xref: /openbmc/linux/arch/x86/kvm/x86.c (revision f47a3ca2)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70 
71 #define emul_to_vcpu(ctxt) \
72 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84 
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87 
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93 
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96 
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101 
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105 
106 #define KVM_NR_SHARED_MSRS 16
107 
108 struct kvm_shared_msrs_global {
109 	int nr;
110 	u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112 
113 struct kvm_shared_msrs {
114 	struct user_return_notifier urn;
115 	bool registered;
116 	struct kvm_shared_msr_values {
117 		u64 host;
118 		u64 curr;
119 	} values[KVM_NR_SHARED_MSRS];
120 };
121 
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124 
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
127 	{ "pf_guest", VCPU_STAT(pf_guest) },
128 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
129 	{ "invlpg", VCPU_STAT(invlpg) },
130 	{ "exits", VCPU_STAT(exits) },
131 	{ "io_exits", VCPU_STAT(io_exits) },
132 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
133 	{ "signal_exits", VCPU_STAT(signal_exits) },
134 	{ "irq_window", VCPU_STAT(irq_window_exits) },
135 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
136 	{ "halt_exits", VCPU_STAT(halt_exits) },
137 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
138 	{ "hypercalls", VCPU_STAT(hypercalls) },
139 	{ "request_irq", VCPU_STAT(request_irq_exits) },
140 	{ "irq_exits", VCPU_STAT(irq_exits) },
141 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
142 	{ "efer_reload", VCPU_STAT(efer_reload) },
143 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
144 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
145 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146 	{ "irq_injections", VCPU_STAT(irq_injections) },
147 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
148 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
150 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
153 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
154 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
156 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157 	{ "largepages", VM_STAT(lpages) },
158 	{ NULL }
159 };
160 
161 u64 __read_mostly host_xcr0;
162 
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164 
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167 	int i;
168 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169 		vcpu->arch.apf.gfns[i] = ~0;
170 }
171 
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174 	unsigned slot;
175 	struct kvm_shared_msrs *locals
176 		= container_of(urn, struct kvm_shared_msrs, urn);
177 	struct kvm_shared_msr_values *values;
178 
179 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180 		values = &locals->values[slot];
181 		if (values->host != values->curr) {
182 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
183 			values->curr = values->host;
184 		}
185 	}
186 	locals->registered = false;
187 	user_return_notifier_unregister(urn);
188 }
189 
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192 	u64 value;
193 	unsigned int cpu = smp_processor_id();
194 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195 
196 	/* only read, and nobody should modify it at this time,
197 	 * so don't need lock */
198 	if (slot >= shared_msrs_global.nr) {
199 		printk(KERN_ERR "kvm: invalid MSR slot!");
200 		return;
201 	}
202 	rdmsrl_safe(msr, &value);
203 	smsr->values[slot].host = value;
204 	smsr->values[slot].curr = value;
205 }
206 
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209 	if (slot >= shared_msrs_global.nr)
210 		shared_msrs_global.nr = slot + 1;
211 	shared_msrs_global.msrs[slot] = msr;
212 	/* we need ensured the shared_msr_global have been updated */
213 	smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216 
217 static void kvm_shared_msr_cpu_online(void)
218 {
219 	unsigned i;
220 
221 	for (i = 0; i < shared_msrs_global.nr; ++i)
222 		shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224 
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227 	unsigned int cpu = smp_processor_id();
228 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229 
230 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
231 		return;
232 	smsr->values[slot].curr = value;
233 	wrmsrl(shared_msrs_global.msrs[slot], value);
234 	if (!smsr->registered) {
235 		smsr->urn.on_user_return = kvm_on_user_return;
236 		user_return_notifier_register(&smsr->urn);
237 		smsr->registered = true;
238 	}
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241 
242 static void drop_user_return_notifiers(void *ignore)
243 {
244 	unsigned int cpu = smp_processor_id();
245 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246 
247 	if (smsr->registered)
248 		kvm_on_user_return(&smsr->urn);
249 }
250 
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253 	return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256 
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259 	/* TODO: reserve bits check */
260 	kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263 
264 asmlinkage void kvm_spurious_fault(void)
265 {
266 	/* Fault while not rebooting.  We want the trace. */
267 	BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270 
271 #define EXCPT_BENIGN		0
272 #define EXCPT_CONTRIBUTORY	1
273 #define EXCPT_PF		2
274 
275 static int exception_class(int vector)
276 {
277 	switch (vector) {
278 	case PF_VECTOR:
279 		return EXCPT_PF;
280 	case DE_VECTOR:
281 	case TS_VECTOR:
282 	case NP_VECTOR:
283 	case SS_VECTOR:
284 	case GP_VECTOR:
285 		return EXCPT_CONTRIBUTORY;
286 	default:
287 		break;
288 	}
289 	return EXCPT_BENIGN;
290 }
291 
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293 		unsigned nr, bool has_error, u32 error_code,
294 		bool reinject)
295 {
296 	u32 prev_nr;
297 	int class1, class2;
298 
299 	kvm_make_request(KVM_REQ_EVENT, vcpu);
300 
301 	if (!vcpu->arch.exception.pending) {
302 	queue:
303 		vcpu->arch.exception.pending = true;
304 		vcpu->arch.exception.has_error_code = has_error;
305 		vcpu->arch.exception.nr = nr;
306 		vcpu->arch.exception.error_code = error_code;
307 		vcpu->arch.exception.reinject = reinject;
308 		return;
309 	}
310 
311 	/* to check exception */
312 	prev_nr = vcpu->arch.exception.nr;
313 	if (prev_nr == DF_VECTOR) {
314 		/* triple fault -> shutdown */
315 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316 		return;
317 	}
318 	class1 = exception_class(prev_nr);
319 	class2 = exception_class(nr);
320 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322 		/* generate double fault per SDM Table 5-5 */
323 		vcpu->arch.exception.pending = true;
324 		vcpu->arch.exception.has_error_code = true;
325 		vcpu->arch.exception.nr = DF_VECTOR;
326 		vcpu->arch.exception.error_code = 0;
327 	} else
328 		/* replace previous exception with a new one in a hope
329 		   that instruction re-execution will regenerate lost
330 		   exception */
331 		goto queue;
332 }
333 
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336 	kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339 
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342 	kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345 
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348 	if (err)
349 		kvm_inject_gp(vcpu, 0);
350 	else
351 		kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354 
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357 	++vcpu->stat.pf_guest;
358 	vcpu->arch.cr2 = fault->address;
359 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362 
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367 	else
368 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370 
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373 	atomic_inc(&vcpu->arch.nmi_queued);
374 	kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377 
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383 
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389 
390 /*
391  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
392  * a #GP and return false.
393  */
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397 		return true;
398 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399 	return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402 
403 /*
404  * This function will be used to read from the physical memory of the currently
405  * running guest. The difference to kvm_read_guest_page is that this function
406  * can read from guest physical or from the guest's guest physical memory.
407  */
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409 			    gfn_t ngfn, void *data, int offset, int len,
410 			    u32 access)
411 {
412 	gfn_t real_gfn;
413 	gpa_t ngpa;
414 
415 	ngpa     = gfn_to_gpa(ngfn);
416 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417 	if (real_gfn == UNMAPPED_GVA)
418 		return -EFAULT;
419 
420 	real_gfn = gpa_to_gfn(real_gfn);
421 
422 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425 
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427 			       void *data, int offset, int len, u32 access)
428 {
429 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430 				       data, offset, len, access);
431 }
432 
433 /*
434  * Load the pae pdptrs.  Return true is they are all valid.
435  */
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440 	int i;
441 	int ret;
442 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443 
444 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445 				      offset * sizeof(u64), sizeof(pdpte),
446 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
447 	if (ret < 0) {
448 		ret = 0;
449 		goto out;
450 	}
451 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452 		if (is_present_gpte(pdpte[i]) &&
453 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454 			ret = 0;
455 			goto out;
456 		}
457 	}
458 	ret = 1;
459 
460 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461 	__set_bit(VCPU_EXREG_PDPTR,
462 		  (unsigned long *)&vcpu->arch.regs_avail);
463 	__set_bit(VCPU_EXREG_PDPTR,
464 		  (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466 
467 	return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470 
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474 	bool changed = true;
475 	int offset;
476 	gfn_t gfn;
477 	int r;
478 
479 	if (is_long_mode(vcpu) || !is_pae(vcpu))
480 		return false;
481 
482 	if (!test_bit(VCPU_EXREG_PDPTR,
483 		      (unsigned long *)&vcpu->arch.regs_avail))
484 		return true;
485 
486 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
490 	if (r < 0)
491 		goto out;
492 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494 
495 	return changed;
496 }
497 
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
501 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502 				    X86_CR0_CD | X86_CR0_NW;
503 
504 	cr0 |= X86_CR0_ET;
505 
506 #ifdef CONFIG_X86_64
507 	if (cr0 & 0xffffffff00000000UL)
508 		return 1;
509 #endif
510 
511 	cr0 &= ~CR0_RESERVED_BITS;
512 
513 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514 		return 1;
515 
516 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517 		return 1;
518 
519 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521 		if ((vcpu->arch.efer & EFER_LME)) {
522 			int cs_db, cs_l;
523 
524 			if (!is_pae(vcpu))
525 				return 1;
526 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527 			if (cs_l)
528 				return 1;
529 		} else
530 #endif
531 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532 						 kvm_read_cr3(vcpu)))
533 			return 1;
534 	}
535 
536 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537 		return 1;
538 
539 	kvm_x86_ops->set_cr0(vcpu, cr0);
540 
541 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542 		kvm_clear_async_pf_completion_queue(vcpu);
543 		kvm_async_pf_hash_reset(vcpu);
544 	}
545 
546 	if ((cr0 ^ old_cr0) & update_bits)
547 		kvm_mmu_reset_context(vcpu);
548 	return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551 
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557 
558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
559 {
560 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
561 			!vcpu->guest_xcr0_loaded) {
562 		/* kvm_set_xcr() also depends on this */
563 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
564 		vcpu->guest_xcr0_loaded = 1;
565 	}
566 }
567 
568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
569 {
570 	if (vcpu->guest_xcr0_loaded) {
571 		if (vcpu->arch.xcr0 != host_xcr0)
572 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
573 		vcpu->guest_xcr0_loaded = 0;
574 	}
575 }
576 
577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
578 {
579 	u64 xcr0;
580 
581 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
582 	if (index != XCR_XFEATURE_ENABLED_MASK)
583 		return 1;
584 	xcr0 = xcr;
585 	if (!(xcr0 & XSTATE_FP))
586 		return 1;
587 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
588 		return 1;
589 	if (xcr0 & ~host_xcr0)
590 		return 1;
591 	kvm_put_guest_xcr0(vcpu);
592 	vcpu->arch.xcr0 = xcr0;
593 	return 0;
594 }
595 
596 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
597 {
598 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
599 	    __kvm_set_xcr(vcpu, index, xcr)) {
600 		kvm_inject_gp(vcpu, 0);
601 		return 1;
602 	}
603 	return 0;
604 }
605 EXPORT_SYMBOL_GPL(kvm_set_xcr);
606 
607 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
608 {
609 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
610 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
611 				   X86_CR4_PAE | X86_CR4_SMEP;
612 	if (cr4 & CR4_RESERVED_BITS)
613 		return 1;
614 
615 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
616 		return 1;
617 
618 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
619 		return 1;
620 
621 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
622 		return 1;
623 
624 	if (is_long_mode(vcpu)) {
625 		if (!(cr4 & X86_CR4_PAE))
626 			return 1;
627 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
628 		   && ((cr4 ^ old_cr4) & pdptr_bits)
629 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
630 				   kvm_read_cr3(vcpu)))
631 		return 1;
632 
633 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
634 		if (!guest_cpuid_has_pcid(vcpu))
635 			return 1;
636 
637 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
638 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
639 			return 1;
640 	}
641 
642 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
643 		return 1;
644 
645 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
646 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
647 		kvm_mmu_reset_context(vcpu);
648 
649 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
650 		kvm_update_cpuid(vcpu);
651 
652 	return 0;
653 }
654 EXPORT_SYMBOL_GPL(kvm_set_cr4);
655 
656 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
657 {
658 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
659 		kvm_mmu_sync_roots(vcpu);
660 		kvm_mmu_flush_tlb(vcpu);
661 		return 0;
662 	}
663 
664 	if (is_long_mode(vcpu)) {
665 		if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
666 			if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
667 				return 1;
668 		} else
669 			if (cr3 & CR3_L_MODE_RESERVED_BITS)
670 				return 1;
671 	} else {
672 		if (is_pae(vcpu)) {
673 			if (cr3 & CR3_PAE_RESERVED_BITS)
674 				return 1;
675 			if (is_paging(vcpu) &&
676 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
677 				return 1;
678 		}
679 		/*
680 		 * We don't check reserved bits in nonpae mode, because
681 		 * this isn't enforced, and VMware depends on this.
682 		 */
683 	}
684 
685 	/*
686 	 * Does the new cr3 value map to physical memory? (Note, we
687 	 * catch an invalid cr3 even in real-mode, because it would
688 	 * cause trouble later on when we turn on paging anyway.)
689 	 *
690 	 * A real CPU would silently accept an invalid cr3 and would
691 	 * attempt to use it - with largely undefined (and often hard
692 	 * to debug) behavior on the guest side.
693 	 */
694 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
695 		return 1;
696 	vcpu->arch.cr3 = cr3;
697 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
698 	vcpu->arch.mmu.new_cr3(vcpu);
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(kvm_set_cr3);
702 
703 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
704 {
705 	if (cr8 & CR8_RESERVED_BITS)
706 		return 1;
707 	if (irqchip_in_kernel(vcpu->kvm))
708 		kvm_lapic_set_tpr(vcpu, cr8);
709 	else
710 		vcpu->arch.cr8 = cr8;
711 	return 0;
712 }
713 EXPORT_SYMBOL_GPL(kvm_set_cr8);
714 
715 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
716 {
717 	if (irqchip_in_kernel(vcpu->kvm))
718 		return kvm_lapic_get_cr8(vcpu);
719 	else
720 		return vcpu->arch.cr8;
721 }
722 EXPORT_SYMBOL_GPL(kvm_get_cr8);
723 
724 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
725 {
726 	unsigned long dr7;
727 
728 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
729 		dr7 = vcpu->arch.guest_debug_dr7;
730 	else
731 		dr7 = vcpu->arch.dr7;
732 	kvm_x86_ops->set_dr7(vcpu, dr7);
733 	vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
734 }
735 
736 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
737 {
738 	switch (dr) {
739 	case 0 ... 3:
740 		vcpu->arch.db[dr] = val;
741 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
742 			vcpu->arch.eff_db[dr] = val;
743 		break;
744 	case 4:
745 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
746 			return 1; /* #UD */
747 		/* fall through */
748 	case 6:
749 		if (val & 0xffffffff00000000ULL)
750 			return -1; /* #GP */
751 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
752 		break;
753 	case 5:
754 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
755 			return 1; /* #UD */
756 		/* fall through */
757 	default: /* 7 */
758 		if (val & 0xffffffff00000000ULL)
759 			return -1; /* #GP */
760 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
761 		kvm_update_dr7(vcpu);
762 		break;
763 	}
764 
765 	return 0;
766 }
767 
768 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
769 {
770 	int res;
771 
772 	res = __kvm_set_dr(vcpu, dr, val);
773 	if (res > 0)
774 		kvm_queue_exception(vcpu, UD_VECTOR);
775 	else if (res < 0)
776 		kvm_inject_gp(vcpu, 0);
777 
778 	return res;
779 }
780 EXPORT_SYMBOL_GPL(kvm_set_dr);
781 
782 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
783 {
784 	switch (dr) {
785 	case 0 ... 3:
786 		*val = vcpu->arch.db[dr];
787 		break;
788 	case 4:
789 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
790 			return 1;
791 		/* fall through */
792 	case 6:
793 		*val = vcpu->arch.dr6;
794 		break;
795 	case 5:
796 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
797 			return 1;
798 		/* fall through */
799 	default: /* 7 */
800 		*val = vcpu->arch.dr7;
801 		break;
802 	}
803 
804 	return 0;
805 }
806 
807 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
808 {
809 	if (_kvm_get_dr(vcpu, dr, val)) {
810 		kvm_queue_exception(vcpu, UD_VECTOR);
811 		return 1;
812 	}
813 	return 0;
814 }
815 EXPORT_SYMBOL_GPL(kvm_get_dr);
816 
817 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
818 {
819 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
820 	u64 data;
821 	int err;
822 
823 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
824 	if (err)
825 		return err;
826 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
827 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
828 	return err;
829 }
830 EXPORT_SYMBOL_GPL(kvm_rdpmc);
831 
832 /*
833  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
834  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
835  *
836  * This list is modified at module load time to reflect the
837  * capabilities of the host cpu. This capabilities test skips MSRs that are
838  * kvm-specific. Those are put in the beginning of the list.
839  */
840 
841 #define KVM_SAVE_MSRS_BEGIN	10
842 static u32 msrs_to_save[] = {
843 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
844 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
845 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
846 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
847 	MSR_KVM_PV_EOI_EN,
848 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
849 	MSR_STAR,
850 #ifdef CONFIG_X86_64
851 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
852 #endif
853 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
854 };
855 
856 static unsigned num_msrs_to_save;
857 
858 static const u32 emulated_msrs[] = {
859 	MSR_IA32_TSC_ADJUST,
860 	MSR_IA32_TSCDEADLINE,
861 	MSR_IA32_MISC_ENABLE,
862 	MSR_IA32_MCG_STATUS,
863 	MSR_IA32_MCG_CTL,
864 };
865 
866 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
867 {
868 	if (efer & efer_reserved_bits)
869 		return false;
870 
871 	if (efer & EFER_FFXSR) {
872 		struct kvm_cpuid_entry2 *feat;
873 
874 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
875 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
876 			return false;
877 	}
878 
879 	if (efer & EFER_SVME) {
880 		struct kvm_cpuid_entry2 *feat;
881 
882 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
883 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
884 			return false;
885 	}
886 
887 	return true;
888 }
889 EXPORT_SYMBOL_GPL(kvm_valid_efer);
890 
891 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
892 {
893 	u64 old_efer = vcpu->arch.efer;
894 
895 	if (!kvm_valid_efer(vcpu, efer))
896 		return 1;
897 
898 	if (is_paging(vcpu)
899 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
900 		return 1;
901 
902 	efer &= ~EFER_LMA;
903 	efer |= vcpu->arch.efer & EFER_LMA;
904 
905 	kvm_x86_ops->set_efer(vcpu, efer);
906 
907 	/* Update reserved bits */
908 	if ((efer ^ old_efer) & EFER_NX)
909 		kvm_mmu_reset_context(vcpu);
910 
911 	return 0;
912 }
913 
914 void kvm_enable_efer_bits(u64 mask)
915 {
916        efer_reserved_bits &= ~mask;
917 }
918 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
919 
920 
921 /*
922  * Writes msr value into into the appropriate "register".
923  * Returns 0 on success, non-0 otherwise.
924  * Assumes vcpu_load() was already called.
925  */
926 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
927 {
928 	return kvm_x86_ops->set_msr(vcpu, msr);
929 }
930 
931 /*
932  * Adapt set_msr() to msr_io()'s calling convention
933  */
934 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
935 {
936 	struct msr_data msr;
937 
938 	msr.data = *data;
939 	msr.index = index;
940 	msr.host_initiated = true;
941 	return kvm_set_msr(vcpu, &msr);
942 }
943 
944 #ifdef CONFIG_X86_64
945 struct pvclock_gtod_data {
946 	seqcount_t	seq;
947 
948 	struct { /* extract of a clocksource struct */
949 		int vclock_mode;
950 		cycle_t	cycle_last;
951 		cycle_t	mask;
952 		u32	mult;
953 		u32	shift;
954 	} clock;
955 
956 	/* open coded 'struct timespec' */
957 	u64		monotonic_time_snsec;
958 	time_t		monotonic_time_sec;
959 };
960 
961 static struct pvclock_gtod_data pvclock_gtod_data;
962 
963 static void update_pvclock_gtod(struct timekeeper *tk)
964 {
965 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
966 
967 	write_seqcount_begin(&vdata->seq);
968 
969 	/* copy pvclock gtod data */
970 	vdata->clock.vclock_mode	= tk->clock->archdata.vclock_mode;
971 	vdata->clock.cycle_last		= tk->clock->cycle_last;
972 	vdata->clock.mask		= tk->clock->mask;
973 	vdata->clock.mult		= tk->mult;
974 	vdata->clock.shift		= tk->shift;
975 
976 	vdata->monotonic_time_sec	= tk->xtime_sec
977 					+ tk->wall_to_monotonic.tv_sec;
978 	vdata->monotonic_time_snsec	= tk->xtime_nsec
979 					+ (tk->wall_to_monotonic.tv_nsec
980 						<< tk->shift);
981 	while (vdata->monotonic_time_snsec >=
982 					(((u64)NSEC_PER_SEC) << tk->shift)) {
983 		vdata->monotonic_time_snsec -=
984 					((u64)NSEC_PER_SEC) << tk->shift;
985 		vdata->monotonic_time_sec++;
986 	}
987 
988 	write_seqcount_end(&vdata->seq);
989 }
990 #endif
991 
992 
993 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
994 {
995 	int version;
996 	int r;
997 	struct pvclock_wall_clock wc;
998 	struct timespec boot;
999 
1000 	if (!wall_clock)
1001 		return;
1002 
1003 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1004 	if (r)
1005 		return;
1006 
1007 	if (version & 1)
1008 		++version;  /* first time write, random junk */
1009 
1010 	++version;
1011 
1012 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1013 
1014 	/*
1015 	 * The guest calculates current wall clock time by adding
1016 	 * system time (updated by kvm_guest_time_update below) to the
1017 	 * wall clock specified here.  guest system time equals host
1018 	 * system time for us, thus we must fill in host boot time here.
1019 	 */
1020 	getboottime(&boot);
1021 
1022 	if (kvm->arch.kvmclock_offset) {
1023 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1024 		boot = timespec_sub(boot, ts);
1025 	}
1026 	wc.sec = boot.tv_sec;
1027 	wc.nsec = boot.tv_nsec;
1028 	wc.version = version;
1029 
1030 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1031 
1032 	version++;
1033 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1034 }
1035 
1036 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1037 {
1038 	uint32_t quotient, remainder;
1039 
1040 	/* Don't try to replace with do_div(), this one calculates
1041 	 * "(dividend << 32) / divisor" */
1042 	__asm__ ( "divl %4"
1043 		  : "=a" (quotient), "=d" (remainder)
1044 		  : "0" (0), "1" (dividend), "r" (divisor) );
1045 	return quotient;
1046 }
1047 
1048 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1049 			       s8 *pshift, u32 *pmultiplier)
1050 {
1051 	uint64_t scaled64;
1052 	int32_t  shift = 0;
1053 	uint64_t tps64;
1054 	uint32_t tps32;
1055 
1056 	tps64 = base_khz * 1000LL;
1057 	scaled64 = scaled_khz * 1000LL;
1058 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1059 		tps64 >>= 1;
1060 		shift--;
1061 	}
1062 
1063 	tps32 = (uint32_t)tps64;
1064 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1065 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1066 			scaled64 >>= 1;
1067 		else
1068 			tps32 <<= 1;
1069 		shift++;
1070 	}
1071 
1072 	*pshift = shift;
1073 	*pmultiplier = div_frac(scaled64, tps32);
1074 
1075 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1076 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1077 }
1078 
1079 static inline u64 get_kernel_ns(void)
1080 {
1081 	struct timespec ts;
1082 
1083 	WARN_ON(preemptible());
1084 	ktime_get_ts(&ts);
1085 	monotonic_to_bootbased(&ts);
1086 	return timespec_to_ns(&ts);
1087 }
1088 
1089 #ifdef CONFIG_X86_64
1090 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1091 #endif
1092 
1093 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1094 unsigned long max_tsc_khz;
1095 
1096 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1097 {
1098 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1099 				   vcpu->arch.virtual_tsc_shift);
1100 }
1101 
1102 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1103 {
1104 	u64 v = (u64)khz * (1000000 + ppm);
1105 	do_div(v, 1000000);
1106 	return v;
1107 }
1108 
1109 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1110 {
1111 	u32 thresh_lo, thresh_hi;
1112 	int use_scaling = 0;
1113 
1114 	/* tsc_khz can be zero if TSC calibration fails */
1115 	if (this_tsc_khz == 0)
1116 		return;
1117 
1118 	/* Compute a scale to convert nanoseconds in TSC cycles */
1119 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1120 			   &vcpu->arch.virtual_tsc_shift,
1121 			   &vcpu->arch.virtual_tsc_mult);
1122 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1123 
1124 	/*
1125 	 * Compute the variation in TSC rate which is acceptable
1126 	 * within the range of tolerance and decide if the
1127 	 * rate being applied is within that bounds of the hardware
1128 	 * rate.  If so, no scaling or compensation need be done.
