1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "assigned-dev.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/intel-iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <trace/events/kvm.h> 58 59 #include <asm/debugreg.h> 60 #include <asm/msr.h> 61 #include <asm/desc.h> 62 #include <asm/mce.h> 63 #include <linux/kernel_stat.h> 64 #include <asm/fpu/internal.h> /* Ugh! */ 65 #include <asm/pvclock.h> 66 #include <asm/div64.h> 67 #include <asm/irq_remapping.h> 68 69 #define CREATE_TRACE_POINTS 70 #include "trace.h" 71 72 #define MAX_IO_MSRS 256 73 #define KVM_MAX_MCE_BANKS 32 74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 76 77 #define emul_to_vcpu(ctxt) \ 78 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 79 80 /* EFER defaults: 81 * - enable syscall per default because its emulated by KVM 82 * - enable LME and LMA per default on 64 bit KVM 83 */ 84 #ifdef CONFIG_X86_64 85 static 86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 87 #else 88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 89 #endif 90 91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 93 94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 95 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 96 97 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 98 static void process_nmi(struct kvm_vcpu *vcpu); 99 static void enter_smm(struct kvm_vcpu *vcpu); 100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 101 102 struct kvm_x86_ops *kvm_x86_ops __read_mostly; 103 EXPORT_SYMBOL_GPL(kvm_x86_ops); 104 105 static bool __read_mostly ignore_msrs = 0; 106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 107 108 unsigned int min_timer_period_us = 500; 109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 110 111 static bool __read_mostly kvmclock_periodic_sync = true; 112 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 113 114 bool __read_mostly kvm_has_tsc_control; 115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 116 u32 __read_mostly kvm_max_guest_tsc_khz; 117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 118 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 120 u64 __read_mostly kvm_max_tsc_scaling_ratio; 121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 122 u64 __read_mostly kvm_default_tsc_scaling_ratio; 123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 124 125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 126 static u32 __read_mostly tsc_tolerance_ppm = 250; 127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 128 129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */ 130 unsigned int __read_mostly lapic_timer_advance_ns = 0; 131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); 132 133 static bool __read_mostly vector_hashing = true; 134 module_param(vector_hashing, bool, S_IRUGO); 135 136 static bool __read_mostly backwards_tsc_observed = false; 137 138 #define KVM_NR_SHARED_MSRS 16 139 140 struct kvm_shared_msrs_global { 141 int nr; 142 u32 msrs[KVM_NR_SHARED_MSRS]; 143 }; 144 145 struct kvm_shared_msrs { 146 struct user_return_notifier urn; 147 bool registered; 148 struct kvm_shared_msr_values { 149 u64 host; 150 u64 curr; 151 } values[KVM_NR_SHARED_MSRS]; 152 }; 153 154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 155 static struct kvm_shared_msrs __percpu *shared_msrs; 156 157 struct kvm_stats_debugfs_item debugfs_entries[] = { 158 { "pf_fixed", VCPU_STAT(pf_fixed) }, 159 { "pf_guest", VCPU_STAT(pf_guest) }, 160 { "tlb_flush", VCPU_STAT(tlb_flush) }, 161 { "invlpg", VCPU_STAT(invlpg) }, 162 { "exits", VCPU_STAT(exits) }, 163 { "io_exits", VCPU_STAT(io_exits) }, 164 { "mmio_exits", VCPU_STAT(mmio_exits) }, 165 { "signal_exits", VCPU_STAT(signal_exits) }, 166 { "irq_window", VCPU_STAT(irq_window_exits) }, 167 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 168 { "halt_exits", VCPU_STAT(halt_exits) }, 169 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 170 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 171 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 172 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 173 { "hypercalls", VCPU_STAT(hypercalls) }, 174 { "request_irq", VCPU_STAT(request_irq_exits) }, 175 { "irq_exits", VCPU_STAT(irq_exits) }, 176 { "host_state_reload", VCPU_STAT(host_state_reload) }, 177 { "efer_reload", VCPU_STAT(efer_reload) }, 178 { "fpu_reload", VCPU_STAT(fpu_reload) }, 179 { "insn_emulation", VCPU_STAT(insn_emulation) }, 180 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 181 { "irq_injections", VCPU_STAT(irq_injections) }, 182 { "nmi_injections", VCPU_STAT(nmi_injections) }, 183 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 184 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 185 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 186 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 187 { "mmu_flooded", VM_STAT(mmu_flooded) }, 188 { "mmu_recycled", VM_STAT(mmu_recycled) }, 189 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 190 { "mmu_unsync", VM_STAT(mmu_unsync) }, 191 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 192 { "largepages", VM_STAT(lpages) }, 193 { NULL } 194 }; 195 196 u64 __read_mostly host_xcr0; 197 198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 199 200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 201 { 202 int i; 203 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 204 vcpu->arch.apf.gfns[i] = ~0; 205 } 206 207 static void kvm_on_user_return(struct user_return_notifier *urn) 208 { 209 unsigned slot; 210 struct kvm_shared_msrs *locals 211 = container_of(urn, struct kvm_shared_msrs, urn); 212 struct kvm_shared_msr_values *values; 213 214 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 215 values = &locals->values[slot]; 216 if (values->host != values->curr) { 217 wrmsrl(shared_msrs_global.msrs[slot], values->host); 218 values->curr = values->host; 219 } 220 } 221 locals->registered = false; 222 user_return_notifier_unregister(urn); 223 } 224 225 static void shared_msr_update(unsigned slot, u32 msr) 226 { 227 u64 value; 228 unsigned int cpu = smp_processor_id(); 229 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 230 231 /* only read, and nobody should modify it at this time, 232 * so don't need lock */ 233 if (slot >= shared_msrs_global.nr) { 234 printk(KERN_ERR "kvm: invalid MSR slot!"); 235 return; 236 } 237 rdmsrl_safe(msr, &value); 238 smsr->values[slot].host = value; 239 smsr->values[slot].curr = value; 240 } 241 242 void kvm_define_shared_msr(unsigned slot, u32 msr) 243 { 244 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 245 shared_msrs_global.msrs[slot] = msr; 246 if (slot >= shared_msrs_global.nr) 247 shared_msrs_global.nr = slot + 1; 248 } 249 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 250 251 static void kvm_shared_msr_cpu_online(void) 252 { 253 unsigned i; 254 255 for (i = 0; i < shared_msrs_global.nr; ++i) 256 shared_msr_update(i, shared_msrs_global.msrs[i]); 257 } 258 259 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 260 { 261 unsigned int cpu = smp_processor_id(); 262 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 263 int err; 264 265 if (((value ^ smsr->values[slot].curr) & mask) == 0) 266 return 0; 267 smsr->values[slot].curr = value; 268 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 269 if (err) 270 return 1; 271 272 if (!smsr->registered) { 273 smsr->urn.on_user_return = kvm_on_user_return; 274 user_return_notifier_register(&smsr->urn); 275 smsr->registered = true; 276 } 277 return 0; 278 } 279 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 280 281 static void drop_user_return_notifiers(void) 282 { 283 unsigned int cpu = smp_processor_id(); 284 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 285 286 if (smsr->registered) 287 kvm_on_user_return(&smsr->urn); 288 } 289 290 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 291 { 292 return vcpu->arch.apic_base; 293 } 294 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 295 296 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 297 { 298 u64 old_state = vcpu->arch.apic_base & 299 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 300 u64 new_state = msr_info->data & 301 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 302 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 303 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE); 304 305 if (!msr_info->host_initiated && 306 ((msr_info->data & reserved_bits) != 0 || 307 new_state == X2APIC_ENABLE || 308 (new_state == MSR_IA32_APICBASE_ENABLE && 309 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || 310 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && 311 old_state == 0))) 312 return 1; 313 314 kvm_lapic_set_base(vcpu, msr_info->data); 315 return 0; 316 } 317 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 318 319 asmlinkage __visible void kvm_spurious_fault(void) 320 { 321 /* Fault while not rebooting. We want the trace. */ 322 BUG(); 323 } 324 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 325 326 #define EXCPT_BENIGN 0 327 #define EXCPT_CONTRIBUTORY 1 328 #define EXCPT_PF 2 329 330 static int exception_class(int vector) 331 { 332 switch (vector) { 333 case PF_VECTOR: 334 return EXCPT_PF; 335 case DE_VECTOR: 336 case TS_VECTOR: 337 case NP_VECTOR: 338 case SS_VECTOR: 339 case GP_VECTOR: 340 return EXCPT_CONTRIBUTORY; 341 default: 342 break; 343 } 344 return EXCPT_BENIGN; 345 } 346 347 #define EXCPT_FAULT 0 348 #define EXCPT_TRAP 1 349 #define EXCPT_ABORT 2 350 #define EXCPT_INTERRUPT 3 351 352 static int exception_type(int vector) 353 { 354 unsigned int mask; 355 356 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 357 return EXCPT_INTERRUPT; 358 359 mask = 1 << vector; 360 361 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 362 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 363 return EXCPT_TRAP; 364 365 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 366 return EXCPT_ABORT; 367 368 /* Reserved exceptions will result in fault */ 369 return EXCPT_FAULT; 370 } 371 372 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 373 unsigned nr, bool has_error, u32 error_code, 374 bool reinject) 375 { 376 u32 prev_nr; 377 int class1, class2; 378 379 kvm_make_request(KVM_REQ_EVENT, vcpu); 380 381 if (!vcpu->arch.exception.pending) { 382 queue: 383 if (has_error && !is_protmode(vcpu)) 384 has_error = false; 385 vcpu->arch.exception.pending = true; 386 vcpu->arch.exception.has_error_code = has_error; 387 vcpu->arch.exception.nr = nr; 388 vcpu->arch.exception.error_code = error_code; 389 vcpu->arch.exception.reinject = reinject; 390 return; 391 } 392 393 /* to check exception */ 394 prev_nr = vcpu->arch.exception.nr; 395 if (prev_nr == DF_VECTOR) { 396 /* triple fault -> shutdown */ 397 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 398 return; 399 } 400 class1 = exception_class(prev_nr); 401 class2 = exception_class(nr); 402 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 403 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 404 /* generate double fault per SDM Table 5-5 */ 405 vcpu->arch.exception.pending = true; 406 vcpu->arch.exception.has_error_code = true; 407 vcpu->arch.exception.nr = DF_VECTOR; 408 vcpu->arch.exception.error_code = 0; 409 } else 410 /* replace previous exception with a new one in a hope 411 that instruction re-execution will regenerate lost 412 exception */ 413 goto queue; 414 } 415 416 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 417 { 418 kvm_multiple_exception(vcpu, nr, false, 0, false); 419 } 420 EXPORT_SYMBOL_GPL(kvm_queue_exception); 421 422 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 423 { 424 kvm_multiple_exception(vcpu, nr, false, 0, true); 425 } 426 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 427 428 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 429 { 430 if (err) 431 kvm_inject_gp(vcpu, 0); 432 else 433 kvm_x86_ops->skip_emulated_instruction(vcpu); 434 } 435 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 436 437 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 438 { 439 ++vcpu->stat.pf_guest; 440 vcpu->arch.cr2 = fault->address; 441 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 442 } 443 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 444 445 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 446 { 447 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 448 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 449 else 450 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 451 452 return fault->nested_page_fault; 453 } 454 455 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 456 { 457 atomic_inc(&vcpu->arch.nmi_queued); 458 kvm_make_request(KVM_REQ_NMI, vcpu); 459 } 460 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 461 462 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 463 { 464 kvm_multiple_exception(vcpu, nr, true, error_code, false); 465 } 466 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 467 468 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 469 { 470 kvm_multiple_exception(vcpu, nr, true, error_code, true); 471 } 472 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 473 474 /* 475 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 476 * a #GP and return false. 477 */ 478 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 479 { 480 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 481 return true; 482 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 483 return false; 484 } 485 EXPORT_SYMBOL_GPL(kvm_require_cpl); 486 487 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 488 { 489 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 490 return true; 491 492 kvm_queue_exception(vcpu, UD_VECTOR); 493 return false; 494 } 495 EXPORT_SYMBOL_GPL(kvm_require_dr); 496 497 /* 498 * This function will be used to read from the physical memory of the currently 499 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 500 * can read from guest physical or from the guest's guest physical memory. 501 */ 502 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 503 gfn_t ngfn, void *data, int offset, int len, 504 u32 access) 505 { 506 struct x86_exception exception; 507 gfn_t real_gfn; 508 gpa_t ngpa; 509 510 ngpa = gfn_to_gpa(ngfn); 511 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 512 if (real_gfn == UNMAPPED_GVA) 513 return -EFAULT; 514 515 real_gfn = gpa_to_gfn(real_gfn); 516 517 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 518 } 519 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 520 521 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 522 void *data, int offset, int len, u32 access) 523 { 524 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 525 data, offset, len, access); 526 } 527 528 /* 529 * Load the pae pdptrs. Return true is they are all valid. 530 */ 531 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 532 { 533 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 534 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 535 int i; 536 int ret; 537 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 538 539 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 540 offset * sizeof(u64), sizeof(pdpte), 541 PFERR_USER_MASK|PFERR_WRITE_MASK); 542 if (ret < 0) { 543 ret = 0; 544 goto out; 545 } 546 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 547 if ((pdpte[i] & PT_PRESENT_MASK) && 548 (pdpte[i] & 549 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) { 550 ret = 0; 551 goto out; 552 } 553 } 554 ret = 1; 555 556 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 557 __set_bit(VCPU_EXREG_PDPTR, 558 (unsigned long *)&vcpu->arch.regs_avail); 559 __set_bit(VCPU_EXREG_PDPTR, 560 (unsigned long *)&vcpu->arch.regs_dirty); 561 out: 562 563 return ret; 564 } 565 EXPORT_SYMBOL_GPL(load_pdptrs); 566 567 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 568 { 569 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 570 bool changed = true; 571 int offset; 572 gfn_t gfn; 573 int r; 574 575 if (is_long_mode(vcpu) || !is_pae(vcpu)) 576 return false; 577 578 if (!test_bit(VCPU_EXREG_PDPTR, 579 (unsigned long *)&vcpu->arch.regs_avail)) 580 return true; 581 582 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 583 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 584 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 585 PFERR_USER_MASK | PFERR_WRITE_MASK); 586 if (r < 0) 587 goto out; 588 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 589 out: 590 591 return changed; 592 } 593 594 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 595 { 596 unsigned long old_cr0 = kvm_read_cr0(vcpu); 597 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 598 599 cr0 |= X86_CR0_ET; 600 601 #ifdef CONFIG_X86_64 602 if (cr0 & 0xffffffff00000000UL) 603 return 1; 604 #endif 605 606 cr0 &= ~CR0_RESERVED_BITS; 607 608 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 609 return 1; 610 611 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 612 return 1; 613 614 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 615 #ifdef CONFIG_X86_64 616 if ((vcpu->arch.efer & EFER_LME)) { 617 int cs_db, cs_l; 618 619 if (!is_pae(vcpu)) 620 return 1; 621 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 622 if (cs_l) 623 return 1; 624 } else 625 #endif 626 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 627 kvm_read_cr3(vcpu))) 628 return 1; 629 } 630 631 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 632 return 1; 633 634 kvm_x86_ops->set_cr0(vcpu, cr0); 635 636 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 637 kvm_clear_async_pf_completion_queue(vcpu); 638 kvm_async_pf_hash_reset(vcpu); 639 } 640 641 if ((cr0 ^ old_cr0) & update_bits) 642 kvm_mmu_reset_context(vcpu); 643 644 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 645 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 646 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 647 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 648 649 return 0; 650 } 651 EXPORT_SYMBOL_GPL(kvm_set_cr0); 652 653 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 654 { 655 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 656 } 657 EXPORT_SYMBOL_GPL(kvm_lmsw); 658 659 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 660 { 661 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 662 !vcpu->guest_xcr0_loaded) { 663 /* kvm_set_xcr() also depends on this */ 664 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 665 vcpu->guest_xcr0_loaded = 1; 666 } 667 } 668 669 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 670 { 671 if (vcpu->guest_xcr0_loaded) { 672 if (vcpu->arch.xcr0 != host_xcr0) 673 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 674 vcpu->guest_xcr0_loaded = 0; 675 } 676 } 677 678 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 679 { 680 u64 xcr0 = xcr; 681 u64 old_xcr0 = vcpu->arch.xcr0; 682 u64 valid_bits; 683 684 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 685 if (index != XCR_XFEATURE_ENABLED_MASK) 686 return 1; 687 if (!(xcr0 & XFEATURE_MASK_FP)) 688 return 1; 689 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 690 return 1; 691 692 /* 693 * Do not allow the guest to set bits that we do not support 694 * saving. However, xcr0 bit 0 is always set, even if the 695 * emulated CPU does not support XSAVE (see fx_init). 696 */ 697 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 698 if (xcr0 & ~valid_bits) 699 return 1; 700 701 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 702 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 703 return 1; 704 705 if (xcr0 & XFEATURE_MASK_AVX512) { 706 if (!(xcr0 & XFEATURE_MASK_YMM)) 707 return 1; 708 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 709 return 1; 710 } 711 vcpu->arch.xcr0 = xcr0; 712 713 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 714 kvm_update_cpuid(vcpu); 715 return 0; 716 } 717 718 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 719 { 720 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 721 __kvm_set_xcr(vcpu, index, xcr)) { 722 kvm_inject_gp(vcpu, 0); 723 return 1; 724 } 725 return 0; 726 } 727 EXPORT_SYMBOL_GPL(kvm_set_xcr); 728 729 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 730 { 731 unsigned long old_cr4 = kvm_read_cr4(vcpu); 732 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 733 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 734 735 if (cr4 & CR4_RESERVED_BITS) 736 return 1; 737 738 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 739 return 1; 740 741 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 742 return 1; 743 744 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP)) 745 return 1; 746 747 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) 748 return 1; 749 750 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE)) 751 return 1; 752 753 if (is_long_mode(vcpu)) { 754 if (!(cr4 & X86_CR4_PAE)) 755 return 1; 756 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 757 && ((cr4 ^ old_cr4) & pdptr_bits) 758 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 759 kvm_read_cr3(vcpu))) 760 return 1; 761 762 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 763 if (!guest_cpuid_has_pcid(vcpu)) 764 return 1; 765 766 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 767 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 768 return 1; 769 } 770 771 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 772 return 1; 773 774 if (((cr4 ^ old_cr4) & pdptr_bits) || 775 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 776 kvm_mmu_reset_context(vcpu); 777 778 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 779 kvm_update_cpuid(vcpu); 780 781 return 0; 782 } 783 EXPORT_SYMBOL_GPL(kvm_set_cr4); 784 785 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 786 { 787 #ifdef CONFIG_X86_64 788 cr3 &= ~CR3_PCID_INVD; 789 #endif 790 791 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 792 kvm_mmu_sync_roots(vcpu); 793 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 794 return 0; 795 } 796 797 if (is_long_mode(vcpu)) { 798 if (cr3 & CR3_L_MODE_RESERVED_BITS) 799 return 1; 800 } else if (is_pae(vcpu) && is_paging(vcpu) && 801 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 802 return 1; 803 804 vcpu->arch.cr3 = cr3; 805 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 806 kvm_mmu_new_cr3(vcpu); 807 return 0; 808 } 809 EXPORT_SYMBOL_GPL(kvm_set_cr3); 810 811 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 812 { 813 if (cr8 & CR8_RESERVED_BITS) 814 return 1; 815 if (lapic_in_kernel(vcpu)) 816 kvm_lapic_set_tpr(vcpu, cr8); 817 else 818 vcpu->arch.cr8 = cr8; 819 return 0; 820 } 821 EXPORT_SYMBOL_GPL(kvm_set_cr8); 822 823 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 824 { 825 if (lapic_in_kernel(vcpu)) 826 return kvm_lapic_get_cr8(vcpu); 827 else 828 return vcpu->arch.cr8; 829 } 830 EXPORT_SYMBOL_GPL(kvm_get_cr8); 831 832 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 833 { 834 int i; 835 836 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 837 for (i = 0; i < KVM_NR_DB_REGS; i++) 838 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 839 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 840 } 841 } 842 843 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 844 { 845 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 846 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 847 } 848 849 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 850 { 851 unsigned long dr7; 852 853 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 854 dr7 = vcpu->arch.guest_debug_dr7; 855 else 856 dr7 = vcpu->arch.dr7; 857 kvm_x86_ops->set_dr7(vcpu, dr7); 858 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 859 if (dr7 & DR7_BP_EN_MASK) 860 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 861 } 862 863 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 864 { 865 u64 fixed = DR6_FIXED_1; 866 867 if (!guest_cpuid_has_rtm(vcpu)) 868 fixed |= DR6_RTM; 869 return fixed; 870 } 871 872 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 873 { 874 switch (dr) { 875 case 0 ... 3: 876 vcpu->arch.db[dr] = val; 877 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 878 vcpu->arch.eff_db[dr] = val; 879 break; 880 case 4: 881 /* fall through */ 882 case 6: 883 if (val & 0xffffffff00000000ULL) 884 return -1; /* #GP */ 885 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 886 kvm_update_dr6(vcpu); 887 break; 888 case 5: 889 /* fall through */ 890 default: /* 7 */ 891 if (val & 0xffffffff00000000ULL) 892 return -1; /* #GP */ 893 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 894 kvm_update_dr7(vcpu); 895 break; 896 } 897 898 return 0; 899 } 900 901 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 902 { 903 if (__kvm_set_dr(vcpu, dr, val)) { 904 kvm_inject_gp(vcpu, 0); 905 return 1; 906 } 907 return 0; 908 } 909 EXPORT_SYMBOL_GPL(kvm_set_dr); 910 911 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 912 { 913 switch (dr) { 914 case 0 ... 3: 915 *val = vcpu->arch.db[dr]; 916 break; 917 case 4: 918 /* fall through */ 919 case 6: 920 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 921 *val = vcpu->arch.dr6; 922 else 923 *val = kvm_x86_ops->get_dr6(vcpu); 924 break; 925 case 5: 926 /* fall through */ 927 default: /* 7 */ 928 *val = vcpu->arch.dr7; 929 break; 930 } 931 return 0; 932 } 933 EXPORT_SYMBOL_GPL(kvm_get_dr); 934 935 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 936 { 937 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 938 u64 data; 939 int err; 940 941 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 942 if (err) 943 return err; 944 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 945 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 946 return err; 947 } 948 EXPORT_SYMBOL_GPL(kvm_rdpmc); 949 950 /* 951 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 952 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 953 * 954 * This list is modified at module load time to reflect the 955 * capabilities of the host cpu. This capabilities test skips MSRs that are 956 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs 957 * may depend on host virtualization features rather than host cpu features. 958 */ 959 960 static u32 msrs_to_save[] = { 961 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 962 MSR_STAR, 963 #ifdef CONFIG_X86_64 964 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 965 #endif 966 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 967 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 968 }; 969 970 static unsigned num_msrs_to_save; 971 972 static u32 emulated_msrs[] = { 973 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 974 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 975 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 976 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 977 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 978 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 979 HV_X64_MSR_RESET, 980 HV_X64_MSR_VP_INDEX, 981 HV_X64_MSR_VP_RUNTIME, 982 HV_X64_MSR_SCONTROL, 983 HV_X64_MSR_STIMER0_CONFIG, 984 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 985 MSR_KVM_PV_EOI_EN, 986 987 MSR_IA32_TSC_ADJUST, 988 MSR_IA32_TSCDEADLINE, 989 MSR_IA32_MISC_ENABLE, 990 MSR_IA32_MCG_STATUS, 991 MSR_IA32_MCG_CTL, 992 MSR_IA32_MCG_EXT_CTL, 993 MSR_IA32_SMBASE, 994 }; 995 996 static unsigned num_emulated_msrs; 997 998 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 999 { 1000 if (efer & efer_reserved_bits) 1001 return false; 1002 1003 if (efer & EFER_FFXSR) { 1004 struct kvm_cpuid_entry2 *feat; 1005 1006 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 1007 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 1008 return false; 1009 } 1010 1011 if (efer & EFER_SVME) { 1012 struct kvm_cpuid_entry2 *feat; 1013 1014 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 1015 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 1016 return false; 1017 } 1018 1019 return true; 1020 } 1021 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1022 1023 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 1024 { 1025 u64 old_efer = vcpu->arch.efer; 1026 1027 if (!kvm_valid_efer(vcpu, efer)) 1028 return 1; 1029 1030 if (is_paging(vcpu) 1031 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1032 return 1; 1033 1034 efer &= ~EFER_LMA; 1035 efer |= vcpu->arch.efer & EFER_LMA; 1036 1037 kvm_x86_ops->set_efer(vcpu, efer); 1038 1039 /* Update reserved bits */ 1040 if ((efer ^ old_efer) & EFER_NX) 1041 kvm_mmu_reset_context(vcpu); 1042 1043 return 0; 1044 } 1045 1046 void kvm_enable_efer_bits(u64 mask) 1047 { 1048 efer_reserved_bits &= ~mask; 1049 } 1050 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1051 1052 /* 1053 * Writes msr value into into the appropriate "register". 1054 * Returns 0 on success, non-0 otherwise. 1055 * Assumes vcpu_load() was already called. 1056 */ 1057 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 1058 { 1059 switch (msr->index) { 1060 case MSR_FS_BASE: 1061 case MSR_GS_BASE: 1062 case MSR_KERNEL_GS_BASE: 1063 case MSR_CSTAR: 1064 case MSR_LSTAR: 1065 if (is_noncanonical_address(msr->data)) 1066 return 1; 1067 break; 1068 case MSR_IA32_SYSENTER_EIP: 1069 case MSR_IA32_SYSENTER_ESP: 1070 /* 1071 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1072 * non-canonical address is written on Intel but not on 1073 * AMD (which ignores the top 32-bits, because it does 1074 * not implement 64-bit SYSENTER). 1075 * 1076 * 64-bit code should hence be able to write a non-canonical 1077 * value on AMD. Making the address canonical ensures that 1078 * vmentry does not fail on Intel after writing a non-canonical 1079 * value, and that something deterministic happens if the guest 1080 * invokes 64-bit SYSENTER. 