xref: /openbmc/linux/arch/x86/kvm/x86.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 
61 #include <trace/events/kvm.h>
62 
63 #include <asm/debugreg.h>
64 #include <asm/msr.h>
65 #include <asm/desc.h>
66 #include <asm/mce.h>
67 #include <linux/kernel_stat.h>
68 #include <asm/fpu/internal.h> /* Ugh! */
69 #include <asm/pvclock.h>
70 #include <asm/div64.h>
71 #include <asm/irq_remapping.h>
72 #include <asm/mshyperv.h>
73 #include <asm/hypervisor.h>
74 #include <asm/tlbflush.h>
75 #include <asm/intel_pt.h>
76 #include <asm/emulate_prefix.h>
77 #include <clocksource/hyperv_timer.h>
78 
79 #define CREATE_TRACE_POINTS
80 #include "trace.h"
81 
82 #define MAX_IO_MSRS 256
83 #define KVM_MAX_MCE_BANKS 32
84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
86 
87 #define emul_to_vcpu(ctxt) \
88 	((struct kvm_vcpu *)(ctxt)->vcpu)
89 
90 /* EFER defaults:
91  * - enable syscall per default because its emulated by KVM
92  * - enable LME and LMA per default on 64 bit KVM
93  */
94 #ifdef CONFIG_X86_64
95 static
96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
97 #else
98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
99 #endif
100 
101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102 
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105 
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112 
113 struct kvm_x86_ops kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115 
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118 
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121 
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124 
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127 
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32  __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64  __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138 
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142 
143 /*
144  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
145  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
146  * advancement entirely.  Any other value is used as-is and disables adaptive
147  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148  */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151 
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154 
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158 
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161 
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164 
165 /*
166  * Restoring the host value for MSRs that are only consumed when running in
167  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
168  * returns to userspace, i.e. the kernel can run with the guest's value.
169  */
170 #define KVM_MAX_NR_USER_RETURN_MSRS 16
171 
172 struct kvm_user_return_msrs_global {
173 	int nr;
174 	u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
175 };
176 
177 struct kvm_user_return_msrs {
178 	struct user_return_notifier urn;
179 	bool registered;
180 	struct kvm_user_return_msr_values {
181 		u64 host;
182 		u64 curr;
183 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
184 };
185 
186 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
187 static struct kvm_user_return_msrs __percpu *user_return_msrs;
188 
189 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
190 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
191 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
192 				| XFEATURE_MASK_PKRU)
193 
194 u64 __read_mostly host_efer;
195 EXPORT_SYMBOL_GPL(host_efer);
196 
197 bool __read_mostly allow_smaller_maxphyaddr = 0;
198 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
199 
200 static u64 __read_mostly host_xss;
201 u64 __read_mostly supported_xss;
202 EXPORT_SYMBOL_GPL(supported_xss);
203 
204 struct kvm_stats_debugfs_item debugfs_entries[] = {
205 	VCPU_STAT("pf_fixed", pf_fixed),
206 	VCPU_STAT("pf_guest", pf_guest),
207 	VCPU_STAT("tlb_flush", tlb_flush),
208 	VCPU_STAT("invlpg", invlpg),
209 	VCPU_STAT("exits", exits),
210 	VCPU_STAT("io_exits", io_exits),
211 	VCPU_STAT("mmio_exits", mmio_exits),
212 	VCPU_STAT("signal_exits", signal_exits),
213 	VCPU_STAT("irq_window", irq_window_exits),
214 	VCPU_STAT("nmi_window", nmi_window_exits),
215 	VCPU_STAT("halt_exits", halt_exits),
216 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
217 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
218 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
219 	VCPU_STAT("halt_wakeup", halt_wakeup),
220 	VCPU_STAT("hypercalls", hypercalls),
221 	VCPU_STAT("request_irq", request_irq_exits),
222 	VCPU_STAT("irq_exits", irq_exits),
223 	VCPU_STAT("host_state_reload", host_state_reload),
224 	VCPU_STAT("fpu_reload", fpu_reload),
225 	VCPU_STAT("insn_emulation", insn_emulation),
226 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
227 	VCPU_STAT("irq_injections", irq_injections),
228 	VCPU_STAT("nmi_injections", nmi_injections),
229 	VCPU_STAT("req_event", req_event),
230 	VCPU_STAT("l1d_flush", l1d_flush),
231 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
232 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
233 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
234 	VM_STAT("mmu_pte_write", mmu_pte_write),
235 	VM_STAT("mmu_pte_updated", mmu_pte_updated),
236 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
237 	VM_STAT("mmu_flooded", mmu_flooded),
238 	VM_STAT("mmu_recycled", mmu_recycled),
239 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
240 	VM_STAT("mmu_unsync", mmu_unsync),
241 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
242 	VM_STAT("largepages", lpages, .mode = 0444),
243 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
244 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
245 	{ NULL }
246 };
247 
248 u64 __read_mostly host_xcr0;
249 u64 __read_mostly supported_xcr0;
250 EXPORT_SYMBOL_GPL(supported_xcr0);
251 
252 static struct kmem_cache *x86_fpu_cache;
253 
254 static struct kmem_cache *x86_emulator_cache;
255 
256 /*
257  * When called, it means the previous get/set msr reached an invalid msr.
258  * Return 0 if we want to ignore/silent this failed msr access, or 1 if we want
259  * to fail the caller.
260  */
261 static int kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
262 				 u64 data, bool write)
263 {
264 	const char *op = write ? "wrmsr" : "rdmsr";
265 
266 	if (ignore_msrs) {
267 		if (report_ignored_msrs)
268 			vcpu_unimpl(vcpu, "ignored %s: 0x%x data 0x%llx\n",
269 				    op, msr, data);
270 		/* Mask the error */
271 		return 0;
272 	} else {
273 		vcpu_debug_ratelimited(vcpu, "unhandled %s: 0x%x data 0x%llx\n",
274 				       op, msr, data);
275 		return -ENOENT;
276 	}
277 }
278 
279 static struct kmem_cache *kvm_alloc_emulator_cache(void)
280 {
281 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
282 	unsigned int size = sizeof(struct x86_emulate_ctxt);
283 
284 	return kmem_cache_create_usercopy("x86_emulator", size,
285 					  __alignof__(struct x86_emulate_ctxt),
286 					  SLAB_ACCOUNT, useroffset,
287 					  size - useroffset, NULL);
288 }
289 
290 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
291 
292 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
293 {
294 	int i;
295 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
296 		vcpu->arch.apf.gfns[i] = ~0;
297 }
298 
299 static void kvm_on_user_return(struct user_return_notifier *urn)
300 {
301 	unsigned slot;
302 	struct kvm_user_return_msrs *msrs
303 		= container_of(urn, struct kvm_user_return_msrs, urn);
304 	struct kvm_user_return_msr_values *values;
305 	unsigned long flags;
306 
307 	/*
308 	 * Disabling irqs at this point since the following code could be
309 	 * interrupted and executed through kvm_arch_hardware_disable()
310 	 */
311 	local_irq_save(flags);
312 	if (msrs->registered) {
313 		msrs->registered = false;
314 		user_return_notifier_unregister(urn);
315 	}
316 	local_irq_restore(flags);
317 	for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
318 		values = &msrs->values[slot];
319 		if (values->host != values->curr) {
320 			wrmsrl(user_return_msrs_global.msrs[slot], values->host);
321 			values->curr = values->host;
322 		}
323 	}
324 }
325 
326 void kvm_define_user_return_msr(unsigned slot, u32 msr)
327 {
328 	BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
329 	user_return_msrs_global.msrs[slot] = msr;
330 	if (slot >= user_return_msrs_global.nr)
331 		user_return_msrs_global.nr = slot + 1;
332 }
333 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
334 
335 static void kvm_user_return_msr_cpu_online(void)
336 {
337 	unsigned int cpu = smp_processor_id();
338 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
339 	u64 value;
340 	int i;
341 
342 	for (i = 0; i < user_return_msrs_global.nr; ++i) {
343 		rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
344 		msrs->values[i].host = value;
345 		msrs->values[i].curr = value;
346 	}
347 }
348 
349 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
350 {
351 	unsigned int cpu = smp_processor_id();
352 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
353 	int err;
354 
355 	value = (value & mask) | (msrs->values[slot].host & ~mask);
356 	if (value == msrs->values[slot].curr)
357 		return 0;
358 	err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
359 	if (err)
360 		return 1;
361 
362 	msrs->values[slot].curr = value;
363 	if (!msrs->registered) {
364 		msrs->urn.on_user_return = kvm_on_user_return;
365 		user_return_notifier_register(&msrs->urn);
366 		msrs->registered = true;
367 	}
368 	return 0;
369 }
370 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
371 
372 static void drop_user_return_notifiers(void)
373 {
374 	unsigned int cpu = smp_processor_id();
375 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
376 
377 	if (msrs->registered)
378 		kvm_on_user_return(&msrs->urn);
379 }
380 
381 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
382 {
383 	return vcpu->arch.apic_base;
384 }
385 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
386 
387 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
388 {
389 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
390 }
391 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
392 
393 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
394 {
395 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
396 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
397 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
398 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
399 
400 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
401 		return 1;
402 	if (!msr_info->host_initiated) {
403 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
404 			return 1;
405 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
406 			return 1;
407 	}
408 
409 	kvm_lapic_set_base(vcpu, msr_info->data);
410 	kvm_recalculate_apic_map(vcpu->kvm);
411 	return 0;
412 }
413 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
414 
415 asmlinkage __visible noinstr void kvm_spurious_fault(void)
416 {
417 	/* Fault while not rebooting.  We want the trace. */
418 	BUG_ON(!kvm_rebooting);
419 }
420 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
421 
422 #define EXCPT_BENIGN		0
423 #define EXCPT_CONTRIBUTORY	1
424 #define EXCPT_PF		2
425 
426 static int exception_class(int vector)
427 {
428 	switch (vector) {
429 	case PF_VECTOR:
430 		return EXCPT_PF;
431 	case DE_VECTOR:
432 	case TS_VECTOR:
433 	case NP_VECTOR:
434 	case SS_VECTOR:
435 	case GP_VECTOR:
436 		return EXCPT_CONTRIBUTORY;
437 	default:
438 		break;
439 	}
440 	return EXCPT_BENIGN;
441 }
442 
443 #define EXCPT_FAULT		0
444 #define EXCPT_TRAP		1
445 #define EXCPT_ABORT		2
446 #define EXCPT_INTERRUPT		3
447 
448 static int exception_type(int vector)
449 {
450 	unsigned int mask;
451 
452 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
453 		return EXCPT_INTERRUPT;
454 
455 	mask = 1 << vector;
456 
457 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
458 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
459 		return EXCPT_TRAP;
460 
461 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
462 		return EXCPT_ABORT;
463 
464 	/* Reserved exceptions will result in fault */
465 	return EXCPT_FAULT;
466 }
467 
468 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
469 {
470 	unsigned nr = vcpu->arch.exception.nr;
471 	bool has_payload = vcpu->arch.exception.has_payload;
472 	unsigned long payload = vcpu->arch.exception.payload;
473 
474 	if (!has_payload)
475 		return;
476 
477 	switch (nr) {
478 	case DB_VECTOR:
479 		/*
480 		 * "Certain debug exceptions may clear bit 0-3.  The
481 		 * remaining contents of the DR6 register are never
482 		 * cleared by the processor".
483 		 */
484 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
485 		/*
486 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
487 		 */
488 		vcpu->arch.dr6 |= DR6_RTM;
489 		vcpu->arch.dr6 |= payload;
490 		/*
491 		 * Bit 16 should be set in the payload whenever the #DB
492 		 * exception should clear DR6.RTM. This makes the payload
493 		 * compatible with the pending debug exceptions under VMX.
494 		 * Though not currently documented in the SDM, this also
495 		 * makes the payload compatible with the exit qualification
496 		 * for #DB exceptions under VMX.
497 		 */
498 		vcpu->arch.dr6 ^= payload & DR6_RTM;
499 
500 		/*
501 		 * The #DB payload is defined as compatible with the 'pending
502 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
503 		 * defined in the 'pending debug exceptions' field (enabled
504 		 * breakpoint), it is reserved and must be zero in DR6.
505 		 */
506 		vcpu->arch.dr6 &= ~BIT(12);
507 		break;
508 	case PF_VECTOR:
509 		vcpu->arch.cr2 = payload;
510 		break;
511 	}
512 
513 	vcpu->arch.exception.has_payload = false;
514 	vcpu->arch.exception.payload = 0;
515 }
516 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
517 
518 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
519 		unsigned nr, bool has_error, u32 error_code,
520 	        bool has_payload, unsigned long payload, bool reinject)
521 {
522 	u32 prev_nr;
523 	int class1, class2;
524 
525 	kvm_make_request(KVM_REQ_EVENT, vcpu);
526 
527 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
528 	queue:
529 		if (has_error && !is_protmode(vcpu))
530 			has_error = false;
531 		if (reinject) {
532 			/*
533 			 * On vmentry, vcpu->arch.exception.pending is only
534 			 * true if an event injection was blocked by
535 			 * nested_run_pending.  In that case, however,
536 			 * vcpu_enter_guest requests an immediate exit,
537 			 * and the guest shouldn't proceed far enough to
538 			 * need reinjection.
539 			 */
540 			WARN_ON_ONCE(vcpu->arch.exception.pending);
541 			vcpu->arch.exception.injected = true;
542 			if (WARN_ON_ONCE(has_payload)) {
543 				/*
544 				 * A reinjected event has already
545 				 * delivered its payload.
546 				 */
547 				has_payload = false;
548 				payload = 0;
549 			}
550 		} else {
551 			vcpu->arch.exception.pending = true;
552 			vcpu->arch.exception.injected = false;
553 		}
554 		vcpu->arch.exception.has_error_code = has_error;
555 		vcpu->arch.exception.nr = nr;
556 		vcpu->arch.exception.error_code = error_code;
557 		vcpu->arch.exception.has_payload = has_payload;
558 		vcpu->arch.exception.payload = payload;
559 		if (!is_guest_mode(vcpu))
560 			kvm_deliver_exception_payload(vcpu);
561 		return;
562 	}
563 
564 	/* to check exception */
565 	prev_nr = vcpu->arch.exception.nr;
566 	if (prev_nr == DF_VECTOR) {
567 		/* triple fault -> shutdown */
568 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
569 		return;
570 	}
571 	class1 = exception_class(prev_nr);
572 	class2 = exception_class(nr);
573 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
574 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
575 		/*
576 		 * Generate double fault per SDM Table 5-5.  Set
577 		 * exception.pending = true so that the double fault
578 		 * can trigger a nested vmexit.
579 		 */
580 		vcpu->arch.exception.pending = true;
581 		vcpu->arch.exception.injected = false;
582 		vcpu->arch.exception.has_error_code = true;
583 		vcpu->arch.exception.nr = DF_VECTOR;
584 		vcpu->arch.exception.error_code = 0;
585 		vcpu->arch.exception.has_payload = false;
586 		vcpu->arch.exception.payload = 0;
587 	} else
588 		/* replace previous exception with a new one in a hope
589 		   that instruction re-execution will regenerate lost
590 		   exception */
591 		goto queue;
592 }
593 
594 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
595 {
596 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
597 }
598 EXPORT_SYMBOL_GPL(kvm_queue_exception);
599 
600 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
601 {
602 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
603 }
604 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
605 
606 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
607 			   unsigned long payload)
608 {
609 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
610 }
611 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
612 
613 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
614 				    u32 error_code, unsigned long payload)
615 {
616 	kvm_multiple_exception(vcpu, nr, true, error_code,
617 			       true, payload, false);
618 }
619 
620 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
621 {
622 	if (err)
623 		kvm_inject_gp(vcpu, 0);
624 	else
625 		return kvm_skip_emulated_instruction(vcpu);
626 
627 	return 1;
628 }
629 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
630 
631 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
632 {
633 	++vcpu->stat.pf_guest;
634 	vcpu->arch.exception.nested_apf =
635 		is_guest_mode(vcpu) && fault->async_page_fault;
636 	if (vcpu->arch.exception.nested_apf) {
637 		vcpu->arch.apf.nested_apf_token = fault->address;
638 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
639 	} else {
640 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
641 					fault->address);
642 	}
643 }
644 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
645 
646 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
647 				    struct x86_exception *fault)
648 {
649 	struct kvm_mmu *fault_mmu;
650 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
651 
652 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
653 					       vcpu->arch.walk_mmu;
654 
655 	/*
656 	 * Invalidate the TLB entry for the faulting address, if it exists,
657 	 * else the access will fault indefinitely (and to emulate hardware).
658 	 */
659 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
660 	    !(fault->error_code & PFERR_RSVD_MASK))
661 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
662 				       fault_mmu->root_hpa);
663 
664 	fault_mmu->inject_page_fault(vcpu, fault);
665 	return fault->nested_page_fault;
666 }
667 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
668 
669 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
670 {
671 	atomic_inc(&vcpu->arch.nmi_queued);
672 	kvm_make_request(KVM_REQ_NMI, vcpu);
673 }
674 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
675 
676 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
677 {
678 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
681 
682 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
683 {
684 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
687 
688 /*
689  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
690  * a #GP and return false.
691  */
692 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
693 {
694 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
695 		return true;
696 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
697 	return false;
698 }
699 EXPORT_SYMBOL_GPL(kvm_require_cpl);
700 
701 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
702 {
703 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
704 		return true;
705 
706 	kvm_queue_exception(vcpu, UD_VECTOR);
707 	return false;
708 }
709 EXPORT_SYMBOL_GPL(kvm_require_dr);
710 
711 /*
712  * This function will be used to read from the physical memory of the currently
713  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
714  * can read from guest physical or from the guest's guest physical memory.
715  */
716 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
717 			    gfn_t ngfn, void *data, int offset, int len,
718 			    u32 access)
719 {
720 	struct x86_exception exception;
721 	gfn_t real_gfn;
722 	gpa_t ngpa;
723 
724 	ngpa     = gfn_to_gpa(ngfn);
725 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
726 	if (real_gfn == UNMAPPED_GVA)
727 		return -EFAULT;
728 
729 	real_gfn = gpa_to_gfn(real_gfn);
730 
731 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
732 }
733 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
734 
735 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
736 			       void *data, int offset, int len, u32 access)
737 {
738 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
739 				       data, offset, len, access);
740 }
741 
742 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
743 {
744 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
745 	       rsvd_bits(1, 2);
746 }
747 
748 /*
749  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
750  */
751 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
752 {
753 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
754 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
755 	int i;
756 	int ret;
757 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
758 
759 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
760 				      offset * sizeof(u64), sizeof(pdpte),
761 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
762 	if (ret < 0) {
763 		ret = 0;
764 		goto out;
765 	}
766 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
767 		if ((pdpte[i] & PT_PRESENT_MASK) &&
768 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
769 			ret = 0;
770 			goto out;
771 		}
772 	}
773 	ret = 1;
774 
775 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
776 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
777 
778 out:
779 
780 	return ret;
781 }
782 EXPORT_SYMBOL_GPL(load_pdptrs);
783 
784 bool pdptrs_changed(struct kvm_vcpu *vcpu)
785 {
786 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
787 	int offset;
788 	gfn_t gfn;
789 	int r;
790 
791 	if (!is_pae_paging(vcpu))
792 		return false;
793 
794 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
795 		return true;
796 
797 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
798 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
799 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
800 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
801 	if (r < 0)
802 		return true;
803 
804 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
805 }
806 EXPORT_SYMBOL_GPL(pdptrs_changed);
807 
808 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
809 {
810 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
811 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
812 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
813 
814 	cr0 |= X86_CR0_ET;
815 
816 #ifdef CONFIG_X86_64
817 	if (cr0 & 0xffffffff00000000UL)
818 		return 1;
819 #endif
820 
821 	cr0 &= ~CR0_RESERVED_BITS;
822 
823 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
824 		return 1;
825 
826 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
827 		return 1;
828 
829 #ifdef CONFIG_X86_64
830 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
831 	    (cr0 & X86_CR0_PG)) {
832 		int cs_db, cs_l;
833 
834 		if (!is_pae(vcpu))
835 			return 1;
836 		kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
837 		if (cs_l)
838 			return 1;
839 	}
840 #endif
841 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
842 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
843 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
844 		return 1;
845 
846 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
847 		return 1;
848 
849 	kvm_x86_ops.set_cr0(vcpu, cr0);
850 
851 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
852 		kvm_clear_async_pf_completion_queue(vcpu);
853 		kvm_async_pf_hash_reset(vcpu);
854 	}
855 
856 	if ((cr0 ^ old_cr0) & update_bits)
857 		kvm_mmu_reset_context(vcpu);
858 
859 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
860 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
861 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
862 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
863 
864 	return 0;
865 }
866 EXPORT_SYMBOL_GPL(kvm_set_cr0);
867 
868 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
869 {
870 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
871 }
872 EXPORT_SYMBOL_GPL(kvm_lmsw);
873 
874 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
875 {
876 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
877 
878 		if (vcpu->arch.xcr0 != host_xcr0)
879 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
880 
881 		if (vcpu->arch.xsaves_enabled &&
882 		    vcpu->arch.ia32_xss != host_xss)
883 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
884 	}
885 
886 	if (static_cpu_has(X86_FEATURE_PKU) &&
887 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
888 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
889 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
890 		__write_pkru(vcpu->arch.pkru);
891 }
892 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
893 
894 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
895 {
896 	if (static_cpu_has(X86_FEATURE_PKU) &&
897 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
898 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
899 		vcpu->arch.pkru = rdpkru();
900 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
901 			__write_pkru(vcpu->arch.host_pkru);
902 	}
903 
904 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
905 
906 		if (vcpu->arch.xcr0 != host_xcr0)
907 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
908 
909 		if (vcpu->arch.xsaves_enabled &&
910 		    vcpu->arch.ia32_xss != host_xss)
911 			wrmsrl(MSR_IA32_XSS, host_xss);
912 	}
913 
914 }
915 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
916 
917 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
918 {
919 	u64 xcr0 = xcr;
920 	u64 old_xcr0 = vcpu->arch.xcr0;
921 	u64 valid_bits;
922 
923 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
924 	if (index != XCR_XFEATURE_ENABLED_MASK)
925 		return 1;
926 	if (!(xcr0 & XFEATURE_MASK_FP))
927 		return 1;
928 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
929 		return 1;
930 
931 	/*
932 	 * Do not allow the guest to set bits that we do not support
933 	 * saving.  However, xcr0 bit 0 is always set, even if the
934 	 * emulated CPU does not support XSAVE (see fx_init).
935 	 */
936 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
937 	if (xcr0 & ~valid_bits)
938 		return 1;
939 
940 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
941 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
942 		return 1;
943 
944 	if (xcr0 & XFEATURE_MASK_AVX512) {
945 		if (!(xcr0 & XFEATURE_MASK_YMM))
946 			return 1;
947 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
948 			return 1;
949 	}
950 	vcpu->arch.xcr0 = xcr0;
951 
952 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
953 		kvm_update_cpuid_runtime(vcpu);
954 	return 0;
955 }
956 
957 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
958 {
959 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
960 	    __kvm_set_xcr(vcpu, index, xcr)) {
961 		kvm_inject_gp(vcpu, 0);
962 		return 1;
963 	}
964 	return 0;
965 }
966 EXPORT_SYMBOL_GPL(kvm_set_xcr);
967 
968 int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
969 {
970 	if (cr4 & cr4_reserved_bits)
971 		return -EINVAL;
972 
973 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
974 		return -EINVAL;
975 
976 	return 0;
977 }
978 EXPORT_SYMBOL_GPL(kvm_valid_cr4);
979 
980 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
981 {
982 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
983 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
984 				   X86_CR4_SMEP;
985 	unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
986 
987 	if (kvm_valid_cr4(vcpu, cr4))
988 		return 1;
989 
990 	if (is_long_mode(vcpu)) {
991 		if (!(cr4 & X86_CR4_PAE))
992 			return 1;
993 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
994 			return 1;
995 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
996 		   && ((cr4 ^ old_cr4) & pdptr_bits)
997 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
998 				   kvm_read_cr3(vcpu)))
999 		return 1;
1000 
1001 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1002 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1003 			return 1;
1004 
1005 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1006 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1007 			return 1;
1008 	}
1009 
1010 	if (kvm_x86_ops.set_cr4(vcpu, cr4))
1011 		return 1;
1012 
1013 	if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1014 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1015 		kvm_mmu_reset_context(vcpu);
1016 
1017 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1018 		kvm_update_cpuid_runtime(vcpu);
1019 
1020 	return 0;
1021 }
1022 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1023 
1024 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1025 {
1026 	bool skip_tlb_flush = false;
1027 #ifdef CONFIG_X86_64
1028 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1029 
1030 	if (pcid_enabled) {
1031 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1032 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1033 	}
1034 #endif
1035 
1036 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1037 		if (!skip_tlb_flush) {
1038 			kvm_mmu_sync_roots(vcpu);
1039 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1040 		}
1041 		return 0;
1042 	}
1043 
1044 	if (is_long_mode(vcpu) &&
1045 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1046 		return 1;
1047 	else if (is_pae_paging(vcpu) &&
1048 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1049 		return 1;
1050 
1051 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1052 	vcpu->arch.cr3 = cr3;
1053 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1054 
1055 	return 0;
1056 }
1057 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1058 
1059 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1060 {
1061 	if (cr8 & CR8_RESERVED_BITS)
1062 		return 1;
1063 	if (lapic_in_kernel(vcpu))
1064 		kvm_lapic_set_tpr(vcpu, cr8);
1065 	else
1066 		vcpu->arch.cr8 = cr8;
1067 	return 0;
1068 }
1069 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1070 
1071 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1072 {
1073 	if (lapic_in_kernel(vcpu))
1074 		return kvm_lapic_get_cr8(vcpu);
1075 	else
1076 		return vcpu->arch.cr8;
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1079 
1080 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1081 {
1082 	int i;
1083 
1084 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1085 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1086 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1087 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1088 	}
1089 }
1090 
1091 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1092 {
1093 	unsigned long dr7;
1094 
1095 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1096 		dr7 = vcpu->arch.guest_debug_dr7;
1097 	else
1098 		dr7 = vcpu->arch.dr7;
1099 	kvm_x86_ops.set_dr7(vcpu, dr7);
1100 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1101 	if (dr7 & DR7_BP_EN_MASK)
1102 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1105 
1106 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1107 {
1108 	u64 fixed = DR6_FIXED_1;
1109 
1110 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1111 		fixed |= DR6_RTM;
1112 	return fixed;
1113 }
1114 
1115 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1116 {
1117 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1118 
1119 	switch (dr) {
1120 	case 0 ... 3:
1121 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1122 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1123 			vcpu->arch.eff_db[dr] = val;
1124 		break;
1125 	case 4:
1126 	case 6:
1127 		if (!kvm_dr6_valid(val))
1128 			return -1; /* #GP */
1129 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1130 		break;
1131 	case 5:
1132 	default: /* 7 */
1133 		if (!kvm_dr7_valid(val))
1134 			return -1; /* #GP */
1135 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1136 		kvm_update_dr7(vcpu);
1137 		break;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1144 {
1145 	if (__kvm_set_dr(vcpu, dr, val)) {
1146 		kvm_inject_gp(vcpu, 0);
1147 		return 1;
1148 	}
1149 	return 0;
1150 }
1151 EXPORT_SYMBOL_GPL(kvm_set_dr);
1152 
1153 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1154 {
1155 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1156 
1157 	switch (dr) {
1158 	case 0 ... 3:
1159 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1160 		break;
1161 	case 4:
1162 	case 6:
1163 		*val = vcpu->arch.dr6;
1164 		break;
1165 	case 5:
1166 	default: /* 7 */
1167 		*val = vcpu->arch.dr7;
1168 		break;
1169 	}
1170 	return 0;
1171 }
1172 EXPORT_SYMBOL_GPL(kvm_get_dr);
1173 
1174 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1175 {
1176 	u32 ecx = kvm_rcx_read(vcpu);
1177 	u64 data;
1178 	int err;
1179 
1180 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1181 	if (err)
1182 		return err;
1183 	kvm_rax_write(vcpu, (u32)data);
1184 	kvm_rdx_write(vcpu, data >> 32);
1185 	return err;
1186 }
1187 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1188 
1189 /*
1190  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1191  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1192  *
1193  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1194  * extract the supported MSRs from the related const lists.
1195  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1196  * capabilities of the host cpu. This capabilities test skips MSRs that are
1197  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1198  * may depend on host virtualization features rather than host cpu features.
1199  */
1200 
1201 static const u32 msrs_to_save_all[] = {
1202 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1203 	MSR_STAR,
1204 #ifdef CONFIG_X86_64
1205 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1206 #endif
1207 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1208 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1209 	MSR_IA32_SPEC_CTRL,
1210 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1211 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1212 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1213 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1214 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1215 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1216 	MSR_IA32_UMWAIT_CONTROL,
1217 
1218 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1219 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1220 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1221 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1222 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1223 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1224 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1225 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1226 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1227 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1228 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1229 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1230 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1231 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1232 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1233 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1234 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1235 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1236 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1237 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1238 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1239 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1240 };
1241 
1242 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1243 static unsigned num_msrs_to_save;
1244 
1245 static const u32 emulated_msrs_all[] = {
1246 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1247 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1248 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1249 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1250 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1251 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1252 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1253 	HV_X64_MSR_RESET,
1254 	HV_X64_MSR_VP_INDEX,
1255 	HV_X64_MSR_VP_RUNTIME,
1256 	HV_X64_MSR_SCONTROL,
1257 	HV_X64_MSR_STIMER0_CONFIG,
1258 	HV_X64_MSR_VP_ASSIST_PAGE,
1259 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1260 	HV_X64_MSR_TSC_EMULATION_STATUS,
1261 	HV_X64_MSR_SYNDBG_OPTIONS,
1262 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1263 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1264 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1265 
1266 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1267 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1268 
1269 	MSR_IA32_TSC_ADJUST,
1270 	MSR_IA32_TSCDEADLINE,
1271 	MSR_IA32_ARCH_CAPABILITIES,
1272 	MSR_IA32_PERF_CAPABILITIES,
1273 	MSR_IA32_MISC_ENABLE,
1274 	MSR_IA32_MCG_STATUS,
1275 	MSR_IA32_MCG_CTL,
1276 	MSR_IA32_MCG_EXT_CTL,
1277 	MSR_IA32_SMBASE,
1278 	MSR_SMI_COUNT,
1279 	MSR_PLATFORM_INFO,
1280 	MSR_MISC_FEATURES_ENABLES,
1281 	MSR_AMD64_VIRT_SPEC_CTRL,
1282 	MSR_IA32_POWER_CTL,
1283 	MSR_IA32_UCODE_REV,
1284 
1285 	/*
1286 	 * The following list leaves out MSRs whose values are determined
1287 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1288 	 * We always support the "true" VMX control MSRs, even if the host
1289 	 * processor does not, so I am putting these registers here rather
1290 	 * than in msrs_to_save_all.
1291 	 */
1292 	MSR_IA32_VMX_BASIC,
1293 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1294 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1295 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1296 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1297 	MSR_IA32_VMX_MISC,
1298 	MSR_IA32_VMX_CR0_FIXED0,
1299 	MSR_IA32_VMX_CR4_FIXED0,
1300 	MSR_IA32_VMX_VMCS_ENUM,
1301 	MSR_IA32_VMX_PROCBASED_CTLS2,
1302 	MSR_IA32_VMX_EPT_VPID_CAP,
1303 	MSR_IA32_VMX_VMFUNC,
1304 
1305 	MSR_K7_HWCR,
1306 	MSR_KVM_POLL_CONTROL,
1307 };
1308 
1309 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1310 static unsigned num_emulated_msrs;
1311 
1312 /*
1313  * List of msr numbers which are used to expose MSR-based features that
1314  * can be used by a hypervisor to validate requested CPU features.
1315  */
1316 static const u32 msr_based_features_all[] = {
1317 	MSR_IA32_VMX_BASIC,
1318 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1319 	MSR_IA32_VMX_PINBASED_CTLS,
1320 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1321 	MSR_IA32_VMX_PROCBASED_CTLS,
1322 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1323 	MSR_IA32_VMX_EXIT_CTLS,
1324 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1325 	MSR_IA32_VMX_ENTRY_CTLS,
1326 	MSR_IA32_VMX_MISC,
1327 	MSR_IA32_VMX_CR0_FIXED0,
1328 	MSR_IA32_VMX_CR0_FIXED1,
1329 	MSR_IA32_VMX_CR4_FIXED0,
1330 	MSR_IA32_VMX_CR4_FIXED1,
1331 	MSR_IA32_VMX_VMCS_ENUM,
1332 	MSR_IA32_VMX_PROCBASED_CTLS2,
1333 	MSR_IA32_VMX_EPT_VPID_CAP,
1334 	MSR_IA32_VMX_VMFUNC,
1335 
1336 	MSR_F10H_DECFG,
1337 	MSR_IA32_UCODE_REV,
1338 	MSR_IA32_ARCH_CAPABILITIES,
1339 	MSR_IA32_PERF_CAPABILITIES,
1340 };
1341 
1342 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1343 static unsigned int num_msr_based_features;
1344 
1345 static u64 kvm_get_arch_capabilities(void)
1346 {
1347 	u64 data = 0;
1348 
1349 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1350 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1351 
1352 	/*
1353 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1354 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1355 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1356 	 * L1 guests, so it need not worry about its own (L2) guests.
1357 	 */
1358 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1359 
1360 	/*
1361 	 * If we're doing cache flushes (either "always" or "cond")
1362 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1363 	 * If an outer hypervisor is doing the cache flush for us
1364 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1365 	 * capability to the guest too, and if EPT is disabled we're not
1366 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1367 	 * require a nested hypervisor to do a flush of its own.
1368 	 */
1369 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1370 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1371 
1372 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1373 		data |= ARCH_CAP_RDCL_NO;
1374 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1375 		data |= ARCH_CAP_SSB_NO;
1376 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1377 		data |= ARCH_CAP_MDS_NO;
1378 
1379 	/*
1380 	 * On TAA affected systems:
1381 	 *      - nothing to do if TSX is disabled on the host.
1382 	 *      - we emulate TSX_CTRL if present on the host.
1383 	 *	  This lets the guest use VERW to clear CPU buffers.
1384 	 */
1385 	if (!boot_cpu_has(X86_FEATURE_RTM))
1386 		data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1387 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1388 		data |= ARCH_CAP_TAA_NO;
1389 
1390 	return data;
1391 }
1392 
1393 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1394 {
1395 	switch (msr->index) {
1396 	case MSR_IA32_ARCH_CAPABILITIES:
1397 		msr->data = kvm_get_arch_capabilities();
1398 		break;
1399 	case MSR_IA32_UCODE_REV:
1400 		rdmsrl_safe(msr->index, &msr->data);
1401 		break;
1402 	default:
1403 		return kvm_x86_ops.get_msr_feature(msr);
1404 	}
1405 	return 0;
1406 }
1407 
1408 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1409 {
1410 	struct kvm_msr_entry msr;
1411 	int r;
1412 
1413 	msr.index = index;
1414 	r = kvm_get_msr_feature(&msr);
1415 
1416 	if (r == KVM_MSR_RET_INVALID) {
1417 		/* Unconditionally clear the output for simplicity */
1418 		*data = 0;
1419 		r = kvm_msr_ignored_check(vcpu, index, 0, false);
1420 	}
1421 
1422 	if (r)
1423 		return r;
1424 
1425 	*data = msr.data;
1426 
1427 	return 0;
1428 }
1429 
1430 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1431 {
1432 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1433 		return false;
1434 
1435 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1436 		return false;
1437 
1438 	if (efer & (EFER_LME | EFER_LMA) &&
1439 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1440 		return false;
1441 
1442 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1443 		return false;
1444 
1445 	return true;
1446 
1447 }
1448 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1449 {
1450 	if (efer & efer_reserved_bits)
1451 		return false;
1452 
1453 	return __kvm_valid_efer(vcpu, efer);
1454 }
1455 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1456 
1457 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1458 {
1459 	u64 old_efer = vcpu->arch.efer;
1460 	u64 efer = msr_info->data;
1461 	int r;
1462 
1463 	if (efer & efer_reserved_bits)
1464 		return 1;
1465 
1466 	if (!msr_info->host_initiated) {
1467 		if (!__kvm_valid_efer(vcpu, efer))
1468 			return 1;
1469 
1470 		if (is_paging(vcpu) &&
1471 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1472 			return 1;
1473 	}
1474 
1475 	efer &= ~EFER_LMA;
1476 	efer |= vcpu->arch.efer & EFER_LMA;
1477 
1478 	r = kvm_x86_ops.set_efer(vcpu, efer);
1479 	if (r) {
1480 		WARN_ON(r > 0);
1481 		return r;
1482 	}
1483 
1484 	/* Update reserved bits */
1485 	if ((efer ^ old_efer) & EFER_NX)
1486 		kvm_mmu_reset_context(vcpu);
1487 
1488 	return 0;
1489 }
1490 
1491 void kvm_enable_efer_bits(u64 mask)
1492 {
1493        efer_reserved_bits &= ~mask;
1494 }
1495 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1496 
1497 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1498 {
1499 	struct kvm *kvm = vcpu->kvm;
1500 	struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1501 	u32 count = kvm->arch.msr_filter.count;
1502 	u32 i;
1503 	bool r = kvm->arch.msr_filter.default_allow;
1504 	int idx;
1505 
1506 	/* MSR filtering not set up or x2APIC enabled, allow everything */
1507 	if (!count || (index >= 0x800 && index <= 0x8ff))
1508 		return true;
1509 
1510 	/* Prevent collision with set_msr_filter */
1511 	idx = srcu_read_lock(&kvm->srcu);
1512 
1513 	for (i = 0; i < count; i++) {
1514 		u32 start = ranges[i].base;
1515 		u32 end = start + ranges[i].nmsrs;
1516 		u32 flags = ranges[i].flags;
1517 		unsigned long *bitmap = ranges[i].bitmap;
1518 
1519 		if ((index >= start) && (index < end) && (flags & type)) {
1520 			r = !!test_bit(index - start, bitmap);
1521 			break;
1522 		}
1523 	}
1524 
1525 	srcu_read_unlock(&kvm->srcu, idx);
1526 
1527 	return r;
1528 }
1529 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1530 
1531 /*
1532  * Write @data into the MSR specified by @index.  Select MSR specific fault
1533  * checks are bypassed if @host_initiated is %true.
1534  * Returns 0 on success, non-0 otherwise.
1535  * Assumes vcpu_load() was already called.
1536  */
1537 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1538 			 bool host_initiated)
1539 {
1540 	struct msr_data msr;
1541 
1542 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1543 		return -EPERM;
1544 
1545 	switch (index) {
1546 	case MSR_FS_BASE:
1547 	case MSR_GS_BASE:
1548 	case MSR_KERNEL_GS_BASE:
1549 	case MSR_CSTAR:
1550 	case MSR_LSTAR:
1551 		if (is_noncanonical_address(data, vcpu))
1552 			return 1;
1553 		break;
1554 	case MSR_IA32_SYSENTER_EIP:
1555 	case MSR_IA32_SYSENTER_ESP:
1556 		/*
1557 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1558 		 * non-canonical address is written on Intel but not on
1559 		 * AMD (which ignores the top 32-bits, because it does
1560 		 * not implement 64-bit SYSENTER).
