1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/intel-iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <linux/sched/stat.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/mem_encrypt.h> 60 #include <linux/entry-kvm.h> 61 #include <linux/suspend.h> 62 63 #include <trace/events/kvm.h> 64 65 #include <asm/debugreg.h> 66 #include <asm/msr.h> 67 #include <asm/desc.h> 68 #include <asm/mce.h> 69 #include <asm/pkru.h> 70 #include <linux/kernel_stat.h> 71 #include <asm/fpu/api.h> 72 #include <asm/fpu/xcr.h> 73 #include <asm/fpu/xstate.h> 74 #include <asm/pvclock.h> 75 #include <asm/div64.h> 76 #include <asm/irq_remapping.h> 77 #include <asm/mshyperv.h> 78 #include <asm/hypervisor.h> 79 #include <asm/tlbflush.h> 80 #include <asm/intel_pt.h> 81 #include <asm/emulate_prefix.h> 82 #include <asm/sgx.h> 83 #include <clocksource/hyperv_timer.h> 84 85 #define CREATE_TRACE_POINTS 86 #include "trace.h" 87 88 #define MAX_IO_MSRS 256 89 #define KVM_MAX_MCE_BANKS 32 90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 92 93 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 94 95 #define emul_to_vcpu(ctxt) \ 96 ((struct kvm_vcpu *)(ctxt)->vcpu) 97 98 /* EFER defaults: 99 * - enable syscall per default because its emulated by KVM 100 * - enable LME and LMA per default on 64 bit KVM 101 */ 102 #ifdef CONFIG_X86_64 103 static 104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 105 #else 106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 107 #endif 108 109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 110 111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 112 113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 114 115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 116 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 117 118 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 119 static void process_nmi(struct kvm_vcpu *vcpu); 120 static void process_smi(struct kvm_vcpu *vcpu); 121 static void enter_smm(struct kvm_vcpu *vcpu); 122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 123 static void store_regs(struct kvm_vcpu *vcpu); 124 static int sync_regs(struct kvm_vcpu *vcpu); 125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 126 127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 129 130 struct kvm_x86_ops kvm_x86_ops __read_mostly; 131 132 #define KVM_X86_OP(func) \ 133 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 134 *(((struct kvm_x86_ops *)0)->func)); 135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 137 #include <asm/kvm-x86-ops.h> 138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 140 141 static bool __read_mostly ignore_msrs = 0; 142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 143 144 bool __read_mostly report_ignored_msrs = true; 145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 146 EXPORT_SYMBOL_GPL(report_ignored_msrs); 147 148 unsigned int min_timer_period_us = 200; 149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 150 151 static bool __read_mostly kvmclock_periodic_sync = true; 152 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 153 154 bool __read_mostly kvm_has_tsc_control; 155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 156 u32 __read_mostly kvm_max_guest_tsc_khz; 157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 158 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 160 u64 __read_mostly kvm_max_tsc_scaling_ratio; 161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 162 u64 __read_mostly kvm_default_tsc_scaling_ratio; 163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 164 bool __read_mostly kvm_has_bus_lock_exit; 165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit); 166 167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 168 static u32 __read_mostly tsc_tolerance_ppm = 250; 169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 170 171 /* 172 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 173 * adaptive tuning starting from default advancement of 1000ns. '0' disables 174 * advancement entirely. Any other value is used as-is and disables adaptive 175 * tuning, i.e. allows privileged userspace to set an exact advancement time. 176 */ 177 static int __read_mostly lapic_timer_advance_ns = -1; 178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 179 180 static bool __read_mostly vector_hashing = true; 181 module_param(vector_hashing, bool, S_IRUGO); 182 183 bool __read_mostly enable_vmware_backdoor = false; 184 module_param(enable_vmware_backdoor, bool, S_IRUGO); 185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 186 187 static bool __read_mostly force_emulation_prefix = false; 188 module_param(force_emulation_prefix, bool, S_IRUGO); 189 190 int __read_mostly pi_inject_timer = -1; 191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 192 193 /* Enable/disable PMU virtualization */ 194 bool __read_mostly enable_pmu = true; 195 EXPORT_SYMBOL_GPL(enable_pmu); 196 module_param(enable_pmu, bool, 0444); 197 198 bool __read_mostly eager_page_split = true; 199 module_param(eager_page_split, bool, 0644); 200 201 /* 202 * Restoring the host value for MSRs that are only consumed when running in 203 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 204 * returns to userspace, i.e. the kernel can run with the guest's value. 205 */ 206 #define KVM_MAX_NR_USER_RETURN_MSRS 16 207 208 struct kvm_user_return_msrs { 209 struct user_return_notifier urn; 210 bool registered; 211 struct kvm_user_return_msr_values { 212 u64 host; 213 u64 curr; 214 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 215 }; 216 217 u32 __read_mostly kvm_nr_uret_msrs; 218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 220 static struct kvm_user_return_msrs __percpu *user_return_msrs; 221 222 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 223 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 224 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 225 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 226 227 u64 __read_mostly host_efer; 228 EXPORT_SYMBOL_GPL(host_efer); 229 230 bool __read_mostly allow_smaller_maxphyaddr = 0; 231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 232 233 bool __read_mostly enable_apicv = true; 234 EXPORT_SYMBOL_GPL(enable_apicv); 235 236 u64 __read_mostly host_xss; 237 EXPORT_SYMBOL_GPL(host_xss); 238 u64 __read_mostly supported_xss; 239 EXPORT_SYMBOL_GPL(supported_xss); 240 241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 242 KVM_GENERIC_VM_STATS(), 243 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 244 STATS_DESC_COUNTER(VM, mmu_pte_write), 245 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 246 STATS_DESC_COUNTER(VM, mmu_flooded), 247 STATS_DESC_COUNTER(VM, mmu_recycled), 248 STATS_DESC_COUNTER(VM, mmu_cache_miss), 249 STATS_DESC_ICOUNTER(VM, mmu_unsync), 250 STATS_DESC_ICOUNTER(VM, pages_4k), 251 STATS_DESC_ICOUNTER(VM, pages_2m), 252 STATS_DESC_ICOUNTER(VM, pages_1g), 253 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 254 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 255 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 256 }; 257 258 const struct kvm_stats_header kvm_vm_stats_header = { 259 .name_size = KVM_STATS_NAME_SIZE, 260 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 261 .id_offset = sizeof(struct kvm_stats_header), 262 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 263 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 264 sizeof(kvm_vm_stats_desc), 265 }; 266 267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 268 KVM_GENERIC_VCPU_STATS(), 269 STATS_DESC_COUNTER(VCPU, pf_taken), 270 STATS_DESC_COUNTER(VCPU, pf_fixed), 271 STATS_DESC_COUNTER(VCPU, pf_emulate), 272 STATS_DESC_COUNTER(VCPU, pf_spurious), 273 STATS_DESC_COUNTER(VCPU, pf_fast), 274 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 275 STATS_DESC_COUNTER(VCPU, pf_guest), 276 STATS_DESC_COUNTER(VCPU, tlb_flush), 277 STATS_DESC_COUNTER(VCPU, invlpg), 278 STATS_DESC_COUNTER(VCPU, exits), 279 STATS_DESC_COUNTER(VCPU, io_exits), 280 STATS_DESC_COUNTER(VCPU, mmio_exits), 281 STATS_DESC_COUNTER(VCPU, signal_exits), 282 STATS_DESC_COUNTER(VCPU, irq_window_exits), 283 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 284 STATS_DESC_COUNTER(VCPU, l1d_flush), 285 STATS_DESC_COUNTER(VCPU, halt_exits), 286 STATS_DESC_COUNTER(VCPU, request_irq_exits), 287 STATS_DESC_COUNTER(VCPU, irq_exits), 288 STATS_DESC_COUNTER(VCPU, host_state_reload), 289 STATS_DESC_COUNTER(VCPU, fpu_reload), 290 STATS_DESC_COUNTER(VCPU, insn_emulation), 291 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 292 STATS_DESC_COUNTER(VCPU, hypercalls), 293 STATS_DESC_COUNTER(VCPU, irq_injections), 294 STATS_DESC_COUNTER(VCPU, nmi_injections), 295 STATS_DESC_COUNTER(VCPU, req_event), 296 STATS_DESC_COUNTER(VCPU, nested_run), 297 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 298 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 299 STATS_DESC_COUNTER(VCPU, preemption_reported), 300 STATS_DESC_COUNTER(VCPU, preemption_other), 301 STATS_DESC_ICOUNTER(VCPU, guest_mode) 302 }; 303 304 const struct kvm_stats_header kvm_vcpu_stats_header = { 305 .name_size = KVM_STATS_NAME_SIZE, 306 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 307 .id_offset = sizeof(struct kvm_stats_header), 308 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 309 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 310 sizeof(kvm_vcpu_stats_desc), 311 }; 312 313 u64 __read_mostly host_xcr0; 314 u64 __read_mostly supported_xcr0; 315 EXPORT_SYMBOL_GPL(supported_xcr0); 316 317 static struct kmem_cache *x86_emulator_cache; 318 319 /* 320 * When called, it means the previous get/set msr reached an invalid msr. 321 * Return true if we want to ignore/silent this failed msr access. 322 */ 323 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 324 { 325 const char *op = write ? "wrmsr" : "rdmsr"; 326 327 if (ignore_msrs) { 328 if (report_ignored_msrs) 329 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 330 op, msr, data); 331 /* Mask the error */ 332 return true; 333 } else { 334 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 335 op, msr, data); 336 return false; 337 } 338 } 339 340 static struct kmem_cache *kvm_alloc_emulator_cache(void) 341 { 342 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 343 unsigned int size = sizeof(struct x86_emulate_ctxt); 344 345 return kmem_cache_create_usercopy("x86_emulator", size, 346 __alignof__(struct x86_emulate_ctxt), 347 SLAB_ACCOUNT, useroffset, 348 size - useroffset, NULL); 349 } 350 351 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 352 353 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 354 { 355 int i; 356 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 357 vcpu->arch.apf.gfns[i] = ~0; 358 } 359 360 static void kvm_on_user_return(struct user_return_notifier *urn) 361 { 362 unsigned slot; 363 struct kvm_user_return_msrs *msrs 364 = container_of(urn, struct kvm_user_return_msrs, urn); 365 struct kvm_user_return_msr_values *values; 366 unsigned long flags; 367 368 /* 369 * Disabling irqs at this point since the following code could be 370 * interrupted and executed through kvm_arch_hardware_disable() 371 */ 372 local_irq_save(flags); 373 if (msrs->registered) { 374 msrs->registered = false; 375 user_return_notifier_unregister(urn); 376 } 377 local_irq_restore(flags); 378 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 379 values = &msrs->values[slot]; 380 if (values->host != values->curr) { 381 wrmsrl(kvm_uret_msrs_list[slot], values->host); 382 values->curr = values->host; 383 } 384 } 385 } 386 387 static int kvm_probe_user_return_msr(u32 msr) 388 { 389 u64 val; 390 int ret; 391 392 preempt_disable(); 393 ret = rdmsrl_safe(msr, &val); 394 if (ret) 395 goto out; 396 ret = wrmsrl_safe(msr, val); 397 out: 398 preempt_enable(); 399 return ret; 400 } 401 402 int kvm_add_user_return_msr(u32 msr) 403 { 404 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 405 406 if (kvm_probe_user_return_msr(msr)) 407 return -1; 408 409 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 410 return kvm_nr_uret_msrs++; 411 } 412 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 413 414 int kvm_find_user_return_msr(u32 msr) 415 { 416 int i; 417 418 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 419 if (kvm_uret_msrs_list[i] == msr) 420 return i; 421 } 422 return -1; 423 } 424 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 425 426 static void kvm_user_return_msr_cpu_online(void) 427 { 428 unsigned int cpu = smp_processor_id(); 429 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 430 u64 value; 431 int i; 432 433 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 434 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 435 msrs->values[i].host = value; 436 msrs->values[i].curr = value; 437 } 438 } 439 440 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 441 { 442 unsigned int cpu = smp_processor_id(); 443 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 444 int err; 445 446 value = (value & mask) | (msrs->values[slot].host & ~mask); 447 if (value == msrs->values[slot].curr) 448 return 0; 449 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 450 if (err) 451 return 1; 452 453 msrs->values[slot].curr = value; 454 if (!msrs->registered) { 455 msrs->urn.on_user_return = kvm_on_user_return; 456 user_return_notifier_register(&msrs->urn); 457 msrs->registered = true; 458 } 459 return 0; 460 } 461 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 462 463 static void drop_user_return_notifiers(void) 464 { 465 unsigned int cpu = smp_processor_id(); 466 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 467 468 if (msrs->registered) 469 kvm_on_user_return(&msrs->urn); 470 } 471 472 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 473 { 474 return vcpu->arch.apic_base; 475 } 476 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 477 478 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 479 { 480 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 481 } 482 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 483 484 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 485 { 486 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 487 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 488 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 489 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 490 491 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 492 return 1; 493 if (!msr_info->host_initiated) { 494 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 495 return 1; 496 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 497 return 1; 498 } 499 500 kvm_lapic_set_base(vcpu, msr_info->data); 501 kvm_recalculate_apic_map(vcpu->kvm); 502 return 0; 503 } 504 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 505 506 /* 507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 508 * 509 * Hardware virtualization extension instructions may fault if a reboot turns 510 * off virtualization while processes are running. Usually after catching the 511 * fault we just panic; during reboot instead the instruction is ignored. 512 */ 513 noinstr void kvm_spurious_fault(void) 514 { 515 /* Fault while not rebooting. We want the trace. */ 516 BUG_ON(!kvm_rebooting); 517 } 518 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 519 520 #define EXCPT_BENIGN 0 521 #define EXCPT_CONTRIBUTORY 1 522 #define EXCPT_PF 2 523 524 static int exception_class(int vector) 525 { 526 switch (vector) { 527 case PF_VECTOR: 528 return EXCPT_PF; 529 case DE_VECTOR: 530 case TS_VECTOR: 531 case NP_VECTOR: 532 case SS_VECTOR: 533 case GP_VECTOR: 534 return EXCPT_CONTRIBUTORY; 535 default: 536 break; 537 } 538 return EXCPT_BENIGN; 539 } 540 541 #define EXCPT_FAULT 0 542 #define EXCPT_TRAP 1 543 #define EXCPT_ABORT 2 544 #define EXCPT_INTERRUPT 3 545 546 static int exception_type(int vector) 547 { 548 unsigned int mask; 549 550 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 551 return EXCPT_INTERRUPT; 552 553 mask = 1 << vector; 554 555 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 556 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 557 return EXCPT_TRAP; 558 559 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 560 return EXCPT_ABORT; 561 562 /* Reserved exceptions will result in fault */ 563 return EXCPT_FAULT; 564 } 565 566 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 567 { 568 unsigned nr = vcpu->arch.exception.nr; 569 bool has_payload = vcpu->arch.exception.has_payload; 570 unsigned long payload = vcpu->arch.exception.payload; 571 572 if (!has_payload) 573 return; 574 575 switch (nr) { 576 case DB_VECTOR: 577 /* 578 * "Certain debug exceptions may clear bit 0-3. The 579 * remaining contents of the DR6 register are never 580 * cleared by the processor". 581 */ 582 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 583 /* 584 * In order to reflect the #DB exception payload in guest 585 * dr6, three components need to be considered: active low 586 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 587 * DR6_BS and DR6_BT) 588 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 589 * In the target guest dr6: 590 * FIXED_1 bits should always be set. 591 * Active low bits should be cleared if 1-setting in payload. 592 * Active high bits should be set if 1-setting in payload. 593 * 594 * Note, the payload is compatible with the pending debug 595 * exceptions/exit qualification under VMX, that active_low bits 596 * are active high in payload. 597 * So they need to be flipped for DR6. 598 */ 599 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 600 vcpu->arch.dr6 |= payload; 601 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW; 602 603 /* 604 * The #DB payload is defined as compatible with the 'pending 605 * debug exceptions' field under VMX, not DR6. While bit 12 is 606 * defined in the 'pending debug exceptions' field (enabled 607 * breakpoint), it is reserved and must be zero in DR6. 608 */ 609 vcpu->arch.dr6 &= ~BIT(12); 610 break; 611 case PF_VECTOR: 612 vcpu->arch.cr2 = payload; 613 break; 614 } 615 616 vcpu->arch.exception.has_payload = false; 617 vcpu->arch.exception.payload = 0; 618 } 619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 620 621 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 622 unsigned nr, bool has_error, u32 error_code, 623 bool has_payload, unsigned long payload, bool reinject) 624 { 625 u32 prev_nr; 626 int class1, class2; 627 628 kvm_make_request(KVM_REQ_EVENT, vcpu); 629 630 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 631 queue: 632 if (reinject) { 633 /* 634 * On vmentry, vcpu->arch.exception.pending is only 635 * true if an event injection was blocked by 636 * nested_run_pending. In that case, however, 637 * vcpu_enter_guest requests an immediate exit, 638 * and the guest shouldn't proceed far enough to 639 * need reinjection. 640 */ 641 WARN_ON_ONCE(vcpu->arch.exception.pending); 642 vcpu->arch.exception.injected = true; 643 if (WARN_ON_ONCE(has_payload)) { 644 /* 645 * A reinjected event has already 646 * delivered its payload. 647 */ 648 has_payload = false; 649 payload = 0; 650 } 651 } else { 652 vcpu->arch.exception.pending = true; 653 vcpu->arch.exception.injected = false; 654 } 655 vcpu->arch.exception.has_error_code = has_error; 656 vcpu->arch.exception.nr = nr; 657 vcpu->arch.exception.error_code = error_code; 658 vcpu->arch.exception.has_payload = has_payload; 659 vcpu->arch.exception.payload = payload; 660 if (!is_guest_mode(vcpu)) 661 kvm_deliver_exception_payload(vcpu); 662 return; 663 } 664 665 /* to check exception */ 666 prev_nr = vcpu->arch.exception.nr; 667 if (prev_nr == DF_VECTOR) { 668 /* triple fault -> shutdown */ 669 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 670 return; 671 } 672 class1 = exception_class(prev_nr); 673 class2 = exception_class(nr); 674 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 675 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 676 /* 677 * Generate double fault per SDM Table 5-5. Set 678 * exception.pending = true so that the double fault 679 * can trigger a nested vmexit. 680 */ 681 vcpu->arch.exception.pending = true; 682 vcpu->arch.exception.injected = false; 683 vcpu->arch.exception.has_error_code = true; 684 vcpu->arch.exception.nr = DF_VECTOR; 685 vcpu->arch.exception.error_code = 0; 686 vcpu->arch.exception.has_payload = false; 687 vcpu->arch.exception.payload = 0; 688 } else 689 /* replace previous exception with a new one in a hope 690 that instruction re-execution will regenerate lost 691 exception */ 692 goto queue; 693 } 694 695 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 696 { 697 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 698 } 699 EXPORT_SYMBOL_GPL(kvm_queue_exception); 700 701 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 702 { 703 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 704 } 705 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 706 707 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 708 unsigned long payload) 709 { 710 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 711 } 712 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 713 714 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 715 u32 error_code, unsigned long payload) 716 { 717 kvm_multiple_exception(vcpu, nr, true, error_code, 718 true, payload, false); 719 } 720 721 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 722 { 723 if (err) 724 kvm_inject_gp(vcpu, 0); 725 else 726 return kvm_skip_emulated_instruction(vcpu); 727 728 return 1; 729 } 730 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 731 732 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 733 { 734 if (err) { 735 kvm_inject_gp(vcpu, 0); 736 return 1; 737 } 738 739 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 740 EMULTYPE_COMPLETE_USER_EXIT); 741 } 742 743 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 744 { 745 ++vcpu->stat.pf_guest; 746 vcpu->arch.exception.nested_apf = 747 is_guest_mode(vcpu) && fault->async_page_fault; 748 if (vcpu->arch.exception.nested_apf) { 749 vcpu->arch.apf.nested_apf_token = fault->address; 750 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 751 } else { 752 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 753 fault->address); 754 } 755 } 756 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 757 758 /* Returns true if the page fault was immediately morphed into a VM-Exit. */ 759 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 760 struct x86_exception *fault) 761 { 762 struct kvm_mmu *fault_mmu; 763 WARN_ON_ONCE(fault->vector != PF_VECTOR); 764 765 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 766 vcpu->arch.walk_mmu; 767 768 /* 769 * Invalidate the TLB entry for the faulting address, if it exists, 770 * else the access will fault indefinitely (and to emulate hardware). 771 */ 772 if ((fault->error_code & PFERR_PRESENT_MASK) && 773 !(fault->error_code & PFERR_RSVD_MASK)) 774 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 775 fault_mmu->root.hpa); 776 777 /* 778 * A workaround for KVM's bad exception handling. If KVM injected an 779 * exception into L2, and L2 encountered a #PF while vectoring the 780 * injected exception, manually check to see if L1 wants to intercept 781 * #PF, otherwise queuing the #PF will lead to #DF or a lost exception. 782 * In all other cases, defer the check to nested_ops->check_events(), 783 * which will correctly handle priority (this does not). Note, other 784 * exceptions, e.g. #GP, are theoretically affected, #PF is simply the 785 * most problematic, e.g. when L0 and L1 are both intercepting #PF for 786 * shadow paging. 787 * 788 * TODO: Rewrite exception handling to track injected and pending 789 * (VM-Exit) exceptions separately. 790 */ 791 if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) && 792 kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault)) 793 return true; 794 795 fault_mmu->inject_page_fault(vcpu, fault); 796 return false; 797 } 798 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 799 800 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 801 { 802 atomic_inc(&vcpu->arch.nmi_queued); 803 kvm_make_request(KVM_REQ_NMI, vcpu); 804 } 805 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 806 807 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 808 { 809 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 810 } 811 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 812 813 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 814 { 815 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 816 } 817 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 818 819 /* 820 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 821 * a #GP and return false. 822 */ 823 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 824 { 825 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 826 return true; 827 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 828 return false; 829 } 830 EXPORT_SYMBOL_GPL(kvm_require_cpl); 831 832 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 833 { 834 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 835 return true; 836 837 kvm_queue_exception(vcpu, UD_VECTOR); 838 return false; 839 } 840 EXPORT_SYMBOL_GPL(kvm_require_dr); 841 842 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 843 { 844 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 845 } 846 847 /* 848 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 849 */ 850 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 851 { 852 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 853 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 854 gpa_t real_gpa; 855 int i; 856 int ret; 857 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 858 859 /* 860 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 861 * to an L1 GPA. 862 */ 863 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 864 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 865 if (real_gpa == UNMAPPED_GVA) 866 return 0; 867 868 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 869 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 870 cr3 & GENMASK(11, 5), sizeof(pdpte)); 871 if (ret < 0) 872 return 0; 873 874 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 875 if ((pdpte[i] & PT_PRESENT_MASK) && 876 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 877 return 0; 878 } 879 } 880 881 /* 882 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 883 * Shadow page roots need to be reconstructed instead. 884 */ 885 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 886 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 887 888 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 889 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 890 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 891 vcpu->arch.pdptrs_from_userspace = false; 892 893 return 1; 894 } 895 EXPORT_SYMBOL_GPL(load_pdptrs); 896 897 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 898 { 899 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 900 kvm_clear_async_pf_completion_queue(vcpu); 901 kvm_async_pf_hash_reset(vcpu); 902 903 /* 904 * Clearing CR0.PG is defined to flush the TLB from the guest's 905 * perspective. 906 */ 907 if (!(cr0 & X86_CR0_PG)) 908 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 909 } 910 911 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 912 kvm_mmu_reset_context(vcpu); 913 914 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 915 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 916 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 917 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 918 } 919 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 920 921 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 922 { 923 unsigned long old_cr0 = kvm_read_cr0(vcpu); 924 925 cr0 |= X86_CR0_ET; 926 927 #ifdef CONFIG_X86_64 928 if (cr0 & 0xffffffff00000000UL) 929 return 1; 930 #endif 931 932 cr0 &= ~CR0_RESERVED_BITS; 933 934 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 935 return 1; 936 937 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 938 return 1; 939 940 #ifdef CONFIG_X86_64 941 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 942 (cr0 & X86_CR0_PG)) { 943 int cs_db, cs_l; 944 945 if (!is_pae(vcpu)) 946 return 1; 947 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 948 if (cs_l) 949 return 1; 950 } 951 #endif 952 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 953 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 954 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 955 return 1; 956 957 if (!(cr0 & X86_CR0_PG) && 958 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 959 return 1; 960 961 static_call(kvm_x86_set_cr0)(vcpu, cr0); 962 963 kvm_post_set_cr0(vcpu, old_cr0, cr0); 964 965 return 0; 966 } 967 EXPORT_SYMBOL_GPL(kvm_set_cr0); 968 969 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 970 { 971 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 972 } 973 EXPORT_SYMBOL_GPL(kvm_lmsw); 974 975 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 976 { 977 if (vcpu->arch.guest_state_protected) 978 return; 979 980 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 981 982 if (vcpu->arch.xcr0 != host_xcr0) 983 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 984 985 if (vcpu->arch.xsaves_enabled && 986 vcpu->arch.ia32_xss != host_xss) 987 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 988 } 989 990 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 991 if (static_cpu_has(X86_FEATURE_PKU) && 992 vcpu->arch.pkru != vcpu->arch.host_pkru && 993 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 994 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 995 write_pkru(vcpu->arch.pkru); 996 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 997 } 998 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 999 1000 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1001 { 1002 if (vcpu->arch.guest_state_protected) 1003 return; 1004 1005 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1006 if (static_cpu_has(X86_FEATURE_PKU) && 1007 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1008 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1009 vcpu->arch.pkru = rdpkru(); 1010 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1011 write_pkru(vcpu->arch.host_pkru); 1012 } 1013 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1014 1015 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1016 1017 if (vcpu->arch.xcr0 != host_xcr0) 1018 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1019 1020 if (vcpu->arch.xsaves_enabled && 1021 vcpu->arch.ia32_xss != host_xss) 1022 wrmsrl(MSR_IA32_XSS, host_xss); 1023 } 1024 1025 } 1026 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1027 1028 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu) 1029 { 1030 return vcpu->arch.guest_fpu.fpstate->user_xfeatures; 1031 } 1032 1033 #ifdef CONFIG_X86_64 1034 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1035 { 1036 return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC; 1037 } 1038 #endif 1039 1040 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1041 { 1042 u64 xcr0 = xcr; 1043 u64 old_xcr0 = vcpu->arch.xcr0; 1044 u64 valid_bits; 1045 1046 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1047 if (index != XCR_XFEATURE_ENABLED_MASK) 1048 return 1; 1049 if (!(xcr0 & XFEATURE_MASK_FP)) 1050 return 1; 1051 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1052 return 1; 1053 1054 /* 1055 * Do not allow the guest to set bits that we do not support 1056 * saving. However, xcr0 bit 0 is always set, even if the 1057 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1058 */ 1059 valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP; 1060 if (xcr0 & ~valid_bits) 1061 return 1; 1062 1063 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1064 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1065 return 1; 1066 1067 if (xcr0 & XFEATURE_MASK_AVX512) { 1068 if (!(xcr0 & XFEATURE_MASK_YMM)) 1069 return 1; 1070 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1071 return 1; 1072 } 1073 1074 if ((xcr0 & XFEATURE_MASK_XTILE) && 1075 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1076 return 1; 1077 1078 vcpu->arch.xcr0 = xcr0; 1079 1080 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1081 kvm_update_cpuid_runtime(vcpu); 1082 return 0; 1083 } 1084 1085 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1086 { 1087 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1088 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1089 kvm_inject_gp(vcpu, 0); 1090 return 1; 1091 } 1092 1093 return kvm_skip_emulated_instruction(vcpu); 1094 } 1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1096 1097 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1098 { 1099 if (cr4 & cr4_reserved_bits) 1100 return false; 1101 1102 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1103 return false; 1104 1105 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1106 } 1107 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4); 1108 1109 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1110 { 1111 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1112 kvm_mmu_reset_context(vcpu); 1113 1114 /* 1115 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1116 * according to the SDM; however, stale prev_roots could be reused 1117 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1118 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1119 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1120 * so fall through. 1121 */ 1122 if (!tdp_enabled && 1123 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1124 kvm_mmu_unload(vcpu); 1125 1126 /* 1127 * The TLB has to be flushed for all PCIDs if any of the following 1128 * (architecturally required) changes happen: 1129 * - CR4.PCIDE is changed from 1 to 0 1130 * - CR4.PGE is toggled 1131 * 1132 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1133 */ 1134 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1135 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1136 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1137 1138 /* 1139 * The TLB has to be flushed for the current PCID if any of the 1140 * following (architecturally required) changes happen: 1141 * - CR4.SMEP is changed from 0 to 1 1142 * - CR4.PAE is toggled 1143 */ 1144 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1145 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1146 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1147 1148 } 1149 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1150 1151 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1152 { 1153 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1154 1155 if (!kvm_is_valid_cr4(vcpu, cr4)) 1156 return 1; 1157 1158 if (is_long_mode(vcpu)) { 1159 if (!(cr4 & X86_CR4_PAE)) 1160 return 1; 1161 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1162 return 1; 1163 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1164 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1165 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1166 return 1; 1167 1168 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1169 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1170 return 1; 1171 1172 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1173 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1174 return 1; 1175 } 1176 1177 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1178 1179 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1180 1181 return 0; 1182 } 1183 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1184 1185 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1186 { 1187 struct kvm_mmu *mmu = vcpu->arch.mmu; 1188 unsigned long roots_to_free = 0; 1189 int i; 1190 1191 /* 1192 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1193 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1194 * also via the emulator. KVM's TDP page tables are not in the scope of 1195 * the invalidation, but the guest's TLB entries need to be flushed as 1196 * the CPU may have cached entries in its TLB for the target PCID. 1197 */ 1198 if (unlikely(tdp_enabled)) { 1199 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1200 return; 1201 } 1202 1203 /* 1204 * If neither the current CR3 nor any of the prev_roots use the given 1205 * PCID, then nothing needs to be done here because a resync will 1206 * happen anyway before switching to any other CR3. 1207 */ 1208 if (kvm_get_active_pcid(vcpu) == pcid) { 1209 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1210 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1211 } 1212 1213 /* 1214 * If PCID is disabled, there is no need to free prev_roots even if the 1215 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1216 * with PCIDE=0. 1217 */ 1218 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1219 return; 1220 1221 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1222 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1223 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1224 1225 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1226 } 1227 1228 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1229 { 1230 bool skip_tlb_flush = false; 1231 unsigned long pcid = 0; 1232 #ifdef CONFIG_X86_64 1233 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1234 1235 if (pcid_enabled) { 1236 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1237 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1238 pcid = cr3 & X86_CR3_PCID_MASK; 1239 } 1240 #endif 1241 1242 /* PDPTRs are always reloaded for PAE paging. */ 1243 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1244 goto handle_tlb_flush; 1245 1246 /* 1247 * Do not condition the GPA check on long mode, this helper is used to 1248 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1249 * the current vCPU mode is accurate. 1250 */ 1251 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1252 return 1; 1253 1254 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1255 return 1; 1256 1257 if (cr3 != kvm_read_cr3(vcpu)) 1258 kvm_mmu_new_pgd(vcpu, cr3); 1259 1260 vcpu->arch.cr3 = cr3; 1261 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1262 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1263 1264 handle_tlb_flush: 1265 /* 1266 * A load of CR3 that flushes the TLB flushes only the current PCID, 1267 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1268 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1269 * and it's impossible to use a non-zero PCID when PCID is disabled, 1270 * i.e. only PCID=0 can be relevant. 1271 */ 1272 if (!skip_tlb_flush) 1273 kvm_invalidate_pcid(vcpu, pcid); 1274 1275 return 0; 1276 } 1277 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1278 1279 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1280 { 1281 if (cr8 & CR8_RESERVED_BITS) 1282 return 1; 1283 if (lapic_in_kernel(vcpu)) 1284 kvm_lapic_set_tpr(vcpu, cr8); 1285 else 1286 vcpu->arch.cr8 = cr8; 1287 return 0; 1288 } 1289 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1290 1291 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1292 { 1293 if (lapic_in_kernel(vcpu)) 1294 return kvm_lapic_get_cr8(vcpu); 1295 else 1296 return vcpu->arch.cr8; 1297 } 1298 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1299 1300 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1301 { 1302 int i; 1303 1304 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1305 for (i = 0; i < KVM_NR_DB_REGS; i++) 1306 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1307 } 1308 } 1309 1310 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1311 { 1312 unsigned long dr7; 1313 1314 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1315 dr7 = vcpu->arch.guest_debug_dr7; 1316 else 1317 dr7 = vcpu->arch.dr7; 1318 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1319 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1320 if (dr7 & DR7_BP_EN_MASK) 1321 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1322 } 1323 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1324 1325 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1326 { 1327 u64 fixed = DR6_FIXED_1; 1328 1329 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1330 fixed |= DR6_RTM; 1331 1332 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1333 fixed |= DR6_BUS_LOCK; 1334 return fixed; 1335 } 1336 1337 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1338 { 1339 size_t size = ARRAY_SIZE(vcpu->arch.db); 1340 1341 switch (dr) { 1342 case 0 ... 3: 1343 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1344 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1345 vcpu->arch.eff_db[dr] = val; 1346 break; 1347 case 4: 1348 case 6: 1349 if (!kvm_dr6_valid(val)) 1350 return 1; /* #GP */ 1351 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1352 break; 1353 case 5: 1354 default: /* 7 */ 1355 if (!kvm_dr7_valid(val)) 1356 return 1; /* #GP */ 1357 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1358 kvm_update_dr7(vcpu); 1359 break; 1360 } 1361 1362 return 0; 1363 } 1364 EXPORT_SYMBOL_GPL(kvm_set_dr); 1365 1366 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1367 { 1368 size_t size = ARRAY_SIZE(vcpu->arch.db); 1369 1370 switch (dr) { 1371 case 0 ... 3: 1372 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1373 break; 1374 case 4: 1375 case 6: 1376 *val = vcpu->arch.dr6; 1377 break; 1378 case 5: 1379 default: /* 7 */ 1380 *val = vcpu->arch.dr7; 1381 break; 1382 } 1383 } 1384 EXPORT_SYMBOL_GPL(kvm_get_dr); 1385 1386 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1387 { 1388 u32 ecx = kvm_rcx_read(vcpu); 1389 u64 data; 1390 1391 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1392 kvm_inject_gp(vcpu, 0); 1393 return 1; 1394 } 1395 1396 kvm_rax_write(vcpu, (u32)data); 1397 kvm_rdx_write(vcpu, data >> 32); 1398 return kvm_skip_emulated_instruction(vcpu); 1399 } 1400 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1401 1402 /* 1403 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1404 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1405 * 1406 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1407 * extract the supported MSRs from the related const lists. 1408 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1409 * capabilities of the host cpu. This capabilities test skips MSRs that are 1410 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1411 * may depend on host virtualization features rather than host cpu features. 1412 */ 1413 1414 static const u32 msrs_to_save_all[] = { 1415 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1416 MSR_STAR, 1417 #ifdef CONFIG_X86_64 1418 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1419 #endif 1420 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1421 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1422 MSR_IA32_SPEC_CTRL, 1423 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1424 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1425 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1426 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1427 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1428 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1429 MSR_IA32_UMWAIT_CONTROL, 1430 1431 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1432 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1433 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1434 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1435 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1436 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1437 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1438 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1439 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1440 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1441 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1442 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1443 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1444 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1445 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1446 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1447 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1448 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1449 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1450 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1451 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1452 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1453 1454 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1455 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1456 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1457 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1458 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1459 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1460 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1461 }; 1462 1463 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1464 static unsigned num_msrs_to_save; 1465 1466 static const u32 emulated_msrs_all[] = { 1467 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1468 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1469 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1470 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1471 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1472 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1473 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1474 HV_X64_MSR_RESET, 1475 HV_X64_MSR_VP_INDEX, 1476 HV_X64_MSR_VP_RUNTIME, 1477 HV_X64_MSR_SCONTROL, 1478 HV_X64_MSR_STIMER0_CONFIG, 1479 HV_X64_MSR_VP_ASSIST_PAGE, 1480 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1481 HV_X64_MSR_TSC_EMULATION_STATUS, 1482 HV_X64_MSR_SYNDBG_OPTIONS, 1483 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1484 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1485 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1486 1487 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1488 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1489 1490 MSR_IA32_TSC_ADJUST, 1491 MSR_IA32_TSC_DEADLINE, 1492 MSR_IA32_ARCH_CAPABILITIES, 1493 MSR_IA32_PERF_CAPABILITIES, 1494 MSR_IA32_MISC_ENABLE, 1495 MSR_IA32_MCG_STATUS, 1496 MSR_IA32_MCG_CTL, 1497 MSR_IA32_MCG_EXT_CTL, 1498 MSR_IA32_SMBASE, 1499 MSR_SMI_COUNT, 1500 MSR_PLATFORM_INFO, 1501 MSR_MISC_FEATURES_ENABLES, 1502 MSR_AMD64_VIRT_SPEC_CTRL, 1503 MSR_AMD64_TSC_RATIO, 1504 MSR_IA32_POWER_CTL, 1505 MSR_IA32_UCODE_REV, 1506 1507 /* 1508 * The following list leaves out MSRs whose values are determined 1509 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1510 * We always support the "true" VMX control MSRs, even if the host 1511 * processor does not, so I am putting these registers here rather 1512 * than in msrs_to_save_all. 1513 */ 1514 MSR_IA32_VMX_BASIC, 1515 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1516 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1517 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1518 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1519 MSR_IA32_VMX_MISC, 1520 MSR_IA32_VMX_CR0_FIXED0, 1521 MSR_IA32_VMX_CR4_FIXED0, 1522 MSR_IA32_VMX_VMCS_ENUM, 1523 MSR_IA32_VMX_PROCBASED_CTLS2, 1524 MSR_IA32_VMX_EPT_VPID_CAP, 1525 MSR_IA32_VMX_VMFUNC, 1526 1527 MSR_K7_HWCR, 1528 MSR_KVM_POLL_CONTROL, 1529 }; 1530 1531 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1532 static unsigned num_emulated_msrs; 1533 1534 /* 1535 * List of msr numbers which are used to expose MSR-based features that 1536 * can be used by a hypervisor to validate requested CPU features. 1537 */ 1538 static const u32 msr_based_features_all[] = { 1539 MSR_IA32_VMX_BASIC, 1540 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1541 MSR_IA32_VMX_PINBASED_CTLS, 1542 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1543 MSR_IA32_VMX_PROCBASED_CTLS, 1544 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1545 MSR_IA32_VMX_EXIT_CTLS, 1546 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1547 MSR_IA32_VMX_ENTRY_CTLS, 1548 MSR_IA32_VMX_MISC, 1549 MSR_IA32_VMX_CR0_FIXED0, 1550 MSR_IA32_VMX_CR0_FIXED1, 1551 MSR_IA32_VMX_CR4_FIXED0, 1552 MSR_IA32_VMX_CR4_FIXED1, 1553 MSR_IA32_VMX_VMCS_ENUM, 1554 MSR_IA32_VMX_PROCBASED_CTLS2, 1555 MSR_IA32_VMX_EPT_VPID_CAP, 1556 MSR_IA32_VMX_VMFUNC, 1557 1558 MSR_F10H_DECFG, 1559 MSR_IA32_UCODE_REV, 1560 MSR_IA32_ARCH_CAPABILITIES, 1561 MSR_IA32_PERF_CAPABILITIES, 1562 }; 1563 1564 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1565 static unsigned int num_msr_based_features; 1566 1567 static u64 kvm_get_arch_capabilities(void) 1568 { 1569 u64 data = 0; 1570 1571 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1572 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1573 1574 /* 1575 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1576 * the nested hypervisor runs with NX huge pages. If it is not, 1577 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1578 * L1 guests, so it need not worry about its own (L2) guests. 