xref: /openbmc/linux/arch/x86/kvm/x86.c (revision f4284724)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87 
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92 
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94 
95 #define emul_to_vcpu(ctxt) \
96 	((struct kvm_vcpu *)(ctxt)->vcpu)
97 
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108 
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110 
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112 
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114 
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117 
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126 
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129 
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131 
132 #define KVM_X86_OP(func)					     \
133 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
134 				*(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140 
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143 
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147 
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150 
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153 
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32  __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64  __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166 
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170 
171 /*
172  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
173  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
174  * advancement entirely.  Any other value is used as-is and disables adaptive
175  * tuning, i.e. allows privileged userspace to set an exact advancement time.
176  */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179 
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182 
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186 
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189 
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192 
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197 
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200 
201 /*
202  * Restoring the host value for MSRs that are only consumed when running in
203  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204  * returns to userspace, i.e. the kernel can run with the guest's value.
205  */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207 
208 struct kvm_user_return_msrs {
209 	struct user_return_notifier urn;
210 	bool registered;
211 	struct kvm_user_return_msr_values {
212 		u64 host;
213 		u64 curr;
214 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216 
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221 
222 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226 
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229 
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232 
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235 
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240 
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242 	KVM_GENERIC_VM_STATS(),
243 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244 	STATS_DESC_COUNTER(VM, mmu_pte_write),
245 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246 	STATS_DESC_COUNTER(VM, mmu_flooded),
247 	STATS_DESC_COUNTER(VM, mmu_recycled),
248 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
249 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
250 	STATS_DESC_ICOUNTER(VM, pages_4k),
251 	STATS_DESC_ICOUNTER(VM, pages_2m),
252 	STATS_DESC_ICOUNTER(VM, pages_1g),
253 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257 
258 const struct kvm_stats_header kvm_vm_stats_header = {
259 	.name_size = KVM_STATS_NAME_SIZE,
260 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261 	.id_offset = sizeof(struct kvm_stats_header),
262 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264 		       sizeof(kvm_vm_stats_desc),
265 };
266 
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268 	KVM_GENERIC_VCPU_STATS(),
269 	STATS_DESC_COUNTER(VCPU, pf_taken),
270 	STATS_DESC_COUNTER(VCPU, pf_fixed),
271 	STATS_DESC_COUNTER(VCPU, pf_emulate),
272 	STATS_DESC_COUNTER(VCPU, pf_spurious),
273 	STATS_DESC_COUNTER(VCPU, pf_fast),
274 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
275 	STATS_DESC_COUNTER(VCPU, pf_guest),
276 	STATS_DESC_COUNTER(VCPU, tlb_flush),
277 	STATS_DESC_COUNTER(VCPU, invlpg),
278 	STATS_DESC_COUNTER(VCPU, exits),
279 	STATS_DESC_COUNTER(VCPU, io_exits),
280 	STATS_DESC_COUNTER(VCPU, mmio_exits),
281 	STATS_DESC_COUNTER(VCPU, signal_exits),
282 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
283 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
284 	STATS_DESC_COUNTER(VCPU, l1d_flush),
285 	STATS_DESC_COUNTER(VCPU, halt_exits),
286 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
287 	STATS_DESC_COUNTER(VCPU, irq_exits),
288 	STATS_DESC_COUNTER(VCPU, host_state_reload),
289 	STATS_DESC_COUNTER(VCPU, fpu_reload),
290 	STATS_DESC_COUNTER(VCPU, insn_emulation),
291 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
292 	STATS_DESC_COUNTER(VCPU, hypercalls),
293 	STATS_DESC_COUNTER(VCPU, irq_injections),
294 	STATS_DESC_COUNTER(VCPU, nmi_injections),
295 	STATS_DESC_COUNTER(VCPU, req_event),
296 	STATS_DESC_COUNTER(VCPU, nested_run),
297 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
298 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
299 	STATS_DESC_COUNTER(VCPU, preemption_reported),
300 	STATS_DESC_COUNTER(VCPU, preemption_other),
301 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
302 };
303 
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305 	.name_size = KVM_STATS_NAME_SIZE,
306 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307 	.id_offset = sizeof(struct kvm_stats_header),
308 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310 		       sizeof(kvm_vcpu_stats_desc),
311 };
312 
313 u64 __read_mostly host_xcr0;
314 u64 __read_mostly supported_xcr0;
315 EXPORT_SYMBOL_GPL(supported_xcr0);
316 
317 static struct kmem_cache *x86_emulator_cache;
318 
319 /*
320  * When called, it means the previous get/set msr reached an invalid msr.
321  * Return true if we want to ignore/silent this failed msr access.
322  */
323 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
324 {
325 	const char *op = write ? "wrmsr" : "rdmsr";
326 
327 	if (ignore_msrs) {
328 		if (report_ignored_msrs)
329 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
330 				      op, msr, data);
331 		/* Mask the error */
332 		return true;
333 	} else {
334 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
335 				      op, msr, data);
336 		return false;
337 	}
338 }
339 
340 static struct kmem_cache *kvm_alloc_emulator_cache(void)
341 {
342 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
343 	unsigned int size = sizeof(struct x86_emulate_ctxt);
344 
345 	return kmem_cache_create_usercopy("x86_emulator", size,
346 					  __alignof__(struct x86_emulate_ctxt),
347 					  SLAB_ACCOUNT, useroffset,
348 					  size - useroffset, NULL);
349 }
350 
351 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
352 
353 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
354 {
355 	int i;
356 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
357 		vcpu->arch.apf.gfns[i] = ~0;
358 }
359 
360 static void kvm_on_user_return(struct user_return_notifier *urn)
361 {
362 	unsigned slot;
363 	struct kvm_user_return_msrs *msrs
364 		= container_of(urn, struct kvm_user_return_msrs, urn);
365 	struct kvm_user_return_msr_values *values;
366 	unsigned long flags;
367 
368 	/*
369 	 * Disabling irqs at this point since the following code could be
370 	 * interrupted and executed through kvm_arch_hardware_disable()
371 	 */
372 	local_irq_save(flags);
373 	if (msrs->registered) {
374 		msrs->registered = false;
375 		user_return_notifier_unregister(urn);
376 	}
377 	local_irq_restore(flags);
378 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
379 		values = &msrs->values[slot];
380 		if (values->host != values->curr) {
381 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
382 			values->curr = values->host;
383 		}
384 	}
385 }
386 
387 static int kvm_probe_user_return_msr(u32 msr)
388 {
389 	u64 val;
390 	int ret;
391 
392 	preempt_disable();
393 	ret = rdmsrl_safe(msr, &val);
394 	if (ret)
395 		goto out;
396 	ret = wrmsrl_safe(msr, val);
397 out:
398 	preempt_enable();
399 	return ret;
400 }
401 
402 int kvm_add_user_return_msr(u32 msr)
403 {
404 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
405 
406 	if (kvm_probe_user_return_msr(msr))
407 		return -1;
408 
409 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
410 	return kvm_nr_uret_msrs++;
411 }
412 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
413 
414 int kvm_find_user_return_msr(u32 msr)
415 {
416 	int i;
417 
418 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
419 		if (kvm_uret_msrs_list[i] == msr)
420 			return i;
421 	}
422 	return -1;
423 }
424 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
425 
426 static void kvm_user_return_msr_cpu_online(void)
427 {
428 	unsigned int cpu = smp_processor_id();
429 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
430 	u64 value;
431 	int i;
432 
433 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
434 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
435 		msrs->values[i].host = value;
436 		msrs->values[i].curr = value;
437 	}
438 }
439 
440 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
441 {
442 	unsigned int cpu = smp_processor_id();
443 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
444 	int err;
445 
446 	value = (value & mask) | (msrs->values[slot].host & ~mask);
447 	if (value == msrs->values[slot].curr)
448 		return 0;
449 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
450 	if (err)
451 		return 1;
452 
453 	msrs->values[slot].curr = value;
454 	if (!msrs->registered) {
455 		msrs->urn.on_user_return = kvm_on_user_return;
456 		user_return_notifier_register(&msrs->urn);
457 		msrs->registered = true;
458 	}
459 	return 0;
460 }
461 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
462 
463 static void drop_user_return_notifiers(void)
464 {
465 	unsigned int cpu = smp_processor_id();
466 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
467 
468 	if (msrs->registered)
469 		kvm_on_user_return(&msrs->urn);
470 }
471 
472 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
473 {
474 	return vcpu->arch.apic_base;
475 }
476 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
477 
478 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
479 {
480 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
481 }
482 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
483 
484 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
485 {
486 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
487 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
488 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
489 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
490 
491 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
492 		return 1;
493 	if (!msr_info->host_initiated) {
494 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
495 			return 1;
496 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
497 			return 1;
498 	}
499 
500 	kvm_lapic_set_base(vcpu, msr_info->data);
501 	kvm_recalculate_apic_map(vcpu->kvm);
502 	return 0;
503 }
504 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
505 
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515 	/* Fault while not rebooting.  We want the trace. */
516 	BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519 
520 #define EXCPT_BENIGN		0
521 #define EXCPT_CONTRIBUTORY	1
522 #define EXCPT_PF		2
523 
524 static int exception_class(int vector)
525 {
526 	switch (vector) {
527 	case PF_VECTOR:
528 		return EXCPT_PF;
529 	case DE_VECTOR:
530 	case TS_VECTOR:
531 	case NP_VECTOR:
532 	case SS_VECTOR:
533 	case GP_VECTOR:
534 		return EXCPT_CONTRIBUTORY;
535 	default:
536 		break;
537 	}
538 	return EXCPT_BENIGN;
539 }
540 
541 #define EXCPT_FAULT		0
542 #define EXCPT_TRAP		1
543 #define EXCPT_ABORT		2
544 #define EXCPT_INTERRUPT		3
545 
546 static int exception_type(int vector)
547 {
548 	unsigned int mask;
549 
550 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
551 		return EXCPT_INTERRUPT;
552 
553 	mask = 1 << vector;
554 
555 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
556 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
557 		return EXCPT_TRAP;
558 
559 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
560 		return EXCPT_ABORT;
561 
562 	/* Reserved exceptions will result in fault */
563 	return EXCPT_FAULT;
564 }
565 
566 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
567 {
568 	unsigned nr = vcpu->arch.exception.nr;
569 	bool has_payload = vcpu->arch.exception.has_payload;
570 	unsigned long payload = vcpu->arch.exception.payload;
571 
572 	if (!has_payload)
573 		return;
574 
575 	switch (nr) {
576 	case DB_VECTOR:
577 		/*
578 		 * "Certain debug exceptions may clear bit 0-3.  The
579 		 * remaining contents of the DR6 register are never
580 		 * cleared by the processor".
581 		 */
582 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
583 		/*
584 		 * In order to reflect the #DB exception payload in guest
585 		 * dr6, three components need to be considered: active low
586 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
587 		 * DR6_BS and DR6_BT)
588 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
589 		 * In the target guest dr6:
590 		 * FIXED_1 bits should always be set.
591 		 * Active low bits should be cleared if 1-setting in payload.
592 		 * Active high bits should be set if 1-setting in payload.
593 		 *
594 		 * Note, the payload is compatible with the pending debug
595 		 * exceptions/exit qualification under VMX, that active_low bits
596 		 * are active high in payload.
597 		 * So they need to be flipped for DR6.
598 		 */
599 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
600 		vcpu->arch.dr6 |= payload;
601 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
602 
603 		/*
604 		 * The #DB payload is defined as compatible with the 'pending
605 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
606 		 * defined in the 'pending debug exceptions' field (enabled
607 		 * breakpoint), it is reserved and must be zero in DR6.
608 		 */
609 		vcpu->arch.dr6 &= ~BIT(12);
610 		break;
611 	case PF_VECTOR:
612 		vcpu->arch.cr2 = payload;
613 		break;
614 	}
615 
616 	vcpu->arch.exception.has_payload = false;
617 	vcpu->arch.exception.payload = 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
620 
621 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
622 		unsigned nr, bool has_error, u32 error_code,
623 	        bool has_payload, unsigned long payload, bool reinject)
624 {
625 	u32 prev_nr;
626 	int class1, class2;
627 
628 	kvm_make_request(KVM_REQ_EVENT, vcpu);
629 
630 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
631 	queue:
632 		if (reinject) {
633 			/*
634 			 * On vmentry, vcpu->arch.exception.pending is only
635 			 * true if an event injection was blocked by
636 			 * nested_run_pending.  In that case, however,
637 			 * vcpu_enter_guest requests an immediate exit,
638 			 * and the guest shouldn't proceed far enough to
639 			 * need reinjection.
640 			 */
641 			WARN_ON_ONCE(vcpu->arch.exception.pending);
642 			vcpu->arch.exception.injected = true;
643 			if (WARN_ON_ONCE(has_payload)) {
644 				/*
645 				 * A reinjected event has already
646 				 * delivered its payload.
647 				 */
648 				has_payload = false;
649 				payload = 0;
650 			}
651 		} else {
652 			vcpu->arch.exception.pending = true;
653 			vcpu->arch.exception.injected = false;
654 		}
655 		vcpu->arch.exception.has_error_code = has_error;
656 		vcpu->arch.exception.nr = nr;
657 		vcpu->arch.exception.error_code = error_code;
658 		vcpu->arch.exception.has_payload = has_payload;
659 		vcpu->arch.exception.payload = payload;
660 		if (!is_guest_mode(vcpu))
661 			kvm_deliver_exception_payload(vcpu);
662 		return;
663 	}
664 
665 	/* to check exception */
666 	prev_nr = vcpu->arch.exception.nr;
667 	if (prev_nr == DF_VECTOR) {
668 		/* triple fault -> shutdown */
669 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
670 		return;
671 	}
672 	class1 = exception_class(prev_nr);
673 	class2 = exception_class(nr);
674 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
675 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
676 		/*
677 		 * Generate double fault per SDM Table 5-5.  Set
678 		 * exception.pending = true so that the double fault
679 		 * can trigger a nested vmexit.
680 		 */
681 		vcpu->arch.exception.pending = true;
682 		vcpu->arch.exception.injected = false;
683 		vcpu->arch.exception.has_error_code = true;
684 		vcpu->arch.exception.nr = DF_VECTOR;
685 		vcpu->arch.exception.error_code = 0;
686 		vcpu->arch.exception.has_payload = false;
687 		vcpu->arch.exception.payload = 0;
688 	} else
689 		/* replace previous exception with a new one in a hope
690 		   that instruction re-execution will regenerate lost
691 		   exception */
692 		goto queue;
693 }
694 
695 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
696 {
697 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
698 }
699 EXPORT_SYMBOL_GPL(kvm_queue_exception);
700 
701 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
702 {
703 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
704 }
705 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
706 
707 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
708 			   unsigned long payload)
709 {
710 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
711 }
712 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
713 
714 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
715 				    u32 error_code, unsigned long payload)
716 {
717 	kvm_multiple_exception(vcpu, nr, true, error_code,
718 			       true, payload, false);
719 }
720 
721 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
722 {
723 	if (err)
724 		kvm_inject_gp(vcpu, 0);
725 	else
726 		return kvm_skip_emulated_instruction(vcpu);
727 
728 	return 1;
729 }
730 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
731 
732 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
733 {
734 	if (err) {
735 		kvm_inject_gp(vcpu, 0);
736 		return 1;
737 	}
738 
739 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
740 				       EMULTYPE_COMPLETE_USER_EXIT);
741 }
742 
743 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
744 {
745 	++vcpu->stat.pf_guest;
746 	vcpu->arch.exception.nested_apf =
747 		is_guest_mode(vcpu) && fault->async_page_fault;
748 	if (vcpu->arch.exception.nested_apf) {
749 		vcpu->arch.apf.nested_apf_token = fault->address;
750 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
751 	} else {
752 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
753 					fault->address);
754 	}
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
757 
758 /* Returns true if the page fault was immediately morphed into a VM-Exit. */
759 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
760 				    struct x86_exception *fault)
761 {
762 	struct kvm_mmu *fault_mmu;
763 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
764 
765 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
766 					       vcpu->arch.walk_mmu;
767 
768 	/*
769 	 * Invalidate the TLB entry for the faulting address, if it exists,
770 	 * else the access will fault indefinitely (and to emulate hardware).
771 	 */
772 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
773 	    !(fault->error_code & PFERR_RSVD_MASK))
774 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
775 				       fault_mmu->root.hpa);
776 
777 	/*
778 	 * A workaround for KVM's bad exception handling.  If KVM injected an
779 	 * exception into L2, and L2 encountered a #PF while vectoring the
780 	 * injected exception, manually check to see if L1 wants to intercept
781 	 * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
782 	 * In all other cases, defer the check to nested_ops->check_events(),
783 	 * which will correctly handle priority (this does not).  Note, other
784 	 * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
785 	 * most problematic, e.g. when L0 and L1 are both intercepting #PF for
786 	 * shadow paging.
787 	 *
788 	 * TODO: Rewrite exception handling to track injected and pending
789 	 *       (VM-Exit) exceptions separately.
790 	 */
791 	if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
792 	    kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
793 		return true;
794 
795 	fault_mmu->inject_page_fault(vcpu, fault);
796 	return false;
797 }
798 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
799 
800 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
801 {
802 	atomic_inc(&vcpu->arch.nmi_queued);
803 	kvm_make_request(KVM_REQ_NMI, vcpu);
804 }
805 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
806 
807 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
808 {
809 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
810 }
811 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
812 
813 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
814 {
815 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
816 }
817 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
818 
819 /*
820  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
821  * a #GP and return false.
822  */
823 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
824 {
825 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
826 		return true;
827 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
828 	return false;
829 }
830 EXPORT_SYMBOL_GPL(kvm_require_cpl);
831 
832 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
833 {
834 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
835 		return true;
836 
837 	kvm_queue_exception(vcpu, UD_VECTOR);
838 	return false;
839 }
840 EXPORT_SYMBOL_GPL(kvm_require_dr);
841 
842 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
843 {
844 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
845 }
846 
847 /*
848  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
849  */
850 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
851 {
852 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
853 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
854 	gpa_t real_gpa;
855 	int i;
856 	int ret;
857 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
858 
859 	/*
860 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
861 	 * to an L1 GPA.
862 	 */
863 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
864 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
865 	if (real_gpa == UNMAPPED_GVA)
866 		return 0;
867 
868 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
869 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
870 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
871 	if (ret < 0)
872 		return 0;
873 
874 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
875 		if ((pdpte[i] & PT_PRESENT_MASK) &&
876 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
877 			return 0;
878 		}
879 	}
880 
881 	/*
882 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
883 	 * Shadow page roots need to be reconstructed instead.
884 	 */
885 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
886 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
887 
888 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
889 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
890 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
891 	vcpu->arch.pdptrs_from_userspace = false;
892 
893 	return 1;
894 }
895 EXPORT_SYMBOL_GPL(load_pdptrs);
896 
897 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
898 {
899 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
900 		kvm_clear_async_pf_completion_queue(vcpu);
901 		kvm_async_pf_hash_reset(vcpu);
902 
903 		/*
904 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
905 		 * perspective.
906 		 */
907 		if (!(cr0 & X86_CR0_PG))
908 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
909 	}
910 
911 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
912 		kvm_mmu_reset_context(vcpu);
913 
914 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
915 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
916 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
917 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
918 }
919 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
920 
921 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
922 {
923 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
924 
925 	cr0 |= X86_CR0_ET;
926 
927 #ifdef CONFIG_X86_64
928 	if (cr0 & 0xffffffff00000000UL)
929 		return 1;
930 #endif
931 
932 	cr0 &= ~CR0_RESERVED_BITS;
933 
934 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
935 		return 1;
936 
937 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
938 		return 1;
939 
940 #ifdef CONFIG_X86_64
941 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
942 	    (cr0 & X86_CR0_PG)) {
943 		int cs_db, cs_l;
944 
945 		if (!is_pae(vcpu))
946 			return 1;
947 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
948 		if (cs_l)
949 			return 1;
950 	}
951 #endif
952 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
953 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
954 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
955 		return 1;
956 
957 	if (!(cr0 & X86_CR0_PG) &&
958 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
959 		return 1;
960 
961 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
962 
963 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
964 
965 	return 0;
966 }
967 EXPORT_SYMBOL_GPL(kvm_set_cr0);
968 
969 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
970 {
971 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
972 }
973 EXPORT_SYMBOL_GPL(kvm_lmsw);
974 
975 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
976 {
977 	if (vcpu->arch.guest_state_protected)
978 		return;
979 
980 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
981 
982 		if (vcpu->arch.xcr0 != host_xcr0)
983 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
984 
985 		if (vcpu->arch.xsaves_enabled &&
986 		    vcpu->arch.ia32_xss != host_xss)
987 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
988 	}
989 
990 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
991 	if (static_cpu_has(X86_FEATURE_PKU) &&
992 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
993 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
994 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
995 		write_pkru(vcpu->arch.pkru);
996 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
997 }
998 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
999 
1000 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1001 {
1002 	if (vcpu->arch.guest_state_protected)
1003 		return;
1004 
1005 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1006 	if (static_cpu_has(X86_FEATURE_PKU) &&
1007 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1008 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1009 		vcpu->arch.pkru = rdpkru();
1010 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1011 			write_pkru(vcpu->arch.host_pkru);
1012 	}
1013 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1014 
1015 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1016 
1017 		if (vcpu->arch.xcr0 != host_xcr0)
1018 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1019 
1020 		if (vcpu->arch.xsaves_enabled &&
1021 		    vcpu->arch.ia32_xss != host_xss)
1022 			wrmsrl(MSR_IA32_XSS, host_xss);
1023 	}
1024 
1025 }
1026 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1027 
1028 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
1029 {
1030 	return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1031 }
1032 
1033 #ifdef CONFIG_X86_64
1034 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1035 {
1036 	return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1037 }
1038 #endif
1039 
1040 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1041 {
1042 	u64 xcr0 = xcr;
1043 	u64 old_xcr0 = vcpu->arch.xcr0;
1044 	u64 valid_bits;
1045 
1046 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1047 	if (index != XCR_XFEATURE_ENABLED_MASK)
1048 		return 1;
1049 	if (!(xcr0 & XFEATURE_MASK_FP))
1050 		return 1;
1051 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1052 		return 1;
1053 
1054 	/*
1055 	 * Do not allow the guest to set bits that we do not support
1056 	 * saving.  However, xcr0 bit 0 is always set, even if the
1057 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1058 	 */
1059 	valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1060 	if (xcr0 & ~valid_bits)
1061 		return 1;
1062 
1063 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1064 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1065 		return 1;
1066 
1067 	if (xcr0 & XFEATURE_MASK_AVX512) {
1068 		if (!(xcr0 & XFEATURE_MASK_YMM))
1069 			return 1;
1070 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1071 			return 1;
1072 	}
1073 
1074 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1075 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1076 		return 1;
1077 
1078 	vcpu->arch.xcr0 = xcr0;
1079 
1080 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1081 		kvm_update_cpuid_runtime(vcpu);
1082 	return 0;
1083 }
1084 
1085 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1086 {
1087 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1088 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1089 		kvm_inject_gp(vcpu, 0);
1090 		return 1;
1091 	}
1092 
1093 	return kvm_skip_emulated_instruction(vcpu);
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1096 
1097 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1098 {
1099 	if (cr4 & cr4_reserved_bits)
1100 		return false;
1101 
1102 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1103 		return false;
1104 
1105 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1108 
1109 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1110 {
1111 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1112 		kvm_mmu_reset_context(vcpu);
1113 
1114 	/*
1115 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1116 	 * according to the SDM; however, stale prev_roots could be reused
1117 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1118 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1119 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1120 	 * so fall through.
1121 	 */
1122 	if (!tdp_enabled &&
1123 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1124 		kvm_mmu_unload(vcpu);
1125 
1126 	/*
1127 	 * The TLB has to be flushed for all PCIDs if any of the following
1128 	 * (architecturally required) changes happen:
1129 	 * - CR4.PCIDE is changed from 1 to 0
1130 	 * - CR4.PGE is toggled
1131 	 *
1132 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1133 	 */
1134 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1135 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1136 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1137 
1138 	/*
1139 	 * The TLB has to be flushed for the current PCID if any of the
1140 	 * following (architecturally required) changes happen:
1141 	 * - CR4.SMEP is changed from 0 to 1
1142 	 * - CR4.PAE is toggled
1143 	 */
1144 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1145 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1146 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1147 
1148 }
1149 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1150 
1151 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1152 {
1153 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1154 
1155 	if (!kvm_is_valid_cr4(vcpu, cr4))
1156 		return 1;
1157 
1158 	if (is_long_mode(vcpu)) {
1159 		if (!(cr4 & X86_CR4_PAE))
1160 			return 1;
1161 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1162 			return 1;
1163 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1164 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1165 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1166 		return 1;
1167 
1168 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1169 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1170 			return 1;
1171 
1172 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1173 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1174 			return 1;
1175 	}
1176 
1177 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1178 
1179 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1180 
1181 	return 0;
1182 }
1183 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1184 
1185 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1186 {
1187 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1188 	unsigned long roots_to_free = 0;
1189 	int i;
1190 
1191 	/*
1192 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1193 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1194 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1195 	 * the invalidation, but the guest's TLB entries need to be flushed as
1196 	 * the CPU may have cached entries in its TLB for the target PCID.
1197 	 */
1198 	if (unlikely(tdp_enabled)) {
1199 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1200 		return;
1201 	}
1202 
1203 	/*
1204 	 * If neither the current CR3 nor any of the prev_roots use the given
1205 	 * PCID, then nothing needs to be done here because a resync will
1206 	 * happen anyway before switching to any other CR3.
1207 	 */
1208 	if (kvm_get_active_pcid(vcpu) == pcid) {
1209 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1210 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1211 	}
1212 
1213 	/*
1214 	 * If PCID is disabled, there is no need to free prev_roots even if the
1215 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1216 	 * with PCIDE=0.
1217 	 */
1218 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1219 		return;
1220 
1221 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1222 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1223 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1224 
1225 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1226 }
1227 
1228 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1229 {
1230 	bool skip_tlb_flush = false;
1231 	unsigned long pcid = 0;
1232 #ifdef CONFIG_X86_64
1233 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1234 
1235 	if (pcid_enabled) {
1236 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1237 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1238 		pcid = cr3 & X86_CR3_PCID_MASK;
1239 	}
1240 #endif
1241 
1242 	/* PDPTRs are always reloaded for PAE paging. */
1243 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1244 		goto handle_tlb_flush;
1245 
1246 	/*
1247 	 * Do not condition the GPA check on long mode, this helper is used to
1248 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1249 	 * the current vCPU mode is accurate.
1250 	 */
1251 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1252 		return 1;
1253 
1254 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1255 		return 1;
1256 
1257 	if (cr3 != kvm_read_cr3(vcpu))
1258 		kvm_mmu_new_pgd(vcpu, cr3);
1259 
1260 	vcpu->arch.cr3 = cr3;
1261 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1262 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1263 
1264 handle_tlb_flush:
1265 	/*
1266 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1267 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1268 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1269 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1270 	 * i.e. only PCID=0 can be relevant.