1561 		 *
1562 		 * 64-bit code should hence be able to write a non-canonical
1563 		 * value on AMD.  Making the address canonical ensures that
1564 		 * vmentry does not fail on Intel after writing a non-canonical
1565 		 * value, and that something deterministic happens if the guest
1566 		 * invokes 64-bit SYSENTER.
1567 		 */
1568 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1569 	}
1570 
1571 	msr.data = data;
1572 	msr.index = index;
1573 	msr.host_initiated = host_initiated;
1574 
1575 	return kvm_x86_ops.set_msr(vcpu, &msr);
1576 }
1577 
1578 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1579 				     u32 index, u64 data, bool host_initiated)
1580 {
1581 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1582 
1583 	if (ret == KVM_MSR_RET_INVALID)
1584 		ret = kvm_msr_ignored_check(vcpu, index, data, true);
1585 
1586 	return ret;
1587 }
1588 
1589 /*
1590  * Read the MSR specified by @index into @data.  Select MSR specific fault
1591  * checks are bypassed if @host_initiated is %true.
1592  * Returns 0 on success, non-0 otherwise.
1593  * Assumes vcpu_load() was already called.
1594  */
1595 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1596 		  bool host_initiated)
1597 {
1598 	struct msr_data msr;
1599 	int ret;
1600 
1601 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1602 		return -EPERM;
1603 
1604 	msr.index = index;
1605 	msr.host_initiated = host_initiated;
1606 
1607 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1608 	if (!ret)
1609 		*data = msr.data;
1610 	return ret;
1611 }
1612 
1613 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1614 				     u32 index, u64 *data, bool host_initiated)
1615 {
1616 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1617 
1618 	if (ret == KVM_MSR_RET_INVALID) {
1619 		/* Unconditionally clear *data for simplicity */
1620 		*data = 0;
1621 		ret = kvm_msr_ignored_check(vcpu, index, 0, false);
1622 	}
1623 
1624 	return ret;
1625 }
1626 
1627 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1628 {
1629 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1630 }
1631 EXPORT_SYMBOL_GPL(kvm_get_msr);
1632 
1633 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1634 {
1635 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1636 }
1637 EXPORT_SYMBOL_GPL(kvm_set_msr);
1638 
1639 static int complete_emulated_msr(struct kvm_vcpu *vcpu, bool is_read)
1640 {
1641 	if (vcpu->run->msr.error) {
1642 		kvm_inject_gp(vcpu, 0);
1643 		return 1;
1644 	} else if (is_read) {
1645 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1646 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1647 	}
1648 
1649 	return kvm_skip_emulated_instruction(vcpu);
1650 }
1651 
1652 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1653 {
1654 	return complete_emulated_msr(vcpu, true);
1655 }
1656 
1657 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1658 {
1659 	return complete_emulated_msr(vcpu, false);
1660 }
1661 
1662 static u64 kvm_msr_reason(int r)
1663 {
1664 	switch (r) {
1665 	case -ENOENT:
1666 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1667 	case -EPERM:
1668 		return KVM_MSR_EXIT_REASON_FILTER;
1669 	default:
1670 		return KVM_MSR_EXIT_REASON_INVAL;
1671 	}
1672 }
1673 
1674 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1675 			      u32 exit_reason, u64 data,
1676 			      int (*completion)(struct kvm_vcpu *vcpu),
1677 			      int r)
1678 {
1679 	u64 msr_reason = kvm_msr_reason(r);
1680 
1681 	/* Check if the user wanted to know about this MSR fault */
1682 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1683 		return 0;
1684 
1685 	vcpu->run->exit_reason = exit_reason;
1686 	vcpu->run->msr.error = 0;
1687 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1688 	vcpu->run->msr.reason = msr_reason;
1689 	vcpu->run->msr.index = index;
1690 	vcpu->run->msr.data = data;
1691 	vcpu->arch.complete_userspace_io = completion;
1692 
1693 	return 1;
1694 }
1695 
1696 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1697 {
1698 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1699 				   complete_emulated_rdmsr, r);
1700 }
1701 
1702 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1703 {
1704 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1705 				   complete_emulated_wrmsr, r);
1706 }
1707 
1708 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1709 {
1710 	u32 ecx = kvm_rcx_read(vcpu);
1711 	u64 data;
1712 	int r;
1713 
1714 	r = kvm_get_msr(vcpu, ecx, &data);
1715 
1716 	/* MSR read failed? See if we should ask user space */
1717 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1718 		/* Bounce to user space */
1719 		return 0;
1720 	}
1721 
1722 	/* MSR read failed? Inject a #GP */
1723 	if (r) {
1724 		trace_kvm_msr_read_ex(ecx);
1725 		kvm_inject_gp(vcpu, 0);
1726 		return 1;
1727 	}
1728 
1729 	trace_kvm_msr_read(ecx, data);
1730 
1731 	kvm_rax_write(vcpu, data & -1u);
1732 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1733 	return kvm_skip_emulated_instruction(vcpu);
1734 }
1735 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1736 
1737 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1738 {
1739 	u32 ecx = kvm_rcx_read(vcpu);
1740 	u64 data = kvm_read_edx_eax(vcpu);
1741 	int r;
1742 
1743 	r = kvm_set_msr(vcpu, ecx, data);
1744 
1745 	/* MSR write failed? See if we should ask user space */
1746 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1747 		/* Bounce to user space */
1748 		return 0;
1749 
1750 	/* Signal all other negative errors to userspace */
1751 	if (r < 0)
1752 		return r;
1753 
1754 	/* MSR write failed? Inject a #GP */
1755 	if (r > 0) {
1756 		trace_kvm_msr_write_ex(ecx, data);
1757 		kvm_inject_gp(vcpu, 0);
1758 		return 1;
1759 	}
1760 
1761 	trace_kvm_msr_write(ecx, data);
1762 	return kvm_skip_emulated_instruction(vcpu);
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1765 
1766 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1767 {
1768 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1769 		xfer_to_guest_mode_work_pending();
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1772 
1773 /*
1774  * The fast path for frequent and performance sensitive wrmsr emulation,
1775  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1776  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1777  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1778  * other cases which must be called after interrupts are enabled on the host.
1779  */
1780 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1781 {
1782 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1783 		return 1;
1784 
1785 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1786 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1787 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1788 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1789 
1790 		data &= ~(1 << 12);
1791 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1792 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1793 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1794 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1795 		return 0;
1796 	}
1797 
1798 	return 1;
1799 }
1800 
1801 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1802 {
1803 	if (!kvm_can_use_hv_timer(vcpu))
1804 		return 1;
1805 
1806 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1807 	return 0;
1808 }
1809 
1810 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1811 {
1812 	u32 msr = kvm_rcx_read(vcpu);
1813 	u64 data;
1814 	fastpath_t ret = EXIT_FASTPATH_NONE;
1815 
1816 	switch (msr) {
1817 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1818 		data = kvm_read_edx_eax(vcpu);
1819 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1820 			kvm_skip_emulated_instruction(vcpu);
1821 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1822 		}
1823 		break;
1824 	case MSR_IA32_TSCDEADLINE:
1825 		data = kvm_read_edx_eax(vcpu);
1826 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1827 			kvm_skip_emulated_instruction(vcpu);
1828 			ret = EXIT_FASTPATH_REENTER_GUEST;
1829 		}
1830 		break;
1831 	default:
1832 		break;
1833 	}
1834 
1835 	if (ret != EXIT_FASTPATH_NONE)
1836 		trace_kvm_msr_write(msr, data);
1837 
1838 	return ret;
1839 }
1840 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1841 
1842 /*
1843  * Adapt set_msr() to msr_io()'s calling convention
1844  */
1845 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1846 {
1847 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
1848 }
1849 
1850 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1851 {
1852 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1853 }
1854 
1855 #ifdef CONFIG_X86_64
1856 struct pvclock_clock {
1857 	int vclock_mode;
1858 	u64 cycle_last;
1859 	u64 mask;
1860 	u32 mult;
1861 	u32 shift;
1862 	u64 base_cycles;
1863 	u64 offset;
1864 };
1865 
1866 struct pvclock_gtod_data {
1867 	seqcount_t	seq;
1868 
1869 	struct pvclock_clock clock; /* extract of a clocksource struct */
1870 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1871 
1872 	ktime_t		offs_boot;
1873 	u64		wall_time_sec;
1874 };
1875 
1876 static struct pvclock_gtod_data pvclock_gtod_data;
1877 
1878 static void update_pvclock_gtod(struct timekeeper *tk)
1879 {
1880 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1881 
1882 	write_seqcount_begin(&vdata->seq);
1883 
1884 	/* copy pvclock gtod data */
1885 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1886 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1887 	vdata->clock.mask		= tk->tkr_mono.mask;
1888 	vdata->clock.mult		= tk->tkr_mono.mult;
1889 	vdata->clock.shift		= tk->tkr_mono.shift;
1890 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1891 	vdata->clock.offset		= tk->tkr_mono.base;
1892 
1893 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1894 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1895 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1896 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1897 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1898 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1899 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1900 
1901 	vdata->wall_time_sec            = tk->xtime_sec;
1902 
1903 	vdata->offs_boot		= tk->offs_boot;
1904 
1905 	write_seqcount_end(&vdata->seq);
1906 }
1907 
1908 static s64 get_kvmclock_base_ns(void)
1909 {
1910 	/* Count up from boot time, but with the frequency of the raw clock.  */
1911 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1912 }
1913 #else
1914 static s64 get_kvmclock_base_ns(void)
1915 {
1916 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1917 	return ktime_get_boottime_ns();
1918 }
1919 #endif
1920 
1921 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1922 {
1923 	int version;
1924 	int r;
1925 	struct pvclock_wall_clock wc;
1926 	u64 wall_nsec;
1927 
1928 	kvm->arch.wall_clock = wall_clock;
1929 
1930 	if (!wall_clock)
1931 		return;
1932 
1933 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1934 	if (r)
1935 		return;
1936 
1937 	if (version & 1)
1938 		++version;  /* first time write, random junk */
1939 
1940 	++version;
1941 
1942 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1943 		return;
1944 
1945 	/*
1946 	 * The guest calculates current wall clock time by adding
1947 	 * system time (updated by kvm_guest_time_update below) to the
1948 	 * wall clock specified here.  We do the reverse here.
1949 	 */
1950 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1951 
1952 	wc.nsec = do_div(wall_nsec, 1000000000);
1953 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1954 	wc.version = version;
1955 
1956 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1957 
1958 	version++;
1959 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1960 }
1961 
1962 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1963 				  bool old_msr, bool host_initiated)
1964 {
1965 	struct kvm_arch *ka = &vcpu->kvm->arch;
1966 
1967 	if (vcpu->vcpu_id == 0 && !host_initiated) {
1968 		if (ka->boot_vcpu_runs_old_kvmclock && old_msr)
1969 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1970 
1971 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
1972 	}
1973 
1974 	vcpu->arch.time = system_time;
1975 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
1976 
1977 	/* we verify if the enable bit is set... */
1978 	vcpu->arch.pv_time_enabled = false;
1979 	if (!(system_time & 1))
1980 		return;
1981 
1982 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
1983 				       &vcpu->arch.pv_time, system_time & ~1ULL,
1984 				       sizeof(struct pvclock_vcpu_time_info)))
1985 		vcpu->arch.pv_time_enabled = true;
1986 
1987 	return;
1988 }
1989 
1990 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1991 {
1992 	do_shl32_div32(dividend, divisor);
1993 	return dividend;
1994 }
1995 
1996 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1997 			       s8 *pshift, u32 *pmultiplier)
1998 {
1999 	uint64_t scaled64;
2000 	int32_t  shift = 0;
2001 	uint64_t tps64;
2002 	uint32_t tps32;
2003 
2004 	tps64 = base_hz;
2005 	scaled64 = scaled_hz;
2006 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2007 		tps64 >>= 1;
2008 		shift--;
2009 	}
2010 
2011 	tps32 = (uint32_t)tps64;
2012 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2013 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2014 			scaled64 >>= 1;
2015 		else
2016 			tps32 <<= 1;
2017 		shift++;
2018 	}
2019 
2020 	*pshift = shift;
2021 	*pmultiplier = div_frac(scaled64, tps32);
2022 }
2023 
2024 #ifdef CONFIG_X86_64
2025 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2026 #endif
2027 
2028 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2029 static unsigned long max_tsc_khz;
2030 
2031 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2032 {
2033 	u64 v = (u64)khz * (1000000 + ppm);
2034 	do_div(v, 1000000);
2035 	return v;
2036 }
2037 
2038 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2039 {
2040 	u64 ratio;
2041 
2042 	/* Guest TSC same frequency as host TSC? */
2043 	if (!scale) {
2044 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2045 		return 0;
2046 	}
2047 
2048 	/* TSC scaling supported? */
2049 	if (!kvm_has_tsc_control) {
2050 		if (user_tsc_khz > tsc_khz) {
2051 			vcpu->arch.tsc_catchup = 1;
2052 			vcpu->arch.tsc_always_catchup = 1;
2053 			return 0;
2054 		} else {
2055 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2056 			return -1;
2057 		}
2058 	}
2059 
2060 	/* TSC scaling required  - calculate ratio */
2061 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2062 				user_tsc_khz, tsc_khz);
2063 
2064 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2065 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2066 			            user_tsc_khz);
2067 		return -1;
2068 	}
2069 
2070 	vcpu->arch.tsc_scaling_ratio = ratio;
2071 	return 0;
2072 }
2073 
2074 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2075 {
2076 	u32 thresh_lo, thresh_hi;
2077 	int use_scaling = 0;
2078 
2079 	/* tsc_khz can be zero if TSC calibration fails */
2080 	if (user_tsc_khz == 0) {
2081 		/* set tsc_scaling_ratio to a safe value */
2082 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2083 		return -1;
2084 	}
2085 
2086 	/* Compute a scale to convert nanoseconds in TSC cycles */
2087 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2088 			   &vcpu->arch.virtual_tsc_shift,
2089 			   &vcpu->arch.virtual_tsc_mult);
2090 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2091 
2092 	/*
2093 	 * Compute the variation in TSC rate which is acceptable
2094 	 * within the range of tolerance and decide if the
2095 	 * rate being applied is within that bounds of the hardware
2096 	 * rate.  If so, no scaling or compensation need be done.
2097 	 */
2098 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2099 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2100 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2101 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2102 		use_scaling = 1;
2103 	}
2104 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2105 }
2106 
2107 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2108 {
2109 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2110 				      vcpu->arch.virtual_tsc_mult,
2111 				      vcpu->arch.virtual_tsc_shift);
2112 	tsc += vcpu->arch.this_tsc_write;
2113 	return tsc;
2114 }
2115 
2116 static inline int gtod_is_based_on_tsc(int mode)
2117 {
2118 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2119 }
2120 
2121 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2122 {
2123 #ifdef CONFIG_X86_64
2124 	bool vcpus_matched;
2125 	struct kvm_arch *ka = &vcpu->kvm->arch;
2126 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2127 
2128 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2129 			 atomic_read(&vcpu->kvm->online_vcpus));
2130 
2131 	/*
2132 	 * Once the masterclock is enabled, always perform request in
2133 	 * order to update it.
2134 	 *
2135 	 * In order to enable masterclock, the host clocksource must be TSC
2136 	 * and the vcpus need to have matched TSCs.  When that happens,
2137 	 * perform request to enable masterclock.
2138 	 */
2139 	if (ka->use_master_clock ||
2140 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2141 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2142 
2143 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2144 			    atomic_read(&vcpu->kvm->online_vcpus),
2145 		            ka->use_master_clock, gtod->clock.vclock_mode);
2146 #endif
2147 }
2148 
2149 /*
2150  * Multiply tsc by a fixed point number represented by ratio.
2151  *
2152  * The most significant 64-N bits (mult) of ratio represent the
2153  * integral part of the fixed point number; the remaining N bits
2154  * (frac) represent the fractional part, ie. ratio represents a fixed
2155  * point number (mult + frac * 2^(-N)).
2156  *
2157  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2158  */
2159 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2160 {
2161 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2162 }
2163 
2164 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2165 {
2166 	u64 _tsc = tsc;
2167 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
2168 
2169 	if (ratio != kvm_default_tsc_scaling_ratio)
2170 		_tsc = __scale_tsc(ratio, tsc);
2171 
2172 	return _tsc;
2173 }
2174 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2175 
2176 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2177 {
2178 	u64 tsc;
2179 
2180 	tsc = kvm_scale_tsc(vcpu, rdtsc());
2181 
2182 	return target_tsc - tsc;
2183 }
2184 
2185 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2186 {
2187 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2188 }
2189 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2190 
2191 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2192 {
2193 	vcpu->arch.l1_tsc_offset = offset;
2194 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
2195 }
2196 
2197 static inline bool kvm_check_tsc_unstable(void)
2198 {
2199 #ifdef CONFIG_X86_64
2200 	/*
2201 	 * TSC is marked unstable when we're running on Hyper-V,
2202 	 * 'TSC page' clocksource is good.
2203 	 */
2204 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2205 		return false;
2206 #endif
2207 	return check_tsc_unstable();
2208 }
2209 
2210 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2211 {
2212 	struct kvm *kvm = vcpu->kvm;
2213 	u64 offset, ns, elapsed;
2214 	unsigned long flags;
2215 	bool matched;
2216 	bool already_matched;
2217 	bool synchronizing = false;
2218 
2219 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2220 	offset = kvm_compute_tsc_offset(vcpu, data);
2221 	ns = get_kvmclock_base_ns();
2222 	elapsed = ns - kvm->arch.last_tsc_nsec;
2223 
2224 	if (vcpu->arch.virtual_tsc_khz) {
2225 		if (data == 0) {
2226 			/*
2227 			 * detection of vcpu initialization -- need to sync
2228 			 * with other vCPUs. This particularly helps to keep
2229 			 * kvm_clock stable after CPU hotplug
2230 			 */
2231 			synchronizing = true;
2232 		} else {
2233 			u64 tsc_exp = kvm->arch.last_tsc_write +
2234 						nsec_to_cycles(vcpu, elapsed);
2235 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2236 			/*
2237 			 * Special case: TSC write with a small delta (1 second)
2238 			 * of virtual cycle time against real time is
2239 			 * interpreted as an attempt to synchronize the CPU.
2240 			 */
2241 			synchronizing = data < tsc_exp + tsc_hz &&
2242 					data + tsc_hz > tsc_exp;
2243 		}
2244 	}
2245 
2246 	/*
2247 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2248 	 * TSC, we add elapsed time in this computation.  We could let the
2249 	 * compensation code attempt to catch up if we fall behind, but
2250 	 * it's better to try to match offsets from the beginning.
2251          */
2252 	if (synchronizing &&
2253 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2254 		if (!kvm_check_tsc_unstable()) {
2255 			offset = kvm->arch.cur_tsc_offset;
2256 		} else {
2257 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2258 			data += delta;
2259 			offset = kvm_compute_tsc_offset(vcpu, data);
2260 		}
2261 		matched = true;
2262 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2263 	} else {
2264 		/*
2265 		 * We split periods of matched TSC writes into generations.
2266 		 * For each generation, we track the original measured
2267 		 * nanosecond time, offset, and write, so if TSCs are in
2268 		 * sync, we can match exact offset, and if not, we can match
2269 		 * exact software computation in compute_guest_tsc()
2270 		 *
2271 		 * These values are tracked in kvm->arch.cur_xxx variables.
2272 		 */
2273 		kvm->arch.cur_tsc_generation++;
2274 		kvm->arch.cur_tsc_nsec = ns;
2275 		kvm->arch.cur_tsc_write = data;
2276 		kvm->arch.cur_tsc_offset = offset;
2277 		matched = false;
2278 	}
2279 
2280 	/*
2281 	 * We also track th most recent recorded KHZ, write and time to
2282 	 * allow the matching interval to be extended at each write.
2283 	 */
2284 	kvm->arch.last_tsc_nsec = ns;
2285 	kvm->arch.last_tsc_write = data;
2286 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2287 
2288 	vcpu->arch.last_guest_tsc = data;
2289 
2290 	/* Keep track of which generation this VCPU has synchronized to */
2291 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2292 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2293 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2294 
2295 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2296 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2297 
2298 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2299 	if (!matched) {
2300 		kvm->arch.nr_vcpus_matched_tsc = 0;
2301 	} else if (!already_matched) {
2302 		kvm->arch.nr_vcpus_matched_tsc++;
2303 	}
2304 
2305 	kvm_track_tsc_matching(vcpu);
2306 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2307 }
2308 
2309 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2310 					   s64 adjustment)
2311 {
2312 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2313 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2314 }
2315 
2316 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2317 {
2318 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2319 		WARN_ON(adjustment < 0);
2320 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2321 	adjust_tsc_offset_guest(vcpu, adjustment);
2322 }
2323 
2324 #ifdef CONFIG_X86_64
2325 
2326 static u64 read_tsc(void)
2327 {
2328 	u64 ret = (u64)rdtsc_ordered();
2329 	u64 last = pvclock_gtod_data.clock.cycle_last;
2330 
2331 	if (likely(ret >= last))
2332 		return ret;
2333 
2334 	/*
2335 	 * GCC likes to generate cmov here, but this branch is extremely
2336 	 * predictable (it's just a function of time and the likely is
2337 	 * very likely) and there's a data dependence, so force GCC
2338 	 * to generate a branch instead.  I don't barrier() because
2339 	 * we don't actually need a barrier, and if this function
2340 	 * ever gets inlined it will generate worse code.
2341 	 */
2342 	asm volatile ("");
2343 	return last;
2344 }
2345 
2346 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2347 			  int *mode)
2348 {
2349 	long v;
2350 	u64 tsc_pg_val;
2351 
2352 	switch (clock->vclock_mode) {
2353 	case VDSO_CLOCKMODE_HVCLOCK:
2354 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2355 						  tsc_timestamp);
2356 		if (tsc_pg_val != U64_MAX) {
2357 			/* TSC page valid */
2358 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2359 			v = (tsc_pg_val - clock->cycle_last) &
2360 				clock->mask;
2361 		} else {
2362 			/* TSC page invalid */
2363 			*mode = VDSO_CLOCKMODE_NONE;
2364 		}
2365 		break;
2366 	case VDSO_CLOCKMODE_TSC:
2367 		*mode = VDSO_CLOCKMODE_TSC;
2368 		*tsc_timestamp = read_tsc();
2369 		v = (*tsc_timestamp - clock->cycle_last) &
2370 			clock->mask;
2371 		break;
2372 	default:
2373 		*mode = VDSO_CLOCKMODE_NONE;
2374 	}
2375 
2376 	if (*mode == VDSO_CLOCKMODE_NONE)
2377 		*tsc_timestamp = v = 0;
2378 
2379 	return v * clock->mult;
2380 }
2381 
2382 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2383 {
2384 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2385 	unsigned long seq;
2386 	int mode;
2387 	u64 ns;
2388 
2389 	do {
2390 		seq = read_seqcount_begin(&gtod->seq);
2391 		ns = gtod->raw_clock.base_cycles;
2392 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2393 		ns >>= gtod->raw_clock.shift;
2394 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2395 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2396 	*t = ns;
2397 
2398 	return mode;
2399 }
2400 
2401 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2402 {
2403 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2404 	unsigned long seq;
2405 	int mode;
2406 	u64 ns;
2407 
2408 	do {
2409 		seq = read_seqcount_begin(&gtod->seq);
2410 		ts->tv_sec = gtod->wall_time_sec;
2411 		ns = gtod->clock.base_cycles;
2412 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2413 		ns >>= gtod->clock.shift;
2414 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2415 
2416 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2417 	ts->tv_nsec = ns;
2418 
2419 	return mode;
2420 }
2421 
2422 /* returns true if host is using TSC based clocksource */
2423 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2424 {
2425 	/* checked again under seqlock below */
2426 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2427 		return false;
2428 
2429 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2430 						      tsc_timestamp));
2431 }
2432 
2433 /* returns true if host is using TSC based clocksource */
2434 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2435 					   u64 *tsc_timestamp)
2436 {
2437 	/* checked again under seqlock below */
2438 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2439 		return false;
2440 
2441 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2442 }
2443 #endif
2444 
2445 /*
2446  *
2447  * Assuming a stable TSC across physical CPUS, and a stable TSC
2448  * across virtual CPUs, the following condition is possible.
2449  * Each numbered line represents an event visible to both
2450  * CPUs at the next numbered event.
2451  *
2452  * "timespecX" represents host monotonic time. "tscX" represents
2453  * RDTSC value.
2454  *
2455  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2456  *
2457  * 1.  read timespec0,tsc0
2458  * 2.					| timespec1 = timespec0 + N
2459  * 					| tsc1 = tsc0 + M
2460  * 3. transition to guest		| transition to guest
2461  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2462  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2463  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2464  *
2465  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2466  *
2467  * 	- ret0 < ret1
2468  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2469  *		...
2470  *	- 0 < N - M => M < N
2471  *
2472  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2473  * always the case (the difference between two distinct xtime instances
2474  * might be smaller then the difference between corresponding TSC reads,
2475  * when updating guest vcpus pvclock areas).
2476  *
2477  * To avoid that problem, do not allow visibility of distinct
2478  * system_timestamp/tsc_timestamp values simultaneously: use a master
2479  * copy of host monotonic time values. Update that master copy
2480  * in lockstep.
2481  *
2482  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2483  *
2484  */
2485 
2486 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2487 {
2488 #ifdef CONFIG_X86_64
2489 	struct kvm_arch *ka = &kvm->arch;
2490 	int vclock_mode;
2491 	bool host_tsc_clocksource, vcpus_matched;
2492 
2493 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2494 			atomic_read(&kvm->online_vcpus));
2495 
2496 	/*
2497 	 * If the host uses TSC clock, then passthrough TSC as stable
2498 	 * to the guest.
2499 	 */
2500 	host_tsc_clocksource = kvm_get_time_and_clockread(
2501 					&ka->master_kernel_ns,
2502 					&ka->master_cycle_now);
2503 
2504 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2505 				&& !ka->backwards_tsc_observed
2506 				&& !ka->boot_vcpu_runs_old_kvmclock;
2507 
2508 	if (ka->use_master_clock)
2509 		atomic_set(&kvm_guest_has_master_clock, 1);
2510 
2511 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2512 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2513 					vcpus_matched);
2514 #endif
2515 }
2516 
2517 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2518 {
2519 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2520 }
2521 
2522 static void kvm_gen_update_masterclock(struct kvm *kvm)
2523 {
2524 #ifdef CONFIG_X86_64
2525 	int i;
2526 	struct kvm_vcpu *vcpu;
2527 	struct kvm_arch *ka = &kvm->arch;
2528 
2529 	spin_lock(&ka->pvclock_gtod_sync_lock);
2530 	kvm_make_mclock_inprogress_request(kvm);
2531 	/* no guest entries from this point */
2532 	pvclock_update_vm_gtod_copy(kvm);
2533 
2534 	kvm_for_each_vcpu(i, vcpu, kvm)
2535 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2536 
2537 	/* guest entries allowed */
2538 	kvm_for_each_vcpu(i, vcpu, kvm)
2539 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2540 
2541 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2542 #endif
2543 }
2544 
2545 u64 get_kvmclock_ns(struct kvm *kvm)
2546 {
2547 	struct kvm_arch *ka = &kvm->arch;
2548 	struct pvclock_vcpu_time_info hv_clock;
2549 	u64 ret;
2550 
2551 	spin_lock(&ka->pvclock_gtod_sync_lock);
2552 	if (!ka->use_master_clock) {
2553 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2554 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2555 	}
2556 
2557 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2558 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2559 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2560 
2561 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2562 	get_cpu();
2563 
2564 	if (__this_cpu_read(cpu_tsc_khz)) {
2565 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2566 				   &hv_clock.tsc_shift,
2567 				   &hv_clock.tsc_to_system_mul);
2568 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2569 	} else
2570 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2571 
2572 	put_cpu();
2573 
2574 	return ret;
2575 }
2576 
2577 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2578 {
2579 	struct kvm_vcpu_arch *vcpu = &v->arch;
2580 	struct pvclock_vcpu_time_info guest_hv_clock;
2581 
2582 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2583 		&guest_hv_clock, sizeof(guest_hv_clock))))
2584 		return;
2585 
2586 	/* This VCPU is paused, but it's legal for a guest to read another
2587 	 * VCPU's kvmclock, so we really have to follow the specification where
2588 	 * it says that version is odd if data is being modified, and even after
2589 	 * it is consistent.
2590 	 *
2591 	 * Version field updates must be kept separate.  This is because
2592 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2593 	 * writes within a string instruction are weakly ordered.  So there
2594 	 * are three writes overall.
2595 	 *
2596 	 * As a small optimization, only write the version field in the first
2597 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2598 	 * version field is the first in the struct.
2599 	 */
2600 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2601 
2602 	if (guest_hv_clock.version & 1)
2603 		++guest_hv_clock.version;  /* first time write, random junk */
2604 
2605 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2606 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2607 				&vcpu->hv_clock,
2608 				sizeof(vcpu->hv_clock.version));
2609 
2610 	smp_wmb();
2611 
2612 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2613 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2614 
2615 	if (vcpu->pvclock_set_guest_stopped_request) {
2616 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2617 		vcpu->pvclock_set_guest_stopped_request = false;
2618 	}
2619 
2620 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2621 
2622 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2623 				&vcpu->hv_clock,
2624 				sizeof(vcpu->hv_clock));
2625 
2626 	smp_wmb();
2627 
2628 	vcpu->hv_clock.version++;
2629 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2630 				&vcpu->hv_clock,
2631 				sizeof(vcpu->hv_clock.version));
2632 }
2633 
2634 static int kvm_guest_time_update(struct kvm_vcpu *v)
2635 {
2636 	unsigned long flags, tgt_tsc_khz;
2637 	struct kvm_vcpu_arch *vcpu = &v->arch;
2638 	struct kvm_arch *ka = &v->kvm->arch;
2639 	s64 kernel_ns;
2640 	u64 tsc_timestamp, host_tsc;
2641 	u8 pvclock_flags;
2642 	bool use_master_clock;
2643 
2644 	kernel_ns = 0;
2645 	host_tsc = 0;
2646 
2647 	/*
2648 	 * If the host uses TSC clock, then passthrough TSC as stable
2649 	 * to the guest.
2650 	 */
2651 	spin_lock(&ka->pvclock_gtod_sync_lock);
2652 	use_master_clock = ka->use_master_clock;
2653 	if (use_master_clock) {
2654 		host_tsc = ka->master_cycle_now;
2655 		kernel_ns = ka->master_kernel_ns;
2656 	}
2657 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2658 
2659 	/* Keep irq disabled to prevent changes to the clock */
2660 	local_irq_save(flags);
2661 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2662 	if (unlikely(tgt_tsc_khz == 0)) {
2663 		local_irq_restore(flags);
2664 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2665 		return 1;
2666 	}
2667 	if (!use_master_clock) {
2668 		host_tsc = rdtsc();
2669 		kernel_ns = get_kvmclock_base_ns();
2670 	}
2671 
2672 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2673 
2674 	/*
2675 	 * We may have to catch up the TSC to match elapsed wall clock
2676 	 * time for two reasons, even if kvmclock is used.
2677 	 *   1) CPU could have been running below the maximum TSC rate
2678 	 *   2) Broken TSC compensation resets the base at each VCPU
2679 	 *      entry to avoid unknown leaps of TSC even when running
2680 	 *      again on the same CPU.  This may cause apparent elapsed
2681 	 *      time to disappear, and the guest to stand still or run
2682 	 *	very slowly.
2683 	 */
2684 	if (vcpu->tsc_catchup) {
2685 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2686 		if (tsc > tsc_timestamp) {
2687 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2688 			tsc_timestamp = tsc;
2689 		}
2690 	}
2691 
2692 	local_irq_restore(flags);
2693 
2694 	/* With all the info we got, fill in the values */
2695 
2696 	if (kvm_has_tsc_control)
2697 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2698 
2699 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2700 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2701 				   &vcpu->hv_clock.tsc_shift,
2702 				   &vcpu->hv_clock.tsc_to_system_mul);
2703 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2704 	}
2705 
2706 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2707 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2708 	vcpu->last_guest_tsc = tsc_timestamp;
2709 
2710 	/* If the host uses TSC clocksource, then it is stable */
2711 	pvclock_flags = 0;
2712 	if (use_master_clock)
2713 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2714 
2715 	vcpu->hv_clock.flags = pvclock_flags;
2716 
2717 	if (vcpu->pv_time_enabled)
2718 		kvm_setup_pvclock_page(v);
2719 	if (v == kvm_get_vcpu(v->kvm, 0))
2720 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2721 	return 0;
2722 }
2723 
2724 /*
2725  * kvmclock updates which are isolated to a given vcpu, such as
2726  * vcpu->cpu migration, should not allow system_timestamp from
2727  * the rest of the vcpus to remain static. Otherwise ntp frequency
2728  * correction applies to one vcpu's system_timestamp but not
2729  * the others.
2730  *
2731  * So in those cases, request a kvmclock update for all vcpus.
2732  * We need to rate-limit these requests though, as they can
2733  * considerably slow guests that have a large number of vcpus.
2734  * The time for a remote vcpu to update its kvmclock is bound
2735  * by the delay we use to rate-limit the updates.
2736  */
2737 
2738 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2739 
2740 static void kvmclock_update_fn(struct work_struct *work)
2741 {
2742 	int i;
2743 	struct delayed_work *dwork = to_delayed_work(work);
2744 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2745 					   kvmclock_update_work);
2746 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2747 	struct kvm_vcpu *vcpu;
2748 
2749 	kvm_for_each_vcpu(i, vcpu, kvm) {
2750 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2751 		kvm_vcpu_kick(vcpu);
2752 	}
2753 }
2754 
2755 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2756 {
2757 	struct kvm *kvm = v->kvm;
2758 
2759 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2760 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2761 					KVMCLOCK_UPDATE_DELAY);
2762 }
2763 
2764 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2765 
2766 static void kvmclock_sync_fn(struct work_struct *work)
2767 {
2768 	struct delayed_work *dwork = to_delayed_work(work);
2769 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2770 					   kvmclock_sync_work);
2771 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2772 
2773 	if (!kvmclock_periodic_sync)
2774 		return;
2775 
2776 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2777 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2778 					KVMCLOCK_SYNC_PERIOD);
2779 }
2780 
2781 /*
2782  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2783  */
2784 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2785 {
2786 	/* McStatusWrEn enabled? */
2787 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2788 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2789 
2790 	return false;
2791 }
2792 
2793 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2794 {
2795 	u64 mcg_cap = vcpu->arch.mcg_cap;
2796 	unsigned bank_num = mcg_cap & 0xff;
2797 	u32 msr = msr_info->index;
2798 	u64 data = msr_info->data;
2799 
2800 	switch (msr) {
2801 	case MSR_IA32_MCG_STATUS:
2802 		vcpu->arch.mcg_status = data;
2803 		break;
2804 	case MSR_IA32_MCG_CTL:
2805 		if (!(mcg_cap & MCG_CTL_P) &&
2806 		    (data || !msr_info->host_initiated))
2807 			return 1;
2808 		if (data != 0 && data != ~(u64)0)
2809 			return 1;
2810 		vcpu->arch.mcg_ctl = data;
2811 		break;
2812 	default:
2813 		if (msr >= MSR_IA32_MC0_CTL &&
2814 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2815 			u32 offset = array_index_nospec(
2816 				msr - MSR_IA32_MC0_CTL,
2817 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2818 
2819 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2820 			 * some Linux kernels though clear bit 10 in bank 4 to
2821 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2822 			 * this to avoid an uncatched #GP in the guest
2823 			 */
2824 			if ((offset & 0x3) == 0 &&
2825 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2826 				return -1;
2827 
2828 			/* MCi_STATUS */
2829 			if (!msr_info->host_initiated &&
2830 			    (offset & 0x3) == 1 && data != 0) {
2831 				if (!can_set_mci_status(vcpu))
2832 					return -1;
2833 			}
2834 
2835 			vcpu->arch.mce_banks[offset] = data;
2836 			break;
2837 		}
2838 		return 1;
2839 	}
2840 	return 0;
2841 }
2842 
2843 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2844 {
2845 	struct kvm *kvm = vcpu->kvm;
2846 	int lm = is_long_mode(vcpu);
2847 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2848 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2849 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2850 		: kvm->arch.xen_hvm_config.blob_size_32;
2851 	u32 page_num = data & ~PAGE_MASK;
2852 	u64 page_addr = data & PAGE_MASK;
2853 	u8 *page;
2854 
2855 	if (page_num >= blob_size)
2856 		return 1;
2857 
2858 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2859 	if (IS_ERR(page))
2860 		return PTR_ERR(page);
2861 
2862 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2863 		kfree(page);
2864 		return 1;
2865 	}
2866 	return 0;
2867 }
2868 
2869 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2870 {
2871 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2872 
2873 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2874 }
2875 
2876 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2877 {
2878 	gpa_t gpa = data & ~0x3f;
2879 
2880 	/* Bits 4:5 are reserved, Should be zero */
2881 	if (data & 0x30)
2882 		return 1;
2883 
2884 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2885 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2886 		return 1;
2887 
2888 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2889 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2890 		return 1;
2891 
2892 	if (!lapic_in_kernel(vcpu))
2893 		return data ? 1 : 0;
2894 
2895 	vcpu->arch.apf.msr_en_val = data;
2896 
2897 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2898 		kvm_clear_async_pf_completion_queue(vcpu);
2899 		kvm_async_pf_hash_reset(vcpu);
2900 		return 0;
2901 	}
2902 
2903 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2904 					sizeof(u64)))
2905 		return 1;
2906 
2907 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2908 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2909 
2910 	kvm_async_pf_wakeup_all(vcpu);
2911 
2912 	return 0;
2913 }
2914 
2915 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2916 {
2917 	/* Bits 8-63 are reserved */
2918 	if (data >> 8)
2919 		return 1;
2920 
2921 	if (!lapic_in_kernel(vcpu))
2922 		return 1;
2923 
2924 	vcpu->arch.apf.msr_int_val = data;
2925 
2926 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2927 
2928 	return 0;
2929 }
2930 
2931 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2932 {
2933 	vcpu->arch.pv_time_enabled = false;
2934 	vcpu->arch.time = 0;
2935 }
2936 
2937 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2938 {
2939 	++vcpu->stat.tlb_flush;
2940 	kvm_x86_ops.tlb_flush_all(vcpu);
2941 }
2942 
2943 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2944 {
2945 	++vcpu->stat.tlb_flush;
2946 	kvm_x86_ops.tlb_flush_guest(vcpu);
2947 }
2948 
2949 static void record_steal_time(struct kvm_vcpu *vcpu)
2950 {
2951 	struct kvm_host_map map;
2952 	struct kvm_steal_time *st;
2953 
2954 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2955 		return;
2956 
2957 	/* -EAGAIN is returned in atomic context so we can just return. */
2958 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2959 			&map, &vcpu->arch.st.cache, false))
2960 		return;
2961 
2962 	st = map.hva +
2963 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2964 
2965 	/*
2966 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2967 	 * expensive IPIs.