1081 */ 1082 msr->data = get_canonical(msr->data); 1083 } 1084 return kvm_x86_ops->set_msr(vcpu, msr); 1085 } 1086 EXPORT_SYMBOL_GPL(kvm_set_msr); 1087 1088 /* 1089 * Adapt set_msr() to msr_io()'s calling convention 1090 */ 1091 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1092 { 1093 struct msr_data msr; 1094 int r; 1095 1096 msr.index = index; 1097 msr.host_initiated = true; 1098 r = kvm_get_msr(vcpu, &msr); 1099 if (r) 1100 return r; 1101 1102 *data = msr.data; 1103 return 0; 1104 } 1105 1106 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1107 { 1108 struct msr_data msr; 1109 1110 msr.data = *data; 1111 msr.index = index; 1112 msr.host_initiated = true; 1113 return kvm_set_msr(vcpu, &msr); 1114 } 1115 1116 #ifdef CONFIG_X86_64 1117 struct pvclock_gtod_data { 1118 seqcount_t seq; 1119 1120 struct { /* extract of a clocksource struct */ 1121 int vclock_mode; 1122 cycle_t cycle_last; 1123 cycle_t mask; 1124 u32 mult; 1125 u32 shift; 1126 } clock; 1127 1128 u64 boot_ns; 1129 u64 nsec_base; 1130 }; 1131 1132 static struct pvclock_gtod_data pvclock_gtod_data; 1133 1134 static void update_pvclock_gtod(struct timekeeper *tk) 1135 { 1136 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1137 u64 boot_ns; 1138 1139 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); 1140 1141 write_seqcount_begin(&vdata->seq); 1142 1143 /* copy pvclock gtod data */ 1144 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; 1145 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1146 vdata->clock.mask = tk->tkr_mono.mask; 1147 vdata->clock.mult = tk->tkr_mono.mult; 1148 vdata->clock.shift = tk->tkr_mono.shift; 1149 1150 vdata->boot_ns = boot_ns; 1151 vdata->nsec_base = tk->tkr_mono.xtime_nsec; 1152 1153 write_seqcount_end(&vdata->seq); 1154 } 1155 #endif 1156 1157 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1158 { 1159 /* 1160 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in 1161 * vcpu_enter_guest. This function is only called from 1162 * the physical CPU that is running vcpu. 1163 */ 1164 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1165 } 1166 1167 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1168 { 1169 int version; 1170 int r; 1171 struct pvclock_wall_clock wc; 1172 struct timespec64 boot; 1173 1174 if (!wall_clock) 1175 return; 1176 1177 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1178 if (r) 1179 return; 1180 1181 if (version & 1) 1182 ++version; /* first time write, random junk */ 1183 1184 ++version; 1185 1186 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1187 return; 1188 1189 /* 1190 * The guest calculates current wall clock time by adding 1191 * system time (updated by kvm_guest_time_update below) to the 1192 * wall clock specified here. guest system time equals host 1193 * system time for us, thus we must fill in host boot time here. 1194 */ 1195 getboottime64(&boot); 1196 1197 if (kvm->arch.kvmclock_offset) { 1198 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); 1199 boot = timespec64_sub(boot, ts); 1200 } 1201 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ 1202 wc.nsec = boot.tv_nsec; 1203 wc.version = version; 1204 1205 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1206 1207 version++; 1208 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1209 } 1210 1211 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1212 { 1213 do_shl32_div32(dividend, divisor); 1214 return dividend; 1215 } 1216 1217 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1218 s8 *pshift, u32 *pmultiplier) 1219 { 1220 uint64_t scaled64; 1221 int32_t shift = 0; 1222 uint64_t tps64; 1223 uint32_t tps32; 1224 1225 tps64 = base_hz; 1226 scaled64 = scaled_hz; 1227 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1228 tps64 >>= 1; 1229 shift--; 1230 } 1231 1232 tps32 = (uint32_t)tps64; 1233 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1234 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1235 scaled64 >>= 1; 1236 else 1237 tps32 <<= 1; 1238 shift++; 1239 } 1240 1241 *pshift = shift; 1242 *pmultiplier = div_frac(scaled64, tps32); 1243 1244 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", 1245 __func__, base_hz, scaled_hz, shift, *pmultiplier); 1246 } 1247 1248 #ifdef CONFIG_X86_64 1249 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1250 #endif 1251 1252 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1253 static unsigned long max_tsc_khz; 1254 1255 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1256 { 1257 u64 v = (u64)khz * (1000000 + ppm); 1258 do_div(v, 1000000); 1259 return v; 1260 } 1261 1262 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1263 { 1264 u64 ratio; 1265 1266 /* Guest TSC same frequency as host TSC? */ 1267 if (!scale) { 1268 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1269 return 0; 1270 } 1271 1272 /* TSC scaling supported? */ 1273 if (!kvm_has_tsc_control) { 1274 if (user_tsc_khz > tsc_khz) { 1275 vcpu->arch.tsc_catchup = 1; 1276 vcpu->arch.tsc_always_catchup = 1; 1277 return 0; 1278 } else { 1279 WARN(1, "user requested TSC rate below hardware speed\n"); 1280 return -1; 1281 } 1282 } 1283 1284 /* TSC scaling required - calculate ratio */ 1285 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1286 user_tsc_khz, tsc_khz); 1287 1288 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1289 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1290 user_tsc_khz); 1291 return -1; 1292 } 1293 1294 vcpu->arch.tsc_scaling_ratio = ratio; 1295 return 0; 1296 } 1297 1298 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1299 { 1300 u32 thresh_lo, thresh_hi; 1301 int use_scaling = 0; 1302 1303 /* tsc_khz can be zero if TSC calibration fails */ 1304 if (user_tsc_khz == 0) { 1305 /* set tsc_scaling_ratio to a safe value */ 1306 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1307 return -1; 1308 } 1309 1310 /* Compute a scale to convert nanoseconds in TSC cycles */ 1311 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1312 &vcpu->arch.virtual_tsc_shift, 1313 &vcpu->arch.virtual_tsc_mult); 1314 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1315 1316 /* 1317 * Compute the variation in TSC rate which is acceptable 1318 * within the range of tolerance and decide if the 1319 * rate being applied is within that bounds of the hardware 1320 * rate. If so, no scaling or compensation need be done. 1321 */ 1322 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1323 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1324 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1325 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1326 use_scaling = 1; 1327 } 1328 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1329 } 1330 1331 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1332 { 1333 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1334 vcpu->arch.virtual_tsc_mult, 1335 vcpu->arch.virtual_tsc_shift); 1336 tsc += vcpu->arch.this_tsc_write; 1337 return tsc; 1338 } 1339 1340 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1341 { 1342 #ifdef CONFIG_X86_64 1343 bool vcpus_matched; 1344 struct kvm_arch *ka = &vcpu->kvm->arch; 1345 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1346 1347 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1348 atomic_read(&vcpu->kvm->online_vcpus)); 1349 1350 /* 1351 * Once the masterclock is enabled, always perform request in 1352 * order to update it. 1353 * 1354 * In order to enable masterclock, the host clocksource must be TSC 1355 * and the vcpus need to have matched TSCs. When that happens, 1356 * perform request to enable masterclock. 1357 */ 1358 if (ka->use_master_clock || 1359 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched)) 1360 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1361 1362 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1363 atomic_read(&vcpu->kvm->online_vcpus), 1364 ka->use_master_clock, gtod->clock.vclock_mode); 1365 #endif 1366 } 1367 1368 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1369 { 1370 u64 curr_offset = vcpu->arch.tsc_offset; 1371 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1372 } 1373 1374 /* 1375 * Multiply tsc by a fixed point number represented by ratio. 1376 * 1377 * The most significant 64-N bits (mult) of ratio represent the 1378 * integral part of the fixed point number; the remaining N bits 1379 * (frac) represent the fractional part, ie. ratio represents a fixed 1380 * point number (mult + frac * 2^(-N)). 1381 * 1382 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1383 */ 1384 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1385 { 1386 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1387 } 1388 1389 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1390 { 1391 u64 _tsc = tsc; 1392 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1393 1394 if (ratio != kvm_default_tsc_scaling_ratio) 1395 _tsc = __scale_tsc(ratio, tsc); 1396 1397 return _tsc; 1398 } 1399 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1400 1401 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1402 { 1403 u64 tsc; 1404 1405 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1406 1407 return target_tsc - tsc; 1408 } 1409 1410 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1411 { 1412 return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc)); 1413 } 1414 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1415 1416 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1417 { 1418 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1419 vcpu->arch.tsc_offset = offset; 1420 } 1421 1422 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1423 { 1424 struct kvm *kvm = vcpu->kvm; 1425 u64 offset, ns, elapsed; 1426 unsigned long flags; 1427 s64 usdiff; 1428 bool matched; 1429 bool already_matched; 1430 u64 data = msr->data; 1431 1432 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1433 offset = kvm_compute_tsc_offset(vcpu, data); 1434 ns = ktime_get_boot_ns(); 1435 elapsed = ns - kvm->arch.last_tsc_nsec; 1436 1437 if (vcpu->arch.virtual_tsc_khz) { 1438 int faulted = 0; 1439 1440 /* n.b - signed multiplication and division required */ 1441 usdiff = data - kvm->arch.last_tsc_write; 1442 #ifdef CONFIG_X86_64 1443 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1444 #else 1445 /* do_div() only does unsigned */ 1446 asm("1: idivl %[divisor]\n" 1447 "2: xor %%edx, %%edx\n" 1448 " movl $0, %[faulted]\n" 1449 "3:\n" 1450 ".section .fixup,\"ax\"\n" 1451 "4: movl $1, %[faulted]\n" 1452 " jmp 3b\n" 1453 ".previous\n" 1454 1455 _ASM_EXTABLE(1b, 4b) 1456 1457 : "=A"(usdiff), [faulted] "=r" (faulted) 1458 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz)); 1459 1460 #endif 1461 do_div(elapsed, 1000); 1462 usdiff -= elapsed; 1463 if (usdiff < 0) 1464 usdiff = -usdiff; 1465 1466 /* idivl overflow => difference is larger than USEC_PER_SEC */ 1467 if (faulted) 1468 usdiff = USEC_PER_SEC; 1469 } else 1470 usdiff = USEC_PER_SEC; /* disable TSC match window below */ 1471 1472 /* 1473 * Special case: TSC write with a small delta (1 second) of virtual 1474 * cycle time against real time is interpreted as an attempt to 1475 * synchronize the CPU. 1476 * 1477 * For a reliable TSC, we can match TSC offsets, and for an unstable 1478 * TSC, we add elapsed time in this computation. We could let the 1479 * compensation code attempt to catch up if we fall behind, but 1480 * it's better to try to match offsets from the beginning. 1481 */ 1482 if (usdiff < USEC_PER_SEC && 1483 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1484 if (!check_tsc_unstable()) { 1485 offset = kvm->arch.cur_tsc_offset; 1486 pr_debug("kvm: matched tsc offset for %llu\n", data); 1487 } else { 1488 u64 delta = nsec_to_cycles(vcpu, elapsed); 1489 data += delta; 1490 offset = kvm_compute_tsc_offset(vcpu, data); 1491 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1492 } 1493 matched = true; 1494 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 1495 } else { 1496 /* 1497 * We split periods of matched TSC writes into generations. 1498 * For each generation, we track the original measured 1499 * nanosecond time, offset, and write, so if TSCs are in 1500 * sync, we can match exact offset, and if not, we can match 1501 * exact software computation in compute_guest_tsc() 1502 * 1503 * These values are tracked in kvm->arch.cur_xxx variables. 1504 */ 1505 kvm->arch.cur_tsc_generation++; 1506 kvm->arch.cur_tsc_nsec = ns; 1507 kvm->arch.cur_tsc_write = data; 1508 kvm->arch.cur_tsc_offset = offset; 1509 matched = false; 1510 pr_debug("kvm: new tsc generation %llu, clock %llu\n", 1511 kvm->arch.cur_tsc_generation, data); 1512 } 1513 1514 /* 1515 * We also track th most recent recorded KHZ, write and time to 1516 * allow the matching interval to be extended at each write. 1517 */ 1518 kvm->arch.last_tsc_nsec = ns; 1519 kvm->arch.last_tsc_write = data; 1520 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1521 1522 vcpu->arch.last_guest_tsc = data; 1523 1524 /* Keep track of which generation this VCPU has synchronized to */ 1525 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1526 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1527 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1528 1529 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1530 update_ia32_tsc_adjust_msr(vcpu, offset); 1531 kvm_vcpu_write_tsc_offset(vcpu, offset); 1532 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1533 1534 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1535 if (!matched) { 1536 kvm->arch.nr_vcpus_matched_tsc = 0; 1537 } else if (!already_matched) { 1538 kvm->arch.nr_vcpus_matched_tsc++; 1539 } 1540 1541 kvm_track_tsc_matching(vcpu); 1542 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1543 } 1544 1545 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1546 1547 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 1548 s64 adjustment) 1549 { 1550 kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment); 1551 } 1552 1553 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 1554 { 1555 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 1556 WARN_ON(adjustment < 0); 1557 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 1558 kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment); 1559 } 1560 1561 #ifdef CONFIG_X86_64 1562 1563 static cycle_t read_tsc(void) 1564 { 1565 cycle_t ret = (cycle_t)rdtsc_ordered(); 1566 u64 last = pvclock_gtod_data.clock.cycle_last; 1567 1568 if (likely(ret >= last)) 1569 return ret; 1570 1571 /* 1572 * GCC likes to generate cmov here, but this branch is extremely 1573 * predictable (it's just a function of time and the likely is 1574 * very likely) and there's a data dependence, so force GCC 1575 * to generate a branch instead. I don't barrier() because 1576 * we don't actually need a barrier, and if this function 1577 * ever gets inlined it will generate worse code. 1578 */ 1579 asm volatile (""); 1580 return last; 1581 } 1582 1583 static inline u64 vgettsc(cycle_t *cycle_now) 1584 { 1585 long v; 1586 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1587 1588 *cycle_now = read_tsc(); 1589 1590 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1591 return v * gtod->clock.mult; 1592 } 1593 1594 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now) 1595 { 1596 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1597 unsigned long seq; 1598 int mode; 1599 u64 ns; 1600 1601 do { 1602 seq = read_seqcount_begin(>od->seq); 1603 mode = gtod->clock.vclock_mode; 1604 ns = gtod->nsec_base; 1605 ns += vgettsc(cycle_now); 1606 ns >>= gtod->clock.shift; 1607 ns += gtod->boot_ns; 1608 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1609 *t = ns; 1610 1611 return mode; 1612 } 1613 1614 /* returns true if host is using tsc clocksource */ 1615 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) 1616 { 1617 /* checked again under seqlock below */ 1618 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1619 return false; 1620 1621 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC; 1622 } 1623 #endif 1624 1625 /* 1626 * 1627 * Assuming a stable TSC across physical CPUS, and a stable TSC 1628 * across virtual CPUs, the following condition is possible. 1629 * Each numbered line represents an event visible to both 1630 * CPUs at the next numbered event. 1631 * 1632 * "timespecX" represents host monotonic time. "tscX" represents 1633 * RDTSC value. 1634 * 1635 * VCPU0 on CPU0 | VCPU1 on CPU1 1636 * 1637 * 1. read timespec0,tsc0 1638 * 2. | timespec1 = timespec0 + N 1639 * | tsc1 = tsc0 + M 1640 * 3. transition to guest | transition to guest 1641 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1642 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1643 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1644 * 1645 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1646 * 1647 * - ret0 < ret1 1648 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1649 * ... 1650 * - 0 < N - M => M < N 1651 * 1652 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1653 * always the case (the difference between two distinct xtime instances 1654 * might be smaller then the difference between corresponding TSC reads, 1655 * when updating guest vcpus pvclock areas). 1656 * 1657 * To avoid that problem, do not allow visibility of distinct 1658 * system_timestamp/tsc_timestamp values simultaneously: use a master 1659 * copy of host monotonic time values. Update that master copy 1660 * in lockstep. 1661 * 1662 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1663 * 1664 */ 1665 1666 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1667 { 1668 #ifdef CONFIG_X86_64 1669 struct kvm_arch *ka = &kvm->arch; 1670 int vclock_mode; 1671 bool host_tsc_clocksource, vcpus_matched; 1672 1673 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1674 atomic_read(&kvm->online_vcpus)); 1675 1676 /* 1677 * If the host uses TSC clock, then passthrough TSC as stable 1678 * to the guest. 1679 */ 1680 host_tsc_clocksource = kvm_get_time_and_clockread( 1681 &ka->master_kernel_ns, 1682 &ka->master_cycle_now); 1683 1684 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 1685 && !backwards_tsc_observed 1686 && !ka->boot_vcpu_runs_old_kvmclock; 1687 1688 if (ka->use_master_clock) 1689 atomic_set(&kvm_guest_has_master_clock, 1); 1690 1691 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1692 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1693 vcpus_matched); 1694 #endif 1695 } 1696 1697 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 1698 { 1699 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 1700 } 1701 1702 static void kvm_gen_update_masterclock(struct kvm *kvm) 1703 { 1704 #ifdef CONFIG_X86_64 1705 int i; 1706 struct kvm_vcpu *vcpu; 1707 struct kvm_arch *ka = &kvm->arch; 1708 1709 spin_lock(&ka->pvclock_gtod_sync_lock); 1710 kvm_make_mclock_inprogress_request(kvm); 1711 /* no guest entries from this point */ 1712 pvclock_update_vm_gtod_copy(kvm); 1713 1714 kvm_for_each_vcpu(i, vcpu, kvm) 1715 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1716 1717 /* guest entries allowed */ 1718 kvm_for_each_vcpu(i, vcpu, kvm) 1719 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); 1720 1721 spin_unlock(&ka->pvclock_gtod_sync_lock); 1722 #endif 1723 } 1724 1725 static u64 __get_kvmclock_ns(struct kvm *kvm) 1726 { 1727 struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, 0); 1728 struct kvm_arch *ka = &kvm->arch; 1729 s64 ns; 1730 1731 if (vcpu->arch.hv_clock.flags & PVCLOCK_TSC_STABLE_BIT) { 1732 u64 tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1733 ns = __pvclock_read_cycles(&vcpu->arch.hv_clock, tsc); 1734 } else { 1735 ns = ktime_get_boot_ns() + ka->kvmclock_offset; 1736 } 1737 1738 return ns; 1739 } 1740 1741 u64 get_kvmclock_ns(struct kvm *kvm) 1742 { 1743 unsigned long flags; 1744 s64 ns; 1745 1746 local_irq_save(flags); 1747 ns = __get_kvmclock_ns(kvm); 1748 local_irq_restore(flags); 1749 1750 return ns; 1751 } 1752 1753 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 1754 { 1755 struct kvm_vcpu_arch *vcpu = &v->arch; 1756 struct pvclock_vcpu_time_info guest_hv_clock; 1757 1758 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1759 &guest_hv_clock, sizeof(guest_hv_clock)))) 1760 return; 1761 1762 /* This VCPU is paused, but it's legal for a guest to read another 1763 * VCPU's kvmclock, so we really have to follow the specification where 1764 * it says that version is odd if data is being modified, and even after 1765 * it is consistent. 1766 * 1767 * Version field updates must be kept separate. This is because 1768 * kvm_write_guest_cached might use a "rep movs" instruction, and 1769 * writes within a string instruction are weakly ordered. So there 1770 * are three writes overall. 1771 * 1772 * As a small optimization, only write the version field in the first 1773 * and third write. The vcpu->pv_time cache is still valid, because the 1774 * version field is the first in the struct. 1775 */ 1776 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 1777 1778 vcpu->hv_clock.version = guest_hv_clock.version + 1; 1779 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1780 &vcpu->hv_clock, 1781 sizeof(vcpu->hv_clock.version)); 1782 1783 smp_wmb(); 1784 1785 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1786 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1787 1788 if (vcpu->pvclock_set_guest_stopped_request) { 1789 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 1790 vcpu->pvclock_set_guest_stopped_request = false; 1791 } 1792 1793 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 1794 1795 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1796 &vcpu->hv_clock, 1797 sizeof(vcpu->hv_clock)); 1798 1799 smp_wmb(); 1800 1801 vcpu->hv_clock.version++; 1802 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1803 &vcpu->hv_clock, 1804 sizeof(vcpu->hv_clock.version)); 1805 } 1806 1807 static int kvm_guest_time_update(struct kvm_vcpu *v) 1808 { 1809 unsigned long flags, tgt_tsc_khz; 1810 struct kvm_vcpu_arch *vcpu = &v->arch; 1811 struct kvm_arch *ka = &v->kvm->arch; 1812 s64 kernel_ns; 1813 u64 tsc_timestamp, host_tsc; 1814 u8 pvclock_flags; 1815 bool use_master_clock; 1816 1817 kernel_ns = 0; 1818 host_tsc = 0; 1819 1820 /* 1821 * If the host uses TSC clock, then passthrough TSC as stable 1822 * to the guest. 1823 */ 1824 spin_lock(&ka->pvclock_gtod_sync_lock); 1825 use_master_clock = ka->use_master_clock; 1826 if (use_master_clock) { 1827 host_tsc = ka->master_cycle_now; 1828 kernel_ns = ka->master_kernel_ns; 1829 } 1830 spin_unlock(&ka->pvclock_gtod_sync_lock); 1831 1832 /* Keep irq disabled to prevent changes to the clock */ 1833 local_irq_save(flags); 1834 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 1835 if (unlikely(tgt_tsc_khz == 0)) { 1836 local_irq_restore(flags); 1837 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1838 return 1; 1839 } 1840 if (!use_master_clock) { 1841 host_tsc = rdtsc(); 1842 kernel_ns = ktime_get_boot_ns(); 1843 } 1844 1845 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 1846 1847 /* 1848 * We may have to catch up the TSC to match elapsed wall clock 1849 * time for two reasons, even if kvmclock is used. 1850 * 1) CPU could have been running below the maximum TSC rate 1851 * 2) Broken TSC compensation resets the base at each VCPU 1852 * entry to avoid unknown leaps of TSC even when running 1853 * again on the same CPU. This may cause apparent elapsed 1854 * time to disappear, and the guest to stand still or run 1855 * very slowly. 1856 */ 1857 if (vcpu->tsc_catchup) { 1858 u64 tsc = compute_guest_tsc(v, kernel_ns); 1859 if (tsc > tsc_timestamp) { 1860 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1861 tsc_timestamp = tsc; 1862 } 1863 } 1864 1865 local_irq_restore(flags); 1866 1867 /* With all the info we got, fill in the values */ 1868 1869 if (kvm_has_tsc_control) 1870 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 1871 1872 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 1873 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 1874 &vcpu->hv_clock.tsc_shift, 1875 &vcpu->hv_clock.tsc_to_system_mul); 1876 vcpu->hw_tsc_khz = tgt_tsc_khz; 1877 } 1878 1879 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1880 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1881 vcpu->last_guest_tsc = tsc_timestamp; 1882 1883 /* If the host uses TSC clocksource, then it is stable */ 1884 pvclock_flags = 0; 1885 if (use_master_clock) 1886 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1887 1888 vcpu->hv_clock.flags = pvclock_flags; 1889 1890 if (vcpu->pv_time_enabled) 1891 kvm_setup_pvclock_page(v); 1892 if (v == kvm_get_vcpu(v->kvm, 0)) 1893 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 1894 return 0; 1895 } 1896 1897 /* 1898 * kvmclock updates which are isolated to a given vcpu, such as 1899 * vcpu->cpu migration, should not allow system_timestamp from 1900 * the rest of the vcpus to remain static. Otherwise ntp frequency 1901 * correction applies to one vcpu's system_timestamp but not 1902 * the others. 1903 * 1904 * So in those cases, request a kvmclock update for all vcpus. 1905 * We need to rate-limit these requests though, as they can 1906 * considerably slow guests that have a large number of vcpus. 1907 * The time for a remote vcpu to update its kvmclock is bound 1908 * by the delay we use to rate-limit the updates. 1909 */ 1910 1911 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 1912 1913 static void kvmclock_update_fn(struct work_struct *work) 1914 { 1915 int i; 1916 struct delayed_work *dwork = to_delayed_work(work); 1917 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1918 kvmclock_update_work); 1919 struct kvm *kvm = container_of(ka, struct kvm, arch); 1920 struct kvm_vcpu *vcpu; 1921 1922 kvm_for_each_vcpu(i, vcpu, kvm) { 1923 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1924 kvm_vcpu_kick(vcpu); 1925 } 1926 } 1927 1928 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 1929 { 1930 struct kvm *kvm = v->kvm; 1931 1932 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1933 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 1934 KVMCLOCK_UPDATE_DELAY); 1935 } 1936 1937 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 1938 1939 static void kvmclock_sync_fn(struct work_struct *work) 1940 { 1941 struct delayed_work *dwork = to_delayed_work(work); 1942 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1943 kvmclock_sync_work); 1944 struct kvm *kvm = container_of(ka, struct kvm, arch); 1945 1946 if (!kvmclock_periodic_sync) 1947 return; 1948 1949 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 1950 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 1951 KVMCLOCK_SYNC_PERIOD); 1952 } 1953 1954 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1955 { 1956 u64 mcg_cap = vcpu->arch.mcg_cap; 1957 unsigned bank_num = mcg_cap & 0xff; 1958 1959 switch (msr) { 1960 case MSR_IA32_MCG_STATUS: 1961 vcpu->arch.mcg_status = data; 1962 break; 1963 case MSR_IA32_MCG_CTL: 1964 if (!(mcg_cap & MCG_CTL_P)) 1965 return 1; 1966 if (data != 0 && data != ~(u64)0) 1967 return -1; 1968 vcpu->arch.mcg_ctl = data; 1969 break; 1970 default: 1971 if (msr >= MSR_IA32_MC0_CTL && 1972 msr < MSR_IA32_MCx_CTL(bank_num)) { 1973 u32 offset = msr - MSR_IA32_MC0_CTL; 1974 /* only 0 or all 1s can be written to IA32_MCi_CTL 1975 * some Linux kernels though clear bit 10 in bank 4 to 1976 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1977 * this to avoid an uncatched #GP in the guest 1978 */ 1979 if ((offset & 0x3) == 0 && 1980 data != 0 && (data | (1 << 10)) != ~(u64)0) 1981 return -1; 1982 vcpu->arch.mce_banks[offset] = data; 1983 break; 1984 } 1985 return 1; 1986 } 1987 return 0; 1988 } 1989 1990 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1991 { 1992 struct kvm *kvm = vcpu->kvm; 1993 int lm = is_long_mode(vcpu); 1994 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1995 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1996 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1997 : kvm->arch.xen_hvm_config.blob_size_32; 1998 u32 page_num = data & ~PAGE_MASK; 1999 u64 page_addr = data & PAGE_MASK; 2000 u8 *page; 2001 int r; 2002 2003 r = -E2BIG; 2004 if (page_num >= blob_size) 2005 goto out; 2006 r = -ENOMEM; 2007 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2008 if (IS_ERR(page)) { 2009 r = PTR_ERR(page); 2010 goto out; 2011 } 2012 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2013 goto out_free; 2014 r = 0; 2015 out_free: 2016 kfree(page); 2017 out: 2018 return r; 2019 } 2020 2021 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2022 { 2023 gpa_t gpa = data & ~0x3f; 2024 2025 /* Bits 2:5 are reserved, Should be zero */ 2026 if (data & 0x3c) 2027 return 1; 2028 2029 vcpu->arch.apf.msr_val = data; 2030 2031 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2032 kvm_clear_async_pf_completion_queue(vcpu); 2033 kvm_async_pf_hash_reset(vcpu); 2034 return 0; 2035 } 2036 2037 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2038 sizeof(u32))) 2039 return 1; 2040 2041 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2042 kvm_async_pf_wakeup_all(vcpu); 2043 return 0; 2044 } 2045 2046 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2047 { 2048 vcpu->arch.pv_time_enabled = false; 2049 } 2050 2051 static void record_steal_time(struct kvm_vcpu *vcpu) 2052 { 2053 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2054 return; 2055 2056 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2057 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2058 return; 2059 2060 if (vcpu->arch.st.steal.version & 1) 2061 vcpu->arch.st.steal.version += 1; /* first time write, random junk */ 2062 2063 vcpu->arch.st.steal.version += 1; 2064 2065 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2066 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2067 2068 smp_wmb(); 2069 2070 vcpu->arch.st.steal.steal += current->sched_info.run_delay - 2071 vcpu->arch.st.last_steal; 2072 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2073 2074 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2075 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2076 2077 smp_wmb(); 2078 2079 vcpu->arch.st.steal.version += 1; 2080 2081 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2082 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2083 } 2084 2085 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2086 { 2087 bool pr = false; 2088 u32 msr = msr_info->index; 2089 u64 data = msr_info->data; 2090 2091 switch (msr) { 2092 case MSR_AMD64_NB_CFG: 2093 case MSR_IA32_UCODE_REV: 2094 case MSR_IA32_UCODE_WRITE: 2095 case MSR_VM_HSAVE_PA: 2096 case MSR_AMD64_PATCH_LOADER: 2097 case MSR_AMD64_BU_CFG2: 2098 break; 2099 2100 case MSR_EFER: 2101 return set_efer(vcpu, data); 2102 case MSR_K7_HWCR: 2103 data &= ~(u64)0x40; /* ignore flush filter disable */ 2104 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2105 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2106 data &= ~(u64)0x40000; /* ignore Mc status write enable */ 2107 if (data != 0) { 2108 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2109 data); 2110 return 1; 2111 } 2112 break; 2113 case MSR_FAM10H_MMIO_CONF_BASE: 2114 if (data != 0) { 2115 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2116 "0x%llx\n", data); 2117 return 1; 2118 } 2119 break; 2120 case MSR_IA32_DEBUGCTLMSR: 2121 if (!data) { 2122 /* We support the non-activated case already */ 2123 break; 2124 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2125 /* Values other than LBR and BTF are vendor-specific, 2126 thus reserved and should throw a #GP */ 2127 return 1; 2128 } 2129 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2130 __func__, data); 2131 break; 2132 case 0x200 ... 