1271 	 */
1272 	if (!skip_tlb_flush)
1273 		kvm_invalidate_pcid(vcpu, pcid);
1274 
1275 	return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1278 
1279 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1280 {
1281 	if (cr8 & CR8_RESERVED_BITS)
1282 		return 1;
1283 	if (lapic_in_kernel(vcpu))
1284 		kvm_lapic_set_tpr(vcpu, cr8);
1285 	else
1286 		vcpu->arch.cr8 = cr8;
1287 	return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1290 
1291 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1292 {
1293 	if (lapic_in_kernel(vcpu))
1294 		return kvm_lapic_get_cr8(vcpu);
1295 	else
1296 		return vcpu->arch.cr8;
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1299 
1300 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1301 {
1302 	int i;
1303 
1304 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1305 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1306 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1307 	}
1308 }
1309 
1310 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1311 {
1312 	unsigned long dr7;
1313 
1314 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1315 		dr7 = vcpu->arch.guest_debug_dr7;
1316 	else
1317 		dr7 = vcpu->arch.dr7;
1318 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1319 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1320 	if (dr7 & DR7_BP_EN_MASK)
1321 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1324 
1325 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1326 {
1327 	u64 fixed = DR6_FIXED_1;
1328 
1329 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1330 		fixed |= DR6_RTM;
1331 
1332 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1333 		fixed |= DR6_BUS_LOCK;
1334 	return fixed;
1335 }
1336 
1337 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1338 {
1339 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1340 
1341 	switch (dr) {
1342 	case 0 ... 3:
1343 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1344 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1345 			vcpu->arch.eff_db[dr] = val;
1346 		break;
1347 	case 4:
1348 	case 6:
1349 		if (!kvm_dr6_valid(val))
1350 			return 1; /* #GP */
1351 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1352 		break;
1353 	case 5:
1354 	default: /* 7 */
1355 		if (!kvm_dr7_valid(val))
1356 			return 1; /* #GP */
1357 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1358 		kvm_update_dr7(vcpu);
1359 		break;
1360 	}
1361 
1362 	return 0;
1363 }
1364 EXPORT_SYMBOL_GPL(kvm_set_dr);
1365 
1366 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1367 {
1368 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1369 
1370 	switch (dr) {
1371 	case 0 ... 3:
1372 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1373 		break;
1374 	case 4:
1375 	case 6:
1376 		*val = vcpu->arch.dr6;
1377 		break;
1378 	case 5:
1379 	default: /* 7 */
1380 		*val = vcpu->arch.dr7;
1381 		break;
1382 	}
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_get_dr);
1385 
1386 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1387 {
1388 	u32 ecx = kvm_rcx_read(vcpu);
1389 	u64 data;
1390 
1391 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1392 		kvm_inject_gp(vcpu, 0);
1393 		return 1;
1394 	}
1395 
1396 	kvm_rax_write(vcpu, (u32)data);
1397 	kvm_rdx_write(vcpu, data >> 32);
1398 	return kvm_skip_emulated_instruction(vcpu);
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1401 
1402 /*
1403  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1404  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1405  *
1406  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1407  * extract the supported MSRs from the related const lists.
1408  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1409  * capabilities of the host cpu. This capabilities test skips MSRs that are
1410  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1411  * may depend on host virtualization features rather than host cpu features.
1412  */
1413 
1414 static const u32 msrs_to_save_all[] = {
1415 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1416 	MSR_STAR,
1417 #ifdef CONFIG_X86_64
1418 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1419 #endif
1420 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1421 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1422 	MSR_IA32_SPEC_CTRL,
1423 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1424 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1425 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1426 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1427 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1428 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1429 	MSR_IA32_UMWAIT_CONTROL,
1430 
1431 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1432 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1433 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1434 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1435 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1436 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1437 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1438 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1439 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1440 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1441 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1442 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1443 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1444 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1445 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1446 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1447 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1448 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1449 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1450 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1451 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1452 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1453 
1454 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1455 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1456 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1457 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1458 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1459 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1460 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1461 };
1462 
1463 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1464 static unsigned num_msrs_to_save;
1465 
1466 static const u32 emulated_msrs_all[] = {
1467 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1468 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1469 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1470 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1471 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1472 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1473 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1474 	HV_X64_MSR_RESET,
1475 	HV_X64_MSR_VP_INDEX,
1476 	HV_X64_MSR_VP_RUNTIME,
1477 	HV_X64_MSR_SCONTROL,
1478 	HV_X64_MSR_STIMER0_CONFIG,
1479 	HV_X64_MSR_VP_ASSIST_PAGE,
1480 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1481 	HV_X64_MSR_TSC_EMULATION_STATUS,
1482 	HV_X64_MSR_SYNDBG_OPTIONS,
1483 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1484 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1485 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1486 
1487 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1488 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1489 
1490 	MSR_IA32_TSC_ADJUST,
1491 	MSR_IA32_TSC_DEADLINE,
1492 	MSR_IA32_ARCH_CAPABILITIES,
1493 	MSR_IA32_PERF_CAPABILITIES,
1494 	MSR_IA32_MISC_ENABLE,
1495 	MSR_IA32_MCG_STATUS,
1496 	MSR_IA32_MCG_CTL,
1497 	MSR_IA32_MCG_EXT_CTL,
1498 	MSR_IA32_SMBASE,
1499 	MSR_SMI_COUNT,
1500 	MSR_PLATFORM_INFO,
1501 	MSR_MISC_FEATURES_ENABLES,
1502 	MSR_AMD64_VIRT_SPEC_CTRL,
1503 	MSR_AMD64_TSC_RATIO,
1504 	MSR_IA32_POWER_CTL,
1505 	MSR_IA32_UCODE_REV,
1506 
1507 	/*
1508 	 * The following list leaves out MSRs whose values are determined
1509 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1510 	 * We always support the "true" VMX control MSRs, even if the host
1511 	 * processor does not, so I am putting these registers here rather
1512 	 * than in msrs_to_save_all.
1513 	 */
1514 	MSR_IA32_VMX_BASIC,
1515 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1516 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1517 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1518 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1519 	MSR_IA32_VMX_MISC,
1520 	MSR_IA32_VMX_CR0_FIXED0,
1521 	MSR_IA32_VMX_CR4_FIXED0,
1522 	MSR_IA32_VMX_VMCS_ENUM,
1523 	MSR_IA32_VMX_PROCBASED_CTLS2,
1524 	MSR_IA32_VMX_EPT_VPID_CAP,
1525 	MSR_IA32_VMX_VMFUNC,
1526 
1527 	MSR_K7_HWCR,
1528 	MSR_KVM_POLL_CONTROL,
1529 };
1530 
1531 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1532 static unsigned num_emulated_msrs;
1533 
1534 /*
1535  * List of msr numbers which are used to expose MSR-based features that
1536  * can be used by a hypervisor to validate requested CPU features.
1537  */
1538 static const u32 msr_based_features_all[] = {
1539 	MSR_IA32_VMX_BASIC,
1540 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1541 	MSR_IA32_VMX_PINBASED_CTLS,
1542 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1543 	MSR_IA32_VMX_PROCBASED_CTLS,
1544 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1545 	MSR_IA32_VMX_EXIT_CTLS,
1546 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1547 	MSR_IA32_VMX_ENTRY_CTLS,
1548 	MSR_IA32_VMX_MISC,
1549 	MSR_IA32_VMX_CR0_FIXED0,
1550 	MSR_IA32_VMX_CR0_FIXED1,
1551 	MSR_IA32_VMX_CR4_FIXED0,
1552 	MSR_IA32_VMX_CR4_FIXED1,
1553 	MSR_IA32_VMX_VMCS_ENUM,
1554 	MSR_IA32_VMX_PROCBASED_CTLS2,
1555 	MSR_IA32_VMX_EPT_VPID_CAP,
1556 	MSR_IA32_VMX_VMFUNC,
1557 
1558 	MSR_F10H_DECFG,
1559 	MSR_IA32_UCODE_REV,
1560 	MSR_IA32_ARCH_CAPABILITIES,
1561 	MSR_IA32_PERF_CAPABILITIES,
1562 };
1563 
1564 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1565 static unsigned int num_msr_based_features;
1566 
1567 static u64 kvm_get_arch_capabilities(void)
1568 {
1569 	u64 data = 0;
1570 
1571 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1572 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1573 
1574 	/*
1575 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1576 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1577 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1578 	 * L1 guests, so it need not worry about its own (L2) guests.
1579 	 */
1580 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1581 
1582 	/*
1583 	 * If we're doing cache flushes (either "always" or "cond")
1584 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1585 	 * If an outer hypervisor is doing the cache flush for us
1586 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1587 	 * capability to the guest too, and if EPT is disabled we're not
1588 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1589 	 * require a nested hypervisor to do a flush of its own.
1590 	 */
1591 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1592 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1593 
1594 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1595 		data |= ARCH_CAP_RDCL_NO;
1596 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1597 		data |= ARCH_CAP_SSB_NO;
1598 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1599 		data |= ARCH_CAP_MDS_NO;
1600 
1601 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1602 		/*
1603 		 * If RTM=0 because the kernel has disabled TSX, the host might
1604 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1605 		 * and therefore knows that there cannot be TAA) but keep
1606 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1607 		 * and we want to allow migrating those guests to tsx=off hosts.
1608 		 */
1609 		data &= ~ARCH_CAP_TAA_NO;
1610 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1611 		data |= ARCH_CAP_TAA_NO;
1612 	} else {
1613 		/*
1614 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1615 		 * host so the guest can choose between disabling TSX or
1616 		 * using VERW to clear CPU buffers.
1617 		 */
1618 	}
1619 
1620 	return data;
1621 }
1622 
1623 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1624 {
1625 	switch (msr->index) {
1626 	case MSR_IA32_ARCH_CAPABILITIES:
1627 		msr->data = kvm_get_arch_capabilities();
1628 		break;
1629 	case MSR_IA32_UCODE_REV:
1630 		rdmsrl_safe(msr->index, &msr->data);
1631 		break;
1632 	default:
1633 		return static_call(kvm_x86_get_msr_feature)(msr);
1634 	}
1635 	return 0;
1636 }
1637 
1638 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1639 {
1640 	struct kvm_msr_entry msr;
1641 	int r;
1642 
1643 	msr.index = index;
1644 	r = kvm_get_msr_feature(&msr);
1645 
1646 	if (r == KVM_MSR_RET_INVALID) {
1647 		/* Unconditionally clear the output for simplicity */
1648 		*data = 0;
1649 		if (kvm_msr_ignored_check(index, 0, false))
1650 			r = 0;
1651 	}
1652 
1653 	if (r)
1654 		return r;
1655 
1656 	*data = msr.data;
1657 
1658 	return 0;
1659 }
1660 
1661 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1662 {
1663 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1664 		return false;
1665 
1666 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1667 		return false;
1668 
1669 	if (efer & (EFER_LME | EFER_LMA) &&
1670 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1671 		return false;
1672 
1673 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1674 		return false;
1675 
1676 	return true;
1677 
1678 }
1679 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1680 {
1681 	if (efer & efer_reserved_bits)
1682 		return false;
1683 
1684 	return __kvm_valid_efer(vcpu, efer);
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1687 
1688 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1689 {
1690 	u64 old_efer = vcpu->arch.efer;
1691 	u64 efer = msr_info->data;
1692 	int r;
1693 
1694 	if (efer & efer_reserved_bits)
1695 		return 1;
1696 
1697 	if (!msr_info->host_initiated) {
1698 		if (!__kvm_valid_efer(vcpu, efer))
1699 			return 1;
1700 
1701 		if (is_paging(vcpu) &&
1702 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1703 			return 1;
1704 	}
1705 
1706 	efer &= ~EFER_LMA;
1707 	efer |= vcpu->arch.efer & EFER_LMA;
1708 
1709 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1710 	if (r) {
1711 		WARN_ON(r > 0);
1712 		return r;
1713 	}
1714 
1715 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1716 		kvm_mmu_reset_context(vcpu);
1717 
1718 	return 0;
1719 }
1720 
1721 void kvm_enable_efer_bits(u64 mask)
1722 {
1723        efer_reserved_bits &= ~mask;
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1726 
1727 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1728 {
1729 	struct kvm_x86_msr_filter *msr_filter;
1730 	struct msr_bitmap_range *ranges;
1731 	struct kvm *kvm = vcpu->kvm;
1732 	bool allowed;
1733 	int idx;
1734 	u32 i;
1735 
1736 	/* x2APIC MSRs do not support filtering. */
1737 	if (index >= 0x800 && index <= 0x8ff)
1738 		return true;
1739 
1740 	idx = srcu_read_lock(&kvm->srcu);
1741 
1742 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1743 	if (!msr_filter) {
1744 		allowed = true;
1745 		goto out;
1746 	}
1747 
1748 	allowed = msr_filter->default_allow;
1749 	ranges = msr_filter->ranges;
1750 
1751 	for (i = 0; i < msr_filter->count; i++) {
1752 		u32 start = ranges[i].base;
1753 		u32 end = start + ranges[i].nmsrs;
1754 		u32 flags = ranges[i].flags;
1755 		unsigned long *bitmap = ranges[i].bitmap;
1756 
1757 		if ((index >= start) && (index < end) && (flags & type)) {
1758 			allowed = !!test_bit(index - start, bitmap);
1759 			break;
1760 		}
1761 	}
1762 
1763 out:
1764 	srcu_read_unlock(&kvm->srcu, idx);
1765 
1766 	return allowed;
1767 }
1768 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1769 
1770 /*
1771  * Write @data into the MSR specified by @index.  Select MSR specific fault
1772  * checks are bypassed if @host_initiated is %true.
1773  * Returns 0 on success, non-0 otherwise.
1774  * Assumes vcpu_load() was already called.
1775  */
1776 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1777 			 bool host_initiated)
1778 {
1779 	struct msr_data msr;
1780 
1781 	switch (index) {
1782 	case MSR_FS_BASE:
1783 	case MSR_GS_BASE:
1784 	case MSR_KERNEL_GS_BASE:
1785 	case MSR_CSTAR:
1786 	case MSR_LSTAR:
1787 		if (is_noncanonical_address(data, vcpu))
1788 			return 1;
1789 		break;
1790 	case MSR_IA32_SYSENTER_EIP:
1791 	case MSR_IA32_SYSENTER_ESP:
1792 		/*
1793 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1794 		 * non-canonical address is written on Intel but not on
1795 		 * AMD (which ignores the top 32-bits, because it does
1796 		 * not implement 64-bit SYSENTER).
1797 		 *
1798 		 * 64-bit code should hence be able to write a non-canonical
1799 		 * value on AMD.  Making the address canonical ensures that
1800 		 * vmentry does not fail on Intel after writing a non-canonical
1801 		 * value, and that something deterministic happens if the guest
1802 		 * invokes 64-bit SYSENTER.
1803 		 */
1804 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1805 		break;
1806 	case MSR_TSC_AUX:
1807 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1808 			return 1;
1809 
1810 		if (!host_initiated &&
1811 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1812 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1813 			return 1;
1814 
1815 		/*
1816 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1817 		 * incomplete and conflicting architectural behavior.  Current
1818 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1819 		 * reserved and always read as zeros.  Enforce Intel's reserved
1820 		 * bits check if and only if the guest CPU is Intel, and clear
1821 		 * the bits in all other cases.  This ensures cross-vendor
1822 		 * migration will provide consistent behavior for the guest.
1823 		 */
1824 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1825 			return 1;
1826 
1827 		data = (u32)data;
1828 		break;
1829 	}
1830 
1831 	msr.data = data;
1832 	msr.index = index;
1833 	msr.host_initiated = host_initiated;
1834 
1835 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1836 }
1837 
1838 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1839 				     u32 index, u64 data, bool host_initiated)
1840 {
1841 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1842 
1843 	if (ret == KVM_MSR_RET_INVALID)
1844 		if (kvm_msr_ignored_check(index, data, true))
1845 			ret = 0;
1846 
1847 	return ret;
1848 }
1849 
1850 /*
1851  * Read the MSR specified by @index into @data.  Select MSR specific fault
1852  * checks are bypassed if @host_initiated is %true.
1853  * Returns 0 on success, non-0 otherwise.
1854  * Assumes vcpu_load() was already called.
1855  */
1856 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1857 		  bool host_initiated)
1858 {
1859 	struct msr_data msr;
1860 	int ret;
1861 
1862 	switch (index) {
1863 	case MSR_TSC_AUX:
1864 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1865 			return 1;
1866 
1867 		if (!host_initiated &&
1868 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1869 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1870 			return 1;
1871 		break;
1872 	}
1873 
1874 	msr.index = index;
1875 	msr.host_initiated = host_initiated;
1876 
1877 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1878 	if (!ret)
1879 		*data = msr.data;
1880 	return ret;
1881 }
1882 
1883 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1884 				     u32 index, u64 *data, bool host_initiated)
1885 {
1886 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1887 
1888 	if (ret == KVM_MSR_RET_INVALID) {
1889 		/* Unconditionally clear *data for simplicity */
1890 		*data = 0;
1891 		if (kvm_msr_ignored_check(index, 0, false))
1892 			ret = 0;
1893 	}
1894 
1895 	return ret;
1896 }
1897 
1898 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1899 {
1900 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1901 		return KVM_MSR_RET_FILTERED;
1902 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1903 }
1904 
1905 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1906 {
1907 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1908 		return KVM_MSR_RET_FILTERED;
1909 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1910 }
1911 
1912 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1913 {
1914 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_get_msr);
1917 
1918 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1919 {
1920 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1921 }
1922 EXPORT_SYMBOL_GPL(kvm_set_msr);
1923 
1924 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1925 {
1926 	if (!vcpu->run->msr.error) {
1927 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1928 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1929 	}
1930 }
1931 
1932 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1933 {
1934 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1935 }
1936 
1937 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1938 {
1939 	complete_userspace_rdmsr(vcpu);
1940 	return complete_emulated_msr_access(vcpu);
1941 }
1942 
1943 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1944 {
1945 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1946 }
1947 
1948 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1949 {
1950 	complete_userspace_rdmsr(vcpu);
1951 	return complete_fast_msr_access(vcpu);
1952 }
1953 
1954 static u64 kvm_msr_reason(int r)
1955 {
1956 	switch (r) {
1957 	case KVM_MSR_RET_INVALID:
1958 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1959 	case KVM_MSR_RET_FILTERED:
1960 		return KVM_MSR_EXIT_REASON_FILTER;
1961 	default:
1962 		return KVM_MSR_EXIT_REASON_INVAL;
1963 	}
1964 }
1965 
1966 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1967 			      u32 exit_reason, u64 data,
1968 			      int (*completion)(struct kvm_vcpu *vcpu),
1969 			      int r)
1970 {
1971 	u64 msr_reason = kvm_msr_reason(r);
1972 
1973 	/* Check if the user wanted to know about this MSR fault */
1974 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1975 		return 0;
1976 
1977 	vcpu->run->exit_reason = exit_reason;
1978 	vcpu->run->msr.error = 0;
1979 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1980 	vcpu->run->msr.reason = msr_reason;
1981 	vcpu->run->msr.index = index;
1982 	vcpu->run->msr.data = data;
1983 	vcpu->arch.complete_userspace_io = completion;
1984 
1985 	return 1;
1986 }
1987 
1988 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1989 {
1990 	u32 ecx = kvm_rcx_read(vcpu);
1991 	u64 data;
1992 	int r;
1993 
1994 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
1995 
1996 	if (!r) {
1997 		trace_kvm_msr_read(ecx, data);
1998 
1999 		kvm_rax_write(vcpu, data & -1u);
2000 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2001 	} else {
2002 		/* MSR read failed? See if we should ask user space */
2003 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2004 				       complete_fast_rdmsr, r))
2005 			return 0;
2006 		trace_kvm_msr_read_ex(ecx);
2007 	}
2008 
2009 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2012 
2013 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2014 {
2015 	u32 ecx = kvm_rcx_read(vcpu);
2016 	u64 data = kvm_read_edx_eax(vcpu);
2017 	int r;
2018 
2019 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2020 
2021 	if (!r) {
2022 		trace_kvm_msr_write(ecx, data);
2023 	} else {
2024 		/* MSR write failed? See if we should ask user space */
2025 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2026 				       complete_fast_msr_access, r))
2027 			return 0;
2028 		/* Signal all other negative errors to userspace */
2029 		if (r < 0)
2030 			return r;
2031 		trace_kvm_msr_write_ex(ecx, data);
2032 	}
2033 
2034 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2037 
2038 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2039 {
2040 	return kvm_skip_emulated_instruction(vcpu);
2041 }
2042 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2043 
2044 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2045 {
2046 	/* Treat an INVD instruction as a NOP and just skip it. */
2047 	return kvm_emulate_as_nop(vcpu);
2048 }
2049 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2050 
2051 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2052 {
2053 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
2054 	return kvm_emulate_as_nop(vcpu);
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2057 
2058 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2059 {
2060 	kvm_queue_exception(vcpu, UD_VECTOR);
2061 	return 1;
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2064 
2065 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2066 {
2067 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2068 	return kvm_emulate_as_nop(vcpu);
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2071 
2072 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2073 {
2074 	xfer_to_guest_mode_prepare();
2075 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2076 		xfer_to_guest_mode_work_pending();
2077 }
2078 
2079 /*
2080  * The fast path for frequent and performance sensitive wrmsr emulation,
2081  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2082  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2083  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2084  * other cases which must be called after interrupts are enabled on the host.
2085  */
2086 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2087 {
2088 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2089 		return 1;
2090 
2091 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2092 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2093 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2094 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2095 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2096 
2097 	return 1;
2098 }
2099 
2100 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2101 {
2102 	if (!kvm_can_use_hv_timer(vcpu))
2103 		return 1;
2104 
2105 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2106 	return 0;
2107 }
2108 
2109 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2110 {
2111 	u32 msr = kvm_rcx_read(vcpu);
2112 	u64 data;
2113 	fastpath_t ret = EXIT_FASTPATH_NONE;
2114 
2115 	switch (msr) {
2116 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2117 		data = kvm_read_edx_eax(vcpu);
2118 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2119 			kvm_skip_emulated_instruction(vcpu);
2120 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2121 		}
2122 		break;
2123 	case MSR_IA32_TSC_DEADLINE:
2124 		data = kvm_read_edx_eax(vcpu);
2125 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2126 			kvm_skip_emulated_instruction(vcpu);
2127 			ret = EXIT_FASTPATH_REENTER_GUEST;
2128 		}
2129 		break;
2130 	default:
2131 		break;
2132 	}
2133 
2134 	if (ret != EXIT_FASTPATH_NONE)
2135 		trace_kvm_msr_write(msr, data);
2136 
2137 	return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2140 
2141 /*
2142  * Adapt set_msr() to msr_io()'s calling convention
2143  */
2144 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2145 {
2146 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2147 }
2148 
2149 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2150 {
2151 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2152 }
2153 
2154 #ifdef CONFIG_X86_64
2155 struct pvclock_clock {
2156 	int vclock_mode;
2157 	u64 cycle_last;
2158 	u64 mask;
2159 	u32 mult;
2160 	u32 shift;
2161 	u64 base_cycles;
2162 	u64 offset;
2163 };
2164 
2165 struct pvclock_gtod_data {
2166 	seqcount_t	seq;
2167 
2168 	struct pvclock_clock clock; /* extract of a clocksource struct */
2169 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2170 
2171 	ktime_t		offs_boot;
2172 	u64		wall_time_sec;
2173 };
2174 
2175 static struct pvclock_gtod_data pvclock_gtod_data;
2176 
2177 static void update_pvclock_gtod(struct timekeeper *tk)
2178 {
2179 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2180 
2181 	write_seqcount_begin(&vdata->seq);
2182 
2183 	/* copy pvclock gtod data */
2184 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2185 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2186 	vdata->clock.mask		= tk->tkr_mono.mask;
2187 	vdata->clock.mult		= tk->tkr_mono.mult;
2188 	vdata->clock.shift		= tk->tkr_mono.shift;
2189 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2190 	vdata->clock.offset		= tk->tkr_mono.base;
2191 
2192 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2193 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2194 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2195 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2196 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2197 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2198 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2199 
2200 	vdata->wall_time_sec            = tk->xtime_sec;
2201 
2202 	vdata->offs_boot		= tk->offs_boot;
2203 
2204 	write_seqcount_end(&vdata->seq);
2205 }
2206 
2207 static s64 get_kvmclock_base_ns(void)
2208 {
2209 	/* Count up from boot time, but with the frequency of the raw clock.  */
2210 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2211 }
2212 #else
2213 static s64 get_kvmclock_base_ns(void)
2214 {
2215 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2216 	return ktime_get_boottime_ns();
2217 }
2218 #endif
2219 
2220 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2221 {
2222 	int version;
2223 	int r;
2224 	struct pvclock_wall_clock wc;
2225 	u32 wc_sec_hi;
2226 	u64 wall_nsec;
2227 
2228 	if (!wall_clock)
2229 		return;
2230 
2231 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2232 	if (r)
2233 		return;
2234 
2235 	if (version & 1)
2236 		++version;  /* first time write, random junk */
2237 
2238 	++version;
2239 
2240 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2241 		return;
2242 
2243 	/*
2244 	 * The guest calculates current wall clock time by adding
2245 	 * system time (updated by kvm_guest_time_update below) to the
2246 	 * wall clock specified here.  We do the reverse here.
2247 	 */
2248 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2249 
2250 	wc.nsec = do_div(wall_nsec, 1000000000);
2251 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2252 	wc.version = version;
2253 
2254 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2255 
2256 	if (sec_hi_ofs) {
2257 		wc_sec_hi = wall_nsec >> 32;
2258 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2259 				&wc_sec_hi, sizeof(wc_sec_hi));
2260 	}
2261 
2262 	version++;
2263 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2264 }
2265 
2266 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2267 				  bool old_msr, bool host_initiated)
2268 {
2269 	struct kvm_arch *ka = &vcpu->kvm->arch;
2270 
2271 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2272 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2273 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2274 
2275 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2276 	}
2277 
2278 	vcpu->arch.time = system_time;
2279 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2280 
2281 	/* we verify if the enable bit is set... */
2282 	if (system_time & 1) {
2283 		kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2284 					  KVM_HOST_USES_PFN, system_time & ~1ULL,
2285 					  sizeof(struct pvclock_vcpu_time_info));
2286 	} else {
2287 		kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2288 	}
2289 
2290 	return;
2291 }
2292 
2293 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2294 {
2295 	do_shl32_div32(dividend, divisor);
2296 	return dividend;
2297 }
2298 
2299 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2300 			       s8 *pshift, u32 *pmultiplier)
2301 {
2302 	uint64_t scaled64;
2303 	int32_t  shift = 0;
2304 	uint64_t tps64;
2305 	uint32_t tps32;
2306 
2307 	tps64 = base_hz;
2308 	scaled64 = scaled_hz;
2309 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2310 		tps64 >>= 1;
2311 		shift--;
2312 	}
2313 
2314 	tps32 = (uint32_t)tps64;
2315 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2316 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2317 			scaled64 >>= 1;
2318 		else
2319 			tps32 <<= 1;
2320 		shift++;
2321 	}
2322 
2323 	*pshift = shift;
2324 	*pmultiplier = div_frac(scaled64, tps32);
2325 }
2326 
2327 #ifdef CONFIG_X86_64
2328 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2329 #endif
2330 
2331 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2332 static unsigned long max_tsc_khz;
2333 
2334 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2335 {
2336 	u64 v = (u64)khz * (1000000 + ppm);
2337 	do_div(v, 1000000);
2338 	return v;
2339 }
2340 
2341 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2342 
2343 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2344 {
2345 	u64 ratio;
2346 
2347 	/* Guest TSC same frequency as host TSC? */
2348 	if (!scale) {
2349 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2350 		return 0;
2351 	}
2352 
2353 	/* TSC scaling supported? */
2354 	if (!kvm_has_tsc_control) {
2355 		if (user_tsc_khz > tsc_khz) {
2356 			vcpu->arch.tsc_catchup = 1;
2357 			vcpu->arch.tsc_always_catchup = 1;
2358 			return 0;
2359 		} else {
2360 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2361 			return -1;
2362 		}
2363 	}
2364 
2365 	/* TSC scaling required  - calculate ratio */
2366 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2367 				user_tsc_khz, tsc_khz);
2368 
2369 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2370 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2371 			            user_tsc_khz);
2372 		return -1;
2373 	}
2374 
2375 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2376 	return 0;
2377 }
2378 
2379 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2380 {
2381 	u32 thresh_lo, thresh_hi;
2382 	int use_scaling = 0;
2383 
2384 	/* tsc_khz can be zero if TSC calibration fails */
2385 	if (user_tsc_khz == 0) {
2386 		/* set tsc_scaling_ratio to a safe value */
2387 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2388 		return -1;
2389 	}
2390 
2391 	/* Compute a scale to convert nanoseconds in TSC cycles */
2392 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2393 			   &vcpu->arch.virtual_tsc_shift,
2394 			   &vcpu->arch.virtual_tsc_mult);
2395 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2396 
2397 	/*
2398 	 * Compute the variation in TSC rate which is acceptable
2399 	 * within the range of tolerance and decide if the
2400 	 * rate being applied is within that bounds of the hardware
2401 	 * rate.  If so, no scaling or compensation need be done.
2402 	 */
2403 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2404 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2405 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2406 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2407 		use_scaling = 1;
2408 	}
2409 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2410 }
2411 
2412 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2413 {
2414 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2415 				      vcpu->arch.virtual_tsc_mult,
2416 				      vcpu->arch.virtual_tsc_shift);
2417 	tsc += vcpu->arch.this_tsc_write;
2418 	return tsc;
2419 }
2420 
2421 #ifdef CONFIG_X86_64
2422 static inline int gtod_is_based_on_tsc(int mode)
2423 {
2424 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2425 }
2426 #endif
2427 
2428 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2429 {
2430 #ifdef CONFIG_X86_64
2431 	bool vcpus_matched;
2432 	struct kvm_arch *ka = &vcpu->kvm->arch;
2433 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2434 
2435 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2436 			 atomic_read(&vcpu->kvm->online_vcpus));
2437 
2438 	/*
2439 	 * Once the masterclock is enabled, always perform request in
2440 	 * order to update it.
