xref: /openbmc/linux/arch/x86/kvm/x86.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 
60 #include <trace/events/kvm.h>
61 
62 #include <asm/debugreg.h>
63 #include <asm/msr.h>
64 #include <asm/desc.h>
65 #include <asm/mce.h>
66 #include <linux/kernel_stat.h>
67 #include <asm/fpu/internal.h> /* Ugh! */
68 #include <asm/pvclock.h>
69 #include <asm/div64.h>
70 #include <asm/irq_remapping.h>
71 #include <asm/mshyperv.h>
72 #include <asm/hypervisor.h>
73 #include <asm/intel_pt.h>
74 #include <asm/emulate_prefix.h>
75 #include <clocksource/hyperv_timer.h>
76 
77 #define CREATE_TRACE_POINTS
78 #include "trace.h"
79 
80 #define MAX_IO_MSRS 256
81 #define KVM_MAX_MCE_BANKS 32
82 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
83 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
84 
85 #define emul_to_vcpu(ctxt) \
86 	((struct kvm_vcpu *)(ctxt)->vcpu)
87 
88 /* EFER defaults:
89  * - enable syscall per default because its emulated by KVM
90  * - enable LME and LMA per default on 64 bit KVM
91  */
92 #ifdef CONFIG_X86_64
93 static
94 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
95 #else
96 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
97 #endif
98 
99 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
100 
101 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
102                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
103 
104 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
105 static void process_nmi(struct kvm_vcpu *vcpu);
106 static void enter_smm(struct kvm_vcpu *vcpu);
107 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
108 static void store_regs(struct kvm_vcpu *vcpu);
109 static int sync_regs(struct kvm_vcpu *vcpu);
110 
111 struct kvm_x86_ops kvm_x86_ops __read_mostly;
112 EXPORT_SYMBOL_GPL(kvm_x86_ops);
113 
114 static bool __read_mostly ignore_msrs = 0;
115 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
116 
117 static bool __read_mostly report_ignored_msrs = true;
118 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
119 
120 unsigned int min_timer_period_us = 200;
121 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
122 
123 static bool __read_mostly kvmclock_periodic_sync = true;
124 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
125 
126 bool __read_mostly kvm_has_tsc_control;
127 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
128 u32  __read_mostly kvm_max_guest_tsc_khz;
129 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
130 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
131 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
132 u64  __read_mostly kvm_max_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
134 u64 __read_mostly kvm_default_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
136 
137 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
138 static u32 __read_mostly tsc_tolerance_ppm = 250;
139 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
140 
141 /*
142  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
143  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
144  * advancement entirely.  Any other value is used as-is and disables adaptive
145  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
146  */
147 static int __read_mostly lapic_timer_advance_ns = -1;
148 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
149 
150 static bool __read_mostly vector_hashing = true;
151 module_param(vector_hashing, bool, S_IRUGO);
152 
153 bool __read_mostly enable_vmware_backdoor = false;
154 module_param(enable_vmware_backdoor, bool, S_IRUGO);
155 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
156 
157 static bool __read_mostly force_emulation_prefix = false;
158 module_param(force_emulation_prefix, bool, S_IRUGO);
159 
160 int __read_mostly pi_inject_timer = -1;
161 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
162 
163 #define KVM_NR_SHARED_MSRS 16
164 
165 struct kvm_shared_msrs_global {
166 	int nr;
167 	u32 msrs[KVM_NR_SHARED_MSRS];
168 };
169 
170 struct kvm_shared_msrs {
171 	struct user_return_notifier urn;
172 	bool registered;
173 	struct kvm_shared_msr_values {
174 		u64 host;
175 		u64 curr;
176 	} values[KVM_NR_SHARED_MSRS];
177 };
178 
179 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
180 static struct kvm_shared_msrs __percpu *shared_msrs;
181 
182 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
183 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
184 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
185 				| XFEATURE_MASK_PKRU)
186 
187 u64 __read_mostly host_efer;
188 EXPORT_SYMBOL_GPL(host_efer);
189 
190 static u64 __read_mostly host_xss;
191 u64 __read_mostly supported_xss;
192 EXPORT_SYMBOL_GPL(supported_xss);
193 
194 struct kvm_stats_debugfs_item debugfs_entries[] = {
195 	VCPU_STAT("pf_fixed", pf_fixed),
196 	VCPU_STAT("pf_guest", pf_guest),
197 	VCPU_STAT("tlb_flush", tlb_flush),
198 	VCPU_STAT("invlpg", invlpg),
199 	VCPU_STAT("exits", exits),
200 	VCPU_STAT("io_exits", io_exits),
201 	VCPU_STAT("mmio_exits", mmio_exits),
202 	VCPU_STAT("signal_exits", signal_exits),
203 	VCPU_STAT("irq_window", irq_window_exits),
204 	VCPU_STAT("nmi_window", nmi_window_exits),
205 	VCPU_STAT("halt_exits", halt_exits),
206 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
207 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
208 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
209 	VCPU_STAT("halt_wakeup", halt_wakeup),
210 	VCPU_STAT("hypercalls", hypercalls),
211 	VCPU_STAT("request_irq", request_irq_exits),
212 	VCPU_STAT("irq_exits", irq_exits),
213 	VCPU_STAT("host_state_reload", host_state_reload),
214 	VCPU_STAT("fpu_reload", fpu_reload),
215 	VCPU_STAT("insn_emulation", insn_emulation),
216 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
217 	VCPU_STAT("irq_injections", irq_injections),
218 	VCPU_STAT("nmi_injections", nmi_injections),
219 	VCPU_STAT("req_event", req_event),
220 	VCPU_STAT("l1d_flush", l1d_flush),
221 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
222 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
223 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
224 	VM_STAT("mmu_pte_write", mmu_pte_write),
225 	VM_STAT("mmu_pte_updated", mmu_pte_updated),
226 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
227 	VM_STAT("mmu_flooded", mmu_flooded),
228 	VM_STAT("mmu_recycled", mmu_recycled),
229 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
230 	VM_STAT("mmu_unsync", mmu_unsync),
231 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
232 	VM_STAT("largepages", lpages, .mode = 0444),
233 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
234 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
235 	{ NULL }
236 };
237 
238 u64 __read_mostly host_xcr0;
239 u64 __read_mostly supported_xcr0;
240 EXPORT_SYMBOL_GPL(supported_xcr0);
241 
242 static struct kmem_cache *x86_fpu_cache;
243 
244 static struct kmem_cache *x86_emulator_cache;
245 
246 static struct kmem_cache *kvm_alloc_emulator_cache(void)
247 {
248 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
249 	unsigned int size = sizeof(struct x86_emulate_ctxt);
250 
251 	return kmem_cache_create_usercopy("x86_emulator", size,
252 					  __alignof__(struct x86_emulate_ctxt),
253 					  SLAB_ACCOUNT, useroffset,
254 					  size - useroffset, NULL);
255 }
256 
257 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
258 
259 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
260 {
261 	int i;
262 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
263 		vcpu->arch.apf.gfns[i] = ~0;
264 }
265 
266 static void kvm_on_user_return(struct user_return_notifier *urn)
267 {
268 	unsigned slot;
269 	struct kvm_shared_msrs *locals
270 		= container_of(urn, struct kvm_shared_msrs, urn);
271 	struct kvm_shared_msr_values *values;
272 	unsigned long flags;
273 
274 	/*
275 	 * Disabling irqs at this point since the following code could be
276 	 * interrupted and executed through kvm_arch_hardware_disable()
277 	 */
278 	local_irq_save(flags);
279 	if (locals->registered) {
280 		locals->registered = false;
281 		user_return_notifier_unregister(urn);
282 	}
283 	local_irq_restore(flags);
284 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
285 		values = &locals->values[slot];
286 		if (values->host != values->curr) {
287 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
288 			values->curr = values->host;
289 		}
290 	}
291 }
292 
293 void kvm_define_shared_msr(unsigned slot, u32 msr)
294 {
295 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
296 	shared_msrs_global.msrs[slot] = msr;
297 	if (slot >= shared_msrs_global.nr)
298 		shared_msrs_global.nr = slot + 1;
299 }
300 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
301 
302 static void kvm_shared_msr_cpu_online(void)
303 {
304 	unsigned int cpu = smp_processor_id();
305 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
306 	u64 value;
307 	int i;
308 
309 	for (i = 0; i < shared_msrs_global.nr; ++i) {
310 		rdmsrl_safe(shared_msrs_global.msrs[i], &value);
311 		smsr->values[i].host = value;
312 		smsr->values[i].curr = value;
313 	}
314 }
315 
316 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
317 {
318 	unsigned int cpu = smp_processor_id();
319 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
320 	int err;
321 
322 	value = (value & mask) | (smsr->values[slot].host & ~mask);
323 	if (value == smsr->values[slot].curr)
324 		return 0;
325 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
326 	if (err)
327 		return 1;
328 
329 	smsr->values[slot].curr = value;
330 	if (!smsr->registered) {
331 		smsr->urn.on_user_return = kvm_on_user_return;
332 		user_return_notifier_register(&smsr->urn);
333 		smsr->registered = true;
334 	}
335 	return 0;
336 }
337 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
338 
339 static void drop_user_return_notifiers(void)
340 {
341 	unsigned int cpu = smp_processor_id();
342 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
343 
344 	if (smsr->registered)
345 		kvm_on_user_return(&smsr->urn);
346 }
347 
348 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
349 {
350 	return vcpu->arch.apic_base;
351 }
352 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
353 
354 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
355 {
356 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
357 }
358 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
359 
360 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
361 {
362 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
363 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
364 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
365 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
366 
367 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
368 		return 1;
369 	if (!msr_info->host_initiated) {
370 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
371 			return 1;
372 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
373 			return 1;
374 	}
375 
376 	kvm_lapic_set_base(vcpu, msr_info->data);
377 	kvm_recalculate_apic_map(vcpu->kvm);
378 	return 0;
379 }
380 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
381 
382 asmlinkage __visible void kvm_spurious_fault(void)
383 {
384 	/* Fault while not rebooting.  We want the trace. */
385 	BUG_ON(!kvm_rebooting);
386 }
387 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
388 
389 #define EXCPT_BENIGN		0
390 #define EXCPT_CONTRIBUTORY	1
391 #define EXCPT_PF		2
392 
393 static int exception_class(int vector)
394 {
395 	switch (vector) {
396 	case PF_VECTOR:
397 		return EXCPT_PF;
398 	case DE_VECTOR:
399 	case TS_VECTOR:
400 	case NP_VECTOR:
401 	case SS_VECTOR:
402 	case GP_VECTOR:
403 		return EXCPT_CONTRIBUTORY;
404 	default:
405 		break;
406 	}
407 	return EXCPT_BENIGN;
408 }
409 
410 #define EXCPT_FAULT		0
411 #define EXCPT_TRAP		1
412 #define EXCPT_ABORT		2
413 #define EXCPT_INTERRUPT		3
414 
415 static int exception_type(int vector)
416 {
417 	unsigned int mask;
418 
419 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
420 		return EXCPT_INTERRUPT;
421 
422 	mask = 1 << vector;
423 
424 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
425 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
426 		return EXCPT_TRAP;
427 
428 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
429 		return EXCPT_ABORT;
430 
431 	/* Reserved exceptions will result in fault */
432 	return EXCPT_FAULT;
433 }
434 
435 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
436 {
437 	unsigned nr = vcpu->arch.exception.nr;
438 	bool has_payload = vcpu->arch.exception.has_payload;
439 	unsigned long payload = vcpu->arch.exception.payload;
440 
441 	if (!has_payload)
442 		return;
443 
444 	switch (nr) {
445 	case DB_VECTOR:
446 		/*
447 		 * "Certain debug exceptions may clear bit 0-3.  The
448 		 * remaining contents of the DR6 register are never
449 		 * cleared by the processor".
450 		 */
451 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
452 		/*
453 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
454 		 */
455 		vcpu->arch.dr6 |= DR6_RTM;
456 		vcpu->arch.dr6 |= payload;
457 		/*
458 		 * Bit 16 should be set in the payload whenever the #DB
459 		 * exception should clear DR6.RTM. This makes the payload
460 		 * compatible with the pending debug exceptions under VMX.
461 		 * Though not currently documented in the SDM, this also
462 		 * makes the payload compatible with the exit qualification
463 		 * for #DB exceptions under VMX.
464 		 */
465 		vcpu->arch.dr6 ^= payload & DR6_RTM;
466 
467 		/*
468 		 * The #DB payload is defined as compatible with the 'pending
469 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
470 		 * defined in the 'pending debug exceptions' field (enabled
471 		 * breakpoint), it is reserved and must be zero in DR6.
472 		 */
473 		vcpu->arch.dr6 &= ~BIT(12);
474 		break;
475 	case PF_VECTOR:
476 		vcpu->arch.cr2 = payload;
477 		break;
478 	}
479 
480 	vcpu->arch.exception.has_payload = false;
481 	vcpu->arch.exception.payload = 0;
482 }
483 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
484 
485 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
486 		unsigned nr, bool has_error, u32 error_code,
487 	        bool has_payload, unsigned long payload, bool reinject)
488 {
489 	u32 prev_nr;
490 	int class1, class2;
491 
492 	kvm_make_request(KVM_REQ_EVENT, vcpu);
493 
494 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
495 	queue:
496 		if (has_error && !is_protmode(vcpu))
497 			has_error = false;
498 		if (reinject) {
499 			/*
500 			 * On vmentry, vcpu->arch.exception.pending is only
501 			 * true if an event injection was blocked by
502 			 * nested_run_pending.  In that case, however,
503 			 * vcpu_enter_guest requests an immediate exit,
504 			 * and the guest shouldn't proceed far enough to
505 			 * need reinjection.
506 			 */
507 			WARN_ON_ONCE(vcpu->arch.exception.pending);
508 			vcpu->arch.exception.injected = true;
509 			if (WARN_ON_ONCE(has_payload)) {
510 				/*
511 				 * A reinjected event has already
512 				 * delivered its payload.
513 				 */
514 				has_payload = false;
515 				payload = 0;
516 			}
517 		} else {
518 			vcpu->arch.exception.pending = true;
519 			vcpu->arch.exception.injected = false;
520 		}
521 		vcpu->arch.exception.has_error_code = has_error;
522 		vcpu->arch.exception.nr = nr;
523 		vcpu->arch.exception.error_code = error_code;
524 		vcpu->arch.exception.has_payload = has_payload;
525 		vcpu->arch.exception.payload = payload;
526 		if (!is_guest_mode(vcpu))
527 			kvm_deliver_exception_payload(vcpu);
528 		return;
529 	}
530 
531 	/* to check exception */
532 	prev_nr = vcpu->arch.exception.nr;
533 	if (prev_nr == DF_VECTOR) {
534 		/* triple fault -> shutdown */
535 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
536 		return;
537 	}
538 	class1 = exception_class(prev_nr);
539 	class2 = exception_class(nr);
540 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
541 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
542 		/*
543 		 * Generate double fault per SDM Table 5-5.  Set
544 		 * exception.pending = true so that the double fault
545 		 * can trigger a nested vmexit.
546 		 */
547 		vcpu->arch.exception.pending = true;
548 		vcpu->arch.exception.injected = false;
549 		vcpu->arch.exception.has_error_code = true;
550 		vcpu->arch.exception.nr = DF_VECTOR;
551 		vcpu->arch.exception.error_code = 0;
552 		vcpu->arch.exception.has_payload = false;
553 		vcpu->arch.exception.payload = 0;
554 	} else
555 		/* replace previous exception with a new one in a hope
556 		   that instruction re-execution will regenerate lost
557 		   exception */
558 		goto queue;
559 }
560 
561 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
562 {
563 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
564 }
565 EXPORT_SYMBOL_GPL(kvm_queue_exception);
566 
567 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
568 {
569 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
570 }
571 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
572 
573 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
574 			   unsigned long payload)
575 {
576 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
577 }
578 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
579 
580 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
581 				    u32 error_code, unsigned long payload)
582 {
583 	kvm_multiple_exception(vcpu, nr, true, error_code,
584 			       true, payload, false);
585 }
586 
587 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
588 {
589 	if (err)
590 		kvm_inject_gp(vcpu, 0);
591 	else
592 		return kvm_skip_emulated_instruction(vcpu);
593 
594 	return 1;
595 }
596 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
597 
598 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
599 {
600 	++vcpu->stat.pf_guest;
601 	vcpu->arch.exception.nested_apf =
602 		is_guest_mode(vcpu) && fault->async_page_fault;
603 	if (vcpu->arch.exception.nested_apf) {
604 		vcpu->arch.apf.nested_apf_token = fault->address;
605 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
606 	} else {
607 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
608 					fault->address);
609 	}
610 }
611 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
612 
613 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
614 				    struct x86_exception *fault)
615 {
616 	struct kvm_mmu *fault_mmu;
617 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
618 
619 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
620 					       vcpu->arch.walk_mmu;
621 
622 	/*
623 	 * Invalidate the TLB entry for the faulting address, if it exists,
624 	 * else the access will fault indefinitely (and to emulate hardware).
625 	 */
626 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
627 	    !(fault->error_code & PFERR_RSVD_MASK))
628 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
629 				       fault_mmu->root_hpa);
630 
631 	fault_mmu->inject_page_fault(vcpu, fault);
632 	return fault->nested_page_fault;
633 }
634 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
635 
636 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
637 {
638 	atomic_inc(&vcpu->arch.nmi_queued);
639 	kvm_make_request(KVM_REQ_NMI, vcpu);
640 }
641 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
642 
643 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
644 {
645 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
646 }
647 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
648 
649 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
650 {
651 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
652 }
653 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
654 
655 /*
656  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
657  * a #GP and return false.
658  */
659 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
660 {
661 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
662 		return true;
663 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
664 	return false;
665 }
666 EXPORT_SYMBOL_GPL(kvm_require_cpl);
667 
668 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
669 {
670 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
671 		return true;
672 
673 	kvm_queue_exception(vcpu, UD_VECTOR);
674 	return false;
675 }
676 EXPORT_SYMBOL_GPL(kvm_require_dr);
677 
678 /*
679  * This function will be used to read from the physical memory of the currently
680  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
681  * can read from guest physical or from the guest's guest physical memory.
682  */
683 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
684 			    gfn_t ngfn, void *data, int offset, int len,
685 			    u32 access)
686 {
687 	struct x86_exception exception;
688 	gfn_t real_gfn;
689 	gpa_t ngpa;
690 
691 	ngpa     = gfn_to_gpa(ngfn);
692 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
693 	if (real_gfn == UNMAPPED_GVA)
694 		return -EFAULT;
695 
696 	real_gfn = gpa_to_gfn(real_gfn);
697 
698 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
699 }
700 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
701 
702 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
703 			       void *data, int offset, int len, u32 access)
704 {
705 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
706 				       data, offset, len, access);
707 }
708 
709 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
710 {
711 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
712 	       rsvd_bits(1, 2);
713 }
714 
715 /*
716  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
717  */
718 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
719 {
720 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
721 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
722 	int i;
723 	int ret;
724 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
725 
726 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
727 				      offset * sizeof(u64), sizeof(pdpte),
728 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
729 	if (ret < 0) {
730 		ret = 0;
731 		goto out;
732 	}
733 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
734 		if ((pdpte[i] & PT_PRESENT_MASK) &&
735 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
736 			ret = 0;
737 			goto out;
738 		}
739 	}
740 	ret = 1;
741 
742 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
743 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
744 
745 out:
746 
747 	return ret;
748 }
749 EXPORT_SYMBOL_GPL(load_pdptrs);
750 
751 bool pdptrs_changed(struct kvm_vcpu *vcpu)
752 {
753 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
754 	int offset;
755 	gfn_t gfn;
756 	int r;
757 
758 	if (!is_pae_paging(vcpu))
759 		return false;
760 
761 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
762 		return true;
763 
764 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
765 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
766 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
767 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
768 	if (r < 0)
769 		return true;
770 
771 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
772 }
773 EXPORT_SYMBOL_GPL(pdptrs_changed);
774 
775 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
776 {
777 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
778 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
779 
780 	cr0 |= X86_CR0_ET;
781 
782 #ifdef CONFIG_X86_64
783 	if (cr0 & 0xffffffff00000000UL)
784 		return 1;
785 #endif
786 
787 	cr0 &= ~CR0_RESERVED_BITS;
788 
789 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
790 		return 1;
791 
792 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
793 		return 1;
794 
795 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
796 #ifdef CONFIG_X86_64
797 		if ((vcpu->arch.efer & EFER_LME)) {
798 			int cs_db, cs_l;
799 
800 			if (!is_pae(vcpu))
801 				return 1;
802 			kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
803 			if (cs_l)
804 				return 1;
805 		} else
806 #endif
807 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
808 						 kvm_read_cr3(vcpu)))
809 			return 1;
810 	}
811 
812 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
813 		return 1;
814 
815 	kvm_x86_ops.set_cr0(vcpu, cr0);
816 
817 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
818 		kvm_clear_async_pf_completion_queue(vcpu);
819 		kvm_async_pf_hash_reset(vcpu);
820 	}
821 
822 	if ((cr0 ^ old_cr0) & update_bits)
823 		kvm_mmu_reset_context(vcpu);
824 
825 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
826 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
827 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
828 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
829 
830 	return 0;
831 }
832 EXPORT_SYMBOL_GPL(kvm_set_cr0);
833 
834 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
835 {
836 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
837 }
838 EXPORT_SYMBOL_GPL(kvm_lmsw);
839 
840 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
841 {
842 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
843 
844 		if (vcpu->arch.xcr0 != host_xcr0)
845 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
846 
847 		if (vcpu->arch.xsaves_enabled &&
848 		    vcpu->arch.ia32_xss != host_xss)
849 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
850 	}
851 
852 	if (static_cpu_has(X86_FEATURE_PKU) &&
853 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
854 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
855 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
856 		__write_pkru(vcpu->arch.pkru);
857 }
858 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
859 
860 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
861 {
862 	if (static_cpu_has(X86_FEATURE_PKU) &&
863 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
864 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
865 		vcpu->arch.pkru = rdpkru();
866 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
867 			__write_pkru(vcpu->arch.host_pkru);
868 	}
869 
870 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
871 
872 		if (vcpu->arch.xcr0 != host_xcr0)
873 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
874 
875 		if (vcpu->arch.xsaves_enabled &&
876 		    vcpu->arch.ia32_xss != host_xss)
877 			wrmsrl(MSR_IA32_XSS, host_xss);
878 	}
879 
880 }
881 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
882 
883 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
884 {
885 	u64 xcr0 = xcr;
886 	u64 old_xcr0 = vcpu->arch.xcr0;
887 	u64 valid_bits;
888 
889 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
890 	if (index != XCR_XFEATURE_ENABLED_MASK)
891 		return 1;
892 	if (!(xcr0 & XFEATURE_MASK_FP))
893 		return 1;
894 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
895 		return 1;
896 
897 	/*
898 	 * Do not allow the guest to set bits that we do not support
899 	 * saving.  However, xcr0 bit 0 is always set, even if the
900 	 * emulated CPU does not support XSAVE (see fx_init).
901 	 */
902 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
903 	if (xcr0 & ~valid_bits)
904 		return 1;
905 
906 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
907 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
908 		return 1;
909 
910 	if (xcr0 & XFEATURE_MASK_AVX512) {
911 		if (!(xcr0 & XFEATURE_MASK_YMM))
912 			return 1;
913 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
914 			return 1;
915 	}
916 	vcpu->arch.xcr0 = xcr0;
917 
918 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
919 		kvm_update_cpuid(vcpu);
920 	return 0;
921 }
922 
923 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
924 {
925 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
926 	    __kvm_set_xcr(vcpu, index, xcr)) {
927 		kvm_inject_gp(vcpu, 0);
928 		return 1;
929 	}
930 	return 0;
931 }
932 EXPORT_SYMBOL_GPL(kvm_set_xcr);
933 
934 #define __cr4_reserved_bits(__cpu_has, __c)		\
935 ({							\
936 	u64 __reserved_bits = CR4_RESERVED_BITS;	\
937 							\
938 	if (!__cpu_has(__c, X86_FEATURE_XSAVE))		\
939 		__reserved_bits |= X86_CR4_OSXSAVE;	\
940 	if (!__cpu_has(__c, X86_FEATURE_SMEP))		\
941 		__reserved_bits |= X86_CR4_SMEP;	\
942 	if (!__cpu_has(__c, X86_FEATURE_SMAP))		\
943 		__reserved_bits |= X86_CR4_SMAP;	\
944 	if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))	\
945 		__reserved_bits |= X86_CR4_FSGSBASE;	\
946 	if (!__cpu_has(__c, X86_FEATURE_PKU))		\
947 		__reserved_bits |= X86_CR4_PKE;		\
948 	if (!__cpu_has(__c, X86_FEATURE_LA57))		\
949 		__reserved_bits |= X86_CR4_LA57;	\
950 	if (!__cpu_has(__c, X86_FEATURE_UMIP))		\
951 		__reserved_bits |= X86_CR4_UMIP;	\
952 	__reserved_bits;				\
953 })
954 
955 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
956 {
957 	if (cr4 & cr4_reserved_bits)
958 		return -EINVAL;
959 
960 	if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
961 		return -EINVAL;
962 
963 	return 0;
964 }
965 
966 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
967 {
968 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
969 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
970 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
971 
972 	if (kvm_valid_cr4(vcpu, cr4))
973 		return 1;
974 
975 	if (is_long_mode(vcpu)) {
976 		if (!(cr4 & X86_CR4_PAE))
977 			return 1;
978 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
979 		   && ((cr4 ^ old_cr4) & pdptr_bits)
980 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
981 				   kvm_read_cr3(vcpu)))
982 		return 1;
983 
984 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
985 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
986 			return 1;
987 
988 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
989 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
990 			return 1;
991 	}
992 
993 	if (kvm_x86_ops.set_cr4(vcpu, cr4))
994 		return 1;
995 
996 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
997 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
998 		kvm_mmu_reset_context(vcpu);
999 
1000 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1001 		kvm_update_cpuid(vcpu);
1002 
1003 	return 0;
1004 }
1005 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1006 
1007 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1008 {
1009 	bool skip_tlb_flush = false;
1010 #ifdef CONFIG_X86_64
1011 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1012 
1013 	if (pcid_enabled) {
1014 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1015 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1016 	}
1017 #endif
1018 
1019 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1020 		if (!skip_tlb_flush) {
1021 			kvm_mmu_sync_roots(vcpu);
1022 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1023 		}
1024 		return 0;
1025 	}
1026 
1027 	if (is_long_mode(vcpu) &&
1028 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1029 		return 1;
1030 	else if (is_pae_paging(vcpu) &&
1031 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1032 		return 1;
1033 
1034 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1035 	vcpu->arch.cr3 = cr3;
1036 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1037 
1038 	return 0;
1039 }
1040 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1041 
1042 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1043 {
1044 	if (cr8 & CR8_RESERVED_BITS)
1045 		return 1;
1046 	if (lapic_in_kernel(vcpu))
1047 		kvm_lapic_set_tpr(vcpu, cr8);
1048 	else
1049 		vcpu->arch.cr8 = cr8;
1050 	return 0;
1051 }
1052 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1053 
1054 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1055 {
1056 	if (lapic_in_kernel(vcpu))
1057 		return kvm_lapic_get_cr8(vcpu);
1058 	else
1059 		return vcpu->arch.cr8;
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1062 
1063 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1064 {
1065 	int i;
1066 
1067 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1068 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1069 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1070 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1071 	}
1072 }
1073 
1074 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1075 {
1076 	unsigned long dr7;
1077 
1078 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1079 		dr7 = vcpu->arch.guest_debug_dr7;
1080 	else
1081 		dr7 = vcpu->arch.dr7;
1082 	kvm_x86_ops.set_dr7(vcpu, dr7);
1083 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1084 	if (dr7 & DR7_BP_EN_MASK)
1085 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1088 
1089 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1090 {
1091 	u64 fixed = DR6_FIXED_1;
1092 
1093 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1094 		fixed |= DR6_RTM;
1095 	return fixed;
1096 }
1097 
1098 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1099 {
1100 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1101 
1102 	switch (dr) {
1103 	case 0 ... 3:
1104 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1105 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1106 			vcpu->arch.eff_db[dr] = val;
1107 		break;
1108 	case 4:
1109 		/* fall through */
1110 	case 6:
1111 		if (val & 0xffffffff00000000ULL)
1112 			return -1; /* #GP */
1113 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1114 		break;
1115 	case 5:
1116 		/* fall through */
1117 	default: /* 7 */
1118 		if (!kvm_dr7_valid(val))
1119 			return -1; /* #GP */
1120 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1121 		kvm_update_dr7(vcpu);
1122 		break;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1129 {
1130 	if (__kvm_set_dr(vcpu, dr, val)) {
1131 		kvm_inject_gp(vcpu, 0);
1132 		return 1;
1133 	}
1134 	return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(kvm_set_dr);
1137 
1138 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1139 {
1140 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1141 
1142 	switch (dr) {
1143 	case 0 ... 3:
1144 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1145 		break;
1146 	case 4:
1147 		/* fall through */
1148 	case 6:
1149 		*val = vcpu->arch.dr6;
1150 		break;
1151 	case 5:
1152 		/* fall through */
1153 	default: /* 7 */
1154 		*val = vcpu->arch.dr7;
1155 		break;
1156 	}
1157 	return 0;
1158 }
1159 EXPORT_SYMBOL_GPL(kvm_get_dr);
1160 
1161 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1162 {
1163 	u32 ecx = kvm_rcx_read(vcpu);
1164 	u64 data;
1165 	int err;
1166 
1167 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1168 	if (err)
1169 		return err;
1170 	kvm_rax_write(vcpu, (u32)data);
1171 	kvm_rdx_write(vcpu, data >> 32);
1172 	return err;
1173 }
1174 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1175 
1176 /*
1177  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1178  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1179  *
1180  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1181  * extract the supported MSRs from the related const lists.
1182  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1183  * capabilities of the host cpu. This capabilities test skips MSRs that are
1184  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1185  * may depend on host virtualization features rather than host cpu features.
1186  */
1187 
1188 static const u32 msrs_to_save_all[] = {
1189 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1190 	MSR_STAR,
1191 #ifdef CONFIG_X86_64
1192 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1193 #endif
1194 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1195 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1196 	MSR_IA32_SPEC_CTRL,
1197 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1198 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1199 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1200 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1201 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1202 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1203 	MSR_IA32_UMWAIT_CONTROL,
1204 
1205 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1206 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1207 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1208 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1209 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1210 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1211 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1212 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1213 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1214 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1215 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1216 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1217 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1218 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1219 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1220 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1221 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1222 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1223 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1224 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1225 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1226 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1227 };
1228 
1229 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1230 static unsigned num_msrs_to_save;
1231 
1232 static const u32 emulated_msrs_all[] = {
1233 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1234 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1235 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1236 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1237 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1238 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1239 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1240 	HV_X64_MSR_RESET,
1241 	HV_X64_MSR_VP_INDEX,
1242 	HV_X64_MSR_VP_RUNTIME,
1243 	HV_X64_MSR_SCONTROL,
1244 	HV_X64_MSR_STIMER0_CONFIG,
1245 	HV_X64_MSR_VP_ASSIST_PAGE,
1246 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1247 	HV_X64_MSR_TSC_EMULATION_STATUS,
1248 	HV_X64_MSR_SYNDBG_OPTIONS,
1249 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1250 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1251 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1252 
1253 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1254 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1255 
1256 	MSR_IA32_TSC_ADJUST,
1257 	MSR_IA32_TSCDEADLINE,
1258 	MSR_IA32_ARCH_CAPABILITIES,
1259 	MSR_IA32_PERF_CAPABILITIES,
1260 	MSR_IA32_MISC_ENABLE,
1261 	MSR_IA32_MCG_STATUS,
1262 	MSR_IA32_MCG_CTL,
1263 	MSR_IA32_MCG_EXT_CTL,
1264 	MSR_IA32_SMBASE,
1265 	MSR_SMI_COUNT,
1266 	MSR_PLATFORM_INFO,
1267 	MSR_MISC_FEATURES_ENABLES,
1268 	MSR_AMD64_VIRT_SPEC_CTRL,
1269 	MSR_IA32_POWER_CTL,
1270 	MSR_IA32_UCODE_REV,
1271 
1272 	/*
1273 	 * The following list leaves out MSRs whose values are determined
1274 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1275 	 * We always support the "true" VMX control MSRs, even if the host
1276 	 * processor does not, so I am putting these registers here rather
1277 	 * than in msrs_to_save_all.
1278 	 */
1279 	MSR_IA32_VMX_BASIC,
1280 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1281 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1282 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1283 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1284 	MSR_IA32_VMX_MISC,
1285 	MSR_IA32_VMX_CR0_FIXED0,
1286 	MSR_IA32_VMX_CR4_FIXED0,
1287 	MSR_IA32_VMX_VMCS_ENUM,
1288 	MSR_IA32_VMX_PROCBASED_CTLS2,
1289 	MSR_IA32_VMX_EPT_VPID_CAP,
1290 	MSR_IA32_VMX_VMFUNC,
1291 
1292 	MSR_K7_HWCR,
1293 	MSR_KVM_POLL_CONTROL,
1294 };
1295 
1296 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1297 static unsigned num_emulated_msrs;
1298 
1299 /*
1300  * List of msr numbers which are used to expose MSR-based features that
1301  * can be used by a hypervisor to validate requested CPU features.
1302  */
1303 static const u32 msr_based_features_all[] = {
1304 	MSR_IA32_VMX_BASIC,
1305 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1306 	MSR_IA32_VMX_PINBASED_CTLS,
1307 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1308 	MSR_IA32_VMX_PROCBASED_CTLS,
1309 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1310 	MSR_IA32_VMX_EXIT_CTLS,
1311 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1312 	MSR_IA32_VMX_ENTRY_CTLS,
1313 	MSR_IA32_VMX_MISC,
1314 	MSR_IA32_VMX_CR0_FIXED0,
1315 	MSR_IA32_VMX_CR0_FIXED1,
1316 	MSR_IA32_VMX_CR4_FIXED0,
1317 	MSR_IA32_VMX_CR4_FIXED1,
1318 	MSR_IA32_VMX_VMCS_ENUM,
1319 	MSR_IA32_VMX_PROCBASED_CTLS2,
1320 	MSR_IA32_VMX_EPT_VPID_CAP,
1321 	MSR_IA32_VMX_VMFUNC,
1322 
1323 	MSR_F10H_DECFG,
1324 	MSR_IA32_UCODE_REV,
1325 	MSR_IA32_ARCH_CAPABILITIES,
1326 	MSR_IA32_PERF_CAPABILITIES,
1327 };
1328 
1329 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1330 static unsigned int num_msr_based_features;
1331 
1332 static u64 kvm_get_arch_capabilities(void)
1333 {
1334 	u64 data = 0;
1335 
1336 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1337 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1338 
1339 	/*
1340 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1341 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1342 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1343 	 * L1 guests, so it need not worry about its own (L2) guests.
1344 	 */
1345 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1346 
1347 	/*
1348 	 * If we're doing cache flushes (either "always" or "cond")
1349 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1350 	 * If an outer hypervisor is doing the cache flush for us
1351 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1352 	 * capability to the guest too, and if EPT is disabled we're not
1353 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1354 	 * require a nested hypervisor to do a flush of its own.
1355 	 */
1356 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1357 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1358 
1359 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1360 		data |= ARCH_CAP_RDCL_NO;
1361 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1362 		data |= ARCH_CAP_SSB_NO;
1363 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1364 		data |= ARCH_CAP_MDS_NO;
1365 
1366 	/*
1367 	 * On TAA affected systems:
1368 	 *      - nothing to do if TSX is disabled on the host.
1369 	 *      - we emulate TSX_CTRL if present on the host.
1370 	 *	  This lets the guest use VERW to clear CPU buffers.
1371 	 */
1372 	if (!boot_cpu_has(X86_FEATURE_RTM))
1373 		data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1374 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1375 		data |= ARCH_CAP_TAA_NO;
1376 
1377 	return data;
1378 }
1379 
1380 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1381 {
1382 	switch (msr->index) {
1383 	case MSR_IA32_ARCH_CAPABILITIES:
1384 		msr->data = kvm_get_arch_capabilities();
1385 		break;
1386 	case MSR_IA32_UCODE_REV:
1387 		rdmsrl_safe(msr->index, &msr->data);
1388 		break;
1389 	default:
1390 		if (kvm_x86_ops.get_msr_feature(msr))
1391 			return 1;
1392 	}
1393 	return 0;
1394 }
1395 
1396 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1397 {
1398 	struct kvm_msr_entry msr;
1399 	int r;
1400 
1401 	msr.index = index;
1402 	r = kvm_get_msr_feature(&msr);
1403 	if (r)
1404 		return r;
1405 
1406 	*data = msr.data;
1407 
1408 	return 0;
1409 }
1410 
1411 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1412 {
1413 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1414 		return false;
1415 
1416 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1417 		return false;
1418 
1419 	if (efer & (EFER_LME | EFER_LMA) &&
1420 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1421 		return false;
1422 
1423 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1424 		return false;
1425 
1426 	return true;
1427 
1428 }
1429 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1430 {
1431 	if (efer & efer_reserved_bits)
1432 		return false;
1433 
1434 	return __kvm_valid_efer(vcpu, efer);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1437 
1438 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1439 {
1440 	u64 old_efer = vcpu->arch.efer;
1441 	u64 efer = msr_info->data;
1442 
1443 	if (efer & efer_reserved_bits)
1444 		return 1;
1445 
1446 	if (!msr_info->host_initiated) {
1447 		if (!__kvm_valid_efer(vcpu, efer))
1448 			return 1;
1449 
1450 		if (is_paging(vcpu) &&
1451 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1452 			return 1;
1453 	}
1454 
1455 	efer &= ~EFER_LMA;
1456 	efer |= vcpu->arch.efer & EFER_LMA;
1457 
1458 	kvm_x86_ops.set_efer(vcpu, efer);
1459 
1460 	/* Update reserved bits */
1461 	if ((efer ^ old_efer) & EFER_NX)
1462 		kvm_mmu_reset_context(vcpu);
1463 
1464 	return 0;
1465 }
1466 
1467 void kvm_enable_efer_bits(u64 mask)
1468 {
1469        efer_reserved_bits &= ~mask;
1470 }
1471 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1472 
1473 /*
1474  * Write @data into the MSR specified by @index.  Select MSR specific fault
1475  * checks are bypassed if @host_initiated is %true.