1579 */ 1580 data |= ARCH_CAP_PSCHANGE_MC_NO; 1581 1582 /* 1583 * If we're doing cache flushes (either "always" or "cond") 1584 * we will do one whenever the guest does a vmlaunch/vmresume. 1585 * If an outer hypervisor is doing the cache flush for us 1586 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1587 * capability to the guest too, and if EPT is disabled we're not 1588 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1589 * require a nested hypervisor to do a flush of its own. 1590 */ 1591 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1592 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1593 1594 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1595 data |= ARCH_CAP_RDCL_NO; 1596 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1597 data |= ARCH_CAP_SSB_NO; 1598 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1599 data |= ARCH_CAP_MDS_NO; 1600 1601 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1602 /* 1603 * If RTM=0 because the kernel has disabled TSX, the host might 1604 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1605 * and therefore knows that there cannot be TAA) but keep 1606 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1607 * and we want to allow migrating those guests to tsx=off hosts. 1608 */ 1609 data &= ~ARCH_CAP_TAA_NO; 1610 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1611 data |= ARCH_CAP_TAA_NO; 1612 } else { 1613 /* 1614 * Nothing to do here; we emulate TSX_CTRL if present on the 1615 * host so the guest can choose between disabling TSX or 1616 * using VERW to clear CPU buffers. 1617 */ 1618 } 1619 1620 return data; 1621 } 1622 1623 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1624 { 1625 switch (msr->index) { 1626 case MSR_IA32_ARCH_CAPABILITIES: 1627 msr->data = kvm_get_arch_capabilities(); 1628 break; 1629 case MSR_IA32_UCODE_REV: 1630 rdmsrl_safe(msr->index, &msr->data); 1631 break; 1632 default: 1633 return static_call(kvm_x86_get_msr_feature)(msr); 1634 } 1635 return 0; 1636 } 1637 1638 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1639 { 1640 struct kvm_msr_entry msr; 1641 int r; 1642 1643 msr.index = index; 1644 r = kvm_get_msr_feature(&msr); 1645 1646 if (r == KVM_MSR_RET_INVALID) { 1647 /* Unconditionally clear the output for simplicity */ 1648 *data = 0; 1649 if (kvm_msr_ignored_check(index, 0, false)) 1650 r = 0; 1651 } 1652 1653 if (r) 1654 return r; 1655 1656 *data = msr.data; 1657 1658 return 0; 1659 } 1660 1661 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1662 { 1663 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1664 return false; 1665 1666 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1667 return false; 1668 1669 if (efer & (EFER_LME | EFER_LMA) && 1670 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1671 return false; 1672 1673 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1674 return false; 1675 1676 return true; 1677 1678 } 1679 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1680 { 1681 if (efer & efer_reserved_bits) 1682 return false; 1683 1684 return __kvm_valid_efer(vcpu, efer); 1685 } 1686 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1687 1688 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1689 { 1690 u64 old_efer = vcpu->arch.efer; 1691 u64 efer = msr_info->data; 1692 int r; 1693 1694 if (efer & efer_reserved_bits) 1695 return 1; 1696 1697 if (!msr_info->host_initiated) { 1698 if (!__kvm_valid_efer(vcpu, efer)) 1699 return 1; 1700 1701 if (is_paging(vcpu) && 1702 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1703 return 1; 1704 } 1705 1706 efer &= ~EFER_LMA; 1707 efer |= vcpu->arch.efer & EFER_LMA; 1708 1709 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1710 if (r) { 1711 WARN_ON(r > 0); 1712 return r; 1713 } 1714 1715 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1716 kvm_mmu_reset_context(vcpu); 1717 1718 return 0; 1719 } 1720 1721 void kvm_enable_efer_bits(u64 mask) 1722 { 1723 efer_reserved_bits &= ~mask; 1724 } 1725 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1726 1727 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1728 { 1729 struct kvm_x86_msr_filter *msr_filter; 1730 struct msr_bitmap_range *ranges; 1731 struct kvm *kvm = vcpu->kvm; 1732 bool allowed; 1733 int idx; 1734 u32 i; 1735 1736 /* x2APIC MSRs do not support filtering. */ 1737 if (index >= 0x800 && index <= 0x8ff) 1738 return true; 1739 1740 idx = srcu_read_lock(&kvm->srcu); 1741 1742 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1743 if (!msr_filter) { 1744 allowed = true; 1745 goto out; 1746 } 1747 1748 allowed = msr_filter->default_allow; 1749 ranges = msr_filter->ranges; 1750 1751 for (i = 0; i < msr_filter->count; i++) { 1752 u32 start = ranges[i].base; 1753 u32 end = start + ranges[i].nmsrs; 1754 u32 flags = ranges[i].flags; 1755 unsigned long *bitmap = ranges[i].bitmap; 1756 1757 if ((index >= start) && (index < end) && (flags & type)) { 1758 allowed = !!test_bit(index - start, bitmap); 1759 break; 1760 } 1761 } 1762 1763 out: 1764 srcu_read_unlock(&kvm->srcu, idx); 1765 1766 return allowed; 1767 } 1768 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1769 1770 /* 1771 * Write @data into the MSR specified by @index. Select MSR specific fault 1772 * checks are bypassed if @host_initiated is %true. 1773 * Returns 0 on success, non-0 otherwise. 1774 * Assumes vcpu_load() was already called. 1775 */ 1776 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1777 bool host_initiated) 1778 { 1779 struct msr_data msr; 1780 1781 switch (index) { 1782 case MSR_FS_BASE: 1783 case MSR_GS_BASE: 1784 case MSR_KERNEL_GS_BASE: 1785 case MSR_CSTAR: 1786 case MSR_LSTAR: 1787 if (is_noncanonical_address(data, vcpu)) 1788 return 1; 1789 break; 1790 case MSR_IA32_SYSENTER_EIP: 1791 case MSR_IA32_SYSENTER_ESP: 1792 /* 1793 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1794 * non-canonical address is written on Intel but not on 1795 * AMD (which ignores the top 32-bits, because it does 1796 * not implement 64-bit SYSENTER). 1797 * 1798 * 64-bit code should hence be able to write a non-canonical 1799 * value on AMD. Making the address canonical ensures that 1800 * vmentry does not fail on Intel after writing a non-canonical 1801 * value, and that something deterministic happens if the guest 1802 * invokes 64-bit SYSENTER. 1803 */ 1804 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1805 break; 1806 case MSR_TSC_AUX: 1807 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1808 return 1; 1809 1810 if (!host_initiated && 1811 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1812 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1813 return 1; 1814 1815 /* 1816 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1817 * incomplete and conflicting architectural behavior. Current 1818 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1819 * reserved and always read as zeros. Enforce Intel's reserved 1820 * bits check if and only if the guest CPU is Intel, and clear 1821 * the bits in all other cases. This ensures cross-vendor 1822 * migration will provide consistent behavior for the guest. 1823 */ 1824 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1825 return 1; 1826 1827 data = (u32)data; 1828 break; 1829 } 1830 1831 msr.data = data; 1832 msr.index = index; 1833 msr.host_initiated = host_initiated; 1834 1835 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1836 } 1837 1838 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1839 u32 index, u64 data, bool host_initiated) 1840 { 1841 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1842 1843 if (ret == KVM_MSR_RET_INVALID) 1844 if (kvm_msr_ignored_check(index, data, true)) 1845 ret = 0; 1846 1847 return ret; 1848 } 1849 1850 /* 1851 * Read the MSR specified by @index into @data. Select MSR specific fault 1852 * checks are bypassed if @host_initiated is %true. 1853 * Returns 0 on success, non-0 otherwise. 1854 * Assumes vcpu_load() was already called. 1855 */ 1856 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1857 bool host_initiated) 1858 { 1859 struct msr_data msr; 1860 int ret; 1861 1862 switch (index) { 1863 case MSR_TSC_AUX: 1864 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1865 return 1; 1866 1867 if (!host_initiated && 1868 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1869 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1870 return 1; 1871 break; 1872 } 1873 1874 msr.index = index; 1875 msr.host_initiated = host_initiated; 1876 1877 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1878 if (!ret) 1879 *data = msr.data; 1880 return ret; 1881 } 1882 1883 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1884 u32 index, u64 *data, bool host_initiated) 1885 { 1886 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1887 1888 if (ret == KVM_MSR_RET_INVALID) { 1889 /* Unconditionally clear *data for simplicity */ 1890 *data = 0; 1891 if (kvm_msr_ignored_check(index, 0, false)) 1892 ret = 0; 1893 } 1894 1895 return ret; 1896 } 1897 1898 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1899 { 1900 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1901 return KVM_MSR_RET_FILTERED; 1902 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1903 } 1904 1905 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1906 { 1907 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1908 return KVM_MSR_RET_FILTERED; 1909 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1910 } 1911 1912 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1913 { 1914 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1915 } 1916 EXPORT_SYMBOL_GPL(kvm_get_msr); 1917 1918 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1919 { 1920 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1921 } 1922 EXPORT_SYMBOL_GPL(kvm_set_msr); 1923 1924 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1925 { 1926 if (!vcpu->run->msr.error) { 1927 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1928 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1929 } 1930 } 1931 1932 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1933 { 1934 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1935 } 1936 1937 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1938 { 1939 complete_userspace_rdmsr(vcpu); 1940 return complete_emulated_msr_access(vcpu); 1941 } 1942 1943 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1944 { 1945 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1946 } 1947 1948 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1949 { 1950 complete_userspace_rdmsr(vcpu); 1951 return complete_fast_msr_access(vcpu); 1952 } 1953 1954 static u64 kvm_msr_reason(int r) 1955 { 1956 switch (r) { 1957 case KVM_MSR_RET_INVALID: 1958 return KVM_MSR_EXIT_REASON_UNKNOWN; 1959 case KVM_MSR_RET_FILTERED: 1960 return KVM_MSR_EXIT_REASON_FILTER; 1961 default: 1962 return KVM_MSR_EXIT_REASON_INVAL; 1963 } 1964 } 1965 1966 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1967 u32 exit_reason, u64 data, 1968 int (*completion)(struct kvm_vcpu *vcpu), 1969 int r) 1970 { 1971 u64 msr_reason = kvm_msr_reason(r); 1972 1973 /* Check if the user wanted to know about this MSR fault */ 1974 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1975 return 0; 1976 1977 vcpu->run->exit_reason = exit_reason; 1978 vcpu->run->msr.error = 0; 1979 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1980 vcpu->run->msr.reason = msr_reason; 1981 vcpu->run->msr.index = index; 1982 vcpu->run->msr.data = data; 1983 vcpu->arch.complete_userspace_io = completion; 1984 1985 return 1; 1986 } 1987 1988 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1989 { 1990 u32 ecx = kvm_rcx_read(vcpu); 1991 u64 data; 1992 int r; 1993 1994 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 1995 1996 if (!r) { 1997 trace_kvm_msr_read(ecx, data); 1998 1999 kvm_rax_write(vcpu, data & -1u); 2000 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2001 } else { 2002 /* MSR read failed? See if we should ask user space */ 2003 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2004 complete_fast_rdmsr, r)) 2005 return 0; 2006 trace_kvm_msr_read_ex(ecx); 2007 } 2008 2009 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2010 } 2011 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2012 2013 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2014 { 2015 u32 ecx = kvm_rcx_read(vcpu); 2016 u64 data = kvm_read_edx_eax(vcpu); 2017 int r; 2018 2019 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2020 2021 if (!r) { 2022 trace_kvm_msr_write(ecx, data); 2023 } else { 2024 /* MSR write failed? See if we should ask user space */ 2025 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2026 complete_fast_msr_access, r)) 2027 return 0; 2028 /* Signal all other negative errors to userspace */ 2029 if (r < 0) 2030 return r; 2031 trace_kvm_msr_write_ex(ecx, data); 2032 } 2033 2034 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2035 } 2036 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2037 2038 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2039 { 2040 return kvm_skip_emulated_instruction(vcpu); 2041 } 2042 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop); 2043 2044 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2045 { 2046 /* Treat an INVD instruction as a NOP and just skip it. */ 2047 return kvm_emulate_as_nop(vcpu); 2048 } 2049 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2050 2051 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2052 { 2053 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n"); 2054 return kvm_emulate_as_nop(vcpu); 2055 } 2056 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2057 2058 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2059 { 2060 kvm_queue_exception(vcpu, UD_VECTOR); 2061 return 1; 2062 } 2063 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2064 2065 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2066 { 2067 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n"); 2068 return kvm_emulate_as_nop(vcpu); 2069 } 2070 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2071 2072 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2073 { 2074 xfer_to_guest_mode_prepare(); 2075 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2076 xfer_to_guest_mode_work_pending(); 2077 } 2078 2079 /* 2080 * The fast path for frequent and performance sensitive wrmsr emulation, 2081 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2082 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2083 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2084 * other cases which must be called after interrupts are enabled on the host. 2085 */ 2086 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2087 { 2088 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2089 return 1; 2090 2091 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2092 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2093 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2094 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2095 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2096 2097 return 1; 2098 } 2099 2100 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2101 { 2102 if (!kvm_can_use_hv_timer(vcpu)) 2103 return 1; 2104 2105 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2106 return 0; 2107 } 2108 2109 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2110 { 2111 u32 msr = kvm_rcx_read(vcpu); 2112 u64 data; 2113 fastpath_t ret = EXIT_FASTPATH_NONE; 2114 2115 switch (msr) { 2116 case APIC_BASE_MSR + (APIC_ICR >> 4): 2117 data = kvm_read_edx_eax(vcpu); 2118 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2119 kvm_skip_emulated_instruction(vcpu); 2120 ret = EXIT_FASTPATH_EXIT_HANDLED; 2121 } 2122 break; 2123 case MSR_IA32_TSC_DEADLINE: 2124 data = kvm_read_edx_eax(vcpu); 2125 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2126 kvm_skip_emulated_instruction(vcpu); 2127 ret = EXIT_FASTPATH_REENTER_GUEST; 2128 } 2129 break; 2130 default: 2131 break; 2132 } 2133 2134 if (ret != EXIT_FASTPATH_NONE) 2135 trace_kvm_msr_write(msr, data); 2136 2137 return ret; 2138 } 2139 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2140 2141 /* 2142 * Adapt set_msr() to msr_io()'s calling convention 2143 */ 2144 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2145 { 2146 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2147 } 2148 2149 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2150 { 2151 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2152 } 2153 2154 #ifdef CONFIG_X86_64 2155 struct pvclock_clock { 2156 int vclock_mode; 2157 u64 cycle_last; 2158 u64 mask; 2159 u32 mult; 2160 u32 shift; 2161 u64 base_cycles; 2162 u64 offset; 2163 }; 2164 2165 struct pvclock_gtod_data { 2166 seqcount_t seq; 2167 2168 struct pvclock_clock clock; /* extract of a clocksource struct */ 2169 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2170 2171 ktime_t offs_boot; 2172 u64 wall_time_sec; 2173 }; 2174 2175 static struct pvclock_gtod_data pvclock_gtod_data; 2176 2177 static void update_pvclock_gtod(struct timekeeper *tk) 2178 { 2179 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2180 2181 write_seqcount_begin(&vdata->seq); 2182 2183 /* copy pvclock gtod data */ 2184 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2185 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2186 vdata->clock.mask = tk->tkr_mono.mask; 2187 vdata->clock.mult = tk->tkr_mono.mult; 2188 vdata->clock.shift = tk->tkr_mono.shift; 2189 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2190 vdata->clock.offset = tk->tkr_mono.base; 2191 2192 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2193 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2194 vdata->raw_clock.mask = tk->tkr_raw.mask; 2195 vdata->raw_clock.mult = tk->tkr_raw.mult; 2196 vdata->raw_clock.shift = tk->tkr_raw.shift; 2197 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2198 vdata->raw_clock.offset = tk->tkr_raw.base; 2199 2200 vdata->wall_time_sec = tk->xtime_sec; 2201 2202 vdata->offs_boot = tk->offs_boot; 2203 2204 write_seqcount_end(&vdata->seq); 2205 } 2206 2207 static s64 get_kvmclock_base_ns(void) 2208 { 2209 /* Count up from boot time, but with the frequency of the raw clock. */ 2210 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2211 } 2212 #else 2213 static s64 get_kvmclock_base_ns(void) 2214 { 2215 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2216 return ktime_get_boottime_ns(); 2217 } 2218 #endif 2219 2220 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2221 { 2222 int version; 2223 int r; 2224 struct pvclock_wall_clock wc; 2225 u32 wc_sec_hi; 2226 u64 wall_nsec; 2227 2228 if (!wall_clock) 2229 return; 2230 2231 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2232 if (r) 2233 return; 2234 2235 if (version & 1) 2236 ++version; /* first time write, random junk */ 2237 2238 ++version; 2239 2240 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2241 return; 2242 2243 /* 2244 * The guest calculates current wall clock time by adding 2245 * system time (updated by kvm_guest_time_update below) to the 2246 * wall clock specified here. We do the reverse here. 2247 */ 2248 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2249 2250 wc.nsec = do_div(wall_nsec, 1000000000); 2251 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2252 wc.version = version; 2253 2254 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2255 2256 if (sec_hi_ofs) { 2257 wc_sec_hi = wall_nsec >> 32; 2258 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2259 &wc_sec_hi, sizeof(wc_sec_hi)); 2260 } 2261 2262 version++; 2263 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2264 } 2265 2266 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2267 bool old_msr, bool host_initiated) 2268 { 2269 struct kvm_arch *ka = &vcpu->kvm->arch; 2270 2271 if (vcpu->vcpu_id == 0 && !host_initiated) { 2272 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2273 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2274 2275 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2276 } 2277 2278 vcpu->arch.time = system_time; 2279 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2280 2281 /* we verify if the enable bit is set... */ 2282 if (system_time & 1) { 2283 kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu, 2284 KVM_HOST_USES_PFN, system_time & ~1ULL, 2285 sizeof(struct pvclock_vcpu_time_info)); 2286 } else { 2287 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time); 2288 } 2289 2290 return; 2291 } 2292 2293 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2294 { 2295 do_shl32_div32(dividend, divisor); 2296 return dividend; 2297 } 2298 2299 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2300 s8 *pshift, u32 *pmultiplier) 2301 { 2302 uint64_t scaled64; 2303 int32_t shift = 0; 2304 uint64_t tps64; 2305 uint32_t tps32; 2306 2307 tps64 = base_hz; 2308 scaled64 = scaled_hz; 2309 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2310 tps64 >>= 1; 2311 shift--; 2312 } 2313 2314 tps32 = (uint32_t)tps64; 2315 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2316 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2317 scaled64 >>= 1; 2318 else 2319 tps32 <<= 1; 2320 shift++; 2321 } 2322 2323 *pshift = shift; 2324 *pmultiplier = div_frac(scaled64, tps32); 2325 } 2326 2327 #ifdef CONFIG_X86_64 2328 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2329 #endif 2330 2331 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2332 static unsigned long max_tsc_khz; 2333 2334 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2335 { 2336 u64 v = (u64)khz * (1000000 + ppm); 2337 do_div(v, 1000000); 2338 return v; 2339 } 2340 2341 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2342 2343 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2344 { 2345 u64 ratio; 2346 2347 /* Guest TSC same frequency as host TSC? */ 2348 if (!scale) { 2349 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2350 return 0; 2351 } 2352 2353 /* TSC scaling supported? */ 2354 if (!kvm_has_tsc_control) { 2355 if (user_tsc_khz > tsc_khz) { 2356 vcpu->arch.tsc_catchup = 1; 2357 vcpu->arch.tsc_always_catchup = 1; 2358 return 0; 2359 } else { 2360 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2361 return -1; 2362 } 2363 } 2364 2365 /* TSC scaling required - calculate ratio */ 2366 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 2367 user_tsc_khz, tsc_khz); 2368 2369 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 2370 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2371 user_tsc_khz); 2372 return -1; 2373 } 2374 2375 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2376 return 0; 2377 } 2378 2379 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2380 { 2381 u32 thresh_lo, thresh_hi; 2382 int use_scaling = 0; 2383 2384 /* tsc_khz can be zero if TSC calibration fails */ 2385 if (user_tsc_khz == 0) { 2386 /* set tsc_scaling_ratio to a safe value */ 2387 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2388 return -1; 2389 } 2390 2391 /* Compute a scale to convert nanoseconds in TSC cycles */ 2392 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2393 &vcpu->arch.virtual_tsc_shift, 2394 &vcpu->arch.virtual_tsc_mult); 2395 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2396 2397 /* 2398 * Compute the variation in TSC rate which is acceptable 2399 * within the range of tolerance and decide if the 2400 * rate being applied is within that bounds of the hardware 2401 * rate. If so, no scaling or compensation need be done. 2402 */ 2403 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2404 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2405 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2406 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2407 use_scaling = 1; 2408 } 2409 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2410 } 2411 2412 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2413 { 2414 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2415 vcpu->arch.virtual_tsc_mult, 2416 vcpu->arch.virtual_tsc_shift); 2417 tsc += vcpu->arch.this_tsc_write; 2418 return tsc; 2419 } 2420 2421 #ifdef CONFIG_X86_64 2422 static inline int gtod_is_based_on_tsc(int mode) 2423 { 2424 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2425 } 2426 #endif 2427 2428 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2429 { 2430 #ifdef CONFIG_X86_64 2431 bool vcpus_matched; 2432 struct kvm_arch *ka = &vcpu->kvm->arch; 2433 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2434 2435 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2436 atomic_read(&vcpu->kvm->online_vcpus)); 2437 2438 /* 2439 * Once the masterclock is enabled, always perform request in 2440 * order to update it. 2441 * 2442 * In order to enable masterclock, the host clocksource must be TSC 2443 * and the vcpus need to have matched TSCs. When that happens, 2444 * perform request to enable masterclock. 2445 */ 2446 if (ka->use_master_clock || 2447 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2448 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2449 2450 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2451 atomic_read(&vcpu->kvm->online_vcpus), 2452 ka->use_master_clock, gtod->clock.vclock_mode); 2453 #endif 2454 } 2455 2456 /* 2457 * Multiply tsc by a fixed point number represented by ratio. 2458 * 2459 * The most significant 64-N bits (mult) of ratio represent the 2460 * integral part of the fixed point number; the remaining N bits 2461 * (frac) represent the fractional part, ie. ratio represents a fixed 2462 * point number (mult + frac * 2^(-N)). 2463 * 2464 * N equals to kvm_tsc_scaling_ratio_frac_bits. 2465 */ 2466 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2467 { 2468 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2469 } 2470 2471 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2472 { 2473 u64 _tsc = tsc; 2474 2475 if (ratio != kvm_default_tsc_scaling_ratio) 2476 _tsc = __scale_tsc(ratio, tsc); 2477 2478 return _tsc; 2479 } 2480 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2481 2482 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2483 { 2484 u64 tsc; 2485 2486 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2487 2488 return target_tsc - tsc; 2489 } 2490 2491 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2492 { 2493 return vcpu->arch.l1_tsc_offset + 2494 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2495 } 2496 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2497 2498 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2499 { 2500 u64 nested_offset; 2501 2502 if (l2_multiplier == kvm_default_tsc_scaling_ratio) 2503 nested_offset = l1_offset; 2504 else 2505 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2506 kvm_tsc_scaling_ratio_frac_bits); 2507 2508 nested_offset += l2_offset; 2509 return nested_offset; 2510 } 2511 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2512 2513 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2514 { 2515 if (l2_multiplier != kvm_default_tsc_scaling_ratio) 2516 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2517 kvm_tsc_scaling_ratio_frac_bits); 2518 2519 return l1_multiplier; 2520 } 2521 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2522 2523 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2524 { 2525 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2526 vcpu->arch.l1_tsc_offset, 2527 l1_offset); 2528 2529 vcpu->arch.l1_tsc_offset = l1_offset; 2530 2531 /* 2532 * If we are here because L1 chose not to trap WRMSR to TSC then 2533 * according to the spec this should set L1's TSC (as opposed to 2534 * setting L1's offset for L2). 2535 */ 2536 if (is_guest_mode(vcpu)) 2537 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2538 l1_offset, 2539 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2540 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2541 else 2542 vcpu->arch.tsc_offset = l1_offset; 2543 2544 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2545 } 2546 2547 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2548 { 2549 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2550 2551 /* Userspace is changing the multiplier while L2 is active */ 2552 if (is_guest_mode(vcpu)) 2553 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2554 l1_multiplier, 2555 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2556 else 2557 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2558 2559 if (kvm_has_tsc_control) 2560 static_call(kvm_x86_write_tsc_multiplier)( 2561 vcpu, vcpu->arch.tsc_scaling_ratio); 2562 } 2563 2564 static inline bool kvm_check_tsc_unstable(void) 2565 { 2566 #ifdef CONFIG_X86_64 2567 /* 2568 * TSC is marked unstable when we're running on Hyper-V, 2569 * 'TSC page' clocksource is good. 2570 */ 2571 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2572 return false; 2573 #endif 2574 return check_tsc_unstable(); 2575 } 2576 2577 /* 2578 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2579 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2580 * participates in. 2581 */ 2582 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2583 u64 ns, bool matched) 2584 { 2585 struct kvm *kvm = vcpu->kvm; 2586 2587 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2588 2589 /* 2590 * We also track th most recent recorded KHZ, write and time to 2591 * allow the matching interval to be extended at each write. 2592 */ 2593 kvm->arch.last_tsc_nsec = ns; 2594 kvm->arch.last_tsc_write = tsc; 2595 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2596 kvm->arch.last_tsc_offset = offset; 2597 2598 vcpu->arch.last_guest_tsc = tsc; 2599 2600 kvm_vcpu_write_tsc_offset(vcpu, offset); 2601 2602 if (!matched) { 2603 /* 2604 * We split periods of matched TSC writes into generations. 2605 * For each generation, we track the original measured 2606 * nanosecond time, offset, and write, so if TSCs are in 2607 * sync, we can match exact offset, and if not, we can match 2608 * exact software computation in compute_guest_tsc() 2609 * 2610 * These values are tracked in kvm->arch.cur_xxx variables. 2611 */ 2612 kvm->arch.cur_tsc_generation++; 2613 kvm->arch.cur_tsc_nsec = ns; 2614 kvm->arch.cur_tsc_write = tsc; 2615 kvm->arch.cur_tsc_offset = offset; 2616 kvm->arch.nr_vcpus_matched_tsc = 0; 2617 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2618 kvm->arch.nr_vcpus_matched_tsc++; 2619 } 2620 2621 /* Keep track of which generation this VCPU has synchronized to */ 2622 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2623 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2624 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2625 2626 kvm_track_tsc_matching(vcpu); 2627 } 2628 2629 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2630 { 2631 struct kvm *kvm = vcpu->kvm; 2632 u64 offset, ns, elapsed; 2633 unsigned long flags; 2634 bool matched = false; 2635 bool synchronizing = false; 2636 2637 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2638 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2639 ns = get_kvmclock_base_ns(); 2640 elapsed = ns - kvm->arch.last_tsc_nsec; 2641 2642 if (vcpu->arch.virtual_tsc_khz) { 2643 if (data == 0) { 2644 /* 2645 * detection of vcpu initialization -- need to sync 2646 * with other vCPUs. This particularly helps to keep 2647 * kvm_clock stable after CPU hotplug 2648 */ 2649 synchronizing = true; 2650 } else { 2651 u64 tsc_exp = kvm->arch.last_tsc_write + 2652 nsec_to_cycles(vcpu, elapsed); 2653 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2654 /* 2655 * Special case: TSC write with a small delta (1 second) 2656 * of virtual cycle time against real time is 2657 * interpreted as an attempt to synchronize the CPU. 2658 */ 2659 synchronizing = data < tsc_exp + tsc_hz && 2660 data + tsc_hz > tsc_exp; 2661 } 2662 } 2663 2664 /* 2665 * For a reliable TSC, we can match TSC offsets, and for an unstable 2666 * TSC, we add elapsed time in this computation. We could let the 2667 * compensation code attempt to catch up if we fall behind, but 2668 * it's better to try to match offsets from the beginning. 2669 */ 2670 if (synchronizing && 2671 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2672 if (!kvm_check_tsc_unstable()) { 2673 offset = kvm->arch.cur_tsc_offset; 2674 } else { 2675 u64 delta = nsec_to_cycles(vcpu, elapsed); 2676 data += delta; 2677 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2678 } 2679 matched = true; 2680 } 2681 2682 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2683 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2684 } 2685 2686 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2687 s64 adjustment) 2688 { 2689 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2690 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2691 } 2692 2693 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2694 { 2695 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2696 WARN_ON(adjustment < 0); 2697 adjustment = kvm_scale_tsc((u64) adjustment, 2698 vcpu->arch.l1_tsc_scaling_ratio); 2699 adjust_tsc_offset_guest(vcpu, adjustment); 2700 } 2701 2702 #ifdef CONFIG_X86_64 2703 2704 static u64 read_tsc(void) 2705 { 2706 u64 ret = (u64)rdtsc_ordered(); 2707 u64 last = pvclock_gtod_data.clock.cycle_last; 2708 2709 if (likely(ret >= last)) 2710 return ret; 2711 2712 /* 2713 * GCC likes to generate cmov here, but this branch is extremely 2714 * predictable (it's just a function of time and the likely is 2715 * very likely) and there's a data dependence, so force GCC 2716 * to generate a branch instead. I don't barrier() because 2717 * we don't actually need a barrier, and if this function 2718 * ever gets inlined it will generate worse code. 2719 */ 2720 asm volatile (""); 2721 return last; 2722 } 2723 2724 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2725 int *mode) 2726 { 2727 long v; 2728 u64 tsc_pg_val; 2729 2730 switch (clock->vclock_mode) { 2731 case VDSO_CLOCKMODE_HVCLOCK: 2732 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2733 tsc_timestamp); 2734 if (tsc_pg_val != U64_MAX) { 2735 /* TSC page valid */ 2736 *mode = VDSO_CLOCKMODE_HVCLOCK; 2737 v = (tsc_pg_val - clock->cycle_last) & 2738 clock->mask; 2739 } else { 2740 /* TSC page invalid */ 2741 *mode = VDSO_CLOCKMODE_NONE; 2742 } 2743 break; 2744 case VDSO_CLOCKMODE_TSC: 2745 *mode = VDSO_CLOCKMODE_TSC; 2746 *tsc_timestamp = read_tsc(); 2747 v = (*tsc_timestamp - clock->cycle_last) & 2748 clock->mask; 2749 break; 2750 default: 2751 *mode = VDSO_CLOCKMODE_NONE; 2752 } 2753 2754 if (*mode == VDSO_CLOCKMODE_NONE) 2755 *tsc_timestamp = v = 0; 2756 2757 return v * clock->mult; 2758 } 2759 2760 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2761 { 2762 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2763 unsigned long seq; 2764 int mode; 2765 u64 ns; 2766 2767 do { 2768 seq = read_seqcount_begin(>od->seq); 2769 ns = gtod->raw_clock.base_cycles; 2770 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2771 ns >>= gtod->raw_clock.shift; 2772 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2773 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2774 *t = ns; 2775 2776 return mode; 2777 } 2778 2779 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2780 { 2781 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2782 unsigned long seq; 2783 int mode; 2784 u64 ns; 2785 2786 do { 2787 seq = read_seqcount_begin(>od->seq); 2788 ts->tv_sec = gtod->wall_time_sec; 2789 ns = gtod->clock.base_cycles; 2790 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2791 ns >>= gtod->clock.shift; 2792 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2793 2794 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2795 ts->tv_nsec = ns; 2796 2797 return mode; 2798 } 2799 2800 /* returns true if host is using TSC based clocksource */ 2801 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2802 { 2803 /* checked again under seqlock below */ 2804 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2805 return false; 2806 2807 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2808 tsc_timestamp)); 2809 } 2810 2811 /* returns true if host is using TSC based clocksource */ 2812 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2813 u64 *tsc_timestamp) 2814 { 2815 /* checked again under seqlock below */ 2816 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2817 return false; 2818 2819 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2820 } 2821 #endif 2822 2823 /* 2824 * 2825 * Assuming a stable TSC across physical CPUS, and a stable TSC 2826 * across virtual CPUs, the following condition is possible. 2827 * Each numbered line represents an event visible to both 2828 * CPUs at the next numbered event. 2829 * 2830 * "timespecX" represents host monotonic time. "tscX" represents 2831 * RDTSC value. 2832 * 2833 * VCPU0 on CPU0 | VCPU1 on CPU1 2834 * 2835 * 1. read timespec0,tsc0 2836 * 2. | timespec1 = timespec0 + N 2837 * | tsc1 = tsc0 + M 2838 * 3. transition to guest | transition to guest 2839 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2840 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2841 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2842 * 2843 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2844 * 2845 * - ret0 < ret1 2846 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2847 * ... 2848 * - 0 < N - M => M < N 2849 * 2850 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2851 * always the case (the difference between two distinct xtime instances 2852 * might be smaller then the difference between corresponding TSC reads, 2853 * when updating guest vcpus pvclock areas). 2854 * 2855 * To avoid that problem, do not allow visibility of distinct 2856 * system_timestamp/tsc_timestamp values simultaneously: use a master 2857 * copy of host monotonic time values. Update that master copy 2858 * in lockstep. 2859 * 2860 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2861 * 2862 */ 2863 2864 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2865 { 2866 #ifdef CONFIG_X86_64 2867 struct kvm_arch *ka = &kvm->arch; 2868 int vclock_mode; 2869 bool host_tsc_clocksource, vcpus_matched; 2870 2871 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2872 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2873 atomic_read(&kvm->online_vcpus)); 2874 2875 /* 2876 * If the host uses TSC clock, then passthrough TSC as stable 2877 * to the guest. 2878 */ 2879 host_tsc_clocksource = kvm_get_time_and_clockread( 2880 &ka->master_kernel_ns, 2881 &ka->master_cycle_now); 2882 2883 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2884 && !ka->backwards_tsc_observed 2885 && !ka->boot_vcpu_runs_old_kvmclock; 2886 2887 if (ka->use_master_clock) 2888 atomic_set(&kvm_guest_has_master_clock, 1); 2889 2890 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2891 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2892 vcpus_matched); 2893 #endif 2894 } 2895 2896 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2897 { 2898 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2899 } 2900 2901 static void __kvm_start_pvclock_update(struct kvm *kvm) 2902 { 2903 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2904 write_seqcount_begin(&kvm->arch.pvclock_sc); 2905 } 2906 2907 static void kvm_start_pvclock_update(struct kvm *kvm) 2908 { 2909 kvm_make_mclock_inprogress_request(kvm); 2910 2911 /* no guest entries from this point */ 2912 __kvm_start_pvclock_update(kvm); 2913 } 2914 2915 static void kvm_end_pvclock_update(struct kvm *kvm) 2916 { 2917 struct kvm_arch *ka = &kvm->arch; 2918 struct kvm_vcpu *vcpu; 2919 unsigned long i; 2920 2921 write_seqcount_end(&ka->pvclock_sc); 2922 raw_spin_unlock_irq(&ka->tsc_write_lock); 2923 kvm_for_each_vcpu(i, vcpu, kvm) 2924 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2925 2926 /* guest entries allowed */ 2927 kvm_for_each_vcpu(i, vcpu, kvm) 2928 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2929 } 2930 2931 static void kvm_update_masterclock(struct kvm *kvm) 2932 { 2933 kvm_hv_request_tsc_page_update(kvm); 2934 kvm_start_pvclock_update(kvm); 2935 pvclock_update_vm_gtod_copy(kvm); 2936 kvm_end_pvclock_update(kvm); 2937 } 2938 2939 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2940 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2941 { 2942 struct kvm_arch *ka = &kvm->arch; 2943 struct pvclock_vcpu_time_info hv_clock; 2944 2945 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2946 get_cpu(); 2947 2948 data->flags = 0; 2949 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) { 2950 #ifdef CONFIG_X86_64 2951 struct timespec64 ts; 2952 2953 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 2954 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 2955 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 2956 } else 2957 #endif 2958 data->host_tsc = rdtsc(); 2959 2960 data->flags |= KVM_CLOCK_TSC_STABLE; 2961 hv_clock.tsc_timestamp = ka->master_cycle_now; 2962 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2963 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2964 &hv_clock.tsc_shift, 2965 &hv_clock.tsc_to_system_mul); 2966 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 2967 } else { 2968 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 2969 } 2970 2971 put_cpu(); 2972 } 2973 2974 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2975 { 2976 struct kvm_arch *ka = &kvm->arch; 2977 unsigned seq; 2978 2979 do { 2980 seq = read_seqcount_begin(&ka->pvclock_sc); 2981 __get_kvmclock(kvm, data); 2982 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 2983 } 2984 2985 u64 get_kvmclock_ns(struct kvm *kvm) 2986 { 2987 struct kvm_clock_data data; 2988 2989 get_kvmclock(kvm, &data); 2990 return data.clock; 2991 } 2992 2993 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 2994 struct gfn_to_pfn_cache *gpc, 2995 unsigned int offset) 2996 { 2997 struct kvm_vcpu_arch *vcpu = &v->arch; 2998 struct pvclock_vcpu_time_info *guest_hv_clock; 2999 unsigned long flags; 3000 3001 read_lock_irqsave(&gpc->lock, flags); 3002 while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa, 3003 offset + sizeof(*guest_hv_clock))) { 3004 read_unlock_irqrestore(&gpc->lock, flags); 3005 3006 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa, 3007 offset + sizeof(*guest_hv_clock))) 3008 return; 3009 3010 read_lock_irqsave(&gpc->lock, flags); 3011 } 3012 3013 guest_hv_clock = (void *)(gpc->khva + offset); 3014 3015 /* 3016 * This VCPU is paused, but it's legal for a guest to read another 3017 * VCPU's kvmclock, so we really have to follow the specification where 3018 * it says that version is odd if data is being modified, and even after 3019 * it is consistent. 3020 */ 3021 3022 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3023 smp_wmb(); 3024 3025 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3026 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3027 3028 if (vcpu->pvclock_set_guest_stopped_request) { 3029 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3030 vcpu->pvclock_set_guest_stopped_request = false; 3031 } 3032 3033 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3034 smp_wmb(); 3035 3036 guest_hv_clock->version = ++vcpu->hv_clock.version; 3037 3038 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3039 read_unlock_irqrestore(&gpc->lock, flags); 3040 3041 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3042 } 3043 3044 static int kvm_guest_time_update(struct kvm_vcpu *v) 3045 { 3046 unsigned long flags, tgt_tsc_khz; 3047 unsigned seq; 3048 struct kvm_vcpu_arch *vcpu = &v->arch; 3049 struct kvm_arch *ka = &v->kvm->arch; 3050 s64 kernel_ns; 3051 u64 tsc_timestamp, host_tsc; 3052 u8 pvclock_flags; 3053 bool use_master_clock; 3054 3055 kernel_ns = 0; 3056 host_tsc = 0; 3057 3058 /* 3059 * If the host uses TSC clock, then passthrough TSC as stable 3060 * to the guest. 3061 */ 3062 do { 3063 seq = read_seqcount_begin(&ka->pvclock_sc); 3064 use_master_clock = ka->use_master_clock; 3065 if (use_master_clock) { 3066 host_tsc = ka->master_cycle_now; 3067 kernel_ns = ka->master_kernel_ns; 3068 } 3069 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3070 3071 /* Keep irq disabled to prevent changes to the clock */ 3072 local_irq_save(flags); 3073 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 3074 if (unlikely(tgt_tsc_khz == 0)) { 3075 local_irq_restore(flags); 3076 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3077 return 1; 3078 } 3079 if (!use_master_clock) { 3080 host_tsc = rdtsc(); 3081 kernel_ns = get_kvmclock_base_ns(); 3082 } 3083 3084 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3085 3086 /* 3087 * We may have to catch up the TSC to match elapsed wall clock 3088 * time for two reasons, even if kvmclock is used. 3089 * 1) CPU could have been running below the maximum TSC rate 3090 * 2) Broken TSC compensation resets the base at each VCPU 3091 * entry to avoid unknown leaps of TSC even when running 3092 * again on the same CPU. This may cause apparent elapsed 3093 * time to disappear, and the guest to stand still or run 3094 * very slowly. 3095 */ 3096 if (vcpu->tsc_catchup) { 3097 u64 tsc = compute_guest_tsc(v, kernel_ns); 3098 if (tsc > tsc_timestamp) { 3099 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3100 tsc_timestamp = tsc; 3101 } 3102 } 3103 3104 local_irq_restore(flags); 3105 3106 /* With all the info we got, fill in the values */ 3107 3108 if (kvm_has_tsc_control) 3109 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3110 v->arch.l1_tsc_scaling_ratio); 3111 3112 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3113 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3114 &vcpu->hv_clock.tsc_shift, 3115 &vcpu->hv_clock.tsc_to_system_mul); 3116 vcpu->hw_tsc_khz = tgt_tsc_khz; 3117 } 3118 3119 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3120 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3121 vcpu->last_guest_tsc = tsc_timestamp; 3122 3123 /* If the host uses TSC clocksource, then it is stable */ 3124 pvclock_flags = 0; 3125 if (use_master_clock) 3126 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3127 3128 vcpu->hv_clock.flags = pvclock_flags; 3129 3130 if (vcpu->pv_time.active) 3131 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3132 if (vcpu->xen.vcpu_info_cache.active) 3133 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3134 offsetof(struct compat_vcpu_info, time)); 3135 if (vcpu->xen.vcpu_time_info_cache.active) 3136 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3137 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3138 return 0; 3139 } 3140 3141 /* 3142 * kvmclock updates which are isolated to a given vcpu, such as 3143 * vcpu->cpu migration, should not allow system_timestamp from 3144 * the rest of the vcpus to remain static. Otherwise ntp frequency 3145 * correction applies to one vcpu's system_timestamp but not 3146 * the others. 3147 * 3148 * So in those cases, request a kvmclock update for all vcpus. 3149 * We need to rate-limit these requests though, as they can 3150 * considerably slow guests that have a large number of vcpus. 3151 * The time for a remote vcpu to update its kvmclock is bound 3152 * by the delay we use to rate-limit the updates. 3153 */ 3154 3155 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3156 3157 static void kvmclock_update_fn(struct work_struct *work) 3158 { 3159 unsigned long i; 3160 struct delayed_work *dwork = to_delayed_work(work); 3161 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3162 kvmclock_update_work); 3163 struct kvm *kvm = container_of(ka, struct kvm, arch); 3164 struct kvm_vcpu *vcpu; 3165 3166 kvm_for_each_vcpu(i, vcpu, kvm) { 3167 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3168 kvm_vcpu_kick(vcpu); 3169 } 3170 } 3171 3172 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3173 { 3174 struct kvm *kvm = v->kvm; 3175 3176 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3177 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3178 KVMCLOCK_UPDATE_DELAY); 3179 } 3180 3181 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3182 3183 static void kvmclock_sync_fn(struct work_struct *work) 3184 { 3185 struct delayed_work *dwork = to_delayed_work(work); 3186 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3187 kvmclock_sync_work); 3188 struct kvm *kvm = container_of(ka, struct kvm, arch); 3189 3190 if (!kvmclock_periodic_sync) 3191 return; 3192 3193 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3194 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3195 KVMCLOCK_SYNC_PERIOD); 3196 } 3197 3198 /* 3199 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3200 */ 3201 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3202 { 3203 /* McStatusWrEn enabled? */ 3204 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3205 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3206 3207 return false; 3208 } 3209 3210 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3211 { 3212 u64 mcg_cap = vcpu->arch.mcg_cap; 3213 unsigned bank_num = mcg_cap & 0xff; 3214 u32 msr = msr_info->index; 3215 u64 data = msr_info->data; 3216 3217 switch (msr) { 3218 case MSR_IA32_MCG_STATUS: 3219 vcpu->arch.mcg_status = data; 3220 break; 3221 case MSR_IA32_MCG_CTL: 3222 if (!