2441 	 *
2442 	 * In order to enable masterclock, the host clocksource must be TSC
2443 	 * and the vcpus need to have matched TSCs.  When that happens,
2444 	 * perform request to enable masterclock.
2445 	 */
2446 	if (ka->use_master_clock ||
2447 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2448 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2449 
2450 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2451 			    atomic_read(&vcpu->kvm->online_vcpus),
2452 		            ka->use_master_clock, gtod->clock.vclock_mode);
2453 #endif
2454 }
2455 
2456 /*
2457  * Multiply tsc by a fixed point number represented by ratio.
2458  *
2459  * The most significant 64-N bits (mult) of ratio represent the
2460  * integral part of the fixed point number; the remaining N bits
2461  * (frac) represent the fractional part, ie. ratio represents a fixed
2462  * point number (mult + frac * 2^(-N)).
2463  *
2464  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2465  */
2466 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2467 {
2468 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2469 }
2470 
2471 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2472 {
2473 	u64 _tsc = tsc;
2474 
2475 	if (ratio != kvm_default_tsc_scaling_ratio)
2476 		_tsc = __scale_tsc(ratio, tsc);
2477 
2478 	return _tsc;
2479 }
2480 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2481 
2482 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2483 {
2484 	u64 tsc;
2485 
2486 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2487 
2488 	return target_tsc - tsc;
2489 }
2490 
2491 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2492 {
2493 	return vcpu->arch.l1_tsc_offset +
2494 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2495 }
2496 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2497 
2498 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2499 {
2500 	u64 nested_offset;
2501 
2502 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2503 		nested_offset = l1_offset;
2504 	else
2505 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2506 						kvm_tsc_scaling_ratio_frac_bits);
2507 
2508 	nested_offset += l2_offset;
2509 	return nested_offset;
2510 }
2511 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2512 
2513 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2514 {
2515 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2516 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2517 				       kvm_tsc_scaling_ratio_frac_bits);
2518 
2519 	return l1_multiplier;
2520 }
2521 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2522 
2523 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2524 {
2525 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2526 				   vcpu->arch.l1_tsc_offset,
2527 				   l1_offset);
2528 
2529 	vcpu->arch.l1_tsc_offset = l1_offset;
2530 
2531 	/*
2532 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2533 	 * according to the spec this should set L1's TSC (as opposed to
2534 	 * setting L1's offset for L2).
2535 	 */
2536 	if (is_guest_mode(vcpu))
2537 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2538 			l1_offset,
2539 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2540 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2541 	else
2542 		vcpu->arch.tsc_offset = l1_offset;
2543 
2544 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2545 }
2546 
2547 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2548 {
2549 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2550 
2551 	/* Userspace is changing the multiplier while L2 is active */
2552 	if (is_guest_mode(vcpu))
2553 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2554 			l1_multiplier,
2555 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2556 	else
2557 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2558 
2559 	if (kvm_has_tsc_control)
2560 		static_call(kvm_x86_write_tsc_multiplier)(
2561 			vcpu, vcpu->arch.tsc_scaling_ratio);
2562 }
2563 
2564 static inline bool kvm_check_tsc_unstable(void)
2565 {
2566 #ifdef CONFIG_X86_64
2567 	/*
2568 	 * TSC is marked unstable when we're running on Hyper-V,
2569 	 * 'TSC page' clocksource is good.
2570 	 */
2571 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2572 		return false;
2573 #endif
2574 	return check_tsc_unstable();
2575 }
2576 
2577 /*
2578  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2579  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2580  * participates in.
2581  */
2582 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2583 				  u64 ns, bool matched)
2584 {
2585 	struct kvm *kvm = vcpu->kvm;
2586 
2587 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2588 
2589 	/*
2590 	 * We also track th most recent recorded KHZ, write and time to
2591 	 * allow the matching interval to be extended at each write.
2592 	 */
2593 	kvm->arch.last_tsc_nsec = ns;
2594 	kvm->arch.last_tsc_write = tsc;
2595 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2596 	kvm->arch.last_tsc_offset = offset;
2597 
2598 	vcpu->arch.last_guest_tsc = tsc;
2599 
2600 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2601 
2602 	if (!matched) {
2603 		/*
2604 		 * We split periods of matched TSC writes into generations.
2605 		 * For each generation, we track the original measured
2606 		 * nanosecond time, offset, and write, so if TSCs are in
2607 		 * sync, we can match exact offset, and if not, we can match
2608 		 * exact software computation in compute_guest_tsc()
2609 		 *
2610 		 * These values are tracked in kvm->arch.cur_xxx variables.
2611 		 */
2612 		kvm->arch.cur_tsc_generation++;
2613 		kvm->arch.cur_tsc_nsec = ns;
2614 		kvm->arch.cur_tsc_write = tsc;
2615 		kvm->arch.cur_tsc_offset = offset;
2616 		kvm->arch.nr_vcpus_matched_tsc = 0;
2617 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2618 		kvm->arch.nr_vcpus_matched_tsc++;
2619 	}
2620 
2621 	/* Keep track of which generation this VCPU has synchronized to */
2622 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2623 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2624 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2625 
2626 	kvm_track_tsc_matching(vcpu);
2627 }
2628 
2629 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2630 {
2631 	struct kvm *kvm = vcpu->kvm;
2632 	u64 offset, ns, elapsed;
2633 	unsigned long flags;
2634 	bool matched = false;
2635 	bool synchronizing = false;
2636 
2637 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2638 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2639 	ns = get_kvmclock_base_ns();
2640 	elapsed = ns - kvm->arch.last_tsc_nsec;
2641 
2642 	if (vcpu->arch.virtual_tsc_khz) {
2643 		if (data == 0) {
2644 			/*
2645 			 * detection of vcpu initialization -- need to sync
2646 			 * with other vCPUs. This particularly helps to keep
2647 			 * kvm_clock stable after CPU hotplug
2648 			 */
2649 			synchronizing = true;
2650 		} else {
2651 			u64 tsc_exp = kvm->arch.last_tsc_write +
2652 						nsec_to_cycles(vcpu, elapsed);
2653 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2654 			/*
2655 			 * Special case: TSC write with a small delta (1 second)
2656 			 * of virtual cycle time against real time is
2657 			 * interpreted as an attempt to synchronize the CPU.
2658 			 */
2659 			synchronizing = data < tsc_exp + tsc_hz &&
2660 					data + tsc_hz > tsc_exp;
2661 		}
2662 	}
2663 
2664 	/*
2665 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2666 	 * TSC, we add elapsed time in this computation.  We could let the
2667 	 * compensation code attempt to catch up if we fall behind, but
2668 	 * it's better to try to match offsets from the beginning.
2669          */
2670 	if (synchronizing &&
2671 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2672 		if (!kvm_check_tsc_unstable()) {
2673 			offset = kvm->arch.cur_tsc_offset;
2674 		} else {
2675 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2676 			data += delta;
2677 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2678 		}
2679 		matched = true;
2680 	}
2681 
2682 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2683 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2684 }
2685 
2686 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2687 					   s64 adjustment)
2688 {
2689 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2690 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2691 }
2692 
2693 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2694 {
2695 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2696 		WARN_ON(adjustment < 0);
2697 	adjustment = kvm_scale_tsc((u64) adjustment,
2698 				   vcpu->arch.l1_tsc_scaling_ratio);
2699 	adjust_tsc_offset_guest(vcpu, adjustment);
2700 }
2701 
2702 #ifdef CONFIG_X86_64
2703 
2704 static u64 read_tsc(void)
2705 {
2706 	u64 ret = (u64)rdtsc_ordered();
2707 	u64 last = pvclock_gtod_data.clock.cycle_last;
2708 
2709 	if (likely(ret >= last))
2710 		return ret;
2711 
2712 	/*
2713 	 * GCC likes to generate cmov here, but this branch is extremely
2714 	 * predictable (it's just a function of time and the likely is
2715 	 * very likely) and there's a data dependence, so force GCC
2716 	 * to generate a branch instead.  I don't barrier() because
2717 	 * we don't actually need a barrier, and if this function
2718 	 * ever gets inlined it will generate worse code.
2719 	 */
2720 	asm volatile ("");
2721 	return last;
2722 }
2723 
2724 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2725 			  int *mode)
2726 {
2727 	long v;
2728 	u64 tsc_pg_val;
2729 
2730 	switch (clock->vclock_mode) {
2731 	case VDSO_CLOCKMODE_HVCLOCK:
2732 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2733 						  tsc_timestamp);
2734 		if (tsc_pg_val != U64_MAX) {
2735 			/* TSC page valid */
2736 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2737 			v = (tsc_pg_val - clock->cycle_last) &
2738 				clock->mask;
2739 		} else {
2740 			/* TSC page invalid */
2741 			*mode = VDSO_CLOCKMODE_NONE;
2742 		}
2743 		break;
2744 	case VDSO_CLOCKMODE_TSC:
2745 		*mode = VDSO_CLOCKMODE_TSC;
2746 		*tsc_timestamp = read_tsc();
2747 		v = (*tsc_timestamp - clock->cycle_last) &
2748 			clock->mask;
2749 		break;
2750 	default:
2751 		*mode = VDSO_CLOCKMODE_NONE;
2752 	}
2753 
2754 	if (*mode == VDSO_CLOCKMODE_NONE)
2755 		*tsc_timestamp = v = 0;
2756 
2757 	return v * clock->mult;
2758 }
2759 
2760 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2761 {
2762 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2763 	unsigned long seq;
2764 	int mode;
2765 	u64 ns;
2766 
2767 	do {
2768 		seq = read_seqcount_begin(&gtod->seq);
2769 		ns = gtod->raw_clock.base_cycles;
2770 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2771 		ns >>= gtod->raw_clock.shift;
2772 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2773 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2774 	*t = ns;
2775 
2776 	return mode;
2777 }
2778 
2779 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2780 {
2781 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2782 	unsigned long seq;
2783 	int mode;
2784 	u64 ns;
2785 
2786 	do {
2787 		seq = read_seqcount_begin(&gtod->seq);
2788 		ts->tv_sec = gtod->wall_time_sec;
2789 		ns = gtod->clock.base_cycles;
2790 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2791 		ns >>= gtod->clock.shift;
2792 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2793 
2794 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2795 	ts->tv_nsec = ns;
2796 
2797 	return mode;
2798 }
2799 
2800 /* returns true if host is using TSC based clocksource */
2801 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2802 {
2803 	/* checked again under seqlock below */
2804 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2805 		return false;
2806 
2807 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2808 						      tsc_timestamp));
2809 }
2810 
2811 /* returns true if host is using TSC based clocksource */
2812 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2813 					   u64 *tsc_timestamp)
2814 {
2815 	/* checked again under seqlock below */
2816 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2817 		return false;
2818 
2819 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2820 }
2821 #endif
2822 
2823 /*
2824  *
2825  * Assuming a stable TSC across physical CPUS, and a stable TSC
2826  * across virtual CPUs, the following condition is possible.
2827  * Each numbered line represents an event visible to both
2828  * CPUs at the next numbered event.
2829  *
2830  * "timespecX" represents host monotonic time. "tscX" represents
2831  * RDTSC value.
2832  *
2833  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2834  *
2835  * 1.  read timespec0,tsc0
2836  * 2.					| timespec1 = timespec0 + N
2837  * 					| tsc1 = tsc0 + M
2838  * 3. transition to guest		| transition to guest
2839  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2840  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2841  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2842  *
2843  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2844  *
2845  * 	- ret0 < ret1
2846  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2847  *		...
2848  *	- 0 < N - M => M < N
2849  *
2850  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2851  * always the case (the difference between two distinct xtime instances
2852  * might be smaller then the difference between corresponding TSC reads,
2853  * when updating guest vcpus pvclock areas).
2854  *
2855  * To avoid that problem, do not allow visibility of distinct
2856  * system_timestamp/tsc_timestamp values simultaneously: use a master
2857  * copy of host monotonic time values. Update that master copy
2858  * in lockstep.
2859  *
2860  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2861  *
2862  */
2863 
2864 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2865 {
2866 #ifdef CONFIG_X86_64
2867 	struct kvm_arch *ka = &kvm->arch;
2868 	int vclock_mode;
2869 	bool host_tsc_clocksource, vcpus_matched;
2870 
2871 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2872 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2873 			atomic_read(&kvm->online_vcpus));
2874 
2875 	/*
2876 	 * If the host uses TSC clock, then passthrough TSC as stable
2877 	 * to the guest.
2878 	 */
2879 	host_tsc_clocksource = kvm_get_time_and_clockread(
2880 					&ka->master_kernel_ns,
2881 					&ka->master_cycle_now);
2882 
2883 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2884 				&& !ka->backwards_tsc_observed
2885 				&& !ka->boot_vcpu_runs_old_kvmclock;
2886 
2887 	if (ka->use_master_clock)
2888 		atomic_set(&kvm_guest_has_master_clock, 1);
2889 
2890 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2891 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2892 					vcpus_matched);
2893 #endif
2894 }
2895 
2896 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2897 {
2898 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2899 }
2900 
2901 static void __kvm_start_pvclock_update(struct kvm *kvm)
2902 {
2903 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2904 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2905 }
2906 
2907 static void kvm_start_pvclock_update(struct kvm *kvm)
2908 {
2909 	kvm_make_mclock_inprogress_request(kvm);
2910 
2911 	/* no guest entries from this point */
2912 	__kvm_start_pvclock_update(kvm);
2913 }
2914 
2915 static void kvm_end_pvclock_update(struct kvm *kvm)
2916 {
2917 	struct kvm_arch *ka = &kvm->arch;
2918 	struct kvm_vcpu *vcpu;
2919 	unsigned long i;
2920 
2921 	write_seqcount_end(&ka->pvclock_sc);
2922 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2923 	kvm_for_each_vcpu(i, vcpu, kvm)
2924 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2925 
2926 	/* guest entries allowed */
2927 	kvm_for_each_vcpu(i, vcpu, kvm)
2928 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2929 }
2930 
2931 static void kvm_update_masterclock(struct kvm *kvm)
2932 {
2933 	kvm_hv_request_tsc_page_update(kvm);
2934 	kvm_start_pvclock_update(kvm);
2935 	pvclock_update_vm_gtod_copy(kvm);
2936 	kvm_end_pvclock_update(kvm);
2937 }
2938 
2939 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2940 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2941 {
2942 	struct kvm_arch *ka = &kvm->arch;
2943 	struct pvclock_vcpu_time_info hv_clock;
2944 
2945 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2946 	get_cpu();
2947 
2948 	data->flags = 0;
2949 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2950 #ifdef CONFIG_X86_64
2951 		struct timespec64 ts;
2952 
2953 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2954 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2955 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2956 		} else
2957 #endif
2958 		data->host_tsc = rdtsc();
2959 
2960 		data->flags |= KVM_CLOCK_TSC_STABLE;
2961 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2962 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2963 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2964 				   &hv_clock.tsc_shift,
2965 				   &hv_clock.tsc_to_system_mul);
2966 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2967 	} else {
2968 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2969 	}
2970 
2971 	put_cpu();
2972 }
2973 
2974 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2975 {
2976 	struct kvm_arch *ka = &kvm->arch;
2977 	unsigned seq;
2978 
2979 	do {
2980 		seq = read_seqcount_begin(&ka->pvclock_sc);
2981 		__get_kvmclock(kvm, data);
2982 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
2983 }
2984 
2985 u64 get_kvmclock_ns(struct kvm *kvm)
2986 {
2987 	struct kvm_clock_data data;
2988 
2989 	get_kvmclock(kvm, &data);
2990 	return data.clock;
2991 }
2992 
2993 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
2994 				    struct gfn_to_pfn_cache *gpc,
2995 				    unsigned int offset)
2996 {
2997 	struct kvm_vcpu_arch *vcpu = &v->arch;
2998 	struct pvclock_vcpu_time_info *guest_hv_clock;
2999 	unsigned long flags;
3000 
3001 	read_lock_irqsave(&gpc->lock, flags);
3002 	while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3003 					   offset + sizeof(*guest_hv_clock))) {
3004 		read_unlock_irqrestore(&gpc->lock, flags);
3005 
3006 		if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3007 						 offset + sizeof(*guest_hv_clock)))
3008 			return;
3009 
3010 		read_lock_irqsave(&gpc->lock, flags);
3011 	}
3012 
3013 	guest_hv_clock = (void *)(gpc->khva + offset);
3014 
3015 	/*
3016 	 * This VCPU is paused, but it's legal for a guest to read another
3017 	 * VCPU's kvmclock, so we really have to follow the specification where
3018 	 * it says that version is odd if data is being modified, and even after
3019 	 * it is consistent.
3020 	 */
3021 
3022 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3023 	smp_wmb();
3024 
3025 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3026 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3027 
3028 	if (vcpu->pvclock_set_guest_stopped_request) {
3029 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3030 		vcpu->pvclock_set_guest_stopped_request = false;
3031 	}
3032 
3033 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3034 	smp_wmb();
3035 
3036 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3037 
3038 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3039 	read_unlock_irqrestore(&gpc->lock, flags);
3040 
3041 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3042 }
3043 
3044 static int kvm_guest_time_update(struct kvm_vcpu *v)
3045 {
3046 	unsigned long flags, tgt_tsc_khz;
3047 	unsigned seq;
3048 	struct kvm_vcpu_arch *vcpu = &v->arch;
3049 	struct kvm_arch *ka = &v->kvm->arch;
3050 	s64 kernel_ns;
3051 	u64 tsc_timestamp, host_tsc;
3052 	u8 pvclock_flags;
3053 	bool use_master_clock;
3054 
3055 	kernel_ns = 0;
3056 	host_tsc = 0;
3057 
3058 	/*
3059 	 * If the host uses TSC clock, then passthrough TSC as stable
3060 	 * to the guest.
3061 	 */
3062 	do {
3063 		seq = read_seqcount_begin(&ka->pvclock_sc);
3064 		use_master_clock = ka->use_master_clock;
3065 		if (use_master_clock) {
3066 			host_tsc = ka->master_cycle_now;
3067 			kernel_ns = ka->master_kernel_ns;
3068 		}
3069 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3070 
3071 	/* Keep irq disabled to prevent changes to the clock */
3072 	local_irq_save(flags);
3073 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3074 	if (unlikely(tgt_tsc_khz == 0)) {
3075 		local_irq_restore(flags);
3076 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3077 		return 1;
3078 	}
3079 	if (!use_master_clock) {
3080 		host_tsc = rdtsc();
3081 		kernel_ns = get_kvmclock_base_ns();
3082 	}
3083 
3084 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3085 
3086 	/*
3087 	 * We may have to catch up the TSC to match elapsed wall clock
3088 	 * time for two reasons, even if kvmclock is used.
3089 	 *   1) CPU could have been running below the maximum TSC rate
3090 	 *   2) Broken TSC compensation resets the base at each VCPU
3091 	 *      entry to avoid unknown leaps of TSC even when running
3092 	 *      again on the same CPU.  This may cause apparent elapsed
3093 	 *      time to disappear, and the guest to stand still or run
3094 	 *	very slowly.
3095 	 */
3096 	if (vcpu->tsc_catchup) {
3097 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3098 		if (tsc > tsc_timestamp) {
3099 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3100 			tsc_timestamp = tsc;
3101 		}
3102 	}
3103 
3104 	local_irq_restore(flags);
3105 
3106 	/* With all the info we got, fill in the values */
3107 
3108 	if (kvm_has_tsc_control)
3109 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3110 					    v->arch.l1_tsc_scaling_ratio);
3111 
3112 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3113 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3114 				   &vcpu->hv_clock.tsc_shift,
3115 				   &vcpu->hv_clock.tsc_to_system_mul);
3116 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3117 	}
3118 
3119 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3120 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3121 	vcpu->last_guest_tsc = tsc_timestamp;
3122 
3123 	/* If the host uses TSC clocksource, then it is stable */
3124 	pvclock_flags = 0;
3125 	if (use_master_clock)
3126 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3127 
3128 	vcpu->hv_clock.flags = pvclock_flags;
3129 
3130 	if (vcpu->pv_time.active)
3131 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3132 	if (vcpu->xen.vcpu_info_cache.active)
3133 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3134 					offsetof(struct compat_vcpu_info, time));
3135 	if (vcpu->xen.vcpu_time_info_cache.active)
3136 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3137 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3138 	return 0;
3139 }
3140 
3141 /*
3142  * kvmclock updates which are isolated to a given vcpu, such as
3143  * vcpu->cpu migration, should not allow system_timestamp from
3144  * the rest of the vcpus to remain static. Otherwise ntp frequency
3145  * correction applies to one vcpu's system_timestamp but not
3146  * the others.
3147  *
3148  * So in those cases, request a kvmclock update for all vcpus.
3149  * We need to rate-limit these requests though, as they can
3150  * considerably slow guests that have a large number of vcpus.
3151  * The time for a remote vcpu to update its kvmclock is bound
3152  * by the delay we use to rate-limit the updates.
3153  */
3154 
3155 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3156 
3157 static void kvmclock_update_fn(struct work_struct *work)
3158 {
3159 	unsigned long i;
3160 	struct delayed_work *dwork = to_delayed_work(work);
3161 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3162 					   kvmclock_update_work);
3163 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3164 	struct kvm_vcpu *vcpu;
3165 
3166 	kvm_for_each_vcpu(i, vcpu, kvm) {
3167 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3168 		kvm_vcpu_kick(vcpu);
3169 	}
3170 }
3171 
3172 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3173 {
3174 	struct kvm *kvm = v->kvm;
3175 
3176 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3177 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3178 					KVMCLOCK_UPDATE_DELAY);
3179 }
3180 
3181 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3182 
3183 static void kvmclock_sync_fn(struct work_struct *work)
3184 {
3185 	struct delayed_work *dwork = to_delayed_work(work);
3186 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3187 					   kvmclock_sync_work);
3188 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3189 
3190 	if (!kvmclock_periodic_sync)
3191 		return;
3192 
3193 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3194 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3195 					KVMCLOCK_SYNC_PERIOD);
3196 }
3197 
3198 /*
3199  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3200  */
3201 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3202 {
3203 	/* McStatusWrEn enabled? */
3204 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3205 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3206 
3207 	return false;
3208 }
3209 
3210 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3211 {
3212 	u64 mcg_cap = vcpu->arch.mcg_cap;
3213 	unsigned bank_num = mcg_cap & 0xff;
3214 	u32 msr = msr_info->index;
3215 	u64 data = msr_info->data;
3216 
3217 	switch (msr) {
3218 	case MSR_IA32_MCG_STATUS:
3219 		vcpu->arch.mcg_status = data;
3220 		break;
3221 	case MSR_IA32_MCG_CTL:
3222 		if (!(mcg_cap & MCG_CTL_P) &&
3223 		    (data || !msr_info->host_initiated))
3224 			return 1;
3225 		if (data != 0 && data != ~(u64)0)
3226 			return 1;
3227 		vcpu->arch.mcg_ctl = data;
3228 		break;
3229 	default:
3230 		if (msr >= MSR_IA32_MC0_CTL &&
3231 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3232 			u32 offset = array_index_nospec(
3233 				msr - MSR_IA32_MC0_CTL,
3234 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3235 
3236 			/* only 0 or all 1s can be written to IA32_MCi_CTL
3237 			 * some Linux kernels though clear bit 10 in bank 4 to
3238 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3239 			 * this to avoid an uncatched #GP in the guest
3240 			 */
3241 			if ((offset & 0x3) == 0 &&
3242 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
3243 				return -1;
3244 
3245 			/* MCi_STATUS */
3246 			if (!msr_info->host_initiated &&
3247 			    (offset & 0x3) == 1 && data != 0) {
3248 				if (!can_set_mci_status(vcpu))
3249 					return -1;
3250 			}
3251 
3252 			vcpu->arch.mce_banks[offset] = data;
3253 			break;
3254 		}
3255 		return 1;
3256 	}
3257 	return 0;
3258 }
3259 
3260 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3261 {
3262 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3263 
3264 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3265 }
3266 
3267 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3268 {
3269 	gpa_t gpa = data & ~0x3f;
3270 
3271 	/* Bits 4:5 are reserved, Should be zero */
3272 	if (data & 0x30)
3273 		return 1;
3274 
3275 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3276 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3277 		return 1;
3278 
3279 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3280 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3281 		return 1;
3282 
3283 	if (!lapic_in_kernel(vcpu))
3284 		return data ? 1 : 0;
3285 
3286 	vcpu->arch.apf.msr_en_val = data;
3287 
3288 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3289 		kvm_clear_async_pf_completion_queue(vcpu);
3290 		kvm_async_pf_hash_reset(vcpu);
3291 		return 0;
3292 	}
3293 
3294 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3295 					sizeof(u64)))
3296 		return 1;
3297 
3298 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3299 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3300 
3301 	kvm_async_pf_wakeup_all(vcpu);
3302 
3303 	return 0;
3304 }
3305 
3306 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3307 {
3308 	/* Bits 8-63 are reserved */
3309 	if (data >> 8)
3310 		return 1;
3311 
3312 	if (!lapic_in_kernel(vcpu))
3313 		return 1;
3314 
3315 	vcpu->arch.apf.msr_int_val = data;
3316 
3317 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3318 
3319 	return 0;
3320 }
3321 
3322 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3323 {
3324 	kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3325 	vcpu->arch.time = 0;
3326 }
3327 
3328 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3329 {
3330 	++vcpu->stat.tlb_flush;
3331 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3332 }
3333 
3334 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3335 {
3336 	++vcpu->stat.tlb_flush;
3337 
3338 	if (!tdp_enabled) {
3339 		/*
3340 		 * A TLB flush on behalf of the guest is equivalent to
3341 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3342 		 * a forced sync of the shadow page tables.  Ensure all the
3343 		 * roots are synced and the guest TLB in hardware is clean.
3344 		 */
3345 		kvm_mmu_sync_roots(vcpu);
3346 		kvm_mmu_sync_prev_roots(vcpu);
3347 	}
3348 
3349 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3350 }
3351 
3352 
3353 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3354 {
3355 	++vcpu->stat.tlb_flush;
3356 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3357 }
3358 
3359 /*
3360  * Service "local" TLB flush requests, which are specific to the current MMU
3361  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3362  * TLB flushes that are targeted at an MMU context also need to be serviced
3363  * prior before nested VM-Enter/VM-Exit.
3364  */
3365 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3366 {
3367 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3368 		kvm_vcpu_flush_tlb_current(vcpu);
3369 
3370 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3371 		kvm_vcpu_flush_tlb_guest(vcpu);
3372 }
3373 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3374 
3375 static void record_steal_time(struct kvm_vcpu *vcpu)
3376 {
3377 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3378 	struct kvm_steal_time __user *st;
3379 	struct kvm_memslots *slots;
3380 	u64 steal;
3381 	u32 version;
3382 
3383 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3384 		kvm_xen_runstate_set_running(vcpu);
3385 		return;
3386 	}
3387 
3388 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3389 		return;
3390 
3391 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3392 		return;
3393 
3394 	slots = kvm_memslots(vcpu->kvm);
3395 
3396 	if (unlikely(slots->generation != ghc->generation ||
3397 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3398 		gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3399 
3400 		/* We rely on the fact that it fits in a single page. */
3401 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3402 
3403 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3404 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3405 			return;
3406 	}
3407 
3408 	st = (struct kvm_steal_time __user *)ghc->hva;
3409 	/*
3410 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3411 	 * expensive IPIs.
