCPT_ABORT		2
324 #define EXCPT_INTERRUPT		3
325 
326 static int exception_type(int vector)
327 {
328 	unsigned int mask;
329 
330 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
331 		return EXCPT_INTERRUPT;
332 
333 	mask = 1 << vector;
334 
335 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
336 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
337 		return EXCPT_TRAP;
338 
339 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
340 		return EXCPT_ABORT;
341 
342 	/* Reserved exceptions will result in fault */
343 	return EXCPT_FAULT;
344 }
345 
346 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
347 		unsigned nr, bool has_error, u32 error_code,
348 		bool reinject)
349 {
350 	u32 prev_nr;
351 	int class1, class2;
352 
353 	kvm_make_request(KVM_REQ_EVENT, vcpu);
354 
355 	if (!vcpu->arch.exception.pending) {
356 	queue:
357 		if (has_error && !is_protmode(vcpu))
358 			has_error = false;
359 		vcpu->arch.exception.pending = true;
360 		vcpu->arch.exception.has_error_code = has_error;
361 		vcpu->arch.exception.nr = nr;
362 		vcpu->arch.exception.error_code = error_code;
363 		vcpu->arch.exception.reinject = reinject;
364 		return;
365 	}
366 
367 	/* to check exception */
368 	prev_nr = vcpu->arch.exception.nr;
369 	if (prev_nr == DF_VECTOR) {
370 		/* triple fault -> shutdown */
371 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
372 		return;
373 	}
374 	class1 = exception_class(prev_nr);
375 	class2 = exception_class(nr);
376 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
377 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
378 		/* generate double fault per SDM Table 5-5 */
379 		vcpu->arch.exception.pending = true;
380 		vcpu->arch.exception.has_error_code = true;
381 		vcpu->arch.exception.nr = DF_VECTOR;
382 		vcpu->arch.exception.error_code = 0;
383 	} else
384 		/* replace previous exception with a new one in a hope
385 		   that instruction re-execution will regenerate lost
386 		   exception */
387 		goto queue;
388 }
389 
390 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
391 {
392 	kvm_multiple_exception(vcpu, nr, false, 0, false);
393 }
394 EXPORT_SYMBOL_GPL(kvm_queue_exception);
395 
396 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
397 {
398 	kvm_multiple_exception(vcpu, nr, false, 0, true);
399 }
400 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
401 
402 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
403 {
404 	if (err)
405 		kvm_inject_gp(vcpu, 0);
406 	else
407 		kvm_x86_ops->skip_emulated_instruction(vcpu);
408 }
409 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
410 
411 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
412 {
413 	++vcpu->stat.pf_guest;
414 	vcpu->arch.cr2 = fault->address;
415 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
416 }
417 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
418 
419 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
420 {
421 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
422 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
423 	else
424 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
425 
426 	return fault->nested_page_fault;
427 }
428 
429 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
430 {
431 	atomic_inc(&vcpu->arch.nmi_queued);
432 	kvm_make_request(KVM_REQ_NMI, vcpu);
433 }
434 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
435 
436 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
437 {
438 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
439 }
440 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
441 
442 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
443 {
444 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
445 }
446 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
447 
448 /*
449  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
450  * a #GP and return false.
451  */
452 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
453 {
454 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
455 		return true;
456 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
457 	return false;
458 }
459 EXPORT_SYMBOL_GPL(kvm_require_cpl);
460 
461 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
462 {
463 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
464 		return true;
465 
466 	kvm_queue_exception(vcpu, UD_VECTOR);
467 	return false;
468 }
469 EXPORT_SYMBOL_GPL(kvm_require_dr);
470 
471 /*
472  * This function will be used to read from the physical memory of the currently
473  * running guest. The difference to kvm_read_guest_page is that this function
474  * can read from guest physical or from the guest's guest physical memory.
475  */
476 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
477 			    gfn_t ngfn, void *data, int offset, int len,
478 			    u32 access)
479 {
480 	struct x86_exception exception;
481 	gfn_t real_gfn;
482 	gpa_t ngpa;
483 
484 	ngpa     = gfn_to_gpa(ngfn);
485 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
486 	if (real_gfn == UNMAPPED_GVA)
487 		return -EFAULT;
488 
489 	real_gfn = gpa_to_gfn(real_gfn);
490 
491 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
492 }
493 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
494 
495 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
496 			       void *data, int offset, int len, u32 access)
497 {
498 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
499 				       data, offset, len, access);
500 }
501 
502 /*
503  * Load the pae pdptrs.  Return true is they are all valid.
504  */
505 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
506 {
507 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
508 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
509 	int i;
510 	int ret;
511 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
512 
513 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
514 				      offset * sizeof(u64), sizeof(pdpte),
515 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
516 	if (ret < 0) {
517 		ret = 0;
518 		goto out;
519 	}
520 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
521 		if (is_present_gpte(pdpte[i]) &&
522 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
523 			ret = 0;
524 			goto out;
525 		}
526 	}
527 	ret = 1;
528 
529 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
530 	__set_bit(VCPU_EXREG_PDPTR,
531 		  (unsigned long *)&vcpu->arch.regs_avail);
532 	__set_bit(VCPU_EXREG_PDPTR,
533 		  (unsigned long *)&vcpu->arch.regs_dirty);
534 out:
535 
536 	return ret;
537 }
538 EXPORT_SYMBOL_GPL(load_pdptrs);
539 
540 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
541 {
542 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
543 	bool changed = true;
544 	int offset;
545 	gfn_t gfn;
546 	int r;
547 
548 	if (is_long_mode(vcpu) || !is_pae(vcpu))
549 		return false;
550 
551 	if (!test_bit(VCPU_EXREG_PDPTR,
552 		      (unsigned long *)&vcpu->arch.regs_avail))
553 		return true;
554 
555 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
556 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
557 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
558 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
559 	if (r < 0)
560 		goto out;
561 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
562 out:
563 
564 	return changed;
565 }
566 
567 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
568 {
569 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
570 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
571 				    X86_CR0_CD | X86_CR0_NW;
572 
573 	cr0 |= X86_CR0_ET;
574 
575 #ifdef CONFIG_X86_64
576 	if (cr0 & 0xffffffff00000000UL)
577 		return 1;
578 #endif
579 
580 	cr0 &= ~CR0_RESERVED_BITS;
581 
582 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
583 		return 1;
584 
585 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
586 		return 1;
587 
588 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
589 #ifdef CONFIG_X86_64
590 		if ((vcpu->arch.efer & EFER_LME)) {
591 			int cs_db, cs_l;
592 
593 			if (!is_pae(vcpu))
594 				return 1;
595 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
596 			if (cs_l)
597 				return 1;
598 		} else
599 #endif
600 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
601 						 kvm_read_cr3(vcpu)))
602 			return 1;
603 	}
604 
605 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
606 		return 1;
607 
608 	kvm_x86_ops->set_cr0(vcpu, cr0);
609 
610 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
611 		kvm_clear_async_pf_completion_queue(vcpu);
612 		kvm_async_pf_hash_reset(vcpu);
613 	}
614 
615 	if ((cr0 ^ old_cr0) & update_bits)
616 		kvm_mmu_reset_context(vcpu);
617 	return 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_set_cr0);
620 
621 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
622 {
623 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
624 }
625 EXPORT_SYMBOL_GPL(kvm_lmsw);
626 
627 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
628 {
629 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
630 			!vcpu->guest_xcr0_loaded) {
631 		/* kvm_set_xcr() also depends on this */
632 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
633 		vcpu->guest_xcr0_loaded = 1;
634 	}
635 }
636 
637 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
638 {
639 	if (vcpu->guest_xcr0_loaded) {
640 		if (vcpu->arch.xcr0 != host_xcr0)
641 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
642 		vcpu->guest_xcr0_loaded = 0;
643 	}
644 }
645 
646 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
647 {
648 	u64 xcr0 = xcr;
649 	u64 old_xcr0 = vcpu->arch.xcr0;
650 	u64 valid_bits;
651 
652 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
653 	if (index != XCR_XFEATURE_ENABLED_MASK)
654 		return 1;
655 	if (!(xcr0 & XSTATE_FP))
656 		return 1;
657 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
658 		return 1;
659 
660 	/*
661 	 * Do not allow the guest to set bits that we do not support
662 	 * saving.  However, xcr0 bit 0 is always set, even if the
663 	 * emulated CPU does not support XSAVE (see fx_init).
664 	 */
665 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
666 	if (xcr0 & ~valid_bits)
667 		return 1;
668 
669 	if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
670 		return 1;
671 
672 	if (xcr0 & XSTATE_AVX512) {
673 		if (!(xcr0 & XSTATE_YMM))
674 			return 1;
675 		if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
676 			return 1;
677 	}
678 	kvm_put_guest_xcr0(vcpu);
679 	vcpu->arch.xcr0 = xcr0;
680 
681 	if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
682 		kvm_update_cpuid(vcpu);
683 	return 0;
684 }
685 
686 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
687 {
688 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
689 	    __kvm_set_xcr(vcpu, index, xcr)) {
690 		kvm_inject_gp(vcpu, 0);
691 		return 1;
692 	}
693 	return 0;
694 }
695 EXPORT_SYMBOL_GPL(kvm_set_xcr);
696 
697 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
698 {
699 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
700 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
701 				   X86_CR4_PAE | X86_CR4_SMEP;
702 	if (cr4 & CR4_RESERVED_BITS)
703 		return 1;
704 
705 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
706 		return 1;
707 
708 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
709 		return 1;
710 
711 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
712 		return 1;
713 
714 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
715 		return 1;
716 
717 	if (is_long_mode(vcpu)) {
718 		if (!(cr4 & X86_CR4_PAE))
719 			return 1;
720 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
721 		   && ((cr4 ^ old_cr4) & pdptr_bits)
722 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
723 				   kvm_read_cr3(vcpu)))
724 		return 1;
725 
726 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
727 		if (!guest_cpuid_has_pcid(vcpu))
728 			return 1;
729 
730 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
731 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
732 			return 1;
733 	}
734 
735 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
736 		return 1;
737 
738 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
739 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
740 		kvm_mmu_reset_context(vcpu);
741 
742 	if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
743 		update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
744 
745 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
746 		kvm_update_cpuid(vcpu);
747 
748 	return 0;
749 }
750 EXPORT_SYMBOL_GPL(kvm_set_cr4);
751 
752 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
753 {
754 #ifdef CONFIG_X86_64
755 	cr3 &= ~CR3_PCID_INVD;
756 #endif
757 
758 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
759 		kvm_mmu_sync_roots(vcpu);
760 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
761 		return 0;
762 	}
763 
764 	if (is_long_mode(vcpu)) {
765 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
766 			return 1;
767 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
768 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
769 		return 1;
770 
771 	vcpu->arch.cr3 = cr3;
772 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
773 	kvm_mmu_new_cr3(vcpu);
774 	return 0;
775 }
776 EXPORT_SYMBOL_GPL(kvm_set_cr3);
777 
778 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
779 {
780 	if (cr8 & CR8_RESERVED_BITS)
781 		return 1;
782 	if (irqchip_in_kernel(vcpu->kvm))
783 		kvm_lapic_set_tpr(vcpu, cr8);
784 	else
785 		vcpu->arch.cr8 = cr8;
786 	return 0;
787 }
788 EXPORT_SYMBOL_GPL(kvm_set_cr8);
789 
790 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
791 {
792 	if (irqchip_in_kernel(vcpu->kvm))
793 		return kvm_lapic_get_cr8(vcpu);
794 	else
795 		return vcpu->arch.cr8;
796 }
797 EXPORT_SYMBOL_GPL(kvm_get_cr8);
798 
799 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
800 {
801 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
802 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
803 }
804 
805 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
806 {
807 	unsigned long dr7;
808 
809 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
810 		dr7 = vcpu->arch.guest_debug_dr7;
811 	else
812 		dr7 = vcpu->arch.dr7;
813 	kvm_x86_ops->set_dr7(vcpu, dr7);
814 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
815 	if (dr7 & DR7_BP_EN_MASK)
816 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
817 }
818 
819 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
820 {
821 	u64 fixed = DR6_FIXED_1;
822 
823 	if (!guest_cpuid_has_rtm(vcpu))
824 		fixed |= DR6_RTM;
825 	return fixed;
826 }
827 
828 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
829 {
830 	switch (dr) {
831 	case 0 ... 3:
832 		vcpu->arch.db[dr] = val;
833 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
834 			vcpu->arch.eff_db[dr] = val;
835 		break;
836 	case 4:
837 		/* fall through */
838 	case 6:
839 		if (val & 0xffffffff00000000ULL)
840 			return -1; /* #GP */
841 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
842 		kvm_update_dr6(vcpu);
843 		break;
844 	case 5:
845 		/* fall through */
846 	default: /* 7 */
847 		if (val & 0xffffffff00000000ULL)
848 			return -1; /* #GP */
849 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
850 		kvm_update_dr7(vcpu);
851 		break;
852 	}
853 
854 	return 0;
855 }
856 
857 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
858 {
859 	if (__kvm_set_dr(vcpu, dr, val)) {
860 		kvm_inject_gp(vcpu, 0);
861 		return 1;
862 	}
863 	return 0;
864 }
865 EXPORT_SYMBOL_GPL(kvm_set_dr);
866 
867 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
868 {
869 	switch (dr) {
870 	case 0 ... 3:
871 		*val = vcpu->arch.db[dr];
872 		break;
873 	case 4:
874 		/* fall through */
875 	case 6:
876 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
877 			*val = vcpu->arch.dr6;
878 		else
879 			*val = kvm_x86_ops->get_dr6(vcpu);
880 		break;
881 	case 5:
882 		/* fall through */
883 	default: /* 7 */
884 		*val = vcpu->arch.dr7;
885 		break;
886 	}
887 	return 0;
888 }
889 EXPORT_SYMBOL_GPL(kvm_get_dr);
890 
891 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
892 {
893 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
894 	u64 data;
895 	int err;
896 
897 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
898 	if (err)
899 		return err;
900 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
901 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
902 	return err;
903 }
904 EXPORT_SYMBOL_GPL(kvm_rdpmc);
905 
906 /*
907  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
908  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
909  *
910  * This list is modified at module load time to reflect the
911  * capabilities of the host cpu. This capabilities test skips MSRs that are
912  * kvm-specific. Those are put in the beginning of the list.
913  */
914 
915 #define KVM_SAVE_MSRS_BEGIN	12
916 static u32 msrs_to_save[] = {
917 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
918 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
919 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
920 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
921 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
922 	MSR_KVM_PV_EOI_EN,
923 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
924 	MSR_STAR,
925 #ifdef CONFIG_X86_64
926 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
927 #endif
928 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
929 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
930 };
931 
932 static unsigned num_msrs_to_save;
933 
934 static const u32 emulated_msrs[] = {
935 	MSR_IA32_TSC_ADJUST,
936 	MSR_IA32_TSCDEADLINE,
937 	MSR_IA32_MISC_ENABLE,
938 	MSR_IA32_MCG_STATUS,
939 	MSR_IA32_MCG_CTL,
940 };
941 
942 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
943 {
944 	if (efer & efer_reserved_bits)
945 		return false;
946 
947 	if (efer & EFER_FFXSR) {
948 		struct kvm_cpuid_entry2 *feat;
949 
950 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
951 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
952 			return false;
953 	}
954 
955 	if (efer & EFER_SVME) {
956 		struct kvm_cpuid_entry2 *feat;
957 
958 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
959 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
960 			return false;
961 	}
962 
963 	return true;
964 }
965 EXPORT_SYMBOL_GPL(kvm_valid_efer);
966 
967 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
968 {
969 	u64 old_efer = vcpu->arch.efer;
970 
971 	if (!kvm_valid_efer(vcpu, efer))
972 		return 1;
973 
974 	if (is_paging(vcpu)
975 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
976 		return 1;
977 
978 	efer &= ~EFER_LMA;
979 	efer |= vcpu->arch.efer & EFER_LMA;
980 
981 	kvm_x86_ops->set_efer(vcpu, efer);
982 
983 	/* Update reserved bits */
984 	if ((efer ^ old_efer) & EFER_NX)
985 		kvm_mmu_reset_context(vcpu);
986 
987 	return 0;
988 }
989 
990 void kvm_enable_efer_bits(u64 mask)
991 {
992        efer_reserved_bits &= ~mask;
993 }
994 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
995 
996 /*
997  * Writes msr value into into the appropriate "register".
998  * Returns 0 on success, non-0 otherwise.
999  * Assumes vcpu_load() was already called.
1000  */
1001 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1002 {
1003 	switch (msr->index) {
1004 	case MSR_FS_BASE:
1005 	case MSR_GS_BASE:
1006 	case MSR_KERNEL_GS_BASE:
1007 	case MSR_CSTAR:
1008 	case MSR_LSTAR:
1009 		if (is_noncanonical_address(msr->data))
1010 			return 1;
1011 		break;
1012 	case MSR_IA32_SYSENTER_EIP:
1013 	case MSR_IA32_SYSENTER_ESP:
1014 		/*
1015 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1016 		 * non-canonical address is written on Intel but not on
1017 		 * AMD (which ignores the top 32-bits, because it does
1018 		 * not implement 64-bit SYSENTER).
1019 		 *
1020 		 * 64-bit code should hence be able to write a non-canonical
1021 		 * value on AMD.  Making the address canonical ensures that
1022 		 * vmentry does not fail on Intel after writing a non-canonical
1023 		 * value, and that something deterministic happens if the guest
1024 		 * invokes 64-bit SYSENTER.
1025 		 */
1026 		msr->data = get_canonical(msr->data);
1027 	}
1028 	return kvm_x86_ops->set_msr(vcpu, msr);
1029 }
1030 EXPORT_SYMBOL_GPL(kvm_set_msr);
1031 
1032 /*
1033  * Adapt set_msr() to msr_io()'s calling convention
1034  */
1035 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1036 {
1037 	struct msr_data msr;
1038 
1039 	msr.data = *data;
1040 	msr.index = index;
1041 	msr.host_initiated = true;
1042 	return kvm_set_msr(vcpu, &msr);
1043 }
1044 
1045 #ifdef CONFIG_X86_64
1046 struct pvclock_gtod_data {
1047 	seqcount_t	seq;
1048 
1049 	struct { /* extract of a clocksource struct */
1050 		int vclock_mode;
1051 		cycle_t	cycle_last;
1052 		cycle_t	mask;
1053 		u32	mult;
1054 		u32	shift;
1055 	} clock;
1056 
1057 	u64		boot_ns;
1058 	u64		nsec_base;
1059 };
1060 
1061 static struct pvclock_gtod_data pvclock_gtod_data;
1062 
1063 static void update_pvclock_gtod(struct timekeeper *tk)
1064 {
1065 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1066 	u64 boot_ns;
1067 
1068 	boot_ns = ktime_to_ns(ktime_add(tk->tkr.base_mono, tk->offs_boot));
1069 
1070 	write_seqcount_begin(&vdata->seq);
1071 
1072 	/* copy pvclock gtod data */
1073 	vdata->clock.vclock_mode	= tk->tkr.clock->archdata.vclock_mode;
1074 	vdata->clock.cycle_last		= tk->tkr.cycle_last;
1075 	vdata->clock.mask		= tk->tkr.mask;
1076 	vdata->clock.mult		= tk->tkr.mult;
1077 	vdata->clock.shift		= tk->tkr.shift;
1078 
1079 	vdata->boot_ns			= boot_ns;
1080 	vdata->nsec_base		= tk->tkr.xtime_nsec;
1081 
1082 	write_seqcount_end(&vdata->seq);
1083 }
1084 #endif
1085 
1086 
1087 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1088 {
1089 	int version;
1090 	int r;
1091 	struct pvclock_wall_clock wc;
1092 	struct timespec boot;
1093 
1094 	if (!wall_clock)
1095 		return;
1096 
1097 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1098 	if (r)
1099 		return;
1100 
1101 	if (version & 1)
1102 		++version;  /* first time write, random junk */
1103 
1104 	++version;
1105 
1106 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1107 
1108 	/*
1109 	 * The guest calculates current wall clock time by adding
1110 	 * system time (updated by kvm_guest_time_update below) to the
1111 	 * wall clock specified here.  guest system time equals host
1112 	 * system time for us, thus we must fill in host boot time here.
1113 	 */
1114 	getboottime(&boot);
1115 
1116 	if (kvm->arch.kvmclock_offset) {
1117 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1118 		boot = timespec_sub(boot, ts);
1119 	}
1120 	wc.sec = boot.tv_sec;
1121 	wc.nsec = boot.tv_nsec;
1122 	wc.version = version;
1123 
1124 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1125 
1126 	version++;
1127 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1128 }
1129 
1130 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1131 {
1132 	uint32_t quotient, remainder;
1133 
1134 	/* Don't try to replace with do_div(), this one calculates
1135 	 * "(dividend << 32) / divisor" */
1136 	__asm__ ( "divl %4"
1137 		  : "=a" (quotient), "=d" (remainder)
1138 		  : "0" (0), "1" (dividend), "r" (divisor) );
1139 	return quotient;
1140 }
1141 
1142 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1143 			       s8 *pshift, u32 *pmultiplier)
1144 {
1145 	uint64_t scaled64;
1146 	int32_t  shift = 0;
1147 	uint64_t tps64;
1148 	uint32_t tps32;
1149 
1150 	tps64 = base_khz * 1000LL;
1151 	scaled64 = scaled_khz * 1000LL;
1152 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1153 		tps64 >>= 1;
1154 		shift--;
1155 	}
1156 
1157 	tps32 = (uint32_t)tps64;
1158 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1159 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1160 			scaled64 >>= 1;
1161 		else
1162 			tps32 <<= 1;
1163 		shift++;
1164 	}
1165 
1166 	*pshift = shift;
1167 	*pmultiplier = div_frac(scaled64, tps32);
1168 
1169 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1170 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1171 }
1172 
1173 static inline u64 get_kernel_ns(void)
1174 {
1175 	return ktime_get_boot_ns();
1176 }
1177 
1178 #ifdef CONFIG_X86_64
1179 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1180 #endif
1181 
1182 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1183 unsigned long max_tsc_khz;
1184 
1185 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1186 {
1187 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1188 				   vcpu->arch.virtual_tsc_shift);
1189 }
1190 
1191 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1192 {
1193 	u64 v = (u64)khz * (1000000 + ppm);
1194 	do_div(v, 1000000);
1195 	return v;
1196 }
1197 
1198 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1199 {
1200 	u32 thresh_lo, thresh_hi;
1201 	int use_scaling = 0;
1202 
1203 	/* tsc_khz can be zero if TSC calibration fails */
1204 	if (this_tsc_khz == 0)
1205 		return;
1206 
1207 	/* Compute a scale to convert nanoseconds in TSC cycles */
1208 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1209 			   &vcpu->arch.virtual_tsc_shift,
1210 			   &vcpu->arch.virtual_tsc_mult);
1211 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1212 
1213 	/*
1214 	 * Compute the variation in TSC rate which is acceptable
1215 	 * within the range of tolerance and decide if the
1216 	 * rate being applied is within that bounds of the hardware
1217 	 * rate.  If so, no scaling or compensation need be done.
1218 	 */
1219 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1220 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1221 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1222 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1223 		use_scaling = 1;
1224 	}
1225 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1226 }
1227 
1228 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1229 {
1230 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1231 				      vcpu->arch.virtual_tsc_mult,
1232 				      vcpu->arch.virtual_tsc_shift);
1233 	tsc += vcpu->arch.this_tsc_write;
1234 	return tsc;
1235 }
1236 
1237 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1238 {
1239 #ifdef CONFIG_X86_64
1240 	bool vcpus_matched;
1241 	struct kvm_arch *ka = &vcpu->kvm->arch;
1242 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1243 
1244 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1245 			 atomic_read(&vcpu->kvm->online_vcpus));
1246 
1247 	/*
1248 	 * Once the masterclock is enabled, always perform request in
1249 	 * order to update it.
1250 	 *
1251 	 * In order to enable masterclock, the host clocksource must be TSC
1252 	 * and the vcpus need to have matched TSCs.  When that happens,
1253 	 * perform request to enable masterclock.
1254 	 */
1255 	if (ka->use_master_clock ||
1256 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1257 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1258 
1259 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1260 			    atomic_read(&vcpu->kvm->online_vcpus),
1261 		            ka->use_master_clock, gtod->clock.vclock_mode);
1262 #endif
1263 }
1264 
1265 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1266 {
1267 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1268 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1269 }
1270 
1271 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1272 {
1273 	struct kvm *kvm = vcpu->kvm;
1274 	u64 offset, ns, elapsed;
1275 	unsigned long flags;
1276 	s64 usdiff;
1277 	bool matched;
1278 	bool already_matched;
1279 	u64 data = msr->data;
1280 
1281 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1282 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1283 	ns = get_kernel_ns();
1284 	elapsed = ns - kvm->arch.last_tsc_nsec;
1285 
1286 	if (vcpu->arch.virtual_tsc_khz) {
1287 		int faulted = 0;
1288 
1289 		/* n.b - signed multiplication and division required */
1290 		usdiff = data - kvm->arch.last_tsc_write;
1291 #ifdef CONFIG_X86_64
1292 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1293 #else
1294 		/* do_div() only does unsigned */
1295 		asm("1: idivl %[divisor]\n"
1296 		    "2: xor %%edx, %%edx\n"
1297 		    "   movl $0, %[faulted]\n"
1298 		    "3:\n"
1299 		    ".section .fixup,\"ax\"\n"
1300 		    "4: movl $1, %[faulted]\n"
1301 		    "   jmp  3b\n"
1302 		    ".previous\n"
1303 
1304 		_ASM_EXTABLE(1b, 4b)
1305 
1306 		: "=A"(usdiff), [faulted] "=r" (faulted)
1307 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1308 
1309 #endif
1310 		do_div(elapsed, 1000);
1311 		usdiff -= elapsed;
1312 		if (usdiff < 0)
1313 			usdiff = -usdiff;
1314 
1315 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1316 		if (faulted)
1317 			usdiff = USEC_PER_SEC;
1318 	} else
1319 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1320 
1321 	/*
1322 	 * Special case: TSC write with a small delta (1 second) of virtual
1323 	 * cycle time against real time is interpreted as an attempt to
1324 	 * synchronize the CPU.
1325          *
1326 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1327 	 * TSC, we add elapsed time in this computation.  We could let the
1328 	 * compensation code attempt to catch up if we fall behind, but
1329 	 * it's better to try to match offsets from the beginning.