(mcg_cap & MCG_CTL_P) && 3223 (data || !msr_info->host_initiated)) 3224 return 1; 3225 if (data != 0 && data != ~(u64)0) 3226 return 1; 3227 vcpu->arch.mcg_ctl = data; 3228 break; 3229 default: 3230 if (msr >= MSR_IA32_MC0_CTL && 3231 msr < MSR_IA32_MCx_CTL(bank_num)) { 3232 u32 offset = array_index_nospec( 3233 msr - MSR_IA32_MC0_CTL, 3234 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3235 3236 /* only 0 or all 1s can be written to IA32_MCi_CTL 3237 * some Linux kernels though clear bit 10 in bank 4 to 3238 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 3239 * this to avoid an uncatched #GP in the guest 3240 */ 3241 if ((offset & 0x3) == 0 && 3242 data != 0 && (data | (1 << 10)) != ~(u64)0) 3243 return -1; 3244 3245 /* MCi_STATUS */ 3246 if (!msr_info->host_initiated && 3247 (offset & 0x3) == 1 && data != 0) { 3248 if (!can_set_mci_status(vcpu)) 3249 return -1; 3250 } 3251 3252 vcpu->arch.mce_banks[offset] = data; 3253 break; 3254 } 3255 return 1; 3256 } 3257 return 0; 3258 } 3259 3260 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3261 { 3262 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3263 3264 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3265 } 3266 3267 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3268 { 3269 gpa_t gpa = data & ~0x3f; 3270 3271 /* Bits 4:5 are reserved, Should be zero */ 3272 if (data & 0x30) 3273 return 1; 3274 3275 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3276 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3277 return 1; 3278 3279 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3280 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3281 return 1; 3282 3283 if (!lapic_in_kernel(vcpu)) 3284 return data ? 1 : 0; 3285 3286 vcpu->arch.apf.msr_en_val = data; 3287 3288 if (!kvm_pv_async_pf_enabled(vcpu)) { 3289 kvm_clear_async_pf_completion_queue(vcpu); 3290 kvm_async_pf_hash_reset(vcpu); 3291 return 0; 3292 } 3293 3294 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3295 sizeof(u64))) 3296 return 1; 3297 3298 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3299 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3300 3301 kvm_async_pf_wakeup_all(vcpu); 3302 3303 return 0; 3304 } 3305 3306 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3307 { 3308 /* Bits 8-63 are reserved */ 3309 if (data >> 8) 3310 return 1; 3311 3312 if (!lapic_in_kernel(vcpu)) 3313 return 1; 3314 3315 vcpu->arch.apf.msr_int_val = data; 3316 3317 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3318 3319 return 0; 3320 } 3321 3322 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3323 { 3324 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time); 3325 vcpu->arch.time = 0; 3326 } 3327 3328 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3329 { 3330 ++vcpu->stat.tlb_flush; 3331 static_call(kvm_x86_flush_tlb_all)(vcpu); 3332 } 3333 3334 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3335 { 3336 ++vcpu->stat.tlb_flush; 3337 3338 if (!tdp_enabled) { 3339 /* 3340 * A TLB flush on behalf of the guest is equivalent to 3341 * INVPCID(all), toggling CR4.PGE, etc., which requires 3342 * a forced sync of the shadow page tables. Ensure all the 3343 * roots are synced and the guest TLB in hardware is clean. 3344 */ 3345 kvm_mmu_sync_roots(vcpu); 3346 kvm_mmu_sync_prev_roots(vcpu); 3347 } 3348 3349 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3350 } 3351 3352 3353 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3354 { 3355 ++vcpu->stat.tlb_flush; 3356 static_call(kvm_x86_flush_tlb_current)(vcpu); 3357 } 3358 3359 /* 3360 * Service "local" TLB flush requests, which are specific to the current MMU 3361 * context. In addition to the generic event handling in vcpu_enter_guest(), 3362 * TLB flushes that are targeted at an MMU context also need to be serviced 3363 * prior before nested VM-Enter/VM-Exit. 3364 */ 3365 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3366 { 3367 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3368 kvm_vcpu_flush_tlb_current(vcpu); 3369 3370 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3371 kvm_vcpu_flush_tlb_guest(vcpu); 3372 } 3373 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3374 3375 static void record_steal_time(struct kvm_vcpu *vcpu) 3376 { 3377 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3378 struct kvm_steal_time __user *st; 3379 struct kvm_memslots *slots; 3380 u64 steal; 3381 u32 version; 3382 3383 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3384 kvm_xen_runstate_set_running(vcpu); 3385 return; 3386 } 3387 3388 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3389 return; 3390 3391 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3392 return; 3393 3394 slots = kvm_memslots(vcpu->kvm); 3395 3396 if (unlikely(slots->generation != ghc->generation || 3397 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3398 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3399 3400 /* We rely on the fact that it fits in a single page. */ 3401 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3402 3403 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) || 3404 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3405 return; 3406 } 3407 3408 st = (struct kvm_steal_time __user *)ghc->hva; 3409 /* 3410 * Doing a TLB flush here, on the guest's behalf, can avoid 3411 * expensive IPIs. 3412 */ 3413 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3414 u8 st_preempted = 0; 3415 int err = -EFAULT; 3416 3417 if (!user_access_begin(st, sizeof(*st))) 3418 return; 3419 3420 asm volatile("1: xchgb %0, %2\n" 3421 "xor %1, %1\n" 3422 "2:\n" 3423 _ASM_EXTABLE_UA(1b, 2b) 3424 : "+q" (st_preempted), 3425 "+&r" (err), 3426 "+m" (st->preempted)); 3427 if (err) 3428 goto out; 3429 3430 user_access_end(); 3431 3432 vcpu->arch.st.preempted = 0; 3433 3434 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3435 st_preempted & KVM_VCPU_FLUSH_TLB); 3436 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3437 kvm_vcpu_flush_tlb_guest(vcpu); 3438 3439 if (!user_access_begin(st, sizeof(*st))) 3440 goto dirty; 3441 } else { 3442 if (!user_access_begin(st, sizeof(*st))) 3443 return; 3444 3445 unsafe_put_user(0, &st->preempted, out); 3446 vcpu->arch.st.preempted = 0; 3447 } 3448 3449 unsafe_get_user(version, &st->version, out); 3450 if (version & 1) 3451 version += 1; /* first time write, random junk */ 3452 3453 version += 1; 3454 unsafe_put_user(version, &st->version, out); 3455 3456 smp_wmb(); 3457 3458 unsafe_get_user(steal, &st->steal, out); 3459 steal += current->sched_info.run_delay - 3460 vcpu->arch.st.last_steal; 3461 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3462 unsafe_put_user(steal, &st->steal, out); 3463 3464 version += 1; 3465 unsafe_put_user(version, &st->version, out); 3466 3467 out: 3468 user_access_end(); 3469 dirty: 3470 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3471 } 3472 3473 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3474 { 3475 bool pr = false; 3476 u32 msr = msr_info->index; 3477 u64 data = msr_info->data; 3478 3479 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3480 return kvm_xen_write_hypercall_page(vcpu, data); 3481 3482 switch (msr) { 3483 case MSR_AMD64_NB_CFG: 3484 case MSR_IA32_UCODE_WRITE: 3485 case MSR_VM_HSAVE_PA: 3486 case MSR_AMD64_PATCH_LOADER: 3487 case MSR_AMD64_BU_CFG2: 3488 case MSR_AMD64_DC_CFG: 3489 case MSR_F15H_EX_CFG: 3490 break; 3491 3492 case MSR_IA32_UCODE_REV: 3493 if (msr_info->host_initiated) 3494 vcpu->arch.microcode_version = data; 3495 break; 3496 case MSR_IA32_ARCH_CAPABILITIES: 3497 if (!msr_info->host_initiated) 3498 return 1; 3499 vcpu->arch.arch_capabilities = data; 3500 break; 3501 case MSR_IA32_PERF_CAPABILITIES: { 3502 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3503 3504 if (!msr_info->host_initiated) 3505 return 1; 3506 if (kvm_get_msr_feature(&msr_ent)) 3507 return 1; 3508 if (data & ~msr_ent.data) 3509 return 1; 3510 3511 vcpu->arch.perf_capabilities = data; 3512 3513 return 0; 3514 } 3515 case MSR_EFER: 3516 return set_efer(vcpu, msr_info); 3517 case MSR_K7_HWCR: 3518 data &= ~(u64)0x40; /* ignore flush filter disable */ 3519 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3520 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3521 3522 /* Handle McStatusWrEn */ 3523 if (data == BIT_ULL(18)) { 3524 vcpu->arch.msr_hwcr = data; 3525 } else if (data != 0) { 3526 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3527 data); 3528 return 1; 3529 } 3530 break; 3531 case MSR_FAM10H_MMIO_CONF_BASE: 3532 if (data != 0) { 3533 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3534 "0x%llx\n", data); 3535 return 1; 3536 } 3537 break; 3538 case 0x200 ... 0x2ff: 3539 return kvm_mtrr_set_msr(vcpu, msr, data); 3540 case MSR_IA32_APICBASE: 3541 return kvm_set_apic_base(vcpu, msr_info); 3542 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3543 return kvm_x2apic_msr_write(vcpu, msr, data); 3544 case MSR_IA32_TSC_DEADLINE: 3545 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3546 break; 3547 case MSR_IA32_TSC_ADJUST: 3548 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3549 if (!msr_info->host_initiated) { 3550 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3551 adjust_tsc_offset_guest(vcpu, adj); 3552 /* Before back to guest, tsc_timestamp must be adjusted 3553 * as well, otherwise guest's percpu pvclock time could jump. 3554 */ 3555 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3556 } 3557 vcpu->arch.ia32_tsc_adjust_msr = data; 3558 } 3559 break; 3560 case MSR_IA32_MISC_ENABLE: 3561 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3562 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3563 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3564 return 1; 3565 vcpu->arch.ia32_misc_enable_msr = data; 3566 kvm_update_cpuid_runtime(vcpu); 3567 } else { 3568 vcpu->arch.ia32_misc_enable_msr = data; 3569 } 3570 break; 3571 case MSR_IA32_SMBASE: 3572 if (!msr_info->host_initiated) 3573 return 1; 3574 vcpu->arch.smbase = data; 3575 break; 3576 case MSR_IA32_POWER_CTL: 3577 vcpu->arch.msr_ia32_power_ctl = data; 3578 break; 3579 case MSR_IA32_TSC: 3580 if (msr_info->host_initiated) { 3581 kvm_synchronize_tsc(vcpu, data); 3582 } else { 3583 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3584 adjust_tsc_offset_guest(vcpu, adj); 3585 vcpu->arch.ia32_tsc_adjust_msr += adj; 3586 } 3587 break; 3588 case MSR_IA32_XSS: 3589 if (!msr_info->host_initiated && 3590 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3591 return 1; 3592 /* 3593 * KVM supports exposing PT to the guest, but does not support 3594 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3595 * XSAVES/XRSTORS to save/restore PT MSRs. 3596 */ 3597 if (data & ~supported_xss) 3598 return 1; 3599 vcpu->arch.ia32_xss = data; 3600 kvm_update_cpuid_runtime(vcpu); 3601 break; 3602 case MSR_SMI_COUNT: 3603 if (!msr_info->host_initiated) 3604 return 1; 3605 vcpu->arch.smi_count = data; 3606 break; 3607 case MSR_KVM_WALL_CLOCK_NEW: 3608 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3609 return 1; 3610 3611 vcpu->kvm->arch.wall_clock = data; 3612 kvm_write_wall_clock(vcpu->kvm, data, 0); 3613 break; 3614 case MSR_KVM_WALL_CLOCK: 3615 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3616 return 1; 3617 3618 vcpu->kvm->arch.wall_clock = data; 3619 kvm_write_wall_clock(vcpu->kvm, data, 0); 3620 break; 3621 case MSR_KVM_SYSTEM_TIME_NEW: 3622 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3623 return 1; 3624 3625 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3626 break; 3627 case MSR_KVM_SYSTEM_TIME: 3628 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3629 return 1; 3630 3631 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3632 break; 3633 case MSR_KVM_ASYNC_PF_EN: 3634 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3635 return 1; 3636 3637 if (kvm_pv_enable_async_pf(vcpu, data)) 3638 return 1; 3639 break; 3640 case MSR_KVM_ASYNC_PF_INT: 3641 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3642 return 1; 3643 3644 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3645 return 1; 3646 break; 3647 case MSR_KVM_ASYNC_PF_ACK: 3648 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3649 return 1; 3650 if (data & 0x1) { 3651 vcpu->arch.apf.pageready_pending = false; 3652 kvm_check_async_pf_completion(vcpu); 3653 } 3654 break; 3655 case MSR_KVM_STEAL_TIME: 3656 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3657 return 1; 3658 3659 if (unlikely(!sched_info_on())) 3660 return 1; 3661 3662 if (data & KVM_STEAL_RESERVED_MASK) 3663 return 1; 3664 3665 vcpu->arch.st.msr_val = data; 3666 3667 if (!(data & KVM_MSR_ENABLED)) 3668 break; 3669 3670 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3671 3672 break; 3673 case MSR_KVM_PV_EOI_EN: 3674 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3675 return 1; 3676 3677 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3678 return 1; 3679 break; 3680 3681 case MSR_KVM_POLL_CONTROL: 3682 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3683 return 1; 3684 3685 /* only enable bit supported */ 3686 if (data & (-1ULL << 1)) 3687 return 1; 3688 3689 vcpu->arch.msr_kvm_poll_control = data; 3690 break; 3691 3692 case MSR_IA32_MCG_CTL: 3693 case MSR_IA32_MCG_STATUS: 3694 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3695 return set_msr_mce(vcpu, msr_info); 3696 3697 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3698 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3699 pr = true; 3700 fallthrough; 3701 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3702 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3703 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3704 return kvm_pmu_set_msr(vcpu, msr_info); 3705 3706 if (pr || data != 0) 3707 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3708 "0x%x data 0x%llx\n", msr, data); 3709 break; 3710 case MSR_K7_CLK_CTL: 3711 /* 3712 * Ignore all writes to this no longer documented MSR. 3713 * Writes are only relevant for old K7 processors, 3714 * all pre-dating SVM, but a recommended workaround from 3715 * AMD for these chips. It is possible to specify the 3716 * affected processor models on the command line, hence 3717 * the need to ignore the workaround. 3718 */ 3719 break; 3720 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3721 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3722 case HV_X64_MSR_SYNDBG_OPTIONS: 3723 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3724 case HV_X64_MSR_CRASH_CTL: 3725 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3726 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3727 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3728 case HV_X64_MSR_TSC_EMULATION_STATUS: 3729 return kvm_hv_set_msr_common(vcpu, msr, data, 3730 msr_info->host_initiated); 3731 case MSR_IA32_BBL_CR_CTL3: 3732 /* Drop writes to this legacy MSR -- see rdmsr 3733 * counterpart for further detail. 3734 */ 3735 if (report_ignored_msrs) 3736 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3737 msr, data); 3738 break; 3739 case MSR_AMD64_OSVW_ID_LENGTH: 3740 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3741 return 1; 3742 vcpu->arch.osvw.length = data; 3743 break; 3744 case MSR_AMD64_OSVW_STATUS: 3745 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3746 return 1; 3747 vcpu->arch.osvw.status = data; 3748 break; 3749 case MSR_PLATFORM_INFO: 3750 if (!msr_info->host_initiated || 3751 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3752 cpuid_fault_enabled(vcpu))) 3753 return 1; 3754 vcpu->arch.msr_platform_info = data; 3755 break; 3756 case MSR_MISC_FEATURES_ENABLES: 3757 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3758 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3759 !supports_cpuid_fault(vcpu))) 3760 return 1; 3761 vcpu->arch.msr_misc_features_enables = data; 3762 break; 3763 #ifdef CONFIG_X86_64 3764 case MSR_IA32_XFD: 3765 if (!msr_info->host_initiated && 3766 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3767 return 1; 3768 3769 if (data & ~kvm_guest_supported_xfd(vcpu)) 3770 return 1; 3771 3772 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3773 break; 3774 case MSR_IA32_XFD_ERR: 3775 if (!msr_info->host_initiated && 3776 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3777 return 1; 3778 3779 if (data & ~kvm_guest_supported_xfd(vcpu)) 3780 return 1; 3781 3782 vcpu->arch.guest_fpu.xfd_err = data; 3783 break; 3784 #endif 3785 default: 3786 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3787 return kvm_pmu_set_msr(vcpu, msr_info); 3788 return KVM_MSR_RET_INVALID; 3789 } 3790 return 0; 3791 } 3792 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3793 3794 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3795 { 3796 u64 data; 3797 u64 mcg_cap = vcpu->arch.mcg_cap; 3798 unsigned bank_num = mcg_cap & 0xff; 3799 3800 switch (msr) { 3801 case MSR_IA32_P5_MC_ADDR: 3802 case MSR_IA32_P5_MC_TYPE: 3803 data = 0; 3804 break; 3805 case MSR_IA32_MCG_CAP: 3806 data = vcpu->arch.mcg_cap; 3807 break; 3808 case MSR_IA32_MCG_CTL: 3809 if (!(mcg_cap & MCG_CTL_P) && !host) 3810 return 1; 3811 data = vcpu->arch.mcg_ctl; 3812 break; 3813 case MSR_IA32_MCG_STATUS: 3814 data = vcpu->arch.mcg_status; 3815 break; 3816 default: 3817 if (msr >= MSR_IA32_MC0_CTL && 3818 msr < MSR_IA32_MCx_CTL(bank_num)) { 3819 u32 offset = array_index_nospec( 3820 msr - MSR_IA32_MC0_CTL, 3821 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3822 3823 data = vcpu->arch.mce_banks[offset]; 3824 break; 3825 } 3826 return 1; 3827 } 3828 *pdata = data; 3829 return 0; 3830 } 3831 3832 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3833 { 3834 switch (msr_info->index) { 3835 case MSR_IA32_PLATFORM_ID: 3836 case MSR_IA32_EBL_CR_POWERON: 3837 case MSR_IA32_LASTBRANCHFROMIP: 3838 case MSR_IA32_LASTBRANCHTOIP: 3839 case MSR_IA32_LASTINTFROMIP: 3840 case MSR_IA32_LASTINTTOIP: 3841 case MSR_AMD64_SYSCFG: 3842 case MSR_K8_TSEG_ADDR: 3843 case MSR_K8_TSEG_MASK: 3844 case MSR_VM_HSAVE_PA: 3845 case MSR_K8_INT_PENDING_MSG: 3846 case MSR_AMD64_NB_CFG: 3847 case MSR_FAM10H_MMIO_CONF_BASE: 3848 case MSR_AMD64_BU_CFG2: 3849 case MSR_IA32_PERF_CTL: 3850 case MSR_AMD64_DC_CFG: 3851 case MSR_F15H_EX_CFG: 3852 /* 3853 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3854 * limit) MSRs. Just return 0, as we do not want to expose the host 3855 * data here. Do not conditionalize this on CPUID, as KVM does not do 3856 * so for existing CPU-specific MSRs. 3857 */ 3858 case MSR_RAPL_POWER_UNIT: 3859 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3860 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3861 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3862 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3863 msr_info->data = 0; 3864 break; 3865 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3866 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3867 return kvm_pmu_get_msr(vcpu, msr_info); 3868 if (!msr_info->host_initiated) 3869 return 1; 3870 msr_info->data = 0; 3871 break; 3872 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3873 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3874 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3875 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3876 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3877 return kvm_pmu_get_msr(vcpu, msr_info); 3878 msr_info->data = 0; 3879 break; 3880 case MSR_IA32_UCODE_REV: 3881 msr_info->data = vcpu->arch.microcode_version; 3882 break; 3883 case MSR_IA32_ARCH_CAPABILITIES: 3884 if (!msr_info->host_initiated && 3885 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3886 return 1; 3887 msr_info->data = vcpu->arch.arch_capabilities; 3888 break; 3889 case MSR_IA32_PERF_CAPABILITIES: 3890 if (!msr_info->host_initiated && 3891 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3892 return 1; 3893 msr_info->data = vcpu->arch.perf_capabilities; 3894 break; 3895 case MSR_IA32_POWER_CTL: 3896 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3897 break; 3898 case MSR_IA32_TSC: { 3899 /* 3900 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3901 * even when not intercepted. AMD manual doesn't explicitly 3902 * state this but appears to behave the same. 3903 * 3904 * On userspace reads and writes, however, we unconditionally 3905 * return L1's TSC value to ensure backwards-compatible 3906 * behavior for migration. 3907 */ 3908 u64 offset, ratio; 3909 3910 if (msr_info->host_initiated) { 3911 offset = vcpu->arch.l1_tsc_offset; 3912 ratio = vcpu->arch.l1_tsc_scaling_ratio; 3913 } else { 3914 offset = vcpu->arch.tsc_offset; 3915 ratio = vcpu->arch.tsc_scaling_ratio; 3916 } 3917 3918 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 3919 break; 3920 } 3921 case MSR_MTRRcap: 3922 case 0x200 ... 0x2ff: 3923 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3924 case 0xcd: /* fsb frequency */ 3925 msr_info->data = 3; 3926 break; 3927 /* 3928 * MSR_EBC_FREQUENCY_ID 3929 * Conservative value valid for even the basic CPU models. 3930 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3931 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3932 * and 266MHz for model 3, or 4. Set Core Clock 3933 * Frequency to System Bus Frequency Ratio to 1 (bits 3934 * 31:24) even though these are only valid for CPU 3935 * models > 2, however guests may end up dividing or 3936 * multiplying by zero otherwise. 3937 */ 3938 case MSR_EBC_FREQUENCY_ID: 3939 msr_info->data = 1 << 24; 3940 break; 3941 case MSR_IA32_APICBASE: 3942 msr_info->data = kvm_get_apic_base(vcpu); 3943 break; 3944 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3945 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3946 case MSR_IA32_TSC_DEADLINE: 3947 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3948 break; 3949 case MSR_IA32_TSC_ADJUST: 3950 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3951 break; 3952 case MSR_IA32_MISC_ENABLE: 3953 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3954 break; 3955 case MSR_IA32_SMBASE: 3956 if (!msr_info->host_initiated) 3957 return 1; 3958 msr_info->data = vcpu->arch.smbase; 3959 break; 3960 case MSR_SMI_COUNT: 3961 msr_info->data = vcpu->arch.smi_count; 3962 break; 3963 case MSR_IA32_PERF_STATUS: 3964 /* TSC increment by tick */ 3965 msr_info->data = 1000ULL; 3966 /* CPU multiplier */ 3967 msr_info->data |= (((uint64_t)4ULL) << 40); 3968 break; 3969 case MSR_EFER: 3970 msr_info->data = vcpu->arch.efer; 3971 break; 3972 case MSR_KVM_WALL_CLOCK: 3973 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3974 return 1; 3975 3976 msr_info->data = vcpu->kvm->arch.wall_clock; 3977 break; 3978 case MSR_KVM_WALL_CLOCK_NEW: 3979 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3980 return 1; 3981 3982 msr_info->data = vcpu->kvm->arch.wall_clock; 3983 break; 3984 case MSR_KVM_SYSTEM_TIME: 3985 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3986 return 1; 3987 3988 msr_info->data = vcpu->arch.time; 3989 break; 3990 case MSR_KVM_SYSTEM_TIME_NEW: 3991 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3992 return 1; 3993 3994 msr_info->data = vcpu->arch.time; 3995 break; 3996 case MSR_KVM_ASYNC_PF_EN: 3997 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3998 return 1; 3999 4000 msr_info->data = vcpu->arch.apf.msr_en_val; 4001 break; 4002 case MSR_KVM_ASYNC_PF_INT: 4003 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4004 return 1; 4005 4006 msr_info->data = vcpu->arch.apf.msr_int_val; 4007 break; 4008 case MSR_KVM_ASYNC_PF_ACK: 4009 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4010 return 1; 4011 4012 msr_info->data = 0; 4013 break; 4014 case MSR_KVM_STEAL_TIME: 4015 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4016 return 1; 4017 4018 msr_info->data = vcpu->arch.st.msr_val; 4019 break; 4020 case MSR_KVM_PV_EOI_EN: 4021 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4022 return 1; 4023 4024 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4025 break; 4026 case MSR_KVM_POLL_CONTROL: 4027 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4028 return 1; 4029 4030 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4031 break; 4032 case MSR_IA32_P5_MC_ADDR: 4033 case MSR_IA32_P5_MC_TYPE: 4034 case MSR_IA32_MCG_CAP: 4035 case MSR_IA32_MCG_CTL: 4036 case MSR_IA32_MCG_STATUS: 4037 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4038 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4039 msr_info->host_initiated); 4040 case MSR_IA32_XSS: 4041 if (!msr_info->host_initiated && 4042 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4043 return 1; 4044 msr_info->data = vcpu->arch.ia32_xss; 4045 break; 4046 case MSR_K7_CLK_CTL: 4047 /* 4048 * Provide expected ramp-up count for K7. All other 4049 * are set to zero, indicating minimum divisors for 4050 * every field. 4051 * 4052 * This prevents guest kernels on AMD host with CPU 4053 * type 6, model 8 and higher from exploding due to 4054 * the rdmsr failing. 4055 */ 4056 msr_info->data = 0x20000000; 4057 break; 4058 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4059 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4060 case HV_X64_MSR_SYNDBG_OPTIONS: 4061 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4062 case HV_X64_MSR_CRASH_CTL: 4063 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4064 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4065 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4066 case HV_X64_MSR_TSC_EMULATION_STATUS: 4067 return kvm_hv_get_msr_common(vcpu, 4068 msr_info->index, &msr_info->data, 4069 msr_info->host_initiated); 4070 case MSR_IA32_BBL_CR_CTL3: 4071 /* This legacy MSR exists but isn't fully documented in current 4072 * silicon. It is however accessed by winxp in very narrow 4073 * scenarios where it sets bit #19, itself documented as 4074 * a "reserved" bit. Best effort attempt to source coherent 4075 * read data here should the balance of the register be 4076 * interpreted by the guest: 4077 * 4078 * L2 cache control register 3: 64GB range, 256KB size, 4079 * enabled, latency 0x1, configured 4080 */ 4081 msr_info->data = 0xbe702111; 4082 break; 4083 case MSR_AMD64_OSVW_ID_LENGTH: 4084 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4085 return 1; 4086 msr_info->data = vcpu->arch.osvw.length; 4087 break; 4088 case MSR_AMD64_OSVW_STATUS: 4089 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4090 return 1; 4091 msr_info->data = vcpu->arch.osvw.status; 4092 break; 4093 case MSR_PLATFORM_INFO: 4094 if (!msr_info->host_initiated && 4095 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4096 return 1; 4097 msr_info->data = vcpu->arch.msr_platform_info; 4098 break; 4099 case MSR_MISC_FEATURES_ENABLES: 4100 msr_info->data = vcpu->arch.msr_misc_features_enables; 4101 break; 4102 case MSR_K7_HWCR: 4103 msr_info->data = vcpu->arch.msr_hwcr; 4104 break; 4105 #ifdef CONFIG_X86_64 4106 case MSR_IA32_XFD: 4107 if (!msr_info->host_initiated && 4108 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4109 return 1; 4110 4111 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4112 break; 4113 case MSR_IA32_XFD_ERR: 4114 if (!msr_info->host_initiated && 4115 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4116 return 1; 4117 4118 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4119 break; 4120 #endif 4121 default: 4122 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4123 return kvm_pmu_get_msr(vcpu, msr_info); 4124 return KVM_MSR_RET_INVALID; 4125 } 4126 return 0; 4127 } 4128 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4129 4130 /* 4131 * Read or write a bunch of msrs. All parameters are kernel addresses. 4132 * 4133 * @return number of msrs set successfully. 4134 */ 4135 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4136 struct kvm_msr_entry *entries, 4137 int (*do_msr)(struct kvm_vcpu *vcpu, 4138 unsigned index, u64 *data)) 4139 { 4140 int i; 4141 4142 for (i = 0; i < msrs->nmsrs; ++i) 4143 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4144 break; 4145 4146 return i; 4147 } 4148 4149 /* 4150 * Read or write a bunch of msrs. Parameters are user addresses. 4151 * 4152 * @return number of msrs set successfully. 4153 */ 4154 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4155 int (*do_msr)(struct kvm_vcpu *vcpu, 4156 unsigned index, u64 *data), 4157 int writeback) 4158 { 4159 struct kvm_msrs msrs; 4160 struct kvm_msr_entry *entries; 4161 int r, n; 4162 unsigned size; 4163 4164 r = -EFAULT; 4165 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4166 goto out; 4167 4168 r = -E2BIG; 4169 if (msrs.nmsrs >= MAX_IO_MSRS) 4170 goto out; 4171 4172 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4173 entries = memdup_user(user_msrs->entries, size); 4174 if (IS_ERR(entries)) { 4175 r = PTR_ERR(entries); 4176 goto out; 4177 } 4178 4179 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4180 if (r < 0) 4181 goto out_free; 4182 4183 r = -EFAULT; 4184 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4185 goto out_free; 4186 4187 r = n; 4188 4189 out_free: 4190 kfree(entries); 4191 out: 4192 return r; 4193 } 4194 4195 static inline bool kvm_can_mwait_in_guest(void) 4196 { 4197 return boot_cpu_has(X86_FEATURE_MWAIT) && 4198 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4199 boot_cpu_has(X86_FEATURE_ARAT); 4200 } 4201 4202 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4203 struct kvm_cpuid2 __user *cpuid_arg) 4204 { 4205 struct kvm_cpuid2 cpuid; 4206 int r; 4207 4208 r = -EFAULT; 4209 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4210 return r; 4211 4212 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4213 if (r) 4214 return r; 4215 4216 r = -EFAULT; 4217 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4218 return r; 4219 4220 return 0; 4221 } 4222 4223 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4224 { 4225 int r = 0; 4226 4227 switch (ext) { 4228 case KVM_CAP_IRQCHIP: 4229 case KVM_CAP_HLT: 4230 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4231 case KVM_CAP_SET_TSS_ADDR: 4232 case KVM_CAP_EXT_CPUID: 4233 case KVM_CAP_EXT_EMUL_CPUID: 4234 case KVM_CAP_CLOCKSOURCE: 4235 case KVM_CAP_PIT: 4236 case KVM_CAP_NOP_IO_DELAY: 4237 case KVM_CAP_MP_STATE: 4238 case KVM_CAP_SYNC_MMU: 4239 case KVM_CAP_USER_NMI: 4240 case KVM_CAP_REINJECT_CONTROL: 4241 case KVM_CAP_IRQ_INJECT_STATUS: 4242 case KVM_CAP_IOEVENTFD: 4243 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4244 case KVM_CAP_PIT2: 4245 case KVM_CAP_PIT_STATE2: 4246 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4247 case KVM_CAP_VCPU_EVENTS: 4248 case KVM_CAP_HYPERV: 4249 case KVM_CAP_HYPERV_VAPIC: 4250 case KVM_CAP_HYPERV_SPIN: 4251 case KVM_CAP_HYPERV_SYNIC: 4252 case KVM_CAP_HYPERV_SYNIC2: 4253 case KVM_CAP_HYPERV_VP_INDEX: 4254 case KVM_CAP_HYPERV_EVENTFD: 4255 case KVM_CAP_HYPERV_TLBFLUSH: 4256 case KVM_CAP_HYPERV_SEND_IPI: 4257 case KVM_CAP_HYPERV_CPUID: 4258 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4259 case KVM_CAP_SYS_HYPERV_CPUID: 4260 case KVM_CAP_PCI_SEGMENT: 4261 case KVM_CAP_DEBUGREGS: 4262 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4263 case KVM_CAP_XSAVE: 4264 case KVM_CAP_ASYNC_PF: 4265 case KVM_CAP_ASYNC_PF_INT: 4266 case KVM_CAP_GET_TSC_KHZ: 4267 case KVM_CAP_KVMCLOCK_CTRL: 4268 case KVM_CAP_READONLY_MEM: 4269 case KVM_CAP_HYPERV_TIME: 4270 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4271 case KVM_CAP_TSC_DEADLINE_TIMER: 4272 case KVM_CAP_DISABLE_QUIRKS: 4273 case KVM_CAP_SET_BOOT_CPU_ID: 4274 case KVM_CAP_SPLIT_IRQCHIP: 4275 case KVM_CAP_IMMEDIATE_EXIT: 4276 case KVM_CAP_PMU_EVENT_FILTER: 4277 case KVM_CAP_GET_MSR_FEATURES: 4278 case KVM_CAP_MSR_PLATFORM_INFO: 4279 case KVM_CAP_EXCEPTION_PAYLOAD: 4280 case KVM_CAP_SET_GUEST_DEBUG: 4281 case KVM_CAP_LAST_CPU: 4282 case KVM_CAP_X86_USER_SPACE_MSR: 4283 case KVM_CAP_X86_MSR_FILTER: 4284 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4285 #ifdef CONFIG_X86_SGX_KVM 4286 case KVM_CAP_SGX_ATTRIBUTE: 4287 #endif 4288 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4289 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4290 case KVM_CAP_SREGS2: 4291 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4292 case KVM_CAP_VCPU_ATTRIBUTES: 4293 case KVM_CAP_SYS_ATTRIBUTES: 4294 case KVM_CAP_VAPIC: 4295 case KVM_CAP_ENABLE_CAP: 4296 r = 1; 4297 break; 4298 case KVM_CAP_EXIT_HYPERCALL: 4299 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4300 break; 4301 case KVM_CAP_SET_GUEST_DEBUG2: 4302 return KVM_GUESTDBG_VALID_MASK; 4303 #ifdef CONFIG_KVM_XEN 4304 case KVM_CAP_XEN_HVM: 4305 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4306 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4307 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4308 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4309 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4310 if (sched_info_on()) 4311 r |= KVM_XEN_HVM_CONFIG_RUNSTATE; 4312 break; 4313 #endif 4314 case KVM_CAP_SYNC_REGS: 4315 r = KVM_SYNC_X86_VALID_FIELDS; 4316 break; 4317 case KVM_CAP_ADJUST_CLOCK: 4318 r = KVM_CLOCK_VALID_FLAGS; 4319 break; 4320 case KVM_CAP_X86_DISABLE_EXITS: 4321 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4322 KVM_X86_DISABLE_EXITS_CSTATE; 4323 if(kvm_can_mwait_in_guest()) 4324 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4325 break; 4326 case KVM_CAP_X86_SMM: 4327 /* SMBASE is usually relocated above 1M on modern chipsets, 4328 * and SMM handlers might indeed rely on 4G segment limits, 4329 * so do not report SMM to be available if real mode is 4330 * emulated via vm86 mode. Still, do not go to great lengths 4331 * to avoid userspace's usage of the feature, because it is a 4332 * fringe case that is not enabled except via specific settings 4333 * of the module parameters. 4334 */ 4335 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4336 break; 4337 case KVM_CAP_NR_VCPUS: 4338 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4339 break; 4340 case KVM_CAP_MAX_VCPUS: 4341 r = KVM_MAX_VCPUS; 4342 break; 4343 case KVM_CAP_MAX_VCPU_ID: 4344 r = KVM_MAX_VCPU_IDS; 4345 break; 4346 case KVM_CAP_PV_MMU: /* obsolete */ 4347 r = 0; 4348 break; 4349 case KVM_CAP_MCE: 4350 r = KVM_MAX_MCE_BANKS; 4351 break; 4352 case KVM_CAP_XCRS: 4353 r = boot_cpu_has(X86_FEATURE_XSAVE); 4354 break; 4355 case KVM_CAP_TSC_CONTROL: 4356 case KVM_CAP_VM_TSC_CONTROL: 4357 r = kvm_has_tsc_control; 4358 break; 4359 case KVM_CAP_X2APIC_API: 4360 r = KVM_X2APIC_API_VALID_FLAGS; 4361 break; 4362 case KVM_CAP_NESTED_STATE: 4363 r = kvm_x86_ops.nested_ops->get_state ? 4364 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4365 break; 4366 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4367 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 4368 break; 4369 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4370 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4371 break; 4372 case KVM_CAP_SMALLER_MAXPHYADDR: 4373 r = (int) allow_smaller_maxphyaddr; 4374 break; 4375 case KVM_CAP_STEAL_TIME: 4376 r = sched_info_on(); 4377 break; 4378 case KVM_CAP_X86_BUS_LOCK_EXIT: 4379 if (kvm_has_bus_lock_exit) 4380 r = KVM_BUS_LOCK_DETECTION_OFF | 4381 KVM_BUS_LOCK_DETECTION_EXIT; 4382 else 4383 r = 0; 4384 break; 4385 case KVM_CAP_XSAVE2: { 4386 u64 guest_perm = xstate_get_guest_group_perm(); 4387 4388 r = xstate_required_size(supported_xcr0 & guest_perm, false); 4389 if (r < sizeof(struct kvm_xsave)) 4390 r = sizeof(struct kvm_xsave); 4391 break; 4392 case KVM_CAP_PMU_CAPABILITY: 4393 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4394 break; 4395 } 4396 case KVM_CAP_DISABLE_QUIRKS2: 4397 r = KVM_X86_VALID_QUIRKS; 4398 break; 4399 default: 4400 break; 4401 } 4402 return r; 4403 } 4404 4405 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4406 { 4407 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4408 4409 if ((u64)(unsigned long)uaddr != attr->addr) 4410 return ERR_PTR_USR(-EFAULT); 4411 return uaddr; 4412 } 4413 4414 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4415 { 4416 u64 __user *uaddr = kvm_get_attr_addr(attr); 4417 4418 if (attr->group) 4419 return -ENXIO; 4420 4421 if (IS_ERR(uaddr)) 4422 return PTR_ERR(uaddr); 4423 4424 switch (attr->attr) { 4425 case KVM_X86_XCOMP_GUEST_SUPP: 4426 if (put_user(supported_xcr0, uaddr)) 4427 return -EFAULT; 4428 return 0; 4429 default: 4430 return -ENXIO; 4431 break; 4432 } 4433 } 4434 4435 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4436 { 4437 if (attr->group) 4438 return -ENXIO; 4439 4440 switch (attr->attr) { 4441 case KVM_X86_XCOMP_GUEST_SUPP: 4442 return 0; 4443 default: 4444 return -ENXIO; 4445 } 4446 } 4447 4448 long kvm_arch_dev_ioctl(struct file *filp, 4449 unsigned int ioctl, unsigned long arg) 4450 { 4451 void __user *argp = (void __user *)arg; 4452 long r; 4453 4454 switch (ioctl) { 4455 case KVM_GET_MSR_INDEX_LIST: { 4456 struct kvm_msr_list __user *user_msr_list = argp; 4457 struct kvm_msr_list msr_list; 4458 unsigned n; 4459 4460 r = -EFAULT; 4461 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4462 goto out; 4463 n = msr_list.nmsrs; 4464 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4465 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4466 goto out; 4467 r = -E2BIG; 4468 if (n < msr_list.nmsrs) 4469 goto out; 4470 r = -EFAULT; 4471 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4472 num_msrs_to_save * sizeof(u32))) 4473 goto out; 4474 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4475 &emulated_msrs, 4476 num_emulated_msrs * sizeof(u32))) 4477 goto out; 4478 r = 0; 4479 break; 4480 } 4481 case KVM_GET_SUPPORTED_CPUID: 4482 case KVM_GET_EMULATED_CPUID: { 4483 struct kvm_cpuid2 __user *cpuid_arg = argp; 4484 struct kvm_cpuid2 cpuid; 4485 4486 r = -EFAULT; 4487 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4488 goto out; 4489 4490 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4491 ioctl); 4492 if (r) 4493 goto out; 4494 4495 r = -EFAULT; 4496 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4497 goto out; 4498 r = 0; 4499 break; 4500 } 4501 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4502 r = -EFAULT; 4503 if (copy_to_user(argp, &kvm_mce_cap_supported, 4504 sizeof(kvm_mce_cap_supported))) 4505 goto out; 4506 r = 0; 4507 break; 4508 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4509 struct kvm_msr_list __user *user_msr_list = argp; 4510 struct kvm_msr_list msr_list; 4511 unsigned int n; 4512 4513 r = -EFAULT; 4514 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4515 goto out; 4516 n = msr_list.nmsrs; 4517 msr_list.nmsrs = num_msr_based_features; 4518 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4519 goto out; 4520 r = -E2BIG; 4521 if (n < msr_list.nmsrs) 4522 goto out; 4523 r = -EFAULT; 4524 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4525 num_msr_based_features * sizeof(u32))) 4526 goto out; 4527 r = 0; 4528 break; 4529 } 4530 case KVM_GET_MSRS: 4531 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4532 break; 4533 case KVM_GET_SUPPORTED_HV_CPUID: 4534 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4535 break; 4536 case KVM_GET_DEVICE_ATTR: { 4537 struct kvm_device_attr attr; 4538 r = -EFAULT; 4539 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4540 break; 4541 r = kvm_x86_dev_get_attr(&attr); 4542 break; 4543 } 4544 case KVM_HAS_DEVICE_ATTR: { 4545 struct kvm_device_attr attr; 4546 r = -EFAULT; 4547 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4548 break; 4549 r = kvm_x86_dev_has_attr(&attr); 4550 break; 4551 } 4552 default: 4553 r = -EINVAL; 4554 break; 4555 } 4556 out: 4557 return r; 4558 } 4559 4560 static void wbinvd_ipi(void *garbage) 4561 { 4562 wbinvd(); 4563 } 4564 4565 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4566 { 4567 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4568 } 4569 4570 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4571 { 4572 /* Address WBINVD may be executed by guest */ 4573 if (need_emulate_wbinvd(vcpu)) { 4574 if (static_call(kvm_x86_has_wbinvd_exit)()) 4575 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4576 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4577 smp_call_function_single(vcpu->cpu, 4578 wbinvd_ipi, NULL, 1); 4579 } 4580 4581 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4582 4583 /* Save host pkru register if supported */ 4584 vcpu->arch.host_pkru = read_pkru(); 4585 4586 /* Apply any externally detected TSC adjustments (due to suspend) */ 4587 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4588 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4589 vcpu->arch.tsc_offset_adjustment = 0; 4590 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4591 } 4592 4593 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4594 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4595 rdtsc() - vcpu->arch.last_host_tsc; 4596 if (tsc_delta < 0) 4597 mark_tsc_unstable("KVM discovered backwards TSC"); 4598 4599 if (kvm_check_tsc_unstable()) { 4600 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4601 vcpu->arch.last_guest_tsc); 4602 kvm_vcpu_write_tsc_offset(vcpu, offset); 4603 vcpu->arch.tsc_catchup = 1; 4604 } 4605 4606 if (kvm_lapic_hv_timer_in_use(vcpu)) 4607 kvm_lapic_restart_hv_timer(vcpu); 4608 4609 /* 4610 * On a host with synchronized TSC, there is no need to update 4611 * kvmclock on vcpu->cpu migration 4612 */ 4613 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4614 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4615 if (vcpu->cpu != cpu) 4616 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4617 vcpu->cpu = cpu; 4618 } 4619 4620 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4621 } 4622 4623 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4624 { 4625 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4626 struct kvm_steal_time __user *st; 4627 struct kvm_memslots *slots; 4628 static const u8 preempted = KVM_VCPU_PREEMPTED; 4629 4630 /* 4631 * The vCPU can be marked preempted if and only if the VM-Exit was on 4632 * an instruction boundary and will not trigger guest emulation of any 4633 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4634 * when this is true, for example allowing the vCPU to be marked 4635 * preempted if and only if the VM-Exit was due to a host interrupt. 4636 */ 4637 if (!vcpu->arch.at_instruction_boundary) { 4638 vcpu->stat.preemption_other++; 4639 return; 4640 } 4641 4642 vcpu->stat.preemption_reported++; 4643 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4644 return; 4645 4646 if (vcpu->arch.st.preempted) 4647 return; 4648 4649 /* This happens on process exit */ 4650 if (unlikely(current->mm != vcpu->kvm->mm)) 4651 return; 4652 4653 slots = kvm_memslots(vcpu->kvm); 4654 4655 if (unlikely(slots->generation != ghc->generation || 4656 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4657 return; 4658 4659 st = (struct kvm_steal_time __user *)ghc->hva; 4660 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4661 4662 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4663 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4664 4665 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4666 } 4667 4668 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4669 { 4670 int idx; 4671 4672 if (vcpu->preempted) { 4673 if (!vcpu->arch.guest_state_protected) 4674 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4675 4676 /* 4677 * Take the srcu lock as memslots will be accessed to check the gfn 4678 * cache generation against the memslots generation. 4679 */ 4680 idx = srcu_read_lock(&vcpu->kvm->srcu); 4681 if (kvm_xen_msr_enabled(vcpu->kvm)) 4682 kvm_xen_runstate_set_preempted(vcpu); 4683 else 4684 kvm_steal_time_set_preempted(vcpu); 4685 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4686 } 4687 4688 static_call(kvm_x86_vcpu_put)(vcpu); 4689 vcpu->arch.last_host_tsc = rdtsc(); 4690 } 4691 4692 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4693 struct kvm_lapic_state *s) 4694 { 4695 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4696 4697 return kvm_apic_get_state(vcpu, s); 4698 } 4699 4700 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4701 struct kvm_lapic_state *s) 4702 { 4703 int r; 4704 4705 r = kvm_apic_set_state(vcpu, s); 4706 if (r) 4707 return r; 4708 update_cr8_intercept(vcpu); 4709 4710 return 0; 4711 } 4712 4713 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4714 { 4715 /* 4716 * We can accept userspace's request for interrupt injection 4717 * as long as we have a place to store the interrupt number. 4718 * The actual injection will happen when the CPU is able to 4719 * deliver the interrupt. 4720 */ 4721 if (kvm_cpu_has_extint(vcpu)) 4722 return false; 4723 4724 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4725 return (!lapic_in_kernel(vcpu) || 4726 kvm_apic_accept_pic_intr(vcpu)); 4727 } 4728 4729 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4730 { 4731 /* 4732 * Do not cause an interrupt window exit if an exception 4733 * is pending or an event needs reinjection; userspace 4734 * might want to inject the interrupt manually using KVM_SET_REGS 4735 * or KVM_SET_SREGS. For that to work, we must be at an 4736 * instruction boundary and with no events half-injected. 4737 */ 4738 return (kvm_arch_interrupt_allowed(vcpu) && 4739 kvm_cpu_accept_dm_intr(vcpu) && 4740 !kvm_event_needs_reinjection(vcpu) && 4741 !vcpu->arch.exception.pending); 4742 } 4743 4744 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4745 struct kvm_interrupt *irq) 4746 { 4747 if (irq->irq >= KVM_NR_INTERRUPTS) 4748 return -EINVAL; 4749 4750 if (!irqchip_in_kernel(vcpu->kvm)) { 4751 kvm_queue_interrupt(vcpu, irq->irq, false); 4752 kvm_make_request(KVM_REQ_EVENT, vcpu); 4753 return 0; 4754 } 4755 4756 /* 4757 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4758 * fail for in-kernel 8259. 4759 */ 4760 if (pic_in_kernel(vcpu->kvm)) 4761 return -ENXIO; 4762 4763 if (vcpu->arch.pending_external_vector != -1) 4764 return -EEXIST; 4765 4766 vcpu->arch.pending_external_vector = irq->irq; 4767 kvm_make_request(KVM_REQ_EVENT, vcpu); 4768 return 0; 4769 } 4770 4771 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4772 { 4773 kvm_inject_nmi(vcpu); 4774 4775 return 0; 4776 } 4777 4778 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4779 { 4780 kvm_make_request(KVM_REQ_SMI, vcpu); 4781 4782 return 0; 4783 } 4784 4785 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4786 struct kvm_tpr_access_ctl *tac) 4787 { 4788 if (tac->flags) 4789 return -EINVAL; 4790 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4791 return 0; 4792 } 4793 4794 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4795 u64 mcg_cap) 4796 { 4797 int r; 4798 unsigned bank_num = mcg_cap & 0xff, bank; 4799 4800 r = -EINVAL; 4801 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4802 goto out; 4803 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 4804 goto out; 4805 r = 0; 4806 vcpu->arch.mcg_cap = mcg_cap; 4807 /* Init IA32_MCG_CTL to all 1s */ 4808 if (mcg_cap & MCG_CTL_P) 4809 vcpu->arch.mcg_ctl = ~(u64)0; 4810 /* Init IA32_MCi_CTL to all 1s */ 4811 for (bank = 0; bank < bank_num; bank++) 4812 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4813 4814 static_call(kvm_x86_setup_mce)(vcpu); 4815 out: 4816 return r; 4817 } 4818 4819 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4820 struct kvm_x86_mce *mce) 4821 { 4822 u64 mcg_cap = vcpu->arch.mcg_cap; 4823 unsigned bank_num = mcg_cap & 0xff; 4824 u64 *banks = vcpu->arch.mce_banks; 4825 4826 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4827 return -EINVAL; 4828 /* 4829 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4830 * reporting is disabled 4831 */ 4832 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4833 vcpu->arch.mcg_ctl != ~(u64)0) 4834 return 0; 4835 banks += 4 * mce->bank; 4836 /* 4837 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4838 * reporting is disabled for the bank 4839 */ 4840 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4841 return 0; 4842 if (mce->status & MCI_STATUS_UC) { 4843 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4844 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4845 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4846 return 0; 4847 } 4848 if (banks[1] & MCI_STATUS_VAL) 4849 mce->status |= MCI_STATUS_OVER; 4850 banks[2] = mce->addr; 4851 banks[3] = mce->misc; 4852 vcpu->arch.mcg_status = mce->mcg_status; 4853 banks[1] = mce->status; 4854 kvm_queue_exception(vcpu, MC_VECTOR); 4855 } else if (!