1476  * Returns 0 on success, non-0 otherwise.
1477  * Assumes vcpu_load() was already called.
1478  */
1479 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1480 			 bool host_initiated)
1481 {
1482 	struct msr_data msr;
1483 
1484 	switch (index) {
1485 	case MSR_FS_BASE:
1486 	case MSR_GS_BASE:
1487 	case MSR_KERNEL_GS_BASE:
1488 	case MSR_CSTAR:
1489 	case MSR_LSTAR:
1490 		if (is_noncanonical_address(data, vcpu))
1491 			return 1;
1492 		break;
1493 	case MSR_IA32_SYSENTER_EIP:
1494 	case MSR_IA32_SYSENTER_ESP:
1495 		/*
1496 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1497 		 * non-canonical address is written on Intel but not on
1498 		 * AMD (which ignores the top 32-bits, because it does
1499 		 * not implement 64-bit SYSENTER).
1500 		 *
1501 		 * 64-bit code should hence be able to write a non-canonical
1502 		 * value on AMD.  Making the address canonical ensures that
1503 		 * vmentry does not fail on Intel after writing a non-canonical
1504 		 * value, and that something deterministic happens if the guest
1505 		 * invokes 64-bit SYSENTER.
1506 		 */
1507 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1508 	}
1509 
1510 	msr.data = data;
1511 	msr.index = index;
1512 	msr.host_initiated = host_initiated;
1513 
1514 	return kvm_x86_ops.set_msr(vcpu, &msr);
1515 }
1516 
1517 /*
1518  * Read the MSR specified by @index into @data.  Select MSR specific fault
1519  * checks are bypassed if @host_initiated is %true.
1520  * Returns 0 on success, non-0 otherwise.
1521  * Assumes vcpu_load() was already called.
1522  */
1523 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1524 		  bool host_initiated)
1525 {
1526 	struct msr_data msr;
1527 	int ret;
1528 
1529 	msr.index = index;
1530 	msr.host_initiated = host_initiated;
1531 
1532 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1533 	if (!ret)
1534 		*data = msr.data;
1535 	return ret;
1536 }
1537 
1538 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1539 {
1540 	return __kvm_get_msr(vcpu, index, data, false);
1541 }
1542 EXPORT_SYMBOL_GPL(kvm_get_msr);
1543 
1544 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1545 {
1546 	return __kvm_set_msr(vcpu, index, data, false);
1547 }
1548 EXPORT_SYMBOL_GPL(kvm_set_msr);
1549 
1550 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1551 {
1552 	u32 ecx = kvm_rcx_read(vcpu);
1553 	u64 data;
1554 
1555 	if (kvm_get_msr(vcpu, ecx, &data)) {
1556 		trace_kvm_msr_read_ex(ecx);
1557 		kvm_inject_gp(vcpu, 0);
1558 		return 1;
1559 	}
1560 
1561 	trace_kvm_msr_read(ecx, data);
1562 
1563 	kvm_rax_write(vcpu, data & -1u);
1564 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1565 	return kvm_skip_emulated_instruction(vcpu);
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1568 
1569 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1570 {
1571 	u32 ecx = kvm_rcx_read(vcpu);
1572 	u64 data = kvm_read_edx_eax(vcpu);
1573 
1574 	if (kvm_set_msr(vcpu, ecx, data)) {
1575 		trace_kvm_msr_write_ex(ecx, data);
1576 		kvm_inject_gp(vcpu, 0);
1577 		return 1;
1578 	}
1579 
1580 	trace_kvm_msr_write(ecx, data);
1581 	return kvm_skip_emulated_instruction(vcpu);
1582 }
1583 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1584 
1585 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1586 {
1587 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1588 		need_resched() || signal_pending(current);
1589 }
1590 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1591 
1592 /*
1593  * The fast path for frequent and performance sensitive wrmsr emulation,
1594  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1595  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1596  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1597  * other cases which must be called after interrupts are enabled on the host.
1598  */
1599 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1600 {
1601 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1602 		return 1;
1603 
1604 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1605 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1606 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1607 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1608 
1609 		data &= ~(1 << 12);
1610 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1611 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1612 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1613 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1614 		return 0;
1615 	}
1616 
1617 	return 1;
1618 }
1619 
1620 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1621 {
1622 	if (!kvm_can_use_hv_timer(vcpu))
1623 		return 1;
1624 
1625 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1626 	return 0;
1627 }
1628 
1629 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1630 {
1631 	u32 msr = kvm_rcx_read(vcpu);
1632 	u64 data;
1633 	fastpath_t ret = EXIT_FASTPATH_NONE;
1634 
1635 	switch (msr) {
1636 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1637 		data = kvm_read_edx_eax(vcpu);
1638 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1639 			kvm_skip_emulated_instruction(vcpu);
1640 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1641 		}
1642 		break;
1643 	case MSR_IA32_TSCDEADLINE:
1644 		data = kvm_read_edx_eax(vcpu);
1645 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1646 			kvm_skip_emulated_instruction(vcpu);
1647 			ret = EXIT_FASTPATH_REENTER_GUEST;
1648 		}
1649 		break;
1650 	default:
1651 		break;
1652 	}
1653 
1654 	if (ret != EXIT_FASTPATH_NONE)
1655 		trace_kvm_msr_write(msr, data);
1656 
1657 	return ret;
1658 }
1659 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1660 
1661 /*
1662  * Adapt set_msr() to msr_io()'s calling convention
1663  */
1664 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1665 {
1666 	return __kvm_get_msr(vcpu, index, data, true);
1667 }
1668 
1669 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1670 {
1671 	return __kvm_set_msr(vcpu, index, *data, true);
1672 }
1673 
1674 #ifdef CONFIG_X86_64
1675 struct pvclock_clock {
1676 	int vclock_mode;
1677 	u64 cycle_last;
1678 	u64 mask;
1679 	u32 mult;
1680 	u32 shift;
1681 	u64 base_cycles;
1682 	u64 offset;
1683 };
1684 
1685 struct pvclock_gtod_data {
1686 	seqcount_t	seq;
1687 
1688 	struct pvclock_clock clock; /* extract of a clocksource struct */
1689 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1690 
1691 	ktime_t		offs_boot;
1692 	u64		wall_time_sec;
1693 };
1694 
1695 static struct pvclock_gtod_data pvclock_gtod_data;
1696 
1697 static void update_pvclock_gtod(struct timekeeper *tk)
1698 {
1699 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1700 
1701 	write_seqcount_begin(&vdata->seq);
1702 
1703 	/* copy pvclock gtod data */
1704 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1705 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1706 	vdata->clock.mask		= tk->tkr_mono.mask;
1707 	vdata->clock.mult		= tk->tkr_mono.mult;
1708 	vdata->clock.shift		= tk->tkr_mono.shift;
1709 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1710 	vdata->clock.offset		= tk->tkr_mono.base;
1711 
1712 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1713 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1714 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1715 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1716 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1717 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1718 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1719 
1720 	vdata->wall_time_sec            = tk->xtime_sec;
1721 
1722 	vdata->offs_boot		= tk->offs_boot;
1723 
1724 	write_seqcount_end(&vdata->seq);
1725 }
1726 
1727 static s64 get_kvmclock_base_ns(void)
1728 {
1729 	/* Count up from boot time, but with the frequency of the raw clock.  */
1730 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1731 }
1732 #else
1733 static s64 get_kvmclock_base_ns(void)
1734 {
1735 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1736 	return ktime_get_boottime_ns();
1737 }
1738 #endif
1739 
1740 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1741 {
1742 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1743 	kvm_vcpu_kick(vcpu);
1744 }
1745 
1746 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1747 {
1748 	int version;
1749 	int r;
1750 	struct pvclock_wall_clock wc;
1751 	u64 wall_nsec;
1752 
1753 	if (!wall_clock)
1754 		return;
1755 
1756 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1757 	if (r)
1758 		return;
1759 
1760 	if (version & 1)
1761 		++version;  /* first time write, random junk */
1762 
1763 	++version;
1764 
1765 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1766 		return;
1767 
1768 	/*
1769 	 * The guest calculates current wall clock time by adding
1770 	 * system time (updated by kvm_guest_time_update below) to the
1771 	 * wall clock specified here.  We do the reverse here.
1772 	 */
1773 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1774 
1775 	wc.nsec = do_div(wall_nsec, 1000000000);
1776 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1777 	wc.version = version;
1778 
1779 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1780 
1781 	version++;
1782 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1783 }
1784 
1785 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1786 {
1787 	do_shl32_div32(dividend, divisor);
1788 	return dividend;
1789 }
1790 
1791 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1792 			       s8 *pshift, u32 *pmultiplier)
1793 {
1794 	uint64_t scaled64;
1795 	int32_t  shift = 0;
1796 	uint64_t tps64;
1797 	uint32_t tps32;
1798 
1799 	tps64 = base_hz;
1800 	scaled64 = scaled_hz;
1801 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1802 		tps64 >>= 1;
1803 		shift--;
1804 	}
1805 
1806 	tps32 = (uint32_t)tps64;
1807 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1808 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1809 			scaled64 >>= 1;
1810 		else
1811 			tps32 <<= 1;
1812 		shift++;
1813 	}
1814 
1815 	*pshift = shift;
1816 	*pmultiplier = div_frac(scaled64, tps32);
1817 }
1818 
1819 #ifdef CONFIG_X86_64
1820 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1821 #endif
1822 
1823 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1824 static unsigned long max_tsc_khz;
1825 
1826 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1827 {
1828 	u64 v = (u64)khz * (1000000 + ppm);
1829 	do_div(v, 1000000);
1830 	return v;
1831 }
1832 
1833 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1834 {
1835 	u64 ratio;
1836 
1837 	/* Guest TSC same frequency as host TSC? */
1838 	if (!scale) {
1839 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1840 		return 0;
1841 	}
1842 
1843 	/* TSC scaling supported? */
1844 	if (!kvm_has_tsc_control) {
1845 		if (user_tsc_khz > tsc_khz) {
1846 			vcpu->arch.tsc_catchup = 1;
1847 			vcpu->arch.tsc_always_catchup = 1;
1848 			return 0;
1849 		} else {
1850 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1851 			return -1;
1852 		}
1853 	}
1854 
1855 	/* TSC scaling required  - calculate ratio */
1856 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1857 				user_tsc_khz, tsc_khz);
1858 
1859 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1860 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1861 			            user_tsc_khz);
1862 		return -1;
1863 	}
1864 
1865 	vcpu->arch.tsc_scaling_ratio = ratio;
1866 	return 0;
1867 }
1868 
1869 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1870 {
1871 	u32 thresh_lo, thresh_hi;
1872 	int use_scaling = 0;
1873 
1874 	/* tsc_khz can be zero if TSC calibration fails */
1875 	if (user_tsc_khz == 0) {
1876 		/* set tsc_scaling_ratio to a safe value */
1877 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1878 		return -1;
1879 	}
1880 
1881 	/* Compute a scale to convert nanoseconds in TSC cycles */
1882 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1883 			   &vcpu->arch.virtual_tsc_shift,
1884 			   &vcpu->arch.virtual_tsc_mult);
1885 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1886 
1887 	/*
1888 	 * Compute the variation in TSC rate which is acceptable
1889 	 * within the range of tolerance and decide if the
1890 	 * rate being applied is within that bounds of the hardware
1891 	 * rate.  If so, no scaling or compensation need be done.
1892 	 */
1893 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1894 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1895 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1896 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1897 		use_scaling = 1;
1898 	}
1899 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1900 }
1901 
1902 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1903 {
1904 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1905 				      vcpu->arch.virtual_tsc_mult,
1906 				      vcpu->arch.virtual_tsc_shift);
1907 	tsc += vcpu->arch.this_tsc_write;
1908 	return tsc;
1909 }
1910 
1911 static inline int gtod_is_based_on_tsc(int mode)
1912 {
1913 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
1914 }
1915 
1916 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1917 {
1918 #ifdef CONFIG_X86_64
1919 	bool vcpus_matched;
1920 	struct kvm_arch *ka = &vcpu->kvm->arch;
1921 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1922 
1923 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1924 			 atomic_read(&vcpu->kvm->online_vcpus));
1925 
1926 	/*
1927 	 * Once the masterclock is enabled, always perform request in
1928 	 * order to update it.
1929 	 *
1930 	 * In order to enable masterclock, the host clocksource must be TSC
1931 	 * and the vcpus need to have matched TSCs.  When that happens,
1932 	 * perform request to enable masterclock.
1933 	 */
1934 	if (ka->use_master_clock ||
1935 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1936 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1937 
1938 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1939 			    atomic_read(&vcpu->kvm->online_vcpus),
1940 		            ka->use_master_clock, gtod->clock.vclock_mode);
1941 #endif
1942 }
1943 
1944 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1945 {
1946 	u64 curr_offset = vcpu->arch.l1_tsc_offset;
1947 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1948 }
1949 
1950 /*
1951  * Multiply tsc by a fixed point number represented by ratio.
1952  *
1953  * The most significant 64-N bits (mult) of ratio represent the
1954  * integral part of the fixed point number; the remaining N bits
1955  * (frac) represent the fractional part, ie. ratio represents a fixed
1956  * point number (mult + frac * 2^(-N)).
1957  *
1958  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1959  */
1960 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1961 {
1962 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1963 }
1964 
1965 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1966 {
1967 	u64 _tsc = tsc;
1968 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1969 
1970 	if (ratio != kvm_default_tsc_scaling_ratio)
1971 		_tsc = __scale_tsc(ratio, tsc);
1972 
1973 	return _tsc;
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1976 
1977 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1978 {
1979 	u64 tsc;
1980 
1981 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1982 
1983 	return target_tsc - tsc;
1984 }
1985 
1986 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1987 {
1988 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1989 }
1990 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1991 
1992 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1993 {
1994 	vcpu->arch.l1_tsc_offset = offset;
1995 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
1996 }
1997 
1998 static inline bool kvm_check_tsc_unstable(void)
1999 {
2000 #ifdef CONFIG_X86_64
2001 	/*
2002 	 * TSC is marked unstable when we're running on Hyper-V,
2003 	 * 'TSC page' clocksource is good.
2004 	 */
2005 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2006 		return false;
2007 #endif
2008 	return check_tsc_unstable();
2009 }
2010 
2011 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
2012 {
2013 	struct kvm *kvm = vcpu->kvm;
2014 	u64 offset, ns, elapsed;
2015 	unsigned long flags;
2016 	bool matched;
2017 	bool already_matched;
2018 	u64 data = msr->data;
2019 	bool synchronizing = false;
2020 
2021 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2022 	offset = kvm_compute_tsc_offset(vcpu, data);
2023 	ns = get_kvmclock_base_ns();
2024 	elapsed = ns - kvm->arch.last_tsc_nsec;
2025 
2026 	if (vcpu->arch.virtual_tsc_khz) {
2027 		if (data == 0 && msr->host_initiated) {
2028 			/*
2029 			 * detection of vcpu initialization -- need to sync
2030 			 * with other vCPUs. This particularly helps to keep
2031 			 * kvm_clock stable after CPU hotplug
2032 			 */
2033 			synchronizing = true;
2034 		} else {
2035 			u64 tsc_exp = kvm->arch.last_tsc_write +
2036 						nsec_to_cycles(vcpu, elapsed);
2037 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2038 			/*
2039 			 * Special case: TSC write with a small delta (1 second)
2040 			 * of virtual cycle time against real time is
2041 			 * interpreted as an attempt to synchronize the CPU.
2042 			 */
2043 			synchronizing = data < tsc_exp + tsc_hz &&
2044 					data + tsc_hz > tsc_exp;
2045 		}
2046 	}
2047 
2048 	/*
2049 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2050 	 * TSC, we add elapsed time in this computation.  We could let the
2051 	 * compensation code attempt to catch up if we fall behind, but
2052 	 * it's better to try to match offsets from the beginning.
2053          */
2054 	if (synchronizing &&
2055 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2056 		if (!kvm_check_tsc_unstable()) {
2057 			offset = kvm->arch.cur_tsc_offset;
2058 		} else {
2059 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2060 			data += delta;
2061 			offset = kvm_compute_tsc_offset(vcpu, data);
2062 		}
2063 		matched = true;
2064 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2065 	} else {
2066 		/*
2067 		 * We split periods of matched TSC writes into generations.
2068 		 * For each generation, we track the original measured
2069 		 * nanosecond time, offset, and write, so if TSCs are in
2070 		 * sync, we can match exact offset, and if not, we can match
2071 		 * exact software computation in compute_guest_tsc()
2072 		 *
2073 		 * These values are tracked in kvm->arch.cur_xxx variables.
2074 		 */
2075 		kvm->arch.cur_tsc_generation++;
2076 		kvm->arch.cur_tsc_nsec = ns;
2077 		kvm->arch.cur_tsc_write = data;
2078 		kvm->arch.cur_tsc_offset = offset;
2079 		matched = false;
2080 	}
2081 
2082 	/*
2083 	 * We also track th most recent recorded KHZ, write and time to
2084 	 * allow the matching interval to be extended at each write.
2085 	 */
2086 	kvm->arch.last_tsc_nsec = ns;
2087 	kvm->arch.last_tsc_write = data;
2088 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2089 
2090 	vcpu->arch.last_guest_tsc = data;
2091 
2092 	/* Keep track of which generation this VCPU has synchronized to */
2093 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2094 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2095 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2096 
2097 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2098 		update_ia32_tsc_adjust_msr(vcpu, offset);
2099 
2100 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2101 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2102 
2103 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2104 	if (!matched) {
2105 		kvm->arch.nr_vcpus_matched_tsc = 0;
2106 	} else if (!already_matched) {
2107 		kvm->arch.nr_vcpus_matched_tsc++;
2108 	}
2109 
2110 	kvm_track_tsc_matching(vcpu);
2111 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2112 }
2113 
2114 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2115 
2116 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2117 					   s64 adjustment)
2118 {
2119 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2120 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2121 }
2122 
2123 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2124 {
2125 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2126 		WARN_ON(adjustment < 0);
2127 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2128 	adjust_tsc_offset_guest(vcpu, adjustment);
2129 }
2130 
2131 #ifdef CONFIG_X86_64
2132 
2133 static u64 read_tsc(void)
2134 {
2135 	u64 ret = (u64)rdtsc_ordered();
2136 	u64 last = pvclock_gtod_data.clock.cycle_last;
2137 
2138 	if (likely(ret >= last))
2139 		return ret;
2140 
2141 	/*
2142 	 * GCC likes to generate cmov here, but this branch is extremely
2143 	 * predictable (it's just a function of time and the likely is
2144 	 * very likely) and there's a data dependence, so force GCC
2145 	 * to generate a branch instead.  I don't barrier() because
2146 	 * we don't actually need a barrier, and if this function
2147 	 * ever gets inlined it will generate worse code.
2148 	 */
2149 	asm volatile ("");
2150 	return last;
2151 }
2152 
2153 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2154 			  int *mode)
2155 {
2156 	long v;
2157 	u64 tsc_pg_val;
2158 
2159 	switch (clock->vclock_mode) {
2160 	case VDSO_CLOCKMODE_HVCLOCK:
2161 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2162 						  tsc_timestamp);
2163 		if (tsc_pg_val != U64_MAX) {
2164 			/* TSC page valid */
2165 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2166 			v = (tsc_pg_val - clock->cycle_last) &
2167 				clock->mask;
2168 		} else {
2169 			/* TSC page invalid */
2170 			*mode = VDSO_CLOCKMODE_NONE;
2171 		}
2172 		break;
2173 	case VDSO_CLOCKMODE_TSC:
2174 		*mode = VDSO_CLOCKMODE_TSC;
2175 		*tsc_timestamp = read_tsc();
2176 		v = (*tsc_timestamp - clock->cycle_last) &
2177 			clock->mask;
2178 		break;
2179 	default:
2180 		*mode = VDSO_CLOCKMODE_NONE;
2181 	}
2182 
2183 	if (*mode == VDSO_CLOCKMODE_NONE)
2184 		*tsc_timestamp = v = 0;
2185 
2186 	return v * clock->mult;
2187 }
2188 
2189 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2190 {
2191 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2192 	unsigned long seq;
2193 	int mode;
2194 	u64 ns;
2195 
2196 	do {
2197 		seq = read_seqcount_begin(&gtod->seq);
2198 		ns = gtod->raw_clock.base_cycles;
2199 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2200 		ns >>= gtod->raw_clock.shift;
2201 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2202 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2203 	*t = ns;
2204 
2205 	return mode;
2206 }
2207 
2208 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2209 {
2210 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2211 	unsigned long seq;
2212 	int mode;
2213 	u64 ns;
2214 
2215 	do {
2216 		seq = read_seqcount_begin(&gtod->seq);
2217 		ts->tv_sec = gtod->wall_time_sec;
2218 		ns = gtod->clock.base_cycles;
2219 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2220 		ns >>= gtod->clock.shift;
2221 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2222 
2223 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2224 	ts->tv_nsec = ns;
2225 
2226 	return mode;
2227 }
2228 
2229 /* returns true if host is using TSC based clocksource */
2230 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2231 {
2232 	/* checked again under seqlock below */
2233 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2234 		return false;
2235 
2236 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2237 						      tsc_timestamp));
2238 }
2239 
2240 /* returns true if host is using TSC based clocksource */
2241 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2242 					   u64 *tsc_timestamp)
2243 {
2244 	/* checked again under seqlock below */
2245 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2246 		return false;
2247 
2248 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2249 }
2250 #endif
2251 
2252 /*
2253  *
2254  * Assuming a stable TSC across physical CPUS, and a stable TSC
2255  * across virtual CPUs, the following condition is possible.
2256  * Each numbered line represents an event visible to both
2257  * CPUs at the next numbered event.
2258  *
2259  * "timespecX" represents host monotonic time. "tscX" represents
2260  * RDTSC value.
2261  *
2262  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2263  *
2264  * 1.  read timespec0,tsc0
2265  * 2.					| timespec1 = timespec0 + N
2266  * 					| tsc1 = tsc0 + M
2267  * 3. transition to guest		| transition to guest
2268  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2269  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2270  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2271  *
2272  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2273  *
2274  * 	- ret0 < ret1
2275  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2276  *		...
2277  *	- 0 < N - M => M < N
2278  *
2279  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2280  * always the case (the difference between two distinct xtime instances
2281  * might be smaller then the difference between corresponding TSC reads,
2282  * when updating guest vcpus pvclock areas).
2283  *
2284  * To avoid that problem, do not allow visibility of distinct
2285  * system_timestamp/tsc_timestamp values simultaneously: use a master
2286  * copy of host monotonic time values. Update that master copy
2287  * in lockstep.
2288  *
2289  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2290  *
2291  */
2292 
2293 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2294 {
2295 #ifdef CONFIG_X86_64
2296 	struct kvm_arch *ka = &kvm->arch;
2297 	int vclock_mode;
2298 	bool host_tsc_clocksource, vcpus_matched;
2299 
2300 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2301 			atomic_read(&kvm->online_vcpus));
2302 
2303 	/*
2304 	 * If the host uses TSC clock, then passthrough TSC as stable
2305 	 * to the guest.
2306 	 */
2307 	host_tsc_clocksource = kvm_get_time_and_clockread(
2308 					&ka->master_kernel_ns,
2309 					&ka->master_cycle_now);
2310 
2311 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2312 				&& !ka->backwards_tsc_observed
2313 				&& !ka->boot_vcpu_runs_old_kvmclock;
2314 
2315 	if (ka->use_master_clock)
2316 		atomic_set(&kvm_guest_has_master_clock, 1);
2317 
2318 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2319 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2320 					vcpus_matched);
2321 #endif
2322 }
2323 
2324 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2325 {
2326 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2327 }
2328 
2329 static void kvm_gen_update_masterclock(struct kvm *kvm)
2330 {
2331 #ifdef CONFIG_X86_64
2332 	int i;
2333 	struct kvm_vcpu *vcpu;
2334 	struct kvm_arch *ka = &kvm->arch;
2335 
2336 	spin_lock(&ka->pvclock_gtod_sync_lock);
2337 	kvm_make_mclock_inprogress_request(kvm);
2338 	/* no guest entries from this point */
2339 	pvclock_update_vm_gtod_copy(kvm);
2340 
2341 	kvm_for_each_vcpu(i, vcpu, kvm)
2342 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2343 
2344 	/* guest entries allowed */
2345 	kvm_for_each_vcpu(i, vcpu, kvm)
2346 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2347 
2348 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2349 #endif
2350 }
2351 
2352 u64 get_kvmclock_ns(struct kvm *kvm)
2353 {
2354 	struct kvm_arch *ka = &kvm->arch;
2355 	struct pvclock_vcpu_time_info hv_clock;
2356 	u64 ret;
2357 
2358 	spin_lock(&ka->pvclock_gtod_sync_lock);
2359 	if (!ka->use_master_clock) {
2360 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2361 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2362 	}
2363 
2364 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2365 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2366 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2367 
2368 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2369 	get_cpu();
2370 
2371 	if (__this_cpu_read(cpu_tsc_khz)) {
2372 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2373 				   &hv_clock.tsc_shift,
2374 				   &hv_clock.tsc_to_system_mul);
2375 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2376 	} else
2377 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2378 
2379 	put_cpu();
2380 
2381 	return ret;
2382 }
2383 
2384 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2385 {
2386 	struct kvm_vcpu_arch *vcpu = &v->arch;
2387 	struct pvclock_vcpu_time_info guest_hv_clock;
2388 
2389 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2390 		&guest_hv_clock, sizeof(guest_hv_clock))))
2391 		return;
2392 
2393 	/* This VCPU is paused, but it's legal for a guest to read another
2394 	 * VCPU's kvmclock, so we really have to follow the specification where
2395 	 * it says that version is odd if data is being modified, and even after
2396 	 * it is consistent.
2397 	 *
2398 	 * Version field updates must be kept separate.  This is because
2399 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2400 	 * writes within a string instruction are weakly ordered.  So there
2401 	 * are three writes overall.
2402 	 *
2403 	 * As a small optimization, only write the version field in the first
2404 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2405 	 * version field is the first in the struct.
2406 	 */
2407 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2408 
2409 	if (guest_hv_clock.version & 1)
2410 		++guest_hv_clock.version;  /* first time write, random junk */
2411 
2412 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2413 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2414 				&vcpu->hv_clock,
2415 				sizeof(vcpu->hv_clock.version));
2416 
2417 	smp_wmb();
2418 
2419 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2420 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2421 
2422 	if (vcpu->pvclock_set_guest_stopped_request) {
2423 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2424 		vcpu->pvclock_set_guest_stopped_request = false;
2425 	}
2426 
2427 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2428 
2429 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2430 				&vcpu->hv_clock,
2431 				sizeof(vcpu->hv_clock));
2432 
2433 	smp_wmb();
2434 
2435 	vcpu->hv_clock.version++;
2436 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2437 				&vcpu->hv_clock,
2438 				sizeof(vcpu->hv_clock.version));
2439 }
2440 
2441 static int kvm_guest_time_update(struct kvm_vcpu *v)
2442 {
2443 	unsigned long flags, tgt_tsc_khz;
2444 	struct kvm_vcpu_arch *vcpu = &v->arch;
2445 	struct kvm_arch *ka = &v->kvm->arch;
2446 	s64 kernel_ns;
2447 	u64 tsc_timestamp, host_tsc;
2448 	u8 pvclock_flags;
2449 	bool use_master_clock;
2450 
2451 	kernel_ns = 0;
2452 	host_tsc = 0;
2453 
2454 	/*
2455 	 * If the host uses TSC clock, then passthrough TSC as stable
2456 	 * to the guest.
2457 	 */
2458 	spin_lock(&ka->pvclock_gtod_sync_lock);
2459 	use_master_clock = ka->use_master_clock;
2460 	if (use_master_clock) {
2461 		host_tsc = ka->master_cycle_now;
2462 		kernel_ns = ka->master_kernel_ns;
2463 	}
2464 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2465 
2466 	/* Keep irq disabled to prevent changes to the clock */
2467 	local_irq_save(flags);
2468 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2469 	if (unlikely(tgt_tsc_khz == 0)) {
2470 		local_irq_restore(flags);
2471 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2472 		return 1;
2473 	}
2474 	if (!use_master_clock) {
2475 		host_tsc = rdtsc();
2476 		kernel_ns = get_kvmclock_base_ns();
2477 	}
2478 
2479 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2480 
2481 	/*
2482 	 * We may have to catch up the TSC to match elapsed wall clock
2483 	 * time for two reasons, even if kvmclock is used.
2484 	 *   1) CPU could have been running below the maximum TSC rate
2485 	 *   2) Broken TSC compensation resets the base at each VCPU
2486 	 *      entry to avoid unknown leaps of TSC even when running
2487 	 *      again on the same CPU.  This may cause apparent elapsed
2488 	 *      time to disappear, and the guest to stand still or run
2489 	 *	very slowly.
2490 	 */
2491 	if (vcpu->tsc_catchup) {
2492 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2493 		if (tsc > tsc_timestamp) {
2494 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2495 			tsc_timestamp = tsc;
2496 		}
2497 	}
2498 
2499 	local_irq_restore(flags);
2500 
2501 	/* With all the info we got, fill in the values */
2502 
2503 	if (kvm_has_tsc_control)
2504 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2505 
2506 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2507 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2508 				   &vcpu->hv_clock.tsc_shift,
2509 				   &vcpu->hv_clock.tsc_to_system_mul);
2510 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2511 	}
2512 
2513 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2514 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2515 	vcpu->last_guest_tsc = tsc_timestamp;
2516 
2517 	/* If the host uses TSC clocksource, then it is stable */
2518 	pvclock_flags = 0;
2519 	if (use_master_clock)
2520 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2521 
2522 	vcpu->hv_clock.flags = pvclock_flags;
2523 
2524 	if (vcpu->pv_time_enabled)
2525 		kvm_setup_pvclock_page(v);
2526 	if (v == kvm_get_vcpu(v->kvm, 0))
2527 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2528 	return 0;
2529 }
2530 
2531 /*
2532  * kvmclock updates which are isolated to a given vcpu, such as
2533  * vcpu->cpu migration, should not allow system_timestamp from
2534  * the rest of the vcpus to remain static. Otherwise ntp frequency
2535  * correction applies to one vcpu's system_timestamp but not
2536  * the others.
2537  *
2538  * So in those cases, request a kvmclock update for all vcpus.
2539  * We need to rate-limit these requests though, as they can
2540  * considerably slow guests that have a large number of vcpus.
2541  * The time for a remote vcpu to update its kvmclock is bound
2542  * by the delay we use to rate-limit the updates.
2543  */
2544 
2545 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2546 
2547 static void kvmclock_update_fn(struct work_struct *work)
2548 {
2549 	int i;
2550 	struct delayed_work *dwork = to_delayed_work(work);
2551 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2552 					   kvmclock_update_work);
2553 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2554 	struct kvm_vcpu *vcpu;
2555 
2556 	kvm_for_each_vcpu(i, vcpu, kvm) {
2557 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2558 		kvm_vcpu_kick(vcpu);
2559 	}
2560 }
2561 
2562 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2563 {
2564 	struct kvm *kvm = v->kvm;
2565 
2566 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2567 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2568 					KVMCLOCK_UPDATE_DELAY);
2569 }
2570 
2571 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2572 
2573 static void kvmclock_sync_fn(struct work_struct *work)
2574 {
2575 	struct delayed_work *dwork = to_delayed_work(work);
2576 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2577 					   kvmclock_sync_work);
2578 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2579 
2580 	if (!kvmclock_periodic_sync)
2581 		return;
2582 
2583 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2584 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2585 					KVMCLOCK_SYNC_PERIOD);
2586 }
2587 
2588 /*
2589  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2590  */
2591 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2592 {
2593 	/* McStatusWrEn enabled? */
2594 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2595 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2596 
2597 	return false;
2598 }
2599 
2600 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2601 {
2602 	u64 mcg_cap = vcpu->arch.mcg_cap;
2603 	unsigned bank_num = mcg_cap & 0xff;
2604 	u32 msr = msr_info->index;
2605 	u64 data = msr_info->data;
2606 
2607 	switch (msr) {
2608 	case MSR_IA32_MCG_STATUS:
2609 		vcpu->arch.mcg_status = data;
2610 		break;
2611 	case MSR_IA32_MCG_CTL:
2612 		if (!(mcg_cap & MCG_CTL_P) &&
2613 		    (data || !msr_info->host_initiated))
2614 			return 1;
2615 		if (data != 0 && data != ~(u64)0)
2616 			return 1;
2617 		vcpu->arch.mcg_ctl = data;
2618 		break;
2619 	default:
2620 		if (msr >= MSR_IA32_MC0_CTL &&
2621 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2622 			u32 offset = array_index_nospec(
2623 				msr - MSR_IA32_MC0_CTL,
2624 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2625 
2626 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2627 			 * some Linux kernels though clear bit 10 in bank 4 to
2628 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2629 			 * this to avoid an uncatched #GP in the guest
2630 			 */
2631 			if ((offset & 0x3) == 0 &&
2632 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2633 				return -1;
2634 
2635 			/* MCi_STATUS */
2636 			if (!msr_info->host_initiated &&
2637 			    (offset & 0x3) == 1 && data != 0) {
2638 				if (!can_set_mci_status(vcpu))
2639 					return -1;
2640 			}
2641 
2642 			vcpu->arch.mce_banks[offset] = data;
2643 			break;
2644 		}
2645 		return 1;
2646 	}
2647 	return 0;
2648 }
2649 
2650 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2651 {
2652 	struct kvm *kvm = vcpu->kvm;
2653 	int lm = is_long_mode(vcpu);
2654 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2655 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2656 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2657 		: kvm->arch.xen_hvm_config.blob_size_32;
2658 	u32 page_num = data & ~PAGE_MASK;
2659 	u64 page_addr = data & PAGE_MASK;
2660 	u8 *page;
2661 	int r;
2662 
2663 	r = -E2BIG;
2664 	if (page_num >= blob_size)
2665 		goto out;
2666 	r = -ENOMEM;
2667 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2668 	if (IS_ERR(page)) {
2669 		r = PTR_ERR(page);
2670 		goto out;
2671 	}
2672 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2673 		goto out_free;
2674 	r = 0;
2675 out_free:
2676 	kfree(page);
2677 out:
2678 	return r;
2679 }
2680 
2681 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2682 {
2683 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2684 
2685 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2686 }
2687 
2688 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2689 {
2690 	gpa_t gpa = data & ~0x3f;
2691 
2692 	/* Bits 4:5 are reserved, Should be zero */
2693 	if (data & 0x30)
2694 		return 1;
2695 
2696 	vcpu->arch.apf.msr_en_val = data;
2697 
2698 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2699 		kvm_clear_async_pf_completion_queue(vcpu);
2700 		kvm_async_pf_hash_reset(vcpu);
2701 		return 0;
2702 	}
2703 
2704 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2705 					sizeof(u64)))
2706 		return 1;
2707 
2708 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2709 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2710 
2711 	kvm_async_pf_wakeup_all(vcpu);
2712 
2713 	return 0;
2714 }
2715 
2716 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2717 {
2718 	/* Bits 8-63 are reserved */
2719 	if (data >> 8)
2720 		return 1;
2721 
2722 	if (!lapic_in_kernel(vcpu))
2723 		return 1;
2724 
2725 	vcpu->arch.apf.msr_int_val = data;
2726 
2727 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2728 
2729 	return 0;
2730 }
2731 
2732 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2733 {
2734 	vcpu->arch.pv_time_enabled = false;
2735 	vcpu->arch.time = 0;
2736 }
2737 
2738 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2739 {
2740 	++vcpu->stat.tlb_flush;
2741 	kvm_x86_ops.tlb_flush_all(vcpu);
2742 }
2743 
2744 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2745 {
2746 	++vcpu->stat.tlb_flush;
2747 	kvm_x86_ops.tlb_flush_guest(vcpu);
2748 }
2749 
2750 static void record_steal_time(struct kvm_vcpu *vcpu)
2751 {
2752 	struct kvm_host_map map;
2753 	struct kvm_steal_time *st;
2754 
2755 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2756 		return;
2757 
2758 	/* -EAGAIN is returned in atomic context so we can just return. */
2759 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2760 			&map, &vcpu->arch.st.cache, false))
2761 		return;
2762 
2763 	st = map.hva +
2764 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2765 
2766 	/*
2767 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2768 	 * expensive IPIs.