3412 	 */
3413 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3414 		u8 st_preempted = 0;
3415 		int err = -EFAULT;
3416 
3417 		if (!user_access_begin(st, sizeof(*st)))
3418 			return;
3419 
3420 		asm volatile("1: xchgb %0, %2\n"
3421 			     "xor %1, %1\n"
3422 			     "2:\n"
3423 			     _ASM_EXTABLE_UA(1b, 2b)
3424 			     : "+q" (st_preempted),
3425 			       "+&r" (err),
3426 			       "+m" (st->preempted));
3427 		if (err)
3428 			goto out;
3429 
3430 		user_access_end();
3431 
3432 		vcpu->arch.st.preempted = 0;
3433 
3434 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3435 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3436 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3437 			kvm_vcpu_flush_tlb_guest(vcpu);
3438 
3439 		if (!user_access_begin(st, sizeof(*st)))
3440 			goto dirty;
3441 	} else {
3442 		if (!user_access_begin(st, sizeof(*st)))
3443 			return;
3444 
3445 		unsafe_put_user(0, &st->preempted, out);
3446 		vcpu->arch.st.preempted = 0;
3447 	}
3448 
3449 	unsafe_get_user(version, &st->version, out);
3450 	if (version & 1)
3451 		version += 1;  /* first time write, random junk */
3452 
3453 	version += 1;
3454 	unsafe_put_user(version, &st->version, out);
3455 
3456 	smp_wmb();
3457 
3458 	unsafe_get_user(steal, &st->steal, out);
3459 	steal += current->sched_info.run_delay -
3460 		vcpu->arch.st.last_steal;
3461 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3462 	unsafe_put_user(steal, &st->steal, out);
3463 
3464 	version += 1;
3465 	unsafe_put_user(version, &st->version, out);
3466 
3467  out:
3468 	user_access_end();
3469  dirty:
3470 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3471 }
3472 
3473 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3474 {
3475 	bool pr = false;
3476 	u32 msr = msr_info->index;
3477 	u64 data = msr_info->data;
3478 
3479 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3480 		return kvm_xen_write_hypercall_page(vcpu, data);
3481 
3482 	switch (msr) {
3483 	case MSR_AMD64_NB_CFG:
3484 	case MSR_IA32_UCODE_WRITE:
3485 	case MSR_VM_HSAVE_PA:
3486 	case MSR_AMD64_PATCH_LOADER:
3487 	case MSR_AMD64_BU_CFG2:
3488 	case MSR_AMD64_DC_CFG:
3489 	case MSR_F15H_EX_CFG:
3490 		break;
3491 
3492 	case MSR_IA32_UCODE_REV:
3493 		if (msr_info->host_initiated)
3494 			vcpu->arch.microcode_version = data;
3495 		break;
3496 	case MSR_IA32_ARCH_CAPABILITIES:
3497 		if (!msr_info->host_initiated)
3498 			return 1;
3499 		vcpu->arch.arch_capabilities = data;
3500 		break;
3501 	case MSR_IA32_PERF_CAPABILITIES: {
3502 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3503 
3504 		if (!msr_info->host_initiated)
3505 			return 1;
3506 		if (kvm_get_msr_feature(&msr_ent))
3507 			return 1;
3508 		if (data & ~msr_ent.data)
3509 			return 1;
3510 
3511 		vcpu->arch.perf_capabilities = data;
3512 
3513 		return 0;
3514 		}
3515 	case MSR_EFER:
3516 		return set_efer(vcpu, msr_info);
3517 	case MSR_K7_HWCR:
3518 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3519 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3520 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3521 
3522 		/* Handle McStatusWrEn */
3523 		if (data == BIT_ULL(18)) {
3524 			vcpu->arch.msr_hwcr = data;
3525 		} else if (data != 0) {
3526 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3527 				    data);
3528 			return 1;
3529 		}
3530 		break;
3531 	case MSR_FAM10H_MMIO_CONF_BASE:
3532 		if (data != 0) {
3533 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3534 				    "0x%llx\n", data);
3535 			return 1;
3536 		}
3537 		break;
3538 	case 0x200 ... 0x2ff:
3539 		return kvm_mtrr_set_msr(vcpu, msr, data);
3540 	case MSR_IA32_APICBASE:
3541 		return kvm_set_apic_base(vcpu, msr_info);
3542 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3543 		return kvm_x2apic_msr_write(vcpu, msr, data);
3544 	case MSR_IA32_TSC_DEADLINE:
3545 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3546 		break;
3547 	case MSR_IA32_TSC_ADJUST:
3548 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3549 			if (!msr_info->host_initiated) {
3550 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3551 				adjust_tsc_offset_guest(vcpu, adj);
3552 				/* Before back to guest, tsc_timestamp must be adjusted
3553 				 * as well, otherwise guest's percpu pvclock time could jump.
3554 				 */
3555 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3556 			}
3557 			vcpu->arch.ia32_tsc_adjust_msr = data;
3558 		}
3559 		break;
3560 	case MSR_IA32_MISC_ENABLE:
3561 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3562 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3563 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3564 				return 1;
3565 			vcpu->arch.ia32_misc_enable_msr = data;
3566 			kvm_update_cpuid_runtime(vcpu);
3567 		} else {
3568 			vcpu->arch.ia32_misc_enable_msr = data;
3569 		}
3570 		break;
3571 	case MSR_IA32_SMBASE:
3572 		if (!msr_info->host_initiated)
3573 			return 1;
3574 		vcpu->arch.smbase = data;
3575 		break;
3576 	case MSR_IA32_POWER_CTL:
3577 		vcpu->arch.msr_ia32_power_ctl = data;
3578 		break;
3579 	case MSR_IA32_TSC:
3580 		if (msr_info->host_initiated) {
3581 			kvm_synchronize_tsc(vcpu, data);
3582 		} else {
3583 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3584 			adjust_tsc_offset_guest(vcpu, adj);
3585 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3586 		}
3587 		break;
3588 	case MSR_IA32_XSS:
3589 		if (!msr_info->host_initiated &&
3590 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3591 			return 1;
3592 		/*
3593 		 * KVM supports exposing PT to the guest, but does not support
3594 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3595 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3596 		 */
3597 		if (data & ~supported_xss)
3598 			return 1;
3599 		vcpu->arch.ia32_xss = data;
3600 		kvm_update_cpuid_runtime(vcpu);
3601 		break;
3602 	case MSR_SMI_COUNT:
3603 		if (!msr_info->host_initiated)
3604 			return 1;
3605 		vcpu->arch.smi_count = data;
3606 		break;
3607 	case MSR_KVM_WALL_CLOCK_NEW:
3608 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3609 			return 1;
3610 
3611 		vcpu->kvm->arch.wall_clock = data;
3612 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3613 		break;
3614 	case MSR_KVM_WALL_CLOCK:
3615 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3616 			return 1;
3617 
3618 		vcpu->kvm->arch.wall_clock = data;
3619 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3620 		break;
3621 	case MSR_KVM_SYSTEM_TIME_NEW:
3622 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3623 			return 1;
3624 
3625 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3626 		break;
3627 	case MSR_KVM_SYSTEM_TIME:
3628 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3629 			return 1;
3630 
3631 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3632 		break;
3633 	case MSR_KVM_ASYNC_PF_EN:
3634 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3635 			return 1;
3636 
3637 		if (kvm_pv_enable_async_pf(vcpu, data))
3638 			return 1;
3639 		break;
3640 	case MSR_KVM_ASYNC_PF_INT:
3641 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3642 			return 1;
3643 
3644 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3645 			return 1;
3646 		break;
3647 	case MSR_KVM_ASYNC_PF_ACK:
3648 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3649 			return 1;
3650 		if (data & 0x1) {
3651 			vcpu->arch.apf.pageready_pending = false;
3652 			kvm_check_async_pf_completion(vcpu);
3653 		}
3654 		break;
3655 	case MSR_KVM_STEAL_TIME:
3656 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3657 			return 1;
3658 
3659 		if (unlikely(!sched_info_on()))
3660 			return 1;
3661 
3662 		if (data & KVM_STEAL_RESERVED_MASK)
3663 			return 1;
3664 
3665 		vcpu->arch.st.msr_val = data;
3666 
3667 		if (!(data & KVM_MSR_ENABLED))
3668 			break;
3669 
3670 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3671 
3672 		break;
3673 	case MSR_KVM_PV_EOI_EN:
3674 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3675 			return 1;
3676 
3677 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3678 			return 1;
3679 		break;
3680 
3681 	case MSR_KVM_POLL_CONTROL:
3682 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3683 			return 1;
3684 
3685 		/* only enable bit supported */
3686 		if (data & (-1ULL << 1))
3687 			return 1;
3688 
3689 		vcpu->arch.msr_kvm_poll_control = data;
3690 		break;
3691 
3692 	case MSR_IA32_MCG_CTL:
3693 	case MSR_IA32_MCG_STATUS:
3694 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3695 		return set_msr_mce(vcpu, msr_info);
3696 
3697 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3698 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3699 		pr = true;
3700 		fallthrough;
3701 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3702 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3703 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3704 			return kvm_pmu_set_msr(vcpu, msr_info);
3705 
3706 		if (pr || data != 0)
3707 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3708 				    "0x%x data 0x%llx\n", msr, data);
3709 		break;
3710 	case MSR_K7_CLK_CTL:
3711 		/*
3712 		 * Ignore all writes to this no longer documented MSR.
3713 		 * Writes are only relevant for old K7 processors,
3714 		 * all pre-dating SVM, but a recommended workaround from
3715 		 * AMD for these chips. It is possible to specify the
3716 		 * affected processor models on the command line, hence
3717 		 * the need to ignore the workaround.
3718 		 */
3719 		break;
3720 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3721 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3722 	case HV_X64_MSR_SYNDBG_OPTIONS:
3723 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3724 	case HV_X64_MSR_CRASH_CTL:
3725 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3726 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3727 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3728 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3729 		return kvm_hv_set_msr_common(vcpu, msr, data,
3730 					     msr_info->host_initiated);
3731 	case MSR_IA32_BBL_CR_CTL3:
3732 		/* Drop writes to this legacy MSR -- see rdmsr
3733 		 * counterpart for further detail.
3734 		 */
3735 		if (report_ignored_msrs)
3736 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3737 				msr, data);
3738 		break;
3739 	case MSR_AMD64_OSVW_ID_LENGTH:
3740 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3741 			return 1;
3742 		vcpu->arch.osvw.length = data;
3743 		break;
3744 	case MSR_AMD64_OSVW_STATUS:
3745 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3746 			return 1;
3747 		vcpu->arch.osvw.status = data;
3748 		break;
3749 	case MSR_PLATFORM_INFO:
3750 		if (!msr_info->host_initiated ||
3751 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3752 		     cpuid_fault_enabled(vcpu)))
3753 			return 1;
3754 		vcpu->arch.msr_platform_info = data;
3755 		break;
3756 	case MSR_MISC_FEATURES_ENABLES:
3757 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3758 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3759 		     !supports_cpuid_fault(vcpu)))
3760 			return 1;
3761 		vcpu->arch.msr_misc_features_enables = data;
3762 		break;
3763 #ifdef CONFIG_X86_64
3764 	case MSR_IA32_XFD:
3765 		if (!msr_info->host_initiated &&
3766 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3767 			return 1;
3768 
3769 		if (data & ~kvm_guest_supported_xfd(vcpu))
3770 			return 1;
3771 
3772 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3773 		break;
3774 	case MSR_IA32_XFD_ERR:
3775 		if (!msr_info->host_initiated &&
3776 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3777 			return 1;
3778 
3779 		if (data & ~kvm_guest_supported_xfd(vcpu))
3780 			return 1;
3781 
3782 		vcpu->arch.guest_fpu.xfd_err = data;
3783 		break;
3784 #endif
3785 	default:
3786 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3787 			return kvm_pmu_set_msr(vcpu, msr_info);
3788 		return KVM_MSR_RET_INVALID;
3789 	}
3790 	return 0;
3791 }
3792 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3793 
3794 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3795 {
3796 	u64 data;
3797 	u64 mcg_cap = vcpu->arch.mcg_cap;
3798 	unsigned bank_num = mcg_cap & 0xff;
3799 
3800 	switch (msr) {
3801 	case MSR_IA32_P5_MC_ADDR:
3802 	case MSR_IA32_P5_MC_TYPE:
3803 		data = 0;
3804 		break;
3805 	case MSR_IA32_MCG_CAP:
3806 		data = vcpu->arch.mcg_cap;
3807 		break;
3808 	case MSR_IA32_MCG_CTL:
3809 		if (!(mcg_cap & MCG_CTL_P) && !host)
3810 			return 1;
3811 		data = vcpu->arch.mcg_ctl;
3812 		break;
3813 	case MSR_IA32_MCG_STATUS:
3814 		data = vcpu->arch.mcg_status;
3815 		break;
3816 	default:
3817 		if (msr >= MSR_IA32_MC0_CTL &&
3818 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3819 			u32 offset = array_index_nospec(
3820 				msr - MSR_IA32_MC0_CTL,
3821 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3822 
3823 			data = vcpu->arch.mce_banks[offset];
3824 			break;
3825 		}
3826 		return 1;
3827 	}
3828 	*pdata = data;
3829 	return 0;
3830 }
3831 
3832 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3833 {
3834 	switch (msr_info->index) {
3835 	case MSR_IA32_PLATFORM_ID:
3836 	case MSR_IA32_EBL_CR_POWERON:
3837 	case MSR_IA32_LASTBRANCHFROMIP:
3838 	case MSR_IA32_LASTBRANCHTOIP:
3839 	case MSR_IA32_LASTINTFROMIP:
3840 	case MSR_IA32_LASTINTTOIP:
3841 	case MSR_AMD64_SYSCFG:
3842 	case MSR_K8_TSEG_ADDR:
3843 	case MSR_K8_TSEG_MASK:
3844 	case MSR_VM_HSAVE_PA:
3845 	case MSR_K8_INT_PENDING_MSG:
3846 	case MSR_AMD64_NB_CFG:
3847 	case MSR_FAM10H_MMIO_CONF_BASE:
3848 	case MSR_AMD64_BU_CFG2:
3849 	case MSR_IA32_PERF_CTL:
3850 	case MSR_AMD64_DC_CFG:
3851 	case MSR_F15H_EX_CFG:
3852 	/*
3853 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3854 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3855 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3856 	 * so for existing CPU-specific MSRs.
3857 	 */
3858 	case MSR_RAPL_POWER_UNIT:
3859 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3860 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3861 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3862 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3863 		msr_info->data = 0;
3864 		break;
3865 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3866 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3867 			return kvm_pmu_get_msr(vcpu, msr_info);
3868 		if (!msr_info->host_initiated)
3869 			return 1;
3870 		msr_info->data = 0;
3871 		break;
3872 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3873 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3874 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3875 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3876 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3877 			return kvm_pmu_get_msr(vcpu, msr_info);
3878 		msr_info->data = 0;
3879 		break;
3880 	case MSR_IA32_UCODE_REV:
3881 		msr_info->data = vcpu->arch.microcode_version;
3882 		break;
3883 	case MSR_IA32_ARCH_CAPABILITIES:
3884 		if (!msr_info->host_initiated &&
3885 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3886 			return 1;
3887 		msr_info->data = vcpu->arch.arch_capabilities;
3888 		break;
3889 	case MSR_IA32_PERF_CAPABILITIES:
3890 		if (!msr_info->host_initiated &&
3891 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3892 			return 1;
3893 		msr_info->data = vcpu->arch.perf_capabilities;
3894 		break;
3895 	case MSR_IA32_POWER_CTL:
3896 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3897 		break;
3898 	case MSR_IA32_TSC: {
3899 		/*
3900 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3901 		 * even when not intercepted. AMD manual doesn't explicitly
3902 		 * state this but appears to behave the same.
3903 		 *
3904 		 * On userspace reads and writes, however, we unconditionally
3905 		 * return L1's TSC value to ensure backwards-compatible
3906 		 * behavior for migration.
3907 		 */
3908 		u64 offset, ratio;
3909 
3910 		if (msr_info->host_initiated) {
3911 			offset = vcpu->arch.l1_tsc_offset;
3912 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3913 		} else {
3914 			offset = vcpu->arch.tsc_offset;
3915 			ratio = vcpu->arch.tsc_scaling_ratio;
3916 		}
3917 
3918 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3919 		break;
3920 	}
3921 	case MSR_MTRRcap:
3922 	case 0x200 ... 0x2ff:
3923 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3924 	case 0xcd: /* fsb frequency */
3925 		msr_info->data = 3;
3926 		break;
3927 		/*
3928 		 * MSR_EBC_FREQUENCY_ID
3929 		 * Conservative value valid for even the basic CPU models.
3930 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3931 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3932 		 * and 266MHz for model 3, or 4. Set Core Clock
3933 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3934 		 * 31:24) even though these are only valid for CPU
3935 		 * models > 2, however guests may end up dividing or
3936 		 * multiplying by zero otherwise.
3937 		 */
3938 	case MSR_EBC_FREQUENCY_ID:
3939 		msr_info->data = 1 << 24;
3940 		break;
3941 	case MSR_IA32_APICBASE:
3942 		msr_info->data = kvm_get_apic_base(vcpu);
3943 		break;
3944 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3945 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3946 	case MSR_IA32_TSC_DEADLINE:
3947 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3948 		break;
3949 	case MSR_IA32_TSC_ADJUST:
3950 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3951 		break;
3952 	case MSR_IA32_MISC_ENABLE:
3953 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3954 		break;
3955 	case MSR_IA32_SMBASE:
3956 		if (!msr_info->host_initiated)
3957 			return 1;
3958 		msr_info->data = vcpu->arch.smbase;
3959 		break;
3960 	case MSR_SMI_COUNT:
3961 		msr_info->data = vcpu->arch.smi_count;
3962 		break;
3963 	case MSR_IA32_PERF_STATUS:
3964 		/* TSC increment by tick */
3965 		msr_info->data = 1000ULL;
3966 		/* CPU multiplier */
3967 		msr_info->data |= (((uint64_t)4ULL) << 40);
3968 		break;
3969 	case MSR_EFER:
3970 		msr_info->data = vcpu->arch.efer;
3971 		break;
3972 	case MSR_KVM_WALL_CLOCK:
3973 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3974 			return 1;
3975 
3976 		msr_info->data = vcpu->kvm->arch.wall_clock;
3977 		break;
3978 	case MSR_KVM_WALL_CLOCK_NEW:
3979 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3980 			return 1;
3981 
3982 		msr_info->data = vcpu->kvm->arch.wall_clock;
3983 		break;
3984 	case MSR_KVM_SYSTEM_TIME:
3985 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3986 			return 1;
3987 
3988 		msr_info->data = vcpu->arch.time;
3989 		break;
3990 	case MSR_KVM_SYSTEM_TIME_NEW:
3991 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3992 			return 1;
3993 
3994 		msr_info->data = vcpu->arch.time;
3995 		break;
3996 	case MSR_KVM_ASYNC_PF_EN:
3997 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3998 			return 1;
3999 
4000 		msr_info->data = vcpu->arch.apf.msr_en_val;
4001 		break;
4002 	case MSR_KVM_ASYNC_PF_INT:
4003 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4004 			return 1;
4005 
4006 		msr_info->data = vcpu->arch.apf.msr_int_val;
4007 		break;
4008 	case MSR_KVM_ASYNC_PF_ACK:
4009 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4010 			return 1;
4011 
4012 		msr_info->data = 0;
4013 		break;
4014 	case MSR_KVM_STEAL_TIME:
4015 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4016 			return 1;
4017 
4018 		msr_info->data = vcpu->arch.st.msr_val;
4019 		break;
4020 	case MSR_KVM_PV_EOI_EN:
4021 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4022 			return 1;
4023 
4024 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4025 		break;
4026 	case MSR_KVM_POLL_CONTROL:
4027 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4028 			return 1;
4029 
4030 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4031 		break;
4032 	case MSR_IA32_P5_MC_ADDR:
4033 	case MSR_IA32_P5_MC_TYPE:
4034 	case MSR_IA32_MCG_CAP:
4035 	case MSR_IA32_MCG_CTL:
4036 	case MSR_IA32_MCG_STATUS:
4037 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4038 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4039 				   msr_info->host_initiated);
4040 	case MSR_IA32_XSS:
4041 		if (!msr_info->host_initiated &&
4042 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4043 			return 1;
4044 		msr_info->data = vcpu->arch.ia32_xss;
4045 		break;
4046 	case MSR_K7_CLK_CTL:
4047 		/*
4048 		 * Provide expected ramp-up count for K7. All other
4049 		 * are set to zero, indicating minimum divisors for
4050 		 * every field.
4051 		 *
4052 		 * This prevents guest kernels on AMD host with CPU
4053 		 * type 6, model 8 and higher from exploding due to
4054 		 * the rdmsr failing.
4055 		 */
4056 		msr_info->data = 0x20000000;
4057 		break;
4058 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4059 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4060 	case HV_X64_MSR_SYNDBG_OPTIONS:
4061 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4062 	case HV_X64_MSR_CRASH_CTL:
4063 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4064 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4065 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4066 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4067 		return kvm_hv_get_msr_common(vcpu,
4068 					     msr_info->index, &msr_info->data,
4069 					     msr_info->host_initiated);
4070 	case MSR_IA32_BBL_CR_CTL3:
4071 		/* This legacy MSR exists but isn't fully documented in current
4072 		 * silicon.  It is however accessed by winxp in very narrow
4073 		 * scenarios where it sets bit #19, itself documented as
4074 		 * a "reserved" bit.  Best effort attempt to source coherent
4075 		 * read data here should the balance of the register be
4076 		 * interpreted by the guest:
4077 		 *
4078 		 * L2 cache control register 3: 64GB range, 256KB size,
4079 		 * enabled, latency 0x1, configured
4080 		 */
4081 		msr_info->data = 0xbe702111;
4082 		break;
4083 	case MSR_AMD64_OSVW_ID_LENGTH:
4084 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4085 			return 1;
4086 		msr_info->data = vcpu->arch.osvw.length;
4087 		break;
4088 	case MSR_AMD64_OSVW_STATUS:
4089 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4090 			return 1;
4091 		msr_info->data = vcpu->arch.osvw.status;
4092 		break;
4093 	case MSR_PLATFORM_INFO:
4094 		if (!msr_info->host_initiated &&
4095 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4096 			return 1;
4097 		msr_info->data = vcpu->arch.msr_platform_info;
4098 		break;
4099 	case MSR_MISC_FEATURES_ENABLES:
4100 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4101 		break;
4102 	case MSR_K7_HWCR:
4103 		msr_info->data = vcpu->arch.msr_hwcr;
4104 		break;
4105 #ifdef CONFIG_X86_64
4106 	case MSR_IA32_XFD:
4107 		if (!msr_info->host_initiated &&
4108 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4109 			return 1;
4110 
4111 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4112 		break;
4113 	case MSR_IA32_XFD_ERR:
4114 		if (!msr_info->host_initiated &&
4115 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4116 			return 1;
4117 
4118 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4119 		break;
4120 #endif
4121 	default:
4122 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4123 			return kvm_pmu_get_msr(vcpu, msr_info);
4124 		return KVM_MSR_RET_INVALID;
4125 	}
4126 	return 0;
4127 }
4128 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4129 
4130 /*
4131  * Read or write a bunch of msrs. All parameters are kernel addresses.
4132  *
4133  * @return number of msrs set successfully.
4134  */
4135 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4136 		    struct kvm_msr_entry *entries,
4137 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4138 				  unsigned index, u64 *data))
4139 {
4140 	int i;
4141 
4142 	for (i = 0; i < msrs->nmsrs; ++i)
4143 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4144 			break;
4145 
4146 	return i;
4147 }
4148 
4149 /*
4150  * Read or write a bunch of msrs. Parameters are user addresses.
4151  *
4152  * @return number of msrs set successfully.
4153  */
4154 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4155 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4156 				unsigned index, u64 *data),
4157 		  int writeback)
4158 {
4159 	struct kvm_msrs msrs;
4160 	struct kvm_msr_entry *entries;
4161 	int r, n;
4162 	unsigned size;
4163 
4164 	r = -EFAULT;
4165 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4166 		goto out;
4167 
4168 	r = -E2BIG;
4169 	if (msrs.nmsrs >= MAX_IO_MSRS)
4170 		goto out;
4171 
4172 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4173 	entries = memdup_user(user_msrs->entries, size);
4174 	if (IS_ERR(entries)) {
4175 		r = PTR_ERR(entries);
4176 		goto out;
4177 	}
4178 
4179 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4180 	if (r < 0)
4181 		goto out_free;
4182 
4183 	r = -EFAULT;
4184 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4185 		goto out_free;
4186 
4187 	r = n;
4188 
4189 out_free:
4190 	kfree(entries);
4191 out:
4192 	return r;
4193 }
4194 
4195 static inline bool kvm_can_mwait_in_guest(void)
4196 {
4197 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4198 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4199 		boot_cpu_has(X86_FEATURE_ARAT);
4200 }
4201 
4202 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4203 					    struct kvm_cpuid2 __user *cpuid_arg)
4204 {
4205 	struct kvm_cpuid2 cpuid;
4206 	int r;
4207 
4208 	r = -EFAULT;
4209 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4210 		return r;
4211 
4212 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4213 	if (r)
4214 		return r;
4215 
4216 	r = -EFAULT;
4217 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4218 		return r;
4219 
4220 	return 0;
4221 }
4222 
4223 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4224 {
4225 	int r = 0;
4226 
4227 	switch (ext) {
4228 	case KVM_CAP_IRQCHIP:
4229 	case KVM_CAP_HLT:
4230 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4231 	case KVM_CAP_SET_TSS_ADDR:
4232 	case KVM_CAP_EXT_CPUID:
4233 	case KVM_CAP_EXT_EMUL_CPUID:
4234 	case KVM_CAP_CLOCKSOURCE:
4235 	case KVM_CAP_PIT:
4236 	case KVM_CAP_NOP_IO_DELAY:
4237 	case KVM_CAP_MP_STATE:
4238 	case KVM_CAP_SYNC_MMU:
4239 	case KVM_CAP_USER_NMI:
4240 	case KVM_CAP_REINJECT_CONTROL:
4241 	case KVM_CAP_IRQ_INJECT_STATUS:
4242 	case KVM_CAP_IOEVENTFD:
4243 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4244 	case KVM_CAP_PIT2:
4245 	case KVM_CAP_PIT_STATE2:
4246 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4247 	case KVM_CAP_VCPU_EVENTS:
4248 	case KVM_CAP_HYPERV:
4249 	case KVM_CAP_HYPERV_VAPIC:
4250 	case KVM_CAP_HYPERV_SPIN:
4251 	case KVM_CAP_HYPERV_SYNIC:
4252 	case KVM_CAP_HYPERV_SYNIC2:
4253 	case KVM_CAP_HYPERV_VP_INDEX:
4254 	case KVM_CAP_HYPERV_EVENTFD:
4255 	case KVM_CAP_HYPERV_TLBFLUSH:
4256 	case KVM_CAP_HYPERV_SEND_IPI:
4257 	case KVM_CAP_HYPERV_CPUID:
4258 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4259 	case KVM_CAP_SYS_HYPERV_CPUID:
4260 	case KVM_CAP_PCI_SEGMENT:
4261 	case KVM_CAP_DEBUGREGS:
4262 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4263 	case KVM_CAP_XSAVE:
4264 	case KVM_CAP_ASYNC_PF:
4265 	case KVM_CAP_ASYNC_PF_INT:
4266 	case KVM_CAP_GET_TSC_KHZ:
4267 	case KVM_CAP_KVMCLOCK_CTRL:
4268 	case KVM_CAP_READONLY_MEM:
4269 	case KVM_CAP_HYPERV_TIME:
4270 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4271 	case KVM_CAP_TSC_DEADLINE_TIMER:
4272 	case KVM_CAP_DISABLE_QUIRKS:
4273 	case KVM_CAP_SET_BOOT_CPU_ID:
4274  	case KVM_CAP_SPLIT_IRQCHIP:
4275 	case KVM_CAP_IMMEDIATE_EXIT:
4276 	case KVM_CAP_PMU_EVENT_FILTER:
4277 	case KVM_CAP_GET_MSR_FEATURES:
4278 	case KVM_CAP_MSR_PLATFORM_INFO:
4279 	case KVM_CAP_EXCEPTION_PAYLOAD:
4280 	case KVM_CAP_SET_GUEST_DEBUG:
4281 	case KVM_CAP_LAST_CPU:
4282 	case KVM_CAP_X86_USER_SPACE_MSR:
4283 	case KVM_CAP_X86_MSR_FILTER:
4284 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4285 #ifdef CONFIG_X86_SGX_KVM
4286 	case KVM_CAP_SGX_ATTRIBUTE:
4287 #endif
4288 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4289 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4290 	case KVM_CAP_SREGS2:
4291 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4292 	case KVM_CAP_VCPU_ATTRIBUTES:
4293 	case KVM_CAP_SYS_ATTRIBUTES:
4294 	case KVM_CAP_VAPIC:
4295 	case KVM_CAP_ENABLE_CAP:
4296 		r = 1;
4297 		break;
4298 	case KVM_CAP_EXIT_HYPERCALL:
4299 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4300 		break;
4301 	case KVM_CAP_SET_GUEST_DEBUG2:
4302 		return KVM_GUESTDBG_VALID_MASK;
4303 #ifdef CONFIG_KVM_XEN
4304 	case KVM_CAP_XEN_HVM:
4305 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4306 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4307 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4308 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4309 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4310 		if (sched_info_on())
4311 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4312 		break;
4313 #endif
4314 	case KVM_CAP_SYNC_REGS:
4315 		r = KVM_SYNC_X86_VALID_FIELDS;
4316 		break;
4317 	case KVM_CAP_ADJUST_CLOCK:
4318 		r = KVM_CLOCK_VALID_FLAGS;
4319 		break;
4320 	case KVM_CAP_X86_DISABLE_EXITS:
4321 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4322 		      KVM_X86_DISABLE_EXITS_CSTATE;
4323 		if(kvm_can_mwait_in_guest())
4324 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4325 		break;
4326 	case KVM_CAP_X86_SMM:
4327 		/* SMBASE is usually relocated above 1M on modern chipsets,
4328 		 * and SMM handlers might indeed rely on 4G segment limits,
4329 		 * so do not report SMM to be available if real mode is
4330 		 * emulated via vm86 mode.  Still, do not go to great lengths
4331 		 * to avoid userspace's usage of the feature, because it is a
4332 		 * fringe case that is not enabled except via specific settings
4333 		 * of the module parameters.