(banks[1] & MCI_STATUS_VAL) 4856 || !(banks[1] & MCI_STATUS_UC)) { 4857 if (banks[1] & MCI_STATUS_VAL) 4858 mce->status |= MCI_STATUS_OVER; 4859 banks[2] = mce->addr; 4860 banks[3] = mce->misc; 4861 banks[1] = mce->status; 4862 } else 4863 banks[1] |= MCI_STATUS_OVER; 4864 return 0; 4865 } 4866 4867 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 4868 struct kvm_vcpu_events *events) 4869 { 4870 process_nmi(vcpu); 4871 4872 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 4873 process_smi(vcpu); 4874 4875 /* 4876 * In guest mode, payload delivery should be deferred, 4877 * so that the L1 hypervisor can intercept #PF before 4878 * CR2 is modified (or intercept #DB before DR6 is 4879 * modified under nVMX). Unless the per-VM capability, 4880 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 4881 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 4882 * opportunistically defer the exception payload, deliver it if the 4883 * capability hasn't been requested before processing a 4884 * KVM_GET_VCPU_EVENTS. 4885 */ 4886 if (!vcpu->kvm->arch.exception_payload_enabled && 4887 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 4888 kvm_deliver_exception_payload(vcpu); 4889 4890 /* 4891 * The API doesn't provide the instruction length for software 4892 * exceptions, so don't report them. As long as the guest RIP 4893 * isn't advanced, we should expect to encounter the exception 4894 * again. 4895 */ 4896 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 4897 events->exception.injected = 0; 4898 events->exception.pending = 0; 4899 } else { 4900 events->exception.injected = vcpu->arch.exception.injected; 4901 events->exception.pending = vcpu->arch.exception.pending; 4902 /* 4903 * For ABI compatibility, deliberately conflate 4904 * pending and injected exceptions when 4905 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4906 */ 4907 if (!vcpu->kvm->arch.exception_payload_enabled) 4908 events->exception.injected |= 4909 vcpu->arch.exception.pending; 4910 } 4911 events->exception.nr = vcpu->arch.exception.nr; 4912 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4913 events->exception.error_code = vcpu->arch.exception.error_code; 4914 events->exception_has_payload = vcpu->arch.exception.has_payload; 4915 events->exception_payload = vcpu->arch.exception.payload; 4916 4917 events->interrupt.injected = 4918 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4919 events->interrupt.nr = vcpu->arch.interrupt.nr; 4920 events->interrupt.soft = 0; 4921 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 4922 4923 events->nmi.injected = vcpu->arch.nmi_injected; 4924 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4925 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 4926 events->nmi.pad = 0; 4927 4928 events->sipi_vector = 0; /* never valid when reporting to user space */ 4929 4930 events->smi.smm = is_smm(vcpu); 4931 events->smi.pending = vcpu->arch.smi_pending; 4932 events->smi.smm_inside_nmi = 4933 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4934 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4935 4936 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4937 | KVM_VCPUEVENT_VALID_SHADOW 4938 | KVM_VCPUEVENT_VALID_SMM); 4939 if (vcpu->kvm->arch.exception_payload_enabled) 4940 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4941 4942 memset(&events->reserved, 0, sizeof(events->reserved)); 4943 } 4944 4945 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm); 4946 4947 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4948 struct kvm_vcpu_events *events) 4949 { 4950 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4951 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4952 | KVM_VCPUEVENT_VALID_SHADOW 4953 | KVM_VCPUEVENT_VALID_SMM 4954 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4955 return -EINVAL; 4956 4957 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4958 if (!vcpu->kvm->arch.exception_payload_enabled) 4959 return -EINVAL; 4960 if (events->exception.pending) 4961 events->exception.injected = 0; 4962 else 4963 events->exception_has_payload = 0; 4964 } else { 4965 events->exception.pending = 0; 4966 events->exception_has_payload = 0; 4967 } 4968 4969 if ((events->exception.injected || events->exception.pending) && 4970 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4971 return -EINVAL; 4972 4973 /* INITs are latched while in SMM */ 4974 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4975 (events->smi.smm || events->smi.pending) && 4976 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4977 return -EINVAL; 4978 4979 process_nmi(vcpu); 4980 vcpu->arch.exception.injected = events->exception.injected; 4981 vcpu->arch.exception.pending = events->exception.pending; 4982 vcpu->arch.exception.nr = events->exception.nr; 4983 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4984 vcpu->arch.exception.error_code = events->exception.error_code; 4985 vcpu->arch.exception.has_payload = events->exception_has_payload; 4986 vcpu->arch.exception.payload = events->exception_payload; 4987 4988 vcpu->arch.interrupt.injected = events->interrupt.injected; 4989 vcpu->arch.interrupt.nr = events->interrupt.nr; 4990 vcpu->arch.interrupt.soft = events->interrupt.soft; 4991 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4992 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 4993 events->interrupt.shadow); 4994 4995 vcpu->arch.nmi_injected = events->nmi.injected; 4996 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4997 vcpu->arch.nmi_pending = events->nmi.pending; 4998 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 4999 5000 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5001 lapic_in_kernel(vcpu)) 5002 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5003 5004 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5005 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5006 kvm_x86_ops.nested_ops->leave_nested(vcpu); 5007 kvm_smm_changed(vcpu, events->smi.smm); 5008 } 5009 5010 vcpu->arch.smi_pending = events->smi.pending; 5011 5012 if (events->smi.smm) { 5013 if (events->smi.smm_inside_nmi) 5014 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5015 else 5016 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5017 } 5018 5019 if (lapic_in_kernel(vcpu)) { 5020 if (events->smi.latched_init) 5021 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5022 else 5023 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5024 } 5025 } 5026 5027 kvm_make_request(KVM_REQ_EVENT, vcpu); 5028 5029 return 0; 5030 } 5031 5032 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5033 struct kvm_debugregs *dbgregs) 5034 { 5035 unsigned long val; 5036 5037 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5038 kvm_get_dr(vcpu, 6, &val); 5039 dbgregs->dr6 = val; 5040 dbgregs->dr7 = vcpu->arch.dr7; 5041 dbgregs->flags = 0; 5042 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5043 } 5044 5045 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5046 struct kvm_debugregs *dbgregs) 5047 { 5048 if (dbgregs->flags) 5049 return -EINVAL; 5050 5051 if (!kvm_dr6_valid(dbgregs->dr6)) 5052 return -EINVAL; 5053 if (!kvm_dr7_valid(dbgregs->dr7)) 5054 return -EINVAL; 5055 5056 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5057 kvm_update_dr0123(vcpu); 5058 vcpu->arch.dr6 = dbgregs->dr6; 5059 vcpu->arch.dr7 = dbgregs->dr7; 5060 kvm_update_dr7(vcpu); 5061 5062 return 0; 5063 } 5064 5065 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5066 struct kvm_xsave *guest_xsave) 5067 { 5068 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5069 return; 5070 5071 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5072 guest_xsave->region, 5073 sizeof(guest_xsave->region), 5074 vcpu->arch.pkru); 5075 } 5076 5077 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5078 u8 *state, unsigned int size) 5079 { 5080 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5081 return; 5082 5083 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5084 state, size, vcpu->arch.pkru); 5085 } 5086 5087 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5088 struct kvm_xsave *guest_xsave) 5089 { 5090 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5091 return 0; 5092 5093 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5094 guest_xsave->region, 5095 supported_xcr0, &vcpu->arch.pkru); 5096 } 5097 5098 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5099 struct kvm_xcrs *guest_xcrs) 5100 { 5101 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5102 guest_xcrs->nr_xcrs = 0; 5103 return; 5104 } 5105 5106 guest_xcrs->nr_xcrs = 1; 5107 guest_xcrs->flags = 0; 5108 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5109 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5110 } 5111 5112 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5113 struct kvm_xcrs *guest_xcrs) 5114 { 5115 int i, r = 0; 5116 5117 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5118 return -EINVAL; 5119 5120 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5121 return -EINVAL; 5122 5123 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5124 /* Only support XCR0 currently */ 5125 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5126 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5127 guest_xcrs->xcrs[i].value); 5128 break; 5129 } 5130 if (r) 5131 r = -EINVAL; 5132 return r; 5133 } 5134 5135 /* 5136 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5137 * stopped by the hypervisor. This function will be called from the host only. 5138 * EINVAL is returned when the host attempts to set the flag for a guest that 5139 * does not support pv clocks. 5140 */ 5141 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5142 { 5143 if (!vcpu->arch.pv_time.active) 5144 return -EINVAL; 5145 vcpu->arch.pvclock_set_guest_stopped_request = true; 5146 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5147 return 0; 5148 } 5149 5150 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5151 struct kvm_device_attr *attr) 5152 { 5153 int r; 5154 5155 switch (attr->attr) { 5156 case KVM_VCPU_TSC_OFFSET: 5157 r = 0; 5158 break; 5159 default: 5160 r = -ENXIO; 5161 } 5162 5163 return r; 5164 } 5165 5166 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5167 struct kvm_device_attr *attr) 5168 { 5169 u64 __user *uaddr = kvm_get_attr_addr(attr); 5170 int r; 5171 5172 if (IS_ERR(uaddr)) 5173 return PTR_ERR(uaddr); 5174 5175 switch (attr->attr) { 5176 case KVM_VCPU_TSC_OFFSET: 5177 r = -EFAULT; 5178 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5179 break; 5180 r = 0; 5181 break; 5182 default: 5183 r = -ENXIO; 5184 } 5185 5186 return r; 5187 } 5188 5189 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5190 struct kvm_device_attr *attr) 5191 { 5192 u64 __user *uaddr = kvm_get_attr_addr(attr); 5193 struct kvm *kvm = vcpu->kvm; 5194 int r; 5195 5196 if (IS_ERR(uaddr)) 5197 return PTR_ERR(uaddr); 5198 5199 switch (attr->attr) { 5200 case KVM_VCPU_TSC_OFFSET: { 5201 u64 offset, tsc, ns; 5202 unsigned long flags; 5203 bool matched; 5204 5205 r = -EFAULT; 5206 if (get_user(offset, uaddr)) 5207 break; 5208 5209 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5210 5211 matched = (vcpu->arch.virtual_tsc_khz && 5212 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5213 kvm->arch.last_tsc_offset == offset); 5214 5215 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5216 ns = get_kvmclock_base_ns(); 5217 5218 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5219 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5220 5221 r = 0; 5222 break; 5223 } 5224 default: 5225 r = -ENXIO; 5226 } 5227 5228 return r; 5229 } 5230 5231 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5232 unsigned int ioctl, 5233 void __user *argp) 5234 { 5235 struct kvm_device_attr attr; 5236 int r; 5237 5238 if (copy_from_user(&attr, argp, sizeof(attr))) 5239 return -EFAULT; 5240 5241 if (attr.group != KVM_VCPU_TSC_CTRL) 5242 return -ENXIO; 5243 5244 switch (ioctl) { 5245 case KVM_HAS_DEVICE_ATTR: 5246 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5247 break; 5248 case KVM_GET_DEVICE_ATTR: 5249 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5250 break; 5251 case KVM_SET_DEVICE_ATTR: 5252 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5253 break; 5254 } 5255 5256 return r; 5257 } 5258 5259 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5260 struct kvm_enable_cap *cap) 5261 { 5262 int r; 5263 uint16_t vmcs_version; 5264 void __user *user_ptr; 5265 5266 if (cap->flags) 5267 return -EINVAL; 5268 5269 switch (cap->cap) { 5270 case KVM_CAP_HYPERV_SYNIC2: 5271 if (cap->args[0]) 5272 return -EINVAL; 5273 fallthrough; 5274 5275 case KVM_CAP_HYPERV_SYNIC: 5276 if (!irqchip_in_kernel(vcpu->kvm)) 5277 return -EINVAL; 5278 return kvm_hv_activate_synic(vcpu, cap->cap == 5279 KVM_CAP_HYPERV_SYNIC2); 5280 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5281 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5282 return -ENOTTY; 5283 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5284 if (!r) { 5285 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5286 if (copy_to_user(user_ptr, &vmcs_version, 5287 sizeof(vmcs_version))) 5288 r = -EFAULT; 5289 } 5290 return r; 5291 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5292 if (!kvm_x86_ops.enable_direct_tlbflush) 5293 return -ENOTTY; 5294 5295 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu); 5296 5297 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5298 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5299 5300 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5301 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5302 if (vcpu->arch.pv_cpuid.enforce) 5303 kvm_update_pv_runtime(vcpu); 5304 5305 return 0; 5306 default: 5307 return -EINVAL; 5308 } 5309 } 5310 5311 long kvm_arch_vcpu_ioctl(struct file *filp, 5312 unsigned int ioctl, unsigned long arg) 5313 { 5314 struct kvm_vcpu *vcpu = filp->private_data; 5315 void __user *argp = (void __user *)arg; 5316 int r; 5317 union { 5318 struct kvm_sregs2 *sregs2; 5319 struct kvm_lapic_state *lapic; 5320 struct kvm_xsave *xsave; 5321 struct kvm_xcrs *xcrs; 5322 void *buffer; 5323 } u; 5324 5325 vcpu_load(vcpu); 5326 5327 u.buffer = NULL; 5328 switch (ioctl) { 5329 case KVM_GET_LAPIC: { 5330 r = -EINVAL; 5331 if (!lapic_in_kernel(vcpu)) 5332 goto out; 5333 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5334 GFP_KERNEL_ACCOUNT); 5335 5336 r = -ENOMEM; 5337 if (!u.lapic) 5338 goto out; 5339 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5340 if (r) 5341 goto out; 5342 r = -EFAULT; 5343 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5344 goto out; 5345 r = 0; 5346 break; 5347 } 5348 case KVM_SET_LAPIC: { 5349 r = -EINVAL; 5350 if (!lapic_in_kernel(vcpu)) 5351 goto out; 5352 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5353 if (IS_ERR(u.lapic)) { 5354 r = PTR_ERR(u.lapic); 5355 goto out_nofree; 5356 } 5357 5358 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5359 break; 5360 } 5361 case KVM_INTERRUPT: { 5362 struct kvm_interrupt irq; 5363 5364 r = -EFAULT; 5365 if (copy_from_user(&irq, argp, sizeof(irq))) 5366 goto out; 5367 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5368 break; 5369 } 5370 case KVM_NMI: { 5371 r = kvm_vcpu_ioctl_nmi(vcpu); 5372 break; 5373 } 5374 case KVM_SMI: { 5375 r = kvm_vcpu_ioctl_smi(vcpu); 5376 break; 5377 } 5378 case KVM_SET_CPUID: { 5379 struct kvm_cpuid __user *cpuid_arg = argp; 5380 struct kvm_cpuid cpuid; 5381 5382 r = -EFAULT; 5383 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5384 goto out; 5385 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5386 break; 5387 } 5388 case KVM_SET_CPUID2: { 5389 struct kvm_cpuid2 __user *cpuid_arg = argp; 5390 struct kvm_cpuid2 cpuid; 5391 5392 r = -EFAULT; 5393 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5394 goto out; 5395 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5396 cpuid_arg->entries); 5397 break; 5398 } 5399 case KVM_GET_CPUID2: { 5400 struct kvm_cpuid2 __user *cpuid_arg = argp; 5401 struct kvm_cpuid2 cpuid; 5402 5403 r = -EFAULT; 5404 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5405 goto out; 5406 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5407 cpuid_arg->entries); 5408 if (r) 5409 goto out; 5410 r = -EFAULT; 5411 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5412 goto out; 5413 r = 0; 5414 break; 5415 } 5416 case KVM_GET_MSRS: { 5417 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5418 r = msr_io(vcpu, argp, do_get_msr, 1); 5419 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5420 break; 5421 } 5422 case KVM_SET_MSRS: { 5423 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5424 r = msr_io(vcpu, argp, do_set_msr, 0); 5425 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5426 break; 5427 } 5428 case KVM_TPR_ACCESS_REPORTING: { 5429 struct kvm_tpr_access_ctl tac; 5430 5431 r = -EFAULT; 5432 if (copy_from_user(&tac, argp, sizeof(tac))) 5433 goto out; 5434 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5435 if (r) 5436 goto out; 5437 r = -EFAULT; 5438 if (copy_to_user(argp, &tac, sizeof(tac))) 5439 goto out; 5440 r = 0; 5441 break; 5442 }; 5443 case KVM_SET_VAPIC_ADDR: { 5444 struct kvm_vapic_addr va; 5445 int idx; 5446 5447 r = -EINVAL; 5448 if (!lapic_in_kernel(vcpu)) 5449 goto out; 5450 r = -EFAULT; 5451 if (copy_from_user(&va, argp, sizeof(va))) 5452 goto out; 5453 idx = srcu_read_lock(&vcpu->kvm->srcu); 5454 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5455 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5456 break; 5457 } 5458 case KVM_X86_SETUP_MCE: { 5459 u64 mcg_cap; 5460 5461 r = -EFAULT; 5462 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5463 goto out; 5464 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5465 break; 5466 } 5467 case KVM_X86_SET_MCE: { 5468 struct kvm_x86_mce mce; 5469 5470 r = -EFAULT; 5471 if (copy_from_user(&mce, argp, sizeof(mce))) 5472 goto out; 5473 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5474 break; 5475 } 5476 case KVM_GET_VCPU_EVENTS: { 5477 struct kvm_vcpu_events events; 5478 5479 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5480 5481 r = -EFAULT; 5482 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5483 break; 5484 r = 0; 5485 break; 5486 } 5487 case KVM_SET_VCPU_EVENTS: { 5488 struct kvm_vcpu_events events; 5489 5490 r = -EFAULT; 5491 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5492 break; 5493 5494 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5495 break; 5496 } 5497 case KVM_GET_DEBUGREGS: { 5498 struct kvm_debugregs dbgregs; 5499 5500 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5501 5502 r = -EFAULT; 5503 if (copy_to_user(argp, &dbgregs, 5504 sizeof(struct kvm_debugregs))) 5505 break; 5506 r = 0; 5507 break; 5508 } 5509 case KVM_SET_DEBUGREGS: { 5510 struct kvm_debugregs dbgregs; 5511 5512 r = -EFAULT; 5513 if (copy_from_user(&dbgregs, argp, 5514 sizeof(struct kvm_debugregs))) 5515 break; 5516 5517 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5518 break; 5519 } 5520 case KVM_GET_XSAVE: { 5521 r = -EINVAL; 5522 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5523 break; 5524 5525 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5526 r = -ENOMEM; 5527 if (!u.xsave) 5528 break; 5529 5530 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5531 5532 r = -EFAULT; 5533 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5534 break; 5535 r = 0; 5536 break; 5537 } 5538 case KVM_SET_XSAVE: { 5539 int size = vcpu->arch.guest_fpu.uabi_size; 5540 5541 u.xsave = memdup_user(argp, size); 5542 if (IS_ERR(u.xsave)) { 5543 r = PTR_ERR(u.xsave); 5544 goto out_nofree; 5545 } 5546 5547 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5548 break; 5549 } 5550 5551 case KVM_GET_XSAVE2: { 5552 int size = vcpu->arch.guest_fpu.uabi_size; 5553 5554 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5555 r = -ENOMEM; 5556 if (!u.xsave) 5557 break; 5558 5559 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5560 5561 r = -EFAULT; 5562 if (copy_to_user(argp, u.xsave, size)) 5563 break; 5564 5565 r = 0; 5566 break; 5567 } 5568 5569 case KVM_GET_XCRS: { 5570 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5571 r = -ENOMEM; 5572 if (!u.xcrs) 5573 break; 5574 5575 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5576 5577 r = -EFAULT; 5578 if (copy_to_user(argp, u.xcrs, 5579 sizeof(struct kvm_xcrs))) 5580 break; 5581 r = 0; 5582 break; 5583 } 5584 case KVM_SET_XCRS: { 5585 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5586 if (IS_ERR(u.xcrs)) { 5587 r = PTR_ERR(u.xcrs); 5588 goto out_nofree; 5589 } 5590 5591 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5592 break; 5593 } 5594 case KVM_SET_TSC_KHZ: { 5595 u32 user_tsc_khz; 5596 5597 r = -EINVAL; 5598 user_tsc_khz = (u32)arg; 5599 5600 if (kvm_has_tsc_control && 5601 user_tsc_khz >= kvm_max_guest_tsc_khz) 5602 goto out; 5603 5604 if (user_tsc_khz == 0) 5605 user_tsc_khz = tsc_khz; 5606 5607 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5608 r = 0; 5609 5610 goto out; 5611 } 5612 case KVM_GET_TSC_KHZ: { 5613 r = vcpu->arch.virtual_tsc_khz; 5614 goto out; 5615 } 5616 case KVM_KVMCLOCK_CTRL: { 5617 r = kvm_set_guest_paused(vcpu); 5618 goto out; 5619 } 5620 case KVM_ENABLE_CAP: { 5621 struct kvm_enable_cap cap; 5622 5623 r = -EFAULT; 5624 if (copy_from_user(&cap, argp, sizeof(cap))) 5625 goto out; 5626 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5627 break; 5628 } 5629 case KVM_GET_NESTED_STATE: { 5630 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5631 u32 user_data_size; 5632 5633 r = -EINVAL; 5634 if (!kvm_x86_ops.nested_ops->get_state) 5635 break; 5636 5637 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5638 r = -EFAULT; 5639 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5640 break; 5641 5642 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5643 user_data_size); 5644 if (r < 0) 5645 break; 5646 5647 if (r > user_data_size) { 5648 if (put_user(r, &user_kvm_nested_state->size)) 5649 r = -EFAULT; 5650 else 5651 r = -E2BIG; 5652 break; 5653 } 5654 5655 r = 0; 5656 break; 5657 } 5658 case KVM_SET_NESTED_STATE: { 5659 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5660 struct kvm_nested_state kvm_state; 5661 int idx; 5662 5663 r = -EINVAL; 5664 if (!kvm_x86_ops.nested_ops->set_state) 5665 break; 5666 5667 r = -EFAULT; 5668 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5669 break; 5670 5671 r = -EINVAL; 5672 if (kvm_state.size < sizeof(kvm_state)) 5673 break; 5674 5675 if (kvm_state.flags & 5676 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5677 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5678 | KVM_STATE_NESTED_GIF_SET)) 5679 break; 5680 5681 /* nested_run_pending implies guest_mode. */ 5682 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5683 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5684 break; 5685 5686 idx = srcu_read_lock(&vcpu->kvm->srcu); 5687 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5688 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5689 break; 5690 } 5691 case KVM_GET_SUPPORTED_HV_CPUID: 5692 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5693 break; 5694 #ifdef CONFIG_KVM_XEN 5695 case KVM_XEN_VCPU_GET_ATTR: { 5696 struct kvm_xen_vcpu_attr xva; 5697 5698 r = -EFAULT; 5699 if (copy_from_user(&xva, argp, sizeof(xva))) 5700 goto out; 5701 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5702 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5703 r = -EFAULT; 5704 break; 5705 } 5706 case KVM_XEN_VCPU_SET_ATTR: { 5707 struct kvm_xen_vcpu_attr xva; 5708 5709 r = -EFAULT; 5710 if (copy_from_user(&xva, argp, sizeof(xva))) 5711 goto out; 5712 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5713 break; 5714 } 5715 #endif 5716 case KVM_GET_SREGS2: { 5717 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5718 r = -ENOMEM; 5719 if (!u.sregs2) 5720 goto out; 5721 __get_sregs2(vcpu, u.sregs2); 5722 r = -EFAULT; 5723 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5724 goto out; 5725 r = 0; 5726 break; 5727 } 5728 case KVM_SET_SREGS2: { 5729 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5730 if (IS_ERR(u.sregs2)) { 5731 r = PTR_ERR(u.sregs2); 5732 u.sregs2 = NULL; 5733 goto out; 5734 } 5735 r = __set_sregs2(vcpu, u.sregs2); 5736 break; 5737 } 5738 case KVM_HAS_DEVICE_ATTR: 5739 case KVM_GET_DEVICE_ATTR: 5740 case KVM_SET_DEVICE_ATTR: 5741 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5742 break; 5743 default: 5744 r = -EINVAL; 5745 } 5746 out: 5747 kfree(u.buffer); 5748 out_nofree: 5749 vcpu_put(vcpu); 5750 return r; 5751 } 5752 5753 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5754 { 5755 return VM_FAULT_SIGBUS; 5756 } 5757 5758 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5759 { 5760 int ret; 5761 5762 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5763 return -EINVAL; 5764 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5765 return ret; 5766 } 5767 5768 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5769 u64 ident_addr) 5770 { 5771 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5772 } 5773 5774 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5775 unsigned long kvm_nr_mmu_pages) 5776 { 5777 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5778 return -EINVAL; 5779 5780 mutex_lock(&kvm->slots_lock); 5781 5782 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5783 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5784 5785 mutex_unlock(&kvm->slots_lock); 5786 return 0; 5787 } 5788 5789 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5790 { 5791 return kvm->arch.n_max_mmu_pages; 5792 } 5793 5794 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5795 { 5796 struct kvm_pic *pic = kvm->arch.vpic; 5797 int r; 5798 5799 r = 0; 5800 switch (chip->chip_id) { 5801 case KVM_IRQCHIP_PIC_MASTER: 5802 memcpy(&chip->chip.pic, &pic->pics[0], 5803 sizeof(struct kvm_pic_state)); 5804 break; 5805 case KVM_IRQCHIP_PIC_SLAVE: 5806 memcpy(&chip->chip.pic, &pic->pics[1], 5807 sizeof(struct kvm_pic_state)); 5808 break; 5809 case KVM_IRQCHIP_IOAPIC: 5810 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5811 break; 5812 default: 5813 r = -EINVAL; 5814 break; 5815 } 5816 return r; 5817 } 5818 5819 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5820 { 5821 struct kvm_pic *pic = kvm->arch.vpic; 5822 int r; 5823 5824 r = 0; 5825 switch (chip->chip_id) { 5826 case KVM_IRQCHIP_PIC_MASTER: 5827 spin_lock(&pic->lock); 5828 memcpy(&pic->pics[0], &chip->chip.pic, 5829 sizeof(struct kvm_pic_state)); 5830 spin_unlock(&pic->lock); 5831 break; 5832 case KVM_IRQCHIP_PIC_SLAVE: 5833 spin_lock(&pic->lock); 5834 memcpy(&pic->pics[1], &chip->chip.pic, 5835 sizeof(struct kvm_pic_state)); 5836 spin_unlock(&pic->lock); 5837 break; 5838 case KVM_IRQCHIP_IOAPIC: 5839 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5840 break; 5841 default: 5842 r = -EINVAL; 5843 break; 5844 } 5845 kvm_pic_update_irq(pic); 5846 return r; 5847 } 5848 5849 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5850 { 5851 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 5852 5853 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 5854 5855 mutex_lock(&kps->lock); 5856 memcpy(ps, &kps->channels, sizeof(*ps)); 5857 mutex_unlock(&kps->lock); 5858 return 0; 5859 } 5860 5861 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5862 { 5863 int i; 5864 struct kvm_pit *pit = kvm->arch.vpit; 5865 5866 mutex_lock(&pit->pit_state.lock); 5867 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 5868 for (i = 0; i < 3; i++) 5869 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 5870 mutex_unlock(&pit->pit_state.lock); 5871 return 0; 5872 } 5873 5874 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5875 { 5876 mutex_lock(&kvm->arch.vpit->pit_state.lock); 5877 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 5878 sizeof(ps->channels)); 5879 ps->flags = kvm->arch.vpit->pit_state.flags; 5880 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 5881 memset(&ps->reserved, 0, sizeof(ps->reserved)); 5882 return 0; 5883 } 5884 5885 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5886 { 5887 int start = 0; 5888 int i; 5889 u32 prev_legacy, cur_legacy; 5890 struct kvm_pit *pit = kvm->arch.vpit; 5891 5892 mutex_lock(&pit->pit_state.lock); 5893 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 5894 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 5895 if (!prev_legacy && cur_legacy) 5896 start = 1; 5897 memcpy(&pit->pit_state.channels, &ps->channels, 5898 sizeof(pit->pit_state.channels)); 5899 pit->pit_state.flags = ps->flags; 5900 for (i = 0; i < 3; i++) 5901 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 5902 start && i == 0); 5903 mutex_unlock(&pit->pit_state.lock); 5904 return 0; 5905 } 5906 5907 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 5908 struct kvm_reinject_control *control) 5909 { 5910 struct kvm_pit *pit = kvm->arch.vpit; 5911 5912 /* pit->pit_state.lock was overloaded to prevent userspace from getting 5913 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 5914 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 5915 */ 5916 mutex_lock(&pit->pit_state.lock); 5917 kvm_pit_set_reinject(pit, control->pit_reinject); 5918 mutex_unlock(&pit->pit_state.lock); 5919 5920 return 0; 5921 } 5922 5923 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 5924 { 5925 5926 /* 5927 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 5928 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 5929 * on all VM-Exits, thus we only need to kick running vCPUs to force a 5930 * VM-Exit. 5931 */ 5932 struct kvm_vcpu *vcpu; 5933 unsigned long i; 5934 5935 kvm_for_each_vcpu(i, vcpu, kvm) 5936 kvm_vcpu_kick(vcpu); 5937 } 5938 5939 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 5940 bool line_status) 5941 { 5942 if (!irqchip_in_kernel(kvm)) 5943 return -ENXIO; 5944 5945 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 5946 irq_event->irq, irq_event->level, 5947 line_status); 5948 return 0; 5949 } 5950 5951 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5952 struct kvm_enable_cap *cap) 5953 { 5954 int r; 5955 5956 if (cap->flags) 5957 return -EINVAL; 5958 5959 switch (cap->cap) { 5960 case KVM_CAP_DISABLE_QUIRKS2: 5961 r = -EINVAL; 5962 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 5963 break; 5964 fallthrough; 5965 case KVM_CAP_DISABLE_QUIRKS: 5966 kvm->arch.disabled_quirks = cap->args[0]; 5967 r = 0; 5968 break; 5969 case KVM_CAP_SPLIT_IRQCHIP: { 5970 mutex_lock(&kvm->lock); 5971 r = -EINVAL; 5972 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 5973 goto split_irqchip_unlock; 5974 r = -EEXIST; 5975 if (irqchip_in_kernel(kvm)) 5976 goto split_irqchip_unlock; 5977 if (kvm->created_vcpus) 5978 goto split_irqchip_unlock; 5979 r = kvm_setup_empty_irq_routing(kvm); 5980 if (r) 5981 goto split_irqchip_unlock; 5982 /* Pairs with irqchip_in_kernel. */ 5983 smp_wmb(); 5984 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 5985 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 5986 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 5987 r = 0; 5988 split_irqchip_unlock: 5989 mutex_unlock(&kvm->lock); 5990 break; 5991 } 5992 case KVM_CAP_X2APIC_API: 5993 r = -EINVAL; 5994 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 5995 break; 5996 5997 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 5998 kvm->arch.x2apic_format = true; 5999 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6000 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6001 6002 r = 0; 6003 break; 6004 case KVM_CAP_X86_DISABLE_EXITS: 6005 r = -EINVAL; 6006 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6007 break; 6008 6009 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6010 kvm_can_mwait_in_guest()) 6011 kvm->arch.mwait_in_guest = true; 6012 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6013 kvm->arch.hlt_in_guest = true; 6014 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6015 kvm->arch.pause_in_guest = true; 6016 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6017 kvm->arch.cstate_in_guest = true; 6018 r = 0; 6019 break; 6020 case KVM_CAP_MSR_PLATFORM_INFO: 6021 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6022 r = 0; 6023 break; 6024 case KVM_CAP_EXCEPTION_PAYLOAD: 6025 kvm->arch.exception_payload_enabled = cap->args[0]; 6026 r = 0; 6027 break; 6028 case KVM_CAP_X86_USER_SPACE_MSR: 6029 kvm->arch.user_space_msr_mask = cap->args[0]; 6030 r = 0; 6031 break; 6032 case KVM_CAP_X86_BUS_LOCK_EXIT: 6033 r = -EINVAL; 6034 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6035 break; 6036 6037 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6038 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6039 break; 6040 6041 if (kvm_has_bus_lock_exit && 6042 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6043 kvm->arch.bus_lock_detection_enabled = true; 6044 r = 0; 6045 break; 6046 #ifdef CONFIG_X86_SGX_KVM 6047 case KVM_CAP_SGX_ATTRIBUTE: { 6048 unsigned long allowed_attributes = 0; 6049 6050 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6051 if (r) 6052 break; 6053 6054 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6055 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6056 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6057 kvm->arch.sgx_provisioning_allowed = true; 6058 else 6059 r = -EINVAL; 6060 break; 6061 } 6062 #endif 6063 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6064 r = -EINVAL; 6065 if (!kvm_x86_ops.vm_copy_enc_context_from) 6066 break; 6067 6068 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6069 break; 6070 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6071 r = -EINVAL; 6072 if (!kvm_x86_ops.vm_move_enc_context_from) 6073 break; 6074 6075 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6076 break; 6077 case KVM_CAP_EXIT_HYPERCALL: 6078 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6079 r = -EINVAL; 6080 break; 6081 } 6082 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6083 r = 0; 6084 break; 6085 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6086 r = -EINVAL; 6087 if (cap->args[0] & ~1) 6088 break; 6089 kvm->arch.exit_on_emulation_error = cap->args[0]; 6090 r = 0; 6091 break; 6092 case KVM_CAP_PMU_CAPABILITY: 6093 r = -EINVAL; 6094 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6095 break; 6096 6097 mutex_lock(&kvm->lock); 6098 if (!kvm->created_vcpus) { 6099 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6100 r = 0; 6101 } 6102 mutex_unlock(&kvm->lock); 6103 break; 6104 default: 6105 r = -EINVAL; 6106 break; 6107 } 6108 return r; 6109 } 6110 6111 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6112 { 6113 struct kvm_x86_msr_filter *msr_filter; 6114 6115 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6116 if (!msr_filter) 6117 return NULL; 6118 6119 msr_filter->default_allow = default_allow; 6120 return msr_filter; 6121 } 6122 6123 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6124 { 6125 u32 i; 6126 6127 if (!msr_filter) 6128 return; 6129 6130 for (i = 0; i < msr_filter->count; i++) 6131 kfree(msr_filter->ranges[i].bitmap); 6132 6133 kfree(msr_filter); 6134 } 6135 6136 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6137 struct kvm_msr_filter_range *user_range) 6138 { 6139 unsigned long *bitmap = NULL; 6140 size_t bitmap_size; 6141 6142 if (!user_range->nmsrs) 6143 return 0; 6144 6145 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) 6146 return -EINVAL; 6147 6148 if (!user_range->flags) 6149 return -EINVAL; 6150 6151 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6152 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6153 return -EINVAL; 6154 6155 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6156 if (IS_ERR(bitmap)) 6157 return PTR_ERR(bitmap); 6158 6159 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6160 .flags = user_range->flags, 6161 .base = user_range->base, 6162 .nmsrs = user_range->nmsrs, 6163 .bitmap = bitmap, 6164 }; 6165 6166 msr_filter->count++; 6167 return 0; 6168 } 6169 6170 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 6171 { 6172 struct kvm_msr_filter __user *user_msr_filter = argp; 6173 struct kvm_x86_msr_filter *new_filter, *old_filter; 6174 struct kvm_msr_filter filter; 6175 bool default_allow; 6176 bool empty = true; 6177 int r = 0; 6178 u32 i; 6179 6180 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6181 return -EFAULT; 6182 6183 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 6184 empty &= !filter.ranges[i].nmsrs; 6185 6186 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 6187 if (empty && !default_allow) 6188 return -EINVAL; 6189 6190 new_filter = kvm_alloc_msr_filter(default_allow); 6191 if (!new_filter) 6192 return -ENOMEM; 6193 6194 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6195 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]); 6196 if (r) { 6197 kvm_free_msr_filter(new_filter); 6198 return r; 6199 } 6200 } 6201 6202 mutex_lock(&kvm->lock); 6203 6204 /* The per-VM filter is protected by kvm->lock... */ 6205 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6206 6207 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6208 synchronize_srcu(&kvm->srcu); 6209 6210 kvm_free_msr_filter(old_filter); 6211 6212 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6213 mutex_unlock(&kvm->lock); 6214 6215 return 0; 6216 } 6217 6218 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6219 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6220 { 6221 struct kvm_vcpu *vcpu; 6222 unsigned long i; 6223 int ret = 0; 6224 6225 mutex_lock(&kvm->lock); 6226 kvm_for_each_vcpu(i, vcpu, kvm) { 6227 if (!vcpu->arch.pv_time.active) 6228 continue; 6229 6230 ret = kvm_set_guest_paused(vcpu); 6231 if (ret) { 6232 kvm_err("Failed to pause guest VCPU%d: %d\n", 6233 vcpu->vcpu_id, ret); 6234 break; 6235 } 6236 } 6237 mutex_unlock(&kvm->lock); 6238 6239 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6240 } 6241 6242 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6243 { 6244 switch (state) { 6245 case PM_HIBERNATION_PREPARE: 6246 case PM_SUSPEND_PREPARE: 6247 return kvm_arch_suspend_notifier(kvm); 6248 } 6249 6250 return NOTIFY_DONE; 6251 } 6252 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6253 6254 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6255 { 6256 struct kvm_clock_data data = { 0 }; 6257 6258 get_kvmclock(kvm, &data); 6259 if (copy_to_user(argp, &data, sizeof(data))) 6260 return -EFAULT; 6261 6262 return 0; 6263 } 6264 6265 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6266 { 6267 struct kvm_arch *ka = &kvm->arch; 6268 struct kvm_clock_data data; 6269 u64 now_raw_ns; 6270 6271 if (copy_from_user(&data, argp, sizeof(data))) 6272 return -EFAULT; 6273 6274 /* 6275 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6276 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6277 */ 6278 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6279 return -EINVAL; 6280 6281 kvm_hv_request_tsc_page_update(kvm); 6282 kvm_start_pvclock_update(kvm); 6283 pvclock_update_vm_gtod_copy(kvm); 6284 6285 /* 6286 * This pairs with kvm_guest_time_update(): when masterclock is 6287 * in use, we use master_kernel_ns + kvmclock_offset to set 6288 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6289 * is slightly ahead) here we risk going negative on unsigned 6290 * 'system_time' when 'data.clock' is very small. 6291 */ 6292 if (data.flags & KVM_CLOCK_REALTIME) { 6293 u64 now_real_ns = ktime_get_real_ns(); 6294 6295 /* 6296 * Avoid stepping the kvmclock backwards. 6297 */ 6298 if (now_real_ns > data.realtime) 6299 data.clock += now_real_ns - data.realtime; 6300 } 6301 6302 if (ka->use_master_clock) 6303 now_raw_ns = ka->master_kernel_ns; 6304 else 6305 now_raw_ns = get_kvmclock_base_ns(); 6306 ka->kvmclock_offset = data.clock - now_raw_ns; 6307 kvm_end_pvclock_update(kvm); 6308 return 0; 6309 } 6310 6311 long kvm_arch_vm_ioctl(struct file *filp, 6312 unsigned int ioctl, unsigned long arg) 6313 { 6314 struct kvm *kvm = filp->private_data; 6315 void __user *argp = (void __user *)arg; 6316 int r = -ENOTTY; 6317 /* 6318 * This union makes it completely explicit to gcc-3.x 6319 * that these two variables' stack usage should be 6320 * combined, not added together. 6321 */ 6322 union { 6323 struct kvm_pit_state ps; 6324 struct kvm_pit_state2 ps2; 6325 struct kvm_pit_config pit_config; 6326 } u; 6327 6328 switch (ioctl) { 6329 case KVM_SET_TSS_ADDR: 6330 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6331 break; 6332 case KVM_SET_IDENTITY_MAP_ADDR: { 6333 u64 ident_addr; 6334 6335 mutex_lock(&kvm->lock); 6336 r = -EINVAL; 6337 if (kvm->created_vcpus) 6338 goto set_identity_unlock; 6339 r = -EFAULT; 6340 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6341 goto set_identity_unlock; 6342 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6343 set_identity_unlock: 6344 mutex_unlock(&kvm->lock); 6345 break; 6346 } 6347 case KVM_SET_NR_MMU_PAGES: 6348 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6349 break; 6350 case KVM_GET_NR_MMU_PAGES: 6351 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6352 break; 6353 case KVM_CREATE_IRQCHIP: { 6354 mutex_lock(&kvm->lock); 6355 6356 r = -EEXIST; 6357 if (irqchip_in_kernel(kvm)) 6358 goto create_irqchip_unlock; 6359 6360 r = -EINVAL; 6361 if (kvm->created_vcpus) 6362 goto create_irqchip_unlock; 6363 6364 r = kvm_pic_init(kvm); 6365 if (r) 6366 goto create_irqchip_unlock; 6367 6368 r = kvm_ioapic_init(kvm); 6369 if (r) { 6370 kvm_pic_destroy(kvm); 6371 goto create_irqchip_unlock; 6372 } 6373 6374 r = kvm_setup_default_irq_routing(kvm); 6375 if (r) { 6376 kvm_ioapic_destroy(kvm); 6377 kvm_pic_destroy(kvm); 6378 goto create_irqchip_unlock; 6379 } 6380 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6381 smp_wmb(); 6382 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6383 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6384 create_irqchip_unlock: 6385 mutex_unlock(&kvm->lock); 6386 break; 6387 } 6388 case KVM_CREATE_PIT: 6389 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6390 goto create_pit; 6391 case KVM_CREATE_PIT2: 6392 r = -EFAULT; 6393 if (copy_from_user(&u.pit_config, argp, 6394 sizeof(struct kvm_pit_config))) 6395 goto out; 6396 create_pit: 6397 mutex_lock(&kvm->lock); 6398 r = -EEXIST; 6399 if (kvm->arch.vpit) 6400 goto create_pit_unlock; 6401 r = -ENOMEM; 6402 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6403 if (kvm->arch.vpit) 6404 r = 0; 6405 create_pit_unlock: 6406 mutex_unlock(&kvm->lock); 6407 break; 6408 case KVM_GET_IRQCHIP: { 6409 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6410 struct kvm_irqchip *chip; 6411 6412 chip = memdup_user(argp, sizeof(*chip)); 6413 if (IS_ERR(chip)) { 6414 r = PTR_ERR(chip); 6415 goto out; 6416 } 6417 6418 r = -ENXIO; 6419 if (!irqchip_kernel(kvm)) 6420 goto get_irqchip_out; 6421 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6422 if (r) 6423 goto get_irqchip_out; 6424 r = -EFAULT; 6425 if (copy_to_user(argp, chip, sizeof(*chip))) 6426 goto get_irqchip_out; 6427 r = 0; 6428 get_irqchip_out: 6429 kfree(chip); 6430 break; 6431 } 6432 case KVM_SET_IRQCHIP: { 6433 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6434 struct kvm_irqchip *chip; 6435 6436 chip = memdup_user(argp, sizeof(*chip)); 6437 if (IS_ERR(chip)) { 6438 r = PTR_ERR(chip); 6439 goto out; 6440 } 6441 6442 r = -ENXIO; 6443 if (!irqchip_kernel(kvm)) 6444 goto set_irqchip_out; 6445 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6446 set_irqchip_out: 6447 kfree(chip); 6448 break; 6449 } 6450 case KVM_GET_PIT: { 6451 r = -EFAULT; 6452 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6453 goto out; 6454 r = -ENXIO; 6455 if (!kvm->arch.vpit) 6456 goto out; 6457 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6458 if (r) 6459 goto out; 6460 r = -EFAULT; 6461 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6462 goto out; 6463 r = 0; 6464 break; 6465 } 6466 case KVM_SET_PIT: { 6467 r = -EFAULT; 6468 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6469 goto out; 6470 mutex_lock(&kvm->lock); 6471 r = -ENXIO; 6472 if (!kvm->arch.vpit) 6473 goto set_pit_out; 6474 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6475 set_pit_out: 6476 mutex_unlock(&kvm->lock); 6477 break; 6478 } 6479 case KVM_GET_PIT2: { 6480 r = -ENXIO; 6481 if (!kvm->arch.vpit) 6482 goto out; 6483 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6484 if (r) 6485 goto out; 6486 r = -EFAULT; 6487 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6488 goto out; 6489 r = 0; 6490 break; 6491 } 6492 case KVM_SET_PIT2: { 6493 r = -EFAULT; 6494 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6495 goto out; 6496 mutex_lock(&kvm->lock); 6497 r = -ENXIO; 6498 if (!kvm->arch.vpit) 6499 goto set_pit2_out; 6500 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6501 set_pit2_out: 6502 mutex_unlock(&kvm->lock); 6503 break; 6504 } 6505 case KVM_REINJECT_CONTROL: { 6506 struct kvm_reinject_control control; 6507 r = -EFAULT; 6508 if (copy_from_user(&control, argp, sizeof(control))) 6509 goto out; 6510 r = -ENXIO; 6511 if (!kvm->arch.vpit) 6512 goto out; 6513 r = kvm_vm_ioctl_reinject(kvm, &control); 6514 break; 6515 } 6516 case KVM_SET_BOOT_CPU_ID: 6517 r = 0; 6518 mutex_lock(&kvm->lock); 6519 if (kvm->created_vcpus) 6520 r = -EBUSY; 6521 else 6522 kvm->arch.bsp_vcpu_id = arg; 6523 mutex_unlock(&kvm->lock); 6524 break; 6525 #ifdef CONFIG_KVM_XEN 6526 case KVM_XEN_HVM_CONFIG: { 6527 struct kvm_xen_hvm_config xhc; 6528 r = -EFAULT; 6529 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6530 goto out; 6531 r = kvm_xen_hvm_config(kvm, &xhc); 6532 break; 6533 } 6534 case KVM_XEN_HVM_GET_ATTR: { 6535 struct kvm_xen_hvm_attr xha; 6536 6537 r = -EFAULT; 6538 if (copy_from_user(&xha, argp, sizeof(xha))) 6539 goto out; 6540 r = kvm_xen_hvm_get_attr(kvm, &xha); 6541 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6542 r = -EFAULT; 6543 break; 6544 } 6545 case KVM_XEN_HVM_SET_ATTR: { 6546 struct kvm_xen_hvm_attr xha; 6547 6548 r = -EFAULT; 6549 if (copy_from_user(&xha, argp, sizeof(xha))) 6550 goto out; 6551 r = kvm_xen_hvm_set_attr(kvm, &xha); 6552 break; 6553 } 6554 case KVM_XEN_HVM_EVTCHN_SEND: { 6555 struct kvm_irq_routing_xen_evtchn uxe; 6556 6557 r = -EFAULT; 6558 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6559 goto out; 6560 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6561 break; 6562 } 6563 #endif 6564 case KVM_SET_CLOCK: 6565 r = kvm_vm_ioctl_set_clock(kvm, argp); 6566 break; 6567 case KVM_GET_CLOCK: 6568 r = kvm_vm_ioctl_get_clock(kvm, argp); 6569 break; 6570 case KVM_SET_TSC_KHZ: { 6571 u32 user_tsc_khz; 6572 6573 r = -EINVAL; 6574 user_tsc_khz = (u32)arg; 6575 6576 if (kvm_has_tsc_control && 6577 user_tsc_khz >= kvm_max_guest_tsc_khz) 6578 goto out; 6579 6580 if (user_tsc_khz == 0) 6581 user_tsc_khz = tsc_khz; 6582 6583 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6584 r = 0; 6585 6586 goto out; 6587 } 6588 case KVM_GET_TSC_KHZ: { 6589 r = READ_ONCE(kvm->arch.default_tsc_khz); 6590 goto out; 6591 } 6592 case KVM_MEMORY_ENCRYPT_OP: { 6593 r = -ENOTTY; 6594 if (!kvm_x86_ops.mem_enc_ioctl) 6595 goto out; 6596 6597 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6598 break; 6599 } 6600 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6601 struct kvm_enc_region region; 6602 6603 r = -EFAULT; 6604 if (copy_from_user(®ion, argp, sizeof(region))) 6605 goto out; 6606 6607 r = -ENOTTY; 6608 if (!kvm_x86_ops.mem_enc_register_region) 6609 goto out; 6610 6611 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6612 break; 6613 } 6614 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6615 struct kvm_enc_region region; 6616 6617 r = -EFAULT; 6618 if (copy_from_user(®ion, argp, sizeof(region))) 6619 goto out; 6620 6621 r = -ENOTTY; 6622 if (!kvm_x86_ops.mem_enc_unregister_region) 6623 goto out; 6624 6625 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6626 break; 6627 } 6628 case KVM_HYPERV_EVENTFD: { 6629 struct kvm_hyperv_eventfd hvevfd; 6630 6631 r = -EFAULT; 6632 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6633 goto out; 6634 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6635 break; 6636 } 6637 case KVM_SET_PMU_EVENT_FILTER: 6638 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6639 break; 6640 case KVM_X86_SET_MSR_FILTER: 6641 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 6642 break; 6643 default: 6644 r = -ENOTTY; 6645 } 6646 out: 6647 return r; 6648 } 6649 6650 static void kvm_init_msr_list(void) 6651 { 6652 struct x86_pmu_capability x86_pmu; 6653 u32 dummy[2]; 6654 unsigned i; 6655 6656 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 6657 "Please update the fixed PMCs in msrs_to_saved_all[]"); 6658 6659 perf_get_x86_pmu_capability(&x86_pmu); 6660 6661 num_msrs_to_save = 0; 6662 num_emulated_msrs = 0; 6663 num_msr_based_features = 0; 6664 6665 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 6666 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 6667 continue; 6668 6669 /* 6670 * Even MSRs that are valid in the host may not be exposed 6671 * to the guests in some cases. 