0x2ff: 2133 return kvm_mtrr_set_msr(vcpu, msr, data); 2134 case MSR_IA32_APICBASE: 2135 return kvm_set_apic_base(vcpu, msr_info); 2136 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2137 return kvm_x2apic_msr_write(vcpu, msr, data); 2138 case MSR_IA32_TSCDEADLINE: 2139 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2140 break; 2141 case MSR_IA32_TSC_ADJUST: 2142 if (guest_cpuid_has_tsc_adjust(vcpu)) { 2143 if (!msr_info->host_initiated) { 2144 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2145 adjust_tsc_offset_guest(vcpu, adj); 2146 } 2147 vcpu->arch.ia32_tsc_adjust_msr = data; 2148 } 2149 break; 2150 case MSR_IA32_MISC_ENABLE: 2151 vcpu->arch.ia32_misc_enable_msr = data; 2152 break; 2153 case MSR_IA32_SMBASE: 2154 if (!msr_info->host_initiated) 2155 return 1; 2156 vcpu->arch.smbase = data; 2157 break; 2158 case MSR_KVM_WALL_CLOCK_NEW: 2159 case MSR_KVM_WALL_CLOCK: 2160 vcpu->kvm->arch.wall_clock = data; 2161 kvm_write_wall_clock(vcpu->kvm, data); 2162 break; 2163 case MSR_KVM_SYSTEM_TIME_NEW: 2164 case MSR_KVM_SYSTEM_TIME: { 2165 u64 gpa_offset; 2166 struct kvm_arch *ka = &vcpu->kvm->arch; 2167 2168 kvmclock_reset(vcpu); 2169 2170 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2171 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2172 2173 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2174 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, 2175 &vcpu->requests); 2176 2177 ka->boot_vcpu_runs_old_kvmclock = tmp; 2178 } 2179 2180 vcpu->arch.time = data; 2181 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2182 2183 /* we verify if the enable bit is set... */ 2184 if (!(data & 1)) 2185 break; 2186 2187 gpa_offset = data & ~(PAGE_MASK | 1); 2188 2189 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2190 &vcpu->arch.pv_time, data & ~1ULL, 2191 sizeof(struct pvclock_vcpu_time_info))) 2192 vcpu->arch.pv_time_enabled = false; 2193 else 2194 vcpu->arch.pv_time_enabled = true; 2195 2196 break; 2197 } 2198 case MSR_KVM_ASYNC_PF_EN: 2199 if (kvm_pv_enable_async_pf(vcpu, data)) 2200 return 1; 2201 break; 2202 case MSR_KVM_STEAL_TIME: 2203 2204 if (unlikely(!sched_info_on())) 2205 return 1; 2206 2207 if (data & KVM_STEAL_RESERVED_MASK) 2208 return 1; 2209 2210 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2211 data & KVM_STEAL_VALID_BITS, 2212 sizeof(struct kvm_steal_time))) 2213 return 1; 2214 2215 vcpu->arch.st.msr_val = data; 2216 2217 if (!(data & KVM_MSR_ENABLED)) 2218 break; 2219 2220 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2221 2222 break; 2223 case MSR_KVM_PV_EOI_EN: 2224 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2225 return 1; 2226 break; 2227 2228 case MSR_IA32_MCG_CTL: 2229 case MSR_IA32_MCG_STATUS: 2230 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2231 return set_msr_mce(vcpu, msr, data); 2232 2233 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2234 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2235 pr = true; /* fall through */ 2236 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2237 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2238 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2239 return kvm_pmu_set_msr(vcpu, msr_info); 2240 2241 if (pr || data != 0) 2242 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2243 "0x%x data 0x%llx\n", msr, data); 2244 break; 2245 case MSR_K7_CLK_CTL: 2246 /* 2247 * Ignore all writes to this no longer documented MSR. 2248 * Writes are only relevant for old K7 processors, 2249 * all pre-dating SVM, but a recommended workaround from 2250 * AMD for these chips. It is possible to specify the 2251 * affected processor models on the command line, hence 2252 * the need to ignore the workaround. 2253 */ 2254 break; 2255 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2256 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2257 case HV_X64_MSR_CRASH_CTL: 2258 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2259 return kvm_hv_set_msr_common(vcpu, msr, data, 2260 msr_info->host_initiated); 2261 case MSR_IA32_BBL_CR_CTL3: 2262 /* Drop writes to this legacy MSR -- see rdmsr 2263 * counterpart for further detail. 2264 */ 2265 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 2266 break; 2267 case MSR_AMD64_OSVW_ID_LENGTH: 2268 if (!guest_cpuid_has_osvw(vcpu)) 2269 return 1; 2270 vcpu->arch.osvw.length = data; 2271 break; 2272 case MSR_AMD64_OSVW_STATUS: 2273 if (!guest_cpuid_has_osvw(vcpu)) 2274 return 1; 2275 vcpu->arch.osvw.status = data; 2276 break; 2277 default: 2278 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2279 return xen_hvm_config(vcpu, data); 2280 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2281 return kvm_pmu_set_msr(vcpu, msr_info); 2282 if (!ignore_msrs) { 2283 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 2284 msr, data); 2285 return 1; 2286 } else { 2287 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 2288 msr, data); 2289 break; 2290 } 2291 } 2292 return 0; 2293 } 2294 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2295 2296 2297 /* 2298 * Reads an msr value (of 'msr_index') into 'pdata'. 2299 * Returns 0 on success, non-0 otherwise. 2300 * Assumes vcpu_load() was already called. 2301 */ 2302 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2303 { 2304 return kvm_x86_ops->get_msr(vcpu, msr); 2305 } 2306 EXPORT_SYMBOL_GPL(kvm_get_msr); 2307 2308 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2309 { 2310 u64 data; 2311 u64 mcg_cap = vcpu->arch.mcg_cap; 2312 unsigned bank_num = mcg_cap & 0xff; 2313 2314 switch (msr) { 2315 case MSR_IA32_P5_MC_ADDR: 2316 case MSR_IA32_P5_MC_TYPE: 2317 data = 0; 2318 break; 2319 case MSR_IA32_MCG_CAP: 2320 data = vcpu->arch.mcg_cap; 2321 break; 2322 case MSR_IA32_MCG_CTL: 2323 if (!(mcg_cap & MCG_CTL_P)) 2324 return 1; 2325 data = vcpu->arch.mcg_ctl; 2326 break; 2327 case MSR_IA32_MCG_STATUS: 2328 data = vcpu->arch.mcg_status; 2329 break; 2330 default: 2331 if (msr >= MSR_IA32_MC0_CTL && 2332 msr < MSR_IA32_MCx_CTL(bank_num)) { 2333 u32 offset = msr - MSR_IA32_MC0_CTL; 2334 data = vcpu->arch.mce_banks[offset]; 2335 break; 2336 } 2337 return 1; 2338 } 2339 *pdata = data; 2340 return 0; 2341 } 2342 2343 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2344 { 2345 switch (msr_info->index) { 2346 case MSR_IA32_PLATFORM_ID: 2347 case MSR_IA32_EBL_CR_POWERON: 2348 case MSR_IA32_DEBUGCTLMSR: 2349 case MSR_IA32_LASTBRANCHFROMIP: 2350 case MSR_IA32_LASTBRANCHTOIP: 2351 case MSR_IA32_LASTINTFROMIP: 2352 case MSR_IA32_LASTINTTOIP: 2353 case MSR_K8_SYSCFG: 2354 case MSR_K8_TSEG_ADDR: 2355 case MSR_K8_TSEG_MASK: 2356 case MSR_K7_HWCR: 2357 case MSR_VM_HSAVE_PA: 2358 case MSR_K8_INT_PENDING_MSG: 2359 case MSR_AMD64_NB_CFG: 2360 case MSR_FAM10H_MMIO_CONF_BASE: 2361 case MSR_AMD64_BU_CFG2: 2362 case MSR_IA32_PERF_CTL: 2363 msr_info->data = 0; 2364 break; 2365 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2366 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2367 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2368 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2369 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2370 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2371 msr_info->data = 0; 2372 break; 2373 case MSR_IA32_UCODE_REV: 2374 msr_info->data = 0x100000000ULL; 2375 break; 2376 case MSR_MTRRcap: 2377 case 0x200 ... 0x2ff: 2378 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 2379 case 0xcd: /* fsb frequency */ 2380 msr_info->data = 3; 2381 break; 2382 /* 2383 * MSR_EBC_FREQUENCY_ID 2384 * Conservative value valid for even the basic CPU models. 2385 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2386 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2387 * and 266MHz for model 3, or 4. Set Core Clock 2388 * Frequency to System Bus Frequency Ratio to 1 (bits 2389 * 31:24) even though these are only valid for CPU 2390 * models > 2, however guests may end up dividing or 2391 * multiplying by zero otherwise. 2392 */ 2393 case MSR_EBC_FREQUENCY_ID: 2394 msr_info->data = 1 << 24; 2395 break; 2396 case MSR_IA32_APICBASE: 2397 msr_info->data = kvm_get_apic_base(vcpu); 2398 break; 2399 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2400 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 2401 break; 2402 case MSR_IA32_TSCDEADLINE: 2403 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 2404 break; 2405 case MSR_IA32_TSC_ADJUST: 2406 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2407 break; 2408 case MSR_IA32_MISC_ENABLE: 2409 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 2410 break; 2411 case MSR_IA32_SMBASE: 2412 if (!msr_info->host_initiated) 2413 return 1; 2414 msr_info->data = vcpu->arch.smbase; 2415 break; 2416 case MSR_IA32_PERF_STATUS: 2417 /* TSC increment by tick */ 2418 msr_info->data = 1000ULL; 2419 /* CPU multiplier */ 2420 msr_info->data |= (((uint64_t)4ULL) << 40); 2421 break; 2422 case MSR_EFER: 2423 msr_info->data = vcpu->arch.efer; 2424 break; 2425 case MSR_KVM_WALL_CLOCK: 2426 case MSR_KVM_WALL_CLOCK_NEW: 2427 msr_info->data = vcpu->kvm->arch.wall_clock; 2428 break; 2429 case MSR_KVM_SYSTEM_TIME: 2430 case MSR_KVM_SYSTEM_TIME_NEW: 2431 msr_info->data = vcpu->arch.time; 2432 break; 2433 case MSR_KVM_ASYNC_PF_EN: 2434 msr_info->data = vcpu->arch.apf.msr_val; 2435 break; 2436 case MSR_KVM_STEAL_TIME: 2437 msr_info->data = vcpu->arch.st.msr_val; 2438 break; 2439 case MSR_KVM_PV_EOI_EN: 2440 msr_info->data = vcpu->arch.pv_eoi.msr_val; 2441 break; 2442 case MSR_IA32_P5_MC_ADDR: 2443 case MSR_IA32_P5_MC_TYPE: 2444 case MSR_IA32_MCG_CAP: 2445 case MSR_IA32_MCG_CTL: 2446 case MSR_IA32_MCG_STATUS: 2447 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2448 return get_msr_mce(vcpu, msr_info->index, &msr_info->data); 2449 case MSR_K7_CLK_CTL: 2450 /* 2451 * Provide expected ramp-up count for K7. All other 2452 * are set to zero, indicating minimum divisors for 2453 * every field. 2454 * 2455 * This prevents guest kernels on AMD host with CPU 2456 * type 6, model 8 and higher from exploding due to 2457 * the rdmsr failing. 2458 */ 2459 msr_info->data = 0x20000000; 2460 break; 2461 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2462 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2463 case HV_X64_MSR_CRASH_CTL: 2464 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2465 return kvm_hv_get_msr_common(vcpu, 2466 msr_info->index, &msr_info->data); 2467 break; 2468 case MSR_IA32_BBL_CR_CTL3: 2469 /* This legacy MSR exists but isn't fully documented in current 2470 * silicon. It is however accessed by winxp in very narrow 2471 * scenarios where it sets bit #19, itself documented as 2472 * a "reserved" bit. Best effort attempt to source coherent 2473 * read data here should the balance of the register be 2474 * interpreted by the guest: 2475 * 2476 * L2 cache control register 3: 64GB range, 256KB size, 2477 * enabled, latency 0x1, configured 2478 */ 2479 msr_info->data = 0xbe702111; 2480 break; 2481 case MSR_AMD64_OSVW_ID_LENGTH: 2482 if (!guest_cpuid_has_osvw(vcpu)) 2483 return 1; 2484 msr_info->data = vcpu->arch.osvw.length; 2485 break; 2486 case MSR_AMD64_OSVW_STATUS: 2487 if (!guest_cpuid_has_osvw(vcpu)) 2488 return 1; 2489 msr_info->data = vcpu->arch.osvw.status; 2490 break; 2491 default: 2492 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2493 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2494 if (!ignore_msrs) { 2495 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index); 2496 return 1; 2497 } else { 2498 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index); 2499 msr_info->data = 0; 2500 } 2501 break; 2502 } 2503 return 0; 2504 } 2505 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2506 2507 /* 2508 * Read or write a bunch of msrs. All parameters are kernel addresses. 2509 * 2510 * @return number of msrs set successfully. 2511 */ 2512 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2513 struct kvm_msr_entry *entries, 2514 int (*do_msr)(struct kvm_vcpu *vcpu, 2515 unsigned index, u64 *data)) 2516 { 2517 int i, idx; 2518 2519 idx = srcu_read_lock(&vcpu->kvm->srcu); 2520 for (i = 0; i < msrs->nmsrs; ++i) 2521 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2522 break; 2523 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2524 2525 return i; 2526 } 2527 2528 /* 2529 * Read or write a bunch of msrs. Parameters are user addresses. 2530 * 2531 * @return number of msrs set successfully. 2532 */ 2533 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2534 int (*do_msr)(struct kvm_vcpu *vcpu, 2535 unsigned index, u64 *data), 2536 int writeback) 2537 { 2538 struct kvm_msrs msrs; 2539 struct kvm_msr_entry *entries; 2540 int r, n; 2541 unsigned size; 2542 2543 r = -EFAULT; 2544 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2545 goto out; 2546 2547 r = -E2BIG; 2548 if (msrs.nmsrs >= MAX_IO_MSRS) 2549 goto out; 2550 2551 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2552 entries = memdup_user(user_msrs->entries, size); 2553 if (IS_ERR(entries)) { 2554 r = PTR_ERR(entries); 2555 goto out; 2556 } 2557 2558 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2559 if (r < 0) 2560 goto out_free; 2561 2562 r = -EFAULT; 2563 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2564 goto out_free; 2565 2566 r = n; 2567 2568 out_free: 2569 kfree(entries); 2570 out: 2571 return r; 2572 } 2573 2574 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 2575 { 2576 int r; 2577 2578 switch (ext) { 2579 case KVM_CAP_IRQCHIP: 2580 case KVM_CAP_HLT: 2581 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2582 case KVM_CAP_SET_TSS_ADDR: 2583 case KVM_CAP_EXT_CPUID: 2584 case KVM_CAP_EXT_EMUL_CPUID: 2585 case KVM_CAP_CLOCKSOURCE: 2586 case KVM_CAP_PIT: 2587 case KVM_CAP_NOP_IO_DELAY: 2588 case KVM_CAP_MP_STATE: 2589 case KVM_CAP_SYNC_MMU: 2590 case KVM_CAP_USER_NMI: 2591 case KVM_CAP_REINJECT_CONTROL: 2592 case KVM_CAP_IRQ_INJECT_STATUS: 2593 case KVM_CAP_IOEVENTFD: 2594 case KVM_CAP_IOEVENTFD_NO_LENGTH: 2595 case KVM_CAP_PIT2: 2596 case KVM_CAP_PIT_STATE2: 2597 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2598 case KVM_CAP_XEN_HVM: 2599 case KVM_CAP_ADJUST_CLOCK: 2600 case KVM_CAP_VCPU_EVENTS: 2601 case KVM_CAP_HYPERV: 2602 case KVM_CAP_HYPERV_VAPIC: 2603 case KVM_CAP_HYPERV_SPIN: 2604 case KVM_CAP_HYPERV_SYNIC: 2605 case KVM_CAP_PCI_SEGMENT: 2606 case KVM_CAP_DEBUGREGS: 2607 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2608 case KVM_CAP_XSAVE: 2609 case KVM_CAP_ASYNC_PF: 2610 case KVM_CAP_GET_TSC_KHZ: 2611 case KVM_CAP_KVMCLOCK_CTRL: 2612 case KVM_CAP_READONLY_MEM: 2613 case KVM_CAP_HYPERV_TIME: 2614 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 2615 case KVM_CAP_TSC_DEADLINE_TIMER: 2616 case KVM_CAP_ENABLE_CAP_VM: 2617 case KVM_CAP_DISABLE_QUIRKS: 2618 case KVM_CAP_SET_BOOT_CPU_ID: 2619 case KVM_CAP_SPLIT_IRQCHIP: 2620 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2621 case KVM_CAP_ASSIGN_DEV_IRQ: 2622 case KVM_CAP_PCI_2_3: 2623 #endif 2624 r = 1; 2625 break; 2626 case KVM_CAP_X86_SMM: 2627 /* SMBASE is usually relocated above 1M on modern chipsets, 2628 * and SMM handlers might indeed rely on 4G segment limits, 2629 * so do not report SMM to be available if real mode is 2630 * emulated via vm86 mode. Still, do not go to great lengths 2631 * to avoid userspace's usage of the feature, because it is a 2632 * fringe case that is not enabled except via specific settings 2633 * of the module parameters. 2634 */ 2635 r = kvm_x86_ops->cpu_has_high_real_mode_segbase(); 2636 break; 2637 case KVM_CAP_COALESCED_MMIO: 2638 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2639 break; 2640 case KVM_CAP_VAPIC: 2641 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2642 break; 2643 case KVM_CAP_NR_VCPUS: 2644 r = KVM_SOFT_MAX_VCPUS; 2645 break; 2646 case KVM_CAP_MAX_VCPUS: 2647 r = KVM_MAX_VCPUS; 2648 break; 2649 case KVM_CAP_NR_MEMSLOTS: 2650 r = KVM_USER_MEM_SLOTS; 2651 break; 2652 case KVM_CAP_PV_MMU: /* obsolete */ 2653 r = 0; 2654 break; 2655 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2656 case KVM_CAP_IOMMU: 2657 r = iommu_present(&pci_bus_type); 2658 break; 2659 #endif 2660 case KVM_CAP_MCE: 2661 r = KVM_MAX_MCE_BANKS; 2662 break; 2663 case KVM_CAP_XCRS: 2664 r = boot_cpu_has(X86_FEATURE_XSAVE); 2665 break; 2666 case KVM_CAP_TSC_CONTROL: 2667 r = kvm_has_tsc_control; 2668 break; 2669 case KVM_CAP_X2APIC_API: 2670 r = KVM_X2APIC_API_VALID_FLAGS; 2671 break; 2672 default: 2673 r = 0; 2674 break; 2675 } 2676 return r; 2677 2678 } 2679 2680 long kvm_arch_dev_ioctl(struct file *filp, 2681 unsigned int ioctl, unsigned long arg) 2682 { 2683 void __user *argp = (void __user *)arg; 2684 long r; 2685 2686 switch (ioctl) { 2687 case KVM_GET_MSR_INDEX_LIST: { 2688 struct kvm_msr_list __user *user_msr_list = argp; 2689 struct kvm_msr_list msr_list; 2690 unsigned n; 2691 2692 r = -EFAULT; 2693 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2694 goto out; 2695 n = msr_list.nmsrs; 2696 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 2697 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2698 goto out; 2699 r = -E2BIG; 2700 if (n < msr_list.nmsrs) 2701 goto out; 2702 r = -EFAULT; 2703 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2704 num_msrs_to_save * sizeof(u32))) 2705 goto out; 2706 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2707 &emulated_msrs, 2708 num_emulated_msrs * sizeof(u32))) 2709 goto out; 2710 r = 0; 2711 break; 2712 } 2713 case KVM_GET_SUPPORTED_CPUID: 2714 case KVM_GET_EMULATED_CPUID: { 2715 struct kvm_cpuid2 __user *cpuid_arg = argp; 2716 struct kvm_cpuid2 cpuid; 2717 2718 r = -EFAULT; 2719 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2720 goto out; 2721 2722 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 2723 ioctl); 2724 if (r) 2725 goto out; 2726 2727 r = -EFAULT; 2728 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2729 goto out; 2730 r = 0; 2731 break; 2732 } 2733 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2734 r = -EFAULT; 2735 if (copy_to_user(argp, &kvm_mce_cap_supported, 2736 sizeof(kvm_mce_cap_supported))) 2737 goto out; 2738 r = 0; 2739 break; 2740 } 2741 default: 2742 r = -EINVAL; 2743 } 2744 out: 2745 return r; 2746 } 2747 2748 static void wbinvd_ipi(void *garbage) 2749 { 2750 wbinvd(); 2751 } 2752 2753 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2754 { 2755 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 2756 } 2757 2758 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu) 2759 { 2760 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests); 2761 } 2762 2763 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2764 { 2765 /* Address WBINVD may be executed by guest */ 2766 if (need_emulate_wbinvd(vcpu)) { 2767 if (kvm_x86_ops->has_wbinvd_exit()) 2768 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2769 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2770 smp_call_function_single(vcpu->cpu, 2771 wbinvd_ipi, NULL, 1); 2772 } 2773 2774 kvm_x86_ops->vcpu_load(vcpu, cpu); 2775 2776 /* Apply any externally detected TSC adjustments (due to suspend) */ 2777 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2778 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2779 vcpu->arch.tsc_offset_adjustment = 0; 2780 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2781 } 2782 2783 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2784 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2785 rdtsc() - vcpu->arch.last_host_tsc; 2786 if (tsc_delta < 0) 2787 mark_tsc_unstable("KVM discovered backwards TSC"); 2788 2789 if (check_tsc_unstable()) { 2790 u64 offset = kvm_compute_tsc_offset(vcpu, 2791 vcpu->arch.last_guest_tsc); 2792 kvm_vcpu_write_tsc_offset(vcpu, offset); 2793 vcpu->arch.tsc_catchup = 1; 2794 } 2795 if (kvm_lapic_hv_timer_in_use(vcpu) && 2796 kvm_x86_ops->set_hv_timer(vcpu, 2797 kvm_get_lapic_tscdeadline_msr(vcpu))) 2798 kvm_lapic_switch_to_sw_timer(vcpu); 2799 /* 2800 * On a host with synchronized TSC, there is no need to update 2801 * kvmclock on vcpu->cpu migration 2802 */ 2803 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2804 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2805 if (vcpu->cpu != cpu) 2806 kvm_migrate_timers(vcpu); 2807 vcpu->cpu = cpu; 2808 } 2809 2810 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2811 } 2812 2813 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2814 { 2815 kvm_x86_ops->vcpu_put(vcpu); 2816 kvm_put_guest_fpu(vcpu); 2817 vcpu->arch.last_host_tsc = rdtsc(); 2818 } 2819 2820 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2821 struct kvm_lapic_state *s) 2822 { 2823 if (vcpu->arch.apicv_active) 2824 kvm_x86_ops->sync_pir_to_irr(vcpu); 2825 2826 return kvm_apic_get_state(vcpu, s); 2827 } 2828 2829 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2830 struct kvm_lapic_state *s) 2831 { 2832 int r; 2833 2834 r = kvm_apic_set_state(vcpu, s); 2835 if (r) 2836 return r; 2837 update_cr8_intercept(vcpu); 2838 2839 return 0; 2840 } 2841 2842 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 2843 { 2844 return (!lapic_in_kernel(vcpu) || 2845 kvm_apic_accept_pic_intr(vcpu)); 2846 } 2847 2848 /* 2849 * if userspace requested an interrupt window, check that the 2850 * interrupt window is open. 2851 * 2852 * No need to exit to userspace if we already have an interrupt queued. 2853 */ 2854 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 2855 { 2856 return kvm_arch_interrupt_allowed(vcpu) && 2857 !kvm_cpu_has_interrupt(vcpu) && 2858 !kvm_event_needs_reinjection(vcpu) && 2859 kvm_cpu_accept_dm_intr(vcpu); 2860 } 2861 2862 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2863 struct kvm_interrupt *irq) 2864 { 2865 if (irq->irq >= KVM_NR_INTERRUPTS) 2866 return -EINVAL; 2867 2868 if (!irqchip_in_kernel(vcpu->kvm)) { 2869 kvm_queue_interrupt(vcpu, irq->irq, false); 2870 kvm_make_request(KVM_REQ_EVENT, vcpu); 2871 return 0; 2872 } 2873 2874 /* 2875 * With in-kernel LAPIC, we only use this to inject EXTINT, so 2876 * fail for in-kernel 8259. 2877 */ 2878 if (pic_in_kernel(vcpu->kvm)) 2879 return -ENXIO; 2880 2881 if (vcpu->arch.pending_external_vector != -1) 2882 return -EEXIST; 2883 2884 vcpu->arch.pending_external_vector = irq->irq; 2885 kvm_make_request(KVM_REQ_EVENT, vcpu); 2886 return 0; 2887 } 2888 2889 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2890 { 2891 kvm_inject_nmi(vcpu); 2892 2893 return 0; 2894 } 2895 2896 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 2897 { 2898 kvm_make_request(KVM_REQ_SMI, vcpu); 2899 2900 return 0; 2901 } 2902 2903 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2904 struct kvm_tpr_access_ctl *tac) 2905 { 2906 if (tac->flags) 2907 return -EINVAL; 2908 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2909 return 0; 2910 } 2911 2912 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2913 u64 mcg_cap) 2914 { 2915 int r; 2916 unsigned bank_num = mcg_cap & 0xff, bank; 2917 2918 r = -EINVAL; 2919 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2920 goto out; 2921 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 2922 goto out; 2923 r = 0; 2924 vcpu->arch.mcg_cap = mcg_cap; 2925 /* Init IA32_MCG_CTL to all 1s */ 2926 if (mcg_cap & MCG_CTL_P) 2927 vcpu->arch.mcg_ctl = ~(u64)0; 2928 /* Init IA32_MCi_CTL to all 1s */ 2929 for (bank = 0; bank < bank_num; bank++) 2930 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2931 2932 if (kvm_x86_ops->setup_mce) 2933 kvm_x86_ops->setup_mce(vcpu); 2934 out: 2935 return r; 2936 } 2937 2938 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2939 struct kvm_x86_mce *mce) 2940 { 2941 u64 mcg_cap = vcpu->arch.mcg_cap; 2942 unsigned bank_num = mcg_cap & 0xff; 2943 u64 *banks = vcpu->arch.mce_banks; 2944 2945 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2946 return -EINVAL; 2947 /* 2948 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2949 * reporting is disabled 2950 */ 2951 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2952 vcpu->arch.mcg_ctl != ~(u64)0) 2953 return 0; 2954 banks += 4 * mce->bank; 2955 /* 2956 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2957 * reporting is disabled for the bank 2958 */ 2959 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2960 return 0; 2961 if (mce->status & MCI_STATUS_UC) { 2962 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2963 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2964 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2965 return 0; 2966 } 2967 if (banks[1] & MCI_STATUS_VAL) 2968 mce->status |= MCI_STATUS_OVER; 2969 banks[2] = mce->addr; 2970 banks[3] = mce->misc; 2971 vcpu->arch.mcg_status = mce->mcg_status; 2972 banks[1] = mce->status; 2973 kvm_queue_exception(vcpu, MC_VECTOR); 2974 } else if (!(banks[1] & MCI_STATUS_VAL) 2975 || !(banks[1] & MCI_STATUS_UC)) { 2976 if (banks[1] & MCI_STATUS_VAL) 2977 mce->status |= MCI_STATUS_OVER; 2978 banks[2] = mce->addr; 2979 banks[3] = mce->misc; 2980 banks[1] = mce->status; 2981 } else 2982 banks[1] |= MCI_STATUS_OVER; 2983 return 0; 2984 } 2985 2986 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2987 struct kvm_vcpu_events *events) 2988 { 2989 process_nmi(vcpu); 2990 events->exception.injected = 2991 vcpu->arch.exception.pending && 2992 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2993 events->exception.nr = vcpu->arch.exception.nr; 2994 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2995 events->exception.pad = 0; 2996 events->exception.error_code = vcpu->arch.exception.error_code; 2997 2998 events->interrupt.injected = 2999 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 3000 events->interrupt.nr = vcpu->arch.interrupt.nr; 3001 events->interrupt.soft = 0; 3002 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 3003 3004 events->nmi.injected = vcpu->arch.nmi_injected; 3005 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3006 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 3007 events->nmi.pad = 0; 3008 3009 events->sipi_vector = 0; /* never valid when reporting to user space */ 3010 3011 events->smi.smm = is_smm(vcpu); 3012 events->smi.pending = vcpu->arch.smi_pending; 3013 events->smi.smm_inside_nmi = 3014 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3015 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3016 3017 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3018 | KVM_VCPUEVENT_VALID_SHADOW 3019 | KVM_VCPUEVENT_VALID_SMM); 3020 memset(&events->reserved, 0, sizeof(events->reserved)); 3021 } 3022 3023 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3024 struct kvm_vcpu_events *events) 3025 { 3026 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3027 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3028 | KVM_VCPUEVENT_VALID_SHADOW 3029 | KVM_VCPUEVENT_VALID_SMM)) 3030 return -EINVAL; 3031 3032 if (events->exception.injected && 3033 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 3034 return -EINVAL; 3035 3036 process_nmi(vcpu); 3037 vcpu->arch.exception.pending = events->exception.injected; 3038 vcpu->arch.exception.nr = events->exception.nr; 3039 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3040 vcpu->arch.exception.error_code = events->exception.error_code; 3041 3042 vcpu->arch.interrupt.pending = events->interrupt.injected; 3043 vcpu->arch.interrupt.nr = events->interrupt.nr; 3044 vcpu->arch.interrupt.soft = events->interrupt.soft; 3045 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3046 kvm_x86_ops->set_interrupt_shadow(vcpu, 3047 events->interrupt.shadow); 3048 3049 vcpu->arch.nmi_injected = events->nmi.injected; 3050 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3051 vcpu->arch.nmi_pending = events->nmi.pending; 3052 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3053 3054 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3055 lapic_in_kernel(vcpu)) 3056 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3057 3058 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 3059 if (events->smi.smm) 3060 vcpu->arch.hflags |= HF_SMM_MASK; 3061 else 3062 vcpu->arch.hflags &= ~HF_SMM_MASK; 3063 vcpu->arch.smi_pending = events->smi.pending; 3064 if (events->smi.smm_inside_nmi) 3065 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3066 else 3067 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3068 if (lapic_in_kernel(vcpu)) { 3069 if (events->smi.latched_init) 3070 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3071 else 3072 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3073 } 3074 } 3075 3076 kvm_make_request(KVM_REQ_EVENT, vcpu); 3077 3078 return 0; 3079 } 3080 3081 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3082 struct kvm_debugregs *dbgregs) 3083 { 3084 unsigned long val; 3085 3086 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3087 kvm_get_dr(vcpu, 6, &val); 3088 dbgregs->dr6 = val; 3089 dbgregs->dr7 = vcpu->arch.dr7; 3090 dbgregs->flags = 0; 3091 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3092 } 3093 3094 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3095 struct kvm_debugregs *dbgregs) 3096 { 3097 if (dbgregs->flags) 3098 return -EINVAL; 3099 3100 if (dbgregs->dr6 & ~0xffffffffull) 3101 return -EINVAL; 3102 if (dbgregs->dr7 & ~0xffffffffull) 3103 return -EINVAL; 3104 3105 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3106 kvm_update_dr0123(vcpu); 3107 vcpu->arch.dr6 = dbgregs->dr6; 3108 kvm_update_dr6(vcpu); 3109 vcpu->arch.dr7 = dbgregs->dr7; 3110 kvm_update_dr7(vcpu); 3111 3112 return 0; 3113 } 3114 3115 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 3116 3117 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 3118 { 3119 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3120 u64 xstate_bv = xsave->header.xfeatures; 3121 u64 valid; 3122 3123 /* 3124 * Copy legacy XSAVE area, to avoid complications with CPUID 3125 * leaves 0 and 1 in the loop below. 3126 */ 3127 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 3128 3129 /* Set XSTATE_BV */ 3130 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 3131 3132 /* 3133 * Copy each region from the possibly compacted offset to the 3134 * non-compacted offset. 3135 */ 3136 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3137 while (valid) { 3138 u64 feature = valid & -valid; 3139 int index = fls64(feature) - 1; 3140 void *src = get_xsave_addr(xsave, feature); 3141 3142 if (src) { 3143 u32 size, offset, ecx, edx; 3144 cpuid_count(XSTATE_CPUID, index, 3145 &size, &offset, &ecx, &edx); 3146 memcpy(dest + offset, src, size); 3147 } 3148 3149 valid -= feature; 3150 } 3151 } 3152 3153 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 3154 { 3155 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3156 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 3157 u64 valid; 3158 3159 /* 3160 * Copy legacy XSAVE area, to avoid complications with CPUID 3161 * leaves 0 and 1 in the loop below. 3162 */ 3163 memcpy(xsave, src, XSAVE_HDR_OFFSET); 3164 3165 /* Set XSTATE_BV and possibly XCOMP_BV. */ 3166 xsave->header.xfeatures = xstate_bv; 3167 if (boot_cpu_has(X86_FEATURE_XSAVES)) 3168 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 3169 3170 /* 3171 * Copy each region from the non-compacted offset to the 3172 * possibly compacted offset. 