1129 	 */
1130 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1131 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1132 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1133 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1134 		use_scaling = 1;
1135 	}
1136 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1137 }
1138 
1139 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1140 {
1141 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1142 				      vcpu->arch.virtual_tsc_mult,
1143 				      vcpu->arch.virtual_tsc_shift);
1144 	tsc += vcpu->arch.this_tsc_write;
1145 	return tsc;
1146 }
1147 
1148 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1149 {
1150 #ifdef CONFIG_X86_64
1151 	bool vcpus_matched;
1152 	bool do_request = false;
1153 	struct kvm_arch *ka = &vcpu->kvm->arch;
1154 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1155 
1156 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1157 			 atomic_read(&vcpu->kvm->online_vcpus));
1158 
1159 	if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1160 		if (!ka->use_master_clock)
1161 			do_request = 1;
1162 
1163 	if (!vcpus_matched && ka->use_master_clock)
1164 			do_request = 1;
1165 
1166 	if (do_request)
1167 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1168 
1169 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1170 			    atomic_read(&vcpu->kvm->online_vcpus),
1171 		            ka->use_master_clock, gtod->clock.vclock_mode);
1172 #endif
1173 }
1174 
1175 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1176 {
1177 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1178 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1179 }
1180 
1181 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1182 {
1183 	struct kvm *kvm = vcpu->kvm;
1184 	u64 offset, ns, elapsed;
1185 	unsigned long flags;
1186 	s64 usdiff;
1187 	bool matched;
1188 	u64 data = msr->data;
1189 
1190 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1191 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1192 	ns = get_kernel_ns();
1193 	elapsed = ns - kvm->arch.last_tsc_nsec;
1194 
1195 	if (vcpu->arch.virtual_tsc_khz) {
1196 		/* n.b - signed multiplication and division required */
1197 		usdiff = data - kvm->arch.last_tsc_write;
1198 #ifdef CONFIG_X86_64
1199 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1200 #else
1201 		/* do_div() only does unsigned */
1202 		asm("idivl %2; xor %%edx, %%edx"
1203 		: "=A"(usdiff)
1204 		: "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1205 #endif
1206 		do_div(elapsed, 1000);
1207 		usdiff -= elapsed;
1208 		if (usdiff < 0)
1209 			usdiff = -usdiff;
1210 	} else
1211 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1212 
1213 	/*
1214 	 * Special case: TSC write with a small delta (1 second) of virtual
1215 	 * cycle time against real time is interpreted as an attempt to
1216 	 * synchronize the CPU.
1217          *
1218 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1219 	 * TSC, we add elapsed time in this computation.  We could let the
1220 	 * compensation code attempt to catch up if we fall behind, but
1221 	 * it's better to try to match offsets from the beginning.
1222          */
1223 	if (usdiff < USEC_PER_SEC &&
1224 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1225 		if (!check_tsc_unstable()) {
1226 			offset = kvm->arch.cur_tsc_offset;
1227 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1228 		} else {
1229 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1230 			data += delta;
1231 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1232 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1233 		}
1234 		matched = true;
1235 	} else {
1236 		/*
1237 		 * We split periods of matched TSC writes into generations.
1238 		 * For each generation, we track the original measured
1239 		 * nanosecond time, offset, and write, so if TSCs are in
1240 		 * sync, we can match exact offset, and if not, we can match
1241 		 * exact software computation in compute_guest_tsc()
1242 		 *
1243 		 * These values are tracked in kvm->arch.cur_xxx variables.
1244 		 */
1245 		kvm->arch.cur_tsc_generation++;
1246 		kvm->arch.cur_tsc_nsec = ns;
1247 		kvm->arch.cur_tsc_write = data;
1248 		kvm->arch.cur_tsc_offset = offset;
1249 		matched = false;
1250 		pr_debug("kvm: new tsc generation %u, clock %llu\n",
1251 			 kvm->arch.cur_tsc_generation, data);
1252 	}
1253 
1254 	/*
1255 	 * We also track th most recent recorded KHZ, write and time to
1256 	 * allow the matching interval to be extended at each write.
1257 	 */
1258 	kvm->arch.last_tsc_nsec = ns;
1259 	kvm->arch.last_tsc_write = data;
1260 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1261 
1262 	/* Reset of TSC must disable overshoot protection below */
1263 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1264 	vcpu->arch.last_guest_tsc = data;
1265 
1266 	/* Keep track of which generation this VCPU has synchronized to */
1267 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1268 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1269 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1270 
1271 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1272 		update_ia32_tsc_adjust_msr(vcpu, offset);
1273 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1274 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1275 
1276 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1277 	if (matched)
1278 		kvm->arch.nr_vcpus_matched_tsc++;
1279 	else
1280 		kvm->arch.nr_vcpus_matched_tsc = 0;
1281 
1282 	kvm_track_tsc_matching(vcpu);
1283 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1284 }
1285 
1286 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1287 
1288 #ifdef CONFIG_X86_64
1289 
1290 static cycle_t read_tsc(void)
1291 {
1292 	cycle_t ret;
1293 	u64 last;
1294 
1295 	/*
1296 	 * Empirically, a fence (of type that depends on the CPU)
1297 	 * before rdtsc is enough to ensure that rdtsc is ordered
1298 	 * with respect to loads.  The various CPU manuals are unclear
1299 	 * as to whether rdtsc can be reordered with later loads,
1300 	 * but no one has ever seen it happen.
1301 	 */
1302 	rdtsc_barrier();
1303 	ret = (cycle_t)vget_cycles();
1304 
1305 	last = pvclock_gtod_data.clock.cycle_last;
1306 
1307 	if (likely(ret >= last))
1308 		return ret;
1309 
1310 	/*
1311 	 * GCC likes to generate cmov here, but this branch is extremely
1312 	 * predictable (it's just a funciton of time and the likely is
1313 	 * very likely) and there's a data dependence, so force GCC
1314 	 * to generate a branch instead.  I don't barrier() because
1315 	 * we don't actually need a barrier, and if this function
1316 	 * ever gets inlined it will generate worse code.
1317 	 */
1318 	asm volatile ("");
1319 	return last;
1320 }
1321 
1322 static inline u64 vgettsc(cycle_t *cycle_now)
1323 {
1324 	long v;
1325 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1326 
1327 	*cycle_now = read_tsc();
1328 
1329 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1330 	return v * gtod->clock.mult;
1331 }
1332 
1333 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1334 {
1335 	unsigned long seq;
1336 	u64 ns;
1337 	int mode;
1338 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1339 
1340 	ts->tv_nsec = 0;
1341 	do {
1342 		seq = read_seqcount_begin(&gtod->seq);
1343 		mode = gtod->clock.vclock_mode;
1344 		ts->tv_sec = gtod->monotonic_time_sec;
1345 		ns = gtod->monotonic_time_snsec;
1346 		ns += vgettsc(cycle_now);
1347 		ns >>= gtod->clock.shift;
1348 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1349 	timespec_add_ns(ts, ns);
1350 
1351 	return mode;
1352 }
1353 
1354 /* returns true if host is using tsc clocksource */
1355 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1356 {
1357 	struct timespec ts;
1358 
1359 	/* checked again under seqlock below */
1360 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1361 		return false;
1362 
1363 	if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1364 		return false;
1365 
1366 	monotonic_to_bootbased(&ts);
1367 	*kernel_ns = timespec_to_ns(&ts);
1368 
1369 	return true;
1370 }
1371 #endif
1372 
1373 /*
1374  *
1375  * Assuming a stable TSC across physical CPUS, and a stable TSC
1376  * across virtual CPUs, the following condition is possible.
1377  * Each numbered line represents an event visible to both
1378  * CPUs at the next numbered event.
1379  *
1380  * "timespecX" represents host monotonic time. "tscX" represents
1381  * RDTSC value.
1382  *
1383  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1384  *
1385  * 1.  read timespec0,tsc0
1386  * 2.					| timespec1 = timespec0 + N
1387  * 					| tsc1 = tsc0 + M
1388  * 3. transition to guest		| transition to guest
1389  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1390  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1391  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1392  *
1393  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1394  *
1395  * 	- ret0 < ret1
1396  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1397  *		...
1398  *	- 0 < N - M => M < N
1399  *
1400  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1401  * always the case (the difference between two distinct xtime instances
1402  * might be smaller then the difference between corresponding TSC reads,
1403  * when updating guest vcpus pvclock areas).
1404  *
1405  * To avoid that problem, do not allow visibility of distinct
1406  * system_timestamp/tsc_timestamp values simultaneously: use a master
1407  * copy of host monotonic time values. Update that master copy
1408  * in lockstep.
1409  *
1410  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1411  *
1412  */
1413 
1414 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1415 {
1416 #ifdef CONFIG_X86_64
1417 	struct kvm_arch *ka = &kvm->arch;
1418 	int vclock_mode;
1419 	bool host_tsc_clocksource, vcpus_matched;
1420 
1421 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1422 			atomic_read(&kvm->online_vcpus));
1423 
1424 	/*
1425 	 * If the host uses TSC clock, then passthrough TSC as stable
1426 	 * to the guest.
1427 	 */
1428 	host_tsc_clocksource = kvm_get_time_and_clockread(
1429 					&ka->master_kernel_ns,
1430 					&ka->master_cycle_now);
1431 
1432 	ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1433 
1434 	if (ka->use_master_clock)
1435 		atomic_set(&kvm_guest_has_master_clock, 1);
1436 
1437 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1438 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1439 					vcpus_matched);
1440 #endif
1441 }
1442 
1443 static int kvm_guest_time_update(struct kvm_vcpu *v)
1444 {
1445 	unsigned long flags, this_tsc_khz;
1446 	struct kvm_vcpu_arch *vcpu = &v->arch;
1447 	struct kvm_arch *ka = &v->kvm->arch;
1448 	s64 kernel_ns, max_kernel_ns;
1449 	u64 tsc_timestamp, host_tsc;
1450 	struct pvclock_vcpu_time_info guest_hv_clock;
1451 	u8 pvclock_flags;
1452 	bool use_master_clock;
1453 
1454 	kernel_ns = 0;
1455 	host_tsc = 0;
1456 
1457 	/*
1458 	 * If the host uses TSC clock, then passthrough TSC as stable
1459 	 * to the guest.
1460 	 */
1461 	spin_lock(&ka->pvclock_gtod_sync_lock);
1462 	use_master_clock = ka->use_master_clock;
1463 	if (use_master_clock) {
1464 		host_tsc = ka->master_cycle_now;
1465 		kernel_ns = ka->master_kernel_ns;
1466 	}
1467 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1468 
1469 	/* Keep irq disabled to prevent changes to the clock */
1470 	local_irq_save(flags);
1471 	this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1472 	if (unlikely(this_tsc_khz == 0)) {
1473 		local_irq_restore(flags);
1474 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1475 		return 1;
1476 	}
1477 	if (!use_master_clock) {
1478 		host_tsc = native_read_tsc();
1479 		kernel_ns = get_kernel_ns();
1480 	}
1481 
1482 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1483 
1484 	/*
1485 	 * We may have to catch up the TSC to match elapsed wall clock
1486 	 * time for two reasons, even if kvmclock is used.
1487 	 *   1) CPU could have been running below the maximum TSC rate
1488 	 *   2) Broken TSC compensation resets the base at each VCPU
1489 	 *      entry to avoid unknown leaps of TSC even when running
1490 	 *      again on the same CPU.  This may cause apparent elapsed
1491 	 *      time to disappear, and the guest to stand still or run
1492 	 *	very slowly.
1493 	 */
1494 	if (vcpu->tsc_catchup) {
1495 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1496 		if (tsc > tsc_timestamp) {
1497 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1498 			tsc_timestamp = tsc;
1499 		}
1500 	}
1501 
1502 	local_irq_restore(flags);
1503 
1504 	if (!vcpu->pv_time_enabled)
1505 		return 0;
1506 
1507 	/*
1508 	 * Time as measured by the TSC may go backwards when resetting the base
1509 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1510 	 * higher than the resolution of the other clock scales.  Thus, many
1511 	 * possible measurments of the TSC correspond to one measurement of any
1512 	 * other clock, and so a spread of values is possible.  This is not a
1513 	 * problem for the computation of the nanosecond clock; with TSC rates
1514 	 * around 1GHZ, there can only be a few cycles which correspond to one
1515 	 * nanosecond value, and any path through this code will inevitably
1516 	 * take longer than that.  However, with the kernel_ns value itself,
1517 	 * the precision may be much lower, down to HZ granularity.  If the
1518 	 * first sampling of TSC against kernel_ns ends in the low part of the
1519 	 * range, and the second in the high end of the range, we can get:
1520 	 *
1521 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1522 	 *
1523 	 * As the sampling errors potentially range in the thousands of cycles,
1524 	 * it is possible such a time value has already been observed by the
1525 	 * guest.  To protect against this, we must compute the system time as
1526 	 * observed by the guest and ensure the new system time is greater.
1527 	 */
1528 	max_kernel_ns = 0;
1529 	if (vcpu->hv_clock.tsc_timestamp) {
1530 		max_kernel_ns = vcpu->last_guest_tsc -
1531 				vcpu->hv_clock.tsc_timestamp;
1532 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1533 				    vcpu->hv_clock.tsc_to_system_mul,
1534 				    vcpu->hv_clock.tsc_shift);
1535 		max_kernel_ns += vcpu->last_kernel_ns;
1536 	}
1537 
1538 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1539 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1540 				   &vcpu->hv_clock.tsc_shift,
1541 				   &vcpu->hv_clock.tsc_to_system_mul);
1542 		vcpu->hw_tsc_khz = this_tsc_khz;
1543 	}
1544 
1545 	/* with a master <monotonic time, tsc value> tuple,
1546 	 * pvclock clock reads always increase at the (scaled) rate
1547 	 * of guest TSC - no need to deal with sampling errors.
1548 	 */
1549 	if (!use_master_clock) {
1550 		if (max_kernel_ns > kernel_ns)
1551 			kernel_ns = max_kernel_ns;
1552 	}
1553 	/* With all the info we got, fill in the values */
1554 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1555 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1556 	vcpu->last_kernel_ns = kernel_ns;
1557 	vcpu->last_guest_tsc = tsc_timestamp;
1558 
1559 	/*
1560 	 * The interface expects us to write an even number signaling that the
1561 	 * update is finished. Since the guest won't see the intermediate
1562 	 * state, we just increase by 2 at the end.
1563 	 */
1564 	vcpu->hv_clock.version += 2;
1565 
1566 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1567 		&guest_hv_clock, sizeof(guest_hv_clock))))
1568 		return 0;
1569 
1570 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1571 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1572 
1573 	if (vcpu->pvclock_set_guest_stopped_request) {
1574 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1575 		vcpu->pvclock_set_guest_stopped_request = false;
1576 	}
1577 
1578 	/* If the host uses TSC clocksource, then it is stable */
1579 	if (use_master_clock)
1580 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1581 
1582 	vcpu->hv_clock.flags = pvclock_flags;
1583 
1584 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1585 				&vcpu->hv_clock,
1586 				sizeof(vcpu->hv_clock));
1587 	return 0;
1588 }
1589 
1590 static bool msr_mtrr_valid(unsigned msr)
1591 {
1592 	switch (msr) {
1593 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1594 	case MSR_MTRRfix64K_00000:
1595 	case MSR_MTRRfix16K_80000:
1596 	case MSR_MTRRfix16K_A0000:
1597 	case MSR_MTRRfix4K_C0000:
1598 	case MSR_MTRRfix4K_C8000:
1599 	case MSR_MTRRfix4K_D0000:
1600 	case MSR_MTRRfix4K_D8000:
1601 	case MSR_MTRRfix4K_E0000:
1602 	case MSR_MTRRfix4K_E8000:
1603 	case MSR_MTRRfix4K_F0000:
1604 	case MSR_MTRRfix4K_F8000:
1605 	case MSR_MTRRdefType:
1606 	case MSR_IA32_CR_PAT:
1607 		return true;
1608 	case 0x2f8:
1609 		return true;
1610 	}
1611 	return false;
1612 }
1613 
1614 static bool valid_pat_type(unsigned t)
1615 {
1616 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1617 }
1618 
1619 static bool valid_mtrr_type(unsigned t)
1620 {
1621 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1622 }
1623 
1624 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1625 {
1626 	int i;
1627 
1628 	if (!msr_mtrr_valid(msr))
1629 		return false;
1630 
1631 	if (msr == MSR_IA32_CR_PAT) {
1632 		for (i = 0; i < 8; i++)
1633 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1634 				return false;
1635 		return true;
1636 	} else if (msr == MSR_MTRRdefType) {
1637 		if (data & ~0xcff)
1638 			return false;
1639 		return valid_mtrr_type(data & 0xff);
1640 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1641 		for (i = 0; i < 8 ; i++)
1642 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1643 				return false;
1644 		return true;
1645 	}
1646 
1647 	/* variable MTRRs */
1648 	return valid_mtrr_type(data & 0xff);
1649 }
1650 
1651 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1652 {
1653 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1654 
1655 	if (!mtrr_valid(vcpu, msr, data))
1656 		return 1;
1657 
1658 	if (msr == MSR_MTRRdefType) {
1659 		vcpu->arch.mtrr_state.def_type = data;
1660 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1661 	} else if (msr == MSR_MTRRfix64K_00000)
1662 		p[0] = data;
1663 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1664 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1665 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1666 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1667 	else if (msr == MSR_IA32_CR_PAT)
1668 		vcpu->arch.pat = data;
1669 	else {	/* Variable MTRRs */
1670 		int idx, is_mtrr_mask;
1671 		u64 *pt;
1672 
1673 		idx = (msr - 0x200) / 2;
1674 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1675 		if (!is_mtrr_mask)
1676 			pt =
1677 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1678 		else
1679 			pt =
1680 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1681 		*pt = data;
1682 	}
1683 
1684 	kvm_mmu_reset_context(vcpu);
1685 	return 0;
1686 }
1687 
1688 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1689 {
1690 	u64 mcg_cap = vcpu->arch.mcg_cap;
1691 	unsigned bank_num = mcg_cap & 0xff;
1692 
1693 	switch (msr) {
1694 	case MSR_IA32_MCG_STATUS:
1695 		vcpu->arch.mcg_status = data;
1696 		break;
1697 	case MSR_IA32_MCG_CTL:
1698 		if (!(mcg_cap & MCG_CTL_P))
1699 			return 1;
1700 		if (data != 0 && data != ~(u64)0)
1701 			return -1;
1702 		vcpu->arch.mcg_ctl = data;
1703 		break;
1704 	default:
1705 		if (msr >= MSR_IA32_MC0_CTL &&
1706 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1707 			u32 offset = msr - MSR_IA32_MC0_CTL;
1708 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1709 			 * some Linux kernels though clear bit 10 in bank 4 to
1710 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1711 			 * this to avoid an uncatched #GP in the guest
1712 			 */
1713 			if ((offset & 0x3) == 0 &&
1714 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1715 				return -1;
1716 			vcpu->arch.mce_banks[offset] = data;
1717 			break;
1718 		}
1719 		return 1;
1720 	}
1721 	return 0;
1722 }
1723 
1724 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1725 {
1726 	struct kvm *kvm = vcpu->kvm;
1727 	int lm = is_long_mode(vcpu);
1728 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1729 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1730 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1731 		: kvm->arch.xen_hvm_config.blob_size_32;
1732 	u32 page_num = data & ~PAGE_MASK;
1733 	u64 page_addr = data & PAGE_MASK;
1734 	u8 *page;
1735 	int r;
1736 
1737 	r = -E2BIG;
1738 	if (page_num >= blob_size)
1739 		goto out;
1740 	r = -ENOMEM;
1741 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1742 	if (IS_ERR(page)) {
1743 		r = PTR_ERR(page);
1744 		goto out;
1745 	}
1746 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1747 		goto out_free;
1748 	r = 0;
1749 out_free:
1750 	kfree(page);
1751 out:
1752 	return r;
1753 }
1754 
1755 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1756 {
1757 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1758 }
1759 
1760 static bool kvm_hv_msr_partition_wide(u32 msr)
1761 {
1762 	bool r = false;
1763 	switch (msr) {
1764 	case HV_X64_MSR_GUEST_OS_ID:
1765 	case HV_X64_MSR_HYPERCALL:
1766 		r = true;
1767 		break;
1768 	}
1769 
1770 	return r;
1771 }
1772 
1773 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1774 {
1775 	struct kvm *kvm = vcpu->kvm;
1776 
1777 	switch (msr) {
1778 	case HV_X64_MSR_GUEST_OS_ID:
1779 		kvm->arch.hv_guest_os_id = data;
1780 		/* setting guest os id to zero disables hypercall page */
1781 		if (!kvm->arch.hv_guest_os_id)
1782 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1783 		break;
1784 	case HV_X64_MSR_HYPERCALL: {
1785 		u64 gfn;
1786 		unsigned long addr;
1787 		u8 instructions[4];
1788 
1789 		/* if guest os id is not set hypercall should remain disabled */
1790 		if (!kvm->arch.hv_guest_os_id)
1791 			break;
1792 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1793 			kvm->arch.hv_hypercall = data;
1794 			break;
1795 		}
1796 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1797 		addr = gfn_to_hva(kvm, gfn);
1798 		if (kvm_is_error_hva(addr))
1799 			return 1;
1800 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1801 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1802 		if (__copy_to_user((void __user *)addr, instructions, 4))
1803 			return 1;
1804 		kvm->arch.hv_hypercall = data;
1805 		break;
1806 	}
1807 	default:
1808 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1809 			    "data 0x%llx\n", msr, data);
1810 		return 1;
1811 	}
1812 	return 0;
1813 }
1814 
1815 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1816 {
1817 	switch (msr) {
1818 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1819 		unsigned long addr;
1820 
1821 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1822 			vcpu->arch.hv_vapic = data;
1823 			break;
1824 		}
1825 		addr = gfn_to_hva(vcpu->kvm, data >>
1826 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1827 		if (kvm_is_error_hva(addr))
1828 			return 1;
1829 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1830 			return 1;
1831 		vcpu->arch.hv_vapic = data;
1832 		break;
1833 	}
1834 	case HV_X64_MSR_EOI:
1835 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1836 	case HV_X64_MSR_ICR:
1837 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1838 	case HV_X64_MSR_TPR:
1839 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1840 	default:
1841 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1842 			    "data 0x%llx\n", msr, data);
1843 		return 1;
1844 	}
1845 
1846 	return 0;
1847 }
1848 
1849 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1850 {
1851 	gpa_t gpa = data & ~0x3f;
1852 
1853 	/* Bits 2:5 are reserved, Should be zero */
1854 	if (data & 0x3c)
1855 		return 1;
1856 
1857 	vcpu->arch.apf.msr_val = data;
1858 
1859 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1860 		kvm_clear_async_pf_completion_queue(vcpu);
1861 		kvm_async_pf_hash_reset(vcpu);
1862 		return 0;
1863 	}
1864 
1865 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1866 					sizeof(u32)))
1867 		return 1;
1868 
1869 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1870 	kvm_async_pf_wakeup_all(vcpu);
1871 	return 0;
1872 }
1873 
1874 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1875 {
1876 	vcpu->arch.pv_time_enabled = false;
1877 }
1878 
1879 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1880 {
1881 	u64 delta;
1882 
1883 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1884 		return;
1885 
1886 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1887 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1888 	vcpu->arch.st.accum_steal = delta;
1889 }
1890 
1891 static void record_steal_time(struct kvm_vcpu *vcpu)
1892 {
1893 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1894 		return;
1895 
1896 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1897 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1898 		return;
1899 
1900 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1901 	vcpu->arch.st.steal.version += 2;
1902 	vcpu->arch.st.accum_steal = 0;
1903 
1904 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1905 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1906 }
1907 
1908 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1909 {
1910 	bool pr = false;
1911 	u32 msr = msr_info->index;
1912 	u64 data = msr_info->data;
1913 
1914 	switch (msr) {
1915 	case MSR_AMD64_NB_CFG:
1916 	case MSR_IA32_UCODE_REV:
1917 	case MSR_IA32_UCODE_WRITE:
1918 	case MSR_VM_HSAVE_PA:
1919 	case MSR_AMD64_PATCH_LOADER:
1920 	case MSR_AMD64_BU_CFG2:
1921 		break;
1922 
1923 	case MSR_EFER:
1924 		return set_efer(vcpu, data);
1925 	case MSR_K7_HWCR:
1926 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1927 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1928 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
1929 		if (data != 0) {
1930 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1931 				    data);
1932 			return 1;
1933 		}
1934 		break;
1935 	case MSR_FAM10H_MMIO_CONF_BASE:
1936 		if (data != 0) {
1937 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1938 				    "0x%llx\n", data);
1939 			return 1;
1940 		}
1941 		break;
1942 	case MSR_IA32_DEBUGCTLMSR:
1943 		if (!data) {
1944 			/* We support the non-activated case already */
1945 			break;
1946 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1947 			/* Values other than LBR and BTF are vendor-specific,
1948 			   thus reserved and should throw a #GP */
1949 			return 1;
1950 		}
1951 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1952 			    __func__, data);
1953 		break;
1954 	case 0x200 ... 0x2ff:
1955 		return set_msr_mtrr(vcpu, msr, data);
1956 	case MSR_IA32_APICBASE:
1957 		kvm_set_apic_base(vcpu, data);
1958 		break;
1959 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1960 		return kvm_x2apic_msr_write(vcpu, msr, data);
1961 	case MSR_IA32_TSCDEADLINE:
1962 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
1963 		break;
1964 	case MSR_IA32_TSC_ADJUST:
1965 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
1966 			if (!msr_info->host_initiated) {
1967 				u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1968 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1969 			}
1970 			vcpu->arch.ia32_tsc_adjust_msr = data;
1971 		}
1972 		break;
1973 	case MSR_IA32_MISC_ENABLE:
1974 		vcpu->arch.ia32_misc_enable_msr = data;
1975 		break;
1976 	case MSR_KVM_WALL_CLOCK_NEW:
1977 	case MSR_KVM_WALL_CLOCK:
1978 		vcpu->kvm->arch.wall_clock = data;
1979 		kvm_write_wall_clock(vcpu->kvm, data);
1980 		break;
1981 	case MSR_KVM_SYSTEM_TIME_NEW:
1982 	case MSR_KVM_SYSTEM_TIME: {
1983 		u64 gpa_offset;
1984 		kvmclock_reset(vcpu);
1985 
1986 		vcpu->arch.time = data;
1987 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1988 
1989 		/* we verify if the enable bit is set... */
1990 		if (!(data & 1))
1991 			break;
1992 
1993 		gpa_offset = data & ~(PAGE_MASK | 1);
1994 
1995 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
1996 		     &vcpu->arch.pv_time, data & ~1ULL,
1997 		     sizeof(struct pvclock_vcpu_time_info)))
1998 			vcpu->arch.pv_time_enabled = false;
1999 		else
2000 			vcpu->arch.pv_time_enabled = true;
2001 
2002 		break;
2003 	}
2004 	case MSR_KVM_ASYNC_PF_EN:
2005 		if (kvm_pv_enable_async_pf(vcpu, data))
2006 			return 1;
2007 		break;
2008 	case MSR_KVM_STEAL_TIME:
2009 
2010 		if (unlikely(!sched_info_on()))
2011 			return 1;
2012 
2013 		if (data & KVM_STEAL_RESERVED_MASK)
2014 			return 1;
2015 
2016 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2017 						data & KVM_STEAL_VALID_BITS,
2018 						sizeof(struct kvm_steal_time)))
2019 			return 1;
2020 
2021 		vcpu->arch.st.msr_val = data;
2022 
2023 		if (!(data & KVM_MSR_ENABLED))
2024 			break;
2025 
2026 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2027 
2028 		preempt_disable();
2029 		accumulate_steal_time(vcpu);
2030 		preempt_enable();
2031 
2032 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2033 
2034 		break;
2035 	case MSR_KVM_PV_EOI_EN:
2036 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2037 			return 1;
2038 		break;
2039 
2040 	case MSR_IA32_MCG_CTL:
2041 	case MSR_IA32_MCG_STATUS:
2042 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2043 		return set_msr_mce(vcpu, msr, data);
2044 
2045 	/* Performance counters are not protected by a CPUID bit,
2046 	 * so we should check all of them in the generic path for the sake of
2047 	 * cross vendor migration.