1330          */
1331 	if (usdiff < USEC_PER_SEC &&
1332 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1333 		if (!check_tsc_unstable()) {
1334 			offset = kvm->arch.cur_tsc_offset;
1335 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1336 		} else {
1337 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1338 			data += delta;
1339 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1340 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1341 		}
1342 		matched = true;
1343 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1344 	} else {
1345 		/*
1346 		 * We split periods of matched TSC writes into generations.
1347 		 * For each generation, we track the original measured
1348 		 * nanosecond time, offset, and write, so if TSCs are in
1349 		 * sync, we can match exact offset, and if not, we can match
1350 		 * exact software computation in compute_guest_tsc()
1351 		 *
1352 		 * These values are tracked in kvm->arch.cur_xxx variables.
1353 		 */
1354 		kvm->arch.cur_tsc_generation++;
1355 		kvm->arch.cur_tsc_nsec = ns;
1356 		kvm->arch.cur_tsc_write = data;
1357 		kvm->arch.cur_tsc_offset = offset;
1358 		matched = false;
1359 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1360 			 kvm->arch.cur_tsc_generation, data);
1361 	}
1362 
1363 	/*
1364 	 * We also track th most recent recorded KHZ, write and time to
1365 	 * allow the matching interval to be extended at each write.
1366 	 */
1367 	kvm->arch.last_tsc_nsec = ns;
1368 	kvm->arch.last_tsc_write = data;
1369 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1370 
1371 	vcpu->arch.last_guest_tsc = data;
1372 
1373 	/* Keep track of which generation this VCPU has synchronized to */
1374 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1375 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1376 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1377 
1378 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1379 		update_ia32_tsc_adjust_msr(vcpu, offset);
1380 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1381 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1382 
1383 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1384 	if (!matched) {
1385 		kvm->arch.nr_vcpus_matched_tsc = 0;
1386 	} else if (!already_matched) {
1387 		kvm->arch.nr_vcpus_matched_tsc++;
1388 	}
1389 
1390 	kvm_track_tsc_matching(vcpu);
1391 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1392 }
1393 
1394 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1395 
1396 #ifdef CONFIG_X86_64
1397 
1398 static cycle_t read_tsc(void)
1399 {
1400 	cycle_t ret;
1401 	u64 last;
1402 
1403 	/*
1404 	 * Empirically, a fence (of type that depends on the CPU)
1405 	 * before rdtsc is enough to ensure that rdtsc is ordered
1406 	 * with respect to loads.  The various CPU manuals are unclear
1407 	 * as to whether rdtsc can be reordered with later loads,
1408 	 * but no one has ever seen it happen.
1409 	 */
1410 	rdtsc_barrier();
1411 	ret = (cycle_t)vget_cycles();
1412 
1413 	last = pvclock_gtod_data.clock.cycle_last;
1414 
1415 	if (likely(ret >= last))
1416 		return ret;
1417 
1418 	/*
1419 	 * GCC likes to generate cmov here, but this branch is extremely
1420 	 * predictable (it's just a funciton of time and the likely is
1421 	 * very likely) and there's a data dependence, so force GCC
1422 	 * to generate a branch instead.  I don't barrier() because
1423 	 * we don't actually need a barrier, and if this function
1424 	 * ever gets inlined it will generate worse code.
1425 	 */
1426 	asm volatile ("");
1427 	return last;
1428 }
1429 
1430 static inline u64 vgettsc(cycle_t *cycle_now)
1431 {
1432 	long v;
1433 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1434 
1435 	*cycle_now = read_tsc();
1436 
1437 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1438 	return v * gtod->clock.mult;
1439 }
1440 
1441 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1442 {
1443 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1444 	unsigned long seq;
1445 	int mode;
1446 	u64 ns;
1447 
1448 	do {
1449 		seq = read_seqcount_begin(&gtod->seq);
1450 		mode = gtod->clock.vclock_mode;
1451 		ns = gtod->nsec_base;
1452 		ns += vgettsc(cycle_now);
1453 		ns >>= gtod->clock.shift;
1454 		ns += gtod->boot_ns;
1455 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1456 	*t = ns;
1457 
1458 	return mode;
1459 }
1460 
1461 /* returns true if host is using tsc clocksource */
1462 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1463 {
1464 	/* checked again under seqlock below */
1465 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1466 		return false;
1467 
1468 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1469 }
1470 #endif
1471 
1472 /*
1473  *
1474  * Assuming a stable TSC across physical CPUS, and a stable TSC
1475  * across virtual CPUs, the following condition is possible.
1476  * Each numbered line represents an event visible to both
1477  * CPUs at the next numbered event.
1478  *
1479  * "timespecX" represents host monotonic time. "tscX" represents
1480  * RDTSC value.
1481  *
1482  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1483  *
1484  * 1.  read timespec0,tsc0
1485  * 2.					| timespec1 = timespec0 + N
1486  * 					| tsc1 = tsc0 + M
1487  * 3. transition to guest		| transition to guest
1488  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1489  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1490  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1491  *
1492  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1493  *
1494  * 	- ret0 < ret1
1495  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1496  *		...
1497  *	- 0 < N - M => M < N
1498  *
1499  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1500  * always the case (the difference between two distinct xtime instances
1501  * might be smaller then the difference between corresponding TSC reads,
1502  * when updating guest vcpus pvclock areas).
1503  *
1504  * To avoid that problem, do not allow visibility of distinct
1505  * system_timestamp/tsc_timestamp values simultaneously: use a master
1506  * copy of host monotonic time values. Update that master copy
1507  * in lockstep.
1508  *
1509  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1510  *
1511  */
1512 
1513 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1514 {
1515 #ifdef CONFIG_X86_64
1516 	struct kvm_arch *ka = &kvm->arch;
1517 	int vclock_mode;
1518 	bool host_tsc_clocksource, vcpus_matched;
1519 
1520 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1521 			atomic_read(&kvm->online_vcpus));
1522 
1523 	/*
1524 	 * If the host uses TSC clock, then passthrough TSC as stable
1525 	 * to the guest.
1526 	 */
1527 	host_tsc_clocksource = kvm_get_time_and_clockread(
1528 					&ka->master_kernel_ns,
1529 					&ka->master_cycle_now);
1530 
1531 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1532 				&& !backwards_tsc_observed;
1533 
1534 	if (ka->use_master_clock)
1535 		atomic_set(&kvm_guest_has_master_clock, 1);
1536 
1537 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1538 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1539 					vcpus_matched);
1540 #endif
1541 }
1542 
1543 static void kvm_gen_update_masterclock(struct kvm *kvm)
1544 {
1545 #ifdef CONFIG_X86_64
1546 	int i;
1547 	struct kvm_vcpu *vcpu;
1548 	struct kvm_arch *ka = &kvm->arch;
1549 
1550 	spin_lock(&ka->pvclock_gtod_sync_lock);
1551 	kvm_make_mclock_inprogress_request(kvm);
1552 	/* no guest entries from this point */
1553 	pvclock_update_vm_gtod_copy(kvm);
1554 
1555 	kvm_for_each_vcpu(i, vcpu, kvm)
1556 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1557 
1558 	/* guest entries allowed */
1559 	kvm_for_each_vcpu(i, vcpu, kvm)
1560 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1561 
1562 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1563 #endif
1564 }
1565 
1566 static int kvm_guest_time_update(struct kvm_vcpu *v)
1567 {
1568 	unsigned long flags, this_tsc_khz;
1569 	struct kvm_vcpu_arch *vcpu = &v->arch;
1570 	struct kvm_arch *ka = &v->kvm->arch;
1571 	s64 kernel_ns;
1572 	u64 tsc_timestamp, host_tsc;
1573 	struct pvclock_vcpu_time_info guest_hv_clock;
1574 	u8 pvclock_flags;
1575 	bool use_master_clock;
1576 
1577 	kernel_ns = 0;
1578 	host_tsc = 0;
1579 
1580 	/*
1581 	 * If the host uses TSC clock, then passthrough TSC as stable
1582 	 * to the guest.
1583 	 */
1584 	spin_lock(&ka->pvclock_gtod_sync_lock);
1585 	use_master_clock = ka->use_master_clock;
1586 	if (use_master_clock) {
1587 		host_tsc = ka->master_cycle_now;
1588 		kernel_ns = ka->master_kernel_ns;
1589 	}
1590 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1591 
1592 	/* Keep irq disabled to prevent changes to the clock */
1593 	local_irq_save(flags);
1594 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1595 	if (unlikely(this_tsc_khz == 0)) {
1596 		local_irq_restore(flags);
1597 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1598 		return 1;
1599 	}
1600 	if (!use_master_clock) {
1601 		host_tsc = native_read_tsc();
1602 		kernel_ns = get_kernel_ns();
1603 	}
1604 
1605 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1606 
1607 	/*
1608 	 * We may have to catch up the TSC to match elapsed wall clock
1609 	 * time for two reasons, even if kvmclock is used.
1610 	 *   1) CPU could have been running below the maximum TSC rate
1611 	 *   2) Broken TSC compensation resets the base at each VCPU
1612 	 *      entry to avoid unknown leaps of TSC even when running
1613 	 *      again on the same CPU.  This may cause apparent elapsed
1614 	 *      time to disappear, and the guest to stand still or run
1615 	 *	very slowly.
1616 	 */
1617 	if (vcpu->tsc_catchup) {
1618 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1619 		if (tsc > tsc_timestamp) {
1620 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1621 			tsc_timestamp = tsc;
1622 		}
1623 	}
1624 
1625 	local_irq_restore(flags);
1626 
1627 	if (!vcpu->pv_time_enabled)
1628 		return 0;
1629 
1630 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1631 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1632 				   &vcpu->hv_clock.tsc_shift,
1633 				   &vcpu->hv_clock.tsc_to_system_mul);
1634 		vcpu->hw_tsc_khz = this_tsc_khz;
1635 	}
1636 
1637 	/* With all the info we got, fill in the values */
1638 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1639 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1640 	vcpu->last_guest_tsc = tsc_timestamp;
1641 
1642 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1643 		&guest_hv_clock, sizeof(guest_hv_clock))))
1644 		return 0;
1645 
1646 	/*
1647 	 * The interface expects us to write an even number signaling that the
1648 	 * update is finished. Since the guest won't see the intermediate
1649 	 * state, we just increase by 2 at the end.
1650 	 */
1651 	vcpu->hv_clock.version = guest_hv_clock.version + 2;
1652 
1653 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1654 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1655 
1656 	if (vcpu->pvclock_set_guest_stopped_request) {
1657 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1658 		vcpu->pvclock_set_guest_stopped_request = false;
1659 	}
1660 
1661 	/* If the host uses TSC clocksource, then it is stable */
1662 	if (use_master_clock)
1663 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1664 
1665 	vcpu->hv_clock.flags = pvclock_flags;
1666 
1667 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1668 
1669 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1670 				&vcpu->hv_clock,
1671 				sizeof(vcpu->hv_clock));
1672 	return 0;
1673 }
1674 
1675 /*
1676  * kvmclock updates which are isolated to a given vcpu, such as
1677  * vcpu->cpu migration, should not allow system_timestamp from
1678  * the rest of the vcpus to remain static. Otherwise ntp frequency
1679  * correction applies to one vcpu's system_timestamp but not
1680  * the others.
1681  *
1682  * So in those cases, request a kvmclock update for all vcpus.
1683  * We need to rate-limit these requests though, as they can
1684  * considerably slow guests that have a large number of vcpus.
1685  * The time for a remote vcpu to update its kvmclock is bound
1686  * by the delay we use to rate-limit the updates.
1687  */
1688 
1689 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1690 
1691 static void kvmclock_update_fn(struct work_struct *work)
1692 {
1693 	int i;
1694 	struct delayed_work *dwork = to_delayed_work(work);
1695 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1696 					   kvmclock_update_work);
1697 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1698 	struct kvm_vcpu *vcpu;
1699 
1700 	kvm_for_each_vcpu(i, vcpu, kvm) {
1701 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1702 		kvm_vcpu_kick(vcpu);
1703 	}
1704 }
1705 
1706 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1707 {
1708 	struct kvm *kvm = v->kvm;
1709 
1710 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1711 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1712 					KVMCLOCK_UPDATE_DELAY);
1713 }
1714 
1715 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1716 
1717 static void kvmclock_sync_fn(struct work_struct *work)
1718 {
1719 	struct delayed_work *dwork = to_delayed_work(work);
1720 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1721 					   kvmclock_sync_work);
1722 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1723 
1724 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1725 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1726 					KVMCLOCK_SYNC_PERIOD);
1727 }
1728 
1729 static bool msr_mtrr_valid(unsigned msr)
1730 {
1731 	switch (msr) {
1732 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1733 	case MSR_MTRRfix64K_00000:
1734 	case MSR_MTRRfix16K_80000:
1735 	case MSR_MTRRfix16K_A0000:
1736 	case MSR_MTRRfix4K_C0000:
1737 	case MSR_MTRRfix4K_C8000:
1738 	case MSR_MTRRfix4K_D0000:
1739 	case MSR_MTRRfix4K_D8000:
1740 	case MSR_MTRRfix4K_E0000:
1741 	case MSR_MTRRfix4K_E8000:
1742 	case MSR_MTRRfix4K_F0000:
1743 	case MSR_MTRRfix4K_F8000:
1744 	case MSR_MTRRdefType:
1745 	case MSR_IA32_CR_PAT:
1746 		return true;
1747 	case 0x2f8:
1748 		return true;
1749 	}
1750 	return false;
1751 }
1752 
1753 static bool valid_pat_type(unsigned t)
1754 {
1755 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1756 }
1757 
1758 static bool valid_mtrr_type(unsigned t)
1759 {
1760 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1761 }
1762 
1763 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1764 {
1765 	int i;
1766 	u64 mask;
1767 
1768 	if (!msr_mtrr_valid(msr))
1769 		return false;
1770 
1771 	if (msr == MSR_IA32_CR_PAT) {
1772 		for (i = 0; i < 8; i++)
1773 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1774 				return false;
1775 		return true;
1776 	} else if (msr == MSR_MTRRdefType) {
1777 		if (data & ~0xcff)
1778 			return false;
1779 		return valid_mtrr_type(data & 0xff);
1780 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1781 		for (i = 0; i < 8 ; i++)
1782 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1783 				return false;
1784 		return true;
1785 	}
1786 
1787 	/* variable MTRRs */
1788 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1789 
1790 	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1791 	if ((msr & 1) == 0) {
1792 		/* MTRR base */
1793 		if (!valid_mtrr_type(data & 0xff))
1794 			return false;
1795 		mask |= 0xf00;
1796 	} else
1797 		/* MTRR mask */
1798 		mask |= 0x7ff;
1799 	if (data & mask) {
1800 		kvm_inject_gp(vcpu, 0);
1801 		return false;
1802 	}
1803 
1804 	return true;
1805 }
1806 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1807 
1808 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1809 {
1810 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1811 
1812 	if (!kvm_mtrr_valid(vcpu, msr, data))
1813 		return 1;
1814 
1815 	if (msr == MSR_MTRRdefType) {
1816 		vcpu->arch.mtrr_state.def_type = data;
1817 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1818 	} else if (msr == MSR_MTRRfix64K_00000)
1819 		p[0] = data;
1820 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1821 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1822 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1823 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1824 	else if (msr == MSR_IA32_CR_PAT)
1825 		vcpu->arch.pat = data;
1826 	else {	/* Variable MTRRs */
1827 		int idx, is_mtrr_mask;
1828 		u64 *pt;
1829 
1830 		idx = (msr - 0x200) / 2;
1831 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1832 		if (!is_mtrr_mask)
1833 			pt =
1834 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1835 		else
1836 			pt =
1837 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1838 		*pt = data;
1839 	}
1840 
1841 	kvm_mmu_reset_context(vcpu);
1842 	return 0;
1843 }
1844 
1845 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1846 {
1847 	u64 mcg_cap = vcpu->arch.mcg_cap;
1848 	unsigned bank_num = mcg_cap & 0xff;
1849 
1850 	switch (msr) {
1851 	case MSR_IA32_MCG_STATUS:
1852 		vcpu->arch.mcg_status = data;
1853 		break;
1854 	case MSR_IA32_MCG_CTL:
1855 		if (!(mcg_cap & MCG_CTL_P))
1856 			return 1;
1857 		if (data != 0 && data != ~(u64)0)
1858 			return -1;
1859 		vcpu->arch.mcg_ctl = data;
1860 		break;
1861 	default:
1862 		if (msr >= MSR_IA32_MC0_CTL &&
1863 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1864 			u32 offset = msr - MSR_IA32_MC0_CTL;
1865 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1866 			 * some Linux kernels though clear bit 10 in bank 4 to
1867 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1868 			 * this to avoid an uncatched #GP in the guest
1869 			 */
1870 			if ((offset & 0x3) == 0 &&
1871 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1872 				return -1;
1873 			vcpu->arch.mce_banks[offset] = data;
1874 			break;
1875 		}
1876 		return 1;
1877 	}
1878 	return 0;
1879 }
1880 
1881 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1882 {
1883 	struct kvm *kvm = vcpu->kvm;
1884 	int lm = is_long_mode(vcpu);
1885 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1886 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1887 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1888 		: kvm->arch.xen_hvm_config.blob_size_32;
1889 	u32 page_num = data & ~PAGE_MASK;
1890 	u64 page_addr = data & PAGE_MASK;
1891 	u8 *page;
1892 	int r;
1893 
1894 	r = -E2BIG;
1895 	if (page_num >= blob_size)
1896 		goto out;
1897 	r = -ENOMEM;
1898 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1899 	if (IS_ERR(page)) {
1900 		r = PTR_ERR(page);
1901 		goto out;
1902 	}
1903 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1904 		goto out_free;
1905 	r = 0;
1906 out_free:
1907 	kfree(page);
1908 out:
1909 	return r;
1910 }
1911 
1912 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1913 {
1914 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1915 }
1916 
1917 static bool kvm_hv_msr_partition_wide(u32 msr)
1918 {
1919 	bool r = false;
1920 	switch (msr) {
1921 	case HV_X64_MSR_GUEST_OS_ID:
1922 	case HV_X64_MSR_HYPERCALL:
1923 	case HV_X64_MSR_REFERENCE_TSC:
1924 	case HV_X64_MSR_TIME_REF_COUNT:
1925 		r = true;
1926 		break;
1927 	}
1928 
1929 	return r;
1930 }
1931 
1932 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1933 {
1934 	struct kvm *kvm = vcpu->kvm;
1935 
1936 	switch (msr) {
1937 	case HV_X64_MSR_GUEST_OS_ID:
1938 		kvm->arch.hv_guest_os_id = data;
1939 		/* setting guest os id to zero disables hypercall page */
1940 		if (!kvm->arch.hv_guest_os_id)
1941 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1942 		break;
1943 	case HV_X64_MSR_HYPERCALL: {
1944 		u64 gfn;
1945 		unsigned long addr;
1946 		u8 instructions[4];
1947 
1948 		/* if guest os id is not set hypercall should remain disabled */
1949 		if (!kvm->arch.hv_guest_os_id)
1950 			break;
1951 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1952 			kvm->arch.hv_hypercall = data;
1953 			break;
1954 		}
1955 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1956 		addr = gfn_to_hva(kvm, gfn);
1957 		if (kvm_is_error_hva(addr))
1958 			return 1;
1959 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1960 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1961 		if (__copy_to_user((void __user *)addr, instructions, 4))
1962 			return 1;
1963 		kvm->arch.hv_hypercall = data;
1964 		mark_page_dirty(kvm, gfn);
1965 		break;
1966 	}
1967 	case HV_X64_MSR_REFERENCE_TSC: {
1968 		u64 gfn;
1969 		HV_REFERENCE_TSC_PAGE tsc_ref;
1970 		memset(&tsc_ref, 0, sizeof(tsc_ref));
1971 		kvm->arch.hv_tsc_page = data;
1972 		if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1973 			break;
1974 		gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1975 		if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1976 			&tsc_ref, sizeof(tsc_ref)))
1977 			return 1;
1978 		mark_page_dirty(kvm, gfn);
1979 		break;
1980 	}
1981 	default:
1982 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1983 			    "data 0x%llx\n", msr, data);
1984 		return 1;
1985 	}
1986 	return 0;
1987 }
1988 
1989 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1990 {
1991 	switch (msr) {
1992 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1993 		u64 gfn;
1994 		unsigned long addr;
1995 
1996 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1997 			vcpu->arch.hv_vapic = data;
1998 			if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1999 				return 1;
2000 			break;
2001 		}
2002 		gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2003 		addr = gfn_to_hva(vcpu->kvm, gfn);
2004 		if (kvm_is_error_hva(addr))
2005 			return 1;
2006 		if (__clear_user((void __user *)addr, PAGE_SIZE))
2007 			return 1;
2008 		vcpu->arch.hv_vapic = data;
2009 		mark_page_dirty(vcpu->kvm, gfn);
2010 		if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2011 			return 1;
2012 		break;
2013 	}
2014 	case HV_X64_MSR_EOI:
2015 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2016 	case HV_X64_MSR_ICR:
2017 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2018 	case HV_X64_MSR_TPR:
2019 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2020 	default:
2021 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2022 			    "data 0x%llx\n", msr, data);
2023 		return 1;
2024 	}
2025 
2026 	return 0;
2027 }
2028 
2029 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2030 {
2031 	gpa_t gpa = data & ~0x3f;
2032 
2033 	/* Bits 2:5 are reserved, Should be zero */
2034 	if (data & 0x3c)
2035 		return 1;
2036 
2037 	vcpu->arch.apf.msr_val = data;
2038 
2039 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2040 		kvm_clear_async_pf_completion_queue(vcpu);
2041 		kvm_async_pf_hash_reset(vcpu);
2042 		return 0;
2043 	}
2044 
2045 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2046 					sizeof(u32)))
2047 		return 1;
2048 
2049 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2050 	kvm_async_pf_wakeup_all(vcpu);
2051 	return 0;
2052 }
2053 
2054 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2055 {
2056 	vcpu->arch.pv_time_enabled = false;
2057 }
2058 
2059 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2060 {
2061 	u64 delta;
2062 
2063 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2064 		return;
2065 
2066 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2067 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2068 	vcpu->arch.st.accum_steal = delta;
2069 }
2070 
2071 static void record_steal_time(struct kvm_vcpu *vcpu)
2072 {
2073 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2074 		return;
2075 
2076 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2077 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2078 		return;
2079 
2080 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2081 	vcpu->arch.st.steal.version += 2;
2082 	vcpu->arch.st.accum_steal = 0;
2083 
2084 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2085 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2086 }
2087 
2088 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2089 {
2090 	bool pr = false;
2091 	u32 msr = msr_info->index;
2092 	u64 data = msr_info->data;
2093 
2094 	switch (msr) {
2095 	case MSR_AMD64_NB_CFG:
2096 	case MSR_IA32_UCODE_REV:
2097 	case MSR_IA32_UCODE_WRITE:
2098 	case MSR_VM_HSAVE_PA:
2099 	case MSR_AMD64_PATCH_LOADER:
2100 	case MSR_AMD64_BU_CFG2:
2101 		break;
2102 
2103 	case MSR_EFER:
2104 		return set_efer(vcpu, data);
2105 	case MSR_K7_HWCR:
2106 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2107 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2108 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2109 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2110 		if (data != 0) {
2111 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2112 				    data);
2113 			return 1;
2114 		}
2115 		break;
2116 	case MSR_FAM10H_MMIO_CONF_BASE:
2117 		if (data != 0) {
2118 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2119 				    "0x%llx\n", data);
2120 			return 1;
2121 		}
2122 		break;
2123 	case MSR_IA32_DEBUGCTLMSR:
2124 		if (!data) {
2125 			/* We support the non-activated case already */
2126 			break;
2127 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2128 			/* Values other than LBR and BTF are vendor-specific,
2129 			   thus reserved and should throw a #GP */
2130 			return 1;
2131 		}
2132 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2133 			    __func__, data);
2134 		break;
2135 	case 0x200 ... 0x2ff:
2136 		return set_msr_mtrr(vcpu, msr, data);
2137 	case MSR_IA32_APICBASE:
2138 		return kvm_set_apic_base(vcpu, msr_info);
2139 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2140 		return kvm_x2apic_msr_write(vcpu, msr, data);
2141 	case MSR_IA32_TSCDEADLINE:
2142 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2143 		break;
2144 	case MSR_IA32_TSC_ADJUST:
2145 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2146 			if (!msr_info->host_initiated) {
2147 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2148 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2149 			}
2150 			vcpu->arch.ia32_tsc_adjust_msr = data;
2151 		}
2152 		break;
2153 	case MSR_IA32_MISC_ENABLE:
2154 		vcpu->arch.ia32_misc_enable_msr = data;
2155 		break;
2156 	case MSR_KVM_WALL_CLOCK_NEW:
2157 	case MSR_KVM_WALL_CLOCK:
2158 		vcpu->kvm->arch.wall_clock = data;
2159 		kvm_write_wall_clock(vcpu->kvm, data);
2160 		break;
2161 	case MSR_KVM_SYSTEM_TIME_NEW:
2162 	case MSR_KVM_SYSTEM_TIME: {
2163 		u64 gpa_offset;
2164 		kvmclock_reset(vcpu);
2165 
2166 		vcpu->arch.time = data;
2167 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2168 
2169 		/* we verify if the enable bit is set... */
2170 		if (!(data & 1))
2171 			break;
2172 
2173 		gpa_offset = data & ~(PAGE_MASK | 1);
2174 
2175 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2176 		     &vcpu->arch.pv_time, data & ~1ULL,
2177 		     sizeof(struct pvclock_vcpu_time_info)))
2178 			vcpu->arch.pv_time_enabled = false;
2179 		else
2180 			vcpu->arch.pv_time_enabled = true;
2181 
2182 		break;
2183 	}
2184 	case MSR_KVM_ASYNC_PF_EN:
2185 		if (kvm_pv_enable_async_pf(vcpu, data))
2186 			return 1;
2187 		break;
2188 	case MSR_KVM_STEAL_TIME:
2189 
2190 		if (unlikely(!sched_info_on()))
2191 			return 1;
2192 
2193 		if (data & KVM_STEAL_RESERVED_MASK)
2194 			return 1;
2195 
2196 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2197 						data & KVM_STEAL_VALID_BITS,
2198 						sizeof(struct kvm_steal_time)))
2199 			return 1;
2200 
2201 		vcpu->arch.st.msr_val = data;
2202 
2203 		if (!(data & KVM_MSR_ENABLED))
2204 			break;
2205 
2206 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2207 
2208 		preempt_disable();
2209 		accumulate_steal_time(vcpu);
2210 		preempt_enable();
2211 
2212 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2213 
2214 		break;
2215 	case MSR_KVM_PV_EOI_EN:
2216 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2217 			return 1;
2218 		break;
2219 
2220 	case MSR_IA32_MCG_CTL:
2221 	case MSR_IA32_MCG_STATUS:
2222 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2223 		return set_msr_mce(vcpu, msr, data);
2224 
2225 	/* Performance counters are not protected by a CPUID bit,
2226 	 * so we should check all of them in the generic path for the sake of
2227 	 * cross vendor migration.