6672 */ 6673 switch (msrs_to_save_all[i]) { 6674 case MSR_IA32_BNDCFGS: 6675 if (!kvm_mpx_supported()) 6676 continue; 6677 break; 6678 case MSR_TSC_AUX: 6679 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 6680 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 6681 continue; 6682 break; 6683 case MSR_IA32_UMWAIT_CONTROL: 6684 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 6685 continue; 6686 break; 6687 case MSR_IA32_RTIT_CTL: 6688 case MSR_IA32_RTIT_STATUS: 6689 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 6690 continue; 6691 break; 6692 case MSR_IA32_RTIT_CR3_MATCH: 6693 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6694 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 6695 continue; 6696 break; 6697 case MSR_IA32_RTIT_OUTPUT_BASE: 6698 case MSR_IA32_RTIT_OUTPUT_MASK: 6699 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6700 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 6701 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 6702 continue; 6703 break; 6704 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 6705 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6706 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 6707 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 6708 continue; 6709 break; 6710 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 6711 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 6712 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6713 continue; 6714 break; 6715 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 6716 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 6717 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6718 continue; 6719 break; 6720 case MSR_IA32_XFD: 6721 case MSR_IA32_XFD_ERR: 6722 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 6723 continue; 6724 break; 6725 default: 6726 break; 6727 } 6728 6729 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 6730 } 6731 6732 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 6733 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 6734 continue; 6735 6736 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 6737 } 6738 6739 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 6740 struct kvm_msr_entry msr; 6741 6742 msr.index = msr_based_features_all[i]; 6743 if (kvm_get_msr_feature(&msr)) 6744 continue; 6745 6746 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 6747 } 6748 } 6749 6750 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 6751 const void *v) 6752 { 6753 int handled = 0; 6754 int n; 6755 6756 do { 6757 n = min(len, 8); 6758 if (!(lapic_in_kernel(vcpu) && 6759 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 6760 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 6761 break; 6762 handled += n; 6763 addr += n; 6764 len -= n; 6765 v += n; 6766 } while (len); 6767 6768 return handled; 6769 } 6770 6771 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 6772 { 6773 int handled = 0; 6774 int n; 6775 6776 do { 6777 n = min(len, 8); 6778 if (!(lapic_in_kernel(vcpu) && 6779 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 6780 addr, n, v)) 6781 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 6782 break; 6783 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 6784 handled += n; 6785 addr += n; 6786 len -= n; 6787 v += n; 6788 } while (len); 6789 6790 return handled; 6791 } 6792 6793 static void kvm_set_segment(struct kvm_vcpu *vcpu, 6794 struct kvm_segment *var, int seg) 6795 { 6796 static_call(kvm_x86_set_segment)(vcpu, var, seg); 6797 } 6798 6799 void kvm_get_segment(struct kvm_vcpu *vcpu, 6800 struct kvm_segment *var, int seg) 6801 { 6802 static_call(kvm_x86_get_segment)(vcpu, var, seg); 6803 } 6804 6805 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 6806 struct x86_exception *exception) 6807 { 6808 struct kvm_mmu *mmu = vcpu->arch.mmu; 6809 gpa_t t_gpa; 6810 6811 BUG_ON(!mmu_is_nested(vcpu)); 6812 6813 /* NPT walks are always user-walks */ 6814 access |= PFERR_USER_MASK; 6815 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 6816 6817 return t_gpa; 6818 } 6819 6820 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 6821 struct x86_exception *exception) 6822 { 6823 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6824 6825 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6826 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6827 } 6828 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 6829 6830 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 6831 struct x86_exception *exception) 6832 { 6833 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6834 6835 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6836 access |= PFERR_FETCH_MASK; 6837 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6838 } 6839 6840 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 6841 struct x86_exception *exception) 6842 { 6843 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6844 6845 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6846 access |= PFERR_WRITE_MASK; 6847 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6848 } 6849 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 6850 6851 /* uses this to access any guest's mapped memory without checking CPL */ 6852 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 6853 struct x86_exception *exception) 6854 { 6855 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6856 6857 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 6858 } 6859 6860 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6861 struct kvm_vcpu *vcpu, u64 access, 6862 struct x86_exception *exception) 6863 { 6864 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6865 void *data = val; 6866 int r = X86EMUL_CONTINUE; 6867 6868 while (bytes) { 6869 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 6870 unsigned offset = addr & (PAGE_SIZE-1); 6871 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 6872 int ret; 6873 6874 if (gpa == UNMAPPED_GVA) 6875 return X86EMUL_PROPAGATE_FAULT; 6876 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 6877 offset, toread); 6878 if (ret < 0) { 6879 r = X86EMUL_IO_NEEDED; 6880 goto out; 6881 } 6882 6883 bytes -= toread; 6884 data += toread; 6885 addr += toread; 6886 } 6887 out: 6888 return r; 6889 } 6890 6891 /* used for instruction fetching */ 6892 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 6893 gva_t addr, void *val, unsigned int bytes, 6894 struct x86_exception *exception) 6895 { 6896 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6897 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6898 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6899 unsigned offset; 6900 int ret; 6901 6902 /* Inline kvm_read_guest_virt_helper for speed. */ 6903 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 6904 exception); 6905 if (unlikely(gpa == UNMAPPED_GVA)) 6906 return X86EMUL_PROPAGATE_FAULT; 6907 6908 offset = addr & (PAGE_SIZE-1); 6909 if (WARN_ON(offset + bytes > PAGE_SIZE)) 6910 bytes = (unsigned)PAGE_SIZE - offset; 6911 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 6912 offset, bytes); 6913 if (unlikely(ret < 0)) 6914 return X86EMUL_IO_NEEDED; 6915 6916 return X86EMUL_CONTINUE; 6917 } 6918 6919 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 6920 gva_t addr, void *val, unsigned int bytes, 6921 struct x86_exception *exception) 6922 { 6923 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6924 6925 /* 6926 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 6927 * is returned, but our callers are not ready for that and they blindly 6928 * call kvm_inject_page_fault. Ensure that they at least do not leak 6929 * uninitialized kernel stack memory into cr2 and error code. 6930 */ 6931 memset(exception, 0, sizeof(*exception)); 6932 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 6933 exception); 6934 } 6935 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 6936 6937 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 6938 gva_t addr, void *val, unsigned int bytes, 6939 struct x86_exception *exception, bool system) 6940 { 6941 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6942 u64 access = 0; 6943 6944 if (system) 6945 access |= PFERR_IMPLICIT_ACCESS; 6946 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 6947 access |= PFERR_USER_MASK; 6948 6949 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 6950 } 6951 6952 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 6953 unsigned long addr, void *val, unsigned int bytes) 6954 { 6955 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6956 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 6957 6958 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 6959 } 6960 6961 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6962 struct kvm_vcpu *vcpu, u64 access, 6963 struct x86_exception *exception) 6964 { 6965 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6966 void *data = val; 6967 int r = X86EMUL_CONTINUE; 6968 6969 while (bytes) { 6970 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 6971 unsigned offset = addr & (PAGE_SIZE-1); 6972 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 6973 int ret; 6974 6975 if (gpa == UNMAPPED_GVA) 6976 return X86EMUL_PROPAGATE_FAULT; 6977 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 6978 if (ret < 0) { 6979 r = X86EMUL_IO_NEEDED; 6980 goto out; 6981 } 6982 6983 bytes -= towrite; 6984 data += towrite; 6985 addr += towrite; 6986 } 6987 out: 6988 return r; 6989 } 6990 6991 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 6992 unsigned int bytes, struct x86_exception *exception, 6993 bool system) 6994 { 6995 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6996 u64 access = PFERR_WRITE_MASK; 6997 6998 if (system) 6999 access |= PFERR_IMPLICIT_ACCESS; 7000 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7001 access |= PFERR_USER_MASK; 7002 7003 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7004 access, exception); 7005 } 7006 7007 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7008 unsigned int bytes, struct x86_exception *exception) 7009 { 7010 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7011 vcpu->arch.l1tf_flush_l1d = true; 7012 7013 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7014 PFERR_WRITE_MASK, exception); 7015 } 7016 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7017 7018 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7019 void *insn, int insn_len) 7020 { 7021 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7022 insn, insn_len); 7023 } 7024 7025 int handle_ud(struct kvm_vcpu *vcpu) 7026 { 7027 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7028 int emul_type = EMULTYPE_TRAP_UD; 7029 char sig[5]; /* ud2; .ascii "kvm" */ 7030 struct x86_exception e; 7031 7032 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7033 return 1; 7034 7035 if (force_emulation_prefix && 7036 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7037 sig, sizeof(sig), &e) == 0 && 7038 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7039 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7040 emul_type = EMULTYPE_TRAP_UD_FORCED; 7041 } 7042 7043 return kvm_emulate_instruction(vcpu, emul_type); 7044 } 7045 EXPORT_SYMBOL_GPL(handle_ud); 7046 7047 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7048 gpa_t gpa, bool write) 7049 { 7050 /* For APIC access vmexit */ 7051 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7052 return 1; 7053 7054 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7055 trace_vcpu_match_mmio(gva, gpa, write, true); 7056 return 1; 7057 } 7058 7059 return 0; 7060 } 7061 7062 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7063 gpa_t *gpa, struct x86_exception *exception, 7064 bool write) 7065 { 7066 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7067 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7068 | (write ? PFERR_WRITE_MASK : 0); 7069 7070 /* 7071 * currently PKRU is only applied to ept enabled guest so 7072 * there is no pkey in EPT page table for L1 guest or EPT 7073 * shadow page table for L2 guest. 7074 */ 7075 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7076 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7077 vcpu->arch.mmio_access, 0, access))) { 7078 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7079 (gva & (PAGE_SIZE - 1)); 7080 trace_vcpu_match_mmio(gva, *gpa, write, false); 7081 return 1; 7082 } 7083 7084 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7085 7086 if (*gpa == UNMAPPED_GVA) 7087 return -1; 7088 7089 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7090 } 7091 7092 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7093 const void *val, int bytes) 7094 { 7095 int ret; 7096 7097 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7098 if (ret < 0) 7099 return 0; 7100 kvm_page_track_write(vcpu, gpa, val, bytes); 7101 return 1; 7102 } 7103 7104 struct read_write_emulator_ops { 7105 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7106 int bytes); 7107 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7108 void *val, int bytes); 7109 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7110 int bytes, void *val); 7111 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7112 void *val, int bytes); 7113 bool write; 7114 }; 7115 7116 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7117 { 7118 if (vcpu->mmio_read_completed) { 7119 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7120 vcpu->mmio_fragments[0].gpa, val); 7121 vcpu->mmio_read_completed = 0; 7122 return 1; 7123 } 7124 7125 return 0; 7126 } 7127 7128 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7129 void *val, int bytes) 7130 { 7131 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7132 } 7133 7134 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7135 void *val, int bytes) 7136 { 7137 return emulator_write_phys(vcpu, gpa, val, bytes); 7138 } 7139 7140 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7141 { 7142 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7143 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7144 } 7145 7146 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7147 void *val, int bytes) 7148 { 7149 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7150 return X86EMUL_IO_NEEDED; 7151 } 7152 7153 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7154 void *val, int bytes) 7155 { 7156 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7157 7158 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7159 return X86EMUL_CONTINUE; 7160 } 7161 7162 static const struct read_write_emulator_ops read_emultor = { 7163 .read_write_prepare = read_prepare, 7164 .read_write_emulate = read_emulate, 7165 .read_write_mmio = vcpu_mmio_read, 7166 .read_write_exit_mmio = read_exit_mmio, 7167 }; 7168 7169 static const struct read_write_emulator_ops write_emultor = { 7170 .read_write_emulate = write_emulate, 7171 .read_write_mmio = write_mmio, 7172 .read_write_exit_mmio = write_exit_mmio, 7173 .write = true, 7174 }; 7175 7176 static int emulator_read_write_onepage(unsigned long addr, void *val, 7177 unsigned int bytes, 7178 struct x86_exception *exception, 7179 struct kvm_vcpu *vcpu, 7180 const struct read_write_emulator_ops *ops) 7181 { 7182 gpa_t gpa; 7183 int handled, ret; 7184 bool write = ops->write; 7185 struct kvm_mmio_fragment *frag; 7186 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7187 7188 /* 7189 * If the exit was due to a NPF we may already have a GPA. 7190 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7191 * Note, this cannot be used on string operations since string 7192 * operation using rep will only have the initial GPA from the NPF 7193 * occurred. 7194 */ 7195 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7196 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7197 gpa = ctxt->gpa_val; 7198 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7199 } else { 7200 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7201 if (ret < 0) 7202 return X86EMUL_PROPAGATE_FAULT; 7203 } 7204 7205 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7206 return X86EMUL_CONTINUE; 7207 7208 /* 7209 * Is this MMIO handled locally? 7210 */ 7211 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7212 if (handled == bytes) 7213 return X86EMUL_CONTINUE; 7214 7215 gpa += handled; 7216 bytes -= handled; 7217 val += handled; 7218 7219 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7220 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7221 frag->gpa = gpa; 7222 frag->data = val; 7223 frag->len = bytes; 7224 return X86EMUL_CONTINUE; 7225 } 7226 7227 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7228 unsigned long addr, 7229 void *val, unsigned int bytes, 7230 struct x86_exception *exception, 7231 const struct read_write_emulator_ops *ops) 7232 { 7233 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7234 gpa_t gpa; 7235 int rc; 7236 7237 if (ops->read_write_prepare && 7238 ops->read_write_prepare(vcpu, val, bytes)) 7239 return X86EMUL_CONTINUE; 7240 7241 vcpu->mmio_nr_fragments = 0; 7242 7243 /* Crossing a page boundary? */ 7244 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7245 int now; 7246 7247 now = -addr & ~PAGE_MASK; 7248 rc = emulator_read_write_onepage(addr, val, now, exception, 7249 vcpu, ops); 7250 7251 if (rc != X86EMUL_CONTINUE) 7252 return rc; 7253 addr += now; 7254 if (ctxt->mode != X86EMUL_MODE_PROT64) 7255 addr = (u32)addr; 7256 val += now; 7257 bytes -= now; 7258 } 7259 7260 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7261 vcpu, ops); 7262 if (rc != X86EMUL_CONTINUE) 7263 return rc; 7264 7265 if (!vcpu->mmio_nr_fragments) 7266 return rc; 7267 7268 gpa = vcpu->mmio_fragments[0].gpa; 7269 7270 vcpu->mmio_needed = 1; 7271 vcpu->mmio_cur_fragment = 0; 7272 7273 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7274 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7275 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7276 vcpu->run->mmio.phys_addr = gpa; 7277 7278 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7279 } 7280 7281 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7282 unsigned long addr, 7283 void *val, 7284 unsigned int bytes, 7285 struct x86_exception *exception) 7286 { 7287 return emulator_read_write(ctxt, addr, val, bytes, 7288 exception, &read_emultor); 7289 } 7290 7291 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7292 unsigned long addr, 7293 const void *val, 7294 unsigned int bytes, 7295 struct x86_exception *exception) 7296 { 7297 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7298 exception, &write_emultor); 7299 } 7300 7301 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7302 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7303 7304 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7305 unsigned long addr, 7306 const void *old, 7307 const void *new, 7308 unsigned int bytes, 7309 struct x86_exception *exception) 7310 { 7311 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7312 u64 page_line_mask; 7313 unsigned long hva; 7314 gpa_t gpa; 7315 int r; 7316 7317 /* guests cmpxchg8b have to be emulated atomically */ 7318 if (bytes > 8 || (bytes & (bytes - 1))) 7319 goto emul_write; 7320 7321 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7322 7323 if (gpa == UNMAPPED_GVA || 7324 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7325 goto emul_write; 7326 7327 /* 7328 * Emulate the atomic as a straight write to avoid #AC if SLD is 7329 * enabled in the host and the access splits a cache line. 7330 */ 7331 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7332 page_line_mask = ~(cache_line_size() - 1); 7333 else 7334 page_line_mask = PAGE_MASK; 7335 7336 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7337 goto emul_write; 7338 7339 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7340 if (kvm_is_error_hva(hva)) 7341 goto emul_write; 7342 7343 hva += offset_in_page(gpa); 7344 7345 switch (bytes) { 7346 case 1: 7347 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7348 break; 7349 case 2: 7350 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7351 break; 7352 case 4: 7353 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7354 break; 7355 case 8: 7356 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7357 break; 7358 default: 7359 BUG(); 7360 } 7361 7362 if (r < 0) 7363 return X86EMUL_UNHANDLEABLE; 7364 if (r) 7365 return X86EMUL_CMPXCHG_FAILED; 7366 7367 kvm_page_track_write(vcpu, gpa, new, bytes); 7368 7369 return X86EMUL_CONTINUE; 7370 7371 emul_write: 7372 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7373 7374 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7375 } 7376 7377 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 7378 { 7379 int r = 0, i; 7380 7381 for (i = 0; i < vcpu->arch.pio.count; i++) { 7382 if (vcpu->arch.pio.in) 7383 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 7384 vcpu->arch.pio.size, pd); 7385 else 7386 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 7387 vcpu->arch.pio.port, vcpu->arch.pio.size, 7388 pd); 7389 if (r) 7390 break; 7391 pd += vcpu->arch.pio.size; 7392 } 7393 return r; 7394 } 7395 7396 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7397 unsigned short port, 7398 unsigned int count, bool in) 7399 { 7400 vcpu->arch.pio.port = port; 7401 vcpu->arch.pio.in = in; 7402 vcpu->arch.pio.count = count; 7403 vcpu->arch.pio.size = size; 7404 7405 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) 7406 return 1; 7407 7408 vcpu->run->exit_reason = KVM_EXIT_IO; 7409 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7410 vcpu->run->io.size = size; 7411 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7412 vcpu->run->io.count = count; 7413 vcpu->run->io.port = port; 7414 7415 return 0; 7416 } 7417 7418 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7419 unsigned short port, unsigned int count) 7420 { 7421 WARN_ON(vcpu->arch.pio.count); 7422 memset(vcpu->arch.pio_data, 0, size * count); 7423 return emulator_pio_in_out(vcpu, size, port, count, true); 7424 } 7425 7426 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7427 { 7428 int size = vcpu->arch.pio.size; 7429 unsigned count = vcpu->arch.pio.count; 7430 memcpy(val, vcpu->arch.pio_data, size * count); 7431 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7432 vcpu->arch.pio.count = 0; 7433 } 7434 7435 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7436 unsigned short port, void *val, unsigned int count) 7437 { 7438 if (vcpu->arch.pio.count) { 7439 /* 7440 * Complete a previous iteration that required userspace I/O. 7441 * Note, @count isn't guaranteed to match pio.count as userspace 7442 * can modify ECX before rerunning the vCPU. Ignore any such 7443 * shenanigans as KVM doesn't support modifying the rep count, 7444 * and the emulator ensures @count doesn't overflow the buffer. 7445 */ 7446 } else { 7447 int r = __emulator_pio_in(vcpu, size, port, count); 7448 if (!r) 7449 return r; 7450 7451 /* Results already available, fall through. */ 7452 } 7453 7454 complete_emulator_pio_in(vcpu, val); 7455 return 1; 7456 } 7457 7458 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7459 int size, unsigned short port, void *val, 7460 unsigned int count) 7461 { 7462 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 7463 7464 } 7465 7466 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7467 unsigned short port, const void *val, 7468 unsigned int count) 7469 { 7470 int ret; 7471 7472 memcpy(vcpu->arch.pio_data, val, size * count); 7473 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 7474 ret = emulator_pio_in_out(vcpu, size, port, count, false); 7475 if (ret) 7476 vcpu->arch.pio.count = 0; 7477 7478 return ret; 7479 } 7480 7481 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7482 int size, unsigned short port, 7483 const void *val, unsigned int count) 7484 { 7485 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7486 } 7487 7488 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7489 { 7490 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7491 } 7492 7493 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7494 { 7495 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7496 } 7497 7498 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7499 { 7500 if (!need_emulate_wbinvd(vcpu)) 7501 return X86EMUL_CONTINUE; 7502 7503 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7504 int cpu = get_cpu(); 7505 7506 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7507 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7508 wbinvd_ipi, NULL, 1); 7509 put_cpu(); 7510 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7511 } else 7512 wbinvd(); 7513 return X86EMUL_CONTINUE; 7514 } 7515 7516 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7517 { 7518 kvm_emulate_wbinvd_noskip(vcpu); 7519 return kvm_skip_emulated_instruction(vcpu); 7520 } 7521 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7522 7523 7524 7525 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7526 { 7527 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7528 } 7529 7530 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7531 unsigned long *dest) 7532 { 7533 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7534 } 7535 7536 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7537 unsigned long value) 7538 { 7539 7540 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7541 } 7542 7543 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7544 { 7545 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7546 } 7547 7548 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7549 { 7550 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7551 unsigned long value; 7552 7553 switch (cr) { 7554 case 0: 7555 value = kvm_read_cr0(vcpu); 7556 break; 7557 case 2: 7558 value = vcpu->arch.cr2; 7559 break; 7560 case 3: 7561 value = kvm_read_cr3(vcpu); 7562 break; 7563 case 4: 7564 value = kvm_read_cr4(vcpu); 7565 break; 7566 case 8: 7567 value = kvm_get_cr8(vcpu); 7568 break; 7569 default: 7570 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7571 return 0; 7572 } 7573 7574 return value; 7575 } 7576 7577 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7578 { 7579 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7580 int res = 0; 7581 7582 switch (cr) { 7583 case 0: 7584 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7585 break; 7586 case 2: 7587 vcpu->arch.cr2 = val; 7588 break; 7589 case 3: 7590 res = kvm_set_cr3(vcpu, val); 7591 break; 7592 case 4: 7593 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7594 break; 7595 case 8: 7596 res = kvm_set_cr8(vcpu, val); 7597 break; 7598 default: 7599 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7600 res = -1; 7601 } 7602 7603 return res; 7604 } 7605 7606 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7607 { 7608 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7609 } 7610 7611 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7612 { 7613 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7614 } 7615 7616 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7617 { 7618 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7619 } 7620 7621 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7622 { 7623 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7624 } 7625 7626 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7627 { 7628 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7629 } 7630 7631 static unsigned long emulator_get_cached_segment_base( 7632 struct x86_emulate_ctxt *ctxt, int seg) 7633 { 7634 return get_segment_base(emul_to_vcpu(ctxt), seg); 7635 } 7636 7637 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7638 struct desc_struct *desc, u32 *base3, 7639 int seg) 7640 { 7641 struct kvm_segment var; 7642 7643 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7644 *selector = var.selector; 7645 7646 if (var.unusable) { 7647 memset(desc, 0, sizeof(*desc)); 7648 if (base3) 7649 *base3 = 0; 7650 return false; 7651 } 7652 7653 if (var.g) 7654 var.limit >>= 12; 7655 set_desc_limit(desc, var.limit); 7656 set_desc_base(desc, (unsigned long)var.base); 7657 #ifdef CONFIG_X86_64 7658 if (base3) 7659 *base3 = var.base >> 32; 7660 #endif 7661 desc->type = var.type; 7662 desc->s = var.s; 7663 desc->dpl = var.dpl; 7664 desc->p = var.present; 7665 desc->avl = var.avl; 7666 desc->l = var.l; 7667 desc->d = var.db; 7668 desc->g = var.g; 7669 7670 return true; 7671 } 7672 7673 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 7674 struct desc_struct *desc, u32 base3, 7675 int seg) 7676 { 7677 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7678 struct kvm_segment var; 7679 7680 var.selector = selector; 7681 var.base = get_desc_base(desc); 7682 #ifdef CONFIG_X86_64 7683 var.base |= ((u64)base3) << 32; 7684 #endif 7685 var.limit = get_desc_limit(desc); 7686 if (desc->g) 7687 var.limit = (var.limit << 12) | 0xfff; 7688 var.type = desc->type; 7689 var.dpl = desc->dpl; 7690 var.db = desc->d; 7691 var.s = desc->s; 7692 var.l = desc->l; 7693 var.g = desc->g; 7694 var.avl = desc->avl; 7695 var.present = desc->p; 7696 var.unusable = !var.present; 7697 var.padding = 0; 7698 7699 kvm_set_segment(vcpu, &var, seg); 7700 return; 7701 } 7702 7703 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7704 u32 msr_index, u64 *pdata) 7705 { 7706 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7707 int r; 7708 7709 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 7710 7711 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 7712 complete_emulated_rdmsr, r)) { 7713 /* Bounce to user space */ 7714 return X86EMUL_IO_NEEDED; 7715 } 7716 7717 return r; 7718 } 7719 7720 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7721 u32 msr_index, u64 data) 7722 { 7723 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7724 int r; 7725 7726 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 7727 7728 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 7729 complete_emulated_msr_access, r)) { 7730 /* Bounce to user space */ 7731 return X86EMUL_IO_NEEDED; 7732 } 7733 7734 return r; 7735 } 7736 7737 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 7738 u32 msr_index, u64 *pdata) 7739 { 7740 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 7741 } 7742 7743 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 7744 u32 msr_index, u64 data) 7745 { 7746 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 7747 } 7748 7749 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 7750 { 7751 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7752 7753 return vcpu->arch.smbase; 7754 } 7755 7756 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 7757 { 7758 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7759 7760 vcpu->arch.smbase = smbase; 7761 } 7762 7763 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 7764 u32 pmc) 7765 { 7766 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 7767 return 0; 7768 return -EINVAL; 7769 } 7770 7771 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 7772 u32 pmc, u64 *pdata) 7773 { 7774 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 7775 } 7776 7777 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 7778 { 7779 emul_to_vcpu(ctxt)->arch.halt_request = 1; 7780 } 7781 7782 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 7783 struct x86_instruction_info *info, 7784 enum x86_intercept_stage stage) 7785 { 7786 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 7787 &ctxt->exception); 7788 } 7789 7790 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 7791 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 7792 bool exact_only) 7793 { 7794 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 7795 } 7796 7797 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 7798 { 7799 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 7800 } 7801 7802 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 7803 { 7804 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 7805 } 7806 7807 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 7808 { 7809 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 7810 } 7811 7812 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 7813 { 7814 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 7815 } 7816 7817 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 7818 { 7819 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 7820 } 7821 7822 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 7823 { 7824 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 7825 } 7826 7827 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 7828 { 7829 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 7830 } 7831 7832 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 7833 { 7834 return emul_to_vcpu(ctxt)->arch.hflags; 7835 } 7836 7837 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt) 7838 { 7839 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7840 7841 kvm_smm_changed(vcpu, false); 7842 } 7843 7844 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt, 7845 const char *smstate) 7846 { 7847 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate); 7848 } 7849 7850 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 7851 { 7852 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 7853 } 7854 7855 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 7856 { 7857 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 7858 } 7859 7860 static const struct x86_emulate_ops emulate_ops = { 7861 .read_gpr = emulator_read_gpr, 7862 .write_gpr = emulator_write_gpr, 7863 .read_std = emulator_read_std, 7864 .write_std = emulator_write_std, 7865 .read_phys = kvm_read_guest_phys_system, 7866 .fetch = kvm_fetch_guest_virt, 7867 .read_emulated = emulator_read_emulated, 7868 .write_emulated = emulator_write_emulated, 7869 .cmpxchg_emulated = emulator_cmpxchg_emulated, 7870 .invlpg = emulator_invlpg, 7871 .pio_in_emulated = emulator_pio_in_emulated, 7872 .pio_out_emulated = emulator_pio_out_emulated, 7873 .get_segment = emulator_get_segment, 7874 .set_segment = emulator_set_segment, 7875 .get_cached_segment_base = emulator_get_cached_segment_base, 7876 .get_gdt = emulator_get_gdt, 7877 .get_idt = emulator_get_idt, 7878 .set_gdt = emulator_set_gdt, 7879 .set_idt = emulator_set_idt, 7880 .get_cr = emulator_get_cr, 7881 .set_cr = emulator_set_cr, 7882 .cpl = emulator_get_cpl, 7883 .get_dr = emulator_get_dr, 7884 .set_dr = emulator_set_dr, 7885 .get_smbase = emulator_get_smbase, 7886 .set_smbase = emulator_set_smbase, 7887 .set_msr_with_filter = emulator_set_msr_with_filter, 7888 .get_msr_with_filter = emulator_get_msr_with_filter, 7889 .set_msr = emulator_set_msr, 7890 .get_msr = emulator_get_msr, 7891 .check_pmc = emulator_check_pmc, 7892 .read_pmc = emulator_read_pmc, 7893 .halt = emulator_halt, 7894 .wbinvd = emulator_wbinvd, 7895 .fix_hypercall = emulator_fix_hypercall, 7896 .intercept = emulator_intercept, 7897 .get_cpuid = emulator_get_cpuid, 7898 .guest_has_long_mode = emulator_guest_has_long_mode, 7899 .guest_has_movbe = emulator_guest_has_movbe, 7900 .guest_has_fxsr = emulator_guest_has_fxsr, 7901 .guest_has_rdpid = emulator_guest_has_rdpid, 7902 .set_nmi_mask = emulator_set_nmi_mask, 7903 .get_hflags = emulator_get_hflags, 7904 .exiting_smm = emulator_exiting_smm, 7905 .leave_smm = emulator_leave_smm, 7906 .triple_fault = emulator_triple_fault, 7907 .set_xcr = emulator_set_xcr, 7908 }; 7909 7910 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 7911 { 7912 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 7913 /* 7914 * an sti; sti; sequence only disable interrupts for the first 7915 * instruction. So, if the last instruction, be it emulated or 7916 * not, left the system with the INT_STI flag enabled, it 7917 * means that the last instruction is an sti. We should not 7918 * leave the flag on in this case. The same goes for mov ss 7919 */ 7920 if (int_shadow & mask) 7921 mask = 0; 7922 if (unlikely(int_shadow || mask)) { 7923 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 7924 if (!mask) 7925 kvm_make_request(KVM_REQ_EVENT, vcpu); 7926 } 7927 } 7928 7929 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 7930 { 7931 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7932 if (ctxt->exception.vector == PF_VECTOR) 7933 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 7934 7935 if (ctxt->exception.error_code_valid) 7936 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 7937 ctxt->exception.error_code); 7938 else 7939 kvm_queue_exception(vcpu, ctxt->exception.vector); 7940 return false; 7941 } 7942 7943 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 7944 { 7945 struct x86_emulate_ctxt *ctxt; 7946 7947 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 7948 if (!ctxt) { 7949 pr_err("kvm: failed to allocate vcpu's emulator\n"); 7950 return NULL; 7951 } 7952 7953 ctxt->vcpu = vcpu; 7954 ctxt->ops = &emulate_ops; 7955 vcpu->arch.emulate_ctxt = ctxt; 7956 7957 return ctxt; 7958 } 7959 7960 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 7961 { 7962 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7963 int cs_db, cs_l; 7964 7965 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 7966 7967 ctxt->gpa_available = false; 7968 ctxt->eflags = kvm_get_rflags(vcpu); 7969 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 7970 7971 ctxt->eip = kvm_rip_read(vcpu); 7972 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 7973 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 7974 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 7975 cs_db ? X86EMUL_MODE_PROT32 : 7976 X86EMUL_MODE_PROT16; 7977 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 7978 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 7979 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 7980 7981 ctxt->interruptibility = 0; 7982 ctxt->have_exception = false; 7983 ctxt->exception.vector = -1; 7984 ctxt->perm_ok = false; 7985 7986 init_decode_cache(ctxt); 7987 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7988 } 7989 7990 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 7991 { 7992 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7993 int ret; 7994 7995 init_emulate_ctxt(vcpu); 7996 7997 ctxt->op_bytes = 2; 7998 ctxt->ad_bytes = 2; 7999 ctxt->_eip = ctxt->eip + inc_eip; 8000 ret = emulate_int_real(ctxt, irq); 8001 8002 if (ret != X86EMUL_CONTINUE) { 8003 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8004 } else { 8005 ctxt->eip = ctxt->_eip; 8006 kvm_rip_write(vcpu, ctxt->eip); 8007 kvm_set_rflags(vcpu, ctxt->eflags); 8008 } 8009 } 8010 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8011 8012 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8013 u8 ndata, u8 *insn_bytes, u8 insn_size) 8014 { 8015 struct kvm_run *run = vcpu->run; 8016 u64 info[5]; 8017 u8 info_start; 8018 8019 /* 8020 * Zero the whole array used to retrieve the exit info, as casting to 8021 * u32 for select entries will leave some chunks uninitialized. 8022 */ 8023 memset(&info, 0, sizeof(info)); 8024 8025 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8026 &info[2], (u32 *)&info[3], 8027 (u32 *)&info[4]); 8028 8029 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8030 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8031 8032 /* 8033 * There's currently space for 13 entries, but 5 are used for the exit 8034 * reason and info. Restrict to 4 to reduce the maintenance burden 8035 * when expanding kvm_run.emulation_failure in the future. 8036 */ 8037 if (WARN_ON_ONCE(ndata > 4)) 8038 ndata = 4; 8039 8040 /* Always include the flags as a 'data' entry. */ 8041 info_start = 1; 8042 run->emulation_failure.flags = 0; 8043 8044 if (insn_size) { 8045 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8046 sizeof(run->emulation_failure.insn_bytes) != 16)); 8047 info_start += 2; 8048 run->emulation_failure.flags |= 8049 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8050 run->emulation_failure.insn_size = insn_size; 8051 memset(run->emulation_failure.insn_bytes, 0x90, 8052 sizeof(run->emulation_failure.insn_bytes)); 8053 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8054 } 8055 8056 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8057 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8058 ndata * sizeof(data[0])); 8059 8060 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8061 } 8062 8063 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8064 { 8065 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8066 8067 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8068 ctxt->fetch.end - ctxt->fetch.data); 8069 } 8070 8071 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8072 u8 ndata) 8073 { 8074 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8075 } 8076 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8077 8078 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8079 { 8080 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8081 } 8082 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8083 8084 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8085 { 8086 struct kvm *kvm = vcpu->kvm; 8087 8088 ++vcpu->stat.insn_emulation_fail; 8089 trace_kvm_emulate_insn_failed(vcpu); 8090 8091 if (emulation_type & EMULTYPE_VMWARE_GP) { 8092 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8093 return 1; 8094 } 8095 8096 if (kvm->arch.exit_on_emulation_error || 8097 (emulation_type & EMULTYPE_SKIP)) { 8098 prepare_emulation_ctxt_failure_exit(vcpu); 8099 return 0; 8100 } 8101 8102 kvm_queue_exception(vcpu, UD_VECTOR); 8103 8104 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8105 prepare_emulation_ctxt_failure_exit(vcpu); 8106 return 0; 8107 } 8108 8109 return 1; 8110 } 8111 8112 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8113 bool write_fault_to_shadow_pgtable, 8114 int emulation_type) 8115 { 8116 gpa_t gpa = cr2_or_gpa; 8117 kvm_pfn_t pfn; 8118 8119 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8120 return false; 8121 8122 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8123 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8124 return false; 8125 8126 if (!vcpu->arch.mmu->root_role.direct) { 8127 /* 8128 * Write permission should be allowed since only 8129 * write access need to be emulated. 8130 */ 8131 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8132 8133 /* 8134 * If the mapping is invalid in guest, let cpu retry 8135 * it to generate fault. 8136 */ 8137 if (gpa == UNMAPPED_GVA) 8138 return true; 8139 } 8140 8141 /* 8142 * Do not retry the unhandleable instruction if it faults on the 8143 * readonly host memory, otherwise it will goto a infinite loop: 8144 * retry instruction -> write #PF -> emulation fail -> retry 8145 * instruction -> ... 8146 */ 8147 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8148 8149 /* 8150 * If the instruction failed on the error pfn, it can not be fixed, 8151 * report the error to userspace. 8152 */ 8153 if (is_error_noslot_pfn(pfn)) 8154 return false; 8155 8156 kvm_release_pfn_clean(pfn); 8157 8158 /* The instructions are well-emulated on direct mmu. */ 8159 if (vcpu->arch.mmu->root_role.direct) { 8160 unsigned int indirect_shadow_pages; 8161 8162 write_lock(&vcpu->kvm->mmu_lock); 8163 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8164 write_unlock(&vcpu->kvm->mmu_lock); 8165 8166 if (indirect_shadow_pages) 8167 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8168 8169 return true; 8170 } 8171 8172 /* 8173 * if emulation was due to access to shadowed page table 8174 * and it failed try to unshadow page and re-enter the 8175 * guest to let CPU execute the instruction. 8176 */ 8177 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8178 8179 /* 8180 * If the access faults on its page table, it can not 8181 * be fixed by unprotecting shadow page and it should 8182 * be reported to userspace. 8183 */ 8184 return !write_fault_to_shadow_pgtable; 8185 } 8186 8187 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8188 gpa_t cr2_or_gpa, int emulation_type) 8189 { 8190 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8191 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8192 8193 last_retry_eip = vcpu->arch.last_retry_eip; 8194 last_retry_addr = vcpu->arch.last_retry_addr; 8195 8196 /* 8197 * If the emulation is caused by #PF and it is non-page_table 8198 * writing instruction, it means the VM-EXIT is caused by shadow 8199 * page protected, we can zap the shadow page and retry this 8200 * instruction directly. 8201 * 8202 * Note: if the guest uses a non-page-table modifying instruction 8203 * on the PDE that points to the instruction, then we will unmap 8204 * the instruction and go to an infinite loop. So, we cache the 8205 * last retried eip and the last fault address, if we meet the eip 8206 * and the address again, we can break out of the potential infinite 8207 * loop. 8208 */ 8209 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8210 8211 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8212 return false; 8213 8214 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8215 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8216 return false; 8217 8218 if (x86_page_table_writing_insn(ctxt)) 8219 return false; 8220 8221 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8222 return false; 8223 8224 vcpu->arch.last_retry_eip = ctxt->eip; 8225 vcpu->arch.last_retry_addr = cr2_or_gpa; 8226 8227 if (!vcpu->arch.mmu->root_role.direct) 8228 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8229 8230 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8231 8232 return true; 8233 } 8234 8235 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8236 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8237 8238 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm) 8239 { 8240 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm); 8241 8242 if (entering_smm) { 8243 vcpu->arch.hflags |= HF_SMM_MASK; 8244 } else { 8245 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK); 8246 8247 /* Process a latched INIT or SMI, if any. */ 8248 kvm_make_request(KVM_REQ_EVENT, vcpu); 8249 8250 /* 8251 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band, 8252 * on SMM exit we still need to reload them from 8253 * guest memory 8254 */ 8255 vcpu->arch.pdptrs_from_userspace = false; 8256 } 8257 8258 kvm_mmu_reset_context(vcpu); 8259 } 8260 8261 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8262 unsigned long *db) 8263 { 8264 u32 dr6 = 0; 8265 int i; 8266 u32 enable, rwlen; 8267 8268 enable = dr7; 8269 rwlen = dr7 >> 16; 8270 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8271 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8272 dr6 |= (1 << i); 8273 return dr6; 8274 } 8275 8276 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8277 { 8278 struct kvm_run *kvm_run = vcpu->run; 8279 8280 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8281 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8282 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8283 kvm_run->debug.arch.exception = DB_VECTOR; 8284 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8285 return 0; 8286 } 8287 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8288 return 1; 8289 } 8290 8291 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8292 { 8293 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8294 int r; 8295 8296 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8297 if (unlikely(!r)) 8298 return 0; 8299 8300 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8301 8302 /* 8303 * rflags is the old, "raw" value of the flags. The new value has 8304 * not been saved yet. 8305 * 8306 * This is correct even for TF set by the guest, because "the 8307 * processor will not generate this exception after the instruction 8308 * that sets the TF flag". 