3173 */ 3174 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3175 while (valid) { 3176 u64 feature = valid & -valid; 3177 int index = fls64(feature) - 1; 3178 void *dest = get_xsave_addr(xsave, feature); 3179 3180 if (dest) { 3181 u32 size, offset, ecx, edx; 3182 cpuid_count(XSTATE_CPUID, index, 3183 &size, &offset, &ecx, &edx); 3184 memcpy(dest, src + offset, size); 3185 } 3186 3187 valid -= feature; 3188 } 3189 } 3190 3191 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3192 struct kvm_xsave *guest_xsave) 3193 { 3194 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3195 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 3196 fill_xsave((u8 *) guest_xsave->region, vcpu); 3197 } else { 3198 memcpy(guest_xsave->region, 3199 &vcpu->arch.guest_fpu.state.fxsave, 3200 sizeof(struct fxregs_state)); 3201 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3202 XFEATURE_MASK_FPSSE; 3203 } 3204 } 3205 3206 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3207 struct kvm_xsave *guest_xsave) 3208 { 3209 u64 xstate_bv = 3210 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3211 3212 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3213 /* 3214 * Here we allow setting states that are not present in 3215 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3216 * with old userspace. 3217 */ 3218 if (xstate_bv & ~kvm_supported_xcr0()) 3219 return -EINVAL; 3220 load_xsave(vcpu, (u8 *)guest_xsave->region); 3221 } else { 3222 if (xstate_bv & ~XFEATURE_MASK_FPSSE) 3223 return -EINVAL; 3224 memcpy(&vcpu->arch.guest_fpu.state.fxsave, 3225 guest_xsave->region, sizeof(struct fxregs_state)); 3226 } 3227 return 0; 3228 } 3229 3230 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3231 struct kvm_xcrs *guest_xcrs) 3232 { 3233 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 3234 guest_xcrs->nr_xcrs = 0; 3235 return; 3236 } 3237 3238 guest_xcrs->nr_xcrs = 1; 3239 guest_xcrs->flags = 0; 3240 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3241 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3242 } 3243 3244 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3245 struct kvm_xcrs *guest_xcrs) 3246 { 3247 int i, r = 0; 3248 3249 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 3250 return -EINVAL; 3251 3252 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3253 return -EINVAL; 3254 3255 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3256 /* Only support XCR0 currently */ 3257 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3258 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3259 guest_xcrs->xcrs[i].value); 3260 break; 3261 } 3262 if (r) 3263 r = -EINVAL; 3264 return r; 3265 } 3266 3267 /* 3268 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3269 * stopped by the hypervisor. This function will be called from the host only. 3270 * EINVAL is returned when the host attempts to set the flag for a guest that 3271 * does not support pv clocks. 3272 */ 3273 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3274 { 3275 if (!vcpu->arch.pv_time_enabled) 3276 return -EINVAL; 3277 vcpu->arch.pvclock_set_guest_stopped_request = true; 3278 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3279 return 0; 3280 } 3281 3282 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 3283 struct kvm_enable_cap *cap) 3284 { 3285 if (cap->flags) 3286 return -EINVAL; 3287 3288 switch (cap->cap) { 3289 case KVM_CAP_HYPERV_SYNIC: 3290 return kvm_hv_activate_synic(vcpu); 3291 default: 3292 return -EINVAL; 3293 } 3294 } 3295 3296 long kvm_arch_vcpu_ioctl(struct file *filp, 3297 unsigned int ioctl, unsigned long arg) 3298 { 3299 struct kvm_vcpu *vcpu = filp->private_data; 3300 void __user *argp = (void __user *)arg; 3301 int r; 3302 union { 3303 struct kvm_lapic_state *lapic; 3304 struct kvm_xsave *xsave; 3305 struct kvm_xcrs *xcrs; 3306 void *buffer; 3307 } u; 3308 3309 u.buffer = NULL; 3310 switch (ioctl) { 3311 case KVM_GET_LAPIC: { 3312 r = -EINVAL; 3313 if (!lapic_in_kernel(vcpu)) 3314 goto out; 3315 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3316 3317 r = -ENOMEM; 3318 if (!u.lapic) 3319 goto out; 3320 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3321 if (r) 3322 goto out; 3323 r = -EFAULT; 3324 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3325 goto out; 3326 r = 0; 3327 break; 3328 } 3329 case KVM_SET_LAPIC: { 3330 r = -EINVAL; 3331 if (!lapic_in_kernel(vcpu)) 3332 goto out; 3333 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3334 if (IS_ERR(u.lapic)) 3335 return PTR_ERR(u.lapic); 3336 3337 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3338 break; 3339 } 3340 case KVM_INTERRUPT: { 3341 struct kvm_interrupt irq; 3342 3343 r = -EFAULT; 3344 if (copy_from_user(&irq, argp, sizeof irq)) 3345 goto out; 3346 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3347 break; 3348 } 3349 case KVM_NMI: { 3350 r = kvm_vcpu_ioctl_nmi(vcpu); 3351 break; 3352 } 3353 case KVM_SMI: { 3354 r = kvm_vcpu_ioctl_smi(vcpu); 3355 break; 3356 } 3357 case KVM_SET_CPUID: { 3358 struct kvm_cpuid __user *cpuid_arg = argp; 3359 struct kvm_cpuid cpuid; 3360 3361 r = -EFAULT; 3362 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3363 goto out; 3364 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3365 break; 3366 } 3367 case KVM_SET_CPUID2: { 3368 struct kvm_cpuid2 __user *cpuid_arg = argp; 3369 struct kvm_cpuid2 cpuid; 3370 3371 r = -EFAULT; 3372 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3373 goto out; 3374 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3375 cpuid_arg->entries); 3376 break; 3377 } 3378 case KVM_GET_CPUID2: { 3379 struct kvm_cpuid2 __user *cpuid_arg = argp; 3380 struct kvm_cpuid2 cpuid; 3381 3382 r = -EFAULT; 3383 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3384 goto out; 3385 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3386 cpuid_arg->entries); 3387 if (r) 3388 goto out; 3389 r = -EFAULT; 3390 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3391 goto out; 3392 r = 0; 3393 break; 3394 } 3395 case KVM_GET_MSRS: 3396 r = msr_io(vcpu, argp, do_get_msr, 1); 3397 break; 3398 case KVM_SET_MSRS: 3399 r = msr_io(vcpu, argp, do_set_msr, 0); 3400 break; 3401 case KVM_TPR_ACCESS_REPORTING: { 3402 struct kvm_tpr_access_ctl tac; 3403 3404 r = -EFAULT; 3405 if (copy_from_user(&tac, argp, sizeof tac)) 3406 goto out; 3407 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3408 if (r) 3409 goto out; 3410 r = -EFAULT; 3411 if (copy_to_user(argp, &tac, sizeof tac)) 3412 goto out; 3413 r = 0; 3414 break; 3415 }; 3416 case KVM_SET_VAPIC_ADDR: { 3417 struct kvm_vapic_addr va; 3418 3419 r = -EINVAL; 3420 if (!lapic_in_kernel(vcpu)) 3421 goto out; 3422 r = -EFAULT; 3423 if (copy_from_user(&va, argp, sizeof va)) 3424 goto out; 3425 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3426 break; 3427 } 3428 case KVM_X86_SETUP_MCE: { 3429 u64 mcg_cap; 3430 3431 r = -EFAULT; 3432 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3433 goto out; 3434 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3435 break; 3436 } 3437 case KVM_X86_SET_MCE: { 3438 struct kvm_x86_mce mce; 3439 3440 r = -EFAULT; 3441 if (copy_from_user(&mce, argp, sizeof mce)) 3442 goto out; 3443 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3444 break; 3445 } 3446 case KVM_GET_VCPU_EVENTS: { 3447 struct kvm_vcpu_events events; 3448 3449 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3450 3451 r = -EFAULT; 3452 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3453 break; 3454 r = 0; 3455 break; 3456 } 3457 case KVM_SET_VCPU_EVENTS: { 3458 struct kvm_vcpu_events events; 3459 3460 r = -EFAULT; 3461 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3462 break; 3463 3464 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3465 break; 3466 } 3467 case KVM_GET_DEBUGREGS: { 3468 struct kvm_debugregs dbgregs; 3469 3470 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3471 3472 r = -EFAULT; 3473 if (copy_to_user(argp, &dbgregs, 3474 sizeof(struct kvm_debugregs))) 3475 break; 3476 r = 0; 3477 break; 3478 } 3479 case KVM_SET_DEBUGREGS: { 3480 struct kvm_debugregs dbgregs; 3481 3482 r = -EFAULT; 3483 if (copy_from_user(&dbgregs, argp, 3484 sizeof(struct kvm_debugregs))) 3485 break; 3486 3487 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3488 break; 3489 } 3490 case KVM_GET_XSAVE: { 3491 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3492 r = -ENOMEM; 3493 if (!u.xsave) 3494 break; 3495 3496 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3497 3498 r = -EFAULT; 3499 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3500 break; 3501 r = 0; 3502 break; 3503 } 3504 case KVM_SET_XSAVE: { 3505 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3506 if (IS_ERR(u.xsave)) 3507 return PTR_ERR(u.xsave); 3508 3509 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3510 break; 3511 } 3512 case KVM_GET_XCRS: { 3513 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3514 r = -ENOMEM; 3515 if (!u.xcrs) 3516 break; 3517 3518 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3519 3520 r = -EFAULT; 3521 if (copy_to_user(argp, u.xcrs, 3522 sizeof(struct kvm_xcrs))) 3523 break; 3524 r = 0; 3525 break; 3526 } 3527 case KVM_SET_XCRS: { 3528 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3529 if (IS_ERR(u.xcrs)) 3530 return PTR_ERR(u.xcrs); 3531 3532 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3533 break; 3534 } 3535 case KVM_SET_TSC_KHZ: { 3536 u32 user_tsc_khz; 3537 3538 r = -EINVAL; 3539 user_tsc_khz = (u32)arg; 3540 3541 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3542 goto out; 3543 3544 if (user_tsc_khz == 0) 3545 user_tsc_khz = tsc_khz; 3546 3547 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 3548 r = 0; 3549 3550 goto out; 3551 } 3552 case KVM_GET_TSC_KHZ: { 3553 r = vcpu->arch.virtual_tsc_khz; 3554 goto out; 3555 } 3556 case KVM_KVMCLOCK_CTRL: { 3557 r = kvm_set_guest_paused(vcpu); 3558 goto out; 3559 } 3560 case KVM_ENABLE_CAP: { 3561 struct kvm_enable_cap cap; 3562 3563 r = -EFAULT; 3564 if (copy_from_user(&cap, argp, sizeof(cap))) 3565 goto out; 3566 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 3567 break; 3568 } 3569 default: 3570 r = -EINVAL; 3571 } 3572 out: 3573 kfree(u.buffer); 3574 return r; 3575 } 3576 3577 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3578 { 3579 return VM_FAULT_SIGBUS; 3580 } 3581 3582 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3583 { 3584 int ret; 3585 3586 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3587 return -EINVAL; 3588 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3589 return ret; 3590 } 3591 3592 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3593 u64 ident_addr) 3594 { 3595 kvm->arch.ept_identity_map_addr = ident_addr; 3596 return 0; 3597 } 3598 3599 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3600 u32 kvm_nr_mmu_pages) 3601 { 3602 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3603 return -EINVAL; 3604 3605 mutex_lock(&kvm->slots_lock); 3606 3607 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3608 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3609 3610 mutex_unlock(&kvm->slots_lock); 3611 return 0; 3612 } 3613 3614 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3615 { 3616 return kvm->arch.n_max_mmu_pages; 3617 } 3618 3619 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3620 { 3621 int r; 3622 3623 r = 0; 3624 switch (chip->chip_id) { 3625 case KVM_IRQCHIP_PIC_MASTER: 3626 memcpy(&chip->chip.pic, 3627 &pic_irqchip(kvm)->pics[0], 3628 sizeof(struct kvm_pic_state)); 3629 break; 3630 case KVM_IRQCHIP_PIC_SLAVE: 3631 memcpy(&chip->chip.pic, 3632 &pic_irqchip(kvm)->pics[1], 3633 sizeof(struct kvm_pic_state)); 3634 break; 3635 case KVM_IRQCHIP_IOAPIC: 3636 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3637 break; 3638 default: 3639 r = -EINVAL; 3640 break; 3641 } 3642 return r; 3643 } 3644 3645 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3646 { 3647 int r; 3648 3649 r = 0; 3650 switch (chip->chip_id) { 3651 case KVM_IRQCHIP_PIC_MASTER: 3652 spin_lock(&pic_irqchip(kvm)->lock); 3653 memcpy(&pic_irqchip(kvm)->pics[0], 3654 &chip->chip.pic, 3655 sizeof(struct kvm_pic_state)); 3656 spin_unlock(&pic_irqchip(kvm)->lock); 3657 break; 3658 case KVM_IRQCHIP_PIC_SLAVE: 3659 spin_lock(&pic_irqchip(kvm)->lock); 3660 memcpy(&pic_irqchip(kvm)->pics[1], 3661 &chip->chip.pic, 3662 sizeof(struct kvm_pic_state)); 3663 spin_unlock(&pic_irqchip(kvm)->lock); 3664 break; 3665 case KVM_IRQCHIP_IOAPIC: 3666 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3667 break; 3668 default: 3669 r = -EINVAL; 3670 break; 3671 } 3672 kvm_pic_update_irq(pic_irqchip(kvm)); 3673 return r; 3674 } 3675 3676 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3677 { 3678 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 3679 3680 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 3681 3682 mutex_lock(&kps->lock); 3683 memcpy(ps, &kps->channels, sizeof(*ps)); 3684 mutex_unlock(&kps->lock); 3685 return 0; 3686 } 3687 3688 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3689 { 3690 int i; 3691 struct kvm_pit *pit = kvm->arch.vpit; 3692 3693 mutex_lock(&pit->pit_state.lock); 3694 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 3695 for (i = 0; i < 3; i++) 3696 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 3697 mutex_unlock(&pit->pit_state.lock); 3698 return 0; 3699 } 3700 3701 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3702 { 3703 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3704 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3705 sizeof(ps->channels)); 3706 ps->flags = kvm->arch.vpit->pit_state.flags; 3707 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3708 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3709 return 0; 3710 } 3711 3712 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3713 { 3714 int start = 0; 3715 int i; 3716 u32 prev_legacy, cur_legacy; 3717 struct kvm_pit *pit = kvm->arch.vpit; 3718 3719 mutex_lock(&pit->pit_state.lock); 3720 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3721 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3722 if (!prev_legacy && cur_legacy) 3723 start = 1; 3724 memcpy(&pit->pit_state.channels, &ps->channels, 3725 sizeof(pit->pit_state.channels)); 3726 pit->pit_state.flags = ps->flags; 3727 for (i = 0; i < 3; i++) 3728 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 3729 start && i == 0); 3730 mutex_unlock(&pit->pit_state.lock); 3731 return 0; 3732 } 3733 3734 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3735 struct kvm_reinject_control *control) 3736 { 3737 struct kvm_pit *pit = kvm->arch.vpit; 3738 3739 if (!pit) 3740 return -ENXIO; 3741 3742 /* pit->pit_state.lock was overloaded to prevent userspace from getting 3743 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 3744 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 3745 */ 3746 mutex_lock(&pit->pit_state.lock); 3747 kvm_pit_set_reinject(pit, control->pit_reinject); 3748 mutex_unlock(&pit->pit_state.lock); 3749 3750 return 0; 3751 } 3752 3753 /** 3754 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3755 * @kvm: kvm instance 3756 * @log: slot id and address to which we copy the log 3757 * 3758 * Steps 1-4 below provide general overview of dirty page logging. See 3759 * kvm_get_dirty_log_protect() function description for additional details. 3760 * 3761 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 3762 * always flush the TLB (step 4) even if previous step failed and the dirty 3763 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 3764 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 3765 * writes will be marked dirty for next log read. 3766 * 3767 * 1. Take a snapshot of the bit and clear it if needed. 3768 * 2. Write protect the corresponding page. 3769 * 3. Copy the snapshot to the userspace. 3770 * 4. Flush TLB's if needed. 3771 */ 3772 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3773 { 3774 bool is_dirty = false; 3775 int r; 3776 3777 mutex_lock(&kvm->slots_lock); 3778 3779 /* 3780 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 3781 */ 3782 if (kvm_x86_ops->flush_log_dirty) 3783 kvm_x86_ops->flush_log_dirty(kvm); 3784 3785 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); 3786 3787 /* 3788 * All the TLBs can be flushed out of mmu lock, see the comments in 3789 * kvm_mmu_slot_remove_write_access(). 3790 */ 3791 lockdep_assert_held(&kvm->slots_lock); 3792 if (is_dirty) 3793 kvm_flush_remote_tlbs(kvm); 3794 3795 mutex_unlock(&kvm->slots_lock); 3796 return r; 3797 } 3798 3799 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3800 bool line_status) 3801 { 3802 if (!irqchip_in_kernel(kvm)) 3803 return -ENXIO; 3804 3805 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3806 irq_event->irq, irq_event->level, 3807 line_status); 3808 return 0; 3809 } 3810 3811 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3812 struct kvm_enable_cap *cap) 3813 { 3814 int r; 3815 3816 if (cap->flags) 3817 return -EINVAL; 3818 3819 switch (cap->cap) { 3820 case KVM_CAP_DISABLE_QUIRKS: 3821 kvm->arch.disabled_quirks = cap->args[0]; 3822 r = 0; 3823 break; 3824 case KVM_CAP_SPLIT_IRQCHIP: { 3825 mutex_lock(&kvm->lock); 3826 r = -EINVAL; 3827 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 3828 goto split_irqchip_unlock; 3829 r = -EEXIST; 3830 if (irqchip_in_kernel(kvm)) 3831 goto split_irqchip_unlock; 3832 if (kvm->created_vcpus) 3833 goto split_irqchip_unlock; 3834 r = kvm_setup_empty_irq_routing(kvm); 3835 if (r) 3836 goto split_irqchip_unlock; 3837 /* Pairs with irqchip_in_kernel. */ 3838 smp_wmb(); 3839 kvm->arch.irqchip_split = true; 3840 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 3841 r = 0; 3842 split_irqchip_unlock: 3843 mutex_unlock(&kvm->lock); 3844 break; 3845 } 3846 case KVM_CAP_X2APIC_API: 3847 r = -EINVAL; 3848 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 3849 break; 3850 3851 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 3852 kvm->arch.x2apic_format = true; 3853 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 3854 kvm->arch.x2apic_broadcast_quirk_disabled = true; 3855 3856 r = 0; 3857 break; 3858 default: 3859 r = -EINVAL; 3860 break; 3861 } 3862 return r; 3863 } 3864 3865 long kvm_arch_vm_ioctl(struct file *filp, 3866 unsigned int ioctl, unsigned long arg) 3867 { 3868 struct kvm *kvm = filp->private_data; 3869 void __user *argp = (void __user *)arg; 3870 int r = -ENOTTY; 3871 /* 3872 * This union makes it completely explicit to gcc-3.x 3873 * that these two variables' stack usage should be 3874 * combined, not added together. 3875 */ 3876 union { 3877 struct kvm_pit_state ps; 3878 struct kvm_pit_state2 ps2; 3879 struct kvm_pit_config pit_config; 3880 } u; 3881 3882 switch (ioctl) { 3883 case KVM_SET_TSS_ADDR: 3884 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3885 break; 3886 case KVM_SET_IDENTITY_MAP_ADDR: { 3887 u64 ident_addr; 3888 3889 r = -EFAULT; 3890 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3891 goto out; 3892 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3893 break; 3894 } 3895 case KVM_SET_NR_MMU_PAGES: 3896 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3897 break; 3898 case KVM_GET_NR_MMU_PAGES: 3899 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3900 break; 3901 case KVM_CREATE_IRQCHIP: { 3902 struct kvm_pic *vpic; 3903 3904 mutex_lock(&kvm->lock); 3905 r = -EEXIST; 3906 if (kvm->arch.vpic) 3907 goto create_irqchip_unlock; 3908 r = -EINVAL; 3909 if (kvm->created_vcpus) 3910 goto create_irqchip_unlock; 3911 r = -ENOMEM; 3912 vpic = kvm_create_pic(kvm); 3913 if (vpic) { 3914 r = kvm_ioapic_init(kvm); 3915 if (r) { 3916 mutex_lock(&kvm->slots_lock); 3917 kvm_destroy_pic(vpic); 3918 mutex_unlock(&kvm->slots_lock); 3919 goto create_irqchip_unlock; 3920 } 3921 } else 3922 goto create_irqchip_unlock; 3923 r = kvm_setup_default_irq_routing(kvm); 3924 if (r) { 3925 mutex_lock(&kvm->slots_lock); 3926 mutex_lock(&kvm->irq_lock); 3927 kvm_ioapic_destroy(kvm); 3928 kvm_destroy_pic(vpic); 3929 mutex_unlock(&kvm->irq_lock); 3930 mutex_unlock(&kvm->slots_lock); 3931 goto create_irqchip_unlock; 3932 } 3933 /* Write kvm->irq_routing before kvm->arch.vpic. */ 3934 smp_wmb(); 3935 kvm->arch.vpic = vpic; 3936 create_irqchip_unlock: 3937 mutex_unlock(&kvm->lock); 3938 break; 3939 } 3940 case KVM_CREATE_PIT: 3941 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3942 goto create_pit; 3943 case KVM_CREATE_PIT2: 3944 r = -EFAULT; 3945 if (copy_from_user(&u.pit_config, argp, 3946 sizeof(struct kvm_pit_config))) 3947 goto out; 3948 create_pit: 3949 mutex_lock(&kvm->lock); 3950 r = -EEXIST; 3951 if (kvm->arch.vpit) 3952 goto create_pit_unlock; 3953 r = -ENOMEM; 3954 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3955 if (kvm->arch.vpit) 3956 r = 0; 3957 create_pit_unlock: 3958 mutex_unlock(&kvm->lock); 3959 break; 3960 case KVM_GET_IRQCHIP: { 3961 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3962 struct kvm_irqchip *chip; 3963 3964 chip = memdup_user(argp, sizeof(*chip)); 3965 if (IS_ERR(chip)) { 3966 r = PTR_ERR(chip); 3967 goto out; 3968 } 3969 3970 r = -ENXIO; 3971 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm)) 3972 goto get_irqchip_out; 3973 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3974 if (r) 3975 goto get_irqchip_out; 3976 r = -EFAULT; 3977 if (copy_to_user(argp, chip, sizeof *chip)) 3978 goto get_irqchip_out; 3979 r = 0; 3980 get_irqchip_out: 3981 kfree(chip); 3982 break; 3983 } 3984 case KVM_SET_IRQCHIP: { 3985 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3986 struct kvm_irqchip *chip; 3987 3988 chip = memdup_user(argp, sizeof(*chip)); 3989 if (IS_ERR(chip)) { 3990 r = PTR_ERR(chip); 3991 goto out; 3992 } 3993 3994 r = -ENXIO; 3995 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm)) 3996 goto set_irqchip_out; 3997 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3998 if (r) 3999 goto set_irqchip_out; 4000 r = 0; 4001 set_irqchip_out: 4002 kfree(chip); 4003 break; 4004 } 4005 case KVM_GET_PIT: { 4006 r = -EFAULT; 4007 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 4008 goto out; 4009 r = -ENXIO; 4010 if (!kvm->arch.vpit) 4011 goto out; 4012 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 4013 if (r) 4014 goto out; 4015 r = -EFAULT; 4016 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 4017 goto out; 4018 r = 0; 4019 break; 4020 } 4021 case KVM_SET_PIT: { 4022 r = -EFAULT; 4023 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 4024 goto out; 4025 r = -ENXIO; 4026 if (!kvm->arch.vpit) 4027 goto out; 4028 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 4029 break; 4030 } 4031 case KVM_GET_PIT2: { 4032 r = -ENXIO; 4033 if (!kvm->arch.vpit) 4034 goto out; 4035 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 4036 if (r) 4037 goto out; 4038 r = -EFAULT; 4039 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 4040 goto out; 4041 r = 0; 4042 break; 4043 } 4044 case KVM_SET_PIT2: { 4045 r = -EFAULT; 4046 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 4047 goto out; 4048 r = -ENXIO; 4049 if (!kvm->arch.vpit) 4050 goto out; 4051 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 4052 break; 4053 } 4054 case KVM_REINJECT_CONTROL: { 4055 struct kvm_reinject_control control; 4056 r = -EFAULT; 4057 if (copy_from_user(&control, argp, sizeof(control))) 4058 goto out; 4059 r = kvm_vm_ioctl_reinject(kvm, &control); 4060 break; 4061 } 4062 case KVM_SET_BOOT_CPU_ID: 4063 r = 0; 4064 mutex_lock(&kvm->lock); 4065 if (kvm->created_vcpus) 4066 r = -EBUSY; 4067 else 4068 kvm->arch.bsp_vcpu_id = arg; 4069 mutex_unlock(&kvm->lock); 4070 break; 4071 case KVM_XEN_HVM_CONFIG: { 4072 r = -EFAULT; 4073 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 4074 sizeof(struct kvm_xen_hvm_config))) 4075 goto out; 4076 r = -EINVAL; 4077 if (kvm->arch.xen_hvm_config.flags) 4078 goto out; 4079 r = 0; 4080 break; 4081 } 4082 case KVM_SET_CLOCK: { 4083 struct kvm_clock_data user_ns; 4084 u64 now_ns; 4085 4086 r = -EFAULT; 4087 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 4088 goto out; 4089 4090 r = -EINVAL; 4091 if (user_ns.flags) 4092 goto out; 4093 4094 r = 0; 4095 local_irq_disable(); 4096 now_ns = __get_kvmclock_ns(kvm); 4097 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 4098 local_irq_enable(); 4099 kvm_gen_update_masterclock(kvm); 4100 break; 4101 } 4102 case KVM_GET_CLOCK: { 4103 struct kvm_clock_data user_ns; 4104 u64 now_ns; 4105 4106 now_ns = get_kvmclock_ns(kvm); 4107 user_ns.clock = now_ns; 4108 user_ns.flags = 0; 4109 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 4110 4111 r = -EFAULT; 4112 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 4113 goto out; 4114 r = 0; 4115 break; 4116 } 4117 case KVM_ENABLE_CAP: { 4118 struct kvm_enable_cap cap; 4119 4120 r = -EFAULT; 4121 if (copy_from_user(&cap, argp, sizeof(cap))) 4122 goto out; 4123 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 4124 break; 4125 } 4126 default: 4127 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 4128 } 4129 out: 4130 return r; 4131 } 4132 4133 static void kvm_init_msr_list(void) 4134 { 4135 u32 dummy[2]; 4136 unsigned i, j; 4137 4138 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { 4139 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 4140 continue; 4141 4142 /* 4143 * Even MSRs that are valid in the host may not be exposed 4144 * to the guests in some cases. 4145 */ 4146 switch (msrs_to_save[i]) { 4147 case MSR_IA32_BNDCFGS: 4148 if (!kvm_x86_ops->mpx_supported()) 4149 continue; 4150 break; 4151 case MSR_TSC_AUX: 4152 if (!kvm_x86_ops->rdtscp_supported()) 4153 continue; 4154 break; 4155 default: 4156 break; 4157 } 4158 4159 if (j < i) 4160 msrs_to_save[j] = msrs_to_save[i]; 4161 j++; 4162 } 4163 num_msrs_to_save = j; 4164 4165 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { 4166 switch (emulated_msrs[i]) { 4167 case MSR_IA32_SMBASE: 4168 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase()) 4169 continue; 4170 break; 4171 default: 4172 break; 4173 } 4174 4175 if (j < i) 4176 emulated_msrs[j] = emulated_msrs[i]; 4177 j++; 4178 } 4179 num_emulated_msrs = j; 4180 } 4181 4182 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 4183 const void *v) 4184 { 4185 int handled = 0; 4186 int n; 4187 4188 do { 4189 n = min(len, 8); 4190 if (!(lapic_in_kernel(vcpu) && 4191 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 4192 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 4193 break; 4194 handled += n; 4195 addr += n; 4196 len -= n; 4197 v += n; 4198 } while (len); 4199 4200 return handled; 4201 } 4202 4203 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 4204 { 4205 int handled = 0; 4206 int n; 4207 4208 do { 4209 n = min(len, 8); 4210 if (!(lapic_in_kernel(vcpu) && 4211 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 4212 addr, n, v)) 4213 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 4214 break; 4215 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 4216 handled += n; 4217 addr += n; 4218 len -= n; 4219 v += n; 4220 } while (len); 4221 4222 return handled; 4223 } 4224 4225 static void kvm_set_segment(struct kvm_vcpu *vcpu, 4226 struct kvm_segment *var, int seg) 4227 { 4228 kvm_x86_ops->set_segment(vcpu, var, seg); 4229 } 4230 4231 void kvm_get_segment(struct kvm_vcpu *vcpu, 4232 struct kvm_segment *var, int seg) 4233 { 4234 kvm_x86_ops->get_segment(vcpu, var, seg); 4235 } 4236 4237 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 4238 struct x86_exception *exception) 4239 { 4240 gpa_t t_gpa; 4241 4242 BUG_ON(!mmu_is_nested(vcpu)); 4243 4244 /* NPT walks are always user-walks */ 4245 access |= PFERR_USER_MASK; 4246 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); 4247 4248 return t_gpa; 4249 } 4250 4251 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 4252 struct x86_exception *exception) 4253 { 4254 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4255 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4256 } 4257 4258 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 4259 struct x86_exception *exception) 4260 { 4261 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4262 access |= PFERR_FETCH_MASK; 4263 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4264 } 4265 4266 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 4267 struct x86_exception *exception) 4268 { 4269 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4270 access |= PFERR_WRITE_MASK; 4271 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4272 } 4273 4274 /* uses this to access any guest's mapped memory without checking CPL */ 4275 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 4276 struct x86_exception *exception) 4277 { 4278 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 4279 } 4280 4281 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4282 struct kvm_vcpu *vcpu, u32 access, 4283 struct x86_exception *exception) 4284 { 4285 void *data = val; 4286 int r = X86EMUL_CONTINUE; 4287 4288 while (bytes) { 4289 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 4290 exception); 4291 unsigned offset = addr & (PAGE_SIZE-1); 4292 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4293 int ret; 4294 4295 if (gpa == UNMAPPED_GVA) 4296 return X86EMUL_PROPAGATE_FAULT; 4297 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 4298 offset, toread); 4299 if (ret < 0) { 4300 r = X86EMUL_IO_NEEDED; 4301 goto out; 4302 } 4303 4304 bytes -= toread; 4305 data += toread; 4306 addr += toread; 4307 } 4308 out: 4309 return r; 4310 } 4311 4312 /* used for instruction fetching */ 4313 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4314 gva_t addr, void *val, unsigned int bytes, 4315 struct x86_exception *exception) 4316 { 4317 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4318 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4319 unsigned offset; 4320 int ret; 4321 4322 /* Inline kvm_read_guest_virt_helper for speed. */ 4323 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 4324 exception); 4325 if (unlikely(gpa == UNMAPPED_GVA)) 4326 return X86EMUL_PROPAGATE_FAULT; 4327 4328 offset = addr & (PAGE_SIZE-1); 4329 if (WARN_ON(offset + bytes > PAGE_SIZE)) 4330 bytes = (unsigned)PAGE_SIZE - offset; 4331 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 4332 offset, bytes); 4333 if (unlikely(ret < 0)) 4334 return X86EMUL_IO_NEEDED; 4335 4336 return X86EMUL_CONTINUE; 4337 } 4338 4339 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4340 gva_t addr, void *val, unsigned int bytes, 4341 struct x86_exception *exception) 4342 { 4343 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4344 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4345 4346 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4347 exception); 4348 } 4349 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4350 4351 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4352 gva_t addr, void *val, unsigned int bytes, 4353 struct x86_exception *exception) 4354 { 4355 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4356 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4357 } 4358 4359 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 4360 unsigned long addr, void *val, unsigned int bytes) 4361 { 4362 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4363 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 4364 4365 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 4366 } 4367 4368 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4369 gva_t addr, void *val, 4370 unsigned int bytes, 4371 struct x86_exception *exception) 4372 { 4373 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4374 void *data = val; 4375 int r = X86EMUL_CONTINUE; 4376 4377 while (bytes) { 4378 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4379 PFERR_WRITE_MASK, 4380 exception); 4381 unsigned offset = addr & (PAGE_SIZE-1); 4382 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4383 int ret; 4384 4385 if (gpa == UNMAPPED_GVA) 4386 return X86EMUL_PROPAGATE_FAULT; 4387 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 4388 if (ret < 0) { 4389 r = X86EMUL_IO_NEEDED; 4390 goto out; 4391 } 4392 4393 bytes -= towrite; 4394 data += towrite; 4395 addr += towrite; 4396 } 4397 out: 4398 return r; 4399 } 4400 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4401 4402 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4403 gpa_t *gpa, struct x86_exception *exception, 4404 bool write) 4405 { 4406 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4407 | (write ? PFERR_WRITE_MASK : 0); 4408 4409 /* 4410 * currently PKRU is only applied to ept enabled guest so 4411 * there is no pkey in EPT page table for L1 guest or EPT 4412 * shadow page table for L2 guest. 