2769 	 */
2770 	trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2771 		st->preempted & KVM_VCPU_FLUSH_TLB);
2772 	if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2773 		kvm_vcpu_flush_tlb_guest(vcpu);
2774 
2775 	vcpu->arch.st.preempted = 0;
2776 
2777 	if (st->version & 1)
2778 		st->version += 1;  /* first time write, random junk */
2779 
2780 	st->version += 1;
2781 
2782 	smp_wmb();
2783 
2784 	st->steal += current->sched_info.run_delay -
2785 		vcpu->arch.st.last_steal;
2786 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2787 
2788 	smp_wmb();
2789 
2790 	st->version += 1;
2791 
2792 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2793 }
2794 
2795 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2796 {
2797 	bool pr = false;
2798 	u32 msr = msr_info->index;
2799 	u64 data = msr_info->data;
2800 
2801 	switch (msr) {
2802 	case MSR_AMD64_NB_CFG:
2803 	case MSR_IA32_UCODE_WRITE:
2804 	case MSR_VM_HSAVE_PA:
2805 	case MSR_AMD64_PATCH_LOADER:
2806 	case MSR_AMD64_BU_CFG2:
2807 	case MSR_AMD64_DC_CFG:
2808 	case MSR_F15H_EX_CFG:
2809 		break;
2810 
2811 	case MSR_IA32_UCODE_REV:
2812 		if (msr_info->host_initiated)
2813 			vcpu->arch.microcode_version = data;
2814 		break;
2815 	case MSR_IA32_ARCH_CAPABILITIES:
2816 		if (!msr_info->host_initiated)
2817 			return 1;
2818 		vcpu->arch.arch_capabilities = data;
2819 		break;
2820 	case MSR_EFER:
2821 		return set_efer(vcpu, msr_info);
2822 	case MSR_K7_HWCR:
2823 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2824 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2825 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2826 
2827 		/* Handle McStatusWrEn */
2828 		if (data == BIT_ULL(18)) {
2829 			vcpu->arch.msr_hwcr = data;
2830 		} else if (data != 0) {
2831 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2832 				    data);
2833 			return 1;
2834 		}
2835 		break;
2836 	case MSR_FAM10H_MMIO_CONF_BASE:
2837 		if (data != 0) {
2838 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2839 				    "0x%llx\n", data);
2840 			return 1;
2841 		}
2842 		break;
2843 	case MSR_IA32_DEBUGCTLMSR:
2844 		if (!data) {
2845 			/* We support the non-activated case already */
2846 			break;
2847 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2848 			/* Values other than LBR and BTF are vendor-specific,
2849 			   thus reserved and should throw a #GP */
2850 			return 1;
2851 		}
2852 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2853 			    __func__, data);
2854 		break;
2855 	case 0x200 ... 0x2ff:
2856 		return kvm_mtrr_set_msr(vcpu, msr, data);
2857 	case MSR_IA32_APICBASE:
2858 		return kvm_set_apic_base(vcpu, msr_info);
2859 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2860 		return kvm_x2apic_msr_write(vcpu, msr, data);
2861 	case MSR_IA32_TSCDEADLINE:
2862 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2863 		break;
2864 	case MSR_IA32_TSC_ADJUST:
2865 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2866 			if (!msr_info->host_initiated) {
2867 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2868 				adjust_tsc_offset_guest(vcpu, adj);
2869 			}
2870 			vcpu->arch.ia32_tsc_adjust_msr = data;
2871 		}
2872 		break;
2873 	case MSR_IA32_MISC_ENABLE:
2874 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2875 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2876 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2877 				return 1;
2878 			vcpu->arch.ia32_misc_enable_msr = data;
2879 			kvm_update_cpuid(vcpu);
2880 		} else {
2881 			vcpu->arch.ia32_misc_enable_msr = data;
2882 		}
2883 		break;
2884 	case MSR_IA32_SMBASE:
2885 		if (!msr_info->host_initiated)
2886 			return 1;
2887 		vcpu->arch.smbase = data;
2888 		break;
2889 	case MSR_IA32_POWER_CTL:
2890 		vcpu->arch.msr_ia32_power_ctl = data;
2891 		break;
2892 	case MSR_IA32_TSC:
2893 		kvm_write_tsc(vcpu, msr_info);
2894 		break;
2895 	case MSR_IA32_XSS:
2896 		if (!msr_info->host_initiated &&
2897 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2898 			return 1;
2899 		/*
2900 		 * KVM supports exposing PT to the guest, but does not support
2901 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2902 		 * XSAVES/XRSTORS to save/restore PT MSRs.
2903 		 */
2904 		if (data & ~supported_xss)
2905 			return 1;
2906 		vcpu->arch.ia32_xss = data;
2907 		break;
2908 	case MSR_SMI_COUNT:
2909 		if (!msr_info->host_initiated)
2910 			return 1;
2911 		vcpu->arch.smi_count = data;
2912 		break;
2913 	case MSR_KVM_WALL_CLOCK_NEW:
2914 	case MSR_KVM_WALL_CLOCK:
2915 		vcpu->kvm->arch.wall_clock = data;
2916 		kvm_write_wall_clock(vcpu->kvm, data);
2917 		break;
2918 	case MSR_KVM_SYSTEM_TIME_NEW:
2919 	case MSR_KVM_SYSTEM_TIME: {
2920 		struct kvm_arch *ka = &vcpu->kvm->arch;
2921 
2922 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2923 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2924 
2925 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2926 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2927 
2928 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2929 		}
2930 
2931 		vcpu->arch.time = data;
2932 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2933 
2934 		/* we verify if the enable bit is set... */
2935 		vcpu->arch.pv_time_enabled = false;
2936 		if (!(data & 1))
2937 			break;
2938 
2939 		if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2940 		     &vcpu->arch.pv_time, data & ~1ULL,
2941 		     sizeof(struct pvclock_vcpu_time_info)))
2942 			vcpu->arch.pv_time_enabled = true;
2943 
2944 		break;
2945 	}
2946 	case MSR_KVM_ASYNC_PF_EN:
2947 		if (kvm_pv_enable_async_pf(vcpu, data))
2948 			return 1;
2949 		break;
2950 	case MSR_KVM_ASYNC_PF_INT:
2951 		if (kvm_pv_enable_async_pf_int(vcpu, data))
2952 			return 1;
2953 		break;
2954 	case MSR_KVM_ASYNC_PF_ACK:
2955 		if (data & 0x1) {
2956 			vcpu->arch.apf.pageready_pending = false;
2957 			kvm_check_async_pf_completion(vcpu);
2958 		}
2959 		break;
2960 	case MSR_KVM_STEAL_TIME:
2961 
2962 		if (unlikely(!sched_info_on()))
2963 			return 1;
2964 
2965 		if (data & KVM_STEAL_RESERVED_MASK)
2966 			return 1;
2967 
2968 		vcpu->arch.st.msr_val = data;
2969 
2970 		if (!(data & KVM_MSR_ENABLED))
2971 			break;
2972 
2973 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2974 
2975 		break;
2976 	case MSR_KVM_PV_EOI_EN:
2977 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2978 			return 1;
2979 		break;
2980 
2981 	case MSR_KVM_POLL_CONTROL:
2982 		/* only enable bit supported */
2983 		if (data & (-1ULL << 1))
2984 			return 1;
2985 
2986 		vcpu->arch.msr_kvm_poll_control = data;
2987 		break;
2988 
2989 	case MSR_IA32_MCG_CTL:
2990 	case MSR_IA32_MCG_STATUS:
2991 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2992 		return set_msr_mce(vcpu, msr_info);
2993 
2994 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2995 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2996 		pr = true; /* fall through */
2997 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2998 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2999 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3000 			return kvm_pmu_set_msr(vcpu, msr_info);
3001 
3002 		if (pr || data != 0)
3003 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3004 				    "0x%x data 0x%llx\n", msr, data);
3005 		break;
3006 	case MSR_K7_CLK_CTL:
3007 		/*
3008 		 * Ignore all writes to this no longer documented MSR.
3009 		 * Writes are only relevant for old K7 processors,
3010 		 * all pre-dating SVM, but a recommended workaround from
3011 		 * AMD for these chips. It is possible to specify the
3012 		 * affected processor models on the command line, hence
3013 		 * the need to ignore the workaround.
3014 		 */
3015 		break;
3016 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3017 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3018 	case HV_X64_MSR_SYNDBG_OPTIONS:
3019 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3020 	case HV_X64_MSR_CRASH_CTL:
3021 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3022 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3023 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3024 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3025 		return kvm_hv_set_msr_common(vcpu, msr, data,
3026 					     msr_info->host_initiated);
3027 	case MSR_IA32_BBL_CR_CTL3:
3028 		/* Drop writes to this legacy MSR -- see rdmsr
3029 		 * counterpart for further detail.
3030 		 */
3031 		if (report_ignored_msrs)
3032 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3033 				msr, data);
3034 		break;
3035 	case MSR_AMD64_OSVW_ID_LENGTH:
3036 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3037 			return 1;
3038 		vcpu->arch.osvw.length = data;
3039 		break;
3040 	case MSR_AMD64_OSVW_STATUS:
3041 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3042 			return 1;
3043 		vcpu->arch.osvw.status = data;
3044 		break;
3045 	case MSR_PLATFORM_INFO:
3046 		if (!msr_info->host_initiated ||
3047 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3048 		     cpuid_fault_enabled(vcpu)))
3049 			return 1;
3050 		vcpu->arch.msr_platform_info = data;
3051 		break;
3052 	case MSR_MISC_FEATURES_ENABLES:
3053 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3054 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3055 		     !supports_cpuid_fault(vcpu)))
3056 			return 1;
3057 		vcpu->arch.msr_misc_features_enables = data;
3058 		break;
3059 	default:
3060 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3061 			return xen_hvm_config(vcpu, data);
3062 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3063 			return kvm_pmu_set_msr(vcpu, msr_info);
3064 		if (!ignore_msrs) {
3065 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
3066 				    msr, data);
3067 			return 1;
3068 		} else {
3069 			if (report_ignored_msrs)
3070 				vcpu_unimpl(vcpu,
3071 					"ignored wrmsr: 0x%x data 0x%llx\n",
3072 					msr, data);
3073 			break;
3074 		}
3075 	}
3076 	return 0;
3077 }
3078 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3079 
3080 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3081 {
3082 	u64 data;
3083 	u64 mcg_cap = vcpu->arch.mcg_cap;
3084 	unsigned bank_num = mcg_cap & 0xff;
3085 
3086 	switch (msr) {
3087 	case MSR_IA32_P5_MC_ADDR:
3088 	case MSR_IA32_P5_MC_TYPE:
3089 		data = 0;
3090 		break;
3091 	case MSR_IA32_MCG_CAP:
3092 		data = vcpu->arch.mcg_cap;
3093 		break;
3094 	case MSR_IA32_MCG_CTL:
3095 		if (!(mcg_cap & MCG_CTL_P) && !host)
3096 			return 1;
3097 		data = vcpu->arch.mcg_ctl;
3098 		break;
3099 	case MSR_IA32_MCG_STATUS:
3100 		data = vcpu->arch.mcg_status;
3101 		break;
3102 	default:
3103 		if (msr >= MSR_IA32_MC0_CTL &&
3104 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3105 			u32 offset = array_index_nospec(
3106 				msr - MSR_IA32_MC0_CTL,
3107 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3108 
3109 			data = vcpu->arch.mce_banks[offset];
3110 			break;
3111 		}
3112 		return 1;
3113 	}
3114 	*pdata = data;
3115 	return 0;
3116 }
3117 
3118 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3119 {
3120 	switch (msr_info->index) {
3121 	case MSR_IA32_PLATFORM_ID:
3122 	case MSR_IA32_EBL_CR_POWERON:
3123 	case MSR_IA32_DEBUGCTLMSR:
3124 	case MSR_IA32_LASTBRANCHFROMIP:
3125 	case MSR_IA32_LASTBRANCHTOIP:
3126 	case MSR_IA32_LASTINTFROMIP:
3127 	case MSR_IA32_LASTINTTOIP:
3128 	case MSR_K8_SYSCFG:
3129 	case MSR_K8_TSEG_ADDR:
3130 	case MSR_K8_TSEG_MASK:
3131 	case MSR_VM_HSAVE_PA:
3132 	case MSR_K8_INT_PENDING_MSG:
3133 	case MSR_AMD64_NB_CFG:
3134 	case MSR_FAM10H_MMIO_CONF_BASE:
3135 	case MSR_AMD64_BU_CFG2:
3136 	case MSR_IA32_PERF_CTL:
3137 	case MSR_AMD64_DC_CFG:
3138 	case MSR_F15H_EX_CFG:
3139 	/*
3140 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3141 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3142 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3143 	 * so for existing CPU-specific MSRs.
3144 	 */
3145 	case MSR_RAPL_POWER_UNIT:
3146 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3147 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3148 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3149 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3150 		msr_info->data = 0;
3151 		break;
3152 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3153 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3154 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3155 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3156 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3157 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3158 			return kvm_pmu_get_msr(vcpu, msr_info);
3159 		msr_info->data = 0;
3160 		break;
3161 	case MSR_IA32_UCODE_REV:
3162 		msr_info->data = vcpu->arch.microcode_version;
3163 		break;
3164 	case MSR_IA32_ARCH_CAPABILITIES:
3165 		if (!msr_info->host_initiated &&
3166 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3167 			return 1;
3168 		msr_info->data = vcpu->arch.arch_capabilities;
3169 		break;
3170 	case MSR_IA32_POWER_CTL:
3171 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3172 		break;
3173 	case MSR_IA32_TSC:
3174 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3175 		break;
3176 	case MSR_MTRRcap:
3177 	case 0x200 ... 0x2ff:
3178 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3179 	case 0xcd: /* fsb frequency */
3180 		msr_info->data = 3;
3181 		break;
3182 		/*
3183 		 * MSR_EBC_FREQUENCY_ID
3184 		 * Conservative value valid for even the basic CPU models.
3185 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3186 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3187 		 * and 266MHz for model 3, or 4. Set Core Clock
3188 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3189 		 * 31:24) even though these are only valid for CPU
3190 		 * models > 2, however guests may end up dividing or
3191 		 * multiplying by zero otherwise.
3192 		 */
3193 	case MSR_EBC_FREQUENCY_ID:
3194 		msr_info->data = 1 << 24;
3195 		break;
3196 	case MSR_IA32_APICBASE:
3197 		msr_info->data = kvm_get_apic_base(vcpu);
3198 		break;
3199 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3200 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3201 	case MSR_IA32_TSCDEADLINE:
3202 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3203 		break;
3204 	case MSR_IA32_TSC_ADJUST:
3205 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3206 		break;
3207 	case MSR_IA32_MISC_ENABLE:
3208 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3209 		break;
3210 	case MSR_IA32_SMBASE:
3211 		if (!msr_info->host_initiated)
3212 			return 1;
3213 		msr_info->data = vcpu->arch.smbase;
3214 		break;
3215 	case MSR_SMI_COUNT:
3216 		msr_info->data = vcpu->arch.smi_count;
3217 		break;
3218 	case MSR_IA32_PERF_STATUS:
3219 		/* TSC increment by tick */
3220 		msr_info->data = 1000ULL;
3221 		/* CPU multiplier */
3222 		msr_info->data |= (((uint64_t)4ULL) << 40);
3223 		break;
3224 	case MSR_EFER:
3225 		msr_info->data = vcpu->arch.efer;
3226 		break;
3227 	case MSR_KVM_WALL_CLOCK:
3228 	case MSR_KVM_WALL_CLOCK_NEW:
3229 		msr_info->data = vcpu->kvm->arch.wall_clock;
3230 		break;
3231 	case MSR_KVM_SYSTEM_TIME:
3232 	case MSR_KVM_SYSTEM_TIME_NEW:
3233 		msr_info->data = vcpu->arch.time;
3234 		break;
3235 	case MSR_KVM_ASYNC_PF_EN:
3236 		msr_info->data = vcpu->arch.apf.msr_en_val;
3237 		break;
3238 	case MSR_KVM_ASYNC_PF_INT:
3239 		msr_info->data = vcpu->arch.apf.msr_int_val;
3240 		break;
3241 	case MSR_KVM_ASYNC_PF_ACK:
3242 		msr_info->data = 0;
3243 		break;
3244 	case MSR_KVM_STEAL_TIME:
3245 		msr_info->data = vcpu->arch.st.msr_val;
3246 		break;
3247 	case MSR_KVM_PV_EOI_EN:
3248 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3249 		break;
3250 	case MSR_KVM_POLL_CONTROL:
3251 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3252 		break;
3253 	case MSR_IA32_P5_MC_ADDR:
3254 	case MSR_IA32_P5_MC_TYPE:
3255 	case MSR_IA32_MCG_CAP:
3256 	case MSR_IA32_MCG_CTL:
3257 	case MSR_IA32_MCG_STATUS:
3258 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3259 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3260 				   msr_info->host_initiated);
3261 	case MSR_IA32_XSS:
3262 		if (!msr_info->host_initiated &&
3263 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3264 			return 1;
3265 		msr_info->data = vcpu->arch.ia32_xss;
3266 		break;
3267 	case MSR_K7_CLK_CTL:
3268 		/*
3269 		 * Provide expected ramp-up count for K7. All other
3270 		 * are set to zero, indicating minimum divisors for
3271 		 * every field.
3272 		 *
3273 		 * This prevents guest kernels on AMD host with CPU
3274 		 * type 6, model 8 and higher from exploding due to
3275 		 * the rdmsr failing.
3276 		 */
3277 		msr_info->data = 0x20000000;
3278 		break;
3279 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3280 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3281 	case HV_X64_MSR_SYNDBG_OPTIONS:
3282 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3283 	case HV_X64_MSR_CRASH_CTL:
3284 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3285 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3286 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3287 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3288 		return kvm_hv_get_msr_common(vcpu,
3289 					     msr_info->index, &msr_info->data,
3290 					     msr_info->host_initiated);
3291 	case MSR_IA32_BBL_CR_CTL3:
3292 		/* This legacy MSR exists but isn't fully documented in current
3293 		 * silicon.  It is however accessed by winxp in very narrow
3294 		 * scenarios where it sets bit #19, itself documented as
3295 		 * a "reserved" bit.  Best effort attempt to source coherent
3296 		 * read data here should the balance of the register be
3297 		 * interpreted by the guest:
3298 		 *
3299 		 * L2 cache control register 3: 64GB range, 256KB size,
3300 		 * enabled, latency 0x1, configured
3301 		 */
3302 		msr_info->data = 0xbe702111;
3303 		break;
3304 	case MSR_AMD64_OSVW_ID_LENGTH:
3305 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3306 			return 1;
3307 		msr_info->data = vcpu->arch.osvw.length;
3308 		break;
3309 	case MSR_AMD64_OSVW_STATUS:
3310 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3311 			return 1;
3312 		msr_info->data = vcpu->arch.osvw.status;
3313 		break;
3314 	case MSR_PLATFORM_INFO:
3315 		if (!msr_info->host_initiated &&
3316 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3317 			return 1;
3318 		msr_info->data = vcpu->arch.msr_platform_info;
3319 		break;
3320 	case MSR_MISC_FEATURES_ENABLES:
3321 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3322 		break;
3323 	case MSR_K7_HWCR:
3324 		msr_info->data = vcpu->arch.msr_hwcr;
3325 		break;
3326 	default:
3327 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3328 			return kvm_pmu_get_msr(vcpu, msr_info);
3329 		if (!ignore_msrs) {
3330 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3331 					       msr_info->index);
3332 			return 1;
3333 		} else {
3334 			if (report_ignored_msrs)
3335 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3336 					msr_info->index);
3337 			msr_info->data = 0;
3338 		}
3339 		break;
3340 	}
3341 	return 0;
3342 }
3343 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3344 
3345 /*
3346  * Read or write a bunch of msrs. All parameters are kernel addresses.
3347  *
3348  * @return number of msrs set successfully.
3349  */
3350 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3351 		    struct kvm_msr_entry *entries,
3352 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3353 				  unsigned index, u64 *data))
3354 {
3355 	int i;
3356 
3357 	for (i = 0; i < msrs->nmsrs; ++i)
3358 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3359 			break;
3360 
3361 	return i;
3362 }
3363 
3364 /*
3365  * Read or write a bunch of msrs. Parameters are user addresses.
3366  *
3367  * @return number of msrs set successfully.
3368  */
3369 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3370 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3371 				unsigned index, u64 *data),
3372 		  int writeback)
3373 {
3374 	struct kvm_msrs msrs;
3375 	struct kvm_msr_entry *entries;
3376 	int r, n;
3377 	unsigned size;
3378 
3379 	r = -EFAULT;
3380 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3381 		goto out;
3382 
3383 	r = -E2BIG;
3384 	if (msrs.nmsrs >= MAX_IO_MSRS)
3385 		goto out;
3386 
3387 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3388 	entries = memdup_user(user_msrs->entries, size);
3389 	if (IS_ERR(entries)) {
3390 		r = PTR_ERR(entries);
3391 		goto out;
3392 	}
3393 
3394 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3395 	if (r < 0)
3396 		goto out_free;
3397 
3398 	r = -EFAULT;
3399 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3400 		goto out_free;
3401 
3402 	r = n;
3403 
3404 out_free:
3405 	kfree(entries);
3406 out:
3407 	return r;
3408 }
3409 
3410 static inline bool kvm_can_mwait_in_guest(void)
3411 {
3412 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3413 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3414 		boot_cpu_has(X86_FEATURE_ARAT);
3415 }
3416 
3417 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3418 {
3419 	int r = 0;
3420 
3421 	switch (ext) {
3422 	case KVM_CAP_IRQCHIP:
3423 	case KVM_CAP_HLT:
3424 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3425 	case KVM_CAP_SET_TSS_ADDR:
3426 	case KVM_CAP_EXT_CPUID:
3427 	case KVM_CAP_EXT_EMUL_CPUID:
3428 	case KVM_CAP_CLOCKSOURCE:
3429 	case KVM_CAP_PIT:
3430 	case KVM_CAP_NOP_IO_DELAY:
3431 	case KVM_CAP_MP_STATE:
3432 	case KVM_CAP_SYNC_MMU:
3433 	case KVM_CAP_USER_NMI:
3434 	case KVM_CAP_REINJECT_CONTROL:
3435 	case KVM_CAP_IRQ_INJECT_STATUS:
3436 	case KVM_CAP_IOEVENTFD:
3437 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3438 	case KVM_CAP_PIT2:
3439 	case KVM_CAP_PIT_STATE2:
3440 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3441 	case KVM_CAP_XEN_HVM:
3442 	case KVM_CAP_VCPU_EVENTS:
3443 	case KVM_CAP_HYPERV:
3444 	case KVM_CAP_HYPERV_VAPIC:
3445 	case KVM_CAP_HYPERV_SPIN:
3446 	case KVM_CAP_HYPERV_SYNIC:
3447 	case KVM_CAP_HYPERV_SYNIC2:
3448 	case KVM_CAP_HYPERV_VP_INDEX:
3449 	case KVM_CAP_HYPERV_EVENTFD:
3450 	case KVM_CAP_HYPERV_TLBFLUSH:
3451 	case KVM_CAP_HYPERV_SEND_IPI:
3452 	case KVM_CAP_HYPERV_CPUID:
3453 	case KVM_CAP_PCI_SEGMENT:
3454 	case KVM_CAP_DEBUGREGS:
3455 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3456 	case KVM_CAP_XSAVE:
3457 	case KVM_CAP_ASYNC_PF:
3458 	case KVM_CAP_ASYNC_PF_INT:
3459 	case KVM_CAP_GET_TSC_KHZ:
3460 	case KVM_CAP_KVMCLOCK_CTRL:
3461 	case KVM_CAP_READONLY_MEM:
3462 	case KVM_CAP_HYPERV_TIME:
3463 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3464 	case KVM_CAP_TSC_DEADLINE_TIMER:
3465 	case KVM_CAP_DISABLE_QUIRKS:
3466 	case KVM_CAP_SET_BOOT_CPU_ID:
3467  	case KVM_CAP_SPLIT_IRQCHIP:
3468 	case KVM_CAP_IMMEDIATE_EXIT:
3469 	case KVM_CAP_PMU_EVENT_FILTER:
3470 	case KVM_CAP_GET_MSR_FEATURES:
3471 	case KVM_CAP_MSR_PLATFORM_INFO:
3472 	case KVM_CAP_EXCEPTION_PAYLOAD:
3473 	case KVM_CAP_SET_GUEST_DEBUG:
3474 		r = 1;
3475 		break;
3476 	case KVM_CAP_SYNC_REGS:
3477 		r = KVM_SYNC_X86_VALID_FIELDS;
3478 		break;
3479 	case KVM_CAP_ADJUST_CLOCK:
3480 		r = KVM_CLOCK_TSC_STABLE;
3481 		break;
3482 	case KVM_CAP_X86_DISABLE_EXITS:
3483 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3484 		      KVM_X86_DISABLE_EXITS_CSTATE;
3485 		if(kvm_can_mwait_in_guest())
3486 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3487 		break;
3488 	case KVM_CAP_X86_SMM:
3489 		/* SMBASE is usually relocated above 1M on modern chipsets,
3490 		 * and SMM handlers might indeed rely on 4G segment limits,
3491 		 * so do not report SMM to be available if real mode is
3492 		 * emulated via vm86 mode.  Still, do not go to great lengths
3493 		 * to avoid userspace's usage of the feature, because it is a
3494 		 * fringe case that is not enabled except via specific settings
3495 		 * of the module parameters.
3496 		 */
3497 		r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3498 		break;
3499 	case KVM_CAP_VAPIC:
3500 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3501 		break;
3502 	case KVM_CAP_NR_VCPUS:
3503 		r = KVM_SOFT_MAX_VCPUS;
3504 		break;
3505 	case KVM_CAP_MAX_VCPUS:
3506 		r = KVM_MAX_VCPUS;
3507 		break;
3508 	case KVM_CAP_MAX_VCPU_ID:
3509 		r = KVM_MAX_VCPU_ID;
3510 		break;
3511 	case KVM_CAP_PV_MMU:	/* obsolete */
3512 		r = 0;
3513 		break;
3514 	case KVM_CAP_MCE:
3515 		r = KVM_MAX_MCE_BANKS;
3516 		break;
3517 	case KVM_CAP_XCRS:
3518 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3519 		break;
3520 	case KVM_CAP_TSC_CONTROL:
3521 		r = kvm_has_tsc_control;
3522 		break;
3523 	case KVM_CAP_X2APIC_API:
3524 		r = KVM_X2APIC_API_VALID_FLAGS;
3525 		break;
3526 	case KVM_CAP_NESTED_STATE:
3527 		r = kvm_x86_ops.nested_ops->get_state ?
3528 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3529 		break;
3530 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3531 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3532 		break;
3533 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3534 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3535 		break;
3536 	default:
3537 		break;
3538 	}
3539 	return r;
3540 
3541 }
3542 
3543 long kvm_arch_dev_ioctl(struct file *filp,
3544 			unsigned int ioctl, unsigned long arg)
3545 {
3546 	void __user *argp = (void __user *)arg;
3547 	long r;
3548 
3549 	switch (ioctl) {
3550 	case KVM_GET_MSR_INDEX_LIST: {
3551 		struct kvm_msr_list __user *user_msr_list = argp;
3552 		struct kvm_msr_list msr_list;
3553 		unsigned n;
3554 
3555 		r = -EFAULT;
3556 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3557 			goto out;
3558 		n = msr_list.nmsrs;
3559 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3560 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3561 			goto out;
3562 		r = -E2BIG;
3563 		if (n < msr_list.nmsrs)
3564 			goto out;
3565 		r = -EFAULT;
3566 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3567 				 num_msrs_to_save * sizeof(u32)))
3568 			goto out;
3569 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3570 				 &emulated_msrs,
3571 				 num_emulated_msrs * sizeof(u32)))
3572 			goto out;
3573 		r = 0;
3574 		break;
3575 	}
3576 	case KVM_GET_SUPPORTED_CPUID:
3577 	case KVM_GET_EMULATED_CPUID: {
3578 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3579 		struct kvm_cpuid2 cpuid;
3580 
3581 		r = -EFAULT;
3582 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3583 			goto out;
3584 
3585 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3586 					    ioctl);
3587 		if (r)
3588 			goto out;
3589 
3590 		r = -EFAULT;
3591 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3592 			goto out;
3593 		r = 0;
3594 		break;
3595 	}
3596 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3597 		r = -EFAULT;
3598 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3599 				 sizeof(kvm_mce_cap_supported)))
3600 			goto out;
3601 		r = 0;
3602 		break;
3603 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3604 		struct kvm_msr_list __user *user_msr_list = argp;
3605 		struct kvm_msr_list msr_list;
3606 		unsigned int n;
3607 
3608 		r = -EFAULT;
3609 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3610 			goto out;
3611 		n = msr_list.nmsrs;
3612 		msr_list.nmsrs = num_msr_based_features;
3613 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3614 			goto out;
3615 		r = -E2BIG;
3616 		if (n < msr_list.nmsrs)
3617 			goto out;
3618 		r = -EFAULT;
3619 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3620 				 num_msr_based_features * sizeof(u32)))
3621 			goto out;
3622 		r = 0;
3623 		break;
3624 	}
3625 	case KVM_GET_MSRS:
3626 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3627 		break;
3628 	default:
3629 		r = -EINVAL;
3630 		break;
3631 	}
3632 out:
3633 	return r;
3634 }
3635 
3636 static void wbinvd_ipi(void *garbage)
3637 {
3638 	wbinvd();
3639 }
3640 
3641 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3642 {
3643 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3644 }
3645 
3646 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3647 {
3648 	/* Address WBINVD may be executed by guest */
3649 	if (need_emulate_wbinvd(vcpu)) {
3650 		if (kvm_x86_ops.has_wbinvd_exit())
3651 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3652 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3653 			smp_call_function_single(vcpu->cpu,
3654 					wbinvd_ipi, NULL, 1);
3655 	}
3656 
3657 	kvm_x86_ops.vcpu_load(vcpu, cpu);
3658 
3659 	/* Save host pkru register if supported */
3660 	vcpu->arch.host_pkru = read_pkru();
3661 
3662 	/* Apply any externally detected TSC adjustments (due to suspend) */
3663 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3664 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3665 		vcpu->arch.tsc_offset_adjustment = 0;
3666 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3667 	}
3668 
3669 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3670 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3671 				rdtsc() - vcpu->arch.last_host_tsc;
3672 		if (tsc_delta < 0)
3673 			mark_tsc_unstable("KVM discovered backwards TSC");
3674 
3675 		if (kvm_check_tsc_unstable()) {
3676 			u64 offset = kvm_compute_tsc_offset(vcpu,
3677 						vcpu->arch.last_guest_tsc);
3678 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3679 			vcpu->arch.tsc_catchup = 1;
3680 		}
3681 
3682 		if (kvm_lapic_hv_timer_in_use(vcpu))
3683 			kvm_lapic_restart_hv_timer(vcpu);
3684 
3685 		/*
3686 		 * On a host with synchronized TSC, there is no need to update
3687 		 * kvmclock on vcpu->cpu migration
3688 		 */
3689 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3690 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3691 		if (vcpu->cpu != cpu)
3692 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3693 		vcpu->cpu = cpu;
3694 	}
3695 
3696 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3697 }
3698 
3699 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3700 {
3701 	struct kvm_host_map map;
3702 	struct kvm_steal_time *st;
3703 
3704 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3705 		return;
3706 
3707 	if (vcpu->arch.st.preempted)
3708 		return;
3709 
3710 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3711 			&vcpu->arch.st.cache, true))
3712 		return;
3713 
3714 	st = map.hva +
3715 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3716 
3717 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3718 
3719 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3720 }
3721 
3722 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3723 {
3724 	int idx;
3725 
3726 	if (vcpu->preempted)
3727 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
3728 
3729 	/*
3730 	 * Disable page faults because we're in atomic context here.
3731 	 * kvm_write_guest_offset_cached() would call might_fault()
3732 	 * that relies on pagefault_disable() to tell if there's a
3733 	 * bug. NOTE: the write to guest memory may not go through if
3734 	 * during postcopy live migration or if there's heavy guest
3735 	 * paging.
3736 	 */
3737 	pagefault_disable();
3738 	/*
3739 	 * kvm_memslots() will be called by
3740 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3741 	 */
3742 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3743 	kvm_steal_time_set_preempted(vcpu);
3744 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3745 	pagefault_enable();
3746 	kvm_x86_ops.vcpu_put(vcpu);
3747 	vcpu->arch.last_host_tsc = rdtsc();
3748 	/*
3749 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3750 	 * on every vmexit, but if not, we might have a stale dr6 from the
3751 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3752 	 */
3753 	set_debugreg(0, 6);
3754 }
3755 
3756 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3757 				    struct kvm_lapic_state *s)
3758 {
3759 	if (vcpu->arch.apicv_active)
3760 		kvm_x86_ops.sync_pir_to_irr(vcpu);
3761 
3762 	return kvm_apic_get_state(vcpu, s);
3763 }
3764 
3765 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3766 				    struct kvm_lapic_state *s)
3767 {
3768 	int r;
3769 
3770 	r = kvm_apic_set_state(vcpu, s);
3771 	if (r)
3772 		return r;
3773 	update_cr8_intercept(vcpu);
3774 
3775 	return 0;
3776 }
3777 
3778 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3779 {
3780 	return (!lapic_in_kernel(vcpu) ||
3781 		kvm_apic_accept_pic_intr(vcpu));
3782 }
3783 
3784 /*
3785  * if userspace requested an interrupt window, check that the
3786  * interrupt window is open.
3787  *
3788  * No need to exit to userspace if we already have an interrupt queued.
3789  */
3790 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3791 {
3792 	return kvm_arch_interrupt_allowed(vcpu) &&
3793 		!kvm_cpu_has_interrupt(vcpu) &&
3794 		!kvm_event_needs_reinjection(vcpu) &&
3795 		kvm_cpu_accept_dm_intr(vcpu);
3796 }
3797 
3798 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3799 				    struct kvm_interrupt *irq)
3800 {
3801 	if (irq->irq >= KVM_NR_INTERRUPTS)
3802 		return -EINVAL;
3803 
3804 	if (!irqchip_in_kernel(vcpu->kvm)) {
3805 		kvm_queue_interrupt(vcpu, irq->irq, false);
3806 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3807 		return 0;
3808 	}
3809 
3810 	/*
3811 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3812 	 * fail for in-kernel 8259.
3813 	 */
3814 	if (pic_in_kernel(vcpu->kvm))
3815 		return -ENXIO;
3816 
3817 	if (vcpu->arch.pending_external_vector != -1)
3818 		return -EEXIST;
3819 
3820 	vcpu->arch.pending_external_vector = irq->irq;
3821 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3822 	return 0;
3823 }
3824 
3825 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3826 {
3827 	kvm_inject_nmi(vcpu);
3828 
3829 	return 0;
3830 }
3831 
3832 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3833 {
3834 	kvm_make_request(KVM_REQ_SMI, vcpu);
3835 
3836 	return 0;
3837 }
3838 
3839 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3840 					   struct kvm_tpr_access_ctl *tac)
3841 {
3842 	if (tac->flags)
3843 		return -EINVAL;
3844 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3845 	return 0;
3846 }
3847 
3848 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3849 					u64 mcg_cap)
3850 {
3851 	int r;
3852 	unsigned bank_num = mcg_cap & 0xff, bank;
3853 
3854 	r = -EINVAL;
3855 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
3856 		goto out;
3857 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3858 		goto out;
3859 	r = 0;
3860 	vcpu->arch.mcg_cap = mcg_cap;
3861 	/* Init IA32_MCG_CTL to all 1s */
3862 	if (mcg_cap & MCG_CTL_P)
3863 		vcpu->arch.mcg_ctl = ~(u64)0;
3864 	/* Init IA32_MCi_CTL to all 1s */
3865 	for (bank = 0; bank < bank_num; bank++)
3866 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3867 
3868 	kvm_x86_ops.setup_mce(vcpu);
3869 out:
3870 	return r;
3871 }
3872 
3873 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3874 				      struct kvm_x86_mce *mce)
3875 {
3876 	u64 mcg_cap = vcpu->arch.mcg_cap;
3877 	unsigned bank_num = mcg_cap & 0xff;
3878 	u64 *banks = vcpu->arch.mce_banks;
3879 
3880 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3881 		return -EINVAL;
3882 	/*
3883 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3884 	 * reporting is disabled
3885 	 */
3886 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3887 	    vcpu->arch.mcg_ctl != ~(u64)0)
3888 		return 0;
3889 	banks += 4 * mce->bank;
3890 	/*
3891 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3892 	 * reporting is disabled for the bank
3893 	 */
3894 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3895 		return 0;
3896 	if (mce->status & MCI_STATUS_UC) {
3897 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3898 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3899 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3900 			return 0;
3901 		}
3902 		if (banks[1] & MCI_STATUS_VAL)
3903 			mce->status |= MCI_STATUS_OVER;
3904 		banks[2] = mce->addr;
3905 		banks[3] = mce->misc;
3906 		vcpu->arch.mcg_status = mce->mcg_status;
3907 		banks[1] = mce->status;
3908 		kvm_queue_exception(vcpu, MC_VECTOR);
3909 	} else if (!(banks[1] & MCI_STATUS_VAL)
3910 		   || !(banks[1] & MCI_STATUS_UC)) {
3911 		if (banks[1] & MCI_STATUS_VAL)
3912 			mce->status |= MCI_STATUS_OVER;
3913 		banks[2] = mce->addr;
3914 		banks[3] = mce->misc;
3915 		banks[1] = mce->status;
3916 	} else
3917 		banks[1] |= MCI_STATUS_OVER;
3918 	return 0;
3919 }
3920 
3921 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3922 					       struct kvm_vcpu_events *events)
3923 {
3924 	process_nmi(vcpu);
3925 
3926 	/*
3927 	 * In guest mode, payload delivery should be deferred,
3928 	 * so that the L1 hypervisor can intercept #PF before
3929 	 * CR2 is modified (or intercept #DB before DR6 is
3930 	 * modified under nVMX). Unless the per-VM capability,
3931 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3932 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3933 	 * opportunistically defer the exception payload, deliver it if the
3934 	 * capability hasn't been requested before processing a
3935 	 * KVM_GET_VCPU_EVENTS.