2968 	 */
2969 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2970 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2971 				       st->preempted & KVM_VCPU_FLUSH_TLB);
2972 		if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2973 			kvm_vcpu_flush_tlb_guest(vcpu);
2974 	}
2975 
2976 	vcpu->arch.st.preempted = 0;
2977 
2978 	if (st->version & 1)
2979 		st->version += 1;  /* first time write, random junk */
2980 
2981 	st->version += 1;
2982 
2983 	smp_wmb();
2984 
2985 	st->steal += current->sched_info.run_delay -
2986 		vcpu->arch.st.last_steal;
2987 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2988 
2989 	smp_wmb();
2990 
2991 	st->version += 1;
2992 
2993 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2994 }
2995 
2996 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2997 {
2998 	bool pr = false;
2999 	u32 msr = msr_info->index;
3000 	u64 data = msr_info->data;
3001 
3002 	switch (msr) {
3003 	case MSR_AMD64_NB_CFG:
3004 	case MSR_IA32_UCODE_WRITE:
3005 	case MSR_VM_HSAVE_PA:
3006 	case MSR_AMD64_PATCH_LOADER:
3007 	case MSR_AMD64_BU_CFG2:
3008 	case MSR_AMD64_DC_CFG:
3009 	case MSR_F15H_EX_CFG:
3010 		break;
3011 
3012 	case MSR_IA32_UCODE_REV:
3013 		if (msr_info->host_initiated)
3014 			vcpu->arch.microcode_version = data;
3015 		break;
3016 	case MSR_IA32_ARCH_CAPABILITIES:
3017 		if (!msr_info->host_initiated)
3018 			return 1;
3019 		vcpu->arch.arch_capabilities = data;
3020 		break;
3021 	case MSR_IA32_PERF_CAPABILITIES: {
3022 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3023 
3024 		if (!msr_info->host_initiated)
3025 			return 1;
3026 		if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3027 			return 1;
3028 		if (data & ~msr_ent.data)
3029 			return 1;
3030 
3031 		vcpu->arch.perf_capabilities = data;
3032 
3033 		return 0;
3034 		}
3035 	case MSR_EFER:
3036 		return set_efer(vcpu, msr_info);
3037 	case MSR_K7_HWCR:
3038 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3039 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3040 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3041 
3042 		/* Handle McStatusWrEn */
3043 		if (data == BIT_ULL(18)) {
3044 			vcpu->arch.msr_hwcr = data;
3045 		} else if (data != 0) {
3046 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3047 				    data);
3048 			return 1;
3049 		}
3050 		break;
3051 	case MSR_FAM10H_MMIO_CONF_BASE:
3052 		if (data != 0) {
3053 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3054 				    "0x%llx\n", data);
3055 			return 1;
3056 		}
3057 		break;
3058 	case MSR_IA32_DEBUGCTLMSR:
3059 		if (!data) {
3060 			/* We support the non-activated case already */
3061 			break;
3062 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3063 			/* Values other than LBR and BTF are vendor-specific,
3064 			   thus reserved and should throw a #GP */
3065 			return 1;
3066 		}
3067 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3068 			    __func__, data);
3069 		break;
3070 	case 0x200 ... 0x2ff:
3071 		return kvm_mtrr_set_msr(vcpu, msr, data);
3072 	case MSR_IA32_APICBASE:
3073 		return kvm_set_apic_base(vcpu, msr_info);
3074 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3075 		return kvm_x2apic_msr_write(vcpu, msr, data);
3076 	case MSR_IA32_TSCDEADLINE:
3077 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3078 		break;
3079 	case MSR_IA32_TSC_ADJUST:
3080 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3081 			if (!msr_info->host_initiated) {
3082 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3083 				adjust_tsc_offset_guest(vcpu, adj);
3084 			}
3085 			vcpu->arch.ia32_tsc_adjust_msr = data;
3086 		}
3087 		break;
3088 	case MSR_IA32_MISC_ENABLE:
3089 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3090 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3091 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3092 				return 1;
3093 			vcpu->arch.ia32_misc_enable_msr = data;
3094 			kvm_update_cpuid_runtime(vcpu);
3095 		} else {
3096 			vcpu->arch.ia32_misc_enable_msr = data;
3097 		}
3098 		break;
3099 	case MSR_IA32_SMBASE:
3100 		if (!msr_info->host_initiated)
3101 			return 1;
3102 		vcpu->arch.smbase = data;
3103 		break;
3104 	case MSR_IA32_POWER_CTL:
3105 		vcpu->arch.msr_ia32_power_ctl = data;
3106 		break;
3107 	case MSR_IA32_TSC:
3108 		if (msr_info->host_initiated) {
3109 			kvm_synchronize_tsc(vcpu, data);
3110 		} else {
3111 			u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3112 			adjust_tsc_offset_guest(vcpu, adj);
3113 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3114 		}
3115 		break;
3116 	case MSR_IA32_XSS:
3117 		if (!msr_info->host_initiated &&
3118 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3119 			return 1;
3120 		/*
3121 		 * KVM supports exposing PT to the guest, but does not support
3122 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3123 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3124 		 */
3125 		if (data & ~supported_xss)
3126 			return 1;
3127 		vcpu->arch.ia32_xss = data;
3128 		break;
3129 	case MSR_SMI_COUNT:
3130 		if (!msr_info->host_initiated)
3131 			return 1;
3132 		vcpu->arch.smi_count = data;
3133 		break;
3134 	case MSR_KVM_WALL_CLOCK_NEW:
3135 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3136 			return 1;
3137 
3138 		kvm_write_wall_clock(vcpu->kvm, data);
3139 		break;
3140 	case MSR_KVM_WALL_CLOCK:
3141 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3142 			return 1;
3143 
3144 		kvm_write_wall_clock(vcpu->kvm, data);
3145 		break;
3146 	case MSR_KVM_SYSTEM_TIME_NEW:
3147 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3148 			return 1;
3149 
3150 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3151 		break;
3152 	case MSR_KVM_SYSTEM_TIME:
3153 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3154 			return 1;
3155 
3156 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3157 		break;
3158 	case MSR_KVM_ASYNC_PF_EN:
3159 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3160 			return 1;
3161 
3162 		if (kvm_pv_enable_async_pf(vcpu, data))
3163 			return 1;
3164 		break;
3165 	case MSR_KVM_ASYNC_PF_INT:
3166 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3167 			return 1;
3168 
3169 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3170 			return 1;
3171 		break;
3172 	case MSR_KVM_ASYNC_PF_ACK:
3173 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3174 			return 1;
3175 		if (data & 0x1) {
3176 			vcpu->arch.apf.pageready_pending = false;
3177 			kvm_check_async_pf_completion(vcpu);
3178 		}
3179 		break;
3180 	case MSR_KVM_STEAL_TIME:
3181 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3182 			return 1;
3183 
3184 		if (unlikely(!sched_info_on()))
3185 			return 1;
3186 
3187 		if (data & KVM_STEAL_RESERVED_MASK)
3188 			return 1;
3189 
3190 		vcpu->arch.st.msr_val = data;
3191 
3192 		if (!(data & KVM_MSR_ENABLED))
3193 			break;
3194 
3195 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3196 
3197 		break;
3198 	case MSR_KVM_PV_EOI_EN:
3199 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3200 			return 1;
3201 
3202 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3203 			return 1;
3204 		break;
3205 
3206 	case MSR_KVM_POLL_CONTROL:
3207 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3208 			return 1;
3209 
3210 		/* only enable bit supported */
3211 		if (data & (-1ULL << 1))
3212 			return 1;
3213 
3214 		vcpu->arch.msr_kvm_poll_control = data;
3215 		break;
3216 
3217 	case MSR_IA32_MCG_CTL:
3218 	case MSR_IA32_MCG_STATUS:
3219 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3220 		return set_msr_mce(vcpu, msr_info);
3221 
3222 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3223 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3224 		pr = true;
3225 		fallthrough;
3226 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3227 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3228 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3229 			return kvm_pmu_set_msr(vcpu, msr_info);
3230 
3231 		if (pr || data != 0)
3232 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3233 				    "0x%x data 0x%llx\n", msr, data);
3234 		break;
3235 	case MSR_K7_CLK_CTL:
3236 		/*
3237 		 * Ignore all writes to this no longer documented MSR.
3238 		 * Writes are only relevant for old K7 processors,
3239 		 * all pre-dating SVM, but a recommended workaround from
3240 		 * AMD for these chips. It is possible to specify the
3241 		 * affected processor models on the command line, hence
3242 		 * the need to ignore the workaround.
3243 		 */
3244 		break;
3245 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3246 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3247 	case HV_X64_MSR_SYNDBG_OPTIONS:
3248 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3249 	case HV_X64_MSR_CRASH_CTL:
3250 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3251 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3252 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3253 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3254 		return kvm_hv_set_msr_common(vcpu, msr, data,
3255 					     msr_info->host_initiated);
3256 	case MSR_IA32_BBL_CR_CTL3:
3257 		/* Drop writes to this legacy MSR -- see rdmsr
3258 		 * counterpart for further detail.
3259 		 */
3260 		if (report_ignored_msrs)
3261 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3262 				msr, data);
3263 		break;
3264 	case MSR_AMD64_OSVW_ID_LENGTH:
3265 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3266 			return 1;
3267 		vcpu->arch.osvw.length = data;
3268 		break;
3269 	case MSR_AMD64_OSVW_STATUS:
3270 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3271 			return 1;
3272 		vcpu->arch.osvw.status = data;
3273 		break;
3274 	case MSR_PLATFORM_INFO:
3275 		if (!msr_info->host_initiated ||
3276 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3277 		     cpuid_fault_enabled(vcpu)))
3278 			return 1;
3279 		vcpu->arch.msr_platform_info = data;
3280 		break;
3281 	case MSR_MISC_FEATURES_ENABLES:
3282 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3283 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3284 		     !supports_cpuid_fault(vcpu)))
3285 			return 1;
3286 		vcpu->arch.msr_misc_features_enables = data;
3287 		break;
3288 	default:
3289 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3290 			return xen_hvm_config(vcpu, data);
3291 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3292 			return kvm_pmu_set_msr(vcpu, msr_info);
3293 		return KVM_MSR_RET_INVALID;
3294 	}
3295 	return 0;
3296 }
3297 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3298 
3299 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3300 {
3301 	u64 data;
3302 	u64 mcg_cap = vcpu->arch.mcg_cap;
3303 	unsigned bank_num = mcg_cap & 0xff;
3304 
3305 	switch (msr) {
3306 	case MSR_IA32_P5_MC_ADDR:
3307 	case MSR_IA32_P5_MC_TYPE:
3308 		data = 0;
3309 		break;
3310 	case MSR_IA32_MCG_CAP:
3311 		data = vcpu->arch.mcg_cap;
3312 		break;
3313 	case MSR_IA32_MCG_CTL:
3314 		if (!(mcg_cap & MCG_CTL_P) && !host)
3315 			return 1;
3316 		data = vcpu->arch.mcg_ctl;
3317 		break;
3318 	case MSR_IA32_MCG_STATUS:
3319 		data = vcpu->arch.mcg_status;
3320 		break;
3321 	default:
3322 		if (msr >= MSR_IA32_MC0_CTL &&
3323 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3324 			u32 offset = array_index_nospec(
3325 				msr - MSR_IA32_MC0_CTL,
3326 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3327 
3328 			data = vcpu->arch.mce_banks[offset];
3329 			break;
3330 		}
3331 		return 1;
3332 	}
3333 	*pdata = data;
3334 	return 0;
3335 }
3336 
3337 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3338 {
3339 	switch (msr_info->index) {
3340 	case MSR_IA32_PLATFORM_ID:
3341 	case MSR_IA32_EBL_CR_POWERON:
3342 	case MSR_IA32_DEBUGCTLMSR:
3343 	case MSR_IA32_LASTBRANCHFROMIP:
3344 	case MSR_IA32_LASTBRANCHTOIP:
3345 	case MSR_IA32_LASTINTFROMIP:
3346 	case MSR_IA32_LASTINTTOIP:
3347 	case MSR_K8_SYSCFG:
3348 	case MSR_K8_TSEG_ADDR:
3349 	case MSR_K8_TSEG_MASK:
3350 	case MSR_VM_HSAVE_PA:
3351 	case MSR_K8_INT_PENDING_MSG:
3352 	case MSR_AMD64_NB_CFG:
3353 	case MSR_FAM10H_MMIO_CONF_BASE:
3354 	case MSR_AMD64_BU_CFG2:
3355 	case MSR_IA32_PERF_CTL:
3356 	case MSR_AMD64_DC_CFG:
3357 	case MSR_F15H_EX_CFG:
3358 	/*
3359 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3360 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3361 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3362 	 * so for existing CPU-specific MSRs.
3363 	 */
3364 	case MSR_RAPL_POWER_UNIT:
3365 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3366 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3367 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3368 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3369 		msr_info->data = 0;
3370 		break;
3371 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3372 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3373 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3374 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3375 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3376 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3377 			return kvm_pmu_get_msr(vcpu, msr_info);
3378 		msr_info->data = 0;
3379 		break;
3380 	case MSR_IA32_UCODE_REV:
3381 		msr_info->data = vcpu->arch.microcode_version;
3382 		break;
3383 	case MSR_IA32_ARCH_CAPABILITIES:
3384 		if (!msr_info->host_initiated &&
3385 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3386 			return 1;
3387 		msr_info->data = vcpu->arch.arch_capabilities;
3388 		break;
3389 	case MSR_IA32_PERF_CAPABILITIES:
3390 		if (!msr_info->host_initiated &&
3391 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3392 			return 1;
3393 		msr_info->data = vcpu->arch.perf_capabilities;
3394 		break;
3395 	case MSR_IA32_POWER_CTL:
3396 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3397 		break;
3398 	case MSR_IA32_TSC: {
3399 		/*
3400 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3401 		 * even when not intercepted. AMD manual doesn't explicitly
3402 		 * state this but appears to behave the same.
3403 		 *
3404 		 * On userspace reads and writes, however, we unconditionally
3405 		 * return L1's TSC value to ensure backwards-compatible
3406 		 * behavior for migration.
3407 		 */
3408 		u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3409 							    vcpu->arch.tsc_offset;
3410 
3411 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3412 		break;
3413 	}
3414 	case MSR_MTRRcap:
3415 	case 0x200 ... 0x2ff:
3416 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3417 	case 0xcd: /* fsb frequency */
3418 		msr_info->data = 3;
3419 		break;
3420 		/*
3421 		 * MSR_EBC_FREQUENCY_ID
3422 		 * Conservative value valid for even the basic CPU models.
3423 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3424 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3425 		 * and 266MHz for model 3, or 4. Set Core Clock
3426 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3427 		 * 31:24) even though these are only valid for CPU
3428 		 * models > 2, however guests may end up dividing or
3429 		 * multiplying by zero otherwise.
3430 		 */
3431 	case MSR_EBC_FREQUENCY_ID:
3432 		msr_info->data = 1 << 24;
3433 		break;
3434 	case MSR_IA32_APICBASE:
3435 		msr_info->data = kvm_get_apic_base(vcpu);
3436 		break;
3437 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3438 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3439 	case MSR_IA32_TSCDEADLINE:
3440 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3441 		break;
3442 	case MSR_IA32_TSC_ADJUST:
3443 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3444 		break;
3445 	case MSR_IA32_MISC_ENABLE:
3446 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3447 		break;
3448 	case MSR_IA32_SMBASE:
3449 		if (!msr_info->host_initiated)
3450 			return 1;
3451 		msr_info->data = vcpu->arch.smbase;
3452 		break;
3453 	case MSR_SMI_COUNT:
3454 		msr_info->data = vcpu->arch.smi_count;
3455 		break;
3456 	case MSR_IA32_PERF_STATUS:
3457 		/* TSC increment by tick */
3458 		msr_info->data = 1000ULL;
3459 		/* CPU multiplier */
3460 		msr_info->data |= (((uint64_t)4ULL) << 40);
3461 		break;
3462 	case MSR_EFER:
3463 		msr_info->data = vcpu->arch.efer;
3464 		break;
3465 	case MSR_KVM_WALL_CLOCK:
3466 	case MSR_KVM_WALL_CLOCK_NEW:
3467 		msr_info->data = vcpu->kvm->arch.wall_clock;
3468 		break;
3469 	case MSR_KVM_SYSTEM_TIME:
3470 	case MSR_KVM_SYSTEM_TIME_NEW:
3471 		msr_info->data = vcpu->arch.time;
3472 		break;
3473 	case MSR_KVM_ASYNC_PF_EN:
3474 		msr_info->data = vcpu->arch.apf.msr_en_val;
3475 		break;
3476 	case MSR_KVM_ASYNC_PF_INT:
3477 		msr_info->data = vcpu->arch.apf.msr_int_val;
3478 		break;
3479 	case MSR_KVM_ASYNC_PF_ACK:
3480 		msr_info->data = 0;
3481 		break;
3482 	case MSR_KVM_STEAL_TIME:
3483 		msr_info->data = vcpu->arch.st.msr_val;
3484 		break;
3485 	case MSR_KVM_PV_EOI_EN:
3486 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3487 		break;
3488 	case MSR_KVM_POLL_CONTROL:
3489 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3490 		break;
3491 	case MSR_IA32_P5_MC_ADDR:
3492 	case MSR_IA32_P5_MC_TYPE:
3493 	case MSR_IA32_MCG_CAP:
3494 	case MSR_IA32_MCG_CTL:
3495 	case MSR_IA32_MCG_STATUS:
3496 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3497 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3498 				   msr_info->host_initiated);
3499 	case MSR_IA32_XSS:
3500 		if (!msr_info->host_initiated &&
3501 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3502 			return 1;
3503 		msr_info->data = vcpu->arch.ia32_xss;
3504 		break;
3505 	case MSR_K7_CLK_CTL:
3506 		/*
3507 		 * Provide expected ramp-up count for K7. All other
3508 		 * are set to zero, indicating minimum divisors for
3509 		 * every field.
3510 		 *
3511 		 * This prevents guest kernels on AMD host with CPU
3512 		 * type 6, model 8 and higher from exploding due to
3513 		 * the rdmsr failing.
3514 		 */
3515 		msr_info->data = 0x20000000;
3516 		break;
3517 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3518 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3519 	case HV_X64_MSR_SYNDBG_OPTIONS:
3520 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3521 	case HV_X64_MSR_CRASH_CTL:
3522 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3523 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3524 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3525 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3526 		return kvm_hv_get_msr_common(vcpu,
3527 					     msr_info->index, &msr_info->data,
3528 					     msr_info->host_initiated);
3529 	case MSR_IA32_BBL_CR_CTL3:
3530 		/* This legacy MSR exists but isn't fully documented in current
3531 		 * silicon.  It is however accessed by winxp in very narrow
3532 		 * scenarios where it sets bit #19, itself documented as
3533 		 * a "reserved" bit.  Best effort attempt to source coherent
3534 		 * read data here should the balance of the register be
3535 		 * interpreted by the guest:
3536 		 *
3537 		 * L2 cache control register 3: 64GB range, 256KB size,
3538 		 * enabled, latency 0x1, configured
3539 		 */
3540 		msr_info->data = 0xbe702111;
3541 		break;
3542 	case MSR_AMD64_OSVW_ID_LENGTH:
3543 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3544 			return 1;
3545 		msr_info->data = vcpu->arch.osvw.length;
3546 		break;
3547 	case MSR_AMD64_OSVW_STATUS:
3548 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3549 			return 1;
3550 		msr_info->data = vcpu->arch.osvw.status;
3551 		break;
3552 	case MSR_PLATFORM_INFO:
3553 		if (!msr_info->host_initiated &&
3554 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3555 			return 1;
3556 		msr_info->data = vcpu->arch.msr_platform_info;
3557 		break;
3558 	case MSR_MISC_FEATURES_ENABLES:
3559 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3560 		break;
3561 	case MSR_K7_HWCR:
3562 		msr_info->data = vcpu->arch.msr_hwcr;
3563 		break;
3564 	default:
3565 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3566 			return kvm_pmu_get_msr(vcpu, msr_info);
3567 		return KVM_MSR_RET_INVALID;
3568 	}
3569 	return 0;
3570 }
3571 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3572 
3573 /*
3574  * Read or write a bunch of msrs. All parameters are kernel addresses.
3575  *
3576  * @return number of msrs set successfully.
3577  */
3578 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3579 		    struct kvm_msr_entry *entries,
3580 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3581 				  unsigned index, u64 *data))
3582 {
3583 	int i;
3584 
3585 	for (i = 0; i < msrs->nmsrs; ++i)
3586 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3587 			break;
3588 
3589 	return i;
3590 }
3591 
3592 /*
3593  * Read or write a bunch of msrs. Parameters are user addresses.
3594  *
3595  * @return number of msrs set successfully.
3596  */
3597 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3598 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3599 				unsigned index, u64 *data),
3600 		  int writeback)
3601 {
3602 	struct kvm_msrs msrs;
3603 	struct kvm_msr_entry *entries;
3604 	int r, n;
3605 	unsigned size;
3606 
3607 	r = -EFAULT;
3608 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3609 		goto out;
3610 
3611 	r = -E2BIG;
3612 	if (msrs.nmsrs >= MAX_IO_MSRS)
3613 		goto out;
3614 
3615 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3616 	entries = memdup_user(user_msrs->entries, size);
3617 	if (IS_ERR(entries)) {
3618 		r = PTR_ERR(entries);
3619 		goto out;
3620 	}
3621 
3622 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3623 	if (r < 0)
3624 		goto out_free;
3625 
3626 	r = -EFAULT;
3627 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3628 		goto out_free;
3629 
3630 	r = n;
3631 
3632 out_free:
3633 	kfree(entries);
3634 out:
3635 	return r;
3636 }
3637 
3638 static inline bool kvm_can_mwait_in_guest(void)
3639 {
3640 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3641 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3642 		boot_cpu_has(X86_FEATURE_ARAT);
3643 }
3644 
3645 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3646 {
3647 	int r = 0;
3648 
3649 	switch (ext) {
3650 	case KVM_CAP_IRQCHIP:
3651 	case KVM_CAP_HLT:
3652 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3653 	case KVM_CAP_SET_TSS_ADDR:
3654 	case KVM_CAP_EXT_CPUID:
3655 	case KVM_CAP_EXT_EMUL_CPUID:
3656 	case KVM_CAP_CLOCKSOURCE:
3657 	case KVM_CAP_PIT:
3658 	case KVM_CAP_NOP_IO_DELAY:
3659 	case KVM_CAP_MP_STATE:
3660 	case KVM_CAP_SYNC_MMU:
3661 	case KVM_CAP_USER_NMI:
3662 	case KVM_CAP_REINJECT_CONTROL:
3663 	case KVM_CAP_IRQ_INJECT_STATUS:
3664 	case KVM_CAP_IOEVENTFD:
3665 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3666 	case KVM_CAP_PIT2:
3667 	case KVM_CAP_PIT_STATE2:
3668 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3669 	case KVM_CAP_XEN_HVM:
3670 	case KVM_CAP_VCPU_EVENTS:
3671 	case KVM_CAP_HYPERV:
3672 	case KVM_CAP_HYPERV_VAPIC:
3673 	case KVM_CAP_HYPERV_SPIN:
3674 	case KVM_CAP_HYPERV_SYNIC:
3675 	case KVM_CAP_HYPERV_SYNIC2:
3676 	case KVM_CAP_HYPERV_VP_INDEX:
3677 	case KVM_CAP_HYPERV_EVENTFD:
3678 	case KVM_CAP_HYPERV_TLBFLUSH:
3679 	case KVM_CAP_HYPERV_SEND_IPI:
3680 	case KVM_CAP_HYPERV_CPUID:
3681 	case KVM_CAP_PCI_SEGMENT:
3682 	case KVM_CAP_DEBUGREGS:
3683 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3684 	case KVM_CAP_XSAVE:
3685 	case KVM_CAP_ASYNC_PF:
3686 	case KVM_CAP_ASYNC_PF_INT:
3687 	case KVM_CAP_GET_TSC_KHZ:
3688 	case KVM_CAP_KVMCLOCK_CTRL:
3689 	case KVM_CAP_READONLY_MEM:
3690 	case KVM_CAP_HYPERV_TIME:
3691 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3692 	case KVM_CAP_TSC_DEADLINE_TIMER:
3693 	case KVM_CAP_DISABLE_QUIRKS:
3694 	case KVM_CAP_SET_BOOT_CPU_ID:
3695  	case KVM_CAP_SPLIT_IRQCHIP:
3696 	case KVM_CAP_IMMEDIATE_EXIT:
3697 	case KVM_CAP_PMU_EVENT_FILTER:
3698 	case KVM_CAP_GET_MSR_FEATURES:
3699 	case KVM_CAP_MSR_PLATFORM_INFO:
3700 	case KVM_CAP_EXCEPTION_PAYLOAD:
3701 	case KVM_CAP_SET_GUEST_DEBUG:
3702 	case KVM_CAP_LAST_CPU:
3703 	case KVM_CAP_X86_USER_SPACE_MSR:
3704 	case KVM_CAP_X86_MSR_FILTER:
3705 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3706 		r = 1;
3707 		break;
3708 	case KVM_CAP_SYNC_REGS:
3709 		r = KVM_SYNC_X86_VALID_FIELDS;
3710 		break;
3711 	case KVM_CAP_ADJUST_CLOCK:
3712 		r = KVM_CLOCK_TSC_STABLE;
3713 		break;
3714 	case KVM_CAP_X86_DISABLE_EXITS:
3715 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3716 		      KVM_X86_DISABLE_EXITS_CSTATE;
3717 		if(kvm_can_mwait_in_guest())
3718 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3719 		break;
3720 	case KVM_CAP_X86_SMM:
3721 		/* SMBASE is usually relocated above 1M on modern chipsets,
3722 		 * and SMM handlers might indeed rely on 4G segment limits,
3723 		 * so do not report SMM to be available if real mode is
3724 		 * emulated via vm86 mode.  Still, do not go to great lengths
3725 		 * to avoid userspace's usage of the feature, because it is a
3726 		 * fringe case that is not enabled except via specific settings
3727 		 * of the module parameters.
3728 		 */
3729 		r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3730 		break;
3731 	case KVM_CAP_VAPIC:
3732 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3733 		break;
3734 	case KVM_CAP_NR_VCPUS:
3735 		r = KVM_SOFT_MAX_VCPUS;
3736 		break;
3737 	case KVM_CAP_MAX_VCPUS:
3738 		r = KVM_MAX_VCPUS;
3739 		break;
3740 	case KVM_CAP_MAX_VCPU_ID:
3741 		r = KVM_MAX_VCPU_ID;
3742 		break;
3743 	case KVM_CAP_PV_MMU:	/* obsolete */
3744 		r = 0;
3745 		break;
3746 	case KVM_CAP_MCE:
3747 		r = KVM_MAX_MCE_BANKS;
3748 		break;
3749 	case KVM_CAP_XCRS:
3750 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3751 		break;
3752 	case KVM_CAP_TSC_CONTROL:
3753 		r = kvm_has_tsc_control;
3754 		break;
3755 	case KVM_CAP_X2APIC_API:
3756 		r = KVM_X2APIC_API_VALID_FLAGS;
3757 		break;
3758 	case KVM_CAP_NESTED_STATE:
3759 		r = kvm_x86_ops.nested_ops->get_state ?
3760 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3761 		break;
3762 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3763 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3764 		break;
3765 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3766 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3767 		break;
3768 	case KVM_CAP_SMALLER_MAXPHYADDR:
3769 		r = (int) allow_smaller_maxphyaddr;
3770 		break;
3771 	case KVM_CAP_STEAL_TIME:
3772 		r = sched_info_on();
3773 		break;
3774 	default:
3775 		break;
3776 	}
3777 	return r;
3778 
3779 }
3780 
3781 long kvm_arch_dev_ioctl(struct file *filp,
3782 			unsigned int ioctl, unsigned long arg)
3783 {
3784 	void __user *argp = (void __user *)arg;
3785 	long r;
3786 
3787 	switch (ioctl) {
3788 	case KVM_GET_MSR_INDEX_LIST: {
3789 		struct kvm_msr_list __user *user_msr_list = argp;
3790 		struct kvm_msr_list msr_list;
3791 		unsigned n;
3792 
3793 		r = -EFAULT;
3794 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3795 			goto out;
3796 		n = msr_list.nmsrs;
3797 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3798 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3799 			goto out;
3800 		r = -E2BIG;
3801 		if (n < msr_list.nmsrs)
3802 			goto out;
3803 		r = -EFAULT;
3804 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3805 				 num_msrs_to_save * sizeof(u32)))
3806 			goto out;
3807 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3808 				 &emulated_msrs,
3809 				 num_emulated_msrs * sizeof(u32)))
3810 			goto out;
3811 		r = 0;
3812 		break;
3813 	}
3814 	case KVM_GET_SUPPORTED_CPUID:
3815 	case KVM_GET_EMULATED_CPUID: {
3816 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3817 		struct kvm_cpuid2 cpuid;
3818 
3819 		r = -EFAULT;
3820 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3821 			goto out;
3822 
3823 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3824 					    ioctl);
3825 		if (r)
3826 			goto out;
3827 
3828 		r = -EFAULT;
3829 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3830 			goto out;
3831 		r = 0;
3832 		break;
3833 	}
3834 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3835 		r = -EFAULT;
3836 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3837 				 sizeof(kvm_mce_cap_supported)))
3838 			goto out;
3839 		r = 0;
3840 		break;
3841 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3842 		struct kvm_msr_list __user *user_msr_list = argp;
3843 		struct kvm_msr_list msr_list;
3844 		unsigned int n;
3845 
3846 		r = -EFAULT;
3847 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3848 			goto out;
3849 		n = msr_list.nmsrs;
3850 		msr_list.nmsrs = num_msr_based_features;
3851 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3852 			goto out;
3853 		r = -E2BIG;
3854 		if (n < msr_list.nmsrs)
3855 			goto out;
3856 		r = -EFAULT;
3857 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3858 				 num_msr_based_features * sizeof(u32)))
3859 			goto out;
3860 		r = 0;
3861 		break;
3862 	}
3863 	case KVM_GET_MSRS:
3864 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3865 		break;
3866 	default:
3867 		r = -EINVAL;
3868 		break;
3869 	}
3870 out:
3871 	return r;
3872 }
3873 
3874 static void wbinvd_ipi(void *garbage)
3875 {
3876 	wbinvd();
3877 }
3878 
3879 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3880 {
3881 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3882 }
3883 
3884 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3885 {
3886 	/* Address WBINVD may be executed by guest */
3887 	if (need_emulate_wbinvd(vcpu)) {
3888 		if (kvm_x86_ops.has_wbinvd_exit())
3889 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3890 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3891 			smp_call_function_single(vcpu->cpu,
3892 					wbinvd_ipi, NULL, 1);
3893 	}
3894 
3895 	kvm_x86_ops.vcpu_load(vcpu, cpu);
3896 
3897 	/* Save host pkru register if supported */
3898 	vcpu->arch.host_pkru = read_pkru();
3899 
3900 	/* Apply any externally detected TSC adjustments (due to suspend) */
3901 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3902 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3903 		vcpu->arch.tsc_offset_adjustment = 0;
3904 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3905 	}
3906 
3907 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3908 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3909 				rdtsc() - vcpu->arch.last_host_tsc;
3910 		if (tsc_delta < 0)
3911 			mark_tsc_unstable("KVM discovered backwards TSC");
3912 
3913 		if (kvm_check_tsc_unstable()) {
3914 			u64 offset = kvm_compute_tsc_offset(vcpu,
3915 						vcpu->arch.last_guest_tsc);
3916 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3917 			vcpu->arch.tsc_catchup = 1;
3918 		}
3919 
3920 		if (kvm_lapic_hv_timer_in_use(vcpu))
3921 			kvm_lapic_restart_hv_timer(vcpu);
3922 
3923 		/*
3924 		 * On a host with synchronized TSC, there is no need to update
3925 		 * kvmclock on vcpu->cpu migration
3926 		 */
3927 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3928 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3929 		if (vcpu->cpu != cpu)
3930 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3931 		vcpu->cpu = cpu;
3932 	}
3933 
3934 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3935 }
3936 
3937 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3938 {
3939 	struct kvm_host_map map;
3940 	struct kvm_steal_time *st;
3941 
3942 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3943 		return;
3944 
3945 	if (vcpu->arch.st.preempted)
3946 		return;
3947 
3948 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3949 			&vcpu->arch.st.cache, true))
3950 		return;
3951 
3952 	st = map.hva +
3953 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3954 
3955 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3956 
3957 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3958 }
3959 
3960 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3961 {
3962 	int idx;
3963 
3964 	if (vcpu->preempted)
3965 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
3966 
3967 	/*
3968 	 * Disable page faults because we're in atomic context here.
3969 	 * kvm_write_guest_offset_cached() would call might_fault()
3970 	 * that relies on pagefault_disable() to tell if there's a
3971 	 * bug. NOTE: the write to guest memory may not go through if
3972 	 * during postcopy live migration or if there's heavy guest
3973 	 * paging.
3974 	 */
3975 	pagefault_disable();
3976 	/*
3977 	 * kvm_memslots() will be called by
3978 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3979 	 */
3980 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3981 	kvm_steal_time_set_preempted(vcpu);
3982 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3983 	pagefault_enable();
3984 	kvm_x86_ops.vcpu_put(vcpu);
3985 	vcpu->arch.last_host_tsc = rdtsc();
3986 	/*
3987 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3988 	 * on every vmexit, but if not, we might have a stale dr6 from the
3989 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3990 	 */
3991 	set_debugreg(0, 6);
3992 }
3993 
3994 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3995 				    struct kvm_lapic_state *s)
3996 {
3997 	if (vcpu->arch.apicv_active)
3998 		kvm_x86_ops.sync_pir_to_irr(vcpu);
3999 
4000 	return kvm_apic_get_state(vcpu, s);
4001 }
4002 
4003 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4004 				    struct kvm_lapic_state *s)
4005 {
4006 	int r;
4007 
4008 	r = kvm_apic_set_state(vcpu, s);
4009 	if (r)
4010 		return r;
4011 	update_cr8_intercept(vcpu);
4012 
4013 	return 0;
4014 }
4015 
4016 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4017 {
4018 	return (!lapic_in_kernel(vcpu) ||
4019 		kvm_apic_accept_pic_intr(vcpu));
4020 }
4021 
4022 /*
4023  * if userspace requested an interrupt window, check that the
4024  * interrupt window is open.
4025  *
4026  * No need to exit to userspace if we already have an interrupt queued.
4027  */
4028 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4029 {
4030 	return kvm_arch_interrupt_allowed(vcpu) &&
4031 		!kvm_cpu_has_interrupt(vcpu) &&
4032 		!kvm_event_needs_reinjection(vcpu) &&
4033 		kvm_cpu_accept_dm_intr(vcpu);
4034 }
4035 
4036 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4037 				    struct kvm_interrupt *irq)
4038 {
4039 	if (irq->irq >= KVM_NR_INTERRUPTS)
4040 		return -EINVAL;
4041 
4042 	if (!irqchip_in_kernel(vcpu->kvm)) {
4043 		kvm_queue_interrupt(vcpu, irq->irq, false);
4044 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4045 		return 0;
4046 	}
4047 
4048 	/*
4049 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4050 	 * fail for in-kernel 8259.
4051 	 */
4052 	if (pic_in_kernel(vcpu->kvm))
4053 		return -ENXIO;
4054 
4055 	if (vcpu->arch.pending_external_vector != -1)
4056 		return -EEXIST;
4057 
4058 	vcpu->arch.pending_external_vector = irq->irq;
4059 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4060 	return 0;
4061 }
4062 
4063 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4064 {
4065 	kvm_inject_nmi(vcpu);
4066 
4067 	return 0;
4068 }
4069 
4070 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4071 {
4072 	kvm_make_request(KVM_REQ_SMI, vcpu);
4073 
4074 	return 0;
4075 }
4076 
4077 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4078 					   struct kvm_tpr_access_ctl *tac)
4079 {
4080 	if (tac->flags)
4081 		return -EINVAL;
4082 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4083 	return 0;
4084 }
4085 
4086 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4087 					u64 mcg_cap)
4088 {
4089 	int r;
4090 	unsigned bank_num = mcg_cap & 0xff, bank;
4091 
4092 	r = -EINVAL;
4093 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4094 		goto out;
4095 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4096 		goto out;
4097 	r = 0;
4098 	vcpu->arch.mcg_cap = mcg_cap;
4099 	/* Init IA32_MCG_CTL to all 1s */
4100 	if (mcg_cap & MCG_CTL_P)
4101 		vcpu->arch.mcg_ctl = ~(u64)0;
4102 	/* Init IA32_MCi_CTL to all 1s */
4103 	for (bank = 0; bank < bank_num; bank++)
4104 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4105 
4106 	kvm_x86_ops.setup_mce(vcpu);
4107 out:
4108 	return r;
4109 }
4110 
4111 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4112 				      struct kvm_x86_mce *mce)
4113 {
4114 	u64 mcg_cap = vcpu->arch.mcg_cap;
4115 	unsigned bank_num = mcg_cap & 0xff;
4116 	u64 *banks = vcpu->arch.mce_banks;
4117 
4118 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4119 		return -EINVAL;
4120 	/*
4121 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4122 	 * reporting is disabled
4123 	 */
4124 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4125 	    vcpu->arch.mcg_ctl != ~(u64)0)
4126 		return 0;
4127 	banks += 4 * mce->bank;
4128 	/*
4129 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4130 	 * reporting is disabled for the bank
4131 	 */
4132 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4133 		return 0;
4134 	if (mce->status & MCI_STATUS_UC) {
4135 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4136 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4137 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4138 			return 0;
4139 		}
4140 		if (banks[1] & MCI_STATUS_VAL)
4141 			mce->status |= MCI_STATUS_OVER;
4142 		banks[2] = mce->addr;
4143 		banks[3] = mce->misc;
4144 		vcpu->arch.mcg_status = mce->mcg_status;
4145 		banks[1] = mce->status;
4146 		kvm_queue_exception(vcpu, MC_VECTOR);
4147 	} else if (!(banks[1] & MCI_STATUS_VAL)
4148 		   || !(banks[1] & MCI_STATUS_UC)) {
4149 		if (banks[1] & MCI_STATUS_VAL)
4150 			mce->status |= MCI_STATUS_OVER;
4151 		banks[2] = mce->addr;
4152 		banks[3] = mce->misc;
4153 		banks[1] = mce->status;
4154 	} else
4155 		banks[1] |= MCI_STATUS_OVER;
4156 	return 0;
4157 }
4158 
4159 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4160 					       struct kvm_vcpu_events *events)
4161 {
4162 	process_nmi(vcpu);
4163 
4164 	/*
4165 	 * In guest mode, payload delivery should be deferred,
4166 	 * so that the L1 hypervisor can intercept #PF before
4167 	 * CR2 is modified (or intercept #DB before DR6 is
4168 	 * modified under nVMX). Unless the per-VM capability,
4169 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4170 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4171 	 * opportunistically defer the exception payload, deliver it if the
4172 	 * capability hasn't been requested before processing a
4173 	 * KVM_GET_VCPU_EVENTS.
4174 	 */
4175 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4176 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4177 		kvm_deliver_exception_payload(vcpu);
4178 
4179 	/*
4180 	 * The API doesn't provide the instruction length for software
4181 	 * exceptions, so don't report them. As long as the guest RIP
4182 	 * isn't advanced, we should expect to encounter the exception
4183 	 * again.