4413 */ 4414 if (vcpu_match_mmio_gva(vcpu, gva) 4415 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 4416 vcpu->arch.access, 0, access)) { 4417 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4418 (gva & (PAGE_SIZE - 1)); 4419 trace_vcpu_match_mmio(gva, *gpa, write, false); 4420 return 1; 4421 } 4422 4423 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4424 4425 if (*gpa == UNMAPPED_GVA) 4426 return -1; 4427 4428 /* For APIC access vmexit */ 4429 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4430 return 1; 4431 4432 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 4433 trace_vcpu_match_mmio(gva, *gpa, write, true); 4434 return 1; 4435 } 4436 4437 return 0; 4438 } 4439 4440 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4441 const void *val, int bytes) 4442 { 4443 int ret; 4444 4445 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 4446 if (ret < 0) 4447 return 0; 4448 kvm_page_track_write(vcpu, gpa, val, bytes); 4449 return 1; 4450 } 4451 4452 struct read_write_emulator_ops { 4453 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4454 int bytes); 4455 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4456 void *val, int bytes); 4457 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4458 int bytes, void *val); 4459 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4460 void *val, int bytes); 4461 bool write; 4462 }; 4463 4464 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4465 { 4466 if (vcpu->mmio_read_completed) { 4467 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4468 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4469 vcpu->mmio_read_completed = 0; 4470 return 1; 4471 } 4472 4473 return 0; 4474 } 4475 4476 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4477 void *val, int bytes) 4478 { 4479 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 4480 } 4481 4482 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4483 void *val, int bytes) 4484 { 4485 return emulator_write_phys(vcpu, gpa, val, bytes); 4486 } 4487 4488 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4489 { 4490 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4491 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4492 } 4493 4494 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4495 void *val, int bytes) 4496 { 4497 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4498 return X86EMUL_IO_NEEDED; 4499 } 4500 4501 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4502 void *val, int bytes) 4503 { 4504 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4505 4506 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4507 return X86EMUL_CONTINUE; 4508 } 4509 4510 static const struct read_write_emulator_ops read_emultor = { 4511 .read_write_prepare = read_prepare, 4512 .read_write_emulate = read_emulate, 4513 .read_write_mmio = vcpu_mmio_read, 4514 .read_write_exit_mmio = read_exit_mmio, 4515 }; 4516 4517 static const struct read_write_emulator_ops write_emultor = { 4518 .read_write_emulate = write_emulate, 4519 .read_write_mmio = write_mmio, 4520 .read_write_exit_mmio = write_exit_mmio, 4521 .write = true, 4522 }; 4523 4524 static int emulator_read_write_onepage(unsigned long addr, void *val, 4525 unsigned int bytes, 4526 struct x86_exception *exception, 4527 struct kvm_vcpu *vcpu, 4528 const struct read_write_emulator_ops *ops) 4529 { 4530 gpa_t gpa; 4531 int handled, ret; 4532 bool write = ops->write; 4533 struct kvm_mmio_fragment *frag; 4534 4535 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4536 4537 if (ret < 0) 4538 return X86EMUL_PROPAGATE_FAULT; 4539 4540 /* For APIC access vmexit */ 4541 if (ret) 4542 goto mmio; 4543 4544 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4545 return X86EMUL_CONTINUE; 4546 4547 mmio: 4548 /* 4549 * Is this MMIO handled locally? 4550 */ 4551 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4552 if (handled == bytes) 4553 return X86EMUL_CONTINUE; 4554 4555 gpa += handled; 4556 bytes -= handled; 4557 val += handled; 4558 4559 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4560 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4561 frag->gpa = gpa; 4562 frag->data = val; 4563 frag->len = bytes; 4564 return X86EMUL_CONTINUE; 4565 } 4566 4567 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 4568 unsigned long addr, 4569 void *val, unsigned int bytes, 4570 struct x86_exception *exception, 4571 const struct read_write_emulator_ops *ops) 4572 { 4573 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4574 gpa_t gpa; 4575 int rc; 4576 4577 if (ops->read_write_prepare && 4578 ops->read_write_prepare(vcpu, val, bytes)) 4579 return X86EMUL_CONTINUE; 4580 4581 vcpu->mmio_nr_fragments = 0; 4582 4583 /* Crossing a page boundary? */ 4584 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4585 int now; 4586 4587 now = -addr & ~PAGE_MASK; 4588 rc = emulator_read_write_onepage(addr, val, now, exception, 4589 vcpu, ops); 4590 4591 if (rc != X86EMUL_CONTINUE) 4592 return rc; 4593 addr += now; 4594 if (ctxt->mode != X86EMUL_MODE_PROT64) 4595 addr = (u32)addr; 4596 val += now; 4597 bytes -= now; 4598 } 4599 4600 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4601 vcpu, ops); 4602 if (rc != X86EMUL_CONTINUE) 4603 return rc; 4604 4605 if (!vcpu->mmio_nr_fragments) 4606 return rc; 4607 4608 gpa = vcpu->mmio_fragments[0].gpa; 4609 4610 vcpu->mmio_needed = 1; 4611 vcpu->mmio_cur_fragment = 0; 4612 4613 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4614 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4615 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4616 vcpu->run->mmio.phys_addr = gpa; 4617 4618 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4619 } 4620 4621 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4622 unsigned long addr, 4623 void *val, 4624 unsigned int bytes, 4625 struct x86_exception *exception) 4626 { 4627 return emulator_read_write(ctxt, addr, val, bytes, 4628 exception, &read_emultor); 4629 } 4630 4631 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4632 unsigned long addr, 4633 const void *val, 4634 unsigned int bytes, 4635 struct x86_exception *exception) 4636 { 4637 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4638 exception, &write_emultor); 4639 } 4640 4641 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4642 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4643 4644 #ifdef CONFIG_X86_64 4645 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4646 #else 4647 # define CMPXCHG64(ptr, old, new) \ 4648 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4649 #endif 4650 4651 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4652 unsigned long addr, 4653 const void *old, 4654 const void *new, 4655 unsigned int bytes, 4656 struct x86_exception *exception) 4657 { 4658 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4659 gpa_t gpa; 4660 struct page *page; 4661 char *kaddr; 4662 bool exchanged; 4663 4664 /* guests cmpxchg8b have to be emulated atomically */ 4665 if (bytes > 8 || (bytes & (bytes - 1))) 4666 goto emul_write; 4667 4668 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4669 4670 if (gpa == UNMAPPED_GVA || 4671 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4672 goto emul_write; 4673 4674 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4675 goto emul_write; 4676 4677 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); 4678 if (is_error_page(page)) 4679 goto emul_write; 4680 4681 kaddr = kmap_atomic(page); 4682 kaddr += offset_in_page(gpa); 4683 switch (bytes) { 4684 case 1: 4685 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4686 break; 4687 case 2: 4688 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4689 break; 4690 case 4: 4691 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4692 break; 4693 case 8: 4694 exchanged = CMPXCHG64(kaddr, old, new); 4695 break; 4696 default: 4697 BUG(); 4698 } 4699 kunmap_atomic(kaddr); 4700 kvm_release_page_dirty(page); 4701 4702 if (!exchanged) 4703 return X86EMUL_CMPXCHG_FAILED; 4704 4705 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 4706 kvm_page_track_write(vcpu, gpa, new, bytes); 4707 4708 return X86EMUL_CONTINUE; 4709 4710 emul_write: 4711 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4712 4713 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4714 } 4715 4716 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4717 { 4718 /* TODO: String I/O for in kernel device */ 4719 int r; 4720 4721 if (vcpu->arch.pio.in) 4722 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 4723 vcpu->arch.pio.size, pd); 4724 else 4725 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 4726 vcpu->arch.pio.port, vcpu->arch.pio.size, 4727 pd); 4728 return r; 4729 } 4730 4731 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4732 unsigned short port, void *val, 4733 unsigned int count, bool in) 4734 { 4735 vcpu->arch.pio.port = port; 4736 vcpu->arch.pio.in = in; 4737 vcpu->arch.pio.count = count; 4738 vcpu->arch.pio.size = size; 4739 4740 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4741 vcpu->arch.pio.count = 0; 4742 return 1; 4743 } 4744 4745 vcpu->run->exit_reason = KVM_EXIT_IO; 4746 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4747 vcpu->run->io.size = size; 4748 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4749 vcpu->run->io.count = count; 4750 vcpu->run->io.port = port; 4751 4752 return 0; 4753 } 4754 4755 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4756 int size, unsigned short port, void *val, 4757 unsigned int count) 4758 { 4759 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4760 int ret; 4761 4762 if (vcpu->arch.pio.count) 4763 goto data_avail; 4764 4765 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4766 if (ret) { 4767 data_avail: 4768 memcpy(val, vcpu->arch.pio_data, size * count); 4769 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 4770 vcpu->arch.pio.count = 0; 4771 return 1; 4772 } 4773 4774 return 0; 4775 } 4776 4777 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4778 int size, unsigned short port, 4779 const void *val, unsigned int count) 4780 { 4781 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4782 4783 memcpy(vcpu->arch.pio_data, val, size * count); 4784 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 4785 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4786 } 4787 4788 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4789 { 4790 return kvm_x86_ops->get_segment_base(vcpu, seg); 4791 } 4792 4793 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4794 { 4795 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4796 } 4797 4798 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 4799 { 4800 if (!need_emulate_wbinvd(vcpu)) 4801 return X86EMUL_CONTINUE; 4802 4803 if (kvm_x86_ops->has_wbinvd_exit()) { 4804 int cpu = get_cpu(); 4805 4806 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4807 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4808 wbinvd_ipi, NULL, 1); 4809 put_cpu(); 4810 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4811 } else 4812 wbinvd(); 4813 return X86EMUL_CONTINUE; 4814 } 4815 4816 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4817 { 4818 kvm_x86_ops->skip_emulated_instruction(vcpu); 4819 return kvm_emulate_wbinvd_noskip(vcpu); 4820 } 4821 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4822 4823 4824 4825 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4826 { 4827 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 4828 } 4829 4830 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 4831 unsigned long *dest) 4832 { 4833 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4834 } 4835 4836 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 4837 unsigned long value) 4838 { 4839 4840 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4841 } 4842 4843 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4844 { 4845 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4846 } 4847 4848 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4849 { 4850 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4851 unsigned long value; 4852 4853 switch (cr) { 4854 case 0: 4855 value = kvm_read_cr0(vcpu); 4856 break; 4857 case 2: 4858 value = vcpu->arch.cr2; 4859 break; 4860 case 3: 4861 value = kvm_read_cr3(vcpu); 4862 break; 4863 case 4: 4864 value = kvm_read_cr4(vcpu); 4865 break; 4866 case 8: 4867 value = kvm_get_cr8(vcpu); 4868 break; 4869 default: 4870 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4871 return 0; 4872 } 4873 4874 return value; 4875 } 4876 4877 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4878 { 4879 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4880 int res = 0; 4881 4882 switch (cr) { 4883 case 0: 4884 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4885 break; 4886 case 2: 4887 vcpu->arch.cr2 = val; 4888 break; 4889 case 3: 4890 res = kvm_set_cr3(vcpu, val); 4891 break; 4892 case 4: 4893 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4894 break; 4895 case 8: 4896 res = kvm_set_cr8(vcpu, val); 4897 break; 4898 default: 4899 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4900 res = -1; 4901 } 4902 4903 return res; 4904 } 4905 4906 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4907 { 4908 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4909 } 4910 4911 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4912 { 4913 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4914 } 4915 4916 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4917 { 4918 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4919 } 4920 4921 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4922 { 4923 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4924 } 4925 4926 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4927 { 4928 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4929 } 4930 4931 static unsigned long emulator_get_cached_segment_base( 4932 struct x86_emulate_ctxt *ctxt, int seg) 4933 { 4934 return get_segment_base(emul_to_vcpu(ctxt), seg); 4935 } 4936 4937 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4938 struct desc_struct *desc, u32 *base3, 4939 int seg) 4940 { 4941 struct kvm_segment var; 4942 4943 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4944 *selector = var.selector; 4945 4946 if (var.unusable) { 4947 memset(desc, 0, sizeof(*desc)); 4948 return false; 4949 } 4950 4951 if (var.g) 4952 var.limit >>= 12; 4953 set_desc_limit(desc, var.limit); 4954 set_desc_base(desc, (unsigned long)var.base); 4955 #ifdef CONFIG_X86_64 4956 if (base3) 4957 *base3 = var.base >> 32; 4958 #endif 4959 desc->type = var.type; 4960 desc->s = var.s; 4961 desc->dpl = var.dpl; 4962 desc->p = var.present; 4963 desc->avl = var.avl; 4964 desc->l = var.l; 4965 desc->d = var.db; 4966 desc->g = var.g; 4967 4968 return true; 4969 } 4970 4971 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4972 struct desc_struct *desc, u32 base3, 4973 int seg) 4974 { 4975 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4976 struct kvm_segment var; 4977 4978 var.selector = selector; 4979 var.base = get_desc_base(desc); 4980 #ifdef CONFIG_X86_64 4981 var.base |= ((u64)base3) << 32; 4982 #endif 4983 var.limit = get_desc_limit(desc); 4984 if (desc->g) 4985 var.limit = (var.limit << 12) | 0xfff; 4986 var.type = desc->type; 4987 var.dpl = desc->dpl; 4988 var.db = desc->d; 4989 var.s = desc->s; 4990 var.l = desc->l; 4991 var.g = desc->g; 4992 var.avl = desc->avl; 4993 var.present = desc->p; 4994 var.unusable = !var.present; 4995 var.padding = 0; 4996 4997 kvm_set_segment(vcpu, &var, seg); 4998 return; 4999 } 5000 5001 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 5002 u32 msr_index, u64 *pdata) 5003 { 5004 struct msr_data msr; 5005 int r; 5006 5007 msr.index = msr_index; 5008 msr.host_initiated = false; 5009 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); 5010 if (r) 5011 return r; 5012 5013 *pdata = msr.data; 5014 return 0; 5015 } 5016 5017 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 5018 u32 msr_index, u64 data) 5019 { 5020 struct msr_data msr; 5021 5022 msr.data = data; 5023 msr.index = msr_index; 5024 msr.host_initiated = false; 5025 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 5026 } 5027 5028 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 5029 { 5030 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5031 5032 return vcpu->arch.smbase; 5033 } 5034 5035 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 5036 { 5037 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5038 5039 vcpu->arch.smbase = smbase; 5040 } 5041 5042 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 5043 u32 pmc) 5044 { 5045 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); 5046 } 5047 5048 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 5049 u32 pmc, u64 *pdata) 5050 { 5051 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 5052 } 5053 5054 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 5055 { 5056 emul_to_vcpu(ctxt)->arch.halt_request = 1; 5057 } 5058 5059 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 5060 { 5061 preempt_disable(); 5062 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 5063 /* 5064 * CR0.TS may reference the host fpu state, not the guest fpu state, 5065 * so it may be clear at this point. 5066 */ 5067 clts(); 5068 } 5069 5070 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 5071 { 5072 preempt_enable(); 5073 } 5074 5075 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 5076 struct x86_instruction_info *info, 5077 enum x86_intercept_stage stage) 5078 { 5079 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 5080 } 5081 5082 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 5083 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 5084 { 5085 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 5086 } 5087 5088 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 5089 { 5090 return kvm_register_read(emul_to_vcpu(ctxt), reg); 5091 } 5092 5093 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 5094 { 5095 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 5096 } 5097 5098 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 5099 { 5100 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); 5101 } 5102 5103 static const struct x86_emulate_ops emulate_ops = { 5104 .read_gpr = emulator_read_gpr, 5105 .write_gpr = emulator_write_gpr, 5106 .read_std = kvm_read_guest_virt_system, 5107 .write_std = kvm_write_guest_virt_system, 5108 .read_phys = kvm_read_guest_phys_system, 5109 .fetch = kvm_fetch_guest_virt, 5110 .read_emulated = emulator_read_emulated, 5111 .write_emulated = emulator_write_emulated, 5112 .cmpxchg_emulated = emulator_cmpxchg_emulated, 5113 .invlpg = emulator_invlpg, 5114 .pio_in_emulated = emulator_pio_in_emulated, 5115 .pio_out_emulated = emulator_pio_out_emulated, 5116 .get_segment = emulator_get_segment, 5117 .set_segment = emulator_set_segment, 5118 .get_cached_segment_base = emulator_get_cached_segment_base, 5119 .get_gdt = emulator_get_gdt, 5120 .get_idt = emulator_get_idt, 5121 .set_gdt = emulator_set_gdt, 5122 .set_idt = emulator_set_idt, 5123 .get_cr = emulator_get_cr, 5124 .set_cr = emulator_set_cr, 5125 .cpl = emulator_get_cpl, 5126 .get_dr = emulator_get_dr, 5127 .set_dr = emulator_set_dr, 5128 .get_smbase = emulator_get_smbase, 5129 .set_smbase = emulator_set_smbase, 5130 .set_msr = emulator_set_msr, 5131 .get_msr = emulator_get_msr, 5132 .check_pmc = emulator_check_pmc, 5133 .read_pmc = emulator_read_pmc, 5134 .halt = emulator_halt, 5135 .wbinvd = emulator_wbinvd, 5136 .fix_hypercall = emulator_fix_hypercall, 5137 .get_fpu = emulator_get_fpu, 5138 .put_fpu = emulator_put_fpu, 5139 .intercept = emulator_intercept, 5140 .get_cpuid = emulator_get_cpuid, 5141 .set_nmi_mask = emulator_set_nmi_mask, 5142 }; 5143 5144 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 5145 { 5146 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 5147 /* 5148 * an sti; sti; sequence only disable interrupts for the first 5149 * instruction. So, if the last instruction, be it emulated or 5150 * not, left the system with the INT_STI flag enabled, it 5151 * means that the last instruction is an sti. We should not 5152 * leave the flag on in this case. The same goes for mov ss 5153 */ 5154 if (int_shadow & mask) 5155 mask = 0; 5156 if (unlikely(int_shadow || mask)) { 5157 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 5158 if (!mask) 5159 kvm_make_request(KVM_REQ_EVENT, vcpu); 5160 } 5161 } 5162 5163 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 5164 { 5165 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5166 if (ctxt->exception.vector == PF_VECTOR) 5167 return kvm_propagate_fault(vcpu, &ctxt->exception); 5168 5169 if (ctxt->exception.error_code_valid) 5170 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 5171 ctxt->exception.error_code); 5172 else 5173 kvm_queue_exception(vcpu, ctxt->exception.vector); 5174 return false; 5175 } 5176 5177 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 5178 { 5179 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5180 int cs_db, cs_l; 5181 5182 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5183 5184 ctxt->eflags = kvm_get_rflags(vcpu); 5185 ctxt->eip = kvm_rip_read(vcpu); 5186 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 5187 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 5188 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 5189 cs_db ? X86EMUL_MODE_PROT32 : 5190 X86EMUL_MODE_PROT16; 5191 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 5192 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 5193 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 5194 ctxt->emul_flags = vcpu->arch.hflags; 5195 5196 init_decode_cache(ctxt); 5197 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5198 } 5199 5200 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 5201 { 5202 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5203 int ret; 5204 5205 init_emulate_ctxt(vcpu); 5206 5207 ctxt->op_bytes = 2; 5208 ctxt->ad_bytes = 2; 5209 ctxt->_eip = ctxt->eip + inc_eip; 5210 ret = emulate_int_real(ctxt, irq); 5211 5212 if (ret != X86EMUL_CONTINUE) 5213 return EMULATE_FAIL; 5214 5215 ctxt->eip = ctxt->_eip; 5216 kvm_rip_write(vcpu, ctxt->eip); 5217 kvm_set_rflags(vcpu, ctxt->eflags); 5218 5219 if (irq == NMI_VECTOR) 5220 vcpu->arch.nmi_pending = 0; 5221 else 5222 vcpu->arch.interrupt.pending = false; 5223 5224 return EMULATE_DONE; 5225 } 5226 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 5227 5228 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 5229 { 5230 int r = EMULATE_DONE; 5231 5232 ++vcpu->stat.insn_emulation_fail; 5233 trace_kvm_emulate_insn_failed(vcpu); 5234 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { 5235 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5236 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5237 vcpu->run->internal.ndata = 0; 5238 r = EMULATE_FAIL; 5239 } 5240 kvm_queue_exception(vcpu, UD_VECTOR); 5241 5242 return r; 5243 } 5244 5245 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 5246 bool write_fault_to_shadow_pgtable, 5247 int emulation_type) 5248 { 5249 gpa_t gpa = cr2; 5250 kvm_pfn_t pfn; 5251 5252 if (emulation_type & EMULTYPE_NO_REEXECUTE) 5253 return false; 5254 5255 if (!vcpu->arch.mmu.direct_map) { 5256 /* 5257 * Write permission should be allowed since only 5258 * write access need to be emulated. 5259 */ 5260 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5261 5262 /* 5263 * If the mapping is invalid in guest, let cpu retry 5264 * it to generate fault. 5265 */ 5266 if (gpa == UNMAPPED_GVA) 5267 return true; 5268 } 5269 5270 /* 5271 * Do not retry the unhandleable instruction if it faults on the 5272 * readonly host memory, otherwise it will goto a infinite loop: 5273 * retry instruction -> write #PF -> emulation fail -> retry 5274 * instruction -> ... 5275 */ 5276 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 5277 5278 /* 5279 * If the instruction failed on the error pfn, it can not be fixed, 5280 * report the error to userspace. 5281 */ 5282 if (is_error_noslot_pfn(pfn)) 5283 return false; 5284 5285 kvm_release_pfn_clean(pfn); 5286 5287 /* The instructions are well-emulated on direct mmu. */ 5288 if (vcpu->arch.mmu.direct_map) { 5289 unsigned int indirect_shadow_pages; 5290 5291 spin_lock(&vcpu->kvm->mmu_lock); 5292 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 5293 spin_unlock(&vcpu->kvm->mmu_lock); 5294 5295 if (indirect_shadow_pages) 5296 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5297 5298 return true; 5299 } 5300 5301 /* 5302 * if emulation was due to access to shadowed page table 5303 * and it failed try to unshadow page and re-enter the 5304 * guest to let CPU execute the instruction. 5305 */ 5306 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5307 5308 /* 5309 * If the access faults on its page table, it can not 5310 * be fixed by unprotecting shadow page and it should 5311 * be reported to userspace. 5312 */ 5313 return !write_fault_to_shadow_pgtable; 5314 } 5315 5316 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 5317 unsigned long cr2, int emulation_type) 5318 { 5319 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5320 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 5321 5322 last_retry_eip = vcpu->arch.last_retry_eip; 5323 last_retry_addr = vcpu->arch.last_retry_addr; 5324 5325 /* 5326 * If the emulation is caused by #PF and it is non-page_table 5327 * writing instruction, it means the VM-EXIT is caused by shadow 5328 * page protected, we can zap the shadow page and retry this 5329 * instruction directly. 5330 * 5331 * Note: if the guest uses a non-page-table modifying instruction 5332 * on the PDE that points to the instruction, then we will unmap 5333 * the instruction and go to an infinite loop. So, we cache the 5334 * last retried eip and the last fault address, if we meet the eip 5335 * and the address again, we can break out of the potential infinite 5336 * loop. 5337 */ 5338 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 5339 5340 if (!(emulation_type & EMULTYPE_RETRY)) 5341 return false; 5342 5343 if (x86_page_table_writing_insn(ctxt)) 5344 return false; 5345 5346 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 5347 return false; 5348 5349 vcpu->arch.last_retry_eip = ctxt->eip; 5350 vcpu->arch.last_retry_addr = cr2; 5351 5352 if (!vcpu->arch.mmu.direct_map) 5353 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5354 5355 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5356 5357 return true; 5358 } 5359 5360 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 5361 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 5362 5363 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 5364 { 5365 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 5366 /* This is a good place to trace that we are exiting SMM. */ 5367 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 5368 5369 /* Process a latched INIT or SMI, if any. */ 5370 kvm_make_request(KVM_REQ_EVENT, vcpu); 5371 } 5372 5373 kvm_mmu_reset_context(vcpu); 5374 } 5375 5376 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags) 5377 { 5378 unsigned changed = vcpu->arch.hflags ^ emul_flags; 5379 5380 vcpu->arch.hflags = emul_flags; 5381 5382 if (changed & HF_SMM_MASK) 5383 kvm_smm_changed(vcpu); 5384 } 5385 5386 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 5387 unsigned long *db) 5388 { 5389 u32 dr6 = 0; 5390 int i; 5391 u32 enable, rwlen; 5392 5393 enable = dr7; 5394 rwlen = dr7 >> 16; 5395 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5396 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5397 dr6 |= (1 << i); 5398 return dr6; 5399 } 5400 5401 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r) 5402 { 5403 struct kvm_run *kvm_run = vcpu->run; 5404 5405 /* 5406 * rflags is the old, "raw" value of the flags. The new value has 5407 * not been saved yet. 5408 * 5409 * This is correct even for TF set by the guest, because "the 5410 * processor will not generate this exception after the instruction 5411 * that sets the TF flag". 5412 */ 5413 if (unlikely(rflags & X86_EFLAGS_TF)) { 5414 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5415 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | 5416 DR6_RTM; 5417 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5418 kvm_run->debug.arch.exception = DB_VECTOR; 5419 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5420 *r = EMULATE_USER_EXIT; 5421 } else { 5422 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF; 5423 /* 5424 * "Certain debug exceptions may clear bit 0-3. The 5425 * remaining contents of the DR6 register are never 5426 * cleared by the processor". 