3936 	 */
3937 	if (!vcpu->kvm->arch.exception_payload_enabled &&
3938 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
3939 		kvm_deliver_exception_payload(vcpu);
3940 
3941 	/*
3942 	 * The API doesn't provide the instruction length for software
3943 	 * exceptions, so don't report them. As long as the guest RIP
3944 	 * isn't advanced, we should expect to encounter the exception
3945 	 * again.
3946 	 */
3947 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3948 		events->exception.injected = 0;
3949 		events->exception.pending = 0;
3950 	} else {
3951 		events->exception.injected = vcpu->arch.exception.injected;
3952 		events->exception.pending = vcpu->arch.exception.pending;
3953 		/*
3954 		 * For ABI compatibility, deliberately conflate
3955 		 * pending and injected exceptions when
3956 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3957 		 */
3958 		if (!vcpu->kvm->arch.exception_payload_enabled)
3959 			events->exception.injected |=
3960 				vcpu->arch.exception.pending;
3961 	}
3962 	events->exception.nr = vcpu->arch.exception.nr;
3963 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3964 	events->exception.error_code = vcpu->arch.exception.error_code;
3965 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3966 	events->exception_payload = vcpu->arch.exception.payload;
3967 
3968 	events->interrupt.injected =
3969 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3970 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3971 	events->interrupt.soft = 0;
3972 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
3973 
3974 	events->nmi.injected = vcpu->arch.nmi_injected;
3975 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3976 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
3977 	events->nmi.pad = 0;
3978 
3979 	events->sipi_vector = 0; /* never valid when reporting to user space */
3980 
3981 	events->smi.smm = is_smm(vcpu);
3982 	events->smi.pending = vcpu->arch.smi_pending;
3983 	events->smi.smm_inside_nmi =
3984 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3985 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3986 
3987 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3988 			 | KVM_VCPUEVENT_VALID_SHADOW
3989 			 | KVM_VCPUEVENT_VALID_SMM);
3990 	if (vcpu->kvm->arch.exception_payload_enabled)
3991 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3992 
3993 	memset(&events->reserved, 0, sizeof(events->reserved));
3994 }
3995 
3996 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3997 
3998 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3999 					      struct kvm_vcpu_events *events)
4000 {
4001 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4002 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4003 			      | KVM_VCPUEVENT_VALID_SHADOW
4004 			      | KVM_VCPUEVENT_VALID_SMM
4005 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4006 		return -EINVAL;
4007 
4008 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4009 		if (!vcpu->kvm->arch.exception_payload_enabled)
4010 			return -EINVAL;
4011 		if (events->exception.pending)
4012 			events->exception.injected = 0;
4013 		else
4014 			events->exception_has_payload = 0;
4015 	} else {
4016 		events->exception.pending = 0;
4017 		events->exception_has_payload = 0;
4018 	}
4019 
4020 	if ((events->exception.injected || events->exception.pending) &&
4021 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4022 		return -EINVAL;
4023 
4024 	/* INITs are latched while in SMM */
4025 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4026 	    (events->smi.smm || events->smi.pending) &&
4027 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4028 		return -EINVAL;
4029 
4030 	process_nmi(vcpu);
4031 	vcpu->arch.exception.injected = events->exception.injected;
4032 	vcpu->arch.exception.pending = events->exception.pending;
4033 	vcpu->arch.exception.nr = events->exception.nr;
4034 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4035 	vcpu->arch.exception.error_code = events->exception.error_code;
4036 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4037 	vcpu->arch.exception.payload = events->exception_payload;
4038 
4039 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4040 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4041 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4042 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4043 		kvm_x86_ops.set_interrupt_shadow(vcpu,
4044 						  events->interrupt.shadow);
4045 
4046 	vcpu->arch.nmi_injected = events->nmi.injected;
4047 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4048 		vcpu->arch.nmi_pending = events->nmi.pending;
4049 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
4050 
4051 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4052 	    lapic_in_kernel(vcpu))
4053 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4054 
4055 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4056 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4057 			if (events->smi.smm)
4058 				vcpu->arch.hflags |= HF_SMM_MASK;
4059 			else
4060 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4061 			kvm_smm_changed(vcpu);
4062 		}
4063 
4064 		vcpu->arch.smi_pending = events->smi.pending;
4065 
4066 		if (events->smi.smm) {
4067 			if (events->smi.smm_inside_nmi)
4068 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4069 			else
4070 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4071 		}
4072 
4073 		if (lapic_in_kernel(vcpu)) {
4074 			if (events->smi.latched_init)
4075 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4076 			else
4077 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4078 		}
4079 	}
4080 
4081 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4082 
4083 	return 0;
4084 }
4085 
4086 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4087 					     struct kvm_debugregs *dbgregs)
4088 {
4089 	unsigned long val;
4090 
4091 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4092 	kvm_get_dr(vcpu, 6, &val);
4093 	dbgregs->dr6 = val;
4094 	dbgregs->dr7 = vcpu->arch.dr7;
4095 	dbgregs->flags = 0;
4096 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4097 }
4098 
4099 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4100 					    struct kvm_debugregs *dbgregs)
4101 {
4102 	if (dbgregs->flags)
4103 		return -EINVAL;
4104 
4105 	if (dbgregs->dr6 & ~0xffffffffull)
4106 		return -EINVAL;
4107 	if (dbgregs->dr7 & ~0xffffffffull)
4108 		return -EINVAL;
4109 
4110 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4111 	kvm_update_dr0123(vcpu);
4112 	vcpu->arch.dr6 = dbgregs->dr6;
4113 	vcpu->arch.dr7 = dbgregs->dr7;
4114 	kvm_update_dr7(vcpu);
4115 
4116 	return 0;
4117 }
4118 
4119 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4120 
4121 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4122 {
4123 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4124 	u64 xstate_bv = xsave->header.xfeatures;
4125 	u64 valid;
4126 
4127 	/*
4128 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4129 	 * leaves 0 and 1 in the loop below.
4130 	 */
4131 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4132 
4133 	/* Set XSTATE_BV */
4134 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4135 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4136 
4137 	/*
4138 	 * Copy each region from the possibly compacted offset to the
4139 	 * non-compacted offset.
4140 	 */
4141 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4142 	while (valid) {
4143 		u64 xfeature_mask = valid & -valid;
4144 		int xfeature_nr = fls64(xfeature_mask) - 1;
4145 		void *src = get_xsave_addr(xsave, xfeature_nr);
4146 
4147 		if (src) {
4148 			u32 size, offset, ecx, edx;
4149 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4150 				    &size, &offset, &ecx, &edx);
4151 			if (xfeature_nr == XFEATURE_PKRU)
4152 				memcpy(dest + offset, &vcpu->arch.pkru,
4153 				       sizeof(vcpu->arch.pkru));
4154 			else
4155 				memcpy(dest + offset, src, size);
4156 
4157 		}
4158 
4159 		valid -= xfeature_mask;
4160 	}
4161 }
4162 
4163 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4164 {
4165 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4166 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4167 	u64 valid;
4168 
4169 	/*
4170 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4171 	 * leaves 0 and 1 in the loop below.
4172 	 */
4173 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4174 
4175 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4176 	xsave->header.xfeatures = xstate_bv;
4177 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4178 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4179 
4180 	/*
4181 	 * Copy each region from the non-compacted offset to the
4182 	 * possibly compacted offset.
4183 	 */
4184 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4185 	while (valid) {
4186 		u64 xfeature_mask = valid & -valid;
4187 		int xfeature_nr = fls64(xfeature_mask) - 1;
4188 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4189 
4190 		if (dest) {
4191 			u32 size, offset, ecx, edx;
4192 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4193 				    &size, &offset, &ecx, &edx);
4194 			if (xfeature_nr == XFEATURE_PKRU)
4195 				memcpy(&vcpu->arch.pkru, src + offset,
4196 				       sizeof(vcpu->arch.pkru));
4197 			else
4198 				memcpy(dest, src + offset, size);
4199 		}
4200 
4201 		valid -= xfeature_mask;
4202 	}
4203 }
4204 
4205 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4206 					 struct kvm_xsave *guest_xsave)
4207 {
4208 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4209 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4210 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4211 	} else {
4212 		memcpy(guest_xsave->region,
4213 			&vcpu->arch.guest_fpu->state.fxsave,
4214 			sizeof(struct fxregs_state));
4215 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4216 			XFEATURE_MASK_FPSSE;
4217 	}
4218 }
4219 
4220 #define XSAVE_MXCSR_OFFSET 24
4221 
4222 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4223 					struct kvm_xsave *guest_xsave)
4224 {
4225 	u64 xstate_bv =
4226 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4227 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4228 
4229 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4230 		/*
4231 		 * Here we allow setting states that are not present in
4232 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4233 		 * with old userspace.
4234 		 */
4235 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4236 			return -EINVAL;
4237 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4238 	} else {
4239 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4240 			mxcsr & ~mxcsr_feature_mask)
4241 			return -EINVAL;
4242 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4243 			guest_xsave->region, sizeof(struct fxregs_state));
4244 	}
4245 	return 0;
4246 }
4247 
4248 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4249 					struct kvm_xcrs *guest_xcrs)
4250 {
4251 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4252 		guest_xcrs->nr_xcrs = 0;
4253 		return;
4254 	}
4255 
4256 	guest_xcrs->nr_xcrs = 1;
4257 	guest_xcrs->flags = 0;
4258 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4259 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4260 }
4261 
4262 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4263 				       struct kvm_xcrs *guest_xcrs)
4264 {
4265 	int i, r = 0;
4266 
4267 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4268 		return -EINVAL;
4269 
4270 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4271 		return -EINVAL;
4272 
4273 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4274 		/* Only support XCR0 currently */
4275 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4276 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4277 				guest_xcrs->xcrs[i].value);
4278 			break;
4279 		}
4280 	if (r)
4281 		r = -EINVAL;
4282 	return r;
4283 }
4284 
4285 /*
4286  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4287  * stopped by the hypervisor.  This function will be called from the host only.
4288  * EINVAL is returned when the host attempts to set the flag for a guest that
4289  * does not support pv clocks.
4290  */
4291 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4292 {
4293 	if (!vcpu->arch.pv_time_enabled)
4294 		return -EINVAL;
4295 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4296 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4297 	return 0;
4298 }
4299 
4300 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4301 				     struct kvm_enable_cap *cap)
4302 {
4303 	int r;
4304 	uint16_t vmcs_version;
4305 	void __user *user_ptr;
4306 
4307 	if (cap->flags)
4308 		return -EINVAL;
4309 
4310 	switch (cap->cap) {
4311 	case KVM_CAP_HYPERV_SYNIC2:
4312 		if (cap->args[0])
4313 			return -EINVAL;
4314 		/* fall through */
4315 
4316 	case KVM_CAP_HYPERV_SYNIC:
4317 		if (!irqchip_in_kernel(vcpu->kvm))
4318 			return -EINVAL;
4319 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4320 					     KVM_CAP_HYPERV_SYNIC2);
4321 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4322 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4323 			return -ENOTTY;
4324 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4325 		if (!r) {
4326 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4327 			if (copy_to_user(user_ptr, &vmcs_version,
4328 					 sizeof(vmcs_version)))
4329 				r = -EFAULT;
4330 		}
4331 		return r;
4332 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4333 		if (!kvm_x86_ops.enable_direct_tlbflush)
4334 			return -ENOTTY;
4335 
4336 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4337 
4338 	default:
4339 		return -EINVAL;
4340 	}
4341 }
4342 
4343 long kvm_arch_vcpu_ioctl(struct file *filp,
4344 			 unsigned int ioctl, unsigned long arg)
4345 {
4346 	struct kvm_vcpu *vcpu = filp->private_data;
4347 	void __user *argp = (void __user *)arg;
4348 	int r;
4349 	union {
4350 		struct kvm_lapic_state *lapic;
4351 		struct kvm_xsave *xsave;
4352 		struct kvm_xcrs *xcrs;
4353 		void *buffer;
4354 	} u;
4355 
4356 	vcpu_load(vcpu);
4357 
4358 	u.buffer = NULL;
4359 	switch (ioctl) {
4360 	case KVM_GET_LAPIC: {
4361 		r = -EINVAL;
4362 		if (!lapic_in_kernel(vcpu))
4363 			goto out;
4364 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4365 				GFP_KERNEL_ACCOUNT);
4366 
4367 		r = -ENOMEM;
4368 		if (!u.lapic)
4369 			goto out;
4370 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4371 		if (r)
4372 			goto out;
4373 		r = -EFAULT;
4374 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4375 			goto out;
4376 		r = 0;
4377 		break;
4378 	}
4379 	case KVM_SET_LAPIC: {
4380 		r = -EINVAL;
4381 		if (!lapic_in_kernel(vcpu))
4382 			goto out;
4383 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4384 		if (IS_ERR(u.lapic)) {
4385 			r = PTR_ERR(u.lapic);
4386 			goto out_nofree;
4387 		}
4388 
4389 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4390 		break;
4391 	}
4392 	case KVM_INTERRUPT: {
4393 		struct kvm_interrupt irq;
4394 
4395 		r = -EFAULT;
4396 		if (copy_from_user(&irq, argp, sizeof(irq)))
4397 			goto out;
4398 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4399 		break;
4400 	}
4401 	case KVM_NMI: {
4402 		r = kvm_vcpu_ioctl_nmi(vcpu);
4403 		break;
4404 	}
4405 	case KVM_SMI: {
4406 		r = kvm_vcpu_ioctl_smi(vcpu);
4407 		break;
4408 	}
4409 	case KVM_SET_CPUID: {
4410 		struct kvm_cpuid __user *cpuid_arg = argp;
4411 		struct kvm_cpuid cpuid;
4412 
4413 		r = -EFAULT;
4414 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4415 			goto out;
4416 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4417 		break;
4418 	}
4419 	case KVM_SET_CPUID2: {
4420 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4421 		struct kvm_cpuid2 cpuid;
4422 
4423 		r = -EFAULT;
4424 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4425 			goto out;
4426 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4427 					      cpuid_arg->entries);
4428 		break;
4429 	}
4430 	case KVM_GET_CPUID2: {
4431 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4432 		struct kvm_cpuid2 cpuid;
4433 
4434 		r = -EFAULT;
4435 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4436 			goto out;
4437 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4438 					      cpuid_arg->entries);
4439 		if (r)
4440 			goto out;
4441 		r = -EFAULT;
4442 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4443 			goto out;
4444 		r = 0;
4445 		break;
4446 	}
4447 	case KVM_GET_MSRS: {
4448 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4449 		r = msr_io(vcpu, argp, do_get_msr, 1);
4450 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4451 		break;
4452 	}
4453 	case KVM_SET_MSRS: {
4454 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4455 		r = msr_io(vcpu, argp, do_set_msr, 0);
4456 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4457 		break;
4458 	}
4459 	case KVM_TPR_ACCESS_REPORTING: {
4460 		struct kvm_tpr_access_ctl tac;
4461 
4462 		r = -EFAULT;
4463 		if (copy_from_user(&tac, argp, sizeof(tac)))
4464 			goto out;
4465 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4466 		if (r)
4467 			goto out;
4468 		r = -EFAULT;
4469 		if (copy_to_user(argp, &tac, sizeof(tac)))
4470 			goto out;
4471 		r = 0;
4472 		break;
4473 	};
4474 	case KVM_SET_VAPIC_ADDR: {
4475 		struct kvm_vapic_addr va;
4476 		int idx;
4477 
4478 		r = -EINVAL;
4479 		if (!lapic_in_kernel(vcpu))
4480 			goto out;
4481 		r = -EFAULT;
4482 		if (copy_from_user(&va, argp, sizeof(va)))
4483 			goto out;
4484 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4485 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4486 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4487 		break;
4488 	}
4489 	case KVM_X86_SETUP_MCE: {
4490 		u64 mcg_cap;
4491 
4492 		r = -EFAULT;
4493 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4494 			goto out;
4495 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4496 		break;
4497 	}
4498 	case KVM_X86_SET_MCE: {
4499 		struct kvm_x86_mce mce;
4500 
4501 		r = -EFAULT;
4502 		if (copy_from_user(&mce, argp, sizeof(mce)))
4503 			goto out;
4504 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4505 		break;
4506 	}
4507 	case KVM_GET_VCPU_EVENTS: {
4508 		struct kvm_vcpu_events events;
4509 
4510 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4511 
4512 		r = -EFAULT;
4513 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4514 			break;
4515 		r = 0;
4516 		break;
4517 	}
4518 	case KVM_SET_VCPU_EVENTS: {
4519 		struct kvm_vcpu_events events;
4520 
4521 		r = -EFAULT;
4522 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4523 			break;
4524 
4525 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4526 		break;
4527 	}
4528 	case KVM_GET_DEBUGREGS: {
4529 		struct kvm_debugregs dbgregs;
4530 
4531 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4532 
4533 		r = -EFAULT;
4534 		if (copy_to_user(argp, &dbgregs,
4535 				 sizeof(struct kvm_debugregs)))
4536 			break;
4537 		r = 0;
4538 		break;
4539 	}
4540 	case KVM_SET_DEBUGREGS: {
4541 		struct kvm_debugregs dbgregs;
4542 
4543 		r = -EFAULT;
4544 		if (copy_from_user(&dbgregs, argp,
4545 				   sizeof(struct kvm_debugregs)))
4546 			break;
4547 
4548 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4549 		break;
4550 	}
4551 	case KVM_GET_XSAVE: {
4552 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4553 		r = -ENOMEM;
4554 		if (!u.xsave)
4555 			break;
4556 
4557 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4558 
4559 		r = -EFAULT;
4560 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4561 			break;
4562 		r = 0;
4563 		break;
4564 	}
4565 	case KVM_SET_XSAVE: {
4566 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4567 		if (IS_ERR(u.xsave)) {
4568 			r = PTR_ERR(u.xsave);
4569 			goto out_nofree;
4570 		}
4571 
4572 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4573 		break;
4574 	}
4575 	case KVM_GET_XCRS: {
4576 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4577 		r = -ENOMEM;
4578 		if (!u.xcrs)
4579 			break;
4580 
4581 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4582 
4583 		r = -EFAULT;
4584 		if (copy_to_user(argp, u.xcrs,
4585 				 sizeof(struct kvm_xcrs)))
4586 			break;
4587 		r = 0;
4588 		break;
4589 	}
4590 	case KVM_SET_XCRS: {
4591 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4592 		if (IS_ERR(u.xcrs)) {
4593 			r = PTR_ERR(u.xcrs);
4594 			goto out_nofree;
4595 		}
4596 
4597 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4598 		break;
4599 	}
4600 	case KVM_SET_TSC_KHZ: {
4601 		u32 user_tsc_khz;
4602 
4603 		r = -EINVAL;
4604 		user_tsc_khz = (u32)arg;
4605 
4606 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4607 			goto out;
4608 
4609 		if (user_tsc_khz == 0)
4610 			user_tsc_khz = tsc_khz;
4611 
4612 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4613 			r = 0;
4614 
4615 		goto out;
4616 	}
4617 	case KVM_GET_TSC_KHZ: {
4618 		r = vcpu->arch.virtual_tsc_khz;
4619 		goto out;
4620 	}
4621 	case KVM_KVMCLOCK_CTRL: {
4622 		r = kvm_set_guest_paused(vcpu);
4623 		goto out;
4624 	}
4625 	case KVM_ENABLE_CAP: {
4626 		struct kvm_enable_cap cap;
4627 
4628 		r = -EFAULT;
4629 		if (copy_from_user(&cap, argp, sizeof(cap)))
4630 			goto out;
4631 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4632 		break;
4633 	}
4634 	case KVM_GET_NESTED_STATE: {
4635 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4636 		u32 user_data_size;
4637 
4638 		r = -EINVAL;
4639 		if (!kvm_x86_ops.nested_ops->get_state)
4640 			break;
4641 
4642 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4643 		r = -EFAULT;
4644 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4645 			break;
4646 
4647 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4648 						     user_data_size);
4649 		if (r < 0)
4650 			break;
4651 
4652 		if (r > user_data_size) {
4653 			if (put_user(r, &user_kvm_nested_state->size))
4654 				r = -EFAULT;
4655 			else
4656 				r = -E2BIG;
4657 			break;
4658 		}
4659 
4660 		r = 0;
4661 		break;
4662 	}
4663 	case KVM_SET_NESTED_STATE: {
4664 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4665 		struct kvm_nested_state kvm_state;
4666 		int idx;
4667 
4668 		r = -EINVAL;
4669 		if (!kvm_x86_ops.nested_ops->set_state)
4670 			break;
4671 
4672 		r = -EFAULT;
4673 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4674 			break;
4675 
4676 		r = -EINVAL;
4677 		if (kvm_state.size < sizeof(kvm_state))
4678 			break;
4679 
4680 		if (kvm_state.flags &
4681 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4682 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4683 		      | KVM_STATE_NESTED_GIF_SET))
4684 			break;
4685 
4686 		/* nested_run_pending implies guest_mode.  */
4687 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4688 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4689 			break;
4690 
4691 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4692 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
4693 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4694 		break;
4695 	}
4696 	case KVM_GET_SUPPORTED_HV_CPUID: {
4697 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4698 		struct kvm_cpuid2 cpuid;
4699 
4700 		r = -EFAULT;
4701 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4702 			goto out;
4703 
4704 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4705 						cpuid_arg->entries);
4706 		if (r)
4707 			goto out;
4708 
4709 		r = -EFAULT;
4710 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4711 			goto out;
4712 		r = 0;
4713 		break;
4714 	}
4715 	default:
4716 		r = -EINVAL;
4717 	}
4718 out:
4719 	kfree(u.buffer);
4720 out_nofree:
4721 	vcpu_put(vcpu);
4722 	return r;
4723 }
4724 
4725 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4726 {
4727 	return VM_FAULT_SIGBUS;
4728 }
4729 
4730 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4731 {
4732 	int ret;
4733 
4734 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4735 		return -EINVAL;
4736 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
4737 	return ret;
4738 }
4739 
4740 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4741 					      u64 ident_addr)
4742 {
4743 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
4744 }
4745 
4746 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4747 					 unsigned long kvm_nr_mmu_pages)
4748 {
4749 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4750 		return -EINVAL;
4751 
4752 	mutex_lock(&kvm->slots_lock);
4753 
4754 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4755 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4756 
4757 	mutex_unlock(&kvm->slots_lock);
4758 	return 0;
4759 }
4760 
4761 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4762 {
4763 	return kvm->arch.n_max_mmu_pages;
4764 }
4765 
4766 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4767 {
4768 	struct kvm_pic *pic = kvm->arch.vpic;
4769 	int r;
4770 
4771 	r = 0;
4772 	switch (chip->chip_id) {
4773 	case KVM_IRQCHIP_PIC_MASTER:
4774 		memcpy(&chip->chip.pic, &pic->pics[0],
4775 			sizeof(struct kvm_pic_state));
4776 		break;
4777 	case KVM_IRQCHIP_PIC_SLAVE:
4778 		memcpy(&chip->chip.pic, &pic->pics[1],
4779 			sizeof(struct kvm_pic_state));
4780 		break;
4781 	case KVM_IRQCHIP_IOAPIC:
4782 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4783 		break;
4784 	default:
4785 		r = -EINVAL;
4786 		break;
4787 	}
4788 	return r;
4789 }
4790 
4791 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4792 {
4793 	struct kvm_pic *pic = kvm->arch.vpic;
4794 	int r;
4795 
4796 	r = 0;
4797 	switch (chip->chip_id) {
4798 	case KVM_IRQCHIP_PIC_MASTER:
4799 		spin_lock(&pic->lock);
4800 		memcpy(&pic->pics[0], &chip->chip.pic,
4801 			sizeof(struct kvm_pic_state));
4802 		spin_unlock(&pic->lock);
4803 		break;
4804 	case KVM_IRQCHIP_PIC_SLAVE:
4805 		spin_lock(&pic->lock);
4806 		memcpy(&pic->pics[1], &chip->chip.pic,
4807 			sizeof(struct kvm_pic_state));
4808 		spin_unlock(&pic->lock);
4809 		break;
4810 	case KVM_IRQCHIP_IOAPIC:
4811 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4812 		break;
4813 	default:
4814 		r = -EINVAL;
4815 		break;
4816 	}
4817 	kvm_pic_update_irq(pic);
4818 	return r;
4819 }
4820 
4821 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4822 {
4823 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4824 
4825 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4826 
4827 	mutex_lock(&kps->lock);
4828 	memcpy(ps, &kps->channels, sizeof(*ps));
4829 	mutex_unlock(&kps->lock);
4830 	return 0;
4831 }
4832 
4833 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4834 {
4835 	int i;
4836 	struct kvm_pit *pit = kvm->arch.vpit;
4837 
4838 	mutex_lock(&pit->pit_state.lock);
4839 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4840 	for (i = 0; i < 3; i++)
4841 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4842 	mutex_unlock(&pit->pit_state.lock);
4843 	return 0;
4844 }
4845 
4846 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4847 {
4848 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4849 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4850 		sizeof(ps->channels));
4851 	ps->flags = kvm->arch.vpit->pit_state.flags;
4852 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4853 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4854 	return 0;
4855 }
4856 
4857 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4858 {
4859 	int start = 0;
4860 	int i;
4861 	u32 prev_legacy, cur_legacy;
4862 	struct kvm_pit *pit = kvm->arch.vpit;
4863 
4864 	mutex_lock(&pit->pit_state.lock);
4865 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4866 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4867 	if (!prev_legacy && cur_legacy)
4868 		start = 1;
4869 	memcpy(&pit->pit_state.channels, &ps->channels,
4870 	       sizeof(pit->pit_state.channels));
4871 	pit->pit_state.flags = ps->flags;
4872 	for (i = 0; i < 3; i++)
4873 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4874 				   start && i == 0);
4875 	mutex_unlock(&pit->pit_state.lock);
4876 	return 0;
4877 }
4878 
4879 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4880 				 struct kvm_reinject_control *control)
4881 {
4882 	struct kvm_pit *pit = kvm->arch.vpit;
4883 
4884 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4885 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4886 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4887 	 */
4888 	mutex_lock(&pit->pit_state.lock);
4889 	kvm_pit_set_reinject(pit, control->pit_reinject);
4890 	mutex_unlock(&pit->pit_state.lock);
4891 
4892 	return 0;
4893 }
4894 
4895 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
4896 {
4897 	/*
4898 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4899 	 */
4900 	if (kvm_x86_ops.flush_log_dirty)
4901 		kvm_x86_ops.flush_log_dirty(kvm);
4902 }
4903 
4904 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4905 			bool line_status)
4906 {
4907 	if (!irqchip_in_kernel(kvm))
4908 		return -ENXIO;
4909 
4910 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4911 					irq_event->irq, irq_event->level,
4912 					line_status);
4913 	return 0;
4914 }
4915 
4916 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4917 			    struct kvm_enable_cap *cap)
4918 {
4919 	int r;
4920 
4921 	if (cap->flags)
4922 		return -EINVAL;
4923 
4924 	switch (cap->cap) {
4925 	case KVM_CAP_DISABLE_QUIRKS:
4926 		kvm->arch.disabled_quirks = cap->args[0];
4927 		r = 0;
4928 		break;
4929 	case KVM_CAP_SPLIT_IRQCHIP: {
4930 		mutex_lock(&kvm->lock);
4931 		r = -EINVAL;
4932 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4933 			goto split_irqchip_unlock;
4934 		r = -EEXIST;
4935 		if (irqchip_in_kernel(kvm))
4936 			goto split_irqchip_unlock;
4937 		if (kvm->created_vcpus)
4938 			goto split_irqchip_unlock;
4939 		r = kvm_setup_empty_irq_routing(kvm);
4940 		if (r)
4941 			goto split_irqchip_unlock;
4942 		/* Pairs with irqchip_in_kernel. */
4943 		smp_wmb();
4944 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4945 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4946 		r = 0;
4947 split_irqchip_unlock:
4948 		mutex_unlock(&kvm->lock);
4949 		break;
4950 	}
4951 	case KVM_CAP_X2APIC_API:
4952 		r = -EINVAL;
4953 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4954 			break;
4955 
4956 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4957 			kvm->arch.x2apic_format = true;
4958 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4959 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4960 
4961 		r = 0;
4962 		break;
4963 	case KVM_CAP_X86_DISABLE_EXITS:
4964 		r = -EINVAL;
4965 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4966 			break;
4967 
4968 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4969 			kvm_can_mwait_in_guest())
4970 			kvm->arch.mwait_in_guest = true;
4971 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4972 			kvm->arch.hlt_in_guest = true;
4973 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4974 			kvm->arch.pause_in_guest = true;
4975 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4976 			kvm->arch.cstate_in_guest = true;
4977 		r = 0;
4978 		break;
4979 	case KVM_CAP_MSR_PLATFORM_INFO:
4980 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4981 		r = 0;
4982 		break;
4983 	case KVM_CAP_EXCEPTION_PAYLOAD:
4984 		kvm->arch.exception_payload_enabled = cap->args[0];
4985 		r = 0;
4986 		break;
4987 	default:
4988 		r = -EINVAL;
4989 		break;
4990 	}
4991 	return r;
4992 }
4993 
4994 long kvm_arch_vm_ioctl(struct file *filp,
4995 		       unsigned int ioctl, unsigned long arg)
4996 {
4997 	struct kvm *kvm = filp->private_data;
4998 	void __user *argp = (void __user *)arg;
4999 	int r = -ENOTTY;
5000 	/*
5001 	 * This union makes it completely explicit to gcc-3.x
5002 	 * that these two variables' stack usage should be
5003 	 * combined, not added together.
5004 	 */
5005 	union {
5006 		struct kvm_pit_state ps;
5007 		struct kvm_pit_state2 ps2;
5008 		struct kvm_pit_config pit_config;
5009 	} u;
5010 
5011 	switch (ioctl) {
5012 	case KVM_SET_TSS_ADDR:
5013 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5014 		break;
5015 	case KVM_SET_IDENTITY_MAP_ADDR: {
5016 		u64 ident_addr;
5017 
5018 		mutex_lock(&kvm->lock);
5019 		r = -EINVAL;
5020 		if (kvm->created_vcpus)
5021 			goto set_identity_unlock;
5022 		r = -EFAULT;
5023 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5024 			goto set_identity_unlock;
5025 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5026 set_identity_unlock:
5027 		mutex_unlock(&kvm->lock);
5028 		break;
5029 	}
5030 	case KVM_SET_NR_MMU_PAGES:
5031 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5032 		break;
5033 	case KVM_GET_NR_MMU_PAGES:
5034 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5035 		break;
5036 	case KVM_CREATE_IRQCHIP: {
5037 		mutex_lock(&kvm->lock);
5038 
5039 		r = -EEXIST;
5040 		if (irqchip_in_kernel(kvm))
5041 			goto create_irqchip_unlock;
5042 
5043 		r = -EINVAL;
5044 		if (kvm->created_vcpus)
5045 			goto create_irqchip_unlock;
5046 
5047 		r = kvm_pic_init(kvm);
5048 		if (r)
5049 			goto create_irqchip_unlock;
5050 
5051 		r = kvm_ioapic_init(kvm);
5052 		if (r) {
5053 			kvm_pic_destroy(kvm);
5054 			goto create_irqchip_unlock;
5055 		}
5056 
5057 		r = kvm_setup_default_irq_routing(kvm);
5058 		if (r) {
5059 			kvm_ioapic_destroy(kvm);
5060 			kvm_pic_destroy(kvm);
5061 			goto create_irqchip_unlock;
5062 		}
5063 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5064 		smp_wmb();
5065 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5066 	create_irqchip_unlock:
5067 		mutex_unlock(&kvm->lock);
5068 		break;
5069 	}
5070 	case KVM_CREATE_PIT:
5071 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5072 		goto create_pit;
5073 	case KVM_CREATE_PIT2:
5074 		r = -EFAULT;
5075 		if (copy_from_user(&u.pit_config, argp,
5076 				   sizeof(struct kvm_pit_config)))
5077 			goto out;
5078 	create_pit:
5079 		mutex_lock(&kvm->lock);
5080 		r = -EEXIST;
5081 		if (kvm->arch.vpit)
5082 			goto create_pit_unlock;
5083 		r = -ENOMEM;
5084 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5085 		if (kvm->arch.vpit)
5086 			r = 0;
5087 	create_pit_unlock:
5088 		mutex_unlock(&kvm->lock);
5089 		break;
5090 	case KVM_GET_IRQCHIP: {
5091 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5092 		struct kvm_irqchip *chip;
5093 
5094 		chip = memdup_user(argp, sizeof(*chip));
5095 		if (IS_ERR(chip)) {
5096 			r = PTR_ERR(chip);
5097 			goto out;
5098 		}
5099 
5100 		r = -ENXIO;
5101 		if (!irqchip_kernel(kvm))
5102 			goto get_irqchip_out;
5103 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5104 		if (r)
5105 			goto get_irqchip_out;
5106 		r = -EFAULT;
5107 		if (copy_to_user(argp, chip, sizeof(*chip)))
5108 			goto get_irqchip_out;
5109 		r = 0;
5110 	get_irqchip_out:
5111 		kfree(chip);
5112 		break;
5113 	}
5114 	case KVM_SET_IRQCHIP: {
5115 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5116 		struct kvm_irqchip *chip;
5117 
5118 		chip = memdup_user(argp, sizeof(*chip));
5119 		if (IS_ERR(chip)) {
5120 			r = PTR_ERR(chip);
5121 			goto out;
5122 		}
5123 
5124 		r = -ENXIO;
5125 		if (!irqchip_kernel(kvm))
5126 			goto set_irqchip_out;
5127 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5128 	set_irqchip_out:
5129 		kfree(chip);
5130 		break;
5131 	}
5132 	case KVM_GET_PIT: {
5133 		r = -EFAULT;
5134 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5135 			goto out;
5136 		r = -ENXIO;
5137 		if (!kvm->arch.vpit)
5138 			goto out;
5139 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5140 		if (r)
5141 			goto out;
5142 		r = -EFAULT;
5143 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5144 			goto out;
5145 		r = 0;
5146 		break;
5147 	}
5148 	case KVM_SET_PIT: {
5149 		r = -EFAULT;
5150 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5151 			goto out;
5152 		mutex_lock(&kvm->lock);
5153 		r = -ENXIO;
5154 		if (!kvm->arch.vpit)
5155 			goto set_pit_out;
5156 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5157 set_pit_out:
5158 		mutex_unlock(&kvm->lock);
5159 		break;
5160 	}
5161 	case KVM_GET_PIT2: {
5162 		r = -ENXIO;
5163 		if (!kvm->arch.vpit)
5164 			goto out;
5165 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5166 		if (r)
5167 			goto out;
5168 		r = -EFAULT;
5169 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5170 			goto out;
5171 		r = 0;
5172 		break;
5173 	}
5174 	case KVM_SET_PIT2: {
5175 		r = -EFAULT;
5176 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5177 			goto out;
5178 		mutex_lock(&kvm->lock);
5179 		r = -ENXIO;
5180 		if (!kvm->arch.vpit)
5181 			goto set_pit2_out;
5182 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5183 set_pit2_out:
5184 		mutex_unlock(&kvm->lock);
5185 		break;
5186 	}
5187 	case KVM_REINJECT_CONTROL: {
5188 		struct kvm_reinject_control control;
5189 		r =  -EFAULT;
5190 		if (copy_from_user(&control, argp, sizeof(control)))
5191 			goto out;
5192 		r = -ENXIO;
5193 		if (!kvm->arch.vpit)
5194 			goto out;
5195 		r = kvm_vm_ioctl_reinject(kvm, &control);
5196 		break;
5197 	}
5198 	case KVM_SET_BOOT_CPU_ID:
5199 		r = 0;
5200 		mutex_lock(&kvm->lock);
5201 		if (kvm->created_vcpus)
5202 			r = -EBUSY;
5203 		else
5204 			kvm->arch.bsp_vcpu_id = arg;
5205 		mutex_unlock(&kvm->lock);
5206 		break;
5207 	case KVM_XEN_HVM_CONFIG: {
5208 		struct kvm_xen_hvm_config xhc;
5209 		r = -EFAULT;
5210 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5211 			goto out;
5212 		r = -EINVAL;
5213 		if (xhc.flags)
5214 			goto out;
5215 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5216 		r = 0;
5217 		break;
5218 	}
5219 	case KVM_SET_CLOCK: {
5220 		struct kvm_clock_data user_ns;
5221 		u64 now_ns;
5222 
5223 		r = -EFAULT;
5224 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5225 			goto out;
5226 
5227 		r = -EINVAL;
5228 		if (user_ns.flags)
5229 			goto out;
5230 
5231 		r = 0;
5232 		/*
5233 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5234 		 * kvm_gen_update_masterclock() can be cut down to locked
5235 		 * pvclock_update_vm_gtod_copy().
