xref: /openbmc/linux/arch/x86/kvm/x86.c (revision f5b06569)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58 
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71 
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76 
77 #define emul_to_vcpu(ctxt) \
78 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79 
80 /* EFER defaults:
81  * - enable syscall per default because its emulated by KVM
82  * - enable LME and LMA per default on 64 bit KVM
83  */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90 
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93 
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96 
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101 
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104 
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107 
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110 
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113 
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32  __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64  __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124 
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128 
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132 
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135 
136 static bool __read_mostly backwards_tsc_observed = false;
137 
138 #define KVM_NR_SHARED_MSRS 16
139 
140 struct kvm_shared_msrs_global {
141 	int nr;
142 	u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144 
145 struct kvm_shared_msrs {
146 	struct user_return_notifier urn;
147 	bool registered;
148 	struct kvm_shared_msr_values {
149 		u64 host;
150 		u64 curr;
151 	} values[KVM_NR_SHARED_MSRS];
152 };
153 
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156 
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
159 	{ "pf_guest", VCPU_STAT(pf_guest) },
160 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
161 	{ "invlpg", VCPU_STAT(invlpg) },
162 	{ "exits", VCPU_STAT(exits) },
163 	{ "io_exits", VCPU_STAT(io_exits) },
164 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
165 	{ "signal_exits", VCPU_STAT(signal_exits) },
166 	{ "irq_window", VCPU_STAT(irq_window_exits) },
167 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
168 	{ "halt_exits", VCPU_STAT(halt_exits) },
169 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 	{ "hypercalls", VCPU_STAT(hypercalls) },
174 	{ "request_irq", VCPU_STAT(request_irq_exits) },
175 	{ "irq_exits", VCPU_STAT(irq_exits) },
176 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
177 	{ "efer_reload", VCPU_STAT(efer_reload) },
178 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
179 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
180 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 	{ "irq_injections", VCPU_STAT(irq_injections) },
182 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
183 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
185 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
188 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
189 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
191 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192 	{ "largepages", VM_STAT(lpages) },
193 	{ NULL }
194 };
195 
196 u64 __read_mostly host_xcr0;
197 
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199 
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202 	int i;
203 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204 		vcpu->arch.apf.gfns[i] = ~0;
205 }
206 
207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209 	unsigned slot;
210 	struct kvm_shared_msrs *locals
211 		= container_of(urn, struct kvm_shared_msrs, urn);
212 	struct kvm_shared_msr_values *values;
213 
214 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
215 		values = &locals->values[slot];
216 		if (values->host != values->curr) {
217 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
218 			values->curr = values->host;
219 		}
220 	}
221 	locals->registered = false;
222 	user_return_notifier_unregister(urn);
223 }
224 
225 static void shared_msr_update(unsigned slot, u32 msr)
226 {
227 	u64 value;
228 	unsigned int cpu = smp_processor_id();
229 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
230 
231 	/* only read, and nobody should modify it at this time,
232 	 * so don't need lock */
233 	if (slot >= shared_msrs_global.nr) {
234 		printk(KERN_ERR "kvm: invalid MSR slot!");
235 		return;
236 	}
237 	rdmsrl_safe(msr, &value);
238 	smsr->values[slot].host = value;
239 	smsr->values[slot].curr = value;
240 }
241 
242 void kvm_define_shared_msr(unsigned slot, u32 msr)
243 {
244 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
245 	shared_msrs_global.msrs[slot] = msr;
246 	if (slot >= shared_msrs_global.nr)
247 		shared_msrs_global.nr = slot + 1;
248 }
249 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
250 
251 static void kvm_shared_msr_cpu_online(void)
252 {
253 	unsigned i;
254 
255 	for (i = 0; i < shared_msrs_global.nr; ++i)
256 		shared_msr_update(i, shared_msrs_global.msrs[i]);
257 }
258 
259 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
260 {
261 	unsigned int cpu = smp_processor_id();
262 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
263 	int err;
264 
265 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
266 		return 0;
267 	smsr->values[slot].curr = value;
268 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
269 	if (err)
270 		return 1;
271 
272 	if (!smsr->registered) {
273 		smsr->urn.on_user_return = kvm_on_user_return;
274 		user_return_notifier_register(&smsr->urn);
275 		smsr->registered = true;
276 	}
277 	return 0;
278 }
279 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
280 
281 static void drop_user_return_notifiers(void)
282 {
283 	unsigned int cpu = smp_processor_id();
284 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
285 
286 	if (smsr->registered)
287 		kvm_on_user_return(&smsr->urn);
288 }
289 
290 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
291 {
292 	return vcpu->arch.apic_base;
293 }
294 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
295 
296 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
297 {
298 	u64 old_state = vcpu->arch.apic_base &
299 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
300 	u64 new_state = msr_info->data &
301 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
302 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
303 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
304 
305 	if (!msr_info->host_initiated &&
306 	    ((msr_info->data & reserved_bits) != 0 ||
307 	     new_state == X2APIC_ENABLE ||
308 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
309 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
310 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
311 	      old_state == 0)))
312 		return 1;
313 
314 	kvm_lapic_set_base(vcpu, msr_info->data);
315 	return 0;
316 }
317 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
318 
319 asmlinkage __visible void kvm_spurious_fault(void)
320 {
321 	/* Fault while not rebooting.  We want the trace. */
322 	BUG();
323 }
324 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
325 
326 #define EXCPT_BENIGN		0
327 #define EXCPT_CONTRIBUTORY	1
328 #define EXCPT_PF		2
329 
330 static int exception_class(int vector)
331 {
332 	switch (vector) {
333 	case PF_VECTOR:
334 		return EXCPT_PF;
335 	case DE_VECTOR:
336 	case TS_VECTOR:
337 	case NP_VECTOR:
338 	case SS_VECTOR:
339 	case GP_VECTOR:
340 		return EXCPT_CONTRIBUTORY;
341 	default:
342 		break;
343 	}
344 	return EXCPT_BENIGN;
345 }
346 
347 #define EXCPT_FAULT		0
348 #define EXCPT_TRAP		1
349 #define EXCPT_ABORT		2
350 #define EXCPT_INTERRUPT		3
351 
352 static int exception_type(int vector)
353 {
354 	unsigned int mask;
355 
356 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
357 		return EXCPT_INTERRUPT;
358 
359 	mask = 1 << vector;
360 
361 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
362 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
363 		return EXCPT_TRAP;
364 
365 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
366 		return EXCPT_ABORT;
367 
368 	/* Reserved exceptions will result in fault */
369 	return EXCPT_FAULT;
370 }
371 
372 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
373 		unsigned nr, bool has_error, u32 error_code,
374 		bool reinject)
375 {
376 	u32 prev_nr;
377 	int class1, class2;
378 
379 	kvm_make_request(KVM_REQ_EVENT, vcpu);
380 
381 	if (!vcpu->arch.exception.pending) {
382 	queue:
383 		if (has_error && !is_protmode(vcpu))
384 			has_error = false;
385 		vcpu->arch.exception.pending = true;
386 		vcpu->arch.exception.has_error_code = has_error;
387 		vcpu->arch.exception.nr = nr;
388 		vcpu->arch.exception.error_code = error_code;
389 		vcpu->arch.exception.reinject = reinject;
390 		return;
391 	}
392 
393 	/* to check exception */
394 	prev_nr = vcpu->arch.exception.nr;
395 	if (prev_nr == DF_VECTOR) {
396 		/* triple fault -> shutdown */
397 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
398 		return;
399 	}
400 	class1 = exception_class(prev_nr);
401 	class2 = exception_class(nr);
402 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
403 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
404 		/* generate double fault per SDM Table 5-5 */
405 		vcpu->arch.exception.pending = true;
406 		vcpu->arch.exception.has_error_code = true;
407 		vcpu->arch.exception.nr = DF_VECTOR;
408 		vcpu->arch.exception.error_code = 0;
409 	} else
410 		/* replace previous exception with a new one in a hope
411 		   that instruction re-execution will regenerate lost
412 		   exception */
413 		goto queue;
414 }
415 
416 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
417 {
418 	kvm_multiple_exception(vcpu, nr, false, 0, false);
419 }
420 EXPORT_SYMBOL_GPL(kvm_queue_exception);
421 
422 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
423 {
424 	kvm_multiple_exception(vcpu, nr, false, 0, true);
425 }
426 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
427 
428 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
429 {
430 	if (err)
431 		kvm_inject_gp(vcpu, 0);
432 	else
433 		kvm_x86_ops->skip_emulated_instruction(vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
436 
437 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439 	++vcpu->stat.pf_guest;
440 	vcpu->arch.cr2 = fault->address;
441 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
442 }
443 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
444 
445 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
446 {
447 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
448 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
449 	else
450 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
451 
452 	return fault->nested_page_fault;
453 }
454 
455 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
456 {
457 	atomic_inc(&vcpu->arch.nmi_queued);
458 	kvm_make_request(KVM_REQ_NMI, vcpu);
459 }
460 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
461 
462 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
463 {
464 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
465 }
466 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
467 
468 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
469 {
470 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
471 }
472 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
473 
474 /*
475  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
476  * a #GP and return false.
477  */
478 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
479 {
480 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
481 		return true;
482 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
483 	return false;
484 }
485 EXPORT_SYMBOL_GPL(kvm_require_cpl);
486 
487 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
488 {
489 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
490 		return true;
491 
492 	kvm_queue_exception(vcpu, UD_VECTOR);
493 	return false;
494 }
495 EXPORT_SYMBOL_GPL(kvm_require_dr);
496 
497 /*
498  * This function will be used to read from the physical memory of the currently
499  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
500  * can read from guest physical or from the guest's guest physical memory.
501  */
502 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
503 			    gfn_t ngfn, void *data, int offset, int len,
504 			    u32 access)
505 {
506 	struct x86_exception exception;
507 	gfn_t real_gfn;
508 	gpa_t ngpa;
509 
510 	ngpa     = gfn_to_gpa(ngfn);
511 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
512 	if (real_gfn == UNMAPPED_GVA)
513 		return -EFAULT;
514 
515 	real_gfn = gpa_to_gfn(real_gfn);
516 
517 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
518 }
519 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
520 
521 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
522 			       void *data, int offset, int len, u32 access)
523 {
524 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
525 				       data, offset, len, access);
526 }
527 
528 /*
529  * Load the pae pdptrs.  Return true is they are all valid.
530  */
531 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
532 {
533 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
534 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
535 	int i;
536 	int ret;
537 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
538 
539 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
540 				      offset * sizeof(u64), sizeof(pdpte),
541 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
542 	if (ret < 0) {
543 		ret = 0;
544 		goto out;
545 	}
546 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
547 		if ((pdpte[i] & PT_PRESENT_MASK) &&
548 		    (pdpte[i] &
549 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
550 			ret = 0;
551 			goto out;
552 		}
553 	}
554 	ret = 1;
555 
556 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
557 	__set_bit(VCPU_EXREG_PDPTR,
558 		  (unsigned long *)&vcpu->arch.regs_avail);
559 	__set_bit(VCPU_EXREG_PDPTR,
560 		  (unsigned long *)&vcpu->arch.regs_dirty);
561 out:
562 
563 	return ret;
564 }
565 EXPORT_SYMBOL_GPL(load_pdptrs);
566 
567 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
568 {
569 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
570 	bool changed = true;
571 	int offset;
572 	gfn_t gfn;
573 	int r;
574 
575 	if (is_long_mode(vcpu) || !is_pae(vcpu))
576 		return false;
577 
578 	if (!test_bit(VCPU_EXREG_PDPTR,
579 		      (unsigned long *)&vcpu->arch.regs_avail))
580 		return true;
581 
582 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
583 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
584 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
585 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
586 	if (r < 0)
587 		goto out;
588 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
589 out:
590 
591 	return changed;
592 }
593 
594 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
595 {
596 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
597 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
598 
599 	cr0 |= X86_CR0_ET;
600 
601 #ifdef CONFIG_X86_64
602 	if (cr0 & 0xffffffff00000000UL)
603 		return 1;
604 #endif
605 
606 	cr0 &= ~CR0_RESERVED_BITS;
607 
608 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
609 		return 1;
610 
611 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
612 		return 1;
613 
614 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
615 #ifdef CONFIG_X86_64
616 		if ((vcpu->arch.efer & EFER_LME)) {
617 			int cs_db, cs_l;
618 
619 			if (!is_pae(vcpu))
620 				return 1;
621 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
622 			if (cs_l)
623 				return 1;
624 		} else
625 #endif
626 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
627 						 kvm_read_cr3(vcpu)))
628 			return 1;
629 	}
630 
631 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
632 		return 1;
633 
634 	kvm_x86_ops->set_cr0(vcpu, cr0);
635 
636 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
637 		kvm_clear_async_pf_completion_queue(vcpu);
638 		kvm_async_pf_hash_reset(vcpu);
639 	}
640 
641 	if ((cr0 ^ old_cr0) & update_bits)
642 		kvm_mmu_reset_context(vcpu);
643 
644 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
645 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
646 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
647 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
648 
649 	return 0;
650 }
651 EXPORT_SYMBOL_GPL(kvm_set_cr0);
652 
653 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
654 {
655 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
656 }
657 EXPORT_SYMBOL_GPL(kvm_lmsw);
658 
659 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
660 {
661 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
662 			!vcpu->guest_xcr0_loaded) {
663 		/* kvm_set_xcr() also depends on this */
664 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
665 		vcpu->guest_xcr0_loaded = 1;
666 	}
667 }
668 
669 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
670 {
671 	if (vcpu->guest_xcr0_loaded) {
672 		if (vcpu->arch.xcr0 != host_xcr0)
673 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
674 		vcpu->guest_xcr0_loaded = 0;
675 	}
676 }
677 
678 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
679 {
680 	u64 xcr0 = xcr;
681 	u64 old_xcr0 = vcpu->arch.xcr0;
682 	u64 valid_bits;
683 
684 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
685 	if (index != XCR_XFEATURE_ENABLED_MASK)
686 		return 1;
687 	if (!(xcr0 & XFEATURE_MASK_FP))
688 		return 1;
689 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
690 		return 1;
691 
692 	/*
693 	 * Do not allow the guest to set bits that we do not support
694 	 * saving.  However, xcr0 bit 0 is always set, even if the
695 	 * emulated CPU does not support XSAVE (see fx_init).
696 	 */
697 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
698 	if (xcr0 & ~valid_bits)
699 		return 1;
700 
701 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
702 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
703 		return 1;
704 
705 	if (xcr0 & XFEATURE_MASK_AVX512) {
706 		if (!(xcr0 & XFEATURE_MASK_YMM))
707 			return 1;
708 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
709 			return 1;
710 	}
711 	vcpu->arch.xcr0 = xcr0;
712 
713 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
714 		kvm_update_cpuid(vcpu);
715 	return 0;
716 }
717 
718 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
719 {
720 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
721 	    __kvm_set_xcr(vcpu, index, xcr)) {
722 		kvm_inject_gp(vcpu, 0);
723 		return 1;
724 	}
725 	return 0;
726 }
727 EXPORT_SYMBOL_GPL(kvm_set_xcr);
728 
729 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
730 {
731 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
732 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
733 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
734 
735 	if (cr4 & CR4_RESERVED_BITS)
736 		return 1;
737 
738 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
739 		return 1;
740 
741 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
742 		return 1;
743 
744 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
745 		return 1;
746 
747 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
748 		return 1;
749 
750 	if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
751 		return 1;
752 
753 	if (is_long_mode(vcpu)) {
754 		if (!(cr4 & X86_CR4_PAE))
755 			return 1;
756 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
757 		   && ((cr4 ^ old_cr4) & pdptr_bits)
758 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
759 				   kvm_read_cr3(vcpu)))
760 		return 1;
761 
762 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
763 		if (!guest_cpuid_has_pcid(vcpu))
764 			return 1;
765 
766 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
767 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
768 			return 1;
769 	}
770 
771 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
772 		return 1;
773 
774 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
775 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
776 		kvm_mmu_reset_context(vcpu);
777 
778 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
779 		kvm_update_cpuid(vcpu);
780 
781 	return 0;
782 }
783 EXPORT_SYMBOL_GPL(kvm_set_cr4);
784 
785 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
786 {
787 #ifdef CONFIG_X86_64
788 	cr3 &= ~CR3_PCID_INVD;
789 #endif
790 
791 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
792 		kvm_mmu_sync_roots(vcpu);
793 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
794 		return 0;
795 	}
796 
797 	if (is_long_mode(vcpu)) {
798 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
799 			return 1;
800 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
801 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
802 		return 1;
803 
804 	vcpu->arch.cr3 = cr3;
805 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
806 	kvm_mmu_new_cr3(vcpu);
807 	return 0;
808 }
809 EXPORT_SYMBOL_GPL(kvm_set_cr3);
810 
811 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
812 {
813 	if (cr8 & CR8_RESERVED_BITS)
814 		return 1;
815 	if (lapic_in_kernel(vcpu))
816 		kvm_lapic_set_tpr(vcpu, cr8);
817 	else
818 		vcpu->arch.cr8 = cr8;
819 	return 0;
820 }
821 EXPORT_SYMBOL_GPL(kvm_set_cr8);
822 
823 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
824 {
825 	if (lapic_in_kernel(vcpu))
826 		return kvm_lapic_get_cr8(vcpu);
827 	else
828 		return vcpu->arch.cr8;
829 }
830 EXPORT_SYMBOL_GPL(kvm_get_cr8);
831 
832 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
833 {
834 	int i;
835 
836 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
837 		for (i = 0; i < KVM_NR_DB_REGS; i++)
838 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
839 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
840 	}
841 }
842 
843 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
844 {
845 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
846 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
847 }
848 
849 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
850 {
851 	unsigned long dr7;
852 
853 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
854 		dr7 = vcpu->arch.guest_debug_dr7;
855 	else
856 		dr7 = vcpu->arch.dr7;
857 	kvm_x86_ops->set_dr7(vcpu, dr7);
858 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
859 	if (dr7 & DR7_BP_EN_MASK)
860 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
861 }
862 
863 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
864 {
865 	u64 fixed = DR6_FIXED_1;
866 
867 	if (!guest_cpuid_has_rtm(vcpu))
868 		fixed |= DR6_RTM;
869 	return fixed;
870 }
871 
872 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
873 {
874 	switch (dr) {
875 	case 0 ... 3:
876 		vcpu->arch.db[dr] = val;
877 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
878 			vcpu->arch.eff_db[dr] = val;
879 		break;
880 	case 4:
881 		/* fall through */
882 	case 6:
883 		if (val & 0xffffffff00000000ULL)
884 			return -1; /* #GP */
885 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
886 		kvm_update_dr6(vcpu);
887 		break;
888 	case 5:
889 		/* fall through */
890 	default: /* 7 */
891 		if (val & 0xffffffff00000000ULL)
892 			return -1; /* #GP */
893 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
894 		kvm_update_dr7(vcpu);
895 		break;
896 	}
897 
898 	return 0;
899 }
900 
901 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
902 {
903 	if (__kvm_set_dr(vcpu, dr, val)) {
904 		kvm_inject_gp(vcpu, 0);
905 		return 1;
906 	}
907 	return 0;
908 }
909 EXPORT_SYMBOL_GPL(kvm_set_dr);
910 
911 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
912 {
913 	switch (dr) {
914 	case 0 ... 3:
915 		*val = vcpu->arch.db[dr];
916 		break;
917 	case 4:
918 		/* fall through */
919 	case 6:
920 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
921 			*val = vcpu->arch.dr6;
922 		else
923 			*val = kvm_x86_ops->get_dr6(vcpu);
924 		break;
925 	case 5:
926 		/* fall through */
927 	default: /* 7 */
928 		*val = vcpu->arch.dr7;
929 		break;
930 	}
931 	return 0;
932 }
933 EXPORT_SYMBOL_GPL(kvm_get_dr);
934 
935 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
936 {
937 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
938 	u64 data;
939 	int err;
940 
941 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
942 	if (err)
943 		return err;
944 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
945 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
946 	return err;
947 }
948 EXPORT_SYMBOL_GPL(kvm_rdpmc);
949 
950 /*
951  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
952  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
953  *
954  * This list is modified at module load time to reflect the
955  * capabilities of the host cpu. This capabilities test skips MSRs that are
956  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
957  * may depend on host virtualization features rather than host cpu features.
958  */
959 
960 static u32 msrs_to_save[] = {
961 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
962 	MSR_STAR,
963 #ifdef CONFIG_X86_64
964 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
965 #endif
966 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
967 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
968 };
969 
970 static unsigned num_msrs_to_save;
971 
972 static u32 emulated_msrs[] = {
973 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
974 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
975 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
976 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
977 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
978 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
979 	HV_X64_MSR_RESET,
980 	HV_X64_MSR_VP_INDEX,
981 	HV_X64_MSR_VP_RUNTIME,
982 	HV_X64_MSR_SCONTROL,
983 	HV_X64_MSR_STIMER0_CONFIG,
984 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
985 	MSR_KVM_PV_EOI_EN,
986 
987 	MSR_IA32_TSC_ADJUST,
988 	MSR_IA32_TSCDEADLINE,
989 	MSR_IA32_MISC_ENABLE,
990 	MSR_IA32_MCG_STATUS,
991 	MSR_IA32_MCG_CTL,
992 	MSR_IA32_MCG_EXT_CTL,
993 	MSR_IA32_SMBASE,
994 };
995 
996 static unsigned num_emulated_msrs;
997 
998 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
999 {
1000 	if (efer & efer_reserved_bits)
1001 		return false;
1002 
1003 	if (efer & EFER_FFXSR) {
1004 		struct kvm_cpuid_entry2 *feat;
1005 
1006 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1007 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1008 			return false;
1009 	}
1010 
1011 	if (efer & EFER_SVME) {
1012 		struct kvm_cpuid_entry2 *feat;
1013 
1014 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1015 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1016 			return false;
1017 	}
1018 
1019 	return true;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1022 
1023 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1024 {
1025 	u64 old_efer = vcpu->arch.efer;
1026 
1027 	if (!kvm_valid_efer(vcpu, efer))
1028 		return 1;
1029 
1030 	if (is_paging(vcpu)
1031 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1032 		return 1;
1033 
1034 	efer &= ~EFER_LMA;
1035 	efer |= vcpu->arch.efer & EFER_LMA;
1036 
1037 	kvm_x86_ops->set_efer(vcpu, efer);
1038 
1039 	/* Update reserved bits */
1040 	if ((efer ^ old_efer) & EFER_NX)
1041 		kvm_mmu_reset_context(vcpu);
1042 
1043 	return 0;
1044 }
1045 
1046 void kvm_enable_efer_bits(u64 mask)
1047 {
1048        efer_reserved_bits &= ~mask;
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1051 
1052 /*
1053  * Writes msr value into into the appropriate "register".
1054  * Returns 0 on success, non-0 otherwise.
1055  * Assumes vcpu_load() was already called.
1056  */
1057 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1058 {
1059 	switch (msr->index) {
1060 	case MSR_FS_BASE:
1061 	case MSR_GS_BASE:
1062 	case MSR_KERNEL_GS_BASE:
1063 	case MSR_CSTAR:
1064 	case MSR_LSTAR:
1065 		if (is_noncanonical_address(msr->data))
1066 			return 1;
1067 		break;
1068 	case MSR_IA32_SYSENTER_EIP:
1069 	case MSR_IA32_SYSENTER_ESP:
1070 		/*
1071 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1072 		 * non-canonical address is written on Intel but not on
1073 		 * AMD (which ignores the top 32-bits, because it does
1074 		 * not implement 64-bit SYSENTER).
1075 		 *
1076 		 * 64-bit code should hence be able to write a non-canonical
1077 		 * value on AMD.  Making the address canonical ensures that
1078 		 * vmentry does not fail on Intel after writing a non-canonical
1079 		 * value, and that something deterministic happens if the guest
1080 		 * invokes 64-bit SYSENTER.
1081 		 */
1082 		msr->data = get_canonical(msr->data);
1083 	}
1084 	return kvm_x86_ops->set_msr(vcpu, msr);
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_msr);
1087 
1088 /*
1089  * Adapt set_msr() to msr_io()'s calling convention
1090  */
1091 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1092 {
1093 	struct msr_data msr;
1094 	int r;
1095 
1096 	msr.index = index;
1097 	msr.host_initiated = true;
1098 	r = kvm_get_msr(vcpu, &msr);
1099 	if (r)
1100 		return r;
1101 
1102 	*data = msr.data;
1103 	return 0;
1104 }
1105 
1106 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1107 {
1108 	struct msr_data msr;
1109 
1110 	msr.data = *data;
1111 	msr.index = index;
1112 	msr.host_initiated = true;
1113 	return kvm_set_msr(vcpu, &msr);
1114 }
1115 
1116 #ifdef CONFIG_X86_64
1117 struct pvclock_gtod_data {
1118 	seqcount_t	seq;
1119 
1120 	struct { /* extract of a clocksource struct */
1121 		int vclock_mode;
1122 		cycle_t	cycle_last;
1123 		cycle_t	mask;
1124 		u32	mult;
1125 		u32	shift;
1126 	} clock;
1127 
1128 	u64		boot_ns;
1129 	u64		nsec_base;
1130 };
1131 
1132 static struct pvclock_gtod_data pvclock_gtod_data;
1133 
1134 static void update_pvclock_gtod(struct timekeeper *tk)
1135 {
1136 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1137 	u64 boot_ns;
1138 
1139 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1140 
1141 	write_seqcount_begin(&vdata->seq);
1142 
1143 	/* copy pvclock gtod data */
1144 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1145 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1146 	vdata->clock.mask		= tk->tkr_mono.mask;
1147 	vdata->clock.mult		= tk->tkr_mono.mult;
1148 	vdata->clock.shift		= tk->tkr_mono.shift;
1149 
1150 	vdata->boot_ns			= boot_ns;
1151 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1152 
1153 	write_seqcount_end(&vdata->seq);
1154 }
1155 #endif
1156 
1157 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1158 {
1159 	/*
1160 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1161 	 * vcpu_enter_guest.  This function is only called from
1162 	 * the physical CPU that is running vcpu.
1163 	 */
1164 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1165 }
1166 
1167 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1168 {
1169 	int version;
1170 	int r;
1171 	struct pvclock_wall_clock wc;
1172 	struct timespec64 boot;
1173 
1174 	if (!wall_clock)
1175 		return;
1176 
1177 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1178 	if (r)
1179 		return;
1180 
1181 	if (version & 1)
1182 		++version;  /* first time write, random junk */
1183 
1184 	++version;
1185 
1186 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1187 		return;
1188 
1189 	/*
1190 	 * The guest calculates current wall clock time by adding
1191 	 * system time (updated by kvm_guest_time_update below) to the
1192 	 * wall clock specified here.  guest system time equals host
1193 	 * system time for us, thus we must fill in host boot time here.
1194 	 */
1195 	getboottime64(&boot);
1196 
1197 	if (kvm->arch.kvmclock_offset) {
1198 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1199 		boot = timespec64_sub(boot, ts);
1200 	}
1201 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1202 	wc.nsec = boot.tv_nsec;
1203 	wc.version = version;
1204 
1205 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1206 
1207 	version++;
1208 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1209 }
1210 
1211 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1212 {
1213 	do_shl32_div32(dividend, divisor);
1214 	return dividend;
1215 }
1216 
1217 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1218 			       s8 *pshift, u32 *pmultiplier)
1219 {
1220 	uint64_t scaled64;
1221 	int32_t  shift = 0;
1222 	uint64_t tps64;
1223 	uint32_t tps32;
1224 
1225 	tps64 = base_hz;
1226 	scaled64 = scaled_hz;
1227 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1228 		tps64 >>= 1;
1229 		shift--;
1230 	}
1231 
1232 	tps32 = (uint32_t)tps64;
1233 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1234 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1235 			scaled64 >>= 1;
1236 		else
1237 			tps32 <<= 1;
1238 		shift++;
1239 	}
1240 
1241 	*pshift = shift;
1242 	*pmultiplier = div_frac(scaled64, tps32);
1243 
1244 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1245 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1246 }
1247 
1248 #ifdef CONFIG_X86_64
1249 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1250 #endif
1251 
1252 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1253 static unsigned long max_tsc_khz;
1254 
1255 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1256 {
1257 	u64 v = (u64)khz * (1000000 + ppm);
1258 	do_div(v, 1000000);
1259 	return v;
1260 }
1261 
1262 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1263 {
1264 	u64 ratio;
1265 
1266 	/* Guest TSC same frequency as host TSC? */
1267 	if (!scale) {
1268 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1269 		return 0;
1270 	}
1271 
1272 	/* TSC scaling supported? */
1273 	if (!kvm_has_tsc_control) {
1274 		if (user_tsc_khz > tsc_khz) {
1275 			vcpu->arch.tsc_catchup = 1;
1276 			vcpu->arch.tsc_always_catchup = 1;
1277 			return 0;
1278 		} else {
1279 			WARN(1, "user requested TSC rate below hardware speed\n");
1280 			return -1;
1281 		}
1282 	}
1283 
1284 	/* TSC scaling required  - calculate ratio */
1285 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1286 				user_tsc_khz, tsc_khz);
1287 
1288 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1289 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1290 			  user_tsc_khz);
1291 		return -1;
1292 	}
1293 
1294 	vcpu->arch.tsc_scaling_ratio = ratio;
1295 	return 0;
1296 }
1297 
1298 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1299 {
1300 	u32 thresh_lo, thresh_hi;
1301 	int use_scaling = 0;
1302 
1303 	/* tsc_khz can be zero if TSC calibration fails */
1304 	if (user_tsc_khz == 0) {
1305 		/* set tsc_scaling_ratio to a safe value */
1306 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1307 		return -1;
1308 	}
1309 
1310 	/* Compute a scale to convert nanoseconds in TSC cycles */
1311 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1312 			   &vcpu->arch.virtual_tsc_shift,
1313 			   &vcpu->arch.virtual_tsc_mult);
1314 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1315 
1316 	/*
1317 	 * Compute the variation in TSC rate which is acceptable
1318 	 * within the range of tolerance and decide if the
1319 	 * rate being applied is within that bounds of the hardware
1320 	 * rate.  If so, no scaling or compensation need be done.