4334 		 */
4335 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4336 		break;
4337 	case KVM_CAP_NR_VCPUS:
4338 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4339 		break;
4340 	case KVM_CAP_MAX_VCPUS:
4341 		r = KVM_MAX_VCPUS;
4342 		break;
4343 	case KVM_CAP_MAX_VCPU_ID:
4344 		r = KVM_MAX_VCPU_IDS;
4345 		break;
4346 	case KVM_CAP_PV_MMU:	/* obsolete */
4347 		r = 0;
4348 		break;
4349 	case KVM_CAP_MCE:
4350 		r = KVM_MAX_MCE_BANKS;
4351 		break;
4352 	case KVM_CAP_XCRS:
4353 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4354 		break;
4355 	case KVM_CAP_TSC_CONTROL:
4356 	case KVM_CAP_VM_TSC_CONTROL:
4357 		r = kvm_has_tsc_control;
4358 		break;
4359 	case KVM_CAP_X2APIC_API:
4360 		r = KVM_X2APIC_API_VALID_FLAGS;
4361 		break;
4362 	case KVM_CAP_NESTED_STATE:
4363 		r = kvm_x86_ops.nested_ops->get_state ?
4364 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4365 		break;
4366 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4367 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4368 		break;
4369 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4370 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4371 		break;
4372 	case KVM_CAP_SMALLER_MAXPHYADDR:
4373 		r = (int) allow_smaller_maxphyaddr;
4374 		break;
4375 	case KVM_CAP_STEAL_TIME:
4376 		r = sched_info_on();
4377 		break;
4378 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4379 		if (kvm_has_bus_lock_exit)
4380 			r = KVM_BUS_LOCK_DETECTION_OFF |
4381 			    KVM_BUS_LOCK_DETECTION_EXIT;
4382 		else
4383 			r = 0;
4384 		break;
4385 	case KVM_CAP_XSAVE2: {
4386 		u64 guest_perm = xstate_get_guest_group_perm();
4387 
4388 		r = xstate_required_size(supported_xcr0 & guest_perm, false);
4389 		if (r < sizeof(struct kvm_xsave))
4390 			r = sizeof(struct kvm_xsave);
4391 		break;
4392 	case KVM_CAP_PMU_CAPABILITY:
4393 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4394 		break;
4395 	}
4396 	case KVM_CAP_DISABLE_QUIRKS2:
4397 		r = KVM_X86_VALID_QUIRKS;
4398 		break;
4399 	default:
4400 		break;
4401 	}
4402 	return r;
4403 }
4404 
4405 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4406 {
4407 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4408 
4409 	if ((u64)(unsigned long)uaddr != attr->addr)
4410 		return ERR_PTR_USR(-EFAULT);
4411 	return uaddr;
4412 }
4413 
4414 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4415 {
4416 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4417 
4418 	if (attr->group)
4419 		return -ENXIO;
4420 
4421 	if (IS_ERR(uaddr))
4422 		return PTR_ERR(uaddr);
4423 
4424 	switch (attr->attr) {
4425 	case KVM_X86_XCOMP_GUEST_SUPP:
4426 		if (put_user(supported_xcr0, uaddr))
4427 			return -EFAULT;
4428 		return 0;
4429 	default:
4430 		return -ENXIO;
4431 		break;
4432 	}
4433 }
4434 
4435 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4436 {
4437 	if (attr->group)
4438 		return -ENXIO;
4439 
4440 	switch (attr->attr) {
4441 	case KVM_X86_XCOMP_GUEST_SUPP:
4442 		return 0;
4443 	default:
4444 		return -ENXIO;
4445 	}
4446 }
4447 
4448 long kvm_arch_dev_ioctl(struct file *filp,
4449 			unsigned int ioctl, unsigned long arg)
4450 {
4451 	void __user *argp = (void __user *)arg;
4452 	long r;
4453 
4454 	switch (ioctl) {
4455 	case KVM_GET_MSR_INDEX_LIST: {
4456 		struct kvm_msr_list __user *user_msr_list = argp;
4457 		struct kvm_msr_list msr_list;
4458 		unsigned n;
4459 
4460 		r = -EFAULT;
4461 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4462 			goto out;
4463 		n = msr_list.nmsrs;
4464 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4465 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4466 			goto out;
4467 		r = -E2BIG;
4468 		if (n < msr_list.nmsrs)
4469 			goto out;
4470 		r = -EFAULT;
4471 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4472 				 num_msrs_to_save * sizeof(u32)))
4473 			goto out;
4474 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4475 				 &emulated_msrs,
4476 				 num_emulated_msrs * sizeof(u32)))
4477 			goto out;
4478 		r = 0;
4479 		break;
4480 	}
4481 	case KVM_GET_SUPPORTED_CPUID:
4482 	case KVM_GET_EMULATED_CPUID: {
4483 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4484 		struct kvm_cpuid2 cpuid;
4485 
4486 		r = -EFAULT;
4487 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4488 			goto out;
4489 
4490 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4491 					    ioctl);
4492 		if (r)
4493 			goto out;
4494 
4495 		r = -EFAULT;
4496 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4497 			goto out;
4498 		r = 0;
4499 		break;
4500 	}
4501 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4502 		r = -EFAULT;
4503 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4504 				 sizeof(kvm_mce_cap_supported)))
4505 			goto out;
4506 		r = 0;
4507 		break;
4508 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4509 		struct kvm_msr_list __user *user_msr_list = argp;
4510 		struct kvm_msr_list msr_list;
4511 		unsigned int n;
4512 
4513 		r = -EFAULT;
4514 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4515 			goto out;
4516 		n = msr_list.nmsrs;
4517 		msr_list.nmsrs = num_msr_based_features;
4518 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4519 			goto out;
4520 		r = -E2BIG;
4521 		if (n < msr_list.nmsrs)
4522 			goto out;
4523 		r = -EFAULT;
4524 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4525 				 num_msr_based_features * sizeof(u32)))
4526 			goto out;
4527 		r = 0;
4528 		break;
4529 	}
4530 	case KVM_GET_MSRS:
4531 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4532 		break;
4533 	case KVM_GET_SUPPORTED_HV_CPUID:
4534 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4535 		break;
4536 	case KVM_GET_DEVICE_ATTR: {
4537 		struct kvm_device_attr attr;
4538 		r = -EFAULT;
4539 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4540 			break;
4541 		r = kvm_x86_dev_get_attr(&attr);
4542 		break;
4543 	}
4544 	case KVM_HAS_DEVICE_ATTR: {
4545 		struct kvm_device_attr attr;
4546 		r = -EFAULT;
4547 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4548 			break;
4549 		r = kvm_x86_dev_has_attr(&attr);
4550 		break;
4551 	}
4552 	default:
4553 		r = -EINVAL;
4554 		break;
4555 	}
4556 out:
4557 	return r;
4558 }
4559 
4560 static void wbinvd_ipi(void *garbage)
4561 {
4562 	wbinvd();
4563 }
4564 
4565 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4566 {
4567 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4568 }
4569 
4570 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4571 {
4572 	/* Address WBINVD may be executed by guest */
4573 	if (need_emulate_wbinvd(vcpu)) {
4574 		if (static_call(kvm_x86_has_wbinvd_exit)())
4575 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4576 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4577 			smp_call_function_single(vcpu->cpu,
4578 					wbinvd_ipi, NULL, 1);
4579 	}
4580 
4581 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4582 
4583 	/* Save host pkru register if supported */
4584 	vcpu->arch.host_pkru = read_pkru();
4585 
4586 	/* Apply any externally detected TSC adjustments (due to suspend) */
4587 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4588 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4589 		vcpu->arch.tsc_offset_adjustment = 0;
4590 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4591 	}
4592 
4593 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4594 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4595 				rdtsc() - vcpu->arch.last_host_tsc;
4596 		if (tsc_delta < 0)
4597 			mark_tsc_unstable("KVM discovered backwards TSC");
4598 
4599 		if (kvm_check_tsc_unstable()) {
4600 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4601 						vcpu->arch.last_guest_tsc);
4602 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4603 			vcpu->arch.tsc_catchup = 1;
4604 		}
4605 
4606 		if (kvm_lapic_hv_timer_in_use(vcpu))
4607 			kvm_lapic_restart_hv_timer(vcpu);
4608 
4609 		/*
4610 		 * On a host with synchronized TSC, there is no need to update
4611 		 * kvmclock on vcpu->cpu migration
4612 		 */
4613 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4614 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4615 		if (vcpu->cpu != cpu)
4616 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4617 		vcpu->cpu = cpu;
4618 	}
4619 
4620 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4621 }
4622 
4623 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4624 {
4625 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4626 	struct kvm_steal_time __user *st;
4627 	struct kvm_memslots *slots;
4628 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4629 
4630 	/*
4631 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4632 	 * an instruction boundary and will not trigger guest emulation of any
4633 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4634 	 * when this is true, for example allowing the vCPU to be marked
4635 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4636 	 */
4637 	if (!vcpu->arch.at_instruction_boundary) {
4638 		vcpu->stat.preemption_other++;
4639 		return;
4640 	}
4641 
4642 	vcpu->stat.preemption_reported++;
4643 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4644 		return;
4645 
4646 	if (vcpu->arch.st.preempted)
4647 		return;
4648 
4649 	/* This happens on process exit */
4650 	if (unlikely(current->mm != vcpu->kvm->mm))
4651 		return;
4652 
4653 	slots = kvm_memslots(vcpu->kvm);
4654 
4655 	if (unlikely(slots->generation != ghc->generation ||
4656 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4657 		return;
4658 
4659 	st = (struct kvm_steal_time __user *)ghc->hva;
4660 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4661 
4662 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4663 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4664 
4665 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4666 }
4667 
4668 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4669 {
4670 	int idx;
4671 
4672 	if (vcpu->preempted) {
4673 		if (!vcpu->arch.guest_state_protected)
4674 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4675 
4676 		/*
4677 		 * Take the srcu lock as memslots will be accessed to check the gfn
4678 		 * cache generation against the memslots generation.
4679 		 */
4680 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4681 		if (kvm_xen_msr_enabled(vcpu->kvm))
4682 			kvm_xen_runstate_set_preempted(vcpu);
4683 		else
4684 			kvm_steal_time_set_preempted(vcpu);
4685 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4686 	}
4687 
4688 	static_call(kvm_x86_vcpu_put)(vcpu);
4689 	vcpu->arch.last_host_tsc = rdtsc();
4690 }
4691 
4692 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4693 				    struct kvm_lapic_state *s)
4694 {
4695 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4696 
4697 	return kvm_apic_get_state(vcpu, s);
4698 }
4699 
4700 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4701 				    struct kvm_lapic_state *s)
4702 {
4703 	int r;
4704 
4705 	r = kvm_apic_set_state(vcpu, s);
4706 	if (r)
4707 		return r;
4708 	update_cr8_intercept(vcpu);
4709 
4710 	return 0;
4711 }
4712 
4713 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4714 {
4715 	/*
4716 	 * We can accept userspace's request for interrupt injection
4717 	 * as long as we have a place to store the interrupt number.
4718 	 * The actual injection will happen when the CPU is able to
4719 	 * deliver the interrupt.
4720 	 */
4721 	if (kvm_cpu_has_extint(vcpu))
4722 		return false;
4723 
4724 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4725 	return (!lapic_in_kernel(vcpu) ||
4726 		kvm_apic_accept_pic_intr(vcpu));
4727 }
4728 
4729 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4730 {
4731 	/*
4732 	 * Do not cause an interrupt window exit if an exception
4733 	 * is pending or an event needs reinjection; userspace
4734 	 * might want to inject the interrupt manually using KVM_SET_REGS
4735 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4736 	 * instruction boundary and with no events half-injected.
4737 	 */
4738 	return (kvm_arch_interrupt_allowed(vcpu) &&
4739 		kvm_cpu_accept_dm_intr(vcpu) &&
4740 		!kvm_event_needs_reinjection(vcpu) &&
4741 		!vcpu->arch.exception.pending);
4742 }
4743 
4744 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4745 				    struct kvm_interrupt *irq)
4746 {
4747 	if (irq->irq >= KVM_NR_INTERRUPTS)
4748 		return -EINVAL;
4749 
4750 	if (!irqchip_in_kernel(vcpu->kvm)) {
4751 		kvm_queue_interrupt(vcpu, irq->irq, false);
4752 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4753 		return 0;
4754 	}
4755 
4756 	/*
4757 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4758 	 * fail for in-kernel 8259.
4759 	 */
4760 	if (pic_in_kernel(vcpu->kvm))
4761 		return -ENXIO;
4762 
4763 	if (vcpu->arch.pending_external_vector != -1)
4764 		return -EEXIST;
4765 
4766 	vcpu->arch.pending_external_vector = irq->irq;
4767 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4768 	return 0;
4769 }
4770 
4771 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4772 {
4773 	kvm_inject_nmi(vcpu);
4774 
4775 	return 0;
4776 }
4777 
4778 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4779 {
4780 	kvm_make_request(KVM_REQ_SMI, vcpu);
4781 
4782 	return 0;
4783 }
4784 
4785 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4786 					   struct kvm_tpr_access_ctl *tac)
4787 {
4788 	if (tac->flags)
4789 		return -EINVAL;
4790 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4791 	return 0;
4792 }
4793 
4794 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4795 					u64 mcg_cap)
4796 {
4797 	int r;
4798 	unsigned bank_num = mcg_cap & 0xff, bank;
4799 
4800 	r = -EINVAL;
4801 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4802 		goto out;
4803 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4804 		goto out;
4805 	r = 0;
4806 	vcpu->arch.mcg_cap = mcg_cap;
4807 	/* Init IA32_MCG_CTL to all 1s */
4808 	if (mcg_cap & MCG_CTL_P)
4809 		vcpu->arch.mcg_ctl = ~(u64)0;
4810 	/* Init IA32_MCi_CTL to all 1s */
4811 	for (bank = 0; bank < bank_num; bank++)
4812 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4813 
4814 	static_call(kvm_x86_setup_mce)(vcpu);
4815 out:
4816 	return r;
4817 }
4818 
4819 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4820 				      struct kvm_x86_mce *mce)
4821 {
4822 	u64 mcg_cap = vcpu->arch.mcg_cap;
4823 	unsigned bank_num = mcg_cap & 0xff;
4824 	u64 *banks = vcpu->arch.mce_banks;
4825 
4826 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4827 		return -EINVAL;
4828 	/*
4829 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4830 	 * reporting is disabled
4831 	 */
4832 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4833 	    vcpu->arch.mcg_ctl != ~(u64)0)
4834 		return 0;
4835 	banks += 4 * mce->bank;
4836 	/*
4837 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4838 	 * reporting is disabled for the bank
4839 	 */
4840 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4841 		return 0;
4842 	if (mce->status & MCI_STATUS_UC) {
4843 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4844 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4845 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4846 			return 0;
4847 		}
4848 		if (banks[1] & MCI_STATUS_VAL)
4849 			mce->status |= MCI_STATUS_OVER;
4850 		banks[2] = mce->addr;
4851 		banks[3] = mce->misc;
4852 		vcpu->arch.mcg_status = mce->mcg_status;
4853 		banks[1] = mce->status;
4854 		kvm_queue_exception(vcpu, MC_VECTOR);
4855 	} else if (!(banks[1] & MCI_STATUS_VAL)
4856 		   || !(banks[1] & MCI_STATUS_UC)) {
4857 		if (banks[1] & MCI_STATUS_VAL)
4858 			mce->status |= MCI_STATUS_OVER;
4859 		banks[2] = mce->addr;
4860 		banks[3] = mce->misc;
4861 		banks[1] = mce->status;
4862 	} else
4863 		banks[1] |= MCI_STATUS_OVER;
4864 	return 0;
4865 }
4866 
4867 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4868 					       struct kvm_vcpu_events *events)
4869 {
4870 	process_nmi(vcpu);
4871 
4872 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4873 		process_smi(vcpu);
4874 
4875 	/*
4876 	 * In guest mode, payload delivery should be deferred,
4877 	 * so that the L1 hypervisor can intercept #PF before
4878 	 * CR2 is modified (or intercept #DB before DR6 is
4879 	 * modified under nVMX). Unless the per-VM capability,
4880 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4881 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4882 	 * opportunistically defer the exception payload, deliver it if the
4883 	 * capability hasn't been requested before processing a
4884 	 * KVM_GET_VCPU_EVENTS.
4885 	 */
4886 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4887 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4888 		kvm_deliver_exception_payload(vcpu);
4889 
4890 	/*
4891 	 * The API doesn't provide the instruction length for software
4892 	 * exceptions, so don't report them. As long as the guest RIP
4893 	 * isn't advanced, we should expect to encounter the exception
4894 	 * again.
4895 	 */
4896 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4897 		events->exception.injected = 0;
4898 		events->exception.pending = 0;
4899 	} else {
4900 		events->exception.injected = vcpu->arch.exception.injected;
4901 		events->exception.pending = vcpu->arch.exception.pending;
4902 		/*
4903 		 * For ABI compatibility, deliberately conflate
4904 		 * pending and injected exceptions when
4905 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4906 		 */
4907 		if (!vcpu->kvm->arch.exception_payload_enabled)
4908 			events->exception.injected |=
4909 				vcpu->arch.exception.pending;
4910 	}
4911 	events->exception.nr = vcpu->arch.exception.nr;
4912 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4913 	events->exception.error_code = vcpu->arch.exception.error_code;
4914 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4915 	events->exception_payload = vcpu->arch.exception.payload;
4916 
4917 	events->interrupt.injected =
4918 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4919 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4920 	events->interrupt.soft = 0;
4921 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4922 
4923 	events->nmi.injected = vcpu->arch.nmi_injected;
4924 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4925 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4926 	events->nmi.pad = 0;
4927 
4928 	events->sipi_vector = 0; /* never valid when reporting to user space */
4929 
4930 	events->smi.smm = is_smm(vcpu);
4931 	events->smi.pending = vcpu->arch.smi_pending;
4932 	events->smi.smm_inside_nmi =
4933 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4934 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4935 
4936 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4937 			 | KVM_VCPUEVENT_VALID_SHADOW
4938 			 | KVM_VCPUEVENT_VALID_SMM);
4939 	if (vcpu->kvm->arch.exception_payload_enabled)
4940 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4941 
4942 	memset(&events->reserved, 0, sizeof(events->reserved));
4943 }
4944 
4945 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4946 
4947 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4948 					      struct kvm_vcpu_events *events)
4949 {
4950 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4951 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4952 			      | KVM_VCPUEVENT_VALID_SHADOW
4953 			      | KVM_VCPUEVENT_VALID_SMM
4954 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4955 		return -EINVAL;
4956 
4957 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4958 		if (!vcpu->kvm->arch.exception_payload_enabled)
4959 			return -EINVAL;
4960 		if (events->exception.pending)
4961 			events->exception.injected = 0;
4962 		else
4963 			events->exception_has_payload = 0;
4964 	} else {
4965 		events->exception.pending = 0;
4966 		events->exception_has_payload = 0;
4967 	}
4968 
4969 	if ((events->exception.injected || events->exception.pending) &&
4970 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4971 		return -EINVAL;
4972 
4973 	/* INITs are latched while in SMM */
4974 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4975 	    (events->smi.smm || events->smi.pending) &&
4976 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4977 		return -EINVAL;
4978 
4979 	process_nmi(vcpu);
4980 	vcpu->arch.exception.injected = events->exception.injected;
4981 	vcpu->arch.exception.pending = events->exception.pending;
4982 	vcpu->arch.exception.nr = events->exception.nr;
4983 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4984 	vcpu->arch.exception.error_code = events->exception.error_code;
4985 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4986 	vcpu->arch.exception.payload = events->exception_payload;
4987 
4988 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4989 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4990 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4991 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4992 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4993 						events->interrupt.shadow);
4994 
4995 	vcpu->arch.nmi_injected = events->nmi.injected;
4996 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4997 		vcpu->arch.nmi_pending = events->nmi.pending;
4998 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4999 
5000 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5001 	    lapic_in_kernel(vcpu))
5002 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5003 
5004 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5005 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5006 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
5007 			kvm_smm_changed(vcpu, events->smi.smm);
5008 		}
5009 
5010 		vcpu->arch.smi_pending = events->smi.pending;
5011 
5012 		if (events->smi.smm) {
5013 			if (events->smi.smm_inside_nmi)
5014 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5015 			else
5016 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5017 		}
5018 
5019 		if (lapic_in_kernel(vcpu)) {
5020 			if (events->smi.latched_init)
5021 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5022 			else
5023 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5024 		}
5025 	}
5026 
5027 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5028 
5029 	return 0;
5030 }
5031 
5032 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5033 					     struct kvm_debugregs *dbgregs)
5034 {
5035 	unsigned long val;
5036 
5037 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5038 	kvm_get_dr(vcpu, 6, &val);
5039 	dbgregs->dr6 = val;
5040 	dbgregs->dr7 = vcpu->arch.dr7;
5041 	dbgregs->flags = 0;
5042 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5043 }
5044 
5045 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5046 					    struct kvm_debugregs *dbgregs)
5047 {
5048 	if (dbgregs->flags)
5049 		return -EINVAL;
5050 
5051 	if (!kvm_dr6_valid(dbgregs->dr6))
5052 		return -EINVAL;
5053 	if (!kvm_dr7_valid(dbgregs->dr7))
5054 		return -EINVAL;
5055 
5056 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5057 	kvm_update_dr0123(vcpu);
5058 	vcpu->arch.dr6 = dbgregs->dr6;
5059 	vcpu->arch.dr7 = dbgregs->dr7;
5060 	kvm_update_dr7(vcpu);
5061 
5062 	return 0;
5063 }
5064 
5065 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5066 					 struct kvm_xsave *guest_xsave)
5067 {
5068 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5069 		return;
5070 
5071 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5072 				       guest_xsave->region,
5073 				       sizeof(guest_xsave->region),
5074 				       vcpu->arch.pkru);
5075 }
5076 
5077 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5078 					  u8 *state, unsigned int size)
5079 {
5080 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5081 		return;
5082 
5083 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5084 				       state, size, vcpu->arch.pkru);
5085 }
5086 
5087 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5088 					struct kvm_xsave *guest_xsave)
5089 {
5090 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5091 		return 0;
5092 
5093 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5094 					      guest_xsave->region,
5095 					      supported_xcr0, &vcpu->arch.pkru);
5096 }
5097 
5098 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5099 					struct kvm_xcrs *guest_xcrs)
5100 {
5101 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5102 		guest_xcrs->nr_xcrs = 0;
5103 		return;
5104 	}
5105 
5106 	guest_xcrs->nr_xcrs = 1;
5107 	guest_xcrs->flags = 0;
5108 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5109 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5110 }
5111 
5112 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5113 				       struct kvm_xcrs *guest_xcrs)
5114 {
5115 	int i, r = 0;
5116 
5117 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5118 		return -EINVAL;
5119 
5120 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5121 		return -EINVAL;
5122 
5123 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5124 		/* Only support XCR0 currently */
5125 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5126 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5127 				guest_xcrs->xcrs[i].value);
5128 			break;
5129 		}
5130 	if (r)
5131 		r = -EINVAL;
5132 	return r;
5133 }
5134 
5135 /*
5136  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5137  * stopped by the hypervisor.  This function will be called from the host only.
5138  * EINVAL is returned when the host attempts to set the flag for a guest that
5139  * does not support pv clocks.