2048 	 * Writing a zero into the event select MSRs disables them,
2049 	 * which we perfectly emulate ;-). Any other value should be at least
2050 	 * reported, some guests depend on them.
2051 	 */
2052 	case MSR_K7_EVNTSEL0:
2053 	case MSR_K7_EVNTSEL1:
2054 	case MSR_K7_EVNTSEL2:
2055 	case MSR_K7_EVNTSEL3:
2056 		if (data != 0)
2057 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2058 				    "0x%x data 0x%llx\n", msr, data);
2059 		break;
2060 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2061 	 * so we ignore writes to make it happy.
2062 	 */
2063 	case MSR_K7_PERFCTR0:
2064 	case MSR_K7_PERFCTR1:
2065 	case MSR_K7_PERFCTR2:
2066 	case MSR_K7_PERFCTR3:
2067 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2068 			    "0x%x data 0x%llx\n", msr, data);
2069 		break;
2070 	case MSR_P6_PERFCTR0:
2071 	case MSR_P6_PERFCTR1:
2072 		pr = true;
2073 	case MSR_P6_EVNTSEL0:
2074 	case MSR_P6_EVNTSEL1:
2075 		if (kvm_pmu_msr(vcpu, msr))
2076 			return kvm_pmu_set_msr(vcpu, msr_info);
2077 
2078 		if (pr || data != 0)
2079 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2080 				    "0x%x data 0x%llx\n", msr, data);
2081 		break;
2082 	case MSR_K7_CLK_CTL:
2083 		/*
2084 		 * Ignore all writes to this no longer documented MSR.
2085 		 * Writes are only relevant for old K7 processors,
2086 		 * all pre-dating SVM, but a recommended workaround from
2087 		 * AMD for these chips. It is possible to specify the
2088 		 * affected processor models on the command line, hence
2089 		 * the need to ignore the workaround.
2090 		 */
2091 		break;
2092 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2093 		if (kvm_hv_msr_partition_wide(msr)) {
2094 			int r;
2095 			mutex_lock(&vcpu->kvm->lock);
2096 			r = set_msr_hyperv_pw(vcpu, msr, data);
2097 			mutex_unlock(&vcpu->kvm->lock);
2098 			return r;
2099 		} else
2100 			return set_msr_hyperv(vcpu, msr, data);
2101 		break;
2102 	case MSR_IA32_BBL_CR_CTL3:
2103 		/* Drop writes to this legacy MSR -- see rdmsr
2104 		 * counterpart for further detail.
2105 		 */
2106 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2107 		break;
2108 	case MSR_AMD64_OSVW_ID_LENGTH:
2109 		if (!guest_cpuid_has_osvw(vcpu))
2110 			return 1;
2111 		vcpu->arch.osvw.length = data;
2112 		break;
2113 	case MSR_AMD64_OSVW_STATUS:
2114 		if (!guest_cpuid_has_osvw(vcpu))
2115 			return 1;
2116 		vcpu->arch.osvw.status = data;
2117 		break;
2118 	default:
2119 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2120 			return xen_hvm_config(vcpu, data);
2121 		if (kvm_pmu_msr(vcpu, msr))
2122 			return kvm_pmu_set_msr(vcpu, msr_info);
2123 		if (!ignore_msrs) {
2124 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2125 				    msr, data);
2126 			return 1;
2127 		} else {
2128 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2129 				    msr, data);
2130 			break;
2131 		}
2132 	}
2133 	return 0;
2134 }
2135 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2136 
2137 
2138 /*
2139  * Reads an msr value (of 'msr_index') into 'pdata'.
2140  * Returns 0 on success, non-0 otherwise.
2141  * Assumes vcpu_load() was already called.
2142  */
2143 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2144 {
2145 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2146 }
2147 
2148 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2149 {
2150 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2151 
2152 	if (!msr_mtrr_valid(msr))
2153 		return 1;
2154 
2155 	if (msr == MSR_MTRRdefType)
2156 		*pdata = vcpu->arch.mtrr_state.def_type +
2157 			 (vcpu->arch.mtrr_state.enabled << 10);
2158 	else if (msr == MSR_MTRRfix64K_00000)
2159 		*pdata = p[0];
2160 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2161 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2162 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2163 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2164 	else if (msr == MSR_IA32_CR_PAT)
2165 		*pdata = vcpu->arch.pat;
2166 	else {	/* Variable MTRRs */
2167 		int idx, is_mtrr_mask;
2168 		u64 *pt;
2169 
2170 		idx = (msr - 0x200) / 2;
2171 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2172 		if (!is_mtrr_mask)
2173 			pt =
2174 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2175 		else
2176 			pt =
2177 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2178 		*pdata = *pt;
2179 	}
2180 
2181 	return 0;
2182 }
2183 
2184 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2185 {
2186 	u64 data;
2187 	u64 mcg_cap = vcpu->arch.mcg_cap;
2188 	unsigned bank_num = mcg_cap & 0xff;
2189 
2190 	switch (msr) {
2191 	case MSR_IA32_P5_MC_ADDR:
2192 	case MSR_IA32_P5_MC_TYPE:
2193 		data = 0;
2194 		break;
2195 	case MSR_IA32_MCG_CAP:
2196 		data = vcpu->arch.mcg_cap;
2197 		break;
2198 	case MSR_IA32_MCG_CTL:
2199 		if (!(mcg_cap & MCG_CTL_P))
2200 			return 1;
2201 		data = vcpu->arch.mcg_ctl;
2202 		break;
2203 	case MSR_IA32_MCG_STATUS:
2204 		data = vcpu->arch.mcg_status;
2205 		break;
2206 	default:
2207 		if (msr >= MSR_IA32_MC0_CTL &&
2208 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2209 			u32 offset = msr - MSR_IA32_MC0_CTL;
2210 			data = vcpu->arch.mce_banks[offset];
2211 			break;
2212 		}
2213 		return 1;
2214 	}
2215 	*pdata = data;
2216 	return 0;
2217 }
2218 
2219 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2220 {
2221 	u64 data = 0;
2222 	struct kvm *kvm = vcpu->kvm;
2223 
2224 	switch (msr) {
2225 	case HV_X64_MSR_GUEST_OS_ID:
2226 		data = kvm->arch.hv_guest_os_id;
2227 		break;
2228 	case HV_X64_MSR_HYPERCALL:
2229 		data = kvm->arch.hv_hypercall;
2230 		break;
2231 	default:
2232 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2233 		return 1;
2234 	}
2235 
2236 	*pdata = data;
2237 	return 0;
2238 }
2239 
2240 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2241 {
2242 	u64 data = 0;
2243 
2244 	switch (msr) {
2245 	case HV_X64_MSR_VP_INDEX: {
2246 		int r;
2247 		struct kvm_vcpu *v;
2248 		kvm_for_each_vcpu(r, v, vcpu->kvm)
2249 			if (v == vcpu)
2250 				data = r;
2251 		break;
2252 	}
2253 	case HV_X64_MSR_EOI:
2254 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2255 	case HV_X64_MSR_ICR:
2256 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2257 	case HV_X64_MSR_TPR:
2258 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2259 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2260 		data = vcpu->arch.hv_vapic;
2261 		break;
2262 	default:
2263 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2264 		return 1;
2265 	}
2266 	*pdata = data;
2267 	return 0;
2268 }
2269 
2270 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2271 {
2272 	u64 data;
2273 
2274 	switch (msr) {
2275 	case MSR_IA32_PLATFORM_ID:
2276 	case MSR_IA32_EBL_CR_POWERON:
2277 	case MSR_IA32_DEBUGCTLMSR:
2278 	case MSR_IA32_LASTBRANCHFROMIP:
2279 	case MSR_IA32_LASTBRANCHTOIP:
2280 	case MSR_IA32_LASTINTFROMIP:
2281 	case MSR_IA32_LASTINTTOIP:
2282 	case MSR_K8_SYSCFG:
2283 	case MSR_K7_HWCR:
2284 	case MSR_VM_HSAVE_PA:
2285 	case MSR_K7_EVNTSEL0:
2286 	case MSR_K7_PERFCTR0:
2287 	case MSR_K8_INT_PENDING_MSG:
2288 	case MSR_AMD64_NB_CFG:
2289 	case MSR_FAM10H_MMIO_CONF_BASE:
2290 	case MSR_AMD64_BU_CFG2:
2291 		data = 0;
2292 		break;
2293 	case MSR_P6_PERFCTR0:
2294 	case MSR_P6_PERFCTR1:
2295 	case MSR_P6_EVNTSEL0:
2296 	case MSR_P6_EVNTSEL1:
2297 		if (kvm_pmu_msr(vcpu, msr))
2298 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2299 		data = 0;
2300 		break;
2301 	case MSR_IA32_UCODE_REV:
2302 		data = 0x100000000ULL;
2303 		break;
2304 	case MSR_MTRRcap:
2305 		data = 0x500 | KVM_NR_VAR_MTRR;
2306 		break;
2307 	case 0x200 ... 0x2ff:
2308 		return get_msr_mtrr(vcpu, msr, pdata);
2309 	case 0xcd: /* fsb frequency */
2310 		data = 3;
2311 		break;
2312 		/*
2313 		 * MSR_EBC_FREQUENCY_ID
2314 		 * Conservative value valid for even the basic CPU models.
2315 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2316 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2317 		 * and 266MHz for model 3, or 4. Set Core Clock
2318 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2319 		 * 31:24) even though these are only valid for CPU
2320 		 * models > 2, however guests may end up dividing or
2321 		 * multiplying by zero otherwise.
2322 		 */
2323 	case MSR_EBC_FREQUENCY_ID:
2324 		data = 1 << 24;
2325 		break;
2326 	case MSR_IA32_APICBASE:
2327 		data = kvm_get_apic_base(vcpu);
2328 		break;
2329 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2330 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2331 		break;
2332 	case MSR_IA32_TSCDEADLINE:
2333 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2334 		break;
2335 	case MSR_IA32_TSC_ADJUST:
2336 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2337 		break;
2338 	case MSR_IA32_MISC_ENABLE:
2339 		data = vcpu->arch.ia32_misc_enable_msr;
2340 		break;
2341 	case MSR_IA32_PERF_STATUS:
2342 		/* TSC increment by tick */
2343 		data = 1000ULL;
2344 		/* CPU multiplier */
2345 		data |= (((uint64_t)4ULL) << 40);
2346 		break;
2347 	case MSR_EFER:
2348 		data = vcpu->arch.efer;
2349 		break;
2350 	case MSR_KVM_WALL_CLOCK:
2351 	case MSR_KVM_WALL_CLOCK_NEW:
2352 		data = vcpu->kvm->arch.wall_clock;
2353 		break;
2354 	case MSR_KVM_SYSTEM_TIME:
2355 	case MSR_KVM_SYSTEM_TIME_NEW:
2356 		data = vcpu->arch.time;
2357 		break;
2358 	case MSR_KVM_ASYNC_PF_EN:
2359 		data = vcpu->arch.apf.msr_val;
2360 		break;
2361 	case MSR_KVM_STEAL_TIME:
2362 		data = vcpu->arch.st.msr_val;
2363 		break;
2364 	case MSR_KVM_PV_EOI_EN:
2365 		data = vcpu->arch.pv_eoi.msr_val;
2366 		break;
2367 	case MSR_IA32_P5_MC_ADDR:
2368 	case MSR_IA32_P5_MC_TYPE:
2369 	case MSR_IA32_MCG_CAP:
2370 	case MSR_IA32_MCG_CTL:
2371 	case MSR_IA32_MCG_STATUS:
2372 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2373 		return get_msr_mce(vcpu, msr, pdata);
2374 	case MSR_K7_CLK_CTL:
2375 		/*
2376 		 * Provide expected ramp-up count for K7. All other
2377 		 * are set to zero, indicating minimum divisors for
2378 		 * every field.
2379 		 *
2380 		 * This prevents guest kernels on AMD host with CPU
2381 		 * type 6, model 8 and higher from exploding due to
2382 		 * the rdmsr failing.
2383 		 */
2384 		data = 0x20000000;
2385 		break;
2386 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2387 		if (kvm_hv_msr_partition_wide(msr)) {
2388 			int r;
2389 			mutex_lock(&vcpu->kvm->lock);
2390 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2391 			mutex_unlock(&vcpu->kvm->lock);
2392 			return r;
2393 		} else
2394 			return get_msr_hyperv(vcpu, msr, pdata);
2395 		break;
2396 	case MSR_IA32_BBL_CR_CTL3:
2397 		/* This legacy MSR exists but isn't fully documented in current
2398 		 * silicon.  It is however accessed by winxp in very narrow
2399 		 * scenarios where it sets bit #19, itself documented as
2400 		 * a "reserved" bit.  Best effort attempt to source coherent
2401 		 * read data here should the balance of the register be
2402 		 * interpreted by the guest:
2403 		 *
2404 		 * L2 cache control register 3: 64GB range, 256KB size,
2405 		 * enabled, latency 0x1, configured
2406 		 */
2407 		data = 0xbe702111;
2408 		break;
2409 	case MSR_AMD64_OSVW_ID_LENGTH:
2410 		if (!guest_cpuid_has_osvw(vcpu))
2411 			return 1;
2412 		data = vcpu->arch.osvw.length;
2413 		break;
2414 	case MSR_AMD64_OSVW_STATUS:
2415 		if (!guest_cpuid_has_osvw(vcpu))
2416 			return 1;
2417 		data = vcpu->arch.osvw.status;
2418 		break;
2419 	default:
2420 		if (kvm_pmu_msr(vcpu, msr))
2421 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2422 		if (!ignore_msrs) {
2423 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2424 			return 1;
2425 		} else {
2426 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2427 			data = 0;
2428 		}
2429 		break;
2430 	}
2431 	*pdata = data;
2432 	return 0;
2433 }
2434 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2435 
2436 /*
2437  * Read or write a bunch of msrs. All parameters are kernel addresses.
2438  *
2439  * @return number of msrs set successfully.
2440  */
2441 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2442 		    struct kvm_msr_entry *entries,
2443 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2444 				  unsigned index, u64 *data))
2445 {
2446 	int i, idx;
2447 
2448 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2449 	for (i = 0; i < msrs->nmsrs; ++i)
2450 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2451 			break;
2452 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2453 
2454 	return i;
2455 }
2456 
2457 /*
2458  * Read or write a bunch of msrs. Parameters are user addresses.
2459  *
2460  * @return number of msrs set successfully.
2461  */
2462 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2463 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2464 				unsigned index, u64 *data),
2465 		  int writeback)
2466 {
2467 	struct kvm_msrs msrs;
2468 	struct kvm_msr_entry *entries;
2469 	int r, n;
2470 	unsigned size;
2471 
2472 	r = -EFAULT;
2473 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2474 		goto out;
2475 
2476 	r = -E2BIG;
2477 	if (msrs.nmsrs >= MAX_IO_MSRS)
2478 		goto out;
2479 
2480 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2481 	entries = memdup_user(user_msrs->entries, size);
2482 	if (IS_ERR(entries)) {
2483 		r = PTR_ERR(entries);
2484 		goto out;
2485 	}
2486 
2487 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2488 	if (r < 0)
2489 		goto out_free;
2490 
2491 	r = -EFAULT;
2492 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2493 		goto out_free;
2494 
2495 	r = n;
2496 
2497 out_free:
2498 	kfree(entries);
2499 out:
2500 	return r;
2501 }
2502 
2503 int kvm_dev_ioctl_check_extension(long ext)
2504 {
2505 	int r;
2506 
2507 	switch (ext) {
2508 	case KVM_CAP_IRQCHIP:
2509 	case KVM_CAP_HLT:
2510 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2511 	case KVM_CAP_SET_TSS_ADDR:
2512 	case KVM_CAP_EXT_CPUID:
2513 	case KVM_CAP_CLOCKSOURCE:
2514 	case KVM_CAP_PIT:
2515 	case KVM_CAP_NOP_IO_DELAY:
2516 	case KVM_CAP_MP_STATE:
2517 	case KVM_CAP_SYNC_MMU:
2518 	case KVM_CAP_USER_NMI:
2519 	case KVM_CAP_REINJECT_CONTROL:
2520 	case KVM_CAP_IRQ_INJECT_STATUS:
2521 	case KVM_CAP_IRQFD:
2522 	case KVM_CAP_IOEVENTFD:
2523 	case KVM_CAP_PIT2:
2524 	case KVM_CAP_PIT_STATE2:
2525 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2526 	case KVM_CAP_XEN_HVM:
2527 	case KVM_CAP_ADJUST_CLOCK:
2528 	case KVM_CAP_VCPU_EVENTS:
2529 	case KVM_CAP_HYPERV:
2530 	case KVM_CAP_HYPERV_VAPIC:
2531 	case KVM_CAP_HYPERV_SPIN:
2532 	case KVM_CAP_PCI_SEGMENT:
2533 	case KVM_CAP_DEBUGREGS:
2534 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2535 	case KVM_CAP_XSAVE:
2536 	case KVM_CAP_ASYNC_PF:
2537 	case KVM_CAP_GET_TSC_KHZ:
2538 	case KVM_CAP_KVMCLOCK_CTRL:
2539 	case KVM_CAP_READONLY_MEM:
2540 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2541 	case KVM_CAP_ASSIGN_DEV_IRQ:
2542 	case KVM_CAP_PCI_2_3:
2543 #endif
2544 		r = 1;
2545 		break;
2546 	case KVM_CAP_COALESCED_MMIO:
2547 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2548 		break;
2549 	case KVM_CAP_VAPIC:
2550 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2551 		break;
2552 	case KVM_CAP_NR_VCPUS:
2553 		r = KVM_SOFT_MAX_VCPUS;
2554 		break;
2555 	case KVM_CAP_MAX_VCPUS:
2556 		r = KVM_MAX_VCPUS;
2557 		break;
2558 	case KVM_CAP_NR_MEMSLOTS:
2559 		r = KVM_USER_MEM_SLOTS;
2560 		break;
2561 	case KVM_CAP_PV_MMU:	/* obsolete */
2562 		r = 0;
2563 		break;
2564 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2565 	case KVM_CAP_IOMMU:
2566 		r = iommu_present(&pci_bus_type);
2567 		break;
2568 #endif
2569 	case KVM_CAP_MCE:
2570 		r = KVM_MAX_MCE_BANKS;
2571 		break;
2572 	case KVM_CAP_XCRS:
2573 		r = cpu_has_xsave;
2574 		break;
2575 	case KVM_CAP_TSC_CONTROL:
2576 		r = kvm_has_tsc_control;
2577 		break;
2578 	case KVM_CAP_TSC_DEADLINE_TIMER:
2579 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2580 		break;
2581 	default:
2582 		r = 0;
2583 		break;
2584 	}
2585 	return r;
2586 
2587 }
2588 
2589 long kvm_arch_dev_ioctl(struct file *filp,
2590 			unsigned int ioctl, unsigned long arg)
2591 {
2592 	void __user *argp = (void __user *)arg;
2593 	long r;
2594 
2595 	switch (ioctl) {
2596 	case KVM_GET_MSR_INDEX_LIST: {
2597 		struct kvm_msr_list __user *user_msr_list = argp;
2598 		struct kvm_msr_list msr_list;
2599 		unsigned n;
2600 
2601 		r = -EFAULT;
2602 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2603 			goto out;
2604 		n = msr_list.nmsrs;
2605 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2606 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2607 			goto out;
2608 		r = -E2BIG;
2609 		if (n < msr_list.nmsrs)
2610 			goto out;
2611 		r = -EFAULT;
2612 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2613 				 num_msrs_to_save * sizeof(u32)))
2614 			goto out;
2615 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2616 				 &emulated_msrs,
2617 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2618 			goto out;
2619 		r = 0;
2620 		break;
2621 	}
2622 	case KVM_GET_SUPPORTED_CPUID: {
2623 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2624 		struct kvm_cpuid2 cpuid;
2625 
2626 		r = -EFAULT;
2627 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2628 			goto out;
2629 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2630 						      cpuid_arg->entries);
2631 		if (r)
2632 			goto out;
2633 
2634 		r = -EFAULT;
2635 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2636 			goto out;
2637 		r = 0;
2638 		break;
2639 	}
2640 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2641 		u64 mce_cap;
2642 
2643 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2644 		r = -EFAULT;
2645 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2646 			goto out;
2647 		r = 0;
2648 		break;
2649 	}
2650 	default:
2651 		r = -EINVAL;
2652 	}
2653 out:
2654 	return r;
2655 }
2656 
2657 static void wbinvd_ipi(void *garbage)
2658 {
2659 	wbinvd();
2660 }
2661 
2662 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2663 {
2664 	return vcpu->kvm->arch.iommu_domain &&
2665 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2666 }
2667 
2668 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2669 {
2670 	/* Address WBINVD may be executed by guest */
2671 	if (need_emulate_wbinvd(vcpu)) {
2672 		if (kvm_x86_ops->has_wbinvd_exit())
2673 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2674 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2675 			smp_call_function_single(vcpu->cpu,
2676 					wbinvd_ipi, NULL, 1);
2677 	}
2678 
2679 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2680 
2681 	/* Apply any externally detected TSC adjustments (due to suspend) */
2682 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2683 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2684 		vcpu->arch.tsc_offset_adjustment = 0;
2685 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2686 	}
2687 
2688 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2689 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2690 				native_read_tsc() - vcpu->arch.last_host_tsc;
2691 		if (tsc_delta < 0)
2692 			mark_tsc_unstable("KVM discovered backwards TSC");
2693 		if (check_tsc_unstable()) {
2694 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2695 						vcpu->arch.last_guest_tsc);
2696 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2697 			vcpu->arch.tsc_catchup = 1;
2698 		}
2699 		/*
2700 		 * On a host with synchronized TSC, there is no need to update
2701 		 * kvmclock on vcpu->cpu migration
2702 		 */
2703 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2704 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2705 		if (vcpu->cpu != cpu)
2706 			kvm_migrate_timers(vcpu);
2707 		vcpu->cpu = cpu;
2708 	}
2709 
2710 	accumulate_steal_time(vcpu);
2711 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2712 }
2713 
2714 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2715 {
2716 	kvm_x86_ops->vcpu_put(vcpu);
2717 	kvm_put_guest_fpu(vcpu);
2718 	vcpu->arch.last_host_tsc = native_read_tsc();
2719 }
2720 
2721 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2722 				    struct kvm_lapic_state *s)
2723 {
2724 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2725 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2726 
2727 	return 0;
2728 }
2729 
2730 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2731 				    struct kvm_lapic_state *s)
2732 {
2733 	kvm_apic_post_state_restore(vcpu, s);
2734 	update_cr8_intercept(vcpu);
2735 
2736 	return 0;
2737 }
2738 
2739 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2740 				    struct kvm_interrupt *irq)
2741 {
2742 	if (irq->irq >= KVM_NR_INTERRUPTS)
2743 		return -EINVAL;
2744 	if (irqchip_in_kernel(vcpu->kvm))
2745 		return -ENXIO;
2746 
2747 	kvm_queue_interrupt(vcpu, irq->irq, false);
2748 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2749 
2750 	return 0;
2751 }
2752 
2753 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2754 {
2755 	kvm_inject_nmi(vcpu);
2756 
2757 	return 0;
2758 }
2759 
2760 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2761 					   struct kvm_tpr_access_ctl *tac)
2762 {
2763 	if (tac->flags)
2764 		return -EINVAL;
2765 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2766 	return 0;
2767 }
2768 
2769 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2770 					u64 mcg_cap)
2771 {
2772 	int r;
2773 	unsigned bank_num = mcg_cap & 0xff, bank;
2774 
2775 	r = -EINVAL;
2776 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2777 		goto out;
2778 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2779 		goto out;
2780 	r = 0;
2781 	vcpu->arch.mcg_cap = mcg_cap;
2782 	/* Init IA32_MCG_CTL to all 1s */
2783 	if (mcg_cap & MCG_CTL_P)
2784 		vcpu->arch.mcg_ctl = ~(u64)0;
2785 	/* Init IA32_MCi_CTL to all 1s */
2786 	for (bank = 0; bank < bank_num; bank++)
2787 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2788 out:
2789 	return r;
2790 }
2791 
2792 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2793 				      struct kvm_x86_mce *mce)
2794 {
2795 	u64 mcg_cap = vcpu->arch.mcg_cap;
2796 	unsigned bank_num = mcg_cap & 0xff;
2797 	u64 *banks = vcpu->arch.mce_banks;
2798 
2799 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2800 		return -EINVAL;
2801 	/*
2802 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2803 	 * reporting is disabled
2804 	 */
2805 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2806 	    vcpu->arch.mcg_ctl != ~(u64)0)
2807 		return 0;
2808 	banks += 4 * mce->bank;
2809 	/*
2810 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2811 	 * reporting is disabled for the bank
2812 	 */
2813 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2814 		return 0;
2815 	if (mce->status & MCI_STATUS_UC) {
2816 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2817 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2818 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2819 			return 0;
2820 		}
2821 		if (banks[1] & MCI_STATUS_VAL)
2822 			mce->status |= MCI_STATUS_OVER;
2823 		banks[2] = mce->addr;
2824 		banks[3] = mce->misc;
2825 		vcpu->arch.mcg_status = mce->mcg_status;
2826 		banks[1] = mce->status;
2827 		kvm_queue_exception(vcpu, MC_VECTOR);
2828 	} else if (!(banks[1] & MCI_STATUS_VAL)
2829 		   || !(banks[1] & MCI_STATUS_UC)) {
2830 		if (banks[1] & MCI_STATUS_VAL)
2831 			mce->status |= MCI_STATUS_OVER;
2832 		banks[2] = mce->addr;
2833 		banks[3] = mce->misc;
2834 		banks[1] = mce->status;
2835 	} else
2836 		banks[1] |= MCI_STATUS_OVER;
2837 	return 0;
2838 }
2839 
2840 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2841 					       struct kvm_vcpu_events *events)
2842 {
2843 	process_nmi(vcpu);
2844 	events->exception.injected =
2845 		vcpu->arch.exception.pending &&
2846 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2847 	events->exception.nr = vcpu->arch.exception.nr;
2848 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2849 	events->exception.pad = 0;
2850 	events->exception.error_code = vcpu->arch.exception.error_code;
2851 
2852 	events->interrupt.injected =
2853 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2854 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2855 	events->interrupt.soft = 0;
2856 	events->interrupt.shadow =
2857 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2858 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2859 
2860 	events->nmi.injected = vcpu->arch.nmi_injected;
2861 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2862 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2863 	events->nmi.pad = 0;
2864 
2865 	events->sipi_vector = 0; /* never valid when reporting to user space */
2866 
2867 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2868 			 | KVM_VCPUEVENT_VALID_SHADOW);
2869 	memset(&events->reserved, 0, sizeof(events->reserved));
2870 }
2871 
2872 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2873 					      struct kvm_vcpu_events *events)
2874 {
2875 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2876 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2877 			      | KVM_VCPUEVENT_VALID_SHADOW))
2878 		return -EINVAL;
2879 
2880 	process_nmi(vcpu);
2881 	vcpu->arch.exception.pending = events->exception.injected;
2882 	vcpu->arch.exception.nr = events->exception.nr;
2883 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2884 	vcpu->arch.exception.error_code = events->exception.error_code;
2885 
2886 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2887 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2888 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2889 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2890 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2891 						  events->interrupt.shadow);
2892 
2893 	vcpu->arch.nmi_injected = events->nmi.injected;
2894 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2895 		vcpu->arch.nmi_pending = events->nmi.pending;
2896 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2897 
2898 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2899 	    kvm_vcpu_has_lapic(vcpu))
2900 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2901 
2902 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2903 
2904 	return 0;
2905 }
2906 
2907 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2908 					     struct kvm_debugregs *dbgregs)
2909 {
2910 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2911 	dbgregs->dr6 = vcpu->arch.dr6;
2912 	dbgregs->dr7 = vcpu->arch.dr7;
2913 	dbgregs->flags = 0;
2914 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2915 }
2916 
2917 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2918 					    struct kvm_debugregs *dbgregs)
2919 {
2920 	if (dbgregs->flags)
2921 		return -EINVAL;
2922 
2923 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2924 	vcpu->arch.dr6 = dbgregs->dr6;
2925 	vcpu->arch.dr7 = dbgregs->dr7;
2926 
2927 	return 0;
2928 }
2929 
2930 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2931 					 struct kvm_xsave *guest_xsave)
2932 {
2933 	if (cpu_has_xsave)
2934 		memcpy(guest_xsave->region,
2935 			&vcpu->arch.guest_fpu.state->xsave,
2936 			xstate_size);
2937 	else {
2938 		memcpy(guest_xsave->region,
2939 			&vcpu->arch.guest_fpu.state->fxsave,
2940 			sizeof(struct i387_fxsave_struct));
2941 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2942 			XSTATE_FPSSE;
2943 	}
2944 }
2945 
2946 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2947 					struct kvm_xsave *guest_xsave)
2948 {
2949 	u64 xstate_bv =
2950 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2951 
2952 	if (cpu_has_xsave)
2953 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
2954 			guest_xsave->region, xstate_size);
2955 	else {
2956 		if (xstate_bv & ~XSTATE_FPSSE)
2957 			return -EINVAL;
2958 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2959 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
2960 	}
2961 	return 0;
2962 }
2963 
2964 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2965 					struct kvm_xcrs *guest_xcrs)
2966 {
2967 	if (!cpu_has_xsave) {
2968 		guest_xcrs->nr_xcrs = 0;
2969 		return;
2970 	}
2971 
2972 	guest_xcrs->nr_xcrs = 1;
2973 	guest_xcrs->flags = 0;
2974 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2975 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2976 }
2977 
2978 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2979 				       struct kvm_xcrs *guest_xcrs)
2980 {
2981 	int i, r = 0;
2982 
2983 	if (!cpu_has_xsave)
2984 		return -EINVAL;
2985 
2986 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2987 		return -EINVAL;
2988 
2989 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2990 		/* Only support XCR0 currently */
2991 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2992 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2993 				guest_xcrs->xcrs[0].value);
2994 			break;
2995 		}
2996 	if (r)
2997 		r = -EINVAL;
2998 	return r;
2999 }
3000 
3001 /*
3002  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3003  * stopped by the hypervisor.  This function will be called from the host only.