2228 	 * Writing a zero into the event select MSRs disables them,
2229 	 * which we perfectly emulate ;-). Any other value should be at least
2230 	 * reported, some guests depend on them.
2231 	 */
2232 	case MSR_K7_EVNTSEL0:
2233 	case MSR_K7_EVNTSEL1:
2234 	case MSR_K7_EVNTSEL2:
2235 	case MSR_K7_EVNTSEL3:
2236 		if (data != 0)
2237 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2238 				    "0x%x data 0x%llx\n", msr, data);
2239 		break;
2240 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2241 	 * so we ignore writes to make it happy.
2242 	 */
2243 	case MSR_K7_PERFCTR0:
2244 	case MSR_K7_PERFCTR1:
2245 	case MSR_K7_PERFCTR2:
2246 	case MSR_K7_PERFCTR3:
2247 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2248 			    "0x%x data 0x%llx\n", msr, data);
2249 		break;
2250 	case MSR_P6_PERFCTR0:
2251 	case MSR_P6_PERFCTR1:
2252 		pr = true;
2253 	case MSR_P6_EVNTSEL0:
2254 	case MSR_P6_EVNTSEL1:
2255 		if (kvm_pmu_msr(vcpu, msr))
2256 			return kvm_pmu_set_msr(vcpu, msr_info);
2257 
2258 		if (pr || data != 0)
2259 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2260 				    "0x%x data 0x%llx\n", msr, data);
2261 		break;
2262 	case MSR_K7_CLK_CTL:
2263 		/*
2264 		 * Ignore all writes to this no longer documented MSR.
2265 		 * Writes are only relevant for old K7 processors,
2266 		 * all pre-dating SVM, but a recommended workaround from
2267 		 * AMD for these chips. It is possible to specify the
2268 		 * affected processor models on the command line, hence
2269 		 * the need to ignore the workaround.
2270 		 */
2271 		break;
2272 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2273 		if (kvm_hv_msr_partition_wide(msr)) {
2274 			int r;
2275 			mutex_lock(&vcpu->kvm->lock);
2276 			r = set_msr_hyperv_pw(vcpu, msr, data);
2277 			mutex_unlock(&vcpu->kvm->lock);
2278 			return r;
2279 		} else
2280 			return set_msr_hyperv(vcpu, msr, data);
2281 		break;
2282 	case MSR_IA32_BBL_CR_CTL3:
2283 		/* Drop writes to this legacy MSR -- see rdmsr
2284 		 * counterpart for further detail.
2285 		 */
2286 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2287 		break;
2288 	case MSR_AMD64_OSVW_ID_LENGTH:
2289 		if (!guest_cpuid_has_osvw(vcpu))
2290 			return 1;
2291 		vcpu->arch.osvw.length = data;
2292 		break;
2293 	case MSR_AMD64_OSVW_STATUS:
2294 		if (!guest_cpuid_has_osvw(vcpu))
2295 			return 1;
2296 		vcpu->arch.osvw.status = data;
2297 		break;
2298 	default:
2299 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2300 			return xen_hvm_config(vcpu, data);
2301 		if (kvm_pmu_msr(vcpu, msr))
2302 			return kvm_pmu_set_msr(vcpu, msr_info);
2303 		if (!ignore_msrs) {
2304 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2305 				    msr, data);
2306 			return 1;
2307 		} else {
2308 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2309 				    msr, data);
2310 			break;
2311 		}
2312 	}
2313 	return 0;
2314 }
2315 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2316 
2317 
2318 /*
2319  * Reads an msr value (of 'msr_index') into 'pdata'.
2320  * Returns 0 on success, non-0 otherwise.
2321  * Assumes vcpu_load() was already called.
2322  */
2323 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2324 {
2325 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2326 }
2327 
2328 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2329 {
2330 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2331 
2332 	if (!msr_mtrr_valid(msr))
2333 		return 1;
2334 
2335 	if (msr == MSR_MTRRdefType)
2336 		*pdata = vcpu->arch.mtrr_state.def_type +
2337 			 (vcpu->arch.mtrr_state.enabled << 10);
2338 	else if (msr == MSR_MTRRfix64K_00000)
2339 		*pdata = p[0];
2340 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2341 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2342 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2343 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2344 	else if (msr == MSR_IA32_CR_PAT)
2345 		*pdata = vcpu->arch.pat;
2346 	else {	/* Variable MTRRs */
2347 		int idx, is_mtrr_mask;
2348 		u64 *pt;
2349 
2350 		idx = (msr - 0x200) / 2;
2351 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2352 		if (!is_mtrr_mask)
2353 			pt =
2354 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2355 		else
2356 			pt =
2357 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2358 		*pdata = *pt;
2359 	}
2360 
2361 	return 0;
2362 }
2363 
2364 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2365 {
2366 	u64 data;
2367 	u64 mcg_cap = vcpu->arch.mcg_cap;
2368 	unsigned bank_num = mcg_cap & 0xff;
2369 
2370 	switch (msr) {
2371 	case MSR_IA32_P5_MC_ADDR:
2372 	case MSR_IA32_P5_MC_TYPE:
2373 		data = 0;
2374 		break;
2375 	case MSR_IA32_MCG_CAP:
2376 		data = vcpu->arch.mcg_cap;
2377 		break;
2378 	case MSR_IA32_MCG_CTL:
2379 		if (!(mcg_cap & MCG_CTL_P))
2380 			return 1;
2381 		data = vcpu->arch.mcg_ctl;
2382 		break;
2383 	case MSR_IA32_MCG_STATUS:
2384 		data = vcpu->arch.mcg_status;
2385 		break;
2386 	default:
2387 		if (msr >= MSR_IA32_MC0_CTL &&
2388 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2389 			u32 offset = msr - MSR_IA32_MC0_CTL;
2390 			data = vcpu->arch.mce_banks[offset];
2391 			break;
2392 		}
2393 		return 1;
2394 	}
2395 	*pdata = data;
2396 	return 0;
2397 }
2398 
2399 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2400 {
2401 	u64 data = 0;
2402 	struct kvm *kvm = vcpu->kvm;
2403 
2404 	switch (msr) {
2405 	case HV_X64_MSR_GUEST_OS_ID:
2406 		data = kvm->arch.hv_guest_os_id;
2407 		break;
2408 	case HV_X64_MSR_HYPERCALL:
2409 		data = kvm->arch.hv_hypercall;
2410 		break;
2411 	case HV_X64_MSR_TIME_REF_COUNT: {
2412 		data =
2413 		     div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2414 		break;
2415 	}
2416 	case HV_X64_MSR_REFERENCE_TSC:
2417 		data = kvm->arch.hv_tsc_page;
2418 		break;
2419 	default:
2420 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2421 		return 1;
2422 	}
2423 
2424 	*pdata = data;
2425 	return 0;
2426 }
2427 
2428 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2429 {
2430 	u64 data = 0;
2431 
2432 	switch (msr) {
2433 	case HV_X64_MSR_VP_INDEX: {
2434 		int r;
2435 		struct kvm_vcpu *v;
2436 		kvm_for_each_vcpu(r, v, vcpu->kvm) {
2437 			if (v == vcpu) {
2438 				data = r;
2439 				break;
2440 			}
2441 		}
2442 		break;
2443 	}
2444 	case HV_X64_MSR_EOI:
2445 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2446 	case HV_X64_MSR_ICR:
2447 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2448 	case HV_X64_MSR_TPR:
2449 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2450 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2451 		data = vcpu->arch.hv_vapic;
2452 		break;
2453 	default:
2454 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2455 		return 1;
2456 	}
2457 	*pdata = data;
2458 	return 0;
2459 }
2460 
2461 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2462 {
2463 	u64 data;
2464 
2465 	switch (msr) {
2466 	case MSR_IA32_PLATFORM_ID:
2467 	case MSR_IA32_EBL_CR_POWERON:
2468 	case MSR_IA32_DEBUGCTLMSR:
2469 	case MSR_IA32_LASTBRANCHFROMIP:
2470 	case MSR_IA32_LASTBRANCHTOIP:
2471 	case MSR_IA32_LASTINTFROMIP:
2472 	case MSR_IA32_LASTINTTOIP:
2473 	case MSR_K8_SYSCFG:
2474 	case MSR_K7_HWCR:
2475 	case MSR_VM_HSAVE_PA:
2476 	case MSR_K7_EVNTSEL0:
2477 	case MSR_K7_EVNTSEL1:
2478 	case MSR_K7_EVNTSEL2:
2479 	case MSR_K7_EVNTSEL3:
2480 	case MSR_K7_PERFCTR0:
2481 	case MSR_K7_PERFCTR1:
2482 	case MSR_K7_PERFCTR2:
2483 	case MSR_K7_PERFCTR3:
2484 	case MSR_K8_INT_PENDING_MSG:
2485 	case MSR_AMD64_NB_CFG:
2486 	case MSR_FAM10H_MMIO_CONF_BASE:
2487 	case MSR_AMD64_BU_CFG2:
2488 		data = 0;
2489 		break;
2490 	case MSR_P6_PERFCTR0:
2491 	case MSR_P6_PERFCTR1:
2492 	case MSR_P6_EVNTSEL0:
2493 	case MSR_P6_EVNTSEL1:
2494 		if (kvm_pmu_msr(vcpu, msr))
2495 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2496 		data = 0;
2497 		break;
2498 	case MSR_IA32_UCODE_REV:
2499 		data = 0x100000000ULL;
2500 		break;
2501 	case MSR_MTRRcap:
2502 		data = 0x500 | KVM_NR_VAR_MTRR;
2503 		break;
2504 	case 0x200 ... 0x2ff:
2505 		return get_msr_mtrr(vcpu, msr, pdata);
2506 	case 0xcd: /* fsb frequency */
2507 		data = 3;
2508 		break;
2509 		/*
2510 		 * MSR_EBC_FREQUENCY_ID
2511 		 * Conservative value valid for even the basic CPU models.
2512 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2513 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2514 		 * and 266MHz for model 3, or 4. Set Core Clock
2515 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2516 		 * 31:24) even though these are only valid for CPU
2517 		 * models > 2, however guests may end up dividing or
2518 		 * multiplying by zero otherwise.
2519 		 */
2520 	case MSR_EBC_FREQUENCY_ID:
2521 		data = 1 << 24;
2522 		break;
2523 	case MSR_IA32_APICBASE:
2524 		data = kvm_get_apic_base(vcpu);
2525 		break;
2526 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2527 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2528 		break;
2529 	case MSR_IA32_TSCDEADLINE:
2530 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2531 		break;
2532 	case MSR_IA32_TSC_ADJUST:
2533 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2534 		break;
2535 	case MSR_IA32_MISC_ENABLE:
2536 		data = vcpu->arch.ia32_misc_enable_msr;
2537 		break;
2538 	case MSR_IA32_PERF_STATUS:
2539 		/* TSC increment by tick */
2540 		data = 1000ULL;
2541 		/* CPU multiplier */
2542 		data |= (((uint64_t)4ULL) << 40);
2543 		break;
2544 	case MSR_EFER:
2545 		data = vcpu->arch.efer;
2546 		break;
2547 	case MSR_KVM_WALL_CLOCK:
2548 	case MSR_KVM_WALL_CLOCK_NEW:
2549 		data = vcpu->kvm->arch.wall_clock;
2550 		break;
2551 	case MSR_KVM_SYSTEM_TIME:
2552 	case MSR_KVM_SYSTEM_TIME_NEW:
2553 		data = vcpu->arch.time;
2554 		break;
2555 	case MSR_KVM_ASYNC_PF_EN:
2556 		data = vcpu->arch.apf.msr_val;
2557 		break;
2558 	case MSR_KVM_STEAL_TIME:
2559 		data = vcpu->arch.st.msr_val;
2560 		break;
2561 	case MSR_KVM_PV_EOI_EN:
2562 		data = vcpu->arch.pv_eoi.msr_val;
2563 		break;
2564 	case MSR_IA32_P5_MC_ADDR:
2565 	case MSR_IA32_P5_MC_TYPE:
2566 	case MSR_IA32_MCG_CAP:
2567 	case MSR_IA32_MCG_CTL:
2568 	case MSR_IA32_MCG_STATUS:
2569 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2570 		return get_msr_mce(vcpu, msr, pdata);
2571 	case MSR_K7_CLK_CTL:
2572 		/*
2573 		 * Provide expected ramp-up count for K7. All other
2574 		 * are set to zero, indicating minimum divisors for
2575 		 * every field.
2576 		 *
2577 		 * This prevents guest kernels on AMD host with CPU
2578 		 * type 6, model 8 and higher from exploding due to
2579 		 * the rdmsr failing.
2580 		 */
2581 		data = 0x20000000;
2582 		break;
2583 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2584 		if (kvm_hv_msr_partition_wide(msr)) {
2585 			int r;
2586 			mutex_lock(&vcpu->kvm->lock);
2587 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2588 			mutex_unlock(&vcpu->kvm->lock);
2589 			return r;
2590 		} else
2591 			return get_msr_hyperv(vcpu, msr, pdata);
2592 		break;
2593 	case MSR_IA32_BBL_CR_CTL3:
2594 		/* This legacy MSR exists but isn't fully documented in current
2595 		 * silicon.  It is however accessed by winxp in very narrow
2596 		 * scenarios where it sets bit #19, itself documented as
2597 		 * a "reserved" bit.  Best effort attempt to source coherent
2598 		 * read data here should the balance of the register be
2599 		 * interpreted by the guest:
2600 		 *
2601 		 * L2 cache control register 3: 64GB range, 256KB size,
2602 		 * enabled, latency 0x1, configured
2603 		 */
2604 		data = 0xbe702111;
2605 		break;
2606 	case MSR_AMD64_OSVW_ID_LENGTH:
2607 		if (!guest_cpuid_has_osvw(vcpu))
2608 			return 1;
2609 		data = vcpu->arch.osvw.length;
2610 		break;
2611 	case MSR_AMD64_OSVW_STATUS:
2612 		if (!guest_cpuid_has_osvw(vcpu))
2613 			return 1;
2614 		data = vcpu->arch.osvw.status;
2615 		break;
2616 	default:
2617 		if (kvm_pmu_msr(vcpu, msr))
2618 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2619 		if (!ignore_msrs) {
2620 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2621 			return 1;
2622 		} else {
2623 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2624 			data = 0;
2625 		}
2626 		break;
2627 	}
2628 	*pdata = data;
2629 	return 0;
2630 }
2631 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2632 
2633 /*
2634  * Read or write a bunch of msrs. All parameters are kernel addresses.
2635  *
2636  * @return number of msrs set successfully.
2637  */
2638 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2639 		    struct kvm_msr_entry *entries,
2640 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2641 				  unsigned index, u64 *data))
2642 {
2643 	int i, idx;
2644 
2645 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2646 	for (i = 0; i < msrs->nmsrs; ++i)
2647 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2648 			break;
2649 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2650 
2651 	return i;
2652 }
2653 
2654 /*
2655  * Read or write a bunch of msrs. Parameters are user addresses.
2656  *
2657  * @return number of msrs set successfully.
2658  */
2659 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2660 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2661 				unsigned index, u64 *data),
2662 		  int writeback)
2663 {
2664 	struct kvm_msrs msrs;
2665 	struct kvm_msr_entry *entries;
2666 	int r, n;
2667 	unsigned size;
2668 
2669 	r = -EFAULT;
2670 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2671 		goto out;
2672 
2673 	r = -E2BIG;
2674 	if (msrs.nmsrs >= MAX_IO_MSRS)
2675 		goto out;
2676 
2677 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2678 	entries = memdup_user(user_msrs->entries, size);
2679 	if (IS_ERR(entries)) {
2680 		r = PTR_ERR(entries);
2681 		goto out;
2682 	}
2683 
2684 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2685 	if (r < 0)
2686 		goto out_free;
2687 
2688 	r = -EFAULT;
2689 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2690 		goto out_free;
2691 
2692 	r = n;
2693 
2694 out_free:
2695 	kfree(entries);
2696 out:
2697 	return r;
2698 }
2699 
2700 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2701 {
2702 	int r;
2703 
2704 	switch (ext) {
2705 	case KVM_CAP_IRQCHIP:
2706 	case KVM_CAP_HLT:
2707 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2708 	case KVM_CAP_SET_TSS_ADDR:
2709 	case KVM_CAP_EXT_CPUID:
2710 	case KVM_CAP_EXT_EMUL_CPUID:
2711 	case KVM_CAP_CLOCKSOURCE:
2712 	case KVM_CAP_PIT:
2713 	case KVM_CAP_NOP_IO_DELAY:
2714 	case KVM_CAP_MP_STATE:
2715 	case KVM_CAP_SYNC_MMU:
2716 	case KVM_CAP_USER_NMI:
2717 	case KVM_CAP_REINJECT_CONTROL:
2718 	case KVM_CAP_IRQ_INJECT_STATUS:
2719 	case KVM_CAP_IRQFD:
2720 	case KVM_CAP_IOEVENTFD:
2721 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2722 	case KVM_CAP_PIT2:
2723 	case KVM_CAP_PIT_STATE2:
2724 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2725 	case KVM_CAP_XEN_HVM:
2726 	case KVM_CAP_ADJUST_CLOCK:
2727 	case KVM_CAP_VCPU_EVENTS:
2728 	case KVM_CAP_HYPERV:
2729 	case KVM_CAP_HYPERV_VAPIC:
2730 	case KVM_CAP_HYPERV_SPIN:
2731 	case KVM_CAP_PCI_SEGMENT:
2732 	case KVM_CAP_DEBUGREGS:
2733 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2734 	case KVM_CAP_XSAVE:
2735 	case KVM_CAP_ASYNC_PF:
2736 	case KVM_CAP_GET_TSC_KHZ:
2737 	case KVM_CAP_KVMCLOCK_CTRL:
2738 	case KVM_CAP_READONLY_MEM:
2739 	case KVM_CAP_HYPERV_TIME:
2740 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2741 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2742 	case KVM_CAP_ASSIGN_DEV_IRQ:
2743 	case KVM_CAP_PCI_2_3:
2744 #endif
2745 		r = 1;
2746 		break;
2747 	case KVM_CAP_COALESCED_MMIO:
2748 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2749 		break;
2750 	case KVM_CAP_VAPIC:
2751 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2752 		break;
2753 	case KVM_CAP_NR_VCPUS:
2754 		r = KVM_SOFT_MAX_VCPUS;
2755 		break;
2756 	case KVM_CAP_MAX_VCPUS:
2757 		r = KVM_MAX_VCPUS;
2758 		break;
2759 	case KVM_CAP_NR_MEMSLOTS:
2760 		r = KVM_USER_MEM_SLOTS;
2761 		break;
2762 	case KVM_CAP_PV_MMU:	/* obsolete */
2763 		r = 0;
2764 		break;
2765 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2766 	case KVM_CAP_IOMMU:
2767 		r = iommu_present(&pci_bus_type);
2768 		break;
2769 #endif
2770 	case KVM_CAP_MCE:
2771 		r = KVM_MAX_MCE_BANKS;
2772 		break;
2773 	case KVM_CAP_XCRS:
2774 		r = cpu_has_xsave;
2775 		break;
2776 	case KVM_CAP_TSC_CONTROL:
2777 		r = kvm_has_tsc_control;
2778 		break;
2779 	case KVM_CAP_TSC_DEADLINE_TIMER:
2780 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2781 		break;
2782 	default:
2783 		r = 0;
2784 		break;
2785 	}
2786 	return r;
2787 
2788 }
2789 
2790 long kvm_arch_dev_ioctl(struct file *filp,
2791 			unsigned int ioctl, unsigned long arg)
2792 {
2793 	void __user *argp = (void __user *)arg;
2794 	long r;
2795 
2796 	switch (ioctl) {
2797 	case KVM_GET_MSR_INDEX_LIST: {
2798 		struct kvm_msr_list __user *user_msr_list = argp;
2799 		struct kvm_msr_list msr_list;
2800 		unsigned n;
2801 
2802 		r = -EFAULT;
2803 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2804 			goto out;
2805 		n = msr_list.nmsrs;
2806 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2807 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2808 			goto out;
2809 		r = -E2BIG;
2810 		if (n < msr_list.nmsrs)
2811 			goto out;
2812 		r = -EFAULT;
2813 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2814 				 num_msrs_to_save * sizeof(u32)))
2815 			goto out;
2816 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2817 				 &emulated_msrs,
2818 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2819 			goto out;
2820 		r = 0;
2821 		break;
2822 	}
2823 	case KVM_GET_SUPPORTED_CPUID:
2824 	case KVM_GET_EMULATED_CPUID: {
2825 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2826 		struct kvm_cpuid2 cpuid;
2827 
2828 		r = -EFAULT;
2829 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2830 			goto out;
2831 
2832 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2833 					    ioctl);
2834 		if (r)
2835 			goto out;
2836 
2837 		r = -EFAULT;
2838 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2839 			goto out;
2840 		r = 0;
2841 		break;
2842 	}
2843 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2844 		u64 mce_cap;
2845 
2846 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2847 		r = -EFAULT;
2848 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2849 			goto out;
2850 		r = 0;
2851 		break;
2852 	}
2853 	default:
2854 		r = -EINVAL;
2855 	}
2856 out:
2857 	return r;
2858 }
2859 
2860 static void wbinvd_ipi(void *garbage)
2861 {
2862 	wbinvd();
2863 }
2864 
2865 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2866 {
2867 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2868 }
2869 
2870 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2871 {
2872 	/* Address WBINVD may be executed by guest */
2873 	if (need_emulate_wbinvd(vcpu)) {
2874 		if (kvm_x86_ops->has_wbinvd_exit())
2875 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2876 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2877 			smp_call_function_single(vcpu->cpu,
2878 					wbinvd_ipi, NULL, 1);
2879 	}
2880 
2881 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2882 
2883 	/* Apply any externally detected TSC adjustments (due to suspend) */
2884 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2885 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2886 		vcpu->arch.tsc_offset_adjustment = 0;
2887 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2888 	}
2889 
2890 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2891 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2892 				native_read_tsc() - vcpu->arch.last_host_tsc;
2893 		if (tsc_delta < 0)
2894 			mark_tsc_unstable("KVM discovered backwards TSC");
2895 		if (check_tsc_unstable()) {
2896 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2897 						vcpu->arch.last_guest_tsc);
2898 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2899 			vcpu->arch.tsc_catchup = 1;
2900 		}
2901 		/*
2902 		 * On a host with synchronized TSC, there is no need to update
2903 		 * kvmclock on vcpu->cpu migration
2904 		 */
2905 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2906 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2907 		if (vcpu->cpu != cpu)
2908 			kvm_migrate_timers(vcpu);
2909 		vcpu->cpu = cpu;
2910 	}
2911 
2912 	accumulate_steal_time(vcpu);
2913 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2914 }
2915 
2916 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2917 {
2918 	kvm_x86_ops->vcpu_put(vcpu);
2919 	kvm_put_guest_fpu(vcpu);
2920 	vcpu->arch.last_host_tsc = native_read_tsc();
2921 }
2922 
2923 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2924 				    struct kvm_lapic_state *s)
2925 {
2926 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2927 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2928 
2929 	return 0;
2930 }
2931 
2932 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2933 				    struct kvm_lapic_state *s)
2934 {
2935 	kvm_apic_post_state_restore(vcpu, s);
2936 	update_cr8_intercept(vcpu);
2937 
2938 	return 0;
2939 }
2940 
2941 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2942 				    struct kvm_interrupt *irq)
2943 {
2944 	if (irq->irq >= KVM_NR_INTERRUPTS)
2945 		return -EINVAL;
2946 	if (irqchip_in_kernel(vcpu->kvm))
2947 		return -ENXIO;
2948 
2949 	kvm_queue_interrupt(vcpu, irq->irq, false);
2950 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2951 
2952 	return 0;
2953 }
2954 
2955 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2956 {
2957 	kvm_inject_nmi(vcpu);
2958 
2959 	return 0;
2960 }
2961 
2962 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2963 					   struct kvm_tpr_access_ctl *tac)
2964 {
2965 	if (tac->flags)
2966 		return -EINVAL;
2967 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2968 	return 0;
2969 }
2970 
2971 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2972 					u64 mcg_cap)
2973 {
2974 	int r;
2975 	unsigned bank_num = mcg_cap & 0xff, bank;
2976 
2977 	r = -EINVAL;
2978 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2979 		goto out;
2980 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2981 		goto out;
2982 	r = 0;
2983 	vcpu->arch.mcg_cap = mcg_cap;
2984 	/* Init IA32_MCG_CTL to all 1s */
2985 	if (mcg_cap & MCG_CTL_P)
2986 		vcpu->arch.mcg_ctl = ~(u64)0;
2987 	/* Init IA32_MCi_CTL to all 1s */
2988 	for (bank = 0; bank < bank_num; bank++)
2989 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2990 out:
2991 	return r;
2992 }
2993 
2994 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2995 				      struct kvm_x86_mce *mce)
2996 {
2997 	u64 mcg_cap = vcpu->arch.mcg_cap;
2998 	unsigned bank_num = mcg_cap & 0xff;
2999 	u64 *banks = vcpu->arch.mce_banks;
3000 
3001 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3002 		return -EINVAL;
3003 	/*
3004 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3005 	 * reporting is disabled
3006 	 */
3007 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3008 	    vcpu->arch.mcg_ctl != ~(u64)0)
3009 		return 0;
3010 	banks += 4 * mce->bank;
3011 	/*
3012 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3013 	 * reporting is disabled for the bank
3014 	 */
3015 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3016 		return 0;
3017 	if (mce->status & MCI_STATUS_UC) {
3018 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3019 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3020 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3021 			return 0;
3022 		}
3023 		if (banks[1] & MCI_STATUS_VAL)
3024 			mce->status |= MCI_STATUS_OVER;
3025 		banks[2] = mce->addr;
3026 		banks[3] = mce->misc;
3027 		vcpu->arch.mcg_status = mce->mcg_status;
3028 		banks[1] = mce->status;
3029 		kvm_queue_exception(vcpu, MC_VECTOR);
3030 	} else if (!(banks[1] & MCI_STATUS_VAL)
3031 		   || !(banks[1] & MCI_STATUS_UC)) {
3032 		if (banks[1] & MCI_STATUS_VAL)
3033 			mce->status |= MCI_STATUS_OVER;
3034 		banks[2] = mce->addr;
3035 		banks[3] = mce->misc;
3036 		banks[1] = mce->status;
3037 	} else
3038 		banks[1] |= MCI_STATUS_OVER;
3039 	return 0;
3040 }
3041 
3042 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3043 					       struct kvm_vcpu_events *events)
3044 {
3045 	process_nmi(vcpu);
3046 	events->exception.injected =
3047 		vcpu->arch.exception.pending &&
3048 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3049 	events->exception.nr = vcpu->arch.exception.nr;
3050 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3051 	events->exception.pad = 0;
3052 	events->exception.error_code = vcpu->arch.exception.error_code;
3053 
3054 	events->interrupt.injected =
3055 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3056 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3057 	events->interrupt.soft = 0;
3058 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3059 
3060 	events->nmi.injected = vcpu->arch.nmi_injected;
3061 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3062 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3063 	events->nmi.pad = 0;
3064 
3065 	events->sipi_vector = 0; /* never valid when reporting to user space */
3066 
3067 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3068 			 | KVM_VCPUEVENT_VALID_SHADOW);
3069 	memset(&events->reserved, 0, sizeof(events->reserved));
3070 }
3071 
3072 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3073 					      struct kvm_vcpu_events *events)
3074 {
3075 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3076 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3077 			      | KVM_VCPUEVENT_VALID_SHADOW))
3078 		return -EINVAL;
3079 
3080 	process_nmi(vcpu);
3081 	vcpu->arch.exception.pending = events->exception.injected;
3082 	vcpu->arch.exception.nr = events->exception.nr;
3083 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3084 	vcpu->arch.exception.error_code = events->exception.error_code;
3085 
3086 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3087 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3088 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3089 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3090 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3091 						  events->interrupt.shadow);
3092 
3093 	vcpu->arch.nmi_injected = events->nmi.injected;
3094 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3095 		vcpu->arch.nmi_pending = events->nmi.pending;
3096 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3097 
3098 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3099 	    kvm_vcpu_has_lapic(vcpu))
3100 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3101 
3102 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3103 
3104 	return 0;
3105 }
3106 
3107 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3108 					     struct kvm_debugregs *dbgregs)
3109 {
3110 	unsigned long val;
3111 
3112 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3113 	kvm_get_dr(vcpu, 6, &val);
3114 	dbgregs->dr6 = val;
3115 	dbgregs->dr7 = vcpu->arch.dr7;
3116 	dbgregs->flags = 0;
3117 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3118 }
3119 
3120 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3121 					    struct kvm_debugregs *dbgregs)
3122 {
3123 	if (dbgregs->flags)
3124 		return -EINVAL;
3125 
3126 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3127 	vcpu->arch.dr6 = dbgregs->dr6;
3128 	kvm_update_dr6(vcpu);
3129 	vcpu->arch.dr7 = dbgregs->dr7;
3130 	kvm_update_dr7(vcpu);
3131 
3132 	return 0;
3133 }
3134 
3135 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3136 
3137 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3138 {
3139 	struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3140 	u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3141 	u64 valid;
3142 
3143 	/*
3144 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3145 	 * leaves 0 and 1 in the loop below.