4184 	 */
4185 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4186 		events->exception.injected = 0;
4187 		events->exception.pending = 0;
4188 	} else {
4189 		events->exception.injected = vcpu->arch.exception.injected;
4190 		events->exception.pending = vcpu->arch.exception.pending;
4191 		/*
4192 		 * For ABI compatibility, deliberately conflate
4193 		 * pending and injected exceptions when
4194 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4195 		 */
4196 		if (!vcpu->kvm->arch.exception_payload_enabled)
4197 			events->exception.injected |=
4198 				vcpu->arch.exception.pending;
4199 	}
4200 	events->exception.nr = vcpu->arch.exception.nr;
4201 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4202 	events->exception.error_code = vcpu->arch.exception.error_code;
4203 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4204 	events->exception_payload = vcpu->arch.exception.payload;
4205 
4206 	events->interrupt.injected =
4207 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4208 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4209 	events->interrupt.soft = 0;
4210 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
4211 
4212 	events->nmi.injected = vcpu->arch.nmi_injected;
4213 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4214 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
4215 	events->nmi.pad = 0;
4216 
4217 	events->sipi_vector = 0; /* never valid when reporting to user space */
4218 
4219 	events->smi.smm = is_smm(vcpu);
4220 	events->smi.pending = vcpu->arch.smi_pending;
4221 	events->smi.smm_inside_nmi =
4222 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4223 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4224 
4225 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4226 			 | KVM_VCPUEVENT_VALID_SHADOW
4227 			 | KVM_VCPUEVENT_VALID_SMM);
4228 	if (vcpu->kvm->arch.exception_payload_enabled)
4229 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4230 
4231 	memset(&events->reserved, 0, sizeof(events->reserved));
4232 }
4233 
4234 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4235 
4236 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4237 					      struct kvm_vcpu_events *events)
4238 {
4239 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4240 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4241 			      | KVM_VCPUEVENT_VALID_SHADOW
4242 			      | KVM_VCPUEVENT_VALID_SMM
4243 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4244 		return -EINVAL;
4245 
4246 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4247 		if (!vcpu->kvm->arch.exception_payload_enabled)
4248 			return -EINVAL;
4249 		if (events->exception.pending)
4250 			events->exception.injected = 0;
4251 		else
4252 			events->exception_has_payload = 0;
4253 	} else {
4254 		events->exception.pending = 0;
4255 		events->exception_has_payload = 0;
4256 	}
4257 
4258 	if ((events->exception.injected || events->exception.pending) &&
4259 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4260 		return -EINVAL;
4261 
4262 	/* INITs are latched while in SMM */
4263 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4264 	    (events->smi.smm || events->smi.pending) &&
4265 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4266 		return -EINVAL;
4267 
4268 	process_nmi(vcpu);
4269 	vcpu->arch.exception.injected = events->exception.injected;
4270 	vcpu->arch.exception.pending = events->exception.pending;
4271 	vcpu->arch.exception.nr = events->exception.nr;
4272 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4273 	vcpu->arch.exception.error_code = events->exception.error_code;
4274 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4275 	vcpu->arch.exception.payload = events->exception_payload;
4276 
4277 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4278 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4279 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4280 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4281 		kvm_x86_ops.set_interrupt_shadow(vcpu,
4282 						  events->interrupt.shadow);
4283 
4284 	vcpu->arch.nmi_injected = events->nmi.injected;
4285 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4286 		vcpu->arch.nmi_pending = events->nmi.pending;
4287 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4288 
4289 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4290 	    lapic_in_kernel(vcpu))
4291 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4292 
4293 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4294 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4295 			if (events->smi.smm)
4296 				vcpu->arch.hflags |= HF_SMM_MASK;
4297 			else
4298 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4299 			kvm_smm_changed(vcpu);
4300 		}
4301 
4302 		vcpu->arch.smi_pending = events->smi.pending;
4303 
4304 		if (events->smi.smm) {
4305 			if (events->smi.smm_inside_nmi)
4306 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4307 			else
4308 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4309 		}
4310 
4311 		if (lapic_in_kernel(vcpu)) {
4312 			if (events->smi.latched_init)
4313 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4314 			else
4315 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4316 		}
4317 	}
4318 
4319 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4320 
4321 	return 0;
4322 }
4323 
4324 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4325 					     struct kvm_debugregs *dbgregs)
4326 {
4327 	unsigned long val;
4328 
4329 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4330 	kvm_get_dr(vcpu, 6, &val);
4331 	dbgregs->dr6 = val;
4332 	dbgregs->dr7 = vcpu->arch.dr7;
4333 	dbgregs->flags = 0;
4334 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4335 }
4336 
4337 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4338 					    struct kvm_debugregs *dbgregs)
4339 {
4340 	if (dbgregs->flags)
4341 		return -EINVAL;
4342 
4343 	if (dbgregs->dr6 & ~0xffffffffull)
4344 		return -EINVAL;
4345 	if (dbgregs->dr7 & ~0xffffffffull)
4346 		return -EINVAL;
4347 
4348 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4349 	kvm_update_dr0123(vcpu);
4350 	vcpu->arch.dr6 = dbgregs->dr6;
4351 	vcpu->arch.dr7 = dbgregs->dr7;
4352 	kvm_update_dr7(vcpu);
4353 
4354 	return 0;
4355 }
4356 
4357 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4358 
4359 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4360 {
4361 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4362 	u64 xstate_bv = xsave->header.xfeatures;
4363 	u64 valid;
4364 
4365 	/*
4366 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4367 	 * leaves 0 and 1 in the loop below.
4368 	 */
4369 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4370 
4371 	/* Set XSTATE_BV */
4372 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4373 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4374 
4375 	/*
4376 	 * Copy each region from the possibly compacted offset to the
4377 	 * non-compacted offset.
4378 	 */
4379 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4380 	while (valid) {
4381 		u64 xfeature_mask = valid & -valid;
4382 		int xfeature_nr = fls64(xfeature_mask) - 1;
4383 		void *src = get_xsave_addr(xsave, xfeature_nr);
4384 
4385 		if (src) {
4386 			u32 size, offset, ecx, edx;
4387 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4388 				    &size, &offset, &ecx, &edx);
4389 			if (xfeature_nr == XFEATURE_PKRU)
4390 				memcpy(dest + offset, &vcpu->arch.pkru,
4391 				       sizeof(vcpu->arch.pkru));
4392 			else
4393 				memcpy(dest + offset, src, size);
4394 
4395 		}
4396 
4397 		valid -= xfeature_mask;
4398 	}
4399 }
4400 
4401 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4402 {
4403 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4404 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4405 	u64 valid;
4406 
4407 	/*
4408 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4409 	 * leaves 0 and 1 in the loop below.
4410 	 */
4411 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4412 
4413 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4414 	xsave->header.xfeatures = xstate_bv;
4415 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4416 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4417 
4418 	/*
4419 	 * Copy each region from the non-compacted offset to the
4420 	 * possibly compacted offset.
4421 	 */
4422 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4423 	while (valid) {
4424 		u64 xfeature_mask = valid & -valid;
4425 		int xfeature_nr = fls64(xfeature_mask) - 1;
4426 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4427 
4428 		if (dest) {
4429 			u32 size, offset, ecx, edx;
4430 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4431 				    &size, &offset, &ecx, &edx);
4432 			if (xfeature_nr == XFEATURE_PKRU)
4433 				memcpy(&vcpu->arch.pkru, src + offset,
4434 				       sizeof(vcpu->arch.pkru));
4435 			else
4436 				memcpy(dest, src + offset, size);
4437 		}
4438 
4439 		valid -= xfeature_mask;
4440 	}
4441 }
4442 
4443 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4444 					 struct kvm_xsave *guest_xsave)
4445 {
4446 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4447 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4448 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4449 	} else {
4450 		memcpy(guest_xsave->region,
4451 			&vcpu->arch.guest_fpu->state.fxsave,
4452 			sizeof(struct fxregs_state));
4453 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4454 			XFEATURE_MASK_FPSSE;
4455 	}
4456 }
4457 
4458 #define XSAVE_MXCSR_OFFSET 24
4459 
4460 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4461 					struct kvm_xsave *guest_xsave)
4462 {
4463 	u64 xstate_bv =
4464 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4465 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4466 
4467 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4468 		/*
4469 		 * Here we allow setting states that are not present in
4470 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4471 		 * with old userspace.
4472 		 */
4473 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4474 			return -EINVAL;
4475 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4476 	} else {
4477 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4478 			mxcsr & ~mxcsr_feature_mask)
4479 			return -EINVAL;
4480 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4481 			guest_xsave->region, sizeof(struct fxregs_state));
4482 	}
4483 	return 0;
4484 }
4485 
4486 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4487 					struct kvm_xcrs *guest_xcrs)
4488 {
4489 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4490 		guest_xcrs->nr_xcrs = 0;
4491 		return;
4492 	}
4493 
4494 	guest_xcrs->nr_xcrs = 1;
4495 	guest_xcrs->flags = 0;
4496 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4497 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4498 }
4499 
4500 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4501 				       struct kvm_xcrs *guest_xcrs)
4502 {
4503 	int i, r = 0;
4504 
4505 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4506 		return -EINVAL;
4507 
4508 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4509 		return -EINVAL;
4510 
4511 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4512 		/* Only support XCR0 currently */
4513 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4514 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4515 				guest_xcrs->xcrs[i].value);
4516 			break;
4517 		}
4518 	if (r)
4519 		r = -EINVAL;
4520 	return r;
4521 }
4522 
4523 /*
4524  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4525  * stopped by the hypervisor.  This function will be called from the host only.
4526  * EINVAL is returned when the host attempts to set the flag for a guest that
4527  * does not support pv clocks.
4528  */
4529 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4530 {
4531 	if (!vcpu->arch.pv_time_enabled)
4532 		return -EINVAL;
4533 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4534 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4535 	return 0;
4536 }
4537 
4538 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4539 				     struct kvm_enable_cap *cap)
4540 {
4541 	int r;
4542 	uint16_t vmcs_version;
4543 	void __user *user_ptr;
4544 
4545 	if (cap->flags)
4546 		return -EINVAL;
4547 
4548 	switch (cap->cap) {
4549 	case KVM_CAP_HYPERV_SYNIC2:
4550 		if (cap->args[0])
4551 			return -EINVAL;
4552 		fallthrough;
4553 
4554 	case KVM_CAP_HYPERV_SYNIC:
4555 		if (!irqchip_in_kernel(vcpu->kvm))
4556 			return -EINVAL;
4557 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4558 					     KVM_CAP_HYPERV_SYNIC2);
4559 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4560 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4561 			return -ENOTTY;
4562 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4563 		if (!r) {
4564 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4565 			if (copy_to_user(user_ptr, &vmcs_version,
4566 					 sizeof(vmcs_version)))
4567 				r = -EFAULT;
4568 		}
4569 		return r;
4570 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4571 		if (!kvm_x86_ops.enable_direct_tlbflush)
4572 			return -ENOTTY;
4573 
4574 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4575 
4576 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4577 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
4578 
4579 		return 0;
4580 
4581 	default:
4582 		return -EINVAL;
4583 	}
4584 }
4585 
4586 long kvm_arch_vcpu_ioctl(struct file *filp,
4587 			 unsigned int ioctl, unsigned long arg)
4588 {
4589 	struct kvm_vcpu *vcpu = filp->private_data;
4590 	void __user *argp = (void __user *)arg;
4591 	int r;
4592 	union {
4593 		struct kvm_lapic_state *lapic;
4594 		struct kvm_xsave *xsave;
4595 		struct kvm_xcrs *xcrs;
4596 		void *buffer;
4597 	} u;
4598 
4599 	vcpu_load(vcpu);
4600 
4601 	u.buffer = NULL;
4602 	switch (ioctl) {
4603 	case KVM_GET_LAPIC: {
4604 		r = -EINVAL;
4605 		if (!lapic_in_kernel(vcpu))
4606 			goto out;
4607 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4608 				GFP_KERNEL_ACCOUNT);
4609 
4610 		r = -ENOMEM;
4611 		if (!u.lapic)
4612 			goto out;
4613 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4614 		if (r)
4615 			goto out;
4616 		r = -EFAULT;
4617 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4618 			goto out;
4619 		r = 0;
4620 		break;
4621 	}
4622 	case KVM_SET_LAPIC: {
4623 		r = -EINVAL;
4624 		if (!lapic_in_kernel(vcpu))
4625 			goto out;
4626 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4627 		if (IS_ERR(u.lapic)) {
4628 			r = PTR_ERR(u.lapic);
4629 			goto out_nofree;
4630 		}
4631 
4632 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4633 		break;
4634 	}
4635 	case KVM_INTERRUPT: {
4636 		struct kvm_interrupt irq;
4637 
4638 		r = -EFAULT;
4639 		if (copy_from_user(&irq, argp, sizeof(irq)))
4640 			goto out;
4641 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4642 		break;
4643 	}
4644 	case KVM_NMI: {
4645 		r = kvm_vcpu_ioctl_nmi(vcpu);
4646 		break;
4647 	}
4648 	case KVM_SMI: {
4649 		r = kvm_vcpu_ioctl_smi(vcpu);
4650 		break;
4651 	}
4652 	case KVM_SET_CPUID: {
4653 		struct kvm_cpuid __user *cpuid_arg = argp;
4654 		struct kvm_cpuid cpuid;
4655 
4656 		r = -EFAULT;
4657 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4658 			goto out;
4659 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4660 		break;
4661 	}
4662 	case KVM_SET_CPUID2: {
4663 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4664 		struct kvm_cpuid2 cpuid;
4665 
4666 		r = -EFAULT;
4667 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4668 			goto out;
4669 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4670 					      cpuid_arg->entries);
4671 		break;
4672 	}
4673 	case KVM_GET_CPUID2: {
4674 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4675 		struct kvm_cpuid2 cpuid;
4676 
4677 		r = -EFAULT;
4678 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4679 			goto out;
4680 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4681 					      cpuid_arg->entries);
4682 		if (r)
4683 			goto out;
4684 		r = -EFAULT;
4685 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4686 			goto out;
4687 		r = 0;
4688 		break;
4689 	}
4690 	case KVM_GET_MSRS: {
4691 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4692 		r = msr_io(vcpu, argp, do_get_msr, 1);
4693 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4694 		break;
4695 	}
4696 	case KVM_SET_MSRS: {
4697 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4698 		r = msr_io(vcpu, argp, do_set_msr, 0);
4699 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4700 		break;
4701 	}
4702 	case KVM_TPR_ACCESS_REPORTING: {
4703 		struct kvm_tpr_access_ctl tac;
4704 
4705 		r = -EFAULT;
4706 		if (copy_from_user(&tac, argp, sizeof(tac)))
4707 			goto out;
4708 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4709 		if (r)
4710 			goto out;
4711 		r = -EFAULT;
4712 		if (copy_to_user(argp, &tac, sizeof(tac)))
4713 			goto out;
4714 		r = 0;
4715 		break;
4716 	};
4717 	case KVM_SET_VAPIC_ADDR: {
4718 		struct kvm_vapic_addr va;
4719 		int idx;
4720 
4721 		r = -EINVAL;
4722 		if (!lapic_in_kernel(vcpu))
4723 			goto out;
4724 		r = -EFAULT;
4725 		if (copy_from_user(&va, argp, sizeof(va)))
4726 			goto out;
4727 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4728 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4729 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4730 		break;
4731 	}
4732 	case KVM_X86_SETUP_MCE: {
4733 		u64 mcg_cap;
4734 
4735 		r = -EFAULT;
4736 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4737 			goto out;
4738 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4739 		break;
4740 	}
4741 	case KVM_X86_SET_MCE: {
4742 		struct kvm_x86_mce mce;
4743 
4744 		r = -EFAULT;
4745 		if (copy_from_user(&mce, argp, sizeof(mce)))
4746 			goto out;
4747 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4748 		break;
4749 	}
4750 	case KVM_GET_VCPU_EVENTS: {
4751 		struct kvm_vcpu_events events;
4752 
4753 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4754 
4755 		r = -EFAULT;
4756 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4757 			break;
4758 		r = 0;
4759 		break;
4760 	}
4761 	case KVM_SET_VCPU_EVENTS: {
4762 		struct kvm_vcpu_events events;
4763 
4764 		r = -EFAULT;
4765 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4766 			break;
4767 
4768 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4769 		break;
4770 	}
4771 	case KVM_GET_DEBUGREGS: {
4772 		struct kvm_debugregs dbgregs;
4773 
4774 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4775 
4776 		r = -EFAULT;
4777 		if (copy_to_user(argp, &dbgregs,
4778 				 sizeof(struct kvm_debugregs)))
4779 			break;
4780 		r = 0;
4781 		break;
4782 	}
4783 	case KVM_SET_DEBUGREGS: {
4784 		struct kvm_debugregs dbgregs;
4785 
4786 		r = -EFAULT;
4787 		if (copy_from_user(&dbgregs, argp,
4788 				   sizeof(struct kvm_debugregs)))
4789 			break;
4790 
4791 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4792 		break;
4793 	}
4794 	case KVM_GET_XSAVE: {
4795 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4796 		r = -ENOMEM;
4797 		if (!u.xsave)
4798 			break;
4799 
4800 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4801 
4802 		r = -EFAULT;
4803 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4804 			break;
4805 		r = 0;
4806 		break;
4807 	}
4808 	case KVM_SET_XSAVE: {
4809 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4810 		if (IS_ERR(u.xsave)) {
4811 			r = PTR_ERR(u.xsave);
4812 			goto out_nofree;
4813 		}
4814 
4815 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4816 		break;
4817 	}
4818 	case KVM_GET_XCRS: {
4819 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4820 		r = -ENOMEM;
4821 		if (!u.xcrs)
4822 			break;
4823 
4824 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4825 
4826 		r = -EFAULT;
4827 		if (copy_to_user(argp, u.xcrs,
4828 				 sizeof(struct kvm_xcrs)))
4829 			break;
4830 		r = 0;
4831 		break;
4832 	}
4833 	case KVM_SET_XCRS: {
4834 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4835 		if (IS_ERR(u.xcrs)) {
4836 			r = PTR_ERR(u.xcrs);
4837 			goto out_nofree;
4838 		}
4839 
4840 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4841 		break;
4842 	}
4843 	case KVM_SET_TSC_KHZ: {
4844 		u32 user_tsc_khz;
4845 
4846 		r = -EINVAL;
4847 		user_tsc_khz = (u32)arg;
4848 
4849 		if (kvm_has_tsc_control &&
4850 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
4851 			goto out;
4852 
4853 		if (user_tsc_khz == 0)
4854 			user_tsc_khz = tsc_khz;
4855 
4856 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4857 			r = 0;
4858 
4859 		goto out;
4860 	}
4861 	case KVM_GET_TSC_KHZ: {
4862 		r = vcpu->arch.virtual_tsc_khz;
4863 		goto out;
4864 	}
4865 	case KVM_KVMCLOCK_CTRL: {
4866 		r = kvm_set_guest_paused(vcpu);
4867 		goto out;
4868 	}
4869 	case KVM_ENABLE_CAP: {
4870 		struct kvm_enable_cap cap;
4871 
4872 		r = -EFAULT;
4873 		if (copy_from_user(&cap, argp, sizeof(cap)))
4874 			goto out;
4875 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4876 		break;
4877 	}
4878 	case KVM_GET_NESTED_STATE: {
4879 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4880 		u32 user_data_size;
4881 
4882 		r = -EINVAL;
4883 		if (!kvm_x86_ops.nested_ops->get_state)
4884 			break;
4885 
4886 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4887 		r = -EFAULT;
4888 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4889 			break;
4890 
4891 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4892 						     user_data_size);
4893 		if (r < 0)
4894 			break;
4895 
4896 		if (r > user_data_size) {
4897 			if (put_user(r, &user_kvm_nested_state->size))
4898 				r = -EFAULT;
4899 			else
4900 				r = -E2BIG;
4901 			break;
4902 		}
4903 
4904 		r = 0;
4905 		break;
4906 	}
4907 	case KVM_SET_NESTED_STATE: {
4908 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4909 		struct kvm_nested_state kvm_state;
4910 		int idx;
4911 
4912 		r = -EINVAL;
4913 		if (!kvm_x86_ops.nested_ops->set_state)
4914 			break;
4915 
4916 		r = -EFAULT;
4917 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4918 			break;
4919 
4920 		r = -EINVAL;
4921 		if (kvm_state.size < sizeof(kvm_state))
4922 			break;
4923 
4924 		if (kvm_state.flags &
4925 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4926 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4927 		      | KVM_STATE_NESTED_GIF_SET))
4928 			break;
4929 
4930 		/* nested_run_pending implies guest_mode.  */
4931 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4932 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4933 			break;
4934 
4935 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4936 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4937 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4938 		break;
4939 	}
4940 	case KVM_GET_SUPPORTED_HV_CPUID: {
4941 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4942 		struct kvm_cpuid2 cpuid;
4943 
4944 		r = -EFAULT;
4945 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4946 			goto out;
4947 
4948 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4949 						cpuid_arg->entries);
4950 		if (r)
4951 			goto out;
4952 
4953 		r = -EFAULT;
4954 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4955 			goto out;
4956 		r = 0;
4957 		break;
4958 	}
4959 	default:
4960 		r = -EINVAL;
4961 	}
4962 out:
4963 	kfree(u.buffer);
4964 out_nofree:
4965 	vcpu_put(vcpu);
4966 	return r;
4967 }
4968 
4969 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4970 {
4971 	return VM_FAULT_SIGBUS;
4972 }
4973 
4974 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4975 {
4976 	int ret;
4977 
4978 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4979 		return -EINVAL;
4980 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
4981 	return ret;
4982 }
4983 
4984 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4985 					      u64 ident_addr)
4986 {
4987 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
4988 }
4989 
4990 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4991 					 unsigned long kvm_nr_mmu_pages)
4992 {
4993 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4994 		return -EINVAL;
4995 
4996 	mutex_lock(&kvm->slots_lock);
4997 
4998 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4999 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5000 
5001 	mutex_unlock(&kvm->slots_lock);
5002 	return 0;
5003 }
5004 
5005 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5006 {
5007 	return kvm->arch.n_max_mmu_pages;
5008 }
5009 
5010 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5011 {
5012 	struct kvm_pic *pic = kvm->arch.vpic;
5013 	int r;
5014 
5015 	r = 0;
5016 	switch (chip->chip_id) {
5017 	case KVM_IRQCHIP_PIC_MASTER:
5018 		memcpy(&chip->chip.pic, &pic->pics[0],
5019 			sizeof(struct kvm_pic_state));
5020 		break;
5021 	case KVM_IRQCHIP_PIC_SLAVE:
5022 		memcpy(&chip->chip.pic, &pic->pics[1],
5023 			sizeof(struct kvm_pic_state));
5024 		break;
5025 	case KVM_IRQCHIP_IOAPIC:
5026 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5027 		break;
5028 	default:
5029 		r = -EINVAL;
5030 		break;
5031 	}
5032 	return r;
5033 }
5034 
5035 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5036 {
5037 	struct kvm_pic *pic = kvm->arch.vpic;
5038 	int r;
5039 
5040 	r = 0;
5041 	switch (chip->chip_id) {
5042 	case KVM_IRQCHIP_PIC_MASTER:
5043 		spin_lock(&pic->lock);
5044 		memcpy(&pic->pics[0], &chip->chip.pic,
5045 			sizeof(struct kvm_pic_state));
5046 		spin_unlock(&pic->lock);
5047 		break;
5048 	case KVM_IRQCHIP_PIC_SLAVE:
5049 		spin_lock(&pic->lock);
5050 		memcpy(&pic->pics[1], &chip->chip.pic,
5051 			sizeof(struct kvm_pic_state));
5052 		spin_unlock(&pic->lock);
5053 		break;
5054 	case KVM_IRQCHIP_IOAPIC:
5055 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5056 		break;
5057 	default:
5058 		r = -EINVAL;
5059 		break;
5060 	}
5061 	kvm_pic_update_irq(pic);
5062 	return r;
5063 }
5064 
5065 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5066 {
5067 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5068 
5069 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5070 
5071 	mutex_lock(&kps->lock);
5072 	memcpy(ps, &kps->channels, sizeof(*ps));
5073 	mutex_unlock(&kps->lock);
5074 	return 0;
5075 }
5076 
5077 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5078 {
5079 	int i;
5080 	struct kvm_pit *pit = kvm->arch.vpit;
5081 
5082 	mutex_lock(&pit->pit_state.lock);
5083 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5084 	for (i = 0; i < 3; i++)
5085 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5086 	mutex_unlock(&pit->pit_state.lock);
5087 	return 0;
5088 }
5089 
5090 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5091 {
5092 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5093 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5094 		sizeof(ps->channels));
5095 	ps->flags = kvm->arch.vpit->pit_state.flags;
5096 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5097 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5098 	return 0;
5099 }
5100 
5101 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5102 {
5103 	int start = 0;
5104 	int i;
5105 	u32 prev_legacy, cur_legacy;
5106 	struct kvm_pit *pit = kvm->arch.vpit;
5107 
5108 	mutex_lock(&pit->pit_state.lock);
5109 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5110 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5111 	if (!prev_legacy && cur_legacy)
5112 		start = 1;
5113 	memcpy(&pit->pit_state.channels, &ps->channels,
5114 	       sizeof(pit->pit_state.channels));
5115 	pit->pit_state.flags = ps->flags;
5116 	for (i = 0; i < 3; i++)
5117 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5118 				   start && i == 0);
5119 	mutex_unlock(&pit->pit_state.lock);
5120 	return 0;
5121 }
5122 
5123 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5124 				 struct kvm_reinject_control *control)
5125 {
5126 	struct kvm_pit *pit = kvm->arch.vpit;
5127 
5128 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5129 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5130 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5131 	 */
5132 	mutex_lock(&pit->pit_state.lock);
5133 	kvm_pit_set_reinject(pit, control->pit_reinject);
5134 	mutex_unlock(&pit->pit_state.lock);
5135 
5136 	return 0;
5137 }
5138 
5139 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5140 {
5141 	/*
5142 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5143 	 */
5144 	if (kvm_x86_ops.flush_log_dirty)
5145 		kvm_x86_ops.flush_log_dirty(kvm);
5146 }
5147 
5148 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5149 			bool line_status)
5150 {
5151 	if (!irqchip_in_kernel(kvm))
5152 		return -ENXIO;
5153 
5154 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5155 					irq_event->irq, irq_event->level,
5156 					line_status);
5157 	return 0;
5158 }
5159 
5160 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5161 			    struct kvm_enable_cap *cap)
5162 {
5163 	int r;
5164 
5165 	if (cap->flags)
5166 		return -EINVAL;
5167 
5168 	switch (cap->cap) {
5169 	case KVM_CAP_DISABLE_QUIRKS:
5170 		kvm->arch.disabled_quirks = cap->args[0];
5171 		r = 0;
5172 		break;
5173 	case KVM_CAP_SPLIT_IRQCHIP: {
5174 		mutex_lock(&kvm->lock);
5175 		r = -EINVAL;
5176 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5177 			goto split_irqchip_unlock;
5178 		r = -EEXIST;
5179 		if (irqchip_in_kernel(kvm))
5180 			goto split_irqchip_unlock;
5181 		if (kvm->created_vcpus)
5182 			goto split_irqchip_unlock;
5183 		r = kvm_setup_empty_irq_routing(kvm);
5184 		if (r)
5185 			goto split_irqchip_unlock;
5186 		/* Pairs with irqchip_in_kernel. */
5187 		smp_wmb();
5188 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5189 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5190 		r = 0;
5191 split_irqchip_unlock:
5192 		mutex_unlock(&kvm->lock);
5193 		break;
5194 	}
5195 	case KVM_CAP_X2APIC_API:
5196 		r = -EINVAL;
5197 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5198 			break;
5199 
5200 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5201 			kvm->arch.x2apic_format = true;
5202 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5203 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5204 
5205 		r = 0;
5206 		break;
5207 	case KVM_CAP_X86_DISABLE_EXITS:
5208 		r = -EINVAL;
5209 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5210 			break;
5211 
5212 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5213 			kvm_can_mwait_in_guest())
5214 			kvm->arch.mwait_in_guest = true;
5215 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5216 			kvm->arch.hlt_in_guest = true;
5217 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5218 			kvm->arch.pause_in_guest = true;
5219 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5220 			kvm->arch.cstate_in_guest = true;
5221 		r = 0;
5222 		break;
5223 	case KVM_CAP_MSR_PLATFORM_INFO:
5224 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5225 		r = 0;
5226 		break;
5227 	case KVM_CAP_EXCEPTION_PAYLOAD:
5228 		kvm->arch.exception_payload_enabled = cap->args[0];
5229 		r = 0;
5230 		break;
5231 	case KVM_CAP_X86_USER_SPACE_MSR:
5232 		kvm->arch.user_space_msr_mask = cap->args[0];
5233 		r = 0;
5234 		break;
5235 	default:
5236 		r = -EINVAL;
5237 		break;
5238 	}
5239 	return r;
5240 }
5241 
5242 static void kvm_clear_msr_filter(struct kvm *kvm)
5243 {
5244 	u32 i;
5245 	u32 count = kvm->arch.msr_filter.count;
5246 	struct msr_bitmap_range ranges[16];
5247 
5248 	mutex_lock(&kvm->lock);
5249 	kvm->arch.msr_filter.count = 0;
5250 	memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5251 	mutex_unlock(&kvm->lock);
5252 	synchronize_srcu(&kvm->srcu);
5253 
5254 	for (i = 0; i < count; i++)
5255 		kfree(ranges[i].bitmap);
5256 }
5257 
5258 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5259 {
5260 	struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5261 	struct msr_bitmap_range range;
5262 	unsigned long *bitmap = NULL;
5263 	size_t bitmap_size;
5264 	int r;
5265 
5266 	if (!user_range->nmsrs)
5267 		return 0;
5268 
5269 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5270 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5271 		return -EINVAL;
5272 
5273 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5274 	if (IS_ERR(bitmap))
5275 		return PTR_ERR(bitmap);
5276 
5277 	range = (struct msr_bitmap_range) {
5278 		.flags = user_range->flags,
5279 		.base = user_range->base,
5280 		.nmsrs = user_range->nmsrs,
5281 		.bitmap = bitmap,
5282 	};
5283 
5284 	if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5285 		r = -EINVAL;
5286 		goto err;
5287 	}
5288 
5289 	if (!range.flags) {
5290 		r = -EINVAL;
5291 		goto err;
5292 	}
5293 
5294 	/* Everything ok, add this range identifier to our global pool */
5295 	ranges[kvm->arch.msr_filter.count] = range;
5296 	/* Make sure we filled the array before we tell anyone to walk it */
5297 	smp_wmb();
5298 	kvm->arch.msr_filter.count++;
5299 
5300 	return 0;
5301 err:
5302 	kfree(bitmap);
5303 	return r;
5304 }
5305 
5306 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5307 {
5308 	struct kvm_msr_filter __user *user_msr_filter = argp;
5309 	struct kvm_msr_filter filter;
5310 	bool default_allow;
5311 	int r = 0;
5312 	bool empty = true;
5313 	u32 i;
5314 
5315 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5316 		return -EFAULT;
5317 
5318 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5319 		empty &= !filter.ranges[i].nmsrs;
5320 
5321 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5322 	if (empty && !default_allow)
5323 		return -EINVAL;
5324 
5325 	kvm_clear_msr_filter(kvm);
5326 
5327 	kvm->arch.msr_filter.default_allow = default_allow;
5328 
5329 	/*
5330 	 * Protect from concurrent calls to this function that could trigger
5331 	 * a TOCTOU violation on kvm->arch.msr_filter.count.
5332 	 */
5333 	mutex_lock(&kvm->lock);
5334 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5335 		r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5336 		if (r)
5337 			break;
5338 	}
5339 
5340 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5341 	mutex_unlock(&kvm->lock);
5342 
5343 	return r;
5344 }
5345 
5346 long kvm_arch_vm_ioctl(struct file *filp,
5347 		       unsigned int ioctl, unsigned long arg)
5348 {
5349 	struct kvm *kvm = filp->private_data;
5350 	void __user *argp = (void __user *)arg;
5351 	int r = -ENOTTY;
5352 	/*
5353 	 * This union makes it completely explicit to gcc-3.x
5354 	 * that these two variables' stack usage should be
5355 	 * combined, not added together.
5356 	 */
5357 	union {
5358 		struct kvm_pit_state ps;
5359 		struct kvm_pit_state2 ps2;
5360 		struct kvm_pit_config pit_config;
5361 	} u;
5362 
5363 	switch (ioctl) {
5364 	case KVM_SET_TSS_ADDR:
5365 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5366 		break;
5367 	case KVM_SET_IDENTITY_MAP_ADDR: {
5368 		u64 ident_addr;
5369 
5370 		mutex_lock(&kvm->lock);
5371 		r = -EINVAL;
5372 		if (kvm->created_vcpus)
5373 			goto set_identity_unlock;
5374 		r = -EFAULT;
5375 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5376 			goto set_identity_unlock;
5377 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5378 set_identity_unlock:
5379 		mutex_unlock(&kvm->lock);
5380 		break;
5381 	}
5382 	case KVM_SET_NR_MMU_PAGES:
5383 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5384 		break;
5385 	case KVM_GET_NR_MMU_PAGES:
5386 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5387 		break;
5388 	case KVM_CREATE_IRQCHIP: {
5389 		mutex_lock(&kvm->lock);
5390 
5391 		r = -EEXIST;
5392 		if (irqchip_in_kernel(kvm))
5393 			goto create_irqchip_unlock;
5394 
5395 		r = -EINVAL;
5396 		if (kvm->created_vcpus)
5397 			goto create_irqchip_unlock;
5398 
5399 		r = kvm_pic_init(kvm);
5400 		if (r)
5401 			goto create_irqchip_unlock;
5402 
5403 		r = kvm_ioapic_init(kvm);
5404 		if (r) {
5405 			kvm_pic_destroy(kvm);
5406 			goto create_irqchip_unlock;
5407 		}
5408 
5409 		r = kvm_setup_default_irq_routing(kvm);
5410 		if (r) {
5411 			kvm_ioapic_destroy(kvm);
5412 			kvm_pic_destroy(kvm);
5413 			goto create_irqchip_unlock;
5414 		}
5415 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5416 		smp_wmb();
5417 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5418 	create_irqchip_unlock:
5419 		mutex_unlock(&kvm->lock);
5420 		break;
5421 	}
5422 	case KVM_CREATE_PIT:
5423 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5424 		goto create_pit;
5425 	case KVM_CREATE_PIT2:
5426 		r = -EFAULT;
5427 		if (copy_from_user(&u.pit_config, argp,
5428 				   sizeof(struct kvm_pit_config)))
5429 			goto out;
5430 	create_pit:
5431 		mutex_lock(&kvm->lock);
5432 		r = -EEXIST;
5433 		if (kvm->arch.vpit)
5434 			goto create_pit_unlock;
5435 		r = -ENOMEM;
5436 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5437 		if (kvm->arch.vpit)
5438 			r = 0;
5439 	create_pit_unlock:
5440 		mutex_unlock(&kvm->lock);
5441 		break;
5442 	case KVM_GET_IRQCHIP: {
5443 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5444 		struct kvm_irqchip *chip;
5445 
5446 		chip = memdup_user(argp, sizeof(*chip));
5447 		if (IS_ERR(chip)) {
5448 			r = PTR_ERR(chip);
5449 			goto out;
5450 		}
5451 
5452 		r = -ENXIO;
5453 		if (!irqchip_kernel(kvm))
5454 			goto get_irqchip_out;
5455 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5456 		if (r)
5457 			goto get_irqchip_out;
5458 		r = -EFAULT;
5459 		if (copy_to_user(argp, chip, sizeof(*chip)))
5460 			goto get_irqchip_out;
5461 		r = 0;
5462 	get_irqchip_out:
5463 		kfree(chip);
5464 		break;
5465 	}
5466 	case KVM_SET_IRQCHIP: {
5467 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5468 		struct kvm_irqchip *chip;
5469 
5470 		chip = memdup_user(argp, sizeof(*chip));
5471 		if (IS_ERR(chip)) {
5472 			r = PTR_ERR(chip);
5473 			goto out;
5474 		}
5475 
5476 		r = -ENXIO;
5477 		if (!irqchip_kernel(kvm))
5478 			goto set_irqchip_out;
5479 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5480 	set_irqchip_out:
5481 		kfree(chip);
5482 		break;
5483 	}
5484 	case KVM_GET_PIT: {
5485 		r = -EFAULT;
5486 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5487 			goto out;
5488 		r = -ENXIO;
5489 		if (!kvm->arch.vpit)
5490 			goto out;
5491 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5492 		if (r)
5493 			goto out;
5494 		r = -EFAULT;
5495 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5496 			goto out;
5497 		r = 0;
5498 		break;
5499 	}
5500 	case KVM_SET_PIT: {
5501 		r = -EFAULT;
5502 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5503 			goto out;
5504 		mutex_lock(&kvm->lock);
5505 		r = -ENXIO;
5506 		if (!kvm->arch.vpit)
5507 			goto set_pit_out;
5508 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5509 set_pit_out:
5510 		mutex_unlock(&kvm->lock);
5511 		break;
5512 	}
5513 	case KVM_GET_PIT2: {
5514 		r = -ENXIO;
5515 		if (!kvm->arch.vpit)
5516 			goto out;
5517 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5518 		if (r)
5519 			goto out;
5520 		r = -EFAULT;
5521 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5522 			goto out;
5523 		r = 0;
5524 		break;
5525 	}
5526 	case KVM_SET_PIT2: {
5527 		r = -EFAULT;
5528 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5529 			goto out;
5530 		mutex_lock(&kvm->lock);
5531 		r = -ENXIO;
5532 		if (!kvm->arch.vpit)
5533 			goto set_pit2_out;
5534 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5535 set_pit2_out:
5536 		mutex_unlock(&kvm->lock);
5537 		break;
5538 	}
5539 	case KVM_REINJECT_CONTROL: {
5540 		struct kvm_reinject_control control;
5541 		r =  -EFAULT;
5542 		if (copy_from_user(&control, argp, sizeof(control)))
5543 			goto out;
5544 		r = -ENXIO;
5545 		if (!kvm->arch.vpit)
5546 			goto out;
5547 		r = kvm_vm_ioctl_reinject(kvm, &control);
5548 		break;
5549 	}
5550 	case KVM_SET_BOOT_CPU_ID:
5551 		r = 0;
5552 		mutex_lock(&kvm->lock);
5553 		if (kvm->created_vcpus)
5554 			r = -EBUSY;
5555 		else
5556 			kvm->arch.bsp_vcpu_id = arg;
5557 		mutex_unlock(&kvm->lock);
5558 		break;
5559 	case KVM_XEN_HVM_CONFIG: {
5560 		struct kvm_xen_hvm_config xhc;
5561 		r = -EFAULT;
5562 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5563 			goto out;
5564 		r = -EINVAL;
5565 		if (xhc.flags)
5566 			goto out;
5567 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5568 		r = 0;
5569 		break;
5570 	}
5571 	case KVM_SET_CLOCK: {
5572 		struct kvm_clock_data user_ns;
5573 		u64 now_ns;
5574 
5575 		r = -EFAULT;
5576 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5577 			goto out;
5578 
5579 		r = -EINVAL;
5580 		if (user_ns.flags)
5581 			goto out;
5582 
5583 		r = 0;
5584 		/*
5585 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5586 		 * kvm_gen_update_masterclock() can be cut down to locked
5587 		 * pvclock_update_vm_gtod_copy().