1321 	 */
1322 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1323 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1324 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1325 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1326 		use_scaling = 1;
1327 	}
1328 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1329 }
1330 
1331 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1332 {
1333 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1334 				      vcpu->arch.virtual_tsc_mult,
1335 				      vcpu->arch.virtual_tsc_shift);
1336 	tsc += vcpu->arch.this_tsc_write;
1337 	return tsc;
1338 }
1339 
1340 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1341 {
1342 #ifdef CONFIG_X86_64
1343 	bool vcpus_matched;
1344 	struct kvm_arch *ka = &vcpu->kvm->arch;
1345 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1346 
1347 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1348 			 atomic_read(&vcpu->kvm->online_vcpus));
1349 
1350 	/*
1351 	 * Once the masterclock is enabled, always perform request in
1352 	 * order to update it.
1353 	 *
1354 	 * In order to enable masterclock, the host clocksource must be TSC
1355 	 * and the vcpus need to have matched TSCs.  When that happens,
1356 	 * perform request to enable masterclock.
1357 	 */
1358 	if (ka->use_master_clock ||
1359 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1360 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1361 
1362 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1363 			    atomic_read(&vcpu->kvm->online_vcpus),
1364 		            ka->use_master_clock, gtod->clock.vclock_mode);
1365 #endif
1366 }
1367 
1368 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1369 {
1370 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1371 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1372 }
1373 
1374 /*
1375  * Multiply tsc by a fixed point number represented by ratio.
1376  *
1377  * The most significant 64-N bits (mult) of ratio represent the
1378  * integral part of the fixed point number; the remaining N bits
1379  * (frac) represent the fractional part, ie. ratio represents a fixed
1380  * point number (mult + frac * 2^(-N)).
1381  *
1382  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1383  */
1384 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1385 {
1386 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1387 }
1388 
1389 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1390 {
1391 	u64 _tsc = tsc;
1392 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1393 
1394 	if (ratio != kvm_default_tsc_scaling_ratio)
1395 		_tsc = __scale_tsc(ratio, tsc);
1396 
1397 	return _tsc;
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1400 
1401 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1402 {
1403 	u64 tsc;
1404 
1405 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1406 
1407 	return target_tsc - tsc;
1408 }
1409 
1410 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1411 {
1412 	return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1415 
1416 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1417 {
1418 	struct kvm *kvm = vcpu->kvm;
1419 	u64 offset, ns, elapsed;
1420 	unsigned long flags;
1421 	s64 usdiff;
1422 	bool matched;
1423 	bool already_matched;
1424 	u64 data = msr->data;
1425 
1426 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1427 	offset = kvm_compute_tsc_offset(vcpu, data);
1428 	ns = get_kernel_ns();
1429 	elapsed = ns - kvm->arch.last_tsc_nsec;
1430 
1431 	if (vcpu->arch.virtual_tsc_khz) {
1432 		int faulted = 0;
1433 
1434 		/* n.b - signed multiplication and division required */
1435 		usdiff = data - kvm->arch.last_tsc_write;
1436 #ifdef CONFIG_X86_64
1437 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1438 #else
1439 		/* do_div() only does unsigned */
1440 		asm("1: idivl %[divisor]\n"
1441 		    "2: xor %%edx, %%edx\n"
1442 		    "   movl $0, %[faulted]\n"
1443 		    "3:\n"
1444 		    ".section .fixup,\"ax\"\n"
1445 		    "4: movl $1, %[faulted]\n"
1446 		    "   jmp  3b\n"
1447 		    ".previous\n"
1448 
1449 		_ASM_EXTABLE(1b, 4b)
1450 
1451 		: "=A"(usdiff), [faulted] "=r" (faulted)
1452 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1453 
1454 #endif
1455 		do_div(elapsed, 1000);
1456 		usdiff -= elapsed;
1457 		if (usdiff < 0)
1458 			usdiff = -usdiff;
1459 
1460 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1461 		if (faulted)
1462 			usdiff = USEC_PER_SEC;
1463 	} else
1464 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1465 
1466 	/*
1467 	 * Special case: TSC write with a small delta (1 second) of virtual
1468 	 * cycle time against real time is interpreted as an attempt to
1469 	 * synchronize the CPU.
1470          *
1471 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1472 	 * TSC, we add elapsed time in this computation.  We could let the
1473 	 * compensation code attempt to catch up if we fall behind, but
1474 	 * it's better to try to match offsets from the beginning.
1475          */
1476 	if (usdiff < USEC_PER_SEC &&
1477 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1478 		if (!check_tsc_unstable()) {
1479 			offset = kvm->arch.cur_tsc_offset;
1480 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1481 		} else {
1482 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1483 			data += delta;
1484 			offset = kvm_compute_tsc_offset(vcpu, data);
1485 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1486 		}
1487 		matched = true;
1488 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1489 	} else {
1490 		/*
1491 		 * We split periods of matched TSC writes into generations.
1492 		 * For each generation, we track the original measured
1493 		 * nanosecond time, offset, and write, so if TSCs are in
1494 		 * sync, we can match exact offset, and if not, we can match
1495 		 * exact software computation in compute_guest_tsc()
1496 		 *
1497 		 * These values are tracked in kvm->arch.cur_xxx variables.
1498 		 */
1499 		kvm->arch.cur_tsc_generation++;
1500 		kvm->arch.cur_tsc_nsec = ns;
1501 		kvm->arch.cur_tsc_write = data;
1502 		kvm->arch.cur_tsc_offset = offset;
1503 		matched = false;
1504 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1505 			 kvm->arch.cur_tsc_generation, data);
1506 	}
1507 
1508 	/*
1509 	 * We also track th most recent recorded KHZ, write and time to
1510 	 * allow the matching interval to be extended at each write.
1511 	 */
1512 	kvm->arch.last_tsc_nsec = ns;
1513 	kvm->arch.last_tsc_write = data;
1514 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1515 
1516 	vcpu->arch.last_guest_tsc = data;
1517 
1518 	/* Keep track of which generation this VCPU has synchronized to */
1519 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1520 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1521 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1522 
1523 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1524 		update_ia32_tsc_adjust_msr(vcpu, offset);
1525 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1526 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1527 
1528 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1529 	if (!matched) {
1530 		kvm->arch.nr_vcpus_matched_tsc = 0;
1531 	} else if (!already_matched) {
1532 		kvm->arch.nr_vcpus_matched_tsc++;
1533 	}
1534 
1535 	kvm_track_tsc_matching(vcpu);
1536 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1537 }
1538 
1539 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1540 
1541 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1542 					   s64 adjustment)
1543 {
1544 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1545 }
1546 
1547 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1548 {
1549 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1550 		WARN_ON(adjustment < 0);
1551 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1552 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1553 }
1554 
1555 #ifdef CONFIG_X86_64
1556 
1557 static cycle_t read_tsc(void)
1558 {
1559 	cycle_t ret = (cycle_t)rdtsc_ordered();
1560 	u64 last = pvclock_gtod_data.clock.cycle_last;
1561 
1562 	if (likely(ret >= last))
1563 		return ret;
1564 
1565 	/*
1566 	 * GCC likes to generate cmov here, but this branch is extremely
1567 	 * predictable (it's just a function of time and the likely is
1568 	 * very likely) and there's a data dependence, so force GCC
1569 	 * to generate a branch instead.  I don't barrier() because
1570 	 * we don't actually need a barrier, and if this function
1571 	 * ever gets inlined it will generate worse code.
1572 	 */
1573 	asm volatile ("");
1574 	return last;
1575 }
1576 
1577 static inline u64 vgettsc(cycle_t *cycle_now)
1578 {
1579 	long v;
1580 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1581 
1582 	*cycle_now = read_tsc();
1583 
1584 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1585 	return v * gtod->clock.mult;
1586 }
1587 
1588 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1589 {
1590 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1591 	unsigned long seq;
1592 	int mode;
1593 	u64 ns;
1594 
1595 	do {
1596 		seq = read_seqcount_begin(&gtod->seq);
1597 		mode = gtod->clock.vclock_mode;
1598 		ns = gtod->nsec_base;
1599 		ns += vgettsc(cycle_now);
1600 		ns >>= gtod->clock.shift;
1601 		ns += gtod->boot_ns;
1602 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1603 	*t = ns;
1604 
1605 	return mode;
1606 }
1607 
1608 /* returns true if host is using tsc clocksource */
1609 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1610 {
1611 	/* checked again under seqlock below */
1612 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1613 		return false;
1614 
1615 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1616 }
1617 #endif
1618 
1619 /*
1620  *
1621  * Assuming a stable TSC across physical CPUS, and a stable TSC
1622  * across virtual CPUs, the following condition is possible.
1623  * Each numbered line represents an event visible to both
1624  * CPUs at the next numbered event.
1625  *
1626  * "timespecX" represents host monotonic time. "tscX" represents
1627  * RDTSC value.
1628  *
1629  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1630  *
1631  * 1.  read timespec0,tsc0
1632  * 2.					| timespec1 = timespec0 + N
1633  * 					| tsc1 = tsc0 + M
1634  * 3. transition to guest		| transition to guest
1635  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1636  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1637  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1638  *
1639  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1640  *
1641  * 	- ret0 < ret1
1642  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1643  *		...
1644  *	- 0 < N - M => M < N
1645  *
1646  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1647  * always the case (the difference between two distinct xtime instances
1648  * might be smaller then the difference between corresponding TSC reads,
1649  * when updating guest vcpus pvclock areas).
1650  *
1651  * To avoid that problem, do not allow visibility of distinct
1652  * system_timestamp/tsc_timestamp values simultaneously: use a master
1653  * copy of host monotonic time values. Update that master copy
1654  * in lockstep.
1655  *
1656  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1657  *
1658  */
1659 
1660 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1661 {
1662 #ifdef CONFIG_X86_64
1663 	struct kvm_arch *ka = &kvm->arch;
1664 	int vclock_mode;
1665 	bool host_tsc_clocksource, vcpus_matched;
1666 
1667 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1668 			atomic_read(&kvm->online_vcpus));
1669 
1670 	/*
1671 	 * If the host uses TSC clock, then passthrough TSC as stable
1672 	 * to the guest.
1673 	 */
1674 	host_tsc_clocksource = kvm_get_time_and_clockread(
1675 					&ka->master_kernel_ns,
1676 					&ka->master_cycle_now);
1677 
1678 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1679 				&& !backwards_tsc_observed
1680 				&& !ka->boot_vcpu_runs_old_kvmclock;
1681 
1682 	if (ka->use_master_clock)
1683 		atomic_set(&kvm_guest_has_master_clock, 1);
1684 
1685 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1686 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1687 					vcpus_matched);
1688 #endif
1689 }
1690 
1691 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1692 {
1693 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1694 }
1695 
1696 static void kvm_gen_update_masterclock(struct kvm *kvm)
1697 {
1698 #ifdef CONFIG_X86_64
1699 	int i;
1700 	struct kvm_vcpu *vcpu;
1701 	struct kvm_arch *ka = &kvm->arch;
1702 
1703 	spin_lock(&ka->pvclock_gtod_sync_lock);
1704 	kvm_make_mclock_inprogress_request(kvm);
1705 	/* no guest entries from this point */
1706 	pvclock_update_vm_gtod_copy(kvm);
1707 
1708 	kvm_for_each_vcpu(i, vcpu, kvm)
1709 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1710 
1711 	/* guest entries allowed */
1712 	kvm_for_each_vcpu(i, vcpu, kvm)
1713 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1714 
1715 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1716 #endif
1717 }
1718 
1719 static int kvm_guest_time_update(struct kvm_vcpu *v)
1720 {
1721 	unsigned long flags, tgt_tsc_khz;
1722 	struct kvm_vcpu_arch *vcpu = &v->arch;
1723 	struct kvm_arch *ka = &v->kvm->arch;
1724 	s64 kernel_ns;
1725 	u64 tsc_timestamp, host_tsc;
1726 	struct pvclock_vcpu_time_info guest_hv_clock;
1727 	u8 pvclock_flags;
1728 	bool use_master_clock;
1729 
1730 	kernel_ns = 0;
1731 	host_tsc = 0;
1732 
1733 	/*
1734 	 * If the host uses TSC clock, then passthrough TSC as stable
1735 	 * to the guest.
1736 	 */
1737 	spin_lock(&ka->pvclock_gtod_sync_lock);
1738 	use_master_clock = ka->use_master_clock;
1739 	if (use_master_clock) {
1740 		host_tsc = ka->master_cycle_now;
1741 		kernel_ns = ka->master_kernel_ns;
1742 	}
1743 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1744 
1745 	/* Keep irq disabled to prevent changes to the clock */
1746 	local_irq_save(flags);
1747 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1748 	if (unlikely(tgt_tsc_khz == 0)) {
1749 		local_irq_restore(flags);
1750 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1751 		return 1;
1752 	}
1753 	if (!use_master_clock) {
1754 		host_tsc = rdtsc();
1755 		kernel_ns = get_kernel_ns();
1756 	}
1757 
1758 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1759 
1760 	/*
1761 	 * We may have to catch up the TSC to match elapsed wall clock
1762 	 * time for two reasons, even if kvmclock is used.
1763 	 *   1) CPU could have been running below the maximum TSC rate
1764 	 *   2) Broken TSC compensation resets the base at each VCPU
1765 	 *      entry to avoid unknown leaps of TSC even when running
1766 	 *      again on the same CPU.  This may cause apparent elapsed
1767 	 *      time to disappear, and the guest to stand still or run
1768 	 *	very slowly.
1769 	 */
1770 	if (vcpu->tsc_catchup) {
1771 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1772 		if (tsc > tsc_timestamp) {
1773 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1774 			tsc_timestamp = tsc;
1775 		}
1776 	}
1777 
1778 	local_irq_restore(flags);
1779 
1780 	if (!vcpu->pv_time_enabled)
1781 		return 0;
1782 
1783 	if (kvm_has_tsc_control)
1784 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1785 
1786 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1787 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1788 				   &vcpu->hv_clock.tsc_shift,
1789 				   &vcpu->hv_clock.tsc_to_system_mul);
1790 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1791 	}
1792 
1793 	/* With all the info we got, fill in the values */
1794 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1795 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1796 	vcpu->last_guest_tsc = tsc_timestamp;
1797 
1798 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1799 		&guest_hv_clock, sizeof(guest_hv_clock))))
1800 		return 0;
1801 
1802 	/* This VCPU is paused, but it's legal for a guest to read another
1803 	 * VCPU's kvmclock, so we really have to follow the specification where
1804 	 * it says that version is odd if data is being modified, and even after
1805 	 * it is consistent.
1806 	 *
1807 	 * Version field updates must be kept separate.  This is because
1808 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1809 	 * writes within a string instruction are weakly ordered.  So there
1810 	 * are three writes overall.
1811 	 *
1812 	 * As a small optimization, only write the version field in the first
1813 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1814 	 * version field is the first in the struct.
1815 	 */
1816 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1817 
1818 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1819 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1820 				&vcpu->hv_clock,
1821 				sizeof(vcpu->hv_clock.version));
1822 
1823 	smp_wmb();
1824 
1825 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1826 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1827 
1828 	if (vcpu->pvclock_set_guest_stopped_request) {
1829 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1830 		vcpu->pvclock_set_guest_stopped_request = false;
1831 	}
1832 
1833 	/* If the host uses TSC clocksource, then it is stable */
1834 	if (use_master_clock)
1835 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1836 
1837 	vcpu->hv_clock.flags = pvclock_flags;
1838 
1839 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1840 
1841 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1842 				&vcpu->hv_clock,
1843 				sizeof(vcpu->hv_clock));
1844 
1845 	smp_wmb();
1846 
1847 	vcpu->hv_clock.version++;
1848 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1849 				&vcpu->hv_clock,
1850 				sizeof(vcpu->hv_clock.version));
1851 	return 0;
1852 }
1853 
1854 /*
1855  * kvmclock updates which are isolated to a given vcpu, such as
1856  * vcpu->cpu migration, should not allow system_timestamp from
1857  * the rest of the vcpus to remain static. Otherwise ntp frequency
1858  * correction applies to one vcpu's system_timestamp but not
1859  * the others.
1860  *
1861  * So in those cases, request a kvmclock update for all vcpus.
1862  * We need to rate-limit these requests though, as they can
1863  * considerably slow guests that have a large number of vcpus.
1864  * The time for a remote vcpu to update its kvmclock is bound
1865  * by the delay we use to rate-limit the updates.
1866  */
1867 
1868 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1869 
1870 static void kvmclock_update_fn(struct work_struct *work)
1871 {
1872 	int i;
1873 	struct delayed_work *dwork = to_delayed_work(work);
1874 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1875 					   kvmclock_update_work);
1876 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1877 	struct kvm_vcpu *vcpu;
1878 
1879 	kvm_for_each_vcpu(i, vcpu, kvm) {
1880 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1881 		kvm_vcpu_kick(vcpu);
1882 	}
1883 }
1884 
1885 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1886 {
1887 	struct kvm *kvm = v->kvm;
1888 
1889 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1890 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1891 					KVMCLOCK_UPDATE_DELAY);
1892 }
1893 
1894 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1895 
1896 static void kvmclock_sync_fn(struct work_struct *work)
1897 {
1898 	struct delayed_work *dwork = to_delayed_work(work);
1899 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1900 					   kvmclock_sync_work);
1901 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1902 
1903 	if (!kvmclock_periodic_sync)
1904 		return;
1905 
1906 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1907 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1908 					KVMCLOCK_SYNC_PERIOD);
1909 }
1910 
1911 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1912 {
1913 	u64 mcg_cap = vcpu->arch.mcg_cap;
1914 	unsigned bank_num = mcg_cap & 0xff;
1915 
1916 	switch (msr) {
1917 	case MSR_IA32_MCG_STATUS:
1918 		vcpu->arch.mcg_status = data;
1919 		break;
1920 	case MSR_IA32_MCG_CTL:
1921 		if (!(mcg_cap & MCG_CTL_P))
1922 			return 1;
1923 		if (data != 0 && data != ~(u64)0)
1924 			return -1;
1925 		vcpu->arch.mcg_ctl = data;
1926 		break;
1927 	default:
1928 		if (msr >= MSR_IA32_MC0_CTL &&
1929 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1930 			u32 offset = msr - MSR_IA32_MC0_CTL;
1931 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1932 			 * some Linux kernels though clear bit 10 in bank 4 to
1933 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1934 			 * this to avoid an uncatched #GP in the guest
1935 			 */
1936 			if ((offset & 0x3) == 0 &&
1937 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1938 				return -1;
1939 			vcpu->arch.mce_banks[offset] = data;
1940 			break;
1941 		}
1942 		return 1;
1943 	}
1944 	return 0;
1945 }
1946 
1947 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1948 {
1949 	struct kvm *kvm = vcpu->kvm;
1950 	int lm = is_long_mode(vcpu);
1951 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1952 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1953 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1954 		: kvm->arch.xen_hvm_config.blob_size_32;
1955 	u32 page_num = data & ~PAGE_MASK;
1956 	u64 page_addr = data & PAGE_MASK;
1957 	u8 *page;
1958 	int r;
1959 
1960 	r = -E2BIG;
1961 	if (page_num >= blob_size)
1962 		goto out;
1963 	r = -ENOMEM;
1964 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1965 	if (IS_ERR(page)) {
1966 		r = PTR_ERR(page);
1967 		goto out;
1968 	}
1969 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1970 		goto out_free;
1971 	r = 0;
1972 out_free:
1973 	kfree(page);
1974 out:
1975 	return r;
1976 }
1977 
1978 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1979 {
1980 	gpa_t gpa = data & ~0x3f;
1981 
1982 	/* Bits 2:5 are reserved, Should be zero */
1983 	if (data & 0x3c)
1984 		return 1;
1985 
1986 	vcpu->arch.apf.msr_val = data;
1987 
1988 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1989 		kvm_clear_async_pf_completion_queue(vcpu);
1990 		kvm_async_pf_hash_reset(vcpu);
1991 		return 0;
1992 	}
1993 
1994 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1995 					sizeof(u32)))
1996 		return 1;
1997 
1998 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1999 	kvm_async_pf_wakeup_all(vcpu);
2000 	return 0;
2001 }
2002 
2003 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2004 {
2005 	vcpu->arch.pv_time_enabled = false;
2006 }
2007 
2008 static void record_steal_time(struct kvm_vcpu *vcpu)
2009 {
2010 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2011 		return;
2012 
2013 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2014 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2015 		return;
2016 
2017 	if (vcpu->arch.st.steal.version & 1)
2018 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2019 
2020 	vcpu->arch.st.steal.version += 1;
2021 
2022 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2023 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2024 
2025 	smp_wmb();
2026 
2027 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2028 		vcpu->arch.st.last_steal;
2029 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2030 
2031 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2032 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2033 
2034 	smp_wmb();
2035 
2036 	vcpu->arch.st.steal.version += 1;
2037 
2038 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2039 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2040 }
2041 
2042 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2043 {
2044 	bool pr = false;
2045 	u32 msr = msr_info->index;
2046 	u64 data = msr_info->data;
2047 
2048 	switch (msr) {
2049 	case MSR_AMD64_NB_CFG:
2050 	case MSR_IA32_UCODE_REV:
2051 	case MSR_IA32_UCODE_WRITE:
2052 	case MSR_VM_HSAVE_PA:
2053 	case MSR_AMD64_PATCH_LOADER:
2054 	case MSR_AMD64_BU_CFG2:
2055 		break;
2056 
2057 	case MSR_EFER:
2058 		return set_efer(vcpu, data);
2059 	case MSR_K7_HWCR:
2060 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2061 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2062 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2063 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2064 		if (data != 0) {
2065 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2066 				    data);
2067 			return 1;
2068 		}
2069 		break;
2070 	case MSR_FAM10H_MMIO_CONF_BASE:
2071 		if (data != 0) {
2072 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2073 				    "0x%llx\n", data);
2074 			return 1;
2075 		}
2076 		break;
2077 	case MSR_IA32_DEBUGCTLMSR:
2078 		if (!data) {
2079 			/* We support the non-activated case already */
2080 			break;
2081 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2082 			/* Values other than LBR and BTF are vendor-specific,
2083 			   thus reserved and should throw a #GP */
2084 			return 1;
2085 		}
2086 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2087 			    __func__, data);
2088 		break;
2089 	case 0x200 ... 0x2ff:
2090 		return kvm_mtrr_set_msr(vcpu, msr, data);
2091 	case MSR_IA32_APICBASE:
2092 		return kvm_set_apic_base(vcpu, msr_info);
2093 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2094 		return kvm_x2apic_msr_write(vcpu, msr, data);
2095 	case MSR_IA32_TSCDEADLINE:
2096 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2097 		break;
2098 	case MSR_IA32_TSC_ADJUST:
2099 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2100 			if (!msr_info->host_initiated) {
2101 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2102 				adjust_tsc_offset_guest(vcpu, adj);
2103 			}
2104 			vcpu->arch.ia32_tsc_adjust_msr = data;
2105 		}
2106 		break;
2107 	case MSR_IA32_MISC_ENABLE:
2108 		vcpu->arch.ia32_misc_enable_msr = data;
2109 		break;
2110 	case MSR_IA32_SMBASE:
2111 		if (!msr_info->host_initiated)
2112 			return 1;
2113 		vcpu->arch.smbase = data;
2114 		break;
2115 	case MSR_KVM_WALL_CLOCK_NEW:
2116 	case MSR_KVM_WALL_CLOCK:
2117 		vcpu->kvm->arch.wall_clock = data;
2118 		kvm_write_wall_clock(vcpu->kvm, data);
2119 		break;
2120 	case MSR_KVM_SYSTEM_TIME_NEW:
2121 	case MSR_KVM_SYSTEM_TIME: {
2122 		u64 gpa_offset;
2123 		struct kvm_arch *ka = &vcpu->kvm->arch;
2124 
2125 		kvmclock_reset(vcpu);
2126 
2127 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2128 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2129 
2130 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2131 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2132 					&vcpu->requests);
2133 
2134 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2135 		}
2136 
2137 		vcpu->arch.time = data;
2138 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2139 
2140 		/* we verify if the enable bit is set... */
2141 		if (!(data & 1))
2142 			break;
2143 
2144 		gpa_offset = data & ~(PAGE_MASK | 1);
2145 
2146 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2147 		     &vcpu->arch.pv_time, data & ~1ULL,
2148 		     sizeof(struct pvclock_vcpu_time_info)))
2149 			vcpu->arch.pv_time_enabled = false;
2150 		else
2151 			vcpu->arch.pv_time_enabled = true;
2152 
2153 		break;
2154 	}
2155 	case MSR_KVM_ASYNC_PF_EN:
2156 		if (kvm_pv_enable_async_pf(vcpu, data))
2157 			return 1;
2158 		break;
2159 	case MSR_KVM_STEAL_TIME:
2160 
2161 		if (unlikely(!sched_info_on()))
2162 			return 1;
2163 
2164 		if (data & KVM_STEAL_RESERVED_MASK)
2165 			return 1;
2166 
2167 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2168 						data & KVM_STEAL_VALID_BITS,
2169 						sizeof(struct kvm_steal_time)))
2170 			return 1;
2171 
2172 		vcpu->arch.st.msr_val = data;
2173 
2174 		if (!(data & KVM_MSR_ENABLED))
2175 			break;
2176 
2177 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2178 
2179 		break;
2180 	case MSR_KVM_PV_EOI_EN:
2181 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2182 			return 1;
2183 		break;
2184 
2185 	case MSR_IA32_MCG_CTL:
2186 	case MSR_IA32_MCG_STATUS:
2187 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2188 		return set_msr_mce(vcpu, msr, data);
2189 
2190 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2191 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2192 		pr = true; /* fall through */
2193 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2194 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2195 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2196 			return kvm_pmu_set_msr(vcpu, msr_info);
2197 
2198 		if (pr || data != 0)
2199 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2200 				    "0x%x data 0x%llx\n", msr, data);
2201 		break;
2202 	case MSR_K7_CLK_CTL:
2203 		/*
2204 		 * Ignore all writes to this no longer documented MSR.
2205 		 * Writes are only relevant for old K7 processors,
2206 		 * all pre-dating SVM, but a recommended workaround from
2207 		 * AMD for these chips. It is possible to specify the
2208 		 * affected processor models on the command line, hence
2209 		 * the need to ignore the workaround.
2210 		 */
2211 		break;
2212 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2213 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2214 	case HV_X64_MSR_CRASH_CTL:
2215 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2216 		return kvm_hv_set_msr_common(vcpu, msr, data,
2217 					     msr_info->host_initiated);
2218 	case MSR_IA32_BBL_CR_CTL3:
2219 		/* Drop writes to this legacy MSR -- see rdmsr
2220 		 * counterpart for further detail.
2221 		 */
2222 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2223 		break;
2224 	case MSR_AMD64_OSVW_ID_LENGTH:
2225 		if (!guest_cpuid_has_osvw(vcpu))
2226 			return 1;
2227 		vcpu->arch.osvw.length = data;
2228 		break;
2229 	case MSR_AMD64_OSVW_STATUS:
2230 		if (!guest_cpuid_has_osvw(vcpu))
2231 			return 1;
2232 		vcpu->arch.osvw.status = data;
2233 		break;
2234 	default:
2235 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2236 			return xen_hvm_config(vcpu, data);
2237 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2238 			return kvm_pmu_set_msr(vcpu, msr_info);
2239 		if (!ignore_msrs) {
2240 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2241 				    msr, data);
2242 			return 1;
2243 		} else {
2244 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2245 				    msr, data);
2246 			break;
2247 		}
2248 	}
2249 	return 0;
2250 }
2251 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2252 
2253 
2254 /*
2255  * Reads an msr value (of 'msr_index') into 'pdata'.
2256  * Returns 0 on success, non-0 otherwise.
2257  * Assumes vcpu_load() was already called.