5140  */
5141 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5142 {
5143 	if (!vcpu->arch.pv_time.active)
5144 		return -EINVAL;
5145 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5146 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5147 	return 0;
5148 }
5149 
5150 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5151 				 struct kvm_device_attr *attr)
5152 {
5153 	int r;
5154 
5155 	switch (attr->attr) {
5156 	case KVM_VCPU_TSC_OFFSET:
5157 		r = 0;
5158 		break;
5159 	default:
5160 		r = -ENXIO;
5161 	}
5162 
5163 	return r;
5164 }
5165 
5166 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5167 				 struct kvm_device_attr *attr)
5168 {
5169 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5170 	int r;
5171 
5172 	if (IS_ERR(uaddr))
5173 		return PTR_ERR(uaddr);
5174 
5175 	switch (attr->attr) {
5176 	case KVM_VCPU_TSC_OFFSET:
5177 		r = -EFAULT;
5178 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5179 			break;
5180 		r = 0;
5181 		break;
5182 	default:
5183 		r = -ENXIO;
5184 	}
5185 
5186 	return r;
5187 }
5188 
5189 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5190 				 struct kvm_device_attr *attr)
5191 {
5192 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5193 	struct kvm *kvm = vcpu->kvm;
5194 	int r;
5195 
5196 	if (IS_ERR(uaddr))
5197 		return PTR_ERR(uaddr);
5198 
5199 	switch (attr->attr) {
5200 	case KVM_VCPU_TSC_OFFSET: {
5201 		u64 offset, tsc, ns;
5202 		unsigned long flags;
5203 		bool matched;
5204 
5205 		r = -EFAULT;
5206 		if (get_user(offset, uaddr))
5207 			break;
5208 
5209 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5210 
5211 		matched = (vcpu->arch.virtual_tsc_khz &&
5212 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5213 			   kvm->arch.last_tsc_offset == offset);
5214 
5215 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5216 		ns = get_kvmclock_base_ns();
5217 
5218 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5219 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5220 
5221 		r = 0;
5222 		break;
5223 	}
5224 	default:
5225 		r = -ENXIO;
5226 	}
5227 
5228 	return r;
5229 }
5230 
5231 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5232 				      unsigned int ioctl,
5233 				      void __user *argp)
5234 {
5235 	struct kvm_device_attr attr;
5236 	int r;
5237 
5238 	if (copy_from_user(&attr, argp, sizeof(attr)))
5239 		return -EFAULT;
5240 
5241 	if (attr.group != KVM_VCPU_TSC_CTRL)
5242 		return -ENXIO;
5243 
5244 	switch (ioctl) {
5245 	case KVM_HAS_DEVICE_ATTR:
5246 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5247 		break;
5248 	case KVM_GET_DEVICE_ATTR:
5249 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5250 		break;
5251 	case KVM_SET_DEVICE_ATTR:
5252 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5253 		break;
5254 	}
5255 
5256 	return r;
5257 }
5258 
5259 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5260 				     struct kvm_enable_cap *cap)
5261 {
5262 	int r;
5263 	uint16_t vmcs_version;
5264 	void __user *user_ptr;
5265 
5266 	if (cap->flags)
5267 		return -EINVAL;
5268 
5269 	switch (cap->cap) {
5270 	case KVM_CAP_HYPERV_SYNIC2:
5271 		if (cap->args[0])
5272 			return -EINVAL;
5273 		fallthrough;
5274 
5275 	case KVM_CAP_HYPERV_SYNIC:
5276 		if (!irqchip_in_kernel(vcpu->kvm))
5277 			return -EINVAL;
5278 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5279 					     KVM_CAP_HYPERV_SYNIC2);
5280 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5281 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5282 			return -ENOTTY;
5283 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5284 		if (!r) {
5285 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5286 			if (copy_to_user(user_ptr, &vmcs_version,
5287 					 sizeof(vmcs_version)))
5288 				r = -EFAULT;
5289 		}
5290 		return r;
5291 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5292 		if (!kvm_x86_ops.enable_direct_tlbflush)
5293 			return -ENOTTY;
5294 
5295 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5296 
5297 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5298 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5299 
5300 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5301 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5302 		if (vcpu->arch.pv_cpuid.enforce)
5303 			kvm_update_pv_runtime(vcpu);
5304 
5305 		return 0;
5306 	default:
5307 		return -EINVAL;
5308 	}
5309 }
5310 
5311 long kvm_arch_vcpu_ioctl(struct file *filp,
5312 			 unsigned int ioctl, unsigned long arg)
5313 {
5314 	struct kvm_vcpu *vcpu = filp->private_data;
5315 	void __user *argp = (void __user *)arg;
5316 	int r;
5317 	union {
5318 		struct kvm_sregs2 *sregs2;
5319 		struct kvm_lapic_state *lapic;
5320 		struct kvm_xsave *xsave;
5321 		struct kvm_xcrs *xcrs;
5322 		void *buffer;
5323 	} u;
5324 
5325 	vcpu_load(vcpu);
5326 
5327 	u.buffer = NULL;
5328 	switch (ioctl) {
5329 	case KVM_GET_LAPIC: {
5330 		r = -EINVAL;
5331 		if (!lapic_in_kernel(vcpu))
5332 			goto out;
5333 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5334 				GFP_KERNEL_ACCOUNT);
5335 
5336 		r = -ENOMEM;
5337 		if (!u.lapic)
5338 			goto out;
5339 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5340 		if (r)
5341 			goto out;
5342 		r = -EFAULT;
5343 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5344 			goto out;
5345 		r = 0;
5346 		break;
5347 	}
5348 	case KVM_SET_LAPIC: {
5349 		r = -EINVAL;
5350 		if (!lapic_in_kernel(vcpu))
5351 			goto out;
5352 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5353 		if (IS_ERR(u.lapic)) {
5354 			r = PTR_ERR(u.lapic);
5355 			goto out_nofree;
5356 		}
5357 
5358 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5359 		break;
5360 	}
5361 	case KVM_INTERRUPT: {
5362 		struct kvm_interrupt irq;
5363 
5364 		r = -EFAULT;
5365 		if (copy_from_user(&irq, argp, sizeof(irq)))
5366 			goto out;
5367 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5368 		break;
5369 	}
5370 	case KVM_NMI: {
5371 		r = kvm_vcpu_ioctl_nmi(vcpu);
5372 		break;
5373 	}
5374 	case KVM_SMI: {
5375 		r = kvm_vcpu_ioctl_smi(vcpu);
5376 		break;
5377 	}
5378 	case KVM_SET_CPUID: {
5379 		struct kvm_cpuid __user *cpuid_arg = argp;
5380 		struct kvm_cpuid cpuid;
5381 
5382 		r = -EFAULT;
5383 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5384 			goto out;
5385 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5386 		break;
5387 	}
5388 	case KVM_SET_CPUID2: {
5389 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5390 		struct kvm_cpuid2 cpuid;
5391 
5392 		r = -EFAULT;
5393 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5394 			goto out;
5395 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5396 					      cpuid_arg->entries);
5397 		break;
5398 	}
5399 	case KVM_GET_CPUID2: {
5400 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5401 		struct kvm_cpuid2 cpuid;
5402 
5403 		r = -EFAULT;
5404 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5405 			goto out;
5406 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5407 					      cpuid_arg->entries);
5408 		if (r)
5409 			goto out;
5410 		r = -EFAULT;
5411 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5412 			goto out;
5413 		r = 0;
5414 		break;
5415 	}
5416 	case KVM_GET_MSRS: {
5417 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5418 		r = msr_io(vcpu, argp, do_get_msr, 1);
5419 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5420 		break;
5421 	}
5422 	case KVM_SET_MSRS: {
5423 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5424 		r = msr_io(vcpu, argp, do_set_msr, 0);
5425 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5426 		break;
5427 	}
5428 	case KVM_TPR_ACCESS_REPORTING: {
5429 		struct kvm_tpr_access_ctl tac;
5430 
5431 		r = -EFAULT;
5432 		if (copy_from_user(&tac, argp, sizeof(tac)))
5433 			goto out;
5434 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5435 		if (r)
5436 			goto out;
5437 		r = -EFAULT;
5438 		if (copy_to_user(argp, &tac, sizeof(tac)))
5439 			goto out;
5440 		r = 0;
5441 		break;
5442 	};
5443 	case KVM_SET_VAPIC_ADDR: {
5444 		struct kvm_vapic_addr va;
5445 		int idx;
5446 
5447 		r = -EINVAL;
5448 		if (!lapic_in_kernel(vcpu))
5449 			goto out;
5450 		r = -EFAULT;
5451 		if (copy_from_user(&va, argp, sizeof(va)))
5452 			goto out;
5453 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5454 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5455 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5456 		break;
5457 	}
5458 	case KVM_X86_SETUP_MCE: {
5459 		u64 mcg_cap;
5460 
5461 		r = -EFAULT;
5462 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5463 			goto out;
5464 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5465 		break;
5466 	}
5467 	case KVM_X86_SET_MCE: {
5468 		struct kvm_x86_mce mce;
5469 
5470 		r = -EFAULT;
5471 		if (copy_from_user(&mce, argp, sizeof(mce)))
5472 			goto out;
5473 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5474 		break;
5475 	}
5476 	case KVM_GET_VCPU_EVENTS: {
5477 		struct kvm_vcpu_events events;
5478 
5479 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5480 
5481 		r = -EFAULT;
5482 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5483 			break;
5484 		r = 0;
5485 		break;
5486 	}
5487 	case KVM_SET_VCPU_EVENTS: {
5488 		struct kvm_vcpu_events events;
5489 
5490 		r = -EFAULT;
5491 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5492 			break;
5493 
5494 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5495 		break;
5496 	}
5497 	case KVM_GET_DEBUGREGS: {
5498 		struct kvm_debugregs dbgregs;
5499 
5500 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5501 
5502 		r = -EFAULT;
5503 		if (copy_to_user(argp, &dbgregs,
5504 				 sizeof(struct kvm_debugregs)))
5505 			break;
5506 		r = 0;
5507 		break;
5508 	}
5509 	case KVM_SET_DEBUGREGS: {
5510 		struct kvm_debugregs dbgregs;
5511 
5512 		r = -EFAULT;
5513 		if (copy_from_user(&dbgregs, argp,
5514 				   sizeof(struct kvm_debugregs)))
5515 			break;
5516 
5517 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5518 		break;
5519 	}
5520 	case KVM_GET_XSAVE: {
5521 		r = -EINVAL;
5522 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5523 			break;
5524 
5525 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5526 		r = -ENOMEM;
5527 		if (!u.xsave)
5528 			break;
5529 
5530 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5531 
5532 		r = -EFAULT;
5533 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5534 			break;
5535 		r = 0;
5536 		break;
5537 	}
5538 	case KVM_SET_XSAVE: {
5539 		int size = vcpu->arch.guest_fpu.uabi_size;
5540 
5541 		u.xsave = memdup_user(argp, size);
5542 		if (IS_ERR(u.xsave)) {
5543 			r = PTR_ERR(u.xsave);
5544 			goto out_nofree;
5545 		}
5546 
5547 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5548 		break;
5549 	}
5550 
5551 	case KVM_GET_XSAVE2: {
5552 		int size = vcpu->arch.guest_fpu.uabi_size;
5553 
5554 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5555 		r = -ENOMEM;
5556 		if (!u.xsave)
5557 			break;
5558 
5559 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5560 
5561 		r = -EFAULT;
5562 		if (copy_to_user(argp, u.xsave, size))
5563 			break;
5564 
5565 		r = 0;
5566 		break;
5567 	}
5568 
5569 	case KVM_GET_XCRS: {
5570 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5571 		r = -ENOMEM;
5572 		if (!u.xcrs)
5573 			break;
5574 
5575 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5576 
5577 		r = -EFAULT;
5578 		if (copy_to_user(argp, u.xcrs,
5579 				 sizeof(struct kvm_xcrs)))
5580 			break;
5581 		r = 0;
5582 		break;
5583 	}
5584 	case KVM_SET_XCRS: {
5585 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5586 		if (IS_ERR(u.xcrs)) {
5587 			r = PTR_ERR(u.xcrs);
5588 			goto out_nofree;
5589 		}
5590 
5591 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5592 		break;
5593 	}
5594 	case KVM_SET_TSC_KHZ: {
5595 		u32 user_tsc_khz;
5596 
5597 		r = -EINVAL;
5598 		user_tsc_khz = (u32)arg;
5599 
5600 		if (kvm_has_tsc_control &&
5601 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5602 			goto out;
5603 
5604 		if (user_tsc_khz == 0)
5605 			user_tsc_khz = tsc_khz;
5606 
5607 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5608 			r = 0;
5609 
5610 		goto out;
5611 	}
5612 	case KVM_GET_TSC_KHZ: {
5613 		r = vcpu->arch.virtual_tsc_khz;
5614 		goto out;
5615 	}
5616 	case KVM_KVMCLOCK_CTRL: {
5617 		r = kvm_set_guest_paused(vcpu);
5618 		goto out;
5619 	}
5620 	case KVM_ENABLE_CAP: {
5621 		struct kvm_enable_cap cap;
5622 
5623 		r = -EFAULT;
5624 		if (copy_from_user(&cap, argp, sizeof(cap)))
5625 			goto out;
5626 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5627 		break;
5628 	}
5629 	case KVM_GET_NESTED_STATE: {
5630 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5631 		u32 user_data_size;
5632 
5633 		r = -EINVAL;
5634 		if (!kvm_x86_ops.nested_ops->get_state)
5635 			break;
5636 
5637 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5638 		r = -EFAULT;
5639 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5640 			break;
5641 
5642 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5643 						     user_data_size);
5644 		if (r < 0)
5645 			break;
5646 
5647 		if (r > user_data_size) {
5648 			if (put_user(r, &user_kvm_nested_state->size))
5649 				r = -EFAULT;
5650 			else
5651 				r = -E2BIG;
5652 			break;
5653 		}
5654 
5655 		r = 0;
5656 		break;
5657 	}
5658 	case KVM_SET_NESTED_STATE: {
5659 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5660 		struct kvm_nested_state kvm_state;
5661 		int idx;
5662 
5663 		r = -EINVAL;
5664 		if (!kvm_x86_ops.nested_ops->set_state)
5665 			break;
5666 
5667 		r = -EFAULT;
5668 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5669 			break;
5670 
5671 		r = -EINVAL;
5672 		if (kvm_state.size < sizeof(kvm_state))
5673 			break;
5674 
5675 		if (kvm_state.flags &
5676 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5677 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5678 		      | KVM_STATE_NESTED_GIF_SET))
5679 			break;
5680 
5681 		/* nested_run_pending implies guest_mode.  */
5682 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5683 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5684 			break;
5685 
5686 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5687 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5688 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5689 		break;
5690 	}
5691 	case KVM_GET_SUPPORTED_HV_CPUID:
5692 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5693 		break;
5694 #ifdef CONFIG_KVM_XEN
5695 	case KVM_XEN_VCPU_GET_ATTR: {
5696 		struct kvm_xen_vcpu_attr xva;
5697 
5698 		r = -EFAULT;
5699 		if (copy_from_user(&xva, argp, sizeof(xva)))
5700 			goto out;
5701 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5702 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5703 			r = -EFAULT;
5704 		break;
5705 	}
5706 	case KVM_XEN_VCPU_SET_ATTR: {
5707 		struct kvm_xen_vcpu_attr xva;
5708 
5709 		r = -EFAULT;
5710 		if (copy_from_user(&xva, argp, sizeof(xva)))
5711 			goto out;
5712 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5713 		break;
5714 	}
5715 #endif
5716 	case KVM_GET_SREGS2: {
5717 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5718 		r = -ENOMEM;
5719 		if (!u.sregs2)
5720 			goto out;
5721 		__get_sregs2(vcpu, u.sregs2);
5722 		r = -EFAULT;
5723 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5724 			goto out;
5725 		r = 0;
5726 		break;
5727 	}
5728 	case KVM_SET_SREGS2: {
5729 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5730 		if (IS_ERR(u.sregs2)) {
5731 			r = PTR_ERR(u.sregs2);
5732 			u.sregs2 = NULL;
5733 			goto out;
5734 		}
5735 		r = __set_sregs2(vcpu, u.sregs2);
5736 		break;
5737 	}
5738 	case KVM_HAS_DEVICE_ATTR:
5739 	case KVM_GET_DEVICE_ATTR:
5740 	case KVM_SET_DEVICE_ATTR:
5741 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5742 		break;
5743 	default:
5744 		r = -EINVAL;
5745 	}
5746 out:
5747 	kfree(u.buffer);
5748 out_nofree:
5749 	vcpu_put(vcpu);
5750 	return r;
5751 }
5752 
5753 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5754 {
5755 	return VM_FAULT_SIGBUS;
5756 }
5757 
5758 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5759 {
5760 	int ret;
5761 
5762 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5763 		return -EINVAL;
5764 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5765 	return ret;
5766 }
5767 
5768 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5769 					      u64 ident_addr)
5770 {
5771 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5772 }
5773 
5774 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5775 					 unsigned long kvm_nr_mmu_pages)
5776 {
5777 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5778 		return -EINVAL;
5779 
5780 	mutex_lock(&kvm->slots_lock);
5781 
5782 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5783 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5784 
5785 	mutex_unlock(&kvm->slots_lock);
5786 	return 0;
5787 }
5788 
5789 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5790 {
5791 	return kvm->arch.n_max_mmu_pages;
5792 }
5793 
5794 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5795 {
5796 	struct kvm_pic *pic = kvm->arch.vpic;
5797 	int r;
5798 
5799 	r = 0;
5800 	switch (chip->chip_id) {
5801 	case KVM_IRQCHIP_PIC_MASTER:
5802 		memcpy(&chip->chip.pic, &pic->pics[0],
5803 			sizeof(struct kvm_pic_state));
5804 		break;
5805 	case KVM_IRQCHIP_PIC_SLAVE:
5806 		memcpy(&chip->chip.pic, &pic->pics[1],
5807 			sizeof(struct kvm_pic_state));
5808 		break;
5809 	case KVM_IRQCHIP_IOAPIC:
5810 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5811 		break;
5812 	default:
5813 		r = -EINVAL;
5814 		break;
5815 	}
5816 	return r;
5817 }
5818 
5819 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5820 {
5821 	struct kvm_pic *pic = kvm->arch.vpic;
5822 	int r;
5823 
5824 	r = 0;
5825 	switch (chip->chip_id) {
5826 	case KVM_IRQCHIP_PIC_MASTER:
5827 		spin_lock(&pic->lock);
5828 		memcpy(&pic->pics[0], &chip->chip.pic,
5829 			sizeof(struct kvm_pic_state));
5830 		spin_unlock(&pic->lock);
5831 		break;
5832 	case KVM_IRQCHIP_PIC_SLAVE:
5833 		spin_lock(&pic->lock);
5834 		memcpy(&pic->pics[1], &chip->chip.pic,
5835 			sizeof(struct kvm_pic_state));
5836 		spin_unlock(&pic->lock);
5837 		break;
5838 	case KVM_IRQCHIP_IOAPIC:
5839 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5840 		break;
5841 	default:
5842 		r = -EINVAL;
5843 		break;
5844 	}
5845 	kvm_pic_update_irq(pic);
5846 	return r;
5847 }
5848 
5849 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5850 {
5851 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5852 
5853 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5854 
5855 	mutex_lock(&kps->lock);
5856 	memcpy(ps, &kps->channels, sizeof(*ps));
5857 	mutex_unlock(&kps->lock);
5858 	return 0;
5859 }
5860 
5861 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5862 {
5863 	int i;
5864 	struct kvm_pit *pit = kvm->arch.vpit;
5865 
5866 	mutex_lock(&pit->pit_state.lock);
5867 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5868 	for (i = 0; i < 3; i++)
5869 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5870 	mutex_unlock(&pit->pit_state.lock);
5871 	return 0;
5872 }
5873 
5874 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5875 {
5876 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5877 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5878 		sizeof(ps->channels));
5879 	ps->flags = kvm->arch.vpit->pit_state.flags;
5880 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5881 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5882 	return 0;
5883 }
5884 
5885 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5886 {
5887 	int start = 0;
5888 	int i;
5889 	u32 prev_legacy, cur_legacy;
5890 	struct kvm_pit *pit = kvm->arch.vpit;
5891 
5892 	mutex_lock(&pit->pit_state.lock);
5893 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5894 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5895 	if (!prev_legacy && cur_legacy)
5896 		start = 1;
5897 	memcpy(&pit->pit_state.channels, &ps->channels,
5898 	       sizeof(pit->pit_state.channels));
5899 	pit->pit_state.flags = ps->flags;
5900 	for (i = 0; i < 3; i++)
5901 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5902 				   start && i == 0);
5903 	mutex_unlock(&pit->pit_state.lock);
5904 	return 0;
5905 }
5906 
5907 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5908 				 struct kvm_reinject_control *control)
5909 {
5910 	struct kvm_pit *pit = kvm->arch.vpit;
5911 
5912 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5913 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5914 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5915 	 */
5916 	mutex_lock(&pit->pit_state.lock);
5917 	kvm_pit_set_reinject(pit, control->pit_reinject);
5918 	mutex_unlock(&pit->pit_state.lock);
5919 
5920 	return 0;
5921 }
5922 
5923 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5924 {
5925 
5926 	/*
5927 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5928 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5929 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5930 	 * VM-Exit.
5931 	 */
5932 	struct kvm_vcpu *vcpu;
5933 	unsigned long i;
5934 
5935 	kvm_for_each_vcpu(i, vcpu, kvm)
5936 		kvm_vcpu_kick(vcpu);
5937 }
5938 
5939 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5940 			bool line_status)
5941 {
5942 	if (!irqchip_in_kernel(kvm))
5943 		return -ENXIO;
5944 
5945 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5946 					irq_event->irq, irq_event->level,
5947 					line_status);
5948 	return 0;
5949 }
5950 
5951 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5952 			    struct kvm_enable_cap *cap)
5953 {
5954 	int r;
5955 
5956 	if (cap->flags)
5957 		return -EINVAL;
5958 
5959 	switch (cap->cap) {
5960 	case KVM_CAP_DISABLE_QUIRKS2:
5961 		r = -EINVAL;
5962 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
5963 			break;
5964 		fallthrough;
5965 	case KVM_CAP_DISABLE_QUIRKS:
5966 		kvm->arch.disabled_quirks = cap->args[0];
5967 		r = 0;
5968 		break;
5969 	case KVM_CAP_SPLIT_IRQCHIP: {
5970 		mutex_lock(&kvm->lock);
5971 		r = -EINVAL;
5972 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5973 			goto split_irqchip_unlock;
5974 		r = -EEXIST;
5975 		if (irqchip_in_kernel(kvm))
5976 			goto split_irqchip_unlock;
5977 		if (kvm->created_vcpus)
5978 			goto split_irqchip_unlock;
5979 		r = kvm_setup_empty_irq_routing(kvm);
5980 		if (r)
5981 			goto split_irqchip_unlock;
5982 		/* Pairs with irqchip_in_kernel. */
5983 		smp_wmb();
5984 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5985 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5986 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
5987 		r = 0;
5988 split_irqchip_unlock:
5989 		mutex_unlock(&kvm->lock);
5990 		break;
5991 	}
5992 	case KVM_CAP_X2APIC_API:
5993 		r = -EINVAL;
5994 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5995 			break;
5996 
5997 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5998 			kvm->arch.x2apic_format = true;
5999 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6000 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6001 
6002 		r = 0;
6003 		break;
6004 	case KVM_CAP_X86_DISABLE_EXITS:
6005 		r = -EINVAL;
6006 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6007 			break;
6008 
6009 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6010 			kvm_can_mwait_in_guest())
6011 			kvm->arch.mwait_in_guest = true;
6012 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6013 			kvm->arch.hlt_in_guest = true;
6014 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6015 			kvm->arch.pause_in_guest = true;
6016 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6017 			kvm->arch.cstate_in_guest = true;
6018 		r = 0;
6019 		break;
6020 	case KVM_CAP_MSR_PLATFORM_INFO:
6021 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6022 		r = 0;
6023 		break;
6024 	case KVM_CAP_EXCEPTION_PAYLOAD:
6025 		kvm->arch.exception_payload_enabled = cap->args[0];
6026 		r = 0;
6027 		break;
6028 	case KVM_CAP_X86_USER_SPACE_MSR:
6029 		kvm->arch.user_space_msr_mask = cap->args[0];
6030 		r = 0;
6031 		break;
6032 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6033 		r = -EINVAL;
6034 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6035 			break;
6036 
6037 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6038 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6039 			break;
6040 
6041 		if (kvm_has_bus_lock_exit &&
6042 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6043 			kvm->arch.bus_lock_detection_enabled = true;
6044 		r = 0;
6045 		break;
6046 #ifdef CONFIG_X86_SGX_KVM
6047 	case KVM_CAP_SGX_ATTRIBUTE: {
6048 		unsigned long allowed_attributes = 0;
6049 
6050 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6051 		if (r)
6052 			break;
6053 
6054 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6055 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6056 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6057 			kvm->arch.sgx_provisioning_allowed = true;
6058 		else
6059 			r = -EINVAL;
6060 		break;
6061 	}
6062 #endif
6063 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6064 		r = -EINVAL;
6065 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6066 			break;
6067 
6068 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6069 		break;
6070 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6071 		r = -EINVAL;
6072 		if (!kvm_x86_ops.vm_move_enc_context_from)
6073 			break;
6074 
6075 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6076 		break;
6077 	case KVM_CAP_EXIT_HYPERCALL:
6078 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6079 			r = -EINVAL;
6080 			break;
6081 		}
6082 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6083 		r = 0;
6084 		break;
6085 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6086 		r = -EINVAL;
6087 		if (cap->args[0] & ~1)
6088 			break;
6089 		kvm->arch.exit_on_emulation_error = cap->args[0];
6090 		r = 0;
6091 		break;
6092 	case KVM_CAP_PMU_CAPABILITY:
6093 		r = -EINVAL;
6094 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6095 			break;
6096 
6097 		mutex_lock(&kvm->lock);
6098 		if (!kvm->created_vcpus) {
6099 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6100 			r = 0;
6101 		}
6102 		mutex_unlock(&kvm->lock);
6103 		break;
6104 	default:
6105 		r = -EINVAL;
6106 		break;
6107 	}
6108 	return r;
6109 }
6110 
6111 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6112 {
6113 	struct kvm_x86_msr_filter *msr_filter;
6114 
6115 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6116 	if (!msr_filter)
6117 		return NULL;
6118 
6119 	msr_filter->default_allow = default_allow;
6120 	return msr_filter;
6121 }
6122 
6123 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6124 {
6125 	u32 i;
6126 
6127 	if (!msr_filter)
6128 		return;
6129 
6130 	for (i = 0; i < msr_filter->count; i++)
6131 		kfree(msr_filter->ranges[i].bitmap);
6132 
6133 	kfree(msr_filter);
6134 }
6135 
6136 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6137 			      struct kvm_msr_filter_range *user_range)
6138 {
6139 	unsigned long *bitmap = NULL;
6140 	size_t bitmap_size;
6141 
6142 	if (!user_range->nmsrs)
6143 		return 0;
6144 
6145 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6146 		return -EINVAL;
6147 
6148 	if (!user_range->flags)
6149 		return -EINVAL;
6150 
6151 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6152 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6153 		return -EINVAL;
6154 
6155 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6156 	if (IS_ERR(bitmap))
6157 		return PTR_ERR(bitmap);
6158 
6159 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6160 		.flags = user_range->flags,
6161 		.base = user_range->base,
6162 		.nmsrs = user_range->nmsrs,
6163 		.bitmap = bitmap,
6164 	};
6165 
6166 	msr_filter->count++;
6167 	return 0;
6168 }
6169 
6170 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6171 {
6172 	struct kvm_msr_filter __user *user_msr_filter = argp;
6173 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6174 	struct kvm_msr_filter filter;
6175 	bool default_allow;
6176 	bool empty = true;
6177 	int r = 0;
6178 	u32 i;
6179 
6180 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6181 		return -EFAULT;
6182 
6183 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6184 		empty &= !filter.ranges[i].nmsrs;
6185 
6186 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6187 	if (empty && !default_allow)
6188 		return -EINVAL;
6189 
6190 	new_filter = kvm_alloc_msr_filter(default_allow);
6191 	if (!new_filter)
6192 		return -ENOMEM;
6193 
6194 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6195 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6196 		if (r) {
6197 			kvm_free_msr_filter(new_filter);
6198 			return r;
6199 		}
6200 	}
6201 
6202 	mutex_lock(&kvm->lock);
6203 
6204 	/* The per-VM filter is protected by kvm->lock... */
6205 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6206 
6207 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6208 	synchronize_srcu(&kvm->srcu);
6209 
6210 	kvm_free_msr_filter(old_filter);
6211 
6212 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6213 	mutex_unlock(&kvm->lock);
6214 
6215 	return 0;
6216 }
6217 
6218 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6219 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6220 {
6221 	struct kvm_vcpu *vcpu;
6222 	unsigned long i;
6223 	int ret = 0;
6224 
6225 	mutex_lock(&kvm->lock);
6226 	kvm_for_each_vcpu(i, vcpu, kvm) {
6227 		if (!vcpu->arch.pv_time.active)
6228 			continue;
6229 
6230 		ret = kvm_set_guest_paused(vcpu);
6231 		if (ret) {
6232 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6233 				vcpu->vcpu_id, ret);
6234 			break;
6235 		}
6236 	}
6237 	mutex_unlock(&kvm->lock);
6238 
6239 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6240 }
6241 
6242 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6243 {
6244 	switch (state) {
6245 	case PM_HIBERNATION_PREPARE:
6246 	case PM_SUSPEND_PREPARE:
6247 		return kvm_arch_suspend_notifier(kvm);
6248 	}
6249 
6250 	return NOTIFY_DONE;
6251 }
6252 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6253 
6254 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6255 {
6256 	struct kvm_clock_data data = { 0 };
6257 
6258 	get_kvmclock(kvm, &data);
6259 	if (copy_to_user(argp, &data, sizeof(data)))
6260 		return -EFAULT;
6261 
6262 	return 0;
6263 }
6264 
6265 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6266 {
6267 	struct kvm_arch *ka = &kvm->arch;
6268 	struct kvm_clock_data data;
6269 	u64 now_raw_ns;
6270 
6271 	if (copy_from_user(&data, argp, sizeof(data)))
6272 		return -EFAULT;
6273 
6274 	/*
6275 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6276 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6277 	 */
6278 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6279 		return -EINVAL;
6280 
6281 	kvm_hv_request_tsc_page_update(kvm);
6282 	kvm_start_pvclock_update(kvm);
6283 	pvclock_update_vm_gtod_copy(kvm);
6284 
6285 	/*
6286 	 * This pairs with kvm_guest_time_update(): when masterclock is
6287 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6288 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6289 	 * is slightly ahead) here we risk going negative on unsigned
6290 	 * 'system_time' when 'data.clock' is very small.
6291 	 */
6292 	if (data.flags & KVM_CLOCK_REALTIME) {
6293 		u64 now_real_ns = ktime_get_real_ns();
6294 
6295 		/*
6296 		 * Avoid stepping the kvmclock backwards.
6297 		 */
6298 		if (now_real_ns > data.realtime)
6299 			data.clock += now_real_ns - data.realtime;
6300 	}
6301 
6302 	if (ka->use_master_clock)
6303 		now_raw_ns = ka->master_kernel_ns;
6304 	else
6305 		now_raw_ns = get_kvmclock_base_ns();
6306 	ka->kvmclock_offset = data.clock - now_raw_ns;
6307 	kvm_end_pvclock_update(kvm);
6308 	return 0;
6309 }
6310 
6311 long kvm_arch_vm_ioctl(struct file *filp,
6312 		       unsigned int ioctl, unsigned long arg)
6313 {
6314 	struct kvm *kvm = filp->private_data;
6315 	void __user *argp = (void __user *)arg;
6316 	int r = -ENOTTY;
6317 	/*
6318 	 * This union makes it completely explicit to gcc-3.x
6319 	 * that these two variables' stack usage should be
6320 	 * combined, not added together.