3146 	 */
3147 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3148 
3149 	/* Set XSTATE_BV */
3150 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3151 
3152 	/*
3153 	 * Copy each region from the possibly compacted offset to the
3154 	 * non-compacted offset.
3155 	 */
3156 	valid = xstate_bv & ~XSTATE_FPSSE;
3157 	while (valid) {
3158 		u64 feature = valid & -valid;
3159 		int index = fls64(feature) - 1;
3160 		void *src = get_xsave_addr(xsave, feature);
3161 
3162 		if (src) {
3163 			u32 size, offset, ecx, edx;
3164 			cpuid_count(XSTATE_CPUID, index,
3165 				    &size, &offset, &ecx, &edx);
3166 			memcpy(dest + offset, src, size);
3167 		}
3168 
3169 		valid -= feature;
3170 	}
3171 }
3172 
3173 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3174 {
3175 	struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3176 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3177 	u64 valid;
3178 
3179 	/*
3180 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3181 	 * leaves 0 and 1 in the loop below.
3182 	 */
3183 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3184 
3185 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3186 	xsave->xsave_hdr.xstate_bv = xstate_bv;
3187 	if (cpu_has_xsaves)
3188 		xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3189 
3190 	/*
3191 	 * Copy each region from the non-compacted offset to the
3192 	 * possibly compacted offset.
3193 	 */
3194 	valid = xstate_bv & ~XSTATE_FPSSE;
3195 	while (valid) {
3196 		u64 feature = valid & -valid;
3197 		int index = fls64(feature) - 1;
3198 		void *dest = get_xsave_addr(xsave, feature);
3199 
3200 		if (dest) {
3201 			u32 size, offset, ecx, edx;
3202 			cpuid_count(XSTATE_CPUID, index,
3203 				    &size, &offset, &ecx, &edx);
3204 			memcpy(dest, src + offset, size);
3205 		} else
3206 			WARN_ON_ONCE(1);
3207 
3208 		valid -= feature;
3209 	}
3210 }
3211 
3212 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3213 					 struct kvm_xsave *guest_xsave)
3214 {
3215 	if (cpu_has_xsave) {
3216 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3217 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3218 	} else {
3219 		memcpy(guest_xsave->region,
3220 			&vcpu->arch.guest_fpu.state->fxsave,
3221 			sizeof(struct i387_fxsave_struct));
3222 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3223 			XSTATE_FPSSE;
3224 	}
3225 }
3226 
3227 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3228 					struct kvm_xsave *guest_xsave)
3229 {
3230 	u64 xstate_bv =
3231 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3232 
3233 	if (cpu_has_xsave) {
3234 		/*
3235 		 * Here we allow setting states that are not present in
3236 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3237 		 * with old userspace.
3238 		 */
3239 		if (xstate_bv & ~kvm_supported_xcr0())
3240 			return -EINVAL;
3241 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3242 	} else {
3243 		if (xstate_bv & ~XSTATE_FPSSE)
3244 			return -EINVAL;
3245 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3246 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
3247 	}
3248 	return 0;
3249 }
3250 
3251 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3252 					struct kvm_xcrs *guest_xcrs)
3253 {
3254 	if (!cpu_has_xsave) {
3255 		guest_xcrs->nr_xcrs = 0;
3256 		return;
3257 	}
3258 
3259 	guest_xcrs->nr_xcrs = 1;
3260 	guest_xcrs->flags = 0;
3261 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3262 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3263 }
3264 
3265 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3266 				       struct kvm_xcrs *guest_xcrs)
3267 {
3268 	int i, r = 0;
3269 
3270 	if (!cpu_has_xsave)
3271 		return -EINVAL;
3272 
3273 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3274 		return -EINVAL;
3275 
3276 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3277 		/* Only support XCR0 currently */
3278 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3279 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3280 				guest_xcrs->xcrs[i].value);
3281 			break;
3282 		}
3283 	if (r)
3284 		r = -EINVAL;
3285 	return r;
3286 }
3287 
3288 /*
3289  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3290  * stopped by the hypervisor.  This function will be called from the host only.
3291  * EINVAL is returned when the host attempts to set the flag for a guest that
3292  * does not support pv clocks.
3293  */
3294 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3295 {
3296 	if (!vcpu->arch.pv_time_enabled)
3297 		return -EINVAL;
3298 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3299 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3300 	return 0;
3301 }
3302 
3303 long kvm_arch_vcpu_ioctl(struct file *filp,
3304 			 unsigned int ioctl, unsigned long arg)
3305 {
3306 	struct kvm_vcpu *vcpu = filp->private_data;
3307 	void __user *argp = (void __user *)arg;
3308 	int r;
3309 	union {
3310 		struct kvm_lapic_state *lapic;
3311 		struct kvm_xsave *xsave;
3312 		struct kvm_xcrs *xcrs;
3313 		void *buffer;
3314 	} u;
3315 
3316 	u.buffer = NULL;
3317 	switch (ioctl) {
3318 	case KVM_GET_LAPIC: {
3319 		r = -EINVAL;
3320 		if (!vcpu->arch.apic)
3321 			goto out;
3322 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3323 
3324 		r = -ENOMEM;
3325 		if (!u.lapic)
3326 			goto out;
3327 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3328 		if (r)
3329 			goto out;
3330 		r = -EFAULT;
3331 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3332 			goto out;
3333 		r = 0;
3334 		break;
3335 	}
3336 	case KVM_SET_LAPIC: {
3337 		r = -EINVAL;
3338 		if (!vcpu->arch.apic)
3339 			goto out;
3340 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3341 		if (IS_ERR(u.lapic))
3342 			return PTR_ERR(u.lapic);
3343 
3344 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3345 		break;
3346 	}
3347 	case KVM_INTERRUPT: {
3348 		struct kvm_interrupt irq;
3349 
3350 		r = -EFAULT;
3351 		if (copy_from_user(&irq, argp, sizeof irq))
3352 			goto out;
3353 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3354 		break;
3355 	}
3356 	case KVM_NMI: {
3357 		r = kvm_vcpu_ioctl_nmi(vcpu);
3358 		break;
3359 	}
3360 	case KVM_SET_CPUID: {
3361 		struct kvm_cpuid __user *cpuid_arg = argp;
3362 		struct kvm_cpuid cpuid;
3363 
3364 		r = -EFAULT;
3365 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3366 			goto out;
3367 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3368 		break;
3369 	}
3370 	case KVM_SET_CPUID2: {
3371 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3372 		struct kvm_cpuid2 cpuid;
3373 
3374 		r = -EFAULT;
3375 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3376 			goto out;
3377 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3378 					      cpuid_arg->entries);
3379 		break;
3380 	}
3381 	case KVM_GET_CPUID2: {
3382 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3383 		struct kvm_cpuid2 cpuid;
3384 
3385 		r = -EFAULT;
3386 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3387 			goto out;
3388 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3389 					      cpuid_arg->entries);
3390 		if (r)
3391 			goto out;
3392 		r = -EFAULT;
3393 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3394 			goto out;
3395 		r = 0;
3396 		break;
3397 	}
3398 	case KVM_GET_MSRS:
3399 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3400 		break;
3401 	case KVM_SET_MSRS:
3402 		r = msr_io(vcpu, argp, do_set_msr, 0);
3403 		break;
3404 	case KVM_TPR_ACCESS_REPORTING: {
3405 		struct kvm_tpr_access_ctl tac;
3406 
3407 		r = -EFAULT;
3408 		if (copy_from_user(&tac, argp, sizeof tac))
3409 			goto out;
3410 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3411 		if (r)
3412 			goto out;
3413 		r = -EFAULT;
3414 		if (copy_to_user(argp, &tac, sizeof tac))
3415 			goto out;
3416 		r = 0;
3417 		break;
3418 	};
3419 	case KVM_SET_VAPIC_ADDR: {
3420 		struct kvm_vapic_addr va;
3421 
3422 		r = -EINVAL;
3423 		if (!irqchip_in_kernel(vcpu->kvm))
3424 			goto out;
3425 		r = -EFAULT;
3426 		if (copy_from_user(&va, argp, sizeof va))
3427 			goto out;
3428 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3429 		break;
3430 	}
3431 	case KVM_X86_SETUP_MCE: {
3432 		u64 mcg_cap;
3433 
3434 		r = -EFAULT;
3435 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3436 			goto out;
3437 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3438 		break;
3439 	}
3440 	case KVM_X86_SET_MCE: {
3441 		struct kvm_x86_mce mce;
3442 
3443 		r = -EFAULT;
3444 		if (copy_from_user(&mce, argp, sizeof mce))
3445 			goto out;
3446 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3447 		break;
3448 	}
3449 	case KVM_GET_VCPU_EVENTS: {
3450 		struct kvm_vcpu_events events;
3451 
3452 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3453 
3454 		r = -EFAULT;
3455 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3456 			break;
3457 		r = 0;
3458 		break;
3459 	}
3460 	case KVM_SET_VCPU_EVENTS: {
3461 		struct kvm_vcpu_events events;
3462 
3463 		r = -EFAULT;
3464 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3465 			break;
3466 
3467 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3468 		break;
3469 	}
3470 	case KVM_GET_DEBUGREGS: {
3471 		struct kvm_debugregs dbgregs;
3472 
3473 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3474 
3475 		r = -EFAULT;
3476 		if (copy_to_user(argp, &dbgregs,
3477 				 sizeof(struct kvm_debugregs)))
3478 			break;
3479 		r = 0;
3480 		break;
3481 	}
3482 	case KVM_SET_DEBUGREGS: {
3483 		struct kvm_debugregs dbgregs;
3484 
3485 		r = -EFAULT;
3486 		if (copy_from_user(&dbgregs, argp,
3487 				   sizeof(struct kvm_debugregs)))
3488 			break;
3489 
3490 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3491 		break;
3492 	}
3493 	case KVM_GET_XSAVE: {
3494 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3495 		r = -ENOMEM;
3496 		if (!u.xsave)
3497 			break;
3498 
3499 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3500 
3501 		r = -EFAULT;
3502 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3503 			break;
3504 		r = 0;
3505 		break;
3506 	}
3507 	case KVM_SET_XSAVE: {
3508 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3509 		if (IS_ERR(u.xsave))
3510 			return PTR_ERR(u.xsave);
3511 
3512 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3513 		break;
3514 	}
3515 	case KVM_GET_XCRS: {
3516 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3517 		r = -ENOMEM;
3518 		if (!u.xcrs)
3519 			break;
3520 
3521 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3522 
3523 		r = -EFAULT;
3524 		if (copy_to_user(argp, u.xcrs,
3525 				 sizeof(struct kvm_xcrs)))
3526 			break;
3527 		r = 0;
3528 		break;
3529 	}
3530 	case KVM_SET_XCRS: {
3531 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3532 		if (IS_ERR(u.xcrs))
3533 			return PTR_ERR(u.xcrs);
3534 
3535 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3536 		break;
3537 	}
3538 	case KVM_SET_TSC_KHZ: {
3539 		u32 user_tsc_khz;
3540 
3541 		r = -EINVAL;
3542 		user_tsc_khz = (u32)arg;
3543 
3544 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3545 			goto out;
3546 
3547 		if (user_tsc_khz == 0)
3548 			user_tsc_khz = tsc_khz;
3549 
3550 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3551 
3552 		r = 0;
3553 		goto out;
3554 	}
3555 	case KVM_GET_TSC_KHZ: {
3556 		r = vcpu->arch.virtual_tsc_khz;
3557 		goto out;
3558 	}
3559 	case KVM_KVMCLOCK_CTRL: {
3560 		r = kvm_set_guest_paused(vcpu);
3561 		goto out;
3562 	}
3563 	default:
3564 		r = -EINVAL;
3565 	}
3566 out:
3567 	kfree(u.buffer);
3568 	return r;
3569 }
3570 
3571 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3572 {
3573 	return VM_FAULT_SIGBUS;
3574 }
3575 
3576 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3577 {
3578 	int ret;
3579 
3580 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3581 		return -EINVAL;
3582 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3583 	return ret;
3584 }
3585 
3586 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3587 					      u64 ident_addr)
3588 {
3589 	kvm->arch.ept_identity_map_addr = ident_addr;
3590 	return 0;
3591 }
3592 
3593 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3594 					  u32 kvm_nr_mmu_pages)
3595 {
3596 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3597 		return -EINVAL;
3598 
3599 	mutex_lock(&kvm->slots_lock);
3600 
3601 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3602 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3603 
3604 	mutex_unlock(&kvm->slots_lock);
3605 	return 0;
3606 }
3607 
3608 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3609 {
3610 	return kvm->arch.n_max_mmu_pages;
3611 }
3612 
3613 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3614 {
3615 	int r;
3616 
3617 	r = 0;
3618 	switch (chip->chip_id) {
3619 	case KVM_IRQCHIP_PIC_MASTER:
3620 		memcpy(&chip->chip.pic,
3621 			&pic_irqchip(kvm)->pics[0],
3622 			sizeof(struct kvm_pic_state));
3623 		break;
3624 	case KVM_IRQCHIP_PIC_SLAVE:
3625 		memcpy(&chip->chip.pic,
3626 			&pic_irqchip(kvm)->pics[1],
3627 			sizeof(struct kvm_pic_state));
3628 		break;
3629 	case KVM_IRQCHIP_IOAPIC:
3630 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3631 		break;
3632 	default:
3633 		r = -EINVAL;
3634 		break;
3635 	}
3636 	return r;
3637 }
3638 
3639 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3640 {
3641 	int r;
3642 
3643 	r = 0;
3644 	switch (chip->chip_id) {
3645 	case KVM_IRQCHIP_PIC_MASTER:
3646 		spin_lock(&pic_irqchip(kvm)->lock);
3647 		memcpy(&pic_irqchip(kvm)->pics[0],
3648 			&chip->chip.pic,
3649 			sizeof(struct kvm_pic_state));
3650 		spin_unlock(&pic_irqchip(kvm)->lock);
3651 		break;
3652 	case KVM_IRQCHIP_PIC_SLAVE:
3653 		spin_lock(&pic_irqchip(kvm)->lock);
3654 		memcpy(&pic_irqchip(kvm)->pics[1],
3655 			&chip->chip.pic,
3656 			sizeof(struct kvm_pic_state));
3657 		spin_unlock(&pic_irqchip(kvm)->lock);
3658 		break;
3659 	case KVM_IRQCHIP_IOAPIC:
3660 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3661 		break;
3662 	default:
3663 		r = -EINVAL;
3664 		break;
3665 	}
3666 	kvm_pic_update_irq(pic_irqchip(kvm));
3667 	return r;
3668 }
3669 
3670 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3671 {
3672 	int r = 0;
3673 
3674 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3675 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3676 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3677 	return r;
3678 }
3679 
3680 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3681 {
3682 	int r = 0;
3683 
3684 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3685 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3686 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3687 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3688 	return r;
3689 }
3690 
3691 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3692 {
3693 	int r = 0;
3694 
3695 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3696 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3697 		sizeof(ps->channels));
3698 	ps->flags = kvm->arch.vpit->pit_state.flags;
3699 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3700 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3701 	return r;
3702 }
3703 
3704 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3705 {
3706 	int r = 0, start = 0;
3707 	u32 prev_legacy, cur_legacy;
3708 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3709 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3710 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3711 	if (!prev_legacy && cur_legacy)
3712 		start = 1;
3713 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3714 	       sizeof(kvm->arch.vpit->pit_state.channels));
3715 	kvm->arch.vpit->pit_state.flags = ps->flags;
3716 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3717 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3718 	return r;
3719 }
3720 
3721 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3722 				 struct kvm_reinject_control *control)
3723 {
3724 	if (!kvm->arch.vpit)
3725 		return -ENXIO;
3726 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3727 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3728 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3729 	return 0;
3730 }
3731 
3732 /**
3733  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3734  * @kvm: kvm instance
3735  * @log: slot id and address to which we copy the log
3736  *
3737  * We need to keep it in mind that VCPU threads can write to the bitmap
3738  * concurrently.  So, to avoid losing data, we keep the following order for
3739  * each bit:
3740  *
3741  *   1. Take a snapshot of the bit and clear it if needed.
3742  *   2. Write protect the corresponding page.
3743  *   3. Flush TLB's if needed.
3744  *   4. Copy the snapshot to the userspace.
3745  *
3746  * Between 2 and 3, the guest may write to the page using the remaining TLB
3747  * entry.  This is not a problem because the page will be reported dirty at
3748  * step 4 using the snapshot taken before and step 3 ensures that successive
3749  * writes will be logged for the next call.
3750  */
3751 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3752 {
3753 	int r;
3754 	struct kvm_memory_slot *memslot;
3755 	unsigned long n, i;
3756 	unsigned long *dirty_bitmap;
3757 	unsigned long *dirty_bitmap_buffer;
3758 	bool is_dirty = false;
3759 
3760 	mutex_lock(&kvm->slots_lock);
3761 
3762 	r = -EINVAL;
3763 	if (log->slot >= KVM_USER_MEM_SLOTS)
3764 		goto out;
3765 
3766 	memslot = id_to_memslot(kvm->memslots, log->slot);
3767 
3768 	dirty_bitmap = memslot->dirty_bitmap;
3769 	r = -ENOENT;
3770 	if (!dirty_bitmap)
3771 		goto out;
3772 
3773 	n = kvm_dirty_bitmap_bytes(memslot);
3774 
3775 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3776 	memset(dirty_bitmap_buffer, 0, n);
3777 
3778 	spin_lock(&kvm->mmu_lock);
3779 
3780 	for (i = 0; i < n / sizeof(long); i++) {
3781 		unsigned long mask;
3782 		gfn_t offset;
3783 
3784 		if (!dirty_bitmap[i])
3785 			continue;
3786 
3787 		is_dirty = true;
3788 
3789 		mask = xchg(&dirty_bitmap[i], 0);
3790 		dirty_bitmap_buffer[i] = mask;
3791 
3792 		offset = i * BITS_PER_LONG;
3793 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3794 	}
3795 
3796 	spin_unlock(&kvm->mmu_lock);
3797 
3798 	/* See the comments in kvm_mmu_slot_remove_write_access(). */
3799 	lockdep_assert_held(&kvm->slots_lock);
3800 
3801 	/*
3802 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3803 	 * kvm_mmu_slot_remove_write_access().
3804 	 */
3805 	if (is_dirty)
3806 		kvm_flush_remote_tlbs(kvm);
3807 
3808 	r = -EFAULT;
3809 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3810 		goto out;
3811 
3812 	r = 0;
3813 out:
3814 	mutex_unlock(&kvm->slots_lock);
3815 	return r;
3816 }
3817 
3818 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3819 			bool line_status)
3820 {
3821 	if (!irqchip_in_kernel(kvm))
3822 		return -ENXIO;
3823 
3824 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3825 					irq_event->irq, irq_event->level,
3826 					line_status);
3827 	return 0;
3828 }
3829 
3830 long kvm_arch_vm_ioctl(struct file *filp,
3831 		       unsigned int ioctl, unsigned long arg)
3832 {
3833 	struct kvm *kvm = filp->private_data;
3834 	void __user *argp = (void __user *)arg;
3835 	int r = -ENOTTY;
3836 	/*
3837 	 * This union makes it completely explicit to gcc-3.x
3838 	 * that these two variables' stack usage should be
3839 	 * combined, not added together.
3840 	 */
3841 	union {
3842 		struct kvm_pit_state ps;
3843 		struct kvm_pit_state2 ps2;
3844 		struct kvm_pit_config pit_config;
3845 	} u;
3846 
3847 	switch (ioctl) {
3848 	case KVM_SET_TSS_ADDR:
3849 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3850 		break;
3851 	case KVM_SET_IDENTITY_MAP_ADDR: {
3852 		u64 ident_addr;
3853 
3854 		r = -EFAULT;
3855 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3856 			goto out;
3857 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3858 		break;
3859 	}
3860 	case KVM_SET_NR_MMU_PAGES:
3861 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3862 		break;
3863 	case KVM_GET_NR_MMU_PAGES:
3864 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3865 		break;
3866 	case KVM_CREATE_IRQCHIP: {
3867 		struct kvm_pic *vpic;
3868 
3869 		mutex_lock(&kvm->lock);
3870 		r = -EEXIST;
3871 		if (kvm->arch.vpic)
3872 			goto create_irqchip_unlock;
3873 		r = -EINVAL;
3874 		if (atomic_read(&kvm->online_vcpus))
3875 			goto create_irqchip_unlock;
3876 		r = -ENOMEM;
3877 		vpic = kvm_create_pic(kvm);
3878 		if (vpic) {
3879 			r = kvm_ioapic_init(kvm);
3880 			if (r) {
3881 				mutex_lock(&kvm->slots_lock);
3882 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3883 							  &vpic->dev_master);
3884 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3885 							  &vpic->dev_slave);
3886 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3887 							  &vpic->dev_eclr);
3888 				mutex_unlock(&kvm->slots_lock);
3889 				kfree(vpic);
3890 				goto create_irqchip_unlock;
3891 			}
3892 		} else
3893 			goto create_irqchip_unlock;
3894 		smp_wmb();
3895 		kvm->arch.vpic = vpic;
3896 		smp_wmb();
3897 		r = kvm_setup_default_irq_routing(kvm);
3898 		if (r) {
3899 			mutex_lock(&kvm->slots_lock);
3900 			mutex_lock(&kvm->irq_lock);
3901 			kvm_ioapic_destroy(kvm);
3902 			kvm_destroy_pic(kvm);
3903 			mutex_unlock(&kvm->irq_lock);
3904 			mutex_unlock(&kvm->slots_lock);
3905 		}
3906 	create_irqchip_unlock:
3907 		mutex_unlock(&kvm->lock);
3908 		break;
3909 	}
3910 	case KVM_CREATE_PIT:
3911 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3912 		goto create_pit;
3913 	case KVM_CREATE_PIT2:
3914 		r = -EFAULT;
3915 		if (copy_from_user(&u.pit_config, argp,
3916 				   sizeof(struct kvm_pit_config)))
3917 			goto out;
3918 	create_pit:
3919 		mutex_lock(&kvm->slots_lock);
3920 		r = -EEXIST;
3921 		if (kvm->arch.vpit)
3922 			goto create_pit_unlock;
3923 		r = -ENOMEM;
3924 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3925 		if (kvm->arch.vpit)
3926 			r = 0;
3927 	create_pit_unlock:
3928 		mutex_unlock(&kvm->slots_lock);
3929 		break;
3930 	case KVM_GET_IRQCHIP: {
3931 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3932 		struct kvm_irqchip *chip;
3933 
3934 		chip = memdup_user(argp, sizeof(*chip));
3935 		if (IS_ERR(chip)) {
3936 			r = PTR_ERR(chip);
3937 			goto out;
3938 		}
3939 
3940 		r = -ENXIO;
3941 		if (!irqchip_in_kernel(kvm))
3942 			goto get_irqchip_out;
3943 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3944 		if (r)
3945 			goto get_irqchip_out;
3946 		r = -EFAULT;
3947 		if (copy_to_user(argp, chip, sizeof *chip))
3948 			goto get_irqchip_out;
3949 		r = 0;
3950 	get_irqchip_out:
3951 		kfree(chip);
3952 		break;
3953 	}
3954 	case KVM_SET_IRQCHIP: {
3955 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3956 		struct kvm_irqchip *chip;
3957 
3958 		chip = memdup_user(argp, sizeof(*chip));
3959 		if (IS_ERR(chip)) {
3960 			r = PTR_ERR(chip);
3961 			goto out;
3962 		}
3963 
3964 		r = -ENXIO;
3965 		if (!irqchip_in_kernel(kvm))
3966 			goto set_irqchip_out;
3967 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3968 		if (r)
3969 			goto set_irqchip_out;
3970 		r = 0;
3971 	set_irqchip_out:
3972 		kfree(chip);
3973 		break;
3974 	}
3975 	case KVM_GET_PIT: {
3976 		r = -EFAULT;
3977 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3978 			goto out;
3979 		r = -ENXIO;
3980 		if (!kvm->arch.vpit)
3981 			goto out;
3982 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3983 		if (r)
3984 			goto out;
3985 		r = -EFAULT;
3986 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3987 			goto out;
3988 		r = 0;
3989 		break;
3990 	}
3991 	case KVM_SET_PIT: {
3992 		r = -EFAULT;
3993 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3994 			goto out;
3995 		r = -ENXIO;
3996 		if (!kvm->arch.vpit)
3997 			goto out;
3998 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3999 		break;
4000 	}
4001 	case KVM_GET_PIT2: {
4002 		r = -ENXIO;
4003 		if (!kvm->arch.vpit)
4004 			goto out;
4005 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4006 		if (r)
4007 			goto out;
4008 		r = -EFAULT;
4009 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4010 			goto out;
4011 		r = 0;
4012 		break;
4013 	}
4014 	case KVM_SET_PIT2: {
4015 		r = -EFAULT;
4016 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4017 			goto out;
4018 		r = -ENXIO;
4019 		if (!kvm->arch.vpit)
4020 			goto out;
4021 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4022 		break;
4023 	}
4024 	case KVM_REINJECT_CONTROL: {
4025 		struct kvm_reinject_control control;
4026 		r =  -EFAULT;
4027 		if (copy_from_user(&control, argp, sizeof(control)))
4028 			goto out;
4029 		r = kvm_vm_ioctl_reinject(kvm, &control);
4030 		break;
4031 	}
4032 	case KVM_XEN_HVM_CONFIG: {
4033 		r = -EFAULT;
4034 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4035 				   sizeof(struct kvm_xen_hvm_config)))
4036 			goto out;
4037 		r = -EINVAL;
4038 		if (kvm->arch.xen_hvm_config.flags)
4039 			goto out;
4040 		r = 0;
4041 		break;
4042 	}
4043 	case KVM_SET_CLOCK: {
4044 		struct kvm_clock_data user_ns;
4045 		u64 now_ns;
4046 		s64 delta;
4047 
4048 		r = -EFAULT;
4049 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4050 			goto out;
4051 
4052 		r = -EINVAL;
4053 		if (user_ns.flags)
4054 			goto out;
4055 
4056 		r = 0;
4057 		local_irq_disable();
4058 		now_ns = get_kernel_ns();
4059 		delta = user_ns.clock - now_ns;
4060 		local_irq_enable();
4061 		kvm->arch.kvmclock_offset = delta;
4062 		kvm_gen_update_masterclock(kvm);
4063 		break;
4064 	}
4065 	case KVM_GET_CLOCK: {
4066 		struct kvm_clock_data user_ns;
4067 		u64 now_ns;
4068 
4069 		local_irq_disable();
4070 		now_ns = get_kernel_ns();
4071 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4072 		local_irq_enable();
4073 		user_ns.flags = 0;
4074 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4075 
4076 		r = -EFAULT;
4077 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4078 			goto out;
4079 		r = 0;
4080 		break;
4081 	}
4082 
4083 	default:
4084 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4085 	}
4086 out:
4087 	return r;
4088 }
4089 
4090 static void kvm_init_msr_list(void)
4091 {
4092 	u32 dummy[2];
4093 	unsigned i, j;
4094 
4095 	/* skip the first msrs in the list. KVM-specific */
4096 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4097 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4098 			continue;
4099 
4100 		/*
4101 		 * Even MSRs that are valid in the host may not be exposed
4102 		 * to the guests in some cases.  We could work around this
4103 		 * in VMX with the generic MSR save/load machinery, but it
4104 		 * is not really worthwhile since it will really only
4105 		 * happen with nested virtualization.