2258  */
2259 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2260 {
2261 	return kvm_x86_ops->get_msr(vcpu, msr);
2262 }
2263 EXPORT_SYMBOL_GPL(kvm_get_msr);
2264 
2265 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2266 {
2267 	u64 data;
2268 	u64 mcg_cap = vcpu->arch.mcg_cap;
2269 	unsigned bank_num = mcg_cap & 0xff;
2270 
2271 	switch (msr) {
2272 	case MSR_IA32_P5_MC_ADDR:
2273 	case MSR_IA32_P5_MC_TYPE:
2274 		data = 0;
2275 		break;
2276 	case MSR_IA32_MCG_CAP:
2277 		data = vcpu->arch.mcg_cap;
2278 		break;
2279 	case MSR_IA32_MCG_CTL:
2280 		if (!(mcg_cap & MCG_CTL_P))
2281 			return 1;
2282 		data = vcpu->arch.mcg_ctl;
2283 		break;
2284 	case MSR_IA32_MCG_STATUS:
2285 		data = vcpu->arch.mcg_status;
2286 		break;
2287 	default:
2288 		if (msr >= MSR_IA32_MC0_CTL &&
2289 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2290 			u32 offset = msr - MSR_IA32_MC0_CTL;
2291 			data = vcpu->arch.mce_banks[offset];
2292 			break;
2293 		}
2294 		return 1;
2295 	}
2296 	*pdata = data;
2297 	return 0;
2298 }
2299 
2300 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2301 {
2302 	switch (msr_info->index) {
2303 	case MSR_IA32_PLATFORM_ID:
2304 	case MSR_IA32_EBL_CR_POWERON:
2305 	case MSR_IA32_DEBUGCTLMSR:
2306 	case MSR_IA32_LASTBRANCHFROMIP:
2307 	case MSR_IA32_LASTBRANCHTOIP:
2308 	case MSR_IA32_LASTINTFROMIP:
2309 	case MSR_IA32_LASTINTTOIP:
2310 	case MSR_K8_SYSCFG:
2311 	case MSR_K8_TSEG_ADDR:
2312 	case MSR_K8_TSEG_MASK:
2313 	case MSR_K7_HWCR:
2314 	case MSR_VM_HSAVE_PA:
2315 	case MSR_K8_INT_PENDING_MSG:
2316 	case MSR_AMD64_NB_CFG:
2317 	case MSR_FAM10H_MMIO_CONF_BASE:
2318 	case MSR_AMD64_BU_CFG2:
2319 	case MSR_IA32_PERF_CTL:
2320 		msr_info->data = 0;
2321 		break;
2322 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2323 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2324 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2325 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2326 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2327 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2328 		msr_info->data = 0;
2329 		break;
2330 	case MSR_IA32_UCODE_REV:
2331 		msr_info->data = 0x100000000ULL;
2332 		break;
2333 	case MSR_MTRRcap:
2334 	case 0x200 ... 0x2ff:
2335 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2336 	case 0xcd: /* fsb frequency */
2337 		msr_info->data = 3;
2338 		break;
2339 		/*
2340 		 * MSR_EBC_FREQUENCY_ID
2341 		 * Conservative value valid for even the basic CPU models.
2342 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2343 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2344 		 * and 266MHz for model 3, or 4. Set Core Clock
2345 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2346 		 * 31:24) even though these are only valid for CPU
2347 		 * models > 2, however guests may end up dividing or
2348 		 * multiplying by zero otherwise.
2349 		 */
2350 	case MSR_EBC_FREQUENCY_ID:
2351 		msr_info->data = 1 << 24;
2352 		break;
2353 	case MSR_IA32_APICBASE:
2354 		msr_info->data = kvm_get_apic_base(vcpu);
2355 		break;
2356 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2357 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2358 		break;
2359 	case MSR_IA32_TSCDEADLINE:
2360 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2361 		break;
2362 	case MSR_IA32_TSC_ADJUST:
2363 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2364 		break;
2365 	case MSR_IA32_MISC_ENABLE:
2366 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2367 		break;
2368 	case MSR_IA32_SMBASE:
2369 		if (!msr_info->host_initiated)
2370 			return 1;
2371 		msr_info->data = vcpu->arch.smbase;
2372 		break;
2373 	case MSR_IA32_PERF_STATUS:
2374 		/* TSC increment by tick */
2375 		msr_info->data = 1000ULL;
2376 		/* CPU multiplier */
2377 		msr_info->data |= (((uint64_t)4ULL) << 40);
2378 		break;
2379 	case MSR_EFER:
2380 		msr_info->data = vcpu->arch.efer;
2381 		break;
2382 	case MSR_KVM_WALL_CLOCK:
2383 	case MSR_KVM_WALL_CLOCK_NEW:
2384 		msr_info->data = vcpu->kvm->arch.wall_clock;
2385 		break;
2386 	case MSR_KVM_SYSTEM_TIME:
2387 	case MSR_KVM_SYSTEM_TIME_NEW:
2388 		msr_info->data = vcpu->arch.time;
2389 		break;
2390 	case MSR_KVM_ASYNC_PF_EN:
2391 		msr_info->data = vcpu->arch.apf.msr_val;
2392 		break;
2393 	case MSR_KVM_STEAL_TIME:
2394 		msr_info->data = vcpu->arch.st.msr_val;
2395 		break;
2396 	case MSR_KVM_PV_EOI_EN:
2397 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2398 		break;
2399 	case MSR_IA32_P5_MC_ADDR:
2400 	case MSR_IA32_P5_MC_TYPE:
2401 	case MSR_IA32_MCG_CAP:
2402 	case MSR_IA32_MCG_CTL:
2403 	case MSR_IA32_MCG_STATUS:
2404 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2405 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2406 	case MSR_K7_CLK_CTL:
2407 		/*
2408 		 * Provide expected ramp-up count for K7. All other
2409 		 * are set to zero, indicating minimum divisors for
2410 		 * every field.
2411 		 *
2412 		 * This prevents guest kernels on AMD host with CPU
2413 		 * type 6, model 8 and higher from exploding due to
2414 		 * the rdmsr failing.
2415 		 */
2416 		msr_info->data = 0x20000000;
2417 		break;
2418 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2419 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2420 	case HV_X64_MSR_CRASH_CTL:
2421 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2422 		return kvm_hv_get_msr_common(vcpu,
2423 					     msr_info->index, &msr_info->data);
2424 		break;
2425 	case MSR_IA32_BBL_CR_CTL3:
2426 		/* This legacy MSR exists but isn't fully documented in current
2427 		 * silicon.  It is however accessed by winxp in very narrow
2428 		 * scenarios where it sets bit #19, itself documented as
2429 		 * a "reserved" bit.  Best effort attempt to source coherent
2430 		 * read data here should the balance of the register be
2431 		 * interpreted by the guest:
2432 		 *
2433 		 * L2 cache control register 3: 64GB range, 256KB size,
2434 		 * enabled, latency 0x1, configured
2435 		 */
2436 		msr_info->data = 0xbe702111;
2437 		break;
2438 	case MSR_AMD64_OSVW_ID_LENGTH:
2439 		if (!guest_cpuid_has_osvw(vcpu))
2440 			return 1;
2441 		msr_info->data = vcpu->arch.osvw.length;
2442 		break;
2443 	case MSR_AMD64_OSVW_STATUS:
2444 		if (!guest_cpuid_has_osvw(vcpu))
2445 			return 1;
2446 		msr_info->data = vcpu->arch.osvw.status;
2447 		break;
2448 	default:
2449 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2450 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2451 		if (!ignore_msrs) {
2452 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2453 			return 1;
2454 		} else {
2455 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2456 			msr_info->data = 0;
2457 		}
2458 		break;
2459 	}
2460 	return 0;
2461 }
2462 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2463 
2464 /*
2465  * Read or write a bunch of msrs. All parameters are kernel addresses.
2466  *
2467  * @return number of msrs set successfully.
2468  */
2469 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2470 		    struct kvm_msr_entry *entries,
2471 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2472 				  unsigned index, u64 *data))
2473 {
2474 	int i, idx;
2475 
2476 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2477 	for (i = 0; i < msrs->nmsrs; ++i)
2478 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2479 			break;
2480 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2481 
2482 	return i;
2483 }
2484 
2485 /*
2486  * Read or write a bunch of msrs. Parameters are user addresses.
2487  *
2488  * @return number of msrs set successfully.
2489  */
2490 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2491 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2492 				unsigned index, u64 *data),
2493 		  int writeback)
2494 {
2495 	struct kvm_msrs msrs;
2496 	struct kvm_msr_entry *entries;
2497 	int r, n;
2498 	unsigned size;
2499 
2500 	r = -EFAULT;
2501 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2502 		goto out;
2503 
2504 	r = -E2BIG;
2505 	if (msrs.nmsrs >= MAX_IO_MSRS)
2506 		goto out;
2507 
2508 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2509 	entries = memdup_user(user_msrs->entries, size);
2510 	if (IS_ERR(entries)) {
2511 		r = PTR_ERR(entries);
2512 		goto out;
2513 	}
2514 
2515 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2516 	if (r < 0)
2517 		goto out_free;
2518 
2519 	r = -EFAULT;
2520 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2521 		goto out_free;
2522 
2523 	r = n;
2524 
2525 out_free:
2526 	kfree(entries);
2527 out:
2528 	return r;
2529 }
2530 
2531 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2532 {
2533 	int r;
2534 
2535 	switch (ext) {
2536 	case KVM_CAP_IRQCHIP:
2537 	case KVM_CAP_HLT:
2538 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2539 	case KVM_CAP_SET_TSS_ADDR:
2540 	case KVM_CAP_EXT_CPUID:
2541 	case KVM_CAP_EXT_EMUL_CPUID:
2542 	case KVM_CAP_CLOCKSOURCE:
2543 	case KVM_CAP_PIT:
2544 	case KVM_CAP_NOP_IO_DELAY:
2545 	case KVM_CAP_MP_STATE:
2546 	case KVM_CAP_SYNC_MMU:
2547 	case KVM_CAP_USER_NMI:
2548 	case KVM_CAP_REINJECT_CONTROL:
2549 	case KVM_CAP_IRQ_INJECT_STATUS:
2550 	case KVM_CAP_IOEVENTFD:
2551 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2552 	case KVM_CAP_PIT2:
2553 	case KVM_CAP_PIT_STATE2:
2554 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2555 	case KVM_CAP_XEN_HVM:
2556 	case KVM_CAP_ADJUST_CLOCK:
2557 	case KVM_CAP_VCPU_EVENTS:
2558 	case KVM_CAP_HYPERV:
2559 	case KVM_CAP_HYPERV_VAPIC:
2560 	case KVM_CAP_HYPERV_SPIN:
2561 	case KVM_CAP_HYPERV_SYNIC:
2562 	case KVM_CAP_PCI_SEGMENT:
2563 	case KVM_CAP_DEBUGREGS:
2564 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2565 	case KVM_CAP_XSAVE:
2566 	case KVM_CAP_ASYNC_PF:
2567 	case KVM_CAP_GET_TSC_KHZ:
2568 	case KVM_CAP_KVMCLOCK_CTRL:
2569 	case KVM_CAP_READONLY_MEM:
2570 	case KVM_CAP_HYPERV_TIME:
2571 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2572 	case KVM_CAP_TSC_DEADLINE_TIMER:
2573 	case KVM_CAP_ENABLE_CAP_VM:
2574 	case KVM_CAP_DISABLE_QUIRKS:
2575 	case KVM_CAP_SET_BOOT_CPU_ID:
2576  	case KVM_CAP_SPLIT_IRQCHIP:
2577 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2578 	case KVM_CAP_ASSIGN_DEV_IRQ:
2579 	case KVM_CAP_PCI_2_3:
2580 #endif
2581 		r = 1;
2582 		break;
2583 	case KVM_CAP_X86_SMM:
2584 		/* SMBASE is usually relocated above 1M on modern chipsets,
2585 		 * and SMM handlers might indeed rely on 4G segment limits,
2586 		 * so do not report SMM to be available if real mode is
2587 		 * emulated via vm86 mode.  Still, do not go to great lengths
2588 		 * to avoid userspace's usage of the feature, because it is a
2589 		 * fringe case that is not enabled except via specific settings
2590 		 * of the module parameters.
2591 		 */
2592 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2593 		break;
2594 	case KVM_CAP_COALESCED_MMIO:
2595 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2596 		break;
2597 	case KVM_CAP_VAPIC:
2598 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2599 		break;
2600 	case KVM_CAP_NR_VCPUS:
2601 		r = KVM_SOFT_MAX_VCPUS;
2602 		break;
2603 	case KVM_CAP_MAX_VCPUS:
2604 		r = KVM_MAX_VCPUS;
2605 		break;
2606 	case KVM_CAP_NR_MEMSLOTS:
2607 		r = KVM_USER_MEM_SLOTS;
2608 		break;
2609 	case KVM_CAP_PV_MMU:	/* obsolete */
2610 		r = 0;
2611 		break;
2612 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2613 	case KVM_CAP_IOMMU:
2614 		r = iommu_present(&pci_bus_type);
2615 		break;
2616 #endif
2617 	case KVM_CAP_MCE:
2618 		r = KVM_MAX_MCE_BANKS;
2619 		break;
2620 	case KVM_CAP_XCRS:
2621 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2622 		break;
2623 	case KVM_CAP_TSC_CONTROL:
2624 		r = kvm_has_tsc_control;
2625 		break;
2626 	case KVM_CAP_X2APIC_API:
2627 		r = KVM_X2APIC_API_VALID_FLAGS;
2628 		break;
2629 	default:
2630 		r = 0;
2631 		break;
2632 	}
2633 	return r;
2634 
2635 }
2636 
2637 long kvm_arch_dev_ioctl(struct file *filp,
2638 			unsigned int ioctl, unsigned long arg)
2639 {
2640 	void __user *argp = (void __user *)arg;
2641 	long r;
2642 
2643 	switch (ioctl) {
2644 	case KVM_GET_MSR_INDEX_LIST: {
2645 		struct kvm_msr_list __user *user_msr_list = argp;
2646 		struct kvm_msr_list msr_list;
2647 		unsigned n;
2648 
2649 		r = -EFAULT;
2650 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2651 			goto out;
2652 		n = msr_list.nmsrs;
2653 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2654 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2655 			goto out;
2656 		r = -E2BIG;
2657 		if (n < msr_list.nmsrs)
2658 			goto out;
2659 		r = -EFAULT;
2660 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2661 				 num_msrs_to_save * sizeof(u32)))
2662 			goto out;
2663 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2664 				 &emulated_msrs,
2665 				 num_emulated_msrs * sizeof(u32)))
2666 			goto out;
2667 		r = 0;
2668 		break;
2669 	}
2670 	case KVM_GET_SUPPORTED_CPUID:
2671 	case KVM_GET_EMULATED_CPUID: {
2672 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2673 		struct kvm_cpuid2 cpuid;
2674 
2675 		r = -EFAULT;
2676 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2677 			goto out;
2678 
2679 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2680 					    ioctl);
2681 		if (r)
2682 			goto out;
2683 
2684 		r = -EFAULT;
2685 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2686 			goto out;
2687 		r = 0;
2688 		break;
2689 	}
2690 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2691 		r = -EFAULT;
2692 		if (copy_to_user(argp, &kvm_mce_cap_supported,
2693 				 sizeof(kvm_mce_cap_supported)))
2694 			goto out;
2695 		r = 0;
2696 		break;
2697 	}
2698 	default:
2699 		r = -EINVAL;
2700 	}
2701 out:
2702 	return r;
2703 }
2704 
2705 static void wbinvd_ipi(void *garbage)
2706 {
2707 	wbinvd();
2708 }
2709 
2710 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2711 {
2712 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2713 }
2714 
2715 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2716 {
2717 	set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2718 }
2719 
2720 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2721 {
2722 	/* Address WBINVD may be executed by guest */
2723 	if (need_emulate_wbinvd(vcpu)) {
2724 		if (kvm_x86_ops->has_wbinvd_exit())
2725 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2726 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2727 			smp_call_function_single(vcpu->cpu,
2728 					wbinvd_ipi, NULL, 1);
2729 	}
2730 
2731 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2732 
2733 	/* Apply any externally detected TSC adjustments (due to suspend) */
2734 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2735 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2736 		vcpu->arch.tsc_offset_adjustment = 0;
2737 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2738 	}
2739 
2740 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2741 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2742 				rdtsc() - vcpu->arch.last_host_tsc;
2743 		if (tsc_delta < 0)
2744 			mark_tsc_unstable("KVM discovered backwards TSC");
2745 
2746 		if (kvm_lapic_hv_timer_in_use(vcpu) &&
2747 				kvm_x86_ops->set_hv_timer(vcpu,
2748 					kvm_get_lapic_tscdeadline_msr(vcpu)))
2749 			kvm_lapic_switch_to_sw_timer(vcpu);
2750 		if (check_tsc_unstable()) {
2751 			u64 offset = kvm_compute_tsc_offset(vcpu,
2752 						vcpu->arch.last_guest_tsc);
2753 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2754 			vcpu->arch.tsc_catchup = 1;
2755 		}
2756 		/*
2757 		 * On a host with synchronized TSC, there is no need to update
2758 		 * kvmclock on vcpu->cpu migration
2759 		 */
2760 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2761 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2762 		if (vcpu->cpu != cpu)
2763 			kvm_migrate_timers(vcpu);
2764 		vcpu->cpu = cpu;
2765 	}
2766 
2767 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2768 }
2769 
2770 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2771 {
2772 	kvm_x86_ops->vcpu_put(vcpu);
2773 	kvm_put_guest_fpu(vcpu);
2774 	vcpu->arch.last_host_tsc = rdtsc();
2775 }
2776 
2777 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2778 				    struct kvm_lapic_state *s)
2779 {
2780 	if (vcpu->arch.apicv_active)
2781 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2782 
2783 	return kvm_apic_get_state(vcpu, s);
2784 }
2785 
2786 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2787 				    struct kvm_lapic_state *s)
2788 {
2789 	int r;
2790 
2791 	r = kvm_apic_set_state(vcpu, s);
2792 	if (r)
2793 		return r;
2794 	update_cr8_intercept(vcpu);
2795 
2796 	return 0;
2797 }
2798 
2799 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2800 {
2801 	return (!lapic_in_kernel(vcpu) ||
2802 		kvm_apic_accept_pic_intr(vcpu));
2803 }
2804 
2805 /*
2806  * if userspace requested an interrupt window, check that the
2807  * interrupt window is open.
2808  *
2809  * No need to exit to userspace if we already have an interrupt queued.
2810  */
2811 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2812 {
2813 	return kvm_arch_interrupt_allowed(vcpu) &&
2814 		!kvm_cpu_has_interrupt(vcpu) &&
2815 		!kvm_event_needs_reinjection(vcpu) &&
2816 		kvm_cpu_accept_dm_intr(vcpu);
2817 }
2818 
2819 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2820 				    struct kvm_interrupt *irq)
2821 {
2822 	if (irq->irq >= KVM_NR_INTERRUPTS)
2823 		return -EINVAL;
2824 
2825 	if (!irqchip_in_kernel(vcpu->kvm)) {
2826 		kvm_queue_interrupt(vcpu, irq->irq, false);
2827 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2828 		return 0;
2829 	}
2830 
2831 	/*
2832 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2833 	 * fail for in-kernel 8259.
2834 	 */
2835 	if (pic_in_kernel(vcpu->kvm))
2836 		return -ENXIO;
2837 
2838 	if (vcpu->arch.pending_external_vector != -1)
2839 		return -EEXIST;
2840 
2841 	vcpu->arch.pending_external_vector = irq->irq;
2842 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2843 	return 0;
2844 }
2845 
2846 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2847 {
2848 	kvm_inject_nmi(vcpu);
2849 
2850 	return 0;
2851 }
2852 
2853 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2854 {
2855 	kvm_make_request(KVM_REQ_SMI, vcpu);
2856 
2857 	return 0;
2858 }
2859 
2860 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2861 					   struct kvm_tpr_access_ctl *tac)
2862 {
2863 	if (tac->flags)
2864 		return -EINVAL;
2865 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2866 	return 0;
2867 }
2868 
2869 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2870 					u64 mcg_cap)
2871 {
2872 	int r;
2873 	unsigned bank_num = mcg_cap & 0xff, bank;
2874 
2875 	r = -EINVAL;
2876 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2877 		goto out;
2878 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2879 		goto out;
2880 	r = 0;
2881 	vcpu->arch.mcg_cap = mcg_cap;
2882 	/* Init IA32_MCG_CTL to all 1s */
2883 	if (mcg_cap & MCG_CTL_P)
2884 		vcpu->arch.mcg_ctl = ~(u64)0;
2885 	/* Init IA32_MCi_CTL to all 1s */
2886 	for (bank = 0; bank < bank_num; bank++)
2887 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2888 
2889 	if (kvm_x86_ops->setup_mce)
2890 		kvm_x86_ops->setup_mce(vcpu);
2891 out:
2892 	return r;
2893 }
2894 
2895 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2896 				      struct kvm_x86_mce *mce)
2897 {
2898 	u64 mcg_cap = vcpu->arch.mcg_cap;
2899 	unsigned bank_num = mcg_cap & 0xff;
2900 	u64 *banks = vcpu->arch.mce_banks;
2901 
2902 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2903 		return -EINVAL;
2904 	/*
2905 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2906 	 * reporting is disabled
2907 	 */
2908 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2909 	    vcpu->arch.mcg_ctl != ~(u64)0)
2910 		return 0;
2911 	banks += 4 * mce->bank;
2912 	/*
2913 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2914 	 * reporting is disabled for the bank
2915 	 */
2916 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2917 		return 0;
2918 	if (mce->status & MCI_STATUS_UC) {
2919 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2920 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2921 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2922 			return 0;
2923 		}
2924 		if (banks[1] & MCI_STATUS_VAL)
2925 			mce->status |= MCI_STATUS_OVER;
2926 		banks[2] = mce->addr;
2927 		banks[3] = mce->misc;
2928 		vcpu->arch.mcg_status = mce->mcg_status;
2929 		banks[1] = mce->status;
2930 		kvm_queue_exception(vcpu, MC_VECTOR);
2931 	} else if (!(banks[1] & MCI_STATUS_VAL)
2932 		   || !(banks[1] & MCI_STATUS_UC)) {
2933 		if (banks[1] & MCI_STATUS_VAL)
2934 			mce->status |= MCI_STATUS_OVER;
2935 		banks[2] = mce->addr;
2936 		banks[3] = mce->misc;
2937 		banks[1] = mce->status;
2938 	} else
2939 		banks[1] |= MCI_STATUS_OVER;
2940 	return 0;
2941 }
2942 
2943 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2944 					       struct kvm_vcpu_events *events)
2945 {
2946 	process_nmi(vcpu);
2947 	events->exception.injected =
2948 		vcpu->arch.exception.pending &&
2949 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2950 	events->exception.nr = vcpu->arch.exception.nr;
2951 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2952 	events->exception.pad = 0;
2953 	events->exception.error_code = vcpu->arch.exception.error_code;
2954 
2955 	events->interrupt.injected =
2956 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2957 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2958 	events->interrupt.soft = 0;
2959 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2960 
2961 	events->nmi.injected = vcpu->arch.nmi_injected;
2962 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2963 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2964 	events->nmi.pad = 0;
2965 
2966 	events->sipi_vector = 0; /* never valid when reporting to user space */
2967 
2968 	events->smi.smm = is_smm(vcpu);
2969 	events->smi.pending = vcpu->arch.smi_pending;
2970 	events->smi.smm_inside_nmi =
2971 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2972 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2973 
2974 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2975 			 | KVM_VCPUEVENT_VALID_SHADOW
2976 			 | KVM_VCPUEVENT_VALID_SMM);
2977 	memset(&events->reserved, 0, sizeof(events->reserved));
2978 }
2979 
2980 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2981 					      struct kvm_vcpu_events *events)
2982 {
2983 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2984 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2985 			      | KVM_VCPUEVENT_VALID_SHADOW
2986 			      | KVM_VCPUEVENT_VALID_SMM))
2987 		return -EINVAL;
2988 
2989 	if (events->exception.injected &&
2990 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
2991 		return -EINVAL;
2992 
2993 	process_nmi(vcpu);
2994 	vcpu->arch.exception.pending = events->exception.injected;
2995 	vcpu->arch.exception.nr = events->exception.nr;
2996 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2997 	vcpu->arch.exception.error_code = events->exception.error_code;
2998 
2999 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3000 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3001 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3002 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3003 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3004 						  events->interrupt.shadow);
3005 
3006 	vcpu->arch.nmi_injected = events->nmi.injected;
3007 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3008 		vcpu->arch.nmi_pending = events->nmi.pending;
3009 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3010 
3011 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3012 	    lapic_in_kernel(vcpu))
3013 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3014 
3015 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3016 		if (events->smi.smm)
3017 			vcpu->arch.hflags |= HF_SMM_MASK;
3018 		else
3019 			vcpu->arch.hflags &= ~HF_SMM_MASK;
3020 		vcpu->arch.smi_pending = events->smi.pending;
3021 		if (events->smi.smm_inside_nmi)
3022 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3023 		else
3024 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3025 		if (lapic_in_kernel(vcpu)) {
3026 			if (events->smi.latched_init)
3027 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3028 			else
3029 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3030 		}
3031 	}
3032 
3033 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3034 
3035 	return 0;
3036 }
3037 
3038 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3039 					     struct kvm_debugregs *dbgregs)
3040 {
3041 	unsigned long val;
3042 
3043 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3044 	kvm_get_dr(vcpu, 6, &val);
3045 	dbgregs->dr6 = val;
3046 	dbgregs->dr7 = vcpu->arch.dr7;
3047 	dbgregs->flags = 0;
3048 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3049 }
3050 
3051 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3052 					    struct kvm_debugregs *dbgregs)
3053 {
3054 	if (dbgregs->flags)
3055 		return -EINVAL;
3056 
3057 	if (dbgregs->dr6 & ~0xffffffffull)
3058 		return -EINVAL;
3059 	if (dbgregs->dr7 & ~0xffffffffull)
3060 		return -EINVAL;
3061 
3062 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3063 	kvm_update_dr0123(vcpu);
3064 	vcpu->arch.dr6 = dbgregs->dr6;
3065 	kvm_update_dr6(vcpu);
3066 	vcpu->arch.dr7 = dbgregs->dr7;
3067 	kvm_update_dr7(vcpu);
3068 
3069 	return 0;
3070 }
3071 
3072 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3073 
3074 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3075 {
3076 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3077 	u64 xstate_bv = xsave->header.xfeatures;
3078 	u64 valid;
3079 
3080 	/*
3081 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3082 	 * leaves 0 and 1 in the loop below.
3083 	 */
3084 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3085 
3086 	/* Set XSTATE_BV */
3087 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3088 
3089 	/*
3090 	 * Copy each region from the possibly compacted offset to the
3091 	 * non-compacted offset.
3092 	 */
3093 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3094 	while (valid) {
3095 		u64 feature = valid & -valid;
3096 		int index = fls64(feature) - 1;
3097 		void *src = get_xsave_addr(xsave, feature);
3098 
3099 		if (src) {
3100 			u32 size, offset, ecx, edx;
3101 			cpuid_count(XSTATE_CPUID, index,
3102 				    &size, &offset, &ecx, &edx);
3103 			memcpy(dest + offset, src, size);
3104 		}
3105 
3106 		valid -= feature;
3107 	}
3108 }
3109 
3110 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3111 {
3112 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3113 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3114 	u64 valid;
3115 
3116 	/*
3117 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3118 	 * leaves 0 and 1 in the loop below.
3119 	 */
3120 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3121 
3122 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3123 	xsave->header.xfeatures = xstate_bv;
3124 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3125 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3126 
3127 	/*
3128 	 * Copy each region from the non-compacted offset to the
3129 	 * possibly compacted offset.
3130 	 */
3131 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3132 	while (valid) {
3133 		u64 feature = valid & -valid;
3134 		int index = fls64(feature) - 1;
3135 		void *dest = get_xsave_addr(xsave, feature);
3136 
3137 		if (dest) {
3138 			u32 size, offset, ecx, edx;
3139 			cpuid_count(XSTATE_CPUID, index,
3140 				    &size, &offset, &ecx, &edx);
3141 			memcpy(dest, src + offset, size);
3142 		}
3143 
3144 		valid -= feature;
3145 	}
3146 }
3147 
3148 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3149 					 struct kvm_xsave *guest_xsave)
3150 {
3151 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3152 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3153 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3154 	} else {
3155 		memcpy(guest_xsave->region,
3156 			&vcpu->arch.guest_fpu.state.fxsave,
3157 			sizeof(struct fxregs_state));
3158 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3159 			XFEATURE_MASK_FPSSE;
3160 	}
3161 }
3162 
3163 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3164 					struct kvm_xsave *guest_xsave)
3165 {
3166 	u64 xstate_bv =
3167 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3168 
3169 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3170 		/*
3171 		 * Here we allow setting states that are not present in
3172 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3173 		 * with old userspace.