3004  * EINVAL is returned when the host attempts to set the flag for a guest that
3005  * does not support pv clocks.
3006  */
3007 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3008 {
3009 	if (!vcpu->arch.pv_time_enabled)
3010 		return -EINVAL;
3011 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3012 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3013 	return 0;
3014 }
3015 
3016 long kvm_arch_vcpu_ioctl(struct file *filp,
3017 			 unsigned int ioctl, unsigned long arg)
3018 {
3019 	struct kvm_vcpu *vcpu = filp->private_data;
3020 	void __user *argp = (void __user *)arg;
3021 	int r;
3022 	union {
3023 		struct kvm_lapic_state *lapic;
3024 		struct kvm_xsave *xsave;
3025 		struct kvm_xcrs *xcrs;
3026 		void *buffer;
3027 	} u;
3028 
3029 	u.buffer = NULL;
3030 	switch (ioctl) {
3031 	case KVM_GET_LAPIC: {
3032 		r = -EINVAL;
3033 		if (!vcpu->arch.apic)
3034 			goto out;
3035 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3036 
3037 		r = -ENOMEM;
3038 		if (!u.lapic)
3039 			goto out;
3040 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3041 		if (r)
3042 			goto out;
3043 		r = -EFAULT;
3044 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3045 			goto out;
3046 		r = 0;
3047 		break;
3048 	}
3049 	case KVM_SET_LAPIC: {
3050 		r = -EINVAL;
3051 		if (!vcpu->arch.apic)
3052 			goto out;
3053 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3054 		if (IS_ERR(u.lapic))
3055 			return PTR_ERR(u.lapic);
3056 
3057 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3058 		break;
3059 	}
3060 	case KVM_INTERRUPT: {
3061 		struct kvm_interrupt irq;
3062 
3063 		r = -EFAULT;
3064 		if (copy_from_user(&irq, argp, sizeof irq))
3065 			goto out;
3066 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3067 		break;
3068 	}
3069 	case KVM_NMI: {
3070 		r = kvm_vcpu_ioctl_nmi(vcpu);
3071 		break;
3072 	}
3073 	case KVM_SET_CPUID: {
3074 		struct kvm_cpuid __user *cpuid_arg = argp;
3075 		struct kvm_cpuid cpuid;
3076 
3077 		r = -EFAULT;
3078 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3079 			goto out;
3080 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3081 		break;
3082 	}
3083 	case KVM_SET_CPUID2: {
3084 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3085 		struct kvm_cpuid2 cpuid;
3086 
3087 		r = -EFAULT;
3088 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3089 			goto out;
3090 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3091 					      cpuid_arg->entries);
3092 		break;
3093 	}
3094 	case KVM_GET_CPUID2: {
3095 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3096 		struct kvm_cpuid2 cpuid;
3097 
3098 		r = -EFAULT;
3099 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3100 			goto out;
3101 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3102 					      cpuid_arg->entries);
3103 		if (r)
3104 			goto out;
3105 		r = -EFAULT;
3106 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3107 			goto out;
3108 		r = 0;
3109 		break;
3110 	}
3111 	case KVM_GET_MSRS:
3112 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3113 		break;
3114 	case KVM_SET_MSRS:
3115 		r = msr_io(vcpu, argp, do_set_msr, 0);
3116 		break;
3117 	case KVM_TPR_ACCESS_REPORTING: {
3118 		struct kvm_tpr_access_ctl tac;
3119 
3120 		r = -EFAULT;
3121 		if (copy_from_user(&tac, argp, sizeof tac))
3122 			goto out;
3123 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3124 		if (r)
3125 			goto out;
3126 		r = -EFAULT;
3127 		if (copy_to_user(argp, &tac, sizeof tac))
3128 			goto out;
3129 		r = 0;
3130 		break;
3131 	};
3132 	case KVM_SET_VAPIC_ADDR: {
3133 		struct kvm_vapic_addr va;
3134 
3135 		r = -EINVAL;
3136 		if (!irqchip_in_kernel(vcpu->kvm))
3137 			goto out;
3138 		r = -EFAULT;
3139 		if (copy_from_user(&va, argp, sizeof va))
3140 			goto out;
3141 		r = 0;
3142 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3143 		break;
3144 	}
3145 	case KVM_X86_SETUP_MCE: {
3146 		u64 mcg_cap;
3147 
3148 		r = -EFAULT;
3149 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3150 			goto out;
3151 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3152 		break;
3153 	}
3154 	case KVM_X86_SET_MCE: {
3155 		struct kvm_x86_mce mce;
3156 
3157 		r = -EFAULT;
3158 		if (copy_from_user(&mce, argp, sizeof mce))
3159 			goto out;
3160 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3161 		break;
3162 	}
3163 	case KVM_GET_VCPU_EVENTS: {
3164 		struct kvm_vcpu_events events;
3165 
3166 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3167 
3168 		r = -EFAULT;
3169 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3170 			break;
3171 		r = 0;
3172 		break;
3173 	}
3174 	case KVM_SET_VCPU_EVENTS: {
3175 		struct kvm_vcpu_events events;
3176 
3177 		r = -EFAULT;
3178 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3179 			break;
3180 
3181 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3182 		break;
3183 	}
3184 	case KVM_GET_DEBUGREGS: {
3185 		struct kvm_debugregs dbgregs;
3186 
3187 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3188 
3189 		r = -EFAULT;
3190 		if (copy_to_user(argp, &dbgregs,
3191 				 sizeof(struct kvm_debugregs)))
3192 			break;
3193 		r = 0;
3194 		break;
3195 	}
3196 	case KVM_SET_DEBUGREGS: {
3197 		struct kvm_debugregs dbgregs;
3198 
3199 		r = -EFAULT;
3200 		if (copy_from_user(&dbgregs, argp,
3201 				   sizeof(struct kvm_debugregs)))
3202 			break;
3203 
3204 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3205 		break;
3206 	}
3207 	case KVM_GET_XSAVE: {
3208 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3209 		r = -ENOMEM;
3210 		if (!u.xsave)
3211 			break;
3212 
3213 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3214 
3215 		r = -EFAULT;
3216 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3217 			break;
3218 		r = 0;
3219 		break;
3220 	}
3221 	case KVM_SET_XSAVE: {
3222 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3223 		if (IS_ERR(u.xsave))
3224 			return PTR_ERR(u.xsave);
3225 
3226 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3227 		break;
3228 	}
3229 	case KVM_GET_XCRS: {
3230 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3231 		r = -ENOMEM;
3232 		if (!u.xcrs)
3233 			break;
3234 
3235 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3236 
3237 		r = -EFAULT;
3238 		if (copy_to_user(argp, u.xcrs,
3239 				 sizeof(struct kvm_xcrs)))
3240 			break;
3241 		r = 0;
3242 		break;
3243 	}
3244 	case KVM_SET_XCRS: {
3245 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3246 		if (IS_ERR(u.xcrs))
3247 			return PTR_ERR(u.xcrs);
3248 
3249 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3250 		break;
3251 	}
3252 	case KVM_SET_TSC_KHZ: {
3253 		u32 user_tsc_khz;
3254 
3255 		r = -EINVAL;
3256 		user_tsc_khz = (u32)arg;
3257 
3258 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3259 			goto out;
3260 
3261 		if (user_tsc_khz == 0)
3262 			user_tsc_khz = tsc_khz;
3263 
3264 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3265 
3266 		r = 0;
3267 		goto out;
3268 	}
3269 	case KVM_GET_TSC_KHZ: {
3270 		r = vcpu->arch.virtual_tsc_khz;
3271 		goto out;
3272 	}
3273 	case KVM_KVMCLOCK_CTRL: {
3274 		r = kvm_set_guest_paused(vcpu);
3275 		goto out;
3276 	}
3277 	default:
3278 		r = -EINVAL;
3279 	}
3280 out:
3281 	kfree(u.buffer);
3282 	return r;
3283 }
3284 
3285 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3286 {
3287 	return VM_FAULT_SIGBUS;
3288 }
3289 
3290 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3291 {
3292 	int ret;
3293 
3294 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3295 		return -EINVAL;
3296 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3297 	return ret;
3298 }
3299 
3300 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3301 					      u64 ident_addr)
3302 {
3303 	kvm->arch.ept_identity_map_addr = ident_addr;
3304 	return 0;
3305 }
3306 
3307 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3308 					  u32 kvm_nr_mmu_pages)
3309 {
3310 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3311 		return -EINVAL;
3312 
3313 	mutex_lock(&kvm->slots_lock);
3314 
3315 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3316 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3317 
3318 	mutex_unlock(&kvm->slots_lock);
3319 	return 0;
3320 }
3321 
3322 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3323 {
3324 	return kvm->arch.n_max_mmu_pages;
3325 }
3326 
3327 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3328 {
3329 	int r;
3330 
3331 	r = 0;
3332 	switch (chip->chip_id) {
3333 	case KVM_IRQCHIP_PIC_MASTER:
3334 		memcpy(&chip->chip.pic,
3335 			&pic_irqchip(kvm)->pics[0],
3336 			sizeof(struct kvm_pic_state));
3337 		break;
3338 	case KVM_IRQCHIP_PIC_SLAVE:
3339 		memcpy(&chip->chip.pic,
3340 			&pic_irqchip(kvm)->pics[1],
3341 			sizeof(struct kvm_pic_state));
3342 		break;
3343 	case KVM_IRQCHIP_IOAPIC:
3344 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3345 		break;
3346 	default:
3347 		r = -EINVAL;
3348 		break;
3349 	}
3350 	return r;
3351 }
3352 
3353 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3354 {
3355 	int r;
3356 
3357 	r = 0;
3358 	switch (chip->chip_id) {
3359 	case KVM_IRQCHIP_PIC_MASTER:
3360 		spin_lock(&pic_irqchip(kvm)->lock);
3361 		memcpy(&pic_irqchip(kvm)->pics[0],
3362 			&chip->chip.pic,
3363 			sizeof(struct kvm_pic_state));
3364 		spin_unlock(&pic_irqchip(kvm)->lock);
3365 		break;
3366 	case KVM_IRQCHIP_PIC_SLAVE:
3367 		spin_lock(&pic_irqchip(kvm)->lock);
3368 		memcpy(&pic_irqchip(kvm)->pics[1],
3369 			&chip->chip.pic,
3370 			sizeof(struct kvm_pic_state));
3371 		spin_unlock(&pic_irqchip(kvm)->lock);
3372 		break;
3373 	case KVM_IRQCHIP_IOAPIC:
3374 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3375 		break;
3376 	default:
3377 		r = -EINVAL;
3378 		break;
3379 	}
3380 	kvm_pic_update_irq(pic_irqchip(kvm));
3381 	return r;
3382 }
3383 
3384 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3385 {
3386 	int r = 0;
3387 
3388 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3389 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3390 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3391 	return r;
3392 }
3393 
3394 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3395 {
3396 	int r = 0;
3397 
3398 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3399 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3400 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3401 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3402 	return r;
3403 }
3404 
3405 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3406 {
3407 	int r = 0;
3408 
3409 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3410 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3411 		sizeof(ps->channels));
3412 	ps->flags = kvm->arch.vpit->pit_state.flags;
3413 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3414 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3415 	return r;
3416 }
3417 
3418 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3419 {
3420 	int r = 0, start = 0;
3421 	u32 prev_legacy, cur_legacy;
3422 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3423 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3424 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3425 	if (!prev_legacy && cur_legacy)
3426 		start = 1;
3427 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3428 	       sizeof(kvm->arch.vpit->pit_state.channels));
3429 	kvm->arch.vpit->pit_state.flags = ps->flags;
3430 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3431 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3432 	return r;
3433 }
3434 
3435 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3436 				 struct kvm_reinject_control *control)
3437 {
3438 	if (!kvm->arch.vpit)
3439 		return -ENXIO;
3440 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3441 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3442 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3443 	return 0;
3444 }
3445 
3446 /**
3447  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3448  * @kvm: kvm instance
3449  * @log: slot id and address to which we copy the log
3450  *
3451  * We need to keep it in mind that VCPU threads can write to the bitmap
3452  * concurrently.  So, to avoid losing data, we keep the following order for
3453  * each bit:
3454  *
3455  *   1. Take a snapshot of the bit and clear it if needed.
3456  *   2. Write protect the corresponding page.
3457  *   3. Flush TLB's if needed.
3458  *   4. Copy the snapshot to the userspace.
3459  *
3460  * Between 2 and 3, the guest may write to the page using the remaining TLB
3461  * entry.  This is not a problem because the page will be reported dirty at
3462  * step 4 using the snapshot taken before and step 3 ensures that successive
3463  * writes will be logged for the next call.
3464  */
3465 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3466 {
3467 	int r;
3468 	struct kvm_memory_slot *memslot;
3469 	unsigned long n, i;
3470 	unsigned long *dirty_bitmap;
3471 	unsigned long *dirty_bitmap_buffer;
3472 	bool is_dirty = false;
3473 
3474 	mutex_lock(&kvm->slots_lock);
3475 
3476 	r = -EINVAL;
3477 	if (log->slot >= KVM_USER_MEM_SLOTS)
3478 		goto out;
3479 
3480 	memslot = id_to_memslot(kvm->memslots, log->slot);
3481 
3482 	dirty_bitmap = memslot->dirty_bitmap;
3483 	r = -ENOENT;
3484 	if (!dirty_bitmap)
3485 		goto out;
3486 
3487 	n = kvm_dirty_bitmap_bytes(memslot);
3488 
3489 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3490 	memset(dirty_bitmap_buffer, 0, n);
3491 
3492 	spin_lock(&kvm->mmu_lock);
3493 
3494 	for (i = 0; i < n / sizeof(long); i++) {
3495 		unsigned long mask;
3496 		gfn_t offset;
3497 
3498 		if (!dirty_bitmap[i])
3499 			continue;
3500 
3501 		is_dirty = true;
3502 
3503 		mask = xchg(&dirty_bitmap[i], 0);
3504 		dirty_bitmap_buffer[i] = mask;
3505 
3506 		offset = i * BITS_PER_LONG;
3507 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3508 	}
3509 	if (is_dirty)
3510 		kvm_flush_remote_tlbs(kvm);
3511 
3512 	spin_unlock(&kvm->mmu_lock);
3513 
3514 	r = -EFAULT;
3515 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3516 		goto out;
3517 
3518 	r = 0;
3519 out:
3520 	mutex_unlock(&kvm->slots_lock);
3521 	return r;
3522 }
3523 
3524 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3525 			bool line_status)
3526 {
3527 	if (!irqchip_in_kernel(kvm))
3528 		return -ENXIO;
3529 
3530 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3531 					irq_event->irq, irq_event->level,
3532 					line_status);
3533 	return 0;
3534 }
3535 
3536 long kvm_arch_vm_ioctl(struct file *filp,
3537 		       unsigned int ioctl, unsigned long arg)
3538 {
3539 	struct kvm *kvm = filp->private_data;
3540 	void __user *argp = (void __user *)arg;
3541 	int r = -ENOTTY;
3542 	/*
3543 	 * This union makes it completely explicit to gcc-3.x
3544 	 * that these two variables' stack usage should be
3545 	 * combined, not added together.