5588 		 */
5589 		kvm_gen_update_masterclock(kvm);
5590 		now_ns = get_kvmclock_ns(kvm);
5591 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5592 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5593 		break;
5594 	}
5595 	case KVM_GET_CLOCK: {
5596 		struct kvm_clock_data user_ns;
5597 		u64 now_ns;
5598 
5599 		now_ns = get_kvmclock_ns(kvm);
5600 		user_ns.clock = now_ns;
5601 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5602 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5603 
5604 		r = -EFAULT;
5605 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5606 			goto out;
5607 		r = 0;
5608 		break;
5609 	}
5610 	case KVM_MEMORY_ENCRYPT_OP: {
5611 		r = -ENOTTY;
5612 		if (kvm_x86_ops.mem_enc_op)
5613 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5614 		break;
5615 	}
5616 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5617 		struct kvm_enc_region region;
5618 
5619 		r = -EFAULT;
5620 		if (copy_from_user(&region, argp, sizeof(region)))
5621 			goto out;
5622 
5623 		r = -ENOTTY;
5624 		if (kvm_x86_ops.mem_enc_reg_region)
5625 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5626 		break;
5627 	}
5628 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5629 		struct kvm_enc_region region;
5630 
5631 		r = -EFAULT;
5632 		if (copy_from_user(&region, argp, sizeof(region)))
5633 			goto out;
5634 
5635 		r = -ENOTTY;
5636 		if (kvm_x86_ops.mem_enc_unreg_region)
5637 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5638 		break;
5639 	}
5640 	case KVM_HYPERV_EVENTFD: {
5641 		struct kvm_hyperv_eventfd hvevfd;
5642 
5643 		r = -EFAULT;
5644 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5645 			goto out;
5646 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5647 		break;
5648 	}
5649 	case KVM_SET_PMU_EVENT_FILTER:
5650 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5651 		break;
5652 	case KVM_X86_SET_MSR_FILTER:
5653 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5654 		break;
5655 	default:
5656 		r = -ENOTTY;
5657 	}
5658 out:
5659 	return r;
5660 }
5661 
5662 static void kvm_init_msr_list(void)
5663 {
5664 	struct x86_pmu_capability x86_pmu;
5665 	u32 dummy[2];
5666 	unsigned i;
5667 
5668 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5669 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5670 
5671 	perf_get_x86_pmu_capability(&x86_pmu);
5672 
5673 	num_msrs_to_save = 0;
5674 	num_emulated_msrs = 0;
5675 	num_msr_based_features = 0;
5676 
5677 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5678 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5679 			continue;
5680 
5681 		/*
5682 		 * Even MSRs that are valid in the host may not be exposed
5683 		 * to the guests in some cases.
5684 		 */
5685 		switch (msrs_to_save_all[i]) {
5686 		case MSR_IA32_BNDCFGS:
5687 			if (!kvm_mpx_supported())
5688 				continue;
5689 			break;
5690 		case MSR_TSC_AUX:
5691 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5692 				continue;
5693 			break;
5694 		case MSR_IA32_UMWAIT_CONTROL:
5695 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5696 				continue;
5697 			break;
5698 		case MSR_IA32_RTIT_CTL:
5699 		case MSR_IA32_RTIT_STATUS:
5700 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5701 				continue;
5702 			break;
5703 		case MSR_IA32_RTIT_CR3_MATCH:
5704 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5705 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5706 				continue;
5707 			break;
5708 		case MSR_IA32_RTIT_OUTPUT_BASE:
5709 		case MSR_IA32_RTIT_OUTPUT_MASK:
5710 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5711 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5712 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5713 				continue;
5714 			break;
5715 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5716 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5717 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5718 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5719 				continue;
5720 			break;
5721 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5722 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5723 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5724 				continue;
5725 			break;
5726 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5727 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5728 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5729 				continue;
5730 			break;
5731 		default:
5732 			break;
5733 		}
5734 
5735 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5736 	}
5737 
5738 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5739 		if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5740 			continue;
5741 
5742 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5743 	}
5744 
5745 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5746 		struct kvm_msr_entry msr;
5747 
5748 		msr.index = msr_based_features_all[i];
5749 		if (kvm_get_msr_feature(&msr))
5750 			continue;
5751 
5752 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5753 	}
5754 }
5755 
5756 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5757 			   const void *v)
5758 {
5759 	int handled = 0;
5760 	int n;
5761 
5762 	do {
5763 		n = min(len, 8);
5764 		if (!(lapic_in_kernel(vcpu) &&
5765 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5766 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5767 			break;
5768 		handled += n;
5769 		addr += n;
5770 		len -= n;
5771 		v += n;
5772 	} while (len);
5773 
5774 	return handled;
5775 }
5776 
5777 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5778 {
5779 	int handled = 0;
5780 	int n;
5781 
5782 	do {
5783 		n = min(len, 8);
5784 		if (!(lapic_in_kernel(vcpu) &&
5785 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5786 					 addr, n, v))
5787 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5788 			break;
5789 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5790 		handled += n;
5791 		addr += n;
5792 		len -= n;
5793 		v += n;
5794 	} while (len);
5795 
5796 	return handled;
5797 }
5798 
5799 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5800 			struct kvm_segment *var, int seg)
5801 {
5802 	kvm_x86_ops.set_segment(vcpu, var, seg);
5803 }
5804 
5805 void kvm_get_segment(struct kvm_vcpu *vcpu,
5806 		     struct kvm_segment *var, int seg)
5807 {
5808 	kvm_x86_ops.get_segment(vcpu, var, seg);
5809 }
5810 
5811 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5812 			   struct x86_exception *exception)
5813 {
5814 	gpa_t t_gpa;
5815 
5816 	BUG_ON(!mmu_is_nested(vcpu));
5817 
5818 	/* NPT walks are always user-walks */
5819 	access |= PFERR_USER_MASK;
5820 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5821 
5822 	return t_gpa;
5823 }
5824 
5825 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5826 			      struct x86_exception *exception)
5827 {
5828 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5829 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5830 }
5831 
5832  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5833 				struct x86_exception *exception)
5834 {
5835 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5836 	access |= PFERR_FETCH_MASK;
5837 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5838 }
5839 
5840 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5841 			       struct x86_exception *exception)
5842 {
5843 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5844 	access |= PFERR_WRITE_MASK;
5845 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5846 }
5847 
5848 /* uses this to access any guest's mapped memory without checking CPL */
5849 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5850 				struct x86_exception *exception)
5851 {
5852 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5853 }
5854 
5855 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5856 				      struct kvm_vcpu *vcpu, u32 access,
5857 				      struct x86_exception *exception)
5858 {
5859 	void *data = val;
5860 	int r = X86EMUL_CONTINUE;
5861 
5862 	while (bytes) {
5863 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5864 							    exception);
5865 		unsigned offset = addr & (PAGE_SIZE-1);
5866 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5867 		int ret;
5868 
5869 		if (gpa == UNMAPPED_GVA)
5870 			return X86EMUL_PROPAGATE_FAULT;
5871 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5872 					       offset, toread);
5873 		if (ret < 0) {
5874 			r = X86EMUL_IO_NEEDED;
5875 			goto out;
5876 		}
5877 
5878 		bytes -= toread;
5879 		data += toread;
5880 		addr += toread;
5881 	}
5882 out:
5883 	return r;
5884 }
5885 
5886 /* used for instruction fetching */
5887 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5888 				gva_t addr, void *val, unsigned int bytes,
5889 				struct x86_exception *exception)
5890 {
5891 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5892 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5893 	unsigned offset;
5894 	int ret;
5895 
5896 	/* Inline kvm_read_guest_virt_helper for speed.  */
5897 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5898 						    exception);
5899 	if (unlikely(gpa == UNMAPPED_GVA))
5900 		return X86EMUL_PROPAGATE_FAULT;
5901 
5902 	offset = addr & (PAGE_SIZE-1);
5903 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5904 		bytes = (unsigned)PAGE_SIZE - offset;
5905 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5906 				       offset, bytes);
5907 	if (unlikely(ret < 0))
5908 		return X86EMUL_IO_NEEDED;
5909 
5910 	return X86EMUL_CONTINUE;
5911 }
5912 
5913 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5914 			       gva_t addr, void *val, unsigned int bytes,
5915 			       struct x86_exception *exception)
5916 {
5917 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5918 
5919 	/*
5920 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5921 	 * is returned, but our callers are not ready for that and they blindly
5922 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5923 	 * uninitialized kernel stack memory into cr2 and error code.
5924 	 */
5925 	memset(exception, 0, sizeof(*exception));
5926 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5927 					  exception);
5928 }
5929 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5930 
5931 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5932 			     gva_t addr, void *val, unsigned int bytes,
5933 			     struct x86_exception *exception, bool system)
5934 {
5935 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5936 	u32 access = 0;
5937 
5938 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5939 		access |= PFERR_USER_MASK;
5940 
5941 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5942 }
5943 
5944 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5945 		unsigned long addr, void *val, unsigned int bytes)
5946 {
5947 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5948 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5949 
5950 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5951 }
5952 
5953 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5954 				      struct kvm_vcpu *vcpu, u32 access,
5955 				      struct x86_exception *exception)
5956 {
5957 	void *data = val;
5958 	int r = X86EMUL_CONTINUE;
5959 
5960 	while (bytes) {
5961 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5962 							     access,
5963 							     exception);
5964 		unsigned offset = addr & (PAGE_SIZE-1);
5965 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5966 		int ret;
5967 
5968 		if (gpa == UNMAPPED_GVA)
5969 			return X86EMUL_PROPAGATE_FAULT;
5970 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5971 		if (ret < 0) {
5972 			r = X86EMUL_IO_NEEDED;
5973 			goto out;
5974 		}
5975 
5976 		bytes -= towrite;
5977 		data += towrite;
5978 		addr += towrite;
5979 	}
5980 out:
5981 	return r;
5982 }
5983 
5984 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5985 			      unsigned int bytes, struct x86_exception *exception,
5986 			      bool system)
5987 {
5988 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5989 	u32 access = PFERR_WRITE_MASK;
5990 
5991 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5992 		access |= PFERR_USER_MASK;
5993 
5994 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5995 					   access, exception);
5996 }
5997 
5998 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5999 				unsigned int bytes, struct x86_exception *exception)
6000 {
6001 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6002 	vcpu->arch.l1tf_flush_l1d = true;
6003 
6004 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6005 					   PFERR_WRITE_MASK, exception);
6006 }
6007 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6008 
6009 int handle_ud(struct kvm_vcpu *vcpu)
6010 {
6011 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6012 	int emul_type = EMULTYPE_TRAP_UD;
6013 	char sig[5]; /* ud2; .ascii "kvm" */
6014 	struct x86_exception e;
6015 
6016 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6017 		return 1;
6018 
6019 	if (force_emulation_prefix &&
6020 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6021 				sig, sizeof(sig), &e) == 0 &&
6022 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6023 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6024 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6025 	}
6026 
6027 	return kvm_emulate_instruction(vcpu, emul_type);
6028 }
6029 EXPORT_SYMBOL_GPL(handle_ud);
6030 
6031 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6032 			    gpa_t gpa, bool write)
6033 {
6034 	/* For APIC access vmexit */
6035 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6036 		return 1;
6037 
6038 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6039 		trace_vcpu_match_mmio(gva, gpa, write, true);
6040 		return 1;
6041 	}
6042 
6043 	return 0;
6044 }
6045 
6046 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6047 				gpa_t *gpa, struct x86_exception *exception,
6048 				bool write)
6049 {
6050 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
6051 		| (write ? PFERR_WRITE_MASK : 0);
6052 
6053 	/*
6054 	 * currently PKRU is only applied to ept enabled guest so
6055 	 * there is no pkey in EPT page table for L1 guest or EPT
6056 	 * shadow page table for L2 guest.
6057 	 */
6058 	if (vcpu_match_mmio_gva(vcpu, gva)
6059 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6060 				 vcpu->arch.mmio_access, 0, access)) {
6061 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6062 					(gva & (PAGE_SIZE - 1));
6063 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6064 		return 1;
6065 	}
6066 
6067 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6068 
6069 	if (*gpa == UNMAPPED_GVA)
6070 		return -1;
6071 
6072 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6073 }
6074 
6075 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6076 			const void *val, int bytes)
6077 {
6078 	int ret;
6079 
6080 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6081 	if (ret < 0)
6082 		return 0;
6083 	kvm_page_track_write(vcpu, gpa, val, bytes);
6084 	return 1;
6085 }
6086 
6087 struct read_write_emulator_ops {
6088 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6089 				  int bytes);
6090 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6091 				  void *val, int bytes);
6092 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6093 			       int bytes, void *val);
6094 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6095 				    void *val, int bytes);
6096 	bool write;
6097 };
6098 
6099 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6100 {
6101 	if (vcpu->mmio_read_completed) {
6102 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6103 			       vcpu->mmio_fragments[0].gpa, val);
6104 		vcpu->mmio_read_completed = 0;
6105 		return 1;
6106 	}
6107 
6108 	return 0;
6109 }
6110 
6111 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6112 			void *val, int bytes)
6113 {
6114 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6115 }
6116 
6117 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6118 			 void *val, int bytes)
6119 {
6120 	return emulator_write_phys(vcpu, gpa, val, bytes);
6121 }
6122 
6123 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6124 {
6125 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6126 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6127 }
6128 
6129 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6130 			  void *val, int bytes)
6131 {
6132 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6133 	return X86EMUL_IO_NEEDED;
6134 }
6135 
6136 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6137 			   void *val, int bytes)
6138 {
6139 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6140 
6141 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6142 	return X86EMUL_CONTINUE;
6143 }
6144 
6145 static const struct read_write_emulator_ops read_emultor = {
6146 	.read_write_prepare = read_prepare,
6147 	.read_write_emulate = read_emulate,
6148 	.read_write_mmio = vcpu_mmio_read,
6149 	.read_write_exit_mmio = read_exit_mmio,
6150 };
6151 
6152 static const struct read_write_emulator_ops write_emultor = {
6153 	.read_write_emulate = write_emulate,
6154 	.read_write_mmio = write_mmio,
6155 	.read_write_exit_mmio = write_exit_mmio,
6156 	.write = true,
6157 };
6158 
6159 static int emulator_read_write_onepage(unsigned long addr, void *val,
6160 				       unsigned int bytes,
6161 				       struct x86_exception *exception,
6162 				       struct kvm_vcpu *vcpu,
6163 				       const struct read_write_emulator_ops *ops)
6164 {
6165 	gpa_t gpa;
6166 	int handled, ret;
6167 	bool write = ops->write;
6168 	struct kvm_mmio_fragment *frag;
6169 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6170 
6171 	/*
6172 	 * If the exit was due to a NPF we may already have a GPA.
6173 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6174 	 * Note, this cannot be used on string operations since string
6175 	 * operation using rep will only have the initial GPA from the NPF
6176 	 * occurred.
6177 	 */
6178 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6179 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6180 		gpa = ctxt->gpa_val;
6181 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6182 	} else {
6183 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6184 		if (ret < 0)
6185 			return X86EMUL_PROPAGATE_FAULT;
6186 	}
6187 
6188 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6189 		return X86EMUL_CONTINUE;
6190 
6191 	/*
6192 	 * Is this MMIO handled locally?
6193 	 */
6194 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6195 	if (handled == bytes)
6196 		return X86EMUL_CONTINUE;
6197 
6198 	gpa += handled;
6199 	bytes -= handled;
6200 	val += handled;
6201 
6202 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6203 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6204 	frag->gpa = gpa;
6205 	frag->data = val;
6206 	frag->len = bytes;
6207 	return X86EMUL_CONTINUE;
6208 }
6209 
6210 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6211 			unsigned long addr,
6212 			void *val, unsigned int bytes,
6213 			struct x86_exception *exception,
6214 			const struct read_write_emulator_ops *ops)
6215 {
6216 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6217 	gpa_t gpa;
6218 	int rc;
6219 
6220 	if (ops->read_write_prepare &&
6221 		  ops->read_write_prepare(vcpu, val, bytes))
6222 		return X86EMUL_CONTINUE;
6223 
6224 	vcpu->mmio_nr_fragments = 0;
6225 
6226 	/* Crossing a page boundary? */
6227 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6228 		int now;
6229 
6230 		now = -addr & ~PAGE_MASK;
6231 		rc = emulator_read_write_onepage(addr, val, now, exception,
6232 						 vcpu, ops);
6233 
6234 		if (rc != X86EMUL_CONTINUE)
6235 			return rc;
6236 		addr += now;
6237 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6238 			addr = (u32)addr;
6239 		val += now;
6240 		bytes -= now;
6241 	}
6242 
6243 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6244 					 vcpu, ops);
6245 	if (rc != X86EMUL_CONTINUE)
6246 		return rc;
6247 
6248 	if (!vcpu->mmio_nr_fragments)
6249 		return rc;
6250 
6251 	gpa = vcpu->mmio_fragments[0].gpa;
6252 
6253 	vcpu->mmio_needed = 1;
6254 	vcpu->mmio_cur_fragment = 0;
6255 
6256 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6257 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6258 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6259 	vcpu->run->mmio.phys_addr = gpa;
6260 
6261 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6262 }
6263 
6264 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6265 				  unsigned long addr,
6266 				  void *val,
6267 				  unsigned int bytes,
6268 				  struct x86_exception *exception)
6269 {
6270 	return emulator_read_write(ctxt, addr, val, bytes,
6271 				   exception, &read_emultor);
6272 }
6273 
6274 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6275 			    unsigned long addr,
6276 			    const void *val,
6277 			    unsigned int bytes,
6278 			    struct x86_exception *exception)
6279 {
6280 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6281 				   exception, &write_emultor);
6282 }
6283 
6284 #define CMPXCHG_TYPE(t, ptr, old, new) \
6285 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6286 
6287 #ifdef CONFIG_X86_64
6288 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6289 #else
6290 #  define CMPXCHG64(ptr, old, new) \
6291 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6292 #endif
6293 
6294 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6295 				     unsigned long addr,
6296 				     const void *old,
6297 				     const void *new,
6298 				     unsigned int bytes,
6299 				     struct x86_exception *exception)
6300 {
6301 	struct kvm_host_map map;
6302 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6303 	u64 page_line_mask;
6304 	gpa_t gpa;
6305 	char *kaddr;
6306 	bool exchanged;
6307 
6308 	/* guests cmpxchg8b have to be emulated atomically */
6309 	if (bytes > 8 || (bytes & (bytes - 1)))
6310 		goto emul_write;
6311 
6312 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6313 
6314 	if (gpa == UNMAPPED_GVA ||
6315 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6316 		goto emul_write;
6317 
6318 	/*
6319 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6320 	 * enabled in the host and the access splits a cache line.
6321 	 */
6322 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6323 		page_line_mask = ~(cache_line_size() - 1);
6324 	else
6325 		page_line_mask = PAGE_MASK;
6326 
6327 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6328 		goto emul_write;
6329 
6330 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6331 		goto emul_write;
6332 
6333 	kaddr = map.hva + offset_in_page(gpa);
6334 
6335 	switch (bytes) {
6336 	case 1:
6337 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6338 		break;
6339 	case 2:
6340 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6341 		break;
6342 	case 4:
6343 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6344 		break;
6345 	case 8:
6346 		exchanged = CMPXCHG64(kaddr, old, new);
6347 		break;
6348 	default:
6349 		BUG();
6350 	}
6351 
6352 	kvm_vcpu_unmap(vcpu, &map, true);
6353 
6354 	if (!exchanged)
6355 		return X86EMUL_CMPXCHG_FAILED;
6356 
6357 	kvm_page_track_write(vcpu, gpa, new, bytes);
6358 
6359 	return X86EMUL_CONTINUE;
6360 
6361 emul_write:
6362 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6363 
6364 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6365 }
6366 
6367 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6368 {
6369 	int r = 0, i;
6370 
6371 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6372 		if (vcpu->arch.pio.in)
6373 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6374 					    vcpu->arch.pio.size, pd);
6375 		else
6376 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6377 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6378 					     pd);
6379 		if (r)
6380 			break;
6381 		pd += vcpu->arch.pio.size;
6382 	}
6383 	return r;
6384 }
6385 
6386 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6387 			       unsigned short port, void *val,
6388 			       unsigned int count, bool in)
6389 {
6390 	vcpu->arch.pio.port = port;
6391 	vcpu->arch.pio.in = in;
6392 	vcpu->arch.pio.count  = count;
6393 	vcpu->arch.pio.size = size;
6394 
6395 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6396 		vcpu->arch.pio.count = 0;
6397 		return 1;
6398 	}
6399 
6400 	vcpu->run->exit_reason = KVM_EXIT_IO;
6401 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6402 	vcpu->run->io.size = size;
6403 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6404 	vcpu->run->io.count = count;
6405 	vcpu->run->io.port = port;
6406 
6407 	return 0;
6408 }
6409 
6410 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6411 			   unsigned short port, void *val, unsigned int count)
6412 {
6413 	int ret;
6414 
6415 	if (vcpu->arch.pio.count)
6416 		goto data_avail;
6417 
6418 	memset(vcpu->arch.pio_data, 0, size * count);
6419 
6420 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6421 	if (ret) {
6422 data_avail:
6423 		memcpy(val, vcpu->arch.pio_data, size * count);
6424 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6425 		vcpu->arch.pio.count = 0;
6426 		return 1;
6427 	}
6428 
6429 	return 0;
6430 }
6431 
6432 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6433 				    int size, unsigned short port, void *val,
6434 				    unsigned int count)
6435 {
6436 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6437 
6438 }
6439 
6440 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6441 			    unsigned short port, const void *val,
6442 			    unsigned int count)
6443 {
6444 	memcpy(vcpu->arch.pio_data, val, size * count);
6445 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6446 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6447 }
6448 
6449 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6450 				     int size, unsigned short port,
6451 				     const void *val, unsigned int count)
6452 {
6453 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6454 }
6455 
6456 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6457 {
6458 	return kvm_x86_ops.get_segment_base(vcpu, seg);
6459 }
6460 
6461 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6462 {
6463 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6464 }
6465 
6466 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6467 {
6468 	if (!need_emulate_wbinvd(vcpu))
6469 		return X86EMUL_CONTINUE;
6470 
6471 	if (kvm_x86_ops.has_wbinvd_exit()) {
6472 		int cpu = get_cpu();
6473 
6474 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6475 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6476 				wbinvd_ipi, NULL, 1);
6477 		put_cpu();
6478 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6479 	} else
6480 		wbinvd();
6481 	return X86EMUL_CONTINUE;
6482 }
6483 
6484 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6485 {
6486 	kvm_emulate_wbinvd_noskip(vcpu);
6487 	return kvm_skip_emulated_instruction(vcpu);
6488 }
6489 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6490 
6491 
6492 
6493 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6494 {
6495 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6496 }
6497 
6498 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6499 			   unsigned long *dest)
6500 {
6501 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6502 }
6503 
6504 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6505 			   unsigned long value)
6506 {
6507 
6508 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6509 }
6510 
6511 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6512 {
6513 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6514 }
6515 
6516 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6517 {
6518 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6519 	unsigned long value;
6520 
6521 	switch (cr) {
6522 	case 0:
6523 		value = kvm_read_cr0(vcpu);
6524 		break;
6525 	case 2:
6526 		value = vcpu->arch.cr2;
6527 		break;
6528 	case 3:
6529 		value = kvm_read_cr3(vcpu);
6530 		break;
6531 	case 4:
6532 		value = kvm_read_cr4(vcpu);
6533 		break;
6534 	case 8:
6535 		value = kvm_get_cr8(vcpu);
6536 		break;
6537 	default:
6538 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6539 		return 0;
6540 	}
6541 
6542 	return value;
6543 }
6544 
6545 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6546 {
6547 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6548 	int res = 0;
6549 
6550 	switch (cr) {
6551 	case 0:
6552 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6553 		break;
6554 	case 2:
6555 		vcpu->arch.cr2 = val;
6556 		break;
6557 	case 3:
6558 		res = kvm_set_cr3(vcpu, val);
6559 		break;
6560 	case 4:
6561 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6562 		break;
6563 	case 8:
6564 		res = kvm_set_cr8(vcpu, val);
6565 		break;
6566 	default:
6567 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6568 		res = -1;
6569 	}
6570 
6571 	return res;
6572 }
6573 
6574 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6575 {
6576 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6577 }
6578 
6579 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6580 {
6581 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6582 }
6583 
6584 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6585 {
6586 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6587 }
6588 
6589 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6590 {
6591 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6592 }
6593 
6594 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6595 {
6596 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6597 }
6598 
6599 static unsigned long emulator_get_cached_segment_base(
6600 	struct x86_emulate_ctxt *ctxt, int seg)
6601 {
6602 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6603 }
6604 
6605 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6606 				 struct desc_struct *desc, u32 *base3,
6607 				 int seg)
6608 {
6609 	struct kvm_segment var;
6610 
6611 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6612 	*selector = var.selector;
6613 
6614 	if (var.unusable) {
6615 		memset(desc, 0, sizeof(*desc));
6616 		if (base3)
6617 			*base3 = 0;
6618 		return false;
6619 	}
6620 
6621 	if (var.g)
6622 		var.limit >>= 12;
6623 	set_desc_limit(desc, var.limit);
6624 	set_desc_base(desc, (unsigned long)var.base);
6625 #ifdef CONFIG_X86_64
6626 	if (base3)
6627 		*base3 = var.base >> 32;
6628 #endif
6629 	desc->type = var.type;
6630 	desc->s = var.s;
6631 	desc->dpl = var.dpl;
6632 	desc->p = var.present;
6633 	desc->avl = var.avl;
6634 	desc->l = var.l;
6635 	desc->d = var.db;
6636 	desc->g = var.g;
6637 
6638 	return true;
6639 }
6640 
6641 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6642 				 struct desc_struct *desc, u32 base3,
6643 				 int seg)
6644 {
6645 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6646 	struct kvm_segment var;
6647 
6648 	var.selector = selector;
6649 	var.base = get_desc_base(desc);
6650 #ifdef CONFIG_X86_64
6651 	var.base |= ((u64)base3) << 32;
6652 #endif
6653 	var.limit = get_desc_limit(desc);
6654 	if (desc->g)
6655 		var.limit = (var.limit << 12) | 0xfff;
6656 	var.type = desc->type;
6657 	var.dpl = desc->dpl;
6658 	var.db = desc->d;
6659 	var.s = desc->s;
6660 	var.l = desc->l;
6661 	var.g = desc->g;
6662 	var.avl = desc->avl;
6663 	var.present = desc->p;
6664 	var.unusable = !var.present;
6665 	var.padding = 0;
6666 
6667 	kvm_set_segment(vcpu, &var, seg);
6668 	return;
6669 }
6670 
6671 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6672 			    u32 msr_index, u64 *pdata)
6673 {
6674 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6675 	int r;
6676 
6677 	r = kvm_get_msr(vcpu, msr_index, pdata);
6678 
6679 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6680 		/* Bounce to user space */
6681 		return X86EMUL_IO_NEEDED;
6682 	}
6683 
6684 	return r;
6685 }
6686 
6687 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6688 			    u32 msr_index, u64 data)
6689 {
6690 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6691 	int r;
6692 
6693 	r = kvm_set_msr(vcpu, msr_index, data);
6694 
6695 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6696 		/* Bounce to user space */
6697 		return X86EMUL_IO_NEEDED;
6698 	}
6699 
6700 	return r;
6701 }
6702 
6703 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6704 {
6705 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6706 
6707 	return vcpu->arch.smbase;
6708 }
6709 
6710 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6711 {
6712 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6713 
6714 	vcpu->arch.smbase = smbase;
6715 }
6716 
6717 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6718 			      u32 pmc)
6719 {
6720 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6721 }
6722 
6723 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6724 			     u32 pmc, u64 *pdata)
6725 {
6726 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6727 }
6728 
6729 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6730 {
6731 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6732 }
6733 
6734 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6735 			      struct x86_instruction_info *info,
6736 			      enum x86_intercept_stage stage)
6737 {
6738 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6739 					    &ctxt->exception);
6740 }
6741 
6742 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6743 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6744 			      bool exact_only)
6745 {
6746 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6747 }
6748 
6749 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6750 {
6751 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6752 }
6753 
6754 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6755 {
6756 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6757 }
6758 
6759 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6760 {
6761 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6762 }
6763 
6764 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6765 {
6766 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6767 }
6768 
6769 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6770 {
6771 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6772 }
6773 
6774 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6775 {
6776 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6777 }
6778 
6779 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6780 {
6781 	return emul_to_vcpu(ctxt)->arch.hflags;
6782 }
6783 
6784 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6785 {
6786 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6787 }
6788 
6789 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6790 				  const char *smstate)
6791 {
6792 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6793 }
6794 
6795 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6796 {
6797 	kvm_smm_changed(emul_to_vcpu(ctxt));
6798 }
6799 
6800 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6801 {
6802 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6803 }
6804 
6805 static const struct x86_emulate_ops emulate_ops = {
6806 	.read_gpr            = emulator_read_gpr,
6807 	.write_gpr           = emulator_write_gpr,
6808 	.read_std            = emulator_read_std,
6809 	.write_std           = emulator_write_std,
6810 	.read_phys           = kvm_read_guest_phys_system,
6811 	.fetch               = kvm_fetch_guest_virt,
6812 	.read_emulated       = emulator_read_emulated,
6813 	.write_emulated      = emulator_write_emulated,
6814 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6815 	.invlpg              = emulator_invlpg,
6816 	.pio_in_emulated     = emulator_pio_in_emulated,
6817 	.pio_out_emulated    = emulator_pio_out_emulated,
6818 	.get_segment         = emulator_get_segment,
6819 	.set_segment         = emulator_set_segment,
6820 	.get_cached_segment_base = emulator_get_cached_segment_base,
6821 	.get_gdt             = emulator_get_gdt,
6822 	.get_idt	     = emulator_get_idt,
6823 	.set_gdt             = emulator_set_gdt,
6824 	.set_idt	     = emulator_set_idt,
6825 	.get_cr              = emulator_get_cr,
6826 	.set_cr              = emulator_set_cr,
6827 	.cpl                 = emulator_get_cpl,
6828 	.get_dr              = emulator_get_dr,
6829 	.set_dr              = emulator_set_dr,
6830 	.get_smbase          = emulator_get_smbase,
6831 	.set_smbase          = emulator_set_smbase,
6832 	.set_msr             = emulator_set_msr,
6833 	.get_msr             = emulator_get_msr,
6834 	.check_pmc	     = emulator_check_pmc,
6835 	.read_pmc            = emulator_read_pmc,
6836 	.halt                = emulator_halt,
6837 	.wbinvd              = emulator_wbinvd,
6838 	.fix_hypercall       = emulator_fix_hypercall,
6839 	.intercept           = emulator_intercept,
6840 	.get_cpuid           = emulator_get_cpuid,
6841 	.guest_has_long_mode = emulator_guest_has_long_mode,
6842 	.guest_has_movbe     = emulator_guest_has_movbe,
6843 	.guest_has_fxsr      = emulator_guest_has_fxsr,
6844 	.set_nmi_mask        = emulator_set_nmi_mask,
6845 	.get_hflags          = emulator_get_hflags,
6846 	.set_hflags          = emulator_set_hflags,
6847 	.pre_leave_smm       = emulator_pre_leave_smm,
6848 	.post_leave_smm      = emulator_post_leave_smm,
6849 	.set_xcr             = emulator_set_xcr,
6850 };
6851 
6852 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6853 {
6854 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6855 	/*
6856 	 * an sti; sti; sequence only disable interrupts for the first
6857 	 * instruction. So, if the last instruction, be it emulated or
6858 	 * not, left the system with the INT_STI flag enabled, it
6859 	 * means that the last instruction is an sti. We should not
6860 	 * leave the flag on in this case. The same goes for mov ss
6861 	 */
6862 	if (int_shadow & mask)
6863 		mask = 0;
6864 	if (unlikely(int_shadow || mask)) {
6865 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6866 		if (!mask)
6867 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6868 	}
6869 }
6870 
6871 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6872 {
6873 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6874 	if (ctxt->exception.vector == PF_VECTOR)
6875 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6876 
6877 	if (ctxt->exception.error_code_valid)
6878 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6879 				      ctxt->exception.error_code);
6880 	else
6881 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6882 	return false;
6883 }
6884 
6885 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6886 {
6887 	struct x86_emulate_ctxt *ctxt;
6888 
6889 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6890 	if (!ctxt) {
6891 		pr_err("kvm: failed to allocate vcpu's emulator\n");
6892 		return NULL;
6893 	}
6894 
6895 	ctxt->vcpu = vcpu;
6896 	ctxt->ops = &emulate_ops;
6897 	vcpu->arch.emulate_ctxt = ctxt;
6898 
6899 	return ctxt;
6900 }
6901 
6902 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6903 {
6904 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6905 	int cs_db, cs_l;
6906 
6907 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6908 
6909 	ctxt->gpa_available = false;
6910 	ctxt->eflags = kvm_get_rflags(vcpu);
6911 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6912 
6913 	ctxt->eip = kvm_rip_read(vcpu);
6914 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6915 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6916 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6917 		     cs_db				? X86EMUL_MODE_PROT32 :
6918 							  X86EMUL_MODE_PROT16;
6919 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6920 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6921 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6922 
6923 	init_decode_cache(ctxt);
6924 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6925 }
6926 
6927 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6928 {
6929 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6930 	int ret;
6931 
6932 	init_emulate_ctxt(vcpu);
6933 
6934 	ctxt->op_bytes = 2;
6935 	ctxt->ad_bytes = 2;
6936 	ctxt->_eip = ctxt->eip + inc_eip;
6937 	ret = emulate_int_real(ctxt, irq);
6938 
6939 	if (ret != X86EMUL_CONTINUE) {
6940 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6941 	} else {
6942 		ctxt->eip = ctxt->_eip;
6943 		kvm_rip_write(vcpu, ctxt->eip);
6944 		kvm_set_rflags(vcpu, ctxt->eflags);
6945 	}
6946 }
6947 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6948 
6949 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6950 {
6951 	++vcpu->stat.insn_emulation_fail;
6952 	trace_kvm_emulate_insn_failed(vcpu);
6953 
6954 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6955 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6956 		return 1;
6957 	}
6958 
6959 	if (emulation_type & EMULTYPE_SKIP) {
6960 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6961 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6962 		vcpu->run->internal.ndata = 0;
6963 		return 0;
6964 	}
6965 
6966 	kvm_queue_exception(vcpu, UD_VECTOR);
6967 
6968 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
6969 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6970 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6971 		vcpu->run->internal.ndata = 0;
6972 		return 0;
6973 	}
6974 
6975 	return 1;
6976 }
6977 
6978 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6979 				  bool write_fault_to_shadow_pgtable,
6980 				  int emulation_type)
6981 {
6982 	gpa_t gpa = cr2_or_gpa;
6983 	kvm_pfn_t pfn;
6984 
6985 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6986 		return false;
6987 
6988 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6989 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6990 		return false;
6991 
6992 	if (!vcpu->arch.mmu->direct_map) {
6993 		/*
6994 		 * Write permission should be allowed since only
6995 		 * write access need to be emulated.
6996 		 */
6997 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6998 
6999 		/*
7000 		 * If the mapping is invalid in guest, let cpu retry
7001 		 * it to generate fault.
7002 		 */
7003 		if (gpa == UNMAPPED_GVA)
7004 			return true;
7005 	}
7006 
7007 	/*
7008 	 * Do not retry the unhandleable instruction if it faults on the
7009 	 * readonly host memory, otherwise it will goto a infinite loop:
7010 	 * retry instruction -> write #PF -> emulation fail -> retry
7011 	 * instruction -> ...
7012 	 */
7013 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7014 
7015 	/*
7016 	 * If the instruction failed on the error pfn, it can not be fixed,
7017 	 * report the error to userspace.
7018 	 */
7019 	if (is_error_noslot_pfn(pfn))
7020 		return false;
7021 
7022 	kvm_release_pfn_clean(pfn);
7023 
7024 	/* The instructions are well-emulated on direct mmu. */
7025 	if (vcpu->arch.mmu->direct_map) {
7026 		unsigned int indirect_shadow_pages;
7027 
7028 		spin_lock(&vcpu->kvm->mmu_lock);
7029 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7030 		spin_unlock(&vcpu->kvm->mmu_lock);
7031 
7032 		if (indirect_shadow_pages)
7033 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7034 
7035 		return true;
7036 	}
7037 
7038 	/*
7039 	 * if emulation was due to access to shadowed page table
7040 	 * and it failed try to unshadow page and re-enter the
7041 	 * guest to let CPU execute the instruction.
7042 	 */
7043 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7044 
7045 	/*
7046 	 * If the access faults on its page table, it can not
7047 	 * be fixed by unprotecting shadow page and it should
7048 	 * be reported to userspace.
7049 	 */
7050 	return !write_fault_to_shadow_pgtable;
7051 }
7052 
7053 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7054 			      gpa_t cr2_or_gpa,  int emulation_type)
7055 {
7056 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7057 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7058 
7059 	last_retry_eip = vcpu->arch.last_retry_eip;
7060 	last_retry_addr = vcpu->arch.last_retry_addr;
7061 
7062 	/*
7063 	 * If the emulation is caused by #PF and it is non-page_table
7064 	 * writing instruction, it means the VM-EXIT is caused by shadow
7065 	 * page protected, we can zap the shadow page and retry this
7066 	 * instruction directly.
7067 	 *
7068 	 * Note: if the guest uses a non-page-table modifying instruction
7069 	 * on the PDE that points to the instruction, then we will unmap
7070 	 * the instruction and go to an infinite loop. So, we cache the
7071 	 * last retried eip and the last fault address, if we meet the eip
7072 	 * and the address again, we can break out of the potential infinite
7073 	 * loop.
7074 	 */
7075 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7076 
7077 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7078 		return false;
7079 
7080 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7081 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7082 		return false;
7083 
7084 	if (x86_page_table_writing_insn(ctxt))
7085 		return false;
7086 
7087 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7088 		return false;
7089 
7090 	vcpu->arch.last_retry_eip = ctxt->eip;
7091 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7092 
7093 	if (!vcpu->arch.mmu->direct_map)
7094 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7095 
7096 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7097 
7098 	return true;
7099 }
7100 
7101 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7102 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7103 
7104 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7105 {
7106 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7107 		/* This is a good place to trace that we are exiting SMM.  */
7108 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7109 
7110 		/* Process a latched INIT or SMI, if any.  */
7111 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7112 	}
7113 
7114 	kvm_mmu_reset_context(vcpu);
7115 }
7116 
7117 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7118 				unsigned long *db)
7119 {
7120 	u32 dr6 = 0;
7121 	int i;
7122 	u32 enable, rwlen;
7123 
7124 	enable = dr7;
7125 	rwlen = dr7 >> 16;
7126 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7127 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7128 			dr6 |= (1 << i);
7129 	return dr6;
7130 }
7131 
7132 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7133 {
7134 	struct kvm_run *kvm_run = vcpu->run;
7135 
7136 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7137 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
7138 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7139 		kvm_run->debug.arch.exception = DB_VECTOR;
7140 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7141 		return 0;
7142 	}
7143 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7144 	return 1;
7145 }
7146 
7147 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7148 {
7149 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7150 	int r;
7151 
7152 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
7153 	if (unlikely(!r))
7154 		return 0;
7155 
7156 	/*
7157 	 * rflags is the old, "raw" value of the flags.  The new value has
7158 	 * not been saved yet.