3174 		 */
3175 		if (xstate_bv & ~kvm_supported_xcr0())
3176 			return -EINVAL;
3177 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3178 	} else {
3179 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3180 			return -EINVAL;
3181 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3182 			guest_xsave->region, sizeof(struct fxregs_state));
3183 	}
3184 	return 0;
3185 }
3186 
3187 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3188 					struct kvm_xcrs *guest_xcrs)
3189 {
3190 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3191 		guest_xcrs->nr_xcrs = 0;
3192 		return;
3193 	}
3194 
3195 	guest_xcrs->nr_xcrs = 1;
3196 	guest_xcrs->flags = 0;
3197 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3198 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3199 }
3200 
3201 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3202 				       struct kvm_xcrs *guest_xcrs)
3203 {
3204 	int i, r = 0;
3205 
3206 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3207 		return -EINVAL;
3208 
3209 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3210 		return -EINVAL;
3211 
3212 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3213 		/* Only support XCR0 currently */
3214 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3215 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3216 				guest_xcrs->xcrs[i].value);
3217 			break;
3218 		}
3219 	if (r)
3220 		r = -EINVAL;
3221 	return r;
3222 }
3223 
3224 /*
3225  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3226  * stopped by the hypervisor.  This function will be called from the host only.
3227  * EINVAL is returned when the host attempts to set the flag for a guest that
3228  * does not support pv clocks.
3229  */
3230 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3231 {
3232 	if (!vcpu->arch.pv_time_enabled)
3233 		return -EINVAL;
3234 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3235 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3236 	return 0;
3237 }
3238 
3239 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3240 				     struct kvm_enable_cap *cap)
3241 {
3242 	if (cap->flags)
3243 		return -EINVAL;
3244 
3245 	switch (cap->cap) {
3246 	case KVM_CAP_HYPERV_SYNIC:
3247 		return kvm_hv_activate_synic(vcpu);
3248 	default:
3249 		return -EINVAL;
3250 	}
3251 }
3252 
3253 long kvm_arch_vcpu_ioctl(struct file *filp,
3254 			 unsigned int ioctl, unsigned long arg)
3255 {
3256 	struct kvm_vcpu *vcpu = filp->private_data;
3257 	void __user *argp = (void __user *)arg;
3258 	int r;
3259 	union {
3260 		struct kvm_lapic_state *lapic;
3261 		struct kvm_xsave *xsave;
3262 		struct kvm_xcrs *xcrs;
3263 		void *buffer;
3264 	} u;
3265 
3266 	u.buffer = NULL;
3267 	switch (ioctl) {
3268 	case KVM_GET_LAPIC: {
3269 		r = -EINVAL;
3270 		if (!lapic_in_kernel(vcpu))
3271 			goto out;
3272 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3273 
3274 		r = -ENOMEM;
3275 		if (!u.lapic)
3276 			goto out;
3277 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3278 		if (r)
3279 			goto out;
3280 		r = -EFAULT;
3281 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3282 			goto out;
3283 		r = 0;
3284 		break;
3285 	}
3286 	case KVM_SET_LAPIC: {
3287 		r = -EINVAL;
3288 		if (!lapic_in_kernel(vcpu))
3289 			goto out;
3290 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3291 		if (IS_ERR(u.lapic))
3292 			return PTR_ERR(u.lapic);
3293 
3294 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3295 		break;
3296 	}
3297 	case KVM_INTERRUPT: {
3298 		struct kvm_interrupt irq;
3299 
3300 		r = -EFAULT;
3301 		if (copy_from_user(&irq, argp, sizeof irq))
3302 			goto out;
3303 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3304 		break;
3305 	}
3306 	case KVM_NMI: {
3307 		r = kvm_vcpu_ioctl_nmi(vcpu);
3308 		break;
3309 	}
3310 	case KVM_SMI: {
3311 		r = kvm_vcpu_ioctl_smi(vcpu);
3312 		break;
3313 	}
3314 	case KVM_SET_CPUID: {
3315 		struct kvm_cpuid __user *cpuid_arg = argp;
3316 		struct kvm_cpuid cpuid;
3317 
3318 		r = -EFAULT;
3319 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3320 			goto out;
3321 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3322 		break;
3323 	}
3324 	case KVM_SET_CPUID2: {
3325 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3326 		struct kvm_cpuid2 cpuid;
3327 
3328 		r = -EFAULT;
3329 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3330 			goto out;
3331 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3332 					      cpuid_arg->entries);
3333 		break;
3334 	}
3335 	case KVM_GET_CPUID2: {
3336 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3337 		struct kvm_cpuid2 cpuid;
3338 
3339 		r = -EFAULT;
3340 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3341 			goto out;
3342 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3343 					      cpuid_arg->entries);
3344 		if (r)
3345 			goto out;
3346 		r = -EFAULT;
3347 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3348 			goto out;
3349 		r = 0;
3350 		break;
3351 	}
3352 	case KVM_GET_MSRS:
3353 		r = msr_io(vcpu, argp, do_get_msr, 1);
3354 		break;
3355 	case KVM_SET_MSRS:
3356 		r = msr_io(vcpu, argp, do_set_msr, 0);
3357 		break;
3358 	case KVM_TPR_ACCESS_REPORTING: {
3359 		struct kvm_tpr_access_ctl tac;
3360 
3361 		r = -EFAULT;
3362 		if (copy_from_user(&tac, argp, sizeof tac))
3363 			goto out;
3364 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3365 		if (r)
3366 			goto out;
3367 		r = -EFAULT;
3368 		if (copy_to_user(argp, &tac, sizeof tac))
3369 			goto out;
3370 		r = 0;
3371 		break;
3372 	};
3373 	case KVM_SET_VAPIC_ADDR: {
3374 		struct kvm_vapic_addr va;
3375 
3376 		r = -EINVAL;
3377 		if (!lapic_in_kernel(vcpu))
3378 			goto out;
3379 		r = -EFAULT;
3380 		if (copy_from_user(&va, argp, sizeof va))
3381 			goto out;
3382 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3383 		break;
3384 	}
3385 	case KVM_X86_SETUP_MCE: {
3386 		u64 mcg_cap;
3387 
3388 		r = -EFAULT;
3389 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3390 			goto out;
3391 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3392 		break;
3393 	}
3394 	case KVM_X86_SET_MCE: {
3395 		struct kvm_x86_mce mce;
3396 
3397 		r = -EFAULT;
3398 		if (copy_from_user(&mce, argp, sizeof mce))
3399 			goto out;
3400 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3401 		break;
3402 	}
3403 	case KVM_GET_VCPU_EVENTS: {
3404 		struct kvm_vcpu_events events;
3405 
3406 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3407 
3408 		r = -EFAULT;
3409 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3410 			break;
3411 		r = 0;
3412 		break;
3413 	}
3414 	case KVM_SET_VCPU_EVENTS: {
3415 		struct kvm_vcpu_events events;
3416 
3417 		r = -EFAULT;
3418 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3419 			break;
3420 
3421 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3422 		break;
3423 	}
3424 	case KVM_GET_DEBUGREGS: {
3425 		struct kvm_debugregs dbgregs;
3426 
3427 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3428 
3429 		r = -EFAULT;
3430 		if (copy_to_user(argp, &dbgregs,
3431 				 sizeof(struct kvm_debugregs)))
3432 			break;
3433 		r = 0;
3434 		break;
3435 	}
3436 	case KVM_SET_DEBUGREGS: {
3437 		struct kvm_debugregs dbgregs;
3438 
3439 		r = -EFAULT;
3440 		if (copy_from_user(&dbgregs, argp,
3441 				   sizeof(struct kvm_debugregs)))
3442 			break;
3443 
3444 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3445 		break;
3446 	}
3447 	case KVM_GET_XSAVE: {
3448 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3449 		r = -ENOMEM;
3450 		if (!u.xsave)
3451 			break;
3452 
3453 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3454 
3455 		r = -EFAULT;
3456 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3457 			break;
3458 		r = 0;
3459 		break;
3460 	}
3461 	case KVM_SET_XSAVE: {
3462 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3463 		if (IS_ERR(u.xsave))
3464 			return PTR_ERR(u.xsave);
3465 
3466 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3467 		break;
3468 	}
3469 	case KVM_GET_XCRS: {
3470 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3471 		r = -ENOMEM;
3472 		if (!u.xcrs)
3473 			break;
3474 
3475 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3476 
3477 		r = -EFAULT;
3478 		if (copy_to_user(argp, u.xcrs,
3479 				 sizeof(struct kvm_xcrs)))
3480 			break;
3481 		r = 0;
3482 		break;
3483 	}
3484 	case KVM_SET_XCRS: {
3485 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3486 		if (IS_ERR(u.xcrs))
3487 			return PTR_ERR(u.xcrs);
3488 
3489 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3490 		break;
3491 	}
3492 	case KVM_SET_TSC_KHZ: {
3493 		u32 user_tsc_khz;
3494 
3495 		r = -EINVAL;
3496 		user_tsc_khz = (u32)arg;
3497 
3498 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3499 			goto out;
3500 
3501 		if (user_tsc_khz == 0)
3502 			user_tsc_khz = tsc_khz;
3503 
3504 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3505 			r = 0;
3506 
3507 		goto out;
3508 	}
3509 	case KVM_GET_TSC_KHZ: {
3510 		r = vcpu->arch.virtual_tsc_khz;
3511 		goto out;
3512 	}
3513 	case KVM_KVMCLOCK_CTRL: {
3514 		r = kvm_set_guest_paused(vcpu);
3515 		goto out;
3516 	}
3517 	case KVM_ENABLE_CAP: {
3518 		struct kvm_enable_cap cap;
3519 
3520 		r = -EFAULT;
3521 		if (copy_from_user(&cap, argp, sizeof(cap)))
3522 			goto out;
3523 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3524 		break;
3525 	}
3526 	default:
3527 		r = -EINVAL;
3528 	}
3529 out:
3530 	kfree(u.buffer);
3531 	return r;
3532 }
3533 
3534 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3535 {
3536 	return VM_FAULT_SIGBUS;
3537 }
3538 
3539 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3540 {
3541 	int ret;
3542 
3543 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3544 		return -EINVAL;
3545 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3546 	return ret;
3547 }
3548 
3549 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3550 					      u64 ident_addr)
3551 {
3552 	kvm->arch.ept_identity_map_addr = ident_addr;
3553 	return 0;
3554 }
3555 
3556 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3557 					  u32 kvm_nr_mmu_pages)
3558 {
3559 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3560 		return -EINVAL;
3561 
3562 	mutex_lock(&kvm->slots_lock);
3563 
3564 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3565 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3566 
3567 	mutex_unlock(&kvm->slots_lock);
3568 	return 0;
3569 }
3570 
3571 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3572 {
3573 	return kvm->arch.n_max_mmu_pages;
3574 }
3575 
3576 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3577 {
3578 	int r;
3579 
3580 	r = 0;
3581 	switch (chip->chip_id) {
3582 	case KVM_IRQCHIP_PIC_MASTER:
3583 		memcpy(&chip->chip.pic,
3584 			&pic_irqchip(kvm)->pics[0],
3585 			sizeof(struct kvm_pic_state));
3586 		break;
3587 	case KVM_IRQCHIP_PIC_SLAVE:
3588 		memcpy(&chip->chip.pic,
3589 			&pic_irqchip(kvm)->pics[1],
3590 			sizeof(struct kvm_pic_state));
3591 		break;
3592 	case KVM_IRQCHIP_IOAPIC:
3593 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3594 		break;
3595 	default:
3596 		r = -EINVAL;
3597 		break;
3598 	}
3599 	return r;
3600 }
3601 
3602 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3603 {
3604 	int r;
3605 
3606 	r = 0;
3607 	switch (chip->chip_id) {
3608 	case KVM_IRQCHIP_PIC_MASTER:
3609 		spin_lock(&pic_irqchip(kvm)->lock);
3610 		memcpy(&pic_irqchip(kvm)->pics[0],
3611 			&chip->chip.pic,
3612 			sizeof(struct kvm_pic_state));
3613 		spin_unlock(&pic_irqchip(kvm)->lock);
3614 		break;
3615 	case KVM_IRQCHIP_PIC_SLAVE:
3616 		spin_lock(&pic_irqchip(kvm)->lock);
3617 		memcpy(&pic_irqchip(kvm)->pics[1],
3618 			&chip->chip.pic,
3619 			sizeof(struct kvm_pic_state));
3620 		spin_unlock(&pic_irqchip(kvm)->lock);
3621 		break;
3622 	case KVM_IRQCHIP_IOAPIC:
3623 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3624 		break;
3625 	default:
3626 		r = -EINVAL;
3627 		break;
3628 	}
3629 	kvm_pic_update_irq(pic_irqchip(kvm));
3630 	return r;
3631 }
3632 
3633 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3634 {
3635 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3636 
3637 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3638 
3639 	mutex_lock(&kps->lock);
3640 	memcpy(ps, &kps->channels, sizeof(*ps));
3641 	mutex_unlock(&kps->lock);
3642 	return 0;
3643 }
3644 
3645 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3646 {
3647 	int i;
3648 	struct kvm_pit *pit = kvm->arch.vpit;
3649 
3650 	mutex_lock(&pit->pit_state.lock);
3651 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3652 	for (i = 0; i < 3; i++)
3653 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3654 	mutex_unlock(&pit->pit_state.lock);
3655 	return 0;
3656 }
3657 
3658 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3659 {
3660 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3661 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3662 		sizeof(ps->channels));
3663 	ps->flags = kvm->arch.vpit->pit_state.flags;
3664 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3665 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3666 	return 0;
3667 }
3668 
3669 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3670 {
3671 	int start = 0;
3672 	int i;
3673 	u32 prev_legacy, cur_legacy;
3674 	struct kvm_pit *pit = kvm->arch.vpit;
3675 
3676 	mutex_lock(&pit->pit_state.lock);
3677 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3678 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3679 	if (!prev_legacy && cur_legacy)
3680 		start = 1;
3681 	memcpy(&pit->pit_state.channels, &ps->channels,
3682 	       sizeof(pit->pit_state.channels));
3683 	pit->pit_state.flags = ps->flags;
3684 	for (i = 0; i < 3; i++)
3685 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3686 				   start && i == 0);
3687 	mutex_unlock(&pit->pit_state.lock);
3688 	return 0;
3689 }
3690 
3691 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3692 				 struct kvm_reinject_control *control)
3693 {
3694 	struct kvm_pit *pit = kvm->arch.vpit;
3695 
3696 	if (!pit)
3697 		return -ENXIO;
3698 
3699 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3700 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3701 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3702 	 */
3703 	mutex_lock(&pit->pit_state.lock);
3704 	kvm_pit_set_reinject(pit, control->pit_reinject);
3705 	mutex_unlock(&pit->pit_state.lock);
3706 
3707 	return 0;
3708 }
3709 
3710 /**
3711  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3712  * @kvm: kvm instance
3713  * @log: slot id and address to which we copy the log
3714  *
3715  * Steps 1-4 below provide general overview of dirty page logging. See
3716  * kvm_get_dirty_log_protect() function description for additional details.
3717  *
3718  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3719  * always flush the TLB (step 4) even if previous step failed  and the dirty
3720  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3721  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3722  * writes will be marked dirty for next log read.
3723  *
3724  *   1. Take a snapshot of the bit and clear it if needed.
3725  *   2. Write protect the corresponding page.
3726  *   3. Copy the snapshot to the userspace.
3727  *   4. Flush TLB's if needed.
3728  */
3729 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3730 {
3731 	bool is_dirty = false;
3732 	int r;
3733 
3734 	mutex_lock(&kvm->slots_lock);
3735 
3736 	/*
3737 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3738 	 */
3739 	if (kvm_x86_ops->flush_log_dirty)
3740 		kvm_x86_ops->flush_log_dirty(kvm);
3741 
3742 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3743 
3744 	/*
3745 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3746 	 * kvm_mmu_slot_remove_write_access().
3747 	 */
3748 	lockdep_assert_held(&kvm->slots_lock);
3749 	if (is_dirty)
3750 		kvm_flush_remote_tlbs(kvm);
3751 
3752 	mutex_unlock(&kvm->slots_lock);
3753 	return r;
3754 }
3755 
3756 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3757 			bool line_status)
3758 {
3759 	if (!irqchip_in_kernel(kvm))
3760 		return -ENXIO;
3761 
3762 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3763 					irq_event->irq, irq_event->level,
3764 					line_status);
3765 	return 0;
3766 }
3767 
3768 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3769 				   struct kvm_enable_cap *cap)
3770 {
3771 	int r;
3772 
3773 	if (cap->flags)
3774 		return -EINVAL;
3775 
3776 	switch (cap->cap) {
3777 	case KVM_CAP_DISABLE_QUIRKS:
3778 		kvm->arch.disabled_quirks = cap->args[0];
3779 		r = 0;
3780 		break;
3781 	case KVM_CAP_SPLIT_IRQCHIP: {
3782 		mutex_lock(&kvm->lock);
3783 		r = -EINVAL;
3784 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3785 			goto split_irqchip_unlock;
3786 		r = -EEXIST;
3787 		if (irqchip_in_kernel(kvm))
3788 			goto split_irqchip_unlock;
3789 		if (kvm->created_vcpus)
3790 			goto split_irqchip_unlock;
3791 		r = kvm_setup_empty_irq_routing(kvm);
3792 		if (r)
3793 			goto split_irqchip_unlock;
3794 		/* Pairs with irqchip_in_kernel. */
3795 		smp_wmb();
3796 		kvm->arch.irqchip_split = true;
3797 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3798 		r = 0;
3799 split_irqchip_unlock:
3800 		mutex_unlock(&kvm->lock);
3801 		break;
3802 	}
3803 	case KVM_CAP_X2APIC_API:
3804 		r = -EINVAL;
3805 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3806 			break;
3807 
3808 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3809 			kvm->arch.x2apic_format = true;
3810 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3811 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
3812 
3813 		r = 0;
3814 		break;
3815 	default:
3816 		r = -EINVAL;
3817 		break;
3818 	}
3819 	return r;
3820 }
3821 
3822 long kvm_arch_vm_ioctl(struct file *filp,
3823 		       unsigned int ioctl, unsigned long arg)
3824 {
3825 	struct kvm *kvm = filp->private_data;
3826 	void __user *argp = (void __user *)arg;
3827 	int r = -ENOTTY;
3828 	/*
3829 	 * This union makes it completely explicit to gcc-3.x
3830 	 * that these two variables' stack usage should be
3831 	 * combined, not added together.
3832 	 */
3833 	union {
3834 		struct kvm_pit_state ps;
3835 		struct kvm_pit_state2 ps2;
3836 		struct kvm_pit_config pit_config;
3837 	} u;
3838 
3839 	switch (ioctl) {
3840 	case KVM_SET_TSS_ADDR:
3841 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3842 		break;
3843 	case KVM_SET_IDENTITY_MAP_ADDR: {
3844 		u64 ident_addr;
3845 
3846 		r = -EFAULT;
3847 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3848 			goto out;
3849 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3850 		break;
3851 	}
3852 	case KVM_SET_NR_MMU_PAGES:
3853 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3854 		break;
3855 	case KVM_GET_NR_MMU_PAGES:
3856 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3857 		break;
3858 	case KVM_CREATE_IRQCHIP: {
3859 		struct kvm_pic *vpic;
3860 
3861 		mutex_lock(&kvm->lock);
3862 		r = -EEXIST;
3863 		if (kvm->arch.vpic)
3864 			goto create_irqchip_unlock;
3865 		r = -EINVAL;
3866 		if (kvm->created_vcpus)
3867 			goto create_irqchip_unlock;
3868 		r = -ENOMEM;
3869 		vpic = kvm_create_pic(kvm);
3870 		if (vpic) {
3871 			r = kvm_ioapic_init(kvm);
3872 			if (r) {
3873 				mutex_lock(&kvm->slots_lock);
3874 				kvm_destroy_pic(vpic);
3875 				mutex_unlock(&kvm->slots_lock);
3876 				goto create_irqchip_unlock;
3877 			}
3878 		} else
3879 			goto create_irqchip_unlock;
3880 		r = kvm_setup_default_irq_routing(kvm);
3881 		if (r) {
3882 			mutex_lock(&kvm->slots_lock);
3883 			mutex_lock(&kvm->irq_lock);
3884 			kvm_ioapic_destroy(kvm);
3885 			kvm_destroy_pic(vpic);
3886 			mutex_unlock(&kvm->irq_lock);
3887 			mutex_unlock(&kvm->slots_lock);
3888 			goto create_irqchip_unlock;
3889 		}
3890 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3891 		smp_wmb();
3892 		kvm->arch.vpic = vpic;
3893 	create_irqchip_unlock:
3894 		mutex_unlock(&kvm->lock);
3895 		break;
3896 	}
3897 	case KVM_CREATE_PIT:
3898 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3899 		goto create_pit;
3900 	case KVM_CREATE_PIT2:
3901 		r = -EFAULT;
3902 		if (copy_from_user(&u.pit_config, argp,
3903 				   sizeof(struct kvm_pit_config)))
3904 			goto out;
3905 	create_pit:
3906 		mutex_lock(&kvm->lock);
3907 		r = -EEXIST;
3908 		if (kvm->arch.vpit)
3909 			goto create_pit_unlock;
3910 		r = -ENOMEM;
3911 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3912 		if (kvm->arch.vpit)
3913 			r = 0;
3914 	create_pit_unlock:
3915 		mutex_unlock(&kvm->lock);
3916 		break;
3917 	case KVM_GET_IRQCHIP: {
3918 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3919 		struct kvm_irqchip *chip;
3920 
3921 		chip = memdup_user(argp, sizeof(*chip));
3922 		if (IS_ERR(chip)) {
3923 			r = PTR_ERR(chip);
3924 			goto out;
3925 		}
3926 
3927 		r = -ENXIO;
3928 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3929 			goto get_irqchip_out;
3930 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3931 		if (r)
3932 			goto get_irqchip_out;
3933 		r = -EFAULT;
3934 		if (copy_to_user(argp, chip, sizeof *chip))
3935 			goto get_irqchip_out;
3936 		r = 0;
3937 	get_irqchip_out:
3938 		kfree(chip);
3939 		break;
3940 	}
3941 	case KVM_SET_IRQCHIP: {
3942 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3943 		struct kvm_irqchip *chip;
3944 
3945 		chip = memdup_user(argp, sizeof(*chip));
3946 		if (IS_ERR(chip)) {
3947 			r = PTR_ERR(chip);
3948 			goto out;
3949 		}
3950 
3951 		r = -ENXIO;
3952 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3953 			goto set_irqchip_out;
3954 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3955 		if (r)
3956 			goto set_irqchip_out;
3957 		r = 0;
3958 	set_irqchip_out:
3959 		kfree(chip);
3960 		break;
3961 	}
3962 	case KVM_GET_PIT: {
3963 		r = -EFAULT;
3964 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3965 			goto out;
3966 		r = -ENXIO;
3967 		if (!kvm->arch.vpit)
3968 			goto out;
3969 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3970 		if (r)
3971 			goto out;
3972 		r = -EFAULT;
3973 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3974 			goto out;
3975 		r = 0;
3976 		break;
3977 	}
3978 	case KVM_SET_PIT: {
3979 		r = -EFAULT;
3980 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3981 			goto out;
3982 		r = -ENXIO;
3983 		if (!kvm->arch.vpit)
3984 			goto out;
3985 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3986 		break;
3987 	}
3988 	case KVM_GET_PIT2: {
3989 		r = -ENXIO;
3990 		if (!kvm->arch.vpit)
3991 			goto out;
3992 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3993 		if (r)
3994 			goto out;
3995 		r = -EFAULT;
3996 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3997 			goto out;
3998 		r = 0;
3999 		break;
4000 	}
4001 	case KVM_SET_PIT2: {
4002 		r = -EFAULT;
4003 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4004 			goto out;
4005 		r = -ENXIO;
4006 		if (!kvm->arch.vpit)
4007 			goto out;
4008 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4009 		break;
4010 	}
4011 	case KVM_REINJECT_CONTROL: {
4012 		struct kvm_reinject_control control;
4013 		r =  -EFAULT;
4014 		if (copy_from_user(&control, argp, sizeof(control)))
4015 			goto out;
4016 		r = kvm_vm_ioctl_reinject(kvm, &control);
4017 		break;
4018 	}
4019 	case KVM_SET_BOOT_CPU_ID:
4020 		r = 0;
4021 		mutex_lock(&kvm->lock);
4022 		if (kvm->created_vcpus)
4023 			r = -EBUSY;
4024 		else
4025 			kvm->arch.bsp_vcpu_id = arg;
4026 		mutex_unlock(&kvm->lock);
4027 		break;
4028 	case KVM_XEN_HVM_CONFIG: {
4029 		r = -EFAULT;
4030 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4031 				   sizeof(struct kvm_xen_hvm_config)))
4032 			goto out;
4033 		r = -EINVAL;
4034 		if (kvm->arch.xen_hvm_config.flags)
4035 			goto out;
4036 		r = 0;
4037 		break;
4038 	}
4039 	case KVM_SET_CLOCK: {
4040 		struct kvm_clock_data user_ns;
4041 		u64 now_ns;
4042 		s64 delta;
4043 
4044 		r = -EFAULT;
4045 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4046 			goto out;
4047 
4048 		r = -EINVAL;
4049 		if (user_ns.flags)
4050 			goto out;
4051 
4052 		r = 0;
4053 		local_irq_disable();
4054 		now_ns = get_kernel_ns();
4055 		delta = user_ns.clock - now_ns;
4056 		local_irq_enable();
4057 		kvm->arch.kvmclock_offset = delta;
4058 		kvm_gen_update_masterclock(kvm);
4059 		break;
4060 	}
4061 	case KVM_GET_CLOCK: {
4062 		struct kvm_clock_data user_ns;
4063 		u64 now_ns;
4064 
4065 		local_irq_disable();
4066 		now_ns = get_kernel_ns();
4067 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4068 		local_irq_enable();
4069 		user_ns.flags = 0;
4070 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4071 
4072 		r = -EFAULT;
4073 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4074 			goto out;
4075 		r = 0;
4076 		break;
4077 	}
4078 	case KVM_ENABLE_CAP: {
4079 		struct kvm_enable_cap cap;
4080 
4081 		r = -EFAULT;
4082 		if (copy_from_user(&cap, argp, sizeof(cap)))
4083 			goto out;
4084 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4085 		break;
4086 	}
4087 	default:
4088 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4089 	}
4090 out:
4091 	return r;
4092 }
4093 
4094 static void kvm_init_msr_list(void)
4095 {
4096 	u32 dummy[2];
4097 	unsigned i, j;
4098 
4099 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4100 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4101 			continue;
4102 
4103 		/*
4104 		 * Even MSRs that are valid in the host may not be exposed
4105 		 * to the guests in some cases.