5236 		 */
5237 		kvm_gen_update_masterclock(kvm);
5238 		now_ns = get_kvmclock_ns(kvm);
5239 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5240 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5241 		break;
5242 	}
5243 	case KVM_GET_CLOCK: {
5244 		struct kvm_clock_data user_ns;
5245 		u64 now_ns;
5246 
5247 		now_ns = get_kvmclock_ns(kvm);
5248 		user_ns.clock = now_ns;
5249 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5250 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5251 
5252 		r = -EFAULT;
5253 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5254 			goto out;
5255 		r = 0;
5256 		break;
5257 	}
5258 	case KVM_MEMORY_ENCRYPT_OP: {
5259 		r = -ENOTTY;
5260 		if (kvm_x86_ops.mem_enc_op)
5261 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5262 		break;
5263 	}
5264 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5265 		struct kvm_enc_region region;
5266 
5267 		r = -EFAULT;
5268 		if (copy_from_user(&region, argp, sizeof(region)))
5269 			goto out;
5270 
5271 		r = -ENOTTY;
5272 		if (kvm_x86_ops.mem_enc_reg_region)
5273 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5274 		break;
5275 	}
5276 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5277 		struct kvm_enc_region region;
5278 
5279 		r = -EFAULT;
5280 		if (copy_from_user(&region, argp, sizeof(region)))
5281 			goto out;
5282 
5283 		r = -ENOTTY;
5284 		if (kvm_x86_ops.mem_enc_unreg_region)
5285 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5286 		break;
5287 	}
5288 	case KVM_HYPERV_EVENTFD: {
5289 		struct kvm_hyperv_eventfd hvevfd;
5290 
5291 		r = -EFAULT;
5292 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5293 			goto out;
5294 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5295 		break;
5296 	}
5297 	case KVM_SET_PMU_EVENT_FILTER:
5298 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5299 		break;
5300 	default:
5301 		r = -ENOTTY;
5302 	}
5303 out:
5304 	return r;
5305 }
5306 
5307 static void kvm_init_msr_list(void)
5308 {
5309 	struct x86_pmu_capability x86_pmu;
5310 	u32 dummy[2];
5311 	unsigned i;
5312 
5313 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5314 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5315 
5316 	perf_get_x86_pmu_capability(&x86_pmu);
5317 
5318 	num_msrs_to_save = 0;
5319 	num_emulated_msrs = 0;
5320 	num_msr_based_features = 0;
5321 
5322 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5323 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5324 			continue;
5325 
5326 		/*
5327 		 * Even MSRs that are valid in the host may not be exposed
5328 		 * to the guests in some cases.
5329 		 */
5330 		switch (msrs_to_save_all[i]) {
5331 		case MSR_IA32_BNDCFGS:
5332 			if (!kvm_mpx_supported())
5333 				continue;
5334 			break;
5335 		case MSR_TSC_AUX:
5336 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5337 				continue;
5338 			break;
5339 		case MSR_IA32_UMWAIT_CONTROL:
5340 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5341 				continue;
5342 			break;
5343 		case MSR_IA32_RTIT_CTL:
5344 		case MSR_IA32_RTIT_STATUS:
5345 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5346 				continue;
5347 			break;
5348 		case MSR_IA32_RTIT_CR3_MATCH:
5349 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5350 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5351 				continue;
5352 			break;
5353 		case MSR_IA32_RTIT_OUTPUT_BASE:
5354 		case MSR_IA32_RTIT_OUTPUT_MASK:
5355 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5356 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5357 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5358 				continue;
5359 			break;
5360 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5361 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5362 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5363 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5364 				continue;
5365 			break;
5366 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5367 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5368 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5369 				continue;
5370 			break;
5371 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5372 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5373 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5374 				continue;
5375 			break;
5376 		default:
5377 			break;
5378 		}
5379 
5380 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5381 	}
5382 
5383 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5384 		if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5385 			continue;
5386 
5387 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5388 	}
5389 
5390 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5391 		struct kvm_msr_entry msr;
5392 
5393 		msr.index = msr_based_features_all[i];
5394 		if (kvm_get_msr_feature(&msr))
5395 			continue;
5396 
5397 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5398 	}
5399 }
5400 
5401 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5402 			   const void *v)
5403 {
5404 	int handled = 0;
5405 	int n;
5406 
5407 	do {
5408 		n = min(len, 8);
5409 		if (!(lapic_in_kernel(vcpu) &&
5410 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5411 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5412 			break;
5413 		handled += n;
5414 		addr += n;
5415 		len -= n;
5416 		v += n;
5417 	} while (len);
5418 
5419 	return handled;
5420 }
5421 
5422 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5423 {
5424 	int handled = 0;
5425 	int n;
5426 
5427 	do {
5428 		n = min(len, 8);
5429 		if (!(lapic_in_kernel(vcpu) &&
5430 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5431 					 addr, n, v))
5432 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5433 			break;
5434 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5435 		handled += n;
5436 		addr += n;
5437 		len -= n;
5438 		v += n;
5439 	} while (len);
5440 
5441 	return handled;
5442 }
5443 
5444 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5445 			struct kvm_segment *var, int seg)
5446 {
5447 	kvm_x86_ops.set_segment(vcpu, var, seg);
5448 }
5449 
5450 void kvm_get_segment(struct kvm_vcpu *vcpu,
5451 		     struct kvm_segment *var, int seg)
5452 {
5453 	kvm_x86_ops.get_segment(vcpu, var, seg);
5454 }
5455 
5456 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5457 			   struct x86_exception *exception)
5458 {
5459 	gpa_t t_gpa;
5460 
5461 	BUG_ON(!mmu_is_nested(vcpu));
5462 
5463 	/* NPT walks are always user-walks */
5464 	access |= PFERR_USER_MASK;
5465 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5466 
5467 	return t_gpa;
5468 }
5469 
5470 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5471 			      struct x86_exception *exception)
5472 {
5473 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5474 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5475 }
5476 
5477  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5478 				struct x86_exception *exception)
5479 {
5480 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5481 	access |= PFERR_FETCH_MASK;
5482 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5483 }
5484 
5485 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5486 			       struct x86_exception *exception)
5487 {
5488 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5489 	access |= PFERR_WRITE_MASK;
5490 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5491 }
5492 
5493 /* uses this to access any guest's mapped memory without checking CPL */
5494 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5495 				struct x86_exception *exception)
5496 {
5497 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5498 }
5499 
5500 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5501 				      struct kvm_vcpu *vcpu, u32 access,
5502 				      struct x86_exception *exception)
5503 {
5504 	void *data = val;
5505 	int r = X86EMUL_CONTINUE;
5506 
5507 	while (bytes) {
5508 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5509 							    exception);
5510 		unsigned offset = addr & (PAGE_SIZE-1);
5511 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5512 		int ret;
5513 
5514 		if (gpa == UNMAPPED_GVA)
5515 			return X86EMUL_PROPAGATE_FAULT;
5516 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5517 					       offset, toread);
5518 		if (ret < 0) {
5519 			r = X86EMUL_IO_NEEDED;
5520 			goto out;
5521 		}
5522 
5523 		bytes -= toread;
5524 		data += toread;
5525 		addr += toread;
5526 	}
5527 out:
5528 	return r;
5529 }
5530 
5531 /* used for instruction fetching */
5532 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5533 				gva_t addr, void *val, unsigned int bytes,
5534 				struct x86_exception *exception)
5535 {
5536 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5537 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5538 	unsigned offset;
5539 	int ret;
5540 
5541 	/* Inline kvm_read_guest_virt_helper for speed.  */
5542 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5543 						    exception);
5544 	if (unlikely(gpa == UNMAPPED_GVA))
5545 		return X86EMUL_PROPAGATE_FAULT;
5546 
5547 	offset = addr & (PAGE_SIZE-1);
5548 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5549 		bytes = (unsigned)PAGE_SIZE - offset;
5550 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5551 				       offset, bytes);
5552 	if (unlikely(ret < 0))
5553 		return X86EMUL_IO_NEEDED;
5554 
5555 	return X86EMUL_CONTINUE;
5556 }
5557 
5558 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5559 			       gva_t addr, void *val, unsigned int bytes,
5560 			       struct x86_exception *exception)
5561 {
5562 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5563 
5564 	/*
5565 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5566 	 * is returned, but our callers are not ready for that and they blindly
5567 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5568 	 * uninitialized kernel stack memory into cr2 and error code.
5569 	 */
5570 	memset(exception, 0, sizeof(*exception));
5571 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5572 					  exception);
5573 }
5574 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5575 
5576 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5577 			     gva_t addr, void *val, unsigned int bytes,
5578 			     struct x86_exception *exception, bool system)
5579 {
5580 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5581 	u32 access = 0;
5582 
5583 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5584 		access |= PFERR_USER_MASK;
5585 
5586 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5587 }
5588 
5589 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5590 		unsigned long addr, void *val, unsigned int bytes)
5591 {
5592 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5593 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5594 
5595 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5596 }
5597 
5598 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5599 				      struct kvm_vcpu *vcpu, u32 access,
5600 				      struct x86_exception *exception)
5601 {
5602 	void *data = val;
5603 	int r = X86EMUL_CONTINUE;
5604 
5605 	while (bytes) {
5606 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5607 							     access,
5608 							     exception);
5609 		unsigned offset = addr & (PAGE_SIZE-1);
5610 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5611 		int ret;
5612 
5613 		if (gpa == UNMAPPED_GVA)
5614 			return X86EMUL_PROPAGATE_FAULT;
5615 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5616 		if (ret < 0) {
5617 			r = X86EMUL_IO_NEEDED;
5618 			goto out;
5619 		}
5620 
5621 		bytes -= towrite;
5622 		data += towrite;
5623 		addr += towrite;
5624 	}
5625 out:
5626 	return r;
5627 }
5628 
5629 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5630 			      unsigned int bytes, struct x86_exception *exception,
5631 			      bool system)
5632 {
5633 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5634 	u32 access = PFERR_WRITE_MASK;
5635 
5636 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5637 		access |= PFERR_USER_MASK;
5638 
5639 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5640 					   access, exception);
5641 }
5642 
5643 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5644 				unsigned int bytes, struct x86_exception *exception)
5645 {
5646 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5647 	vcpu->arch.l1tf_flush_l1d = true;
5648 
5649 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5650 					   PFERR_WRITE_MASK, exception);
5651 }
5652 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5653 
5654 int handle_ud(struct kvm_vcpu *vcpu)
5655 {
5656 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5657 	int emul_type = EMULTYPE_TRAP_UD;
5658 	char sig[5]; /* ud2; .ascii "kvm" */
5659 	struct x86_exception e;
5660 
5661 	if (force_emulation_prefix &&
5662 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5663 				sig, sizeof(sig), &e) == 0 &&
5664 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5665 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5666 		emul_type = EMULTYPE_TRAP_UD_FORCED;
5667 	}
5668 
5669 	return kvm_emulate_instruction(vcpu, emul_type);
5670 }
5671 EXPORT_SYMBOL_GPL(handle_ud);
5672 
5673 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5674 			    gpa_t gpa, bool write)
5675 {
5676 	/* For APIC access vmexit */
5677 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5678 		return 1;
5679 
5680 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5681 		trace_vcpu_match_mmio(gva, gpa, write, true);
5682 		return 1;
5683 	}
5684 
5685 	return 0;
5686 }
5687 
5688 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5689 				gpa_t *gpa, struct x86_exception *exception,
5690 				bool write)
5691 {
5692 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5693 		| (write ? PFERR_WRITE_MASK : 0);
5694 
5695 	/*
5696 	 * currently PKRU is only applied to ept enabled guest so
5697 	 * there is no pkey in EPT page table for L1 guest or EPT
5698 	 * shadow page table for L2 guest.
5699 	 */
5700 	if (vcpu_match_mmio_gva(vcpu, gva)
5701 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5702 				 vcpu->arch.mmio_access, 0, access)) {
5703 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5704 					(gva & (PAGE_SIZE - 1));
5705 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5706 		return 1;
5707 	}
5708 
5709 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5710 
5711 	if (*gpa == UNMAPPED_GVA)
5712 		return -1;
5713 
5714 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5715 }
5716 
5717 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5718 			const void *val, int bytes)
5719 {
5720 	int ret;
5721 
5722 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5723 	if (ret < 0)
5724 		return 0;
5725 	kvm_page_track_write(vcpu, gpa, val, bytes);
5726 	return 1;
5727 }
5728 
5729 struct read_write_emulator_ops {
5730 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5731 				  int bytes);
5732 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5733 				  void *val, int bytes);
5734 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5735 			       int bytes, void *val);
5736 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5737 				    void *val, int bytes);
5738 	bool write;
5739 };
5740 
5741 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5742 {
5743 	if (vcpu->mmio_read_completed) {
5744 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5745 			       vcpu->mmio_fragments[0].gpa, val);
5746 		vcpu->mmio_read_completed = 0;
5747 		return 1;
5748 	}
5749 
5750 	return 0;
5751 }
5752 
5753 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5754 			void *val, int bytes)
5755 {
5756 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5757 }
5758 
5759 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5760 			 void *val, int bytes)
5761 {
5762 	return emulator_write_phys(vcpu, gpa, val, bytes);
5763 }
5764 
5765 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5766 {
5767 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5768 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5769 }
5770 
5771 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5772 			  void *val, int bytes)
5773 {
5774 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5775 	return X86EMUL_IO_NEEDED;
5776 }
5777 
5778 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5779 			   void *val, int bytes)
5780 {
5781 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5782 
5783 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5784 	return X86EMUL_CONTINUE;
5785 }
5786 
5787 static const struct read_write_emulator_ops read_emultor = {
5788 	.read_write_prepare = read_prepare,
5789 	.read_write_emulate = read_emulate,
5790 	.read_write_mmio = vcpu_mmio_read,
5791 	.read_write_exit_mmio = read_exit_mmio,
5792 };
5793 
5794 static const struct read_write_emulator_ops write_emultor = {
5795 	.read_write_emulate = write_emulate,
5796 	.read_write_mmio = write_mmio,
5797 	.read_write_exit_mmio = write_exit_mmio,
5798 	.write = true,
5799 };
5800 
5801 static int emulator_read_write_onepage(unsigned long addr, void *val,
5802 				       unsigned int bytes,
5803 				       struct x86_exception *exception,
5804 				       struct kvm_vcpu *vcpu,
5805 				       const struct read_write_emulator_ops *ops)
5806 {
5807 	gpa_t gpa;
5808 	int handled, ret;
5809 	bool write = ops->write;
5810 	struct kvm_mmio_fragment *frag;
5811 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
5812 
5813 	/*
5814 	 * If the exit was due to a NPF we may already have a GPA.
5815 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5816 	 * Note, this cannot be used on string operations since string
5817 	 * operation using rep will only have the initial GPA from the NPF
5818 	 * occurred.
5819 	 */
5820 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5821 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5822 		gpa = ctxt->gpa_val;
5823 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5824 	} else {
5825 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5826 		if (ret < 0)
5827 			return X86EMUL_PROPAGATE_FAULT;
5828 	}
5829 
5830 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5831 		return X86EMUL_CONTINUE;
5832 
5833 	/*
5834 	 * Is this MMIO handled locally?
5835 	 */
5836 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5837 	if (handled == bytes)
5838 		return X86EMUL_CONTINUE;
5839 
5840 	gpa += handled;
5841 	bytes -= handled;
5842 	val += handled;
5843 
5844 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5845 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5846 	frag->gpa = gpa;
5847 	frag->data = val;
5848 	frag->len = bytes;
5849 	return X86EMUL_CONTINUE;
5850 }
5851 
5852 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5853 			unsigned long addr,
5854 			void *val, unsigned int bytes,
5855 			struct x86_exception *exception,
5856 			const struct read_write_emulator_ops *ops)
5857 {
5858 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5859 	gpa_t gpa;
5860 	int rc;
5861 
5862 	if (ops->read_write_prepare &&
5863 		  ops->read_write_prepare(vcpu, val, bytes))
5864 		return X86EMUL_CONTINUE;
5865 
5866 	vcpu->mmio_nr_fragments = 0;
5867 
5868 	/* Crossing a page boundary? */
5869 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5870 		int now;
5871 
5872 		now = -addr & ~PAGE_MASK;
5873 		rc = emulator_read_write_onepage(addr, val, now, exception,
5874 						 vcpu, ops);
5875 
5876 		if (rc != X86EMUL_CONTINUE)
5877 			return rc;
5878 		addr += now;
5879 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5880 			addr = (u32)addr;
5881 		val += now;
5882 		bytes -= now;
5883 	}
5884 
5885 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5886 					 vcpu, ops);
5887 	if (rc != X86EMUL_CONTINUE)
5888 		return rc;
5889 
5890 	if (!vcpu->mmio_nr_fragments)
5891 		return rc;
5892 
5893 	gpa = vcpu->mmio_fragments[0].gpa;
5894 
5895 	vcpu->mmio_needed = 1;
5896 	vcpu->mmio_cur_fragment = 0;
5897 
5898 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5899 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5900 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5901 	vcpu->run->mmio.phys_addr = gpa;
5902 
5903 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5904 }
5905 
5906 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5907 				  unsigned long addr,
5908 				  void *val,
5909 				  unsigned int bytes,
5910 				  struct x86_exception *exception)
5911 {
5912 	return emulator_read_write(ctxt, addr, val, bytes,
5913 				   exception, &read_emultor);
5914 }
5915 
5916 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5917 			    unsigned long addr,
5918 			    const void *val,
5919 			    unsigned int bytes,
5920 			    struct x86_exception *exception)
5921 {
5922 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5923 				   exception, &write_emultor);
5924 }
5925 
5926 #define CMPXCHG_TYPE(t, ptr, old, new) \
5927 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5928 
5929 #ifdef CONFIG_X86_64
5930 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5931 #else
5932 #  define CMPXCHG64(ptr, old, new) \
5933 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5934 #endif
5935 
5936 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5937 				     unsigned long addr,
5938 				     const void *old,
5939 				     const void *new,
5940 				     unsigned int bytes,
5941 				     struct x86_exception *exception)
5942 {
5943 	struct kvm_host_map map;
5944 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5945 	u64 page_line_mask;
5946 	gpa_t gpa;
5947 	char *kaddr;
5948 	bool exchanged;
5949 
5950 	/* guests cmpxchg8b have to be emulated atomically */
5951 	if (bytes > 8 || (bytes & (bytes - 1)))
5952 		goto emul_write;
5953 
5954 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5955 
5956 	if (gpa == UNMAPPED_GVA ||
5957 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5958 		goto emul_write;
5959 
5960 	/*
5961 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
5962 	 * enabled in the host and the access splits a cache line.
5963 	 */
5964 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5965 		page_line_mask = ~(cache_line_size() - 1);
5966 	else
5967 		page_line_mask = PAGE_MASK;
5968 
5969 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
5970 		goto emul_write;
5971 
5972 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5973 		goto emul_write;
5974 
5975 	kaddr = map.hva + offset_in_page(gpa);
5976 
5977 	switch (bytes) {
5978 	case 1:
5979 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5980 		break;
5981 	case 2:
5982 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5983 		break;
5984 	case 4:
5985 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5986 		break;
5987 	case 8:
5988 		exchanged = CMPXCHG64(kaddr, old, new);
5989 		break;
5990 	default:
5991 		BUG();
5992 	}
5993 
5994 	kvm_vcpu_unmap(vcpu, &map, true);
5995 
5996 	if (!exchanged)
5997 		return X86EMUL_CMPXCHG_FAILED;
5998 
5999 	kvm_page_track_write(vcpu, gpa, new, bytes);
6000 
6001 	return X86EMUL_CONTINUE;
6002 
6003 emul_write:
6004 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6005 
6006 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6007 }
6008 
6009 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6010 {
6011 	int r = 0, i;
6012 
6013 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6014 		if (vcpu->arch.pio.in)
6015 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6016 					    vcpu->arch.pio.size, pd);
6017 		else
6018 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6019 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6020 					     pd);
6021 		if (r)
6022 			break;
6023 		pd += vcpu->arch.pio.size;
6024 	}
6025 	return r;
6026 }
6027 
6028 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6029 			       unsigned short port, void *val,
6030 			       unsigned int count, bool in)
6031 {
6032 	vcpu->arch.pio.port = port;
6033 	vcpu->arch.pio.in = in;
6034 	vcpu->arch.pio.count  = count;
6035 	vcpu->arch.pio.size = size;
6036 
6037 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6038 		vcpu->arch.pio.count = 0;
6039 		return 1;
6040 	}
6041 
6042 	vcpu->run->exit_reason = KVM_EXIT_IO;
6043 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6044 	vcpu->run->io.size = size;
6045 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6046 	vcpu->run->io.count = count;
6047 	vcpu->run->io.port = port;
6048 
6049 	return 0;
6050 }
6051 
6052 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6053 			   unsigned short port, void *val, unsigned int count)
6054 {
6055 	int ret;
6056 
6057 	if (vcpu->arch.pio.count)
6058 		goto data_avail;
6059 
6060 	memset(vcpu->arch.pio_data, 0, size * count);
6061 
6062 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6063 	if (ret) {
6064 data_avail:
6065 		memcpy(val, vcpu->arch.pio_data, size * count);
6066 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6067 		vcpu->arch.pio.count = 0;
6068 		return 1;
6069 	}
6070 
6071 	return 0;
6072 }
6073 
6074 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6075 				    int size, unsigned short port, void *val,
6076 				    unsigned int count)
6077 {
6078 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6079 
6080 }
6081 
6082 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6083 			    unsigned short port, const void *val,
6084 			    unsigned int count)
6085 {
6086 	memcpy(vcpu->arch.pio_data, val, size * count);
6087 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6088 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6089 }
6090 
6091 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6092 				     int size, unsigned short port,
6093 				     const void *val, unsigned int count)
6094 {
6095 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6096 }
6097 
6098 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6099 {
6100 	return kvm_x86_ops.get_segment_base(vcpu, seg);
6101 }
6102 
6103 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6104 {
6105 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6106 }
6107 
6108 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6109 {
6110 	if (!need_emulate_wbinvd(vcpu))
6111 		return X86EMUL_CONTINUE;
6112 
6113 	if (kvm_x86_ops.has_wbinvd_exit()) {
6114 		int cpu = get_cpu();
6115 
6116 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6117 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6118 				wbinvd_ipi, NULL, 1);
6119 		put_cpu();
6120 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6121 	} else
6122 		wbinvd();
6123 	return X86EMUL_CONTINUE;
6124 }
6125 
6126 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6127 {
6128 	kvm_emulate_wbinvd_noskip(vcpu);
6129 	return kvm_skip_emulated_instruction(vcpu);
6130 }
6131 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6132 
6133 
6134 
6135 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6136 {
6137 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6138 }
6139 
6140 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6141 			   unsigned long *dest)
6142 {
6143 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6144 }
6145 
6146 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6147 			   unsigned long value)
6148 {
6149 
6150 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6151 }
6152 
6153 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6154 {
6155 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6156 }
6157 
6158 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6159 {
6160 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6161 	unsigned long value;
6162 
6163 	switch (cr) {
6164 	case 0:
6165 		value = kvm_read_cr0(vcpu);
6166 		break;
6167 	case 2:
6168 		value = vcpu->arch.cr2;
6169 		break;
6170 	case 3:
6171 		value = kvm_read_cr3(vcpu);
6172 		break;
6173 	case 4:
6174 		value = kvm_read_cr4(vcpu);
6175 		break;
6176 	case 8:
6177 		value = kvm_get_cr8(vcpu);
6178 		break;
6179 	default:
6180 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6181 		return 0;
6182 	}
6183 
6184 	return value;
6185 }
6186 
6187 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6188 {
6189 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6190 	int res = 0;
6191 
6192 	switch (cr) {
6193 	case 0:
6194 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6195 		break;
6196 	case 2:
6197 		vcpu->arch.cr2 = val;
6198 		break;
6199 	case 3:
6200 		res = kvm_set_cr3(vcpu, val);
6201 		break;
6202 	case 4:
6203 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6204 		break;
6205 	case 8:
6206 		res = kvm_set_cr8(vcpu, val);
6207 		break;
6208 	default:
6209 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6210 		res = -1;
6211 	}
6212 
6213 	return res;
6214 }
6215 
6216 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6217 {
6218 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6219 }
6220 
6221 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6222 {
6223 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6224 }
6225 
6226 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6227 {
6228 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6229 }
6230 
6231 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6232 {
6233 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6234 }
6235 
6236 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6237 {
6238 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6239 }
6240 
6241 static unsigned long emulator_get_cached_segment_base(
6242 	struct x86_emulate_ctxt *ctxt, int seg)
6243 {
6244 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6245 }
6246 
6247 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6248 				 struct desc_struct *desc, u32 *base3,
6249 				 int seg)
6250 {
6251 	struct kvm_segment var;
6252 
6253 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6254 	*selector = var.selector;
6255 
6256 	if (var.unusable) {
6257 		memset(desc, 0, sizeof(*desc));
6258 		if (base3)
6259 			*base3 = 0;
6260 		return false;
6261 	}
6262 
6263 	if (var.g)
6264 		var.limit >>= 12;
6265 	set_desc_limit(desc, var.limit);
6266 	set_desc_base(desc, (unsigned long)var.base);
6267 #ifdef CONFIG_X86_64
6268 	if (base3)
6269 		*base3 = var.base >> 32;
6270 #endif
6271 	desc->type = var.type;
6272 	desc->s = var.s;
6273 	desc->dpl = var.dpl;
6274 	desc->p = var.present;
6275 	desc->avl = var.avl;
6276 	desc->l = var.l;
6277 	desc->d = var.db;
6278 	desc->g = var.g;
6279 
6280 	return true;
6281 }
6282 
6283 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6284 				 struct desc_struct *desc, u32 base3,
6285 				 int seg)
6286 {
6287 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6288 	struct kvm_segment var;
6289 
6290 	var.selector = selector;
6291 	var.base = get_desc_base(desc);
6292 #ifdef CONFIG_X86_64
6293 	var.base |= ((u64)base3) << 32;
6294 #endif
6295 	var.limit = get_desc_limit(desc);
6296 	if (desc->g)
6297 		var.limit = (var.limit << 12) | 0xfff;
6298 	var.type = desc->type;
6299 	var.dpl = desc->dpl;
6300 	var.db = desc->d;
6301 	var.s = desc->s;
6302 	var.l = desc->l;
6303 	var.g = desc->g;
6304 	var.avl = desc->avl;
6305 	var.present = desc->p;
6306 	var.unusable = !var.present;
6307 	var.padding = 0;
6308 
6309 	kvm_set_segment(vcpu, &var, seg);
6310 	return;
6311 }
6312 
6313 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6314 			    u32 msr_index, u64 *pdata)
6315 {
6316 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6317 }
6318 
6319 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6320 			    u32 msr_index, u64 data)
6321 {
6322 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6323 }
6324 
6325 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6326 {
6327 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6328 
6329 	return vcpu->arch.smbase;
6330 }
6331 
6332 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6333 {
6334 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6335 
6336 	vcpu->arch.smbase = smbase;
6337 }
6338 
6339 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6340 			      u32 pmc)
6341 {
6342 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6343 }
6344 
6345 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6346 			     u32 pmc, u64 *pdata)
6347 {
6348 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6349 }
6350 
6351 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6352 {
6353 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6354 }
6355 
6356 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6357 			      struct x86_instruction_info *info,
6358 			      enum x86_intercept_stage stage)
6359 {
6360 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6361 					    &ctxt->exception);
6362 }
6363 
6364 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6365 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6366 			      bool exact_only)
6367 {
6368 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6369 }
6370 
6371 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6372 {
6373 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6374 }
6375 
6376 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6377 {
6378 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6379 }
6380 
6381 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6382 {
6383 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6384 }
6385 
6386 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6387 {
6388 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6389 }
6390 
6391 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6392 {
6393 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6394 }
6395 
6396 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6397 {
6398 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6399 }
6400 
6401 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6402 {
6403 	return emul_to_vcpu(ctxt)->arch.hflags;
6404 }
6405 
6406 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6407 {
6408 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6409 }
6410 
6411 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6412 				  const char *smstate)
6413 {
6414 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6415 }
6416 
6417 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6418 {
6419 	kvm_smm_changed(emul_to_vcpu(ctxt));
6420 }
6421 
6422 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6423 {
6424 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6425 }
6426 
6427 static const struct x86_emulate_ops emulate_ops = {
6428 	.read_gpr            = emulator_read_gpr,
6429 	.write_gpr           = emulator_write_gpr,
6430 	.read_std            = emulator_read_std,
6431 	.write_std           = emulator_write_std,
6432 	.read_phys           = kvm_read_guest_phys_system,
6433 	.fetch               = kvm_fetch_guest_virt,
6434 	.read_emulated       = emulator_read_emulated,
6435 	.write_emulated      = emulator_write_emulated,
6436 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6437 	.invlpg              = emulator_invlpg,
6438 	.pio_in_emulated     = emulator_pio_in_emulated,
6439 	.pio_out_emulated    = emulator_pio_out_emulated,
6440 	.get_segment         = emulator_get_segment,
6441 	.set_segment         = emulator_set_segment,
6442 	.get_cached_segment_base = emulator_get_cached_segment_base,
6443 	.get_gdt             = emulator_get_gdt,
6444 	.get_idt	     = emulator_get_idt,
6445 	.set_gdt             = emulator_set_gdt,
6446 	.set_idt	     = emulator_set_idt,
6447 	.get_cr              = emulator_get_cr,
6448 	.set_cr              = emulator_set_cr,
6449 	.cpl                 = emulator_get_cpl,
6450 	.get_dr              = emulator_get_dr,
6451 	.set_dr              = emulator_set_dr,
6452 	.get_smbase          = emulator_get_smbase,
6453 	.set_smbase          = emulator_set_smbase,
6454 	.set_msr             = emulator_set_msr,
6455 	.get_msr             = emulator_get_msr,
6456 	.check_pmc	     = emulator_check_pmc,
6457 	.read_pmc            = emulator_read_pmc,
6458 	.halt                = emulator_halt,
6459 	.wbinvd              = emulator_wbinvd,
6460 	.fix_hypercall       = emulator_fix_hypercall,
6461 	.intercept           = emulator_intercept,
6462 	.get_cpuid           = emulator_get_cpuid,
6463 	.guest_has_long_mode = emulator_guest_has_long_mode,
6464 	.guest_has_movbe     = emulator_guest_has_movbe,
6465 	.guest_has_fxsr      = emulator_guest_has_fxsr,
6466 	.set_nmi_mask        = emulator_set_nmi_mask,
6467 	.get_hflags          = emulator_get_hflags,
6468 	.set_hflags          = emulator_set_hflags,
6469 	.pre_leave_smm       = emulator_pre_leave_smm,
6470 	.post_leave_smm      = emulator_post_leave_smm,
6471 	.set_xcr             = emulator_set_xcr,
6472 };
6473 
6474 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6475 {
6476 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6477 	/*
6478 	 * an sti; sti; sequence only disable interrupts for the first
6479 	 * instruction. So, if the last instruction, be it emulated or
6480 	 * not, left the system with the INT_STI flag enabled, it
6481 	 * means that the last instruction is an sti. We should not
6482 	 * leave the flag on in this case. The same goes for mov ss
6483 	 */
6484 	if (int_shadow & mask)
6485 		mask = 0;
6486 	if (unlikely(int_shadow || mask)) {
6487 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6488 		if (!mask)
6489 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6490 	}
6491 }
6492 
6493 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6494 {
6495 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6496 	if (ctxt->exception.vector == PF_VECTOR)
6497 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
6498 
6499 	if (ctxt->exception.error_code_valid)
6500 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6501 				      ctxt->exception.error_code);
6502 	else
6503 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6504 	return false;
6505 }
6506 
6507 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6508 {
6509 	struct x86_emulate_ctxt *ctxt;
6510 
6511 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6512 	if (!ctxt) {
6513 		pr_err("kvm: failed to allocate vcpu's emulator\n");
6514 		return NULL;
6515 	}
6516 
6517 	ctxt->vcpu = vcpu;
6518 	ctxt->ops = &emulate_ops;
6519 	vcpu->arch.emulate_ctxt = ctxt;
6520 
6521 	return ctxt;
6522 }
6523 
6524 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6525 {
6526 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6527 	int cs_db, cs_l;
6528 
6529 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6530 
6531 	ctxt->gpa_available = false;
6532 	ctxt->eflags = kvm_get_rflags(vcpu);
6533 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6534 
6535 	ctxt->eip = kvm_rip_read(vcpu);
6536 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6537 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6538 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6539 		     cs_db				? X86EMUL_MODE_PROT32 :
6540 							  X86EMUL_MODE_PROT16;
6541 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6542 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6543 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6544 
6545 	init_decode_cache(ctxt);
6546 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6547 }
6548 
6549 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6550 {
6551 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6552 	int ret;
6553 
6554 	init_emulate_ctxt(vcpu);
6555 
6556 	ctxt->op_bytes = 2;
6557 	ctxt->ad_bytes = 2;
6558 	ctxt->_eip = ctxt->eip + inc_eip;
6559 	ret = emulate_int_real(ctxt, irq);
6560 
6561 	if (ret != X86EMUL_CONTINUE) {
6562 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6563 	} else {
6564 		ctxt->eip = ctxt->_eip;
6565 		kvm_rip_write(vcpu, ctxt->eip);
6566 		kvm_set_rflags(vcpu, ctxt->eflags);
6567 	}
6568 }
6569 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6570 
6571 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6572 {
6573 	++vcpu->stat.insn_emulation_fail;
6574 	trace_kvm_emulate_insn_failed(vcpu);
6575 
6576 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6577 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6578 		return 1;
6579 	}
6580 
6581 	if (emulation_type & EMULTYPE_SKIP) {
6582 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6583 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6584 		vcpu->run->internal.ndata = 0;
6585 		return 0;
6586 	}
6587 
6588 	kvm_queue_exception(vcpu, UD_VECTOR);
6589 
6590 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
6591 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6592 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6593 		vcpu->run->internal.ndata = 0;
6594 		return 0;
6595 	}
6596 
6597 	return 1;
6598 }
6599 
6600 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6601 				  bool write_fault_to_shadow_pgtable,
6602 				  int emulation_type)
6603 {
6604 	gpa_t gpa = cr2_or_gpa;
6605 	kvm_pfn_t pfn;
6606 
6607 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6608 		return false;
6609 
6610 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6611 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6612 		return false;
6613 
6614 	if (!vcpu->arch.mmu->direct_map) {
6615 		/*
6616 		 * Write permission should be allowed since only
6617 		 * write access need to be emulated.
6618 		 */
6619 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6620 
6621 		/*
6622 		 * If the mapping is invalid in guest, let cpu retry
6623 		 * it to generate fault.
6624 		 */
6625 		if (gpa == UNMAPPED_GVA)
6626 			return true;
6627 	}
6628 
6629 	/*
6630 	 * Do not retry the unhandleable instruction if it faults on the
6631 	 * readonly host memory, otherwise it will goto a infinite loop:
6632 	 * retry instruction -> write #PF -> emulation fail -> retry
6633 	 * instruction -> ...
6634 	 */
6635 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6636 
6637 	/*
6638 	 * If the instruction failed on the error pfn, it can not be fixed,
6639 	 * report the error to userspace.
6640 	 */
6641 	if (is_error_noslot_pfn(pfn))
6642 		return false;
6643 
6644 	kvm_release_pfn_clean(pfn);
6645 
6646 	/* The instructions are well-emulated on direct mmu. */
6647 	if (vcpu->arch.mmu->direct_map) {
6648 		unsigned int indirect_shadow_pages;
6649 
6650 		spin_lock(&vcpu->kvm->mmu_lock);
6651 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6652 		spin_unlock(&vcpu->kvm->mmu_lock);
6653 
6654 		if (indirect_shadow_pages)
6655 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6656 
6657 		return true;
6658 	}
6659 
6660 	/*
6661 	 * if emulation was due to access to shadowed page table
6662 	 * and it failed try to unshadow page and re-enter the
6663 	 * guest to let CPU execute the instruction.
6664 	 */
6665 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6666 
6667 	/*
6668 	 * If the access faults on its page table, it can not
6669 	 * be fixed by unprotecting shadow page and it should
6670 	 * be reported to userspace.
6671 	 */
6672 	return !write_fault_to_shadow_pgtable;
6673 }
6674 
6675 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6676 			      gpa_t cr2_or_gpa,  int emulation_type)
6677 {
6678 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6679 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6680 
6681 	last_retry_eip = vcpu->arch.last_retry_eip;
6682 	last_retry_addr = vcpu->arch.last_retry_addr;
6683 
6684 	/*
6685 	 * If the emulation is caused by #PF and it is non-page_table
6686 	 * writing instruction, it means the VM-EXIT is caused by shadow
6687 	 * page protected, we can zap the shadow page and retry this
6688 	 * instruction directly.
6689 	 *
6690 	 * Note: if the guest uses a non-page-table modifying instruction
6691 	 * on the PDE that points to the instruction, then we will unmap
6692 	 * the instruction and go to an infinite loop. So, we cache the
6693 	 * last retried eip and the last fault address, if we meet the eip
6694 	 * and the address again, we can break out of the potential infinite
6695 	 * loop.
6696 	 */
6697 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6698 
6699 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6700 		return false;
6701 
6702 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6703 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6704 		return false;
6705 
6706 	if (x86_page_table_writing_insn(ctxt))
6707 		return false;
6708 
6709 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6710 		return false;
6711 
6712 	vcpu->arch.last_retry_eip = ctxt->eip;
6713 	vcpu->arch.last_retry_addr = cr2_or_gpa;
6714 
6715 	if (!vcpu->arch.mmu->direct_map)
6716 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6717 
6718 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6719 
6720 	return true;
6721 }
6722 
6723 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6724 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6725 
6726 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6727 {
6728 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6729 		/* This is a good place to trace that we are exiting SMM.  */
6730 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6731 
6732 		/* Process a latched INIT or SMI, if any.  */
6733 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6734 	}
6735 
6736 	kvm_mmu_reset_context(vcpu);
6737 }
6738 
6739 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6740 				unsigned long *db)
6741 {
6742 	u32 dr6 = 0;
6743 	int i;
6744 	u32 enable, rwlen;
6745 
6746 	enable = dr7;
6747 	rwlen = dr7 >> 16;
6748 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6749 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6750 			dr6 |= (1 << i);
6751 	return dr6;
6752 }
6753 
6754 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6755 {
6756 	struct kvm_run *kvm_run = vcpu->run;
6757 
6758 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6759 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6760 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6761 		kvm_run->debug.arch.exception = DB_VECTOR;
6762 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6763 		return 0;
6764 	}
6765 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6766 	return 1;
6767 }
6768 
6769 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6770 {
6771 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6772 	int r;
6773 
6774 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
6775 	if (unlikely(!r))
6776 		return 0;
6777 
6778 	/*
6779 	 * rflags is the old, "raw" value of the flags.  The new value has
6780 	 * not been saved yet.