7159 	 *
7160 	 * This is correct even for TF set by the guest, because "the
7161 	 * processor will not generate this exception after the instruction
7162 	 * that sets the TF flag".
7163 	 */
7164 	if (unlikely(rflags & X86_EFLAGS_TF))
7165 		r = kvm_vcpu_do_singlestep(vcpu);
7166 	return r;
7167 }
7168 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7169 
7170 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7171 {
7172 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7173 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7174 		struct kvm_run *kvm_run = vcpu->run;
7175 		unsigned long eip = kvm_get_linear_rip(vcpu);
7176 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7177 					   vcpu->arch.guest_debug_dr7,
7178 					   vcpu->arch.eff_db);
7179 
7180 		if (dr6 != 0) {
7181 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
7182 			kvm_run->debug.arch.pc = eip;
7183 			kvm_run->debug.arch.exception = DB_VECTOR;
7184 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7185 			*r = 0;
7186 			return true;
7187 		}
7188 	}
7189 
7190 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7191 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7192 		unsigned long eip = kvm_get_linear_rip(vcpu);
7193 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7194 					   vcpu->arch.dr7,
7195 					   vcpu->arch.db);
7196 
7197 		if (dr6 != 0) {
7198 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7199 			*r = 1;
7200 			return true;
7201 		}
7202 	}
7203 
7204 	return false;
7205 }
7206 
7207 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7208 {
7209 	switch (ctxt->opcode_len) {
7210 	case 1:
7211 		switch (ctxt->b) {
7212 		case 0xe4:	/* IN */
7213 		case 0xe5:
7214 		case 0xec:
7215 		case 0xed:
7216 		case 0xe6:	/* OUT */
7217 		case 0xe7:
7218 		case 0xee:
7219 		case 0xef:
7220 		case 0x6c:	/* INS */
7221 		case 0x6d:
7222 		case 0x6e:	/* OUTS */
7223 		case 0x6f:
7224 			return true;
7225 		}
7226 		break;
7227 	case 2:
7228 		switch (ctxt->b) {
7229 		case 0x33:	/* RDPMC */
7230 			return true;
7231 		}
7232 		break;
7233 	}
7234 
7235 	return false;
7236 }
7237 
7238 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7239 			    int emulation_type, void *insn, int insn_len)
7240 {
7241 	int r;
7242 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7243 	bool writeback = true;
7244 	bool write_fault_to_spt;
7245 
7246 	if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7247 		return 1;
7248 
7249 	vcpu->arch.l1tf_flush_l1d = true;
7250 
7251 	/*
7252 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
7253 	 * never reused.
7254 	 */
7255 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7256 	vcpu->arch.write_fault_to_shadow_pgtable = false;
7257 	kvm_clear_exception_queue(vcpu);
7258 
7259 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7260 		init_emulate_ctxt(vcpu);
7261 
7262 		/*
7263 		 * We will reenter on the same instruction since
7264 		 * we do not set complete_userspace_io.  This does not
7265 		 * handle watchpoints yet, those would be handled in
7266 		 * the emulate_ops.
7267 		 */
7268 		if (!(emulation_type & EMULTYPE_SKIP) &&
7269 		    kvm_vcpu_check_breakpoint(vcpu, &r))
7270 			return r;
7271 
7272 		ctxt->interruptibility = 0;
7273 		ctxt->have_exception = false;
7274 		ctxt->exception.vector = -1;
7275 		ctxt->perm_ok = false;
7276 
7277 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7278 
7279 		r = x86_decode_insn(ctxt, insn, insn_len);
7280 
7281 		trace_kvm_emulate_insn_start(vcpu);
7282 		++vcpu->stat.insn_emulation;
7283 		if (r != EMULATION_OK)  {
7284 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
7285 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7286 				kvm_queue_exception(vcpu, UD_VECTOR);
7287 				return 1;
7288 			}
7289 			if (reexecute_instruction(vcpu, cr2_or_gpa,
7290 						  write_fault_to_spt,
7291 						  emulation_type))
7292 				return 1;
7293 			if (ctxt->have_exception) {
7294 				/*
7295 				 * #UD should result in just EMULATION_FAILED, and trap-like
7296 				 * exception should not be encountered during decode.
7297 				 */
7298 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7299 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7300 				inject_emulated_exception(vcpu);
7301 				return 1;
7302 			}
7303 			return handle_emulation_failure(vcpu, emulation_type);
7304 		}
7305 	}
7306 
7307 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7308 	    !is_vmware_backdoor_opcode(ctxt)) {
7309 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7310 		return 1;
7311 	}
7312 
7313 	/*
7314 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7315 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
7316 	 * updating interruptibility state and injecting single-step #DBs.
7317 	 */
7318 	if (emulation_type & EMULTYPE_SKIP) {
7319 		kvm_rip_write(vcpu, ctxt->_eip);
7320 		if (ctxt->eflags & X86_EFLAGS_RF)
7321 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7322 		return 1;
7323 	}
7324 
7325 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7326 		return 1;
7327 
7328 	/* this is needed for vmware backdoor interface to work since it
7329 	   changes registers values  during IO operation */
7330 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7331 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7332 		emulator_invalidate_register_cache(ctxt);
7333 	}
7334 
7335 restart:
7336 	if (emulation_type & EMULTYPE_PF) {
7337 		/* Save the faulting GPA (cr2) in the address field */
7338 		ctxt->exception.address = cr2_or_gpa;
7339 
7340 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7341 		if (vcpu->arch.mmu->direct_map) {
7342 			ctxt->gpa_available = true;
7343 			ctxt->gpa_val = cr2_or_gpa;
7344 		}
7345 	} else {
7346 		/* Sanitize the address out of an abundance of paranoia. */
7347 		ctxt->exception.address = 0;
7348 	}
7349 
7350 	r = x86_emulate_insn(ctxt);
7351 
7352 	if (r == EMULATION_INTERCEPTED)
7353 		return 1;
7354 
7355 	if (r == EMULATION_FAILED) {
7356 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7357 					emulation_type))
7358 			return 1;
7359 
7360 		return handle_emulation_failure(vcpu, emulation_type);
7361 	}
7362 
7363 	if (ctxt->have_exception) {
7364 		r = 1;
7365 		if (inject_emulated_exception(vcpu))
7366 			return r;
7367 	} else if (vcpu->arch.pio.count) {
7368 		if (!vcpu->arch.pio.in) {
7369 			/* FIXME: return into emulator if single-stepping.  */
7370 			vcpu->arch.pio.count = 0;
7371 		} else {
7372 			writeback = false;
7373 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7374 		}
7375 		r = 0;
7376 	} else if (vcpu->mmio_needed) {
7377 		++vcpu->stat.mmio_exits;
7378 
7379 		if (!vcpu->mmio_is_write)
7380 			writeback = false;
7381 		r = 0;
7382 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7383 	} else if (r == EMULATION_RESTART)
7384 		goto restart;
7385 	else
7386 		r = 1;
7387 
7388 	if (writeback) {
7389 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7390 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7391 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7392 		if (!ctxt->have_exception ||
7393 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7394 			kvm_rip_write(vcpu, ctxt->eip);
7395 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7396 				r = kvm_vcpu_do_singlestep(vcpu);
7397 			if (kvm_x86_ops.update_emulated_instruction)
7398 				kvm_x86_ops.update_emulated_instruction(vcpu);
7399 			__kvm_set_rflags(vcpu, ctxt->eflags);
7400 		}
7401 
7402 		/*
7403 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7404 		 * do nothing, and it will be requested again as soon as
7405 		 * the shadow expires.  But we still need to check here,
7406 		 * because POPF has no interrupt shadow.
7407 		 */
7408 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7409 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7410 	} else
7411 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7412 
7413 	return r;
7414 }
7415 
7416 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7417 {
7418 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7419 }
7420 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7421 
7422 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7423 					void *insn, int insn_len)
7424 {
7425 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7426 }
7427 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7428 
7429 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7430 {
7431 	vcpu->arch.pio.count = 0;
7432 	return 1;
7433 }
7434 
7435 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7436 {
7437 	vcpu->arch.pio.count = 0;
7438 
7439 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7440 		return 1;
7441 
7442 	return kvm_skip_emulated_instruction(vcpu);
7443 }
7444 
7445 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7446 			    unsigned short port)
7447 {
7448 	unsigned long val = kvm_rax_read(vcpu);
7449 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7450 
7451 	if (ret)
7452 		return ret;
7453 
7454 	/*
7455 	 * Workaround userspace that relies on old KVM behavior of %rip being
7456 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7457 	 */
7458 	if (port == 0x7e &&
7459 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7460 		vcpu->arch.complete_userspace_io =
7461 			complete_fast_pio_out_port_0x7e;
7462 		kvm_skip_emulated_instruction(vcpu);
7463 	} else {
7464 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7465 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7466 	}
7467 	return 0;
7468 }
7469 
7470 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7471 {
7472 	unsigned long val;
7473 
7474 	/* We should only ever be called with arch.pio.count equal to 1 */
7475 	BUG_ON(vcpu->arch.pio.count != 1);
7476 
7477 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7478 		vcpu->arch.pio.count = 0;
7479 		return 1;
7480 	}
7481 
7482 	/* For size less than 4 we merge, else we zero extend */
7483 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7484 
7485 	/*
7486 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7487 	 * the copy and tracing
7488 	 */
7489 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7490 	kvm_rax_write(vcpu, val);
7491 
7492 	return kvm_skip_emulated_instruction(vcpu);
7493 }
7494 
7495 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7496 			   unsigned short port)
7497 {
7498 	unsigned long val;
7499 	int ret;
7500 
7501 	/* For size less than 4 we merge, else we zero extend */
7502 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7503 
7504 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7505 	if (ret) {
7506 		kvm_rax_write(vcpu, val);
7507 		return ret;
7508 	}
7509 
7510 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7511 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7512 
7513 	return 0;
7514 }
7515 
7516 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7517 {
7518 	int ret;
7519 
7520 	if (in)
7521 		ret = kvm_fast_pio_in(vcpu, size, port);
7522 	else
7523 		ret = kvm_fast_pio_out(vcpu, size, port);
7524 	return ret && kvm_skip_emulated_instruction(vcpu);
7525 }
7526 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7527 
7528 static int kvmclock_cpu_down_prep(unsigned int cpu)
7529 {
7530 	__this_cpu_write(cpu_tsc_khz, 0);
7531 	return 0;
7532 }
7533 
7534 static void tsc_khz_changed(void *data)
7535 {
7536 	struct cpufreq_freqs *freq = data;
7537 	unsigned long khz = 0;
7538 
7539 	if (data)
7540 		khz = freq->new;
7541 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7542 		khz = cpufreq_quick_get(raw_smp_processor_id());
7543 	if (!khz)
7544 		khz = tsc_khz;
7545 	__this_cpu_write(cpu_tsc_khz, khz);
7546 }
7547 
7548 #ifdef CONFIG_X86_64
7549 static void kvm_hyperv_tsc_notifier(void)
7550 {
7551 	struct kvm *kvm;
7552 	struct kvm_vcpu *vcpu;
7553 	int cpu;
7554 
7555 	mutex_lock(&kvm_lock);
7556 	list_for_each_entry(kvm, &vm_list, vm_list)
7557 		kvm_make_mclock_inprogress_request(kvm);
7558 
7559 	hyperv_stop_tsc_emulation();
7560 
7561 	/* TSC frequency always matches when on Hyper-V */
7562 	for_each_present_cpu(cpu)
7563 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7564 	kvm_max_guest_tsc_khz = tsc_khz;
7565 
7566 	list_for_each_entry(kvm, &vm_list, vm_list) {
7567 		struct kvm_arch *ka = &kvm->arch;
7568 
7569 		spin_lock(&ka->pvclock_gtod_sync_lock);
7570 
7571 		pvclock_update_vm_gtod_copy(kvm);
7572 
7573 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7574 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7575 
7576 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7577 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7578 
7579 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7580 	}
7581 	mutex_unlock(&kvm_lock);
7582 }
7583 #endif
7584 
7585 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7586 {
7587 	struct kvm *kvm;
7588 	struct kvm_vcpu *vcpu;
7589 	int i, send_ipi = 0;
7590 
7591 	/*
7592 	 * We allow guests to temporarily run on slowing clocks,
7593 	 * provided we notify them after, or to run on accelerating
7594 	 * clocks, provided we notify them before.  Thus time never
7595 	 * goes backwards.
7596 	 *
7597 	 * However, we have a problem.  We can't atomically update
7598 	 * the frequency of a given CPU from this function; it is
7599 	 * merely a notifier, which can be called from any CPU.
7600 	 * Changing the TSC frequency at arbitrary points in time
7601 	 * requires a recomputation of local variables related to
7602 	 * the TSC for each VCPU.  We must flag these local variables
7603 	 * to be updated and be sure the update takes place with the
7604 	 * new frequency before any guests proceed.
7605 	 *
7606 	 * Unfortunately, the combination of hotplug CPU and frequency
7607 	 * change creates an intractable locking scenario; the order
7608 	 * of when these callouts happen is undefined with respect to
7609 	 * CPU hotplug, and they can race with each other.  As such,
7610 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7611 	 * undefined; you can actually have a CPU frequency change take
7612 	 * place in between the computation of X and the setting of the
7613 	 * variable.  To protect against this problem, all updates of
7614 	 * the per_cpu tsc_khz variable are done in an interrupt
7615 	 * protected IPI, and all callers wishing to update the value
7616 	 * must wait for a synchronous IPI to complete (which is trivial
7617 	 * if the caller is on the CPU already).  This establishes the
7618 	 * necessary total order on variable updates.
7619 	 *
7620 	 * Note that because a guest time update may take place
7621 	 * anytime after the setting of the VCPU's request bit, the
7622 	 * correct TSC value must be set before the request.  However,
7623 	 * to ensure the update actually makes it to any guest which
7624 	 * starts running in hardware virtualization between the set
7625 	 * and the acquisition of the spinlock, we must also ping the
7626 	 * CPU after setting the request bit.
7627 	 *
7628 	 */
7629 
7630 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7631 
7632 	mutex_lock(&kvm_lock);
7633 	list_for_each_entry(kvm, &vm_list, vm_list) {
7634 		kvm_for_each_vcpu(i, vcpu, kvm) {
7635 			if (vcpu->cpu != cpu)
7636 				continue;
7637 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7638 			if (vcpu->cpu != raw_smp_processor_id())
7639 				send_ipi = 1;
7640 		}
7641 	}
7642 	mutex_unlock(&kvm_lock);
7643 
7644 	if (freq->old < freq->new && send_ipi) {
7645 		/*
7646 		 * We upscale the frequency.  Must make the guest
7647 		 * doesn't see old kvmclock values while running with
7648 		 * the new frequency, otherwise we risk the guest sees
7649 		 * time go backwards.
7650 		 *
7651 		 * In case we update the frequency for another cpu
7652 		 * (which might be in guest context) send an interrupt
7653 		 * to kick the cpu out of guest context.  Next time
7654 		 * guest context is entered kvmclock will be updated,
7655 		 * so the guest will not see stale values.
7656 		 */
7657 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7658 	}
7659 }
7660 
7661 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7662 				     void *data)
7663 {
7664 	struct cpufreq_freqs *freq = data;
7665 	int cpu;
7666 
7667 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7668 		return 0;
7669 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7670 		return 0;
7671 
7672 	for_each_cpu(cpu, freq->policy->cpus)
7673 		__kvmclock_cpufreq_notifier(freq, cpu);
7674 
7675 	return 0;
7676 }
7677 
7678 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7679 	.notifier_call  = kvmclock_cpufreq_notifier
7680 };
7681 
7682 static int kvmclock_cpu_online(unsigned int cpu)
7683 {
7684 	tsc_khz_changed(NULL);
7685 	return 0;
7686 }
7687 
7688 static void kvm_timer_init(void)
7689 {
7690 	max_tsc_khz = tsc_khz;
7691 
7692 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7693 #ifdef CONFIG_CPU_FREQ
7694 		struct cpufreq_policy *policy;
7695 		int cpu;
7696 
7697 		cpu = get_cpu();
7698 		policy = cpufreq_cpu_get(cpu);
7699 		if (policy) {
7700 			if (policy->cpuinfo.max_freq)
7701 				max_tsc_khz = policy->cpuinfo.max_freq;
7702 			cpufreq_cpu_put(policy);
7703 		}
7704 		put_cpu();
7705 #endif
7706 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7707 					  CPUFREQ_TRANSITION_NOTIFIER);
7708 	}
7709 
7710 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7711 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7712 }
7713 
7714 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7715 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7716 
7717 int kvm_is_in_guest(void)
7718 {
7719 	return __this_cpu_read(current_vcpu) != NULL;
7720 }
7721 
7722 static int kvm_is_user_mode(void)
7723 {
7724 	int user_mode = 3;
7725 
7726 	if (__this_cpu_read(current_vcpu))
7727 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7728 
7729 	return user_mode != 0;
7730 }
7731 
7732 static unsigned long kvm_get_guest_ip(void)
7733 {
7734 	unsigned long ip = 0;
7735 
7736 	if (__this_cpu_read(current_vcpu))
7737 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7738 
7739 	return ip;
7740 }
7741 
7742 static void kvm_handle_intel_pt_intr(void)
7743 {
7744 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7745 
7746 	kvm_make_request(KVM_REQ_PMI, vcpu);
7747 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7748 			(unsigned long *)&vcpu->arch.pmu.global_status);
7749 }
7750 
7751 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7752 	.is_in_guest		= kvm_is_in_guest,
7753 	.is_user_mode		= kvm_is_user_mode,
7754 	.get_guest_ip		= kvm_get_guest_ip,
7755 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7756 };
7757 
7758 #ifdef CONFIG_X86_64
7759 static void pvclock_gtod_update_fn(struct work_struct *work)
7760 {
7761 	struct kvm *kvm;
7762 
7763 	struct kvm_vcpu *vcpu;
7764 	int i;
7765 
7766 	mutex_lock(&kvm_lock);
7767 	list_for_each_entry(kvm, &vm_list, vm_list)
7768 		kvm_for_each_vcpu(i, vcpu, kvm)
7769 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7770 	atomic_set(&kvm_guest_has_master_clock, 0);
7771 	mutex_unlock(&kvm_lock);
7772 }
7773 
7774 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7775 
7776 /*
7777  * Notification about pvclock gtod data update.
7778  */
7779 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7780 			       void *priv)
7781 {
7782 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7783 	struct timekeeper *tk = priv;
7784 
7785 	update_pvclock_gtod(tk);
7786 
7787 	/* disable master clock if host does not trust, or does not
7788 	 * use, TSC based clocksource.
7789 	 */
7790 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7791 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7792 		queue_work(system_long_wq, &pvclock_gtod_work);
7793 
7794 	return 0;
7795 }
7796 
7797 static struct notifier_block pvclock_gtod_notifier = {
7798 	.notifier_call = pvclock_gtod_notify,
7799 };
7800 #endif
7801 
7802 int kvm_arch_init(void *opaque)
7803 {
7804 	struct kvm_x86_init_ops *ops = opaque;
7805 	int r;
7806 
7807 	if (kvm_x86_ops.hardware_enable) {
7808 		printk(KERN_ERR "kvm: already loaded the other module\n");
7809 		r = -EEXIST;
7810 		goto out;
7811 	}
7812 
7813 	if (!ops->cpu_has_kvm_support()) {
7814 		pr_err_ratelimited("kvm: no hardware support\n");
7815 		r = -EOPNOTSUPP;
7816 		goto out;
7817 	}
7818 	if (ops->disabled_by_bios()) {
7819 		pr_err_ratelimited("kvm: disabled by bios\n");
7820 		r = -EOPNOTSUPP;
7821 		goto out;
7822 	}
7823 
7824 	/*
7825 	 * KVM explicitly assumes that the guest has an FPU and
7826 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7827 	 * vCPU's FPU state as a fxregs_state struct.
7828 	 */
7829 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7830 		printk(KERN_ERR "kvm: inadequate fpu\n");
7831 		r = -EOPNOTSUPP;
7832 		goto out;
7833 	}
7834 
7835 	r = -ENOMEM;
7836 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7837 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7838 					  NULL);
7839 	if (!x86_fpu_cache) {
7840 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7841 		goto out;
7842 	}
7843 
7844 	x86_emulator_cache = kvm_alloc_emulator_cache();
7845 	if (!x86_emulator_cache) {
7846 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
7847 		goto out_free_x86_fpu_cache;
7848 	}
7849 
7850 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7851 	if (!user_return_msrs) {
7852 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
7853 		goto out_free_x86_emulator_cache;
7854 	}
7855 
7856 	r = kvm_mmu_module_init();
7857 	if (r)
7858 		goto out_free_percpu;
7859 
7860 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7861 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7862 			PT_PRESENT_MASK, 0, sme_me_mask);
7863 	kvm_timer_init();
7864 
7865 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7866 
7867 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7868 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7869 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7870 	}
7871 
7872 	kvm_lapic_init();
7873 	if (pi_inject_timer == -1)
7874 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7875 #ifdef CONFIG_X86_64
7876 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7877 
7878 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7879 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7880 #endif
7881 
7882 	return 0;
7883 
7884 out_free_percpu:
7885 	free_percpu(user_return_msrs);
7886 out_free_x86_emulator_cache:
7887 	kmem_cache_destroy(x86_emulator_cache);
7888 out_free_x86_fpu_cache:
7889 	kmem_cache_destroy(x86_fpu_cache);
7890 out:
7891 	return r;
7892 }
7893 
7894 void kvm_arch_exit(void)
7895 {
7896 #ifdef CONFIG_X86_64
7897 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7898 		clear_hv_tscchange_cb();
7899 #endif
7900 	kvm_lapic_exit();
7901 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7902 
7903 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7904 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7905 					    CPUFREQ_TRANSITION_NOTIFIER);
7906 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7907 #ifdef CONFIG_X86_64
7908 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7909 #endif
7910 	kvm_x86_ops.hardware_enable = NULL;
7911 	kvm_mmu_module_exit();
7912 	free_percpu(user_return_msrs);
7913 	kmem_cache_destroy(x86_fpu_cache);
7914 }
7915 
7916 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7917 {
7918 	++vcpu->stat.halt_exits;
7919 	if (lapic_in_kernel(vcpu)) {
7920 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7921 		return 1;
7922 	} else {
7923 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7924 		return 0;
7925 	}
7926 }
7927 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7928 
7929 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7930 {
7931 	int ret = kvm_skip_emulated_instruction(vcpu);
7932 	/*
7933 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7934 	 * KVM_EXIT_DEBUG here.
7935 	 */
7936 	return kvm_vcpu_halt(vcpu) && ret;
7937 }
7938 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7939 
7940 #ifdef CONFIG_X86_64
7941 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7942 			        unsigned long clock_type)
7943 {
7944 	struct kvm_clock_pairing clock_pairing;
7945 	struct timespec64 ts;
7946 	u64 cycle;
7947 	int ret;
7948 
7949 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7950 		return -KVM_EOPNOTSUPP;
7951 
7952 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7953 		return -KVM_EOPNOTSUPP;
7954 
7955 	clock_pairing.sec = ts.tv_sec;
7956 	clock_pairing.nsec = ts.tv_nsec;
7957 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7958 	clock_pairing.flags = 0;
7959 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7960 
7961 	ret = 0;
7962 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7963 			    sizeof(struct kvm_clock_pairing)))
7964 		ret = -KVM_EFAULT;
7965 
7966 	return ret;
7967 }
7968 #endif
7969 
7970 /*
7971  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7972  *
7973  * @apicid - apicid of vcpu to be kicked.
7974  */
7975 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7976 {
7977 	struct kvm_lapic_irq lapic_irq;
7978 
7979 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
7980 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7981 	lapic_irq.level = 0;
7982 	lapic_irq.dest_id = apicid;
7983 	lapic_irq.msi_redir_hint = false;
7984 
7985 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7986 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7987 }
7988 
7989 bool kvm_apicv_activated(struct kvm *kvm)
7990 {
7991 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7992 }
7993 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7994 
7995 void kvm_apicv_init(struct kvm *kvm, bool enable)
7996 {
7997 	if (enable)
7998 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
7999 			  &kvm->arch.apicv_inhibit_reasons);
8000 	else
8001 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8002 			&kvm->arch.apicv_inhibit_reasons);
8003 }
8004 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8005 
8006 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8007 {
8008 	struct kvm_vcpu *target = NULL;
8009 	struct kvm_apic_map *map;
8010 
8011 	rcu_read_lock();
8012 	map = rcu_dereference(kvm->arch.apic_map);
8013 
8014 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8015 		target = map->phys_map[dest_id]->vcpu;
8016 
8017 	rcu_read_unlock();
8018 
8019 	if (target && READ_ONCE(target->ready))
8020 		kvm_vcpu_yield_to(target);
8021 }
8022 
8023 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8024 {
8025 	unsigned long nr, a0, a1, a2, a3, ret;
8026 	int op_64_bit;
8027 
8028 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
8029 		return kvm_hv_hypercall(vcpu);
8030 
8031 	nr = kvm_rax_read(vcpu);
8032 	a0 = kvm_rbx_read(vcpu);
8033 	a1 = kvm_rcx_read(vcpu);
8034 	a2 = kvm_rdx_read(vcpu);
8035 	a3 = kvm_rsi_read(vcpu);
8036 
8037 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8038 
8039 	op_64_bit = is_64_bit_mode(vcpu);
8040 	if (!op_64_bit) {
8041 		nr &= 0xFFFFFFFF;
8042 		a0 &= 0xFFFFFFFF;
8043 		a1 &= 0xFFFFFFFF;
8044 		a2 &= 0xFFFFFFFF;
8045 		a3 &= 0xFFFFFFFF;
8046 	}
8047 
8048 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
8049 		ret = -KVM_EPERM;
8050 		goto out;
8051 	}
8052 
8053 	ret = -KVM_ENOSYS;
8054 
8055 	switch (nr) {
8056 	case KVM_HC_VAPIC_POLL_IRQ:
8057 		ret = 0;
8058 		break;
8059 	case KVM_HC_KICK_CPU:
8060 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8061 			break;
8062 
8063 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8064 		kvm_sched_yield(vcpu->kvm, a1);
8065 		ret = 0;
8066 		break;
8067 #ifdef CONFIG_X86_64
8068 	case KVM_HC_CLOCK_PAIRING:
8069 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8070 		break;
8071 #endif
8072 	case KVM_HC_SEND_IPI:
8073 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8074 			break;
8075 
8076 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8077 		break;
8078 	case KVM_HC_SCHED_YIELD:
8079 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8080 			break;
8081 
8082 		kvm_sched_yield(vcpu->kvm, a0);
8083 		ret = 0;
8084 		break;
8085 	default:
8086 		ret = -KVM_ENOSYS;
8087 		break;
8088 	}
8089 out:
8090 	if (!op_64_bit)
8091 		ret = (u32)ret;
8092 	kvm_rax_write(vcpu, ret);
8093 
8094 	++vcpu->stat.hypercalls;
8095 	return kvm_skip_emulated_instruction(vcpu);
8096 }
8097 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8098 
8099 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8100 {
8101 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8102 	char instruction[3];
8103 	unsigned long rip = kvm_rip_read(vcpu);
8104 
8105 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
8106 
8107 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8108 		&ctxt->exception);
8109 }
8110 
8111 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8112 {
8113 	return vcpu->run->request_interrupt_window &&
8114 		likely(!pic_in_kernel(vcpu->kvm));
8115 }
8116 
8117 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8118 {
8119 	struct kvm_run *kvm_run = vcpu->run;
8120 
8121 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8122 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
8123 	kvm_run->cr8 = kvm_get_cr8(vcpu);
8124 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
8125 	kvm_run->ready_for_interrupt_injection =
8126 		pic_in_kernel(vcpu->kvm) ||
8127 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
8128 }
8129 
8130 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8131 {
8132 	int max_irr, tpr;
8133 
8134 	if (!kvm_x86_ops.update_cr8_intercept)
8135 		return;
8136 
8137 	if (!lapic_in_kernel(vcpu))
8138 		return;
8139 
8140 	if (vcpu->arch.apicv_active)
8141 		return;
8142 
8143 	if (!vcpu->arch.apic->vapic_addr)
8144 		max_irr = kvm_lapic_find_highest_irr(vcpu);
8145 	else
8146 		max_irr = -1;
8147 
8148 	if (max_irr != -1)
8149 		max_irr >>= 4;
8150 
8151 	tpr = kvm_lapic_get_cr8(vcpu);
8152 
8153 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
8154 }
8155 
8156 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8157 {
8158 	int r;
8159 	bool can_inject = true;
8160 
8161 	/* try to reinject previous events if any */
8162 
8163 	if (vcpu->arch.exception.injected) {
8164 		kvm_x86_ops.queue_exception(vcpu);
8165 		can_inject = false;
8166 	}
8167 	/*
8168 	 * Do not inject an NMI or interrupt if there is a pending
8169 	 * exception.  Exceptions and interrupts are recognized at
8170 	 * instruction boundaries, i.e. the start of an instruction.
8171 	 * Trap-like exceptions, e.g. #DB, have higher priority than
8172 	 * NMIs and interrupts, i.e. traps are recognized before an
8173 	 * NMI/interrupt that's pending on the same instruction.
8174 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8175 	 * priority, but are only generated (pended) during instruction
8176 	 * execution, i.e. a pending fault-like exception means the
8177 	 * fault occurred on the *previous* instruction and must be
8178 	 * serviced prior to recognizing any new events in order to
8179 	 * fully complete the previous instruction.
8180 	 */
8181 	else if (!vcpu->arch.exception.pending) {
8182 		if (vcpu->arch.nmi_injected) {
8183 			kvm_x86_ops.set_nmi(vcpu);
8184 			can_inject = false;
8185 		} else if (vcpu->arch.interrupt.injected) {
8186 			kvm_x86_ops.set_irq(vcpu);
8187 			can_inject = false;
8188 		}
8189 	}
8190 
8191 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
8192 		     vcpu->arch.exception.pending);
8193 
8194 	/*
8195 	 * Call check_nested_events() even if we reinjected a previous event
8196 	 * in order for caller to determine if it should require immediate-exit
8197 	 * from L2 to L1 due to pending L1 events which require exit
8198 	 * from L2 to L1.
8199 	 */
8200 	if (is_guest_mode(vcpu)) {
8201 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
8202 		if (r < 0)
8203 			goto busy;
8204 	}
8205 
8206 	/* try to inject new event if pending */
8207 	if (vcpu->arch.exception.pending) {
8208 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
8209 					vcpu->arch.exception.has_error_code,
8210 					vcpu->arch.exception.error_code);
8211 
8212 		vcpu->arch.exception.pending = false;
8213 		vcpu->arch.exception.injected = true;
8214 
8215 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8216 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8217 					     X86_EFLAGS_RF);
8218 
8219 		if (vcpu->arch.exception.nr == DB_VECTOR) {
8220 			kvm_deliver_exception_payload(vcpu);
8221 			if (vcpu->arch.dr7 & DR7_GD) {
8222 				vcpu->arch.dr7 &= ~DR7_GD;
8223 				kvm_update_dr7(vcpu);
8224 			}
8225 		}
8226 
8227 		kvm_x86_ops.queue_exception(vcpu);
8228 		can_inject = false;
8229 	}
8230 
8231 	/*
8232 	 * Finally, inject interrupt events.  If an event cannot be injected
8233 	 * due to architectural conditions (e.g. IF=0) a window-open exit
8234 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8235 	 * and can architecturally be injected, but we cannot do it right now:
8236 	 * an interrupt could have arrived just now and we have to inject it
8237 	 * as a vmexit, or there could already an event in the queue, which is
8238 	 * indicated by can_inject.  In that case we request an immediate exit
8239 	 * in order to make progress and get back here for another iteration.
8240 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8241 	 */
8242 	if (vcpu->arch.smi_pending) {
8243 		r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8244 		if (r < 0)
8245 			goto busy;
8246 		if (r) {
8247 			vcpu->arch.smi_pending = false;
8248 			++vcpu->arch.smi_count;
8249 			enter_smm(vcpu);
8250 			can_inject = false;
8251 		} else
8252 			kvm_x86_ops.enable_smi_window(vcpu);
8253 	}
8254 
8255 	if (vcpu->arch.nmi_pending) {
8256 		r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8257 		if (r < 0)
8258 			goto busy;
8259 		if (r) {
8260 			--vcpu->arch.nmi_pending;
8261 			vcpu->arch.nmi_injected = true;
8262 			kvm_x86_ops.set_nmi(vcpu);
8263 			can_inject = false;
8264 			WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8265 		}
8266 		if (vcpu->arch.nmi_pending)
8267 			kvm_x86_ops.enable_nmi_window(vcpu);
8268 	}
8269 
8270 	if (kvm_cpu_has_injectable_intr(vcpu)) {
8271 		r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8272 		if (r < 0)
8273 			goto busy;
8274 		if (r) {
8275 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8276 			kvm_x86_ops.set_irq(vcpu);
8277 			WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8278 		}
8279 		if (kvm_cpu_has_injectable_intr(vcpu))
8280 			kvm_x86_ops.enable_irq_window(vcpu);
8281 	}
8282 
8283 	if (is_guest_mode(vcpu) &&
8284 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
8285 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8286 		*req_immediate_exit = true;
8287 
8288 	WARN_ON(vcpu->arch.exception.pending);
8289 	return;
8290 
8291 busy:
8292 	*req_immediate_exit = true;
8293 	return;
8294 }
8295 
8296 static void process_nmi(struct kvm_vcpu *vcpu)
8297 {
8298 	unsigned limit = 2;
8299 
8300 	/*
8301 	 * x86 is limited to one NMI running, and one NMI pending after it.
8302 	 * If an NMI is already in progress, limit further NMIs to just one.
8303 	 * Otherwise, allow two (and we'll inject the first one immediately).
8304 	 */
8305 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
8306 		limit = 1;
8307 
8308 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8309 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8310 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8311 }
8312 
8313 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8314 {
8315 	u32 flags = 0;
8316 	flags |= seg->g       << 23;
8317 	flags |= seg->db      << 22;
8318 	flags |= seg->l       << 21;
8319 	flags |= seg->avl     << 20;
8320 	flags |= seg->present << 15;
8321 	flags |= seg->dpl     << 13;
8322 	flags |= seg->s       << 12;
8323 	flags |= seg->type    << 8;
8324 	return flags;
8325 }
8326 
8327 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8328 {
8329 	struct kvm_segment seg;
8330 	int offset;
8331 
8332 	kvm_get_segment(vcpu, &seg, n);
8333 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8334 
8335 	if (n < 3)
8336 		offset = 0x7f84 + n * 12;
8337 	else
8338 		offset = 0x7f2c + (n - 3) * 12;
8339 
8340 	put_smstate(u32, buf, offset + 8, seg.base);
8341 	put_smstate(u32, buf, offset + 4, seg.limit);
8342 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8343 }
8344 
8345 #ifdef CONFIG_X86_64
8346 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8347 {
8348 	struct kvm_segment seg;
8349 	int offset;
8350 	u16 flags;
8351 
8352 	kvm_get_segment(vcpu, &seg, n);
8353 	offset = 0x7e00 + n * 16;
8354 
8355 	flags = enter_smm_get_segment_flags(&seg) >> 8;
8356 	put_smstate(u16, buf, offset, seg.selector);
8357 	put_smstate(u16, buf, offset + 2, flags);
8358 	put_smstate(u32, buf, offset + 4, seg.limit);
8359 	put_smstate(u64, buf, offset + 8, seg.base);
8360 }
8361 #endif
8362 
8363 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8364 {
8365 	struct desc_ptr dt;
8366 	struct kvm_segment seg;
8367 	unsigned long val;
8368 	int i;
8369 
8370 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8371 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8372 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8373 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8374 
8375 	for (i = 0; i < 8; i++)
8376 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8377 
8378 	kvm_get_dr(vcpu, 6, &val);
8379 	put_smstate(u32, buf, 0x7fcc, (u32)val);
8380 	kvm_get_dr(vcpu, 7, &val);
8381 	put_smstate(u32, buf, 0x7fc8, (u32)val);
8382 
8383 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8384 	put_smstate(u32, buf, 0x7fc4, seg.selector);
8385 	put_smstate(u32, buf, 0x7f64, seg.base);
8386 	put_smstate(u32, buf, 0x7f60, seg.limit);
8387 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8388 
8389 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8390 	put_smstate(u32, buf, 0x7fc0, seg.selector);
8391 	put_smstate(u32, buf, 0x7f80, seg.base);
8392 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8393 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8394 
8395 	kvm_x86_ops.get_gdt(vcpu, &dt);
8396 	put_smstate(u32, buf, 0x7f74, dt.address);
8397 	put_smstate(u32, buf, 0x7f70, dt.size);
8398 
8399 	kvm_x86_ops.get_idt(vcpu, &dt);
8400 	put_smstate(u32, buf, 0x7f58, dt.address);
8401 	put_smstate(u32, buf, 0x7f54, dt.size);
8402 
8403 	for (i = 0; i < 6; i++)
8404 		enter_smm_save_seg_32(vcpu, buf, i);
8405 
8406 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8407 
8408 	/* revision id */
8409 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8410 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8411 }
8412 
8413 #ifdef CONFIG_X86_64
8414 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8415 {
8416 	struct desc_ptr dt;
8417 	struct kvm_segment seg;
8418 	unsigned long val;
8419 	int i;
8420 
8421 	for (i = 0; i < 16; i++)
8422 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8423 
8424 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8425 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8426 
8427 	kvm_get_dr(vcpu, 6, &val);
8428 	put_smstate(u64, buf, 0x7f68, val);
8429 	kvm_get_dr(vcpu, 7, &val);
8430 	put_smstate(u64, buf, 0x7f60, val);
8431 
8432 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8433 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8434 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8435 
8436 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8437 
8438 	/* revision id */
8439 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8440 
8441 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8442 
8443 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8444 	put_smstate(u16, buf, 0x7e90, seg.selector);
8445 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8446 	put_smstate(u32, buf, 0x7e94, seg.limit);
8447 	put_smstate(u64, buf, 0x7e98, seg.base);
8448 
8449 	kvm_x86_ops.get_idt(vcpu, &dt);
8450 	put_smstate(u32, buf, 0x7e84, dt.size);
8451 	put_smstate(u64, buf, 0x7e88, dt.address);
8452 
8453 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8454 	put_smstate(u16, buf, 0x7e70, seg.selector);
8455 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8456 	put_smstate(u32, buf, 0x7e74, seg.limit);
8457 	put_smstate(u64, buf, 0x7e78, seg.base);
8458 
8459 	kvm_x86_ops.get_gdt(vcpu, &dt);
8460 	put_smstate(u32, buf, 0x7e64, dt.size);
8461 	put_smstate(u64, buf, 0x7e68, dt.address);
8462 
8463 	for (i = 0; i < 6; i++)
8464 		enter_smm_save_seg_64(vcpu, buf, i);
8465 }
8466 #endif
8467 
8468 static void enter_smm(struct kvm_vcpu *vcpu)
8469 {
8470 	struct kvm_segment cs, ds;
8471 	struct desc_ptr dt;
8472 	char buf[512];
8473 	u32 cr0;
8474 
8475 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8476 	memset(buf, 0, 512);
8477 #ifdef CONFIG_X86_64
8478 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8479 		enter_smm_save_state_64(vcpu, buf);
8480 	else
8481 #endif
8482 		enter_smm_save_state_32(vcpu, buf);
8483 
8484 	/*
8485 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8486 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8487 	 * the SMM state-save area.