3546 	 */
3547 	union {
3548 		struct kvm_pit_state ps;
3549 		struct kvm_pit_state2 ps2;
3550 		struct kvm_pit_config pit_config;
3551 	} u;
3552 
3553 	switch (ioctl) {
3554 	case KVM_SET_TSS_ADDR:
3555 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3556 		break;
3557 	case KVM_SET_IDENTITY_MAP_ADDR: {
3558 		u64 ident_addr;
3559 
3560 		r = -EFAULT;
3561 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3562 			goto out;
3563 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3564 		break;
3565 	}
3566 	case KVM_SET_NR_MMU_PAGES:
3567 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3568 		break;
3569 	case KVM_GET_NR_MMU_PAGES:
3570 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3571 		break;
3572 	case KVM_CREATE_IRQCHIP: {
3573 		struct kvm_pic *vpic;
3574 
3575 		mutex_lock(&kvm->lock);
3576 		r = -EEXIST;
3577 		if (kvm->arch.vpic)
3578 			goto create_irqchip_unlock;
3579 		r = -EINVAL;
3580 		if (atomic_read(&kvm->online_vcpus))
3581 			goto create_irqchip_unlock;
3582 		r = -ENOMEM;
3583 		vpic = kvm_create_pic(kvm);
3584 		if (vpic) {
3585 			r = kvm_ioapic_init(kvm);
3586 			if (r) {
3587 				mutex_lock(&kvm->slots_lock);
3588 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3589 							  &vpic->dev_master);
3590 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3591 							  &vpic->dev_slave);
3592 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3593 							  &vpic->dev_eclr);
3594 				mutex_unlock(&kvm->slots_lock);
3595 				kfree(vpic);
3596 				goto create_irqchip_unlock;
3597 			}
3598 		} else
3599 			goto create_irqchip_unlock;
3600 		smp_wmb();
3601 		kvm->arch.vpic = vpic;
3602 		smp_wmb();
3603 		r = kvm_setup_default_irq_routing(kvm);
3604 		if (r) {
3605 			mutex_lock(&kvm->slots_lock);
3606 			mutex_lock(&kvm->irq_lock);
3607 			kvm_ioapic_destroy(kvm);
3608 			kvm_destroy_pic(kvm);
3609 			mutex_unlock(&kvm->irq_lock);
3610 			mutex_unlock(&kvm->slots_lock);
3611 		}
3612 	create_irqchip_unlock:
3613 		mutex_unlock(&kvm->lock);
3614 		break;
3615 	}
3616 	case KVM_CREATE_PIT:
3617 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3618 		goto create_pit;
3619 	case KVM_CREATE_PIT2:
3620 		r = -EFAULT;
3621 		if (copy_from_user(&u.pit_config, argp,
3622 				   sizeof(struct kvm_pit_config)))
3623 			goto out;
3624 	create_pit:
3625 		mutex_lock(&kvm->slots_lock);
3626 		r = -EEXIST;
3627 		if (kvm->arch.vpit)
3628 			goto create_pit_unlock;
3629 		r = -ENOMEM;
3630 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3631 		if (kvm->arch.vpit)
3632 			r = 0;
3633 	create_pit_unlock:
3634 		mutex_unlock(&kvm->slots_lock);
3635 		break;
3636 	case KVM_GET_IRQCHIP: {
3637 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3638 		struct kvm_irqchip *chip;
3639 
3640 		chip = memdup_user(argp, sizeof(*chip));
3641 		if (IS_ERR(chip)) {
3642 			r = PTR_ERR(chip);
3643 			goto out;
3644 		}
3645 
3646 		r = -ENXIO;
3647 		if (!irqchip_in_kernel(kvm))
3648 			goto get_irqchip_out;
3649 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3650 		if (r)
3651 			goto get_irqchip_out;
3652 		r = -EFAULT;
3653 		if (copy_to_user(argp, chip, sizeof *chip))
3654 			goto get_irqchip_out;
3655 		r = 0;
3656 	get_irqchip_out:
3657 		kfree(chip);
3658 		break;
3659 	}
3660 	case KVM_SET_IRQCHIP: {
3661 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3662 		struct kvm_irqchip *chip;
3663 
3664 		chip = memdup_user(argp, sizeof(*chip));
3665 		if (IS_ERR(chip)) {
3666 			r = PTR_ERR(chip);
3667 			goto out;
3668 		}
3669 
3670 		r = -ENXIO;
3671 		if (!irqchip_in_kernel(kvm))
3672 			goto set_irqchip_out;
3673 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3674 		if (r)
3675 			goto set_irqchip_out;
3676 		r = 0;
3677 	set_irqchip_out:
3678 		kfree(chip);
3679 		break;
3680 	}
3681 	case KVM_GET_PIT: {
3682 		r = -EFAULT;
3683 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3684 			goto out;
3685 		r = -ENXIO;
3686 		if (!kvm->arch.vpit)
3687 			goto out;
3688 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3689 		if (r)
3690 			goto out;
3691 		r = -EFAULT;
3692 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3693 			goto out;
3694 		r = 0;
3695 		break;
3696 	}
3697 	case KVM_SET_PIT: {
3698 		r = -EFAULT;
3699 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3700 			goto out;
3701 		r = -ENXIO;
3702 		if (!kvm->arch.vpit)
3703 			goto out;
3704 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3705 		break;
3706 	}
3707 	case KVM_GET_PIT2: {
3708 		r = -ENXIO;
3709 		if (!kvm->arch.vpit)
3710 			goto out;
3711 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3712 		if (r)
3713 			goto out;
3714 		r = -EFAULT;
3715 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3716 			goto out;
3717 		r = 0;
3718 		break;
3719 	}
3720 	case KVM_SET_PIT2: {
3721 		r = -EFAULT;
3722 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3723 			goto out;
3724 		r = -ENXIO;
3725 		if (!kvm->arch.vpit)
3726 			goto out;
3727 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3728 		break;
3729 	}
3730 	case KVM_REINJECT_CONTROL: {
3731 		struct kvm_reinject_control control;
3732 		r =  -EFAULT;
3733 		if (copy_from_user(&control, argp, sizeof(control)))
3734 			goto out;
3735 		r = kvm_vm_ioctl_reinject(kvm, &control);
3736 		break;
3737 	}
3738 	case KVM_XEN_HVM_CONFIG: {
3739 		r = -EFAULT;
3740 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3741 				   sizeof(struct kvm_xen_hvm_config)))
3742 			goto out;
3743 		r = -EINVAL;
3744 		if (kvm->arch.xen_hvm_config.flags)
3745 			goto out;
3746 		r = 0;
3747 		break;
3748 	}
3749 	case KVM_SET_CLOCK: {
3750 		struct kvm_clock_data user_ns;
3751 		u64 now_ns;
3752 		s64 delta;
3753 
3754 		r = -EFAULT;
3755 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3756 			goto out;
3757 
3758 		r = -EINVAL;
3759 		if (user_ns.flags)
3760 			goto out;
3761 
3762 		r = 0;
3763 		local_irq_disable();
3764 		now_ns = get_kernel_ns();
3765 		delta = user_ns.clock - now_ns;
3766 		local_irq_enable();
3767 		kvm->arch.kvmclock_offset = delta;
3768 		break;
3769 	}
3770 	case KVM_GET_CLOCK: {
3771 		struct kvm_clock_data user_ns;
3772 		u64 now_ns;
3773 
3774 		local_irq_disable();
3775 		now_ns = get_kernel_ns();
3776 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3777 		local_irq_enable();
3778 		user_ns.flags = 0;
3779 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3780 
3781 		r = -EFAULT;
3782 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3783 			goto out;
3784 		r = 0;
3785 		break;
3786 	}
3787 
3788 	default:
3789 		;
3790 	}
3791 out:
3792 	return r;
3793 }
3794 
3795 static void kvm_init_msr_list(void)
3796 {
3797 	u32 dummy[2];
3798 	unsigned i, j;
3799 
3800 	/* skip the first msrs in the list. KVM-specific */
3801 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3802 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3803 			continue;
3804 		if (j < i)
3805 			msrs_to_save[j] = msrs_to_save[i];
3806 		j++;
3807 	}
3808 	num_msrs_to_save = j;
3809 }
3810 
3811 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3812 			   const void *v)
3813 {
3814 	int handled = 0;
3815 	int n;
3816 
3817 	do {
3818 		n = min(len, 8);
3819 		if (!(vcpu->arch.apic &&
3820 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3821 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3822 			break;
3823 		handled += n;
3824 		addr += n;
3825 		len -= n;
3826 		v += n;
3827 	} while (len);
3828 
3829 	return handled;
3830 }
3831 
3832 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3833 {
3834 	int handled = 0;
3835 	int n;
3836 
3837 	do {
3838 		n = min(len, 8);
3839 		if (!(vcpu->arch.apic &&
3840 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3841 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3842 			break;
3843 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3844 		handled += n;
3845 		addr += n;
3846 		len -= n;
3847 		v += n;
3848 	} while (len);
3849 
3850 	return handled;
3851 }
3852 
3853 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3854 			struct kvm_segment *var, int seg)
3855 {
3856 	kvm_x86_ops->set_segment(vcpu, var, seg);
3857 }
3858 
3859 void kvm_get_segment(struct kvm_vcpu *vcpu,
3860 		     struct kvm_segment *var, int seg)
3861 {
3862 	kvm_x86_ops->get_segment(vcpu, var, seg);
3863 }
3864 
3865 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3866 {
3867 	gpa_t t_gpa;
3868 	struct x86_exception exception;
3869 
3870 	BUG_ON(!mmu_is_nested(vcpu));
3871 
3872 	/* NPT walks are always user-walks */
3873 	access |= PFERR_USER_MASK;
3874 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3875 
3876 	return t_gpa;
3877 }
3878 
3879 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3880 			      struct x86_exception *exception)
3881 {
3882 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3883 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3884 }
3885 
3886  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3887 				struct x86_exception *exception)
3888 {
3889 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3890 	access |= PFERR_FETCH_MASK;
3891 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3892 }
3893 
3894 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3895 			       struct x86_exception *exception)
3896 {
3897 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3898 	access |= PFERR_WRITE_MASK;
3899 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3900 }
3901 
3902 /* uses this to access any guest's mapped memory without checking CPL */
3903 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3904 				struct x86_exception *exception)
3905 {
3906 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3907 }
3908 
3909 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3910 				      struct kvm_vcpu *vcpu, u32 access,
3911 				      struct x86_exception *exception)
3912 {
3913 	void *data = val;
3914 	int r = X86EMUL_CONTINUE;
3915 
3916 	while (bytes) {
3917 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3918 							    exception);
3919 		unsigned offset = addr & (PAGE_SIZE-1);
3920 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3921 		int ret;
3922 
3923 		if (gpa == UNMAPPED_GVA)
3924 			return X86EMUL_PROPAGATE_FAULT;
3925 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3926 		if (ret < 0) {
3927 			r = X86EMUL_IO_NEEDED;
3928 			goto out;
3929 		}
3930 
3931 		bytes -= toread;
3932 		data += toread;
3933 		addr += toread;
3934 	}
3935 out:
3936 	return r;
3937 }
3938 
3939 /* used for instruction fetching */
3940 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3941 				gva_t addr, void *val, unsigned int bytes,
3942 				struct x86_exception *exception)
3943 {
3944 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3945 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3946 
3947 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3948 					  access | PFERR_FETCH_MASK,
3949 					  exception);
3950 }
3951 
3952 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3953 			       gva_t addr, void *val, unsigned int bytes,
3954 			       struct x86_exception *exception)
3955 {
3956 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3957 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3958 
3959 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3960 					  exception);
3961 }
3962 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3963 
3964 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3965 				      gva_t addr, void *val, unsigned int bytes,
3966 				      struct x86_exception *exception)
3967 {
3968 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3969 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3970 }
3971 
3972 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3973 				       gva_t addr, void *val,
3974 				       unsigned int bytes,
3975 				       struct x86_exception *exception)
3976 {
3977 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3978 	void *data = val;
3979 	int r = X86EMUL_CONTINUE;
3980 
3981 	while (bytes) {
3982 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3983 							     PFERR_WRITE_MASK,
3984 							     exception);
3985 		unsigned offset = addr & (PAGE_SIZE-1);
3986 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3987 		int ret;
3988 
3989 		if (gpa == UNMAPPED_GVA)
3990 			return X86EMUL_PROPAGATE_FAULT;
3991 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3992 		if (ret < 0) {
3993 			r = X86EMUL_IO_NEEDED;
3994 			goto out;
3995 		}
3996 
3997 		bytes -= towrite;
3998 		data += towrite;
3999 		addr += towrite;
4000 	}
4001 out:
4002 	return r;
4003 }
4004 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4005 
4006 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4007 				gpa_t *gpa, struct x86_exception *exception,
4008 				bool write)
4009 {
4010 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4011 		| (write ? PFERR_WRITE_MASK : 0);
4012 
4013 	if (vcpu_match_mmio_gva(vcpu, gva)
4014 	    && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4015 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4016 					(gva & (PAGE_SIZE - 1));
4017 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4018 		return 1;
4019 	}
4020 
4021 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4022 
4023 	if (*gpa == UNMAPPED_GVA)
4024 		return -1;
4025 
4026 	/* For APIC access vmexit */
4027 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4028 		return 1;
4029 
4030 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4031 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4032 		return 1;
4033 	}
4034 
4035 	return 0;
4036 }
4037 
4038 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4039 			const void *val, int bytes)
4040 {
4041 	int ret;
4042 
4043 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4044 	if (ret < 0)
4045 		return 0;
4046 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4047 	return 1;
4048 }
4049 
4050 struct read_write_emulator_ops {
4051 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4052 				  int bytes);
4053 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4054 				  void *val, int bytes);
4055 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4056 			       int bytes, void *val);
4057 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4058 				    void *val, int bytes);
4059 	bool write;
4060 };
4061 
4062 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4063 {
4064 	if (vcpu->mmio_read_completed) {
4065 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4066 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4067 		vcpu->mmio_read_completed = 0;
4068 		return 1;
4069 	}
4070 
4071 	return 0;
4072 }
4073 
4074 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4075 			void *val, int bytes)
4076 {
4077 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4078 }
4079 
4080 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4081 			 void *val, int bytes)
4082 {
4083 	return emulator_write_phys(vcpu, gpa, val, bytes);
4084 }
4085 
4086 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4087 {
4088 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4089 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4090 }
4091 
4092 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4093 			  void *val, int bytes)
4094 {
4095 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4096 	return X86EMUL_IO_NEEDED;
4097 }
4098 
4099 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4100 			   void *val, int bytes)
4101 {
4102 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4103 
4104 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4105 	return X86EMUL_CONTINUE;
4106 }
4107 
4108 static const struct read_write_emulator_ops read_emultor = {
4109 	.read_write_prepare = read_prepare,
4110 	.read_write_emulate = read_emulate,
4111 	.read_write_mmio = vcpu_mmio_read,
4112 	.read_write_exit_mmio = read_exit_mmio,
4113 };
4114 
4115 static const struct read_write_emulator_ops write_emultor = {
4116 	.read_write_emulate = write_emulate,
4117 	.read_write_mmio = write_mmio,
4118 	.read_write_exit_mmio = write_exit_mmio,
4119 	.write = true,
4120 };
4121 
4122 static int emulator_read_write_onepage(unsigned long addr, void *val,
4123 				       unsigned int bytes,
4124 				       struct x86_exception *exception,
4125 				       struct kvm_vcpu *vcpu,
4126 				       const struct read_write_emulator_ops *ops)
4127 {
4128 	gpa_t gpa;
4129 	int handled, ret;
4130 	bool write = ops->write;
4131 	struct kvm_mmio_fragment *frag;
4132 
4133 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4134 
4135 	if (ret < 0)
4136 		return X86EMUL_PROPAGATE_FAULT;
4137 
4138 	/* For APIC access vmexit */
4139 	if (ret)
4140 		goto mmio;
4141 
4142 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4143 		return X86EMUL_CONTINUE;
4144 
4145 mmio:
4146 	/*
4147 	 * Is this MMIO handled locally?
4148 	 */
4149 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4150 	if (handled == bytes)
4151 		return X86EMUL_CONTINUE;
4152 
4153 	gpa += handled;
4154 	bytes -= handled;
4155 	val += handled;
4156 
4157 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4158 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4159 	frag->gpa = gpa;
4160 	frag->data = val;
4161 	frag->len = bytes;
4162 	return X86EMUL_CONTINUE;
4163 }
4164 
4165 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4166 			void *val, unsigned int bytes,
4167 			struct x86_exception *exception,
4168 			const struct read_write_emulator_ops *ops)
4169 {
4170 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4171 	gpa_t gpa;
4172 	int rc;
4173 
4174 	if (ops->read_write_prepare &&
4175 		  ops->read_write_prepare(vcpu, val, bytes))
4176 		return X86EMUL_CONTINUE;
4177 
4178 	vcpu->mmio_nr_fragments = 0;
4179 
4180 	/* Crossing a page boundary? */
4181 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4182 		int now;
4183 
4184 		now = -addr & ~PAGE_MASK;
4185 		rc = emulator_read_write_onepage(addr, val, now, exception,
4186 						 vcpu, ops);
4187 
4188 		if (rc != X86EMUL_CONTINUE)
4189 			return rc;
4190 		addr += now;
4191 		val += now;
4192 		bytes -= now;
4193 	}
4194 
4195 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4196 					 vcpu, ops);
4197 	if (rc != X86EMUL_CONTINUE)
4198 		return rc;
4199 
4200 	if (!vcpu->mmio_nr_fragments)
4201 		return rc;
4202 
4203 	gpa = vcpu->mmio_fragments[0].gpa;
4204 
4205 	vcpu->mmio_needed = 1;
4206 	vcpu->mmio_cur_fragment = 0;
4207 
4208 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4209 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4210 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4211 	vcpu->run->mmio.phys_addr = gpa;
4212 
4213 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4214 }
4215 
4216 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4217 				  unsigned long addr,
4218 				  void *val,
4219 				  unsigned int bytes,
4220 				  struct x86_exception *exception)
4221 {
4222 	return emulator_read_write(ctxt, addr, val, bytes,
4223 				   exception, &read_emultor);
4224 }
4225 
4226 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4227 			    unsigned long addr,
4228 			    const void *val,
4229 			    unsigned int bytes,
4230 			    struct x86_exception *exception)
4231 {
4232 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4233 				   exception, &write_emultor);
4234 }
4235 
4236 #define CMPXCHG_TYPE(t, ptr, old, new) \
4237 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4238 
4239 #ifdef CONFIG_X86_64
4240 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4241 #else
4242 #  define CMPXCHG64(ptr, old, new) \
4243 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4244 #endif
4245 
4246 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4247 				     unsigned long addr,
4248 				     const void *old,
4249 				     const void *new,
4250 				     unsigned int bytes,
4251 				     struct x86_exception *exception)
4252 {
4253 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4254 	gpa_t gpa;
4255 	struct page *page;
4256 	char *kaddr;
4257 	bool exchanged;
4258 
4259 	/* guests cmpxchg8b have to be emulated atomically */
4260 	if (bytes > 8 || (bytes & (bytes - 1)))
4261 		goto emul_write;
4262 
4263 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4264 
4265 	if (gpa == UNMAPPED_GVA ||
4266 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4267 		goto emul_write;
4268 
4269 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4270 		goto emul_write;
4271 
4272 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4273 	if (is_error_page(page))
4274 		goto emul_write;
4275 
4276 	kaddr = kmap_atomic(page);
4277 	kaddr += offset_in_page(gpa);
4278 	switch (bytes) {
4279 	case 1:
4280 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4281 		break;
4282 	case 2:
4283 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4284 		break;
4285 	case 4:
4286 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4287 		break;
4288 	case 8:
4289 		exchanged = CMPXCHG64(kaddr, old, new);
4290 		break;
4291 	default:
4292 		BUG();
4293 	}
4294 	kunmap_atomic(kaddr);
4295 	kvm_release_page_dirty(page);
4296 
4297 	if (!exchanged)
4298 		return X86EMUL_CMPXCHG_FAILED;
4299 
4300 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4301 
4302 	return X86EMUL_CONTINUE;
4303 
4304 emul_write:
4305 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4306 
4307 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4308 }
4309 
4310 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4311 {
4312 	/* TODO: String I/O for in kernel device */
4313 	int r;
4314 
4315 	if (vcpu->arch.pio.in)
4316 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4317 				    vcpu->arch.pio.size, pd);
4318 	else
4319 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4320 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4321 				     pd);
4322 	return r;
4323 }
4324 
4325 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4326 			       unsigned short port, void *val,
4327 			       unsigned int count, bool in)
4328 {
4329 	trace_kvm_pio(!in, port, size, count);
4330 
4331 	vcpu->arch.pio.port = port;
4332 	vcpu->arch.pio.in = in;
4333 	vcpu->arch.pio.count  = count;
4334 	vcpu->arch.pio.size = size;
4335 
4336 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4337 		vcpu->arch.pio.count = 0;
4338 		return 1;
4339 	}
4340 
4341 	vcpu->run->exit_reason = KVM_EXIT_IO;
4342 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4343 	vcpu->run->io.size = size;
4344 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4345 	vcpu->run->io.count = count;
4346 	vcpu->run->io.port = port;
4347 
4348 	return 0;
4349 }
4350 
4351 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4352 				    int size, unsigned short port, void *val,
4353 				    unsigned int count)
4354 {
4355 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4356 	int ret;
4357 
4358 	if (vcpu->arch.pio.count)
4359 		goto data_avail;
4360 
4361 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4362 	if (ret) {
4363 data_avail:
4364 		memcpy(val, vcpu->arch.pio_data, size * count);
4365 		vcpu->arch.pio.count = 0;
4366 		return 1;
4367 	}
4368 
4369 	return 0;
4370 }
4371 
4372 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4373 				     int size, unsigned short port,
4374 				     const void *val, unsigned int count)
4375 {
4376 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4377 
4378 	memcpy(vcpu->arch.pio_data, val, size * count);
4379 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4380 }
4381 
4382 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4383 {
4384 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4385 }
4386 
4387 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4388 {
4389 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4390 }
4391 
4392 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4393 {
4394 	if (!need_emulate_wbinvd(vcpu))
4395 		return X86EMUL_CONTINUE;
4396 
4397 	if (kvm_x86_ops->has_wbinvd_exit()) {
4398 		int cpu = get_cpu();
4399 
4400 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4401 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4402 				wbinvd_ipi, NULL, 1);
4403 		put_cpu();
4404 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4405 	} else
4406 		wbinvd();
4407 	return X86EMUL_CONTINUE;
4408 }
4409 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4410 
4411 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4412 {
4413 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4414 }
4415 
4416 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4417 {
4418 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4419 }
4420 
4421 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4422 {
4423 
4424 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4425 }
4426 
4427 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4428 {
4429 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4430 }
4431 
4432 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4433 {
4434 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4435 	unsigned long value;
4436 
4437 	switch (cr) {
4438 	case 0:
4439 		value = kvm_read_cr0(vcpu);
4440 		break;
4441 	case 2:
4442 		value = vcpu->arch.cr2;
4443 		break;
4444 	case 3:
4445 		value = kvm_read_cr3(vcpu);
4446 		break;
4447 	case 4:
4448 		value = kvm_read_cr4(vcpu);
4449 		break;
4450 	case 8:
4451 		value = kvm_get_cr8(vcpu);
4452 		break;
4453 	default:
4454 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4455 		return 0;
4456 	}
4457 
4458 	return value;
4459 }
4460 
4461 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4462 {
4463 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4464 	int res = 0;
4465 
4466 	switch (cr) {
4467 	case 0:
4468 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4469 		break;
4470 	case 2:
4471 		vcpu->arch.cr2 = val;
4472 		break;
4473 	case 3:
4474 		res = kvm_set_cr3(vcpu, val);
4475 		break;
4476 	case 4:
4477 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4478 		break;
4479 	case 8:
4480 		res = kvm_set_cr8(vcpu, val);
4481 		break;
4482 	default:
4483 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4484 		res = -1;
4485 	}
4486 
4487 	return res;
4488 }
4489 
4490 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4491 {
4492 	kvm_set_rflags(emul_to_vcpu(ctxt), val);
4493 }
4494 
4495 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4496 {
4497 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4498 }
4499 
4500 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4501 {
4502 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4503 }
4504 
4505 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4506 {
4507 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4508 }
4509 
4510 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4511 {
4512 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4513 }
4514 
4515 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4516 {
4517 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4518 }
4519 
4520 static unsigned long emulator_get_cached_segment_base(
4521 	struct x86_emulate_ctxt *ctxt, int seg)
4522 {
4523 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4524 }
4525 
4526 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4527 				 struct desc_struct *desc, u32 *base3,
4528 				 int seg)
4529 {
4530 	struct kvm_segment var;
4531 
4532 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4533 	*selector = var.selector;
4534 
4535 	if (var.unusable) {
4536 		memset(desc, 0, sizeof(*desc));
4537 		return false;
4538 	}
4539 
4540 	if (var.g)
4541 		var.limit >>= 12;
4542 	set_desc_limit(desc, var.limit);
4543 	set_desc_base(desc, (unsigned long)var.base);
4544 #ifdef CONFIG_X86_64
4545 	if (base3)
4546 		*base3 = var.base >> 32;
4547 #endif
4548 	desc->type = var.type;
4549 	desc->s = var.s;
4550 	desc->dpl = var.dpl;
4551 	desc->p = var.present;
4552 	desc->avl = var.avl;
4553 	desc->l = var.l;
4554 	desc->d = var.db;
4555 	desc->g = var.g;
4556 
4557 	return true;
4558 }
4559 
4560 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4561 				 struct desc_struct *desc, u32 base3,
4562 				 int seg)
4563 {
4564 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4565 	struct kvm_segment var;
4566 
4567 	var.selector = selector;
4568 	var.base = get_desc_base(desc);
4569 #ifdef CONFIG_X86_64
4570 	var.base |= ((u64)base3) << 32;
4571 #endif
4572 	var.limit = get_desc_limit(desc);
4573 	if (desc->g)
4574 		var.limit = (var.limit << 12) | 0xfff;
4575 	var.type = desc->type;
4576 	var.present = desc->p;
4577 	var.dpl = desc->dpl;
4578 	var.db = desc->d;
4579 	var.s = desc->s;
4580 	var.l = desc->l;
4581 	var.g = desc->g;
4582 	var.avl = desc->avl;
4583 	var.present = desc->p;
4584 	var.unusable = !var.present;
4585 	var.padding = 0;
4586 
4587 	kvm_set_segment(vcpu, &var, seg);
4588 	return;
4589 }
4590 
4591 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4592 			    u32 msr_index, u64 *pdata)
4593 {
4594 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4595 }
4596 
4597 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4598 			    u32 msr_index, u64 data)
4599 {
4600 	struct msr_data msr;
4601 
4602 	msr.data = data;
4603 	msr.index = msr_index;
4604 	msr.host_initiated = false;
4605 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4606 }
4607 
4608 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4609 			     u32 pmc, u64 *pdata)
4610 {
4611 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4612 }
4613 
4614 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4615 {
4616 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4617 }
4618 
4619 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4620 {
4621 	preempt_disable();
4622 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4623 	/*
4624 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4625 	 * so it may be clear at this point.