8309 */ 8310 if (unlikely(rflags & X86_EFLAGS_TF)) 8311 r = kvm_vcpu_do_singlestep(vcpu); 8312 return r; 8313 } 8314 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8315 8316 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r) 8317 { 8318 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8319 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8320 struct kvm_run *kvm_run = vcpu->run; 8321 unsigned long eip = kvm_get_linear_rip(vcpu); 8322 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8323 vcpu->arch.guest_debug_dr7, 8324 vcpu->arch.eff_db); 8325 8326 if (dr6 != 0) { 8327 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8328 kvm_run->debug.arch.pc = eip; 8329 kvm_run->debug.arch.exception = DB_VECTOR; 8330 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8331 *r = 0; 8332 return true; 8333 } 8334 } 8335 8336 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8337 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 8338 unsigned long eip = kvm_get_linear_rip(vcpu); 8339 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8340 vcpu->arch.dr7, 8341 vcpu->arch.db); 8342 8343 if (dr6 != 0) { 8344 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8345 *r = 1; 8346 return true; 8347 } 8348 } 8349 8350 return false; 8351 } 8352 8353 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8354 { 8355 switch (ctxt->opcode_len) { 8356 case 1: 8357 switch (ctxt->b) { 8358 case 0xe4: /* IN */ 8359 case 0xe5: 8360 case 0xec: 8361 case 0xed: 8362 case 0xe6: /* OUT */ 8363 case 0xe7: 8364 case 0xee: 8365 case 0xef: 8366 case 0x6c: /* INS */ 8367 case 0x6d: 8368 case 0x6e: /* OUTS */ 8369 case 0x6f: 8370 return true; 8371 } 8372 break; 8373 case 2: 8374 switch (ctxt->b) { 8375 case 0x33: /* RDPMC */ 8376 return true; 8377 } 8378 break; 8379 } 8380 8381 return false; 8382 } 8383 8384 /* 8385 * Decode an instruction for emulation. The caller is responsible for handling 8386 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8387 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8388 * code breakpoints have higher priority and thus have already been done by 8389 * hardware. 8390 * 8391 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8392 * response to a machine check. 8393 */ 8394 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8395 void *insn, int insn_len) 8396 { 8397 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8398 int r; 8399 8400 init_emulate_ctxt(vcpu); 8401 8402 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8403 8404 trace_kvm_emulate_insn_start(vcpu); 8405 ++vcpu->stat.insn_emulation; 8406 8407 return r; 8408 } 8409 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8410 8411 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8412 int emulation_type, void *insn, int insn_len) 8413 { 8414 int r; 8415 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8416 bool writeback = true; 8417 bool write_fault_to_spt; 8418 8419 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8420 return 1; 8421 8422 vcpu->arch.l1tf_flush_l1d = true; 8423 8424 /* 8425 * Clear write_fault_to_shadow_pgtable here to ensure it is 8426 * never reused. 8427 */ 8428 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8429 vcpu->arch.write_fault_to_shadow_pgtable = false; 8430 8431 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8432 kvm_clear_exception_queue(vcpu); 8433 8434 /* 8435 * Return immediately if RIP hits a code breakpoint, such #DBs 8436 * are fault-like and are higher priority than any faults on 8437 * the code fetch itself. 8438 */ 8439 if (!(emulation_type & EMULTYPE_SKIP) && 8440 kvm_vcpu_check_code_breakpoint(vcpu, &r)) 8441 return r; 8442 8443 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8444 insn, insn_len); 8445 if (r != EMULATION_OK) { 8446 if ((emulation_type & EMULTYPE_TRAP_UD) || 8447 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8448 kvm_queue_exception(vcpu, UD_VECTOR); 8449 return 1; 8450 } 8451 if (reexecute_instruction(vcpu, cr2_or_gpa, 8452 write_fault_to_spt, 8453 emulation_type)) 8454 return 1; 8455 if (ctxt->have_exception) { 8456 /* 8457 * #UD should result in just EMULATION_FAILED, and trap-like 8458 * exception should not be encountered during decode. 8459 */ 8460 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8461 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8462 inject_emulated_exception(vcpu); 8463 return 1; 8464 } 8465 return handle_emulation_failure(vcpu, emulation_type); 8466 } 8467 } 8468 8469 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8470 !is_vmware_backdoor_opcode(ctxt)) { 8471 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8472 return 1; 8473 } 8474 8475 /* 8476 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8477 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8478 * The caller is responsible for updating interruptibility state and 8479 * injecting single-step #DBs. 8480 */ 8481 if (emulation_type & EMULTYPE_SKIP) { 8482 if (ctxt->mode != X86EMUL_MODE_PROT64) 8483 ctxt->eip = (u32)ctxt->_eip; 8484 else 8485 ctxt->eip = ctxt->_eip; 8486 8487 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8488 r = 1; 8489 goto writeback; 8490 } 8491 8492 kvm_rip_write(vcpu, ctxt->eip); 8493 if (ctxt->eflags & X86_EFLAGS_RF) 8494 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8495 return 1; 8496 } 8497 8498 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8499 return 1; 8500 8501 /* this is needed for vmware backdoor interface to work since it 8502 changes registers values during IO operation */ 8503 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8504 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8505 emulator_invalidate_register_cache(ctxt); 8506 } 8507 8508 restart: 8509 if (emulation_type & EMULTYPE_PF) { 8510 /* Save the faulting GPA (cr2) in the address field */ 8511 ctxt->exception.address = cr2_or_gpa; 8512 8513 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8514 if (vcpu->arch.mmu->root_role.direct) { 8515 ctxt->gpa_available = true; 8516 ctxt->gpa_val = cr2_or_gpa; 8517 } 8518 } else { 8519 /* Sanitize the address out of an abundance of paranoia. */ 8520 ctxt->exception.address = 0; 8521 } 8522 8523 r = x86_emulate_insn(ctxt); 8524 8525 if (r == EMULATION_INTERCEPTED) 8526 return 1; 8527 8528 if (r == EMULATION_FAILED) { 8529 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8530 emulation_type)) 8531 return 1; 8532 8533 return handle_emulation_failure(vcpu, emulation_type); 8534 } 8535 8536 if (ctxt->have_exception) { 8537 r = 1; 8538 if (inject_emulated_exception(vcpu)) 8539 return r; 8540 } else if (vcpu->arch.pio.count) { 8541 if (!vcpu->arch.pio.in) { 8542 /* FIXME: return into emulator if single-stepping. */ 8543 vcpu->arch.pio.count = 0; 8544 } else { 8545 writeback = false; 8546 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8547 } 8548 r = 0; 8549 } else if (vcpu->mmio_needed) { 8550 ++vcpu->stat.mmio_exits; 8551 8552 if (!vcpu->mmio_is_write) 8553 writeback = false; 8554 r = 0; 8555 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8556 } else if (vcpu->arch.complete_userspace_io) { 8557 writeback = false; 8558 r = 0; 8559 } else if (r == EMULATION_RESTART) 8560 goto restart; 8561 else 8562 r = 1; 8563 8564 writeback: 8565 if (writeback) { 8566 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8567 toggle_interruptibility(vcpu, ctxt->interruptibility); 8568 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8569 if (!ctxt->have_exception || 8570 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8571 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8572 if (ctxt->is_branch) 8573 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8574 kvm_rip_write(vcpu, ctxt->eip); 8575 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8576 r = kvm_vcpu_do_singlestep(vcpu); 8577 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8578 __kvm_set_rflags(vcpu, ctxt->eflags); 8579 } 8580 8581 /* 8582 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8583 * do nothing, and it will be requested again as soon as 8584 * the shadow expires. But we still need to check here, 8585 * because POPF has no interrupt shadow. 8586 */ 8587 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8588 kvm_make_request(KVM_REQ_EVENT, vcpu); 8589 } else 8590 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8591 8592 return r; 8593 } 8594 8595 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8596 { 8597 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8598 } 8599 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8600 8601 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8602 void *insn, int insn_len) 8603 { 8604 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8605 } 8606 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8607 8608 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8609 { 8610 vcpu->arch.pio.count = 0; 8611 return 1; 8612 } 8613 8614 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8615 { 8616 vcpu->arch.pio.count = 0; 8617 8618 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8619 return 1; 8620 8621 return kvm_skip_emulated_instruction(vcpu); 8622 } 8623 8624 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8625 unsigned short port) 8626 { 8627 unsigned long val = kvm_rax_read(vcpu); 8628 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8629 8630 if (ret) 8631 return ret; 8632 8633 /* 8634 * Workaround userspace that relies on old KVM behavior of %rip being 8635 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8636 */ 8637 if (port == 0x7e && 8638 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8639 vcpu->arch.complete_userspace_io = 8640 complete_fast_pio_out_port_0x7e; 8641 kvm_skip_emulated_instruction(vcpu); 8642 } else { 8643 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8644 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8645 } 8646 return 0; 8647 } 8648 8649 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8650 { 8651 unsigned long val; 8652 8653 /* We should only ever be called with arch.pio.count equal to 1 */ 8654 BUG_ON(vcpu->arch.pio.count != 1); 8655 8656 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8657 vcpu->arch.pio.count = 0; 8658 return 1; 8659 } 8660 8661 /* For size less than 4 we merge, else we zero extend */ 8662 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8663 8664 /* 8665 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 8666 * the copy and tracing 8667 */ 8668 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 8669 kvm_rax_write(vcpu, val); 8670 8671 return kvm_skip_emulated_instruction(vcpu); 8672 } 8673 8674 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 8675 unsigned short port) 8676 { 8677 unsigned long val; 8678 int ret; 8679 8680 /* For size less than 4 we merge, else we zero extend */ 8681 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 8682 8683 ret = emulator_pio_in(vcpu, size, port, &val, 1); 8684 if (ret) { 8685 kvm_rax_write(vcpu, val); 8686 return ret; 8687 } 8688 8689 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8690 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 8691 8692 return 0; 8693 } 8694 8695 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 8696 { 8697 int ret; 8698 8699 if (in) 8700 ret = kvm_fast_pio_in(vcpu, size, port); 8701 else 8702 ret = kvm_fast_pio_out(vcpu, size, port); 8703 return ret && kvm_skip_emulated_instruction(vcpu); 8704 } 8705 EXPORT_SYMBOL_GPL(kvm_fast_pio); 8706 8707 static int kvmclock_cpu_down_prep(unsigned int cpu) 8708 { 8709 __this_cpu_write(cpu_tsc_khz, 0); 8710 return 0; 8711 } 8712 8713 static void tsc_khz_changed(void *data) 8714 { 8715 struct cpufreq_freqs *freq = data; 8716 unsigned long khz = 0; 8717 8718 if (data) 8719 khz = freq->new; 8720 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8721 khz = cpufreq_quick_get(raw_smp_processor_id()); 8722 if (!khz) 8723 khz = tsc_khz; 8724 __this_cpu_write(cpu_tsc_khz, khz); 8725 } 8726 8727 #ifdef CONFIG_X86_64 8728 static void kvm_hyperv_tsc_notifier(void) 8729 { 8730 struct kvm *kvm; 8731 int cpu; 8732 8733 mutex_lock(&kvm_lock); 8734 list_for_each_entry(kvm, &vm_list, vm_list) 8735 kvm_make_mclock_inprogress_request(kvm); 8736 8737 /* no guest entries from this point */ 8738 hyperv_stop_tsc_emulation(); 8739 8740 /* TSC frequency always matches when on Hyper-V */ 8741 for_each_present_cpu(cpu) 8742 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 8743 kvm_max_guest_tsc_khz = tsc_khz; 8744 8745 list_for_each_entry(kvm, &vm_list, vm_list) { 8746 __kvm_start_pvclock_update(kvm); 8747 pvclock_update_vm_gtod_copy(kvm); 8748 kvm_end_pvclock_update(kvm); 8749 } 8750 8751 mutex_unlock(&kvm_lock); 8752 } 8753 #endif 8754 8755 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 8756 { 8757 struct kvm *kvm; 8758 struct kvm_vcpu *vcpu; 8759 int send_ipi = 0; 8760 unsigned long i; 8761 8762 /* 8763 * We allow guests to temporarily run on slowing clocks, 8764 * provided we notify them after, or to run on accelerating 8765 * clocks, provided we notify them before. Thus time never 8766 * goes backwards. 8767 * 8768 * However, we have a problem. We can't atomically update 8769 * the frequency of a given CPU from this function; it is 8770 * merely a notifier, which can be called from any CPU. 8771 * Changing the TSC frequency at arbitrary points in time 8772 * requires a recomputation of local variables related to 8773 * the TSC for each VCPU. We must flag these local variables 8774 * to be updated and be sure the update takes place with the 8775 * new frequency before any guests proceed. 8776 * 8777 * Unfortunately, the combination of hotplug CPU and frequency 8778 * change creates an intractable locking scenario; the order 8779 * of when these callouts happen is undefined with respect to 8780 * CPU hotplug, and they can race with each other. As such, 8781 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 8782 * undefined; you can actually have a CPU frequency change take 8783 * place in between the computation of X and the setting of the 8784 * variable. To protect against this problem, all updates of 8785 * the per_cpu tsc_khz variable are done in an interrupt 8786 * protected IPI, and all callers wishing to update the value 8787 * must wait for a synchronous IPI to complete (which is trivial 8788 * if the caller is on the CPU already). This establishes the 8789 * necessary total order on variable updates. 8790 * 8791 * Note that because a guest time update may take place 8792 * anytime after the setting of the VCPU's request bit, the 8793 * correct TSC value must be set before the request. However, 8794 * to ensure the update actually makes it to any guest which 8795 * starts running in hardware virtualization between the set 8796 * and the acquisition of the spinlock, we must also ping the 8797 * CPU after setting the request bit. 8798 * 8799 */ 8800 8801 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8802 8803 mutex_lock(&kvm_lock); 8804 list_for_each_entry(kvm, &vm_list, vm_list) { 8805 kvm_for_each_vcpu(i, vcpu, kvm) { 8806 if (vcpu->cpu != cpu) 8807 continue; 8808 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8809 if (vcpu->cpu != raw_smp_processor_id()) 8810 send_ipi = 1; 8811 } 8812 } 8813 mutex_unlock(&kvm_lock); 8814 8815 if (freq->old < freq->new && send_ipi) { 8816 /* 8817 * We upscale the frequency. Must make the guest 8818 * doesn't see old kvmclock values while running with 8819 * the new frequency, otherwise we risk the guest sees 8820 * time go backwards. 8821 * 8822 * In case we update the frequency for another cpu 8823 * (which might be in guest context) send an interrupt 8824 * to kick the cpu out of guest context. Next time 8825 * guest context is entered kvmclock will be updated, 8826 * so the guest will not see stale values. 8827 */ 8828 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8829 } 8830 } 8831 8832 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 8833 void *data) 8834 { 8835 struct cpufreq_freqs *freq = data; 8836 int cpu; 8837 8838 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 8839 return 0; 8840 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 8841 return 0; 8842 8843 for_each_cpu(cpu, freq->policy->cpus) 8844 __kvmclock_cpufreq_notifier(freq, cpu); 8845 8846 return 0; 8847 } 8848 8849 static struct notifier_block kvmclock_cpufreq_notifier_block = { 8850 .notifier_call = kvmclock_cpufreq_notifier 8851 }; 8852 8853 static int kvmclock_cpu_online(unsigned int cpu) 8854 { 8855 tsc_khz_changed(NULL); 8856 return 0; 8857 } 8858 8859 static void kvm_timer_init(void) 8860 { 8861 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 8862 max_tsc_khz = tsc_khz; 8863 8864 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 8865 struct cpufreq_policy *policy; 8866 int cpu; 8867 8868 cpu = get_cpu(); 8869 policy = cpufreq_cpu_get(cpu); 8870 if (policy) { 8871 if (policy->cpuinfo.max_freq) 8872 max_tsc_khz = policy->cpuinfo.max_freq; 8873 cpufreq_cpu_put(policy); 8874 } 8875 put_cpu(); 8876 } 8877 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 8878 CPUFREQ_TRANSITION_NOTIFIER); 8879 } 8880 8881 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 8882 kvmclock_cpu_online, kvmclock_cpu_down_prep); 8883 } 8884 8885 #ifdef CONFIG_X86_64 8886 static void pvclock_gtod_update_fn(struct work_struct *work) 8887 { 8888 struct kvm *kvm; 8889 struct kvm_vcpu *vcpu; 8890 unsigned long i; 8891 8892 mutex_lock(&kvm_lock); 8893 list_for_each_entry(kvm, &vm_list, vm_list) 8894 kvm_for_each_vcpu(i, vcpu, kvm) 8895 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 8896 atomic_set(&kvm_guest_has_master_clock, 0); 8897 mutex_unlock(&kvm_lock); 8898 } 8899 8900 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 8901 8902 /* 8903 * Indirection to move queue_work() out of the tk_core.seq write held 8904 * region to prevent possible deadlocks against time accessors which 8905 * are invoked with work related locks held. 8906 */ 8907 static void pvclock_irq_work_fn(struct irq_work *w) 8908 { 8909 queue_work(system_long_wq, &pvclock_gtod_work); 8910 } 8911 8912 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 8913 8914 /* 8915 * Notification about pvclock gtod data update. 8916 */ 8917 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 8918 void *priv) 8919 { 8920 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 8921 struct timekeeper *tk = priv; 8922 8923 update_pvclock_gtod(tk); 8924 8925 /* 8926 * Disable master clock if host does not trust, or does not use, 8927 * TSC based clocksource. Delegate queue_work() to irq_work as 8928 * this is invoked with tk_core.seq write held. 8929 */ 8930 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 8931 atomic_read(&kvm_guest_has_master_clock) != 0) 8932 irq_work_queue(&pvclock_irq_work); 8933 return 0; 8934 } 8935 8936 static struct notifier_block pvclock_gtod_notifier = { 8937 .notifier_call = pvclock_gtod_notify, 8938 }; 8939 #endif 8940 8941 int kvm_arch_init(void *opaque) 8942 { 8943 struct kvm_x86_init_ops *ops = opaque; 8944 int r; 8945 8946 if (kvm_x86_ops.hardware_enable) { 8947 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 8948 r = -EEXIST; 8949 goto out; 8950 } 8951 8952 if (!ops->cpu_has_kvm_support()) { 8953 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 8954 ops->runtime_ops->name); 8955 r = -EOPNOTSUPP; 8956 goto out; 8957 } 8958 if (ops->disabled_by_bios()) { 8959 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 8960 ops->runtime_ops->name); 8961 r = -EOPNOTSUPP; 8962 goto out; 8963 } 8964 8965 /* 8966 * KVM explicitly assumes that the guest has an FPU and 8967 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 8968 * vCPU's FPU state as a fxregs_state struct. 8969 */ 8970 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 8971 printk(KERN_ERR "kvm: inadequate fpu\n"); 8972 r = -EOPNOTSUPP; 8973 goto out; 8974 } 8975 8976 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 8977 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 8978 r = -EOPNOTSUPP; 8979 goto out; 8980 } 8981 8982 r = -ENOMEM; 8983 8984 x86_emulator_cache = kvm_alloc_emulator_cache(); 8985 if (!x86_emulator_cache) { 8986 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 8987 goto out; 8988 } 8989 8990 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 8991 if (!user_return_msrs) { 8992 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 8993 goto out_free_x86_emulator_cache; 8994 } 8995 kvm_nr_uret_msrs = 0; 8996 8997 r = kvm_mmu_vendor_module_init(); 8998 if (r) 8999 goto out_free_percpu; 9000 9001 kvm_timer_init(); 9002 9003 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9004 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9005 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9006 } 9007 9008 if (pi_inject_timer == -1) 9009 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9010 #ifdef CONFIG_X86_64 9011 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9012 9013 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9014 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9015 #endif 9016 9017 return 0; 9018 9019 out_free_percpu: 9020 free_percpu(user_return_msrs); 9021 out_free_x86_emulator_cache: 9022 kmem_cache_destroy(x86_emulator_cache); 9023 out: 9024 return r; 9025 } 9026 9027 void kvm_arch_exit(void) 9028 { 9029 #ifdef CONFIG_X86_64 9030 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9031 clear_hv_tscchange_cb(); 9032 #endif 9033 kvm_lapic_exit(); 9034 9035 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 9036 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9037 CPUFREQ_TRANSITION_NOTIFIER); 9038 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9039 #ifdef CONFIG_X86_64 9040 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9041 irq_work_sync(&pvclock_irq_work); 9042 cancel_work_sync(&pvclock_gtod_work); 9043 #endif 9044 kvm_x86_ops.hardware_enable = NULL; 9045 kvm_mmu_vendor_module_exit(); 9046 free_percpu(user_return_msrs); 9047 kmem_cache_destroy(x86_emulator_cache); 9048 #ifdef CONFIG_KVM_XEN 9049 static_key_deferred_flush(&kvm_xen_enabled); 9050 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9051 #endif 9052 } 9053 9054 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9055 { 9056 /* 9057 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9058 * local APIC is in-kernel, the run loop will detect the non-runnable 9059 * state and halt the vCPU. Exit to userspace if the local APIC is 9060 * managed by userspace, in which case userspace is responsible for 9061 * handling wake events. 9062 */ 9063 ++vcpu->stat.halt_exits; 9064 if (lapic_in_kernel(vcpu)) { 9065 vcpu->arch.mp_state = state; 9066 return 1; 9067 } else { 9068 vcpu->run->exit_reason = reason; 9069 return 0; 9070 } 9071 } 9072 9073 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9074 { 9075 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9076 } 9077 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9078 9079 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9080 { 9081 int ret = kvm_skip_emulated_instruction(vcpu); 9082 /* 9083 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9084 * KVM_EXIT_DEBUG here. 9085 */ 9086 return kvm_emulate_halt_noskip(vcpu) && ret; 9087 } 9088 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9089 9090 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9091 { 9092 int ret = kvm_skip_emulated_instruction(vcpu); 9093 9094 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9095 KVM_EXIT_AP_RESET_HOLD) && ret; 9096 } 9097 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9098 9099 #ifdef CONFIG_X86_64 9100 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9101 unsigned long clock_type) 9102 { 9103 struct kvm_clock_pairing clock_pairing; 9104 struct timespec64 ts; 9105 u64 cycle; 9106 int ret; 9107 9108 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9109 return -KVM_EOPNOTSUPP; 9110 9111 /* 9112 * When tsc is in permanent catchup mode guests won't be able to use 9113 * pvclock_read_retry loop to get consistent view of pvclock 9114 */ 9115 if (vcpu->arch.tsc_always_catchup) 9116 return -KVM_EOPNOTSUPP; 9117 9118 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9119 return -KVM_EOPNOTSUPP; 9120 9121 clock_pairing.sec = ts.tv_sec; 9122 clock_pairing.nsec = ts.tv_nsec; 9123 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9124 clock_pairing.flags = 0; 9125 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9126 9127 ret = 0; 9128 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9129 sizeof(struct kvm_clock_pairing))) 9130 ret = -KVM_EFAULT; 9131 9132 return ret; 9133 } 9134 #endif 9135 9136 /* 9137 * kvm_pv_kick_cpu_op: Kick a vcpu. 9138 * 9139 * @apicid - apicid of vcpu to be kicked. 9140 */ 9141 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9142 { 9143 struct kvm_lapic_irq lapic_irq; 9144 9145 lapic_irq.shorthand = APIC_DEST_NOSHORT; 9146 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 9147 lapic_irq.level = 0; 9148 lapic_irq.dest_id = apicid; 9149 lapic_irq.msi_redir_hint = false; 9150 9151 lapic_irq.delivery_mode = APIC_DM_REMRD; 9152 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9153 } 9154 9155 bool kvm_apicv_activated(struct kvm *kvm) 9156 { 9157 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9158 } 9159 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9160 9161 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9162 { 9163 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9164 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9165 9166 return (vm_reasons | vcpu_reasons) == 0; 9167 } 9168 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9169 9170 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9171 enum kvm_apicv_inhibit reason, bool set) 9172 { 9173 if (set) 9174 __set_bit(reason, inhibits); 9175 else 9176 __clear_bit(reason, inhibits); 9177 9178 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9179 } 9180 9181 static void kvm_apicv_init(struct kvm *kvm) 9182 { 9183 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9184 9185 init_rwsem(&kvm->arch.apicv_update_lock); 9186 9187 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9188 9189 if (!enable_apicv) 9190 set_or_clear_apicv_inhibit(inhibits, 9191 APICV_INHIBIT_REASON_DISABLE, true); 9192 } 9193 9194 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9195 { 9196 struct kvm_vcpu *target = NULL; 9197 struct kvm_apic_map *map; 9198 9199 vcpu->stat.directed_yield_attempted++; 9200 9201 if (single_task_running()) 9202 goto no_yield; 9203 9204 rcu_read_lock(); 9205 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9206 9207 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9208 target = map->phys_map[dest_id]->vcpu; 9209 9210 rcu_read_unlock(); 9211 9212 if (!target || !READ_ONCE(target->ready)) 9213 goto no_yield; 9214 9215 /* Ignore requests to yield to self */ 9216 if (vcpu == target) 9217 goto no_yield; 9218 9219 if (kvm_vcpu_yield_to(target) <= 0) 9220 goto no_yield; 9221 9222 vcpu->stat.directed_yield_successful++; 9223 9224 no_yield: 9225 return; 9226 } 9227 9228 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9229 { 9230 u64 ret = vcpu->run->hypercall.ret; 9231 9232 if (!is_64_bit_mode(vcpu)) 9233 ret = (u32)ret; 9234 kvm_rax_write(vcpu, ret); 9235 ++vcpu->stat.hypercalls; 9236 return kvm_skip_emulated_instruction(vcpu); 9237 } 9238 9239 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9240 { 9241 unsigned long nr, a0, a1, a2, a3, ret; 9242 int op_64_bit; 9243 9244 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9245 return kvm_xen_hypercall(vcpu); 9246 9247 if (kvm_hv_hypercall_enabled(vcpu)) 9248 return kvm_hv_hypercall(vcpu); 9249 9250 nr = kvm_rax_read(vcpu); 9251 a0 = kvm_rbx_read(vcpu); 9252 a1 = kvm_rcx_read(vcpu); 9253 a2 = kvm_rdx_read(vcpu); 9254 a3 = kvm_rsi_read(vcpu); 9255 9256 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9257 9258 op_64_bit = is_64_bit_hypercall(vcpu); 9259 if (!op_64_bit) { 9260 nr &= 0xFFFFFFFF; 9261 a0 &= 0xFFFFFFFF; 9262 a1 &= 0xFFFFFFFF; 9263 a2 &= 0xFFFFFFFF; 9264 a3 &= 0xFFFFFFFF; 9265 } 9266 9267 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9268 ret = -KVM_EPERM; 9269 goto out; 9270 } 9271 9272 ret = -KVM_ENOSYS; 9273 9274 switch (nr) { 9275 case KVM_HC_VAPIC_POLL_IRQ: 9276 ret = 0; 9277 break; 9278 case KVM_HC_KICK_CPU: 9279 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9280 break; 9281 9282 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9283 kvm_sched_yield(vcpu, a1); 9284 ret = 0; 9285 break; 9286 #ifdef CONFIG_X86_64 9287 case KVM_HC_CLOCK_PAIRING: 9288 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9289 break; 9290 #endif 9291 case KVM_HC_SEND_IPI: 9292 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9293 break; 9294 9295 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9296 break; 9297 case KVM_HC_SCHED_YIELD: 9298 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9299 break; 9300 9301 kvm_sched_yield(vcpu, a0); 9302 ret = 0; 9303 break; 9304 case KVM_HC_MAP_GPA_RANGE: { 9305 u64 gpa = a0, npages = a1, attrs = a2; 9306 9307 ret = -KVM_ENOSYS; 9308 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9309 break; 9310 9311 if (!PAGE_ALIGNED(gpa) || !npages || 9312 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9313 ret = -KVM_EINVAL; 9314 break; 9315 } 9316 9317 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9318 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9319 vcpu->run->hypercall.args[0] = gpa; 9320 vcpu->run->hypercall.args[1] = npages; 9321 vcpu->run->hypercall.args[2] = attrs; 9322 vcpu->run->hypercall.longmode = op_64_bit; 9323 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9324 return 0; 9325 } 9326 default: 9327 ret = -KVM_ENOSYS; 9328 break; 9329 } 9330 out: 9331 if (!op_64_bit) 9332 ret = (u32)ret; 9333 kvm_rax_write(vcpu, ret); 9334 9335 ++vcpu->stat.hypercalls; 9336 return kvm_skip_emulated_instruction(vcpu); 9337 } 9338 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9339 9340 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9341 { 9342 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9343 char instruction[3]; 9344 unsigned long rip = kvm_rip_read(vcpu); 9345 9346 /* 9347 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9348 * the pieces. 9349 */ 9350 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9351 ctxt->exception.error_code_valid = false; 9352 ctxt->exception.vector = UD_VECTOR; 9353 ctxt->have_exception = true; 9354 return X86EMUL_PROPAGATE_FAULT; 9355 } 9356 9357 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9358 9359 return emulator_write_emulated(ctxt, rip, instruction, 3, 9360 &ctxt->exception); 9361 } 9362 9363 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9364 { 9365 return vcpu->run->request_interrupt_window && 9366 likely(!pic_in_kernel(vcpu->kvm)); 9367 } 9368 9369 /* Called within kvm->srcu read side. */ 9370 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9371 { 9372 struct kvm_run *kvm_run = vcpu->run; 9373 9374 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9375 kvm_run->cr8 = kvm_get_cr8(vcpu); 9376 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9377 9378 kvm_run->ready_for_interrupt_injection = 9379 pic_in_kernel(vcpu->kvm) || 9380 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9381 9382 if (is_smm(vcpu)) 9383 kvm_run->flags |= KVM_RUN_X86_SMM; 9384 } 9385 9386 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9387 { 9388 int max_irr, tpr; 9389 9390 if (!kvm_x86_ops.update_cr8_intercept) 9391 return; 9392 9393 if (!lapic_in_kernel(vcpu)) 9394 return; 9395 9396 if (vcpu->arch.apicv_active) 9397 return; 9398 9399 if (!vcpu->arch.apic->vapic_addr) 9400 max_irr = kvm_lapic_find_highest_irr(vcpu); 9401 else 9402 max_irr = -1; 9403 9404 if (max_irr != -1) 9405 max_irr >>= 4; 9406 9407 tpr = kvm_lapic_get_cr8(vcpu); 9408 9409 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9410 } 9411 9412 9413 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9414 { 9415 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9416 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9417 return 1; 9418 } 9419 9420 return kvm_x86_ops.nested_ops->check_events(vcpu); 9421 } 9422 9423 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9424 { 9425 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9426 vcpu->arch.exception.error_code = false; 9427 static_call(kvm_x86_queue_exception)(vcpu); 9428 } 9429 9430 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 9431 { 9432 int r; 9433 bool can_inject = true; 9434 9435 /* try to reinject previous events if any */ 9436 9437 if (vcpu->arch.exception.injected) { 9438 kvm_inject_exception(vcpu); 9439 can_inject = false; 9440 } 9441 /* 9442 * Do not inject an NMI or interrupt if there is a pending 9443 * exception. Exceptions and interrupts are recognized at 9444 * instruction boundaries, i.e. the start of an instruction. 9445 * Trap-like exceptions, e.g. #DB, have higher priority than 9446 * NMIs and interrupts, i.e. traps are recognized before an 9447 * NMI/interrupt that's pending on the same instruction. 9448 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 9449 * priority, but are only generated (pended) during instruction 9450 * execution, i.e. a pending fault-like exception means the 9451 * fault occurred on the *previous* instruction and must be 9452 * serviced prior to recognizing any new events in order to 9453 * fully complete the previous instruction. 9454 */ 9455 else if (!vcpu->arch.exception.pending) { 9456 if (vcpu->arch.nmi_injected) { 9457 static_call(kvm_x86_inject_nmi)(vcpu); 9458 can_inject = false; 9459 } else if (vcpu->arch.interrupt.injected) { 9460 static_call(kvm_x86_inject_irq)(vcpu); 9461 can_inject = false; 9462 } 9463 } 9464 9465 WARN_ON_ONCE(vcpu->arch.exception.injected && 9466 vcpu->arch.exception.pending); 9467 9468 /* 9469 * Call check_nested_events() even if we reinjected a previous event 9470 * in order for caller to determine if it should require immediate-exit 9471 * from L2 to L1 due to pending L1 events which require exit 9472 * from L2 to L1. 9473 */ 9474 if (is_guest_mode(vcpu)) { 9475 r = kvm_check_nested_events(vcpu); 9476 if (r < 0) 9477 goto out; 9478 } 9479 9480 /* try to inject new event if pending */ 9481 if (vcpu->arch.exception.pending) { 9482 trace_kvm_inj_exception(vcpu->arch.exception.nr, 9483 vcpu->arch.exception.has_error_code, 9484 vcpu->arch.exception.error_code); 9485 9486 vcpu->arch.exception.pending = false; 9487 vcpu->arch.exception.injected = true; 9488 9489 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 9490 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9491 X86_EFLAGS_RF); 9492 9493 if (vcpu->arch.exception.nr == DB_VECTOR) { 9494 kvm_deliver_exception_payload(vcpu); 9495 if (vcpu->arch.dr7 & DR7_GD) { 9496 vcpu->arch.dr7 &= ~DR7_GD; 9497 kvm_update_dr7(vcpu); 9498 } 9499 } 9500 9501 kvm_inject_exception(vcpu); 9502 can_inject = false; 9503 } 9504 9505 /* Don't inject interrupts if the user asked to avoid doing so */ 9506 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9507 return 0; 9508 9509 /* 9510 * Finally, inject interrupt events. If an event cannot be injected 9511 * due to architectural conditions (e.g. IF=0) a window-open exit 9512 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9513 * and can architecturally be injected, but we cannot do it right now: 9514 * an interrupt could have arrived just now and we have to inject it 9515 * as a vmexit, or there could already an event in the queue, which is 9516 * indicated by can_inject. In that case we request an immediate exit 9517 * in order to make progress and get back here for another iteration. 9518 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9519 */ 9520 if (vcpu->arch.smi_pending) { 9521 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9522 if (r < 0) 9523 goto out; 9524 if (r) { 9525 vcpu->arch.smi_pending = false; 9526 ++vcpu->arch.smi_count; 9527 enter_smm(vcpu); 9528 can_inject = false; 9529 } else 9530 static_call(kvm_x86_enable_smi_window)(vcpu); 9531 } 9532 9533 if (vcpu->arch.nmi_pending) { 9534 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9535 if (r < 0) 9536 goto out; 9537 if (r) { 9538 --vcpu->arch.nmi_pending; 9539 vcpu->arch.nmi_injected = true; 9540 static_call(kvm_x86_inject_nmi)(vcpu); 9541 can_inject = false; 9542 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9543 } 9544 if (vcpu->arch.nmi_pending) 9545 static_call(kvm_x86_enable_nmi_window)(vcpu); 9546 } 9547 9548 if (kvm_cpu_has_injectable_intr(vcpu)) { 9549 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9550 if (r < 0) 9551 goto out; 9552 if (r) { 9553 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 9554 static_call(kvm_x86_inject_irq)(vcpu); 9555 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 9556 } 9557 if (kvm_cpu_has_injectable_intr(vcpu)) 9558 static_call(kvm_x86_enable_irq_window)(vcpu); 9559 } 9560 9561 if (is_guest_mode(vcpu) && 9562 kvm_x86_ops.nested_ops->hv_timer_pending && 9563 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 9564 *req_immediate_exit = true; 9565 9566 WARN_ON(vcpu->arch.exception.pending); 9567 return 0; 9568 9569 out: 9570 if (r == -EBUSY) { 9571 *req_immediate_exit = true; 9572 r = 0; 9573 } 9574 return r; 9575 } 9576 9577 static void process_nmi(struct kvm_vcpu *vcpu) 9578 { 9579 unsigned limit = 2; 9580 9581 /* 9582 * x86 is limited to one NMI running, and one NMI pending after it. 9583 * If an NMI is already in progress, limit further NMIs to just one. 9584 * Otherwise, allow two (and we'll inject the first one immediately). 9585 */ 9586 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 9587 limit = 1; 9588 9589 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 9590 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 9591 kvm_make_request(KVM_REQ_EVENT, vcpu); 9592 } 9593 9594 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 9595 { 9596 u32 flags = 0; 9597 flags |= seg->g << 23; 9598 flags |= seg->db << 22; 9599 flags |= seg->l << 21; 9600 flags |= seg->avl << 20; 9601 flags |= seg->present << 15; 9602 flags |= seg->dpl << 13; 9603 flags |= seg->s << 12; 9604 flags |= seg->type << 8; 9605 return flags; 9606 } 9607 9608 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 9609 { 9610 struct kvm_segment seg; 9611 int offset; 9612 9613 kvm_get_segment(vcpu, &seg, n); 9614 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 9615 9616 if (n < 3) 9617 offset = 0x7f84 + n * 12; 9618 else 9619 offset = 0x7f2c + (n - 3) * 12; 9620 9621 put_smstate(u32, buf, offset + 8, seg.base); 9622 put_smstate(u32, buf, offset + 4, seg.limit); 9623 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 9624 } 9625 9626 #ifdef CONFIG_X86_64 9627 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 9628 { 9629 struct kvm_segment seg; 9630 int offset; 9631 u16 flags; 9632 9633 kvm_get_segment(vcpu, &seg, n); 9634 offset = 0x7e00 + n * 16; 9635 9636 flags = enter_smm_get_segment_flags(&seg) >> 8; 9637 put_smstate(u16, buf, offset, seg.selector); 9638 put_smstate(u16, buf, offset + 2, flags); 9639 put_smstate(u32, buf, offset + 4, seg.limit); 9640 put_smstate(u64, buf, offset + 8, seg.base); 9641 } 9642 #endif 9643 9644 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 9645 { 9646 struct desc_ptr dt; 9647 struct kvm_segment seg; 9648 unsigned long val; 9649 int i; 9650 9651 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 9652 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 9653 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 9654 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 9655 9656 for (i = 0; i < 8; i++) 9657 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i)); 9658 9659 kvm_get_dr(vcpu, 6, &val); 9660 put_smstate(u32, buf, 0x7fcc, (u32)val); 9661 kvm_get_dr(vcpu, 7, &val); 9662 put_smstate(u32, buf, 0x7fc8, (u32)val); 9663 9664 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9665 put_smstate(u32, buf, 0x7fc4, seg.selector); 9666 put_smstate(u32, buf, 0x7f64, seg.base); 9667 put_smstate(u32, buf, 0x7f60, seg.limit); 9668 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 9669 9670 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9671 put_smstate(u32, buf, 0x7fc0, seg.selector); 9672 put_smstate(u32, buf, 0x7f80, seg.base); 9673 put_smstate(u32, buf, 0x7f7c, seg.limit); 9674 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 9675 9676 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9677 put_smstate(u32, buf, 0x7f74, dt.address); 9678 put_smstate(u32, buf, 0x7f70, dt.size); 9679 9680 static_call(kvm_x86_get_idt)(vcpu, &dt); 9681 put_smstate(u32, buf, 0x7f58, dt.address); 9682 put_smstate(u32, buf, 0x7f54, dt.size); 9683 9684 for (i = 0; i < 6; i++) 9685 enter_smm_save_seg_32(vcpu, buf, i); 9686 9687 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 9688 9689 /* revision id */ 9690 put_smstate(u32, buf, 0x7efc, 0x00020000); 9691 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 9692 } 9693 9694 #ifdef CONFIG_X86_64 9695 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 9696 { 9697 struct desc_ptr dt; 9698 struct kvm_segment seg; 9699 unsigned long val; 9700 int i; 9701 9702 for (i = 0; i < 16; i++) 9703 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i)); 9704 9705 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 9706 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 9707 9708 kvm_get_dr(vcpu, 6, &val); 9709 put_smstate(u64, buf, 0x7f68, val); 9710 kvm_get_dr(vcpu, 7, &val); 9711 put_smstate(u64, buf, 0x7f60, val); 9712 9713 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 9714 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 9715 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 9716 9717 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 9718 9719 /* revision id */ 9720 put_smstate(u32, buf, 0x7efc, 0x00020064); 9721 9722 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 9723 9724 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9725 put_smstate(u16, buf, 0x7e90, seg.selector); 9726 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 9727 put_smstate(u32, buf, 0x7e94, seg.limit); 9728 put_smstate(u64, buf, 0x7e98, seg.base); 9729 9730 static_call(kvm_x86_get_idt)(vcpu, &dt); 9731 put_smstate(u32, buf, 0x7e84, dt.size); 9732 put_smstate(u64, buf, 0x7e88, dt.address); 9733 9734 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9735 put_smstate(u16, buf, 0x7e70, seg.selector); 9736 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 9737 put_smstate(u32, buf, 0x7e74, seg.limit); 9738 put_smstate(u64, buf, 0x7e78, seg.base); 9739 9740 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9741 put_smstate(u32, buf, 0x7e64, dt.size); 9742 put_smstate(u64, buf, 0x7e68, dt.address); 9743 9744 for (i = 0; i < 6; i++) 9745 enter_smm_save_seg_64(vcpu, buf, i); 9746 } 9747 #endif 9748 9749 static void enter_smm(struct kvm_vcpu *vcpu) 9750 { 9751 struct kvm_segment cs, ds; 9752 struct desc_ptr dt; 9753 unsigned long cr0; 9754 char buf[512]; 9755 9756 memset(buf, 0, 512); 9757 #ifdef CONFIG_X86_64 9758 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9759 enter_smm_save_state_64(vcpu, buf); 9760 else 9761 #endif 9762 enter_smm_save_state_32(vcpu, buf); 9763 9764 /* 9765 * Give enter_smm() a chance to make ISA-specific changes to the vCPU 9766 * state (e.g. leave guest mode) after we've saved the state into the 9767 * SMM state-save area. 9768 */ 9769 static_call(kvm_x86_enter_smm)(vcpu, buf); 9770 9771 kvm_smm_changed(vcpu, true); 9772 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 9773 9774 if (static_call(kvm_x86_get_nmi_mask)(vcpu)) 9775 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 9776 else 9777 static_call(kvm_x86_set_nmi_mask)(vcpu, true); 9778 9779 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 9780 kvm_rip_write(vcpu, 0x8000); 9781 9782 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 9783 static_call(kvm_x86_set_cr0)(vcpu, cr0); 9784 vcpu->arch.cr0 = cr0; 9785 9786 static_call(kvm_x86_set_cr4)(vcpu, 0); 9787 9788 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 9789 dt.address = dt.size = 0; 9790 static_call(kvm_x86_set_idt)(vcpu, &dt); 9791 9792 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 9793 9794 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 9795 cs.base = vcpu->arch.smbase; 9796 9797 ds.selector = 0; 9798 ds.base = 0; 9799 9800 cs.limit = ds.limit = 0xffffffff; 9801 cs.type = ds.type = 0x3; 9802 cs.dpl = ds.dpl = 0; 9803 cs.db = ds.db = 0; 9804 cs.s = ds.s = 1; 9805 cs.l = ds.l = 0; 9806 cs.g = ds.g = 1; 9807 cs.avl = ds.avl = 0; 9808 cs.present = ds.present = 1; 9809 cs.unusable = ds.unusable = 0; 9810 cs.padding = ds.padding = 0; 9811 9812 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9813 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 9814 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 9815 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 9816 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 9817 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 9818 9819 #ifdef CONFIG_X86_64 9820 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9821 static_call(kvm_x86_set_efer)(vcpu, 0); 9822 #endif 9823 9824 kvm_update_cpuid_runtime(vcpu); 9825 kvm_mmu_reset_context(vcpu); 9826 } 9827 9828 static void process_smi(struct kvm_vcpu *vcpu) 9829 { 9830 vcpu->arch.smi_pending = true; 9831 kvm_make_request(KVM_REQ_EVENT, vcpu); 9832 } 9833 9834 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 9835 unsigned long *vcpu_bitmap) 9836 { 9837 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 9838 } 9839 9840 void kvm_make_scan_ioapic_request(struct kvm *kvm) 9841 { 9842 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 9843 } 9844 9845 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 9846 { 9847 bool activate; 9848 9849 if (!lapic_in_kernel(vcpu)) 9850 return; 9851 9852 down_read(&vcpu->kvm->arch.apicv_update_lock); 9853 9854 activate = kvm_vcpu_apicv_activated(vcpu); 9855 9856 if (vcpu->arch.apicv_active == activate) 9857 goto out; 9858 9859 vcpu->arch.apicv_active = activate; 9860 kvm_apic_update_apicv(vcpu); 9861 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 9862 9863 /* 9864 * When APICv gets disabled, we may still have injected interrupts 9865 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 9866 * still active when the interrupt got accepted. Make sure 9867 * inject_pending_event() is called to check for that. 9868 */ 9869 if (!vcpu->arch.apicv_active) 9870 kvm_make_request(KVM_REQ_EVENT, vcpu); 9871 9872 out: 9873 up_read(&vcpu->kvm->arch.apicv_update_lock); 9874 } 9875 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 9876 9877 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 9878 enum kvm_apicv_inhibit reason, bool set) 9879 { 9880 unsigned long old, new; 9881 9882 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 9883 9884 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason)) 9885 return; 9886 9887 old = new = kvm->arch.apicv_inhibit_reasons; 9888 9889 set_or_clear_apicv_inhibit(&new, reason, set); 9890 9891 if (!!old != !!new) { 9892 /* 9893 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 9894 * false positives in the sanity check WARN in svm_vcpu_run(). 9895 * This task will wait for all vCPUs to ack the kick IRQ before 9896 * updating apicv_inhibit_reasons, and all other vCPUs will 9897 * block on acquiring apicv_update_lock so that vCPUs can't 9898 * redo svm_vcpu_run() without seeing the new inhibit state. 9899 * 9900 * Note, holding apicv_update_lock and taking it in the read 9901 * side (handling the request) also prevents other vCPUs from 9902 * servicing the request with a stale apicv_inhibit_reasons. 9903 */ 9904 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 9905 kvm->arch.apicv_inhibit_reasons = new; 9906 if (new) { 9907 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 9908 kvm_zap_gfn_range(kvm, gfn, gfn+1); 9909 } 9910 } else { 9911 kvm->arch.apicv_inhibit_reasons = new; 9912 } 9913 } 9914 9915 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 9916 enum kvm_apicv_inhibit reason, bool set) 9917 { 9918 if (!enable_apicv) 9919 return; 9920 9921 down_write(&kvm->arch.apicv_update_lock); 9922 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 9923 up_write(&kvm->arch.apicv_update_lock); 9924 } 9925 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 9926 9927 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 9928 { 9929 if (!kvm_apic_present(vcpu)) 9930 return; 9931 9932 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 9933 9934 if (irqchip_split(vcpu->kvm)) 9935 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 9936 else { 9937 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 9938 if (ioapic_in_kernel(vcpu->kvm)) 9939 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 9940 } 9941 9942 if (is_guest_mode(vcpu)) 9943 vcpu->arch.load_eoi_exitmap_pending = true; 9944 else 9945 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 9946 } 9947 9948 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 9949 { 9950 u64 eoi_exit_bitmap[4]; 9951 9952 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 9953 return; 9954 9955 if (to_hv_vcpu(vcpu)) { 9956 bitmap_or((ulong *)eoi_exit_bitmap, 9957 vcpu->arch.ioapic_handled_vectors, 9958 to_hv_synic(vcpu)->vec_bitmap, 256); 9959 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 9960 return; 9961 } 9962 9963 static_call_cond(kvm_x86_load_eoi_exitmap)( 9964 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 9965 } 9966 9967 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 9968 unsigned long start, unsigned long end) 9969 { 9970 unsigned long apic_address; 9971 9972 /* 9973 * The physical address of apic access page is stored in the VMCS. 9974 * Update it when it becomes invalid. 