6781 	 *
6782 	 * This is correct even for TF set by the guest, because "the
6783 	 * processor will not generate this exception after the instruction
6784 	 * that sets the TF flag".
6785 	 */
6786 	if (unlikely(rflags & X86_EFLAGS_TF))
6787 		r = kvm_vcpu_do_singlestep(vcpu);
6788 	return r;
6789 }
6790 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6791 
6792 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6793 {
6794 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6795 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6796 		struct kvm_run *kvm_run = vcpu->run;
6797 		unsigned long eip = kvm_get_linear_rip(vcpu);
6798 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6799 					   vcpu->arch.guest_debug_dr7,
6800 					   vcpu->arch.eff_db);
6801 
6802 		if (dr6 != 0) {
6803 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6804 			kvm_run->debug.arch.pc = eip;
6805 			kvm_run->debug.arch.exception = DB_VECTOR;
6806 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6807 			*r = 0;
6808 			return true;
6809 		}
6810 	}
6811 
6812 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6813 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6814 		unsigned long eip = kvm_get_linear_rip(vcpu);
6815 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6816 					   vcpu->arch.dr7,
6817 					   vcpu->arch.db);
6818 
6819 		if (dr6 != 0) {
6820 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
6821 			*r = 1;
6822 			return true;
6823 		}
6824 	}
6825 
6826 	return false;
6827 }
6828 
6829 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6830 {
6831 	switch (ctxt->opcode_len) {
6832 	case 1:
6833 		switch (ctxt->b) {
6834 		case 0xe4:	/* IN */
6835 		case 0xe5:
6836 		case 0xec:
6837 		case 0xed:
6838 		case 0xe6:	/* OUT */
6839 		case 0xe7:
6840 		case 0xee:
6841 		case 0xef:
6842 		case 0x6c:	/* INS */
6843 		case 0x6d:
6844 		case 0x6e:	/* OUTS */
6845 		case 0x6f:
6846 			return true;
6847 		}
6848 		break;
6849 	case 2:
6850 		switch (ctxt->b) {
6851 		case 0x33:	/* RDPMC */
6852 			return true;
6853 		}
6854 		break;
6855 	}
6856 
6857 	return false;
6858 }
6859 
6860 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6861 			    int emulation_type, void *insn, int insn_len)
6862 {
6863 	int r;
6864 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6865 	bool writeback = true;
6866 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6867 
6868 	vcpu->arch.l1tf_flush_l1d = true;
6869 
6870 	/*
6871 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6872 	 * never reused.
6873 	 */
6874 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6875 	kvm_clear_exception_queue(vcpu);
6876 
6877 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6878 		init_emulate_ctxt(vcpu);
6879 
6880 		/*
6881 		 * We will reenter on the same instruction since
6882 		 * we do not set complete_userspace_io.  This does not
6883 		 * handle watchpoints yet, those would be handled in
6884 		 * the emulate_ops.
6885 		 */
6886 		if (!(emulation_type & EMULTYPE_SKIP) &&
6887 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6888 			return r;
6889 
6890 		ctxt->interruptibility = 0;
6891 		ctxt->have_exception = false;
6892 		ctxt->exception.vector = -1;
6893 		ctxt->perm_ok = false;
6894 
6895 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6896 
6897 		r = x86_decode_insn(ctxt, insn, insn_len);
6898 
6899 		trace_kvm_emulate_insn_start(vcpu);
6900 		++vcpu->stat.insn_emulation;
6901 		if (r != EMULATION_OK)  {
6902 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
6903 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6904 				kvm_queue_exception(vcpu, UD_VECTOR);
6905 				return 1;
6906 			}
6907 			if (reexecute_instruction(vcpu, cr2_or_gpa,
6908 						  write_fault_to_spt,
6909 						  emulation_type))
6910 				return 1;
6911 			if (ctxt->have_exception) {
6912 				/*
6913 				 * #UD should result in just EMULATION_FAILED, and trap-like
6914 				 * exception should not be encountered during decode.
6915 				 */
6916 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6917 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6918 				inject_emulated_exception(vcpu);
6919 				return 1;
6920 			}
6921 			return handle_emulation_failure(vcpu, emulation_type);
6922 		}
6923 	}
6924 
6925 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6926 	    !is_vmware_backdoor_opcode(ctxt)) {
6927 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6928 		return 1;
6929 	}
6930 
6931 	/*
6932 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6933 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
6934 	 * updating interruptibility state and injecting single-step #DBs.
6935 	 */
6936 	if (emulation_type & EMULTYPE_SKIP) {
6937 		kvm_rip_write(vcpu, ctxt->_eip);
6938 		if (ctxt->eflags & X86_EFLAGS_RF)
6939 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6940 		return 1;
6941 	}
6942 
6943 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6944 		return 1;
6945 
6946 	/* this is needed for vmware backdoor interface to work since it
6947 	   changes registers values  during IO operation */
6948 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6949 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6950 		emulator_invalidate_register_cache(ctxt);
6951 	}
6952 
6953 restart:
6954 	if (emulation_type & EMULTYPE_PF) {
6955 		/* Save the faulting GPA (cr2) in the address field */
6956 		ctxt->exception.address = cr2_or_gpa;
6957 
6958 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
6959 		if (vcpu->arch.mmu->direct_map) {
6960 			ctxt->gpa_available = true;
6961 			ctxt->gpa_val = cr2_or_gpa;
6962 		}
6963 	} else {
6964 		/* Sanitize the address out of an abundance of paranoia. */
6965 		ctxt->exception.address = 0;
6966 	}
6967 
6968 	r = x86_emulate_insn(ctxt);
6969 
6970 	if (r == EMULATION_INTERCEPTED)
6971 		return 1;
6972 
6973 	if (r == EMULATION_FAILED) {
6974 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6975 					emulation_type))
6976 			return 1;
6977 
6978 		return handle_emulation_failure(vcpu, emulation_type);
6979 	}
6980 
6981 	if (ctxt->have_exception) {
6982 		r = 1;
6983 		if (inject_emulated_exception(vcpu))
6984 			return r;
6985 	} else if (vcpu->arch.pio.count) {
6986 		if (!vcpu->arch.pio.in) {
6987 			/* FIXME: return into emulator if single-stepping.  */
6988 			vcpu->arch.pio.count = 0;
6989 		} else {
6990 			writeback = false;
6991 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6992 		}
6993 		r = 0;
6994 	} else if (vcpu->mmio_needed) {
6995 		++vcpu->stat.mmio_exits;
6996 
6997 		if (!vcpu->mmio_is_write)
6998 			writeback = false;
6999 		r = 0;
7000 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7001 	} else if (r == EMULATION_RESTART)
7002 		goto restart;
7003 	else
7004 		r = 1;
7005 
7006 	if (writeback) {
7007 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
7008 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7009 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7010 		if (!ctxt->have_exception ||
7011 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7012 			kvm_rip_write(vcpu, ctxt->eip);
7013 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7014 				r = kvm_vcpu_do_singlestep(vcpu);
7015 			if (kvm_x86_ops.update_emulated_instruction)
7016 				kvm_x86_ops.update_emulated_instruction(vcpu);
7017 			__kvm_set_rflags(vcpu, ctxt->eflags);
7018 		}
7019 
7020 		/*
7021 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7022 		 * do nothing, and it will be requested again as soon as
7023 		 * the shadow expires.  But we still need to check here,
7024 		 * because POPF has no interrupt shadow.
7025 		 */
7026 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7027 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7028 	} else
7029 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7030 
7031 	return r;
7032 }
7033 
7034 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7035 {
7036 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7037 }
7038 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7039 
7040 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7041 					void *insn, int insn_len)
7042 {
7043 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7044 }
7045 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7046 
7047 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7048 {
7049 	vcpu->arch.pio.count = 0;
7050 	return 1;
7051 }
7052 
7053 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7054 {
7055 	vcpu->arch.pio.count = 0;
7056 
7057 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7058 		return 1;
7059 
7060 	return kvm_skip_emulated_instruction(vcpu);
7061 }
7062 
7063 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7064 			    unsigned short port)
7065 {
7066 	unsigned long val = kvm_rax_read(vcpu);
7067 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7068 
7069 	if (ret)
7070 		return ret;
7071 
7072 	/*
7073 	 * Workaround userspace that relies on old KVM behavior of %rip being
7074 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7075 	 */
7076 	if (port == 0x7e &&
7077 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7078 		vcpu->arch.complete_userspace_io =
7079 			complete_fast_pio_out_port_0x7e;
7080 		kvm_skip_emulated_instruction(vcpu);
7081 	} else {
7082 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7083 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7084 	}
7085 	return 0;
7086 }
7087 
7088 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7089 {
7090 	unsigned long val;
7091 
7092 	/* We should only ever be called with arch.pio.count equal to 1 */
7093 	BUG_ON(vcpu->arch.pio.count != 1);
7094 
7095 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7096 		vcpu->arch.pio.count = 0;
7097 		return 1;
7098 	}
7099 
7100 	/* For size less than 4 we merge, else we zero extend */
7101 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7102 
7103 	/*
7104 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7105 	 * the copy and tracing
7106 	 */
7107 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7108 	kvm_rax_write(vcpu, val);
7109 
7110 	return kvm_skip_emulated_instruction(vcpu);
7111 }
7112 
7113 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7114 			   unsigned short port)
7115 {
7116 	unsigned long val;
7117 	int ret;
7118 
7119 	/* For size less than 4 we merge, else we zero extend */
7120 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7121 
7122 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7123 	if (ret) {
7124 		kvm_rax_write(vcpu, val);
7125 		return ret;
7126 	}
7127 
7128 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7129 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7130 
7131 	return 0;
7132 }
7133 
7134 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7135 {
7136 	int ret;
7137 
7138 	if (in)
7139 		ret = kvm_fast_pio_in(vcpu, size, port);
7140 	else
7141 		ret = kvm_fast_pio_out(vcpu, size, port);
7142 	return ret && kvm_skip_emulated_instruction(vcpu);
7143 }
7144 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7145 
7146 static int kvmclock_cpu_down_prep(unsigned int cpu)
7147 {
7148 	__this_cpu_write(cpu_tsc_khz, 0);
7149 	return 0;
7150 }
7151 
7152 static void tsc_khz_changed(void *data)
7153 {
7154 	struct cpufreq_freqs *freq = data;
7155 	unsigned long khz = 0;
7156 
7157 	if (data)
7158 		khz = freq->new;
7159 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7160 		khz = cpufreq_quick_get(raw_smp_processor_id());
7161 	if (!khz)
7162 		khz = tsc_khz;
7163 	__this_cpu_write(cpu_tsc_khz, khz);
7164 }
7165 
7166 #ifdef CONFIG_X86_64
7167 static void kvm_hyperv_tsc_notifier(void)
7168 {
7169 	struct kvm *kvm;
7170 	struct kvm_vcpu *vcpu;
7171 	int cpu;
7172 
7173 	mutex_lock(&kvm_lock);
7174 	list_for_each_entry(kvm, &vm_list, vm_list)
7175 		kvm_make_mclock_inprogress_request(kvm);
7176 
7177 	hyperv_stop_tsc_emulation();
7178 
7179 	/* TSC frequency always matches when on Hyper-V */
7180 	for_each_present_cpu(cpu)
7181 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7182 	kvm_max_guest_tsc_khz = tsc_khz;
7183 
7184 	list_for_each_entry(kvm, &vm_list, vm_list) {
7185 		struct kvm_arch *ka = &kvm->arch;
7186 
7187 		spin_lock(&ka->pvclock_gtod_sync_lock);
7188 
7189 		pvclock_update_vm_gtod_copy(kvm);
7190 
7191 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7192 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7193 
7194 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7195 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7196 
7197 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7198 	}
7199 	mutex_unlock(&kvm_lock);
7200 }
7201 #endif
7202 
7203 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7204 {
7205 	struct kvm *kvm;
7206 	struct kvm_vcpu *vcpu;
7207 	int i, send_ipi = 0;
7208 
7209 	/*
7210 	 * We allow guests to temporarily run on slowing clocks,
7211 	 * provided we notify them after, or to run on accelerating
7212 	 * clocks, provided we notify them before.  Thus time never
7213 	 * goes backwards.
7214 	 *
7215 	 * However, we have a problem.  We can't atomically update
7216 	 * the frequency of a given CPU from this function; it is
7217 	 * merely a notifier, which can be called from any CPU.
7218 	 * Changing the TSC frequency at arbitrary points in time
7219 	 * requires a recomputation of local variables related to
7220 	 * the TSC for each VCPU.  We must flag these local variables
7221 	 * to be updated and be sure the update takes place with the
7222 	 * new frequency before any guests proceed.
7223 	 *
7224 	 * Unfortunately, the combination of hotplug CPU and frequency
7225 	 * change creates an intractable locking scenario; the order
7226 	 * of when these callouts happen is undefined with respect to
7227 	 * CPU hotplug, and they can race with each other.  As such,
7228 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7229 	 * undefined; you can actually have a CPU frequency change take
7230 	 * place in between the computation of X and the setting of the
7231 	 * variable.  To protect against this problem, all updates of
7232 	 * the per_cpu tsc_khz variable are done in an interrupt
7233 	 * protected IPI, and all callers wishing to update the value
7234 	 * must wait for a synchronous IPI to complete (which is trivial
7235 	 * if the caller is on the CPU already).  This establishes the
7236 	 * necessary total order on variable updates.
7237 	 *
7238 	 * Note that because a guest time update may take place
7239 	 * anytime after the setting of the VCPU's request bit, the
7240 	 * correct TSC value must be set before the request.  However,
7241 	 * to ensure the update actually makes it to any guest which
7242 	 * starts running in hardware virtualization between the set
7243 	 * and the acquisition of the spinlock, we must also ping the
7244 	 * CPU after setting the request bit.
7245 	 *
7246 	 */
7247 
7248 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7249 
7250 	mutex_lock(&kvm_lock);
7251 	list_for_each_entry(kvm, &vm_list, vm_list) {
7252 		kvm_for_each_vcpu(i, vcpu, kvm) {
7253 			if (vcpu->cpu != cpu)
7254 				continue;
7255 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7256 			if (vcpu->cpu != raw_smp_processor_id())
7257 				send_ipi = 1;
7258 		}
7259 	}
7260 	mutex_unlock(&kvm_lock);
7261 
7262 	if (freq->old < freq->new && send_ipi) {
7263 		/*
7264 		 * We upscale the frequency.  Must make the guest
7265 		 * doesn't see old kvmclock values while running with
7266 		 * the new frequency, otherwise we risk the guest sees
7267 		 * time go backwards.
7268 		 *
7269 		 * In case we update the frequency for another cpu
7270 		 * (which might be in guest context) send an interrupt
7271 		 * to kick the cpu out of guest context.  Next time
7272 		 * guest context is entered kvmclock will be updated,
7273 		 * so the guest will not see stale values.
7274 		 */
7275 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7276 	}
7277 }
7278 
7279 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7280 				     void *data)
7281 {
7282 	struct cpufreq_freqs *freq = data;
7283 	int cpu;
7284 
7285 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7286 		return 0;
7287 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7288 		return 0;
7289 
7290 	for_each_cpu(cpu, freq->policy->cpus)
7291 		__kvmclock_cpufreq_notifier(freq, cpu);
7292 
7293 	return 0;
7294 }
7295 
7296 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7297 	.notifier_call  = kvmclock_cpufreq_notifier
7298 };
7299 
7300 static int kvmclock_cpu_online(unsigned int cpu)
7301 {
7302 	tsc_khz_changed(NULL);
7303 	return 0;
7304 }
7305 
7306 static void kvm_timer_init(void)
7307 {
7308 	max_tsc_khz = tsc_khz;
7309 
7310 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7311 #ifdef CONFIG_CPU_FREQ
7312 		struct cpufreq_policy *policy;
7313 		int cpu;
7314 
7315 		cpu = get_cpu();
7316 		policy = cpufreq_cpu_get(cpu);
7317 		if (policy) {
7318 			if (policy->cpuinfo.max_freq)
7319 				max_tsc_khz = policy->cpuinfo.max_freq;
7320 			cpufreq_cpu_put(policy);
7321 		}
7322 		put_cpu();
7323 #endif
7324 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7325 					  CPUFREQ_TRANSITION_NOTIFIER);
7326 	}
7327 
7328 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7329 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7330 }
7331 
7332 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7333 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7334 
7335 int kvm_is_in_guest(void)
7336 {
7337 	return __this_cpu_read(current_vcpu) != NULL;
7338 }
7339 
7340 static int kvm_is_user_mode(void)
7341 {
7342 	int user_mode = 3;
7343 
7344 	if (__this_cpu_read(current_vcpu))
7345 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7346 
7347 	return user_mode != 0;
7348 }
7349 
7350 static unsigned long kvm_get_guest_ip(void)
7351 {
7352 	unsigned long ip = 0;
7353 
7354 	if (__this_cpu_read(current_vcpu))
7355 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7356 
7357 	return ip;
7358 }
7359 
7360 static void kvm_handle_intel_pt_intr(void)
7361 {
7362 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7363 
7364 	kvm_make_request(KVM_REQ_PMI, vcpu);
7365 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7366 			(unsigned long *)&vcpu->arch.pmu.global_status);
7367 }
7368 
7369 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7370 	.is_in_guest		= kvm_is_in_guest,
7371 	.is_user_mode		= kvm_is_user_mode,
7372 	.get_guest_ip		= kvm_get_guest_ip,
7373 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7374 };
7375 
7376 #ifdef CONFIG_X86_64
7377 static void pvclock_gtod_update_fn(struct work_struct *work)
7378 {
7379 	struct kvm *kvm;
7380 
7381 	struct kvm_vcpu *vcpu;
7382 	int i;
7383 
7384 	mutex_lock(&kvm_lock);
7385 	list_for_each_entry(kvm, &vm_list, vm_list)
7386 		kvm_for_each_vcpu(i, vcpu, kvm)
7387 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7388 	atomic_set(&kvm_guest_has_master_clock, 0);
7389 	mutex_unlock(&kvm_lock);
7390 }
7391 
7392 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7393 
7394 /*
7395  * Notification about pvclock gtod data update.
7396  */
7397 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7398 			       void *priv)
7399 {
7400 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7401 	struct timekeeper *tk = priv;
7402 
7403 	update_pvclock_gtod(tk);
7404 
7405 	/* disable master clock if host does not trust, or does not
7406 	 * use, TSC based clocksource.
7407 	 */
7408 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7409 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7410 		queue_work(system_long_wq, &pvclock_gtod_work);
7411 
7412 	return 0;
7413 }
7414 
7415 static struct notifier_block pvclock_gtod_notifier = {
7416 	.notifier_call = pvclock_gtod_notify,
7417 };
7418 #endif
7419 
7420 int kvm_arch_init(void *opaque)
7421 {
7422 	struct kvm_x86_init_ops *ops = opaque;
7423 	int r;
7424 
7425 	if (kvm_x86_ops.hardware_enable) {
7426 		printk(KERN_ERR "kvm: already loaded the other module\n");
7427 		r = -EEXIST;
7428 		goto out;
7429 	}
7430 
7431 	if (!ops->cpu_has_kvm_support()) {
7432 		pr_err_ratelimited("kvm: no hardware support\n");
7433 		r = -EOPNOTSUPP;
7434 		goto out;
7435 	}
7436 	if (ops->disabled_by_bios()) {
7437 		pr_err_ratelimited("kvm: disabled by bios\n");
7438 		r = -EOPNOTSUPP;
7439 		goto out;
7440 	}
7441 
7442 	/*
7443 	 * KVM explicitly assumes that the guest has an FPU and
7444 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7445 	 * vCPU's FPU state as a fxregs_state struct.
7446 	 */
7447 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7448 		printk(KERN_ERR "kvm: inadequate fpu\n");
7449 		r = -EOPNOTSUPP;
7450 		goto out;
7451 	}
7452 
7453 	r = -ENOMEM;
7454 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7455 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7456 					  NULL);
7457 	if (!x86_fpu_cache) {
7458 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7459 		goto out;
7460 	}
7461 
7462 	x86_emulator_cache = kvm_alloc_emulator_cache();
7463 	if (!x86_emulator_cache) {
7464 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
7465 		goto out_free_x86_fpu_cache;
7466 	}
7467 
7468 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7469 	if (!shared_msrs) {
7470 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7471 		goto out_free_x86_emulator_cache;
7472 	}
7473 
7474 	r = kvm_mmu_module_init();
7475 	if (r)
7476 		goto out_free_percpu;
7477 
7478 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7479 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7480 			PT_PRESENT_MASK, 0, sme_me_mask);
7481 	kvm_timer_init();
7482 
7483 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7484 
7485 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7486 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7487 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7488 	}
7489 
7490 	kvm_lapic_init();
7491 	if (pi_inject_timer == -1)
7492 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7493 #ifdef CONFIG_X86_64
7494 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7495 
7496 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7497 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7498 #endif
7499 
7500 	return 0;
7501 
7502 out_free_percpu:
7503 	free_percpu(shared_msrs);
7504 out_free_x86_emulator_cache:
7505 	kmem_cache_destroy(x86_emulator_cache);
7506 out_free_x86_fpu_cache:
7507 	kmem_cache_destroy(x86_fpu_cache);
7508 out:
7509 	return r;
7510 }
7511 
7512 void kvm_arch_exit(void)
7513 {
7514 #ifdef CONFIG_X86_64
7515 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7516 		clear_hv_tscchange_cb();
7517 #endif
7518 	kvm_lapic_exit();
7519 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7520 
7521 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7522 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7523 					    CPUFREQ_TRANSITION_NOTIFIER);
7524 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7525 #ifdef CONFIG_X86_64
7526 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7527 #endif
7528 	kvm_x86_ops.hardware_enable = NULL;
7529 	kvm_mmu_module_exit();
7530 	free_percpu(shared_msrs);
7531 	kmem_cache_destroy(x86_fpu_cache);
7532 }
7533 
7534 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7535 {
7536 	++vcpu->stat.halt_exits;
7537 	if (lapic_in_kernel(vcpu)) {
7538 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7539 		return 1;
7540 	} else {
7541 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7542 		return 0;
7543 	}
7544 }
7545 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7546 
7547 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7548 {
7549 	int ret = kvm_skip_emulated_instruction(vcpu);
7550 	/*
7551 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7552 	 * KVM_EXIT_DEBUG here.
7553 	 */
7554 	return kvm_vcpu_halt(vcpu) && ret;
7555 }
7556 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7557 
7558 #ifdef CONFIG_X86_64
7559 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7560 			        unsigned long clock_type)
7561 {
7562 	struct kvm_clock_pairing clock_pairing;
7563 	struct timespec64 ts;
7564 	u64 cycle;
7565 	int ret;
7566 
7567 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7568 		return -KVM_EOPNOTSUPP;
7569 
7570 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7571 		return -KVM_EOPNOTSUPP;
7572 
7573 	clock_pairing.sec = ts.tv_sec;
7574 	clock_pairing.nsec = ts.tv_nsec;
7575 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7576 	clock_pairing.flags = 0;
7577 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7578 
7579 	ret = 0;
7580 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7581 			    sizeof(struct kvm_clock_pairing)))
7582 		ret = -KVM_EFAULT;
7583 
7584 	return ret;
7585 }
7586 #endif
7587 
7588 /*
7589  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7590  *
7591  * @apicid - apicid of vcpu to be kicked.
7592  */
7593 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7594 {
7595 	struct kvm_lapic_irq lapic_irq;
7596 
7597 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
7598 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7599 	lapic_irq.level = 0;
7600 	lapic_irq.dest_id = apicid;
7601 	lapic_irq.msi_redir_hint = false;
7602 
7603 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7604 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7605 }
7606 
7607 bool kvm_apicv_activated(struct kvm *kvm)
7608 {
7609 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7610 }
7611 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7612 
7613 void kvm_apicv_init(struct kvm *kvm, bool enable)
7614 {
7615 	if (enable)
7616 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
7617 			  &kvm->arch.apicv_inhibit_reasons);
7618 	else
7619 		set_bit(APICV_INHIBIT_REASON_DISABLE,
7620 			&kvm->arch.apicv_inhibit_reasons);
7621 }
7622 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7623 
7624 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7625 {
7626 	struct kvm_vcpu *target = NULL;
7627 	struct kvm_apic_map *map;
7628 
7629 	rcu_read_lock();
7630 	map = rcu_dereference(kvm->arch.apic_map);
7631 
7632 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7633 		target = map->phys_map[dest_id]->vcpu;
7634 
7635 	rcu_read_unlock();
7636 
7637 	if (target && READ_ONCE(target->ready))
7638 		kvm_vcpu_yield_to(target);
7639 }
7640 
7641 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7642 {
7643 	unsigned long nr, a0, a1, a2, a3, ret;
7644 	int op_64_bit;
7645 
7646 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7647 		return kvm_hv_hypercall(vcpu);
7648 
7649 	nr = kvm_rax_read(vcpu);
7650 	a0 = kvm_rbx_read(vcpu);
7651 	a1 = kvm_rcx_read(vcpu);
7652 	a2 = kvm_rdx_read(vcpu);
7653 	a3 = kvm_rsi_read(vcpu);
7654 
7655 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7656 
7657 	op_64_bit = is_64_bit_mode(vcpu);
7658 	if (!op_64_bit) {
7659 		nr &= 0xFFFFFFFF;
7660 		a0 &= 0xFFFFFFFF;
7661 		a1 &= 0xFFFFFFFF;
7662 		a2 &= 0xFFFFFFFF;
7663 		a3 &= 0xFFFFFFFF;
7664 	}
7665 
7666 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
7667 		ret = -KVM_EPERM;
7668 		goto out;
7669 	}
7670 
7671 	switch (nr) {
7672 	case KVM_HC_VAPIC_POLL_IRQ:
7673 		ret = 0;
7674 		break;
7675 	case KVM_HC_KICK_CPU:
7676 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7677 		kvm_sched_yield(vcpu->kvm, a1);
7678 		ret = 0;
7679 		break;
7680 #ifdef CONFIG_X86_64
7681 	case KVM_HC_CLOCK_PAIRING:
7682 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7683 		break;
7684 #endif
7685 	case KVM_HC_SEND_IPI:
7686 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7687 		break;
7688 	case KVM_HC_SCHED_YIELD:
7689 		kvm_sched_yield(vcpu->kvm, a0);
7690 		ret = 0;
7691 		break;
7692 	default:
7693 		ret = -KVM_ENOSYS;
7694 		break;
7695 	}
7696 out:
7697 	if (!op_64_bit)
7698 		ret = (u32)ret;
7699 	kvm_rax_write(vcpu, ret);
7700 
7701 	++vcpu->stat.hypercalls;
7702 	return kvm_skip_emulated_instruction(vcpu);
7703 }
7704 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7705 
7706 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7707 {
7708 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7709 	char instruction[3];
7710 	unsigned long rip = kvm_rip_read(vcpu);
7711 
7712 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
7713 
7714 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7715 		&ctxt->exception);
7716 }
7717 
7718 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7719 {
7720 	return vcpu->run->request_interrupt_window &&
7721 		likely(!pic_in_kernel(vcpu->kvm));
7722 }
7723 
7724 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7725 {
7726 	struct kvm_run *kvm_run = vcpu->run;
7727 
7728 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7729 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7730 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7731 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7732 	kvm_run->ready_for_interrupt_injection =
7733 		pic_in_kernel(vcpu->kvm) ||
7734 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7735 }
7736 
7737 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7738 {
7739 	int max_irr, tpr;
7740 
7741 	if (!kvm_x86_ops.update_cr8_intercept)
7742 		return;
7743 
7744 	if (!lapic_in_kernel(vcpu))
7745 		return;
7746 
7747 	if (vcpu->arch.apicv_active)
7748 		return;
7749 
7750 	if (!vcpu->arch.apic->vapic_addr)
7751 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7752 	else
7753 		max_irr = -1;
7754 
7755 	if (max_irr != -1)
7756 		max_irr >>= 4;
7757 
7758 	tpr = kvm_lapic_get_cr8(vcpu);
7759 
7760 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
7761 }
7762 
7763 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
7764 {
7765 	int r;
7766 	bool can_inject = true;
7767 
7768 	/* try to reinject previous events if any */
7769 
7770 	if (vcpu->arch.exception.injected) {
7771 		kvm_x86_ops.queue_exception(vcpu);
7772 		can_inject = false;
7773 	}
7774 	/*
7775 	 * Do not inject an NMI or interrupt if there is a pending
7776 	 * exception.  Exceptions and interrupts are recognized at
7777 	 * instruction boundaries, i.e. the start of an instruction.
7778 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7779 	 * NMIs and interrupts, i.e. traps are recognized before an
7780 	 * NMI/interrupt that's pending on the same instruction.
7781 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7782 	 * priority, but are only generated (pended) during instruction
7783 	 * execution, i.e. a pending fault-like exception means the
7784 	 * fault occurred on the *previous* instruction and must be
7785 	 * serviced prior to recognizing any new events in order to
7786 	 * fully complete the previous instruction.
7787 	 */
7788 	else if (!vcpu->arch.exception.pending) {
7789 		if (vcpu->arch.nmi_injected) {
7790 			kvm_x86_ops.set_nmi(vcpu);
7791 			can_inject = false;
7792 		} else if (vcpu->arch.interrupt.injected) {
7793 			kvm_x86_ops.set_irq(vcpu);
7794 			can_inject = false;
7795 		}
7796 	}
7797 
7798 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
7799 		     vcpu->arch.exception.pending);
7800 
7801 	/*
7802 	 * Call check_nested_events() even if we reinjected a previous event
7803 	 * in order for caller to determine if it should require immediate-exit
7804 	 * from L2 to L1 due to pending L1 events which require exit
7805 	 * from L2 to L1.
7806 	 */
7807 	if (is_guest_mode(vcpu)) {
7808 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
7809 		if (r < 0)
7810 			goto busy;
7811 	}
7812 
7813 	/* try to inject new event if pending */
7814 	if (vcpu->arch.exception.pending) {
7815 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7816 					vcpu->arch.exception.has_error_code,
7817 					vcpu->arch.exception.error_code);
7818 
7819 		vcpu->arch.exception.pending = false;
7820 		vcpu->arch.exception.injected = true;
7821 
7822 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7823 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7824 					     X86_EFLAGS_RF);
7825 
7826 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7827 			kvm_deliver_exception_payload(vcpu);
7828 			if (vcpu->arch.dr7 & DR7_GD) {
7829 				vcpu->arch.dr7 &= ~DR7_GD;
7830 				kvm_update_dr7(vcpu);
7831 			}
7832 		}
7833 
7834 		kvm_x86_ops.queue_exception(vcpu);
7835 		can_inject = false;
7836 	}
7837 
7838 	/*
7839 	 * Finally, inject interrupt events.  If an event cannot be injected
7840 	 * due to architectural conditions (e.g. IF=0) a window-open exit
7841 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
7842 	 * and can architecturally be injected, but we cannot do it right now:
7843 	 * an interrupt could have arrived just now and we have to inject it
7844 	 * as a vmexit, or there could already an event in the queue, which is
7845 	 * indicated by can_inject.  In that case we request an immediate exit
7846 	 * in order to make progress and get back here for another iteration.
7847 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
7848 	 */
7849 	if (vcpu->arch.smi_pending) {
7850 		r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
7851 		if (r < 0)
7852 			goto busy;
7853 		if (r) {
7854 			vcpu->arch.smi_pending = false;
7855 			++vcpu->arch.smi_count;
7856 			enter_smm(vcpu);
7857 			can_inject = false;
7858 		} else
7859 			kvm_x86_ops.enable_smi_window(vcpu);
7860 	}
7861 
7862 	if (vcpu->arch.nmi_pending) {
7863 		r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
7864 		if (r < 0)
7865 			goto busy;
7866 		if (r) {
7867 			--vcpu->arch.nmi_pending;
7868 			vcpu->arch.nmi_injected = true;
7869 			kvm_x86_ops.set_nmi(vcpu);
7870 			can_inject = false;
7871 			WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
7872 		}
7873 		if (vcpu->arch.nmi_pending)
7874 			kvm_x86_ops.enable_nmi_window(vcpu);
7875 	}
7876 
7877 	if (kvm_cpu_has_injectable_intr(vcpu)) {
7878 		r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
7879 		if (r < 0)
7880 			goto busy;
7881 		if (r) {
7882 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
7883 			kvm_x86_ops.set_irq(vcpu);
7884 			WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
7885 		}
7886 		if (kvm_cpu_has_injectable_intr(vcpu))
7887 			kvm_x86_ops.enable_irq_window(vcpu);
7888 	}
7889 
7890 	if (is_guest_mode(vcpu) &&
7891 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
7892 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
7893 		*req_immediate_exit = true;
7894 
7895 	WARN_ON(vcpu->arch.exception.pending);
7896 	return;
7897 
7898 busy:
7899 	*req_immediate_exit = true;
7900 	return;
7901 }
7902 
7903 static void process_nmi(struct kvm_vcpu *vcpu)
7904 {
7905 	unsigned limit = 2;
7906 
7907 	/*
7908 	 * x86 is limited to one NMI running, and one NMI pending after it.
7909 	 * If an NMI is already in progress, limit further NMIs to just one.
7910 	 * Otherwise, allow two (and we'll inject the first one immediately).
7911 	 */
7912 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7913 		limit = 1;
7914 
7915 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7916 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7917 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7918 }
7919 
7920 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7921 {
7922 	u32 flags = 0;
7923 	flags |= seg->g       << 23;
7924 	flags |= seg->db      << 22;
7925 	flags |= seg->l       << 21;
7926 	flags |= seg->avl     << 20;
7927 	flags |= seg->present << 15;
7928 	flags |= seg->dpl     << 13;
7929 	flags |= seg->s       << 12;
7930 	flags |= seg->type    << 8;
7931 	return flags;
7932 }
7933 
7934 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7935 {
7936 	struct kvm_segment seg;
7937 	int offset;
7938 
7939 	kvm_get_segment(vcpu, &seg, n);
7940 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7941 
7942 	if (n < 3)
7943 		offset = 0x7f84 + n * 12;
7944 	else
7945 		offset = 0x7f2c + (n - 3) * 12;
7946 
7947 	put_smstate(u32, buf, offset + 8, seg.base);
7948 	put_smstate(u32, buf, offset + 4, seg.limit);
7949 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7950 }
7951 
7952 #ifdef CONFIG_X86_64
7953 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7954 {
7955 	struct kvm_segment seg;
7956 	int offset;
7957 	u16 flags;
7958 
7959 	kvm_get_segment(vcpu, &seg, n);
7960 	offset = 0x7e00 + n * 16;
7961 
7962 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7963 	put_smstate(u16, buf, offset, seg.selector);
7964 	put_smstate(u16, buf, offset + 2, flags);
7965 	put_smstate(u32, buf, offset + 4, seg.limit);
7966 	put_smstate(u64, buf, offset + 8, seg.base);
7967 }
7968 #endif
7969 
7970 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7971 {
7972 	struct desc_ptr dt;
7973 	struct kvm_segment seg;
7974 	unsigned long val;
7975 	int i;
7976 
7977 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7978 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7979 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7980 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7981 
7982 	for (i = 0; i < 8; i++)
7983 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7984 
7985 	kvm_get_dr(vcpu, 6, &val);
7986 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7987 	kvm_get_dr(vcpu, 7, &val);
7988 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7989 
7990 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7991 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7992 	put_smstate(u32, buf, 0x7f64, seg.base);
7993 	put_smstate(u32, buf, 0x7f60, seg.limit);
7994 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7995 
7996 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7997 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7998 	put_smstate(u32, buf, 0x7f80, seg.base);
7999 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8000 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8001 
8002 	kvm_x86_ops.get_gdt(vcpu, &dt);
8003 	put_smstate(u32, buf, 0x7f74, dt.address);
8004 	put_smstate(u32, buf, 0x7f70, dt.size);
8005 
8006 	kvm_x86_ops.get_idt(vcpu, &dt);
8007 	put_smstate(u32, buf, 0x7f58, dt.address);
8008 	put_smstate(u32, buf, 0x7f54, dt.size);
8009 
8010 	for (i = 0; i < 6; i++)
8011 		enter_smm_save_seg_32(vcpu, buf, i);
8012 
8013 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8014 
8015 	/* revision id */
8016 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8017 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8018 }
8019 
8020 #ifdef CONFIG_X86_64
8021 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8022 {
8023 	struct desc_ptr dt;
8024 	struct kvm_segment seg;
8025 	unsigned long val;
8026 	int i;
8027 
8028 	for (i = 0; i < 16; i++)
8029 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8030 
8031 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8032 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8033 
8034 	kvm_get_dr(vcpu, 6, &val);
8035 	put_smstate(u64, buf, 0x7f68, val);
8036 	kvm_get_dr(vcpu, 7, &val);
8037 	put_smstate(u64, buf, 0x7f60, val);
8038 
8039 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8040 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8041 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8042 
8043 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8044 
8045 	/* revision id */
8046 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8047 
8048 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8049 
8050 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8051 	put_smstate(u16, buf, 0x7e90, seg.selector);
8052 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8053 	put_smstate(u32, buf, 0x7e94, seg.limit);
8054 	put_smstate(u64, buf, 0x7e98, seg.base);
8055 
8056 	kvm_x86_ops.get_idt(vcpu, &dt);
8057 	put_smstate(u32, buf, 0x7e84, dt.size);
8058 	put_smstate(u64, buf, 0x7e88, dt.address);
8059 
8060 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8061 	put_smstate(u16, buf, 0x7e70, seg.selector);
8062 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8063 	put_smstate(u32, buf, 0x7e74, seg.limit);
8064 	put_smstate(u64, buf, 0x7e78, seg.base);
8065 
8066 	kvm_x86_ops.get_gdt(vcpu, &dt);
8067 	put_smstate(u32, buf, 0x7e64, dt.size);
8068 	put_smstate(u64, buf, 0x7e68, dt.address);
8069 
8070 	for (i = 0; i < 6; i++)
8071 		enter_smm_save_seg_64(vcpu, buf, i);
8072 }
8073 #endif
8074 
8075 static void enter_smm(struct kvm_vcpu *vcpu)
8076 {
8077 	struct kvm_segment cs, ds;
8078 	struct desc_ptr dt;
8079 	char buf[512];
8080 	u32 cr0;
8081 
8082 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8083 	memset(buf, 0, 512);
8084 #ifdef CONFIG_X86_64
8085 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8086 		enter_smm_save_state_64(vcpu, buf);
8087 	else
8088 #endif
8089 		enter_smm_save_state_32(vcpu, buf);
8090 
8091 	/*
8092 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8093 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8094 	 * the SMM state-save area.