4626 	 */
4627 	clts();
4628 }
4629 
4630 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4631 {
4632 	preempt_enable();
4633 }
4634 
4635 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4636 			      struct x86_instruction_info *info,
4637 			      enum x86_intercept_stage stage)
4638 {
4639 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4640 }
4641 
4642 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4643 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4644 {
4645 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4646 }
4647 
4648 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4649 {
4650 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4651 }
4652 
4653 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4654 {
4655 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4656 }
4657 
4658 static const struct x86_emulate_ops emulate_ops = {
4659 	.read_gpr            = emulator_read_gpr,
4660 	.write_gpr           = emulator_write_gpr,
4661 	.read_std            = kvm_read_guest_virt_system,
4662 	.write_std           = kvm_write_guest_virt_system,
4663 	.fetch               = kvm_fetch_guest_virt,
4664 	.read_emulated       = emulator_read_emulated,
4665 	.write_emulated      = emulator_write_emulated,
4666 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4667 	.invlpg              = emulator_invlpg,
4668 	.pio_in_emulated     = emulator_pio_in_emulated,
4669 	.pio_out_emulated    = emulator_pio_out_emulated,
4670 	.get_segment         = emulator_get_segment,
4671 	.set_segment         = emulator_set_segment,
4672 	.get_cached_segment_base = emulator_get_cached_segment_base,
4673 	.get_gdt             = emulator_get_gdt,
4674 	.get_idt	     = emulator_get_idt,
4675 	.set_gdt             = emulator_set_gdt,
4676 	.set_idt	     = emulator_set_idt,
4677 	.get_cr              = emulator_get_cr,
4678 	.set_cr              = emulator_set_cr,
4679 	.set_rflags          = emulator_set_rflags,
4680 	.cpl                 = emulator_get_cpl,
4681 	.get_dr              = emulator_get_dr,
4682 	.set_dr              = emulator_set_dr,
4683 	.set_msr             = emulator_set_msr,
4684 	.get_msr             = emulator_get_msr,
4685 	.read_pmc            = emulator_read_pmc,
4686 	.halt                = emulator_halt,
4687 	.wbinvd              = emulator_wbinvd,
4688 	.fix_hypercall       = emulator_fix_hypercall,
4689 	.get_fpu             = emulator_get_fpu,
4690 	.put_fpu             = emulator_put_fpu,
4691 	.intercept           = emulator_intercept,
4692 	.get_cpuid           = emulator_get_cpuid,
4693 };
4694 
4695 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4696 {
4697 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4698 	/*
4699 	 * an sti; sti; sequence only disable interrupts for the first
4700 	 * instruction. So, if the last instruction, be it emulated or
4701 	 * not, left the system with the INT_STI flag enabled, it
4702 	 * means that the last instruction is an sti. We should not
4703 	 * leave the flag on in this case. The same goes for mov ss
4704 	 */
4705 	if (!(int_shadow & mask))
4706 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4707 }
4708 
4709 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4710 {
4711 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4712 	if (ctxt->exception.vector == PF_VECTOR)
4713 		kvm_propagate_fault(vcpu, &ctxt->exception);
4714 	else if (ctxt->exception.error_code_valid)
4715 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4716 				      ctxt->exception.error_code);
4717 	else
4718 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4719 }
4720 
4721 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4722 {
4723 	memset(&ctxt->twobyte, 0,
4724 	       (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4725 
4726 	ctxt->fetch.start = 0;
4727 	ctxt->fetch.end = 0;
4728 	ctxt->io_read.pos = 0;
4729 	ctxt->io_read.end = 0;
4730 	ctxt->mem_read.pos = 0;
4731 	ctxt->mem_read.end = 0;
4732 }
4733 
4734 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4735 {
4736 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4737 	int cs_db, cs_l;
4738 
4739 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4740 
4741 	ctxt->eflags = kvm_get_rflags(vcpu);
4742 	ctxt->eip = kvm_rip_read(vcpu);
4743 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4744 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4745 		     cs_l				? X86EMUL_MODE_PROT64 :
4746 		     cs_db				? X86EMUL_MODE_PROT32 :
4747 							  X86EMUL_MODE_PROT16;
4748 	ctxt->guest_mode = is_guest_mode(vcpu);
4749 
4750 	init_decode_cache(ctxt);
4751 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4752 }
4753 
4754 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4755 {
4756 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4757 	int ret;
4758 
4759 	init_emulate_ctxt(vcpu);
4760 
4761 	ctxt->op_bytes = 2;
4762 	ctxt->ad_bytes = 2;
4763 	ctxt->_eip = ctxt->eip + inc_eip;
4764 	ret = emulate_int_real(ctxt, irq);
4765 
4766 	if (ret != X86EMUL_CONTINUE)
4767 		return EMULATE_FAIL;
4768 
4769 	ctxt->eip = ctxt->_eip;
4770 	kvm_rip_write(vcpu, ctxt->eip);
4771 	kvm_set_rflags(vcpu, ctxt->eflags);
4772 
4773 	if (irq == NMI_VECTOR)
4774 		vcpu->arch.nmi_pending = 0;
4775 	else
4776 		vcpu->arch.interrupt.pending = false;
4777 
4778 	return EMULATE_DONE;
4779 }
4780 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4781 
4782 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4783 {
4784 	int r = EMULATE_DONE;
4785 
4786 	++vcpu->stat.insn_emulation_fail;
4787 	trace_kvm_emulate_insn_failed(vcpu);
4788 	if (!is_guest_mode(vcpu)) {
4789 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4790 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4791 		vcpu->run->internal.ndata = 0;
4792 		r = EMULATE_FAIL;
4793 	}
4794 	kvm_queue_exception(vcpu, UD_VECTOR);
4795 
4796 	return r;
4797 }
4798 
4799 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4800 				  bool write_fault_to_shadow_pgtable,
4801 				  int emulation_type)
4802 {
4803 	gpa_t gpa = cr2;
4804 	pfn_t pfn;
4805 
4806 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
4807 		return false;
4808 
4809 	if (!vcpu->arch.mmu.direct_map) {
4810 		/*
4811 		 * Write permission should be allowed since only
4812 		 * write access need to be emulated.
4813 		 */
4814 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4815 
4816 		/*
4817 		 * If the mapping is invalid in guest, let cpu retry
4818 		 * it to generate fault.
4819 		 */
4820 		if (gpa == UNMAPPED_GVA)
4821 			return true;
4822 	}
4823 
4824 	/*
4825 	 * Do not retry the unhandleable instruction if it faults on the
4826 	 * readonly host memory, otherwise it will goto a infinite loop:
4827 	 * retry instruction -> write #PF -> emulation fail -> retry
4828 	 * instruction -> ...
4829 	 */
4830 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4831 
4832 	/*
4833 	 * If the instruction failed on the error pfn, it can not be fixed,
4834 	 * report the error to userspace.
4835 	 */
4836 	if (is_error_noslot_pfn(pfn))
4837 		return false;
4838 
4839 	kvm_release_pfn_clean(pfn);
4840 
4841 	/* The instructions are well-emulated on direct mmu. */
4842 	if (vcpu->arch.mmu.direct_map) {
4843 		unsigned int indirect_shadow_pages;
4844 
4845 		spin_lock(&vcpu->kvm->mmu_lock);
4846 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4847 		spin_unlock(&vcpu->kvm->mmu_lock);
4848 
4849 		if (indirect_shadow_pages)
4850 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4851 
4852 		return true;
4853 	}
4854 
4855 	/*
4856 	 * if emulation was due to access to shadowed page table
4857 	 * and it failed try to unshadow page and re-enter the
4858 	 * guest to let CPU execute the instruction.
4859 	 */
4860 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4861 
4862 	/*
4863 	 * If the access faults on its page table, it can not
4864 	 * be fixed by unprotecting shadow page and it should
4865 	 * be reported to userspace.
4866 	 */
4867 	return !write_fault_to_shadow_pgtable;
4868 }
4869 
4870 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4871 			      unsigned long cr2,  int emulation_type)
4872 {
4873 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4874 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4875 
4876 	last_retry_eip = vcpu->arch.last_retry_eip;
4877 	last_retry_addr = vcpu->arch.last_retry_addr;
4878 
4879 	/*
4880 	 * If the emulation is caused by #PF and it is non-page_table
4881 	 * writing instruction, it means the VM-EXIT is caused by shadow
4882 	 * page protected, we can zap the shadow page and retry this
4883 	 * instruction directly.
4884 	 *
4885 	 * Note: if the guest uses a non-page-table modifying instruction
4886 	 * on the PDE that points to the instruction, then we will unmap
4887 	 * the instruction and go to an infinite loop. So, we cache the
4888 	 * last retried eip and the last fault address, if we meet the eip
4889 	 * and the address again, we can break out of the potential infinite
4890 	 * loop.
4891 	 */
4892 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4893 
4894 	if (!(emulation_type & EMULTYPE_RETRY))
4895 		return false;
4896 
4897 	if (x86_page_table_writing_insn(ctxt))
4898 		return false;
4899 
4900 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4901 		return false;
4902 
4903 	vcpu->arch.last_retry_eip = ctxt->eip;
4904 	vcpu->arch.last_retry_addr = cr2;
4905 
4906 	if (!vcpu->arch.mmu.direct_map)
4907 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4908 
4909 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4910 
4911 	return true;
4912 }
4913 
4914 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4915 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4916 
4917 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4918 			    unsigned long cr2,
4919 			    int emulation_type,
4920 			    void *insn,
4921 			    int insn_len)
4922 {
4923 	int r;
4924 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4925 	bool writeback = true;
4926 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4927 
4928 	/*
4929 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
4930 	 * never reused.
4931 	 */
4932 	vcpu->arch.write_fault_to_shadow_pgtable = false;
4933 	kvm_clear_exception_queue(vcpu);
4934 
4935 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4936 		init_emulate_ctxt(vcpu);
4937 		ctxt->interruptibility = 0;
4938 		ctxt->have_exception = false;
4939 		ctxt->perm_ok = false;
4940 
4941 		ctxt->only_vendor_specific_insn
4942 			= emulation_type & EMULTYPE_TRAP_UD;
4943 
4944 		r = x86_decode_insn(ctxt, insn, insn_len);
4945 
4946 		trace_kvm_emulate_insn_start(vcpu);
4947 		++vcpu->stat.insn_emulation;
4948 		if (r != EMULATION_OK)  {
4949 			if (emulation_type & EMULTYPE_TRAP_UD)
4950 				return EMULATE_FAIL;
4951 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4952 						emulation_type))
4953 				return EMULATE_DONE;
4954 			if (emulation_type & EMULTYPE_SKIP)
4955 				return EMULATE_FAIL;
4956 			return handle_emulation_failure(vcpu);
4957 		}
4958 	}
4959 
4960 	if (emulation_type & EMULTYPE_SKIP) {
4961 		kvm_rip_write(vcpu, ctxt->_eip);
4962 		return EMULATE_DONE;
4963 	}
4964 
4965 	if (retry_instruction(ctxt, cr2, emulation_type))
4966 		return EMULATE_DONE;
4967 
4968 	/* this is needed for vmware backdoor interface to work since it
4969 	   changes registers values  during IO operation */
4970 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4971 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4972 		emulator_invalidate_register_cache(ctxt);
4973 	}
4974 
4975 restart:
4976 	r = x86_emulate_insn(ctxt);
4977 
4978 	if (r == EMULATION_INTERCEPTED)
4979 		return EMULATE_DONE;
4980 
4981 	if (r == EMULATION_FAILED) {
4982 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4983 					emulation_type))
4984 			return EMULATE_DONE;
4985 
4986 		return handle_emulation_failure(vcpu);
4987 	}
4988 
4989 	if (ctxt->have_exception) {
4990 		inject_emulated_exception(vcpu);
4991 		r = EMULATE_DONE;
4992 	} else if (vcpu->arch.pio.count) {
4993 		if (!vcpu->arch.pio.in)
4994 			vcpu->arch.pio.count = 0;
4995 		else {
4996 			writeback = false;
4997 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
4998 		}
4999 		r = EMULATE_DO_MMIO;
5000 	} else if (vcpu->mmio_needed) {
5001 		if (!vcpu->mmio_is_write)
5002 			writeback = false;
5003 		r = EMULATE_DO_MMIO;
5004 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5005 	} else if (r == EMULATION_RESTART)
5006 		goto restart;
5007 	else
5008 		r = EMULATE_DONE;
5009 
5010 	if (writeback) {
5011 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5012 		kvm_set_rflags(vcpu, ctxt->eflags);
5013 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5014 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5015 		kvm_rip_write(vcpu, ctxt->eip);
5016 	} else
5017 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5018 
5019 	return r;
5020 }
5021 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5022 
5023 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5024 {
5025 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5026 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5027 					    size, port, &val, 1);
5028 	/* do not return to emulator after return from userspace */
5029 	vcpu->arch.pio.count = 0;
5030 	return ret;
5031 }
5032 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5033 
5034 static void tsc_bad(void *info)
5035 {
5036 	__this_cpu_write(cpu_tsc_khz, 0);
5037 }
5038 
5039 static void tsc_khz_changed(void *data)
5040 {
5041 	struct cpufreq_freqs *freq = data;
5042 	unsigned long khz = 0;
5043 
5044 	if (data)
5045 		khz = freq->new;
5046 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5047 		khz = cpufreq_quick_get(raw_smp_processor_id());
5048 	if (!khz)
5049 		khz = tsc_khz;
5050 	__this_cpu_write(cpu_tsc_khz, khz);
5051 }
5052 
5053 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5054 				     void *data)
5055 {
5056 	struct cpufreq_freqs *freq = data;
5057 	struct kvm *kvm;
5058 	struct kvm_vcpu *vcpu;
5059 	int i, send_ipi = 0;
5060 
5061 	/*
5062 	 * We allow guests to temporarily run on slowing clocks,
5063 	 * provided we notify them after, or to run on accelerating
5064 	 * clocks, provided we notify them before.  Thus time never
5065 	 * goes backwards.
5066 	 *
5067 	 * However, we have a problem.  We can't atomically update
5068 	 * the frequency of a given CPU from this function; it is
5069 	 * merely a notifier, which can be called from any CPU.
5070 	 * Changing the TSC frequency at arbitrary points in time
5071 	 * requires a recomputation of local variables related to
5072 	 * the TSC for each VCPU.  We must flag these local variables
5073 	 * to be updated and be sure the update takes place with the
5074 	 * new frequency before any guests proceed.
5075 	 *
5076 	 * Unfortunately, the combination of hotplug CPU and frequency
5077 	 * change creates an intractable locking scenario; the order
5078 	 * of when these callouts happen is undefined with respect to
5079 	 * CPU hotplug, and they can race with each other.  As such,
5080 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5081 	 * undefined; you can actually have a CPU frequency change take
5082 	 * place in between the computation of X and the setting of the
5083 	 * variable.  To protect against this problem, all updates of
5084 	 * the per_cpu tsc_khz variable are done in an interrupt
5085 	 * protected IPI, and all callers wishing to update the value
5086 	 * must wait for a synchronous IPI to complete (which is trivial
5087 	 * if the caller is on the CPU already).  This establishes the
5088 	 * necessary total order on variable updates.
5089 	 *
5090 	 * Note that because a guest time update may take place
5091 	 * anytime after the setting of the VCPU's request bit, the
5092 	 * correct TSC value must be set before the request.  However,
5093 	 * to ensure the update actually makes it to any guest which
5094 	 * starts running in hardware virtualization between the set
5095 	 * and the acquisition of the spinlock, we must also ping the
5096 	 * CPU after setting the request bit.
5097 	 *
5098 	 */
5099 
5100 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5101 		return 0;
5102 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5103 		return 0;
5104 
5105 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5106 
5107 	raw_spin_lock(&kvm_lock);
5108 	list_for_each_entry(kvm, &vm_list, vm_list) {
5109 		kvm_for_each_vcpu(i, vcpu, kvm) {
5110 			if (vcpu->cpu != freq->cpu)
5111 				continue;
5112 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5113 			if (vcpu->cpu != smp_processor_id())
5114 				send_ipi = 1;
5115 		}
5116 	}
5117 	raw_spin_unlock(&kvm_lock);
5118 
5119 	if (freq->old < freq->new && send_ipi) {
5120 		/*
5121 		 * We upscale the frequency.  Must make the guest
5122 		 * doesn't see old kvmclock values while running with
5123 		 * the new frequency, otherwise we risk the guest sees
5124 		 * time go backwards.
5125 		 *
5126 		 * In case we update the frequency for another cpu
5127 		 * (which might be in guest context) send an interrupt
5128 		 * to kick the cpu out of guest context.  Next time
5129 		 * guest context is entered kvmclock will be updated,
5130 		 * so the guest will not see stale values.
5131 		 */
5132 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5133 	}
5134 	return 0;
5135 }
5136 
5137 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5138 	.notifier_call  = kvmclock_cpufreq_notifier
5139 };
5140 
5141 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5142 					unsigned long action, void *hcpu)
5143 {
5144 	unsigned int cpu = (unsigned long)hcpu;
5145 
5146 	switch (action) {
5147 		case CPU_ONLINE:
5148 		case CPU_DOWN_FAILED:
5149 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5150 			break;
5151 		case CPU_DOWN_PREPARE:
5152 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5153 			break;
5154 	}
5155 	return NOTIFY_OK;
5156 }
5157 
5158 static struct notifier_block kvmclock_cpu_notifier_block = {
5159 	.notifier_call  = kvmclock_cpu_notifier,
5160 	.priority = -INT_MAX
5161 };
5162 
5163 static void kvm_timer_init(void)
5164 {
5165 	int cpu;
5166 
5167 	max_tsc_khz = tsc_khz;
5168 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5169 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5170 #ifdef CONFIG_CPU_FREQ
5171 		struct cpufreq_policy policy;
5172 		memset(&policy, 0, sizeof(policy));
5173 		cpu = get_cpu();
5174 		cpufreq_get_policy(&policy, cpu);
5175 		if (policy.cpuinfo.max_freq)
5176 			max_tsc_khz = policy.cpuinfo.max_freq;
5177 		put_cpu();
5178 #endif
5179 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5180 					  CPUFREQ_TRANSITION_NOTIFIER);
5181 	}
5182 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5183 	for_each_online_cpu(cpu)
5184 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5185 }
5186 
5187 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5188 
5189 int kvm_is_in_guest(void)
5190 {
5191 	return __this_cpu_read(current_vcpu) != NULL;
5192 }
5193 
5194 static int kvm_is_user_mode(void)
5195 {
5196 	int user_mode = 3;
5197 
5198 	if (__this_cpu_read(current_vcpu))
5199 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5200 
5201 	return user_mode != 0;
5202 }
5203 
5204 static unsigned long kvm_get_guest_ip(void)
5205 {
5206 	unsigned long ip = 0;
5207 
5208 	if (__this_cpu_read(current_vcpu))
5209 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5210 
5211 	return ip;
5212 }
5213 
5214 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5215 	.is_in_guest		= kvm_is_in_guest,
5216 	.is_user_mode		= kvm_is_user_mode,
5217 	.get_guest_ip		= kvm_get_guest_ip,
5218 };
5219 
5220 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5221 {
5222 	__this_cpu_write(current_vcpu, vcpu);
5223 }
5224 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5225 
5226 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5227 {
5228 	__this_cpu_write(current_vcpu, NULL);
5229 }
5230 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5231 
5232 static void kvm_set_mmio_spte_mask(void)
5233 {
5234 	u64 mask;
5235 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5236 
5237 	/*
5238 	 * Set the reserved bits and the present bit of an paging-structure
5239 	 * entry to generate page fault with PFER.RSV = 1.
5240 	 */
5241 	mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5242 	mask |= 1ull;
5243 
5244 #ifdef CONFIG_X86_64
5245 	/*
5246 	 * If reserved bit is not supported, clear the present bit to disable
5247 	 * mmio page fault.
5248 	 */
5249 	if (maxphyaddr == 52)
5250 		mask &= ~1ull;
5251 #endif
5252 
5253 	kvm_mmu_set_mmio_spte_mask(mask);
5254 }
5255 
5256 #ifdef CONFIG_X86_64
5257 static void pvclock_gtod_update_fn(struct work_struct *work)
5258 {
5259 	struct kvm *kvm;
5260 
5261 	struct kvm_vcpu *vcpu;
5262 	int i;
5263 
5264 	raw_spin_lock(&kvm_lock);
5265 	list_for_each_entry(kvm, &vm_list, vm_list)
5266 		kvm_for_each_vcpu(i, vcpu, kvm)
5267 			set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5268 	atomic_set(&kvm_guest_has_master_clock, 0);
5269 	raw_spin_unlock(&kvm_lock);
5270 }
5271 
5272 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5273 
5274 /*
5275  * Notification about pvclock gtod data update.
5276  */
5277 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5278 			       void *priv)
5279 {
5280 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5281 	struct timekeeper *tk = priv;
5282 
5283 	update_pvclock_gtod(tk);
5284 
5285 	/* disable master clock if host does not trust, or does not
5286 	 * use, TSC clocksource
5287 	 */
5288 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5289 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5290 		queue_work(system_long_wq, &pvclock_gtod_work);
5291 
5292 	return 0;
5293 }
5294 
5295 static struct notifier_block pvclock_gtod_notifier = {
5296 	.notifier_call = pvclock_gtod_notify,
5297 };
5298 #endif
5299 
5300 int kvm_arch_init(void *opaque)
5301 {
5302 	int r;
5303 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5304 
5305 	if (kvm_x86_ops) {
5306 		printk(KERN_ERR "kvm: already loaded the other module\n");
5307 		r = -EEXIST;
5308 		goto out;
5309 	}
5310 
5311 	if (!ops->cpu_has_kvm_support()) {
5312 		printk(KERN_ERR "kvm: no hardware support\n");
5313 		r = -EOPNOTSUPP;
5314 		goto out;
5315 	}
5316 	if (ops->disabled_by_bios()) {
5317 		printk(KERN_ERR "kvm: disabled by bios\n");
5318 		r = -EOPNOTSUPP;
5319 		goto out;
5320 	}
5321 
5322 	r = -ENOMEM;
5323 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5324 	if (!shared_msrs) {
5325 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5326 		goto out;
5327 	}
5328 
5329 	r = kvm_mmu_module_init();
5330 	if (r)
5331 		goto out_free_percpu;
5332 
5333 	kvm_set_mmio_spte_mask();
5334 	kvm_init_msr_list();
5335 
5336 	kvm_x86_ops = ops;
5337 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5338 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5339 
5340 	kvm_timer_init();
5341 
5342 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5343 
5344 	if (cpu_has_xsave)
5345 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5346 
5347 	kvm_lapic_init();
5348 #ifdef CONFIG_X86_64
5349 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5350 #endif
5351 
5352 	return 0;
5353 
5354 out_free_percpu:
5355 	free_percpu(shared_msrs);
5356 out:
5357 	return r;
5358 }
5359 
5360 void kvm_arch_exit(void)
5361 {
5362 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5363 
5364 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5365 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5366 					    CPUFREQ_TRANSITION_NOTIFIER);
5367 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5368 #ifdef CONFIG_X86_64
5369 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5370 #endif
5371 	kvm_x86_ops = NULL;
5372 	kvm_mmu_module_exit();
5373 	free_percpu(shared_msrs);
5374 }
5375 
5376 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5377 {
5378 	++vcpu->stat.halt_exits;
5379 	if (irqchip_in_kernel(vcpu->kvm)) {
5380 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5381 		return 1;
5382 	} else {
5383 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5384 		return 0;
5385 	}
5386 }
5387 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5388 
5389 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5390 {
5391 	u64 param, ingpa, outgpa, ret;
5392 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5393 	bool fast, longmode;
5394 	int cs_db, cs_l;
5395 
5396 	/*
5397 	 * hypercall generates UD from non zero cpl and real mode
5398 	 * per HYPER-V spec
5399 	 */
5400 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5401 		kvm_queue_exception(vcpu, UD_VECTOR);
5402 		return 0;
5403 	}
5404 
5405 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5406 	longmode = is_long_mode(vcpu) && cs_l == 1;
5407 
5408 	if (!longmode) {
5409 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5410 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5411 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5412 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5413 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5414 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5415 	}
5416 #ifdef CONFIG_X86_64
5417 	else {
5418 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5419 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5420 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5421 	}
5422 #endif
5423 
5424 	code = param & 0xffff;
5425 	fast = (param >> 16) & 0x1;
5426 	rep_cnt = (param >> 32) & 0xfff;
5427 	rep_idx = (param >> 48) & 0xfff;
5428 
5429 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5430 
5431 	switch (code) {
5432 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5433 		kvm_vcpu_on_spin(vcpu);
5434 		break;
5435 	default:
5436 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5437 		break;
5438 	}
5439 
5440 	ret = res | (((u64)rep_done & 0xfff) << 32);
5441 	if (longmode) {
5442 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5443 	} else {
5444 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5445 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5446 	}
5447 
5448 	return 1;
5449 }
5450 
5451 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5452 {
5453 	unsigned long nr, a0, a1, a2, a3, ret;
5454 	int r = 1;
5455 
5456 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5457 		return kvm_hv_hypercall(vcpu);
5458 
5459 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5460 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5461 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5462 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5463 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5464 
5465 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5466 
5467 	if (!is_long_mode(vcpu)) {
5468 		nr &= 0xFFFFFFFF;
5469 		a0 &= 0xFFFFFFFF;
5470 		a1 &= 0xFFFFFFFF;
5471 		a2 &= 0xFFFFFFFF;
5472 		a3 &= 0xFFFFFFFF;
5473 	}
5474 
5475 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5476 		ret = -KVM_EPERM;
5477 		goto out;
5478 	}
5479 
5480 	switch (nr) {
5481 	case KVM_HC_VAPIC_POLL_IRQ:
5482 		ret = 0;
5483 		break;
5484 	default:
5485 		ret = -KVM_ENOSYS;
5486 		break;
5487 	}
5488 out:
5489 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5490 	++vcpu->stat.hypercalls;
5491 	return r;
5492 }
5493 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5494 
5495 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5496 {
5497 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5498 	char instruction[3];
5499 	unsigned long rip = kvm_rip_read(vcpu);
5500 
5501 	/*
5502 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
5503 	 * to ensure that the updated hypercall appears atomically across all
5504 	 * VCPUs.