4106 		 */
4107 		switch (msrs_to_save[i]) {
4108 		case MSR_IA32_BNDCFGS:
4109 			if (!kvm_x86_ops->mpx_supported())
4110 				continue;
4111 			break;
4112 		case MSR_TSC_AUX:
4113 			if (!kvm_x86_ops->rdtscp_supported())
4114 				continue;
4115 			break;
4116 		default:
4117 			break;
4118 		}
4119 
4120 		if (j < i)
4121 			msrs_to_save[j] = msrs_to_save[i];
4122 		j++;
4123 	}
4124 	num_msrs_to_save = j;
4125 
4126 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4127 		switch (emulated_msrs[i]) {
4128 		case MSR_IA32_SMBASE:
4129 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4130 				continue;
4131 			break;
4132 		default:
4133 			break;
4134 		}
4135 
4136 		if (j < i)
4137 			emulated_msrs[j] = emulated_msrs[i];
4138 		j++;
4139 	}
4140 	num_emulated_msrs = j;
4141 }
4142 
4143 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4144 			   const void *v)
4145 {
4146 	int handled = 0;
4147 	int n;
4148 
4149 	do {
4150 		n = min(len, 8);
4151 		if (!(lapic_in_kernel(vcpu) &&
4152 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4153 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4154 			break;
4155 		handled += n;
4156 		addr += n;
4157 		len -= n;
4158 		v += n;
4159 	} while (len);
4160 
4161 	return handled;
4162 }
4163 
4164 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4165 {
4166 	int handled = 0;
4167 	int n;
4168 
4169 	do {
4170 		n = min(len, 8);
4171 		if (!(lapic_in_kernel(vcpu) &&
4172 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4173 					 addr, n, v))
4174 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4175 			break;
4176 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4177 		handled += n;
4178 		addr += n;
4179 		len -= n;
4180 		v += n;
4181 	} while (len);
4182 
4183 	return handled;
4184 }
4185 
4186 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4187 			struct kvm_segment *var, int seg)
4188 {
4189 	kvm_x86_ops->set_segment(vcpu, var, seg);
4190 }
4191 
4192 void kvm_get_segment(struct kvm_vcpu *vcpu,
4193 		     struct kvm_segment *var, int seg)
4194 {
4195 	kvm_x86_ops->get_segment(vcpu, var, seg);
4196 }
4197 
4198 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4199 			   struct x86_exception *exception)
4200 {
4201 	gpa_t t_gpa;
4202 
4203 	BUG_ON(!mmu_is_nested(vcpu));
4204 
4205 	/* NPT walks are always user-walks */
4206 	access |= PFERR_USER_MASK;
4207 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4208 
4209 	return t_gpa;
4210 }
4211 
4212 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4213 			      struct x86_exception *exception)
4214 {
4215 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4216 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4217 }
4218 
4219  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4220 				struct x86_exception *exception)
4221 {
4222 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4223 	access |= PFERR_FETCH_MASK;
4224 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4225 }
4226 
4227 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4228 			       struct x86_exception *exception)
4229 {
4230 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4231 	access |= PFERR_WRITE_MASK;
4232 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4233 }
4234 
4235 /* uses this to access any guest's mapped memory without checking CPL */
4236 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4237 				struct x86_exception *exception)
4238 {
4239 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4240 }
4241 
4242 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4243 				      struct kvm_vcpu *vcpu, u32 access,
4244 				      struct x86_exception *exception)
4245 {
4246 	void *data = val;
4247 	int r = X86EMUL_CONTINUE;
4248 
4249 	while (bytes) {
4250 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4251 							    exception);
4252 		unsigned offset = addr & (PAGE_SIZE-1);
4253 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4254 		int ret;
4255 
4256 		if (gpa == UNMAPPED_GVA)
4257 			return X86EMUL_PROPAGATE_FAULT;
4258 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4259 					       offset, toread);
4260 		if (ret < 0) {
4261 			r = X86EMUL_IO_NEEDED;
4262 			goto out;
4263 		}
4264 
4265 		bytes -= toread;
4266 		data += toread;
4267 		addr += toread;
4268 	}
4269 out:
4270 	return r;
4271 }
4272 
4273 /* used for instruction fetching */
4274 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4275 				gva_t addr, void *val, unsigned int bytes,
4276 				struct x86_exception *exception)
4277 {
4278 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4279 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4280 	unsigned offset;
4281 	int ret;
4282 
4283 	/* Inline kvm_read_guest_virt_helper for speed.  */
4284 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4285 						    exception);
4286 	if (unlikely(gpa == UNMAPPED_GVA))
4287 		return X86EMUL_PROPAGATE_FAULT;
4288 
4289 	offset = addr & (PAGE_SIZE-1);
4290 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4291 		bytes = (unsigned)PAGE_SIZE - offset;
4292 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4293 				       offset, bytes);
4294 	if (unlikely(ret < 0))
4295 		return X86EMUL_IO_NEEDED;
4296 
4297 	return X86EMUL_CONTINUE;
4298 }
4299 
4300 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4301 			       gva_t addr, void *val, unsigned int bytes,
4302 			       struct x86_exception *exception)
4303 {
4304 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4305 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4306 
4307 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4308 					  exception);
4309 }
4310 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4311 
4312 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4313 				      gva_t addr, void *val, unsigned int bytes,
4314 				      struct x86_exception *exception)
4315 {
4316 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4317 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4318 }
4319 
4320 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4321 		unsigned long addr, void *val, unsigned int bytes)
4322 {
4323 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4324 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4325 
4326 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4327 }
4328 
4329 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4330 				       gva_t addr, void *val,
4331 				       unsigned int bytes,
4332 				       struct x86_exception *exception)
4333 {
4334 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4335 	void *data = val;
4336 	int r = X86EMUL_CONTINUE;
4337 
4338 	while (bytes) {
4339 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4340 							     PFERR_WRITE_MASK,
4341 							     exception);
4342 		unsigned offset = addr & (PAGE_SIZE-1);
4343 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4344 		int ret;
4345 
4346 		if (gpa == UNMAPPED_GVA)
4347 			return X86EMUL_PROPAGATE_FAULT;
4348 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4349 		if (ret < 0) {
4350 			r = X86EMUL_IO_NEEDED;
4351 			goto out;
4352 		}
4353 
4354 		bytes -= towrite;
4355 		data += towrite;
4356 		addr += towrite;
4357 	}
4358 out:
4359 	return r;
4360 }
4361 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4362 
4363 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4364 				gpa_t *gpa, struct x86_exception *exception,
4365 				bool write)
4366 {
4367 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4368 		| (write ? PFERR_WRITE_MASK : 0);
4369 
4370 	/*
4371 	 * currently PKRU is only applied to ept enabled guest so
4372 	 * there is no pkey in EPT page table for L1 guest or EPT
4373 	 * shadow page table for L2 guest.
4374 	 */
4375 	if (vcpu_match_mmio_gva(vcpu, gva)
4376 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4377 				 vcpu->arch.access, 0, access)) {
4378 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4379 					(gva & (PAGE_SIZE - 1));
4380 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4381 		return 1;
4382 	}
4383 
4384 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4385 
4386 	if (*gpa == UNMAPPED_GVA)
4387 		return -1;
4388 
4389 	/* For APIC access vmexit */
4390 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4391 		return 1;
4392 
4393 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4394 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4395 		return 1;
4396 	}
4397 
4398 	return 0;
4399 }
4400 
4401 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4402 			const void *val, int bytes)
4403 {
4404 	int ret;
4405 
4406 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4407 	if (ret < 0)
4408 		return 0;
4409 	kvm_page_track_write(vcpu, gpa, val, bytes);
4410 	return 1;
4411 }
4412 
4413 struct read_write_emulator_ops {
4414 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4415 				  int bytes);
4416 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4417 				  void *val, int bytes);
4418 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4419 			       int bytes, void *val);
4420 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4421 				    void *val, int bytes);
4422 	bool write;
4423 };
4424 
4425 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4426 {
4427 	if (vcpu->mmio_read_completed) {
4428 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4429 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4430 		vcpu->mmio_read_completed = 0;
4431 		return 1;
4432 	}
4433 
4434 	return 0;
4435 }
4436 
4437 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4438 			void *val, int bytes)
4439 {
4440 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4441 }
4442 
4443 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4444 			 void *val, int bytes)
4445 {
4446 	return emulator_write_phys(vcpu, gpa, val, bytes);
4447 }
4448 
4449 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4450 {
4451 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4452 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4453 }
4454 
4455 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4456 			  void *val, int bytes)
4457 {
4458 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4459 	return X86EMUL_IO_NEEDED;
4460 }
4461 
4462 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4463 			   void *val, int bytes)
4464 {
4465 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4466 
4467 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4468 	return X86EMUL_CONTINUE;
4469 }
4470 
4471 static const struct read_write_emulator_ops read_emultor = {
4472 	.read_write_prepare = read_prepare,
4473 	.read_write_emulate = read_emulate,
4474 	.read_write_mmio = vcpu_mmio_read,
4475 	.read_write_exit_mmio = read_exit_mmio,
4476 };
4477 
4478 static const struct read_write_emulator_ops write_emultor = {
4479 	.read_write_emulate = write_emulate,
4480 	.read_write_mmio = write_mmio,
4481 	.read_write_exit_mmio = write_exit_mmio,
4482 	.write = true,
4483 };
4484 
4485 static int emulator_read_write_onepage(unsigned long addr, void *val,
4486 				       unsigned int bytes,
4487 				       struct x86_exception *exception,
4488 				       struct kvm_vcpu *vcpu,
4489 				       const struct read_write_emulator_ops *ops)
4490 {
4491 	gpa_t gpa;
4492 	int handled, ret;
4493 	bool write = ops->write;
4494 	struct kvm_mmio_fragment *frag;
4495 
4496 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4497 
4498 	if (ret < 0)
4499 		return X86EMUL_PROPAGATE_FAULT;
4500 
4501 	/* For APIC access vmexit */
4502 	if (ret)
4503 		goto mmio;
4504 
4505 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4506 		return X86EMUL_CONTINUE;
4507 
4508 mmio:
4509 	/*
4510 	 * Is this MMIO handled locally?
4511 	 */
4512 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4513 	if (handled == bytes)
4514 		return X86EMUL_CONTINUE;
4515 
4516 	gpa += handled;
4517 	bytes -= handled;
4518 	val += handled;
4519 
4520 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4521 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4522 	frag->gpa = gpa;
4523 	frag->data = val;
4524 	frag->len = bytes;
4525 	return X86EMUL_CONTINUE;
4526 }
4527 
4528 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4529 			unsigned long addr,
4530 			void *val, unsigned int bytes,
4531 			struct x86_exception *exception,
4532 			const struct read_write_emulator_ops *ops)
4533 {
4534 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4535 	gpa_t gpa;
4536 	int rc;
4537 
4538 	if (ops->read_write_prepare &&
4539 		  ops->read_write_prepare(vcpu, val, bytes))
4540 		return X86EMUL_CONTINUE;
4541 
4542 	vcpu->mmio_nr_fragments = 0;
4543 
4544 	/* Crossing a page boundary? */
4545 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4546 		int now;
4547 
4548 		now = -addr & ~PAGE_MASK;
4549 		rc = emulator_read_write_onepage(addr, val, now, exception,
4550 						 vcpu, ops);
4551 
4552 		if (rc != X86EMUL_CONTINUE)
4553 			return rc;
4554 		addr += now;
4555 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4556 			addr = (u32)addr;
4557 		val += now;
4558 		bytes -= now;
4559 	}
4560 
4561 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4562 					 vcpu, ops);
4563 	if (rc != X86EMUL_CONTINUE)
4564 		return rc;
4565 
4566 	if (!vcpu->mmio_nr_fragments)
4567 		return rc;
4568 
4569 	gpa = vcpu->mmio_fragments[0].gpa;
4570 
4571 	vcpu->mmio_needed = 1;
4572 	vcpu->mmio_cur_fragment = 0;
4573 
4574 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4575 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4576 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4577 	vcpu->run->mmio.phys_addr = gpa;
4578 
4579 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4580 }
4581 
4582 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4583 				  unsigned long addr,
4584 				  void *val,
4585 				  unsigned int bytes,
4586 				  struct x86_exception *exception)
4587 {
4588 	return emulator_read_write(ctxt, addr, val, bytes,
4589 				   exception, &read_emultor);
4590 }
4591 
4592 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4593 			    unsigned long addr,
4594 			    const void *val,
4595 			    unsigned int bytes,
4596 			    struct x86_exception *exception)
4597 {
4598 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4599 				   exception, &write_emultor);
4600 }
4601 
4602 #define CMPXCHG_TYPE(t, ptr, old, new) \
4603 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4604 
4605 #ifdef CONFIG_X86_64
4606 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4607 #else
4608 #  define CMPXCHG64(ptr, old, new) \
4609 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4610 #endif
4611 
4612 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4613 				     unsigned long addr,
4614 				     const void *old,
4615 				     const void *new,
4616 				     unsigned int bytes,
4617 				     struct x86_exception *exception)
4618 {
4619 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4620 	gpa_t gpa;
4621 	struct page *page;
4622 	char *kaddr;
4623 	bool exchanged;
4624 
4625 	/* guests cmpxchg8b have to be emulated atomically */
4626 	if (bytes > 8 || (bytes & (bytes - 1)))
4627 		goto emul_write;
4628 
4629 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4630 
4631 	if (gpa == UNMAPPED_GVA ||
4632 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4633 		goto emul_write;
4634 
4635 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4636 		goto emul_write;
4637 
4638 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4639 	if (is_error_page(page))
4640 		goto emul_write;
4641 
4642 	kaddr = kmap_atomic(page);
4643 	kaddr += offset_in_page(gpa);
4644 	switch (bytes) {
4645 	case 1:
4646 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4647 		break;
4648 	case 2:
4649 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4650 		break;
4651 	case 4:
4652 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4653 		break;
4654 	case 8:
4655 		exchanged = CMPXCHG64(kaddr, old, new);
4656 		break;
4657 	default:
4658 		BUG();
4659 	}
4660 	kunmap_atomic(kaddr);
4661 	kvm_release_page_dirty(page);
4662 
4663 	if (!exchanged)
4664 		return X86EMUL_CMPXCHG_FAILED;
4665 
4666 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4667 	kvm_page_track_write(vcpu, gpa, new, bytes);
4668 
4669 	return X86EMUL_CONTINUE;
4670 
4671 emul_write:
4672 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4673 
4674 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4675 }
4676 
4677 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4678 {
4679 	/* TODO: String I/O for in kernel device */
4680 	int r;
4681 
4682 	if (vcpu->arch.pio.in)
4683 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4684 				    vcpu->arch.pio.size, pd);
4685 	else
4686 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4687 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4688 				     pd);
4689 	return r;
4690 }
4691 
4692 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4693 			       unsigned short port, void *val,
4694 			       unsigned int count, bool in)
4695 {
4696 	vcpu->arch.pio.port = port;
4697 	vcpu->arch.pio.in = in;
4698 	vcpu->arch.pio.count  = count;
4699 	vcpu->arch.pio.size = size;
4700 
4701 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4702 		vcpu->arch.pio.count = 0;
4703 		return 1;
4704 	}
4705 
4706 	vcpu->run->exit_reason = KVM_EXIT_IO;
4707 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4708 	vcpu->run->io.size = size;
4709 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4710 	vcpu->run->io.count = count;
4711 	vcpu->run->io.port = port;
4712 
4713 	return 0;
4714 }
4715 
4716 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4717 				    int size, unsigned short port, void *val,
4718 				    unsigned int count)
4719 {
4720 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4721 	int ret;
4722 
4723 	if (vcpu->arch.pio.count)
4724 		goto data_avail;
4725 
4726 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4727 	if (ret) {
4728 data_avail:
4729 		memcpy(val, vcpu->arch.pio_data, size * count);
4730 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4731 		vcpu->arch.pio.count = 0;
4732 		return 1;
4733 	}
4734 
4735 	return 0;
4736 }
4737 
4738 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4739 				     int size, unsigned short port,
4740 				     const void *val, unsigned int count)
4741 {
4742 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4743 
4744 	memcpy(vcpu->arch.pio_data, val, size * count);
4745 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4746 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4747 }
4748 
4749 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4750 {
4751 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4752 }
4753 
4754 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4755 {
4756 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4757 }
4758 
4759 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4760 {
4761 	if (!need_emulate_wbinvd(vcpu))
4762 		return X86EMUL_CONTINUE;
4763 
4764 	if (kvm_x86_ops->has_wbinvd_exit()) {
4765 		int cpu = get_cpu();
4766 
4767 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4768 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4769 				wbinvd_ipi, NULL, 1);
4770 		put_cpu();
4771 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4772 	} else
4773 		wbinvd();
4774 	return X86EMUL_CONTINUE;
4775 }
4776 
4777 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4778 {
4779 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4780 	return kvm_emulate_wbinvd_noskip(vcpu);
4781 }
4782 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4783 
4784 
4785 
4786 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4787 {
4788 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4789 }
4790 
4791 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4792 			   unsigned long *dest)
4793 {
4794 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4795 }
4796 
4797 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4798 			   unsigned long value)
4799 {
4800 
4801 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4802 }
4803 
4804 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4805 {
4806 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4807 }
4808 
4809 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4810 {
4811 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4812 	unsigned long value;
4813 
4814 	switch (cr) {
4815 	case 0:
4816 		value = kvm_read_cr0(vcpu);
4817 		break;
4818 	case 2:
4819 		value = vcpu->arch.cr2;
4820 		break;
4821 	case 3:
4822 		value = kvm_read_cr3(vcpu);
4823 		break;
4824 	case 4:
4825 		value = kvm_read_cr4(vcpu);
4826 		break;
4827 	case 8:
4828 		value = kvm_get_cr8(vcpu);
4829 		break;
4830 	default:
4831 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4832 		return 0;
4833 	}
4834 
4835 	return value;
4836 }
4837 
4838 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4839 {
4840 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4841 	int res = 0;
4842 
4843 	switch (cr) {
4844 	case 0:
4845 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4846 		break;
4847 	case 2:
4848 		vcpu->arch.cr2 = val;
4849 		break;
4850 	case 3:
4851 		res = kvm_set_cr3(vcpu, val);
4852 		break;
4853 	case 4:
4854 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4855 		break;
4856 	case 8:
4857 		res = kvm_set_cr8(vcpu, val);
4858 		break;
4859 	default:
4860 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4861 		res = -1;
4862 	}
4863 
4864 	return res;
4865 }
4866 
4867 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4868 {
4869 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4870 }
4871 
4872 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4873 {
4874 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4875 }
4876 
4877 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4878 {
4879 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4880 }
4881 
4882 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4883 {
4884 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4885 }
4886 
4887 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4888 {
4889 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4890 }
4891 
4892 static unsigned long emulator_get_cached_segment_base(
4893 	struct x86_emulate_ctxt *ctxt, int seg)
4894 {
4895 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4896 }
4897 
4898 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4899 				 struct desc_struct *desc, u32 *base3,
4900 				 int seg)
4901 {
4902 	struct kvm_segment var;
4903 
4904 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4905 	*selector = var.selector;
4906 
4907 	if (var.unusable) {
4908 		memset(desc, 0, sizeof(*desc));
4909 		return false;
4910 	}
4911 
4912 	if (var.g)
4913 		var.limit >>= 12;
4914 	set_desc_limit(desc, var.limit);
4915 	set_desc_base(desc, (unsigned long)var.base);
4916 #ifdef CONFIG_X86_64
4917 	if (base3)
4918 		*base3 = var.base >> 32;
4919 #endif
4920 	desc->type = var.type;
4921 	desc->s = var.s;
4922 	desc->dpl = var.dpl;
4923 	desc->p = var.present;
4924 	desc->avl = var.avl;
4925 	desc->l = var.l;
4926 	desc->d = var.db;
4927 	desc->g = var.g;
4928 
4929 	return true;
4930 }
4931 
4932 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4933 				 struct desc_struct *desc, u32 base3,
4934 				 int seg)
4935 {
4936 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4937 	struct kvm_segment var;
4938 
4939 	var.selector = selector;
4940 	var.base = get_desc_base(desc);
4941 #ifdef CONFIG_X86_64
4942 	var.base |= ((u64)base3) << 32;
4943 #endif
4944 	var.limit = get_desc_limit(desc);
4945 	if (desc->g)
4946 		var.limit = (var.limit << 12) | 0xfff;
4947 	var.type = desc->type;
4948 	var.dpl = desc->dpl;
4949 	var.db = desc->d;
4950 	var.s = desc->s;
4951 	var.l = desc->l;
4952 	var.g = desc->g;
4953 	var.avl = desc->avl;
4954 	var.present = desc->p;
4955 	var.unusable = !var.present;
4956 	var.padding = 0;
4957 
4958 	kvm_set_segment(vcpu, &var, seg);
4959 	return;
4960 }
4961 
4962 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4963 			    u32 msr_index, u64 *pdata)
4964 {
4965 	struct msr_data msr;
4966 	int r;
4967 
4968 	msr.index = msr_index;
4969 	msr.host_initiated = false;
4970 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4971 	if (r)
4972 		return r;
4973 
4974 	*pdata = msr.data;
4975 	return 0;
4976 }
4977 
4978 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4979 			    u32 msr_index, u64 data)
4980 {
4981 	struct msr_data msr;
4982 
4983 	msr.data = data;
4984 	msr.index = msr_index;
4985 	msr.host_initiated = false;
4986 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4987 }
4988 
4989 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4990 {
4991 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4992 
4993 	return vcpu->arch.smbase;
4994 }
4995 
4996 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4997 {
4998 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4999 
5000 	vcpu->arch.smbase = smbase;
5001 }
5002 
5003 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5004 			      u32 pmc)
5005 {
5006 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5007 }
5008 
5009 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5010 			     u32 pmc, u64 *pdata)
5011 {
5012 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5013 }
5014 
5015 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5016 {
5017 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5018 }
5019 
5020 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5021 {
5022 	preempt_disable();
5023 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5024 	/*
5025 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
5026 	 * so it may be clear at this point.
5027 	 */
5028 	clts();
5029 }
5030 
5031 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5032 {
5033 	preempt_enable();
5034 }
5035 
5036 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5037 			      struct x86_instruction_info *info,
5038 			      enum x86_intercept_stage stage)
5039 {
5040 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5041 }
5042 
5043 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5044 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5045 {
5046 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5047 }
5048 
5049 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5050 {
5051 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5052 }
5053 
5054 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5055 {
5056 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5057 }
5058 
5059 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5060 {
5061 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5062 }
5063 
5064 static const struct x86_emulate_ops emulate_ops = {
5065 	.read_gpr            = emulator_read_gpr,
5066 	.write_gpr           = emulator_write_gpr,
5067 	.read_std            = kvm_read_guest_virt_system,
5068 	.write_std           = kvm_write_guest_virt_system,
5069 	.read_phys           = kvm_read_guest_phys_system,
5070 	.fetch               = kvm_fetch_guest_virt,
5071 	.read_emulated       = emulator_read_emulated,
5072 	.write_emulated      = emulator_write_emulated,
5073 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5074 	.invlpg              = emulator_invlpg,
5075 	.pio_in_emulated     = emulator_pio_in_emulated,
5076 	.pio_out_emulated    = emulator_pio_out_emulated,
5077 	.get_segment         = emulator_get_segment,
5078 	.set_segment         = emulator_set_segment,
5079 	.get_cached_segment_base = emulator_get_cached_segment_base,
5080 	.get_gdt             = emulator_get_gdt,
5081 	.get_idt	     = emulator_get_idt,
5082 	.set_gdt             = emulator_set_gdt,
5083 	.set_idt	     = emulator_set_idt,
5084 	.get_cr              = emulator_get_cr,
5085 	.set_cr              = emulator_set_cr,
5086 	.cpl                 = emulator_get_cpl,
5087 	.get_dr              = emulator_get_dr,
5088 	.set_dr              = emulator_set_dr,
5089 	.get_smbase          = emulator_get_smbase,
5090 	.set_smbase          = emulator_set_smbase,
5091 	.set_msr             = emulator_set_msr,
5092 	.get_msr             = emulator_get_msr,
5093 	.check_pmc	     = emulator_check_pmc,
5094 	.read_pmc            = emulator_read_pmc,
5095 	.halt                = emulator_halt,
5096 	.wbinvd              = emulator_wbinvd,
5097 	.fix_hypercall       = emulator_fix_hypercall,
5098 	.get_fpu             = emulator_get_fpu,
5099 	.put_fpu             = emulator_put_fpu,
5100 	.intercept           = emulator_intercept,
5101 	.get_cpuid           = emulator_get_cpuid,
5102 	.set_nmi_mask        = emulator_set_nmi_mask,
5103 };
5104 
5105 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5106 {
5107 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5108 	/*
5109 	 * an sti; sti; sequence only disable interrupts for the first
5110 	 * instruction. So, if the last instruction, be it emulated or
5111 	 * not, left the system with the INT_STI flag enabled, it
5112 	 * means that the last instruction is an sti. We should not
5113 	 * leave the flag on in this case. The same goes for mov ss
5114 	 */
5115 	if (int_shadow & mask)
5116 		mask = 0;
5117 	if (unlikely(int_shadow || mask)) {
5118 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5119 		if (!mask)
5120 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5121 	}
5122 }
5123 
5124 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5125 {
5126 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5127 	if (ctxt->exception.vector == PF_VECTOR)
5128 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5129 
5130 	if (ctxt->exception.error_code_valid)
5131 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5132 				      ctxt->exception.error_code);
5133 	else
5134 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5135 	return false;
5136 }
5137 
5138 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5139 {
5140 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5141 	int cs_db, cs_l;
5142 
5143 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5144 
5145 	ctxt->eflags = kvm_get_rflags(vcpu);
5146 	ctxt->eip = kvm_rip_read(vcpu);
5147 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5148 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5149 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5150 		     cs_db				? X86EMUL_MODE_PROT32 :
5151 							  X86EMUL_MODE_PROT16;
5152 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5153 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5154 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5155 	ctxt->emul_flags = vcpu->arch.hflags;
5156 
5157 	init_decode_cache(ctxt);
5158 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5159 }
5160 
5161 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5162 {
5163 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5164 	int ret;
5165 
5166 	init_emulate_ctxt(vcpu);
5167 
5168 	ctxt->op_bytes = 2;
5169 	ctxt->ad_bytes = 2;
5170 	ctxt->_eip = ctxt->eip + inc_eip;
5171 	ret = emulate_int_real(ctxt, irq);
5172 
5173 	if (ret != X86EMUL_CONTINUE)
5174 		return EMULATE_FAIL;
5175 
5176 	ctxt->eip = ctxt->_eip;
5177 	kvm_rip_write(vcpu, ctxt->eip);
5178 	kvm_set_rflags(vcpu, ctxt->eflags);
5179 
5180 	if (irq == NMI_VECTOR)
5181 		vcpu->arch.nmi_pending = 0;
5182 	else
5183 		vcpu->arch.interrupt.pending = false;
5184 
5185 	return EMULATE_DONE;
5186 }
5187 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5188 
5189 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5190 {
5191 	int r = EMULATE_DONE;
5192 
5193 	++vcpu->stat.insn_emulation_fail;
5194 	trace_kvm_emulate_insn_failed(vcpu);
5195 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5196 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5197 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5198 		vcpu->run->internal.ndata = 0;
5199 		r = EMULATE_FAIL;
5200 	}
5201 	kvm_queue_exception(vcpu, UD_VECTOR);
5202 
5203 	return r;
5204 }
5205 
5206 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5207 				  bool write_fault_to_shadow_pgtable,
5208 				  int emulation_type)
5209 {
5210 	gpa_t gpa = cr2;
5211 	kvm_pfn_t pfn;
5212 
5213 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5214 		return false;
5215 
5216 	if (!vcpu->arch.mmu.direct_map) {
5217 		/*
5218 		 * Write permission should be allowed since only
5219 		 * write access need to be emulated.
5220 		 */
5221 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5222 
5223 		/*
5224 		 * If the mapping is invalid in guest, let cpu retry
5225 		 * it to generate fault.
5226 		 */
5227 		if (gpa == UNMAPPED_GVA)
5228 			return true;
5229 	}
5230 
5231 	/*
5232 	 * Do not retry the unhandleable instruction if it faults on the
5233 	 * readonly host memory, otherwise it will goto a infinite loop:
5234 	 * retry instruction -> write #PF -> emulation fail -> retry
5235 	 * instruction -> ...
5236 	 */
5237 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5238 
5239 	/*
5240 	 * If the instruction failed on the error pfn, it can not be fixed,
5241 	 * report the error to userspace.
5242 	 */
5243 	if (is_error_noslot_pfn(pfn))
5244 		return false;
5245 
5246 	kvm_release_pfn_clean(pfn);
5247 
5248 	/* The instructions are well-emulated on direct mmu. */
5249 	if (vcpu->arch.mmu.direct_map) {
5250 		unsigned int indirect_shadow_pages;
5251 
5252 		spin_lock(&vcpu->kvm->mmu_lock);
5253 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5254 		spin_unlock(&vcpu->kvm->mmu_lock);
5255 
5256 		if (indirect_shadow_pages)
5257 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5258 
5259 		return true;
5260 	}
5261 
5262 	/*
5263 	 * if emulation was due to access to shadowed page table
5264 	 * and it failed try to unshadow page and re-enter the
5265 	 * guest to let CPU execute the instruction.
5266 	 */
5267 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5268 
5269 	/*
5270 	 * If the access faults on its page table, it can not
5271 	 * be fixed by unprotecting shadow page and it should
5272 	 * be reported to userspace.
5273 	 */
5274 	return !write_fault_to_shadow_pgtable;
5275 }
5276 
5277 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5278 			      unsigned long cr2,  int emulation_type)
5279 {
5280 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5281 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5282 
5283 	last_retry_eip = vcpu->arch.last_retry_eip;
5284 	last_retry_addr = vcpu->arch.last_retry_addr;
5285 
5286 	/*
5287 	 * If the emulation is caused by #PF and it is non-page_table
5288 	 * writing instruction, it means the VM-EXIT is caused by shadow
5289 	 * page protected, we can zap the shadow page and retry this
5290 	 * instruction directly.
5291 	 *
5292 	 * Note: if the guest uses a non-page-table modifying instruction
5293 	 * on the PDE that points to the instruction, then we will unmap
5294 	 * the instruction and go to an infinite loop. So, we cache the
5295 	 * last retried eip and the last fault address, if we meet the eip
5296 	 * and the address again, we can break out of the potential infinite
5297 	 * loop.
5298 	 */
5299 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5300 
5301 	if (!(emulation_type & EMULTYPE_RETRY))
5302 		return false;
5303 
5304 	if (x86_page_table_writing_insn(ctxt))
5305 		return false;
5306 
5307 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5308 		return false;
5309 
5310 	vcpu->arch.last_retry_eip = ctxt->eip;
5311 	vcpu->arch.last_retry_addr = cr2;
5312 
5313 	if (!vcpu->arch.mmu.direct_map)
5314 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5315 
5316 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5317 
5318 	return true;
5319 }
5320 
5321 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5322 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5323 
5324 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5325 {
5326 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5327 		/* This is a good place to trace that we are exiting SMM.  */
5328 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5329 
5330 		/* Process a latched INIT or SMI, if any.  */
5331 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5332 	}
5333 
5334 	kvm_mmu_reset_context(vcpu);
5335 }
5336 
5337 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5338 {
5339 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5340 
5341 	vcpu->arch.hflags = emul_flags;
5342 
5343 	if (changed & HF_SMM_MASK)
5344 		kvm_smm_changed(vcpu);
5345 }
5346 
5347 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5348 				unsigned long *db)
5349 {
5350 	u32 dr6 = 0;
5351 	int i;
5352 	u32 enable, rwlen;
5353 
5354 	enable = dr7;
5355 	rwlen = dr7 >> 16;
5356 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5357 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5358 			dr6 |= (1 << i);
5359 	return dr6;
5360 }
5361 
5362 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5363 {
5364 	struct kvm_run *kvm_run = vcpu->run;
5365 
5366 	/*
5367 	 * rflags is the old, "raw" value of the flags.  The new value has
5368 	 * not been saved yet.