4106 		 */
4107 		switch (msrs_to_save[i]) {
4108 		case MSR_IA32_BNDCFGS:
4109 			if (!kvm_x86_ops->mpx_supported())
4110 				continue;
4111 			break;
4112 		default:
4113 			break;
4114 		}
4115 
4116 		if (j < i)
4117 			msrs_to_save[j] = msrs_to_save[i];
4118 		j++;
4119 	}
4120 	num_msrs_to_save = j;
4121 }
4122 
4123 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4124 			   const void *v)
4125 {
4126 	int handled = 0;
4127 	int n;
4128 
4129 	do {
4130 		n = min(len, 8);
4131 		if (!(vcpu->arch.apic &&
4132 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
4133 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4134 			break;
4135 		handled += n;
4136 		addr += n;
4137 		len -= n;
4138 		v += n;
4139 	} while (len);
4140 
4141 	return handled;
4142 }
4143 
4144 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4145 {
4146 	int handled = 0;
4147 	int n;
4148 
4149 	do {
4150 		n = min(len, 8);
4151 		if (!(vcpu->arch.apic &&
4152 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
4153 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4154 			break;
4155 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4156 		handled += n;
4157 		addr += n;
4158 		len -= n;
4159 		v += n;
4160 	} while (len);
4161 
4162 	return handled;
4163 }
4164 
4165 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4166 			struct kvm_segment *var, int seg)
4167 {
4168 	kvm_x86_ops->set_segment(vcpu, var, seg);
4169 }
4170 
4171 void kvm_get_segment(struct kvm_vcpu *vcpu,
4172 		     struct kvm_segment *var, int seg)
4173 {
4174 	kvm_x86_ops->get_segment(vcpu, var, seg);
4175 }
4176 
4177 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4178 			   struct x86_exception *exception)
4179 {
4180 	gpa_t t_gpa;
4181 
4182 	BUG_ON(!mmu_is_nested(vcpu));
4183 
4184 	/* NPT walks are always user-walks */
4185 	access |= PFERR_USER_MASK;
4186 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4187 
4188 	return t_gpa;
4189 }
4190 
4191 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4192 			      struct x86_exception *exception)
4193 {
4194 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4195 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4196 }
4197 
4198  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4199 				struct x86_exception *exception)
4200 {
4201 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4202 	access |= PFERR_FETCH_MASK;
4203 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4204 }
4205 
4206 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4207 			       struct x86_exception *exception)
4208 {
4209 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4210 	access |= PFERR_WRITE_MASK;
4211 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4212 }
4213 
4214 /* uses this to access any guest's mapped memory without checking CPL */
4215 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4216 				struct x86_exception *exception)
4217 {
4218 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4219 }
4220 
4221 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4222 				      struct kvm_vcpu *vcpu, u32 access,
4223 				      struct x86_exception *exception)
4224 {
4225 	void *data = val;
4226 	int r = X86EMUL_CONTINUE;
4227 
4228 	while (bytes) {
4229 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4230 							    exception);
4231 		unsigned offset = addr & (PAGE_SIZE-1);
4232 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4233 		int ret;
4234 
4235 		if (gpa == UNMAPPED_GVA)
4236 			return X86EMUL_PROPAGATE_FAULT;
4237 		ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4238 					  offset, toread);
4239 		if (ret < 0) {
4240 			r = X86EMUL_IO_NEEDED;
4241 			goto out;
4242 		}
4243 
4244 		bytes -= toread;
4245 		data += toread;
4246 		addr += toread;
4247 	}
4248 out:
4249 	return r;
4250 }
4251 
4252 /* used for instruction fetching */
4253 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4254 				gva_t addr, void *val, unsigned int bytes,
4255 				struct x86_exception *exception)
4256 {
4257 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4258 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4259 	unsigned offset;
4260 	int ret;
4261 
4262 	/* Inline kvm_read_guest_virt_helper for speed.  */
4263 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4264 						    exception);
4265 	if (unlikely(gpa == UNMAPPED_GVA))
4266 		return X86EMUL_PROPAGATE_FAULT;
4267 
4268 	offset = addr & (PAGE_SIZE-1);
4269 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4270 		bytes = (unsigned)PAGE_SIZE - offset;
4271 	ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4272 				  offset, bytes);
4273 	if (unlikely(ret < 0))
4274 		return X86EMUL_IO_NEEDED;
4275 
4276 	return X86EMUL_CONTINUE;
4277 }
4278 
4279 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4280 			       gva_t addr, void *val, unsigned int bytes,
4281 			       struct x86_exception *exception)
4282 {
4283 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4284 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4285 
4286 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4287 					  exception);
4288 }
4289 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4290 
4291 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4292 				      gva_t addr, void *val, unsigned int bytes,
4293 				      struct x86_exception *exception)
4294 {
4295 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4296 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4297 }
4298 
4299 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4300 				       gva_t addr, void *val,
4301 				       unsigned int bytes,
4302 				       struct x86_exception *exception)
4303 {
4304 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4305 	void *data = val;
4306 	int r = X86EMUL_CONTINUE;
4307 
4308 	while (bytes) {
4309 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4310 							     PFERR_WRITE_MASK,
4311 							     exception);
4312 		unsigned offset = addr & (PAGE_SIZE-1);
4313 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4314 		int ret;
4315 
4316 		if (gpa == UNMAPPED_GVA)
4317 			return X86EMUL_PROPAGATE_FAULT;
4318 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4319 		if (ret < 0) {
4320 			r = X86EMUL_IO_NEEDED;
4321 			goto out;
4322 		}
4323 
4324 		bytes -= towrite;
4325 		data += towrite;
4326 		addr += towrite;
4327 	}
4328 out:
4329 	return r;
4330 }
4331 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4332 
4333 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4334 				gpa_t *gpa, struct x86_exception *exception,
4335 				bool write)
4336 {
4337 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4338 		| (write ? PFERR_WRITE_MASK : 0);
4339 
4340 	if (vcpu_match_mmio_gva(vcpu, gva)
4341 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4342 				 vcpu->arch.access, access)) {
4343 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4344 					(gva & (PAGE_SIZE - 1));
4345 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4346 		return 1;
4347 	}
4348 
4349 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4350 
4351 	if (*gpa == UNMAPPED_GVA)
4352 		return -1;
4353 
4354 	/* For APIC access vmexit */
4355 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4356 		return 1;
4357 
4358 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4359 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4360 		return 1;
4361 	}
4362 
4363 	return 0;
4364 }
4365 
4366 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4367 			const void *val, int bytes)
4368 {
4369 	int ret;
4370 
4371 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4372 	if (ret < 0)
4373 		return 0;
4374 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4375 	return 1;
4376 }
4377 
4378 struct read_write_emulator_ops {
4379 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4380 				  int bytes);
4381 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4382 				  void *val, int bytes);
4383 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4384 			       int bytes, void *val);
4385 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4386 				    void *val, int bytes);
4387 	bool write;
4388 };
4389 
4390 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4391 {
4392 	if (vcpu->mmio_read_completed) {
4393 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4394 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4395 		vcpu->mmio_read_completed = 0;
4396 		return 1;
4397 	}
4398 
4399 	return 0;
4400 }
4401 
4402 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4403 			void *val, int bytes)
4404 {
4405 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4406 }
4407 
4408 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4409 			 void *val, int bytes)
4410 {
4411 	return emulator_write_phys(vcpu, gpa, val, bytes);
4412 }
4413 
4414 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4415 {
4416 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4417 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4418 }
4419 
4420 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4421 			  void *val, int bytes)
4422 {
4423 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4424 	return X86EMUL_IO_NEEDED;
4425 }
4426 
4427 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4428 			   void *val, int bytes)
4429 {
4430 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4431 
4432 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4433 	return X86EMUL_CONTINUE;
4434 }
4435 
4436 static const struct read_write_emulator_ops read_emultor = {
4437 	.read_write_prepare = read_prepare,
4438 	.read_write_emulate = read_emulate,
4439 	.read_write_mmio = vcpu_mmio_read,
4440 	.read_write_exit_mmio = read_exit_mmio,
4441 };
4442 
4443 static const struct read_write_emulator_ops write_emultor = {
4444 	.read_write_emulate = write_emulate,
4445 	.read_write_mmio = write_mmio,
4446 	.read_write_exit_mmio = write_exit_mmio,
4447 	.write = true,
4448 };
4449 
4450 static int emulator_read_write_onepage(unsigned long addr, void *val,
4451 				       unsigned int bytes,
4452 				       struct x86_exception *exception,
4453 				       struct kvm_vcpu *vcpu,
4454 				       const struct read_write_emulator_ops *ops)
4455 {
4456 	gpa_t gpa;
4457 	int handled, ret;
4458 	bool write = ops->write;
4459 	struct kvm_mmio_fragment *frag;
4460 
4461 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4462 
4463 	if (ret < 0)
4464 		return X86EMUL_PROPAGATE_FAULT;
4465 
4466 	/* For APIC access vmexit */
4467 	if (ret)
4468 		goto mmio;
4469 
4470 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4471 		return X86EMUL_CONTINUE;
4472 
4473 mmio:
4474 	/*
4475 	 * Is this MMIO handled locally?
4476 	 */
4477 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4478 	if (handled == bytes)
4479 		return X86EMUL_CONTINUE;
4480 
4481 	gpa += handled;
4482 	bytes -= handled;
4483 	val += handled;
4484 
4485 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4486 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4487 	frag->gpa = gpa;
4488 	frag->data = val;
4489 	frag->len = bytes;
4490 	return X86EMUL_CONTINUE;
4491 }
4492 
4493 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4494 			void *val, unsigned int bytes,
4495 			struct x86_exception *exception,
4496 			const struct read_write_emulator_ops *ops)
4497 {
4498 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4499 	gpa_t gpa;
4500 	int rc;
4501 
4502 	if (ops->read_write_prepare &&
4503 		  ops->read_write_prepare(vcpu, val, bytes))
4504 		return X86EMUL_CONTINUE;
4505 
4506 	vcpu->mmio_nr_fragments = 0;
4507 
4508 	/* Crossing a page boundary? */
4509 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4510 		int now;
4511 
4512 		now = -addr & ~PAGE_MASK;
4513 		rc = emulator_read_write_onepage(addr, val, now, exception,
4514 						 vcpu, ops);
4515 
4516 		if (rc != X86EMUL_CONTINUE)
4517 			return rc;
4518 		addr += now;
4519 		val += now;
4520 		bytes -= now;
4521 	}
4522 
4523 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4524 					 vcpu, ops);
4525 	if (rc != X86EMUL_CONTINUE)
4526 		return rc;
4527 
4528 	if (!vcpu->mmio_nr_fragments)
4529 		return rc;
4530 
4531 	gpa = vcpu->mmio_fragments[0].gpa;
4532 
4533 	vcpu->mmio_needed = 1;
4534 	vcpu->mmio_cur_fragment = 0;
4535 
4536 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4537 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4538 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4539 	vcpu->run->mmio.phys_addr = gpa;
4540 
4541 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4542 }
4543 
4544 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4545 				  unsigned long addr,
4546 				  void *val,
4547 				  unsigned int bytes,
4548 				  struct x86_exception *exception)
4549 {
4550 	return emulator_read_write(ctxt, addr, val, bytes,
4551 				   exception, &read_emultor);
4552 }
4553 
4554 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4555 			    unsigned long addr,
4556 			    const void *val,
4557 			    unsigned int bytes,
4558 			    struct x86_exception *exception)
4559 {
4560 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4561 				   exception, &write_emultor);
4562 }
4563 
4564 #define CMPXCHG_TYPE(t, ptr, old, new) \
4565 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4566 
4567 #ifdef CONFIG_X86_64
4568 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4569 #else
4570 #  define CMPXCHG64(ptr, old, new) \
4571 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4572 #endif
4573 
4574 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4575 				     unsigned long addr,
4576 				     const void *old,
4577 				     const void *new,
4578 				     unsigned int bytes,
4579 				     struct x86_exception *exception)
4580 {
4581 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4582 	gpa_t gpa;
4583 	struct page *page;
4584 	char *kaddr;
4585 	bool exchanged;
4586 
4587 	/* guests cmpxchg8b have to be emulated atomically */
4588 	if (bytes > 8 || (bytes & (bytes - 1)))
4589 		goto emul_write;
4590 
4591 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4592 
4593 	if (gpa == UNMAPPED_GVA ||
4594 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4595 		goto emul_write;
4596 
4597 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4598 		goto emul_write;
4599 
4600 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4601 	if (is_error_page(page))
4602 		goto emul_write;
4603 
4604 	kaddr = kmap_atomic(page);
4605 	kaddr += offset_in_page(gpa);
4606 	switch (bytes) {
4607 	case 1:
4608 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4609 		break;
4610 	case 2:
4611 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4612 		break;
4613 	case 4:
4614 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4615 		break;
4616 	case 8:
4617 		exchanged = CMPXCHG64(kaddr, old, new);
4618 		break;
4619 	default:
4620 		BUG();
4621 	}
4622 	kunmap_atomic(kaddr);
4623 	kvm_release_page_dirty(page);
4624 
4625 	if (!exchanged)
4626 		return X86EMUL_CMPXCHG_FAILED;
4627 
4628 	mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4629 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4630 
4631 	return X86EMUL_CONTINUE;
4632 
4633 emul_write:
4634 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4635 
4636 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4637 }
4638 
4639 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4640 {
4641 	/* TODO: String I/O for in kernel device */
4642 	int r;
4643 
4644 	if (vcpu->arch.pio.in)
4645 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4646 				    vcpu->arch.pio.size, pd);
4647 	else
4648 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4649 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4650 				     pd);
4651 	return r;
4652 }
4653 
4654 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4655 			       unsigned short port, void *val,
4656 			       unsigned int count, bool in)
4657 {
4658 	vcpu->arch.pio.port = port;
4659 	vcpu->arch.pio.in = in;
4660 	vcpu->arch.pio.count  = count;
4661 	vcpu->arch.pio.size = size;
4662 
4663 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4664 		vcpu->arch.pio.count = 0;
4665 		return 1;
4666 	}
4667 
4668 	vcpu->run->exit_reason = KVM_EXIT_IO;
4669 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4670 	vcpu->run->io.size = size;
4671 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4672 	vcpu->run->io.count = count;
4673 	vcpu->run->io.port = port;
4674 
4675 	return 0;
4676 }
4677 
4678 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4679 				    int size, unsigned short port, void *val,
4680 				    unsigned int count)
4681 {
4682 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4683 	int ret;
4684 
4685 	if (vcpu->arch.pio.count)
4686 		goto data_avail;
4687 
4688 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4689 	if (ret) {
4690 data_avail:
4691 		memcpy(val, vcpu->arch.pio_data, size * count);
4692 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4693 		vcpu->arch.pio.count = 0;
4694 		return 1;
4695 	}
4696 
4697 	return 0;
4698 }
4699 
4700 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4701 				     int size, unsigned short port,
4702 				     const void *val, unsigned int count)
4703 {
4704 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4705 
4706 	memcpy(vcpu->arch.pio_data, val, size * count);
4707 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4708 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4709 }
4710 
4711 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4712 {
4713 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4714 }
4715 
4716 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4717 {
4718 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4719 }
4720 
4721 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4722 {
4723 	if (!need_emulate_wbinvd(vcpu))
4724 		return X86EMUL_CONTINUE;
4725 
4726 	if (kvm_x86_ops->has_wbinvd_exit()) {
4727 		int cpu = get_cpu();
4728 
4729 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4730 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4731 				wbinvd_ipi, NULL, 1);
4732 		put_cpu();
4733 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4734 	} else
4735 		wbinvd();
4736 	return X86EMUL_CONTINUE;
4737 }
4738 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4739 
4740 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4741 {
4742 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4743 }
4744 
4745 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4746 {
4747 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4748 }
4749 
4750 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4751 {
4752 
4753 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4754 }
4755 
4756 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4757 {
4758 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4759 }
4760 
4761 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4762 {
4763 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4764 	unsigned long value;
4765 
4766 	switch (cr) {
4767 	case 0:
4768 		value = kvm_read_cr0(vcpu);
4769 		break;
4770 	case 2:
4771 		value = vcpu->arch.cr2;
4772 		break;
4773 	case 3:
4774 		value = kvm_read_cr3(vcpu);
4775 		break;
4776 	case 4:
4777 		value = kvm_read_cr4(vcpu);
4778 		break;
4779 	case 8:
4780 		value = kvm_get_cr8(vcpu);
4781 		break;
4782 	default:
4783 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4784 		return 0;
4785 	}
4786 
4787 	return value;
4788 }
4789 
4790 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4791 {
4792 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4793 	int res = 0;
4794 
4795 	switch (cr) {
4796 	case 0:
4797 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4798 		break;
4799 	case 2:
4800 		vcpu->arch.cr2 = val;
4801 		break;
4802 	case 3:
4803 		res = kvm_set_cr3(vcpu, val);
4804 		break;
4805 	case 4:
4806 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4807 		break;
4808 	case 8:
4809 		res = kvm_set_cr8(vcpu, val);
4810 		break;
4811 	default:
4812 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4813 		res = -1;
4814 	}
4815 
4816 	return res;
4817 }
4818 
4819 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4820 {
4821 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4822 }
4823 
4824 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4825 {
4826 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4827 }
4828 
4829 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4830 {
4831 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4832 }
4833 
4834 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4835 {
4836 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4837 }
4838 
4839 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4840 {
4841 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4842 }
4843 
4844 static unsigned long emulator_get_cached_segment_base(
4845 	struct x86_emulate_ctxt *ctxt, int seg)
4846 {
4847 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4848 }
4849 
4850 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4851 				 struct desc_struct *desc, u32 *base3,
4852 				 int seg)
4853 {
4854 	struct kvm_segment var;
4855 
4856 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4857 	*selector = var.selector;
4858 
4859 	if (var.unusable) {
4860 		memset(desc, 0, sizeof(*desc));
4861 		return false;
4862 	}
4863 
4864 	if (var.g)
4865 		var.limit >>= 12;
4866 	set_desc_limit(desc, var.limit);
4867 	set_desc_base(desc, (unsigned long)var.base);
4868 #ifdef CONFIG_X86_64
4869 	if (base3)
4870 		*base3 = var.base >> 32;
4871 #endif
4872 	desc->type = var.type;
4873 	desc->s = var.s;
4874 	desc->dpl = var.dpl;
4875 	desc->p = var.present;
4876 	desc->avl = var.avl;
4877 	desc->l = var.l;
4878 	desc->d = var.db;
4879 	desc->g = var.g;
4880 
4881 	return true;
4882 }
4883 
4884 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4885 				 struct desc_struct *desc, u32 base3,
4886 				 int seg)
4887 {
4888 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4889 	struct kvm_segment var;
4890 
4891 	var.selector = selector;
4892 	var.base = get_desc_base(desc);
4893 #ifdef CONFIG_X86_64
4894 	var.base |= ((u64)base3) << 32;
4895 #endif
4896 	var.limit = get_desc_limit(desc);
4897 	if (desc->g)
4898 		var.limit = (var.limit << 12) | 0xfff;
4899 	var.type = desc->type;
4900 	var.dpl = desc->dpl;
4901 	var.db = desc->d;
4902 	var.s = desc->s;
4903 	var.l = desc->l;
4904 	var.g = desc->g;
4905 	var.avl = desc->avl;
4906 	var.present = desc->p;
4907 	var.unusable = !var.present;
4908 	var.padding = 0;
4909 
4910 	kvm_set_segment(vcpu, &var, seg);
4911 	return;
4912 }
4913 
4914 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4915 			    u32 msr_index, u64 *pdata)
4916 {
4917 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4918 }
4919 
4920 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4921 			    u32 msr_index, u64 data)
4922 {
4923 	struct msr_data msr;
4924 
4925 	msr.data = data;
4926 	msr.index = msr_index;
4927 	msr.host_initiated = false;
4928 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4929 }
4930 
4931 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4932 			      u32 pmc)
4933 {
4934 	return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4935 }
4936 
4937 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4938 			     u32 pmc, u64 *pdata)
4939 {
4940 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4941 }
4942 
4943 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4944 {
4945 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4946 }
4947 
4948 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4949 {
4950 	preempt_disable();
4951 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4952 	/*
4953 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4954 	 * so it may be clear at this point.