6321 	 */
6322 	union {
6323 		struct kvm_pit_state ps;
6324 		struct kvm_pit_state2 ps2;
6325 		struct kvm_pit_config pit_config;
6326 	} u;
6327 
6328 	switch (ioctl) {
6329 	case KVM_SET_TSS_ADDR:
6330 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6331 		break;
6332 	case KVM_SET_IDENTITY_MAP_ADDR: {
6333 		u64 ident_addr;
6334 
6335 		mutex_lock(&kvm->lock);
6336 		r = -EINVAL;
6337 		if (kvm->created_vcpus)
6338 			goto set_identity_unlock;
6339 		r = -EFAULT;
6340 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6341 			goto set_identity_unlock;
6342 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6343 set_identity_unlock:
6344 		mutex_unlock(&kvm->lock);
6345 		break;
6346 	}
6347 	case KVM_SET_NR_MMU_PAGES:
6348 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6349 		break;
6350 	case KVM_GET_NR_MMU_PAGES:
6351 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6352 		break;
6353 	case KVM_CREATE_IRQCHIP: {
6354 		mutex_lock(&kvm->lock);
6355 
6356 		r = -EEXIST;
6357 		if (irqchip_in_kernel(kvm))
6358 			goto create_irqchip_unlock;
6359 
6360 		r = -EINVAL;
6361 		if (kvm->created_vcpus)
6362 			goto create_irqchip_unlock;
6363 
6364 		r = kvm_pic_init(kvm);
6365 		if (r)
6366 			goto create_irqchip_unlock;
6367 
6368 		r = kvm_ioapic_init(kvm);
6369 		if (r) {
6370 			kvm_pic_destroy(kvm);
6371 			goto create_irqchip_unlock;
6372 		}
6373 
6374 		r = kvm_setup_default_irq_routing(kvm);
6375 		if (r) {
6376 			kvm_ioapic_destroy(kvm);
6377 			kvm_pic_destroy(kvm);
6378 			goto create_irqchip_unlock;
6379 		}
6380 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6381 		smp_wmb();
6382 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6383 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6384 	create_irqchip_unlock:
6385 		mutex_unlock(&kvm->lock);
6386 		break;
6387 	}
6388 	case KVM_CREATE_PIT:
6389 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6390 		goto create_pit;
6391 	case KVM_CREATE_PIT2:
6392 		r = -EFAULT;
6393 		if (copy_from_user(&u.pit_config, argp,
6394 				   sizeof(struct kvm_pit_config)))
6395 			goto out;
6396 	create_pit:
6397 		mutex_lock(&kvm->lock);
6398 		r = -EEXIST;
6399 		if (kvm->arch.vpit)
6400 			goto create_pit_unlock;
6401 		r = -ENOMEM;
6402 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6403 		if (kvm->arch.vpit)
6404 			r = 0;
6405 	create_pit_unlock:
6406 		mutex_unlock(&kvm->lock);
6407 		break;
6408 	case KVM_GET_IRQCHIP: {
6409 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6410 		struct kvm_irqchip *chip;
6411 
6412 		chip = memdup_user(argp, sizeof(*chip));
6413 		if (IS_ERR(chip)) {
6414 			r = PTR_ERR(chip);
6415 			goto out;
6416 		}
6417 
6418 		r = -ENXIO;
6419 		if (!irqchip_kernel(kvm))
6420 			goto get_irqchip_out;
6421 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6422 		if (r)
6423 			goto get_irqchip_out;
6424 		r = -EFAULT;
6425 		if (copy_to_user(argp, chip, sizeof(*chip)))
6426 			goto get_irqchip_out;
6427 		r = 0;
6428 	get_irqchip_out:
6429 		kfree(chip);
6430 		break;
6431 	}
6432 	case KVM_SET_IRQCHIP: {
6433 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6434 		struct kvm_irqchip *chip;
6435 
6436 		chip = memdup_user(argp, sizeof(*chip));
6437 		if (IS_ERR(chip)) {
6438 			r = PTR_ERR(chip);
6439 			goto out;
6440 		}
6441 
6442 		r = -ENXIO;
6443 		if (!irqchip_kernel(kvm))
6444 			goto set_irqchip_out;
6445 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6446 	set_irqchip_out:
6447 		kfree(chip);
6448 		break;
6449 	}
6450 	case KVM_GET_PIT: {
6451 		r = -EFAULT;
6452 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6453 			goto out;
6454 		r = -ENXIO;
6455 		if (!kvm->arch.vpit)
6456 			goto out;
6457 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6458 		if (r)
6459 			goto out;
6460 		r = -EFAULT;
6461 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6462 			goto out;
6463 		r = 0;
6464 		break;
6465 	}
6466 	case KVM_SET_PIT: {
6467 		r = -EFAULT;
6468 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6469 			goto out;
6470 		mutex_lock(&kvm->lock);
6471 		r = -ENXIO;
6472 		if (!kvm->arch.vpit)
6473 			goto set_pit_out;
6474 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6475 set_pit_out:
6476 		mutex_unlock(&kvm->lock);
6477 		break;
6478 	}
6479 	case KVM_GET_PIT2: {
6480 		r = -ENXIO;
6481 		if (!kvm->arch.vpit)
6482 			goto out;
6483 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6484 		if (r)
6485 			goto out;
6486 		r = -EFAULT;
6487 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6488 			goto out;
6489 		r = 0;
6490 		break;
6491 	}
6492 	case KVM_SET_PIT2: {
6493 		r = -EFAULT;
6494 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6495 			goto out;
6496 		mutex_lock(&kvm->lock);
6497 		r = -ENXIO;
6498 		if (!kvm->arch.vpit)
6499 			goto set_pit2_out;
6500 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6501 set_pit2_out:
6502 		mutex_unlock(&kvm->lock);
6503 		break;
6504 	}
6505 	case KVM_REINJECT_CONTROL: {
6506 		struct kvm_reinject_control control;
6507 		r =  -EFAULT;
6508 		if (copy_from_user(&control, argp, sizeof(control)))
6509 			goto out;
6510 		r = -ENXIO;
6511 		if (!kvm->arch.vpit)
6512 			goto out;
6513 		r = kvm_vm_ioctl_reinject(kvm, &control);
6514 		break;
6515 	}
6516 	case KVM_SET_BOOT_CPU_ID:
6517 		r = 0;
6518 		mutex_lock(&kvm->lock);
6519 		if (kvm->created_vcpus)
6520 			r = -EBUSY;
6521 		else
6522 			kvm->arch.bsp_vcpu_id = arg;
6523 		mutex_unlock(&kvm->lock);
6524 		break;
6525 #ifdef CONFIG_KVM_XEN
6526 	case KVM_XEN_HVM_CONFIG: {
6527 		struct kvm_xen_hvm_config xhc;
6528 		r = -EFAULT;
6529 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6530 			goto out;
6531 		r = kvm_xen_hvm_config(kvm, &xhc);
6532 		break;
6533 	}
6534 	case KVM_XEN_HVM_GET_ATTR: {
6535 		struct kvm_xen_hvm_attr xha;
6536 
6537 		r = -EFAULT;
6538 		if (copy_from_user(&xha, argp, sizeof(xha)))
6539 			goto out;
6540 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6541 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6542 			r = -EFAULT;
6543 		break;
6544 	}
6545 	case KVM_XEN_HVM_SET_ATTR: {
6546 		struct kvm_xen_hvm_attr xha;
6547 
6548 		r = -EFAULT;
6549 		if (copy_from_user(&xha, argp, sizeof(xha)))
6550 			goto out;
6551 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6552 		break;
6553 	}
6554 	case KVM_XEN_HVM_EVTCHN_SEND: {
6555 		struct kvm_irq_routing_xen_evtchn uxe;
6556 
6557 		r = -EFAULT;
6558 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6559 			goto out;
6560 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6561 		break;
6562 	}
6563 #endif
6564 	case KVM_SET_CLOCK:
6565 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6566 		break;
6567 	case KVM_GET_CLOCK:
6568 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6569 		break;
6570 	case KVM_SET_TSC_KHZ: {
6571 		u32 user_tsc_khz;
6572 
6573 		r = -EINVAL;
6574 		user_tsc_khz = (u32)arg;
6575 
6576 		if (kvm_has_tsc_control &&
6577 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
6578 			goto out;
6579 
6580 		if (user_tsc_khz == 0)
6581 			user_tsc_khz = tsc_khz;
6582 
6583 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6584 		r = 0;
6585 
6586 		goto out;
6587 	}
6588 	case KVM_GET_TSC_KHZ: {
6589 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6590 		goto out;
6591 	}
6592 	case KVM_MEMORY_ENCRYPT_OP: {
6593 		r = -ENOTTY;
6594 		if (!kvm_x86_ops.mem_enc_ioctl)
6595 			goto out;
6596 
6597 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6598 		break;
6599 	}
6600 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6601 		struct kvm_enc_region region;
6602 
6603 		r = -EFAULT;
6604 		if (copy_from_user(&region, argp, sizeof(region)))
6605 			goto out;
6606 
6607 		r = -ENOTTY;
6608 		if (!kvm_x86_ops.mem_enc_register_region)
6609 			goto out;
6610 
6611 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6612 		break;
6613 	}
6614 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6615 		struct kvm_enc_region region;
6616 
6617 		r = -EFAULT;
6618 		if (copy_from_user(&region, argp, sizeof(region)))
6619 			goto out;
6620 
6621 		r = -ENOTTY;
6622 		if (!kvm_x86_ops.mem_enc_unregister_region)
6623 			goto out;
6624 
6625 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6626 		break;
6627 	}
6628 	case KVM_HYPERV_EVENTFD: {
6629 		struct kvm_hyperv_eventfd hvevfd;
6630 
6631 		r = -EFAULT;
6632 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6633 			goto out;
6634 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6635 		break;
6636 	}
6637 	case KVM_SET_PMU_EVENT_FILTER:
6638 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6639 		break;
6640 	case KVM_X86_SET_MSR_FILTER:
6641 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6642 		break;
6643 	default:
6644 		r = -ENOTTY;
6645 	}
6646 out:
6647 	return r;
6648 }
6649 
6650 static void kvm_init_msr_list(void)
6651 {
6652 	struct x86_pmu_capability x86_pmu;
6653 	u32 dummy[2];
6654 	unsigned i;
6655 
6656 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6657 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6658 
6659 	perf_get_x86_pmu_capability(&x86_pmu);
6660 
6661 	num_msrs_to_save = 0;
6662 	num_emulated_msrs = 0;
6663 	num_msr_based_features = 0;
6664 
6665 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6666 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6667 			continue;
6668 
6669 		/*
6670 		 * Even MSRs that are valid in the host may not be exposed
6671 		 * to the guests in some cases.
6672 		 */
6673 		switch (msrs_to_save_all[i]) {
6674 		case MSR_IA32_BNDCFGS:
6675 			if (!kvm_mpx_supported())
6676 				continue;
6677 			break;
6678 		case MSR_TSC_AUX:
6679 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6680 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6681 				continue;
6682 			break;
6683 		case MSR_IA32_UMWAIT_CONTROL:
6684 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6685 				continue;
6686 			break;
6687 		case MSR_IA32_RTIT_CTL:
6688 		case MSR_IA32_RTIT_STATUS:
6689 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6690 				continue;
6691 			break;
6692 		case MSR_IA32_RTIT_CR3_MATCH:
6693 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6694 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6695 				continue;
6696 			break;
6697 		case MSR_IA32_RTIT_OUTPUT_BASE:
6698 		case MSR_IA32_RTIT_OUTPUT_MASK:
6699 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6700 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6701 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6702 				continue;
6703 			break;
6704 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6705 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6706 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6707 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6708 				continue;
6709 			break;
6710 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6711 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6712 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6713 				continue;
6714 			break;
6715 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6716 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6717 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6718 				continue;
6719 			break;
6720 		case MSR_IA32_XFD:
6721 		case MSR_IA32_XFD_ERR:
6722 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6723 				continue;
6724 			break;
6725 		default:
6726 			break;
6727 		}
6728 
6729 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6730 	}
6731 
6732 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6733 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6734 			continue;
6735 
6736 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6737 	}
6738 
6739 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6740 		struct kvm_msr_entry msr;
6741 
6742 		msr.index = msr_based_features_all[i];
6743 		if (kvm_get_msr_feature(&msr))
6744 			continue;
6745 
6746 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6747 	}
6748 }
6749 
6750 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6751 			   const void *v)
6752 {
6753 	int handled = 0;
6754 	int n;
6755 
6756 	do {
6757 		n = min(len, 8);
6758 		if (!(lapic_in_kernel(vcpu) &&
6759 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6760 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6761 			break;
6762 		handled += n;
6763 		addr += n;
6764 		len -= n;
6765 		v += n;
6766 	} while (len);
6767 
6768 	return handled;
6769 }
6770 
6771 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6772 {
6773 	int handled = 0;
6774 	int n;
6775 
6776 	do {
6777 		n = min(len, 8);
6778 		if (!(lapic_in_kernel(vcpu) &&
6779 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6780 					 addr, n, v))
6781 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6782 			break;
6783 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6784 		handled += n;
6785 		addr += n;
6786 		len -= n;
6787 		v += n;
6788 	} while (len);
6789 
6790 	return handled;
6791 }
6792 
6793 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6794 			struct kvm_segment *var, int seg)
6795 {
6796 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6797 }
6798 
6799 void kvm_get_segment(struct kvm_vcpu *vcpu,
6800 		     struct kvm_segment *var, int seg)
6801 {
6802 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6803 }
6804 
6805 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
6806 			   struct x86_exception *exception)
6807 {
6808 	struct kvm_mmu *mmu = vcpu->arch.mmu;
6809 	gpa_t t_gpa;
6810 
6811 	BUG_ON(!mmu_is_nested(vcpu));
6812 
6813 	/* NPT walks are always user-walks */
6814 	access |= PFERR_USER_MASK;
6815 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6816 
6817 	return t_gpa;
6818 }
6819 
6820 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6821 			      struct x86_exception *exception)
6822 {
6823 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6824 
6825 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6826 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6827 }
6828 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6829 
6830  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6831 				struct x86_exception *exception)
6832 {
6833 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6834 
6835 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6836 	access |= PFERR_FETCH_MASK;
6837 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6838 }
6839 
6840 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6841 			       struct x86_exception *exception)
6842 {
6843 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6844 
6845 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6846 	access |= PFERR_WRITE_MASK;
6847 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6848 }
6849 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6850 
6851 /* uses this to access any guest's mapped memory without checking CPL */
6852 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6853 				struct x86_exception *exception)
6854 {
6855 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6856 
6857 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6858 }
6859 
6860 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6861 				      struct kvm_vcpu *vcpu, u64 access,
6862 				      struct x86_exception *exception)
6863 {
6864 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6865 	void *data = val;
6866 	int r = X86EMUL_CONTINUE;
6867 
6868 	while (bytes) {
6869 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6870 		unsigned offset = addr & (PAGE_SIZE-1);
6871 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6872 		int ret;
6873 
6874 		if (gpa == UNMAPPED_GVA)
6875 			return X86EMUL_PROPAGATE_FAULT;
6876 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6877 					       offset, toread);
6878 		if (ret < 0) {
6879 			r = X86EMUL_IO_NEEDED;
6880 			goto out;
6881 		}
6882 
6883 		bytes -= toread;
6884 		data += toread;
6885 		addr += toread;
6886 	}
6887 out:
6888 	return r;
6889 }
6890 
6891 /* used for instruction fetching */
6892 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6893 				gva_t addr, void *val, unsigned int bytes,
6894 				struct x86_exception *exception)
6895 {
6896 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6897 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6898 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6899 	unsigned offset;
6900 	int ret;
6901 
6902 	/* Inline kvm_read_guest_virt_helper for speed.  */
6903 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6904 				    exception);
6905 	if (unlikely(gpa == UNMAPPED_GVA))
6906 		return X86EMUL_PROPAGATE_FAULT;
6907 
6908 	offset = addr & (PAGE_SIZE-1);
6909 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6910 		bytes = (unsigned)PAGE_SIZE - offset;
6911 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6912 				       offset, bytes);
6913 	if (unlikely(ret < 0))
6914 		return X86EMUL_IO_NEEDED;
6915 
6916 	return X86EMUL_CONTINUE;
6917 }
6918 
6919 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6920 			       gva_t addr, void *val, unsigned int bytes,
6921 			       struct x86_exception *exception)
6922 {
6923 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6924 
6925 	/*
6926 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6927 	 * is returned, but our callers are not ready for that and they blindly
6928 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6929 	 * uninitialized kernel stack memory into cr2 and error code.
6930 	 */
6931 	memset(exception, 0, sizeof(*exception));
6932 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6933 					  exception);
6934 }
6935 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6936 
6937 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6938 			     gva_t addr, void *val, unsigned int bytes,
6939 			     struct x86_exception *exception, bool system)
6940 {
6941 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6942 	u64 access = 0;
6943 
6944 	if (system)
6945 		access |= PFERR_IMPLICIT_ACCESS;
6946 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6947 		access |= PFERR_USER_MASK;
6948 
6949 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6950 }
6951 
6952 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6953 		unsigned long addr, void *val, unsigned int bytes)
6954 {
6955 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6956 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6957 
6958 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6959 }
6960 
6961 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6962 				      struct kvm_vcpu *vcpu, u64 access,
6963 				      struct x86_exception *exception)
6964 {
6965 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6966 	void *data = val;
6967 	int r = X86EMUL_CONTINUE;
6968 
6969 	while (bytes) {
6970 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6971 		unsigned offset = addr & (PAGE_SIZE-1);
6972 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6973 		int ret;
6974 
6975 		if (gpa == UNMAPPED_GVA)
6976 			return X86EMUL_PROPAGATE_FAULT;
6977 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6978 		if (ret < 0) {
6979 			r = X86EMUL_IO_NEEDED;
6980 			goto out;
6981 		}
6982 
6983 		bytes -= towrite;
6984 		data += towrite;
6985 		addr += towrite;
6986 	}
6987 out:
6988 	return r;
6989 }
6990 
6991 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6992 			      unsigned int bytes, struct x86_exception *exception,
6993 			      bool system)
6994 {
6995 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6996 	u64 access = PFERR_WRITE_MASK;
6997 
6998 	if (system)
6999 		access |= PFERR_IMPLICIT_ACCESS;
7000 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7001 		access |= PFERR_USER_MASK;
7002 
7003 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7004 					   access, exception);
7005 }
7006 
7007 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7008 				unsigned int bytes, struct x86_exception *exception)
7009 {
7010 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7011 	vcpu->arch.l1tf_flush_l1d = true;
7012 
7013 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7014 					   PFERR_WRITE_MASK, exception);
7015 }
7016 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7017 
7018 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7019 				void *insn, int insn_len)
7020 {
7021 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7022 							    insn, insn_len);
7023 }
7024 
7025 int handle_ud(struct kvm_vcpu *vcpu)
7026 {
7027 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7028 	int emul_type = EMULTYPE_TRAP_UD;
7029 	char sig[5]; /* ud2; .ascii "kvm" */
7030 	struct x86_exception e;
7031 
7032 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7033 		return 1;
7034 
7035 	if (force_emulation_prefix &&
7036 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7037 				sig, sizeof(sig), &e) == 0 &&
7038 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7039 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7040 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7041 	}
7042 
7043 	return kvm_emulate_instruction(vcpu, emul_type);
7044 }
7045 EXPORT_SYMBOL_GPL(handle_ud);
7046 
7047 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7048 			    gpa_t gpa, bool write)
7049 {
7050 	/* For APIC access vmexit */
7051 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7052 		return 1;
7053 
7054 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7055 		trace_vcpu_match_mmio(gva, gpa, write, true);
7056 		return 1;
7057 	}
7058 
7059 	return 0;
7060 }
7061 
7062 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7063 				gpa_t *gpa, struct x86_exception *exception,
7064 				bool write)
7065 {
7066 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7067 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7068 		| (write ? PFERR_WRITE_MASK : 0);
7069 
7070 	/*
7071 	 * currently PKRU is only applied to ept enabled guest so
7072 	 * there is no pkey in EPT page table for L1 guest or EPT
7073 	 * shadow page table for L2 guest.
7074 	 */
7075 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7076 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7077 			      vcpu->arch.mmio_access, 0, access))) {
7078 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7079 					(gva & (PAGE_SIZE - 1));
7080 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7081 		return 1;
7082 	}
7083 
7084 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7085 
7086 	if (*gpa == UNMAPPED_GVA)
7087 		return -1;
7088 
7089 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7090 }
7091 
7092 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7093 			const void *val, int bytes)
7094 {
7095 	int ret;
7096 
7097 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7098 	if (ret < 0)
7099 		return 0;
7100 	kvm_page_track_write(vcpu, gpa, val, bytes);
7101 	return 1;
7102 }
7103 
7104 struct read_write_emulator_ops {
7105 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7106 				  int bytes);
7107 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7108 				  void *val, int bytes);
7109 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7110 			       int bytes, void *val);
7111 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7112 				    void *val, int bytes);
7113 	bool write;
7114 };
7115 
7116 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7117 {
7118 	if (vcpu->mmio_read_completed) {
7119 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7120 			       vcpu->mmio_fragments[0].gpa, val);
7121 		vcpu->mmio_read_completed = 0;
7122 		return 1;
7123 	}
7124 
7125 	return 0;
7126 }
7127 
7128 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7129 			void *val, int bytes)
7130 {
7131 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7132 }
7133 
7134 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7135 			 void *val, int bytes)
7136 {
7137 	return emulator_write_phys(vcpu, gpa, val, bytes);
7138 }
7139 
7140 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7141 {
7142 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7143 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7144 }
7145 
7146 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7147 			  void *val, int bytes)
7148 {
7149 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7150 	return X86EMUL_IO_NEEDED;
7151 }
7152 
7153 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7154 			   void *val, int bytes)
7155 {
7156 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7157 
7158 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7159 	return X86EMUL_CONTINUE;
7160 }
7161 
7162 static const struct read_write_emulator_ops read_emultor = {
7163 	.read_write_prepare = read_prepare,
7164 	.read_write_emulate = read_emulate,
7165 	.read_write_mmio = vcpu_mmio_read,
7166 	.read_write_exit_mmio = read_exit_mmio,
7167 };
7168 
7169 static const struct read_write_emulator_ops write_emultor = {
7170 	.read_write_emulate = write_emulate,
7171 	.read_write_mmio = write_mmio,
7172 	.read_write_exit_mmio = write_exit_mmio,
7173 	.write = true,
7174 };
7175 
7176 static int emulator_read_write_onepage(unsigned long addr, void *val,
7177 				       unsigned int bytes,
7178 				       struct x86_exception *exception,
7179 				       struct kvm_vcpu *vcpu,
7180 				       const struct read_write_emulator_ops *ops)
7181 {
7182 	gpa_t gpa;
7183 	int handled, ret;
7184 	bool write = ops->write;
7185 	struct kvm_mmio_fragment *frag;
7186 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7187 
7188 	/*
7189 	 * If the exit was due to a NPF we may already have a GPA.
7190 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7191 	 * Note, this cannot be used on string operations since string
7192 	 * operation using rep will only have the initial GPA from the NPF
7193 	 * occurred.
7194 	 */
7195 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7196 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7197 		gpa = ctxt->gpa_val;
7198 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7199 	} else {
7200 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7201 		if (ret < 0)
7202 			return X86EMUL_PROPAGATE_FAULT;
7203 	}
7204 
7205 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7206 		return X86EMUL_CONTINUE;
7207 
7208 	/*
7209 	 * Is this MMIO handled locally?
7210 	 */
7211 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7212 	if (handled == bytes)
7213 		return X86EMUL_CONTINUE;
7214 
7215 	gpa += handled;
7216 	bytes -= handled;
7217 	val += handled;
7218 
7219 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7220 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7221 	frag->gpa = gpa;
7222 	frag->data = val;
7223 	frag->len = bytes;
7224 	return X86EMUL_CONTINUE;
7225 }
7226 
7227 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7228 			unsigned long addr,
7229 			void *val, unsigned int bytes,
7230 			struct x86_exception *exception,
7231 			const struct read_write_emulator_ops *ops)
7232 {
7233 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7234 	gpa_t gpa;
7235 	int rc;
7236 
7237 	if (ops->read_write_prepare &&
7238 		  ops->read_write_prepare(vcpu, val, bytes))
7239 		return X86EMUL_CONTINUE;
7240 
7241 	vcpu->mmio_nr_fragments = 0;
7242 
7243 	/* Crossing a page boundary? */
7244 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7245 		int now;
7246 
7247 		now = -addr & ~PAGE_MASK;
7248 		rc = emulator_read_write_onepage(addr, val, now, exception,
7249 						 vcpu, ops);
7250 
7251 		if (rc != X86EMUL_CONTINUE)
7252 			return rc;
7253 		addr += now;
7254 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7255 			addr = (u32)addr;
7256 		val += now;
7257 		bytes -= now;
7258 	}
7259 
7260 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7261 					 vcpu, ops);
7262 	if (rc != X86EMUL_CONTINUE)
7263 		return rc;
7264 
7265 	if (!vcpu->mmio_nr_fragments)
7266 		return rc;
7267 
7268 	gpa = vcpu->mmio_fragments[0].gpa;
7269 
7270 	vcpu->mmio_needed = 1;
7271 	vcpu->mmio_cur_fragment = 0;
7272 
7273 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7274 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7275 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7276 	vcpu->run->mmio.phys_addr = gpa;
7277 
7278 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7279 }
7280 
7281 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7282 				  unsigned long addr,
7283 				  void *val,
7284 				  unsigned int bytes,
7285 				  struct x86_exception *exception)
7286 {
7287 	return emulator_read_write(ctxt, addr, val, bytes,
7288 				   exception, &read_emultor);
7289 }
7290 
7291 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7292 			    unsigned long addr,
7293 			    const void *val,
7294 			    unsigned int bytes,
7295 			    struct x86_exception *exception)
7296 {
7297 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7298 				   exception, &write_emultor);
7299 }
7300 
7301 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7302 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7303 
7304 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7305 				     unsigned long addr,
7306 				     const void *old,
7307 				     const void *new,
7308 				     unsigned int bytes,
7309 				     struct x86_exception *exception)
7310 {
7311 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7312 	u64 page_line_mask;
7313 	unsigned long hva;
7314 	gpa_t gpa;
7315 	int r;
7316 
7317 	/* guests cmpxchg8b have to be emulated atomically */
7318 	if (bytes > 8 || (bytes & (bytes - 1)))
7319 		goto emul_write;
7320 
7321 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7322 
7323 	if (gpa == UNMAPPED_GVA ||
7324 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7325 		goto emul_write;
7326 
7327 	/*
7328 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7329 	 * enabled in the host and the access splits a cache line.
7330 	 */
7331 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7332 		page_line_mask = ~(cache_line_size() - 1);
7333 	else
7334 		page_line_mask = PAGE_MASK;
7335 
7336 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7337 		goto emul_write;
7338 
7339 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7340 	if (kvm_is_error_hva(hva))
7341 		goto emul_write;
7342 
7343 	hva += offset_in_page(gpa);
7344 
7345 	switch (bytes) {
7346 	case 1:
7347 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7348 		break;
7349 	case 2:
7350 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7351 		break;
7352 	case 4:
7353 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7354 		break;
7355 	case 8:
7356 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7357 		break;
7358 	default:
7359 		BUG();
7360 	}
7361 
7362 	if (r < 0)
7363 		return X86EMUL_UNHANDLEABLE;
7364 	if (r)
7365 		return X86EMUL_CMPXCHG_FAILED;
7366 
7367 	kvm_page_track_write(vcpu, gpa, new, bytes);
7368 
7369 	return X86EMUL_CONTINUE;
7370 
7371 emul_write:
7372 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7373 
7374 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7375 }
7376 
7377 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7378 {
7379 	int r = 0, i;
7380 
7381 	for (i = 0; i < vcpu->arch.pio.count; i++) {
7382 		if (vcpu->arch.pio.in)
7383 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7384 					    vcpu->arch.pio.size, pd);
7385 		else
7386 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7387 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
7388 					     pd);
7389 		if (r)
7390 			break;
7391 		pd += vcpu->arch.pio.size;
7392 	}
7393 	return r;
7394 }
7395 
7396 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7397 			       unsigned short port,
7398 			       unsigned int count, bool in)
7399 {
7400 	vcpu->arch.pio.port = port;
7401 	vcpu->arch.pio.in = in;
7402 	vcpu->arch.pio.count  = count;
7403 	vcpu->arch.pio.size = size;
7404 
7405 	if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7406 		return 1;
7407 
7408 	vcpu->run->exit_reason = KVM_EXIT_IO;
7409 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7410 	vcpu->run->io.size = size;
7411 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7412 	vcpu->run->io.count = count;
7413 	vcpu->run->io.port = port;
7414 
7415 	return 0;
7416 }
7417 
7418 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7419 			     unsigned short port, unsigned int count)
7420 {
7421 	WARN_ON(vcpu->arch.pio.count);
7422 	memset(vcpu->arch.pio_data, 0, size * count);
7423 	return emulator_pio_in_out(vcpu, size, port, count, true);
7424 }
7425 
7426 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7427 {
7428 	int size = vcpu->arch.pio.size;
7429 	unsigned count = vcpu->arch.pio.count;
7430 	memcpy(val, vcpu->arch.pio_data, size * count);
7431 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7432 	vcpu->arch.pio.count = 0;
7433 }
7434 
7435 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7436 			   unsigned short port, void *val, unsigned int count)
7437 {
7438 	if (vcpu->arch.pio.count) {
7439 		/*
7440 		 * Complete a previous iteration that required userspace I/O.