5369 	 *
5370 	 * This is correct even for TF set by the guest, because "the
5371 	 * processor will not generate this exception after the instruction
5372 	 * that sets the TF flag".
5373 	 */
5374 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5375 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5376 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5377 						  DR6_RTM;
5378 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5379 			kvm_run->debug.arch.exception = DB_VECTOR;
5380 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5381 			*r = EMULATE_USER_EXIT;
5382 		} else {
5383 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5384 			/*
5385 			 * "Certain debug exceptions may clear bit 0-3.  The
5386 			 * remaining contents of the DR6 register are never
5387 			 * cleared by the processor".
5388 			 */
5389 			vcpu->arch.dr6 &= ~15;
5390 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5391 			kvm_queue_exception(vcpu, DB_VECTOR);
5392 		}
5393 	}
5394 }
5395 
5396 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5397 {
5398 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5399 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5400 		struct kvm_run *kvm_run = vcpu->run;
5401 		unsigned long eip = kvm_get_linear_rip(vcpu);
5402 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5403 					   vcpu->arch.guest_debug_dr7,
5404 					   vcpu->arch.eff_db);
5405 
5406 		if (dr6 != 0) {
5407 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5408 			kvm_run->debug.arch.pc = eip;
5409 			kvm_run->debug.arch.exception = DB_VECTOR;
5410 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5411 			*r = EMULATE_USER_EXIT;
5412 			return true;
5413 		}
5414 	}
5415 
5416 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5417 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5418 		unsigned long eip = kvm_get_linear_rip(vcpu);
5419 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5420 					   vcpu->arch.dr7,
5421 					   vcpu->arch.db);
5422 
5423 		if (dr6 != 0) {
5424 			vcpu->arch.dr6 &= ~15;
5425 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5426 			kvm_queue_exception(vcpu, DB_VECTOR);
5427 			*r = EMULATE_DONE;
5428 			return true;
5429 		}
5430 	}
5431 
5432 	return false;
5433 }
5434 
5435 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5436 			    unsigned long cr2,
5437 			    int emulation_type,
5438 			    void *insn,
5439 			    int insn_len)
5440 {
5441 	int r;
5442 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5443 	bool writeback = true;
5444 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5445 
5446 	/*
5447 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5448 	 * never reused.
5449 	 */
5450 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5451 	kvm_clear_exception_queue(vcpu);
5452 
5453 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5454 		init_emulate_ctxt(vcpu);
5455 
5456 		/*
5457 		 * We will reenter on the same instruction since
5458 		 * we do not set complete_userspace_io.  This does not
5459 		 * handle watchpoints yet, those would be handled in
5460 		 * the emulate_ops.
5461 		 */
5462 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5463 			return r;
5464 
5465 		ctxt->interruptibility = 0;
5466 		ctxt->have_exception = false;
5467 		ctxt->exception.vector = -1;
5468 		ctxt->perm_ok = false;
5469 
5470 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5471 
5472 		r = x86_decode_insn(ctxt, insn, insn_len);
5473 
5474 		trace_kvm_emulate_insn_start(vcpu);
5475 		++vcpu->stat.insn_emulation;
5476 		if (r != EMULATION_OK)  {
5477 			if (emulation_type & EMULTYPE_TRAP_UD)
5478 				return EMULATE_FAIL;
5479 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5480 						emulation_type))
5481 				return EMULATE_DONE;
5482 			if (emulation_type & EMULTYPE_SKIP)
5483 				return EMULATE_FAIL;
5484 			return handle_emulation_failure(vcpu);
5485 		}
5486 	}
5487 
5488 	if (emulation_type & EMULTYPE_SKIP) {
5489 		kvm_rip_write(vcpu, ctxt->_eip);
5490 		if (ctxt->eflags & X86_EFLAGS_RF)
5491 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5492 		return EMULATE_DONE;
5493 	}
5494 
5495 	if (retry_instruction(ctxt, cr2, emulation_type))
5496 		return EMULATE_DONE;
5497 
5498 	/* this is needed for vmware backdoor interface to work since it
5499 	   changes registers values  during IO operation */
5500 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5501 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5502 		emulator_invalidate_register_cache(ctxt);
5503 	}
5504 
5505 restart:
5506 	r = x86_emulate_insn(ctxt);
5507 
5508 	if (r == EMULATION_INTERCEPTED)
5509 		return EMULATE_DONE;
5510 
5511 	if (r == EMULATION_FAILED) {
5512 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5513 					emulation_type))
5514 			return EMULATE_DONE;
5515 
5516 		return handle_emulation_failure(vcpu);
5517 	}
5518 
5519 	if (ctxt->have_exception) {
5520 		r = EMULATE_DONE;
5521 		if (inject_emulated_exception(vcpu))
5522 			return r;
5523 	} else if (vcpu->arch.pio.count) {
5524 		if (!vcpu->arch.pio.in) {
5525 			/* FIXME: return into emulator if single-stepping.  */
5526 			vcpu->arch.pio.count = 0;
5527 		} else {
5528 			writeback = false;
5529 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5530 		}
5531 		r = EMULATE_USER_EXIT;
5532 	} else if (vcpu->mmio_needed) {
5533 		if (!vcpu->mmio_is_write)
5534 			writeback = false;
5535 		r = EMULATE_USER_EXIT;
5536 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5537 	} else if (r == EMULATION_RESTART)
5538 		goto restart;
5539 	else
5540 		r = EMULATE_DONE;
5541 
5542 	if (writeback) {
5543 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5544 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5545 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5546 		if (vcpu->arch.hflags != ctxt->emul_flags)
5547 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5548 		kvm_rip_write(vcpu, ctxt->eip);
5549 		if (r == EMULATE_DONE)
5550 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5551 		if (!ctxt->have_exception ||
5552 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5553 			__kvm_set_rflags(vcpu, ctxt->eflags);
5554 
5555 		/*
5556 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5557 		 * do nothing, and it will be requested again as soon as
5558 		 * the shadow expires.  But we still need to check here,
5559 		 * because POPF has no interrupt shadow.
5560 		 */
5561 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5562 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5563 	} else
5564 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5565 
5566 	return r;
5567 }
5568 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5569 
5570 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5571 {
5572 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5573 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5574 					    size, port, &val, 1);
5575 	/* do not return to emulator after return from userspace */
5576 	vcpu->arch.pio.count = 0;
5577 	return ret;
5578 }
5579 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5580 
5581 static int kvmclock_cpu_down_prep(unsigned int cpu)
5582 {
5583 	__this_cpu_write(cpu_tsc_khz, 0);
5584 	return 0;
5585 }
5586 
5587 static void tsc_khz_changed(void *data)
5588 {
5589 	struct cpufreq_freqs *freq = data;
5590 	unsigned long khz = 0;
5591 
5592 	if (data)
5593 		khz = freq->new;
5594 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5595 		khz = cpufreq_quick_get(raw_smp_processor_id());
5596 	if (!khz)
5597 		khz = tsc_khz;
5598 	__this_cpu_write(cpu_tsc_khz, khz);
5599 }
5600 
5601 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5602 				     void *data)
5603 {
5604 	struct cpufreq_freqs *freq = data;
5605 	struct kvm *kvm;
5606 	struct kvm_vcpu *vcpu;
5607 	int i, send_ipi = 0;
5608 
5609 	/*
5610 	 * We allow guests to temporarily run on slowing clocks,
5611 	 * provided we notify them after, or to run on accelerating
5612 	 * clocks, provided we notify them before.  Thus time never
5613 	 * goes backwards.
5614 	 *
5615 	 * However, we have a problem.  We can't atomically update
5616 	 * the frequency of a given CPU from this function; it is
5617 	 * merely a notifier, which can be called from any CPU.
5618 	 * Changing the TSC frequency at arbitrary points in time
5619 	 * requires a recomputation of local variables related to
5620 	 * the TSC for each VCPU.  We must flag these local variables
5621 	 * to be updated and be sure the update takes place with the
5622 	 * new frequency before any guests proceed.
5623 	 *
5624 	 * Unfortunately, the combination of hotplug CPU and frequency
5625 	 * change creates an intractable locking scenario; the order
5626 	 * of when these callouts happen is undefined with respect to
5627 	 * CPU hotplug, and they can race with each other.  As such,
5628 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5629 	 * undefined; you can actually have a CPU frequency change take
5630 	 * place in between the computation of X and the setting of the
5631 	 * variable.  To protect against this problem, all updates of
5632 	 * the per_cpu tsc_khz variable are done in an interrupt
5633 	 * protected IPI, and all callers wishing to update the value
5634 	 * must wait for a synchronous IPI to complete (which is trivial
5635 	 * if the caller is on the CPU already).  This establishes the
5636 	 * necessary total order on variable updates.
5637 	 *
5638 	 * Note that because a guest time update may take place
5639 	 * anytime after the setting of the VCPU's request bit, the
5640 	 * correct TSC value must be set before the request.  However,
5641 	 * to ensure the update actually makes it to any guest which
5642 	 * starts running in hardware virtualization between the set
5643 	 * and the acquisition of the spinlock, we must also ping the
5644 	 * CPU after setting the request bit.
5645 	 *
5646 	 */
5647 
5648 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5649 		return 0;
5650 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5651 		return 0;
5652 
5653 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5654 
5655 	spin_lock(&kvm_lock);
5656 	list_for_each_entry(kvm, &vm_list, vm_list) {
5657 		kvm_for_each_vcpu(i, vcpu, kvm) {
5658 			if (vcpu->cpu != freq->cpu)
5659 				continue;
5660 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5661 			if (vcpu->cpu != smp_processor_id())
5662 				send_ipi = 1;
5663 		}
5664 	}
5665 	spin_unlock(&kvm_lock);
5666 
5667 	if (freq->old < freq->new && send_ipi) {
5668 		/*
5669 		 * We upscale the frequency.  Must make the guest
5670 		 * doesn't see old kvmclock values while running with
5671 		 * the new frequency, otherwise we risk the guest sees
5672 		 * time go backwards.
5673 		 *
5674 		 * In case we update the frequency for another cpu
5675 		 * (which might be in guest context) send an interrupt
5676 		 * to kick the cpu out of guest context.  Next time
5677 		 * guest context is entered kvmclock will be updated,
5678 		 * so the guest will not see stale values.
5679 		 */
5680 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5681 	}
5682 	return 0;
5683 }
5684 
5685 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5686 	.notifier_call  = kvmclock_cpufreq_notifier
5687 };
5688 
5689 static int kvmclock_cpu_online(unsigned int cpu)
5690 {
5691 	tsc_khz_changed(NULL);
5692 	return 0;
5693 }
5694 
5695 static void kvm_timer_init(void)
5696 {
5697 	int cpu;
5698 
5699 	max_tsc_khz = tsc_khz;
5700 
5701 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5702 #ifdef CONFIG_CPU_FREQ
5703 		struct cpufreq_policy policy;
5704 		memset(&policy, 0, sizeof(policy));
5705 		cpu = get_cpu();
5706 		cpufreq_get_policy(&policy, cpu);
5707 		if (policy.cpuinfo.max_freq)
5708 			max_tsc_khz = policy.cpuinfo.max_freq;
5709 		put_cpu();
5710 #endif
5711 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5712 					  CPUFREQ_TRANSITION_NOTIFIER);
5713 	}
5714 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5715 
5716 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE",
5717 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
5718 }
5719 
5720 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5721 
5722 int kvm_is_in_guest(void)
5723 {
5724 	return __this_cpu_read(current_vcpu) != NULL;
5725 }
5726 
5727 static int kvm_is_user_mode(void)
5728 {
5729 	int user_mode = 3;
5730 
5731 	if (__this_cpu_read(current_vcpu))
5732 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5733 
5734 	return user_mode != 0;
5735 }
5736 
5737 static unsigned long kvm_get_guest_ip(void)
5738 {
5739 	unsigned long ip = 0;
5740 
5741 	if (__this_cpu_read(current_vcpu))
5742 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5743 
5744 	return ip;
5745 }
5746 
5747 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5748 	.is_in_guest		= kvm_is_in_guest,
5749 	.is_user_mode		= kvm_is_user_mode,
5750 	.get_guest_ip		= kvm_get_guest_ip,
5751 };
5752 
5753 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5754 {
5755 	__this_cpu_write(current_vcpu, vcpu);
5756 }
5757 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5758 
5759 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5760 {
5761 	__this_cpu_write(current_vcpu, NULL);
5762 }
5763 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5764 
5765 static void kvm_set_mmio_spte_mask(void)
5766 {
5767 	u64 mask;
5768 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5769 
5770 	/*
5771 	 * Set the reserved bits and the present bit of an paging-structure
5772 	 * entry to generate page fault with PFER.RSV = 1.
5773 	 */
5774 	 /* Mask the reserved physical address bits. */
5775 	mask = rsvd_bits(maxphyaddr, 51);
5776 
5777 	/* Bit 62 is always reserved for 32bit host. */
5778 	mask |= 0x3ull << 62;
5779 
5780 	/* Set the present bit. */
5781 	mask |= 1ull;
5782 
5783 #ifdef CONFIG_X86_64
5784 	/*
5785 	 * If reserved bit is not supported, clear the present bit to disable
5786 	 * mmio page fault.
5787 	 */
5788 	if (maxphyaddr == 52)
5789 		mask &= ~1ull;
5790 #endif
5791 
5792 	kvm_mmu_set_mmio_spte_mask(mask);
5793 }
5794 
5795 #ifdef CONFIG_X86_64
5796 static void pvclock_gtod_update_fn(struct work_struct *work)
5797 {
5798 	struct kvm *kvm;
5799 
5800 	struct kvm_vcpu *vcpu;
5801 	int i;
5802 
5803 	spin_lock(&kvm_lock);
5804 	list_for_each_entry(kvm, &vm_list, vm_list)
5805 		kvm_for_each_vcpu(i, vcpu, kvm)
5806 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5807 	atomic_set(&kvm_guest_has_master_clock, 0);
5808 	spin_unlock(&kvm_lock);
5809 }
5810 
5811 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5812 
5813 /*
5814  * Notification about pvclock gtod data update.
5815  */
5816 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5817 			       void *priv)
5818 {
5819 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5820 	struct timekeeper *tk = priv;
5821 
5822 	update_pvclock_gtod(tk);
5823 
5824 	/* disable master clock if host does not trust, or does not
5825 	 * use, TSC clocksource
5826 	 */
5827 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5828 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5829 		queue_work(system_long_wq, &pvclock_gtod_work);
5830 
5831 	return 0;
5832 }
5833 
5834 static struct notifier_block pvclock_gtod_notifier = {
5835 	.notifier_call = pvclock_gtod_notify,
5836 };
5837 #endif
5838 
5839 int kvm_arch_init(void *opaque)
5840 {
5841 	int r;
5842 	struct kvm_x86_ops *ops = opaque;
5843 
5844 	if (kvm_x86_ops) {
5845 		printk(KERN_ERR "kvm: already loaded the other module\n");
5846 		r = -EEXIST;
5847 		goto out;
5848 	}
5849 
5850 	if (!ops->cpu_has_kvm_support()) {
5851 		printk(KERN_ERR "kvm: no hardware support\n");
5852 		r = -EOPNOTSUPP;
5853 		goto out;
5854 	}
5855 	if (ops->disabled_by_bios()) {
5856 		printk(KERN_ERR "kvm: disabled by bios\n");
5857 		r = -EOPNOTSUPP;
5858 		goto out;
5859 	}
5860 
5861 	r = -ENOMEM;
5862 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5863 	if (!shared_msrs) {
5864 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5865 		goto out;
5866 	}
5867 
5868 	r = kvm_mmu_module_init();
5869 	if (r)
5870 		goto out_free_percpu;
5871 
5872 	kvm_set_mmio_spte_mask();
5873 
5874 	kvm_x86_ops = ops;
5875 
5876 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5877 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
5878 			PT_PRESENT_MASK);
5879 	kvm_timer_init();
5880 
5881 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5882 
5883 	if (boot_cpu_has(X86_FEATURE_XSAVE))
5884 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5885 
5886 	kvm_lapic_init();
5887 #ifdef CONFIG_X86_64
5888 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5889 #endif
5890 
5891 	return 0;
5892 
5893 out_free_percpu:
5894 	free_percpu(shared_msrs);
5895 out:
5896 	return r;
5897 }
5898 
5899 void kvm_arch_exit(void)
5900 {
5901 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5902 
5903 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5904 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5905 					    CPUFREQ_TRANSITION_NOTIFIER);
5906 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
5907 #ifdef CONFIG_X86_64
5908 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5909 #endif
5910 	kvm_x86_ops = NULL;
5911 	kvm_mmu_module_exit();
5912 	free_percpu(shared_msrs);
5913 }
5914 
5915 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5916 {
5917 	++vcpu->stat.halt_exits;
5918 	if (lapic_in_kernel(vcpu)) {
5919 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5920 		return 1;
5921 	} else {
5922 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5923 		return 0;
5924 	}
5925 }
5926 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5927 
5928 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5929 {
5930 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5931 	return kvm_vcpu_halt(vcpu);
5932 }
5933 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5934 
5935 /*
5936  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5937  *
5938  * @apicid - apicid of vcpu to be kicked.
5939  */
5940 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5941 {
5942 	struct kvm_lapic_irq lapic_irq;
5943 
5944 	lapic_irq.shorthand = 0;
5945 	lapic_irq.dest_mode = 0;
5946 	lapic_irq.dest_id = apicid;
5947 	lapic_irq.msi_redir_hint = false;
5948 
5949 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5950 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5951 }
5952 
5953 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5954 {
5955 	vcpu->arch.apicv_active = false;
5956 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5957 }
5958 
5959 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5960 {
5961 	unsigned long nr, a0, a1, a2, a3, ret;
5962 	int op_64_bit, r = 1;
5963 
5964 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5965 
5966 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5967 		return kvm_hv_hypercall(vcpu);
5968 
5969 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5970 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5971 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5972 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5973 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5974 
5975 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5976 
5977 	op_64_bit = is_64_bit_mode(vcpu);
5978 	if (!op_64_bit) {
5979 		nr &= 0xFFFFFFFF;
5980 		a0 &= 0xFFFFFFFF;
5981 		a1 &= 0xFFFFFFFF;
5982 		a2 &= 0xFFFFFFFF;
5983 		a3 &= 0xFFFFFFFF;
5984 	}
5985 
5986 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5987 		ret = -KVM_EPERM;
5988 		goto out;
5989 	}
5990 
5991 	switch (nr) {
5992 	case KVM_HC_VAPIC_POLL_IRQ:
5993 		ret = 0;
5994 		break;
5995 	case KVM_HC_KICK_CPU:
5996 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5997 		ret = 0;
5998 		break;
5999 	default:
6000 		ret = -KVM_ENOSYS;
6001 		break;
6002 	}
6003 out:
6004 	if (!op_64_bit)
6005 		ret = (u32)ret;
6006 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6007 	++vcpu->stat.hypercalls;
6008 	return r;
6009 }
6010 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6011 
6012 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6013 {
6014 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6015 	char instruction[3];
6016 	unsigned long rip = kvm_rip_read(vcpu);
6017 
6018 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6019 
6020 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6021 }
6022 
6023 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6024 {
6025 	return vcpu->run->request_interrupt_window &&
6026 		likely(!pic_in_kernel(vcpu->kvm));
6027 }
6028 
6029 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6030 {
6031 	struct kvm_run *kvm_run = vcpu->run;
6032 
6033 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6034 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6035 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6036 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6037 	kvm_run->ready_for_interrupt_injection =
6038 		pic_in_kernel(vcpu->kvm) ||
6039 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6040 }
6041 
6042 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6043 {
6044 	int max_irr, tpr;
6045 
6046 	if (!kvm_x86_ops->update_cr8_intercept)
6047 		return;
6048 
6049 	if (!lapic_in_kernel(vcpu))
6050 		return;
6051 
6052 	if (vcpu->arch.apicv_active)
6053 		return;
6054 
6055 	if (!vcpu->arch.apic->vapic_addr)
6056 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6057 	else
6058 		max_irr = -1;
6059 
6060 	if (max_irr != -1)
6061 		max_irr >>= 4;
6062 
6063 	tpr = kvm_lapic_get_cr8(vcpu);
6064 
6065 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6066 }
6067 
6068 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6069 {
6070 	int r;
6071 
6072 	/* try to reinject previous events if any */
6073 	if (vcpu->arch.exception.pending) {
6074 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6075 					vcpu->arch.exception.has_error_code,
6076 					vcpu->arch.exception.error_code);
6077 
6078 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6079 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6080 					     X86_EFLAGS_RF);
6081 
6082 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6083 		    (vcpu->arch.dr7 & DR7_GD)) {
6084 			vcpu->arch.dr7 &= ~DR7_GD;
6085 			kvm_update_dr7(vcpu);
6086 		}
6087 
6088 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6089 					  vcpu->arch.exception.has_error_code,
6090 					  vcpu->arch.exception.error_code,
6091 					  vcpu->arch.exception.reinject);
6092 		return 0;
6093 	}
6094 
6095 	if (vcpu->arch.nmi_injected) {
6096 		kvm_x86_ops->set_nmi(vcpu);
6097 		return 0;
6098 	}
6099 
6100 	if (vcpu->arch.interrupt.pending) {
6101 		kvm_x86_ops->set_irq(vcpu);
6102 		return 0;
6103 	}
6104 
6105 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6106 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6107 		if (r != 0)
6108 			return r;
6109 	}
6110 
6111 	/* try to inject new event if pending */
6112 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6113 		vcpu->arch.smi_pending = false;
6114 		enter_smm(vcpu);
6115 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6116 		--vcpu->arch.nmi_pending;
6117 		vcpu->arch.nmi_injected = true;
6118 		kvm_x86_ops->set_nmi(vcpu);
6119 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6120 		/*
6121 		 * Because interrupts can be injected asynchronously, we are
6122 		 * calling check_nested_events again here to avoid a race condition.
6123 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6124 		 * proposal and current concerns.  Perhaps we should be setting
6125 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6126 		 */
6127 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6128 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6129 			if (r != 0)
6130 				return r;
6131 		}
6132 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6133 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6134 					    false);
6135 			kvm_x86_ops->set_irq(vcpu);
6136 		}
6137 	}
6138 
6139 	return 0;
6140 }
6141 
6142 static void process_nmi(struct kvm_vcpu *vcpu)
6143 {
6144 	unsigned limit = 2;
6145 
6146 	/*
6147 	 * x86 is limited to one NMI running, and one NMI pending after it.
6148 	 * If an NMI is already in progress, limit further NMIs to just one.
6149 	 * Otherwise, allow two (and we'll inject the first one immediately).
6150 	 */
6151 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6152 		limit = 1;
6153 
6154 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6155 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6156 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6157 }
6158 
6159 #define put_smstate(type, buf, offset, val)			  \
6160 	*(type *)((buf) + (offset) - 0x7e00) = val
6161 
6162 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6163 {
6164 	u32 flags = 0;
6165 	flags |= seg->g       << 23;
6166 	flags |= seg->db      << 22;
6167 	flags |= seg->l       << 21;
6168 	flags |= seg->avl     << 20;
6169 	flags |= seg->present << 15;
6170 	flags |= seg->dpl     << 13;
6171 	flags |= seg->s       << 12;
6172 	flags |= seg->type    << 8;
6173 	return flags;
6174 }
6175 
6176 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6177 {
6178 	struct kvm_segment seg;
6179 	int offset;
6180 
6181 	kvm_get_segment(vcpu, &seg, n);
6182 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6183 
6184 	if (n < 3)
6185 		offset = 0x7f84 + n * 12;
6186 	else
6187 		offset = 0x7f2c + (n - 3) * 12;
6188 
6189 	put_smstate(u32, buf, offset + 8, seg.base);
6190 	put_smstate(u32, buf, offset + 4, seg.limit);
6191 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6192 }
6193 
6194 #ifdef CONFIG_X86_64
6195 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6196 {
6197 	struct kvm_segment seg;
6198 	int offset;
6199 	u16 flags;
6200 
6201 	kvm_get_segment(vcpu, &seg, n);
6202 	offset = 0x7e00 + n * 16;
6203 
6204 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6205 	put_smstate(u16, buf, offset, seg.selector);
6206 	put_smstate(u16, buf, offset + 2, flags);
6207 	put_smstate(u32, buf, offset + 4, seg.limit);
6208 	put_smstate(u64, buf, offset + 8, seg.base);
6209 }
6210 #endif
6211 
6212 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6213 {
6214 	struct desc_ptr dt;
6215 	struct kvm_segment seg;
6216 	unsigned long val;
6217 	int i;
6218 
6219 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6220 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6221 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6222 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6223 
6224 	for (i = 0; i < 8; i++)
6225 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6226 
6227 	kvm_get_dr(vcpu, 6, &val);
6228 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6229 	kvm_get_dr(vcpu, 7, &val);
6230 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6231 
6232 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6233 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6234 	put_smstate(u32, buf, 0x7f64, seg.base);
6235 	put_smstate(u32, buf, 0x7f60, seg.limit);
6236 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6237 
6238 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6239 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6240 	put_smstate(u32, buf, 0x7f80, seg.base);
6241 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6242 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6243 
6244 	kvm_x86_ops->get_gdt(vcpu, &dt);
6245 	put_smstate(u32, buf, 0x7f74, dt.address);
6246 	put_smstate(u32, buf, 0x7f70, dt.size);
6247 
6248 	kvm_x86_ops->get_idt(vcpu, &dt);
6249 	put_smstate(u32, buf, 0x7f58, dt.address);
6250 	put_smstate(u32, buf, 0x7f54, dt.size);
6251 
6252 	for (i = 0; i < 6; i++)
6253 		enter_smm_save_seg_32(vcpu, buf, i);
6254 
6255 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6256 
6257 	/* revision id */
6258 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6259 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6260 }
6261 
6262 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6263 {
6264 #ifdef CONFIG_X86_64
6265 	struct desc_ptr dt;
6266 	struct kvm_segment seg;
6267 	unsigned long val;
6268 	int i;
6269 
6270 	for (i = 0; i < 16; i++)
6271 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6272 
6273 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6274 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6275 
6276 	kvm_get_dr(vcpu, 6, &val);
6277 	put_smstate(u64, buf, 0x7f68, val);
6278 	kvm_get_dr(vcpu, 7, &val);
6279 	put_smstate(u64, buf, 0x7f60, val);
6280 
6281 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6282 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6283 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6284 
6285 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6286 
6287 	/* revision id */
6288 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6289 
6290 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6291 
6292 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6293 	put_smstate(u16, buf, 0x7e90, seg.selector);
6294 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6295 	put_smstate(u32, buf, 0x7e94, seg.limit);
6296 	put_smstate(u64, buf, 0x7e98, seg.base);
6297 
6298 	kvm_x86_ops->get_idt(vcpu, &dt);
6299 	put_smstate(u32, buf, 0x7e84, dt.size);
6300 	put_smstate(u64, buf, 0x7e88, dt.address);
6301 
6302 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6303 	put_smstate(u16, buf, 0x7e70, seg.selector);
6304 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6305 	put_smstate(u32, buf, 0x7e74, seg.limit);
6306 	put_smstate(u64, buf, 0x7e78, seg.base);
6307 
6308 	kvm_x86_ops->get_gdt(vcpu, &dt);
6309 	put_smstate(u32, buf, 0x7e64, dt.size);
6310 	put_smstate(u64, buf, 0x7e68, dt.address);
6311 
6312 	for (i = 0; i < 6; i++)
6313 		enter_smm_save_seg_64(vcpu, buf, i);
6314 #else
6315 	WARN_ON_ONCE(1);
6316 #endif
6317 }
6318 
6319 static void enter_smm(struct kvm_vcpu *vcpu)
6320 {
6321 	struct kvm_segment cs, ds;
6322 	struct desc_ptr dt;
6323 	char buf[512];
6324 	u32 cr0;
6325 
6326 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6327 	vcpu->arch.hflags |= HF_SMM_MASK;
6328 	memset(buf, 0, 512);
6329 	if (guest_cpuid_has_longmode(vcpu))
6330 		enter_smm_save_state_64(vcpu, buf);
6331 	else
6332 		enter_smm_save_state_32(vcpu, buf);
6333 
6334 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6335 
6336 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6337 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6338 	else
6339 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6340 
6341 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6342 	kvm_rip_write(vcpu, 0x8000);
6343 
6344 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6345 	kvm_x86_ops->set_cr0(vcpu, cr0);
6346 	vcpu->arch.cr0 = cr0;
6347 
6348 	kvm_x86_ops->set_cr4(vcpu, 0);
6349 
6350 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6351 	dt.address = dt.size = 0;
6352 	kvm_x86_ops->set_idt(vcpu, &dt);
6353 
6354 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6355 
6356 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6357 	cs.base = vcpu->arch.smbase;
6358 
6359 	ds.selector = 0;
6360 	ds.base = 0;
6361 
6362 	cs.limit    = ds.limit = 0xffffffff;
6363 	cs.type     = ds.type = 0x3;
6364 	cs.dpl      = ds.dpl = 0;
6365 	cs.db       = ds.db = 0;
6366 	cs.s        = ds.s = 1;
6367 	cs.l        = ds.l = 0;
6368 	cs.g        = ds.g = 1;
6369 	cs.avl      = ds.avl = 0;
6370 	cs.present  = ds.present = 1;
6371 	cs.unusable = ds.unusable = 0;
6372 	cs.padding  = ds.padding = 0;
6373 
6374 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6375 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6376 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6377 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6378 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6379 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6380 
6381 	if (guest_cpuid_has_longmode(vcpu))
6382 		kvm_x86_ops->set_efer(vcpu, 0);
6383 
6384 	kvm_update_cpuid(vcpu);
6385 	kvm_mmu_reset_context(vcpu);
6386 }
6387 
6388 static void process_smi(struct kvm_vcpu *vcpu)
6389 {
6390 	vcpu->arch.smi_pending = true;
6391 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6392 }
6393 
6394 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6395 {
6396 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6397 }
6398 
6399 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6400 {
6401 	u64 eoi_exit_bitmap[4];
6402 
6403 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6404 		return;
6405 
6406 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6407 
6408 	if (irqchip_split(vcpu->kvm))
6409 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6410 	else {
6411 		if (vcpu->arch.apicv_active)
6412 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6413 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6414 	}
6415 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6416 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6417 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6418 }
6419 
6420 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6421 {
6422 	++vcpu->stat.tlb_flush;
6423 	kvm_x86_ops->tlb_flush(vcpu);
6424 }
6425 
6426 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6427 {
6428 	struct page *page = NULL;
6429 
6430 	if (!lapic_in_kernel(vcpu))
6431 		return;
6432 
6433 	if (!kvm_x86_ops->set_apic_access_page_addr)
6434 		return;
6435 
6436 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6437 	if (is_error_page(page))
6438 		return;
6439 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6440 
6441 	/*
6442 	 * Do not pin apic access page in memory, the MMU notifier
6443 	 * will call us again if it is migrated or swapped out.