4955 	 */
4956 	clts();
4957 }
4958 
4959 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4960 {
4961 	preempt_enable();
4962 }
4963 
4964 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4965 			      struct x86_instruction_info *info,
4966 			      enum x86_intercept_stage stage)
4967 {
4968 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4969 }
4970 
4971 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4972 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4973 {
4974 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4975 }
4976 
4977 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4978 {
4979 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4980 }
4981 
4982 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4983 {
4984 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4985 }
4986 
4987 static const struct x86_emulate_ops emulate_ops = {
4988 	.read_gpr            = emulator_read_gpr,
4989 	.write_gpr           = emulator_write_gpr,
4990 	.read_std            = kvm_read_guest_virt_system,
4991 	.write_std           = kvm_write_guest_virt_system,
4992 	.fetch               = kvm_fetch_guest_virt,
4993 	.read_emulated       = emulator_read_emulated,
4994 	.write_emulated      = emulator_write_emulated,
4995 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4996 	.invlpg              = emulator_invlpg,
4997 	.pio_in_emulated     = emulator_pio_in_emulated,
4998 	.pio_out_emulated    = emulator_pio_out_emulated,
4999 	.get_segment         = emulator_get_segment,
5000 	.set_segment         = emulator_set_segment,
5001 	.get_cached_segment_base = emulator_get_cached_segment_base,
5002 	.get_gdt             = emulator_get_gdt,
5003 	.get_idt	     = emulator_get_idt,
5004 	.set_gdt             = emulator_set_gdt,
5005 	.set_idt	     = emulator_set_idt,
5006 	.get_cr              = emulator_get_cr,
5007 	.set_cr              = emulator_set_cr,
5008 	.cpl                 = emulator_get_cpl,
5009 	.get_dr              = emulator_get_dr,
5010 	.set_dr              = emulator_set_dr,
5011 	.set_msr             = emulator_set_msr,
5012 	.get_msr             = emulator_get_msr,
5013 	.check_pmc	     = emulator_check_pmc,
5014 	.read_pmc            = emulator_read_pmc,
5015 	.halt                = emulator_halt,
5016 	.wbinvd              = emulator_wbinvd,
5017 	.fix_hypercall       = emulator_fix_hypercall,
5018 	.get_fpu             = emulator_get_fpu,
5019 	.put_fpu             = emulator_put_fpu,
5020 	.intercept           = emulator_intercept,
5021 	.get_cpuid           = emulator_get_cpuid,
5022 };
5023 
5024 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5025 {
5026 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5027 	/*
5028 	 * an sti; sti; sequence only disable interrupts for the first
5029 	 * instruction. So, if the last instruction, be it emulated or
5030 	 * not, left the system with the INT_STI flag enabled, it
5031 	 * means that the last instruction is an sti. We should not
5032 	 * leave the flag on in this case. The same goes for mov ss
5033 	 */
5034 	if (int_shadow & mask)
5035 		mask = 0;
5036 	if (unlikely(int_shadow || mask)) {
5037 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5038 		if (!mask)
5039 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5040 	}
5041 }
5042 
5043 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5044 {
5045 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5046 	if (ctxt->exception.vector == PF_VECTOR)
5047 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5048 
5049 	if (ctxt->exception.error_code_valid)
5050 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5051 				      ctxt->exception.error_code);
5052 	else
5053 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5054 	return false;
5055 }
5056 
5057 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5058 {
5059 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5060 	int cs_db, cs_l;
5061 
5062 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5063 
5064 	ctxt->eflags = kvm_get_rflags(vcpu);
5065 	ctxt->eip = kvm_rip_read(vcpu);
5066 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5067 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5068 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5069 		     cs_db				? X86EMUL_MODE_PROT32 :
5070 							  X86EMUL_MODE_PROT16;
5071 	ctxt->guest_mode = is_guest_mode(vcpu);
5072 
5073 	init_decode_cache(ctxt);
5074 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5075 }
5076 
5077 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5078 {
5079 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5080 	int ret;
5081 
5082 	init_emulate_ctxt(vcpu);
5083 
5084 	ctxt->op_bytes = 2;
5085 	ctxt->ad_bytes = 2;
5086 	ctxt->_eip = ctxt->eip + inc_eip;
5087 	ret = emulate_int_real(ctxt, irq);
5088 
5089 	if (ret != X86EMUL_CONTINUE)
5090 		return EMULATE_FAIL;
5091 
5092 	ctxt->eip = ctxt->_eip;
5093 	kvm_rip_write(vcpu, ctxt->eip);
5094 	kvm_set_rflags(vcpu, ctxt->eflags);
5095 
5096 	if (irq == NMI_VECTOR)
5097 		vcpu->arch.nmi_pending = 0;
5098 	else
5099 		vcpu->arch.interrupt.pending = false;
5100 
5101 	return EMULATE_DONE;
5102 }
5103 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5104 
5105 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5106 {
5107 	int r = EMULATE_DONE;
5108 
5109 	++vcpu->stat.insn_emulation_fail;
5110 	trace_kvm_emulate_insn_failed(vcpu);
5111 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5112 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5113 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5114 		vcpu->run->internal.ndata = 0;
5115 		r = EMULATE_FAIL;
5116 	}
5117 	kvm_queue_exception(vcpu, UD_VECTOR);
5118 
5119 	return r;
5120 }
5121 
5122 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5123 				  bool write_fault_to_shadow_pgtable,
5124 				  int emulation_type)
5125 {
5126 	gpa_t gpa = cr2;
5127 	pfn_t pfn;
5128 
5129 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5130 		return false;
5131 
5132 	if (!vcpu->arch.mmu.direct_map) {
5133 		/*
5134 		 * Write permission should be allowed since only
5135 		 * write access need to be emulated.
5136 		 */
5137 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5138 
5139 		/*
5140 		 * If the mapping is invalid in guest, let cpu retry
5141 		 * it to generate fault.
5142 		 */
5143 		if (gpa == UNMAPPED_GVA)
5144 			return true;
5145 	}
5146 
5147 	/*
5148 	 * Do not retry the unhandleable instruction if it faults on the
5149 	 * readonly host memory, otherwise it will goto a infinite loop:
5150 	 * retry instruction -> write #PF -> emulation fail -> retry
5151 	 * instruction -> ...
5152 	 */
5153 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5154 
5155 	/*
5156 	 * If the instruction failed on the error pfn, it can not be fixed,
5157 	 * report the error to userspace.
5158 	 */
5159 	if (is_error_noslot_pfn(pfn))
5160 		return false;
5161 
5162 	kvm_release_pfn_clean(pfn);
5163 
5164 	/* The instructions are well-emulated on direct mmu. */
5165 	if (vcpu->arch.mmu.direct_map) {
5166 		unsigned int indirect_shadow_pages;
5167 
5168 		spin_lock(&vcpu->kvm->mmu_lock);
5169 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5170 		spin_unlock(&vcpu->kvm->mmu_lock);
5171 
5172 		if (indirect_shadow_pages)
5173 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5174 
5175 		return true;
5176 	}
5177 
5178 	/*
5179 	 * if emulation was due to access to shadowed page table
5180 	 * and it failed try to unshadow page and re-enter the
5181 	 * guest to let CPU execute the instruction.
5182 	 */
5183 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5184 
5185 	/*
5186 	 * If the access faults on its page table, it can not
5187 	 * be fixed by unprotecting shadow page and it should
5188 	 * be reported to userspace.
5189 	 */
5190 	return !write_fault_to_shadow_pgtable;
5191 }
5192 
5193 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5194 			      unsigned long cr2,  int emulation_type)
5195 {
5196 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5197 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5198 
5199 	last_retry_eip = vcpu->arch.last_retry_eip;
5200 	last_retry_addr = vcpu->arch.last_retry_addr;
5201 
5202 	/*
5203 	 * If the emulation is caused by #PF and it is non-page_table
5204 	 * writing instruction, it means the VM-EXIT is caused by shadow
5205 	 * page protected, we can zap the shadow page and retry this
5206 	 * instruction directly.
5207 	 *
5208 	 * Note: if the guest uses a non-page-table modifying instruction
5209 	 * on the PDE that points to the instruction, then we will unmap
5210 	 * the instruction and go to an infinite loop. So, we cache the
5211 	 * last retried eip and the last fault address, if we meet the eip
5212 	 * and the address again, we can break out of the potential infinite
5213 	 * loop.
5214 	 */
5215 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5216 
5217 	if (!(emulation_type & EMULTYPE_RETRY))
5218 		return false;
5219 
5220 	if (x86_page_table_writing_insn(ctxt))
5221 		return false;
5222 
5223 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5224 		return false;
5225 
5226 	vcpu->arch.last_retry_eip = ctxt->eip;
5227 	vcpu->arch.last_retry_addr = cr2;
5228 
5229 	if (!vcpu->arch.mmu.direct_map)
5230 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5231 
5232 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5233 
5234 	return true;
5235 }
5236 
5237 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5238 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5239 
5240 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5241 				unsigned long *db)
5242 {
5243 	u32 dr6 = 0;
5244 	int i;
5245 	u32 enable, rwlen;
5246 
5247 	enable = dr7;
5248 	rwlen = dr7 >> 16;
5249 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5250 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5251 			dr6 |= (1 << i);
5252 	return dr6;
5253 }
5254 
5255 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5256 {
5257 	struct kvm_run *kvm_run = vcpu->run;
5258 
5259 	/*
5260 	 * rflags is the old, "raw" value of the flags.  The new value has
5261 	 * not been saved yet.
5262 	 *
5263 	 * This is correct even for TF set by the guest, because "the
5264 	 * processor will not generate this exception after the instruction
5265 	 * that sets the TF flag".
5266 	 */
5267 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5268 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5269 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5270 						  DR6_RTM;
5271 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5272 			kvm_run->debug.arch.exception = DB_VECTOR;
5273 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5274 			*r = EMULATE_USER_EXIT;
5275 		} else {
5276 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5277 			/*
5278 			 * "Certain debug exceptions may clear bit 0-3.  The
5279 			 * remaining contents of the DR6 register are never
5280 			 * cleared by the processor".
5281 			 */
5282 			vcpu->arch.dr6 &= ~15;
5283 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5284 			kvm_queue_exception(vcpu, DB_VECTOR);
5285 		}
5286 	}
5287 }
5288 
5289 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5290 {
5291 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5292 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5293 		struct kvm_run *kvm_run = vcpu->run;
5294 		unsigned long eip = kvm_get_linear_rip(vcpu);
5295 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5296 					   vcpu->arch.guest_debug_dr7,
5297 					   vcpu->arch.eff_db);
5298 
5299 		if (dr6 != 0) {
5300 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5301 			kvm_run->debug.arch.pc = eip;
5302 			kvm_run->debug.arch.exception = DB_VECTOR;
5303 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5304 			*r = EMULATE_USER_EXIT;
5305 			return true;
5306 		}
5307 	}
5308 
5309 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5310 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5311 		unsigned long eip = kvm_get_linear_rip(vcpu);
5312 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5313 					   vcpu->arch.dr7,
5314 					   vcpu->arch.db);
5315 
5316 		if (dr6 != 0) {
5317 			vcpu->arch.dr6 &= ~15;
5318 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5319 			kvm_queue_exception(vcpu, DB_VECTOR);
5320 			*r = EMULATE_DONE;
5321 			return true;
5322 		}
5323 	}
5324 
5325 	return false;
5326 }
5327 
5328 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5329 			    unsigned long cr2,
5330 			    int emulation_type,
5331 			    void *insn,
5332 			    int insn_len)
5333 {
5334 	int r;
5335 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5336 	bool writeback = true;
5337 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5338 
5339 	/*
5340 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5341 	 * never reused.
5342 	 */
5343 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5344 	kvm_clear_exception_queue(vcpu);
5345 
5346 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5347 		init_emulate_ctxt(vcpu);
5348 
5349 		/*
5350 		 * We will reenter on the same instruction since
5351 		 * we do not set complete_userspace_io.  This does not
5352 		 * handle watchpoints yet, those would be handled in
5353 		 * the emulate_ops.
5354 		 */
5355 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5356 			return r;
5357 
5358 		ctxt->interruptibility = 0;
5359 		ctxt->have_exception = false;
5360 		ctxt->exception.vector = -1;
5361 		ctxt->perm_ok = false;
5362 
5363 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5364 
5365 		r = x86_decode_insn(ctxt, insn, insn_len);
5366 
5367 		trace_kvm_emulate_insn_start(vcpu);
5368 		++vcpu->stat.insn_emulation;
5369 		if (r != EMULATION_OK)  {
5370 			if (emulation_type & EMULTYPE_TRAP_UD)
5371 				return EMULATE_FAIL;
5372 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5373 						emulation_type))
5374 				return EMULATE_DONE;
5375 			if (emulation_type & EMULTYPE_SKIP)
5376 				return EMULATE_FAIL;
5377 			return handle_emulation_failure(vcpu);
5378 		}
5379 	}
5380 
5381 	if (emulation_type & EMULTYPE_SKIP) {
5382 		kvm_rip_write(vcpu, ctxt->_eip);
5383 		if (ctxt->eflags & X86_EFLAGS_RF)
5384 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5385 		return EMULATE_DONE;
5386 	}
5387 
5388 	if (retry_instruction(ctxt, cr2, emulation_type))
5389 		return EMULATE_DONE;
5390 
5391 	/* this is needed for vmware backdoor interface to work since it
5392 	   changes registers values  during IO operation */
5393 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5394 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5395 		emulator_invalidate_register_cache(ctxt);
5396 	}
5397 
5398 restart:
5399 	r = x86_emulate_insn(ctxt);
5400 
5401 	if (r == EMULATION_INTERCEPTED)
5402 		return EMULATE_DONE;
5403 
5404 	if (r == EMULATION_FAILED) {
5405 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5406 					emulation_type))
5407 			return EMULATE_DONE;
5408 
5409 		return handle_emulation_failure(vcpu);
5410 	}
5411 
5412 	if (ctxt->have_exception) {
5413 		r = EMULATE_DONE;
5414 		if (inject_emulated_exception(vcpu))
5415 			return r;
5416 	} else if (vcpu->arch.pio.count) {
5417 		if (!vcpu->arch.pio.in) {
5418 			/* FIXME: return into emulator if single-stepping.  */
5419 			vcpu->arch.pio.count = 0;
5420 		} else {
5421 			writeback = false;
5422 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5423 		}
5424 		r = EMULATE_USER_EXIT;
5425 	} else if (vcpu->mmio_needed) {
5426 		if (!vcpu->mmio_is_write)
5427 			writeback = false;
5428 		r = EMULATE_USER_EXIT;
5429 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5430 	} else if (r == EMULATION_RESTART)
5431 		goto restart;
5432 	else
5433 		r = EMULATE_DONE;
5434 
5435 	if (writeback) {
5436 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5437 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5438 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5439 		kvm_rip_write(vcpu, ctxt->eip);
5440 		if (r == EMULATE_DONE)
5441 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5442 		if (!ctxt->have_exception ||
5443 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5444 			__kvm_set_rflags(vcpu, ctxt->eflags);
5445 
5446 		/*
5447 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5448 		 * do nothing, and it will be requested again as soon as
5449 		 * the shadow expires.  But we still need to check here,
5450 		 * because POPF has no interrupt shadow.
5451 		 */
5452 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5453 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5454 	} else
5455 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5456 
5457 	return r;
5458 }
5459 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5460 
5461 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5462 {
5463 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5464 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5465 					    size, port, &val, 1);
5466 	/* do not return to emulator after return from userspace */
5467 	vcpu->arch.pio.count = 0;
5468 	return ret;
5469 }
5470 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5471 
5472 static void tsc_bad(void *info)
5473 {
5474 	__this_cpu_write(cpu_tsc_khz, 0);
5475 }
5476 
5477 static void tsc_khz_changed(void *data)
5478 {
5479 	struct cpufreq_freqs *freq = data;
5480 	unsigned long khz = 0;
5481 
5482 	if (data)
5483 		khz = freq->new;
5484 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5485 		khz = cpufreq_quick_get(raw_smp_processor_id());
5486 	if (!khz)
5487 		khz = tsc_khz;
5488 	__this_cpu_write(cpu_tsc_khz, khz);
5489 }
5490 
5491 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5492 				     void *data)
5493 {
5494 	struct cpufreq_freqs *freq = data;
5495 	struct kvm *kvm;
5496 	struct kvm_vcpu *vcpu;
5497 	int i, send_ipi = 0;
5498 
5499 	/*
5500 	 * We allow guests to temporarily run on slowing clocks,
5501 	 * provided we notify them after, or to run on accelerating
5502 	 * clocks, provided we notify them before.  Thus time never
5503 	 * goes backwards.
5504 	 *
5505 	 * However, we have a problem.  We can't atomically update
5506 	 * the frequency of a given CPU from this function; it is
5507 	 * merely a notifier, which can be called from any CPU.
5508 	 * Changing the TSC frequency at arbitrary points in time
5509 	 * requires a recomputation of local variables related to
5510 	 * the TSC for each VCPU.  We must flag these local variables
5511 	 * to be updated and be sure the update takes place with the
5512 	 * new frequency before any guests proceed.
5513 	 *
5514 	 * Unfortunately, the combination of hotplug CPU and frequency
5515 	 * change creates an intractable locking scenario; the order
5516 	 * of when these callouts happen is undefined with respect to
5517 	 * CPU hotplug, and they can race with each other.  As such,
5518 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5519 	 * undefined; you can actually have a CPU frequency change take
5520 	 * place in between the computation of X and the setting of the
5521 	 * variable.  To protect against this problem, all updates of
5522 	 * the per_cpu tsc_khz variable are done in an interrupt
5523 	 * protected IPI, and all callers wishing to update the value
5524 	 * must wait for a synchronous IPI to complete (which is trivial
5525 	 * if the caller is on the CPU already).  This establishes the
5526 	 * necessary total order on variable updates.
5527 	 *
5528 	 * Note that because a guest time update may take place
5529 	 * anytime after the setting of the VCPU's request bit, the
5530 	 * correct TSC value must be set before the request.  However,
5531 	 * to ensure the update actually makes it to any guest which
5532 	 * starts running in hardware virtualization between the set
5533 	 * and the acquisition of the spinlock, we must also ping the
5534 	 * CPU after setting the request bit.
5535 	 *
5536 	 */
5537 
5538 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5539 		return 0;
5540 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5541 		return 0;
5542 
5543 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5544 
5545 	spin_lock(&kvm_lock);
5546 	list_for_each_entry(kvm, &vm_list, vm_list) {
5547 		kvm_for_each_vcpu(i, vcpu, kvm) {
5548 			if (vcpu->cpu != freq->cpu)
5549 				continue;
5550 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5551 			if (vcpu->cpu != smp_processor_id())
5552 				send_ipi = 1;
5553 		}
5554 	}
5555 	spin_unlock(&kvm_lock);
5556 
5557 	if (freq->old < freq->new && send_ipi) {
5558 		/*
5559 		 * We upscale the frequency.  Must make the guest
5560 		 * doesn't see old kvmclock values while running with
5561 		 * the new frequency, otherwise we risk the guest sees
5562 		 * time go backwards.
5563 		 *
5564 		 * In case we update the frequency for another cpu
5565 		 * (which might be in guest context) send an interrupt
5566 		 * to kick the cpu out of guest context.  Next time
5567 		 * guest context is entered kvmclock will be updated,
5568 		 * so the guest will not see stale values.
5569 		 */
5570 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5571 	}
5572 	return 0;
5573 }
5574 
5575 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5576 	.notifier_call  = kvmclock_cpufreq_notifier
5577 };
5578 
5579 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5580 					unsigned long action, void *hcpu)
5581 {
5582 	unsigned int cpu = (unsigned long)hcpu;
5583 
5584 	switch (action) {
5585 		case CPU_ONLINE:
5586 		case CPU_DOWN_FAILED:
5587 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5588 			break;
5589 		case CPU_DOWN_PREPARE:
5590 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5591 			break;
5592 	}
5593 	return NOTIFY_OK;
5594 }
5595 
5596 static struct notifier_block kvmclock_cpu_notifier_block = {
5597 	.notifier_call  = kvmclock_cpu_notifier,
5598 	.priority = -INT_MAX
5599 };
5600 
5601 static void kvm_timer_init(void)
5602 {
5603 	int cpu;
5604 
5605 	max_tsc_khz = tsc_khz;
5606 
5607 	cpu_notifier_register_begin();
5608 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5609 #ifdef CONFIG_CPU_FREQ
5610 		struct cpufreq_policy policy;
5611 		memset(&policy, 0, sizeof(policy));
5612 		cpu = get_cpu();
5613 		cpufreq_get_policy(&policy, cpu);
5614 		if (policy.cpuinfo.max_freq)
5615 			max_tsc_khz = policy.cpuinfo.max_freq;
5616 		put_cpu();
5617 #endif
5618 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5619 					  CPUFREQ_TRANSITION_NOTIFIER);
5620 	}
5621 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5622 	for_each_online_cpu(cpu)
5623 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5624 
5625 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5626 	cpu_notifier_register_done();
5627 
5628 }
5629 
5630 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5631 
5632 int kvm_is_in_guest(void)
5633 {
5634 	return __this_cpu_read(current_vcpu) != NULL;
5635 }
5636 
5637 static int kvm_is_user_mode(void)
5638 {
5639 	int user_mode = 3;
5640 
5641 	if (__this_cpu_read(current_vcpu))
5642 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5643 
5644 	return user_mode != 0;
5645 }
5646 
5647 static unsigned long kvm_get_guest_ip(void)
5648 {
5649 	unsigned long ip = 0;
5650 
5651 	if (__this_cpu_read(current_vcpu))
5652 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5653 
5654 	return ip;
5655 }
5656 
5657 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5658 	.is_in_guest		= kvm_is_in_guest,
5659 	.is_user_mode		= kvm_is_user_mode,
5660 	.get_guest_ip		= kvm_get_guest_ip,
5661 };
5662 
5663 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5664 {
5665 	__this_cpu_write(current_vcpu, vcpu);
5666 }
5667 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5668 
5669 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5670 {
5671 	__this_cpu_write(current_vcpu, NULL);
5672 }
5673 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5674 
5675 static void kvm_set_mmio_spte_mask(void)
5676 {
5677 	u64 mask;
5678 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5679 
5680 	/*
5681 	 * Set the reserved bits and the present bit of an paging-structure
5682 	 * entry to generate page fault with PFER.RSV = 1.
5683 	 */
5684 	 /* Mask the reserved physical address bits. */
5685 	mask = rsvd_bits(maxphyaddr, 51);
5686 
5687 	/* Bit 62 is always reserved for 32bit host. */
5688 	mask |= 0x3ull << 62;
5689 
5690 	/* Set the present bit. */
5691 	mask |= 1ull;
5692 
5693 #ifdef CONFIG_X86_64
5694 	/*
5695 	 * If reserved bit is not supported, clear the present bit to disable
5696 	 * mmio page fault.
5697 	 */
5698 	if (maxphyaddr == 52)
5699 		mask &= ~1ull;
5700 #endif
5701 
5702 	kvm_mmu_set_mmio_spte_mask(mask);
5703 }
5704 
5705 #ifdef CONFIG_X86_64
5706 static void pvclock_gtod_update_fn(struct work_struct *work)
5707 {
5708 	struct kvm *kvm;
5709 
5710 	struct kvm_vcpu *vcpu;
5711 	int i;
5712 
5713 	spin_lock(&kvm_lock);
5714 	list_for_each_entry(kvm, &vm_list, vm_list)
5715 		kvm_for_each_vcpu(i, vcpu, kvm)
5716 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5717 	atomic_set(&kvm_guest_has_master_clock, 0);
5718 	spin_unlock(&kvm_lock);
5719 }
5720 
5721 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5722 
5723 /*
5724  * Notification about pvclock gtod data update.
5725  */
5726 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5727 			       void *priv)
5728 {
5729 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5730 	struct timekeeper *tk = priv;
5731 
5732 	update_pvclock_gtod(tk);
5733 
5734 	/* disable master clock if host does not trust, or does not
5735 	 * use, TSC clocksource
5736 	 */
5737 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5738 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5739 		queue_work(system_long_wq, &pvclock_gtod_work);
5740 
5741 	return 0;
5742 }
5743 
5744 static struct notifier_block pvclock_gtod_notifier = {
5745 	.notifier_call = pvclock_gtod_notify,
5746 };
5747 #endif
5748 
5749 int kvm_arch_init(void *opaque)
5750 {
5751 	int r;
5752 	struct kvm_x86_ops *ops = opaque;
5753 
5754 	if (kvm_x86_ops) {
5755 		printk(KERN_ERR "kvm: already loaded the other module\n");
5756 		r = -EEXIST;
5757 		goto out;
5758 	}
5759 
5760 	if (!ops->cpu_has_kvm_support()) {
5761 		printk(KERN_ERR "kvm: no hardware support\n");
5762 		r = -EOPNOTSUPP;
5763 		goto out;
5764 	}
5765 	if (ops->disabled_by_bios()) {
5766 		printk(KERN_ERR "kvm: disabled by bios\n");
5767 		r = -EOPNOTSUPP;
5768 		goto out;
5769 	}
5770 
5771 	r = -ENOMEM;
5772 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5773 	if (!shared_msrs) {
5774 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5775 		goto out;
5776 	}
5777 
5778 	r = kvm_mmu_module_init();
5779 	if (r)
5780 		goto out_free_percpu;
5781 
5782 	kvm_set_mmio_spte_mask();
5783 
5784 	kvm_x86_ops = ops;
5785 	kvm_init_msr_list();
5786 
5787 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5788 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5789 
5790 	kvm_timer_init();
5791 
5792 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5793 
5794 	if (cpu_has_xsave)
5795 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5796 
5797 	kvm_lapic_init();
5798 #ifdef CONFIG_X86_64
5799 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5800 #endif
5801 
5802 	return 0;
5803 
5804 out_free_percpu:
5805 	free_percpu(shared_msrs);
5806 out:
5807 	return r;
5808 }
5809 
5810 void kvm_arch_exit(void)
5811 {
5812 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5813 
5814 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5815 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5816 					    CPUFREQ_TRANSITION_NOTIFIER);
5817 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5818 #ifdef CONFIG_X86_64
5819 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5820 #endif
5821 	kvm_x86_ops = NULL;
5822 	kvm_mmu_module_exit();
5823 	free_percpu(shared_msrs);
5824 }
5825 
5826 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5827 {
5828 	++vcpu->stat.halt_exits;
5829 	if (irqchip_in_kernel(vcpu->kvm)) {
5830 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5831 		return 1;
5832 	} else {
5833 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5834 		return 0;
5835 	}
5836 }
5837 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5838 
5839 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5840 {
5841 	u64 param, ingpa, outgpa, ret;
5842 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5843 	bool fast, longmode;
5844 
5845 	/*
5846 	 * hypercall generates UD from non zero cpl and real mode
5847 	 * per HYPER-V spec
5848 	 */
5849 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5850 		kvm_queue_exception(vcpu, UD_VECTOR);
5851 		return 0;
5852 	}
5853 
5854 	longmode = is_64_bit_mode(vcpu);
5855 
5856 	if (!longmode) {
5857 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5858 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5859 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5860 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5861 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5862 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5863 	}
5864 #ifdef CONFIG_X86_64
5865 	else {
5866 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5867 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5868 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5869 	}
5870 #endif
5871 
5872 	code = param & 0xffff;
5873 	fast = (param >> 16) & 0x1;
5874 	rep_cnt = (param >> 32) & 0xfff;
5875 	rep_idx = (param >> 48) & 0xfff;
5876 
5877 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5878 
5879 	switch (code) {
5880 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5881 		kvm_vcpu_on_spin(vcpu);
5882 		break;
5883 	default:
5884 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5885 		break;
5886 	}
5887 
5888 	ret = res | (((u64)rep_done & 0xfff) << 32);
5889 	if (longmode) {
5890 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5891 	} else {
5892 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5893 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5894 	}
5895 
5896 	return 1;
5897 }
5898 
5899 /*
5900  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5901  *
5902  * @apicid - apicid of vcpu to be kicked.