8488 	 */
8489 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
8490 
8491 	vcpu->arch.hflags |= HF_SMM_MASK;
8492 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8493 
8494 	if (kvm_x86_ops.get_nmi_mask(vcpu))
8495 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8496 	else
8497 		kvm_x86_ops.set_nmi_mask(vcpu, true);
8498 
8499 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8500 	kvm_rip_write(vcpu, 0x8000);
8501 
8502 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8503 	kvm_x86_ops.set_cr0(vcpu, cr0);
8504 	vcpu->arch.cr0 = cr0;
8505 
8506 	kvm_x86_ops.set_cr4(vcpu, 0);
8507 
8508 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8509 	dt.address = dt.size = 0;
8510 	kvm_x86_ops.set_idt(vcpu, &dt);
8511 
8512 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8513 
8514 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8515 	cs.base = vcpu->arch.smbase;
8516 
8517 	ds.selector = 0;
8518 	ds.base = 0;
8519 
8520 	cs.limit    = ds.limit = 0xffffffff;
8521 	cs.type     = ds.type = 0x3;
8522 	cs.dpl      = ds.dpl = 0;
8523 	cs.db       = ds.db = 0;
8524 	cs.s        = ds.s = 1;
8525 	cs.l        = ds.l = 0;
8526 	cs.g        = ds.g = 1;
8527 	cs.avl      = ds.avl = 0;
8528 	cs.present  = ds.present = 1;
8529 	cs.unusable = ds.unusable = 0;
8530 	cs.padding  = ds.padding = 0;
8531 
8532 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8533 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8534 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8535 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8536 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8537 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8538 
8539 #ifdef CONFIG_X86_64
8540 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8541 		kvm_x86_ops.set_efer(vcpu, 0);
8542 #endif
8543 
8544 	kvm_update_cpuid_runtime(vcpu);
8545 	kvm_mmu_reset_context(vcpu);
8546 }
8547 
8548 static void process_smi(struct kvm_vcpu *vcpu)
8549 {
8550 	vcpu->arch.smi_pending = true;
8551 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8552 }
8553 
8554 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8555 				       unsigned long *vcpu_bitmap)
8556 {
8557 	cpumask_var_t cpus;
8558 
8559 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8560 
8561 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8562 				    NULL, vcpu_bitmap, cpus);
8563 
8564 	free_cpumask_var(cpus);
8565 }
8566 
8567 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8568 {
8569 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8570 }
8571 
8572 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8573 {
8574 	if (!lapic_in_kernel(vcpu))
8575 		return;
8576 
8577 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8578 	kvm_apic_update_apicv(vcpu);
8579 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8580 }
8581 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8582 
8583 /*
8584  * NOTE: Do not hold any lock prior to calling this.
8585  *
8586  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8587  * locked, because it calls __x86_set_memory_region() which does
8588  * synchronize_srcu(&kvm->srcu).
8589  */
8590 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8591 {
8592 	struct kvm_vcpu *except;
8593 	unsigned long old, new, expected;
8594 
8595 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8596 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8597 		return;
8598 
8599 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8600 	do {
8601 		expected = new = old;
8602 		if (activate)
8603 			__clear_bit(bit, &new);
8604 		else
8605 			__set_bit(bit, &new);
8606 		if (new == old)
8607 			break;
8608 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8609 	} while (old != expected);
8610 
8611 	if (!!old == !!new)
8612 		return;
8613 
8614 	trace_kvm_apicv_update_request(activate, bit);
8615 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8616 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8617 
8618 	/*
8619 	 * Sending request to update APICV for all other vcpus,
8620 	 * while update the calling vcpu immediately instead of
8621 	 * waiting for another #VMEXIT to handle the request.
8622 	 */
8623 	except = kvm_get_running_vcpu();
8624 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8625 					 except);
8626 	if (except)
8627 		kvm_vcpu_update_apicv(except);
8628 }
8629 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8630 
8631 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8632 {
8633 	if (!kvm_apic_present(vcpu))
8634 		return;
8635 
8636 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8637 
8638 	if (irqchip_split(vcpu->kvm))
8639 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8640 	else {
8641 		if (vcpu->arch.apicv_active)
8642 			kvm_x86_ops.sync_pir_to_irr(vcpu);
8643 		if (ioapic_in_kernel(vcpu->kvm))
8644 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8645 	}
8646 
8647 	if (is_guest_mode(vcpu))
8648 		vcpu->arch.load_eoi_exitmap_pending = true;
8649 	else
8650 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8651 }
8652 
8653 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8654 {
8655 	u64 eoi_exit_bitmap[4];
8656 
8657 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8658 		return;
8659 
8660 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8661 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8662 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8663 }
8664 
8665 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8666 					    unsigned long start, unsigned long end)
8667 {
8668 	unsigned long apic_address;
8669 
8670 	/*
8671 	 * The physical address of apic access page is stored in the VMCS.
8672 	 * Update it when it becomes invalid.
8673 	 */
8674 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8675 	if (start <= apic_address && apic_address < end)
8676 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8677 }
8678 
8679 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8680 {
8681 	if (!lapic_in_kernel(vcpu))
8682 		return;
8683 
8684 	if (!kvm_x86_ops.set_apic_access_page_addr)
8685 		return;
8686 
8687 	kvm_x86_ops.set_apic_access_page_addr(vcpu);
8688 }
8689 
8690 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8691 {
8692 	smp_send_reschedule(vcpu->cpu);
8693 }
8694 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8695 
8696 /*
8697  * Returns 1 to let vcpu_run() continue the guest execution loop without
8698  * exiting to the userspace.  Otherwise, the value will be returned to the
8699  * userspace.
8700  */
8701 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8702 {
8703 	int r;
8704 	bool req_int_win =
8705 		dm_request_for_irq_injection(vcpu) &&
8706 		kvm_cpu_accept_dm_intr(vcpu);
8707 	fastpath_t exit_fastpath;
8708 
8709 	bool req_immediate_exit = false;
8710 
8711 	if (kvm_request_pending(vcpu)) {
8712 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8713 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8714 				r = 0;
8715 				goto out;
8716 			}
8717 		}
8718 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8719 			kvm_mmu_unload(vcpu);
8720 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8721 			__kvm_migrate_timers(vcpu);
8722 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8723 			kvm_gen_update_masterclock(vcpu->kvm);
8724 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8725 			kvm_gen_kvmclock_update(vcpu);
8726 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8727 			r = kvm_guest_time_update(vcpu);
8728 			if (unlikely(r))
8729 				goto out;
8730 		}
8731 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8732 			kvm_mmu_sync_roots(vcpu);
8733 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8734 			kvm_mmu_load_pgd(vcpu);
8735 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8736 			kvm_vcpu_flush_tlb_all(vcpu);
8737 
8738 			/* Flushing all ASIDs flushes the current ASID... */
8739 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8740 		}
8741 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8742 			kvm_vcpu_flush_tlb_current(vcpu);
8743 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8744 			kvm_vcpu_flush_tlb_guest(vcpu);
8745 
8746 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8747 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8748 			r = 0;
8749 			goto out;
8750 		}
8751 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8752 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8753 			vcpu->mmio_needed = 0;
8754 			r = 0;
8755 			goto out;
8756 		}
8757 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8758 			/* Page is swapped out. Do synthetic halt */
8759 			vcpu->arch.apf.halted = true;
8760 			r = 1;
8761 			goto out;
8762 		}
8763 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8764 			record_steal_time(vcpu);
8765 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8766 			process_smi(vcpu);
8767 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8768 			process_nmi(vcpu);
8769 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8770 			kvm_pmu_handle_event(vcpu);
8771 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8772 			kvm_pmu_deliver_pmi(vcpu);
8773 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8774 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8775 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8776 				     vcpu->arch.ioapic_handled_vectors)) {
8777 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8778 				vcpu->run->eoi.vector =
8779 						vcpu->arch.pending_ioapic_eoi;
8780 				r = 0;
8781 				goto out;
8782 			}
8783 		}
8784 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8785 			vcpu_scan_ioapic(vcpu);
8786 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8787 			vcpu_load_eoi_exitmap(vcpu);
8788 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8789 			kvm_vcpu_reload_apic_access_page(vcpu);
8790 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8791 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8792 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8793 			r = 0;
8794 			goto out;
8795 		}
8796 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8797 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8798 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8799 			r = 0;
8800 			goto out;
8801 		}
8802 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8803 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8804 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8805 			r = 0;
8806 			goto out;
8807 		}
8808 
8809 		/*
8810 		 * KVM_REQ_HV_STIMER has to be processed after
8811 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8812 		 * depend on the guest clock being up-to-date
8813 		 */
8814 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8815 			kvm_hv_process_stimers(vcpu);
8816 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8817 			kvm_vcpu_update_apicv(vcpu);
8818 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8819 			kvm_check_async_pf_completion(vcpu);
8820 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8821 			kvm_x86_ops.msr_filter_changed(vcpu);
8822 	}
8823 
8824 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8825 		++vcpu->stat.req_event;
8826 		kvm_apic_accept_events(vcpu);
8827 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8828 			r = 1;
8829 			goto out;
8830 		}
8831 
8832 		inject_pending_event(vcpu, &req_immediate_exit);
8833 		if (req_int_win)
8834 			kvm_x86_ops.enable_irq_window(vcpu);
8835 
8836 		if (kvm_lapic_enabled(vcpu)) {
8837 			update_cr8_intercept(vcpu);
8838 			kvm_lapic_sync_to_vapic(vcpu);
8839 		}
8840 	}
8841 
8842 	r = kvm_mmu_reload(vcpu);
8843 	if (unlikely(r)) {
8844 		goto cancel_injection;
8845 	}
8846 
8847 	preempt_disable();
8848 
8849 	kvm_x86_ops.prepare_guest_switch(vcpu);
8850 
8851 	/*
8852 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8853 	 * IPI are then delayed after guest entry, which ensures that they
8854 	 * result in virtual interrupt delivery.
8855 	 */
8856 	local_irq_disable();
8857 	vcpu->mode = IN_GUEST_MODE;
8858 
8859 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8860 
8861 	/*
8862 	 * 1) We should set ->mode before checking ->requests.  Please see
8863 	 * the comment in kvm_vcpu_exiting_guest_mode().
8864 	 *
8865 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8866 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8867 	 * (see vmx_deliver_posted_interrupt).
8868 	 *
8869 	 * 3) This also orders the write to mode from any reads to the page
8870 	 * tables done while the VCPU is running.  Please see the comment
8871 	 * in kvm_flush_remote_tlbs.
8872 	 */
8873 	smp_mb__after_srcu_read_unlock();
8874 
8875 	/*
8876 	 * This handles the case where a posted interrupt was
8877 	 * notified with kvm_vcpu_kick.
8878 	 */
8879 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8880 		kvm_x86_ops.sync_pir_to_irr(vcpu);
8881 
8882 	if (kvm_vcpu_exit_request(vcpu)) {
8883 		vcpu->mode = OUTSIDE_GUEST_MODE;
8884 		smp_wmb();
8885 		local_irq_enable();
8886 		preempt_enable();
8887 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8888 		r = 1;
8889 		goto cancel_injection;
8890 	}
8891 
8892 	if (req_immediate_exit) {
8893 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8894 		kvm_x86_ops.request_immediate_exit(vcpu);
8895 	}
8896 
8897 	trace_kvm_entry(vcpu);
8898 
8899 	fpregs_assert_state_consistent();
8900 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8901 		switch_fpu_return();
8902 
8903 	if (unlikely(vcpu->arch.switch_db_regs)) {
8904 		set_debugreg(0, 7);
8905 		set_debugreg(vcpu->arch.eff_db[0], 0);
8906 		set_debugreg(vcpu->arch.eff_db[1], 1);
8907 		set_debugreg(vcpu->arch.eff_db[2], 2);
8908 		set_debugreg(vcpu->arch.eff_db[3], 3);
8909 		set_debugreg(vcpu->arch.dr6, 6);
8910 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8911 	}
8912 
8913 	exit_fastpath = kvm_x86_ops.run(vcpu);
8914 
8915 	/*
8916 	 * Do this here before restoring debug registers on the host.  And
8917 	 * since we do this before handling the vmexit, a DR access vmexit
8918 	 * can (a) read the correct value of the debug registers, (b) set
8919 	 * KVM_DEBUGREG_WONT_EXIT again.
8920 	 */
8921 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8922 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8923 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8924 		kvm_update_dr0123(vcpu);
8925 		kvm_update_dr7(vcpu);
8926 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8927 	}
8928 
8929 	/*
8930 	 * If the guest has used debug registers, at least dr7
8931 	 * will be disabled while returning to the host.
8932 	 * If we don't have active breakpoints in the host, we don't
8933 	 * care about the messed up debug address registers. But if
8934 	 * we have some of them active, restore the old state.
8935 	 */
8936 	if (hw_breakpoint_active())
8937 		hw_breakpoint_restore();
8938 
8939 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
8940 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8941 
8942 	vcpu->mode = OUTSIDE_GUEST_MODE;
8943 	smp_wmb();
8944 
8945 	kvm_x86_ops.handle_exit_irqoff(vcpu);
8946 
8947 	/*
8948 	 * Consume any pending interrupts, including the possible source of
8949 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8950 	 * An instruction is required after local_irq_enable() to fully unblock
8951 	 * interrupts on processors that implement an interrupt shadow, the
8952 	 * stat.exits increment will do nicely.
8953 	 */
8954 	kvm_before_interrupt(vcpu);
8955 	local_irq_enable();
8956 	++vcpu->stat.exits;
8957 	local_irq_disable();
8958 	kvm_after_interrupt(vcpu);
8959 
8960 	if (lapic_in_kernel(vcpu)) {
8961 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8962 		if (delta != S64_MIN) {
8963 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8964 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8965 		}
8966 	}
8967 
8968 	local_irq_enable();
8969 	preempt_enable();
8970 
8971 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8972 
8973 	/*
8974 	 * Profile KVM exit RIPs:
8975 	 */
8976 	if (unlikely(prof_on == KVM_PROFILING)) {
8977 		unsigned long rip = kvm_rip_read(vcpu);
8978 		profile_hit(KVM_PROFILING, (void *)rip);
8979 	}
8980 
8981 	if (unlikely(vcpu->arch.tsc_always_catchup))
8982 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8983 
8984 	if (vcpu->arch.apic_attention)
8985 		kvm_lapic_sync_from_vapic(vcpu);
8986 
8987 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
8988 	return r;
8989 
8990 cancel_injection:
8991 	if (req_immediate_exit)
8992 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8993 	kvm_x86_ops.cancel_injection(vcpu);
8994 	if (unlikely(vcpu->arch.apic_attention))
8995 		kvm_lapic_sync_from_vapic(vcpu);
8996 out:
8997 	return r;
8998 }
8999 
9000 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9001 {
9002 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9003 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9004 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9005 		kvm_vcpu_block(vcpu);
9006 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9007 
9008 		if (kvm_x86_ops.post_block)
9009 			kvm_x86_ops.post_block(vcpu);
9010 
9011 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9012 			return 1;
9013 	}
9014 
9015 	kvm_apic_accept_events(vcpu);
9016 	switch(vcpu->arch.mp_state) {
9017 	case KVM_MP_STATE_HALTED:
9018 		vcpu->arch.pv.pv_unhalted = false;
9019 		vcpu->arch.mp_state =
9020 			KVM_MP_STATE_RUNNABLE;
9021 		fallthrough;
9022 	case KVM_MP_STATE_RUNNABLE:
9023 		vcpu->arch.apf.halted = false;
9024 		break;
9025 	case KVM_MP_STATE_INIT_RECEIVED:
9026 		break;
9027 	default:
9028 		return -EINTR;
9029 	}
9030 	return 1;
9031 }
9032 
9033 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9034 {
9035 	if (is_guest_mode(vcpu))
9036 		kvm_x86_ops.nested_ops->check_events(vcpu);
9037 
9038 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9039 		!vcpu->arch.apf.halted);
9040 }
9041 
9042 static int vcpu_run(struct kvm_vcpu *vcpu)
9043 {
9044 	int r;
9045 	struct kvm *kvm = vcpu->kvm;
9046 
9047 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9048 	vcpu->arch.l1tf_flush_l1d = true;
9049 
9050 	for (;;) {
9051 		if (kvm_vcpu_running(vcpu)) {
9052 			r = vcpu_enter_guest(vcpu);
9053 		} else {
9054 			r = vcpu_block(kvm, vcpu);
9055 		}
9056 
9057 		if (r <= 0)
9058 			break;
9059 
9060 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9061 		if (kvm_cpu_has_pending_timer(vcpu))
9062 			kvm_inject_pending_timer_irqs(vcpu);
9063 
9064 		if (dm_request_for_irq_injection(vcpu) &&
9065 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9066 			r = 0;
9067 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9068 			++vcpu->stat.request_irq_exits;
9069 			break;
9070 		}
9071 
9072 		if (__xfer_to_guest_mode_work_pending()) {
9073 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9074 			r = xfer_to_guest_mode_handle_work(vcpu);
9075 			if (r)
9076 				return r;
9077 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9078 		}
9079 	}
9080 
9081 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9082 
9083 	return r;
9084 }
9085 
9086 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9087 {
9088 	int r;
9089 
9090 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9091 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9092 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9093 	return r;
9094 }
9095 
9096 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9097 {
9098 	BUG_ON(!vcpu->arch.pio.count);
9099 
9100 	return complete_emulated_io(vcpu);
9101 }
9102 
9103 /*
9104  * Implements the following, as a state machine:
9105  *
9106  * read:
9107  *   for each fragment
9108  *     for each mmio piece in the fragment
9109  *       write gpa, len
9110  *       exit
9111  *       copy data
9112  *   execute insn
9113  *
9114  * write:
9115  *   for each fragment
9116  *     for each mmio piece in the fragment
9117  *       write gpa, len
9118  *       copy data
9119  *       exit
9120  */
9121 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9122 {
9123 	struct kvm_run *run = vcpu->run;
9124 	struct kvm_mmio_fragment *frag;
9125 	unsigned len;
9126 
9127 	BUG_ON(!vcpu->mmio_needed);
9128 
9129 	/* Complete previous fragment */
9130 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9131 	len = min(8u, frag->len);
9132 	if (!vcpu->mmio_is_write)
9133 		memcpy(frag->data, run->mmio.data, len);
9134 
9135 	if (frag->len <= 8) {
9136 		/* Switch to the next fragment. */
9137 		frag++;
9138 		vcpu->mmio_cur_fragment++;
9139 	} else {
9140 		/* Go forward to the next mmio piece. */
9141 		frag->data += len;
9142 		frag->gpa += len;
9143 		frag->len -= len;
9144 	}
9145 
9146 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9147 		vcpu->mmio_needed = 0;
9148 
9149 		/* FIXME: return into emulator if single-stepping.  */
9150 		if (vcpu->mmio_is_write)
9151 			return 1;
9152 		vcpu->mmio_read_completed = 1;
9153 		return complete_emulated_io(vcpu);
9154 	}
9155 
9156 	run->exit_reason = KVM_EXIT_MMIO;
9157 	run->mmio.phys_addr = frag->gpa;
9158 	if (vcpu->mmio_is_write)
9159 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9160 	run->mmio.len = min(8u, frag->len);
9161 	run->mmio.is_write = vcpu->mmio_is_write;
9162 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9163 	return 0;
9164 }
9165 
9166 static void kvm_save_current_fpu(struct fpu *fpu)
9167 {
9168 	/*
9169 	 * If the target FPU state is not resident in the CPU registers, just
9170 	 * memcpy() from current, else save CPU state directly to the target.
9171 	 */
9172 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9173 		memcpy(&fpu->state, &current->thread.fpu.state,
9174 		       fpu_kernel_xstate_size);
9175 	else
9176 		copy_fpregs_to_fpstate(fpu);
9177 }
9178 
9179 /* Swap (qemu) user FPU context for the guest FPU context. */
9180 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9181 {
9182 	fpregs_lock();
9183 
9184 	kvm_save_current_fpu(vcpu->arch.user_fpu);
9185 
9186 	/* PKRU is separately restored in kvm_x86_ops.run.  */
9187 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9188 				~XFEATURE_MASK_PKRU);
9189 
9190 	fpregs_mark_activate();
9191 	fpregs_unlock();
9192 
9193 	trace_kvm_fpu(1);
9194 }
9195 
9196 /* When vcpu_run ends, restore user space FPU context. */
9197 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9198 {
9199 	fpregs_lock();
9200 
9201 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
9202 
9203 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9204 
9205 	fpregs_mark_activate();
9206 	fpregs_unlock();
9207 
9208 	++vcpu->stat.fpu_reload;
9209 	trace_kvm_fpu(0);
9210 }
9211 
9212 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9213 {
9214 	struct kvm_run *kvm_run = vcpu->run;
9215 	int r;
9216 
9217 	vcpu_load(vcpu);
9218 	kvm_sigset_activate(vcpu);
9219 	kvm_load_guest_fpu(vcpu);
9220 
9221 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9222 		if (kvm_run->immediate_exit) {
9223 			r = -EINTR;
9224 			goto out;
9225 		}
9226 		kvm_vcpu_block(vcpu);
9227 		kvm_apic_accept_events(vcpu);
9228 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9229 		r = -EAGAIN;
9230 		if (signal_pending(current)) {
9231 			r = -EINTR;
9232 			kvm_run->exit_reason = KVM_EXIT_INTR;
9233 			++vcpu->stat.signal_exits;
9234 		}
9235 		goto out;
9236 	}
9237 
9238 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9239 		r = -EINVAL;
9240 		goto out;
9241 	}
9242 
9243 	if (kvm_run->kvm_dirty_regs) {
9244 		r = sync_regs(vcpu);
9245 		if (r != 0)
9246 			goto out;
9247 	}
9248 
9249 	/* re-sync apic's tpr */
9250 	if (!lapic_in_kernel(vcpu)) {
9251 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9252 			r = -EINVAL;
9253 			goto out;
9254 		}
9255 	}
9256 
9257 	if (unlikely(vcpu->arch.complete_userspace_io)) {
9258 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9259 		vcpu->arch.complete_userspace_io = NULL;
9260 		r = cui(vcpu);
9261 		if (r <= 0)
9262 			goto out;
9263 	} else
9264 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9265 
9266 	if (kvm_run->immediate_exit)
9267 		r = -EINTR;
9268 	else
9269 		r = vcpu_run(vcpu);
9270 
9271 out:
9272 	kvm_put_guest_fpu(vcpu);
9273 	if (kvm_run->kvm_valid_regs)
9274 		store_regs(vcpu);
9275 	post_kvm_run_save(vcpu);
9276 	kvm_sigset_deactivate(vcpu);
9277 
9278 	vcpu_put(vcpu);
9279 	return r;
9280 }
9281 
9282 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9283 {
9284 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9285 		/*
9286 		 * We are here if userspace calls get_regs() in the middle of
9287 		 * instruction emulation. Registers state needs to be copied
9288 		 * back from emulation context to vcpu. Userspace shouldn't do
9289 		 * that usually, but some bad designed PV devices (vmware
9290 		 * backdoor interface) need this to work
9291 		 */
9292 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9293 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9294 	}
9295 	regs->rax = kvm_rax_read(vcpu);
9296 	regs->rbx = kvm_rbx_read(vcpu);
9297 	regs->rcx = kvm_rcx_read(vcpu);
9298 	regs->rdx = kvm_rdx_read(vcpu);
9299 	regs->rsi = kvm_rsi_read(vcpu);
9300 	regs->rdi = kvm_rdi_read(vcpu);
9301 	regs->rsp = kvm_rsp_read(vcpu);
9302 	regs->rbp = kvm_rbp_read(vcpu);
9303 #ifdef CONFIG_X86_64
9304 	regs->r8 = kvm_r8_read(vcpu);
9305 	regs->r9 = kvm_r9_read(vcpu);
9306 	regs->r10 = kvm_r10_read(vcpu);
9307 	regs->r11 = kvm_r11_read(vcpu);
9308 	regs->r12 = kvm_r12_read(vcpu);
9309 	regs->r13 = kvm_r13_read(vcpu);
9310 	regs->r14 = kvm_r14_read(vcpu);
9311 	regs->r15 = kvm_r15_read(vcpu);
9312 #endif
9313 
9314 	regs->rip = kvm_rip_read(vcpu);
9315 	regs->rflags = kvm_get_rflags(vcpu);
9316 }
9317 
9318 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9319 {
9320 	vcpu_load(vcpu);
9321 	__get_regs(vcpu, regs);
9322 	vcpu_put(vcpu);
9323 	return 0;
9324 }
9325 
9326 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9327 {
9328 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9329 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9330 
9331 	kvm_rax_write(vcpu, regs->rax);
9332 	kvm_rbx_write(vcpu, regs->rbx);
9333 	kvm_rcx_write(vcpu, regs->rcx);
9334 	kvm_rdx_write(vcpu, regs->rdx);
9335 	kvm_rsi_write(vcpu, regs->rsi);
9336 	kvm_rdi_write(vcpu, regs->rdi);
9337 	kvm_rsp_write(vcpu, regs->rsp);
9338 	kvm_rbp_write(vcpu, regs->rbp);
9339 #ifdef CONFIG_X86_64
9340 	kvm_r8_write(vcpu, regs->r8);
9341 	kvm_r9_write(vcpu, regs->r9);
9342 	kvm_r10_write(vcpu, regs->r10);
9343 	kvm_r11_write(vcpu, regs->r11);
9344 	kvm_r12_write(vcpu, regs->r12);
9345 	kvm_r13_write(vcpu, regs->r13);
9346 	kvm_r14_write(vcpu, regs->r14);
9347 	kvm_r15_write(vcpu, regs->r15);
9348 #endif
9349 
9350 	kvm_rip_write(vcpu, regs->rip);
9351 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9352 
9353 	vcpu->arch.exception.pending = false;
9354 
9355 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9356 }
9357 
9358 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9359 {
9360 	vcpu_load(vcpu);
9361 	__set_regs(vcpu, regs);
9362 	vcpu_put(vcpu);
9363 	return 0;
9364 }
9365 
9366 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9367 {
9368 	struct kvm_segment cs;
9369 
9370 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9371 	*db = cs.db;
9372 	*l = cs.l;
9373 }
9374 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9375 
9376 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9377 {
9378 	struct desc_ptr dt;
9379 
9380 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9381 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9382 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9383 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9384 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9385 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9386 
9387 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9388 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9389 
9390 	kvm_x86_ops.get_idt(vcpu, &dt);
9391 	sregs->idt.limit = dt.size;
9392 	sregs->idt.base = dt.address;
9393 	kvm_x86_ops.get_gdt(vcpu, &dt);
9394 	sregs->gdt.limit = dt.size;
9395 	sregs->gdt.base = dt.address;
9396 
9397 	sregs->cr0 = kvm_read_cr0(vcpu);
9398 	sregs->cr2 = vcpu->arch.cr2;
9399 	sregs->cr3 = kvm_read_cr3(vcpu);
9400 	sregs->cr4 = kvm_read_cr4(vcpu);
9401 	sregs->cr8 = kvm_get_cr8(vcpu);
9402 	sregs->efer = vcpu->arch.efer;
9403 	sregs->apic_base = kvm_get_apic_base(vcpu);
9404 
9405 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9406 
9407 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9408 		set_bit(vcpu->arch.interrupt.nr,
9409 			(unsigned long *)sregs->interrupt_bitmap);
9410 }
9411 
9412 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9413 				  struct kvm_sregs *sregs)
9414 {
9415 	vcpu_load(vcpu);
9416 	__get_sregs(vcpu, sregs);
9417 	vcpu_put(vcpu);
9418 	return 0;
9419 }
9420 
9421 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9422 				    struct kvm_mp_state *mp_state)
9423 {
9424 	vcpu_load(vcpu);
9425 	if (kvm_mpx_supported())
9426 		kvm_load_guest_fpu(vcpu);
9427 
9428 	kvm_apic_accept_events(vcpu);
9429 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9430 					vcpu->arch.pv.pv_unhalted)
9431 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9432 	else
9433 		mp_state->mp_state = vcpu->arch.mp_state;
9434 
9435 	if (kvm_mpx_supported())
9436 		kvm_put_guest_fpu(vcpu);
9437 	vcpu_put(vcpu);
9438 	return 0;
9439 }
9440 
9441 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9442 				    struct kvm_mp_state *mp_state)
9443 {
9444 	int ret = -EINVAL;
9445 
9446 	vcpu_load(vcpu);
9447 
9448 	if (!lapic_in_kernel(vcpu) &&
9449 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9450 		goto out;
9451 
9452 	/*
9453 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9454 	 * INIT state; latched init should be reported using
9455 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9456 	 */
9457 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9458 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9459 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9460 		goto out;
9461 
9462 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9463 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9464 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9465 	} else
9466 		vcpu->arch.mp_state = mp_state->mp_state;
9467 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9468 
9469 	ret = 0;
9470 out:
9471 	vcpu_put(vcpu);
9472 	return ret;
9473 }
9474 
9475 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9476 		    int reason, bool has_error_code, u32 error_code)
9477 {
9478 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9479 	int ret;
9480 
9481 	init_emulate_ctxt(vcpu);
9482 
9483 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9484 				   has_error_code, error_code);
9485 	if (ret) {
9486 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9487 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9488 		vcpu->run->internal.ndata = 0;
9489 		return 0;
9490 	}
9491 
9492 	kvm_rip_write(vcpu, ctxt->eip);
9493 	kvm_set_rflags(vcpu, ctxt->eflags);
9494 	return 1;
9495 }
9496 EXPORT_SYMBOL_GPL(kvm_task_switch);
9497 
9498 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9499 {
9500 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9501 		/*
9502 		 * When EFER.LME and CR0.PG are set, the processor is in
9503 		 * 64-bit mode (though maybe in a 32-bit code segment).
9504 		 * CR4.PAE and EFER.LMA must be set.
9505 		 */
9506 		if (!(sregs->cr4 & X86_CR4_PAE)
9507 		    || !(sregs->efer & EFER_LMA))
9508 			return -EINVAL;
9509 	} else {
9510 		/*
9511 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9512 		 * segment cannot be 64-bit.
9513 		 */
9514 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9515 			return -EINVAL;
9516 	}
9517 
9518 	return kvm_valid_cr4(vcpu, sregs->cr4);
9519 }
9520 
9521 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9522 {
9523 	struct msr_data apic_base_msr;
9524 	int mmu_reset_needed = 0;
9525 	int cpuid_update_needed = 0;
9526 	int pending_vec, max_bits, idx;
9527 	struct desc_ptr dt;
9528 	int ret = -EINVAL;
9529 
9530 	if (kvm_valid_sregs(vcpu, sregs))
9531 		goto out;
9532 
9533 	apic_base_msr.data = sregs->apic_base;
9534 	apic_base_msr.host_initiated = true;
9535 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9536 		goto out;
9537 
9538 	dt.size = sregs->idt.limit;
9539 	dt.address = sregs->idt.base;
9540 	kvm_x86_ops.set_idt(vcpu, &dt);
9541 	dt.size = sregs->gdt.limit;
9542 	dt.address = sregs->gdt.base;
9543 	kvm_x86_ops.set_gdt(vcpu, &dt);
9544 
9545 	vcpu->arch.cr2 = sregs->cr2;
9546 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9547 	vcpu->arch.cr3 = sregs->cr3;
9548 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9549 
9550 	kvm_set_cr8(vcpu, sregs->cr8);
9551 
9552 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9553 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9554 
9555 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9556 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9557 	vcpu->arch.cr0 = sregs->cr0;
9558 
9559 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9560 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9561 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9562 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9563 	if (cpuid_update_needed)
9564 		kvm_update_cpuid_runtime(vcpu);
9565 
9566 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9567 	if (is_pae_paging(vcpu)) {
9568 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9569 		mmu_reset_needed = 1;
9570 	}
9571 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9572 
9573 	if (mmu_reset_needed)
9574 		kvm_mmu_reset_context(vcpu);
9575 
9576 	max_bits = KVM_NR_INTERRUPTS;
9577 	pending_vec = find_first_bit(
9578 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9579 	if (pending_vec < max_bits) {
9580 		kvm_queue_interrupt(vcpu, pending_vec, false);
9581 		pr_debug("Set back pending irq %d\n", pending_vec);
9582 	}
9583 
9584 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9585 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9586 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9587 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9588 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9589 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9590 
9591 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9592 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9593 
9594 	update_cr8_intercept(vcpu);
9595 
9596 	/* Older userspace won't unhalt the vcpu on reset. */
9597 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9598 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9599 	    !is_protmode(vcpu))
9600 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9601 
9602 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9603 
9604 	ret = 0;
9605 out:
9606 	return ret;
9607 }
9608 
9609 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9610 				  struct kvm_sregs *sregs)
9611 {
9612 	int ret;
9613 
9614 	vcpu_load(vcpu);
9615 	ret = __set_sregs(vcpu, sregs);
9616 	vcpu_put(vcpu);
9617 	return ret;
9618 }
9619 
9620 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9621 					struct kvm_guest_debug *dbg)
9622 {
9623 	unsigned long rflags;
9624 	int i, r;
9625 
9626 	vcpu_load(vcpu);
9627 
9628 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9629 		r = -EBUSY;
9630 		if (vcpu->arch.exception.pending)
9631 			goto out;
9632 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9633 			kvm_queue_exception(vcpu, DB_VECTOR);
9634 		else
9635 			kvm_queue_exception(vcpu, BP_VECTOR);
9636 	}
9637 
9638 	/*
9639 	 * Read rflags as long as potentially injected trace flags are still
9640 	 * filtered out.
9641 	 */
9642 	rflags = kvm_get_rflags(vcpu);
9643 
9644 	vcpu->guest_debug = dbg->control;
9645 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9646 		vcpu->guest_debug = 0;
9647 
9648 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9649 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9650 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9651 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9652 	} else {
9653 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9654 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9655 	}
9656 	kvm_update_dr7(vcpu);
9657 
9658 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9659 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9660 			get_segment_base(vcpu, VCPU_SREG_CS);
9661 
9662 	/*
9663 	 * Trigger an rflags update that will inject or remove the trace
9664 	 * flags.
9665 	 */
9666 	kvm_set_rflags(vcpu, rflags);
9667 
9668 	kvm_x86_ops.update_exception_bitmap(vcpu);
9669 
9670 	r = 0;
9671 
9672 out:
9673 	vcpu_put(vcpu);
9674 	return r;
9675 }
9676 
9677 /*
9678  * Translate a guest virtual address to a guest physical address.
9679  */
9680 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9681 				    struct kvm_translation *tr)
9682 {
9683 	unsigned long vaddr = tr->linear_address;
9684 	gpa_t gpa;
9685 	int idx;
9686 
9687 	vcpu_load(vcpu);
9688 
9689 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9690 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9691 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9692 	tr->physical_address = gpa;
9693 	tr->valid = gpa != UNMAPPED_GVA;
9694 	tr->writeable = 1;
9695 	tr->usermode = 0;
9696 
9697 	vcpu_put(vcpu);
9698 	return 0;
9699 }
9700 
9701 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9702 {
9703 	struct fxregs_state *fxsave;
9704 
9705 	vcpu_load(vcpu);
9706 
9707 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9708 	memcpy(fpu->fpr, fxsave->st_space, 128);
9709 	fpu->fcw = fxsave->cwd;
9710 	fpu->fsw = fxsave->swd;
9711 	fpu->ftwx = fxsave->twd;
9712 	fpu->last_opcode = fxsave->fop;
9713 	fpu->last_ip = fxsave->rip;
9714 	fpu->last_dp = fxsave->rdp;
9715 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9716 
9717 	vcpu_put(vcpu);
9718 	return 0;
9719 }
9720 
9721 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9722 {
9723 	struct fxregs_state *fxsave;
9724 
9725 	vcpu_load(vcpu);
9726 
9727 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9728 
9729 	memcpy(fxsave->st_space, fpu->fpr, 128);
9730 	fxsave->cwd = fpu->fcw;
9731 	fxsave->swd = fpu->fsw;
9732 	fxsave->twd = fpu->ftwx;
9733 	fxsave->fop = fpu->last_opcode;
9734 	fxsave->rip = fpu->last_ip;
9735 	fxsave->rdp = fpu->last_dp;
9736 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9737 
9738 	vcpu_put(vcpu);
9739 	return 0;
9740 }
9741 
9742 static void store_regs(struct kvm_vcpu *vcpu)
9743 {
9744 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9745 
9746 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9747 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9748 
9749 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9750 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9751 
9752 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9753 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9754 				vcpu, &vcpu->run->s.regs.events);
9755 }
9756 
9757 static int sync_regs(struct kvm_vcpu *vcpu)
9758 {
9759 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9760 		return -EINVAL;
9761 
9762 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9763 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9764 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9765 	}
9766 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9767 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9768 			return -EINVAL;
9769 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9770 	}
9771 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9772 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9773 				vcpu, &vcpu->run->s.regs.events))
9774 			return -EINVAL;
9775 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9776 	}
9777 
9778 	return 0;
9779 }
9780 
9781 static void fx_init(struct kvm_vcpu *vcpu)
9782 {
9783 	fpstate_init(&vcpu->arch.guest_fpu->state);
9784 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9785 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9786 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9787 
9788 	/*
9789 	 * Ensure guest xcr0 is valid for loading
9790 	 */
9791 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9792 
9793 	vcpu->arch.cr0 |= X86_CR0_ET;
9794 }
9795 
9796 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9797 {
9798 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9799 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9800 			     "guest TSC will not be reliable\n");
9801 
9802 	return 0;
9803 }
9804 
9805 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9806 {
9807 	struct page *page;
9808 	int r;
9809 
9810 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9811 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9812 	else
9813 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9814 
9815 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9816 
9817 	r = kvm_mmu_create(vcpu);
9818 	if (r < 0)
9819 		return r;
9820 
9821 	if (irqchip_in_kernel(vcpu->kvm)) {
9822 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9823 		if (r < 0)
9824 			goto fail_mmu_destroy;
9825 		if (kvm_apicv_activated(vcpu->kvm))
9826 			vcpu->arch.apicv_active = true;
9827 	} else
9828 		static_key_slow_inc(&kvm_no_apic_vcpu);
9829 
9830 	r = -ENOMEM;
9831 
9832 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9833 	if (!page)
9834 		goto fail_free_lapic;
9835 	vcpu->arch.pio_data = page_address(page);
9836 
9837 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9838 				       GFP_KERNEL_ACCOUNT);
9839 	if (!vcpu->arch.mce_banks)
9840 		goto fail_free_pio_data;
9841 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9842 
9843 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9844 				GFP_KERNEL_ACCOUNT))
9845 		goto fail_free_mce_banks;
9846 
9847 	if (!alloc_emulate_ctxt(vcpu))
9848 		goto free_wbinvd_dirty_mask;
9849 
9850 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9851 						GFP_KERNEL_ACCOUNT);
9852 	if (!vcpu->arch.user_fpu) {
9853 		pr_err("kvm: failed to allocate userspace's fpu\n");
9854 		goto free_emulate_ctxt;
9855 	}
9856 
9857 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9858 						 GFP_KERNEL_ACCOUNT);
9859 	if (!vcpu->arch.guest_fpu) {
9860 		pr_err("kvm: failed to allocate vcpu's fpu\n");
9861 		goto free_user_fpu;
9862 	}
9863 	fx_init(vcpu);
9864 
9865 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9866 
9867 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9868 
9869 	kvm_async_pf_hash_reset(vcpu);
9870 	kvm_pmu_init(vcpu);
9871 
9872 	vcpu->arch.pending_external_vector = -1;
9873 	vcpu->arch.preempted_in_kernel = false;
9874 
9875 	kvm_hv_vcpu_init(vcpu);
9876 
9877 	r = kvm_x86_ops.vcpu_create(vcpu);
9878 	if (r)
9879 		goto free_guest_fpu;
9880 
9881 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9882 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9883 	kvm_vcpu_mtrr_init(vcpu);
9884 	vcpu_load(vcpu);
9885 	kvm_vcpu_reset(vcpu, false);
9886 	kvm_init_mmu(vcpu, false);
9887 	vcpu_put(vcpu);
9888 	return 0;
9889 
9890 free_guest_fpu:
9891 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9892 free_user_fpu:
9893 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9894 free_emulate_ctxt:
9895 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9896 free_wbinvd_dirty_mask:
9897 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9898 fail_free_mce_banks:
9899 	kfree(vcpu->arch.mce_banks);
9900 fail_free_pio_data:
9901 	free_page((unsigned long)vcpu->arch.pio_data);
9902 fail_free_lapic:
9903 	kvm_free_lapic(vcpu);
9904 fail_mmu_destroy:
9905 	kvm_mmu_destroy(vcpu);
9906 	return r;
9907 }
9908 
9909 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9910 {
9911 	struct kvm *kvm = vcpu->kvm;
9912 
9913 	kvm_hv_vcpu_postcreate(vcpu);
9914 
9915 	if (mutex_lock_killable(&vcpu->mutex))
9916 		return;
9917 	vcpu_load(vcpu);
9918 	kvm_synchronize_tsc(vcpu, 0);
9919 	vcpu_put(vcpu);
9920 
9921 	/* poll control enabled by default */
9922 	vcpu->arch.msr_kvm_poll_control = 1;
9923 
9924 	mutex_unlock(&vcpu->mutex);
9925 
9926 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9927 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9928 						KVMCLOCK_SYNC_PERIOD);
9929 }
9930 
9931 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9932 {
9933 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9934 	int idx;
9935 
9936 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
9937 
9938 	kvmclock_reset(vcpu);
9939 
9940 	kvm_x86_ops.vcpu_free(vcpu);
9941 
9942 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9943 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9944 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9945 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9946 
9947 	kvm_hv_vcpu_uninit(vcpu);
9948 	kvm_pmu_destroy(vcpu);
9949 	kfree(vcpu->arch.mce_banks);
9950 	kvm_free_lapic(vcpu);
9951 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9952 	kvm_mmu_destroy(vcpu);
9953 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9954 	free_page((unsigned long)vcpu->arch.pio_data);
9955 	kvfree(vcpu->arch.cpuid_entries);
9956 	if (!lapic_in_kernel(vcpu))
9957 		static_key_slow_dec(&kvm_no_apic_vcpu);
9958 }
9959 
9960 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9961 {
9962 	kvm_lapic_reset(vcpu, init_event);
9963 
9964 	vcpu->arch.hflags = 0;
9965 
9966 	vcpu->arch.smi_pending = 0;
9967 	vcpu->arch.smi_count = 0;
9968 	atomic_set(&vcpu->arch.nmi_queued, 0);
9969 	vcpu->arch.nmi_pending = 0;
9970 	vcpu->arch.nmi_injected = false;
9971 	kvm_clear_interrupt_queue(vcpu);
9972 	kvm_clear_exception_queue(vcpu);
9973 
9974 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9975 	kvm_update_dr0123(vcpu);
9976 	vcpu->arch.dr6 = DR6_INIT;
9977 	vcpu->arch.dr7 = DR7_FIXED_1;
9978 	kvm_update_dr7(vcpu);
9979 
9980 	vcpu->arch.cr2 = 0;
9981 
9982 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9983 	vcpu->arch.apf.msr_en_val = 0;
9984 	vcpu->arch.apf.msr_int_val = 0;
9985 	vcpu->arch.st.msr_val = 0;
9986 
9987 	kvmclock_reset(vcpu);
9988 
9989 	kvm_clear_async_pf_completion_queue(vcpu);
9990 	kvm_async_pf_hash_reset(vcpu);
9991 	vcpu->arch.apf.halted = false;
9992 
9993 	if (kvm_mpx_supported()) {
9994 		void *mpx_state_buffer;
9995 
9996 		/*
9997 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9998 		 * called with loaded FPU and does not let userspace fix the state.