6444 	 */
6445 	put_page(page);
6446 }
6447 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6448 
6449 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6450 					   unsigned long address)
6451 {
6452 	/*
6453 	 * The physical address of apic access page is stored in the VMCS.
6454 	 * Update it when it becomes invalid.
6455 	 */
6456 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6457 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6458 }
6459 
6460 /*
6461  * Returns 1 to let vcpu_run() continue the guest execution loop without
6462  * exiting to the userspace.  Otherwise, the value will be returned to the
6463  * userspace.
6464  */
6465 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6466 {
6467 	int r;
6468 	bool req_int_win =
6469 		dm_request_for_irq_injection(vcpu) &&
6470 		kvm_cpu_accept_dm_intr(vcpu);
6471 
6472 	bool req_immediate_exit = false;
6473 
6474 	if (vcpu->requests) {
6475 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6476 			kvm_mmu_unload(vcpu);
6477 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6478 			__kvm_migrate_timers(vcpu);
6479 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6480 			kvm_gen_update_masterclock(vcpu->kvm);
6481 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6482 			kvm_gen_kvmclock_update(vcpu);
6483 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6484 			r = kvm_guest_time_update(vcpu);
6485 			if (unlikely(r))
6486 				goto out;
6487 		}
6488 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6489 			kvm_mmu_sync_roots(vcpu);
6490 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6491 			kvm_vcpu_flush_tlb(vcpu);
6492 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6493 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6494 			r = 0;
6495 			goto out;
6496 		}
6497 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6498 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6499 			r = 0;
6500 			goto out;
6501 		}
6502 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6503 			vcpu->fpu_active = 0;
6504 			kvm_x86_ops->fpu_deactivate(vcpu);
6505 		}
6506 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6507 			/* Page is swapped out. Do synthetic halt */
6508 			vcpu->arch.apf.halted = true;
6509 			r = 1;
6510 			goto out;
6511 		}
6512 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6513 			record_steal_time(vcpu);
6514 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6515 			process_smi(vcpu);
6516 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6517 			process_nmi(vcpu);
6518 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6519 			kvm_pmu_handle_event(vcpu);
6520 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6521 			kvm_pmu_deliver_pmi(vcpu);
6522 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6523 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6524 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6525 				     vcpu->arch.ioapic_handled_vectors)) {
6526 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6527 				vcpu->run->eoi.vector =
6528 						vcpu->arch.pending_ioapic_eoi;
6529 				r = 0;
6530 				goto out;
6531 			}
6532 		}
6533 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6534 			vcpu_scan_ioapic(vcpu);
6535 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6536 			kvm_vcpu_reload_apic_access_page(vcpu);
6537 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6538 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6539 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6540 			r = 0;
6541 			goto out;
6542 		}
6543 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6544 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6545 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6546 			r = 0;
6547 			goto out;
6548 		}
6549 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6550 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6551 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6552 			r = 0;
6553 			goto out;
6554 		}
6555 
6556 		/*
6557 		 * KVM_REQ_HV_STIMER has to be processed after
6558 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6559 		 * depend on the guest clock being up-to-date
6560 		 */
6561 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6562 			kvm_hv_process_stimers(vcpu);
6563 	}
6564 
6565 	/*
6566 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6567 	 * VT-d hardware, so we have to update RVI unconditionally.
6568 	 */
6569 	if (kvm_lapic_enabled(vcpu)) {
6570 		/*
6571 		 * Update architecture specific hints for APIC
6572 		 * virtual interrupt delivery.
6573 		 */
6574 		if (vcpu->arch.apicv_active)
6575 			kvm_x86_ops->hwapic_irr_update(vcpu,
6576 				kvm_lapic_find_highest_irr(vcpu));
6577 	}
6578 
6579 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6580 		kvm_apic_accept_events(vcpu);
6581 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6582 			r = 1;
6583 			goto out;
6584 		}
6585 
6586 		if (inject_pending_event(vcpu, req_int_win) != 0)
6587 			req_immediate_exit = true;
6588 		else {
6589 			/* Enable NMI/IRQ window open exits if needed.
6590 			 *
6591 			 * SMIs have two cases: 1) they can be nested, and
6592 			 * then there is nothing to do here because RSM will
6593 			 * cause a vmexit anyway; 2) or the SMI can be pending
6594 			 * because inject_pending_event has completed the
6595 			 * injection of an IRQ or NMI from the previous vmexit,
6596 			 * and then we request an immediate exit to inject the SMI.
6597 			 */
6598 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
6599 				req_immediate_exit = true;
6600 			if (vcpu->arch.nmi_pending)
6601 				kvm_x86_ops->enable_nmi_window(vcpu);
6602 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6603 				kvm_x86_ops->enable_irq_window(vcpu);
6604 		}
6605 
6606 		if (kvm_lapic_enabled(vcpu)) {
6607 			update_cr8_intercept(vcpu);
6608 			kvm_lapic_sync_to_vapic(vcpu);
6609 		}
6610 	}
6611 
6612 	r = kvm_mmu_reload(vcpu);
6613 	if (unlikely(r)) {
6614 		goto cancel_injection;
6615 	}
6616 
6617 	preempt_disable();
6618 
6619 	kvm_x86_ops->prepare_guest_switch(vcpu);
6620 	if (vcpu->fpu_active)
6621 		kvm_load_guest_fpu(vcpu);
6622 	vcpu->mode = IN_GUEST_MODE;
6623 
6624 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6625 
6626 	/*
6627 	 * We should set ->mode before check ->requests,
6628 	 * Please see the comment in kvm_make_all_cpus_request.
6629 	 * This also orders the write to mode from any reads
6630 	 * to the page tables done while the VCPU is running.
6631 	 * Please see the comment in kvm_flush_remote_tlbs.
6632 	 */
6633 	smp_mb__after_srcu_read_unlock();
6634 
6635 	local_irq_disable();
6636 
6637 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6638 	    || need_resched() || signal_pending(current)) {
6639 		vcpu->mode = OUTSIDE_GUEST_MODE;
6640 		smp_wmb();
6641 		local_irq_enable();
6642 		preempt_enable();
6643 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6644 		r = 1;
6645 		goto cancel_injection;
6646 	}
6647 
6648 	kvm_load_guest_xcr0(vcpu);
6649 
6650 	if (req_immediate_exit) {
6651 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6652 		smp_send_reschedule(vcpu->cpu);
6653 	}
6654 
6655 	trace_kvm_entry(vcpu->vcpu_id);
6656 	wait_lapic_expire(vcpu);
6657 	guest_enter_irqoff();
6658 
6659 	if (unlikely(vcpu->arch.switch_db_regs)) {
6660 		set_debugreg(0, 7);
6661 		set_debugreg(vcpu->arch.eff_db[0], 0);
6662 		set_debugreg(vcpu->arch.eff_db[1], 1);
6663 		set_debugreg(vcpu->arch.eff_db[2], 2);
6664 		set_debugreg(vcpu->arch.eff_db[3], 3);
6665 		set_debugreg(vcpu->arch.dr6, 6);
6666 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6667 	}
6668 
6669 	kvm_x86_ops->run(vcpu);
6670 
6671 	/*
6672 	 * Do this here before restoring debug registers on the host.  And
6673 	 * since we do this before handling the vmexit, a DR access vmexit
6674 	 * can (a) read the correct value of the debug registers, (b) set
6675 	 * KVM_DEBUGREG_WONT_EXIT again.
6676 	 */
6677 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6678 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6679 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6680 		kvm_update_dr0123(vcpu);
6681 		kvm_update_dr6(vcpu);
6682 		kvm_update_dr7(vcpu);
6683 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6684 	}
6685 
6686 	/*
6687 	 * If the guest has used debug registers, at least dr7
6688 	 * will be disabled while returning to the host.
6689 	 * If we don't have active breakpoints in the host, we don't
6690 	 * care about the messed up debug address registers. But if
6691 	 * we have some of them active, restore the old state.
6692 	 */
6693 	if (hw_breakpoint_active())
6694 		hw_breakpoint_restore();
6695 
6696 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6697 
6698 	vcpu->mode = OUTSIDE_GUEST_MODE;
6699 	smp_wmb();
6700 
6701 	kvm_put_guest_xcr0(vcpu);
6702 
6703 	/* Interrupt is enabled by handle_external_intr() */
6704 	kvm_x86_ops->handle_external_intr(vcpu);
6705 
6706 	++vcpu->stat.exits;
6707 
6708 	guest_exit_irqoff();
6709 
6710 	local_irq_enable();
6711 	preempt_enable();
6712 
6713 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6714 
6715 	/*
6716 	 * Profile KVM exit RIPs:
6717 	 */
6718 	if (unlikely(prof_on == KVM_PROFILING)) {
6719 		unsigned long rip = kvm_rip_read(vcpu);
6720 		profile_hit(KVM_PROFILING, (void *)rip);
6721 	}
6722 
6723 	if (unlikely(vcpu->arch.tsc_always_catchup))
6724 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6725 
6726 	if (vcpu->arch.apic_attention)
6727 		kvm_lapic_sync_from_vapic(vcpu);
6728 
6729 	r = kvm_x86_ops->handle_exit(vcpu);
6730 	return r;
6731 
6732 cancel_injection:
6733 	kvm_x86_ops->cancel_injection(vcpu);
6734 	if (unlikely(vcpu->arch.apic_attention))
6735 		kvm_lapic_sync_from_vapic(vcpu);
6736 out:
6737 	return r;
6738 }
6739 
6740 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6741 {
6742 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6743 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6744 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6745 		kvm_vcpu_block(vcpu);
6746 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6747 
6748 		if (kvm_x86_ops->post_block)
6749 			kvm_x86_ops->post_block(vcpu);
6750 
6751 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6752 			return 1;
6753 	}
6754 
6755 	kvm_apic_accept_events(vcpu);
6756 	switch(vcpu->arch.mp_state) {
6757 	case KVM_MP_STATE_HALTED:
6758 		vcpu->arch.pv.pv_unhalted = false;
6759 		vcpu->arch.mp_state =
6760 			KVM_MP_STATE_RUNNABLE;
6761 	case KVM_MP_STATE_RUNNABLE:
6762 		vcpu->arch.apf.halted = false;
6763 		break;
6764 	case KVM_MP_STATE_INIT_RECEIVED:
6765 		break;
6766 	default:
6767 		return -EINTR;
6768 		break;
6769 	}
6770 	return 1;
6771 }
6772 
6773 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6774 {
6775 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6776 		!vcpu->arch.apf.halted);
6777 }
6778 
6779 static int vcpu_run(struct kvm_vcpu *vcpu)
6780 {
6781 	int r;
6782 	struct kvm *kvm = vcpu->kvm;
6783 
6784 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6785 
6786 	for (;;) {
6787 		if (kvm_vcpu_running(vcpu)) {
6788 			r = vcpu_enter_guest(vcpu);
6789 		} else {
6790 			r = vcpu_block(kvm, vcpu);
6791 		}
6792 
6793 		if (r <= 0)
6794 			break;
6795 
6796 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6797 		if (kvm_cpu_has_pending_timer(vcpu))
6798 			kvm_inject_pending_timer_irqs(vcpu);
6799 
6800 		if (dm_request_for_irq_injection(vcpu) &&
6801 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6802 			r = 0;
6803 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6804 			++vcpu->stat.request_irq_exits;
6805 			break;
6806 		}
6807 
6808 		kvm_check_async_pf_completion(vcpu);
6809 
6810 		if (signal_pending(current)) {
6811 			r = -EINTR;
6812 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6813 			++vcpu->stat.signal_exits;
6814 			break;
6815 		}
6816 		if (need_resched()) {
6817 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6818 			cond_resched();
6819 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6820 		}
6821 	}
6822 
6823 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6824 
6825 	return r;
6826 }
6827 
6828 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6829 {
6830 	int r;
6831 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6832 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6833 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6834 	if (r != EMULATE_DONE)
6835 		return 0;
6836 	return 1;
6837 }
6838 
6839 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6840 {
6841 	BUG_ON(!vcpu->arch.pio.count);
6842 
6843 	return complete_emulated_io(vcpu);
6844 }
6845 
6846 /*
6847  * Implements the following, as a state machine:
6848  *
6849  * read:
6850  *   for each fragment
6851  *     for each mmio piece in the fragment
6852  *       write gpa, len
6853  *       exit
6854  *       copy data
6855  *   execute insn
6856  *
6857  * write:
6858  *   for each fragment
6859  *     for each mmio piece in the fragment
6860  *       write gpa, len
6861  *       copy data
6862  *       exit
6863  */
6864 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6865 {
6866 	struct kvm_run *run = vcpu->run;
6867 	struct kvm_mmio_fragment *frag;
6868 	unsigned len;
6869 
6870 	BUG_ON(!vcpu->mmio_needed);
6871 
6872 	/* Complete previous fragment */
6873 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6874 	len = min(8u, frag->len);
6875 	if (!vcpu->mmio_is_write)
6876 		memcpy(frag->data, run->mmio.data, len);
6877 
6878 	if (frag->len <= 8) {
6879 		/* Switch to the next fragment. */
6880 		frag++;
6881 		vcpu->mmio_cur_fragment++;
6882 	} else {
6883 		/* Go forward to the next mmio piece. */
6884 		frag->data += len;
6885 		frag->gpa += len;
6886 		frag->len -= len;
6887 	}
6888 
6889 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6890 		vcpu->mmio_needed = 0;
6891 
6892 		/* FIXME: return into emulator if single-stepping.  */
6893 		if (vcpu->mmio_is_write)
6894 			return 1;
6895 		vcpu->mmio_read_completed = 1;
6896 		return complete_emulated_io(vcpu);
6897 	}
6898 
6899 	run->exit_reason = KVM_EXIT_MMIO;
6900 	run->mmio.phys_addr = frag->gpa;
6901 	if (vcpu->mmio_is_write)
6902 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6903 	run->mmio.len = min(8u, frag->len);
6904 	run->mmio.is_write = vcpu->mmio_is_write;
6905 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6906 	return 0;
6907 }
6908 
6909 
6910 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6911 {
6912 	struct fpu *fpu = &current->thread.fpu;
6913 	int r;
6914 	sigset_t sigsaved;
6915 
6916 	fpu__activate_curr(fpu);
6917 
6918 	if (vcpu->sigset_active)
6919 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6920 
6921 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6922 		kvm_vcpu_block(vcpu);
6923 		kvm_apic_accept_events(vcpu);
6924 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6925 		r = -EAGAIN;
6926 		goto out;
6927 	}
6928 
6929 	/* re-sync apic's tpr */
6930 	if (!lapic_in_kernel(vcpu)) {
6931 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6932 			r = -EINVAL;
6933 			goto out;
6934 		}
6935 	}
6936 
6937 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6938 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6939 		vcpu->arch.complete_userspace_io = NULL;
6940 		r = cui(vcpu);
6941 		if (r <= 0)
6942 			goto out;
6943 	} else
6944 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6945 
6946 	r = vcpu_run(vcpu);
6947 
6948 out:
6949 	post_kvm_run_save(vcpu);
6950 	if (vcpu->sigset_active)
6951 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6952 
6953 	return r;
6954 }
6955 
6956 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6957 {
6958 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6959 		/*
6960 		 * We are here if userspace calls get_regs() in the middle of
6961 		 * instruction emulation. Registers state needs to be copied
6962 		 * back from emulation context to vcpu. Userspace shouldn't do
6963 		 * that usually, but some bad designed PV devices (vmware
6964 		 * backdoor interface) need this to work
6965 		 */
6966 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6967 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6968 	}
6969 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6970 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6971 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6972 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6973 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6974 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6975 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6976 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6977 #ifdef CONFIG_X86_64
6978 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6979 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6980 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6981 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6982 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6983 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6984 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6985 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6986 #endif
6987 
6988 	regs->rip = kvm_rip_read(vcpu);
6989 	regs->rflags = kvm_get_rflags(vcpu);
6990 
6991 	return 0;
6992 }
6993 
6994 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6995 {
6996 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6997 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6998 
6999 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7000 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7001 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7002 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7003 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7004 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7005 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7006 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7007 #ifdef CONFIG_X86_64
7008 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7009 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7010 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7011 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7012 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7013 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7014 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7015 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7016 #endif
7017 
7018 	kvm_rip_write(vcpu, regs->rip);
7019 	kvm_set_rflags(vcpu, regs->rflags);
7020 
7021 	vcpu->arch.exception.pending = false;
7022 
7023 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7024 
7025 	return 0;
7026 }
7027 
7028 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7029 {
7030 	struct kvm_segment cs;
7031 
7032 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7033 	*db = cs.db;
7034 	*l = cs.l;
7035 }
7036 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7037 
7038 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7039 				  struct kvm_sregs *sregs)
7040 {
7041 	struct desc_ptr dt;
7042 
7043 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7044 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7045 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7046 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7047 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7048 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7049 
7050 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7051 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7052 
7053 	kvm_x86_ops->get_idt(vcpu, &dt);
7054 	sregs->idt.limit = dt.size;
7055 	sregs->idt.base = dt.address;
7056 	kvm_x86_ops->get_gdt(vcpu, &dt);
7057 	sregs->gdt.limit = dt.size;
7058 	sregs->gdt.base = dt.address;
7059 
7060 	sregs->cr0 = kvm_read_cr0(vcpu);
7061 	sregs->cr2 = vcpu->arch.cr2;
7062 	sregs->cr3 = kvm_read_cr3(vcpu);
7063 	sregs->cr4 = kvm_read_cr4(vcpu);
7064 	sregs->cr8 = kvm_get_cr8(vcpu);
7065 	sregs->efer = vcpu->arch.efer;
7066 	sregs->apic_base = kvm_get_apic_base(vcpu);
7067 
7068 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7069 
7070 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7071 		set_bit(vcpu->arch.interrupt.nr,
7072 			(unsigned long *)sregs->interrupt_bitmap);
7073 
7074 	return 0;
7075 }
7076 
7077 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7078 				    struct kvm_mp_state *mp_state)
7079 {
7080 	kvm_apic_accept_events(vcpu);
7081 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7082 					vcpu->arch.pv.pv_unhalted)
7083 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7084 	else
7085 		mp_state->mp_state = vcpu->arch.mp_state;
7086 
7087 	return 0;
7088 }
7089 
7090 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7091 				    struct kvm_mp_state *mp_state)
7092 {
7093 	if (!lapic_in_kernel(vcpu) &&
7094 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7095 		return -EINVAL;
7096 
7097 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7098 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7099 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7100 	} else
7101 		vcpu->arch.mp_state = mp_state->mp_state;
7102 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7103 	return 0;
7104 }
7105 
7106 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7107 		    int reason, bool has_error_code, u32 error_code)
7108 {
7109 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7110 	int ret;
7111 
7112 	init_emulate_ctxt(vcpu);
7113 
7114 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7115 				   has_error_code, error_code);
7116 
7117 	if (ret)
7118 		return EMULATE_FAIL;
7119 
7120 	kvm_rip_write(vcpu, ctxt->eip);
7121 	kvm_set_rflags(vcpu, ctxt->eflags);
7122 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7123 	return EMULATE_DONE;
7124 }
7125 EXPORT_SYMBOL_GPL(kvm_task_switch);
7126 
7127 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7128 				  struct kvm_sregs *sregs)
7129 {
7130 	struct msr_data apic_base_msr;
7131 	int mmu_reset_needed = 0;
7132 	int pending_vec, max_bits, idx;
7133 	struct desc_ptr dt;
7134 
7135 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7136 		return -EINVAL;
7137 
7138 	dt.size = sregs->idt.limit;
7139 	dt.address = sregs->idt.base;
7140 	kvm_x86_ops->set_idt(vcpu, &dt);
7141 	dt.size = sregs->gdt.limit;
7142 	dt.address = sregs->gdt.base;
7143 	kvm_x86_ops->set_gdt(vcpu, &dt);
7144 
7145 	vcpu->arch.cr2 = sregs->cr2;
7146 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7147 	vcpu->arch.cr3 = sregs->cr3;
7148 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7149 
7150 	kvm_set_cr8(vcpu, sregs->cr8);
7151 
7152 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7153 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7154 	apic_base_msr.data = sregs->apic_base;
7155 	apic_base_msr.host_initiated = true;
7156 	kvm_set_apic_base(vcpu, &apic_base_msr);
7157 
7158 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7159 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7160 	vcpu->arch.cr0 = sregs->cr0;
7161 
7162 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7163 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7164 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7165 		kvm_update_cpuid(vcpu);
7166 
7167 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7168 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7169 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7170 		mmu_reset_needed = 1;
7171 	}
7172 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7173 
7174 	if (mmu_reset_needed)
7175 		kvm_mmu_reset_context(vcpu);
7176 
7177 	max_bits = KVM_NR_INTERRUPTS;
7178 	pending_vec = find_first_bit(
7179 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7180 	if (pending_vec < max_bits) {
7181 		kvm_queue_interrupt(vcpu, pending_vec, false);
7182 		pr_debug("Set back pending irq %d\n", pending_vec);
7183 	}
7184 
7185 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7186 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7187 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7188 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7189 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7190 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7191 
7192 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7193 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7194 
7195 	update_cr8_intercept(vcpu);
7196 
7197 	/* Older userspace won't unhalt the vcpu on reset. */
7198 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7199 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7200 	    !is_protmode(vcpu))
7201 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7202 
7203 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7204 
7205 	return 0;
7206 }
7207 
7208 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7209 					struct kvm_guest_debug *dbg)
7210 {
7211 	unsigned long rflags;
7212 	int i, r;
7213 
7214 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7215 		r = -EBUSY;
7216 		if (vcpu->arch.exception.pending)
7217 			goto out;
7218 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7219 			kvm_queue_exception(vcpu, DB_VECTOR);
7220 		else
7221 			kvm_queue_exception(vcpu, BP_VECTOR);
7222 	}
7223 
7224 	/*
7225 	 * Read rflags as long as potentially injected trace flags are still
7226 	 * filtered out.
7227 	 */
7228 	rflags = kvm_get_rflags(vcpu);
7229 
7230 	vcpu->guest_debug = dbg->control;
7231 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7232 		vcpu->guest_debug = 0;
7233 
7234 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7235 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7236 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7237 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7238 	} else {
7239 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7240 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7241 	}
7242 	kvm_update_dr7(vcpu);
7243 
7244 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7245 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7246 			get_segment_base(vcpu, VCPU_SREG_CS);
7247 
7248 	/*
7249 	 * Trigger an rflags update that will inject or remove the trace
7250 	 * flags.
7251 	 */
7252 	kvm_set_rflags(vcpu, rflags);
7253 
7254 	kvm_x86_ops->update_bp_intercept(vcpu);
7255 
7256 	r = 0;
7257 
7258 out:
7259 
7260 	return r;
7261 }
7262 
7263 /*
7264  * Translate a guest virtual address to a guest physical address.
7265  */
7266 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7267 				    struct kvm_translation *tr)
7268 {
7269 	unsigned long vaddr = tr->linear_address;
7270 	gpa_t gpa;
7271 	int idx;
7272 
7273 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7274 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7275 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7276 	tr->physical_address = gpa;
7277 	tr->valid = gpa != UNMAPPED_GVA;
7278 	tr->writeable = 1;
7279 	tr->usermode = 0;
7280 
7281 	return 0;
7282 }
7283 
7284 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7285 {
7286 	struct fxregs_state *fxsave =
7287 			&vcpu->arch.guest_fpu.state.fxsave;
7288 
7289 	memcpy(fpu->fpr, fxsave->st_space, 128);
7290 	fpu->fcw = fxsave->cwd;
7291 	fpu->fsw = fxsave->swd;
7292 	fpu->ftwx = fxsave->twd;
7293 	fpu->last_opcode = fxsave->fop;
7294 	fpu->last_ip = fxsave->rip;
7295 	fpu->last_dp = fxsave->rdp;
7296 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7297 
7298 	return 0;
7299 }
7300 
7301 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7302 {
7303 	struct fxregs_state *fxsave =
7304 			&vcpu->arch.guest_fpu.state.fxsave;
7305 
7306 	memcpy(fxsave->st_space, fpu->fpr, 128);
7307 	fxsave->cwd = fpu->fcw;
7308 	fxsave->swd = fpu->fsw;
7309 	fxsave->twd = fpu->ftwx;
7310 	fxsave->fop = fpu->last_opcode;
7311 	fxsave->rip = fpu->last_ip;
7312 	fxsave->rdp = fpu->last_dp;
7313 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7314 
7315 	return 0;
7316 }
7317 
7318 static void fx_init(struct kvm_vcpu *vcpu)
7319 {
7320 	fpstate_init(&vcpu->arch.guest_fpu.state);
7321 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7322 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7323 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7324 
7325 	/*
7326 	 * Ensure guest xcr0 is valid for loading
7327 	 */
7328 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7329 
7330 	vcpu->arch.cr0 |= X86_CR0_ET;
7331 }
7332 
7333 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7334 {
7335 	if (vcpu->guest_fpu_loaded)
7336 		return;
7337 
7338 	/*
7339 	 * Restore all possible states in the guest,
7340 	 * and assume host would use all available bits.
7341 	 * Guest xcr0 would be loaded later.
7342 	 */
7343 	vcpu->guest_fpu_loaded = 1;
7344 	__kernel_fpu_begin();
7345 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7346 	trace_kvm_fpu(1);
7347 }
7348 
7349 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7350 {
7351 	if (!vcpu->guest_fpu_loaded) {
7352 		vcpu->fpu_counter = 0;
7353 		return;
7354 	}
7355 
7356 	vcpu->guest_fpu_loaded = 0;
7357 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7358 	__kernel_fpu_end();
7359 	++vcpu->stat.fpu_reload;
7360 	/*
7361 	 * If using eager FPU mode, or if the guest is a frequent user
7362 	 * of the FPU, just leave the FPU active for next time.
7363 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7364 	 * the FPU in bursts will revert to loading it on demand.