8095 	 */
8096 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
8097 
8098 	vcpu->arch.hflags |= HF_SMM_MASK;
8099 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8100 
8101 	if (kvm_x86_ops.get_nmi_mask(vcpu))
8102 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8103 	else
8104 		kvm_x86_ops.set_nmi_mask(vcpu, true);
8105 
8106 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8107 	kvm_rip_write(vcpu, 0x8000);
8108 
8109 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8110 	kvm_x86_ops.set_cr0(vcpu, cr0);
8111 	vcpu->arch.cr0 = cr0;
8112 
8113 	kvm_x86_ops.set_cr4(vcpu, 0);
8114 
8115 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8116 	dt.address = dt.size = 0;
8117 	kvm_x86_ops.set_idt(vcpu, &dt);
8118 
8119 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8120 
8121 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8122 	cs.base = vcpu->arch.smbase;
8123 
8124 	ds.selector = 0;
8125 	ds.base = 0;
8126 
8127 	cs.limit    = ds.limit = 0xffffffff;
8128 	cs.type     = ds.type = 0x3;
8129 	cs.dpl      = ds.dpl = 0;
8130 	cs.db       = ds.db = 0;
8131 	cs.s        = ds.s = 1;
8132 	cs.l        = ds.l = 0;
8133 	cs.g        = ds.g = 1;
8134 	cs.avl      = ds.avl = 0;
8135 	cs.present  = ds.present = 1;
8136 	cs.unusable = ds.unusable = 0;
8137 	cs.padding  = ds.padding = 0;
8138 
8139 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8140 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8141 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8142 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8143 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8144 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8145 
8146 #ifdef CONFIG_X86_64
8147 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8148 		kvm_x86_ops.set_efer(vcpu, 0);
8149 #endif
8150 
8151 	kvm_update_cpuid(vcpu);
8152 	kvm_mmu_reset_context(vcpu);
8153 }
8154 
8155 static void process_smi(struct kvm_vcpu *vcpu)
8156 {
8157 	vcpu->arch.smi_pending = true;
8158 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8159 }
8160 
8161 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8162 				       unsigned long *vcpu_bitmap)
8163 {
8164 	cpumask_var_t cpus;
8165 
8166 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8167 
8168 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8169 				    NULL, vcpu_bitmap, cpus);
8170 
8171 	free_cpumask_var(cpus);
8172 }
8173 
8174 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8175 {
8176 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8177 }
8178 
8179 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8180 {
8181 	if (!lapic_in_kernel(vcpu))
8182 		return;
8183 
8184 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8185 	kvm_apic_update_apicv(vcpu);
8186 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8187 }
8188 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8189 
8190 /*
8191  * NOTE: Do not hold any lock prior to calling this.
8192  *
8193  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8194  * locked, because it calls __x86_set_memory_region() which does
8195  * synchronize_srcu(&kvm->srcu).
8196  */
8197 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8198 {
8199 	struct kvm_vcpu *except;
8200 	unsigned long old, new, expected;
8201 
8202 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8203 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8204 		return;
8205 
8206 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8207 	do {
8208 		expected = new = old;
8209 		if (activate)
8210 			__clear_bit(bit, &new);
8211 		else
8212 			__set_bit(bit, &new);
8213 		if (new == old)
8214 			break;
8215 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8216 	} while (old != expected);
8217 
8218 	if (!!old == !!new)
8219 		return;
8220 
8221 	trace_kvm_apicv_update_request(activate, bit);
8222 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8223 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8224 
8225 	/*
8226 	 * Sending request to update APICV for all other vcpus,
8227 	 * while update the calling vcpu immediately instead of
8228 	 * waiting for another #VMEXIT to handle the request.
8229 	 */
8230 	except = kvm_get_running_vcpu();
8231 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8232 					 except);
8233 	if (except)
8234 		kvm_vcpu_update_apicv(except);
8235 }
8236 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8237 
8238 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8239 {
8240 	if (!kvm_apic_present(vcpu))
8241 		return;
8242 
8243 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8244 
8245 	if (irqchip_split(vcpu->kvm))
8246 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8247 	else {
8248 		if (vcpu->arch.apicv_active)
8249 			kvm_x86_ops.sync_pir_to_irr(vcpu);
8250 		if (ioapic_in_kernel(vcpu->kvm))
8251 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8252 	}
8253 
8254 	if (is_guest_mode(vcpu))
8255 		vcpu->arch.load_eoi_exitmap_pending = true;
8256 	else
8257 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8258 }
8259 
8260 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8261 {
8262 	u64 eoi_exit_bitmap[4];
8263 
8264 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8265 		return;
8266 
8267 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8268 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8269 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8270 }
8271 
8272 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8273 					    unsigned long start, unsigned long end)
8274 {
8275 	unsigned long apic_address;
8276 
8277 	/*
8278 	 * The physical address of apic access page is stored in the VMCS.
8279 	 * Update it when it becomes invalid.
8280 	 */
8281 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8282 	if (start <= apic_address && apic_address < end)
8283 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8284 }
8285 
8286 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8287 {
8288 	if (!lapic_in_kernel(vcpu))
8289 		return;
8290 
8291 	if (!kvm_x86_ops.set_apic_access_page_addr)
8292 		return;
8293 
8294 	kvm_x86_ops.set_apic_access_page_addr(vcpu);
8295 }
8296 
8297 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8298 {
8299 	smp_send_reschedule(vcpu->cpu);
8300 }
8301 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8302 
8303 /*
8304  * Returns 1 to let vcpu_run() continue the guest execution loop without
8305  * exiting to the userspace.  Otherwise, the value will be returned to the
8306  * userspace.
8307  */
8308 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8309 {
8310 	int r;
8311 	bool req_int_win =
8312 		dm_request_for_irq_injection(vcpu) &&
8313 		kvm_cpu_accept_dm_intr(vcpu);
8314 	fastpath_t exit_fastpath;
8315 
8316 	bool req_immediate_exit = false;
8317 
8318 	if (kvm_request_pending(vcpu)) {
8319 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8320 			if (unlikely(!kvm_x86_ops.nested_ops->get_vmcs12_pages(vcpu))) {
8321 				r = 0;
8322 				goto out;
8323 			}
8324 		}
8325 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8326 			kvm_mmu_unload(vcpu);
8327 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8328 			__kvm_migrate_timers(vcpu);
8329 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8330 			kvm_gen_update_masterclock(vcpu->kvm);
8331 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8332 			kvm_gen_kvmclock_update(vcpu);
8333 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8334 			r = kvm_guest_time_update(vcpu);
8335 			if (unlikely(r))
8336 				goto out;
8337 		}
8338 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8339 			kvm_mmu_sync_roots(vcpu);
8340 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8341 			kvm_mmu_load_pgd(vcpu);
8342 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8343 			kvm_vcpu_flush_tlb_all(vcpu);
8344 
8345 			/* Flushing all ASIDs flushes the current ASID... */
8346 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8347 		}
8348 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8349 			kvm_vcpu_flush_tlb_current(vcpu);
8350 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8351 			kvm_vcpu_flush_tlb_guest(vcpu);
8352 
8353 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8354 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8355 			r = 0;
8356 			goto out;
8357 		}
8358 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8359 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8360 			vcpu->mmio_needed = 0;
8361 			r = 0;
8362 			goto out;
8363 		}
8364 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8365 			/* Page is swapped out. Do synthetic halt */
8366 			vcpu->arch.apf.halted = true;
8367 			r = 1;
8368 			goto out;
8369 		}
8370 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8371 			record_steal_time(vcpu);
8372 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8373 			process_smi(vcpu);
8374 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8375 			process_nmi(vcpu);
8376 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8377 			kvm_pmu_handle_event(vcpu);
8378 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8379 			kvm_pmu_deliver_pmi(vcpu);
8380 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8381 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8382 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8383 				     vcpu->arch.ioapic_handled_vectors)) {
8384 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8385 				vcpu->run->eoi.vector =
8386 						vcpu->arch.pending_ioapic_eoi;
8387 				r = 0;
8388 				goto out;
8389 			}
8390 		}
8391 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8392 			vcpu_scan_ioapic(vcpu);
8393 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8394 			vcpu_load_eoi_exitmap(vcpu);
8395 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8396 			kvm_vcpu_reload_apic_access_page(vcpu);
8397 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8398 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8399 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8400 			r = 0;
8401 			goto out;
8402 		}
8403 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8404 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8405 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8406 			r = 0;
8407 			goto out;
8408 		}
8409 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8410 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8411 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8412 			r = 0;
8413 			goto out;
8414 		}
8415 
8416 		/*
8417 		 * KVM_REQ_HV_STIMER has to be processed after
8418 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8419 		 * depend on the guest clock being up-to-date
8420 		 */
8421 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8422 			kvm_hv_process_stimers(vcpu);
8423 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8424 			kvm_vcpu_update_apicv(vcpu);
8425 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8426 			kvm_check_async_pf_completion(vcpu);
8427 	}
8428 
8429 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8430 		++vcpu->stat.req_event;
8431 		kvm_apic_accept_events(vcpu);
8432 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8433 			r = 1;
8434 			goto out;
8435 		}
8436 
8437 		inject_pending_event(vcpu, &req_immediate_exit);
8438 		if (req_int_win)
8439 			kvm_x86_ops.enable_irq_window(vcpu);
8440 
8441 		if (kvm_lapic_enabled(vcpu)) {
8442 			update_cr8_intercept(vcpu);
8443 			kvm_lapic_sync_to_vapic(vcpu);
8444 		}
8445 	}
8446 
8447 	r = kvm_mmu_reload(vcpu);
8448 	if (unlikely(r)) {
8449 		goto cancel_injection;
8450 	}
8451 
8452 	preempt_disable();
8453 
8454 	kvm_x86_ops.prepare_guest_switch(vcpu);
8455 
8456 	/*
8457 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8458 	 * IPI are then delayed after guest entry, which ensures that they
8459 	 * result in virtual interrupt delivery.
8460 	 */
8461 	local_irq_disable();
8462 	vcpu->mode = IN_GUEST_MODE;
8463 
8464 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8465 
8466 	/*
8467 	 * 1) We should set ->mode before checking ->requests.  Please see
8468 	 * the comment in kvm_vcpu_exiting_guest_mode().
8469 	 *
8470 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8471 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8472 	 * (see vmx_deliver_posted_interrupt).
8473 	 *
8474 	 * 3) This also orders the write to mode from any reads to the page
8475 	 * tables done while the VCPU is running.  Please see the comment
8476 	 * in kvm_flush_remote_tlbs.
8477 	 */
8478 	smp_mb__after_srcu_read_unlock();
8479 
8480 	/*
8481 	 * This handles the case where a posted interrupt was
8482 	 * notified with kvm_vcpu_kick.
8483 	 */
8484 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8485 		kvm_x86_ops.sync_pir_to_irr(vcpu);
8486 
8487 	if (kvm_vcpu_exit_request(vcpu)) {
8488 		vcpu->mode = OUTSIDE_GUEST_MODE;
8489 		smp_wmb();
8490 		local_irq_enable();
8491 		preempt_enable();
8492 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8493 		r = 1;
8494 		goto cancel_injection;
8495 	}
8496 
8497 	if (req_immediate_exit) {
8498 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8499 		kvm_x86_ops.request_immediate_exit(vcpu);
8500 	}
8501 
8502 	trace_kvm_entry(vcpu->vcpu_id);
8503 	guest_enter_irqoff();
8504 
8505 	fpregs_assert_state_consistent();
8506 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8507 		switch_fpu_return();
8508 
8509 	if (unlikely(vcpu->arch.switch_db_regs)) {
8510 		set_debugreg(0, 7);
8511 		set_debugreg(vcpu->arch.eff_db[0], 0);
8512 		set_debugreg(vcpu->arch.eff_db[1], 1);
8513 		set_debugreg(vcpu->arch.eff_db[2], 2);
8514 		set_debugreg(vcpu->arch.eff_db[3], 3);
8515 		set_debugreg(vcpu->arch.dr6, 6);
8516 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8517 	}
8518 
8519 	exit_fastpath = kvm_x86_ops.run(vcpu);
8520 
8521 	/*
8522 	 * Do this here before restoring debug registers on the host.  And
8523 	 * since we do this before handling the vmexit, a DR access vmexit
8524 	 * can (a) read the correct value of the debug registers, (b) set
8525 	 * KVM_DEBUGREG_WONT_EXIT again.
8526 	 */
8527 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8528 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8529 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8530 		kvm_update_dr0123(vcpu);
8531 		kvm_update_dr7(vcpu);
8532 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8533 	}
8534 
8535 	/*
8536 	 * If the guest has used debug registers, at least dr7
8537 	 * will be disabled while returning to the host.
8538 	 * If we don't have active breakpoints in the host, we don't
8539 	 * care about the messed up debug address registers. But if
8540 	 * we have some of them active, restore the old state.
8541 	 */
8542 	if (hw_breakpoint_active())
8543 		hw_breakpoint_restore();
8544 
8545 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8546 
8547 	vcpu->mode = OUTSIDE_GUEST_MODE;
8548 	smp_wmb();
8549 
8550 	kvm_x86_ops.handle_exit_irqoff(vcpu);
8551 
8552 	/*
8553 	 * Consume any pending interrupts, including the possible source of
8554 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8555 	 * An instruction is required after local_irq_enable() to fully unblock
8556 	 * interrupts on processors that implement an interrupt shadow, the
8557 	 * stat.exits increment will do nicely.
8558 	 */
8559 	kvm_before_interrupt(vcpu);
8560 	local_irq_enable();
8561 	++vcpu->stat.exits;
8562 	local_irq_disable();
8563 	kvm_after_interrupt(vcpu);
8564 
8565 	guest_exit_irqoff();
8566 	if (lapic_in_kernel(vcpu)) {
8567 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8568 		if (delta != S64_MIN) {
8569 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8570 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8571 		}
8572 	}
8573 
8574 	local_irq_enable();
8575 	preempt_enable();
8576 
8577 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8578 
8579 	/*
8580 	 * Profile KVM exit RIPs:
8581 	 */
8582 	if (unlikely(prof_on == KVM_PROFILING)) {
8583 		unsigned long rip = kvm_rip_read(vcpu);
8584 		profile_hit(KVM_PROFILING, (void *)rip);
8585 	}
8586 
8587 	if (unlikely(vcpu->arch.tsc_always_catchup))
8588 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8589 
8590 	if (vcpu->arch.apic_attention)
8591 		kvm_lapic_sync_from_vapic(vcpu);
8592 
8593 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
8594 	return r;
8595 
8596 cancel_injection:
8597 	if (req_immediate_exit)
8598 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8599 	kvm_x86_ops.cancel_injection(vcpu);
8600 	if (unlikely(vcpu->arch.apic_attention))
8601 		kvm_lapic_sync_from_vapic(vcpu);
8602 out:
8603 	return r;
8604 }
8605 
8606 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8607 {
8608 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8609 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
8610 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8611 		kvm_vcpu_block(vcpu);
8612 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8613 
8614 		if (kvm_x86_ops.post_block)
8615 			kvm_x86_ops.post_block(vcpu);
8616 
8617 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8618 			return 1;
8619 	}
8620 
8621 	kvm_apic_accept_events(vcpu);
8622 	switch(vcpu->arch.mp_state) {
8623 	case KVM_MP_STATE_HALTED:
8624 		vcpu->arch.pv.pv_unhalted = false;
8625 		vcpu->arch.mp_state =
8626 			KVM_MP_STATE_RUNNABLE;
8627 		/* fall through */
8628 	case KVM_MP_STATE_RUNNABLE:
8629 		vcpu->arch.apf.halted = false;
8630 		break;
8631 	case KVM_MP_STATE_INIT_RECEIVED:
8632 		break;
8633 	default:
8634 		return -EINTR;
8635 	}
8636 	return 1;
8637 }
8638 
8639 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8640 {
8641 	if (is_guest_mode(vcpu))
8642 		kvm_x86_ops.nested_ops->check_events(vcpu);
8643 
8644 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8645 		!vcpu->arch.apf.halted);
8646 }
8647 
8648 static int vcpu_run(struct kvm_vcpu *vcpu)
8649 {
8650 	int r;
8651 	struct kvm *kvm = vcpu->kvm;
8652 
8653 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8654 	vcpu->arch.l1tf_flush_l1d = true;
8655 
8656 	for (;;) {
8657 		if (kvm_vcpu_running(vcpu)) {
8658 			r = vcpu_enter_guest(vcpu);
8659 		} else {
8660 			r = vcpu_block(kvm, vcpu);
8661 		}
8662 
8663 		if (r <= 0)
8664 			break;
8665 
8666 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8667 		if (kvm_cpu_has_pending_timer(vcpu))
8668 			kvm_inject_pending_timer_irqs(vcpu);
8669 
8670 		if (dm_request_for_irq_injection(vcpu) &&
8671 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8672 			r = 0;
8673 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8674 			++vcpu->stat.request_irq_exits;
8675 			break;
8676 		}
8677 
8678 		if (signal_pending(current)) {
8679 			r = -EINTR;
8680 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8681 			++vcpu->stat.signal_exits;
8682 			break;
8683 		}
8684 		if (need_resched()) {
8685 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8686 			cond_resched();
8687 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8688 		}
8689 	}
8690 
8691 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8692 
8693 	return r;
8694 }
8695 
8696 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8697 {
8698 	int r;
8699 
8700 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8701 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8702 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8703 	return r;
8704 }
8705 
8706 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8707 {
8708 	BUG_ON(!vcpu->arch.pio.count);
8709 
8710 	return complete_emulated_io(vcpu);
8711 }
8712 
8713 /*
8714  * Implements the following, as a state machine:
8715  *
8716  * read:
8717  *   for each fragment
8718  *     for each mmio piece in the fragment
8719  *       write gpa, len
8720  *       exit
8721  *       copy data
8722  *   execute insn
8723  *
8724  * write:
8725  *   for each fragment
8726  *     for each mmio piece in the fragment
8727  *       write gpa, len
8728  *       copy data
8729  *       exit
8730  */
8731 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8732 {
8733 	struct kvm_run *run = vcpu->run;
8734 	struct kvm_mmio_fragment *frag;
8735 	unsigned len;
8736 
8737 	BUG_ON(!vcpu->mmio_needed);
8738 
8739 	/* Complete previous fragment */
8740 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8741 	len = min(8u, frag->len);
8742 	if (!vcpu->mmio_is_write)
8743 		memcpy(frag->data, run->mmio.data, len);
8744 
8745 	if (frag->len <= 8) {
8746 		/* Switch to the next fragment. */
8747 		frag++;
8748 		vcpu->mmio_cur_fragment++;
8749 	} else {
8750 		/* Go forward to the next mmio piece. */
8751 		frag->data += len;
8752 		frag->gpa += len;
8753 		frag->len -= len;
8754 	}
8755 
8756 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8757 		vcpu->mmio_needed = 0;
8758 
8759 		/* FIXME: return into emulator if single-stepping.  */
8760 		if (vcpu->mmio_is_write)
8761 			return 1;
8762 		vcpu->mmio_read_completed = 1;
8763 		return complete_emulated_io(vcpu);
8764 	}
8765 
8766 	run->exit_reason = KVM_EXIT_MMIO;
8767 	run->mmio.phys_addr = frag->gpa;
8768 	if (vcpu->mmio_is_write)
8769 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8770 	run->mmio.len = min(8u, frag->len);
8771 	run->mmio.is_write = vcpu->mmio_is_write;
8772 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8773 	return 0;
8774 }
8775 
8776 static void kvm_save_current_fpu(struct fpu *fpu)
8777 {
8778 	/*
8779 	 * If the target FPU state is not resident in the CPU registers, just
8780 	 * memcpy() from current, else save CPU state directly to the target.
8781 	 */
8782 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8783 		memcpy(&fpu->state, &current->thread.fpu.state,
8784 		       fpu_kernel_xstate_size);
8785 	else
8786 		copy_fpregs_to_fpstate(fpu);
8787 }
8788 
8789 /* Swap (qemu) user FPU context for the guest FPU context. */
8790 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8791 {
8792 	fpregs_lock();
8793 
8794 	kvm_save_current_fpu(vcpu->arch.user_fpu);
8795 
8796 	/* PKRU is separately restored in kvm_x86_ops.run.  */
8797 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8798 				~XFEATURE_MASK_PKRU);
8799 
8800 	fpregs_mark_activate();
8801 	fpregs_unlock();
8802 
8803 	trace_kvm_fpu(1);
8804 }
8805 
8806 /* When vcpu_run ends, restore user space FPU context. */
8807 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8808 {
8809 	fpregs_lock();
8810 
8811 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
8812 
8813 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8814 
8815 	fpregs_mark_activate();
8816 	fpregs_unlock();
8817 
8818 	++vcpu->stat.fpu_reload;
8819 	trace_kvm_fpu(0);
8820 }
8821 
8822 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
8823 {
8824 	struct kvm_run *kvm_run = vcpu->run;
8825 	int r;
8826 
8827 	vcpu_load(vcpu);
8828 	kvm_sigset_activate(vcpu);
8829 	kvm_load_guest_fpu(vcpu);
8830 
8831 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8832 		if (kvm_run->immediate_exit) {
8833 			r = -EINTR;
8834 			goto out;
8835 		}
8836 		kvm_vcpu_block(vcpu);
8837 		kvm_apic_accept_events(vcpu);
8838 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8839 		r = -EAGAIN;
8840 		if (signal_pending(current)) {
8841 			r = -EINTR;
8842 			kvm_run->exit_reason = KVM_EXIT_INTR;
8843 			++vcpu->stat.signal_exits;
8844 		}
8845 		goto out;
8846 	}
8847 
8848 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8849 		r = -EINVAL;
8850 		goto out;
8851 	}
8852 
8853 	if (kvm_run->kvm_dirty_regs) {
8854 		r = sync_regs(vcpu);
8855 		if (r != 0)
8856 			goto out;
8857 	}
8858 
8859 	/* re-sync apic's tpr */
8860 	if (!lapic_in_kernel(vcpu)) {
8861 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8862 			r = -EINVAL;
8863 			goto out;
8864 		}
8865 	}
8866 
8867 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8868 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8869 		vcpu->arch.complete_userspace_io = NULL;
8870 		r = cui(vcpu);
8871 		if (r <= 0)
8872 			goto out;
8873 	} else
8874 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8875 
8876 	if (kvm_run->immediate_exit)
8877 		r = -EINTR;
8878 	else
8879 		r = vcpu_run(vcpu);
8880 
8881 out:
8882 	kvm_put_guest_fpu(vcpu);
8883 	if (kvm_run->kvm_valid_regs)
8884 		store_regs(vcpu);
8885 	post_kvm_run_save(vcpu);
8886 	kvm_sigset_deactivate(vcpu);
8887 
8888 	vcpu_put(vcpu);
8889 	return r;
8890 }
8891 
8892 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8893 {
8894 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8895 		/*
8896 		 * We are here if userspace calls get_regs() in the middle of
8897 		 * instruction emulation. Registers state needs to be copied
8898 		 * back from emulation context to vcpu. Userspace shouldn't do
8899 		 * that usually, but some bad designed PV devices (vmware
8900 		 * backdoor interface) need this to work
8901 		 */
8902 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
8903 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8904 	}
8905 	regs->rax = kvm_rax_read(vcpu);
8906 	regs->rbx = kvm_rbx_read(vcpu);
8907 	regs->rcx = kvm_rcx_read(vcpu);
8908 	regs->rdx = kvm_rdx_read(vcpu);
8909 	regs->rsi = kvm_rsi_read(vcpu);
8910 	regs->rdi = kvm_rdi_read(vcpu);
8911 	regs->rsp = kvm_rsp_read(vcpu);
8912 	regs->rbp = kvm_rbp_read(vcpu);
8913 #ifdef CONFIG_X86_64
8914 	regs->r8 = kvm_r8_read(vcpu);
8915 	regs->r9 = kvm_r9_read(vcpu);
8916 	regs->r10 = kvm_r10_read(vcpu);
8917 	regs->r11 = kvm_r11_read(vcpu);
8918 	regs->r12 = kvm_r12_read(vcpu);
8919 	regs->r13 = kvm_r13_read(vcpu);
8920 	regs->r14 = kvm_r14_read(vcpu);
8921 	regs->r15 = kvm_r15_read(vcpu);
8922 #endif
8923 
8924 	regs->rip = kvm_rip_read(vcpu);
8925 	regs->rflags = kvm_get_rflags(vcpu);
8926 }
8927 
8928 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8929 {
8930 	vcpu_load(vcpu);
8931 	__get_regs(vcpu, regs);
8932 	vcpu_put(vcpu);
8933 	return 0;
8934 }
8935 
8936 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8937 {
8938 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8939 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8940 
8941 	kvm_rax_write(vcpu, regs->rax);
8942 	kvm_rbx_write(vcpu, regs->rbx);
8943 	kvm_rcx_write(vcpu, regs->rcx);
8944 	kvm_rdx_write(vcpu, regs->rdx);
8945 	kvm_rsi_write(vcpu, regs->rsi);
8946 	kvm_rdi_write(vcpu, regs->rdi);
8947 	kvm_rsp_write(vcpu, regs->rsp);
8948 	kvm_rbp_write(vcpu, regs->rbp);
8949 #ifdef CONFIG_X86_64
8950 	kvm_r8_write(vcpu, regs->r8);
8951 	kvm_r9_write(vcpu, regs->r9);
8952 	kvm_r10_write(vcpu, regs->r10);
8953 	kvm_r11_write(vcpu, regs->r11);
8954 	kvm_r12_write(vcpu, regs->r12);
8955 	kvm_r13_write(vcpu, regs->r13);
8956 	kvm_r14_write(vcpu, regs->r14);
8957 	kvm_r15_write(vcpu, regs->r15);
8958 #endif
8959 
8960 	kvm_rip_write(vcpu, regs->rip);
8961 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8962 
8963 	vcpu->arch.exception.pending = false;
8964 
8965 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8966 }
8967 
8968 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8969 {
8970 	vcpu_load(vcpu);
8971 	__set_regs(vcpu, regs);
8972 	vcpu_put(vcpu);
8973 	return 0;
8974 }
8975 
8976 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8977 {
8978 	struct kvm_segment cs;
8979 
8980 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8981 	*db = cs.db;
8982 	*l = cs.l;
8983 }
8984 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8985 
8986 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8987 {
8988 	struct desc_ptr dt;
8989 
8990 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8991 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8992 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8993 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8994 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8995 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8996 
8997 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8998 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8999 
9000 	kvm_x86_ops.get_idt(vcpu, &dt);
9001 	sregs->idt.limit = dt.size;
9002 	sregs->idt.base = dt.address;
9003 	kvm_x86_ops.get_gdt(vcpu, &dt);
9004 	sregs->gdt.limit = dt.size;
9005 	sregs->gdt.base = dt.address;
9006 
9007 	sregs->cr0 = kvm_read_cr0(vcpu);
9008 	sregs->cr2 = vcpu->arch.cr2;
9009 	sregs->cr3 = kvm_read_cr3(vcpu);
9010 	sregs->cr4 = kvm_read_cr4(vcpu);
9011 	sregs->cr8 = kvm_get_cr8(vcpu);
9012 	sregs->efer = vcpu->arch.efer;
9013 	sregs->apic_base = kvm_get_apic_base(vcpu);
9014 
9015 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9016 
9017 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9018 		set_bit(vcpu->arch.interrupt.nr,
9019 			(unsigned long *)sregs->interrupt_bitmap);
9020 }
9021 
9022 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9023 				  struct kvm_sregs *sregs)
9024 {
9025 	vcpu_load(vcpu);
9026 	__get_sregs(vcpu, sregs);
9027 	vcpu_put(vcpu);
9028 	return 0;
9029 }
9030 
9031 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9032 				    struct kvm_mp_state *mp_state)
9033 {
9034 	vcpu_load(vcpu);
9035 	if (kvm_mpx_supported())
9036 		kvm_load_guest_fpu(vcpu);
9037 
9038 	kvm_apic_accept_events(vcpu);
9039 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9040 					vcpu->arch.pv.pv_unhalted)
9041 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9042 	else
9043 		mp_state->mp_state = vcpu->arch.mp_state;
9044 
9045 	if (kvm_mpx_supported())
9046 		kvm_put_guest_fpu(vcpu);
9047 	vcpu_put(vcpu);
9048 	return 0;
9049 }
9050 
9051 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9052 				    struct kvm_mp_state *mp_state)
9053 {
9054 	int ret = -EINVAL;
9055 
9056 	vcpu_load(vcpu);
9057 
9058 	if (!lapic_in_kernel(vcpu) &&
9059 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9060 		goto out;
9061 
9062 	/*
9063 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9064 	 * INIT state; latched init should be reported using
9065 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9066 	 */
9067 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9068 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9069 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9070 		goto out;
9071 
9072 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9073 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9074 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9075 	} else
9076 		vcpu->arch.mp_state = mp_state->mp_state;
9077 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9078 
9079 	ret = 0;
9080 out:
9081 	vcpu_put(vcpu);
9082 	return ret;
9083 }
9084 
9085 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9086 		    int reason, bool has_error_code, u32 error_code)
9087 {
9088 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9089 	int ret;
9090 
9091 	init_emulate_ctxt(vcpu);
9092 
9093 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9094 				   has_error_code, error_code);
9095 	if (ret) {
9096 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9097 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9098 		vcpu->run->internal.ndata = 0;
9099 		return 0;
9100 	}
9101 
9102 	kvm_rip_write(vcpu, ctxt->eip);
9103 	kvm_set_rflags(vcpu, ctxt->eflags);
9104 	return 1;
9105 }
9106 EXPORT_SYMBOL_GPL(kvm_task_switch);
9107 
9108 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9109 {
9110 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9111 		/*
9112 		 * When EFER.LME and CR0.PG are set, the processor is in
9113 		 * 64-bit mode (though maybe in a 32-bit code segment).
9114 		 * CR4.PAE and EFER.LMA must be set.
9115 		 */
9116 		if (!(sregs->cr4 & X86_CR4_PAE)
9117 		    || !(sregs->efer & EFER_LMA))
9118 			return -EINVAL;
9119 	} else {
9120 		/*
9121 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9122 		 * segment cannot be 64-bit.
9123 		 */
9124 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9125 			return -EINVAL;
9126 	}
9127 
9128 	return kvm_valid_cr4(vcpu, sregs->cr4);
9129 }
9130 
9131 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9132 {
9133 	struct msr_data apic_base_msr;
9134 	int mmu_reset_needed = 0;
9135 	int cpuid_update_needed = 0;
9136 	int pending_vec, max_bits, idx;
9137 	struct desc_ptr dt;
9138 	int ret = -EINVAL;
9139 
9140 	if (kvm_valid_sregs(vcpu, sregs))
9141 		goto out;
9142 
9143 	apic_base_msr.data = sregs->apic_base;
9144 	apic_base_msr.host_initiated = true;
9145 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9146 		goto out;
9147 
9148 	dt.size = sregs->idt.limit;
9149 	dt.address = sregs->idt.base;
9150 	kvm_x86_ops.set_idt(vcpu, &dt);
9151 	dt.size = sregs->gdt.limit;
9152 	dt.address = sregs->gdt.base;
9153 	kvm_x86_ops.set_gdt(vcpu, &dt);
9154 
9155 	vcpu->arch.cr2 = sregs->cr2;
9156 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9157 	vcpu->arch.cr3 = sregs->cr3;
9158 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9159 
9160 	kvm_set_cr8(vcpu, sregs->cr8);
9161 
9162 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9163 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9164 
9165 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9166 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9167 	vcpu->arch.cr0 = sregs->cr0;
9168 
9169 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9170 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9171 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9172 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9173 	if (cpuid_update_needed)
9174 		kvm_update_cpuid(vcpu);
9175 
9176 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9177 	if (is_pae_paging(vcpu)) {
9178 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9179 		mmu_reset_needed = 1;
9180 	}
9181 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9182 
9183 	if (mmu_reset_needed)
9184 		kvm_mmu_reset_context(vcpu);
9185 
9186 	max_bits = KVM_NR_INTERRUPTS;
9187 	pending_vec = find_first_bit(
9188 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9189 	if (pending_vec < max_bits) {
9190 		kvm_queue_interrupt(vcpu, pending_vec, false);
9191 		pr_debug("Set back pending irq %d\n", pending_vec);
9192 	}
9193 
9194 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9195 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9196 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9197 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9198 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9199 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9200 
9201 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9202 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9203 
9204 	update_cr8_intercept(vcpu);
9205 
9206 	/* Older userspace won't unhalt the vcpu on reset. */
9207 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9208 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9209 	    !is_protmode(vcpu))
9210 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9211 
9212 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9213 
9214 	ret = 0;
9215 out:
9216 	return ret;
9217 }
9218 
9219 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9220 				  struct kvm_sregs *sregs)
9221 {
9222 	int ret;
9223 
9224 	vcpu_load(vcpu);
9225 	ret = __set_sregs(vcpu, sregs);
9226 	vcpu_put(vcpu);
9227 	return ret;
9228 }
9229 
9230 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9231 					struct kvm_guest_debug *dbg)
9232 {
9233 	unsigned long rflags;
9234 	int i, r;
9235 
9236 	vcpu_load(vcpu);
9237 
9238 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9239 		r = -EBUSY;
9240 		if (vcpu->arch.exception.pending)
9241 			goto out;
9242 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9243 			kvm_queue_exception(vcpu, DB_VECTOR);
9244 		else
9245 			kvm_queue_exception(vcpu, BP_VECTOR);
9246 	}
9247 
9248 	/*
9249 	 * Read rflags as long as potentially injected trace flags are still
9250 	 * filtered out.
9251 	 */
9252 	rflags = kvm_get_rflags(vcpu);
9253 
9254 	vcpu->guest_debug = dbg->control;
9255 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9256 		vcpu->guest_debug = 0;
9257 
9258 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9259 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9260 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9261 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9262 	} else {
9263 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9264 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9265 	}
9266 	kvm_update_dr7(vcpu);
9267 
9268 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9269 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9270 			get_segment_base(vcpu, VCPU_SREG_CS);
9271 
9272 	/*
9273 	 * Trigger an rflags update that will inject or remove the trace
9274 	 * flags.
9275 	 */
9276 	kvm_set_rflags(vcpu, rflags);
9277 
9278 	kvm_x86_ops.update_bp_intercept(vcpu);
9279 
9280 	r = 0;
9281 
9282 out:
9283 	vcpu_put(vcpu);
9284 	return r;
9285 }
9286 
9287 /*
9288  * Translate a guest virtual address to a guest physical address.