5427 */ 5428 vcpu->arch.dr6 &= ~15; 5429 vcpu->arch.dr6 |= DR6_BS | DR6_RTM; 5430 kvm_queue_exception(vcpu, DB_VECTOR); 5431 } 5432 } 5433 } 5434 5435 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5436 { 5437 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5438 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5439 struct kvm_run *kvm_run = vcpu->run; 5440 unsigned long eip = kvm_get_linear_rip(vcpu); 5441 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5442 vcpu->arch.guest_debug_dr7, 5443 vcpu->arch.eff_db); 5444 5445 if (dr6 != 0) { 5446 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 5447 kvm_run->debug.arch.pc = eip; 5448 kvm_run->debug.arch.exception = DB_VECTOR; 5449 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5450 *r = EMULATE_USER_EXIT; 5451 return true; 5452 } 5453 } 5454 5455 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 5456 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 5457 unsigned long eip = kvm_get_linear_rip(vcpu); 5458 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5459 vcpu->arch.dr7, 5460 vcpu->arch.db); 5461 5462 if (dr6 != 0) { 5463 vcpu->arch.dr6 &= ~15; 5464 vcpu->arch.dr6 |= dr6 | DR6_RTM; 5465 kvm_queue_exception(vcpu, DB_VECTOR); 5466 *r = EMULATE_DONE; 5467 return true; 5468 } 5469 } 5470 5471 return false; 5472 } 5473 5474 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5475 unsigned long cr2, 5476 int emulation_type, 5477 void *insn, 5478 int insn_len) 5479 { 5480 int r; 5481 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5482 bool writeback = true; 5483 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5484 5485 /* 5486 * Clear write_fault_to_shadow_pgtable here to ensure it is 5487 * never reused. 5488 */ 5489 vcpu->arch.write_fault_to_shadow_pgtable = false; 5490 kvm_clear_exception_queue(vcpu); 5491 5492 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5493 init_emulate_ctxt(vcpu); 5494 5495 /* 5496 * We will reenter on the same instruction since 5497 * we do not set complete_userspace_io. This does not 5498 * handle watchpoints yet, those would be handled in 5499 * the emulate_ops. 5500 */ 5501 if (kvm_vcpu_check_breakpoint(vcpu, &r)) 5502 return r; 5503 5504 ctxt->interruptibility = 0; 5505 ctxt->have_exception = false; 5506 ctxt->exception.vector = -1; 5507 ctxt->perm_ok = false; 5508 5509 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 5510 5511 r = x86_decode_insn(ctxt, insn, insn_len); 5512 5513 trace_kvm_emulate_insn_start(vcpu); 5514 ++vcpu->stat.insn_emulation; 5515 if (r != EMULATION_OK) { 5516 if (emulation_type & EMULTYPE_TRAP_UD) 5517 return EMULATE_FAIL; 5518 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5519 emulation_type)) 5520 return EMULATE_DONE; 5521 if (emulation_type & EMULTYPE_SKIP) 5522 return EMULATE_FAIL; 5523 return handle_emulation_failure(vcpu); 5524 } 5525 } 5526 5527 if (emulation_type & EMULTYPE_SKIP) { 5528 kvm_rip_write(vcpu, ctxt->_eip); 5529 if (ctxt->eflags & X86_EFLAGS_RF) 5530 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 5531 return EMULATE_DONE; 5532 } 5533 5534 if (retry_instruction(ctxt, cr2, emulation_type)) 5535 return EMULATE_DONE; 5536 5537 /* this is needed for vmware backdoor interface to work since it 5538 changes registers values during IO operation */ 5539 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5540 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5541 emulator_invalidate_register_cache(ctxt); 5542 } 5543 5544 restart: 5545 r = x86_emulate_insn(ctxt); 5546 5547 if (r == EMULATION_INTERCEPTED) 5548 return EMULATE_DONE; 5549 5550 if (r == EMULATION_FAILED) { 5551 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5552 emulation_type)) 5553 return EMULATE_DONE; 5554 5555 return handle_emulation_failure(vcpu); 5556 } 5557 5558 if (ctxt->have_exception) { 5559 r = EMULATE_DONE; 5560 if (inject_emulated_exception(vcpu)) 5561 return r; 5562 } else if (vcpu->arch.pio.count) { 5563 if (!vcpu->arch.pio.in) { 5564 /* FIXME: return into emulator if single-stepping. */ 5565 vcpu->arch.pio.count = 0; 5566 } else { 5567 writeback = false; 5568 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5569 } 5570 r = EMULATE_USER_EXIT; 5571 } else if (vcpu->mmio_needed) { 5572 if (!vcpu->mmio_is_write) 5573 writeback = false; 5574 r = EMULATE_USER_EXIT; 5575 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5576 } else if (r == EMULATION_RESTART) 5577 goto restart; 5578 else 5579 r = EMULATE_DONE; 5580 5581 if (writeback) { 5582 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5583 toggle_interruptibility(vcpu, ctxt->interruptibility); 5584 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5585 if (vcpu->arch.hflags != ctxt->emul_flags) 5586 kvm_set_hflags(vcpu, ctxt->emul_flags); 5587 kvm_rip_write(vcpu, ctxt->eip); 5588 if (r == EMULATE_DONE) 5589 kvm_vcpu_check_singlestep(vcpu, rflags, &r); 5590 if (!ctxt->have_exception || 5591 exception_type(ctxt->exception.vector) == EXCPT_TRAP) 5592 __kvm_set_rflags(vcpu, ctxt->eflags); 5593 5594 /* 5595 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 5596 * do nothing, and it will be requested again as soon as 5597 * the shadow expires. But we still need to check here, 5598 * because POPF has no interrupt shadow. 5599 */ 5600 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 5601 kvm_make_request(KVM_REQ_EVENT, vcpu); 5602 } else 5603 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5604 5605 return r; 5606 } 5607 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5608 5609 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5610 { 5611 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5612 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5613 size, port, &val, 1); 5614 /* do not return to emulator after return from userspace */ 5615 vcpu->arch.pio.count = 0; 5616 return ret; 5617 } 5618 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5619 5620 static int kvmclock_cpu_down_prep(unsigned int cpu) 5621 { 5622 __this_cpu_write(cpu_tsc_khz, 0); 5623 return 0; 5624 } 5625 5626 static void tsc_khz_changed(void *data) 5627 { 5628 struct cpufreq_freqs *freq = data; 5629 unsigned long khz = 0; 5630 5631 if (data) 5632 khz = freq->new; 5633 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5634 khz = cpufreq_quick_get(raw_smp_processor_id()); 5635 if (!khz) 5636 khz = tsc_khz; 5637 __this_cpu_write(cpu_tsc_khz, khz); 5638 } 5639 5640 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5641 void *data) 5642 { 5643 struct cpufreq_freqs *freq = data; 5644 struct kvm *kvm; 5645 struct kvm_vcpu *vcpu; 5646 int i, send_ipi = 0; 5647 5648 /* 5649 * We allow guests to temporarily run on slowing clocks, 5650 * provided we notify them after, or to run on accelerating 5651 * clocks, provided we notify them before. Thus time never 5652 * goes backwards. 5653 * 5654 * However, we have a problem. We can't atomically update 5655 * the frequency of a given CPU from this function; it is 5656 * merely a notifier, which can be called from any CPU. 5657 * Changing the TSC frequency at arbitrary points in time 5658 * requires a recomputation of local variables related to 5659 * the TSC for each VCPU. We must flag these local variables 5660 * to be updated and be sure the update takes place with the 5661 * new frequency before any guests proceed. 5662 * 5663 * Unfortunately, the combination of hotplug CPU and frequency 5664 * change creates an intractable locking scenario; the order 5665 * of when these callouts happen is undefined with respect to 5666 * CPU hotplug, and they can race with each other. As such, 5667 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5668 * undefined; you can actually have a CPU frequency change take 5669 * place in between the computation of X and the setting of the 5670 * variable. To protect against this problem, all updates of 5671 * the per_cpu tsc_khz variable are done in an interrupt 5672 * protected IPI, and all callers wishing to update the value 5673 * must wait for a synchronous IPI to complete (which is trivial 5674 * if the caller is on the CPU already). This establishes the 5675 * necessary total order on variable updates. 5676 * 5677 * Note that because a guest time update may take place 5678 * anytime after the setting of the VCPU's request bit, the 5679 * correct TSC value must be set before the request. However, 5680 * to ensure the update actually makes it to any guest which 5681 * starts running in hardware virtualization between the set 5682 * and the acquisition of the spinlock, we must also ping the 5683 * CPU after setting the request bit. 5684 * 5685 */ 5686 5687 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5688 return 0; 5689 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5690 return 0; 5691 5692 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5693 5694 spin_lock(&kvm_lock); 5695 list_for_each_entry(kvm, &vm_list, vm_list) { 5696 kvm_for_each_vcpu(i, vcpu, kvm) { 5697 if (vcpu->cpu != freq->cpu) 5698 continue; 5699 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5700 if (vcpu->cpu != smp_processor_id()) 5701 send_ipi = 1; 5702 } 5703 } 5704 spin_unlock(&kvm_lock); 5705 5706 if (freq->old < freq->new && send_ipi) { 5707 /* 5708 * We upscale the frequency. Must make the guest 5709 * doesn't see old kvmclock values while running with 5710 * the new frequency, otherwise we risk the guest sees 5711 * time go backwards. 5712 * 5713 * In case we update the frequency for another cpu 5714 * (which might be in guest context) send an interrupt 5715 * to kick the cpu out of guest context. Next time 5716 * guest context is entered kvmclock will be updated, 5717 * so the guest will not see stale values. 5718 */ 5719 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5720 } 5721 return 0; 5722 } 5723 5724 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5725 .notifier_call = kvmclock_cpufreq_notifier 5726 }; 5727 5728 static int kvmclock_cpu_online(unsigned int cpu) 5729 { 5730 tsc_khz_changed(NULL); 5731 return 0; 5732 } 5733 5734 static void kvm_timer_init(void) 5735 { 5736 int cpu; 5737 5738 max_tsc_khz = tsc_khz; 5739 5740 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5741 #ifdef CONFIG_CPU_FREQ 5742 struct cpufreq_policy policy; 5743 memset(&policy, 0, sizeof(policy)); 5744 cpu = get_cpu(); 5745 cpufreq_get_policy(&policy, cpu); 5746 if (policy.cpuinfo.max_freq) 5747 max_tsc_khz = policy.cpuinfo.max_freq; 5748 put_cpu(); 5749 #endif 5750 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5751 CPUFREQ_TRANSITION_NOTIFIER); 5752 } 5753 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5754 5755 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE", 5756 kvmclock_cpu_online, kvmclock_cpu_down_prep); 5757 } 5758 5759 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5760 5761 int kvm_is_in_guest(void) 5762 { 5763 return __this_cpu_read(current_vcpu) != NULL; 5764 } 5765 5766 static int kvm_is_user_mode(void) 5767 { 5768 int user_mode = 3; 5769 5770 if (__this_cpu_read(current_vcpu)) 5771 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5772 5773 return user_mode != 0; 5774 } 5775 5776 static unsigned long kvm_get_guest_ip(void) 5777 { 5778 unsigned long ip = 0; 5779 5780 if (__this_cpu_read(current_vcpu)) 5781 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5782 5783 return ip; 5784 } 5785 5786 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5787 .is_in_guest = kvm_is_in_guest, 5788 .is_user_mode = kvm_is_user_mode, 5789 .get_guest_ip = kvm_get_guest_ip, 5790 }; 5791 5792 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5793 { 5794 __this_cpu_write(current_vcpu, vcpu); 5795 } 5796 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5797 5798 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5799 { 5800 __this_cpu_write(current_vcpu, NULL); 5801 } 5802 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5803 5804 static void kvm_set_mmio_spte_mask(void) 5805 { 5806 u64 mask; 5807 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5808 5809 /* 5810 * Set the reserved bits and the present bit of an paging-structure 5811 * entry to generate page fault with PFER.RSV = 1. 5812 */ 5813 /* Mask the reserved physical address bits. */ 5814 mask = rsvd_bits(maxphyaddr, 51); 5815 5816 /* Bit 62 is always reserved for 32bit host. */ 5817 mask |= 0x3ull << 62; 5818 5819 /* Set the present bit. */ 5820 mask |= 1ull; 5821 5822 #ifdef CONFIG_X86_64 5823 /* 5824 * If reserved bit is not supported, clear the present bit to disable 5825 * mmio page fault. 5826 */ 5827 if (maxphyaddr == 52) 5828 mask &= ~1ull; 5829 #endif 5830 5831 kvm_mmu_set_mmio_spte_mask(mask); 5832 } 5833 5834 #ifdef CONFIG_X86_64 5835 static void pvclock_gtod_update_fn(struct work_struct *work) 5836 { 5837 struct kvm *kvm; 5838 5839 struct kvm_vcpu *vcpu; 5840 int i; 5841 5842 spin_lock(&kvm_lock); 5843 list_for_each_entry(kvm, &vm_list, vm_list) 5844 kvm_for_each_vcpu(i, vcpu, kvm) 5845 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 5846 atomic_set(&kvm_guest_has_master_clock, 0); 5847 spin_unlock(&kvm_lock); 5848 } 5849 5850 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 5851 5852 /* 5853 * Notification about pvclock gtod data update. 5854 */ 5855 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 5856 void *priv) 5857 { 5858 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 5859 struct timekeeper *tk = priv; 5860 5861 update_pvclock_gtod(tk); 5862 5863 /* disable master clock if host does not trust, or does not 5864 * use, TSC clocksource 5865 */ 5866 if (gtod->clock.vclock_mode != VCLOCK_TSC && 5867 atomic_read(&kvm_guest_has_master_clock) != 0) 5868 queue_work(system_long_wq, &pvclock_gtod_work); 5869 5870 return 0; 5871 } 5872 5873 static struct notifier_block pvclock_gtod_notifier = { 5874 .notifier_call = pvclock_gtod_notify, 5875 }; 5876 #endif 5877 5878 int kvm_arch_init(void *opaque) 5879 { 5880 int r; 5881 struct kvm_x86_ops *ops = opaque; 5882 5883 if (kvm_x86_ops) { 5884 printk(KERN_ERR "kvm: already loaded the other module\n"); 5885 r = -EEXIST; 5886 goto out; 5887 } 5888 5889 if (!ops->cpu_has_kvm_support()) { 5890 printk(KERN_ERR "kvm: no hardware support\n"); 5891 r = -EOPNOTSUPP; 5892 goto out; 5893 } 5894 if (ops->disabled_by_bios()) { 5895 printk(KERN_ERR "kvm: disabled by bios\n"); 5896 r = -EOPNOTSUPP; 5897 goto out; 5898 } 5899 5900 r = -ENOMEM; 5901 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 5902 if (!shared_msrs) { 5903 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 5904 goto out; 5905 } 5906 5907 r = kvm_mmu_module_init(); 5908 if (r) 5909 goto out_free_percpu; 5910 5911 kvm_set_mmio_spte_mask(); 5912 5913 kvm_x86_ops = ops; 5914 5915 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 5916 PT_DIRTY_MASK, PT64_NX_MASK, 0, 5917 PT_PRESENT_MASK); 5918 kvm_timer_init(); 5919 5920 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5921 5922 if (boot_cpu_has(X86_FEATURE_XSAVE)) 5923 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 5924 5925 kvm_lapic_init(); 5926 #ifdef CONFIG_X86_64 5927 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 5928 #endif 5929 5930 return 0; 5931 5932 out_free_percpu: 5933 free_percpu(shared_msrs); 5934 out: 5935 return r; 5936 } 5937 5938 void kvm_arch_exit(void) 5939 { 5940 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5941 5942 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5943 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 5944 CPUFREQ_TRANSITION_NOTIFIER); 5945 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 5946 #ifdef CONFIG_X86_64 5947 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 5948 #endif 5949 kvm_x86_ops = NULL; 5950 kvm_mmu_module_exit(); 5951 free_percpu(shared_msrs); 5952 } 5953 5954 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 5955 { 5956 ++vcpu->stat.halt_exits; 5957 if (lapic_in_kernel(vcpu)) { 5958 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 5959 return 1; 5960 } else { 5961 vcpu->run->exit_reason = KVM_EXIT_HLT; 5962 return 0; 5963 } 5964 } 5965 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 5966 5967 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 5968 { 5969 kvm_x86_ops->skip_emulated_instruction(vcpu); 5970 return kvm_vcpu_halt(vcpu); 5971 } 5972 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 5973 5974 /* 5975 * kvm_pv_kick_cpu_op: Kick a vcpu. 5976 * 5977 * @apicid - apicid of vcpu to be kicked. 5978 */ 5979 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 5980 { 5981 struct kvm_lapic_irq lapic_irq; 5982 5983 lapic_irq.shorthand = 0; 5984 lapic_irq.dest_mode = 0; 5985 lapic_irq.dest_id = apicid; 5986 lapic_irq.msi_redir_hint = false; 5987 5988 lapic_irq.delivery_mode = APIC_DM_REMRD; 5989 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 5990 } 5991 5992 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) 5993 { 5994 vcpu->arch.apicv_active = false; 5995 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); 5996 } 5997 5998 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5999 { 6000 unsigned long nr, a0, a1, a2, a3, ret; 6001 int op_64_bit, r = 1; 6002 6003 kvm_x86_ops->skip_emulated_instruction(vcpu); 6004 6005 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 6006 return kvm_hv_hypercall(vcpu); 6007 6008 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 6009 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 6010 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 6011 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 6012 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 6013 6014 trace_kvm_hypercall(nr, a0, a1, a2, a3); 6015 6016 op_64_bit = is_64_bit_mode(vcpu); 6017 if (!op_64_bit) { 6018 nr &= 0xFFFFFFFF; 6019 a0 &= 0xFFFFFFFF; 6020 a1 &= 0xFFFFFFFF; 6021 a2 &= 0xFFFFFFFF; 6022 a3 &= 0xFFFFFFFF; 6023 } 6024 6025 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 6026 ret = -KVM_EPERM; 6027 goto out; 6028 } 6029 6030 switch (nr) { 6031 case KVM_HC_VAPIC_POLL_IRQ: 6032 ret = 0; 6033 break; 6034 case KVM_HC_KICK_CPU: 6035 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 6036 ret = 0; 6037 break; 6038 default: 6039 ret = -KVM_ENOSYS; 6040 break; 6041 } 6042 out: 6043 if (!op_64_bit) 6044 ret = (u32)ret; 6045 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 6046 ++vcpu->stat.hypercalls; 6047 return r; 6048 } 6049 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 6050 6051 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 6052 { 6053 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6054 char instruction[3]; 6055 unsigned long rip = kvm_rip_read(vcpu); 6056 6057 kvm_x86_ops->patch_hypercall(vcpu, instruction); 6058 6059 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 6060 } 6061 6062 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 6063 { 6064 return vcpu->run->request_interrupt_window && 6065 likely(!pic_in_kernel(vcpu->kvm)); 6066 } 6067 6068 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 6069 { 6070 struct kvm_run *kvm_run = vcpu->run; 6071 6072 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 6073 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 6074 kvm_run->cr8 = kvm_get_cr8(vcpu); 6075 kvm_run->apic_base = kvm_get_apic_base(vcpu); 6076 kvm_run->ready_for_interrupt_injection = 6077 pic_in_kernel(vcpu->kvm) || 6078 kvm_vcpu_ready_for_interrupt_injection(vcpu); 6079 } 6080 6081 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 6082 { 6083 int max_irr, tpr; 6084 6085 if (!kvm_x86_ops->update_cr8_intercept) 6086 return; 6087 6088 if (!lapic_in_kernel(vcpu)) 6089 return; 6090 6091 if (vcpu->arch.apicv_active) 6092 return; 6093 6094 if (!vcpu->arch.apic->vapic_addr) 6095 max_irr = kvm_lapic_find_highest_irr(vcpu); 6096 else 6097 max_irr = -1; 6098 6099 if (max_irr != -1) 6100 max_irr >>= 4; 6101 6102 tpr = kvm_lapic_get_cr8(vcpu); 6103 6104 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 6105 } 6106 6107 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 6108 { 6109 int r; 6110 6111 /* try to reinject previous events if any */ 6112 if (vcpu->arch.exception.pending) { 6113 trace_kvm_inj_exception(vcpu->arch.exception.nr, 6114 vcpu->arch.exception.has_error_code, 6115 vcpu->arch.exception.error_code); 6116 6117 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 6118 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 6119 X86_EFLAGS_RF); 6120 6121 if (vcpu->arch.exception.nr == DB_VECTOR && 6122 (vcpu->arch.dr7 & DR7_GD)) { 6123 vcpu->arch.dr7 &= ~DR7_GD; 6124 kvm_update_dr7(vcpu); 6125 } 6126 6127 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 6128 vcpu->arch.exception.has_error_code, 6129 vcpu->arch.exception.error_code, 6130 vcpu->arch.exception.reinject); 6131 return 0; 6132 } 6133 6134 if (vcpu->arch.nmi_injected) { 6135 kvm_x86_ops->set_nmi(vcpu); 6136 return 0; 6137 } 6138 6139 if (vcpu->arch.interrupt.pending) { 6140 kvm_x86_ops->set_irq(vcpu); 6141 return 0; 6142 } 6143 6144 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6145 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6146 if (r != 0) 6147 return r; 6148 } 6149 6150 /* try to inject new event if pending */ 6151 if (vcpu->arch.smi_pending && !is_smm(vcpu)) { 6152 vcpu->arch.smi_pending = false; 6153 enter_smm(vcpu); 6154 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { 6155 --vcpu->arch.nmi_pending; 6156 vcpu->arch.nmi_injected = true; 6157 kvm_x86_ops->set_nmi(vcpu); 6158 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 6159 /* 6160 * Because interrupts can be injected asynchronously, we are 6161 * calling check_nested_events again here to avoid a race condition. 6162 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 6163 * proposal and current concerns. Perhaps we should be setting 6164 * KVM_REQ_EVENT only on certain events and not unconditionally? 6165 */ 6166 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6167 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6168 if (r != 0) 6169 return r; 6170 } 6171 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 6172 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 6173 false); 6174 kvm_x86_ops->set_irq(vcpu); 6175 } 6176 } 6177 6178 return 0; 6179 } 6180 6181 static void process_nmi(struct kvm_vcpu *vcpu) 6182 { 6183 unsigned limit = 2; 6184 6185 /* 6186 * x86 is limited to one NMI running, and one NMI pending after it. 6187 * If an NMI is already in progress, limit further NMIs to just one. 6188 * Otherwise, allow two (and we'll inject the first one immediately). 6189 */ 6190 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 6191 limit = 1; 6192 6193 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 6194 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 6195 kvm_make_request(KVM_REQ_EVENT, vcpu); 6196 } 6197 6198 #define put_smstate(type, buf, offset, val) \ 6199 *(type *)((buf) + (offset) - 0x7e00) = val 6200 6201 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 6202 { 6203 u32 flags = 0; 6204 flags |= seg->g << 23; 6205 flags |= seg->db << 22; 6206 flags |= seg->l << 21; 6207 flags |= seg->avl << 20; 6208 flags |= seg->present << 15; 6209 flags |= seg->dpl << 13; 6210 flags |= seg->s << 12; 6211 flags |= seg->type << 8; 6212 return flags; 6213 } 6214 6215 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 6216 { 6217 struct kvm_segment seg; 6218 int offset; 6219 6220 kvm_get_segment(vcpu, &seg, n); 6221 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 6222 6223 if (n < 3) 6224 offset = 0x7f84 + n * 12; 6225 else 6226 offset = 0x7f2c + (n - 3) * 12; 6227 6228 put_smstate(u32, buf, offset + 8, seg.base); 6229 put_smstate(u32, buf, offset + 4, seg.limit); 6230 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 6231 } 6232 6233 #ifdef CONFIG_X86_64 6234 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 6235 { 6236 struct kvm_segment seg; 6237 int offset; 6238 u16 flags; 6239 6240 kvm_get_segment(vcpu, &seg, n); 6241 offset = 0x7e00 + n * 16; 6242 6243 flags = enter_smm_get_segment_flags(&seg) >> 8; 6244 put_smstate(u16, buf, offset, seg.selector); 6245 put_smstate(u16, buf, offset + 2, flags); 6246 put_smstate(u32, buf, offset + 4, seg.limit); 6247 put_smstate(u64, buf, offset + 8, seg.base); 6248 } 6249 #endif 6250 6251 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 6252 { 6253 struct desc_ptr dt; 6254 struct kvm_segment seg; 6255 unsigned long val; 6256 int i; 6257 6258 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 6259 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 6260 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 6261 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 6262 6263 for (i = 0; i < 8; i++) 6264 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 6265 6266 kvm_get_dr(vcpu, 6, &val); 6267 put_smstate(u32, buf, 0x7fcc, (u32)val); 6268 kvm_get_dr(vcpu, 7, &val); 6269 put_smstate(u32, buf, 0x7fc8, (u32)val); 6270 6271 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 6272 put_smstate(u32, buf, 0x7fc4, seg.selector); 6273 put_smstate(u32, buf, 0x7f64, seg.base); 6274 put_smstate(u32, buf, 0x7f60, seg.limit); 6275 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 6276 6277 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 6278 put_smstate(u32, buf, 0x7fc0, seg.selector); 6279 put_smstate(u32, buf, 0x7f80, seg.base); 6280 put_smstate(u32, buf, 0x7f7c, seg.limit); 6281 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 6282 6283 kvm_x86_ops->get_gdt(vcpu, &dt); 6284 put_smstate(u32, buf, 0x7f74, dt.address); 6285 put_smstate(u32, buf, 0x7f70, dt.size); 6286 6287 kvm_x86_ops->get_idt(vcpu, &dt); 6288 put_smstate(u32, buf, 0x7f58, dt.address); 6289 put_smstate(u32, buf, 0x7f54, dt.size); 6290 6291 for (i = 0; i < 6; i++) 6292 enter_smm_save_seg_32(vcpu, buf, i); 6293 6294 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 6295 6296 /* revision id */ 6297 put_smstate(u32, buf, 0x7efc, 0x00020000); 6298 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 6299 } 6300 6301 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 6302 { 6303 #ifdef CONFIG_X86_64 6304 struct desc_ptr dt; 6305 struct kvm_segment seg; 6306 unsigned long val; 6307 int i; 6308 6309 for (i = 0; i < 16; i++) 6310 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 6311 6312 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 6313 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 6314 6315 kvm_get_dr(vcpu, 6, &val); 6316 put_smstate(u64, buf, 0x7f68, val); 6317 kvm_get_dr(vcpu, 7, &val); 6318 put_smstate(u64, buf, 0x7f60, val); 6319 6320 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 6321 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 6322 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 6323 6324 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 6325 6326 /* revision id */ 6327 put_smstate(u32, buf, 0x7efc, 0x00020064); 6328 6329 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 6330 6331 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 6332 put_smstate(u16, buf, 0x7e90, seg.selector); 6333 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 6334 put_smstate(u32, buf, 0x7e94, seg.limit); 6335 put_smstate(u64, buf, 0x7e98, seg.base); 6336 6337 kvm_x86_ops->get_idt(vcpu, &dt); 6338 put_smstate(u32, buf, 0x7e84, dt.size); 6339 put_smstate(u64, buf, 0x7e88, dt.address); 6340 6341 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 6342 put_smstate(u16, buf, 0x7e70, seg.selector); 6343 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 6344 put_smstate(u32, buf, 0x7e74, seg.limit); 6345 put_smstate(u64, buf, 0x7e78, seg.base); 6346 6347 kvm_x86_ops->get_gdt(vcpu, &dt); 6348 put_smstate(u32, buf, 0x7e64, dt.size); 6349 put_smstate(u64, buf, 0x7e68, dt.address); 6350 6351 for (i = 0; i < 6; i++) 6352 enter_smm_save_seg_64(vcpu, buf, i); 6353 #else 6354 WARN_ON_ONCE(1); 6355 #endif 6356 } 6357 6358 static void enter_smm(struct kvm_vcpu *vcpu) 6359 { 6360 struct kvm_segment cs, ds; 6361 struct desc_ptr dt; 6362 char buf[512]; 6363 u32 cr0; 6364 6365 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 6366 vcpu->arch.hflags |= HF_SMM_MASK; 6367 memset(buf, 0, 512); 6368 if (guest_cpuid_has_longmode(vcpu)) 6369 enter_smm_save_state_64(vcpu, buf); 6370 else 6371 enter_smm_save_state_32(vcpu, buf); 6372 6373 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 6374 6375 if (kvm_x86_ops->get_nmi_mask(vcpu)) 6376 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 6377 else 6378 kvm_x86_ops->set_nmi_mask(vcpu, true); 6379 6380 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 6381 kvm_rip_write(vcpu, 0x8000); 6382 6383 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 6384 kvm_x86_ops->set_cr0(vcpu, cr0); 6385 vcpu->arch.cr0 = cr0; 6386 6387 kvm_x86_ops->set_cr4(vcpu, 0); 6388 6389 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 6390 dt.address = dt.size = 0; 6391 kvm_x86_ops->set_idt(vcpu, &dt); 6392 6393 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 6394 6395 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 6396 cs.base = vcpu->arch.smbase; 6397 6398 ds.selector = 0; 6399 ds.base = 0; 6400 6401 cs.limit = ds.limit = 0xffffffff; 6402 cs.type = ds.type = 0x3; 6403 cs.dpl = ds.dpl = 0; 6404 cs.db = ds.db = 0; 6405 cs.s = ds.s = 1; 6406 cs.l = ds.l = 0; 6407 cs.g = ds.g = 1; 6408 cs.avl = ds.avl = 0; 6409 cs.present = ds.present = 1; 6410 cs.unusable = ds.unusable = 0; 6411 cs.padding = ds.padding = 0; 6412 6413 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 6414 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 6415 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 6416 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 6417 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 6418 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 6419 6420 if (guest_cpuid_has_longmode(vcpu)) 6421 kvm_x86_ops->set_efer(vcpu, 0); 6422 6423 kvm_update_cpuid(vcpu); 6424 kvm_mmu_reset_context(vcpu); 6425 } 6426 6427 static void process_smi(struct kvm_vcpu *vcpu) 6428 { 6429 vcpu->arch.smi_pending = true; 6430 kvm_make_request(KVM_REQ_EVENT, vcpu); 6431 } 6432 6433 void kvm_make_scan_ioapic_request(struct kvm *kvm) 6434 { 6435 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 6436 } 6437 6438 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 6439 { 6440 u64 eoi_exit_bitmap[4]; 6441 6442 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 6443 return; 6444 6445 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 6446 6447 if (irqchip_split(vcpu->kvm)) 6448 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 6449 else { 6450 if (vcpu->arch.apicv_active) 6451 kvm_x86_ops->sync_pir_to_irr(vcpu); 6452 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 6453 } 6454 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 6455 vcpu_to_synic(vcpu)->vec_bitmap, 256); 6456 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 6457 } 6458 6459 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu) 6460 { 6461 ++vcpu->stat.tlb_flush; 6462 kvm_x86_ops->tlb_flush(vcpu); 6463 } 6464 6465 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 6466 { 6467 struct page *page = NULL; 6468 6469 if (!lapic_in_kernel(vcpu)) 6470 return; 6471 6472 if (!kvm_x86_ops->set_apic_access_page_addr) 6473 return; 6474 6475 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6476 if (is_error_page(page)) 6477 return; 6478 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); 6479 6480 /* 6481 * Do not pin apic access page in memory, the MMU notifier 6482 * will call us again if it is migrated or swapped out. 6483 */ 6484 put_page(page); 6485 } 6486 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); 6487 6488 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm, 6489 unsigned long address) 6490 { 6491 /* 6492 * The physical address of apic access page is stored in the VMCS. 6493 * Update it when it becomes invalid. 