5505 	 */
5506 	kvm_mmu_zap_all(vcpu->kvm);
5507 
5508 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5509 
5510 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5511 }
5512 
5513 /*
5514  * Check if userspace requested an interrupt window, and that the
5515  * interrupt window is open.
5516  *
5517  * No need to exit to userspace if we already have an interrupt queued.
5518  */
5519 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5520 {
5521 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5522 		vcpu->run->request_interrupt_window &&
5523 		kvm_arch_interrupt_allowed(vcpu));
5524 }
5525 
5526 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5527 {
5528 	struct kvm_run *kvm_run = vcpu->run;
5529 
5530 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5531 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5532 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5533 	if (irqchip_in_kernel(vcpu->kvm))
5534 		kvm_run->ready_for_interrupt_injection = 1;
5535 	else
5536 		kvm_run->ready_for_interrupt_injection =
5537 			kvm_arch_interrupt_allowed(vcpu) &&
5538 			!kvm_cpu_has_interrupt(vcpu) &&
5539 			!kvm_event_needs_reinjection(vcpu);
5540 }
5541 
5542 static int vapic_enter(struct kvm_vcpu *vcpu)
5543 {
5544 	struct kvm_lapic *apic = vcpu->arch.apic;
5545 	struct page *page;
5546 
5547 	if (!apic || !apic->vapic_addr)
5548 		return 0;
5549 
5550 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5551 	if (is_error_page(page))
5552 		return -EFAULT;
5553 
5554 	vcpu->arch.apic->vapic_page = page;
5555 	return 0;
5556 }
5557 
5558 static void vapic_exit(struct kvm_vcpu *vcpu)
5559 {
5560 	struct kvm_lapic *apic = vcpu->arch.apic;
5561 	int idx;
5562 
5563 	if (!apic || !apic->vapic_addr)
5564 		return;
5565 
5566 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5567 	kvm_release_page_dirty(apic->vapic_page);
5568 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5569 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5570 }
5571 
5572 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5573 {
5574 	int max_irr, tpr;
5575 
5576 	if (!kvm_x86_ops->update_cr8_intercept)
5577 		return;
5578 
5579 	if (!vcpu->arch.apic)
5580 		return;
5581 
5582 	if (!vcpu->arch.apic->vapic_addr)
5583 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5584 	else
5585 		max_irr = -1;
5586 
5587 	if (max_irr != -1)
5588 		max_irr >>= 4;
5589 
5590 	tpr = kvm_lapic_get_cr8(vcpu);
5591 
5592 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5593 }
5594 
5595 static void inject_pending_event(struct kvm_vcpu *vcpu)
5596 {
5597 	/* try to reinject previous events if any */
5598 	if (vcpu->arch.exception.pending) {
5599 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5600 					vcpu->arch.exception.has_error_code,
5601 					vcpu->arch.exception.error_code);
5602 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5603 					  vcpu->arch.exception.has_error_code,
5604 					  vcpu->arch.exception.error_code,
5605 					  vcpu->arch.exception.reinject);
5606 		return;
5607 	}
5608 
5609 	if (vcpu->arch.nmi_injected) {
5610 		kvm_x86_ops->set_nmi(vcpu);
5611 		return;
5612 	}
5613 
5614 	if (vcpu->arch.interrupt.pending) {
5615 		kvm_x86_ops->set_irq(vcpu);
5616 		return;
5617 	}
5618 
5619 	/* try to inject new event if pending */
5620 	if (vcpu->arch.nmi_pending) {
5621 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5622 			--vcpu->arch.nmi_pending;
5623 			vcpu->arch.nmi_injected = true;
5624 			kvm_x86_ops->set_nmi(vcpu);
5625 		}
5626 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
5627 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5628 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5629 					    false);
5630 			kvm_x86_ops->set_irq(vcpu);
5631 		}
5632 	}
5633 }
5634 
5635 static void process_nmi(struct kvm_vcpu *vcpu)
5636 {
5637 	unsigned limit = 2;
5638 
5639 	/*
5640 	 * x86 is limited to one NMI running, and one NMI pending after it.
5641 	 * If an NMI is already in progress, limit further NMIs to just one.
5642 	 * Otherwise, allow two (and we'll inject the first one immediately).
5643 	 */
5644 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5645 		limit = 1;
5646 
5647 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5648 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5649 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5650 }
5651 
5652 static void kvm_gen_update_masterclock(struct kvm *kvm)
5653 {
5654 #ifdef CONFIG_X86_64
5655 	int i;
5656 	struct kvm_vcpu *vcpu;
5657 	struct kvm_arch *ka = &kvm->arch;
5658 
5659 	spin_lock(&ka->pvclock_gtod_sync_lock);
5660 	kvm_make_mclock_inprogress_request(kvm);
5661 	/* no guest entries from this point */
5662 	pvclock_update_vm_gtod_copy(kvm);
5663 
5664 	kvm_for_each_vcpu(i, vcpu, kvm)
5665 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5666 
5667 	/* guest entries allowed */
5668 	kvm_for_each_vcpu(i, vcpu, kvm)
5669 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5670 
5671 	spin_unlock(&ka->pvclock_gtod_sync_lock);
5672 #endif
5673 }
5674 
5675 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5676 {
5677 	u64 eoi_exit_bitmap[4];
5678 	u32 tmr[8];
5679 
5680 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5681 		return;
5682 
5683 	memset(eoi_exit_bitmap, 0, 32);
5684 	memset(tmr, 0, 32);
5685 
5686 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5687 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5688 	kvm_apic_update_tmr(vcpu, tmr);
5689 }
5690 
5691 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5692 {
5693 	int r;
5694 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5695 		vcpu->run->request_interrupt_window;
5696 	bool req_immediate_exit = false;
5697 
5698 	if (vcpu->requests) {
5699 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5700 			kvm_mmu_unload(vcpu);
5701 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5702 			__kvm_migrate_timers(vcpu);
5703 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5704 			kvm_gen_update_masterclock(vcpu->kvm);
5705 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5706 			r = kvm_guest_time_update(vcpu);
5707 			if (unlikely(r))
5708 				goto out;
5709 		}
5710 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5711 			kvm_mmu_sync_roots(vcpu);
5712 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5713 			kvm_x86_ops->tlb_flush(vcpu);
5714 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5715 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5716 			r = 0;
5717 			goto out;
5718 		}
5719 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5720 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5721 			r = 0;
5722 			goto out;
5723 		}
5724 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5725 			vcpu->fpu_active = 0;
5726 			kvm_x86_ops->fpu_deactivate(vcpu);
5727 		}
5728 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5729 			/* Page is swapped out. Do synthetic halt */
5730 			vcpu->arch.apf.halted = true;
5731 			r = 1;
5732 			goto out;
5733 		}
5734 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5735 			record_steal_time(vcpu);
5736 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5737 			process_nmi(vcpu);
5738 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5739 			kvm_handle_pmu_event(vcpu);
5740 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5741 			kvm_deliver_pmi(vcpu);
5742 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5743 			vcpu_scan_ioapic(vcpu);
5744 	}
5745 
5746 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5747 		kvm_apic_accept_events(vcpu);
5748 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5749 			r = 1;
5750 			goto out;
5751 		}
5752 
5753 		inject_pending_event(vcpu);
5754 
5755 		/* enable NMI/IRQ window open exits if needed */
5756 		if (vcpu->arch.nmi_pending)
5757 			req_immediate_exit =
5758 				kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5759 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5760 			req_immediate_exit =
5761 				kvm_x86_ops->enable_irq_window(vcpu) != 0;
5762 
5763 		if (kvm_lapic_enabled(vcpu)) {
5764 			/*
5765 			 * Update architecture specific hints for APIC
5766 			 * virtual interrupt delivery.
5767 			 */
5768 			if (kvm_x86_ops->hwapic_irr_update)
5769 				kvm_x86_ops->hwapic_irr_update(vcpu,
5770 					kvm_lapic_find_highest_irr(vcpu));
5771 			update_cr8_intercept(vcpu);
5772 			kvm_lapic_sync_to_vapic(vcpu);
5773 		}
5774 	}
5775 
5776 	r = kvm_mmu_reload(vcpu);
5777 	if (unlikely(r)) {
5778 		goto cancel_injection;
5779 	}
5780 
5781 	preempt_disable();
5782 
5783 	kvm_x86_ops->prepare_guest_switch(vcpu);
5784 	if (vcpu->fpu_active)
5785 		kvm_load_guest_fpu(vcpu);
5786 	kvm_load_guest_xcr0(vcpu);
5787 
5788 	vcpu->mode = IN_GUEST_MODE;
5789 
5790 	/* We should set ->mode before check ->requests,
5791 	 * see the comment in make_all_cpus_request.
5792 	 */
5793 	smp_mb();
5794 
5795 	local_irq_disable();
5796 
5797 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5798 	    || need_resched() || signal_pending(current)) {
5799 		vcpu->mode = OUTSIDE_GUEST_MODE;
5800 		smp_wmb();
5801 		local_irq_enable();
5802 		preempt_enable();
5803 		r = 1;
5804 		goto cancel_injection;
5805 	}
5806 
5807 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5808 
5809 	if (req_immediate_exit)
5810 		smp_send_reschedule(vcpu->cpu);
5811 
5812 	kvm_guest_enter();
5813 
5814 	if (unlikely(vcpu->arch.switch_db_regs)) {
5815 		set_debugreg(0, 7);
5816 		set_debugreg(vcpu->arch.eff_db[0], 0);
5817 		set_debugreg(vcpu->arch.eff_db[1], 1);
5818 		set_debugreg(vcpu->arch.eff_db[2], 2);
5819 		set_debugreg(vcpu->arch.eff_db[3], 3);
5820 	}
5821 
5822 	trace_kvm_entry(vcpu->vcpu_id);
5823 	kvm_x86_ops->run(vcpu);
5824 
5825 	/*
5826 	 * If the guest has used debug registers, at least dr7
5827 	 * will be disabled while returning to the host.
5828 	 * If we don't have active breakpoints in the host, we don't
5829 	 * care about the messed up debug address registers. But if
5830 	 * we have some of them active, restore the old state.
5831 	 */
5832 	if (hw_breakpoint_active())
5833 		hw_breakpoint_restore();
5834 
5835 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5836 							   native_read_tsc());
5837 
5838 	vcpu->mode = OUTSIDE_GUEST_MODE;
5839 	smp_wmb();
5840 
5841 	/* Interrupt is enabled by handle_external_intr() */
5842 	kvm_x86_ops->handle_external_intr(vcpu);
5843 
5844 	++vcpu->stat.exits;
5845 
5846 	/*
5847 	 * We must have an instruction between local_irq_enable() and
5848 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5849 	 * the interrupt shadow.  The stat.exits increment will do nicely.
5850 	 * But we need to prevent reordering, hence this barrier():
5851 	 */
5852 	barrier();
5853 
5854 	kvm_guest_exit();
5855 
5856 	preempt_enable();
5857 
5858 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5859 
5860 	/*
5861 	 * Profile KVM exit RIPs:
5862 	 */
5863 	if (unlikely(prof_on == KVM_PROFILING)) {
5864 		unsigned long rip = kvm_rip_read(vcpu);
5865 		profile_hit(KVM_PROFILING, (void *)rip);
5866 	}
5867 
5868 	if (unlikely(vcpu->arch.tsc_always_catchup))
5869 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5870 
5871 	if (vcpu->arch.apic_attention)
5872 		kvm_lapic_sync_from_vapic(vcpu);
5873 
5874 	r = kvm_x86_ops->handle_exit(vcpu);
5875 	return r;
5876 
5877 cancel_injection:
5878 	kvm_x86_ops->cancel_injection(vcpu);
5879 	if (unlikely(vcpu->arch.apic_attention))
5880 		kvm_lapic_sync_from_vapic(vcpu);
5881 out:
5882 	return r;
5883 }
5884 
5885 
5886 static int __vcpu_run(struct kvm_vcpu *vcpu)
5887 {
5888 	int r;
5889 	struct kvm *kvm = vcpu->kvm;
5890 
5891 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5892 	r = vapic_enter(vcpu);
5893 	if (r) {
5894 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5895 		return r;
5896 	}
5897 
5898 	r = 1;
5899 	while (r > 0) {
5900 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5901 		    !vcpu->arch.apf.halted)
5902 			r = vcpu_enter_guest(vcpu);
5903 		else {
5904 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5905 			kvm_vcpu_block(vcpu);
5906 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5907 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
5908 				kvm_apic_accept_events(vcpu);
5909 				switch(vcpu->arch.mp_state) {
5910 				case KVM_MP_STATE_HALTED:
5911 					vcpu->arch.mp_state =
5912 						KVM_MP_STATE_RUNNABLE;
5913 				case KVM_MP_STATE_RUNNABLE:
5914 					vcpu->arch.apf.halted = false;
5915 					break;
5916 				case KVM_MP_STATE_INIT_RECEIVED:
5917 					break;
5918 				default:
5919 					r = -EINTR;
5920 					break;
5921 				}
5922 			}
5923 		}
5924 
5925 		if (r <= 0)
5926 			break;
5927 
5928 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5929 		if (kvm_cpu_has_pending_timer(vcpu))
5930 			kvm_inject_pending_timer_irqs(vcpu);
5931 
5932 		if (dm_request_for_irq_injection(vcpu)) {
5933 			r = -EINTR;
5934 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5935 			++vcpu->stat.request_irq_exits;
5936 		}
5937 
5938 		kvm_check_async_pf_completion(vcpu);
5939 
5940 		if (signal_pending(current)) {
5941 			r = -EINTR;
5942 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5943 			++vcpu->stat.signal_exits;
5944 		}
5945 		if (need_resched()) {
5946 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5947 			kvm_resched(vcpu);
5948 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5949 		}
5950 	}
5951 
5952 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5953 
5954 	vapic_exit(vcpu);
5955 
5956 	return r;
5957 }
5958 
5959 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5960 {
5961 	int r;
5962 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5963 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5964 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5965 	if (r != EMULATE_DONE)
5966 		return 0;
5967 	return 1;
5968 }
5969 
5970 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5971 {
5972 	BUG_ON(!vcpu->arch.pio.count);
5973 
5974 	return complete_emulated_io(vcpu);
5975 }
5976 
5977 /*
5978  * Implements the following, as a state machine:
5979  *
5980  * read:
5981  *   for each fragment
5982  *     for each mmio piece in the fragment
5983  *       write gpa, len
5984  *       exit
5985  *       copy data
5986  *   execute insn
5987  *
5988  * write:
5989  *   for each fragment
5990  *     for each mmio piece in the fragment
5991  *       write gpa, len
5992  *       copy data
5993  *       exit
5994  */
5995 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5996 {
5997 	struct kvm_run *run = vcpu->run;
5998 	struct kvm_mmio_fragment *frag;
5999 	unsigned len;
6000 
6001 	BUG_ON(!vcpu->mmio_needed);
6002 
6003 	/* Complete previous fragment */
6004 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6005 	len = min(8u, frag->len);
6006 	if (!vcpu->mmio_is_write)
6007 		memcpy(frag->data, run->mmio.data, len);
6008 
6009 	if (frag->len <= 8) {
6010 		/* Switch to the next fragment. */
6011 		frag++;
6012 		vcpu->mmio_cur_fragment++;
6013 	} else {
6014 		/* Go forward to the next mmio piece. */
6015 		frag->data += len;
6016 		frag->gpa += len;
6017 		frag->len -= len;
6018 	}
6019 
6020 	if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6021 		vcpu->mmio_needed = 0;
6022 		if (vcpu->mmio_is_write)
6023 			return 1;
6024 		vcpu->mmio_read_completed = 1;
6025 		return complete_emulated_io(vcpu);
6026 	}
6027 
6028 	run->exit_reason = KVM_EXIT_MMIO;
6029 	run->mmio.phys_addr = frag->gpa;
6030 	if (vcpu->mmio_is_write)
6031 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6032 	run->mmio.len = min(8u, frag->len);
6033 	run->mmio.is_write = vcpu->mmio_is_write;
6034 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6035 	return 0;
6036 }
6037 
6038 
6039 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6040 {
6041 	int r;
6042 	sigset_t sigsaved;
6043 
6044 	if (!tsk_used_math(current) && init_fpu(current))
6045 		return -ENOMEM;
6046 
6047 	if (vcpu->sigset_active)
6048 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6049 
6050 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6051 		kvm_vcpu_block(vcpu);
6052 		kvm_apic_accept_events(vcpu);
6053 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6054 		r = -EAGAIN;
6055 		goto out;
6056 	}
6057 
6058 	/* re-sync apic's tpr */
6059 	if (!irqchip_in_kernel(vcpu->kvm)) {
6060 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6061 			r = -EINVAL;
6062 			goto out;
6063 		}
6064 	}
6065 
6066 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6067 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6068 		vcpu->arch.complete_userspace_io = NULL;
6069 		r = cui(vcpu);
6070 		if (r <= 0)
6071 			goto out;
6072 	} else
6073 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6074 
6075 	r = __vcpu_run(vcpu);
6076 
6077 out:
6078 	post_kvm_run_save(vcpu);
6079 	if (vcpu->sigset_active)
6080 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6081 
6082 	return r;
6083 }
6084 
6085 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6086 {
6087 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6088 		/*
6089 		 * We are here if userspace calls get_regs() in the middle of
6090 		 * instruction emulation. Registers state needs to be copied
6091 		 * back from emulation context to vcpu. Userspace shouldn't do
6092 		 * that usually, but some bad designed PV devices (vmware
6093 		 * backdoor interface) need this to work
6094 		 */
6095 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6096 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6097 	}
6098 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6099 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6100 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6101 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6102 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6103 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6104 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6105 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6106 #ifdef CONFIG_X86_64
6107 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6108 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6109 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6110 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6111 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6112 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6113 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6114 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6115 #endif
6116 
6117 	regs->rip = kvm_rip_read(vcpu);
6118 	regs->rflags = kvm_get_rflags(vcpu);
6119 
6120 	return 0;
6121 }
6122 
6123 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6124 {
6125 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6126 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6127 
6128 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6129 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6130 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6131 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6132 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6133 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6134 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6135 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6136 #ifdef CONFIG_X86_64
6137 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6138 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6139 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6140 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6141 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6142 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6143 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6144 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6145 #endif
6146 
6147 	kvm_rip_write(vcpu, regs->rip);
6148 	kvm_set_rflags(vcpu, regs->rflags);
6149 
6150 	vcpu->arch.exception.pending = false;
6151 
6152 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6153 
6154 	return 0;
6155 }
6156 
6157 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6158 {
6159 	struct kvm_segment cs;
6160 
6161 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6162 	*db = cs.db;
6163 	*l = cs.l;
6164 }
6165 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6166 
6167 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6168 				  struct kvm_sregs *sregs)
6169 {
6170 	struct desc_ptr dt;
6171 
6172 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6173 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6174 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6175 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6176 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6177 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6178 
6179 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6180 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6181 
6182 	kvm_x86_ops->get_idt(vcpu, &dt);
6183 	sregs->idt.limit = dt.size;
6184 	sregs->idt.base = dt.address;
6185 	kvm_x86_ops->get_gdt(vcpu, &dt);
6186 	sregs->gdt.limit = dt.size;
6187 	sregs->gdt.base = dt.address;
6188 
6189 	sregs->cr0 = kvm_read_cr0(vcpu);
6190 	sregs->cr2 = vcpu->arch.cr2;
6191 	sregs->cr3 = kvm_read_cr3(vcpu);
6192 	sregs->cr4 = kvm_read_cr4(vcpu);
6193 	sregs->cr8 = kvm_get_cr8(vcpu);
6194 	sregs->efer = vcpu->arch.efer;
6195 	sregs->apic_base = kvm_get_apic_base(vcpu);
6196 
6197 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6198 
6199 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6200 		set_bit(vcpu->arch.interrupt.nr,
6201 			(unsigned long *)sregs->interrupt_bitmap);
6202 
6203 	return 0;
6204 }
6205 
6206 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6207 				    struct kvm_mp_state *mp_state)
6208 {
6209 	kvm_apic_accept_events(vcpu);
6210 	mp_state->mp_state = vcpu->arch.mp_state;
6211 	return 0;
6212 }
6213 
6214 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6215 				    struct kvm_mp_state *mp_state)
6216 {
6217 	if (!kvm_vcpu_has_lapic(vcpu) &&
6218 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6219 		return -EINVAL;
6220 
6221 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6222 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6223 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6224 	} else
6225 		vcpu->arch.mp_state = mp_state->mp_state;
6226 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6227 	return 0;
6228 }
6229 
6230 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6231 		    int reason, bool has_error_code, u32 error_code)
6232 {
6233 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6234 	int ret;
6235 
6236 	init_emulate_ctxt(vcpu);
6237 
6238 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6239 				   has_error_code, error_code);
6240 
6241 	if (ret)
6242 		return EMULATE_FAIL;
6243 
6244 	kvm_rip_write(vcpu, ctxt->eip);
6245 	kvm_set_rflags(vcpu, ctxt->eflags);
6246 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6247 	return EMULATE_DONE;
6248 }
6249 EXPORT_SYMBOL_GPL(kvm_task_switch);
6250 
6251 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6252 				  struct kvm_sregs *sregs)
6253 {
6254 	int mmu_reset_needed = 0;
6255 	int pending_vec, max_bits, idx;
6256 	struct desc_ptr dt;
6257 
6258 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6259 		return -EINVAL;
6260 
6261 	dt.size = sregs->idt.limit;
6262 	dt.address = sregs->idt.base;
6263 	kvm_x86_ops->set_idt(vcpu, &dt);
6264 	dt.size = sregs->gdt.limit;
6265 	dt.address = sregs->gdt.base;
6266 	kvm_x86_ops->set_gdt(vcpu, &dt);
6267 
6268 	vcpu->arch.cr2 = sregs->cr2;
6269 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6270 	vcpu->arch.cr3 = sregs->cr3;
6271 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6272 
6273 	kvm_set_cr8(vcpu, sregs->cr8);
6274 
6275 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6276 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6277 	kvm_set_apic_base(vcpu, sregs->apic_base);
6278 
6279 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6280 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6281 	vcpu->arch.cr0 = sregs->cr0;
6282 
6283 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6284 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6285 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6286 		kvm_update_cpuid(vcpu);
6287 
6288 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6289 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6290 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6291 		mmu_reset_needed = 1;
6292 	}
6293 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6294 
6295 	if (mmu_reset_needed)
6296 		kvm_mmu_reset_context(vcpu);
6297 
6298 	max_bits = KVM_NR_INTERRUPTS;
6299 	pending_vec = find_first_bit(
6300 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6301 	if (pending_vec < max_bits) {
6302 		kvm_queue_interrupt(vcpu, pending_vec, false);
6303 		pr_debug("Set back pending irq %d\n", pending_vec);
6304 	}
6305 
6306 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6307 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6308 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6309 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6310 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6311 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6312 
6313 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6314 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6315 
6316 	update_cr8_intercept(vcpu);
6317 
6318 	/* Older userspace won't unhalt the vcpu on reset. */
6319 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6320 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6321 	    !is_protmode(vcpu))
6322 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6323 
6324 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6325 
6326 	return 0;
6327 }
6328 
6329 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6330 					struct kvm_guest_debug *dbg)
6331 {
6332 	unsigned long rflags;
6333 	int i, r;
6334 
6335 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6336 		r = -EBUSY;
6337 		if (vcpu->arch.exception.pending)
6338 			goto out;
6339 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6340 			kvm_queue_exception(vcpu, DB_VECTOR);
6341 		else
6342 			kvm_queue_exception(vcpu, BP_VECTOR);
6343 	}
6344 
6345 	/*
6346 	 * Read rflags as long as potentially injected trace flags are still
6347 	 * filtered out.
6348 	 */
6349 	rflags = kvm_get_rflags(vcpu);
6350 
6351 	vcpu->guest_debug = dbg->control;
6352 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6353 		vcpu->guest_debug = 0;
6354 
6355 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6356 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6357 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6358 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6359 	} else {
6360 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6361 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6362 	}
6363 	kvm_update_dr7(vcpu);
6364 
6365 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6366 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6367 			get_segment_base(vcpu, VCPU_SREG_CS);
6368 
6369 	/*
6370 	 * Trigger an rflags update that will inject or remove the trace
6371 	 * flags.
6372 	 */
6373 	kvm_set_rflags(vcpu, rflags);
6374 
6375 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6376 
6377 	r = 0;
6378 
6379 out:
6380 
6381 	return r;
6382 }
6383 
6384 /*
6385  * Translate a guest virtual address to a guest physical address.