9289  */
9290 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9291 				    struct kvm_translation *tr)
9292 {
9293 	unsigned long vaddr = tr->linear_address;
9294 	gpa_t gpa;
9295 	int idx;
9296 
9297 	vcpu_load(vcpu);
9298 
9299 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9300 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9301 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9302 	tr->physical_address = gpa;
9303 	tr->valid = gpa != UNMAPPED_GVA;
9304 	tr->writeable = 1;
9305 	tr->usermode = 0;
9306 
9307 	vcpu_put(vcpu);
9308 	return 0;
9309 }
9310 
9311 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9312 {
9313 	struct fxregs_state *fxsave;
9314 
9315 	vcpu_load(vcpu);
9316 
9317 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9318 	memcpy(fpu->fpr, fxsave->st_space, 128);
9319 	fpu->fcw = fxsave->cwd;
9320 	fpu->fsw = fxsave->swd;
9321 	fpu->ftwx = fxsave->twd;
9322 	fpu->last_opcode = fxsave->fop;
9323 	fpu->last_ip = fxsave->rip;
9324 	fpu->last_dp = fxsave->rdp;
9325 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9326 
9327 	vcpu_put(vcpu);
9328 	return 0;
9329 }
9330 
9331 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9332 {
9333 	struct fxregs_state *fxsave;
9334 
9335 	vcpu_load(vcpu);
9336 
9337 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9338 
9339 	memcpy(fxsave->st_space, fpu->fpr, 128);
9340 	fxsave->cwd = fpu->fcw;
9341 	fxsave->swd = fpu->fsw;
9342 	fxsave->twd = fpu->ftwx;
9343 	fxsave->fop = fpu->last_opcode;
9344 	fxsave->rip = fpu->last_ip;
9345 	fxsave->rdp = fpu->last_dp;
9346 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9347 
9348 	vcpu_put(vcpu);
9349 	return 0;
9350 }
9351 
9352 static void store_regs(struct kvm_vcpu *vcpu)
9353 {
9354 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9355 
9356 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9357 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9358 
9359 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9360 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9361 
9362 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9363 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9364 				vcpu, &vcpu->run->s.regs.events);
9365 }
9366 
9367 static int sync_regs(struct kvm_vcpu *vcpu)
9368 {
9369 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9370 		return -EINVAL;
9371 
9372 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9373 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9374 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9375 	}
9376 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9377 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9378 			return -EINVAL;
9379 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9380 	}
9381 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9382 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9383 				vcpu, &vcpu->run->s.regs.events))
9384 			return -EINVAL;
9385 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9386 	}
9387 
9388 	return 0;
9389 }
9390 
9391 static void fx_init(struct kvm_vcpu *vcpu)
9392 {
9393 	fpstate_init(&vcpu->arch.guest_fpu->state);
9394 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9395 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9396 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9397 
9398 	/*
9399 	 * Ensure guest xcr0 is valid for loading
9400 	 */
9401 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9402 
9403 	vcpu->arch.cr0 |= X86_CR0_ET;
9404 }
9405 
9406 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9407 {
9408 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9409 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9410 			     "guest TSC will not be reliable\n");
9411 
9412 	return 0;
9413 }
9414 
9415 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9416 {
9417 	struct page *page;
9418 	int r;
9419 
9420 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9421 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9422 	else
9423 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9424 
9425 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9426 
9427 	r = kvm_mmu_create(vcpu);
9428 	if (r < 0)
9429 		return r;
9430 
9431 	if (irqchip_in_kernel(vcpu->kvm)) {
9432 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9433 		if (r < 0)
9434 			goto fail_mmu_destroy;
9435 		if (kvm_apicv_activated(vcpu->kvm))
9436 			vcpu->arch.apicv_active = true;
9437 	} else
9438 		static_key_slow_inc(&kvm_no_apic_vcpu);
9439 
9440 	r = -ENOMEM;
9441 
9442 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9443 	if (!page)
9444 		goto fail_free_lapic;
9445 	vcpu->arch.pio_data = page_address(page);
9446 
9447 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9448 				       GFP_KERNEL_ACCOUNT);
9449 	if (!vcpu->arch.mce_banks)
9450 		goto fail_free_pio_data;
9451 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9452 
9453 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9454 				GFP_KERNEL_ACCOUNT))
9455 		goto fail_free_mce_banks;
9456 
9457 	if (!alloc_emulate_ctxt(vcpu))
9458 		goto free_wbinvd_dirty_mask;
9459 
9460 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9461 						GFP_KERNEL_ACCOUNT);
9462 	if (!vcpu->arch.user_fpu) {
9463 		pr_err("kvm: failed to allocate userspace's fpu\n");
9464 		goto free_emulate_ctxt;
9465 	}
9466 
9467 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9468 						 GFP_KERNEL_ACCOUNT);
9469 	if (!vcpu->arch.guest_fpu) {
9470 		pr_err("kvm: failed to allocate vcpu's fpu\n");
9471 		goto free_user_fpu;
9472 	}
9473 	fx_init(vcpu);
9474 
9475 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9476 	vcpu->arch.tdp_level = kvm_x86_ops.get_tdp_level(vcpu);
9477 
9478 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9479 
9480 	kvm_async_pf_hash_reset(vcpu);
9481 	kvm_pmu_init(vcpu);
9482 
9483 	vcpu->arch.pending_external_vector = -1;
9484 	vcpu->arch.preempted_in_kernel = false;
9485 
9486 	kvm_hv_vcpu_init(vcpu);
9487 
9488 	r = kvm_x86_ops.vcpu_create(vcpu);
9489 	if (r)
9490 		goto free_guest_fpu;
9491 
9492 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9493 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9494 	kvm_vcpu_mtrr_init(vcpu);
9495 	vcpu_load(vcpu);
9496 	kvm_vcpu_reset(vcpu, false);
9497 	kvm_init_mmu(vcpu, false);
9498 	vcpu_put(vcpu);
9499 	return 0;
9500 
9501 free_guest_fpu:
9502 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9503 free_user_fpu:
9504 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9505 free_emulate_ctxt:
9506 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9507 free_wbinvd_dirty_mask:
9508 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9509 fail_free_mce_banks:
9510 	kfree(vcpu->arch.mce_banks);
9511 fail_free_pio_data:
9512 	free_page((unsigned long)vcpu->arch.pio_data);
9513 fail_free_lapic:
9514 	kvm_free_lapic(vcpu);
9515 fail_mmu_destroy:
9516 	kvm_mmu_destroy(vcpu);
9517 	return r;
9518 }
9519 
9520 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9521 {
9522 	struct msr_data msr;
9523 	struct kvm *kvm = vcpu->kvm;
9524 
9525 	kvm_hv_vcpu_postcreate(vcpu);
9526 
9527 	if (mutex_lock_killable(&vcpu->mutex))
9528 		return;
9529 	vcpu_load(vcpu);
9530 	msr.data = 0x0;
9531 	msr.index = MSR_IA32_TSC;
9532 	msr.host_initiated = true;
9533 	kvm_write_tsc(vcpu, &msr);
9534 	vcpu_put(vcpu);
9535 
9536 	/* poll control enabled by default */
9537 	vcpu->arch.msr_kvm_poll_control = 1;
9538 
9539 	mutex_unlock(&vcpu->mutex);
9540 
9541 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9542 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9543 						KVMCLOCK_SYNC_PERIOD);
9544 }
9545 
9546 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9547 {
9548 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9549 	int idx;
9550 
9551 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
9552 
9553 	kvmclock_reset(vcpu);
9554 
9555 	kvm_x86_ops.vcpu_free(vcpu);
9556 
9557 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9558 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9559 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9560 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9561 
9562 	kvm_hv_vcpu_uninit(vcpu);
9563 	kvm_pmu_destroy(vcpu);
9564 	kfree(vcpu->arch.mce_banks);
9565 	kvm_free_lapic(vcpu);
9566 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9567 	kvm_mmu_destroy(vcpu);
9568 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9569 	free_page((unsigned long)vcpu->arch.pio_data);
9570 	if (!lapic_in_kernel(vcpu))
9571 		static_key_slow_dec(&kvm_no_apic_vcpu);
9572 }
9573 
9574 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9575 {
9576 	kvm_lapic_reset(vcpu, init_event);
9577 
9578 	vcpu->arch.hflags = 0;
9579 
9580 	vcpu->arch.smi_pending = 0;
9581 	vcpu->arch.smi_count = 0;
9582 	atomic_set(&vcpu->arch.nmi_queued, 0);
9583 	vcpu->arch.nmi_pending = 0;
9584 	vcpu->arch.nmi_injected = false;
9585 	kvm_clear_interrupt_queue(vcpu);
9586 	kvm_clear_exception_queue(vcpu);
9587 
9588 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9589 	kvm_update_dr0123(vcpu);
9590 	vcpu->arch.dr6 = DR6_INIT;
9591 	vcpu->arch.dr7 = DR7_FIXED_1;
9592 	kvm_update_dr7(vcpu);
9593 
9594 	vcpu->arch.cr2 = 0;
9595 
9596 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9597 	vcpu->arch.apf.msr_en_val = 0;
9598 	vcpu->arch.apf.msr_int_val = 0;
9599 	vcpu->arch.st.msr_val = 0;
9600 
9601 	kvmclock_reset(vcpu);
9602 
9603 	kvm_clear_async_pf_completion_queue(vcpu);
9604 	kvm_async_pf_hash_reset(vcpu);
9605 	vcpu->arch.apf.halted = false;
9606 
9607 	if (kvm_mpx_supported()) {
9608 		void *mpx_state_buffer;
9609 
9610 		/*
9611 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9612 		 * called with loaded FPU and does not let userspace fix the state.
9613 		 */
9614 		if (init_event)
9615 			kvm_put_guest_fpu(vcpu);
9616 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9617 					XFEATURE_BNDREGS);
9618 		if (mpx_state_buffer)
9619 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9620 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9621 					XFEATURE_BNDCSR);
9622 		if (mpx_state_buffer)
9623 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9624 		if (init_event)
9625 			kvm_load_guest_fpu(vcpu);
9626 	}
9627 
9628 	if (!init_event) {
9629 		kvm_pmu_reset(vcpu);
9630 		vcpu->arch.smbase = 0x30000;
9631 
9632 		vcpu->arch.msr_misc_features_enables = 0;
9633 
9634 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9635 	}
9636 
9637 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9638 	vcpu->arch.regs_avail = ~0;
9639 	vcpu->arch.regs_dirty = ~0;
9640 
9641 	vcpu->arch.ia32_xss = 0;
9642 
9643 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
9644 }
9645 
9646 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9647 {
9648 	struct kvm_segment cs;
9649 
9650 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9651 	cs.selector = vector << 8;
9652 	cs.base = vector << 12;
9653 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9654 	kvm_rip_write(vcpu, 0);
9655 }
9656 
9657 int kvm_arch_hardware_enable(void)
9658 {
9659 	struct kvm *kvm;
9660 	struct kvm_vcpu *vcpu;
9661 	int i;
9662 	int ret;
9663 	u64 local_tsc;
9664 	u64 max_tsc = 0;
9665 	bool stable, backwards_tsc = false;
9666 
9667 	kvm_shared_msr_cpu_online();
9668 	ret = kvm_x86_ops.hardware_enable();
9669 	if (ret != 0)
9670 		return ret;
9671 
9672 	local_tsc = rdtsc();
9673 	stable = !kvm_check_tsc_unstable();
9674 	list_for_each_entry(kvm, &vm_list, vm_list) {
9675 		kvm_for_each_vcpu(i, vcpu, kvm) {
9676 			if (!stable && vcpu->cpu == smp_processor_id())
9677 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9678 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9679 				backwards_tsc = true;
9680 				if (vcpu->arch.last_host_tsc > max_tsc)
9681 					max_tsc = vcpu->arch.last_host_tsc;
9682 			}
9683 		}
9684 	}
9685 
9686 	/*
9687 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9688 	 * platforms that reset TSC during suspend or hibernate actions, but
9689 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9690 	 * detect that condition here, which happens early in CPU bringup,
9691 	 * before any KVM threads can be running.  Unfortunately, we can't
9692 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9693 	 * enough into CPU bringup that we know how much real time has actually
9694 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9695 	 * variables that haven't been updated yet.
9696 	 *
9697 	 * So we simply find the maximum observed TSC above, then record the
9698 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9699 	 * the adjustment will be applied.  Note that we accumulate
9700 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9701 	 * gets a chance to run again.  In the event that no KVM threads get a
9702 	 * chance to run, we will miss the entire elapsed period, as we'll have
9703 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9704 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9705 	 * uniform across all VCPUs (not to mention the scenario is extremely
9706 	 * unlikely). It is possible that a second hibernate recovery happens
9707 	 * much faster than a first, causing the observed TSC here to be
9708 	 * smaller; this would require additional padding adjustment, which is
9709 	 * why we set last_host_tsc to the local tsc observed here.
9710 	 *
9711 	 * N.B. - this code below runs only on platforms with reliable TSC,
9712 	 * as that is the only way backwards_tsc is set above.  Also note
9713 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9714 	 * have the same delta_cyc adjustment applied if backwards_tsc
9715 	 * is detected.  Note further, this adjustment is only done once,
9716 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9717 	 * called multiple times (one for each physical CPU bringup).
9718 	 *
9719 	 * Platforms with unreliable TSCs don't have to deal with this, they
9720 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9721 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9722 	 * guarantee that they stay in perfect synchronization.
9723 	 */
9724 	if (backwards_tsc) {
9725 		u64 delta_cyc = max_tsc - local_tsc;
9726 		list_for_each_entry(kvm, &vm_list, vm_list) {
9727 			kvm->arch.backwards_tsc_observed = true;
9728 			kvm_for_each_vcpu(i, vcpu, kvm) {
9729 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9730 				vcpu->arch.last_host_tsc = local_tsc;
9731 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9732 			}
9733 
9734 			/*
9735 			 * We have to disable TSC offset matching.. if you were
9736 			 * booting a VM while issuing an S4 host suspend....
9737 			 * you may have some problem.  Solving this issue is
9738 			 * left as an exercise to the reader.
9739 			 */
9740 			kvm->arch.last_tsc_nsec = 0;
9741 			kvm->arch.last_tsc_write = 0;
9742 		}
9743 
9744 	}
9745 	return 0;
9746 }
9747 
9748 void kvm_arch_hardware_disable(void)
9749 {
9750 	kvm_x86_ops.hardware_disable();
9751 	drop_user_return_notifiers();
9752 }
9753 
9754 int kvm_arch_hardware_setup(void *opaque)
9755 {
9756 	struct kvm_x86_init_ops *ops = opaque;
9757 	int r;
9758 
9759 	rdmsrl_safe(MSR_EFER, &host_efer);
9760 
9761 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9762 		rdmsrl(MSR_IA32_XSS, host_xss);
9763 
9764 	r = ops->hardware_setup();
9765 	if (r != 0)
9766 		return r;
9767 
9768 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9769 
9770 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9771 		supported_xss = 0;
9772 
9773 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9774 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9775 #undef __kvm_cpu_cap_has
9776 
9777 	if (kvm_has_tsc_control) {
9778 		/*
9779 		 * Make sure the user can only configure tsc_khz values that
9780 		 * fit into a signed integer.
9781 		 * A min value is not calculated because it will always
9782 		 * be 1 on all machines.
9783 		 */
9784 		u64 max = min(0x7fffffffULL,
9785 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9786 		kvm_max_guest_tsc_khz = max;
9787 
9788 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9789 	}
9790 
9791 	kvm_init_msr_list();
9792 	return 0;
9793 }
9794 
9795 void kvm_arch_hardware_unsetup(void)
9796 {
9797 	kvm_x86_ops.hardware_unsetup();
9798 }
9799 
9800 int kvm_arch_check_processor_compat(void *opaque)
9801 {
9802 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9803 	struct kvm_x86_init_ops *ops = opaque;
9804 
9805 	WARN_ON(!irqs_disabled());
9806 
9807 	if (__cr4_reserved_bits(cpu_has, c) !=
9808 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9809 		return -EIO;
9810 
9811 	return ops->check_processor_compatibility();
9812 }
9813 
9814 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9815 {
9816 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9817 }
9818 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9819 
9820 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9821 {
9822 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9823 }
9824 
9825 struct static_key kvm_no_apic_vcpu __read_mostly;
9826 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9827 
9828 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9829 {
9830 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9831 
9832 	vcpu->arch.l1tf_flush_l1d = true;
9833 	if (pmu->version && unlikely(pmu->event_count)) {
9834 		pmu->need_cleanup = true;
9835 		kvm_make_request(KVM_REQ_PMU, vcpu);
9836 	}
9837 	kvm_x86_ops.sched_in(vcpu, cpu);
9838 }
9839 
9840 void kvm_arch_free_vm(struct kvm *kvm)
9841 {
9842 	kfree(kvm->arch.hyperv.hv_pa_pg);
9843 	vfree(kvm);
9844 }
9845 
9846 
9847 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9848 {
9849 	if (type)
9850 		return -EINVAL;
9851 
9852 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9853 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9854 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9855 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9856 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9857 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9858 
9859 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9860 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9861 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9862 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9863 		&kvm->arch.irq_sources_bitmap);
9864 
9865 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9866 	mutex_init(&kvm->arch.apic_map_lock);
9867 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9868 
9869 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9870 	pvclock_update_vm_gtod_copy(kvm);
9871 
9872 	kvm->arch.guest_can_read_msr_platform_info = true;
9873 
9874 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9875 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9876 
9877 	kvm_hv_init_vm(kvm);
9878 	kvm_page_track_init(kvm);
9879 	kvm_mmu_init_vm(kvm);
9880 
9881 	return kvm_x86_ops.vm_init(kvm);
9882 }
9883 
9884 int kvm_arch_post_init_vm(struct kvm *kvm)
9885 {
9886 	return kvm_mmu_post_init_vm(kvm);
9887 }
9888 
9889 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9890 {
9891 	vcpu_load(vcpu);
9892 	kvm_mmu_unload(vcpu);
9893 	vcpu_put(vcpu);
9894 }
9895 
9896 static void kvm_free_vcpus(struct kvm *kvm)
9897 {
9898 	unsigned int i;
9899 	struct kvm_vcpu *vcpu;
9900 
9901 	/*
9902 	 * Unpin any mmu pages first.
9903 	 */
9904 	kvm_for_each_vcpu(i, vcpu, kvm) {
9905 		kvm_clear_async_pf_completion_queue(vcpu);
9906 		kvm_unload_vcpu_mmu(vcpu);
9907 	}
9908 	kvm_for_each_vcpu(i, vcpu, kvm)
9909 		kvm_vcpu_destroy(vcpu);
9910 
9911 	mutex_lock(&kvm->lock);
9912 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9913 		kvm->vcpus[i] = NULL;
9914 
9915 	atomic_set(&kvm->online_vcpus, 0);
9916 	mutex_unlock(&kvm->lock);
9917 }
9918 
9919 void kvm_arch_sync_events(struct kvm *kvm)
9920 {
9921 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9922 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9923 	kvm_free_pit(kvm);
9924 }
9925 
9926 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9927 {
9928 	int i, r;
9929 	unsigned long hva, uninitialized_var(old_npages);
9930 	struct kvm_memslots *slots = kvm_memslots(kvm);
9931 	struct kvm_memory_slot *slot;
9932 
9933 	/* Called with kvm->slots_lock held.  */
9934 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9935 		return -EINVAL;
9936 
9937 	slot = id_to_memslot(slots, id);
9938 	if (size) {
9939 		if (slot && slot->npages)
9940 			return -EEXIST;
9941 
9942 		/*
9943 		 * MAP_SHARED to prevent internal slot pages from being moved
9944 		 * by fork()/COW.
9945 		 */
9946 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9947 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9948 		if (IS_ERR((void *)hva))
9949 			return PTR_ERR((void *)hva);
9950 	} else {
9951 		if (!slot || !slot->npages)
9952 			return 0;
9953 
9954 		old_npages = slot->npages;
9955 		hva = 0;
9956 	}
9957 
9958 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9959 		struct kvm_userspace_memory_region m;
9960 
9961 		m.slot = id | (i << 16);
9962 		m.flags = 0;
9963 		m.guest_phys_addr = gpa;
9964 		m.userspace_addr = hva;
9965 		m.memory_size = size;
9966 		r = __kvm_set_memory_region(kvm, &m);
9967 		if (r < 0)
9968 			return r;
9969 	}
9970 
9971 	if (!size)
9972 		vm_munmap(hva, old_npages * PAGE_SIZE);
9973 
9974 	return 0;
9975 }
9976 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9977 
9978 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9979 {
9980 	kvm_mmu_pre_destroy_vm(kvm);
9981 }
9982 
9983 void kvm_arch_destroy_vm(struct kvm *kvm)
9984 {
9985 	if (current->mm == kvm->mm) {
9986 		/*
9987 		 * Free memory regions allocated on behalf of userspace,
9988 		 * unless the the memory map has changed due to process exit
9989 		 * or fd copying.
9990 		 */
9991 		mutex_lock(&kvm->slots_lock);
9992 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
9993 					0, 0);
9994 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
9995 					0, 0);
9996 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9997 		mutex_unlock(&kvm->slots_lock);
9998 	}
9999 	if (kvm_x86_ops.vm_destroy)
10000 		kvm_x86_ops.vm_destroy(kvm);
10001 	kvm_pic_destroy(kvm);
10002 	kvm_ioapic_destroy(kvm);
10003 	kvm_free_vcpus(kvm);
10004 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10005 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10006 	kvm_mmu_uninit_vm(kvm);
10007 	kvm_page_track_cleanup(kvm);
10008 	kvm_hv_destroy_vm(kvm);
10009 }
10010 
10011 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10012 {
10013 	int i;
10014 
10015 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10016 		kvfree(slot->arch.rmap[i]);
10017 		slot->arch.rmap[i] = NULL;
10018 
10019 		if (i == 0)
10020 			continue;
10021 
10022 		kvfree(slot->arch.lpage_info[i - 1]);
10023 		slot->arch.lpage_info[i - 1] = NULL;
10024 	}
10025 
10026 	kvm_page_track_free_memslot(slot);
10027 }
10028 
10029 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10030 				      unsigned long npages)
10031 {
10032 	int i;
10033 
10034 	/*
10035 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10036 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10037 	 * the new memslot is successful.
10038 	 */
10039 	memset(&slot->arch, 0, sizeof(slot->arch));
10040 
10041 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10042 		struct kvm_lpage_info *linfo;
10043 		unsigned long ugfn;
10044 		int lpages;
10045 		int level = i + 1;
10046 
10047 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10048 				      slot->base_gfn, level) + 1;
10049 
10050 		slot->arch.rmap[i] =
10051 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10052 				 GFP_KERNEL_ACCOUNT);
10053 		if (!slot->arch.rmap[i])
10054 			goto out_free;
10055 		if (i == 0)
10056 			continue;
10057 
10058 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10059 		if (!linfo)
10060 			goto out_free;
10061 
10062 		slot->arch.lpage_info[i - 1] = linfo;
10063 
10064 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10065 			linfo[0].disallow_lpage = 1;
10066 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10067 			linfo[lpages - 1].disallow_lpage = 1;
10068 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10069 		/*
10070 		 * If the gfn and userspace address are not aligned wrt each
10071 		 * other, disable large page support for this slot.
10072 		 */
10073 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10074 			unsigned long j;
10075 
10076 			for (j = 0; j < lpages; ++j)
10077 				linfo[j].disallow_lpage = 1;
10078 		}
10079 	}
10080 
10081 	if (kvm_page_track_create_memslot(slot, npages))
10082 		goto out_free;
10083 
10084 	return 0;
10085 
10086 out_free:
10087 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10088 		kvfree(slot->arch.rmap[i]);
10089 		slot->arch.rmap[i] = NULL;
10090 		if (i == 0)
10091 			continue;
10092 
10093 		kvfree(slot->arch.lpage_info[i - 1]);
10094 		slot->arch.lpage_info[i - 1] = NULL;
10095 	}
10096 	return -ENOMEM;
10097 }
10098 
10099 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10100 {
10101 	struct kvm_vcpu *vcpu;
10102 	int i;
10103 
10104 	/*
10105 	 * memslots->generation has been incremented.
10106 	 * mmio generation may have reached its maximum value.
10107 	 */
10108 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10109 
10110 	/* Force re-initialization of steal_time cache */
10111 	kvm_for_each_vcpu(i, vcpu, kvm)
10112 		kvm_vcpu_kick(vcpu);
10113 }
10114 
10115 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10116 				struct kvm_memory_slot *memslot,
10117 				const struct kvm_userspace_memory_region *mem,
10118 				enum kvm_mr_change change)
10119 {
10120 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10121 		return kvm_alloc_memslot_metadata(memslot,
10122 						  mem->memory_size >> PAGE_SHIFT);
10123 	return 0;
10124 }
10125 
10126 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10127 				     struct kvm_memory_slot *old,
10128 				     struct kvm_memory_slot *new,
10129 				     enum kvm_mr_change change)
10130 {
10131 	/*
10132 	 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10133 	 * See comments below.
10134 	 */
10135 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10136 		return;
10137 
10138 	/*
10139 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10140 	 * sptes have to be split.  If live migration is successful, the guest
10141 	 * in the source machine will be destroyed and large sptes will be
10142 	 * created in the destination. However, if the guest continues to run
10143 	 * in the source machine (for example if live migration fails), small
10144 	 * sptes will remain around and cause bad performance.
10145 	 *
10146 	 * Scan sptes if dirty logging has been stopped, dropping those
10147 	 * which can be collapsed into a single large-page spte.  Later
10148 	 * page faults will create the large-page sptes.
10149 	 *
10150 	 * There is no need to do this in any of the following cases:
10151 	 * CREATE:      No dirty mappings will already exist.
10152 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10153 	 *		kvm_arch_flush_shadow_memslot()
10154 	 */
10155 	if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10156 	    !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10157 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10158 
10159 	/*
10160 	 * Enable or disable dirty logging for the slot.
10161 	 *
10162 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10163 	 * slot have been zapped so no dirty logging updates are needed for
10164 	 * the old slot.
10165 	 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10166 	 * any mappings that might be created in it will consume the
10167 	 * properties of the new slot and do not need to be updated here.
10168 	 *
10169 	 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10170 	 * called to enable/disable dirty logging.
10171 	 *
10172 	 * When disabling dirty logging with PML enabled, the D-bit is set
10173 	 * for sptes in the slot in order to prevent unnecessary GPA
10174 	 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10175 	 * This guarantees leaving PML enabled for the guest's lifetime
10176 	 * won't have any additional overhead from PML when the guest is
10177 	 * running with dirty logging disabled.
10178 	 *
10179 	 * When enabling dirty logging, large sptes are write-protected
10180 	 * so they can be split on first write.  New large sptes cannot
10181 	 * be created for this slot until the end of the logging.
10182 	 * See the comments in fast_page_fault().
10183 	 * For small sptes, nothing is done if the dirty log is in the
10184 	 * initial-all-set state.  Otherwise, depending on whether pml
10185 	 * is enabled the D-bit or the W-bit will be cleared.
10186 	 */
10187 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10188 		if (kvm_x86_ops.slot_enable_log_dirty) {
10189 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10190 		} else {
10191 			int level =
10192 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10193 				PG_LEVEL_2M : PG_LEVEL_4K;
10194 
10195 			/*
10196 			 * If we're with initial-all-set, we don't need
10197 			 * to write protect any small page because
10198 			 * they're reported as dirty already.  However
10199 			 * we still need to write-protect huge pages
10200 			 * so that the page split can happen lazily on
10201 			 * the first write to the huge page.
10202 			 */
10203 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10204 		}
10205 	} else {
10206 		if (kvm_x86_ops.slot_disable_log_dirty)
10207 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10208 	}
10209 }
10210 
10211 void kvm_arch_commit_memory_region(struct kvm *kvm,
10212 				const struct kvm_userspace_memory_region *mem,
10213 				struct kvm_memory_slot *old,
10214 				const struct kvm_memory_slot *new,
10215 				enum kvm_mr_change change)
10216 {
10217 	if (!kvm->arch.n_requested_mmu_pages)
10218 		kvm_mmu_change_mmu_pages(kvm,
10219 				kvm_mmu_calculate_default_mmu_pages(kvm));
10220 
10221 	/*
10222 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10223 	 */
10224 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10225 
10226 	/* Free the arrays associated with the old memslot. */
10227 	if (change == KVM_MR_MOVE)
10228 		kvm_arch_free_memslot(kvm, old);
10229 }
10230 
10231 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10232 {
10233 	kvm_mmu_zap_all(kvm);
10234 }
10235 
10236 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10237 				   struct kvm_memory_slot *slot)
10238 {
10239 	kvm_page_track_flush_slot(kvm, slot);
10240 }
10241 
10242 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10243 {
10244 	return (is_guest_mode(vcpu) &&
10245 			kvm_x86_ops.guest_apic_has_interrupt &&
10246 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10247 }
10248 
10249 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10250 {
10251 	if (!list_empty_careful(&vcpu->async_pf.done))
10252 		return true;
10253 
10254 	if (kvm_apic_has_events(vcpu))
10255 		return true;
10256 
10257 	if (vcpu->arch.pv.pv_unhalted)
10258 		return true;
10259 
10260 	if (vcpu->arch.exception.pending)
10261 		return true;
10262 
10263 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10264 	    (vcpu->arch.nmi_pending &&
10265 	     kvm_x86_ops.nmi_allowed(vcpu, false)))
10266 		return true;
10267 
10268 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10269 	    (vcpu->arch.smi_pending &&
10270 	     kvm_x86_ops.smi_allowed(vcpu, false)))
10271 		return true;
10272 
10273 	if (kvm_arch_interrupt_allowed(vcpu) &&
10274 	    (kvm_cpu_has_interrupt(vcpu) ||
10275 	    kvm_guest_apic_has_interrupt(vcpu)))
10276 		return true;
10277 
10278 	if (kvm_hv_has_stimer_pending(vcpu))
10279 		return true;
10280 
10281 	if (is_guest_mode(vcpu) &&
10282 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
10283 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10284 		return true;
10285 
10286 	return false;
10287 }
10288 
10289 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10290 {
10291 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10292 }
10293 
10294 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10295 {
10296 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10297 		return true;
10298 
10299 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10300 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10301 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10302 		return true;
10303 
10304 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10305 		return true;
10306 
10307 	return false;
10308 }
10309 
10310 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10311 {
10312 	return vcpu->arch.preempted_in_kernel;
10313 }
10314 
10315 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10316 {
10317 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10318 }
10319 
10320 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10321 {
10322 	return kvm_x86_ops.interrupt_allowed(vcpu, false);
10323 }
10324 
10325 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10326 {
10327 	if (is_64_bit_mode(vcpu))
10328 		return kvm_rip_read(vcpu);
10329 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10330 		     kvm_rip_read(vcpu));
10331 }
10332 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10333 
10334 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10335 {
10336 	return kvm_get_linear_rip(vcpu) == linear_rip;
10337 }
10338 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10339 
10340 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10341 {
10342 	unsigned long rflags;
10343 
10344 	rflags = kvm_x86_ops.get_rflags(vcpu);
10345 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10346 		rflags &= ~X86_EFLAGS_TF;
10347 	return rflags;
10348 }
10349 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10350 
10351 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10352 {
10353 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10354 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10355 		rflags |= X86_EFLAGS_TF;
10356 	kvm_x86_ops.set_rflags(vcpu, rflags);
10357 }
10358 
10359 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10360 {
10361 	__kvm_set_rflags(vcpu, rflags);
10362 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10363 }
10364 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10365 
10366 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10367 {
10368 	int r;
10369 
10370 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10371 	      work->wakeup_all)
10372 		return;
10373 
10374 	r = kvm_mmu_reload(vcpu);
10375 	if (unlikely(r))
10376 		return;
10377 
10378 	if (!vcpu->arch.mmu->direct_map &&
10379 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10380 		return;
10381 
10382 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10383 }
10384 
10385 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10386 {
10387 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10388 
10389 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10390 }
10391 
10392 static inline u32 kvm_async_pf_next_probe(u32 key)
10393 {
10394 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
10395 }
10396 
10397 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10398 {
10399 	u32 key = kvm_async_pf_hash_fn(gfn);
10400 
10401 	while (vcpu->arch.apf.gfns[key] != ~0)
10402 		key = kvm_async_pf_next_probe(key);
10403 
10404 	vcpu->arch.apf.gfns[key] = gfn;
10405 }
10406 
10407 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10408 {
10409 	int i;
10410 	u32 key = kvm_async_pf_hash_fn(gfn);
10411 
10412 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
10413 		     (vcpu->arch.apf.gfns[key] != gfn &&
10414 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10415 		key = kvm_async_pf_next_probe(key);
10416 
10417 	return key;
10418 }
10419 
10420 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10421 {
10422 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10423 }
10424 
10425 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10426 {
10427 	u32 i, j, k;
10428 
10429 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10430 
10431 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10432 		return;
10433 
10434 	while (true) {
10435 		vcpu->arch.apf.gfns[i] = ~0;
10436 		do {
10437 			j = kvm_async_pf_next_probe(j);
10438 			if (vcpu->arch.apf.gfns[j] == ~0)
10439 				return;
10440 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10441 			/*
10442 			 * k lies cyclically in ]i,j]
10443 			 * |    i.k.j |
10444 			 * |....j i.k.| or  |.k..j i...|
10445 			 */
10446 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10447 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10448 		i = j;
10449 	}
10450 }
10451 
10452 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
10453 {
10454 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10455 
10456 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10457 				      sizeof(reason));
10458 }
10459 
10460 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10461 {
10462 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10463 
10464 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10465 					     &token, offset, sizeof(token));
10466 }
10467 
10468 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10469 {
10470 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10471 	u32 val;
10472 
10473 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10474 					 &val, offset, sizeof(val)))
10475 		return false;
10476 
10477 	return !val;
10478 }
10479 
10480 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10481 {
10482 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10483 		return false;
10484 
10485 	if (!kvm_pv_async_pf_enabled(vcpu) ||
10486 	    (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
10487 		return false;
10488 
10489 	return true;
10490 }
10491 
10492 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10493 {
10494 	if (unlikely(!lapic_in_kernel(vcpu) ||
10495 		     kvm_event_needs_reinjection(vcpu) ||
10496 		     vcpu->arch.exception.pending))
10497 		return false;
10498 
10499 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10500 		return false;
10501 
10502 	/*
10503 	 * If interrupts are off we cannot even use an artificial
10504 	 * halt state.
10505 	 */
10506 	return kvm_arch_interrupt_allowed(vcpu);
10507 }
10508 
10509 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10510 				     struct kvm_async_pf *work)
10511 {
10512 	struct x86_exception fault;
10513 
10514 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10515 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10516 
10517 	if (kvm_can_deliver_async_pf(vcpu) &&
10518 	    !apf_put_user_notpresent(vcpu)) {
10519 		fault.vector = PF_VECTOR;
10520 		fault.error_code_valid = true;
10521 		fault.error_code = 0;
10522 		fault.nested_page_fault = false;
10523 		fault.address = work->arch.token;
10524 		fault.async_page_fault = true;
10525 		kvm_inject_page_fault(vcpu, &fault);
10526 		return true;
10527 	} else {
10528 		/*
10529 		 * It is not possible to deliver a paravirtualized asynchronous
10530 		 * page fault, but putting the guest in an artificial halt state
10531 		 * can be beneficial nevertheless: if an interrupt arrives, we
10532 		 * can deliver it timely and perhaps the guest will schedule
10533 		 * another process.  When the instruction that triggered a page
10534 		 * fault is retried, hopefully the page will be ready in the host.
10535 		 */
10536 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10537 		return false;
10538 	}
10539 }
10540 
10541 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10542 				 struct kvm_async_pf *work)
10543 {
10544 	struct kvm_lapic_irq irq = {
10545 		.delivery_mode = APIC_DM_FIXED,
10546 		.vector = vcpu->arch.apf.vec
10547 	};
10548 
10549 	if (work->wakeup_all)
10550 		work->arch.token = ~0; /* broadcast wakeup */
10551 	else
10552 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10553 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10554 
10555 	if ((work->wakeup_all || work->notpresent_injected) &&
10556 	    kvm_pv_async_pf_enabled(vcpu) &&
10557 	    !apf_put_user_ready(vcpu, work->arch.token)) {
10558 		vcpu->arch.apf.pageready_pending = true;
10559 		kvm_apic_set_irq(vcpu, &irq, NULL);
10560 	}
10561 
10562 	vcpu->arch.apf.halted = false;
10563 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10564 }
10565 
10566 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
10567 {
10568 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
10569 	if (!vcpu->arch.apf.pageready_pending)
10570 		kvm_vcpu_kick(vcpu);
10571 }
10572 
10573 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
10574 {
10575 	if (!kvm_pv_async_pf_enabled(vcpu))
10576 		return true;
10577 	else
10578 		return apf_pageready_slot_free(vcpu);
10579 }
10580 
10581 void kvm_arch_start_assignment(struct kvm *kvm)
10582 {
10583 	atomic_inc(&kvm->arch.assigned_device_count);
10584 }
10585 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10586 
10587 void kvm_arch_end_assignment(struct kvm *kvm)
10588 {
10589 	atomic_dec(&kvm->arch.assigned_device_count);
10590 }
10591 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10592 
10593 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10594 {
10595 	return atomic_read(&kvm->arch.assigned_device_count);
10596 }
10597 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10598 
10599 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10600 {
10601 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10602 }
10603 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10604 
10605 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10606 {
10607 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10608 }
10609 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10610 
10611 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10612 {
10613 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10614 }
10615 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10616 
10617 bool kvm_arch_has_irq_bypass(void)
10618 {
10619 	return true;
10620 }
10621 
10622 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10623 				      struct irq_bypass_producer *prod)
10624 {
10625 	struct kvm_kernel_irqfd *irqfd =
10626 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10627 
10628 	irqfd->producer = prod;
10629 
10630 	return kvm_x86_ops.update_pi_irte(irqfd->kvm,
10631 					   prod->irq, irqfd->gsi, 1);
10632 }
10633 
10634 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10635 				      struct irq_bypass_producer *prod)
10636 {
10637 	int ret;
10638 	struct kvm_kernel_irqfd *irqfd =
10639 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10640 
10641 	WARN_ON(irqfd->producer != prod);
10642 	irqfd->producer = NULL;
10643 
10644 	/*
10645 	 * When producer of consumer is unregistered, we change back to
10646 	 * remapped mode, so we can re-use the current implementation
10647 	 * when the irq is masked/disabled or the consumer side (KVM
10648 	 * int this case doesn't want to receive the interrupts.
10649 	*/
10650 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10651 	if (ret)
10652 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10653 		       " fails: %d\n", irqfd->consumer.token, ret);
10654 }
10655 
10656 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10657 				   uint32_t guest_irq, bool set)
10658 {
10659 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
10660 }
10661 
10662 bool kvm_vector_hashing_enabled(void)
10663 {
10664 	return vector_hashing;
10665 }
10666 
10667 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10668 {
10669 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10670 }
10671 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10672 
10673 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10674 {
10675 	uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10676 
10677 	/* The STIBP bit doesn't fault even if it's not advertised */
10678 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10679 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10680 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10681 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10682 	    !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10683 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10684 
10685 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10686 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10687 		bits &= ~SPEC_CTRL_SSBD;
10688 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10689 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10690 		bits &= ~SPEC_CTRL_SSBD;
10691 
10692 	return bits;
10693 }
10694 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
10695 
10696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
10717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
10718