7365 	 */
7366 	if (!use_eager_fpu()) {
7367 		if (++vcpu->fpu_counter < 5)
7368 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7369 	}
7370 	trace_kvm_fpu(0);
7371 }
7372 
7373 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7374 {
7375 	kvmclock_reset(vcpu);
7376 
7377 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7378 	kvm_x86_ops->vcpu_free(vcpu);
7379 }
7380 
7381 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7382 						unsigned int id)
7383 {
7384 	struct kvm_vcpu *vcpu;
7385 
7386 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7387 		printk_once(KERN_WARNING
7388 		"kvm: SMP vm created on host with unstable TSC; "
7389 		"guest TSC will not be reliable\n");
7390 
7391 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7392 
7393 	return vcpu;
7394 }
7395 
7396 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7397 {
7398 	int r;
7399 
7400 	kvm_vcpu_mtrr_init(vcpu);
7401 	r = vcpu_load(vcpu);
7402 	if (r)
7403 		return r;
7404 	kvm_vcpu_reset(vcpu, false);
7405 	kvm_mmu_setup(vcpu);
7406 	vcpu_put(vcpu);
7407 	return r;
7408 }
7409 
7410 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7411 {
7412 	struct msr_data msr;
7413 	struct kvm *kvm = vcpu->kvm;
7414 
7415 	if (vcpu_load(vcpu))
7416 		return;
7417 	msr.data = 0x0;
7418 	msr.index = MSR_IA32_TSC;
7419 	msr.host_initiated = true;
7420 	kvm_write_tsc(vcpu, &msr);
7421 	vcpu_put(vcpu);
7422 
7423 	if (!kvmclock_periodic_sync)
7424 		return;
7425 
7426 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7427 					KVMCLOCK_SYNC_PERIOD);
7428 }
7429 
7430 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7431 {
7432 	int r;
7433 	vcpu->arch.apf.msr_val = 0;
7434 
7435 	r = vcpu_load(vcpu);
7436 	BUG_ON(r);
7437 	kvm_mmu_unload(vcpu);
7438 	vcpu_put(vcpu);
7439 
7440 	kvm_x86_ops->vcpu_free(vcpu);
7441 }
7442 
7443 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7444 {
7445 	vcpu->arch.hflags = 0;
7446 
7447 	vcpu->arch.smi_pending = 0;
7448 	atomic_set(&vcpu->arch.nmi_queued, 0);
7449 	vcpu->arch.nmi_pending = 0;
7450 	vcpu->arch.nmi_injected = false;
7451 	kvm_clear_interrupt_queue(vcpu);
7452 	kvm_clear_exception_queue(vcpu);
7453 
7454 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7455 	kvm_update_dr0123(vcpu);
7456 	vcpu->arch.dr6 = DR6_INIT;
7457 	kvm_update_dr6(vcpu);
7458 	vcpu->arch.dr7 = DR7_FIXED_1;
7459 	kvm_update_dr7(vcpu);
7460 
7461 	vcpu->arch.cr2 = 0;
7462 
7463 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7464 	vcpu->arch.apf.msr_val = 0;
7465 	vcpu->arch.st.msr_val = 0;
7466 
7467 	kvmclock_reset(vcpu);
7468 
7469 	kvm_clear_async_pf_completion_queue(vcpu);
7470 	kvm_async_pf_hash_reset(vcpu);
7471 	vcpu->arch.apf.halted = false;
7472 
7473 	if (!init_event) {
7474 		kvm_pmu_reset(vcpu);
7475 		vcpu->arch.smbase = 0x30000;
7476 	}
7477 
7478 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7479 	vcpu->arch.regs_avail = ~0;
7480 	vcpu->arch.regs_dirty = ~0;
7481 
7482 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7483 }
7484 
7485 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7486 {
7487 	struct kvm_segment cs;
7488 
7489 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7490 	cs.selector = vector << 8;
7491 	cs.base = vector << 12;
7492 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7493 	kvm_rip_write(vcpu, 0);
7494 }
7495 
7496 int kvm_arch_hardware_enable(void)
7497 {
7498 	struct kvm *kvm;
7499 	struct kvm_vcpu *vcpu;
7500 	int i;
7501 	int ret;
7502 	u64 local_tsc;
7503 	u64 max_tsc = 0;
7504 	bool stable, backwards_tsc = false;
7505 
7506 	kvm_shared_msr_cpu_online();
7507 	ret = kvm_x86_ops->hardware_enable();
7508 	if (ret != 0)
7509 		return ret;
7510 
7511 	local_tsc = rdtsc();
7512 	stable = !check_tsc_unstable();
7513 	list_for_each_entry(kvm, &vm_list, vm_list) {
7514 		kvm_for_each_vcpu(i, vcpu, kvm) {
7515 			if (!stable && vcpu->cpu == smp_processor_id())
7516 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7517 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7518 				backwards_tsc = true;
7519 				if (vcpu->arch.last_host_tsc > max_tsc)
7520 					max_tsc = vcpu->arch.last_host_tsc;
7521 			}
7522 		}
7523 	}
7524 
7525 	/*
7526 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7527 	 * platforms that reset TSC during suspend or hibernate actions, but
7528 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7529 	 * detect that condition here, which happens early in CPU bringup,
7530 	 * before any KVM threads can be running.  Unfortunately, we can't
7531 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7532 	 * enough into CPU bringup that we know how much real time has actually
7533 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7534 	 * variables that haven't been updated yet.
7535 	 *
7536 	 * So we simply find the maximum observed TSC above, then record the
7537 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7538 	 * the adjustment will be applied.  Note that we accumulate
7539 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7540 	 * gets a chance to run again.  In the event that no KVM threads get a
7541 	 * chance to run, we will miss the entire elapsed period, as we'll have
7542 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7543 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7544 	 * uniform across all VCPUs (not to mention the scenario is extremely
7545 	 * unlikely). It is possible that a second hibernate recovery happens
7546 	 * much faster than a first, causing the observed TSC here to be
7547 	 * smaller; this would require additional padding adjustment, which is
7548 	 * why we set last_host_tsc to the local tsc observed here.
7549 	 *
7550 	 * N.B. - this code below runs only on platforms with reliable TSC,
7551 	 * as that is the only way backwards_tsc is set above.  Also note
7552 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7553 	 * have the same delta_cyc adjustment applied if backwards_tsc
7554 	 * is detected.  Note further, this adjustment is only done once,
7555 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7556 	 * called multiple times (one for each physical CPU bringup).
7557 	 *
7558 	 * Platforms with unreliable TSCs don't have to deal with this, they
7559 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7560 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7561 	 * guarantee that they stay in perfect synchronization.
7562 	 */
7563 	if (backwards_tsc) {
7564 		u64 delta_cyc = max_tsc - local_tsc;
7565 		backwards_tsc_observed = true;
7566 		list_for_each_entry(kvm, &vm_list, vm_list) {
7567 			kvm_for_each_vcpu(i, vcpu, kvm) {
7568 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7569 				vcpu->arch.last_host_tsc = local_tsc;
7570 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7571 			}
7572 
7573 			/*
7574 			 * We have to disable TSC offset matching.. if you were
7575 			 * booting a VM while issuing an S4 host suspend....
7576 			 * you may have some problem.  Solving this issue is
7577 			 * left as an exercise to the reader.
7578 			 */
7579 			kvm->arch.last_tsc_nsec = 0;
7580 			kvm->arch.last_tsc_write = 0;
7581 		}
7582 
7583 	}
7584 	return 0;
7585 }
7586 
7587 void kvm_arch_hardware_disable(void)
7588 {
7589 	kvm_x86_ops->hardware_disable();
7590 	drop_user_return_notifiers();
7591 }
7592 
7593 int kvm_arch_hardware_setup(void)
7594 {
7595 	int r;
7596 
7597 	r = kvm_x86_ops->hardware_setup();
7598 	if (r != 0)
7599 		return r;
7600 
7601 	if (kvm_has_tsc_control) {
7602 		/*
7603 		 * Make sure the user can only configure tsc_khz values that
7604 		 * fit into a signed integer.
7605 		 * A min value is not calculated needed because it will always
7606 		 * be 1 on all machines.
7607 		 */
7608 		u64 max = min(0x7fffffffULL,
7609 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7610 		kvm_max_guest_tsc_khz = max;
7611 
7612 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7613 	}
7614 
7615 	kvm_init_msr_list();
7616 	return 0;
7617 }
7618 
7619 void kvm_arch_hardware_unsetup(void)
7620 {
7621 	kvm_x86_ops->hardware_unsetup();
7622 }
7623 
7624 void kvm_arch_check_processor_compat(void *rtn)
7625 {
7626 	kvm_x86_ops->check_processor_compatibility(rtn);
7627 }
7628 
7629 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7630 {
7631 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7632 }
7633 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7634 
7635 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7636 {
7637 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7638 }
7639 
7640 struct static_key kvm_no_apic_vcpu __read_mostly;
7641 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7642 
7643 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7644 {
7645 	struct page *page;
7646 	struct kvm *kvm;
7647 	int r;
7648 
7649 	BUG_ON(vcpu->kvm == NULL);
7650 	kvm = vcpu->kvm;
7651 
7652 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7653 	vcpu->arch.pv.pv_unhalted = false;
7654 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7655 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7656 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7657 	else
7658 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7659 
7660 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7661 	if (!page) {
7662 		r = -ENOMEM;
7663 		goto fail;
7664 	}
7665 	vcpu->arch.pio_data = page_address(page);
7666 
7667 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7668 
7669 	r = kvm_mmu_create(vcpu);
7670 	if (r < 0)
7671 		goto fail_free_pio_data;
7672 
7673 	if (irqchip_in_kernel(kvm)) {
7674 		r = kvm_create_lapic(vcpu);
7675 		if (r < 0)
7676 			goto fail_mmu_destroy;
7677 	} else
7678 		static_key_slow_inc(&kvm_no_apic_vcpu);
7679 
7680 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7681 				       GFP_KERNEL);
7682 	if (!vcpu->arch.mce_banks) {
7683 		r = -ENOMEM;
7684 		goto fail_free_lapic;
7685 	}
7686 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7687 
7688 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7689 		r = -ENOMEM;
7690 		goto fail_free_mce_banks;
7691 	}
7692 
7693 	fx_init(vcpu);
7694 
7695 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7696 	vcpu->arch.pv_time_enabled = false;
7697 
7698 	vcpu->arch.guest_supported_xcr0 = 0;
7699 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7700 
7701 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7702 
7703 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7704 
7705 	kvm_async_pf_hash_reset(vcpu);
7706 	kvm_pmu_init(vcpu);
7707 
7708 	vcpu->arch.pending_external_vector = -1;
7709 
7710 	kvm_hv_vcpu_init(vcpu);
7711 
7712 	return 0;
7713 
7714 fail_free_mce_banks:
7715 	kfree(vcpu->arch.mce_banks);
7716 fail_free_lapic:
7717 	kvm_free_lapic(vcpu);
7718 fail_mmu_destroy:
7719 	kvm_mmu_destroy(vcpu);
7720 fail_free_pio_data:
7721 	free_page((unsigned long)vcpu->arch.pio_data);
7722 fail:
7723 	return r;
7724 }
7725 
7726 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7727 {
7728 	int idx;
7729 
7730 	kvm_hv_vcpu_uninit(vcpu);
7731 	kvm_pmu_destroy(vcpu);
7732 	kfree(vcpu->arch.mce_banks);
7733 	kvm_free_lapic(vcpu);
7734 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7735 	kvm_mmu_destroy(vcpu);
7736 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7737 	free_page((unsigned long)vcpu->arch.pio_data);
7738 	if (!lapic_in_kernel(vcpu))
7739 		static_key_slow_dec(&kvm_no_apic_vcpu);
7740 }
7741 
7742 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7743 {
7744 	kvm_x86_ops->sched_in(vcpu, cpu);
7745 }
7746 
7747 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7748 {
7749 	if (type)
7750 		return -EINVAL;
7751 
7752 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7753 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7754 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7755 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7756 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7757 
7758 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7759 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7760 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7761 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7762 		&kvm->arch.irq_sources_bitmap);
7763 
7764 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7765 	mutex_init(&kvm->arch.apic_map_lock);
7766 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7767 
7768 	pvclock_update_vm_gtod_copy(kvm);
7769 
7770 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7771 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7772 
7773 	kvm_page_track_init(kvm);
7774 	kvm_mmu_init_vm(kvm);
7775 
7776 	if (kvm_x86_ops->vm_init)
7777 		return kvm_x86_ops->vm_init(kvm);
7778 
7779 	return 0;
7780 }
7781 
7782 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7783 {
7784 	int r;
7785 	r = vcpu_load(vcpu);
7786 	BUG_ON(r);
7787 	kvm_mmu_unload(vcpu);
7788 	vcpu_put(vcpu);
7789 }
7790 
7791 static void kvm_free_vcpus(struct kvm *kvm)
7792 {
7793 	unsigned int i;
7794 	struct kvm_vcpu *vcpu;
7795 
7796 	/*
7797 	 * Unpin any mmu pages first.
7798 	 */
7799 	kvm_for_each_vcpu(i, vcpu, kvm) {
7800 		kvm_clear_async_pf_completion_queue(vcpu);
7801 		kvm_unload_vcpu_mmu(vcpu);
7802 	}
7803 	kvm_for_each_vcpu(i, vcpu, kvm)
7804 		kvm_arch_vcpu_free(vcpu);
7805 
7806 	mutex_lock(&kvm->lock);
7807 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7808 		kvm->vcpus[i] = NULL;
7809 
7810 	atomic_set(&kvm->online_vcpus, 0);
7811 	mutex_unlock(&kvm->lock);
7812 }
7813 
7814 void kvm_arch_sync_events(struct kvm *kvm)
7815 {
7816 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7817 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7818 	kvm_free_all_assigned_devices(kvm);
7819 	kvm_free_pit(kvm);
7820 }
7821 
7822 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7823 {
7824 	int i, r;
7825 	unsigned long hva;
7826 	struct kvm_memslots *slots = kvm_memslots(kvm);
7827 	struct kvm_memory_slot *slot, old;
7828 
7829 	/* Called with kvm->slots_lock held.  */
7830 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7831 		return -EINVAL;
7832 
7833 	slot = id_to_memslot(slots, id);
7834 	if (size) {
7835 		if (slot->npages)
7836 			return -EEXIST;
7837 
7838 		/*
7839 		 * MAP_SHARED to prevent internal slot pages from being moved
7840 		 * by fork()/COW.
7841 		 */
7842 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7843 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7844 		if (IS_ERR((void *)hva))
7845 			return PTR_ERR((void *)hva);
7846 	} else {
7847 		if (!slot->npages)
7848 			return 0;
7849 
7850 		hva = 0;
7851 	}
7852 
7853 	old = *slot;
7854 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7855 		struct kvm_userspace_memory_region m;
7856 
7857 		m.slot = id | (i << 16);
7858 		m.flags = 0;
7859 		m.guest_phys_addr = gpa;
7860 		m.userspace_addr = hva;
7861 		m.memory_size = size;
7862 		r = __kvm_set_memory_region(kvm, &m);
7863 		if (r < 0)
7864 			return r;
7865 	}
7866 
7867 	if (!size) {
7868 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7869 		WARN_ON(r < 0);
7870 	}
7871 
7872 	return 0;
7873 }
7874 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7875 
7876 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7877 {
7878 	int r;
7879 
7880 	mutex_lock(&kvm->slots_lock);
7881 	r = __x86_set_memory_region(kvm, id, gpa, size);
7882 	mutex_unlock(&kvm->slots_lock);
7883 
7884 	return r;
7885 }
7886 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7887 
7888 void kvm_arch_destroy_vm(struct kvm *kvm)
7889 {
7890 	if (current->mm == kvm->mm) {
7891 		/*
7892 		 * Free memory regions allocated on behalf of userspace,
7893 		 * unless the the memory map has changed due to process exit
7894 		 * or fd copying.
7895 		 */
7896 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7897 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7898 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7899 	}
7900 	if (kvm_x86_ops->vm_destroy)
7901 		kvm_x86_ops->vm_destroy(kvm);
7902 	kvm_iommu_unmap_guest(kvm);
7903 	kfree(kvm->arch.vpic);
7904 	kfree(kvm->arch.vioapic);
7905 	kvm_free_vcpus(kvm);
7906 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7907 	kvm_mmu_uninit_vm(kvm);
7908 }
7909 
7910 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7911 			   struct kvm_memory_slot *dont)
7912 {
7913 	int i;
7914 
7915 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7916 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7917 			kvfree(free->arch.rmap[i]);
7918 			free->arch.rmap[i] = NULL;
7919 		}
7920 		if (i == 0)
7921 			continue;
7922 
7923 		if (!dont || free->arch.lpage_info[i - 1] !=
7924 			     dont->arch.lpage_info[i - 1]) {
7925 			kvfree(free->arch.lpage_info[i - 1]);
7926 			free->arch.lpage_info[i - 1] = NULL;
7927 		}
7928 	}
7929 
7930 	kvm_page_track_free_memslot(free, dont);
7931 }
7932 
7933 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7934 			    unsigned long npages)
7935 {
7936 	int i;
7937 
7938 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7939 		struct kvm_lpage_info *linfo;
7940 		unsigned long ugfn;
7941 		int lpages;
7942 		int level = i + 1;
7943 
7944 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7945 				      slot->base_gfn, level) + 1;
7946 
7947 		slot->arch.rmap[i] =
7948 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7949 		if (!slot->arch.rmap[i])
7950 			goto out_free;
7951 		if (i == 0)
7952 			continue;
7953 
7954 		linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7955 		if (!linfo)
7956 			goto out_free;
7957 
7958 		slot->arch.lpage_info[i - 1] = linfo;
7959 
7960 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7961 			linfo[0].disallow_lpage = 1;
7962 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7963 			linfo[lpages - 1].disallow_lpage = 1;
7964 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7965 		/*
7966 		 * If the gfn and userspace address are not aligned wrt each
7967 		 * other, or if explicitly asked to, disable large page
7968 		 * support for this slot
7969 		 */
7970 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7971 		    !kvm_largepages_enabled()) {
7972 			unsigned long j;
7973 
7974 			for (j = 0; j < lpages; ++j)
7975 				linfo[j].disallow_lpage = 1;
7976 		}
7977 	}
7978 
7979 	if (kvm_page_track_create_memslot(slot, npages))
7980 		goto out_free;
7981 
7982 	return 0;
7983 
7984 out_free:
7985 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7986 		kvfree(slot->arch.rmap[i]);
7987 		slot->arch.rmap[i] = NULL;
7988 		if (i == 0)
7989 			continue;
7990 
7991 		kvfree(slot->arch.lpage_info[i - 1]);
7992 		slot->arch.lpage_info[i - 1] = NULL;
7993 	}
7994 	return -ENOMEM;
7995 }
7996 
7997 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7998 {
7999 	/*
8000 	 * memslots->generation has been incremented.
8001 	 * mmio generation may have reached its maximum value.
8002 	 */
8003 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8004 }
8005 
8006 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8007 				struct kvm_memory_slot *memslot,
8008 				const struct kvm_userspace_memory_region *mem,
8009 				enum kvm_mr_change change)
8010 {
8011 	return 0;
8012 }
8013 
8014 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8015 				     struct kvm_memory_slot *new)
8016 {
8017 	/* Still write protect RO slot */
8018 	if (new->flags & KVM_MEM_READONLY) {
8019 		kvm_mmu_slot_remove_write_access(kvm, new);
8020 		return;
8021 	}
8022 
8023 	/*
8024 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8025 	 *
8026 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8027 	 *
8028 	 *  - KVM_MR_CREATE with dirty logging is disabled
8029 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8030 	 *
8031 	 * The reason is, in case of PML, we need to set D-bit for any slots
8032 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8033 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8034 	 * guarantees leaving PML enabled during guest's lifetime won't have
8035 	 * any additonal overhead from PML when guest is running with dirty
8036 	 * logging disabled for memory slots.
8037 	 *
8038 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8039 	 * to dirty logging mode.
8040 	 *
8041 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8042 	 *
8043 	 * In case of write protect:
8044 	 *
8045 	 * Write protect all pages for dirty logging.
8046 	 *
8047 	 * All the sptes including the large sptes which point to this
8048 	 * slot are set to readonly. We can not create any new large
8049 	 * spte on this slot until the end of the logging.
8050 	 *
8051 	 * See the comments in fast_page_fault().
8052 	 */
8053 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8054 		if (kvm_x86_ops->slot_enable_log_dirty)
8055 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8056 		else
8057 			kvm_mmu_slot_remove_write_access(kvm, new);
8058 	} else {
8059 		if (kvm_x86_ops->slot_disable_log_dirty)
8060 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8061 	}
8062 }
8063 
8064 void kvm_arch_commit_memory_region(struct kvm *kvm,
8065 				const struct kvm_userspace_memory_region *mem,
8066 				const struct kvm_memory_slot *old,
8067 				const struct kvm_memory_slot *new,
8068 				enum kvm_mr_change change)
8069 {
8070 	int nr_mmu_pages = 0;
8071 
8072 	if (!kvm->arch.n_requested_mmu_pages)
8073 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8074 
8075 	if (nr_mmu_pages)
8076 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8077 
8078 	/*
8079 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8080 	 * sptes have to be split.  If live migration is successful, the guest
8081 	 * in the source machine will be destroyed and large sptes will be
8082 	 * created in the destination. However, if the guest continues to run
8083 	 * in the source machine (for example if live migration fails), small
8084 	 * sptes will remain around and cause bad performance.
8085 	 *
8086 	 * Scan sptes if dirty logging has been stopped, dropping those
8087 	 * which can be collapsed into a single large-page spte.  Later
8088 	 * page faults will create the large-page sptes.
8089 	 */
8090 	if ((change != KVM_MR_DELETE) &&
8091 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8092 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8093 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8094 
8095 	/*
8096 	 * Set up write protection and/or dirty logging for the new slot.
8097 	 *
8098 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8099 	 * been zapped so no dirty logging staff is needed for old slot. For
8100 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8101 	 * new and it's also covered when dealing with the new slot.
8102 	 *
8103 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8104 	 */
8105 	if (change != KVM_MR_DELETE)
8106 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8107 }
8108 
8109 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8110 {
8111 	kvm_mmu_invalidate_zap_all_pages(kvm);
8112 }
8113 
8114 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8115 				   struct kvm_memory_slot *slot)
8116 {
8117 	kvm_mmu_invalidate_zap_all_pages(kvm);
8118 }
8119 
8120 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8121 {
8122 	if (!list_empty_careful(&vcpu->async_pf.done))
8123 		return true;
8124 
8125 	if (kvm_apic_has_events(vcpu))
8126 		return true;
8127 
8128 	if (vcpu->arch.pv.pv_unhalted)
8129 		return true;
8130 
8131 	if (atomic_read(&vcpu->arch.nmi_queued))
8132 		return true;
8133 
8134 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8135 		return true;
8136 
8137 	if (kvm_arch_interrupt_allowed(vcpu) &&
8138 	    kvm_cpu_has_interrupt(vcpu))
8139 		return true;
8140 
8141 	if (kvm_hv_has_stimer_pending(vcpu))
8142 		return true;
8143 
8144 	return false;
8145 }
8146 
8147 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8148 {
8149 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8150 		kvm_x86_ops->check_nested_events(vcpu, false);
8151 
8152 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8153 }
8154 
8155 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8156 {
8157 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8158 }
8159 
8160 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8161 {
8162 	return kvm_x86_ops->interrupt_allowed(vcpu);
8163 }
8164 
8165 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8166 {
8167 	if (is_64_bit_mode(vcpu))
8168 		return kvm_rip_read(vcpu);
8169 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8170 		     kvm_rip_read(vcpu));
8171 }
8172 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8173 
8174 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8175 {
8176 	return kvm_get_linear_rip(vcpu) == linear_rip;
8177 }
8178 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8179 
8180 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8181 {
8182 	unsigned long rflags;
8183 
8184 	rflags = kvm_x86_ops->get_rflags(vcpu);
8185 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8186 		rflags &= ~X86_EFLAGS_TF;
8187 	return rflags;
8188 }
8189 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8190 
8191 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8192 {
8193 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8194 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8195 		rflags |= X86_EFLAGS_TF;
8196 	kvm_x86_ops->set_rflags(vcpu, rflags);
8197 }
8198 
8199 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8200 {
8201 	__kvm_set_rflags(vcpu, rflags);
8202 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8203 }
8204 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8205 
8206 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8207 {
8208 	int r;
8209 
8210 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8211 	      work->wakeup_all)
8212 		return;
8213 
8214 	r = kvm_mmu_reload(vcpu);
8215 	if (unlikely(r))
8216 		return;
8217 
8218 	if (!vcpu->arch.mmu.direct_map &&
8219 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8220 		return;
8221 
8222 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8223 }
8224 
8225 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8226 {
8227 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8228 }
8229 
8230 static inline u32 kvm_async_pf_next_probe(u32 key)
8231 {
8232 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8233 }
8234 
8235 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8236 {
8237 	u32 key = kvm_async_pf_hash_fn(gfn);
8238 
8239 	while (vcpu->arch.apf.gfns[key] != ~0)
8240 		key = kvm_async_pf_next_probe(key);
8241 
8242 	vcpu->arch.apf.gfns[key] = gfn;
8243 }
8244 
8245 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8246 {
8247 	int i;
8248 	u32 key = kvm_async_pf_hash_fn(gfn);
8249 
8250 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8251 		     (vcpu->arch.apf.gfns[key] != gfn &&
8252 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8253 		key = kvm_async_pf_next_probe(key);
8254 
8255 	return key;
8256 }
8257 
8258 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8259 {
8260 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8261 }
8262 
8263 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8264 {
8265 	u32 i, j, k;
8266 
8267 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8268 	while (true) {
8269 		vcpu->arch.apf.gfns[i] = ~0;
8270 		do {
8271 			j = kvm_async_pf_next_probe(j);
8272 			if (vcpu->arch.apf.gfns[j] == ~0)
8273 				return;
8274 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8275 			/*
8276 			 * k lies cyclically in ]i,j]
8277 			 * |    i.k.j |
8278 			 * |....j i.k.| or  |.k..j i...|
8279 			 */
8280 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8281 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8282 		i = j;
8283 	}
8284 }
8285 
8286 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8287 {
8288 
8289 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8290 				      sizeof(val));
8291 }
8292 
8293 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8294 				     struct kvm_async_pf *work)
8295 {
8296 	struct x86_exception fault;
8297 
8298 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8299 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8300 
8301 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8302 	    (vcpu->arch.apf.send_user_only &&
8303 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8304 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8305 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8306 		fault.vector = PF_VECTOR;
8307 		fault.error_code_valid = true;
8308 		fault.error_code = 0;
8309 		fault.nested_page_fault = false;
8310 		fault.address = work->arch.token;
8311 		kvm_inject_page_fault(vcpu, &fault);
8312 	}
8313 }
8314 
8315 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8316 				 struct kvm_async_pf *work)
8317 {
8318 	struct x86_exception fault;
8319 
8320 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8321 	if (work->wakeup_all)
8322 		work->arch.token = ~0; /* broadcast wakeup */
8323 	else
8324 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8325 
8326 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8327 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8328 		fault.vector = PF_VECTOR;
8329 		fault.error_code_valid = true;
8330 		fault.error_code = 0;
8331 		fault.nested_page_fault = false;
8332 		fault.address = work->arch.token;
8333 		kvm_inject_page_fault(vcpu, &fault);
8334 	}
8335 	vcpu->arch.apf.halted = false;
8336 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8337 }
8338 
8339 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8340 {
8341 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8342 		return true;
8343 	else
8344 		return !kvm_event_needs_reinjection(vcpu) &&
8345 			kvm_x86_ops->interrupt_allowed(vcpu);
8346 }
8347 
8348 void kvm_arch_start_assignment(struct kvm *kvm)
8349 {
8350 	atomic_inc(&kvm->arch.assigned_device_count);
8351 }
8352 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8353 
8354 void kvm_arch_end_assignment(struct kvm *kvm)
8355 {
8356 	atomic_dec(&kvm->arch.assigned_device_count);
8357 }
8358 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8359 
8360 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8361 {
8362 	return atomic_read(&kvm->arch.assigned_device_count);
8363 }
8364 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8365 
8366 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8367 {
8368 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8369 }
8370 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8371 
8372 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8373 {
8374 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8375 }
8376 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8377 
8378 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8379 {
8380 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8381 }
8382 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8383 
8384 bool kvm_arch_has_irq_bypass(void)
8385 {
8386 	return kvm_x86_ops->update_pi_irte != NULL;
8387 }
8388 
8389 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8390 				      struct irq_bypass_producer *prod)
8391 {
8392 	struct kvm_kernel_irqfd *irqfd =
8393 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8394 
8395 	irqfd->producer = prod;
8396 
8397 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8398 					   prod->irq, irqfd->gsi, 1);
8399 }
8400 
8401 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8402 				      struct irq_bypass_producer *prod)
8403 {
8404 	int ret;
8405 	struct kvm_kernel_irqfd *irqfd =
8406 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8407 
8408 	WARN_ON(irqfd->producer != prod);
8409 	irqfd->producer = NULL;
8410 
8411 	/*
8412 	 * When producer of consumer is unregistered, we change back to
8413 	 * remapped mode, so we can re-use the current implementation
8414 	 * when the irq is masked/disabled or the consumer side (KVM
8415 	 * int this case doesn't want to receive the interrupts.
8416 	*/
8417 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8418 	if (ret)
8419 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8420 		       " fails: %d\n", irqfd->consumer.token, ret);
8421 }
8422 
8423 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8424 				   uint32_t guest_irq, bool set)
8425 {
8426 	if (!kvm_x86_ops->update_pi_irte)
8427 		return -EINVAL;
8428 
8429 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8430 }
8431 
8432 bool kvm_vector_hashing_enabled(void)
8433 {
8434 	return vector_hashing;
8435 }
8436 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8437 
8438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8453 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8455 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8456 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8457