9975 */ 9976 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 9977 if (start <= apic_address && apic_address < end) 9978 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 9979 } 9980 9981 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 9982 { 9983 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 9984 } 9985 9986 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 9987 { 9988 if (!lapic_in_kernel(vcpu)) 9989 return; 9990 9991 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 9992 } 9993 9994 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 9995 { 9996 smp_send_reschedule(vcpu->cpu); 9997 } 9998 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 9999 10000 /* 10001 * Called within kvm->srcu read side. 10002 * Returns 1 to let vcpu_run() continue the guest execution loop without 10003 * exiting to the userspace. Otherwise, the value will be returned to the 10004 * userspace. 10005 */ 10006 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10007 { 10008 int r; 10009 bool req_int_win = 10010 dm_request_for_irq_injection(vcpu) && 10011 kvm_cpu_accept_dm_intr(vcpu); 10012 fastpath_t exit_fastpath; 10013 10014 bool req_immediate_exit = false; 10015 10016 /* Forbid vmenter if vcpu dirty ring is soft-full */ 10017 if (unlikely(vcpu->kvm->dirty_ring_size && 10018 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 10019 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 10020 trace_kvm_dirty_ring_exit(vcpu); 10021 r = 0; 10022 goto out; 10023 } 10024 10025 if (kvm_request_pending(vcpu)) { 10026 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10027 r = -EIO; 10028 goto out; 10029 } 10030 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10031 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10032 r = 0; 10033 goto out; 10034 } 10035 } 10036 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10037 kvm_mmu_free_obsolete_roots(vcpu); 10038 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10039 __kvm_migrate_timers(vcpu); 10040 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10041 kvm_update_masterclock(vcpu->kvm); 10042 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10043 kvm_gen_kvmclock_update(vcpu); 10044 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10045 r = kvm_guest_time_update(vcpu); 10046 if (unlikely(r)) 10047 goto out; 10048 } 10049 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10050 kvm_mmu_sync_roots(vcpu); 10051 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10052 kvm_mmu_load_pgd(vcpu); 10053 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 10054 kvm_vcpu_flush_tlb_all(vcpu); 10055 10056 /* Flushing all ASIDs flushes the current ASID... */ 10057 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 10058 } 10059 kvm_service_local_tlb_flush_requests(vcpu); 10060 10061 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10062 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10063 r = 0; 10064 goto out; 10065 } 10066 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10067 if (is_guest_mode(vcpu)) { 10068 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10069 } else { 10070 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10071 vcpu->mmio_needed = 0; 10072 r = 0; 10073 goto out; 10074 } 10075 } 10076 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10077 /* Page is swapped out. Do synthetic halt */ 10078 vcpu->arch.apf.halted = true; 10079 r = 1; 10080 goto out; 10081 } 10082 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10083 record_steal_time(vcpu); 10084 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10085 process_smi(vcpu); 10086 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10087 process_nmi(vcpu); 10088 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10089 kvm_pmu_handle_event(vcpu); 10090 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10091 kvm_pmu_deliver_pmi(vcpu); 10092 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10093 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10094 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10095 vcpu->arch.ioapic_handled_vectors)) { 10096 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10097 vcpu->run->eoi.vector = 10098 vcpu->arch.pending_ioapic_eoi; 10099 r = 0; 10100 goto out; 10101 } 10102 } 10103 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10104 vcpu_scan_ioapic(vcpu); 10105 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10106 vcpu_load_eoi_exitmap(vcpu); 10107 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10108 kvm_vcpu_reload_apic_access_page(vcpu); 10109 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10110 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10111 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10112 vcpu->run->system_event.ndata = 0; 10113 r = 0; 10114 goto out; 10115 } 10116 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10117 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10118 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10119 vcpu->run->system_event.ndata = 0; 10120 r = 0; 10121 goto out; 10122 } 10123 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10124 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10125 10126 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10127 vcpu->run->hyperv = hv_vcpu->exit; 10128 r = 0; 10129 goto out; 10130 } 10131 10132 /* 10133 * KVM_REQ_HV_STIMER has to be processed after 10134 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10135 * depend on the guest clock being up-to-date 10136 */ 10137 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10138 kvm_hv_process_stimers(vcpu); 10139 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10140 kvm_vcpu_update_apicv(vcpu); 10141 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10142 kvm_check_async_pf_completion(vcpu); 10143 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10144 static_call(kvm_x86_msr_filter_changed)(vcpu); 10145 10146 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10147 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10148 } 10149 10150 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10151 kvm_xen_has_interrupt(vcpu)) { 10152 ++vcpu->stat.req_event; 10153 r = kvm_apic_accept_events(vcpu); 10154 if (r < 0) { 10155 r = 0; 10156 goto out; 10157 } 10158 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10159 r = 1; 10160 goto out; 10161 } 10162 10163 r = inject_pending_event(vcpu, &req_immediate_exit); 10164 if (r < 0) { 10165 r = 0; 10166 goto out; 10167 } 10168 if (req_int_win) 10169 static_call(kvm_x86_enable_irq_window)(vcpu); 10170 10171 if (kvm_lapic_enabled(vcpu)) { 10172 update_cr8_intercept(vcpu); 10173 kvm_lapic_sync_to_vapic(vcpu); 10174 } 10175 } 10176 10177 r = kvm_mmu_reload(vcpu); 10178 if (unlikely(r)) { 10179 goto cancel_injection; 10180 } 10181 10182 preempt_disable(); 10183 10184 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10185 10186 /* 10187 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10188 * IPI are then delayed after guest entry, which ensures that they 10189 * result in virtual interrupt delivery. 10190 */ 10191 local_irq_disable(); 10192 10193 /* Store vcpu->apicv_active before vcpu->mode. */ 10194 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10195 10196 kvm_vcpu_srcu_read_unlock(vcpu); 10197 10198 /* 10199 * 1) We should set ->mode before checking ->requests. Please see 10200 * the comment in kvm_vcpu_exiting_guest_mode(). 10201 * 10202 * 2) For APICv, we should set ->mode before checking PID.ON. This 10203 * pairs with the memory barrier implicit in pi_test_and_set_on 10204 * (see vmx_deliver_posted_interrupt). 10205 * 10206 * 3) This also orders the write to mode from any reads to the page 10207 * tables done while the VCPU is running. Please see the comment 10208 * in kvm_flush_remote_tlbs. 10209 */ 10210 smp_mb__after_srcu_read_unlock(); 10211 10212 /* 10213 * Process pending posted interrupts to handle the case where the 10214 * notification IRQ arrived in the host, or was never sent (because the 10215 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10216 * status, KVM doesn't update assigned devices when APICv is inhibited, 10217 * i.e. they can post interrupts even if APICv is temporarily disabled. 10218 */ 10219 if (kvm_lapic_enabled(vcpu)) 10220 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10221 10222 if (kvm_vcpu_exit_request(vcpu)) { 10223 vcpu->mode = OUTSIDE_GUEST_MODE; 10224 smp_wmb(); 10225 local_irq_enable(); 10226 preempt_enable(); 10227 kvm_vcpu_srcu_read_lock(vcpu); 10228 r = 1; 10229 goto cancel_injection; 10230 } 10231 10232 if (req_immediate_exit) { 10233 kvm_make_request(KVM_REQ_EVENT, vcpu); 10234 static_call(kvm_x86_request_immediate_exit)(vcpu); 10235 } 10236 10237 fpregs_assert_state_consistent(); 10238 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10239 switch_fpu_return(); 10240 10241 if (vcpu->arch.guest_fpu.xfd_err) 10242 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10243 10244 if (unlikely(vcpu->arch.switch_db_regs)) { 10245 set_debugreg(0, 7); 10246 set_debugreg(vcpu->arch.eff_db[0], 0); 10247 set_debugreg(vcpu->arch.eff_db[1], 1); 10248 set_debugreg(vcpu->arch.eff_db[2], 2); 10249 set_debugreg(vcpu->arch.eff_db[3], 3); 10250 } else if (unlikely(hw_breakpoint_active())) { 10251 set_debugreg(0, 7); 10252 } 10253 10254 guest_timing_enter_irqoff(); 10255 10256 for (;;) { 10257 /* 10258 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10259 * update must kick and wait for all vCPUs before toggling the 10260 * per-VM state, and responsing vCPUs must wait for the update 10261 * to complete before servicing KVM_REQ_APICV_UPDATE. 10262 */ 10263 WARN_ON_ONCE(kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)); 10264 10265 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10266 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10267 break; 10268 10269 if (kvm_lapic_enabled(vcpu)) 10270 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10271 10272 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10273 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10274 break; 10275 } 10276 } 10277 10278 /* 10279 * Do this here before restoring debug registers on the host. And 10280 * since we do this before handling the vmexit, a DR access vmexit 10281 * can (a) read the correct value of the debug registers, (b) set 10282 * KVM_DEBUGREG_WONT_EXIT again. 10283 */ 10284 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10285 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10286 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10287 kvm_update_dr0123(vcpu); 10288 kvm_update_dr7(vcpu); 10289 } 10290 10291 /* 10292 * If the guest has used debug registers, at least dr7 10293 * will be disabled while returning to the host. 10294 * If we don't have active breakpoints in the host, we don't 10295 * care about the messed up debug address registers. But if 10296 * we have some of them active, restore the old state. 10297 */ 10298 if (hw_breakpoint_active()) 10299 hw_breakpoint_restore(); 10300 10301 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10302 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10303 10304 vcpu->mode = OUTSIDE_GUEST_MODE; 10305 smp_wmb(); 10306 10307 /* 10308 * Sync xfd before calling handle_exit_irqoff() which may 10309 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10310 * in #NM irqoff handler). 10311 */ 10312 if (vcpu->arch.xfd_no_write_intercept) 10313 fpu_sync_guest_vmexit_xfd_state(); 10314 10315 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10316 10317 if (vcpu->arch.guest_fpu.xfd_err) 10318 wrmsrl(MSR_IA32_XFD_ERR, 0); 10319 10320 /* 10321 * Consume any pending interrupts, including the possible source of 10322 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10323 * An instruction is required after local_irq_enable() to fully unblock 10324 * interrupts on processors that implement an interrupt shadow, the 10325 * stat.exits increment will do nicely. 10326 */ 10327 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10328 local_irq_enable(); 10329 ++vcpu->stat.exits; 10330 local_irq_disable(); 10331 kvm_after_interrupt(vcpu); 10332 10333 /* 10334 * Wait until after servicing IRQs to account guest time so that any 10335 * ticks that occurred while running the guest are properly accounted 10336 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10337 * of accounting via context tracking, but the loss of accuracy is 10338 * acceptable for all known use cases. 10339 */ 10340 guest_timing_exit_irqoff(); 10341 10342 local_irq_enable(); 10343 preempt_enable(); 10344 10345 kvm_vcpu_srcu_read_lock(vcpu); 10346 10347 /* 10348 * Profile KVM exit RIPs: 10349 */ 10350 if (unlikely(prof_on == KVM_PROFILING)) { 10351 unsigned long rip = kvm_rip_read(vcpu); 10352 profile_hit(KVM_PROFILING, (void *)rip); 10353 } 10354 10355 if (unlikely(vcpu->arch.tsc_always_catchup)) 10356 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10357 10358 if (vcpu->arch.apic_attention) 10359 kvm_lapic_sync_from_vapic(vcpu); 10360 10361 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10362 return r; 10363 10364 cancel_injection: 10365 if (req_immediate_exit) 10366 kvm_make_request(KVM_REQ_EVENT, vcpu); 10367 static_call(kvm_x86_cancel_injection)(vcpu); 10368 if (unlikely(vcpu->arch.apic_attention)) 10369 kvm_lapic_sync_from_vapic(vcpu); 10370 out: 10371 return r; 10372 } 10373 10374 /* Called within kvm->srcu read side. */ 10375 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10376 { 10377 bool hv_timer; 10378 10379 if (!kvm_arch_vcpu_runnable(vcpu)) { 10380 /* 10381 * Switch to the software timer before halt-polling/blocking as 10382 * the guest's timer may be a break event for the vCPU, and the 10383 * hypervisor timer runs only when the CPU is in guest mode. 10384 * Switch before halt-polling so that KVM recognizes an expired 10385 * timer before blocking. 10386 */ 10387 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10388 if (hv_timer) 10389 kvm_lapic_switch_to_sw_timer(vcpu); 10390 10391 kvm_vcpu_srcu_read_unlock(vcpu); 10392 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10393 kvm_vcpu_halt(vcpu); 10394 else 10395 kvm_vcpu_block(vcpu); 10396 kvm_vcpu_srcu_read_lock(vcpu); 10397 10398 if (hv_timer) 10399 kvm_lapic_switch_to_hv_timer(vcpu); 10400 10401 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 10402 return 1; 10403 } 10404 10405 if (kvm_apic_accept_events(vcpu) < 0) 10406 return 0; 10407 switch(vcpu->arch.mp_state) { 10408 case KVM_MP_STATE_HALTED: 10409 case KVM_MP_STATE_AP_RESET_HOLD: 10410 vcpu->arch.pv.pv_unhalted = false; 10411 vcpu->arch.mp_state = 10412 KVM_MP_STATE_RUNNABLE; 10413 fallthrough; 10414 case KVM_MP_STATE_RUNNABLE: 10415 vcpu->arch.apf.halted = false; 10416 break; 10417 case KVM_MP_STATE_INIT_RECEIVED: 10418 break; 10419 default: 10420 return -EINTR; 10421 } 10422 return 1; 10423 } 10424 10425 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10426 { 10427 if (is_guest_mode(vcpu)) 10428 kvm_check_nested_events(vcpu); 10429 10430 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10431 !vcpu->arch.apf.halted); 10432 } 10433 10434 /* Called within kvm->srcu read side. */ 10435 static int vcpu_run(struct kvm_vcpu *vcpu) 10436 { 10437 int r; 10438 10439 vcpu->arch.l1tf_flush_l1d = true; 10440 10441 for (;;) { 10442 /* 10443 * If another guest vCPU requests a PV TLB flush in the middle 10444 * of instruction emulation, the rest of the emulation could 10445 * use a stale page translation. Assume that any code after 10446 * this point can start executing an instruction. 10447 */ 10448 vcpu->arch.at_instruction_boundary = false; 10449 if (kvm_vcpu_running(vcpu)) { 10450 r = vcpu_enter_guest(vcpu); 10451 } else { 10452 r = vcpu_block(vcpu); 10453 } 10454 10455 if (r <= 0) 10456 break; 10457 10458 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10459 if (kvm_xen_has_pending_events(vcpu)) 10460 kvm_xen_inject_pending_events(vcpu); 10461 10462 if (kvm_cpu_has_pending_timer(vcpu)) 10463 kvm_inject_pending_timer_irqs(vcpu); 10464 10465 if (dm_request_for_irq_injection(vcpu) && 10466 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10467 r = 0; 10468 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10469 ++vcpu->stat.request_irq_exits; 10470 break; 10471 } 10472 10473 if (__xfer_to_guest_mode_work_pending()) { 10474 kvm_vcpu_srcu_read_unlock(vcpu); 10475 r = xfer_to_guest_mode_handle_work(vcpu); 10476 kvm_vcpu_srcu_read_lock(vcpu); 10477 if (r) 10478 return r; 10479 } 10480 } 10481 10482 return r; 10483 } 10484 10485 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10486 { 10487 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10488 } 10489 10490 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10491 { 10492 BUG_ON(!vcpu->arch.pio.count); 10493 10494 return complete_emulated_io(vcpu); 10495 } 10496 10497 /* 10498 * Implements the following, as a state machine: 10499 * 10500 * read: 10501 * for each fragment 10502 * for each mmio piece in the fragment 10503 * write gpa, len 10504 * exit 10505 * copy data 10506 * execute insn 10507 * 10508 * write: 10509 * for each fragment 10510 * for each mmio piece in the fragment 10511 * write gpa, len 10512 * copy data 10513 * exit 10514 */ 10515 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10516 { 10517 struct kvm_run *run = vcpu->run; 10518 struct kvm_mmio_fragment *frag; 10519 unsigned len; 10520 10521 BUG_ON(!vcpu->mmio_needed); 10522 10523 /* Complete previous fragment */ 10524 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10525 len = min(8u, frag->len); 10526 if (!vcpu->mmio_is_write) 10527 memcpy(frag->data, run->mmio.data, len); 10528 10529 if (frag->len <= 8) { 10530 /* Switch to the next fragment. */ 10531 frag++; 10532 vcpu->mmio_cur_fragment++; 10533 } else { 10534 /* Go forward to the next mmio piece. */ 10535 frag->data += len; 10536 frag->gpa += len; 10537 frag->len -= len; 10538 } 10539 10540 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10541 vcpu->mmio_needed = 0; 10542 10543 /* FIXME: return into emulator if single-stepping. */ 10544 if (vcpu->mmio_is_write) 10545 return 1; 10546 vcpu->mmio_read_completed = 1; 10547 return complete_emulated_io(vcpu); 10548 } 10549 10550 run->exit_reason = KVM_EXIT_MMIO; 10551 run->mmio.phys_addr = frag->gpa; 10552 if (vcpu->mmio_is_write) 10553 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10554 run->mmio.len = min(8u, frag->len); 10555 run->mmio.is_write = vcpu->mmio_is_write; 10556 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10557 return 0; 10558 } 10559 10560 /* Swap (qemu) user FPU context for the guest FPU context. */ 10561 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10562 { 10563 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10564 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10565 trace_kvm_fpu(1); 10566 } 10567 10568 /* When vcpu_run ends, restore user space FPU context. */ 10569 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10570 { 10571 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10572 ++vcpu->stat.fpu_reload; 10573 trace_kvm_fpu(0); 10574 } 10575 10576 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10577 { 10578 struct kvm_run *kvm_run = vcpu->run; 10579 int r; 10580 10581 vcpu_load(vcpu); 10582 kvm_sigset_activate(vcpu); 10583 kvm_run->flags = 0; 10584 kvm_load_guest_fpu(vcpu); 10585 10586 kvm_vcpu_srcu_read_lock(vcpu); 10587 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10588 if (kvm_run->immediate_exit) { 10589 r = -EINTR; 10590 goto out; 10591 } 10592 /* 10593 * It should be impossible for the hypervisor timer to be in 10594 * use before KVM has ever run the vCPU. 10595 */ 10596 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10597 10598 kvm_vcpu_srcu_read_unlock(vcpu); 10599 kvm_vcpu_block(vcpu); 10600 kvm_vcpu_srcu_read_lock(vcpu); 10601 10602 if (kvm_apic_accept_events(vcpu) < 0) { 10603 r = 0; 10604 goto out; 10605 } 10606 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 10607 r = -EAGAIN; 10608 if (signal_pending(current)) { 10609 r = -EINTR; 10610 kvm_run->exit_reason = KVM_EXIT_INTR; 10611 ++vcpu->stat.signal_exits; 10612 } 10613 goto out; 10614 } 10615 10616 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10617 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10618 r = -EINVAL; 10619 goto out; 10620 } 10621 10622 if (kvm_run->kvm_dirty_regs) { 10623 r = sync_regs(vcpu); 10624 if (r != 0) 10625 goto out; 10626 } 10627 10628 /* re-sync apic's tpr */ 10629 if (!lapic_in_kernel(vcpu)) { 10630 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10631 r = -EINVAL; 10632 goto out; 10633 } 10634 } 10635 10636 if (unlikely(vcpu->arch.complete_userspace_io)) { 10637 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 10638 vcpu->arch.complete_userspace_io = NULL; 10639 r = cui(vcpu); 10640 if (r <= 0) 10641 goto out; 10642 } else 10643 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 10644 10645 if (kvm_run->immediate_exit) { 10646 r = -EINTR; 10647 goto out; 10648 } 10649 10650 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 10651 if (r <= 0) 10652 goto out; 10653 10654 r = vcpu_run(vcpu); 10655 10656 out: 10657 kvm_put_guest_fpu(vcpu); 10658 if (kvm_run->kvm_valid_regs) 10659 store_regs(vcpu); 10660 post_kvm_run_save(vcpu); 10661 kvm_vcpu_srcu_read_unlock(vcpu); 10662 10663 kvm_sigset_deactivate(vcpu); 10664 vcpu_put(vcpu); 10665 return r; 10666 } 10667 10668 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10669 { 10670 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10671 /* 10672 * We are here if userspace calls get_regs() in the middle of 10673 * instruction emulation. Registers state needs to be copied 10674 * back from emulation context to vcpu. Userspace shouldn't do 10675 * that usually, but some bad designed PV devices (vmware 10676 * backdoor interface) need this to work 10677 */ 10678 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10679 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10680 } 10681 regs->rax = kvm_rax_read(vcpu); 10682 regs->rbx = kvm_rbx_read(vcpu); 10683 regs->rcx = kvm_rcx_read(vcpu); 10684 regs->rdx = kvm_rdx_read(vcpu); 10685 regs->rsi = kvm_rsi_read(vcpu); 10686 regs->rdi = kvm_rdi_read(vcpu); 10687 regs->rsp = kvm_rsp_read(vcpu); 10688 regs->rbp = kvm_rbp_read(vcpu); 10689 #ifdef CONFIG_X86_64 10690 regs->r8 = kvm_r8_read(vcpu); 10691 regs->r9 = kvm_r9_read(vcpu); 10692 regs->r10 = kvm_r10_read(vcpu); 10693 regs->r11 = kvm_r11_read(vcpu); 10694 regs->r12 = kvm_r12_read(vcpu); 10695 regs->r13 = kvm_r13_read(vcpu); 10696 regs->r14 = kvm_r14_read(vcpu); 10697 regs->r15 = kvm_r15_read(vcpu); 10698 #endif 10699 10700 regs->rip = kvm_rip_read(vcpu); 10701 regs->rflags = kvm_get_rflags(vcpu); 10702 } 10703 10704 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10705 { 10706 vcpu_load(vcpu); 10707 __get_regs(vcpu, regs); 10708 vcpu_put(vcpu); 10709 return 0; 10710 } 10711 10712 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10713 { 10714 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10715 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10716 10717 kvm_rax_write(vcpu, regs->rax); 10718 kvm_rbx_write(vcpu, regs->rbx); 10719 kvm_rcx_write(vcpu, regs->rcx); 10720 kvm_rdx_write(vcpu, regs->rdx); 10721 kvm_rsi_write(vcpu, regs->rsi); 10722 kvm_rdi_write(vcpu, regs->rdi); 10723 kvm_rsp_write(vcpu, regs->rsp); 10724 kvm_rbp_write(vcpu, regs->rbp); 10725 #ifdef CONFIG_X86_64 10726 kvm_r8_write(vcpu, regs->r8); 10727 kvm_r9_write(vcpu, regs->r9); 10728 kvm_r10_write(vcpu, regs->r10); 10729 kvm_r11_write(vcpu, regs->r11); 10730 kvm_r12_write(vcpu, regs->r12); 10731 kvm_r13_write(vcpu, regs->r13); 10732 kvm_r14_write(vcpu, regs->r14); 10733 kvm_r15_write(vcpu, regs->r15); 10734 #endif 10735 10736 kvm_rip_write(vcpu, regs->rip); 10737 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 10738 10739 vcpu->arch.exception.pending = false; 10740 10741 kvm_make_request(KVM_REQ_EVENT, vcpu); 10742 } 10743 10744 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10745 { 10746 vcpu_load(vcpu); 10747 __set_regs(vcpu, regs); 10748 vcpu_put(vcpu); 10749 return 0; 10750 } 10751 10752 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10753 { 10754 struct desc_ptr dt; 10755 10756 if (vcpu->arch.guest_state_protected) 10757 goto skip_protected_regs; 10758 10759 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10760 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10761 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10762 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10763 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10764 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10765 10766 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10767 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10768 10769 static_call(kvm_x86_get_idt)(vcpu, &dt); 10770 sregs->idt.limit = dt.size; 10771 sregs->idt.base = dt.address; 10772 static_call(kvm_x86_get_gdt)(vcpu, &dt); 10773 sregs->gdt.limit = dt.size; 10774 sregs->gdt.base = dt.address; 10775 10776 sregs->cr2 = vcpu->arch.cr2; 10777 sregs->cr3 = kvm_read_cr3(vcpu); 10778 10779 skip_protected_regs: 10780 sregs->cr0 = kvm_read_cr0(vcpu); 10781 sregs->cr4 = kvm_read_cr4(vcpu); 10782 sregs->cr8 = kvm_get_cr8(vcpu); 10783 sregs->efer = vcpu->arch.efer; 10784 sregs->apic_base = kvm_get_apic_base(vcpu); 10785 } 10786 10787 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10788 { 10789 __get_sregs_common(vcpu, sregs); 10790 10791 if (vcpu->arch.guest_state_protected) 10792 return; 10793 10794 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 10795 set_bit(vcpu->arch.interrupt.nr, 10796 (unsigned long *)sregs->interrupt_bitmap); 10797 } 10798 10799 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 10800 { 10801 int i; 10802 10803 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 10804 10805 if (vcpu->arch.guest_state_protected) 10806 return; 10807 10808 if (is_pae_paging(vcpu)) { 10809 for (i = 0 ; i < 4 ; i++) 10810 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 10811 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 10812 } 10813 } 10814 10815 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 10816 struct kvm_sregs *sregs) 10817 { 10818 vcpu_load(vcpu); 10819 __get_sregs(vcpu, sregs); 10820 vcpu_put(vcpu); 10821 return 0; 10822 } 10823 10824 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 10825 struct kvm_mp_state *mp_state) 10826 { 10827 int r; 10828 10829 vcpu_load(vcpu); 10830 if (kvm_mpx_supported()) 10831 kvm_load_guest_fpu(vcpu); 10832 10833 r = kvm_apic_accept_events(vcpu); 10834 if (r < 0) 10835 goto out; 10836 r = 0; 10837 10838 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 10839 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 10840 vcpu->arch.pv.pv_unhalted) 10841 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 10842 else 10843 mp_state->mp_state = vcpu->arch.mp_state; 10844 10845 out: 10846 if (kvm_mpx_supported()) 10847 kvm_put_guest_fpu(vcpu); 10848 vcpu_put(vcpu); 10849 return r; 10850 } 10851 10852 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 10853 struct kvm_mp_state *mp_state) 10854 { 10855 int ret = -EINVAL; 10856 10857 vcpu_load(vcpu); 10858 10859 if (!lapic_in_kernel(vcpu) && 10860 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 10861 goto out; 10862 10863 /* 10864 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 10865 * INIT state; latched init should be reported using 10866 * KVM_SET_VCPU_EVENTS, so reject it here. 10867 */ 10868 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 10869 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 10870 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 10871 goto out; 10872 10873 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 10874 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 10875 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 10876 } else 10877 vcpu->arch.mp_state = mp_state->mp_state; 10878 kvm_make_request(KVM_REQ_EVENT, vcpu); 10879 10880 ret = 0; 10881 out: 10882 vcpu_put(vcpu); 10883 return ret; 10884 } 10885 10886 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 10887 int reason, bool has_error_code, u32 error_code) 10888 { 10889 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 10890 int ret; 10891 10892 init_emulate_ctxt(vcpu); 10893 10894 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 10895 has_error_code, error_code); 10896 if (ret) { 10897 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 10898 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 10899 vcpu->run->internal.ndata = 0; 10900 return 0; 10901 } 10902 10903 kvm_rip_write(vcpu, ctxt->eip); 10904 kvm_set_rflags(vcpu, ctxt->eflags); 10905 return 1; 10906 } 10907 EXPORT_SYMBOL_GPL(kvm_task_switch); 10908 10909 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10910 { 10911 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 10912 /* 10913 * When EFER.LME and CR0.PG are set, the processor is in 10914 * 64-bit mode (though maybe in a 32-bit code segment). 10915 * CR4.PAE and EFER.LMA must be set. 10916 */ 10917 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 10918 return false; 10919 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 10920 return false; 10921 } else { 10922 /* 10923 * Not in 64-bit mode: EFER.LMA is clear and the code 10924 * segment cannot be 64-bit. 10925 */ 10926 if (sregs->efer & EFER_LMA || sregs->cs.l) 10927 return false; 10928 } 10929 10930 return kvm_is_valid_cr4(vcpu, sregs->cr4); 10931 } 10932 10933 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 10934 int *mmu_reset_needed, bool update_pdptrs) 10935 { 10936 struct msr_data apic_base_msr; 10937 int idx; 10938 struct desc_ptr dt; 10939 10940 if (!kvm_is_valid_sregs(vcpu, sregs)) 10941 return -EINVAL; 10942 10943 apic_base_msr.data = sregs->apic_base; 10944 apic_base_msr.host_initiated = true; 10945 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 10946 return -EINVAL; 10947 10948 if (vcpu->arch.guest_state_protected) 10949 return 0; 10950 10951 dt.size = sregs->idt.limit; 10952 dt.address = sregs->idt.base; 10953 static_call(kvm_x86_set_idt)(vcpu, &dt); 10954 dt.size = sregs->gdt.limit; 10955 dt.address = sregs->gdt.base; 10956 static_call(kvm_x86_set_gdt)(vcpu, &dt); 10957 10958 vcpu->arch.cr2 = sregs->cr2; 10959 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 10960 vcpu->arch.cr3 = sregs->cr3; 10961 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 10962 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 10963 10964 kvm_set_cr8(vcpu, sregs->cr8); 10965 10966 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 10967 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 10968 10969 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 10970 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 10971 vcpu->arch.cr0 = sregs->cr0; 10972 10973 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 10974 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 10975 10976 if (update_pdptrs) { 10977 idx = srcu_read_lock(&vcpu->kvm->srcu); 10978 if (is_pae_paging(vcpu)) { 10979 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 10980 *mmu_reset_needed = 1; 10981 } 10982 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10983 } 10984 10985 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10986 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10987 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10988 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10989 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10990 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10991 10992 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10993 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10994 10995 update_cr8_intercept(vcpu); 10996 10997 /* Older userspace won't unhalt the vcpu on reset. */ 10998 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 10999 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11000 !is_protmode(vcpu)) 11001 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11002 11003 return 0; 11004 } 11005 11006 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11007 { 11008 int pending_vec, max_bits; 11009 int mmu_reset_needed = 0; 11010 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11011 11012 if (ret) 11013 return ret; 11014 11015 if (mmu_reset_needed) 11016 kvm_mmu_reset_context(vcpu); 11017 11018 max_bits = KVM_NR_INTERRUPTS; 11019 pending_vec = find_first_bit( 11020 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11021 11022 if (pending_vec < max_bits) { 11023 kvm_queue_interrupt(vcpu, pending_vec, false); 11024 pr_debug("Set back pending irq %d\n", pending_vec); 11025 kvm_make_request(KVM_REQ_EVENT, vcpu); 11026 } 11027 return 0; 11028 } 11029 11030 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11031 { 11032 int mmu_reset_needed = 0; 11033 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11034 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11035 !(sregs2->efer & EFER_LMA); 11036 int i, ret; 11037 11038 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11039 return -EINVAL; 11040 11041 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11042 return -EINVAL; 11043 11044 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11045 &mmu_reset_needed, !valid_pdptrs); 11046 if (ret) 11047 return ret; 11048 11049 if (valid_pdptrs) { 11050 for (i = 0; i < 4 ; i++) 11051 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11052 11053 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11054 mmu_reset_needed = 1; 11055 vcpu->arch.pdptrs_from_userspace = true; 11056 } 11057 if (mmu_reset_needed) 11058 kvm_mmu_reset_context(vcpu); 11059 return 0; 11060 } 11061 11062 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11063 struct kvm_sregs *sregs) 11064 { 11065 int ret; 11066 11067 vcpu_load(vcpu); 11068 ret = __set_sregs(vcpu, sregs); 11069 vcpu_put(vcpu); 11070 return ret; 11071 } 11072 11073 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11074 { 11075 bool set = false; 11076 struct kvm_vcpu *vcpu; 11077 unsigned long i; 11078 11079 if (!enable_apicv) 11080 return; 11081 11082 down_write(&kvm->arch.apicv_update_lock); 11083 11084 kvm_for_each_vcpu(i, vcpu, kvm) { 11085 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11086 set = true; 11087 break; 11088 } 11089 } 11090 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11091 up_write(&kvm->arch.apicv_update_lock); 11092 } 11093 11094 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11095 struct kvm_guest_debug *dbg) 11096 { 11097 unsigned long rflags; 11098 int i, r; 11099 11100 if (vcpu->arch.guest_state_protected) 11101 return -EINVAL; 11102 11103 vcpu_load(vcpu); 11104 11105 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11106 r = -EBUSY; 11107 if (vcpu->arch.exception.pending) 11108 goto out; 11109 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11110 kvm_queue_exception(vcpu, DB_VECTOR); 11111 else 11112 kvm_queue_exception(vcpu, BP_VECTOR); 11113 } 11114 11115 /* 11116 * Read rflags as long as potentially injected trace flags are still 11117 * filtered out. 11118 */ 11119 rflags = kvm_get_rflags(vcpu); 11120 11121 vcpu->guest_debug = dbg->control; 11122 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11123 vcpu->guest_debug = 0; 11124 11125 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11126 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11127 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11128 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11129 } else { 11130 for (i = 0; i < KVM_NR_DB_REGS; i++) 11131 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11132 } 11133 kvm_update_dr7(vcpu); 11134 11135 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11136 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11137 11138 /* 11139 * Trigger an rflags update that will inject or remove the trace 11140 * flags. 11141 */ 11142 kvm_set_rflags(vcpu, rflags); 11143 11144 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11145 11146 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11147 11148 r = 0; 11149 11150 out: 11151 vcpu_put(vcpu); 11152 return r; 11153 } 11154 11155 /* 11156 * Translate a guest virtual address to a guest physical address. 11157 */ 11158 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11159 struct kvm_translation *tr) 11160 { 11161 unsigned long vaddr = tr->linear_address; 11162 gpa_t gpa; 11163 int idx; 11164 11165 vcpu_load(vcpu); 11166 11167 idx = srcu_read_lock(&vcpu->kvm->srcu); 11168 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11169 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11170 tr->physical_address = gpa; 11171 tr->valid = gpa != UNMAPPED_GVA; 11172 tr->writeable = 1; 11173 tr->usermode = 0; 11174 11175 vcpu_put(vcpu); 11176 return 0; 11177 } 11178 11179 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11180 { 11181 struct fxregs_state *fxsave; 11182 11183 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11184 return 0; 11185 11186 vcpu_load(vcpu); 11187 11188 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11189 memcpy(fpu->fpr, fxsave->st_space, 128); 11190 fpu->fcw = fxsave->cwd; 11191 fpu->fsw = fxsave->swd; 11192 fpu->ftwx = fxsave->twd; 11193 fpu->last_opcode = fxsave->fop; 11194 fpu->last_ip = fxsave->rip; 11195 fpu->last_dp = fxsave->rdp; 11196 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11197 11198 vcpu_put(vcpu); 11199 return 0; 11200 } 11201 11202 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11203 { 11204 struct fxregs_state *fxsave; 11205 11206 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11207 return 0; 11208 11209 vcpu_load(vcpu); 11210 11211 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11212 11213 memcpy(fxsave->st_space, fpu->fpr, 128); 11214 fxsave->cwd = fpu->fcw; 11215 fxsave->swd = fpu->fsw; 11216 fxsave->twd = fpu->ftwx; 11217 fxsave->fop = fpu->last_opcode; 11218 fxsave->rip = fpu->last_ip; 11219 fxsave->rdp = fpu->last_dp; 11220 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11221 11222 vcpu_put(vcpu); 11223 return 0; 11224 } 11225 11226 static void store_regs(struct kvm_vcpu *vcpu) 11227 { 11228 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11229 11230 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11231 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11232 11233 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11234 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11235 11236 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11237 kvm_vcpu_ioctl_x86_get_vcpu_events( 11238 vcpu, &vcpu->run->s.regs.events); 11239 } 11240 11241 static int sync_regs(struct kvm_vcpu *vcpu) 11242 { 11243 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11244 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11245 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11246 } 11247 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11248 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11249 return -EINVAL; 11250 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11251 } 11252 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11253 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11254 vcpu, &vcpu->run->s.regs.events)) 11255 return -EINVAL; 11256 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11257 } 11258 11259 return 0; 11260 } 11261 11262 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11263 { 11264 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 11265 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11266 "guest TSC will not be reliable\n"); 11267 11268 return 0; 11269 } 11270 11271 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11272 { 11273 struct page *page; 11274 int r; 11275 11276 vcpu->arch.last_vmentry_cpu = -1; 11277 vcpu->arch.regs_avail = ~0; 11278 vcpu->arch.regs_dirty = ~0; 11279 11280 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11281 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11282 else 11283 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11284 11285 r = kvm_mmu_create(vcpu); 11286 if (r < 0) 11287 return r; 11288 11289 if (irqchip_in_kernel(vcpu->kvm)) { 11290 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11291 if (r < 0) 11292 goto fail_mmu_destroy; 11293 11294 /* 11295 * Defer evaluating inhibits until the vCPU is first run, as 11296 * this vCPU will not get notified of any changes until this 11297 * vCPU is visible to other vCPUs (marked online and added to 11298 * the set of vCPUs). Opportunistically mark APICv active as 11299 * VMX in particularly is highly unlikely to have inhibits. 11300 * Ignore the current per-VM APICv state so that vCPU creation 11301 * is guaranteed to run with a deterministic value, the request 11302 * will ensure the vCPU gets the correct state before VM-Entry. 11303 */ 11304 if (enable_apicv) { 11305 vcpu->arch.apicv_active = true; 11306 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11307 } 11308 } else 11309 static_branch_inc(&kvm_has_noapic_vcpu); 11310 11311 r = -ENOMEM; 11312 11313 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11314 if (!page) 11315 goto fail_free_lapic; 11316 vcpu->arch.pio_data = page_address(page); 11317 11318 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 11319 GFP_KERNEL_ACCOUNT); 11320 if (!vcpu->arch.mce_banks) 11321 goto fail_free_pio_data; 11322 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11323 11324 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11325 GFP_KERNEL_ACCOUNT)) 11326 goto fail_free_mce_banks; 11327 11328 if (!alloc_emulate_ctxt(vcpu)) 11329 goto free_wbinvd_dirty_mask; 11330 11331 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11332 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11333 goto free_emulate_ctxt; 11334 } 11335 11336 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11337 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11338 11339 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11340 11341 kvm_async_pf_hash_reset(vcpu); 11342 kvm_pmu_init(vcpu); 11343 11344 vcpu->arch.pending_external_vector = -1; 11345 vcpu->arch.preempted_in_kernel = false; 11346 11347 #if IS_ENABLED(CONFIG_HYPERV) 11348 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11349 #endif 11350 11351 r = static_call(kvm_x86_vcpu_create)(vcpu); 11352 if (r) 11353 goto free_guest_fpu; 11354 11355 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11356 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11357 kvm_xen_init_vcpu(vcpu); 11358 kvm_vcpu_mtrr_init(vcpu); 11359 vcpu_load(vcpu); 11360 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11361 kvm_vcpu_reset(vcpu, false); 11362 kvm_init_mmu(vcpu); 11363 vcpu_put(vcpu); 11364 return 0; 11365 11366 free_guest_fpu: 11367 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11368 free_emulate_ctxt: 11369 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11370 free_wbinvd_dirty_mask: 11371 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11372 fail_free_mce_banks: 11373 kfree(vcpu->arch.mce_banks); 11374 fail_free_pio_data: 11375 free_page((unsigned long)vcpu->arch.pio_data); 11376 fail_free_lapic: 11377 kvm_free_lapic(vcpu); 11378 fail_mmu_destroy: 11379 kvm_mmu_destroy(vcpu); 11380 return r; 11381 } 11382 11383 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11384 { 11385 struct kvm *kvm = vcpu->kvm; 11386 11387 if (mutex_lock_killable(&vcpu->mutex)) 11388 return; 11389 vcpu_load(vcpu); 11390 kvm_synchronize_tsc(vcpu, 0); 11391 vcpu_put(vcpu); 11392 11393 /* poll control enabled by default */ 11394 vcpu->arch.msr_kvm_poll_control = 1; 11395 11396 mutex_unlock(&vcpu->mutex); 11397 11398 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11399 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11400 KVMCLOCK_SYNC_PERIOD); 11401 } 11402 11403 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11404 { 11405 int idx; 11406 11407 kvmclock_reset(vcpu); 11408 11409 static_call(kvm_x86_vcpu_free)(vcpu); 11410 11411 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11412 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11413 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11414 11415 kvm_xen_destroy_vcpu(vcpu); 11416 kvm_hv_vcpu_uninit(vcpu); 11417 kvm_pmu_destroy(vcpu); 11418 kfree(vcpu->arch.mce_banks); 11419 kvm_free_lapic(vcpu); 11420 idx = srcu_read_lock(&vcpu->kvm->srcu); 11421 kvm_mmu_destroy(vcpu); 11422 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11423 free_page((unsigned long)vcpu->arch.pio_data); 11424 kvfree(vcpu->arch.cpuid_entries); 11425 if (!lapic_in_kernel(vcpu)) 11426 static_branch_dec(&kvm_has_noapic_vcpu); 11427 } 11428 11429 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11430 { 11431 struct kvm_cpuid_entry2 *cpuid_0x1; 11432 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11433 unsigned long new_cr0; 11434 11435 /* 11436 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11437 * to handle side effects. RESET emulation hits those flows and relies 11438 * on emulated/virtualized registers, including those that are loaded 11439 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11440 * to detect improper or missing initialization. 11441 */ 11442 WARN_ON_ONCE(!init_event && 11443 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11444 11445 kvm_lapic_reset(vcpu, init_event); 11446 11447 vcpu->arch.hflags = 0; 11448 11449 vcpu->arch.smi_pending = 0; 11450 vcpu->arch.smi_count = 0; 11451 atomic_set(&vcpu->arch.nmi_queued, 0); 11452 vcpu->arch.nmi_pending = 0; 11453 vcpu->arch.nmi_injected = false; 11454 kvm_clear_interrupt_queue(vcpu); 11455 kvm_clear_exception_queue(vcpu); 11456 11457 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11458 kvm_update_dr0123(vcpu); 11459 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11460 vcpu->arch.dr7 = DR7_FIXED_1; 11461 kvm_update_dr7(vcpu); 11462 11463 vcpu->arch.cr2 = 0; 11464 11465 kvm_make_request(KVM_REQ_EVENT, vcpu); 11466 vcpu->arch.apf.msr_en_val = 0; 11467 vcpu->arch.apf.msr_int_val = 0; 11468 vcpu->arch.st.msr_val = 0; 11469 11470 kvmclock_reset(vcpu); 11471 11472 kvm_clear_async_pf_completion_queue(vcpu); 11473 kvm_async_pf_hash_reset(vcpu); 11474 vcpu->arch.apf.halted = false; 11475 11476 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11477 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11478 11479 /* 11480 * To avoid have the INIT path from kvm_apic_has_events() that be 11481 * called with loaded FPU and does not let userspace fix the state. 11482 */ 11483 if (init_event) 11484 kvm_put_guest_fpu(vcpu); 11485 11486 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11487 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11488 11489 if (init_event) 11490 kvm_load_guest_fpu(vcpu); 11491 } 11492 11493 if (!init_event) { 11494 kvm_pmu_reset(vcpu); 11495 vcpu->arch.smbase = 0x30000; 11496 11497 vcpu->arch.msr_misc_features_enables = 0; 11498 11499 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11500 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11501 } 11502 11503 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11504 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11505 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11506 11507 /* 11508 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11509 * if no CPUID match is found. Note, it's impossible to get a match at 11510 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11511 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11512 * on RESET. But, go through the motions in case that's ever remedied. 11513 */ 11514 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0); 11515 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11516 11517 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11518 11519 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11520 kvm_rip_write(vcpu, 0xfff0); 11521 11522 vcpu->arch.cr3 = 0; 11523 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11524 11525 /* 11526 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11527 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11528 * (or qualify) that with a footnote stating that CD/NW are preserved. 11529 */ 11530 new_cr0 = X86_CR0_ET; 11531 if (init_event) 11532 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11533 else 11534 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11535 11536 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11537 static_call(kvm_x86_set_cr4)(vcpu, 0); 11538 static_call(kvm_x86_set_efer)(vcpu, 0); 11539 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11540 11541 /* 11542 * On the standard CR0/CR4/EFER modification paths, there are several 11543 * complex conditions determining whether the MMU has to be reset and/or 11544 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11545 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11546 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11547 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11548 */ 11549 if (old_cr0 & X86_CR0_PG) { 11550 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11551 kvm_mmu_reset_context(vcpu); 11552 } 11553 11554 /* 11555 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11556 * APM states the TLBs are untouched by INIT, but it also states that 11557 * the TLBs are flushed on "External initialization of the processor." 