6386  */
6387 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6388 				    struct kvm_translation *tr)
6389 {
6390 	unsigned long vaddr = tr->linear_address;
6391 	gpa_t gpa;
6392 	int idx;
6393 
6394 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6395 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6396 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6397 	tr->physical_address = gpa;
6398 	tr->valid = gpa != UNMAPPED_GVA;
6399 	tr->writeable = 1;
6400 	tr->usermode = 0;
6401 
6402 	return 0;
6403 }
6404 
6405 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6406 {
6407 	struct i387_fxsave_struct *fxsave =
6408 			&vcpu->arch.guest_fpu.state->fxsave;
6409 
6410 	memcpy(fpu->fpr, fxsave->st_space, 128);
6411 	fpu->fcw = fxsave->cwd;
6412 	fpu->fsw = fxsave->swd;
6413 	fpu->ftwx = fxsave->twd;
6414 	fpu->last_opcode = fxsave->fop;
6415 	fpu->last_ip = fxsave->rip;
6416 	fpu->last_dp = fxsave->rdp;
6417 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6418 
6419 	return 0;
6420 }
6421 
6422 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6423 {
6424 	struct i387_fxsave_struct *fxsave =
6425 			&vcpu->arch.guest_fpu.state->fxsave;
6426 
6427 	memcpy(fxsave->st_space, fpu->fpr, 128);
6428 	fxsave->cwd = fpu->fcw;
6429 	fxsave->swd = fpu->fsw;
6430 	fxsave->twd = fpu->ftwx;
6431 	fxsave->fop = fpu->last_opcode;
6432 	fxsave->rip = fpu->last_ip;
6433 	fxsave->rdp = fpu->last_dp;
6434 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6435 
6436 	return 0;
6437 }
6438 
6439 int fx_init(struct kvm_vcpu *vcpu)
6440 {
6441 	int err;
6442 
6443 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6444 	if (err)
6445 		return err;
6446 
6447 	fpu_finit(&vcpu->arch.guest_fpu);
6448 
6449 	/*
6450 	 * Ensure guest xcr0 is valid for loading
6451 	 */
6452 	vcpu->arch.xcr0 = XSTATE_FP;
6453 
6454 	vcpu->arch.cr0 |= X86_CR0_ET;
6455 
6456 	return 0;
6457 }
6458 EXPORT_SYMBOL_GPL(fx_init);
6459 
6460 static void fx_free(struct kvm_vcpu *vcpu)
6461 {
6462 	fpu_free(&vcpu->arch.guest_fpu);
6463 }
6464 
6465 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6466 {
6467 	if (vcpu->guest_fpu_loaded)
6468 		return;
6469 
6470 	/*
6471 	 * Restore all possible states in the guest,
6472 	 * and assume host would use all available bits.
6473 	 * Guest xcr0 would be loaded later.
6474 	 */
6475 	kvm_put_guest_xcr0(vcpu);
6476 	vcpu->guest_fpu_loaded = 1;
6477 	__kernel_fpu_begin();
6478 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6479 	trace_kvm_fpu(1);
6480 }
6481 
6482 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6483 {
6484 	kvm_put_guest_xcr0(vcpu);
6485 
6486 	if (!vcpu->guest_fpu_loaded)
6487 		return;
6488 
6489 	vcpu->guest_fpu_loaded = 0;
6490 	fpu_save_init(&vcpu->arch.guest_fpu);
6491 	__kernel_fpu_end();
6492 	++vcpu->stat.fpu_reload;
6493 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6494 	trace_kvm_fpu(0);
6495 }
6496 
6497 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6498 {
6499 	kvmclock_reset(vcpu);
6500 
6501 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6502 	fx_free(vcpu);
6503 	kvm_x86_ops->vcpu_free(vcpu);
6504 }
6505 
6506 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6507 						unsigned int id)
6508 {
6509 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6510 		printk_once(KERN_WARNING
6511 		"kvm: SMP vm created on host with unstable TSC; "
6512 		"guest TSC will not be reliable\n");
6513 	return kvm_x86_ops->vcpu_create(kvm, id);
6514 }
6515 
6516 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6517 {
6518 	int r;
6519 
6520 	vcpu->arch.mtrr_state.have_fixed = 1;
6521 	r = vcpu_load(vcpu);
6522 	if (r)
6523 		return r;
6524 	kvm_vcpu_reset(vcpu);
6525 	r = kvm_mmu_setup(vcpu);
6526 	vcpu_put(vcpu);
6527 
6528 	return r;
6529 }
6530 
6531 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6532 {
6533 	int r;
6534 	struct msr_data msr;
6535 
6536 	r = vcpu_load(vcpu);
6537 	if (r)
6538 		return r;
6539 	msr.data = 0x0;
6540 	msr.index = MSR_IA32_TSC;
6541 	msr.host_initiated = true;
6542 	kvm_write_tsc(vcpu, &msr);
6543 	vcpu_put(vcpu);
6544 
6545 	return r;
6546 }
6547 
6548 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6549 {
6550 	int r;
6551 	vcpu->arch.apf.msr_val = 0;
6552 
6553 	r = vcpu_load(vcpu);
6554 	BUG_ON(r);
6555 	kvm_mmu_unload(vcpu);
6556 	vcpu_put(vcpu);
6557 
6558 	fx_free(vcpu);
6559 	kvm_x86_ops->vcpu_free(vcpu);
6560 }
6561 
6562 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6563 {
6564 	atomic_set(&vcpu->arch.nmi_queued, 0);
6565 	vcpu->arch.nmi_pending = 0;
6566 	vcpu->arch.nmi_injected = false;
6567 
6568 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6569 	vcpu->arch.dr6 = DR6_FIXED_1;
6570 	vcpu->arch.dr7 = DR7_FIXED_1;
6571 	kvm_update_dr7(vcpu);
6572 
6573 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6574 	vcpu->arch.apf.msr_val = 0;
6575 	vcpu->arch.st.msr_val = 0;
6576 
6577 	kvmclock_reset(vcpu);
6578 
6579 	kvm_clear_async_pf_completion_queue(vcpu);
6580 	kvm_async_pf_hash_reset(vcpu);
6581 	vcpu->arch.apf.halted = false;
6582 
6583 	kvm_pmu_reset(vcpu);
6584 
6585 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6586 	vcpu->arch.regs_avail = ~0;
6587 	vcpu->arch.regs_dirty = ~0;
6588 
6589 	kvm_x86_ops->vcpu_reset(vcpu);
6590 }
6591 
6592 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6593 {
6594 	struct kvm_segment cs;
6595 
6596 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6597 	cs.selector = vector << 8;
6598 	cs.base = vector << 12;
6599 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6600 	kvm_rip_write(vcpu, 0);
6601 }
6602 
6603 int kvm_arch_hardware_enable(void *garbage)
6604 {
6605 	struct kvm *kvm;
6606 	struct kvm_vcpu *vcpu;
6607 	int i;
6608 	int ret;
6609 	u64 local_tsc;
6610 	u64 max_tsc = 0;
6611 	bool stable, backwards_tsc = false;
6612 
6613 	kvm_shared_msr_cpu_online();
6614 	ret = kvm_x86_ops->hardware_enable(garbage);
6615 	if (ret != 0)
6616 		return ret;
6617 
6618 	local_tsc = native_read_tsc();
6619 	stable = !check_tsc_unstable();
6620 	list_for_each_entry(kvm, &vm_list, vm_list) {
6621 		kvm_for_each_vcpu(i, vcpu, kvm) {
6622 			if (!stable && vcpu->cpu == smp_processor_id())
6623 				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6624 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6625 				backwards_tsc = true;
6626 				if (vcpu->arch.last_host_tsc > max_tsc)
6627 					max_tsc = vcpu->arch.last_host_tsc;
6628 			}
6629 		}
6630 	}
6631 
6632 	/*
6633 	 * Sometimes, even reliable TSCs go backwards.  This happens on
6634 	 * platforms that reset TSC during suspend or hibernate actions, but
6635 	 * maintain synchronization.  We must compensate.  Fortunately, we can
6636 	 * detect that condition here, which happens early in CPU bringup,
6637 	 * before any KVM threads can be running.  Unfortunately, we can't
6638 	 * bring the TSCs fully up to date with real time, as we aren't yet far
6639 	 * enough into CPU bringup that we know how much real time has actually
6640 	 * elapsed; our helper function, get_kernel_ns() will be using boot
6641 	 * variables that haven't been updated yet.
6642 	 *
6643 	 * So we simply find the maximum observed TSC above, then record the
6644 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6645 	 * the adjustment will be applied.  Note that we accumulate
6646 	 * adjustments, in case multiple suspend cycles happen before some VCPU
6647 	 * gets a chance to run again.  In the event that no KVM threads get a
6648 	 * chance to run, we will miss the entire elapsed period, as we'll have
6649 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6650 	 * loose cycle time.  This isn't too big a deal, since the loss will be
6651 	 * uniform across all VCPUs (not to mention the scenario is extremely
6652 	 * unlikely). It is possible that a second hibernate recovery happens
6653 	 * much faster than a first, causing the observed TSC here to be
6654 	 * smaller; this would require additional padding adjustment, which is
6655 	 * why we set last_host_tsc to the local tsc observed here.
6656 	 *
6657 	 * N.B. - this code below runs only on platforms with reliable TSC,
6658 	 * as that is the only way backwards_tsc is set above.  Also note
6659 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6660 	 * have the same delta_cyc adjustment applied if backwards_tsc
6661 	 * is detected.  Note further, this adjustment is only done once,
6662 	 * as we reset last_host_tsc on all VCPUs to stop this from being
6663 	 * called multiple times (one for each physical CPU bringup).
6664 	 *
6665 	 * Platforms with unreliable TSCs don't have to deal with this, they
6666 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
6667 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
6668 	 * guarantee that they stay in perfect synchronization.
6669 	 */
6670 	if (backwards_tsc) {
6671 		u64 delta_cyc = max_tsc - local_tsc;
6672 		list_for_each_entry(kvm, &vm_list, vm_list) {
6673 			kvm_for_each_vcpu(i, vcpu, kvm) {
6674 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
6675 				vcpu->arch.last_host_tsc = local_tsc;
6676 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6677 					&vcpu->requests);
6678 			}
6679 
6680 			/*
6681 			 * We have to disable TSC offset matching.. if you were
6682 			 * booting a VM while issuing an S4 host suspend....
6683 			 * you may have some problem.  Solving this issue is
6684 			 * left as an exercise to the reader.
6685 			 */
6686 			kvm->arch.last_tsc_nsec = 0;
6687 			kvm->arch.last_tsc_write = 0;
6688 		}
6689 
6690 	}
6691 	return 0;
6692 }
6693 
6694 void kvm_arch_hardware_disable(void *garbage)
6695 {
6696 	kvm_x86_ops->hardware_disable(garbage);
6697 	drop_user_return_notifiers(garbage);
6698 }
6699 
6700 int kvm_arch_hardware_setup(void)
6701 {
6702 	return kvm_x86_ops->hardware_setup();
6703 }
6704 
6705 void kvm_arch_hardware_unsetup(void)
6706 {
6707 	kvm_x86_ops->hardware_unsetup();
6708 }
6709 
6710 void kvm_arch_check_processor_compat(void *rtn)
6711 {
6712 	kvm_x86_ops->check_processor_compatibility(rtn);
6713 }
6714 
6715 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6716 {
6717 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6718 }
6719 
6720 struct static_key kvm_no_apic_vcpu __read_mostly;
6721 
6722 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6723 {
6724 	struct page *page;
6725 	struct kvm *kvm;
6726 	int r;
6727 
6728 	BUG_ON(vcpu->kvm == NULL);
6729 	kvm = vcpu->kvm;
6730 
6731 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6732 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6733 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6734 	else
6735 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6736 
6737 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6738 	if (!page) {
6739 		r = -ENOMEM;
6740 		goto fail;
6741 	}
6742 	vcpu->arch.pio_data = page_address(page);
6743 
6744 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
6745 
6746 	r = kvm_mmu_create(vcpu);
6747 	if (r < 0)
6748 		goto fail_free_pio_data;
6749 
6750 	if (irqchip_in_kernel(kvm)) {
6751 		r = kvm_create_lapic(vcpu);
6752 		if (r < 0)
6753 			goto fail_mmu_destroy;
6754 	} else
6755 		static_key_slow_inc(&kvm_no_apic_vcpu);
6756 
6757 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6758 				       GFP_KERNEL);
6759 	if (!vcpu->arch.mce_banks) {
6760 		r = -ENOMEM;
6761 		goto fail_free_lapic;
6762 	}
6763 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6764 
6765 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6766 		r = -ENOMEM;
6767 		goto fail_free_mce_banks;
6768 	}
6769 
6770 	r = fx_init(vcpu);
6771 	if (r)
6772 		goto fail_free_wbinvd_dirty_mask;
6773 
6774 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6775 	vcpu->arch.pv_time_enabled = false;
6776 	kvm_async_pf_hash_reset(vcpu);
6777 	kvm_pmu_init(vcpu);
6778 
6779 	return 0;
6780 fail_free_wbinvd_dirty_mask:
6781 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6782 fail_free_mce_banks:
6783 	kfree(vcpu->arch.mce_banks);
6784 fail_free_lapic:
6785 	kvm_free_lapic(vcpu);
6786 fail_mmu_destroy:
6787 	kvm_mmu_destroy(vcpu);
6788 fail_free_pio_data:
6789 	free_page((unsigned long)vcpu->arch.pio_data);
6790 fail:
6791 	return r;
6792 }
6793 
6794 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6795 {
6796 	int idx;
6797 
6798 	kvm_pmu_destroy(vcpu);
6799 	kfree(vcpu->arch.mce_banks);
6800 	kvm_free_lapic(vcpu);
6801 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6802 	kvm_mmu_destroy(vcpu);
6803 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6804 	free_page((unsigned long)vcpu->arch.pio_data);
6805 	if (!irqchip_in_kernel(vcpu->kvm))
6806 		static_key_slow_dec(&kvm_no_apic_vcpu);
6807 }
6808 
6809 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6810 {
6811 	if (type)
6812 		return -EINVAL;
6813 
6814 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6815 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6816 
6817 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6818 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6819 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6820 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6821 		&kvm->arch.irq_sources_bitmap);
6822 
6823 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6824 	mutex_init(&kvm->arch.apic_map_lock);
6825 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6826 
6827 	pvclock_update_vm_gtod_copy(kvm);
6828 
6829 	return 0;
6830 }
6831 
6832 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6833 {
6834 	int r;
6835 	r = vcpu_load(vcpu);
6836 	BUG_ON(r);
6837 	kvm_mmu_unload(vcpu);
6838 	vcpu_put(vcpu);
6839 }
6840 
6841 static void kvm_free_vcpus(struct kvm *kvm)
6842 {
6843 	unsigned int i;
6844 	struct kvm_vcpu *vcpu;
6845 
6846 	/*
6847 	 * Unpin any mmu pages first.
6848 	 */
6849 	kvm_for_each_vcpu(i, vcpu, kvm) {
6850 		kvm_clear_async_pf_completion_queue(vcpu);
6851 		kvm_unload_vcpu_mmu(vcpu);
6852 	}
6853 	kvm_for_each_vcpu(i, vcpu, kvm)
6854 		kvm_arch_vcpu_free(vcpu);
6855 
6856 	mutex_lock(&kvm->lock);
6857 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6858 		kvm->vcpus[i] = NULL;
6859 
6860 	atomic_set(&kvm->online_vcpus, 0);
6861 	mutex_unlock(&kvm->lock);
6862 }
6863 
6864 void kvm_arch_sync_events(struct kvm *kvm)
6865 {
6866 	kvm_free_all_assigned_devices(kvm);
6867 	kvm_free_pit(kvm);
6868 }
6869 
6870 void kvm_arch_destroy_vm(struct kvm *kvm)
6871 {
6872 	if (current->mm == kvm->mm) {
6873 		/*
6874 		 * Free memory regions allocated on behalf of userspace,
6875 		 * unless the the memory map has changed due to process exit
6876 		 * or fd copying.
6877 		 */
6878 		struct kvm_userspace_memory_region mem;
6879 		memset(&mem, 0, sizeof(mem));
6880 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
6881 		kvm_set_memory_region(kvm, &mem);
6882 
6883 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
6884 		kvm_set_memory_region(kvm, &mem);
6885 
6886 		mem.slot = TSS_PRIVATE_MEMSLOT;
6887 		kvm_set_memory_region(kvm, &mem);
6888 	}
6889 	kvm_iommu_unmap_guest(kvm);
6890 	kfree(kvm->arch.vpic);
6891 	kfree(kvm->arch.vioapic);
6892 	kvm_free_vcpus(kvm);
6893 	if (kvm->arch.apic_access_page)
6894 		put_page(kvm->arch.apic_access_page);
6895 	if (kvm->arch.ept_identity_pagetable)
6896 		put_page(kvm->arch.ept_identity_pagetable);
6897 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6898 }
6899 
6900 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6901 			   struct kvm_memory_slot *dont)
6902 {
6903 	int i;
6904 
6905 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6906 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6907 			kvm_kvfree(free->arch.rmap[i]);
6908 			free->arch.rmap[i] = NULL;
6909 		}
6910 		if (i == 0)
6911 			continue;
6912 
6913 		if (!dont || free->arch.lpage_info[i - 1] !=
6914 			     dont->arch.lpage_info[i - 1]) {
6915 			kvm_kvfree(free->arch.lpage_info[i - 1]);
6916 			free->arch.lpage_info[i - 1] = NULL;
6917 		}
6918 	}
6919 }
6920 
6921 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6922 {
6923 	int i;
6924 
6925 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6926 		unsigned long ugfn;
6927 		int lpages;
6928 		int level = i + 1;
6929 
6930 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
6931 				      slot->base_gfn, level) + 1;
6932 
6933 		slot->arch.rmap[i] =
6934 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6935 		if (!slot->arch.rmap[i])
6936 			goto out_free;
6937 		if (i == 0)
6938 			continue;
6939 
6940 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6941 					sizeof(*slot->arch.lpage_info[i - 1]));
6942 		if (!slot->arch.lpage_info[i - 1])
6943 			goto out_free;
6944 
6945 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6946 			slot->arch.lpage_info[i - 1][0].write_count = 1;
6947 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6948 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6949 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
6950 		/*
6951 		 * If the gfn and userspace address are not aligned wrt each
6952 		 * other, or if explicitly asked to, disable large page
6953 		 * support for this slot
6954 		 */
6955 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6956 		    !kvm_largepages_enabled()) {
6957 			unsigned long j;
6958 
6959 			for (j = 0; j < lpages; ++j)
6960 				slot->arch.lpage_info[i - 1][j].write_count = 1;
6961 		}
6962 	}
6963 
6964 	return 0;
6965 
6966 out_free:
6967 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6968 		kvm_kvfree(slot->arch.rmap[i]);
6969 		slot->arch.rmap[i] = NULL;
6970 		if (i == 0)
6971 			continue;
6972 
6973 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
6974 		slot->arch.lpage_info[i - 1] = NULL;
6975 	}
6976 	return -ENOMEM;
6977 }
6978 
6979 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6980 				struct kvm_memory_slot *memslot,
6981 				struct kvm_userspace_memory_region *mem,
6982 				enum kvm_mr_change change)
6983 {
6984 	/*
6985 	 * Only private memory slots need to be mapped here since
6986 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
6987 	 */
6988 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
6989 		unsigned long userspace_addr;
6990 
6991 		/*
6992 		 * MAP_SHARED to prevent internal slot pages from being moved
6993 		 * by fork()/COW.
6994 		 */
6995 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
6996 					 PROT_READ | PROT_WRITE,
6997 					 MAP_SHARED | MAP_ANONYMOUS, 0);
6998 
6999 		if (IS_ERR((void *)userspace_addr))
7000 			return PTR_ERR((void *)userspace_addr);
7001 
7002 		memslot->userspace_addr = userspace_addr;
7003 	}
7004 
7005 	return 0;
7006 }
7007 
7008 void kvm_arch_commit_memory_region(struct kvm *kvm,
7009 				struct kvm_userspace_memory_region *mem,
7010 				const struct kvm_memory_slot *old,
7011 				enum kvm_mr_change change)
7012 {
7013 
7014 	int nr_mmu_pages = 0;
7015 
7016 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7017 		int ret;
7018 
7019 		ret = vm_munmap(old->userspace_addr,
7020 				old->npages * PAGE_SIZE);
7021 		if (ret < 0)
7022 			printk(KERN_WARNING
7023 			       "kvm_vm_ioctl_set_memory_region: "
7024 			       "failed to munmap memory\n");
7025 	}
7026 
7027 	if (!kvm->arch.n_requested_mmu_pages)
7028 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7029 
7030 	if (nr_mmu_pages)
7031 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7032 	/*
7033 	 * Write protect all pages for dirty logging.
7034 	 * Existing largepage mappings are destroyed here and new ones will
7035 	 * not be created until the end of the logging.
7036 	 */
7037 	if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7038 		kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7039 	/*
7040 	 * If memory slot is created, or moved, we need to clear all
7041 	 * mmio sptes.
7042 	 */
7043 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
7044 		kvm_mmu_zap_mmio_sptes(kvm);
7045 		kvm_reload_remote_mmus(kvm);
7046 	}
7047 }
7048 
7049 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7050 {
7051 	kvm_mmu_zap_all(kvm);
7052 	kvm_reload_remote_mmus(kvm);
7053 }
7054 
7055 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7056 				   struct kvm_memory_slot *slot)
7057 {
7058 	kvm_arch_flush_shadow_all(kvm);
7059 }
7060 
7061 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7062 {
7063 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7064 		!vcpu->arch.apf.halted)
7065 		|| !list_empty_careful(&vcpu->async_pf.done)
7066 		|| kvm_apic_has_events(vcpu)
7067 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7068 		(kvm_arch_interrupt_allowed(vcpu) &&
7069 		 kvm_cpu_has_interrupt(vcpu));
7070 }
7071 
7072 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7073 {
7074 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7075 }
7076 
7077 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7078 {
7079 	return kvm_x86_ops->interrupt_allowed(vcpu);
7080 }
7081 
7082 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7083 {
7084 	unsigned long current_rip = kvm_rip_read(vcpu) +
7085 		get_segment_base(vcpu, VCPU_SREG_CS);
7086 
7087 	return current_rip == linear_rip;
7088 }
7089 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7090 
7091 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7092 {
7093 	unsigned long rflags;
7094 
7095 	rflags = kvm_x86_ops->get_rflags(vcpu);
7096 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7097 		rflags &= ~X86_EFLAGS_TF;
7098 	return rflags;
7099 }
7100 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7101 
7102 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7103 {
7104 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7105 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7106 		rflags |= X86_EFLAGS_TF;
7107 	kvm_x86_ops->set_rflags(vcpu, rflags);
7108 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7109 }
7110 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7111 
7112 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7113 {
7114 	int r;
7115 
7116 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7117 	      is_error_page(work->page))
7118 		return;
7119 
7120 	r = kvm_mmu_reload(vcpu);
7121 	if (unlikely(r))
7122 		return;
7123 
7124 	if (!vcpu->arch.mmu.direct_map &&
7125 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7126 		return;
7127 
7128 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7129 }
7130 
7131 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7132 {
7133 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7134 }
7135 
7136 static inline u32 kvm_async_pf_next_probe(u32 key)
7137 {
7138 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7139 }
7140 
7141 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7142 {
7143 	u32 key = kvm_async_pf_hash_fn(gfn);
7144 
7145 	while (vcpu->arch.apf.gfns[key] != ~0)
7146 		key = kvm_async_pf_next_probe(key);
7147 
7148 	vcpu->arch.apf.gfns[key] = gfn;
7149 }
7150 
7151 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7152 {
7153 	int i;
7154 	u32 key = kvm_async_pf_hash_fn(gfn);
7155 
7156 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7157 		     (vcpu->arch.apf.gfns[key] != gfn &&
7158 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7159 		key = kvm_async_pf_next_probe(key);
7160 
7161 	return key;
7162 }
7163 
7164 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7165 {
7166 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7167 }
7168 
7169 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7170 {
7171 	u32 i, j, k;
7172 
7173 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7174 	while (true) {
7175 		vcpu->arch.apf.gfns[i] = ~0;
7176 		do {
7177 			j = kvm_async_pf_next_probe(j);
7178 			if (vcpu->arch.apf.gfns[j] == ~0)
7179 				return;
7180 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7181 			/*
7182 			 * k lies cyclically in ]i,j]
7183 			 * |    i.k.j |
7184 			 * |....j i.k.| or  |.k..j i...|
7185 			 */
7186 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7187 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7188 		i = j;
7189 	}
7190 }
7191 
7192 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7193 {
7194 
7195 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7196 				      sizeof(val));
7197 }
7198 
7199 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7200 				     struct kvm_async_pf *work)
7201 {
7202 	struct x86_exception fault;
7203 
7204 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7205 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7206 
7207 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7208 	    (vcpu->arch.apf.send_user_only &&
7209 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7210 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7211 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7212 		fault.vector = PF_VECTOR;
7213 		fault.error_code_valid = true;
7214 		fault.error_code = 0;
7215 		fault.nested_page_fault = false;
7216 		fault.address = work->arch.token;
7217 		kvm_inject_page_fault(vcpu, &fault);
7218 	}
7219 }
7220 
7221 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7222 				 struct kvm_async_pf *work)
7223 {
7224 	struct x86_exception fault;
7225 
7226 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7227 	if (is_error_page(work->page))
7228 		work->arch.token = ~0; /* broadcast wakeup */
7229 	else
7230 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7231 
7232 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7233 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7234 		fault.vector = PF_VECTOR;
7235 		fault.error_code_valid = true;
7236 		fault.error_code = 0;
7237 		fault.nested_page_fault = false;
7238 		fault.address = work->arch.token;
7239 		kvm_inject_page_fault(vcpu, &fault);
7240 	}
7241 	vcpu->arch.apf.halted = false;
7242 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7243 }
7244 
7245 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7246 {
7247 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7248 		return true;
7249 	else
7250 		return !kvm_event_needs_reinjection(vcpu) &&
7251 			kvm_x86_ops->interrupt_allowed(vcpu);
7252 }
7253 
7254 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7255 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7256 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7257 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7258 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7259 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7260 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7261 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7262 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7263 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7265 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7266