5903  */
5904 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5905 {
5906 	struct kvm_lapic_irq lapic_irq;
5907 
5908 	lapic_irq.shorthand = 0;
5909 	lapic_irq.dest_mode = 0;
5910 	lapic_irq.dest_id = apicid;
5911 
5912 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5913 	kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5914 }
5915 
5916 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5917 {
5918 	unsigned long nr, a0, a1, a2, a3, ret;
5919 	int op_64_bit, r = 1;
5920 
5921 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5922 		return kvm_hv_hypercall(vcpu);
5923 
5924 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5925 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5926 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5927 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5928 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5929 
5930 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5931 
5932 	op_64_bit = is_64_bit_mode(vcpu);
5933 	if (!op_64_bit) {
5934 		nr &= 0xFFFFFFFF;
5935 		a0 &= 0xFFFFFFFF;
5936 		a1 &= 0xFFFFFFFF;
5937 		a2 &= 0xFFFFFFFF;
5938 		a3 &= 0xFFFFFFFF;
5939 	}
5940 
5941 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5942 		ret = -KVM_EPERM;
5943 		goto out;
5944 	}
5945 
5946 	switch (nr) {
5947 	case KVM_HC_VAPIC_POLL_IRQ:
5948 		ret = 0;
5949 		break;
5950 	case KVM_HC_KICK_CPU:
5951 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5952 		ret = 0;
5953 		break;
5954 	default:
5955 		ret = -KVM_ENOSYS;
5956 		break;
5957 	}
5958 out:
5959 	if (!op_64_bit)
5960 		ret = (u32)ret;
5961 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5962 	++vcpu->stat.hypercalls;
5963 	return r;
5964 }
5965 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5966 
5967 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5968 {
5969 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5970 	char instruction[3];
5971 	unsigned long rip = kvm_rip_read(vcpu);
5972 
5973 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5974 
5975 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5976 }
5977 
5978 /*
5979  * Check if userspace requested an interrupt window, and that the
5980  * interrupt window is open.
5981  *
5982  * No need to exit to userspace if we already have an interrupt queued.
5983  */
5984 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5985 {
5986 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5987 		vcpu->run->request_interrupt_window &&
5988 		kvm_arch_interrupt_allowed(vcpu));
5989 }
5990 
5991 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5992 {
5993 	struct kvm_run *kvm_run = vcpu->run;
5994 
5995 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5996 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5997 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5998 	if (irqchip_in_kernel(vcpu->kvm))
5999 		kvm_run->ready_for_interrupt_injection = 1;
6000 	else
6001 		kvm_run->ready_for_interrupt_injection =
6002 			kvm_arch_interrupt_allowed(vcpu) &&
6003 			!kvm_cpu_has_interrupt(vcpu) &&
6004 			!kvm_event_needs_reinjection(vcpu);
6005 }
6006 
6007 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6008 {
6009 	int max_irr, tpr;
6010 
6011 	if (!kvm_x86_ops->update_cr8_intercept)
6012 		return;
6013 
6014 	if (!vcpu->arch.apic)
6015 		return;
6016 
6017 	if (!vcpu->arch.apic->vapic_addr)
6018 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6019 	else
6020 		max_irr = -1;
6021 
6022 	if (max_irr != -1)
6023 		max_irr >>= 4;
6024 
6025 	tpr = kvm_lapic_get_cr8(vcpu);
6026 
6027 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6028 }
6029 
6030 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6031 {
6032 	int r;
6033 
6034 	/* try to reinject previous events if any */
6035 	if (vcpu->arch.exception.pending) {
6036 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6037 					vcpu->arch.exception.has_error_code,
6038 					vcpu->arch.exception.error_code);
6039 
6040 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6041 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6042 					     X86_EFLAGS_RF);
6043 
6044 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6045 		    (vcpu->arch.dr7 & DR7_GD)) {
6046 			vcpu->arch.dr7 &= ~DR7_GD;
6047 			kvm_update_dr7(vcpu);
6048 		}
6049 
6050 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6051 					  vcpu->arch.exception.has_error_code,
6052 					  vcpu->arch.exception.error_code,
6053 					  vcpu->arch.exception.reinject);
6054 		return 0;
6055 	}
6056 
6057 	if (vcpu->arch.nmi_injected) {
6058 		kvm_x86_ops->set_nmi(vcpu);
6059 		return 0;
6060 	}
6061 
6062 	if (vcpu->arch.interrupt.pending) {
6063 		kvm_x86_ops->set_irq(vcpu);
6064 		return 0;
6065 	}
6066 
6067 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6068 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6069 		if (r != 0)
6070 			return r;
6071 	}
6072 
6073 	/* try to inject new event if pending */
6074 	if (vcpu->arch.nmi_pending) {
6075 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
6076 			--vcpu->arch.nmi_pending;
6077 			vcpu->arch.nmi_injected = true;
6078 			kvm_x86_ops->set_nmi(vcpu);
6079 		}
6080 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6081 		/*
6082 		 * Because interrupts can be injected asynchronously, we are
6083 		 * calling check_nested_events again here to avoid a race condition.
6084 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6085 		 * proposal and current concerns.  Perhaps we should be setting
6086 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6087 		 */
6088 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6089 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6090 			if (r != 0)
6091 				return r;
6092 		}
6093 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6094 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6095 					    false);
6096 			kvm_x86_ops->set_irq(vcpu);
6097 		}
6098 	}
6099 	return 0;
6100 }
6101 
6102 static void process_nmi(struct kvm_vcpu *vcpu)
6103 {
6104 	unsigned limit = 2;
6105 
6106 	/*
6107 	 * x86 is limited to one NMI running, and one NMI pending after it.
6108 	 * If an NMI is already in progress, limit further NMIs to just one.
6109 	 * Otherwise, allow two (and we'll inject the first one immediately).
6110 	 */
6111 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6112 		limit = 1;
6113 
6114 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6115 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6116 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6117 }
6118 
6119 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6120 {
6121 	u64 eoi_exit_bitmap[4];
6122 	u32 tmr[8];
6123 
6124 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6125 		return;
6126 
6127 	memset(eoi_exit_bitmap, 0, 32);
6128 	memset(tmr, 0, 32);
6129 
6130 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6131 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6132 	kvm_apic_update_tmr(vcpu, tmr);
6133 }
6134 
6135 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6136 {
6137 	++vcpu->stat.tlb_flush;
6138 	kvm_x86_ops->tlb_flush(vcpu);
6139 }
6140 
6141 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6142 {
6143 	struct page *page = NULL;
6144 
6145 	if (!irqchip_in_kernel(vcpu->kvm))
6146 		return;
6147 
6148 	if (!kvm_x86_ops->set_apic_access_page_addr)
6149 		return;
6150 
6151 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6152 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6153 
6154 	/*
6155 	 * Do not pin apic access page in memory, the MMU notifier
6156 	 * will call us again if it is migrated or swapped out.
6157 	 */
6158 	put_page(page);
6159 }
6160 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6161 
6162 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6163 					   unsigned long address)
6164 {
6165 	/*
6166 	 * The physical address of apic access page is stored in the VMCS.
6167 	 * Update it when it becomes invalid.
6168 	 */
6169 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6170 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6171 }
6172 
6173 /*
6174  * Returns 1 to let __vcpu_run() continue the guest execution loop without
6175  * exiting to the userspace.  Otherwise, the value will be returned to the
6176  * userspace.
6177  */
6178 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6179 {
6180 	int r;
6181 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6182 		vcpu->run->request_interrupt_window;
6183 	bool req_immediate_exit = false;
6184 
6185 	if (vcpu->requests) {
6186 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6187 			kvm_mmu_unload(vcpu);
6188 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6189 			__kvm_migrate_timers(vcpu);
6190 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6191 			kvm_gen_update_masterclock(vcpu->kvm);
6192 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6193 			kvm_gen_kvmclock_update(vcpu);
6194 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6195 			r = kvm_guest_time_update(vcpu);
6196 			if (unlikely(r))
6197 				goto out;
6198 		}
6199 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6200 			kvm_mmu_sync_roots(vcpu);
6201 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6202 			kvm_vcpu_flush_tlb(vcpu);
6203 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6204 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6205 			r = 0;
6206 			goto out;
6207 		}
6208 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6209 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6210 			r = 0;
6211 			goto out;
6212 		}
6213 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6214 			vcpu->fpu_active = 0;
6215 			kvm_x86_ops->fpu_deactivate(vcpu);
6216 		}
6217 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6218 			/* Page is swapped out. Do synthetic halt */
6219 			vcpu->arch.apf.halted = true;
6220 			r = 1;
6221 			goto out;
6222 		}
6223 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6224 			record_steal_time(vcpu);
6225 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6226 			process_nmi(vcpu);
6227 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6228 			kvm_handle_pmu_event(vcpu);
6229 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6230 			kvm_deliver_pmi(vcpu);
6231 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6232 			vcpu_scan_ioapic(vcpu);
6233 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6234 			kvm_vcpu_reload_apic_access_page(vcpu);
6235 	}
6236 
6237 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6238 		kvm_apic_accept_events(vcpu);
6239 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6240 			r = 1;
6241 			goto out;
6242 		}
6243 
6244 		if (inject_pending_event(vcpu, req_int_win) != 0)
6245 			req_immediate_exit = true;
6246 		/* enable NMI/IRQ window open exits if needed */
6247 		else if (vcpu->arch.nmi_pending)
6248 			kvm_x86_ops->enable_nmi_window(vcpu);
6249 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6250 			kvm_x86_ops->enable_irq_window(vcpu);
6251 
6252 		if (kvm_lapic_enabled(vcpu)) {
6253 			/*
6254 			 * Update architecture specific hints for APIC
6255 			 * virtual interrupt delivery.
6256 			 */
6257 			if (kvm_x86_ops->hwapic_irr_update)
6258 				kvm_x86_ops->hwapic_irr_update(vcpu,
6259 					kvm_lapic_find_highest_irr(vcpu));
6260 			update_cr8_intercept(vcpu);
6261 			kvm_lapic_sync_to_vapic(vcpu);
6262 		}
6263 	}
6264 
6265 	r = kvm_mmu_reload(vcpu);
6266 	if (unlikely(r)) {
6267 		goto cancel_injection;
6268 	}
6269 
6270 	preempt_disable();
6271 
6272 	kvm_x86_ops->prepare_guest_switch(vcpu);
6273 	if (vcpu->fpu_active)
6274 		kvm_load_guest_fpu(vcpu);
6275 	kvm_load_guest_xcr0(vcpu);
6276 
6277 	vcpu->mode = IN_GUEST_MODE;
6278 
6279 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6280 
6281 	/* We should set ->mode before check ->requests,
6282 	 * see the comment in make_all_cpus_request.
6283 	 */
6284 	smp_mb__after_srcu_read_unlock();
6285 
6286 	local_irq_disable();
6287 
6288 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6289 	    || need_resched() || signal_pending(current)) {
6290 		vcpu->mode = OUTSIDE_GUEST_MODE;
6291 		smp_wmb();
6292 		local_irq_enable();
6293 		preempt_enable();
6294 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6295 		r = 1;
6296 		goto cancel_injection;
6297 	}
6298 
6299 	if (req_immediate_exit)
6300 		smp_send_reschedule(vcpu->cpu);
6301 
6302 	kvm_guest_enter();
6303 
6304 	if (unlikely(vcpu->arch.switch_db_regs)) {
6305 		set_debugreg(0, 7);
6306 		set_debugreg(vcpu->arch.eff_db[0], 0);
6307 		set_debugreg(vcpu->arch.eff_db[1], 1);
6308 		set_debugreg(vcpu->arch.eff_db[2], 2);
6309 		set_debugreg(vcpu->arch.eff_db[3], 3);
6310 		set_debugreg(vcpu->arch.dr6, 6);
6311 	}
6312 
6313 	trace_kvm_entry(vcpu->vcpu_id);
6314 	kvm_x86_ops->run(vcpu);
6315 
6316 	/*
6317 	 * Do this here before restoring debug registers on the host.  And
6318 	 * since we do this before handling the vmexit, a DR access vmexit
6319 	 * can (a) read the correct value of the debug registers, (b) set
6320 	 * KVM_DEBUGREG_WONT_EXIT again.
6321 	 */
6322 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6323 		int i;
6324 
6325 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6326 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6327 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6328 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6329 	}
6330 
6331 	/*
6332 	 * If the guest has used debug registers, at least dr7
6333 	 * will be disabled while returning to the host.
6334 	 * If we don't have active breakpoints in the host, we don't
6335 	 * care about the messed up debug address registers. But if
6336 	 * we have some of them active, restore the old state.
6337 	 */
6338 	if (hw_breakpoint_active())
6339 		hw_breakpoint_restore();
6340 
6341 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6342 							   native_read_tsc());
6343 
6344 	vcpu->mode = OUTSIDE_GUEST_MODE;
6345 	smp_wmb();
6346 
6347 	/* Interrupt is enabled by handle_external_intr() */
6348 	kvm_x86_ops->handle_external_intr(vcpu);
6349 
6350 	++vcpu->stat.exits;
6351 
6352 	/*
6353 	 * We must have an instruction between local_irq_enable() and
6354 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6355 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6356 	 * But we need to prevent reordering, hence this barrier():
6357 	 */
6358 	barrier();
6359 
6360 	kvm_guest_exit();
6361 
6362 	preempt_enable();
6363 
6364 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6365 
6366 	/*
6367 	 * Profile KVM exit RIPs:
6368 	 */
6369 	if (unlikely(prof_on == KVM_PROFILING)) {
6370 		unsigned long rip = kvm_rip_read(vcpu);
6371 		profile_hit(KVM_PROFILING, (void *)rip);
6372 	}
6373 
6374 	if (unlikely(vcpu->arch.tsc_always_catchup))
6375 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6376 
6377 	if (vcpu->arch.apic_attention)
6378 		kvm_lapic_sync_from_vapic(vcpu);
6379 
6380 	r = kvm_x86_ops->handle_exit(vcpu);
6381 	return r;
6382 
6383 cancel_injection:
6384 	kvm_x86_ops->cancel_injection(vcpu);
6385 	if (unlikely(vcpu->arch.apic_attention))
6386 		kvm_lapic_sync_from_vapic(vcpu);
6387 out:
6388 	return r;
6389 }
6390 
6391 
6392 static int __vcpu_run(struct kvm_vcpu *vcpu)
6393 {
6394 	int r;
6395 	struct kvm *kvm = vcpu->kvm;
6396 
6397 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6398 
6399 	r = 1;
6400 	while (r > 0) {
6401 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6402 		    !vcpu->arch.apf.halted)
6403 			r = vcpu_enter_guest(vcpu);
6404 		else {
6405 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6406 			kvm_vcpu_block(vcpu);
6407 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6408 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6409 				kvm_apic_accept_events(vcpu);
6410 				switch(vcpu->arch.mp_state) {
6411 				case KVM_MP_STATE_HALTED:
6412 					vcpu->arch.pv.pv_unhalted = false;
6413 					vcpu->arch.mp_state =
6414 						KVM_MP_STATE_RUNNABLE;
6415 				case KVM_MP_STATE_RUNNABLE:
6416 					vcpu->arch.apf.halted = false;
6417 					break;
6418 				case KVM_MP_STATE_INIT_RECEIVED:
6419 					break;
6420 				default:
6421 					r = -EINTR;
6422 					break;
6423 				}
6424 			}
6425 		}
6426 
6427 		if (r <= 0)
6428 			break;
6429 
6430 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6431 		if (kvm_cpu_has_pending_timer(vcpu))
6432 			kvm_inject_pending_timer_irqs(vcpu);
6433 
6434 		if (dm_request_for_irq_injection(vcpu)) {
6435 			r = -EINTR;
6436 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6437 			++vcpu->stat.request_irq_exits;
6438 		}
6439 
6440 		kvm_check_async_pf_completion(vcpu);
6441 
6442 		if (signal_pending(current)) {
6443 			r = -EINTR;
6444 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6445 			++vcpu->stat.signal_exits;
6446 		}
6447 		if (need_resched()) {
6448 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6449 			cond_resched();
6450 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6451 		}
6452 	}
6453 
6454 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6455 
6456 	return r;
6457 }
6458 
6459 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6460 {
6461 	int r;
6462 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6463 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6464 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6465 	if (r != EMULATE_DONE)
6466 		return 0;
6467 	return 1;
6468 }
6469 
6470 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6471 {
6472 	BUG_ON(!vcpu->arch.pio.count);
6473 
6474 	return complete_emulated_io(vcpu);
6475 }
6476 
6477 /*
6478  * Implements the following, as a state machine:
6479  *
6480  * read:
6481  *   for each fragment
6482  *     for each mmio piece in the fragment
6483  *       write gpa, len
6484  *       exit
6485  *       copy data
6486  *   execute insn
6487  *
6488  * write:
6489  *   for each fragment
6490  *     for each mmio piece in the fragment
6491  *       write gpa, len
6492  *       copy data
6493  *       exit
6494  */
6495 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6496 {
6497 	struct kvm_run *run = vcpu->run;
6498 	struct kvm_mmio_fragment *frag;
6499 	unsigned len;
6500 
6501 	BUG_ON(!vcpu->mmio_needed);
6502 
6503 	/* Complete previous fragment */
6504 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6505 	len = min(8u, frag->len);
6506 	if (!vcpu->mmio_is_write)
6507 		memcpy(frag->data, run->mmio.data, len);
6508 
6509 	if (frag->len <= 8) {
6510 		/* Switch to the next fragment. */
6511 		frag++;
6512 		vcpu->mmio_cur_fragment++;
6513 	} else {
6514 		/* Go forward to the next mmio piece. */
6515 		frag->data += len;
6516 		frag->gpa += len;
6517 		frag->len -= len;
6518 	}
6519 
6520 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6521 		vcpu->mmio_needed = 0;
6522 
6523 		/* FIXME: return into emulator if single-stepping.  */
6524 		if (vcpu->mmio_is_write)
6525 			return 1;
6526 		vcpu->mmio_read_completed = 1;
6527 		return complete_emulated_io(vcpu);
6528 	}
6529 
6530 	run->exit_reason = KVM_EXIT_MMIO;
6531 	run->mmio.phys_addr = frag->gpa;
6532 	if (vcpu->mmio_is_write)
6533 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6534 	run->mmio.len = min(8u, frag->len);
6535 	run->mmio.is_write = vcpu->mmio_is_write;
6536 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6537 	return 0;
6538 }
6539 
6540 
6541 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6542 {
6543 	int r;
6544 	sigset_t sigsaved;
6545 
6546 	if (!tsk_used_math(current) && init_fpu(current))
6547 		return -ENOMEM;
6548 
6549 	if (vcpu->sigset_active)
6550 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6551 
6552 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6553 		kvm_vcpu_block(vcpu);
6554 		kvm_apic_accept_events(vcpu);
6555 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6556 		r = -EAGAIN;
6557 		goto out;
6558 	}
6559 
6560 	/* re-sync apic's tpr */
6561 	if (!irqchip_in_kernel(vcpu->kvm)) {
6562 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6563 			r = -EINVAL;
6564 			goto out;
6565 		}
6566 	}
6567 
6568 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6569 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6570 		vcpu->arch.complete_userspace_io = NULL;
6571 		r = cui(vcpu);
6572 		if (r <= 0)
6573 			goto out;
6574 	} else
6575 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6576 
6577 	r = __vcpu_run(vcpu);
6578 
6579 out:
6580 	post_kvm_run_save(vcpu);
6581 	if (vcpu->sigset_active)
6582 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6583 
6584 	return r;
6585 }
6586 
6587 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6588 {
6589 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6590 		/*
6591 		 * We are here if userspace calls get_regs() in the middle of
6592 		 * instruction emulation. Registers state needs to be copied
6593 		 * back from emulation context to vcpu. Userspace shouldn't do
6594 		 * that usually, but some bad designed PV devices (vmware
6595 		 * backdoor interface) need this to work
6596 		 */
6597 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6598 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6599 	}
6600 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6601 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6602 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6603 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6604 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6605 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6606 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6607 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6608 #ifdef CONFIG_X86_64
6609 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6610 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6611 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6612 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6613 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6614 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6615 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6616 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6617 #endif
6618 
6619 	regs->rip = kvm_rip_read(vcpu);
6620 	regs->rflags = kvm_get_rflags(vcpu);
6621 
6622 	return 0;
6623 }
6624 
6625 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6626 {
6627 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6628 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6629 
6630 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6631 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6632 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6633 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6634 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6635 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6636 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6637 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6638 #ifdef CONFIG_X86_64
6639 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6640 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6641 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6642 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6643 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6644 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6645 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6646 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6647 #endif
6648 
6649 	kvm_rip_write(vcpu, regs->rip);
6650 	kvm_set_rflags(vcpu, regs->rflags);
6651 
6652 	vcpu->arch.exception.pending = false;
6653 
6654 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6655 
6656 	return 0;
6657 }
6658 
6659 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6660 {
6661 	struct kvm_segment cs;
6662 
6663 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6664 	*db = cs.db;
6665 	*l = cs.l;
6666 }
6667 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6668 
6669 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6670 				  struct kvm_sregs *sregs)
6671 {
6672 	struct desc_ptr dt;
6673 
6674 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6675 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6676 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6677 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6678 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6679 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6680 
6681 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6682 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6683 
6684 	kvm_x86_ops->get_idt(vcpu, &dt);
6685 	sregs->idt.limit = dt.size;
6686 	sregs->idt.base = dt.address;
6687 	kvm_x86_ops->get_gdt(vcpu, &dt);
6688 	sregs->gdt.limit = dt.size;
6689 	sregs->gdt.base = dt.address;
6690 
6691 	sregs->cr0 = kvm_read_cr0(vcpu);
6692 	sregs->cr2 = vcpu->arch.cr2;
6693 	sregs->cr3 = kvm_read_cr3(vcpu);
6694 	sregs->cr4 = kvm_read_cr4(vcpu);
6695 	sregs->cr8 = kvm_get_cr8(vcpu);
6696 	sregs->efer = vcpu->arch.efer;
6697 	sregs->apic_base = kvm_get_apic_base(vcpu);
6698 
6699 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6700 
6701 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6702 		set_bit(vcpu->arch.interrupt.nr,
6703 			(unsigned long *)sregs->interrupt_bitmap);
6704 
6705 	return 0;
6706 }
6707 
6708 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6709 				    struct kvm_mp_state *mp_state)
6710 {
6711 	kvm_apic_accept_events(vcpu);
6712 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6713 					vcpu->arch.pv.pv_unhalted)
6714 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6715 	else
6716 		mp_state->mp_state = vcpu->arch.mp_state;
6717 
6718 	return 0;
6719 }
6720 
6721 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6722 				    struct kvm_mp_state *mp_state)
6723 {
6724 	if (!kvm_vcpu_has_lapic(vcpu) &&
6725 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6726 		return -EINVAL;
6727 
6728 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6729 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6730 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6731 	} else
6732 		vcpu->arch.mp_state = mp_state->mp_state;
6733 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6734 	return 0;
6735 }
6736 
6737 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6738 		    int reason, bool has_error_code, u32 error_code)
6739 {
6740 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6741 	int ret;
6742 
6743 	init_emulate_ctxt(vcpu);
6744 
6745 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6746 				   has_error_code, error_code);
6747 
6748 	if (ret)
6749 		return EMULATE_FAIL;
6750 
6751 	kvm_rip_write(vcpu, ctxt->eip);
6752 	kvm_set_rflags(vcpu, ctxt->eflags);
6753 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6754 	return EMULATE_DONE;
6755 }
6756 EXPORT_SYMBOL_GPL(kvm_task_switch);
6757 
6758 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6759 				  struct kvm_sregs *sregs)
6760 {
6761 	struct msr_data apic_base_msr;
6762 	int mmu_reset_needed = 0;
6763 	int pending_vec, max_bits, idx;
6764 	struct desc_ptr dt;
6765 
6766 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6767 		return -EINVAL;
6768 
6769 	dt.size = sregs->idt.limit;
6770 	dt.address = sregs->idt.base;
6771 	kvm_x86_ops->set_idt(vcpu, &dt);
6772 	dt.size = sregs->gdt.limit;
6773 	dt.address = sregs->gdt.base;
6774 	kvm_x86_ops->set_gdt(vcpu, &dt);
6775 
6776 	vcpu->arch.cr2 = sregs->cr2;
6777 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6778 	vcpu->arch.cr3 = sregs->cr3;
6779 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6780 
6781 	kvm_set_cr8(vcpu, sregs->cr8);
6782 
6783 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6784 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6785 	apic_base_msr.data = sregs->apic_base;
6786 	apic_base_msr.host_initiated = true;
6787 	kvm_set_apic_base(vcpu, &apic_base_msr);
6788 
6789 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6790 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6791 	vcpu->arch.cr0 = sregs->cr0;
6792 
6793 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6794 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6795 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6796 		kvm_update_cpuid(vcpu);
6797 
6798 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6799 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6800 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6801 		mmu_reset_needed = 1;
6802 	}
6803 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6804 
6805 	if (mmu_reset_needed)
6806 		kvm_mmu_reset_context(vcpu);
6807 
6808 	max_bits = KVM_NR_INTERRUPTS;
6809 	pending_vec = find_first_bit(
6810 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6811 	if (pending_vec < max_bits) {
6812 		kvm_queue_interrupt(vcpu, pending_vec, false);
6813 		pr_debug("Set back pending irq %d\n", pending_vec);
6814 	}
6815 
6816 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6817 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6818 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6819 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6820 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6821 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6822 
6823 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6824 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6825 
6826 	update_cr8_intercept(vcpu);
6827 
6828 	/* Older userspace won't unhalt the vcpu on reset. */
6829 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6830 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6831 	    !is_protmode(vcpu))
6832 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6833 
6834 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6835 
6836 	return 0;
6837 }
6838 
6839 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6840 					struct kvm_guest_debug *dbg)
6841 {
6842 	unsigned long rflags;
6843 	int i, r;
6844 
6845 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6846 		r = -EBUSY;
6847 		if (vcpu->arch.exception.pending)
6848 			goto out;
6849 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6850 			kvm_queue_exception(vcpu, DB_VECTOR);
6851 		else
6852 			kvm_queue_exception(vcpu, BP_VECTOR);
6853 	}
6854 
6855 	/*
6856 	 * Read rflags as long as potentially injected trace flags are still
6857 	 * filtered out.
6858 	 */
6859 	rflags = kvm_get_rflags(vcpu);
6860 
6861 	vcpu->guest_debug = dbg->control;
6862 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6863 		vcpu->guest_debug = 0;
6864 
6865 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6866 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6867 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6868 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6869 	} else {
6870 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6871 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6872 	}
6873 	kvm_update_dr7(vcpu);
6874 
6875 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6876 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6877 			get_segment_base(vcpu, VCPU_SREG_CS);
6878 
6879 	/*
6880 	 * Trigger an rflags update that will inject or remove the trace
6881 	 * flags.
6882 	 */
6883 	kvm_set_rflags(vcpu, rflags);
6884 
6885 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6886 
6887 	r = 0;
6888 
6889 out:
6890 
6891 	return r;
6892 }
6893 
6894 /*
6895  * Translate a guest virtual address to a guest physical address.