9999 		 */
10000 		if (init_event)
10001 			kvm_put_guest_fpu(vcpu);
10002 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10003 					XFEATURE_BNDREGS);
10004 		if (mpx_state_buffer)
10005 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10006 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10007 					XFEATURE_BNDCSR);
10008 		if (mpx_state_buffer)
10009 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10010 		if (init_event)
10011 			kvm_load_guest_fpu(vcpu);
10012 	}
10013 
10014 	if (!init_event) {
10015 		kvm_pmu_reset(vcpu);
10016 		vcpu->arch.smbase = 0x30000;
10017 
10018 		vcpu->arch.msr_misc_features_enables = 0;
10019 
10020 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10021 	}
10022 
10023 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10024 	vcpu->arch.regs_avail = ~0;
10025 	vcpu->arch.regs_dirty = ~0;
10026 
10027 	vcpu->arch.ia32_xss = 0;
10028 
10029 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
10030 }
10031 
10032 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10033 {
10034 	struct kvm_segment cs;
10035 
10036 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10037 	cs.selector = vector << 8;
10038 	cs.base = vector << 12;
10039 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10040 	kvm_rip_write(vcpu, 0);
10041 }
10042 
10043 int kvm_arch_hardware_enable(void)
10044 {
10045 	struct kvm *kvm;
10046 	struct kvm_vcpu *vcpu;
10047 	int i;
10048 	int ret;
10049 	u64 local_tsc;
10050 	u64 max_tsc = 0;
10051 	bool stable, backwards_tsc = false;
10052 
10053 	kvm_user_return_msr_cpu_online();
10054 	ret = kvm_x86_ops.hardware_enable();
10055 	if (ret != 0)
10056 		return ret;
10057 
10058 	local_tsc = rdtsc();
10059 	stable = !kvm_check_tsc_unstable();
10060 	list_for_each_entry(kvm, &vm_list, vm_list) {
10061 		kvm_for_each_vcpu(i, vcpu, kvm) {
10062 			if (!stable && vcpu->cpu == smp_processor_id())
10063 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10064 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10065 				backwards_tsc = true;
10066 				if (vcpu->arch.last_host_tsc > max_tsc)
10067 					max_tsc = vcpu->arch.last_host_tsc;
10068 			}
10069 		}
10070 	}
10071 
10072 	/*
10073 	 * Sometimes, even reliable TSCs go backwards.  This happens on
10074 	 * platforms that reset TSC during suspend or hibernate actions, but
10075 	 * maintain synchronization.  We must compensate.  Fortunately, we can
10076 	 * detect that condition here, which happens early in CPU bringup,
10077 	 * before any KVM threads can be running.  Unfortunately, we can't
10078 	 * bring the TSCs fully up to date with real time, as we aren't yet far
10079 	 * enough into CPU bringup that we know how much real time has actually
10080 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10081 	 * variables that haven't been updated yet.
10082 	 *
10083 	 * So we simply find the maximum observed TSC above, then record the
10084 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10085 	 * the adjustment will be applied.  Note that we accumulate
10086 	 * adjustments, in case multiple suspend cycles happen before some VCPU
10087 	 * gets a chance to run again.  In the event that no KVM threads get a
10088 	 * chance to run, we will miss the entire elapsed period, as we'll have
10089 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10090 	 * loose cycle time.  This isn't too big a deal, since the loss will be
10091 	 * uniform across all VCPUs (not to mention the scenario is extremely
10092 	 * unlikely). It is possible that a second hibernate recovery happens
10093 	 * much faster than a first, causing the observed TSC here to be
10094 	 * smaller; this would require additional padding adjustment, which is
10095 	 * why we set last_host_tsc to the local tsc observed here.
10096 	 *
10097 	 * N.B. - this code below runs only on platforms with reliable TSC,
10098 	 * as that is the only way backwards_tsc is set above.  Also note
10099 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10100 	 * have the same delta_cyc adjustment applied if backwards_tsc
10101 	 * is detected.  Note further, this adjustment is only done once,
10102 	 * as we reset last_host_tsc on all VCPUs to stop this from being
10103 	 * called multiple times (one for each physical CPU bringup).
10104 	 *
10105 	 * Platforms with unreliable TSCs don't have to deal with this, they
10106 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
10107 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
10108 	 * guarantee that they stay in perfect synchronization.
10109 	 */
10110 	if (backwards_tsc) {
10111 		u64 delta_cyc = max_tsc - local_tsc;
10112 		list_for_each_entry(kvm, &vm_list, vm_list) {
10113 			kvm->arch.backwards_tsc_observed = true;
10114 			kvm_for_each_vcpu(i, vcpu, kvm) {
10115 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
10116 				vcpu->arch.last_host_tsc = local_tsc;
10117 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10118 			}
10119 
10120 			/*
10121 			 * We have to disable TSC offset matching.. if you were
10122 			 * booting a VM while issuing an S4 host suspend....
10123 			 * you may have some problem.  Solving this issue is
10124 			 * left as an exercise to the reader.
10125 			 */
10126 			kvm->arch.last_tsc_nsec = 0;
10127 			kvm->arch.last_tsc_write = 0;
10128 		}
10129 
10130 	}
10131 	return 0;
10132 }
10133 
10134 void kvm_arch_hardware_disable(void)
10135 {
10136 	kvm_x86_ops.hardware_disable();
10137 	drop_user_return_notifiers();
10138 }
10139 
10140 int kvm_arch_hardware_setup(void *opaque)
10141 {
10142 	struct kvm_x86_init_ops *ops = opaque;
10143 	int r;
10144 
10145 	rdmsrl_safe(MSR_EFER, &host_efer);
10146 
10147 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10148 		rdmsrl(MSR_IA32_XSS, host_xss);
10149 
10150 	r = ops->hardware_setup();
10151 	if (r != 0)
10152 		return r;
10153 
10154 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10155 
10156 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10157 		supported_xss = 0;
10158 
10159 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10160 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10161 #undef __kvm_cpu_cap_has
10162 
10163 	if (kvm_has_tsc_control) {
10164 		/*
10165 		 * Make sure the user can only configure tsc_khz values that
10166 		 * fit into a signed integer.
10167 		 * A min value is not calculated because it will always
10168 		 * be 1 on all machines.
10169 		 */
10170 		u64 max = min(0x7fffffffULL,
10171 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10172 		kvm_max_guest_tsc_khz = max;
10173 
10174 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10175 	}
10176 
10177 	kvm_init_msr_list();
10178 	return 0;
10179 }
10180 
10181 void kvm_arch_hardware_unsetup(void)
10182 {
10183 	kvm_x86_ops.hardware_unsetup();
10184 }
10185 
10186 int kvm_arch_check_processor_compat(void *opaque)
10187 {
10188 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10189 	struct kvm_x86_init_ops *ops = opaque;
10190 
10191 	WARN_ON(!irqs_disabled());
10192 
10193 	if (__cr4_reserved_bits(cpu_has, c) !=
10194 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10195 		return -EIO;
10196 
10197 	return ops->check_processor_compatibility();
10198 }
10199 
10200 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10201 {
10202 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10203 }
10204 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10205 
10206 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10207 {
10208 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10209 }
10210 
10211 struct static_key kvm_no_apic_vcpu __read_mostly;
10212 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
10213 
10214 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10215 {
10216 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10217 
10218 	vcpu->arch.l1tf_flush_l1d = true;
10219 	if (pmu->version && unlikely(pmu->event_count)) {
10220 		pmu->need_cleanup = true;
10221 		kvm_make_request(KVM_REQ_PMU, vcpu);
10222 	}
10223 	kvm_x86_ops.sched_in(vcpu, cpu);
10224 }
10225 
10226 void kvm_arch_free_vm(struct kvm *kvm)
10227 {
10228 	kfree(kvm->arch.hyperv.hv_pa_pg);
10229 	vfree(kvm);
10230 }
10231 
10232 
10233 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10234 {
10235 	if (type)
10236 		return -EINVAL;
10237 
10238 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10239 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10240 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10241 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10242 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10243 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10244 
10245 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10246 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10247 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10248 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10249 		&kvm->arch.irq_sources_bitmap);
10250 
10251 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10252 	mutex_init(&kvm->arch.apic_map_lock);
10253 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10254 
10255 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10256 	pvclock_update_vm_gtod_copy(kvm);
10257 
10258 	kvm->arch.guest_can_read_msr_platform_info = true;
10259 
10260 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10261 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10262 
10263 	kvm_hv_init_vm(kvm);
10264 	kvm_page_track_init(kvm);
10265 	kvm_mmu_init_vm(kvm);
10266 
10267 	return kvm_x86_ops.vm_init(kvm);
10268 }
10269 
10270 int kvm_arch_post_init_vm(struct kvm *kvm)
10271 {
10272 	return kvm_mmu_post_init_vm(kvm);
10273 }
10274 
10275 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10276 {
10277 	vcpu_load(vcpu);
10278 	kvm_mmu_unload(vcpu);
10279 	vcpu_put(vcpu);
10280 }
10281 
10282 static void kvm_free_vcpus(struct kvm *kvm)
10283 {
10284 	unsigned int i;
10285 	struct kvm_vcpu *vcpu;
10286 
10287 	/*
10288 	 * Unpin any mmu pages first.
10289 	 */
10290 	kvm_for_each_vcpu(i, vcpu, kvm) {
10291 		kvm_clear_async_pf_completion_queue(vcpu);
10292 		kvm_unload_vcpu_mmu(vcpu);
10293 	}
10294 	kvm_for_each_vcpu(i, vcpu, kvm)
10295 		kvm_vcpu_destroy(vcpu);
10296 
10297 	mutex_lock(&kvm->lock);
10298 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10299 		kvm->vcpus[i] = NULL;
10300 
10301 	atomic_set(&kvm->online_vcpus, 0);
10302 	mutex_unlock(&kvm->lock);
10303 }
10304 
10305 void kvm_arch_sync_events(struct kvm *kvm)
10306 {
10307 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10308 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10309 	kvm_free_pit(kvm);
10310 }
10311 
10312 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
10313 {
10314 	int i, r;
10315 	unsigned long hva, old_npages;
10316 	struct kvm_memslots *slots = kvm_memslots(kvm);
10317 	struct kvm_memory_slot *slot;
10318 
10319 	/* Called with kvm->slots_lock held.  */
10320 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10321 		return -EINVAL;
10322 
10323 	slot = id_to_memslot(slots, id);
10324 	if (size) {
10325 		if (slot && slot->npages)
10326 			return -EEXIST;
10327 
10328 		/*
10329 		 * MAP_SHARED to prevent internal slot pages from being moved
10330 		 * by fork()/COW.
10331 		 */
10332 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10333 			      MAP_SHARED | MAP_ANONYMOUS, 0);
10334 		if (IS_ERR((void *)hva))
10335 			return PTR_ERR((void *)hva);
10336 	} else {
10337 		if (!slot || !slot->npages)
10338 			return 0;
10339 
10340 		old_npages = slot->npages;
10341 		hva = 0;
10342 	}
10343 
10344 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10345 		struct kvm_userspace_memory_region m;
10346 
10347 		m.slot = id | (i << 16);
10348 		m.flags = 0;
10349 		m.guest_phys_addr = gpa;
10350 		m.userspace_addr = hva;
10351 		m.memory_size = size;
10352 		r = __kvm_set_memory_region(kvm, &m);
10353 		if (r < 0)
10354 			return r;
10355 	}
10356 
10357 	if (!size)
10358 		vm_munmap(hva, old_npages * PAGE_SIZE);
10359 
10360 	return 0;
10361 }
10362 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10363 
10364 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10365 {
10366 	kvm_mmu_pre_destroy_vm(kvm);
10367 }
10368 
10369 void kvm_arch_destroy_vm(struct kvm *kvm)
10370 {
10371 	u32 i;
10372 
10373 	if (current->mm == kvm->mm) {
10374 		/*
10375 		 * Free memory regions allocated on behalf of userspace,
10376 		 * unless the the memory map has changed due to process exit
10377 		 * or fd copying.
10378 		 */
10379 		mutex_lock(&kvm->slots_lock);
10380 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10381 					0, 0);
10382 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10383 					0, 0);
10384 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10385 		mutex_unlock(&kvm->slots_lock);
10386 	}
10387 	if (kvm_x86_ops.vm_destroy)
10388 		kvm_x86_ops.vm_destroy(kvm);
10389 	for (i = 0; i < kvm->arch.msr_filter.count; i++)
10390 		kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10391 	kvm_pic_destroy(kvm);
10392 	kvm_ioapic_destroy(kvm);
10393 	kvm_free_vcpus(kvm);
10394 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10395 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10396 	kvm_mmu_uninit_vm(kvm);
10397 	kvm_page_track_cleanup(kvm);
10398 	kvm_hv_destroy_vm(kvm);
10399 }
10400 
10401 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10402 {
10403 	int i;
10404 
10405 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10406 		kvfree(slot->arch.rmap[i]);
10407 		slot->arch.rmap[i] = NULL;
10408 
10409 		if (i == 0)
10410 			continue;
10411 
10412 		kvfree(slot->arch.lpage_info[i - 1]);
10413 		slot->arch.lpage_info[i - 1] = NULL;
10414 	}
10415 
10416 	kvm_page_track_free_memslot(slot);
10417 }
10418 
10419 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10420 				      unsigned long npages)
10421 {
10422 	int i;
10423 
10424 	/*
10425 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10426 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10427 	 * the new memslot is successful.
10428 	 */
10429 	memset(&slot->arch, 0, sizeof(slot->arch));
10430 
10431 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10432 		struct kvm_lpage_info *linfo;
10433 		unsigned long ugfn;
10434 		int lpages;
10435 		int level = i + 1;
10436 
10437 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10438 				      slot->base_gfn, level) + 1;
10439 
10440 		slot->arch.rmap[i] =
10441 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10442 				 GFP_KERNEL_ACCOUNT);
10443 		if (!slot->arch.rmap[i])
10444 			goto out_free;
10445 		if (i == 0)
10446 			continue;
10447 
10448 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10449 		if (!linfo)
10450 			goto out_free;
10451 
10452 		slot->arch.lpage_info[i - 1] = linfo;
10453 
10454 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10455 			linfo[0].disallow_lpage = 1;
10456 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10457 			linfo[lpages - 1].disallow_lpage = 1;
10458 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10459 		/*
10460 		 * If the gfn and userspace address are not aligned wrt each
10461 		 * other, disable large page support for this slot.
10462 		 */
10463 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10464 			unsigned long j;
10465 
10466 			for (j = 0; j < lpages; ++j)
10467 				linfo[j].disallow_lpage = 1;
10468 		}
10469 	}
10470 
10471 	if (kvm_page_track_create_memslot(slot, npages))
10472 		goto out_free;
10473 
10474 	return 0;
10475 
10476 out_free:
10477 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10478 		kvfree(slot->arch.rmap[i]);
10479 		slot->arch.rmap[i] = NULL;
10480 		if (i == 0)
10481 			continue;
10482 
10483 		kvfree(slot->arch.lpage_info[i - 1]);
10484 		slot->arch.lpage_info[i - 1] = NULL;
10485 	}
10486 	return -ENOMEM;
10487 }
10488 
10489 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10490 {
10491 	struct kvm_vcpu *vcpu;
10492 	int i;
10493 
10494 	/*
10495 	 * memslots->generation has been incremented.
10496 	 * mmio generation may have reached its maximum value.
10497 	 */
10498 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10499 
10500 	/* Force re-initialization of steal_time cache */
10501 	kvm_for_each_vcpu(i, vcpu, kvm)
10502 		kvm_vcpu_kick(vcpu);
10503 }
10504 
10505 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10506 				struct kvm_memory_slot *memslot,
10507 				const struct kvm_userspace_memory_region *mem,
10508 				enum kvm_mr_change change)
10509 {
10510 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10511 		return kvm_alloc_memslot_metadata(memslot,
10512 						  mem->memory_size >> PAGE_SHIFT);
10513 	return 0;
10514 }
10515 
10516 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10517 				     struct kvm_memory_slot *old,
10518 				     struct kvm_memory_slot *new,
10519 				     enum kvm_mr_change change)
10520 {
10521 	/*
10522 	 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10523 	 * See comments below.
10524 	 */
10525 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10526 		return;
10527 
10528 	/*
10529 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10530 	 * sptes have to be split.  If live migration is successful, the guest
10531 	 * in the source machine will be destroyed and large sptes will be
10532 	 * created in the destination. However, if the guest continues to run
10533 	 * in the source machine (for example if live migration fails), small
10534 	 * sptes will remain around and cause bad performance.
10535 	 *
10536 	 * Scan sptes if dirty logging has been stopped, dropping those
10537 	 * which can be collapsed into a single large-page spte.  Later
10538 	 * page faults will create the large-page sptes.
10539 	 *
10540 	 * There is no need to do this in any of the following cases:
10541 	 * CREATE:      No dirty mappings will already exist.
10542 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10543 	 *		kvm_arch_flush_shadow_memslot()
10544 	 */
10545 	if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10546 	    !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10547 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10548 
10549 	/*
10550 	 * Enable or disable dirty logging for the slot.
10551 	 *
10552 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10553 	 * slot have been zapped so no dirty logging updates are needed for
10554 	 * the old slot.
10555 	 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10556 	 * any mappings that might be created in it will consume the
10557 	 * properties of the new slot and do not need to be updated here.
10558 	 *
10559 	 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10560 	 * called to enable/disable dirty logging.
10561 	 *
10562 	 * When disabling dirty logging with PML enabled, the D-bit is set
10563 	 * for sptes in the slot in order to prevent unnecessary GPA
10564 	 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10565 	 * This guarantees leaving PML enabled for the guest's lifetime
10566 	 * won't have any additional overhead from PML when the guest is
10567 	 * running with dirty logging disabled.
10568 	 *
10569 	 * When enabling dirty logging, large sptes are write-protected
10570 	 * so they can be split on first write.  New large sptes cannot
10571 	 * be created for this slot until the end of the logging.
10572 	 * See the comments in fast_page_fault().
10573 	 * For small sptes, nothing is done if the dirty log is in the
10574 	 * initial-all-set state.  Otherwise, depending on whether pml
10575 	 * is enabled the D-bit or the W-bit will be cleared.
10576 	 */
10577 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10578 		if (kvm_x86_ops.slot_enable_log_dirty) {
10579 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10580 		} else {
10581 			int level =
10582 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10583 				PG_LEVEL_2M : PG_LEVEL_4K;
10584 
10585 			/*
10586 			 * If we're with initial-all-set, we don't need
10587 			 * to write protect any small page because
10588 			 * they're reported as dirty already.  However
10589 			 * we still need to write-protect huge pages
10590 			 * so that the page split can happen lazily on
10591 			 * the first write to the huge page.
10592 			 */
10593 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10594 		}
10595 	} else {
10596 		if (kvm_x86_ops.slot_disable_log_dirty)
10597 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10598 	}
10599 }
10600 
10601 void kvm_arch_commit_memory_region(struct kvm *kvm,
10602 				const struct kvm_userspace_memory_region *mem,
10603 				struct kvm_memory_slot *old,
10604 				const struct kvm_memory_slot *new,
10605 				enum kvm_mr_change change)
10606 {
10607 	if (!kvm->arch.n_requested_mmu_pages)
10608 		kvm_mmu_change_mmu_pages(kvm,
10609 				kvm_mmu_calculate_default_mmu_pages(kvm));
10610 
10611 	/*
10612 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10613 	 */
10614 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10615 
10616 	/* Free the arrays associated with the old memslot. */
10617 	if (change == KVM_MR_MOVE)
10618 		kvm_arch_free_memslot(kvm, old);
10619 }
10620 
10621 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10622 {
10623 	kvm_mmu_zap_all(kvm);
10624 }
10625 
10626 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10627 				   struct kvm_memory_slot *slot)
10628 {
10629 	kvm_page_track_flush_slot(kvm, slot);
10630 }
10631 
10632 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10633 {
10634 	return (is_guest_mode(vcpu) &&
10635 			kvm_x86_ops.guest_apic_has_interrupt &&
10636 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10637 }
10638 
10639 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10640 {
10641 	if (!list_empty_careful(&vcpu->async_pf.done))
10642 		return true;
10643 
10644 	if (kvm_apic_has_events(vcpu))
10645 		return true;
10646 
10647 	if (vcpu->arch.pv.pv_unhalted)
10648 		return true;
10649 
10650 	if (vcpu->arch.exception.pending)
10651 		return true;
10652 
10653 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10654 	    (vcpu->arch.nmi_pending &&
10655 	     kvm_x86_ops.nmi_allowed(vcpu, false)))
10656 		return true;
10657 
10658 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10659 	    (vcpu->arch.smi_pending &&
10660 	     kvm_x86_ops.smi_allowed(vcpu, false)))
10661 		return true;
10662 
10663 	if (kvm_arch_interrupt_allowed(vcpu) &&
10664 	    (kvm_cpu_has_interrupt(vcpu) ||
10665 	    kvm_guest_apic_has_interrupt(vcpu)))
10666 		return true;
10667 
10668 	if (kvm_hv_has_stimer_pending(vcpu))
10669 		return true;
10670 
10671 	if (is_guest_mode(vcpu) &&
10672 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
10673 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10674 		return true;
10675 
10676 	return false;
10677 }
10678 
10679 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10680 {
10681 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10682 }
10683 
10684 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10685 {
10686 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10687 		return true;
10688 
10689 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10690 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10691 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10692 		return true;
10693 
10694 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10695 		return true;
10696 
10697 	return false;
10698 }
10699 
10700 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10701 {
10702 	return vcpu->arch.preempted_in_kernel;
10703 }
10704 
10705 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10706 {
10707 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10708 }
10709 
10710 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10711 {
10712 	return kvm_x86_ops.interrupt_allowed(vcpu, false);
10713 }
10714 
10715 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10716 {
10717 	if (is_64_bit_mode(vcpu))
10718 		return kvm_rip_read(vcpu);
10719 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10720 		     kvm_rip_read(vcpu));
10721 }
10722 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10723 
10724 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10725 {
10726 	return kvm_get_linear_rip(vcpu) == linear_rip;
10727 }
10728 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10729 
10730 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10731 {
10732 	unsigned long rflags;
10733 
10734 	rflags = kvm_x86_ops.get_rflags(vcpu);
10735 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10736 		rflags &= ~X86_EFLAGS_TF;
10737 	return rflags;
10738 }
10739 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10740 
10741 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10742 {
10743 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10744 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10745 		rflags |= X86_EFLAGS_TF;
10746 	kvm_x86_ops.set_rflags(vcpu, rflags);
10747 }
10748 
10749 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10750 {
10751 	__kvm_set_rflags(vcpu, rflags);
10752 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10753 }
10754 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10755 
10756 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10757 {
10758 	int r;
10759 
10760 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10761 	      work->wakeup_all)
10762 		return;
10763 
10764 	r = kvm_mmu_reload(vcpu);
10765 	if (unlikely(r))
10766 		return;
10767 
10768 	if (!vcpu->arch.mmu->direct_map &&
10769 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10770 		return;
10771 
10772 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10773 }
10774 
10775 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10776 {
10777 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10778 
10779 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10780 }
10781 
10782 static inline u32 kvm_async_pf_next_probe(u32 key)
10783 {
10784 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10785 }
10786 
10787 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10788 {
10789 	u32 key = kvm_async_pf_hash_fn(gfn);
10790 
10791 	while (vcpu->arch.apf.gfns[key] != ~0)
10792 		key = kvm_async_pf_next_probe(key);
10793 
10794 	vcpu->arch.apf.gfns[key] = gfn;
10795 }
10796 
10797 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10798 {
10799 	int i;
10800 	u32 key = kvm_async_pf_hash_fn(gfn);
10801 
10802 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
10803 		     (vcpu->arch.apf.gfns[key] != gfn &&
10804 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10805 		key = kvm_async_pf_next_probe(key);
10806 
10807 	return key;
10808 }
10809 
10810 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10811 {
10812 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10813 }
10814 
10815 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10816 {
10817 	u32 i, j, k;
10818 
10819 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10820 
10821 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10822 		return;
10823 
10824 	while (true) {
10825 		vcpu->arch.apf.gfns[i] = ~0;
10826 		do {
10827 			j = kvm_async_pf_next_probe(j);
10828 			if (vcpu->arch.apf.gfns[j] == ~0)
10829 				return;
10830 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10831 			/*
10832 			 * k lies cyclically in ]i,j]
10833 			 * |    i.k.j |
10834 			 * |....j i.k.| or  |.k..j i...|
10835 			 */
10836 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10837 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10838 		i = j;
10839 	}
10840 }
10841 
10842 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10843 {
10844 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10845 
10846 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10847 				      sizeof(reason));
10848 }
10849 
10850 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10851 {
10852 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10853 
10854 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10855 					     &token, offset, sizeof(token));
10856 }
10857 
10858 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10859 {
10860 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10861 	u32 val;
10862 
10863 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10864 					 &val, offset, sizeof(val)))
10865 		return false;
10866 
10867 	return !val;
10868 }
10869 
10870 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10871 {
10872 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10873 		return false;
10874 
10875 	if (!kvm_pv_async_pf_enabled(vcpu) ||
10876 	    (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10877 		return false;
10878 
10879 	return true;
10880 }
10881 
10882 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10883 {
10884 	if (unlikely(!lapic_in_kernel(vcpu) ||
10885 		     kvm_event_needs_reinjection(vcpu) ||
10886 		     vcpu->arch.exception.pending))
10887 		return false;
10888 
10889 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10890 		return false;
10891 
10892 	/*
10893 	 * If interrupts are off we cannot even use an artificial
10894 	 * halt state.
10895 	 */
10896 	return kvm_arch_interrupt_allowed(vcpu);
10897 }
10898 
10899 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10900 				     struct kvm_async_pf *work)
10901 {
10902 	struct x86_exception fault;
10903 
10904 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10905 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10906 
10907 	if (kvm_can_deliver_async_pf(vcpu) &&
10908 	    !apf_put_user_notpresent(vcpu)) {
10909 		fault.vector = PF_VECTOR;
10910 		fault.error_code_valid = true;
10911 		fault.error_code = 0;
10912 		fault.nested_page_fault = false;
10913 		fault.address = work->arch.token;
10914 		fault.async_page_fault = true;
10915 		kvm_inject_page_fault(vcpu, &fault);
10916 		return true;
10917 	} else {
10918 		/*
10919 		 * It is not possible to deliver a paravirtualized asynchronous
10920 		 * page fault, but putting the guest in an artificial halt state
10921 		 * can be beneficial nevertheless: if an interrupt arrives, we
10922 		 * can deliver it timely and perhaps the guest will schedule
10923 		 * another process.  When the instruction that triggered a page
10924 		 * fault is retried, hopefully the page will be ready in the host.
10925 		 */
10926 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10927 		return false;
10928 	}
10929 }
10930 
10931 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10932 				 struct kvm_async_pf *work)
10933 {
10934 	struct kvm_lapic_irq irq = {
10935 		.delivery_mode = APIC_DM_FIXED,
10936 		.vector = vcpu->arch.apf.vec
10937 	};
10938 
10939 	if (work->wakeup_all)
10940 		work->arch.token = ~0; /* broadcast wakeup */
10941 	else
10942 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10943 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10944 
10945 	if ((work->wakeup_all || work->notpresent_injected) &&
10946 	    kvm_pv_async_pf_enabled(vcpu) &&
10947 	    !apf_put_user_ready(vcpu, work->arch.token)) {
10948 		vcpu->arch.apf.pageready_pending = true;
10949 		kvm_apic_set_irq(vcpu, &irq, NULL);
10950 	}
10951 
10952 	vcpu->arch.apf.halted = false;
10953 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10954 }
10955 
10956 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
10957 {
10958 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
10959 	if (!vcpu->arch.apf.pageready_pending)
10960 		kvm_vcpu_kick(vcpu);
10961 }
10962 
10963 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
10964 {
10965 	if (!kvm_pv_async_pf_enabled(vcpu))
10966 		return true;
10967 	else
10968 		return apf_pageready_slot_free(vcpu);
10969 }
10970 
10971 void kvm_arch_start_assignment(struct kvm *kvm)
10972 {
10973 	atomic_inc(&kvm->arch.assigned_device_count);
10974 }
10975 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10976 
10977 void kvm_arch_end_assignment(struct kvm *kvm)
10978 {
10979 	atomic_dec(&kvm->arch.assigned_device_count);
10980 }
10981 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10982 
10983 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10984 {
10985 	return atomic_read(&kvm->arch.assigned_device_count);
10986 }
10987 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10988 
10989 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10990 {
10991 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10992 }
10993 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10994 
10995 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10996 {
10997 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10998 }
10999 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11000 
11001 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11002 {
11003 	return atomic_read(&kvm->arch.noncoherent_dma_count);
11004 }
11005 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11006 
11007 bool kvm_arch_has_irq_bypass(void)
11008 {
11009 	return true;
11010 }
11011 
11012 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11013 				      struct irq_bypass_producer *prod)
11014 {
11015 	struct kvm_kernel_irqfd *irqfd =
11016 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11017 	int ret;
11018 
11019 	irqfd->producer = prod;
11020 	kvm_arch_start_assignment(irqfd->kvm);
11021 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11022 					 prod->irq, irqfd->gsi, 1);
11023 
11024 	if (ret)
11025 		kvm_arch_end_assignment(irqfd->kvm);
11026 
11027 	return ret;
11028 }
11029 
11030 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11031 				      struct irq_bypass_producer *prod)
11032 {
11033 	int ret;
11034 	struct kvm_kernel_irqfd *irqfd =
11035 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11036 
11037 	WARN_ON(irqfd->producer != prod);
11038 	irqfd->producer = NULL;
11039 
11040 	/*
11041 	 * When producer of consumer is unregistered, we change back to
11042 	 * remapped mode, so we can re-use the current implementation
11043 	 * when the irq is masked/disabled or the consumer side (KVM
11044 	 * int this case doesn't want to receive the interrupts.
11045 	*/
11046 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11047 	if (ret)
11048 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11049 		       " fails: %d\n", irqfd->consumer.token, ret);
11050 
11051 	kvm_arch_end_assignment(irqfd->kvm);
11052 }
11053 
11054 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11055 				   uint32_t guest_irq, bool set)
11056 {
11057 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
11058 }
11059 
11060 bool kvm_vector_hashing_enabled(void)
11061 {
11062 	return vector_hashing;
11063 }
11064 
11065 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11066 {
11067 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11068 }
11069 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11070 
11071 
11072 int kvm_spec_ctrl_test_value(u64 value)
11073 {
11074 	/*
11075 	 * test that setting IA32_SPEC_CTRL to given value
11076 	 * is allowed by the host processor
11077 	 */
11078 
11079 	u64 saved_value;
11080 	unsigned long flags;
11081 	int ret = 0;
11082 
11083 	local_irq_save(flags);
11084 
11085 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11086 		ret = 1;
11087 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11088 		ret = 1;
11089 	else
11090 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11091 
11092 	local_irq_restore(flags);
11093 
11094 	return ret;
11095 }
11096 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11097 
11098 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11099 {
11100 	struct x86_exception fault;
11101 	u32 access = error_code &
11102 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11103 
11104 	if (!(error_code & PFERR_PRESENT_MASK) ||
11105 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11106 		/*
11107 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11108 		 * tables probably do not match the TLB.  Just proceed
11109 		 * with the error code that the processor gave.
11110 		 */
11111 		fault.vector = PF_VECTOR;
11112 		fault.error_code_valid = true;
11113 		fault.error_code = error_code;
11114 		fault.nested_page_fault = false;
11115 		fault.address = gva;
11116 	}
11117 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11118 }
11119 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11120 
11121 /*
11122  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11123  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11124  * indicates whether exit to userspace is needed.
11125  */
11126 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11127 			      struct x86_exception *e)
11128 {
11129 	if (r == X86EMUL_PROPAGATE_FAULT) {
11130 		kvm_inject_emulated_page_fault(vcpu, e);
11131 		return 1;
11132 	}
11133 
11134 	/*
11135 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11136 	 * while handling a VMX instruction KVM could've handled the request
11137 	 * correctly by exiting to userspace and performing I/O but there
11138 	 * doesn't seem to be a real use-case behind such requests, just return
11139 	 * KVM_EXIT_INTERNAL_ERROR for now.
11140 	 */
11141 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11142 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11143 	vcpu->run->internal.ndata = 0;
11144 
11145 	return 0;
11146 }
11147 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11148 
11149 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11150 {
11151 	bool pcid_enabled;
11152 	struct x86_exception e;
11153 	unsigned i;
11154 	unsigned long roots_to_free = 0;
11155 	struct {
11156 		u64 pcid;
11157 		u64 gla;
11158 	} operand;
11159 	int r;
11160 
11161 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11162 	if (r != X86EMUL_CONTINUE)
11163 		return kvm_handle_memory_failure(vcpu, r, &e);
11164 
11165 	if (operand.pcid >> 12 != 0) {
11166 		kvm_inject_gp(vcpu, 0);
11167 		return 1;
11168 	}
11169 
11170 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11171 
11172 	switch (type) {
11173 	case INVPCID_TYPE_INDIV_ADDR:
11174 		if ((!pcid_enabled && (operand.pcid != 0)) ||
11175 		    is_noncanonical_address(operand.gla, vcpu)) {
11176 			kvm_inject_gp(vcpu, 0);
11177 			return 1;
11178 		}
11179 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11180 		return kvm_skip_emulated_instruction(vcpu);
11181 
11182 	case INVPCID_TYPE_SINGLE_CTXT:
11183 		if (!pcid_enabled && (operand.pcid != 0)) {
11184 			kvm_inject_gp(vcpu, 0);
11185 			return 1;
11186 		}
11187 
11188 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11189 			kvm_mmu_sync_roots(vcpu);
11190 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11191 		}
11192 
11193 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11194 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11195 			    == operand.pcid)
11196 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11197 
11198 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11199 		/*
11200 		 * If neither the current cr3 nor any of the prev_roots use the
11201 		 * given PCID, then nothing needs to be done here because a
11202 		 * resync will happen anyway before switching to any other CR3.
11203 		 */
11204 
11205 		return kvm_skip_emulated_instruction(vcpu);
11206 
11207 	case INVPCID_TYPE_ALL_NON_GLOBAL:
11208 		/*
11209 		 * Currently, KVM doesn't mark global entries in the shadow
11210 		 * page tables, so a non-global flush just degenerates to a
11211 		 * global flush. If needed, we could optimize this later by
11212 		 * keeping track of global entries in shadow page tables.
11213 		 */
11214 
11215 		fallthrough;
11216 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
11217 		kvm_mmu_unload(vcpu);
11218 		return kvm_skip_emulated_instruction(vcpu);
11219 
11220 	default:
11221 		BUG(); /* We have already checked above that type <= 3 */
11222 	}
11223 }
11224 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11225 
11226 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11227 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11228 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11229 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11230 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11231 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11232 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11233 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11234 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11235 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11236 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11237 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11238 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11239 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11240 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11241 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11242 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11243 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11244 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11245 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11246 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11247 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11248