11558 * Flush the guest TLB regardless of vendor, there is no meaningful 11559 * benefit in relying on the guest to flush the TLB immediately after 11560 * INIT. A spurious TLB flush is benign and likely negligible from a 11561 * performance perspective. 11562 */ 11563 if (init_event) 11564 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11565 } 11566 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11567 11568 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11569 { 11570 struct kvm_segment cs; 11571 11572 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11573 cs.selector = vector << 8; 11574 cs.base = vector << 12; 11575 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11576 kvm_rip_write(vcpu, 0); 11577 } 11578 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11579 11580 int kvm_arch_hardware_enable(void) 11581 { 11582 struct kvm *kvm; 11583 struct kvm_vcpu *vcpu; 11584 unsigned long i; 11585 int ret; 11586 u64 local_tsc; 11587 u64 max_tsc = 0; 11588 bool stable, backwards_tsc = false; 11589 11590 kvm_user_return_msr_cpu_online(); 11591 ret = static_call(kvm_x86_hardware_enable)(); 11592 if (ret != 0) 11593 return ret; 11594 11595 local_tsc = rdtsc(); 11596 stable = !kvm_check_tsc_unstable(); 11597 list_for_each_entry(kvm, &vm_list, vm_list) { 11598 kvm_for_each_vcpu(i, vcpu, kvm) { 11599 if (!stable && vcpu->cpu == smp_processor_id()) 11600 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11601 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 11602 backwards_tsc = true; 11603 if (vcpu->arch.last_host_tsc > max_tsc) 11604 max_tsc = vcpu->arch.last_host_tsc; 11605 } 11606 } 11607 } 11608 11609 /* 11610 * Sometimes, even reliable TSCs go backwards. This happens on 11611 * platforms that reset TSC during suspend or hibernate actions, but 11612 * maintain synchronization. We must compensate. Fortunately, we can 11613 * detect that condition here, which happens early in CPU bringup, 11614 * before any KVM threads can be running. Unfortunately, we can't 11615 * bring the TSCs fully up to date with real time, as we aren't yet far 11616 * enough into CPU bringup that we know how much real time has actually 11617 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 11618 * variables that haven't been updated yet. 11619 * 11620 * So we simply find the maximum observed TSC above, then record the 11621 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 11622 * the adjustment will be applied. Note that we accumulate 11623 * adjustments, in case multiple suspend cycles happen before some VCPU 11624 * gets a chance to run again. In the event that no KVM threads get a 11625 * chance to run, we will miss the entire elapsed period, as we'll have 11626 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 11627 * loose cycle time. This isn't too big a deal, since the loss will be 11628 * uniform across all VCPUs (not to mention the scenario is extremely 11629 * unlikely). It is possible that a second hibernate recovery happens 11630 * much faster than a first, causing the observed TSC here to be 11631 * smaller; this would require additional padding adjustment, which is 11632 * why we set last_host_tsc to the local tsc observed here. 11633 * 11634 * N.B. - this code below runs only on platforms with reliable TSC, 11635 * as that is the only way backwards_tsc is set above. Also note 11636 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 11637 * have the same delta_cyc adjustment applied if backwards_tsc 11638 * is detected. Note further, this adjustment is only done once, 11639 * as we reset last_host_tsc on all VCPUs to stop this from being 11640 * called multiple times (one for each physical CPU bringup). 11641 * 11642 * Platforms with unreliable TSCs don't have to deal with this, they 11643 * will be compensated by the logic in vcpu_load, which sets the TSC to 11644 * catchup mode. This will catchup all VCPUs to real time, but cannot 11645 * guarantee that they stay in perfect synchronization. 11646 */ 11647 if (backwards_tsc) { 11648 u64 delta_cyc = max_tsc - local_tsc; 11649 list_for_each_entry(kvm, &vm_list, vm_list) { 11650 kvm->arch.backwards_tsc_observed = true; 11651 kvm_for_each_vcpu(i, vcpu, kvm) { 11652 vcpu->arch.tsc_offset_adjustment += delta_cyc; 11653 vcpu->arch.last_host_tsc = local_tsc; 11654 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 11655 } 11656 11657 /* 11658 * We have to disable TSC offset matching.. if you were 11659 * booting a VM while issuing an S4 host suspend.... 11660 * you may have some problem. Solving this issue is 11661 * left as an exercise to the reader. 11662 */ 11663 kvm->arch.last_tsc_nsec = 0; 11664 kvm->arch.last_tsc_write = 0; 11665 } 11666 11667 } 11668 return 0; 11669 } 11670 11671 void kvm_arch_hardware_disable(void) 11672 { 11673 static_call(kvm_x86_hardware_disable)(); 11674 drop_user_return_notifiers(); 11675 } 11676 11677 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 11678 { 11679 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 11680 11681 #define __KVM_X86_OP(func) \ 11682 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 11683 #define KVM_X86_OP(func) \ 11684 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 11685 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 11686 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 11687 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 11688 (void *)__static_call_return0); 11689 #include <asm/kvm-x86-ops.h> 11690 #undef __KVM_X86_OP 11691 11692 kvm_pmu_ops_update(ops->pmu_ops); 11693 } 11694 11695 int kvm_arch_hardware_setup(void *opaque) 11696 { 11697 struct kvm_x86_init_ops *ops = opaque; 11698 int r; 11699 11700 rdmsrl_safe(MSR_EFER, &host_efer); 11701 11702 if (boot_cpu_has(X86_FEATURE_XSAVES)) 11703 rdmsrl(MSR_IA32_XSS, host_xss); 11704 11705 r = ops->hardware_setup(); 11706 if (r != 0) 11707 return r; 11708 11709 kvm_ops_update(ops); 11710 11711 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 11712 11713 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 11714 supported_xss = 0; 11715 11716 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 11717 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 11718 #undef __kvm_cpu_cap_has 11719 11720 if (kvm_has_tsc_control) { 11721 /* 11722 * Make sure the user can only configure tsc_khz values that 11723 * fit into a signed integer. 11724 * A min value is not calculated because it will always 11725 * be 1 on all machines. 11726 */ 11727 u64 max = min(0x7fffffffULL, 11728 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 11729 kvm_max_guest_tsc_khz = max; 11730 } 11731 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 11732 kvm_init_msr_list(); 11733 return 0; 11734 } 11735 11736 void kvm_arch_hardware_unsetup(void) 11737 { 11738 kvm_unregister_perf_callbacks(); 11739 11740 static_call(kvm_x86_hardware_unsetup)(); 11741 } 11742 11743 int kvm_arch_check_processor_compat(void *opaque) 11744 { 11745 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 11746 struct kvm_x86_init_ops *ops = opaque; 11747 11748 WARN_ON(!irqs_disabled()); 11749 11750 if (__cr4_reserved_bits(cpu_has, c) != 11751 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 11752 return -EIO; 11753 11754 return ops->check_processor_compatibility(); 11755 } 11756 11757 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 11758 { 11759 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 11760 } 11761 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 11762 11763 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 11764 { 11765 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 11766 } 11767 11768 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 11769 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 11770 11771 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 11772 { 11773 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 11774 11775 vcpu->arch.l1tf_flush_l1d = true; 11776 if (pmu->version && unlikely(pmu->event_count)) { 11777 pmu->need_cleanup = true; 11778 kvm_make_request(KVM_REQ_PMU, vcpu); 11779 } 11780 static_call(kvm_x86_sched_in)(vcpu, cpu); 11781 } 11782 11783 void kvm_arch_free_vm(struct kvm *kvm) 11784 { 11785 kfree(to_kvm_hv(kvm)->hv_pa_pg); 11786 __kvm_arch_free_vm(kvm); 11787 } 11788 11789 11790 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 11791 { 11792 int ret; 11793 unsigned long flags; 11794 11795 if (type) 11796 return -EINVAL; 11797 11798 ret = kvm_page_track_init(kvm); 11799 if (ret) 11800 goto out; 11801 11802 ret = kvm_mmu_init_vm(kvm); 11803 if (ret) 11804 goto out_page_track; 11805 11806 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 11807 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 11808 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 11809 11810 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 11811 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 11812 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 11813 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 11814 &kvm->arch.irq_sources_bitmap); 11815 11816 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 11817 mutex_init(&kvm->arch.apic_map_lock); 11818 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 11819 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 11820 11821 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 11822 pvclock_update_vm_gtod_copy(kvm); 11823 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 11824 11825 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 11826 kvm->arch.guest_can_read_msr_platform_info = true; 11827 kvm->arch.enable_pmu = enable_pmu; 11828 11829 #if IS_ENABLED(CONFIG_HYPERV) 11830 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 11831 kvm->arch.hv_root_tdp = INVALID_PAGE; 11832 #endif 11833 11834 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 11835 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 11836 11837 kvm_apicv_init(kvm); 11838 kvm_hv_init_vm(kvm); 11839 kvm_xen_init_vm(kvm); 11840 11841 return static_call(kvm_x86_vm_init)(kvm); 11842 11843 out_page_track: 11844 kvm_page_track_cleanup(kvm); 11845 out: 11846 return ret; 11847 } 11848 11849 int kvm_arch_post_init_vm(struct kvm *kvm) 11850 { 11851 return kvm_mmu_post_init_vm(kvm); 11852 } 11853 11854 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 11855 { 11856 vcpu_load(vcpu); 11857 kvm_mmu_unload(vcpu); 11858 vcpu_put(vcpu); 11859 } 11860 11861 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 11862 { 11863 unsigned long i; 11864 struct kvm_vcpu *vcpu; 11865 11866 kvm_for_each_vcpu(i, vcpu, kvm) { 11867 kvm_clear_async_pf_completion_queue(vcpu); 11868 kvm_unload_vcpu_mmu(vcpu); 11869 } 11870 } 11871 11872 void kvm_arch_sync_events(struct kvm *kvm) 11873 { 11874 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 11875 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 11876 kvm_free_pit(kvm); 11877 } 11878 11879 /** 11880 * __x86_set_memory_region: Setup KVM internal memory slot 11881 * 11882 * @kvm: the kvm pointer to the VM. 11883 * @id: the slot ID to setup. 11884 * @gpa: the GPA to install the slot (unused when @size == 0). 11885 * @size: the size of the slot. Set to zero to uninstall a slot. 11886 * 11887 * This function helps to setup a KVM internal memory slot. Specify 11888 * @size > 0 to install a new slot, while @size == 0 to uninstall a 11889 * slot. The return code can be one of the following: 11890 * 11891 * HVA: on success (uninstall will return a bogus HVA) 11892 * -errno: on error 11893 * 11894 * The caller should always use IS_ERR() to check the return value 11895 * before use. Note, the KVM internal memory slots are guaranteed to 11896 * remain valid and unchanged until the VM is destroyed, i.e., the 11897 * GPA->HVA translation will not change. However, the HVA is a user 11898 * address, i.e. its accessibility is not guaranteed, and must be 11899 * accessed via __copy_{to,from}_user(). 11900 */ 11901 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 11902 u32 size) 11903 { 11904 int i, r; 11905 unsigned long hva, old_npages; 11906 struct kvm_memslots *slots = kvm_memslots(kvm); 11907 struct kvm_memory_slot *slot; 11908 11909 /* Called with kvm->slots_lock held. */ 11910 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 11911 return ERR_PTR_USR(-EINVAL); 11912 11913 slot = id_to_memslot(slots, id); 11914 if (size) { 11915 if (slot && slot->npages) 11916 return ERR_PTR_USR(-EEXIST); 11917 11918 /* 11919 * MAP_SHARED to prevent internal slot pages from being moved 11920 * by fork()/COW. 11921 */ 11922 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 11923 MAP_SHARED | MAP_ANONYMOUS, 0); 11924 if (IS_ERR((void *)hva)) 11925 return (void __user *)hva; 11926 } else { 11927 if (!slot || !slot->npages) 11928 return NULL; 11929 11930 old_npages = slot->npages; 11931 hva = slot->userspace_addr; 11932 } 11933 11934 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 11935 struct kvm_userspace_memory_region m; 11936 11937 m.slot = id | (i << 16); 11938 m.flags = 0; 11939 m.guest_phys_addr = gpa; 11940 m.userspace_addr = hva; 11941 m.memory_size = size; 11942 r = __kvm_set_memory_region(kvm, &m); 11943 if (r < 0) 11944 return ERR_PTR_USR(r); 11945 } 11946 11947 if (!size) 11948 vm_munmap(hva, old_npages * PAGE_SIZE); 11949 11950 return (void __user *)hva; 11951 } 11952 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 11953 11954 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 11955 { 11956 kvm_mmu_pre_destroy_vm(kvm); 11957 } 11958 11959 void kvm_arch_destroy_vm(struct kvm *kvm) 11960 { 11961 if (current->mm == kvm->mm) { 11962 /* 11963 * Free memory regions allocated on behalf of userspace, 11964 * unless the memory map has changed due to process exit 11965 * or fd copying. 11966 */ 11967 mutex_lock(&kvm->slots_lock); 11968 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 11969 0, 0); 11970 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 11971 0, 0); 11972 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 11973 mutex_unlock(&kvm->slots_lock); 11974 } 11975 kvm_unload_vcpu_mmus(kvm); 11976 static_call_cond(kvm_x86_vm_destroy)(kvm); 11977 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 11978 kvm_pic_destroy(kvm); 11979 kvm_ioapic_destroy(kvm); 11980 kvm_destroy_vcpus(kvm); 11981 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 11982 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 11983 kvm_mmu_uninit_vm(kvm); 11984 kvm_page_track_cleanup(kvm); 11985 kvm_xen_destroy_vm(kvm); 11986 kvm_hv_destroy_vm(kvm); 11987 } 11988 11989 static void memslot_rmap_free(struct kvm_memory_slot *slot) 11990 { 11991 int i; 11992 11993 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 11994 kvfree(slot->arch.rmap[i]); 11995 slot->arch.rmap[i] = NULL; 11996 } 11997 } 11998 11999 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12000 { 12001 int i; 12002 12003 memslot_rmap_free(slot); 12004 12005 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12006 kvfree(slot->arch.lpage_info[i - 1]); 12007 slot->arch.lpage_info[i - 1] = NULL; 12008 } 12009 12010 kvm_page_track_free_memslot(slot); 12011 } 12012 12013 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12014 { 12015 const int sz = sizeof(*slot->arch.rmap[0]); 12016 int i; 12017 12018 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12019 int level = i + 1; 12020 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12021 12022 if (slot->arch.rmap[i]) 12023 continue; 12024 12025 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12026 if (!slot->arch.rmap[i]) { 12027 memslot_rmap_free(slot); 12028 return -ENOMEM; 12029 } 12030 } 12031 12032 return 0; 12033 } 12034 12035 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12036 struct kvm_memory_slot *slot) 12037 { 12038 unsigned long npages = slot->npages; 12039 int i, r; 12040 12041 /* 12042 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12043 * old arrays will be freed by __kvm_set_memory_region() if installing 12044 * the new memslot is successful. 12045 */ 12046 memset(&slot->arch, 0, sizeof(slot->arch)); 12047 12048 if (kvm_memslots_have_rmaps(kvm)) { 12049 r = memslot_rmap_alloc(slot, npages); 12050 if (r) 12051 return r; 12052 } 12053 12054 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12055 struct kvm_lpage_info *linfo; 12056 unsigned long ugfn; 12057 int lpages; 12058 int level = i + 1; 12059 12060 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12061 12062 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12063 if (!linfo) 12064 goto out_free; 12065 12066 slot->arch.lpage_info[i - 1] = linfo; 12067 12068 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12069 linfo[0].disallow_lpage = 1; 12070 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12071 linfo[lpages - 1].disallow_lpage = 1; 12072 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12073 /* 12074 * If the gfn and userspace address are not aligned wrt each 12075 * other, disable large page support for this slot. 12076 */ 12077 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12078 unsigned long j; 12079 12080 for (j = 0; j < lpages; ++j) 12081 linfo[j].disallow_lpage = 1; 12082 } 12083 } 12084 12085 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12086 goto out_free; 12087 12088 return 0; 12089 12090 out_free: 12091 memslot_rmap_free(slot); 12092 12093 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12094 kvfree(slot->arch.lpage_info[i - 1]); 12095 slot->arch.lpage_info[i - 1] = NULL; 12096 } 12097 return -ENOMEM; 12098 } 12099 12100 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12101 { 12102 struct kvm_vcpu *vcpu; 12103 unsigned long i; 12104 12105 /* 12106 * memslots->generation has been incremented. 12107 * mmio generation may have reached its maximum value. 12108 */ 12109 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12110 12111 /* Force re-initialization of steal_time cache */ 12112 kvm_for_each_vcpu(i, vcpu, kvm) 12113 kvm_vcpu_kick(vcpu); 12114 } 12115 12116 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12117 const struct kvm_memory_slot *old, 12118 struct kvm_memory_slot *new, 12119 enum kvm_mr_change change) 12120 { 12121 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12122 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12123 return -EINVAL; 12124 12125 return kvm_alloc_memslot_metadata(kvm, new); 12126 } 12127 12128 if (change == KVM_MR_FLAGS_ONLY) 12129 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12130 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12131 return -EIO; 12132 12133 return 0; 12134 } 12135 12136 12137 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12138 { 12139 struct kvm_arch *ka = &kvm->arch; 12140 12141 if (!kvm_x86_ops.cpu_dirty_log_size) 12142 return; 12143 12144 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12145 (!enable && --ka->cpu_dirty_logging_count == 0)) 12146 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12147 12148 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12149 } 12150 12151 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12152 struct kvm_memory_slot *old, 12153 const struct kvm_memory_slot *new, 12154 enum kvm_mr_change change) 12155 { 12156 u32 old_flags = old ? old->flags : 0; 12157 u32 new_flags = new ? new->flags : 0; 12158 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12159 12160 /* 12161 * Update CPU dirty logging if dirty logging is being toggled. This 12162 * applies to all operations. 12163 */ 12164 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12165 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12166 12167 /* 12168 * Nothing more to do for RO slots (which can't be dirtied and can't be 12169 * made writable) or CREATE/MOVE/DELETE of a slot. 12170 * 12171 * For a memslot with dirty logging disabled: 12172 * CREATE: No dirty mappings will already exist. 12173 * MOVE/DELETE: The old mappings will already have been cleaned up by 12174 * kvm_arch_flush_shadow_memslot() 12175 * 12176 * For a memslot with dirty logging enabled: 12177 * CREATE: No shadow pages exist, thus nothing to write-protect 12178 * and no dirty bits to clear. 12179 * MOVE/DELETE: The old mappings will already have been cleaned up by 12180 * kvm_arch_flush_shadow_memslot(). 12181 */ 12182 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12183 return; 12184 12185 /* 12186 * READONLY and non-flags changes were filtered out above, and the only 12187 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12188 * logging isn't being toggled on or off. 12189 */ 12190 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12191 return; 12192 12193 if (!log_dirty_pages) { 12194 /* 12195 * Dirty logging tracks sptes in 4k granularity, meaning that 12196 * large sptes have to be split. If live migration succeeds, 12197 * the guest in the source machine will be destroyed and large 12198 * sptes will be created in the destination. However, if the 12199 * guest continues to run in the source machine (for example if 12200 * live migration fails), small sptes will remain around and 12201 * cause bad performance. 12202 * 12203 * Scan sptes if dirty logging has been stopped, dropping those 12204 * which can be collapsed into a single large-page spte. Later 12205 * page faults will create the large-page sptes. 12206 */ 12207 kvm_mmu_zap_collapsible_sptes(kvm, new); 12208 } else { 12209 /* 12210 * Initially-all-set does not require write protecting any page, 12211 * because they're all assumed to be dirty. 12212 */ 12213 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12214 return; 12215 12216 if (READ_ONCE(eager_page_split)) 12217 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12218 12219 if (kvm_x86_ops.cpu_dirty_log_size) { 12220 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12221 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12222 } else { 12223 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12224 } 12225 } 12226 } 12227 12228 void kvm_arch_commit_memory_region(struct kvm *kvm, 12229 struct kvm_memory_slot *old, 12230 const struct kvm_memory_slot *new, 12231 enum kvm_mr_change change) 12232 { 12233 if (!kvm->arch.n_requested_mmu_pages && 12234 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12235 unsigned long nr_mmu_pages; 12236 12237 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12238 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12239 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12240 } 12241 12242 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12243 12244 /* Free the arrays associated with the old memslot. */ 12245 if (change == KVM_MR_MOVE) 12246 kvm_arch_free_memslot(kvm, old); 12247 } 12248 12249 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12250 { 12251 kvm_mmu_zap_all(kvm); 12252 } 12253 12254 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12255 struct kvm_memory_slot *slot) 12256 { 12257 kvm_page_track_flush_slot(kvm, slot); 12258 } 12259 12260 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12261 { 12262 return (is_guest_mode(vcpu) && 12263 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12264 } 12265 12266 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12267 { 12268 if (!list_empty_careful(&vcpu->async_pf.done)) 12269 return true; 12270 12271 if (kvm_apic_has_events(vcpu)) 12272 return true; 12273 12274 if (vcpu->arch.pv.pv_unhalted) 12275 return true; 12276 12277 if (vcpu->arch.exception.pending) 12278 return true; 12279 12280 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12281 (vcpu->arch.nmi_pending && 12282 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12283 return true; 12284 12285 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12286 (vcpu->arch.smi_pending && 12287 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12288 return true; 12289 12290 if (kvm_arch_interrupt_allowed(vcpu) && 12291 (kvm_cpu_has_interrupt(vcpu) || 12292 kvm_guest_apic_has_interrupt(vcpu))) 12293 return true; 12294 12295 if (kvm_hv_has_stimer_pending(vcpu)) 12296 return true; 12297 12298 if (is_guest_mode(vcpu) && 12299 kvm_x86_ops.nested_ops->hv_timer_pending && 12300 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 12301 return true; 12302 12303 if (kvm_xen_has_pending_events(vcpu)) 12304 return true; 12305 12306 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) 12307 return true; 12308 12309 return false; 12310 } 12311 12312 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12313 { 12314 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12315 } 12316 12317 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12318 { 12319 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12320 return true; 12321 12322 return false; 12323 } 12324 12325 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12326 { 12327 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12328 return true; 12329 12330 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12331 kvm_test_request(KVM_REQ_SMI, vcpu) || 12332 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12333 return true; 12334 12335 return kvm_arch_dy_has_pending_interrupt(vcpu); 12336 } 12337 12338 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12339 { 12340 if (vcpu->arch.guest_state_protected) 12341 return true; 12342 12343 return vcpu->arch.preempted_in_kernel; 12344 } 12345 12346 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12347 { 12348 return kvm_rip_read(vcpu); 12349 } 12350 12351 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12352 { 12353 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12354 } 12355 12356 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12357 { 12358 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12359 } 12360 12361 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12362 { 12363 /* Can't read the RIP when guest state is protected, just return 0 */ 12364 if (vcpu->arch.guest_state_protected) 12365 return 0; 12366 12367 if (is_64_bit_mode(vcpu)) 12368 return kvm_rip_read(vcpu); 12369 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12370 kvm_rip_read(vcpu)); 12371 } 12372 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12373 12374 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12375 { 12376 return kvm_get_linear_rip(vcpu) == linear_rip; 12377 } 12378 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12379 12380 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12381 { 12382 unsigned long rflags; 12383 12384 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12385 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12386 rflags &= ~X86_EFLAGS_TF; 12387 return rflags; 12388 } 12389 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12390 12391 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12392 { 12393 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12394 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12395 rflags |= X86_EFLAGS_TF; 12396 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12397 } 12398 12399 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12400 { 12401 __kvm_set_rflags(vcpu, rflags); 12402 kvm_make_request(KVM_REQ_EVENT, vcpu); 12403 } 12404 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12405 12406 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12407 { 12408 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12409 12410 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12411 } 12412 12413 static inline u32 kvm_async_pf_next_probe(u32 key) 12414 { 12415 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12416 } 12417 12418 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12419 { 12420 u32 key = kvm_async_pf_hash_fn(gfn); 12421 12422 while (vcpu->arch.apf.gfns[key] != ~0) 12423 key = kvm_async_pf_next_probe(key); 12424 12425 vcpu->arch.apf.gfns[key] = gfn; 12426 } 12427 12428 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12429 { 12430 int i; 12431 u32 key = kvm_async_pf_hash_fn(gfn); 12432 12433 for (i = 0; i < ASYNC_PF_PER_VCPU && 12434 (vcpu->arch.apf.gfns[key] != gfn && 12435 vcpu->arch.apf.gfns[key] != ~0); i++) 12436 key = kvm_async_pf_next_probe(key); 12437 12438 return key; 12439 } 12440 12441 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12442 { 12443 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12444 } 12445 12446 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12447 { 12448 u32 i, j, k; 12449 12450 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12451 12452 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12453 return; 12454 12455 while (true) { 12456 vcpu->arch.apf.gfns[i] = ~0; 12457 do { 12458 j = kvm_async_pf_next_probe(j); 12459 if (vcpu->arch.apf.gfns[j] == ~0) 12460 return; 12461 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12462 /* 12463 * k lies cyclically in ]i,j] 12464 * | i.k.j | 12465 * |....j i.k.| or |.k..j i...| 12466 */ 12467 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12468 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12469 i = j; 12470 } 12471 } 12472 12473 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12474 { 12475 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12476 12477 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12478 sizeof(reason)); 12479 } 12480 12481 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12482 { 12483 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12484 12485 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12486 &token, offset, sizeof(token)); 12487 } 12488 12489 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12490 { 12491 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12492 u32 val; 12493 12494 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12495 &val, offset, sizeof(val))) 12496 return false; 12497 12498 return !val; 12499 } 12500 12501 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12502 { 12503 12504 if (!kvm_pv_async_pf_enabled(vcpu)) 12505 return false; 12506 12507 if (vcpu->arch.apf.send_user_only && 12508 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12509 return false; 12510 12511 if (is_guest_mode(vcpu)) { 12512 /* 12513 * L1 needs to opt into the special #PF vmexits that are 12514 * used to deliver async page faults. 12515 */ 12516 return vcpu->arch.apf.delivery_as_pf_vmexit; 12517 } else { 12518 /* 12519 * Play it safe in case the guest temporarily disables paging. 12520 * The real mode IDT in particular is unlikely to have a #PF 12521 * exception setup. 12522 */ 12523 return is_paging(vcpu); 12524 } 12525 } 12526 12527 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12528 { 12529 if (unlikely(!lapic_in_kernel(vcpu) || 12530 kvm_event_needs_reinjection(vcpu) || 12531 vcpu->arch.exception.pending)) 12532 return false; 12533 12534 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12535 return false; 12536 12537 /* 12538 * If interrupts are off we cannot even use an artificial 12539 * halt state. 12540 */ 12541 return kvm_arch_interrupt_allowed(vcpu); 12542 } 12543 12544 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12545 struct kvm_async_pf *work) 12546 { 12547 struct x86_exception fault; 12548 12549 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12550 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12551 12552 if (kvm_can_deliver_async_pf(vcpu) && 12553 !apf_put_user_notpresent(vcpu)) { 12554 fault.vector = PF_VECTOR; 12555 fault.error_code_valid = true; 12556 fault.error_code = 0; 12557 fault.nested_page_fault = false; 12558 fault.address = work->arch.token; 12559 fault.async_page_fault = true; 12560 kvm_inject_page_fault(vcpu, &fault); 12561 return true; 12562 } else { 12563 /* 12564 * It is not possible to deliver a paravirtualized asynchronous 12565 * page fault, but putting the guest in an artificial halt state 12566 * can be beneficial nevertheless: if an interrupt arrives, we 12567 * can deliver it timely and perhaps the guest will schedule 12568 * another process. When the instruction that triggered a page 12569 * fault is retried, hopefully the page will be ready in the host. 12570 */ 12571 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12572 return false; 12573 } 12574 } 12575 12576 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12577 struct kvm_async_pf *work) 12578 { 12579 struct kvm_lapic_irq irq = { 12580 .delivery_mode = APIC_DM_FIXED, 12581 .vector = vcpu->arch.apf.vec 12582 }; 12583 12584 if (work->wakeup_all) 12585 work->arch.token = ~0; /* broadcast wakeup */ 12586 else 12587 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12588 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12589 12590 if ((work->wakeup_all || work->notpresent_injected) && 12591 kvm_pv_async_pf_enabled(vcpu) && 12592 !apf_put_user_ready(vcpu, work->arch.token)) { 12593 vcpu->arch.apf.pageready_pending = true; 12594 kvm_apic_set_irq(vcpu, &irq, NULL); 12595 } 12596 12597 vcpu->arch.apf.halted = false; 12598 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12599 } 12600 12601 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12602 { 12603 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12604 if (!vcpu->arch.apf.pageready_pending) 12605 kvm_vcpu_kick(vcpu); 12606 } 12607 12608 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 12609 { 12610 if (!kvm_pv_async_pf_enabled(vcpu)) 12611 return true; 12612 else 12613 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 12614 } 12615 12616 void kvm_arch_start_assignment(struct kvm *kvm) 12617 { 12618 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 12619 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 12620 } 12621 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 12622 12623 void kvm_arch_end_assignment(struct kvm *kvm) 12624 { 12625 atomic_dec(&kvm->arch.assigned_device_count); 12626 } 12627 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 12628 12629 bool kvm_arch_has_assigned_device(struct kvm *kvm) 12630 { 12631 return atomic_read(&kvm->arch.assigned_device_count); 12632 } 12633 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 12634 12635 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 12636 { 12637 atomic_inc(&kvm->arch.noncoherent_dma_count); 12638 } 12639 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 12640 12641 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 12642 { 12643 atomic_dec(&kvm->arch.noncoherent_dma_count); 12644 } 12645 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 12646 12647 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 12648 { 12649 return atomic_read(&kvm->arch.noncoherent_dma_count); 12650 } 12651 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 12652 12653 bool kvm_arch_has_irq_bypass(void) 12654 { 12655 return true; 12656 } 12657 12658 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 12659 struct irq_bypass_producer *prod) 12660 { 12661 struct kvm_kernel_irqfd *irqfd = 12662 container_of(cons, struct kvm_kernel_irqfd, consumer); 12663 int ret; 12664 12665 irqfd->producer = prod; 12666 kvm_arch_start_assignment(irqfd->kvm); 12667 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 12668 prod->irq, irqfd->gsi, 1); 12669 12670 if (ret) 12671 kvm_arch_end_assignment(irqfd->kvm); 12672 12673 return ret; 12674 } 12675 12676 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 12677 struct irq_bypass_producer *prod) 12678 { 12679 int ret; 12680 struct kvm_kernel_irqfd *irqfd = 12681 container_of(cons, struct kvm_kernel_irqfd, consumer); 12682 12683 WARN_ON(irqfd->producer != prod); 12684 irqfd->producer = NULL; 12685 12686 /* 12687 * When producer of consumer is unregistered, we change back to 12688 * remapped mode, so we can re-use the current implementation 12689 * when the irq is masked/disabled or the consumer side (KVM 12690 * int this case doesn't want to receive the interrupts. 12691 */ 12692 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 12693 if (ret) 12694 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 12695 " fails: %d\n", irqfd->consumer.token, ret); 12696 12697 kvm_arch_end_assignment(irqfd->kvm); 12698 } 12699 12700 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 12701 uint32_t guest_irq, bool set) 12702 { 12703 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 12704 } 12705 12706 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 12707 struct kvm_kernel_irq_routing_entry *new) 12708 { 12709 if (new->type != KVM_IRQ_ROUTING_MSI) 12710 return true; 12711 12712 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 12713 } 12714 12715 bool kvm_vector_hashing_enabled(void) 12716 { 12717 return vector_hashing; 12718 } 12719 12720 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 12721 { 12722 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 12723 } 12724 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 12725 12726 12727 int kvm_spec_ctrl_test_value(u64 value) 12728 { 12729 /* 12730 * test that setting IA32_SPEC_CTRL to given value 12731 * is allowed by the host processor 12732 */ 12733 12734 u64 saved_value; 12735 unsigned long flags; 12736 int ret = 0; 12737 12738 local_irq_save(flags); 12739 12740 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 12741 ret = 1; 12742 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 12743 ret = 1; 12744 else 12745 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 12746 12747 local_irq_restore(flags); 12748 12749 return ret; 12750 } 12751 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 12752 12753 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 12754 { 12755 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 12756 struct x86_exception fault; 12757 u64 access = error_code & 12758 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 12759 12760 if (!(error_code & PFERR_PRESENT_MASK) || 12761 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) { 12762 /* 12763 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 12764 * tables probably do not match the TLB. Just proceed 12765 * with the error code that the processor gave. 12766 */ 12767 fault.vector = PF_VECTOR; 12768 fault.error_code_valid = true; 12769 fault.error_code = error_code; 12770 fault.nested_page_fault = false; 12771 fault.address = gva; 12772 } 12773 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 12774 } 12775 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 12776 12777 /* 12778 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 12779 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 12780 * indicates whether exit to userspace is needed. 12781 */ 12782 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 12783 struct x86_exception *e) 12784 { 12785 if (r == X86EMUL_PROPAGATE_FAULT) { 12786 kvm_inject_emulated_page_fault(vcpu, e); 12787 return 1; 12788 } 12789 12790 /* 12791 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 12792 * while handling a VMX instruction KVM could've handled the request 12793 * correctly by exiting to userspace and performing I/O but there 12794 * doesn't seem to be a real use-case behind such requests, just return 12795 * KVM_EXIT_INTERNAL_ERROR for now. 12796 */ 12797 kvm_prepare_emulation_failure_exit(vcpu); 12798 12799 return 0; 12800 } 12801 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 12802 12803 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 12804 { 12805 bool pcid_enabled; 12806 struct x86_exception e; 12807 struct { 12808 u64 pcid; 12809 u64 gla; 12810 } operand; 12811 int r; 12812 12813 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 12814 if (r != X86EMUL_CONTINUE) 12815 return kvm_handle_memory_failure(vcpu, r, &e); 12816 12817 if (operand.pcid >> 12 != 0) { 12818 kvm_inject_gp(vcpu, 0); 12819 return 1; 12820 } 12821 12822 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 12823 12824 switch (type) { 12825 case INVPCID_TYPE_INDIV_ADDR: 12826 if ((!pcid_enabled && (operand.pcid != 0)) || 12827 is_noncanonical_address(operand.gla, vcpu)) { 12828 kvm_inject_gp(vcpu, 0); 12829 return 1; 12830 } 12831 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 12832 return kvm_skip_emulated_instruction(vcpu); 12833 12834 case INVPCID_TYPE_SINGLE_CTXT: 12835 if (!pcid_enabled && (operand.pcid != 0)) { 12836 kvm_inject_gp(vcpu, 0); 12837 return 1; 12838 } 12839 12840 kvm_invalidate_pcid(vcpu, operand.pcid); 12841 return kvm_skip_emulated_instruction(vcpu); 12842 12843 case INVPCID_TYPE_ALL_NON_GLOBAL: 12844 /* 12845 * Currently, KVM doesn't mark global entries in the shadow 12846 * page tables, so a non-global flush just degenerates to a 12847 * global flush. If needed, we could optimize this later by 12848 * keeping track of global entries in shadow page tables. 12849 */ 12850 12851 fallthrough; 12852 case INVPCID_TYPE_ALL_INCL_GLOBAL: 12853 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12854 return kvm_skip_emulated_instruction(vcpu); 12855 12856 default: 12857 kvm_inject_gp(vcpu, 0); 12858 return 1; 12859 } 12860 } 12861 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 12862 12863 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 12864 { 12865 struct kvm_run *run = vcpu->run; 12866 struct kvm_mmio_fragment *frag; 12867 unsigned int len; 12868 12869 BUG_ON(!vcpu->mmio_needed); 12870 12871 /* Complete previous fragment */ 12872 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 12873 len = min(8u, frag->len); 12874 if (!vcpu->mmio_is_write) 12875 memcpy(frag->data, run->mmio.data, len); 12876 12877 if (frag->len <= 8) { 12878 /* Switch to the next fragment. */ 12879 frag++; 12880 vcpu->mmio_cur_fragment++; 12881 } else { 12882 /* Go forward to the next mmio piece. */ 12883 frag->data += len; 12884 frag->gpa += len; 12885 frag->len -= len; 12886 } 12887 12888 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 12889 vcpu->mmio_needed = 0; 12890 12891 // VMG change, at this point, we're always done 12892 // RIP has already been advanced 12893 return 1; 12894 } 12895 12896 // More MMIO is needed 12897 run->mmio.phys_addr = frag->gpa; 12898 run->mmio.len = min(8u, frag->len); 12899 run->mmio.is_write = vcpu->mmio_is_write; 12900 if (run->mmio.is_write) 12901 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 12902 run->exit_reason = KVM_EXIT_MMIO; 12903 12904 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12905 12906 return 0; 12907 } 12908 12909 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12910 void *data) 12911 { 12912 int handled; 12913 struct kvm_mmio_fragment *frag; 12914 12915 if (!data) 12916 return -EINVAL; 12917 12918 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12919 if (handled == bytes) 12920 return 1; 12921 12922 bytes -= handled; 12923 gpa += handled; 12924 data += handled; 12925 12926 /*TODO: Check if need to increment number of frags */ 12927 frag = vcpu->mmio_fragments; 12928 vcpu->mmio_nr_fragments = 1; 12929 frag->len = bytes; 12930 frag->gpa = gpa; 12931 frag->data = data; 12932 12933 vcpu->mmio_needed = 1; 12934 vcpu->mmio_cur_fragment = 0; 12935 12936 vcpu->run->mmio.phys_addr = gpa; 12937 vcpu->run->mmio.len = min(8u, frag->len); 12938 vcpu->run->mmio.is_write = 1; 12939 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 12940 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12941 12942 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12943 12944 return 0; 12945 } 12946 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 12947 12948 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12949 void *data) 12950 { 12951 int handled; 12952 struct kvm_mmio_fragment *frag; 12953 12954 if (!data) 12955 return -EINVAL; 12956 12957 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12958 if (handled == bytes) 12959 return 1; 12960 12961 bytes -= handled; 12962 gpa += handled; 12963 data += handled; 12964 12965 /*TODO: Check if need to increment number of frags */ 12966 frag = vcpu->mmio_fragments; 12967 vcpu->mmio_nr_fragments = 1; 12968 frag->len = bytes; 12969 frag->gpa = gpa; 12970 frag->data = data; 12971 12972 vcpu->mmio_needed = 1; 12973 vcpu->mmio_cur_fragment = 0; 12974 12975 vcpu->run->mmio.phys_addr = gpa; 12976 vcpu->run->mmio.len = min(8u, frag->len); 12977 vcpu->run->mmio.is_write = 0; 12978 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12979 12980 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12981 12982 return 0; 12983 } 12984 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 12985 12986 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 12987 unsigned int port); 12988 12989 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 12990 { 12991 int size = vcpu->arch.pio.size; 12992 int port = vcpu->arch.pio.port; 12993 12994 vcpu->arch.pio.count = 0; 12995 if (vcpu->arch.sev_pio_count) 12996 return kvm_sev_es_outs(vcpu, size, port); 12997 return 1; 12998 } 12999 13000 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13001 unsigned int port) 13002 { 13003 for (;;) { 13004 unsigned int count = 13005 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13006 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13007 13008 /* memcpy done already by emulator_pio_out. */ 13009 vcpu->arch.sev_pio_count -= count; 13010 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size; 13011 if (!ret) 13012 break; 13013 13014 /* Emulation done by the kernel. */ 13015 if (!vcpu->arch.sev_pio_count) 13016 return 1; 13017 } 13018 13019 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13020 return 0; 13021 } 13022 13023 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13024 unsigned int port); 13025 13026 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13027 { 13028 unsigned count = vcpu->arch.pio.count; 13029 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13030 vcpu->arch.sev_pio_count -= count; 13031 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size; 13032 } 13033 13034 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13035 { 13036 int size = vcpu->arch.pio.size; 13037 int port = vcpu->arch.pio.port; 13038 13039 advance_sev_es_emulated_ins(vcpu); 13040 if (vcpu->arch.sev_pio_count) 13041 return kvm_sev_es_ins(vcpu, size, port); 13042 return 1; 13043 } 13044 13045 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13046 unsigned int port) 13047 { 13048 for (;;) { 13049 unsigned int count = 13050 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13051 if (!__emulator_pio_in(vcpu, size, port, count)) 13052 break; 13053 13054 /* Emulation done by the kernel. */ 13055 advance_sev_es_emulated_ins(vcpu); 13056 if (!vcpu->arch.sev_pio_count) 13057 return 1; 13058 } 13059 13060 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13061 return 0; 13062 } 13063 13064 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13065 unsigned int port, void *data, unsigned int count, 13066 int in) 13067 { 13068 vcpu->arch.sev_pio_data = data; 13069 vcpu->arch.sev_pio_count = count; 13070 return in ? kvm_sev_es_ins(vcpu, size, port) 13071 : kvm_sev_es_outs(vcpu, size, port); 13072 } 13073 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13074 13075 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13076 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13081 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13082 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 13083 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13084 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13085 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13086 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13091 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13092 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13093 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13094 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13095 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13096 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13097 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13098 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13099 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13100 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13101 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13102 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13103 13104 static int __init kvm_x86_init(void) 13105 { 13106 kvm_mmu_x86_module_init(); 13107 return 0; 13108 } 13109 module_init(kvm_x86_init); 13110 13111 static void __exit kvm_x86_exit(void) 13112 { 13113 /* 13114 * If module_init() is implemented, module_exit() must also be 13115 * implemented to allow module unload. 13116 */ 13117 } 13118 module_exit(kvm_x86_exit); 13119