6896  */
6897 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6898 				    struct kvm_translation *tr)
6899 {
6900 	unsigned long vaddr = tr->linear_address;
6901 	gpa_t gpa;
6902 	int idx;
6903 
6904 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6905 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6906 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6907 	tr->physical_address = gpa;
6908 	tr->valid = gpa != UNMAPPED_GVA;
6909 	tr->writeable = 1;
6910 	tr->usermode = 0;
6911 
6912 	return 0;
6913 }
6914 
6915 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6916 {
6917 	struct i387_fxsave_struct *fxsave =
6918 			&vcpu->arch.guest_fpu.state->fxsave;
6919 
6920 	memcpy(fpu->fpr, fxsave->st_space, 128);
6921 	fpu->fcw = fxsave->cwd;
6922 	fpu->fsw = fxsave->swd;
6923 	fpu->ftwx = fxsave->twd;
6924 	fpu->last_opcode = fxsave->fop;
6925 	fpu->last_ip = fxsave->rip;
6926 	fpu->last_dp = fxsave->rdp;
6927 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6928 
6929 	return 0;
6930 }
6931 
6932 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6933 {
6934 	struct i387_fxsave_struct *fxsave =
6935 			&vcpu->arch.guest_fpu.state->fxsave;
6936 
6937 	memcpy(fxsave->st_space, fpu->fpr, 128);
6938 	fxsave->cwd = fpu->fcw;
6939 	fxsave->swd = fpu->fsw;
6940 	fxsave->twd = fpu->ftwx;
6941 	fxsave->fop = fpu->last_opcode;
6942 	fxsave->rip = fpu->last_ip;
6943 	fxsave->rdp = fpu->last_dp;
6944 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6945 
6946 	return 0;
6947 }
6948 
6949 int fx_init(struct kvm_vcpu *vcpu)
6950 {
6951 	int err;
6952 
6953 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6954 	if (err)
6955 		return err;
6956 
6957 	fpu_finit(&vcpu->arch.guest_fpu);
6958 	if (cpu_has_xsaves)
6959 		vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
6960 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
6961 
6962 	/*
6963 	 * Ensure guest xcr0 is valid for loading
6964 	 */
6965 	vcpu->arch.xcr0 = XSTATE_FP;
6966 
6967 	vcpu->arch.cr0 |= X86_CR0_ET;
6968 
6969 	return 0;
6970 }
6971 EXPORT_SYMBOL_GPL(fx_init);
6972 
6973 static void fx_free(struct kvm_vcpu *vcpu)
6974 {
6975 	fpu_free(&vcpu->arch.guest_fpu);
6976 }
6977 
6978 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6979 {
6980 	if (vcpu->guest_fpu_loaded)
6981 		return;
6982 
6983 	/*
6984 	 * Restore all possible states in the guest,
6985 	 * and assume host would use all available bits.
6986 	 * Guest xcr0 would be loaded later.
6987 	 */
6988 	kvm_put_guest_xcr0(vcpu);
6989 	vcpu->guest_fpu_loaded = 1;
6990 	__kernel_fpu_begin();
6991 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6992 	trace_kvm_fpu(1);
6993 }
6994 
6995 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6996 {
6997 	kvm_put_guest_xcr0(vcpu);
6998 
6999 	if (!vcpu->guest_fpu_loaded)
7000 		return;
7001 
7002 	vcpu->guest_fpu_loaded = 0;
7003 	fpu_save_init(&vcpu->arch.guest_fpu);
7004 	__kernel_fpu_end();
7005 	++vcpu->stat.fpu_reload;
7006 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7007 	trace_kvm_fpu(0);
7008 }
7009 
7010 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7011 {
7012 	kvmclock_reset(vcpu);
7013 
7014 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7015 	fx_free(vcpu);
7016 	kvm_x86_ops->vcpu_free(vcpu);
7017 }
7018 
7019 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7020 						unsigned int id)
7021 {
7022 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7023 		printk_once(KERN_WARNING
7024 		"kvm: SMP vm created on host with unstable TSC; "
7025 		"guest TSC will not be reliable\n");
7026 	return kvm_x86_ops->vcpu_create(kvm, id);
7027 }
7028 
7029 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7030 {
7031 	int r;
7032 
7033 	vcpu->arch.mtrr_state.have_fixed = 1;
7034 	r = vcpu_load(vcpu);
7035 	if (r)
7036 		return r;
7037 	kvm_vcpu_reset(vcpu);
7038 	kvm_mmu_setup(vcpu);
7039 	vcpu_put(vcpu);
7040 
7041 	return r;
7042 }
7043 
7044 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7045 {
7046 	int r;
7047 	struct msr_data msr;
7048 	struct kvm *kvm = vcpu->kvm;
7049 
7050 	r = vcpu_load(vcpu);
7051 	if (r)
7052 		return r;
7053 	msr.data = 0x0;
7054 	msr.index = MSR_IA32_TSC;
7055 	msr.host_initiated = true;
7056 	kvm_write_tsc(vcpu, &msr);
7057 	vcpu_put(vcpu);
7058 
7059 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7060 					KVMCLOCK_SYNC_PERIOD);
7061 
7062 	return r;
7063 }
7064 
7065 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7066 {
7067 	int r;
7068 	vcpu->arch.apf.msr_val = 0;
7069 
7070 	r = vcpu_load(vcpu);
7071 	BUG_ON(r);
7072 	kvm_mmu_unload(vcpu);
7073 	vcpu_put(vcpu);
7074 
7075 	fx_free(vcpu);
7076 	kvm_x86_ops->vcpu_free(vcpu);
7077 }
7078 
7079 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7080 {
7081 	atomic_set(&vcpu->arch.nmi_queued, 0);
7082 	vcpu->arch.nmi_pending = 0;
7083 	vcpu->arch.nmi_injected = false;
7084 	kvm_clear_interrupt_queue(vcpu);
7085 	kvm_clear_exception_queue(vcpu);
7086 
7087 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7088 	vcpu->arch.dr6 = DR6_INIT;
7089 	kvm_update_dr6(vcpu);
7090 	vcpu->arch.dr7 = DR7_FIXED_1;
7091 	kvm_update_dr7(vcpu);
7092 
7093 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7094 	vcpu->arch.apf.msr_val = 0;
7095 	vcpu->arch.st.msr_val = 0;
7096 
7097 	kvmclock_reset(vcpu);
7098 
7099 	kvm_clear_async_pf_completion_queue(vcpu);
7100 	kvm_async_pf_hash_reset(vcpu);
7101 	vcpu->arch.apf.halted = false;
7102 
7103 	kvm_pmu_reset(vcpu);
7104 
7105 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7106 	vcpu->arch.regs_avail = ~0;
7107 	vcpu->arch.regs_dirty = ~0;
7108 
7109 	kvm_x86_ops->vcpu_reset(vcpu);
7110 }
7111 
7112 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7113 {
7114 	struct kvm_segment cs;
7115 
7116 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7117 	cs.selector = vector << 8;
7118 	cs.base = vector << 12;
7119 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7120 	kvm_rip_write(vcpu, 0);
7121 }
7122 
7123 int kvm_arch_hardware_enable(void)
7124 {
7125 	struct kvm *kvm;
7126 	struct kvm_vcpu *vcpu;
7127 	int i;
7128 	int ret;
7129 	u64 local_tsc;
7130 	u64 max_tsc = 0;
7131 	bool stable, backwards_tsc = false;
7132 
7133 	kvm_shared_msr_cpu_online();
7134 	ret = kvm_x86_ops->hardware_enable();
7135 	if (ret != 0)
7136 		return ret;
7137 
7138 	local_tsc = native_read_tsc();
7139 	stable = !check_tsc_unstable();
7140 	list_for_each_entry(kvm, &vm_list, vm_list) {
7141 		kvm_for_each_vcpu(i, vcpu, kvm) {
7142 			if (!stable && vcpu->cpu == smp_processor_id())
7143 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7144 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7145 				backwards_tsc = true;
7146 				if (vcpu->arch.last_host_tsc > max_tsc)
7147 					max_tsc = vcpu->arch.last_host_tsc;
7148 			}
7149 		}
7150 	}
7151 
7152 	/*
7153 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7154 	 * platforms that reset TSC during suspend or hibernate actions, but
7155 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7156 	 * detect that condition here, which happens early in CPU bringup,
7157 	 * before any KVM threads can be running.  Unfortunately, we can't
7158 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7159 	 * enough into CPU bringup that we know how much real time has actually
7160 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7161 	 * variables that haven't been updated yet.
7162 	 *
7163 	 * So we simply find the maximum observed TSC above, then record the
7164 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7165 	 * the adjustment will be applied.  Note that we accumulate
7166 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7167 	 * gets a chance to run again.  In the event that no KVM threads get a
7168 	 * chance to run, we will miss the entire elapsed period, as we'll have
7169 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7170 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7171 	 * uniform across all VCPUs (not to mention the scenario is extremely
7172 	 * unlikely). It is possible that a second hibernate recovery happens
7173 	 * much faster than a first, causing the observed TSC here to be
7174 	 * smaller; this would require additional padding adjustment, which is
7175 	 * why we set last_host_tsc to the local tsc observed here.
7176 	 *
7177 	 * N.B. - this code below runs only on platforms with reliable TSC,
7178 	 * as that is the only way backwards_tsc is set above.  Also note
7179 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7180 	 * have the same delta_cyc adjustment applied if backwards_tsc
7181 	 * is detected.  Note further, this adjustment is only done once,
7182 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7183 	 * called multiple times (one for each physical CPU bringup).
7184 	 *
7185 	 * Platforms with unreliable TSCs don't have to deal with this, they
7186 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7187 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7188 	 * guarantee that they stay in perfect synchronization.
7189 	 */
7190 	if (backwards_tsc) {
7191 		u64 delta_cyc = max_tsc - local_tsc;
7192 		backwards_tsc_observed = true;
7193 		list_for_each_entry(kvm, &vm_list, vm_list) {
7194 			kvm_for_each_vcpu(i, vcpu, kvm) {
7195 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7196 				vcpu->arch.last_host_tsc = local_tsc;
7197 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7198 			}
7199 
7200 			/*
7201 			 * We have to disable TSC offset matching.. if you were
7202 			 * booting a VM while issuing an S4 host suspend....
7203 			 * you may have some problem.  Solving this issue is
7204 			 * left as an exercise to the reader.
7205 			 */
7206 			kvm->arch.last_tsc_nsec = 0;
7207 			kvm->arch.last_tsc_write = 0;
7208 		}
7209 
7210 	}
7211 	return 0;
7212 }
7213 
7214 void kvm_arch_hardware_disable(void)
7215 {
7216 	kvm_x86_ops->hardware_disable();
7217 	drop_user_return_notifiers();
7218 }
7219 
7220 int kvm_arch_hardware_setup(void)
7221 {
7222 	return kvm_x86_ops->hardware_setup();
7223 }
7224 
7225 void kvm_arch_hardware_unsetup(void)
7226 {
7227 	kvm_x86_ops->hardware_unsetup();
7228 }
7229 
7230 void kvm_arch_check_processor_compat(void *rtn)
7231 {
7232 	kvm_x86_ops->check_processor_compatibility(rtn);
7233 }
7234 
7235 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7236 {
7237 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7238 }
7239 
7240 struct static_key kvm_no_apic_vcpu __read_mostly;
7241 
7242 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7243 {
7244 	struct page *page;
7245 	struct kvm *kvm;
7246 	int r;
7247 
7248 	BUG_ON(vcpu->kvm == NULL);
7249 	kvm = vcpu->kvm;
7250 
7251 	vcpu->arch.pv.pv_unhalted = false;
7252 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7253 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7254 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7255 	else
7256 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7257 
7258 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7259 	if (!page) {
7260 		r = -ENOMEM;
7261 		goto fail;
7262 	}
7263 	vcpu->arch.pio_data = page_address(page);
7264 
7265 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7266 
7267 	r = kvm_mmu_create(vcpu);
7268 	if (r < 0)
7269 		goto fail_free_pio_data;
7270 
7271 	if (irqchip_in_kernel(kvm)) {
7272 		r = kvm_create_lapic(vcpu);
7273 		if (r < 0)
7274 			goto fail_mmu_destroy;
7275 	} else
7276 		static_key_slow_inc(&kvm_no_apic_vcpu);
7277 
7278 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7279 				       GFP_KERNEL);
7280 	if (!vcpu->arch.mce_banks) {
7281 		r = -ENOMEM;
7282 		goto fail_free_lapic;
7283 	}
7284 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7285 
7286 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7287 		r = -ENOMEM;
7288 		goto fail_free_mce_banks;
7289 	}
7290 
7291 	r = fx_init(vcpu);
7292 	if (r)
7293 		goto fail_free_wbinvd_dirty_mask;
7294 
7295 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7296 	vcpu->arch.pv_time_enabled = false;
7297 
7298 	vcpu->arch.guest_supported_xcr0 = 0;
7299 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7300 
7301 	kvm_async_pf_hash_reset(vcpu);
7302 	kvm_pmu_init(vcpu);
7303 
7304 	return 0;
7305 fail_free_wbinvd_dirty_mask:
7306 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7307 fail_free_mce_banks:
7308 	kfree(vcpu->arch.mce_banks);
7309 fail_free_lapic:
7310 	kvm_free_lapic(vcpu);
7311 fail_mmu_destroy:
7312 	kvm_mmu_destroy(vcpu);
7313 fail_free_pio_data:
7314 	free_page((unsigned long)vcpu->arch.pio_data);
7315 fail:
7316 	return r;
7317 }
7318 
7319 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7320 {
7321 	int idx;
7322 
7323 	kvm_pmu_destroy(vcpu);
7324 	kfree(vcpu->arch.mce_banks);
7325 	kvm_free_lapic(vcpu);
7326 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7327 	kvm_mmu_destroy(vcpu);
7328 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7329 	free_page((unsigned long)vcpu->arch.pio_data);
7330 	if (!irqchip_in_kernel(vcpu->kvm))
7331 		static_key_slow_dec(&kvm_no_apic_vcpu);
7332 }
7333 
7334 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7335 {
7336 	kvm_x86_ops->sched_in(vcpu, cpu);
7337 }
7338 
7339 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7340 {
7341 	if (type)
7342 		return -EINVAL;
7343 
7344 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7345 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7346 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7347 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7348 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7349 
7350 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7351 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7352 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7353 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7354 		&kvm->arch.irq_sources_bitmap);
7355 
7356 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7357 	mutex_init(&kvm->arch.apic_map_lock);
7358 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7359 
7360 	pvclock_update_vm_gtod_copy(kvm);
7361 
7362 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7363 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7364 
7365 	return 0;
7366 }
7367 
7368 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7369 {
7370 	int r;
7371 	r = vcpu_load(vcpu);
7372 	BUG_ON(r);
7373 	kvm_mmu_unload(vcpu);
7374 	vcpu_put(vcpu);
7375 }
7376 
7377 static void kvm_free_vcpus(struct kvm *kvm)
7378 {
7379 	unsigned int i;
7380 	struct kvm_vcpu *vcpu;
7381 
7382 	/*
7383 	 * Unpin any mmu pages first.
7384 	 */
7385 	kvm_for_each_vcpu(i, vcpu, kvm) {
7386 		kvm_clear_async_pf_completion_queue(vcpu);
7387 		kvm_unload_vcpu_mmu(vcpu);
7388 	}
7389 	kvm_for_each_vcpu(i, vcpu, kvm)
7390 		kvm_arch_vcpu_free(vcpu);
7391 
7392 	mutex_lock(&kvm->lock);
7393 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7394 		kvm->vcpus[i] = NULL;
7395 
7396 	atomic_set(&kvm->online_vcpus, 0);
7397 	mutex_unlock(&kvm->lock);
7398 }
7399 
7400 void kvm_arch_sync_events(struct kvm *kvm)
7401 {
7402 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7403 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7404 	kvm_free_all_assigned_devices(kvm);
7405 	kvm_free_pit(kvm);
7406 }
7407 
7408 void kvm_arch_destroy_vm(struct kvm *kvm)
7409 {
7410 	if (current->mm == kvm->mm) {
7411 		/*
7412 		 * Free memory regions allocated on behalf of userspace,
7413 		 * unless the the memory map has changed due to process exit
7414 		 * or fd copying.
7415 		 */
7416 		struct kvm_userspace_memory_region mem;
7417 		memset(&mem, 0, sizeof(mem));
7418 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7419 		kvm_set_memory_region(kvm, &mem);
7420 
7421 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7422 		kvm_set_memory_region(kvm, &mem);
7423 
7424 		mem.slot = TSS_PRIVATE_MEMSLOT;
7425 		kvm_set_memory_region(kvm, &mem);
7426 	}
7427 	kvm_iommu_unmap_guest(kvm);
7428 	kfree(kvm->arch.vpic);
7429 	kfree(kvm->arch.vioapic);
7430 	kvm_free_vcpus(kvm);
7431 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7432 }
7433 
7434 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7435 			   struct kvm_memory_slot *dont)
7436 {
7437 	int i;
7438 
7439 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7440 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7441 			kvm_kvfree(free->arch.rmap[i]);
7442 			free->arch.rmap[i] = NULL;
7443 		}
7444 		if (i == 0)
7445 			continue;
7446 
7447 		if (!dont || free->arch.lpage_info[i - 1] !=
7448 			     dont->arch.lpage_info[i - 1]) {
7449 			kvm_kvfree(free->arch.lpage_info[i - 1]);
7450 			free->arch.lpage_info[i - 1] = NULL;
7451 		}
7452 	}
7453 }
7454 
7455 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7456 			    unsigned long npages)
7457 {
7458 	int i;
7459 
7460 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7461 		unsigned long ugfn;
7462 		int lpages;
7463 		int level = i + 1;
7464 
7465 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7466 				      slot->base_gfn, level) + 1;
7467 
7468 		slot->arch.rmap[i] =
7469 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7470 		if (!slot->arch.rmap[i])
7471 			goto out_free;
7472 		if (i == 0)
7473 			continue;
7474 
7475 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7476 					sizeof(*slot->arch.lpage_info[i - 1]));
7477 		if (!slot->arch.lpage_info[i - 1])
7478 			goto out_free;
7479 
7480 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7481 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7482 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7483 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7484 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7485 		/*
7486 		 * If the gfn and userspace address are not aligned wrt each
7487 		 * other, or if explicitly asked to, disable large page
7488 		 * support for this slot
7489 		 */
7490 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7491 		    !kvm_largepages_enabled()) {
7492 			unsigned long j;
7493 
7494 			for (j = 0; j < lpages; ++j)
7495 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7496 		}
7497 	}
7498 
7499 	return 0;
7500 
7501 out_free:
7502 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7503 		kvm_kvfree(slot->arch.rmap[i]);
7504 		slot->arch.rmap[i] = NULL;
7505 		if (i == 0)
7506 			continue;
7507 
7508 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
7509 		slot->arch.lpage_info[i - 1] = NULL;
7510 	}
7511 	return -ENOMEM;
7512 }
7513 
7514 void kvm_arch_memslots_updated(struct kvm *kvm)
7515 {
7516 	/*
7517 	 * memslots->generation has been incremented.
7518 	 * mmio generation may have reached its maximum value.
7519 	 */
7520 	kvm_mmu_invalidate_mmio_sptes(kvm);
7521 }
7522 
7523 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7524 				struct kvm_memory_slot *memslot,
7525 				struct kvm_userspace_memory_region *mem,
7526 				enum kvm_mr_change change)
7527 {
7528 	/*
7529 	 * Only private memory slots need to be mapped here since
7530 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7531 	 */
7532 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7533 		unsigned long userspace_addr;
7534 
7535 		/*
7536 		 * MAP_SHARED to prevent internal slot pages from being moved
7537 		 * by fork()/COW.
7538 		 */
7539 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7540 					 PROT_READ | PROT_WRITE,
7541 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7542 
7543 		if (IS_ERR((void *)userspace_addr))
7544 			return PTR_ERR((void *)userspace_addr);
7545 
7546 		memslot->userspace_addr = userspace_addr;
7547 	}
7548 
7549 	return 0;
7550 }
7551 
7552 void kvm_arch_commit_memory_region(struct kvm *kvm,
7553 				struct kvm_userspace_memory_region *mem,
7554 				const struct kvm_memory_slot *old,
7555 				enum kvm_mr_change change)
7556 {
7557 
7558 	int nr_mmu_pages = 0;
7559 
7560 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7561 		int ret;
7562 
7563 		ret = vm_munmap(old->userspace_addr,
7564 				old->npages * PAGE_SIZE);
7565 		if (ret < 0)
7566 			printk(KERN_WARNING
7567 			       "kvm_vm_ioctl_set_memory_region: "
7568 			       "failed to munmap memory\n");
7569 	}
7570 
7571 	if (!kvm->arch.n_requested_mmu_pages)
7572 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7573 
7574 	if (nr_mmu_pages)
7575 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7576 	/*
7577 	 * Write protect all pages for dirty logging.
7578 	 *
7579 	 * All the sptes including the large sptes which point to this
7580 	 * slot are set to readonly. We can not create any new large
7581 	 * spte on this slot until the end of the logging.
7582 	 *
7583 	 * See the comments in fast_page_fault().
7584 	 */
7585 	if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7586 		kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7587 }
7588 
7589 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7590 {
7591 	kvm_mmu_invalidate_zap_all_pages(kvm);
7592 }
7593 
7594 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7595 				   struct kvm_memory_slot *slot)
7596 {
7597 	kvm_mmu_invalidate_zap_all_pages(kvm);
7598 }
7599 
7600 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7601 {
7602 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7603 		kvm_x86_ops->check_nested_events(vcpu, false);
7604 
7605 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7606 		!vcpu->arch.apf.halted)
7607 		|| !list_empty_careful(&vcpu->async_pf.done)
7608 		|| kvm_apic_has_events(vcpu)
7609 		|| vcpu->arch.pv.pv_unhalted
7610 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7611 		(kvm_arch_interrupt_allowed(vcpu) &&
7612 		 kvm_cpu_has_interrupt(vcpu));
7613 }
7614 
7615 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7616 {
7617 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7618 }
7619 
7620 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7621 {
7622 	return kvm_x86_ops->interrupt_allowed(vcpu);
7623 }
7624 
7625 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7626 {
7627 	if (is_64_bit_mode(vcpu))
7628 		return kvm_rip_read(vcpu);
7629 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7630 		     kvm_rip_read(vcpu));
7631 }
7632 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7633 
7634 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7635 {
7636 	return kvm_get_linear_rip(vcpu) == linear_rip;
7637 }
7638 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7639 
7640 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7641 {
7642 	unsigned long rflags;
7643 
7644 	rflags = kvm_x86_ops->get_rflags(vcpu);
7645 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7646 		rflags &= ~X86_EFLAGS_TF;
7647 	return rflags;
7648 }
7649 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7650 
7651 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7652 {
7653 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7654 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7655 		rflags |= X86_EFLAGS_TF;
7656 	kvm_x86_ops->set_rflags(vcpu, rflags);
7657 }
7658 
7659 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7660 {
7661 	__kvm_set_rflags(vcpu, rflags);
7662 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7663 }
7664 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7665 
7666 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7667 {
7668 	int r;
7669 
7670 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7671 	      work->wakeup_all)
7672 		return;
7673 
7674 	r = kvm_mmu_reload(vcpu);
7675 	if (unlikely(r))
7676 		return;
7677 
7678 	if (!vcpu->arch.mmu.direct_map &&
7679 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7680 		return;
7681 
7682 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7683 }
7684 
7685 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7686 {
7687 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7688 }
7689 
7690 static inline u32 kvm_async_pf_next_probe(u32 key)
7691 {
7692 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7693 }
7694 
7695 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7696 {
7697 	u32 key = kvm_async_pf_hash_fn(gfn);
7698 
7699 	while (vcpu->arch.apf.gfns[key] != ~0)
7700 		key = kvm_async_pf_next_probe(key);
7701 
7702 	vcpu->arch.apf.gfns[key] = gfn;
7703 }
7704 
7705 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7706 {
7707 	int i;
7708 	u32 key = kvm_async_pf_hash_fn(gfn);
7709 
7710 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7711 		     (vcpu->arch.apf.gfns[key] != gfn &&
7712 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7713 		key = kvm_async_pf_next_probe(key);
7714 
7715 	return key;
7716 }
7717 
7718 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7719 {
7720 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7721 }
7722 
7723 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7724 {
7725 	u32 i, j, k;
7726 
7727 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7728 	while (true) {
7729 		vcpu->arch.apf.gfns[i] = ~0;
7730 		do {
7731 			j = kvm_async_pf_next_probe(j);
7732 			if (vcpu->arch.apf.gfns[j] == ~0)
7733 				return;
7734 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7735 			/*
7736 			 * k lies cyclically in ]i,j]
7737 			 * |    i.k.j |
7738 			 * |....j i.k.| or  |.k..j i...|
7739 			 */
7740 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7741 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7742 		i = j;
7743 	}
7744 }
7745 
7746 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7747 {
7748 
7749 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7750 				      sizeof(val));
7751 }
7752 
7753 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7754 				     struct kvm_async_pf *work)
7755 {
7756 	struct x86_exception fault;
7757 
7758 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7759 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7760 
7761 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7762 	    (vcpu->arch.apf.send_user_only &&
7763 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7764 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7765 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7766 		fault.vector = PF_VECTOR;
7767 		fault.error_code_valid = true;
7768 		fault.error_code = 0;
7769 		fault.nested_page_fault = false;
7770 		fault.address = work->arch.token;
7771 		kvm_inject_page_fault(vcpu, &fault);
7772 	}
7773 }
7774 
7775 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7776 				 struct kvm_async_pf *work)
7777 {
7778 	struct x86_exception fault;
7779 
7780 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7781 	if (work->wakeup_all)
7782 		work->arch.token = ~0; /* broadcast wakeup */
7783 	else
7784 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7785 
7786 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7787 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7788 		fault.vector = PF_VECTOR;
7789 		fault.error_code_valid = true;
7790 		fault.error_code = 0;
7791 		fault.nested_page_fault = false;
7792 		fault.address = work->arch.token;
7793 		kvm_inject_page_fault(vcpu, &fault);
7794 	}
7795 	vcpu->arch.apf.halted = false;
7796 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7797 }
7798 
7799 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7800 {
7801 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7802 		return true;
7803 	else
7804 		return !kvm_event_needs_reinjection(vcpu) &&
7805 			kvm_x86_ops->interrupt_allowed(vcpu);
7806 }
7807 
7808 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7809 {
7810 	atomic_inc(&kvm->arch.noncoherent_dma_count);
7811 }
7812 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7813 
7814 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7815 {
7816 	atomic_dec(&kvm->arch.noncoherent_dma_count);
7817 }
7818 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7819 
7820 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7821 {
7822 	return atomic_read(&kvm->arch.noncoherent_dma_count);
7823 }
7824 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7825 
7826 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7827 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7828 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7829 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7830 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7831 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7832 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7833 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7834 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7835 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7836 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7837 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7838 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7840