6494 */ 6495 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT)) 6496 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 6497 } 6498 6499 /* 6500 * Returns 1 to let vcpu_run() continue the guest execution loop without 6501 * exiting to the userspace. Otherwise, the value will be returned to the 6502 * userspace. 6503 */ 6504 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 6505 { 6506 int r; 6507 bool req_int_win = 6508 dm_request_for_irq_injection(vcpu) && 6509 kvm_cpu_accept_dm_intr(vcpu); 6510 6511 bool req_immediate_exit = false; 6512 6513 if (vcpu->requests) { 6514 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 6515 kvm_mmu_unload(vcpu); 6516 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 6517 __kvm_migrate_timers(vcpu); 6518 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 6519 kvm_gen_update_masterclock(vcpu->kvm); 6520 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 6521 kvm_gen_kvmclock_update(vcpu); 6522 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 6523 r = kvm_guest_time_update(vcpu); 6524 if (unlikely(r)) 6525 goto out; 6526 } 6527 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 6528 kvm_mmu_sync_roots(vcpu); 6529 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 6530 kvm_vcpu_flush_tlb(vcpu); 6531 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 6532 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 6533 r = 0; 6534 goto out; 6535 } 6536 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 6537 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 6538 r = 0; 6539 goto out; 6540 } 6541 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 6542 vcpu->fpu_active = 0; 6543 kvm_x86_ops->fpu_deactivate(vcpu); 6544 } 6545 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 6546 /* Page is swapped out. Do synthetic halt */ 6547 vcpu->arch.apf.halted = true; 6548 r = 1; 6549 goto out; 6550 } 6551 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 6552 record_steal_time(vcpu); 6553 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 6554 process_smi(vcpu); 6555 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 6556 process_nmi(vcpu); 6557 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 6558 kvm_pmu_handle_event(vcpu); 6559 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 6560 kvm_pmu_deliver_pmi(vcpu); 6561 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 6562 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 6563 if (test_bit(vcpu->arch.pending_ioapic_eoi, 6564 vcpu->arch.ioapic_handled_vectors)) { 6565 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 6566 vcpu->run->eoi.vector = 6567 vcpu->arch.pending_ioapic_eoi; 6568 r = 0; 6569 goto out; 6570 } 6571 } 6572 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 6573 vcpu_scan_ioapic(vcpu); 6574 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 6575 kvm_vcpu_reload_apic_access_page(vcpu); 6576 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 6577 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 6578 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 6579 r = 0; 6580 goto out; 6581 } 6582 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 6583 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 6584 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 6585 r = 0; 6586 goto out; 6587 } 6588 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 6589 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 6590 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 6591 r = 0; 6592 goto out; 6593 } 6594 6595 /* 6596 * KVM_REQ_HV_STIMER has to be processed after 6597 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 6598 * depend on the guest clock being up-to-date 6599 */ 6600 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 6601 kvm_hv_process_stimers(vcpu); 6602 } 6603 6604 /* 6605 * KVM_REQ_EVENT is not set when posted interrupts are set by 6606 * VT-d hardware, so we have to update RVI unconditionally. 6607 */ 6608 if (kvm_lapic_enabled(vcpu)) { 6609 /* 6610 * Update architecture specific hints for APIC 6611 * virtual interrupt delivery. 6612 */ 6613 if (vcpu->arch.apicv_active) 6614 kvm_x86_ops->hwapic_irr_update(vcpu, 6615 kvm_lapic_find_highest_irr(vcpu)); 6616 } 6617 6618 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 6619 kvm_apic_accept_events(vcpu); 6620 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 6621 r = 1; 6622 goto out; 6623 } 6624 6625 if (inject_pending_event(vcpu, req_int_win) != 0) 6626 req_immediate_exit = true; 6627 else { 6628 /* Enable NMI/IRQ window open exits if needed. 6629 * 6630 * SMIs have two cases: 1) they can be nested, and 6631 * then there is nothing to do here because RSM will 6632 * cause a vmexit anyway; 2) or the SMI can be pending 6633 * because inject_pending_event has completed the 6634 * injection of an IRQ or NMI from the previous vmexit, 6635 * and then we request an immediate exit to inject the SMI. 6636 */ 6637 if (vcpu->arch.smi_pending && !is_smm(vcpu)) 6638 req_immediate_exit = true; 6639 if (vcpu->arch.nmi_pending) 6640 kvm_x86_ops->enable_nmi_window(vcpu); 6641 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 6642 kvm_x86_ops->enable_irq_window(vcpu); 6643 } 6644 6645 if (kvm_lapic_enabled(vcpu)) { 6646 update_cr8_intercept(vcpu); 6647 kvm_lapic_sync_to_vapic(vcpu); 6648 } 6649 } 6650 6651 r = kvm_mmu_reload(vcpu); 6652 if (unlikely(r)) { 6653 goto cancel_injection; 6654 } 6655 6656 preempt_disable(); 6657 6658 kvm_x86_ops->prepare_guest_switch(vcpu); 6659 if (vcpu->fpu_active) 6660 kvm_load_guest_fpu(vcpu); 6661 vcpu->mode = IN_GUEST_MODE; 6662 6663 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6664 6665 /* 6666 * We should set ->mode before check ->requests, 6667 * Please see the comment in kvm_make_all_cpus_request. 6668 * This also orders the write to mode from any reads 6669 * to the page tables done while the VCPU is running. 6670 * Please see the comment in kvm_flush_remote_tlbs. 6671 */ 6672 smp_mb__after_srcu_read_unlock(); 6673 6674 local_irq_disable(); 6675 6676 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 6677 || need_resched() || signal_pending(current)) { 6678 vcpu->mode = OUTSIDE_GUEST_MODE; 6679 smp_wmb(); 6680 local_irq_enable(); 6681 preempt_enable(); 6682 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6683 r = 1; 6684 goto cancel_injection; 6685 } 6686 6687 kvm_load_guest_xcr0(vcpu); 6688 6689 if (req_immediate_exit) { 6690 kvm_make_request(KVM_REQ_EVENT, vcpu); 6691 smp_send_reschedule(vcpu->cpu); 6692 } 6693 6694 trace_kvm_entry(vcpu->vcpu_id); 6695 wait_lapic_expire(vcpu); 6696 guest_enter_irqoff(); 6697 6698 if (unlikely(vcpu->arch.switch_db_regs)) { 6699 set_debugreg(0, 7); 6700 set_debugreg(vcpu->arch.eff_db[0], 0); 6701 set_debugreg(vcpu->arch.eff_db[1], 1); 6702 set_debugreg(vcpu->arch.eff_db[2], 2); 6703 set_debugreg(vcpu->arch.eff_db[3], 3); 6704 set_debugreg(vcpu->arch.dr6, 6); 6705 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 6706 } 6707 6708 kvm_x86_ops->run(vcpu); 6709 6710 /* 6711 * Do this here before restoring debug registers on the host. And 6712 * since we do this before handling the vmexit, a DR access vmexit 6713 * can (a) read the correct value of the debug registers, (b) set 6714 * KVM_DEBUGREG_WONT_EXIT again. 6715 */ 6716 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 6717 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 6718 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 6719 kvm_update_dr0123(vcpu); 6720 kvm_update_dr6(vcpu); 6721 kvm_update_dr7(vcpu); 6722 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 6723 } 6724 6725 /* 6726 * If the guest has used debug registers, at least dr7 6727 * will be disabled while returning to the host. 6728 * If we don't have active breakpoints in the host, we don't 6729 * care about the messed up debug address registers. But if 6730 * we have some of them active, restore the old state. 6731 */ 6732 if (hw_breakpoint_active()) 6733 hw_breakpoint_restore(); 6734 6735 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 6736 6737 vcpu->mode = OUTSIDE_GUEST_MODE; 6738 smp_wmb(); 6739 6740 kvm_put_guest_xcr0(vcpu); 6741 6742 kvm_x86_ops->handle_external_intr(vcpu); 6743 6744 ++vcpu->stat.exits; 6745 6746 guest_exit_irqoff(); 6747 6748 local_irq_enable(); 6749 preempt_enable(); 6750 6751 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6752 6753 /* 6754 * Profile KVM exit RIPs: 6755 */ 6756 if (unlikely(prof_on == KVM_PROFILING)) { 6757 unsigned long rip = kvm_rip_read(vcpu); 6758 profile_hit(KVM_PROFILING, (void *)rip); 6759 } 6760 6761 if (unlikely(vcpu->arch.tsc_always_catchup)) 6762 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6763 6764 if (vcpu->arch.apic_attention) 6765 kvm_lapic_sync_from_vapic(vcpu); 6766 6767 r = kvm_x86_ops->handle_exit(vcpu); 6768 return r; 6769 6770 cancel_injection: 6771 kvm_x86_ops->cancel_injection(vcpu); 6772 if (unlikely(vcpu->arch.apic_attention)) 6773 kvm_lapic_sync_from_vapic(vcpu); 6774 out: 6775 return r; 6776 } 6777 6778 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 6779 { 6780 if (!kvm_arch_vcpu_runnable(vcpu) && 6781 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { 6782 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6783 kvm_vcpu_block(vcpu); 6784 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6785 6786 if (kvm_x86_ops->post_block) 6787 kvm_x86_ops->post_block(vcpu); 6788 6789 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 6790 return 1; 6791 } 6792 6793 kvm_apic_accept_events(vcpu); 6794 switch(vcpu->arch.mp_state) { 6795 case KVM_MP_STATE_HALTED: 6796 vcpu->arch.pv.pv_unhalted = false; 6797 vcpu->arch.mp_state = 6798 KVM_MP_STATE_RUNNABLE; 6799 case KVM_MP_STATE_RUNNABLE: 6800 vcpu->arch.apf.halted = false; 6801 break; 6802 case KVM_MP_STATE_INIT_RECEIVED: 6803 break; 6804 default: 6805 return -EINTR; 6806 break; 6807 } 6808 return 1; 6809 } 6810 6811 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 6812 { 6813 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6814 !vcpu->arch.apf.halted); 6815 } 6816 6817 static int vcpu_run(struct kvm_vcpu *vcpu) 6818 { 6819 int r; 6820 struct kvm *kvm = vcpu->kvm; 6821 6822 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6823 6824 for (;;) { 6825 if (kvm_vcpu_running(vcpu)) { 6826 r = vcpu_enter_guest(vcpu); 6827 } else { 6828 r = vcpu_block(kvm, vcpu); 6829 } 6830 6831 if (r <= 0) 6832 break; 6833 6834 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 6835 if (kvm_cpu_has_pending_timer(vcpu)) 6836 kvm_inject_pending_timer_irqs(vcpu); 6837 6838 if (dm_request_for_irq_injection(vcpu) && 6839 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 6840 r = 0; 6841 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 6842 ++vcpu->stat.request_irq_exits; 6843 break; 6844 } 6845 6846 kvm_check_async_pf_completion(vcpu); 6847 6848 if (signal_pending(current)) { 6849 r = -EINTR; 6850 vcpu->run->exit_reason = KVM_EXIT_INTR; 6851 ++vcpu->stat.signal_exits; 6852 break; 6853 } 6854 if (need_resched()) { 6855 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6856 cond_resched(); 6857 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6858 } 6859 } 6860 6861 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6862 6863 return r; 6864 } 6865 6866 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 6867 { 6868 int r; 6869 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6870 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 6871 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6872 if (r != EMULATE_DONE) 6873 return 0; 6874 return 1; 6875 } 6876 6877 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 6878 { 6879 BUG_ON(!vcpu->arch.pio.count); 6880 6881 return complete_emulated_io(vcpu); 6882 } 6883 6884 /* 6885 * Implements the following, as a state machine: 6886 * 6887 * read: 6888 * for each fragment 6889 * for each mmio piece in the fragment 6890 * write gpa, len 6891 * exit 6892 * copy data 6893 * execute insn 6894 * 6895 * write: 6896 * for each fragment 6897 * for each mmio piece in the fragment 6898 * write gpa, len 6899 * copy data 6900 * exit 6901 */ 6902 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 6903 { 6904 struct kvm_run *run = vcpu->run; 6905 struct kvm_mmio_fragment *frag; 6906 unsigned len; 6907 6908 BUG_ON(!vcpu->mmio_needed); 6909 6910 /* Complete previous fragment */ 6911 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 6912 len = min(8u, frag->len); 6913 if (!vcpu->mmio_is_write) 6914 memcpy(frag->data, run->mmio.data, len); 6915 6916 if (frag->len <= 8) { 6917 /* Switch to the next fragment. */ 6918 frag++; 6919 vcpu->mmio_cur_fragment++; 6920 } else { 6921 /* Go forward to the next mmio piece. */ 6922 frag->data += len; 6923 frag->gpa += len; 6924 frag->len -= len; 6925 } 6926 6927 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 6928 vcpu->mmio_needed = 0; 6929 6930 /* FIXME: return into emulator if single-stepping. */ 6931 if (vcpu->mmio_is_write) 6932 return 1; 6933 vcpu->mmio_read_completed = 1; 6934 return complete_emulated_io(vcpu); 6935 } 6936 6937 run->exit_reason = KVM_EXIT_MMIO; 6938 run->mmio.phys_addr = frag->gpa; 6939 if (vcpu->mmio_is_write) 6940 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 6941 run->mmio.len = min(8u, frag->len); 6942 run->mmio.is_write = vcpu->mmio_is_write; 6943 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6944 return 0; 6945 } 6946 6947 6948 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 6949 { 6950 struct fpu *fpu = ¤t->thread.fpu; 6951 int r; 6952 sigset_t sigsaved; 6953 6954 fpu__activate_curr(fpu); 6955 6956 if (vcpu->sigset_active) 6957 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 6958 6959 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 6960 kvm_vcpu_block(vcpu); 6961 kvm_apic_accept_events(vcpu); 6962 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 6963 r = -EAGAIN; 6964 goto out; 6965 } 6966 6967 /* re-sync apic's tpr */ 6968 if (!lapic_in_kernel(vcpu)) { 6969 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 6970 r = -EINVAL; 6971 goto out; 6972 } 6973 } 6974 6975 if (unlikely(vcpu->arch.complete_userspace_io)) { 6976 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 6977 vcpu->arch.complete_userspace_io = NULL; 6978 r = cui(vcpu); 6979 if (r <= 0) 6980 goto out; 6981 } else 6982 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 6983 6984 r = vcpu_run(vcpu); 6985 6986 out: 6987 post_kvm_run_save(vcpu); 6988 if (vcpu->sigset_active) 6989 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 6990 6991 return r; 6992 } 6993 6994 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6995 { 6996 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 6997 /* 6998 * We are here if userspace calls get_regs() in the middle of 6999 * instruction emulation. Registers state needs to be copied 7000 * back from emulation context to vcpu. Userspace shouldn't do 7001 * that usually, but some bad designed PV devices (vmware 7002 * backdoor interface) need this to work 7003 */ 7004 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 7005 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7006 } 7007 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 7008 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 7009 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 7010 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 7011 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 7012 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 7013 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 7014 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 7015 #ifdef CONFIG_X86_64 7016 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 7017 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 7018 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 7019 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 7020 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 7021 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 7022 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 7023 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 7024 #endif 7025 7026 regs->rip = kvm_rip_read(vcpu); 7027 regs->rflags = kvm_get_rflags(vcpu); 7028 7029 return 0; 7030 } 7031 7032 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7033 { 7034 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 7035 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7036 7037 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 7038 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 7039 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 7040 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 7041 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 7042 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 7043 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 7044 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 7045 #ifdef CONFIG_X86_64 7046 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 7047 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 7048 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 7049 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 7050 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 7051 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 7052 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 7053 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 7054 #endif 7055 7056 kvm_rip_write(vcpu, regs->rip); 7057 kvm_set_rflags(vcpu, regs->rflags); 7058 7059 vcpu->arch.exception.pending = false; 7060 7061 kvm_make_request(KVM_REQ_EVENT, vcpu); 7062 7063 return 0; 7064 } 7065 7066 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 7067 { 7068 struct kvm_segment cs; 7069 7070 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7071 *db = cs.db; 7072 *l = cs.l; 7073 } 7074 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 7075 7076 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 7077 struct kvm_sregs *sregs) 7078 { 7079 struct desc_ptr dt; 7080 7081 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7082 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7083 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7084 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7085 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7086 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7087 7088 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7089 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7090 7091 kvm_x86_ops->get_idt(vcpu, &dt); 7092 sregs->idt.limit = dt.size; 7093 sregs->idt.base = dt.address; 7094 kvm_x86_ops->get_gdt(vcpu, &dt); 7095 sregs->gdt.limit = dt.size; 7096 sregs->gdt.base = dt.address; 7097 7098 sregs->cr0 = kvm_read_cr0(vcpu); 7099 sregs->cr2 = vcpu->arch.cr2; 7100 sregs->cr3 = kvm_read_cr3(vcpu); 7101 sregs->cr4 = kvm_read_cr4(vcpu); 7102 sregs->cr8 = kvm_get_cr8(vcpu); 7103 sregs->efer = vcpu->arch.efer; 7104 sregs->apic_base = kvm_get_apic_base(vcpu); 7105 7106 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 7107 7108 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 7109 set_bit(vcpu->arch.interrupt.nr, 7110 (unsigned long *)sregs->interrupt_bitmap); 7111 7112 return 0; 7113 } 7114 7115 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 7116 struct kvm_mp_state *mp_state) 7117 { 7118 kvm_apic_accept_events(vcpu); 7119 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 7120 vcpu->arch.pv.pv_unhalted) 7121 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 7122 else 7123 mp_state->mp_state = vcpu->arch.mp_state; 7124 7125 return 0; 7126 } 7127 7128 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 7129 struct kvm_mp_state *mp_state) 7130 { 7131 if (!lapic_in_kernel(vcpu) && 7132 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 7133 return -EINVAL; 7134 7135 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 7136 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 7137 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 7138 } else 7139 vcpu->arch.mp_state = mp_state->mp_state; 7140 kvm_make_request(KVM_REQ_EVENT, vcpu); 7141 return 0; 7142 } 7143 7144 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 7145 int reason, bool has_error_code, u32 error_code) 7146 { 7147 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 7148 int ret; 7149 7150 init_emulate_ctxt(vcpu); 7151 7152 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 7153 has_error_code, error_code); 7154 7155 if (ret) 7156 return EMULATE_FAIL; 7157 7158 kvm_rip_write(vcpu, ctxt->eip); 7159 kvm_set_rflags(vcpu, ctxt->eflags); 7160 kvm_make_request(KVM_REQ_EVENT, vcpu); 7161 return EMULATE_DONE; 7162 } 7163 EXPORT_SYMBOL_GPL(kvm_task_switch); 7164 7165 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 7166 struct kvm_sregs *sregs) 7167 { 7168 struct msr_data apic_base_msr; 7169 int mmu_reset_needed = 0; 7170 int pending_vec, max_bits, idx; 7171 struct desc_ptr dt; 7172 7173 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 7174 return -EINVAL; 7175 7176 dt.size = sregs->idt.limit; 7177 dt.address = sregs->idt.base; 7178 kvm_x86_ops->set_idt(vcpu, &dt); 7179 dt.size = sregs->gdt.limit; 7180 dt.address = sregs->gdt.base; 7181 kvm_x86_ops->set_gdt(vcpu, &dt); 7182 7183 vcpu->arch.cr2 = sregs->cr2; 7184 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 7185 vcpu->arch.cr3 = sregs->cr3; 7186 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 7187 7188 kvm_set_cr8(vcpu, sregs->cr8); 7189 7190 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 7191 kvm_x86_ops->set_efer(vcpu, sregs->efer); 7192 apic_base_msr.data = sregs->apic_base; 7193 apic_base_msr.host_initiated = true; 7194 kvm_set_apic_base(vcpu, &apic_base_msr); 7195 7196 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 7197 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 7198 vcpu->arch.cr0 = sregs->cr0; 7199 7200 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 7201 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 7202 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 7203 kvm_update_cpuid(vcpu); 7204 7205 idx = srcu_read_lock(&vcpu->kvm->srcu); 7206 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 7207 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 7208 mmu_reset_needed = 1; 7209 } 7210 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7211 7212 if (mmu_reset_needed) 7213 kvm_mmu_reset_context(vcpu); 7214 7215 max_bits = KVM_NR_INTERRUPTS; 7216 pending_vec = find_first_bit( 7217 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 7218 if (pending_vec < max_bits) { 7219 kvm_queue_interrupt(vcpu, pending_vec, false); 7220 pr_debug("Set back pending irq %d\n", pending_vec); 7221 } 7222 7223 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7224 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7225 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7226 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7227 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7228 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7229 7230 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7231 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7232 7233 update_cr8_intercept(vcpu); 7234 7235 /* Older userspace won't unhalt the vcpu on reset. */ 7236 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 7237 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 7238 !is_protmode(vcpu)) 7239 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7240 7241 kvm_make_request(KVM_REQ_EVENT, vcpu); 7242 7243 return 0; 7244 } 7245 7246 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 7247 struct kvm_guest_debug *dbg) 7248 { 7249 unsigned long rflags; 7250 int i, r; 7251 7252 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 7253 r = -EBUSY; 7254 if (vcpu->arch.exception.pending) 7255 goto out; 7256 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 7257 kvm_queue_exception(vcpu, DB_VECTOR); 7258 else 7259 kvm_queue_exception(vcpu, BP_VECTOR); 7260 } 7261 7262 /* 7263 * Read rflags as long as potentially injected trace flags are still 7264 * filtered out. 7265 */ 7266 rflags = kvm_get_rflags(vcpu); 7267 7268 vcpu->guest_debug = dbg->control; 7269 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 7270 vcpu->guest_debug = 0; 7271 7272 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 7273 for (i = 0; i < KVM_NR_DB_REGS; ++i) 7274 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 7275 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 7276 } else { 7277 for (i = 0; i < KVM_NR_DB_REGS; i++) 7278 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 7279 } 7280 kvm_update_dr7(vcpu); 7281 7282 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7283 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 7284 get_segment_base(vcpu, VCPU_SREG_CS); 7285 7286 /* 7287 * Trigger an rflags update that will inject or remove the trace 7288 * flags. 7289 */ 7290 kvm_set_rflags(vcpu, rflags); 7291 7292 kvm_x86_ops->update_bp_intercept(vcpu); 7293 7294 r = 0; 7295 7296 out: 7297 7298 return r; 7299 } 7300 7301 /* 7302 * Translate a guest virtual address to a guest physical address. 7303 */ 7304 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 7305 struct kvm_translation *tr) 7306 { 7307 unsigned long vaddr = tr->linear_address; 7308 gpa_t gpa; 7309 int idx; 7310 7311 idx = srcu_read_lock(&vcpu->kvm->srcu); 7312 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 7313 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7314 tr->physical_address = gpa; 7315 tr->valid = gpa != UNMAPPED_GVA; 7316 tr->writeable = 1; 7317 tr->usermode = 0; 7318 7319 return 0; 7320 } 7321 7322 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 7323 { 7324 struct fxregs_state *fxsave = 7325 &vcpu->arch.guest_fpu.state.fxsave; 7326 7327 memcpy(fpu->fpr, fxsave->st_space, 128); 7328 fpu->fcw = fxsave->cwd; 7329 fpu->fsw = fxsave->swd; 7330 fpu->ftwx = fxsave->twd; 7331 fpu->last_opcode = fxsave->fop; 7332 fpu->last_ip = fxsave->rip; 7333 fpu->last_dp = fxsave->rdp; 7334 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 7335 7336 return 0; 7337 } 7338 7339 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 7340 { 7341 struct fxregs_state *fxsave = 7342 &vcpu->arch.guest_fpu.state.fxsave; 7343 7344 memcpy(fxsave->st_space, fpu->fpr, 128); 7345 fxsave->cwd = fpu->fcw; 7346 fxsave->swd = fpu->fsw; 7347 fxsave->twd = fpu->ftwx; 7348 fxsave->fop = fpu->last_opcode; 7349 fxsave->rip = fpu->last_ip; 7350 fxsave->rdp = fpu->last_dp; 7351 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 7352 7353 return 0; 7354 } 7355 7356 static void fx_init(struct kvm_vcpu *vcpu) 7357 { 7358 fpstate_init(&vcpu->arch.guest_fpu.state); 7359 if (boot_cpu_has(X86_FEATURE_XSAVES)) 7360 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = 7361 host_xcr0 | XSTATE_COMPACTION_ENABLED; 7362 7363 /* 7364 * Ensure guest xcr0 is valid for loading 7365 */ 7366 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 7367 7368 vcpu->arch.cr0 |= X86_CR0_ET; 7369 } 7370 7371 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 7372 { 7373 if (vcpu->guest_fpu_loaded) 7374 return; 7375 7376 /* 7377 * Restore all possible states in the guest, 7378 * and assume host would use all available bits. 7379 * Guest xcr0 would be loaded later. 7380 */ 7381 vcpu->guest_fpu_loaded = 1; 7382 __kernel_fpu_begin(); 7383 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state); 7384 trace_kvm_fpu(1); 7385 } 7386 7387 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 7388 { 7389 if (!vcpu->guest_fpu_loaded) { 7390 vcpu->fpu_counter = 0; 7391 return; 7392 } 7393 7394 vcpu->guest_fpu_loaded = 0; 7395 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); 7396 __kernel_fpu_end(); 7397 ++vcpu->stat.fpu_reload; 7398 /* 7399 * If using eager FPU mode, or if the guest is a frequent user 7400 * of the FPU, just leave the FPU active for next time. 7401 * Every 255 times fpu_counter rolls over to 0; a guest that uses 7402 * the FPU in bursts will revert to loading it on demand. 7403 */ 7404 if (!use_eager_fpu()) { 7405 if (++vcpu->fpu_counter < 5) 7406 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 7407 } 7408 trace_kvm_fpu(0); 7409 } 7410 7411 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 7412 { 7413 kvmclock_reset(vcpu); 7414 7415 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 7416 kvm_x86_ops->vcpu_free(vcpu); 7417 } 7418 7419 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 7420 unsigned int id) 7421 { 7422 struct kvm_vcpu *vcpu; 7423 7424 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 7425 printk_once(KERN_WARNING 7426 "kvm: SMP vm created on host with unstable TSC; " 7427 "guest TSC will not be reliable\n"); 7428 7429 vcpu = kvm_x86_ops->vcpu_create(kvm, id); 7430 7431 return vcpu; 7432 } 7433 7434 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 7435 { 7436 int r; 7437 7438 kvm_vcpu_mtrr_init(vcpu); 7439 r = vcpu_load(vcpu); 7440 if (r) 7441 return r; 7442 kvm_vcpu_reset(vcpu, false); 7443 kvm_mmu_setup(vcpu); 7444 vcpu_put(vcpu); 7445 return r; 7446 } 7447 7448 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 7449 { 7450 struct msr_data msr; 7451 struct kvm *kvm = vcpu->kvm; 7452 7453 if (vcpu_load(vcpu)) 7454 return; 7455 msr.data = 0x0; 7456 msr.index = MSR_IA32_TSC; 7457 msr.host_initiated = true; 7458 kvm_write_tsc(vcpu, &msr); 7459 vcpu_put(vcpu); 7460 7461 if (!kvmclock_periodic_sync) 7462 return; 7463 7464 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 7465 KVMCLOCK_SYNC_PERIOD); 7466 } 7467 7468 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 7469 { 7470 int r; 7471 vcpu->arch.apf.msr_val = 0; 7472 7473 r = vcpu_load(vcpu); 7474 BUG_ON(r); 7475 kvm_mmu_unload(vcpu); 7476 vcpu_put(vcpu); 7477 7478 kvm_x86_ops->vcpu_free(vcpu); 7479 } 7480 7481 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 7482 { 7483 vcpu->arch.hflags = 0; 7484 7485 vcpu->arch.smi_pending = 0; 7486 atomic_set(&vcpu->arch.nmi_queued, 0); 7487 vcpu->arch.nmi_pending = 0; 7488 vcpu->arch.nmi_injected = false; 7489 kvm_clear_interrupt_queue(vcpu); 7490 kvm_clear_exception_queue(vcpu); 7491 7492 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 7493 kvm_update_dr0123(vcpu); 7494 vcpu->arch.dr6 = DR6_INIT; 7495 kvm_update_dr6(vcpu); 7496 vcpu->arch.dr7 = DR7_FIXED_1; 7497 kvm_update_dr7(vcpu); 7498 7499 vcpu->arch.cr2 = 0; 7500 7501 kvm_make_request(KVM_REQ_EVENT, vcpu); 7502 vcpu->arch.apf.msr_val = 0; 7503 vcpu->arch.st.msr_val = 0; 7504 7505 kvmclock_reset(vcpu); 7506 7507 kvm_clear_async_pf_completion_queue(vcpu); 7508 kvm_async_pf_hash_reset(vcpu); 7509 vcpu->arch.apf.halted = false; 7510 7511 if (!init_event) { 7512 kvm_pmu_reset(vcpu); 7513 vcpu->arch.smbase = 0x30000; 7514 } 7515 7516 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 7517 vcpu->arch.regs_avail = ~0; 7518 vcpu->arch.regs_dirty = ~0; 7519 7520 kvm_x86_ops->vcpu_reset(vcpu, init_event); 7521 } 7522 7523 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 7524 { 7525 struct kvm_segment cs; 7526 7527 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7528 cs.selector = vector << 8; 7529 cs.base = vector << 12; 7530 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 7531 kvm_rip_write(vcpu, 0); 7532 } 7533 7534 int kvm_arch_hardware_enable(void) 7535 { 7536 struct kvm *kvm; 7537 struct kvm_vcpu *vcpu; 7538 int i; 7539 int ret; 7540 u64 local_tsc; 7541 u64 max_tsc = 0; 7542 bool stable, backwards_tsc = false; 7543 7544 kvm_shared_msr_cpu_online(); 7545 ret = kvm_x86_ops->hardware_enable(); 7546 if (ret != 0) 7547 return ret; 7548 7549 local_tsc = rdtsc(); 7550 stable = !check_tsc_unstable(); 7551 list_for_each_entry(kvm, &vm_list, vm_list) { 7552 kvm_for_each_vcpu(i, vcpu, kvm) { 7553 if (!stable && vcpu->cpu == smp_processor_id()) 7554 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7555 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 7556 backwards_tsc = true; 7557 if (vcpu->arch.last_host_tsc > max_tsc) 7558 max_tsc = vcpu->arch.last_host_tsc; 7559 } 7560 } 7561 } 7562 7563 /* 7564 * Sometimes, even reliable TSCs go backwards. This happens on 7565 * platforms that reset TSC during suspend or hibernate actions, but 7566 * maintain synchronization. We must compensate. Fortunately, we can 7567 * detect that condition here, which happens early in CPU bringup, 7568 * before any KVM threads can be running. Unfortunately, we can't 7569 * bring the TSCs fully up to date with real time, as we aren't yet far 7570 * enough into CPU bringup that we know how much real time has actually 7571 * elapsed; our helper function, ktime_get_boot_ns() will be using boot 7572 * variables that haven't been updated yet. 7573 * 7574 * So we simply find the maximum observed TSC above, then record the 7575 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 7576 * the adjustment will be applied. Note that we accumulate 7577 * adjustments, in case multiple suspend cycles happen before some VCPU 7578 * gets a chance to run again. In the event that no KVM threads get a 7579 * chance to run, we will miss the entire elapsed period, as we'll have 7580 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 7581 * loose cycle time. This isn't too big a deal, since the loss will be 7582 * uniform across all VCPUs (not to mention the scenario is extremely 7583 * unlikely). It is possible that a second hibernate recovery happens 7584 * much faster than a first, causing the observed TSC here to be 7585 * smaller; this would require additional padding adjustment, which is 7586 * why we set last_host_tsc to the local tsc observed here. 7587 * 7588 * N.B. - this code below runs only on platforms with reliable TSC, 7589 * as that is the only way backwards_tsc is set above. Also note 7590 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 7591 * have the same delta_cyc adjustment applied if backwards_tsc 7592 * is detected. Note further, this adjustment is only done once, 7593 * as we reset last_host_tsc on all VCPUs to stop this from being 7594 * called multiple times (one for each physical CPU bringup). 7595 * 7596 * Platforms with unreliable TSCs don't have to deal with this, they 7597 * will be compensated by the logic in vcpu_load, which sets the TSC to 7598 * catchup mode. This will catchup all VCPUs to real time, but cannot 7599 * guarantee that they stay in perfect synchronization. 7600 */ 7601 if (backwards_tsc) { 7602 u64 delta_cyc = max_tsc - local_tsc; 7603 backwards_tsc_observed = true; 7604 list_for_each_entry(kvm, &vm_list, vm_list) { 7605 kvm_for_each_vcpu(i, vcpu, kvm) { 7606 vcpu->arch.tsc_offset_adjustment += delta_cyc; 7607 vcpu->arch.last_host_tsc = local_tsc; 7608 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7609 } 7610 7611 /* 7612 * We have to disable TSC offset matching.. if you were 7613 * booting a VM while issuing an S4 host suspend.... 7614 * you may have some problem. Solving this issue is 7615 * left as an exercise to the reader. 7616 */ 7617 kvm->arch.last_tsc_nsec = 0; 7618 kvm->arch.last_tsc_write = 0; 7619 } 7620 7621 } 7622 return 0; 7623 } 7624 7625 void kvm_arch_hardware_disable(void) 7626 { 7627 kvm_x86_ops->hardware_disable(); 7628 drop_user_return_notifiers(); 7629 } 7630 7631 int kvm_arch_hardware_setup(void) 7632 { 7633 int r; 7634 7635 r = kvm_x86_ops->hardware_setup(); 7636 if (r != 0) 7637 return r; 7638 7639 if (kvm_has_tsc_control) { 7640 /* 7641 * Make sure the user can only configure tsc_khz values that 7642 * fit into a signed integer. 7643 * A min value is not calculated needed because it will always 7644 * be 1 on all machines. 7645 */ 7646 u64 max = min(0x7fffffffULL, 7647 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 7648 kvm_max_guest_tsc_khz = max; 7649 7650 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 7651 } 7652 7653 kvm_init_msr_list(); 7654 return 0; 7655 } 7656 7657 void kvm_arch_hardware_unsetup(void) 7658 { 7659 kvm_x86_ops->hardware_unsetup(); 7660 } 7661 7662 void kvm_arch_check_processor_compat(void *rtn) 7663 { 7664 kvm_x86_ops->check_processor_compatibility(rtn); 7665 } 7666 7667 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 7668 { 7669 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 7670 } 7671 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 7672 7673 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 7674 { 7675 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 7676 } 7677 7678 struct static_key kvm_no_apic_vcpu __read_mostly; 7679 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 7680 7681 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 7682 { 7683 struct page *page; 7684 struct kvm *kvm; 7685 int r; 7686 7687 BUG_ON(vcpu->kvm == NULL); 7688 kvm = vcpu->kvm; 7689 7690 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(); 7691 vcpu->arch.pv.pv_unhalted = false; 7692 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 7693 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 7694 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7695 else 7696 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 7697 7698 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 7699 if (!page) { 7700 r = -ENOMEM; 7701 goto fail; 7702 } 7703 vcpu->arch.pio_data = page_address(page); 7704 7705 kvm_set_tsc_khz(vcpu, max_tsc_khz); 7706 7707 r = kvm_mmu_create(vcpu); 7708 if (r < 0) 7709 goto fail_free_pio_data; 7710 7711 if (irqchip_in_kernel(kvm)) { 7712 r = kvm_create_lapic(vcpu); 7713 if (r < 0) 7714 goto fail_mmu_destroy; 7715 } else 7716 static_key_slow_inc(&kvm_no_apic_vcpu); 7717 7718 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 7719 GFP_KERNEL); 7720 if (!vcpu->arch.mce_banks) { 7721 r = -ENOMEM; 7722 goto fail_free_lapic; 7723 } 7724 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 7725 7726 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 7727 r = -ENOMEM; 7728 goto fail_free_mce_banks; 7729 } 7730 7731 fx_init(vcpu); 7732 7733 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 7734 vcpu->arch.pv_time_enabled = false; 7735 7736 vcpu->arch.guest_supported_xcr0 = 0; 7737 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 7738 7739 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 7740 7741 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 7742 7743 kvm_async_pf_hash_reset(vcpu); 7744 kvm_pmu_init(vcpu); 7745 7746 vcpu->arch.pending_external_vector = -1; 7747 7748 kvm_hv_vcpu_init(vcpu); 7749 7750 return 0; 7751 7752 fail_free_mce_banks: 7753 kfree(vcpu->arch.mce_banks); 7754 fail_free_lapic: 7755 kvm_free_lapic(vcpu); 7756 fail_mmu_destroy: 7757 kvm_mmu_destroy(vcpu); 7758 fail_free_pio_data: 7759 free_page((unsigned long)vcpu->arch.pio_data); 7760 fail: 7761 return r; 7762 } 7763 7764 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 7765 { 7766 int idx; 7767 7768 kvm_hv_vcpu_uninit(vcpu); 7769 kvm_pmu_destroy(vcpu); 7770 kfree(vcpu->arch.mce_banks); 7771 kvm_free_lapic(vcpu); 7772 idx = srcu_read_lock(&vcpu->kvm->srcu); 7773 kvm_mmu_destroy(vcpu); 7774 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7775 free_page((unsigned long)vcpu->arch.pio_data); 7776 if (!lapic_in_kernel(vcpu)) 7777 static_key_slow_dec(&kvm_no_apic_vcpu); 7778 } 7779 7780 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 7781 { 7782 kvm_x86_ops->sched_in(vcpu, cpu); 7783 } 7784 7785 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 7786 { 7787 if (type) 7788 return -EINVAL; 7789 7790 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 7791 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 7792 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 7793 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 7794 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 7795 7796 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 7797 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 7798 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 7799 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 7800 &kvm->arch.irq_sources_bitmap); 7801 7802 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 7803 mutex_init(&kvm->arch.apic_map_lock); 7804 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 7805 7806 kvm->arch.kvmclock_offset = -ktime_get_boot_ns(); 7807 pvclock_update_vm_gtod_copy(kvm); 7808 7809 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 7810 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 7811 7812 kvm_page_track_init(kvm); 7813 kvm_mmu_init_vm(kvm); 7814 7815 if (kvm_x86_ops->vm_init) 7816 return kvm_x86_ops->vm_init(kvm); 7817 7818 return 0; 7819 } 7820 7821 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 7822 { 7823 int r; 7824 r = vcpu_load(vcpu); 7825 BUG_ON(r); 7826 kvm_mmu_unload(vcpu); 7827 vcpu_put(vcpu); 7828 } 7829 7830 static void kvm_free_vcpus(struct kvm *kvm) 7831 { 7832 unsigned int i; 7833 struct kvm_vcpu *vcpu; 7834 7835 /* 7836 * Unpin any mmu pages first. 7837 */ 7838 kvm_for_each_vcpu(i, vcpu, kvm) { 7839 kvm_clear_async_pf_completion_queue(vcpu); 7840 kvm_unload_vcpu_mmu(vcpu); 7841 } 7842 kvm_for_each_vcpu(i, vcpu, kvm) 7843 kvm_arch_vcpu_free(vcpu); 7844 7845 mutex_lock(&kvm->lock); 7846 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 7847 kvm->vcpus[i] = NULL; 7848 7849 atomic_set(&kvm->online_vcpus, 0); 7850 mutex_unlock(&kvm->lock); 7851 } 7852 7853 void kvm_arch_sync_events(struct kvm *kvm) 7854 { 7855 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 7856 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 7857 kvm_free_all_assigned_devices(kvm); 7858 kvm_free_pit(kvm); 7859 } 7860 7861 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 7862 { 7863 int i, r; 7864 unsigned long hva; 7865 struct kvm_memslots *slots = kvm_memslots(kvm); 7866 struct kvm_memory_slot *slot, old; 7867 7868 /* Called with kvm->slots_lock held. */ 7869 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 7870 return -EINVAL; 7871 7872 slot = id_to_memslot(slots, id); 7873 if (size) { 7874 if (slot->npages) 7875 return -EEXIST; 7876 7877 /* 7878 * MAP_SHARED to prevent internal slot pages from being moved 7879 * by fork()/COW. 7880 */ 7881 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 7882 MAP_SHARED | MAP_ANONYMOUS, 0); 7883 if (IS_ERR((void *)hva)) 7884 return PTR_ERR((void *)hva); 7885 } else { 7886 if (!slot->npages) 7887 return 0; 7888 7889 hva = 0; 7890 } 7891 7892 old = *slot; 7893 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 7894 struct kvm_userspace_memory_region m; 7895 7896 m.slot = id | (i << 16); 7897 m.flags = 0; 7898 m.guest_phys_addr = gpa; 7899 m.userspace_addr = hva; 7900 m.memory_size = size; 7901 r = __kvm_set_memory_region(kvm, &m); 7902 if (r < 0) 7903 return r; 7904 } 7905 7906 if (!size) { 7907 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); 7908 WARN_ON(r < 0); 7909 } 7910 7911 return 0; 7912 } 7913 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 7914 7915 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 7916 { 7917 int r; 7918 7919 mutex_lock(&kvm->slots_lock); 7920 r = __x86_set_memory_region(kvm, id, gpa, size); 7921 mutex_unlock(&kvm->slots_lock); 7922 7923 return r; 7924 } 7925 EXPORT_SYMBOL_GPL(x86_set_memory_region); 7926 7927 void kvm_arch_destroy_vm(struct kvm *kvm) 7928 { 7929 if (current->mm == kvm->mm) { 7930 /* 7931 * Free memory regions allocated on behalf of userspace, 7932 * unless the the memory map has changed due to process exit 7933 * or fd copying. 7934 */ 7935 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 7936 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); 7937 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 7938 } 7939 if (kvm_x86_ops->vm_destroy) 7940 kvm_x86_ops->vm_destroy(kvm); 7941 kvm_iommu_unmap_guest(kvm); 7942 kfree(kvm->arch.vpic); 7943 kfree(kvm->arch.vioapic); 7944 kvm_free_vcpus(kvm); 7945 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 7946 kvm_mmu_uninit_vm(kvm); 7947 } 7948 7949 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 7950 struct kvm_memory_slot *dont) 7951 { 7952 int i; 7953 7954 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7955 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 7956 kvfree(free->arch.rmap[i]); 7957 free->arch.rmap[i] = NULL; 7958 } 7959 if (i == 0) 7960 continue; 7961 7962 if (!dont || free->arch.lpage_info[i - 1] != 7963 dont->arch.lpage_info[i - 1]) { 7964 kvfree(free->arch.lpage_info[i - 1]); 7965 free->arch.lpage_info[i - 1] = NULL; 7966 } 7967 } 7968 7969 kvm_page_track_free_memslot(free, dont); 7970 } 7971 7972 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 7973 unsigned long npages) 7974 { 7975 int i; 7976 7977 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7978 struct kvm_lpage_info *linfo; 7979 unsigned long ugfn; 7980 int lpages; 7981 int level = i + 1; 7982 7983 lpages = gfn_to_index(slot->base_gfn + npages - 1, 7984 slot->base_gfn, level) + 1; 7985 7986 slot->arch.rmap[i] = 7987 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 7988 if (!slot->arch.rmap[i]) 7989 goto out_free; 7990 if (i == 0) 7991 continue; 7992 7993 linfo = kvm_kvzalloc(lpages * sizeof(*linfo)); 7994 if (!linfo) 7995 goto out_free; 7996 7997 slot->arch.lpage_info[i - 1] = linfo; 7998 7999 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 8000 linfo[0].disallow_lpage = 1; 8001 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 8002 linfo[lpages - 1].disallow_lpage = 1; 8003 ugfn = slot->userspace_addr >> PAGE_SHIFT; 8004 /* 8005 * If the gfn and userspace address are not aligned wrt each 8006 * other, or if explicitly asked to, disable large page 8007 * support for this slot 8008 */ 8009 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 8010 !kvm_largepages_enabled()) { 8011 unsigned long j; 8012 8013 for (j = 0; j < lpages; ++j) 8014 linfo[j].disallow_lpage = 1; 8015 } 8016 } 8017 8018 if (kvm_page_track_create_memslot(slot, npages)) 8019 goto out_free; 8020 8021 return 0; 8022 8023 out_free: 8024 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8025 kvfree(slot->arch.rmap[i]); 8026 slot->arch.rmap[i] = NULL; 8027 if (i == 0) 8028 continue; 8029 8030 kvfree(slot->arch.lpage_info[i - 1]); 8031 slot->arch.lpage_info[i - 1] = NULL; 8032 } 8033 return -ENOMEM; 8034 } 8035 8036 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots) 8037 { 8038 /* 8039 * memslots->generation has been incremented. 8040 * mmio generation may have reached its maximum value. 8041 */ 8042 kvm_mmu_invalidate_mmio_sptes(kvm, slots); 8043 } 8044 8045 int kvm_arch_prepare_memory_region(struct kvm *kvm, 8046 struct kvm_memory_slot *memslot, 8047 const struct kvm_userspace_memory_region *mem, 8048 enum kvm_mr_change change) 8049 { 8050 return 0; 8051 } 8052 8053 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 8054 struct kvm_memory_slot *new) 8055 { 8056 /* Still write protect RO slot */ 8057 if (new->flags & KVM_MEM_READONLY) { 8058 kvm_mmu_slot_remove_write_access(kvm, new); 8059 return; 8060 } 8061 8062 /* 8063 * Call kvm_x86_ops dirty logging hooks when they are valid. 8064 * 8065 * kvm_x86_ops->slot_disable_log_dirty is called when: 8066 * 8067 * - KVM_MR_CREATE with dirty logging is disabled 8068 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag 8069 * 8070 * The reason is, in case of PML, we need to set D-bit for any slots 8071 * with dirty logging disabled in order to eliminate unnecessary GPA 8072 * logging in PML buffer (and potential PML buffer full VMEXT). This 8073 * guarantees leaving PML enabled during guest's lifetime won't have 8074 * any additonal overhead from PML when guest is running with dirty 8075 * logging disabled for memory slots. 8076 * 8077 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot 8078 * to dirty logging mode. 8079 * 8080 * If kvm_x86_ops dirty logging hooks are invalid, use write protect. 8081 * 8082 * In case of write protect: 8083 * 8084 * Write protect all pages for dirty logging. 8085 * 8086 * All the sptes including the large sptes which point to this 8087 * slot are set to readonly. We can not create any new large 8088 * spte on this slot until the end of the logging. 8089 * 8090 * See the comments in fast_page_fault(). 8091 */ 8092 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 8093 if (kvm_x86_ops->slot_enable_log_dirty) 8094 kvm_x86_ops->slot_enable_log_dirty(kvm, new); 8095 else 8096 kvm_mmu_slot_remove_write_access(kvm, new); 8097 } else { 8098 if (kvm_x86_ops->slot_disable_log_dirty) 8099 kvm_x86_ops->slot_disable_log_dirty(kvm, new); 8100 } 8101 } 8102 8103 void kvm_arch_commit_memory_region(struct kvm *kvm, 8104 const struct kvm_userspace_memory_region *mem, 8105 const struct kvm_memory_slot *old, 8106 const struct kvm_memory_slot *new, 8107 enum kvm_mr_change change) 8108 { 8109 int nr_mmu_pages = 0; 8110 8111 if (!kvm->arch.n_requested_mmu_pages) 8112 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 8113 8114 if (nr_mmu_pages) 8115 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 8116 8117 /* 8118 * Dirty logging tracks sptes in 4k granularity, meaning that large 8119 * sptes have to be split. If live migration is successful, the guest 8120 * in the source machine will be destroyed and large sptes will be 8121 * created in the destination. However, if the guest continues to run 8122 * in the source machine (for example if live migration fails), small 8123 * sptes will remain around and cause bad performance. 8124 * 8125 * Scan sptes if dirty logging has been stopped, dropping those 8126 * which can be collapsed into a single large-page spte. Later 8127 * page faults will create the large-page sptes. 8128 */ 8129 if ((change != KVM_MR_DELETE) && 8130 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 8131 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 8132 kvm_mmu_zap_collapsible_sptes(kvm, new); 8133 8134 /* 8135 * Set up write protection and/or dirty logging for the new slot. 8136 * 8137 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have 8138 * been zapped so no dirty logging staff is needed for old slot. For 8139 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the 8140 * new and it's also covered when dealing with the new slot. 8141 * 8142 * FIXME: const-ify all uses of struct kvm_memory_slot. 8143 */ 8144 if (change != KVM_MR_DELETE) 8145 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); 8146 } 8147 8148 void kvm_arch_flush_shadow_all(struct kvm *kvm) 8149 { 8150 kvm_mmu_invalidate_zap_all_pages(kvm); 8151 } 8152 8153 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 8154 struct kvm_memory_slot *slot) 8155 { 8156 kvm_mmu_invalidate_zap_all_pages(kvm); 8157 } 8158 8159 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 8160 { 8161 if (!list_empty_careful(&vcpu->async_pf.done)) 8162 return true; 8163 8164 if (kvm_apic_has_events(vcpu)) 8165 return true; 8166 8167 if (vcpu->arch.pv.pv_unhalted) 8168 return true; 8169 8170 if (atomic_read(&vcpu->arch.nmi_queued)) 8171 return true; 8172 8173 if (test_bit(KVM_REQ_SMI, &vcpu->requests)) 8174 return true; 8175 8176 if (kvm_arch_interrupt_allowed(vcpu) && 8177 kvm_cpu_has_interrupt(vcpu)) 8178 return true; 8179 8180 if (kvm_hv_has_stimer_pending(vcpu)) 8181 return true; 8182 8183 return false; 8184 } 8185 8186 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 8187 { 8188 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 8189 kvm_x86_ops->check_nested_events(vcpu, false); 8190 8191 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 8192 } 8193 8194 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 8195 { 8196 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 8197 } 8198 8199 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 8200 { 8201 return kvm_x86_ops->interrupt_allowed(vcpu); 8202 } 8203 8204 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 8205 { 8206 if (is_64_bit_mode(vcpu)) 8207 return kvm_rip_read(vcpu); 8208 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 8209 kvm_rip_read(vcpu)); 8210 } 8211 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 8212 8213 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 8214 { 8215 return kvm_get_linear_rip(vcpu) == linear_rip; 8216 } 8217 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 8218 8219 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 8220 { 8221 unsigned long rflags; 8222 8223 rflags = kvm_x86_ops->get_rflags(vcpu); 8224 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 8225 rflags &= ~X86_EFLAGS_TF; 8226 return rflags; 8227 } 8228 EXPORT_SYMBOL_GPL(kvm_get_rflags); 8229 8230 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 8231 { 8232 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 8233 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 8234 rflags |= X86_EFLAGS_TF; 8235 kvm_x86_ops->set_rflags(vcpu, rflags); 8236 } 8237 8238 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 8239 { 8240 __kvm_set_rflags(vcpu, rflags); 8241 kvm_make_request(KVM_REQ_EVENT, vcpu); 8242 } 8243 EXPORT_SYMBOL_GPL(kvm_set_rflags); 8244 8245 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 8246 { 8247 int r; 8248 8249 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 8250 work->wakeup_all) 8251 return; 8252 8253 r = kvm_mmu_reload(vcpu); 8254 if (unlikely(r)) 8255 return; 8256 8257 if (!vcpu->arch.mmu.direct_map && 8258 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 8259 return; 8260 8261 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 8262 } 8263 8264 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 8265 { 8266 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 8267 } 8268 8269 static inline u32 kvm_async_pf_next_probe(u32 key) 8270 { 8271 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 8272 } 8273 8274 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8275 { 8276 u32 key = kvm_async_pf_hash_fn(gfn); 8277 8278 while (vcpu->arch.apf.gfns[key] != ~0) 8279 key = kvm_async_pf_next_probe(key); 8280 8281 vcpu->arch.apf.gfns[key] = gfn; 8282 } 8283 8284 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 8285 { 8286 int i; 8287 u32 key = kvm_async_pf_hash_fn(gfn); 8288 8289 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 8290 (vcpu->arch.apf.gfns[key] != gfn && 8291 vcpu->arch.apf.gfns[key] != ~0); i++) 8292 key = kvm_async_pf_next_probe(key); 8293 8294 return key; 8295 } 8296 8297 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8298 { 8299 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 8300 } 8301 8302 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8303 { 8304 u32 i, j, k; 8305 8306 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 8307 while (true) { 8308 vcpu->arch.apf.gfns[i] = ~0; 8309 do { 8310 j = kvm_async_pf_next_probe(j); 8311 if (vcpu->arch.apf.gfns[j] == ~0) 8312 return; 8313 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 8314 /* 8315 * k lies cyclically in ]i,j] 8316 * | i.k.j | 8317 * |....j i.k.| or |.k..j i...| 8318 */ 8319 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 8320 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 8321 i = j; 8322 } 8323 } 8324 8325 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 8326 { 8327 8328 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 8329 sizeof(val)); 8330 } 8331 8332 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 8333 struct kvm_async_pf *work) 8334 { 8335 struct x86_exception fault; 8336 8337 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 8338 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 8339 8340 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 8341 (vcpu->arch.apf.send_user_only && 8342 kvm_x86_ops->get_cpl(vcpu) == 0)) 8343 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 8344 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 8345 fault.vector = PF_VECTOR; 8346 fault.error_code_valid = true; 8347 fault.error_code = 0; 8348 fault.nested_page_fault = false; 8349 fault.address = work->arch.token; 8350 kvm_inject_page_fault(vcpu, &fault); 8351 } 8352 } 8353 8354 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 8355 struct kvm_async_pf *work) 8356 { 8357 struct x86_exception fault; 8358 8359 trace_kvm_async_pf_ready(work->arch.token, work->gva); 8360 if (work->wakeup_all) 8361 work->arch.token = ~0; /* broadcast wakeup */ 8362 else 8363 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 8364 8365 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 8366 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 8367 fault.vector = PF_VECTOR; 8368 fault.error_code_valid = true; 8369 fault.error_code = 0; 8370 fault.nested_page_fault = false; 8371 fault.address = work->arch.token; 8372 kvm_inject_page_fault(vcpu, &fault); 8373 } 8374 vcpu->arch.apf.halted = false; 8375 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 8376 } 8377 8378 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 8379 { 8380 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 8381 return true; 8382 else 8383 return !kvm_event_needs_reinjection(vcpu) && 8384 kvm_x86_ops->interrupt_allowed(vcpu); 8385 } 8386 8387 void kvm_arch_start_assignment(struct kvm *kvm) 8388 { 8389 atomic_inc(&kvm->arch.assigned_device_count); 8390 } 8391 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 8392 8393 void kvm_arch_end_assignment(struct kvm *kvm) 8394 { 8395 atomic_dec(&kvm->arch.assigned_device_count); 8396 } 8397 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 8398 8399 bool kvm_arch_has_assigned_device(struct kvm *kvm) 8400 { 8401 return atomic_read(&kvm->arch.assigned_device_count); 8402 } 8403 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 8404 8405 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 8406 { 8407 atomic_inc(&kvm->arch.noncoherent_dma_count); 8408 } 8409 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 8410 8411 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 8412 { 8413 atomic_dec(&kvm->arch.noncoherent_dma_count); 8414 } 8415 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 8416 8417 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 8418 { 8419 return atomic_read(&kvm->arch.noncoherent_dma_count); 8420 } 8421 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 8422 8423 bool kvm_arch_has_irq_bypass(void) 8424 { 8425 return kvm_x86_ops->update_pi_irte != NULL; 8426 } 8427 8428 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 8429 struct irq_bypass_producer *prod) 8430 { 8431 struct kvm_kernel_irqfd *irqfd = 8432 container_of(cons, struct kvm_kernel_irqfd, consumer); 8433 8434 irqfd->producer = prod; 8435 8436 return kvm_x86_ops->update_pi_irte(irqfd->kvm, 8437 prod->irq, irqfd->gsi, 1); 8438 } 8439 8440 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 8441 struct irq_bypass_producer *prod) 8442 { 8443 int ret; 8444 struct kvm_kernel_irqfd *irqfd = 8445 container_of(cons, struct kvm_kernel_irqfd, consumer); 8446 8447 WARN_ON(irqfd->producer != prod); 8448 irqfd->producer = NULL; 8449 8450 /* 8451 * When producer of consumer is unregistered, we change back to 8452 * remapped mode, so we can re-use the current implementation 8453 * when the irq is masked/disabled or the consumer side (KVM 8454 * int this case doesn't want to receive the interrupts. 8455 */ 8456 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 8457 if (ret) 8458 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 8459 " fails: %d\n", irqfd->consumer.token, ret); 8460 } 8461 8462 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 8463 uint32_t guest_irq, bool set) 8464 { 8465 if (!kvm_x86_ops->update_pi_irte) 8466 return -EINVAL; 8467 8468 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); 8469 } 8470 8471 bool kvm_vector_hashing_enabled(void) 8472 { 8473 return vector_hashing; 8474 } 8475 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); 8476 8477 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 8478 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 8479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 8480 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 8481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 8482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 8483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 8484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 8485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 8486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 8487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 8488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 8489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 8490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 8491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); 8492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 8493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 8494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 8495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 8496