7441 		 * Note, @count isn't guaranteed to match pio.count as userspace
7442 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7443 		 * shenanigans as KVM doesn't support modifying the rep count,
7444 		 * and the emulator ensures @count doesn't overflow the buffer.
7445 		 */
7446 	} else {
7447 		int r = __emulator_pio_in(vcpu, size, port, count);
7448 		if (!r)
7449 			return r;
7450 
7451 		/* Results already available, fall through.  */
7452 	}
7453 
7454 	complete_emulator_pio_in(vcpu, val);
7455 	return 1;
7456 }
7457 
7458 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7459 				    int size, unsigned short port, void *val,
7460 				    unsigned int count)
7461 {
7462 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7463 
7464 }
7465 
7466 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7467 			    unsigned short port, const void *val,
7468 			    unsigned int count)
7469 {
7470 	int ret;
7471 
7472 	memcpy(vcpu->arch.pio_data, val, size * count);
7473 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7474 	ret = emulator_pio_in_out(vcpu, size, port, count, false);
7475 	if (ret)
7476                 vcpu->arch.pio.count = 0;
7477 
7478         return ret;
7479 }
7480 
7481 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7482 				     int size, unsigned short port,
7483 				     const void *val, unsigned int count)
7484 {
7485 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7486 }
7487 
7488 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7489 {
7490 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7491 }
7492 
7493 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7494 {
7495 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7496 }
7497 
7498 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7499 {
7500 	if (!need_emulate_wbinvd(vcpu))
7501 		return X86EMUL_CONTINUE;
7502 
7503 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7504 		int cpu = get_cpu();
7505 
7506 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7507 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7508 				wbinvd_ipi, NULL, 1);
7509 		put_cpu();
7510 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7511 	} else
7512 		wbinvd();
7513 	return X86EMUL_CONTINUE;
7514 }
7515 
7516 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7517 {
7518 	kvm_emulate_wbinvd_noskip(vcpu);
7519 	return kvm_skip_emulated_instruction(vcpu);
7520 }
7521 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7522 
7523 
7524 
7525 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7526 {
7527 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7528 }
7529 
7530 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7531 			    unsigned long *dest)
7532 {
7533 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7534 }
7535 
7536 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7537 			   unsigned long value)
7538 {
7539 
7540 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7541 }
7542 
7543 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7544 {
7545 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7546 }
7547 
7548 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7549 {
7550 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7551 	unsigned long value;
7552 
7553 	switch (cr) {
7554 	case 0:
7555 		value = kvm_read_cr0(vcpu);
7556 		break;
7557 	case 2:
7558 		value = vcpu->arch.cr2;
7559 		break;
7560 	case 3:
7561 		value = kvm_read_cr3(vcpu);
7562 		break;
7563 	case 4:
7564 		value = kvm_read_cr4(vcpu);
7565 		break;
7566 	case 8:
7567 		value = kvm_get_cr8(vcpu);
7568 		break;
7569 	default:
7570 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7571 		return 0;
7572 	}
7573 
7574 	return value;
7575 }
7576 
7577 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7578 {
7579 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7580 	int res = 0;
7581 
7582 	switch (cr) {
7583 	case 0:
7584 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7585 		break;
7586 	case 2:
7587 		vcpu->arch.cr2 = val;
7588 		break;
7589 	case 3:
7590 		res = kvm_set_cr3(vcpu, val);
7591 		break;
7592 	case 4:
7593 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7594 		break;
7595 	case 8:
7596 		res = kvm_set_cr8(vcpu, val);
7597 		break;
7598 	default:
7599 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7600 		res = -1;
7601 	}
7602 
7603 	return res;
7604 }
7605 
7606 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7607 {
7608 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7609 }
7610 
7611 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7612 {
7613 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7614 }
7615 
7616 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7617 {
7618 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7619 }
7620 
7621 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7622 {
7623 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7624 }
7625 
7626 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7627 {
7628 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7629 }
7630 
7631 static unsigned long emulator_get_cached_segment_base(
7632 	struct x86_emulate_ctxt *ctxt, int seg)
7633 {
7634 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7635 }
7636 
7637 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7638 				 struct desc_struct *desc, u32 *base3,
7639 				 int seg)
7640 {
7641 	struct kvm_segment var;
7642 
7643 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7644 	*selector = var.selector;
7645 
7646 	if (var.unusable) {
7647 		memset(desc, 0, sizeof(*desc));
7648 		if (base3)
7649 			*base3 = 0;
7650 		return false;
7651 	}
7652 
7653 	if (var.g)
7654 		var.limit >>= 12;
7655 	set_desc_limit(desc, var.limit);
7656 	set_desc_base(desc, (unsigned long)var.base);
7657 #ifdef CONFIG_X86_64
7658 	if (base3)
7659 		*base3 = var.base >> 32;
7660 #endif
7661 	desc->type = var.type;
7662 	desc->s = var.s;
7663 	desc->dpl = var.dpl;
7664 	desc->p = var.present;
7665 	desc->avl = var.avl;
7666 	desc->l = var.l;
7667 	desc->d = var.db;
7668 	desc->g = var.g;
7669 
7670 	return true;
7671 }
7672 
7673 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7674 				 struct desc_struct *desc, u32 base3,
7675 				 int seg)
7676 {
7677 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7678 	struct kvm_segment var;
7679 
7680 	var.selector = selector;
7681 	var.base = get_desc_base(desc);
7682 #ifdef CONFIG_X86_64
7683 	var.base |= ((u64)base3) << 32;
7684 #endif
7685 	var.limit = get_desc_limit(desc);
7686 	if (desc->g)
7687 		var.limit = (var.limit << 12) | 0xfff;
7688 	var.type = desc->type;
7689 	var.dpl = desc->dpl;
7690 	var.db = desc->d;
7691 	var.s = desc->s;
7692 	var.l = desc->l;
7693 	var.g = desc->g;
7694 	var.avl = desc->avl;
7695 	var.present = desc->p;
7696 	var.unusable = !var.present;
7697 	var.padding = 0;
7698 
7699 	kvm_set_segment(vcpu, &var, seg);
7700 	return;
7701 }
7702 
7703 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7704 					u32 msr_index, u64 *pdata)
7705 {
7706 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7707 	int r;
7708 
7709 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7710 
7711 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7712 				    complete_emulated_rdmsr, r)) {
7713 		/* Bounce to user space */
7714 		return X86EMUL_IO_NEEDED;
7715 	}
7716 
7717 	return r;
7718 }
7719 
7720 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7721 					u32 msr_index, u64 data)
7722 {
7723 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7724 	int r;
7725 
7726 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7727 
7728 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7729 				    complete_emulated_msr_access, r)) {
7730 		/* Bounce to user space */
7731 		return X86EMUL_IO_NEEDED;
7732 	}
7733 
7734 	return r;
7735 }
7736 
7737 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7738 			    u32 msr_index, u64 *pdata)
7739 {
7740 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7741 }
7742 
7743 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7744 			    u32 msr_index, u64 data)
7745 {
7746 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7747 }
7748 
7749 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7750 {
7751 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7752 
7753 	return vcpu->arch.smbase;
7754 }
7755 
7756 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7757 {
7758 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7759 
7760 	vcpu->arch.smbase = smbase;
7761 }
7762 
7763 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7764 			      u32 pmc)
7765 {
7766 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7767 		return 0;
7768 	return -EINVAL;
7769 }
7770 
7771 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7772 			     u32 pmc, u64 *pdata)
7773 {
7774 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7775 }
7776 
7777 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7778 {
7779 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7780 }
7781 
7782 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7783 			      struct x86_instruction_info *info,
7784 			      enum x86_intercept_stage stage)
7785 {
7786 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7787 					    &ctxt->exception);
7788 }
7789 
7790 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7791 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7792 			      bool exact_only)
7793 {
7794 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7795 }
7796 
7797 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7798 {
7799 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7800 }
7801 
7802 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7803 {
7804 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7805 }
7806 
7807 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7808 {
7809 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7810 }
7811 
7812 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7813 {
7814 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7815 }
7816 
7817 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7818 {
7819 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7820 }
7821 
7822 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7823 {
7824 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7825 }
7826 
7827 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7828 {
7829 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7830 }
7831 
7832 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7833 {
7834 	return emul_to_vcpu(ctxt)->arch.hflags;
7835 }
7836 
7837 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7838 {
7839 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7840 
7841 	kvm_smm_changed(vcpu, false);
7842 }
7843 
7844 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7845 				  const char *smstate)
7846 {
7847 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7848 }
7849 
7850 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7851 {
7852 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7853 }
7854 
7855 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7856 {
7857 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7858 }
7859 
7860 static const struct x86_emulate_ops emulate_ops = {
7861 	.read_gpr            = emulator_read_gpr,
7862 	.write_gpr           = emulator_write_gpr,
7863 	.read_std            = emulator_read_std,
7864 	.write_std           = emulator_write_std,
7865 	.read_phys           = kvm_read_guest_phys_system,
7866 	.fetch               = kvm_fetch_guest_virt,
7867 	.read_emulated       = emulator_read_emulated,
7868 	.write_emulated      = emulator_write_emulated,
7869 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7870 	.invlpg              = emulator_invlpg,
7871 	.pio_in_emulated     = emulator_pio_in_emulated,
7872 	.pio_out_emulated    = emulator_pio_out_emulated,
7873 	.get_segment         = emulator_get_segment,
7874 	.set_segment         = emulator_set_segment,
7875 	.get_cached_segment_base = emulator_get_cached_segment_base,
7876 	.get_gdt             = emulator_get_gdt,
7877 	.get_idt	     = emulator_get_idt,
7878 	.set_gdt             = emulator_set_gdt,
7879 	.set_idt	     = emulator_set_idt,
7880 	.get_cr              = emulator_get_cr,
7881 	.set_cr              = emulator_set_cr,
7882 	.cpl                 = emulator_get_cpl,
7883 	.get_dr              = emulator_get_dr,
7884 	.set_dr              = emulator_set_dr,
7885 	.get_smbase          = emulator_get_smbase,
7886 	.set_smbase          = emulator_set_smbase,
7887 	.set_msr_with_filter = emulator_set_msr_with_filter,
7888 	.get_msr_with_filter = emulator_get_msr_with_filter,
7889 	.set_msr             = emulator_set_msr,
7890 	.get_msr             = emulator_get_msr,
7891 	.check_pmc	     = emulator_check_pmc,
7892 	.read_pmc            = emulator_read_pmc,
7893 	.halt                = emulator_halt,
7894 	.wbinvd              = emulator_wbinvd,
7895 	.fix_hypercall       = emulator_fix_hypercall,
7896 	.intercept           = emulator_intercept,
7897 	.get_cpuid           = emulator_get_cpuid,
7898 	.guest_has_long_mode = emulator_guest_has_long_mode,
7899 	.guest_has_movbe     = emulator_guest_has_movbe,
7900 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7901 	.guest_has_rdpid     = emulator_guest_has_rdpid,
7902 	.set_nmi_mask        = emulator_set_nmi_mask,
7903 	.get_hflags          = emulator_get_hflags,
7904 	.exiting_smm         = emulator_exiting_smm,
7905 	.leave_smm           = emulator_leave_smm,
7906 	.triple_fault        = emulator_triple_fault,
7907 	.set_xcr             = emulator_set_xcr,
7908 };
7909 
7910 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7911 {
7912 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7913 	/*
7914 	 * an sti; sti; sequence only disable interrupts for the first
7915 	 * instruction. So, if the last instruction, be it emulated or
7916 	 * not, left the system with the INT_STI flag enabled, it
7917 	 * means that the last instruction is an sti. We should not
7918 	 * leave the flag on in this case. The same goes for mov ss
7919 	 */
7920 	if (int_shadow & mask)
7921 		mask = 0;
7922 	if (unlikely(int_shadow || mask)) {
7923 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7924 		if (!mask)
7925 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7926 	}
7927 }
7928 
7929 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7930 {
7931 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7932 	if (ctxt->exception.vector == PF_VECTOR)
7933 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7934 
7935 	if (ctxt->exception.error_code_valid)
7936 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7937 				      ctxt->exception.error_code);
7938 	else
7939 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7940 	return false;
7941 }
7942 
7943 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7944 {
7945 	struct x86_emulate_ctxt *ctxt;
7946 
7947 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7948 	if (!ctxt) {
7949 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7950 		return NULL;
7951 	}
7952 
7953 	ctxt->vcpu = vcpu;
7954 	ctxt->ops = &emulate_ops;
7955 	vcpu->arch.emulate_ctxt = ctxt;
7956 
7957 	return ctxt;
7958 }
7959 
7960 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7961 {
7962 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7963 	int cs_db, cs_l;
7964 
7965 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7966 
7967 	ctxt->gpa_available = false;
7968 	ctxt->eflags = kvm_get_rflags(vcpu);
7969 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7970 
7971 	ctxt->eip = kvm_rip_read(vcpu);
7972 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7973 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7974 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7975 		     cs_db				? X86EMUL_MODE_PROT32 :
7976 							  X86EMUL_MODE_PROT16;
7977 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7978 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7979 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7980 
7981 	ctxt->interruptibility = 0;
7982 	ctxt->have_exception = false;
7983 	ctxt->exception.vector = -1;
7984 	ctxt->perm_ok = false;
7985 
7986 	init_decode_cache(ctxt);
7987 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7988 }
7989 
7990 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7991 {
7992 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7993 	int ret;
7994 
7995 	init_emulate_ctxt(vcpu);
7996 
7997 	ctxt->op_bytes = 2;
7998 	ctxt->ad_bytes = 2;
7999 	ctxt->_eip = ctxt->eip + inc_eip;
8000 	ret = emulate_int_real(ctxt, irq);
8001 
8002 	if (ret != X86EMUL_CONTINUE) {
8003 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8004 	} else {
8005 		ctxt->eip = ctxt->_eip;
8006 		kvm_rip_write(vcpu, ctxt->eip);
8007 		kvm_set_rflags(vcpu, ctxt->eflags);
8008 	}
8009 }
8010 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8011 
8012 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8013 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8014 {
8015 	struct kvm_run *run = vcpu->run;
8016 	u64 info[5];
8017 	u8 info_start;
8018 
8019 	/*
8020 	 * Zero the whole array used to retrieve the exit info, as casting to
8021 	 * u32 for select entries will leave some chunks uninitialized.
8022 	 */
8023 	memset(&info, 0, sizeof(info));
8024 
8025 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8026 					   &info[2], (u32 *)&info[3],
8027 					   (u32 *)&info[4]);
8028 
8029 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8030 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8031 
8032 	/*
8033 	 * There's currently space for 13 entries, but 5 are used for the exit
8034 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8035 	 * when expanding kvm_run.emulation_failure in the future.
8036 	 */
8037 	if (WARN_ON_ONCE(ndata > 4))
8038 		ndata = 4;
8039 
8040 	/* Always include the flags as a 'data' entry. */
8041 	info_start = 1;
8042 	run->emulation_failure.flags = 0;
8043 
8044 	if (insn_size) {
8045 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8046 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8047 		info_start += 2;
8048 		run->emulation_failure.flags |=
8049 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8050 		run->emulation_failure.insn_size = insn_size;
8051 		memset(run->emulation_failure.insn_bytes, 0x90,
8052 		       sizeof(run->emulation_failure.insn_bytes));
8053 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8054 	}
8055 
8056 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8057 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8058 	       ndata * sizeof(data[0]));
8059 
8060 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8061 }
8062 
8063 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8064 {
8065 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8066 
8067 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8068 				       ctxt->fetch.end - ctxt->fetch.data);
8069 }
8070 
8071 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8072 					  u8 ndata)
8073 {
8074 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8075 }
8076 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8077 
8078 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8079 {
8080 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8081 }
8082 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8083 
8084 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8085 {
8086 	struct kvm *kvm = vcpu->kvm;
8087 
8088 	++vcpu->stat.insn_emulation_fail;
8089 	trace_kvm_emulate_insn_failed(vcpu);
8090 
8091 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8092 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8093 		return 1;
8094 	}
8095 
8096 	if (kvm->arch.exit_on_emulation_error ||
8097 	    (emulation_type & EMULTYPE_SKIP)) {
8098 		prepare_emulation_ctxt_failure_exit(vcpu);
8099 		return 0;
8100 	}
8101 
8102 	kvm_queue_exception(vcpu, UD_VECTOR);
8103 
8104 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8105 		prepare_emulation_ctxt_failure_exit(vcpu);
8106 		return 0;
8107 	}
8108 
8109 	return 1;
8110 }
8111 
8112 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8113 				  bool write_fault_to_shadow_pgtable,
8114 				  int emulation_type)
8115 {
8116 	gpa_t gpa = cr2_or_gpa;
8117 	kvm_pfn_t pfn;
8118 
8119 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8120 		return false;
8121 
8122 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8123 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8124 		return false;
8125 
8126 	if (!vcpu->arch.mmu->root_role.direct) {
8127 		/*
8128 		 * Write permission should be allowed since only
8129 		 * write access need to be emulated.
8130 		 */
8131 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8132 
8133 		/*
8134 		 * If the mapping is invalid in guest, let cpu retry
8135 		 * it to generate fault.
8136 		 */
8137 		if (gpa == UNMAPPED_GVA)
8138 			return true;
8139 	}
8140 
8141 	/*
8142 	 * Do not retry the unhandleable instruction if it faults on the
8143 	 * readonly host memory, otherwise it will goto a infinite loop:
8144 	 * retry instruction -> write #PF -> emulation fail -> retry
8145 	 * instruction -> ...
8146 	 */
8147 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8148 
8149 	/*
8150 	 * If the instruction failed on the error pfn, it can not be fixed,
8151 	 * report the error to userspace.
8152 	 */
8153 	if (is_error_noslot_pfn(pfn))
8154 		return false;
8155 
8156 	kvm_release_pfn_clean(pfn);
8157 
8158 	/* The instructions are well-emulated on direct mmu. */
8159 	if (vcpu->arch.mmu->root_role.direct) {
8160 		unsigned int indirect_shadow_pages;
8161 
8162 		write_lock(&vcpu->kvm->mmu_lock);
8163 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8164 		write_unlock(&vcpu->kvm->mmu_lock);
8165 
8166 		if (indirect_shadow_pages)
8167 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8168 
8169 		return true;
8170 	}
8171 
8172 	/*
8173 	 * if emulation was due to access to shadowed page table
8174 	 * and it failed try to unshadow page and re-enter the
8175 	 * guest to let CPU execute the instruction.
8176 	 */
8177 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8178 
8179 	/*
8180 	 * If the access faults on its page table, it can not
8181 	 * be fixed by unprotecting shadow page and it should
8182 	 * be reported to userspace.
8183 	 */
8184 	return !write_fault_to_shadow_pgtable;
8185 }
8186 
8187 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8188 			      gpa_t cr2_or_gpa,  int emulation_type)
8189 {
8190 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8191 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8192 
8193 	last_retry_eip = vcpu->arch.last_retry_eip;
8194 	last_retry_addr = vcpu->arch.last_retry_addr;
8195 
8196 	/*
8197 	 * If the emulation is caused by #PF and it is non-page_table
8198 	 * writing instruction, it means the VM-EXIT is caused by shadow
8199 	 * page protected, we can zap the shadow page and retry this
8200 	 * instruction directly.
8201 	 *
8202 	 * Note: if the guest uses a non-page-table modifying instruction
8203 	 * on the PDE that points to the instruction, then we will unmap
8204 	 * the instruction and go to an infinite loop. So, we cache the
8205 	 * last retried eip and the last fault address, if we meet the eip
8206 	 * and the address again, we can break out of the potential infinite
8207 	 * loop.
8208 	 */
8209 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8210 
8211 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8212 		return false;
8213 
8214 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8215 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8216 		return false;
8217 
8218 	if (x86_page_table_writing_insn(ctxt))
8219 		return false;
8220 
8221 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8222 		return false;
8223 
8224 	vcpu->arch.last_retry_eip = ctxt->eip;
8225 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8226 
8227 	if (!vcpu->arch.mmu->root_role.direct)
8228 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8229 
8230 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8231 
8232 	return true;
8233 }
8234 
8235 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8236 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8237 
8238 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8239 {
8240 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8241 
8242 	if (entering_smm) {
8243 		vcpu->arch.hflags |= HF_SMM_MASK;
8244 	} else {
8245 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8246 
8247 		/* Process a latched INIT or SMI, if any.  */
8248 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8249 
8250 		/*
8251 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8252 		 * on SMM exit we still need to reload them from
8253 		 * guest memory
8254 		 */
8255 		vcpu->arch.pdptrs_from_userspace = false;
8256 	}
8257 
8258 	kvm_mmu_reset_context(vcpu);
8259 }
8260 
8261 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8262 				unsigned long *db)
8263 {
8264 	u32 dr6 = 0;
8265 	int i;
8266 	u32 enable, rwlen;
8267 
8268 	enable = dr7;
8269 	rwlen = dr7 >> 16;
8270 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8271 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8272 			dr6 |= (1 << i);
8273 	return dr6;
8274 }
8275 
8276 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8277 {
8278 	struct kvm_run *kvm_run = vcpu->run;
8279 
8280 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8281 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8282 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8283 		kvm_run->debug.arch.exception = DB_VECTOR;
8284 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8285 		return 0;
8286 	}
8287 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8288 	return 1;
8289 }
8290 
8291 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8292 {
8293 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8294 	int r;
8295 
8296 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8297 	if (unlikely(!r))
8298 		return 0;
8299 
8300 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8301 
8302 	/*
8303 	 * rflags is the old, "raw" value of the flags.  The new value has
8304 	 * not been saved yet.
8305 	 *
8306 	 * This is correct even for TF set by the guest, because "the
8307 	 * processor will not generate this exception after the instruction
8308 	 * that sets the TF flag".
8309 	 */
8310 	if (unlikely(rflags & X86_EFLAGS_TF))
8311 		r = kvm_vcpu_do_singlestep(vcpu);
8312 	return r;
8313 }
8314 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8315 
8316 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
8317 {
8318 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8319 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8320 		struct kvm_run *kvm_run = vcpu->run;
8321 		unsigned long eip = kvm_get_linear_rip(vcpu);
8322 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8323 					   vcpu->arch.guest_debug_dr7,
8324 					   vcpu->arch.eff_db);
8325 
8326 		if (dr6 != 0) {
8327 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8328 			kvm_run->debug.arch.pc = eip;
8329 			kvm_run->debug.arch.exception = DB_VECTOR;
8330 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8331 			*r = 0;
8332 			return true;
8333 		}
8334 	}
8335 
8336 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8337 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8338 		unsigned long eip = kvm_get_linear_rip(vcpu);
8339 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8340 					   vcpu->arch.dr7,
8341 					   vcpu->arch.db);
8342 
8343 		if (dr6 != 0) {
8344 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8345 			*r = 1;
8346 			return true;
8347 		}
8348 	}
8349 
8350 	return false;
8351 }
8352 
8353 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8354 {
8355 	switch (ctxt->opcode_len) {
8356 	case 1:
8357 		switch (ctxt->b) {
8358 		case 0xe4:	/* IN */
8359 		case 0xe5:
8360 		case 0xec:
8361 		case 0xed:
8362 		case 0xe6:	/* OUT */
8363 		case 0xe7:
8364 		case 0xee:
8365 		case 0xef:
8366 		case 0x6c:	/* INS */
8367 		case 0x6d:
8368 		case 0x6e:	/* OUTS */
8369 		case 0x6f:
8370 			return true;
8371 		}
8372 		break;
8373 	case 2:
8374 		switch (ctxt->b) {
8375 		case 0x33:	/* RDPMC */
8376 			return true;
8377 		}
8378 		break;
8379 	}
8380 
8381 	return false;
8382 }
8383 
8384 /*
8385  * Decode an instruction for emulation.  The caller is responsible for handling
8386  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8387  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8388  * code breakpoints have higher priority and thus have already been done by
8389  * hardware.
8390  *
8391  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8392  *     response to a machine check.
8393  */
8394 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8395 				    void *insn, int insn_len)
8396 {
8397 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8398 	int r;
8399 
8400 	init_emulate_ctxt(vcpu);
8401 
8402 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8403 
8404 	trace_kvm_emulate_insn_start(vcpu);
8405 	++vcpu->stat.insn_emulation;
8406 
8407 	return r;
8408 }
8409 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8410 
8411 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8412 			    int emulation_type, void *insn, int insn_len)
8413 {
8414 	int r;
8415 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8416 	bool writeback = true;
8417 	bool write_fault_to_spt;
8418 
8419 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8420 		return 1;
8421 
8422 	vcpu->arch.l1tf_flush_l1d = true;
8423 
8424 	/*
8425 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8426 	 * never reused.
8427 	 */
8428 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8429 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8430 
8431 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8432 		kvm_clear_exception_queue(vcpu);
8433 
8434 		/*
8435 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8436 		 * are fault-like and are higher priority than any faults on
8437 		 * the code fetch itself.
8438 		 */
8439 		if (!(emulation_type & EMULTYPE_SKIP) &&
8440 		    kvm_vcpu_check_code_breakpoint(vcpu, &r))
8441 			return r;
8442 
8443 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8444 						    insn, insn_len);
8445 		if (r != EMULATION_OK)  {
8446 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8447 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8448 				kvm_queue_exception(vcpu, UD_VECTOR);
8449 				return 1;
8450 			}
8451 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8452 						  write_fault_to_spt,
8453 						  emulation_type))
8454 				return 1;
8455 			if (ctxt->have_exception) {
8456 				/*
8457 				 * #UD should result in just EMULATION_FAILED, and trap-like
8458 				 * exception should not be encountered during decode.
8459 				 */
8460 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8461 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8462 				inject_emulated_exception(vcpu);
8463 				return 1;
8464 			}
8465 			return handle_emulation_failure(vcpu, emulation_type);
8466 		}
8467 	}
8468 
8469 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8470 	    !is_vmware_backdoor_opcode(ctxt)) {
8471 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8472 		return 1;
8473 	}
8474 
8475 	/*
8476 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8477 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8478 	 * The caller is responsible for updating interruptibility state and
8479 	 * injecting single-step #DBs.
8480 	 */
8481 	if (emulation_type & EMULTYPE_SKIP) {
8482 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8483 			ctxt->eip = (u32)ctxt->_eip;
8484 		else
8485 			ctxt->eip = ctxt->_eip;
8486 
8487 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8488 			r = 1;
8489 			goto writeback;
8490 		}
8491 
8492 		kvm_rip_write(vcpu, ctxt->eip);
8493 		if (ctxt->eflags & X86_EFLAGS_RF)
8494 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8495 		return 1;
8496 	}
8497 
8498 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8499 		return 1;
8500 
8501 	/* this is needed for vmware backdoor interface to work since it
8502 	   changes registers values  during IO operation */
8503 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8504 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8505 		emulator_invalidate_register_cache(ctxt);
8506 	}
8507 
8508 restart:
8509 	if (emulation_type & EMULTYPE_PF) {
8510 		/* Save the faulting GPA (cr2) in the address field */
8511 		ctxt->exception.address = cr2_or_gpa;
8512 
8513 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8514 		if (vcpu->arch.mmu->root_role.direct) {
8515 			ctxt->gpa_available = true;
8516 			ctxt->gpa_val = cr2_or_gpa;
8517 		}
8518 	} else {
8519 		/* Sanitize the address out of an abundance of paranoia. */
8520 		ctxt->exception.address = 0;
8521 	}
8522 
8523 	r = x86_emulate_insn(ctxt);
8524 
8525 	if (r == EMULATION_INTERCEPTED)
8526 		return 1;
8527 
8528 	if (r == EMULATION_FAILED) {
8529 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8530 					emulation_type))
8531 			return 1;
8532 
8533 		return handle_emulation_failure(vcpu, emulation_type);
8534 	}
8535 
8536 	if (ctxt->have_exception) {
8537 		r = 1;
8538 		if (inject_emulated_exception(vcpu))
8539 			return r;
8540 	} else if (vcpu->arch.pio.count) {
8541 		if (!vcpu->arch.pio.in) {
8542 			/* FIXME: return into emulator if single-stepping.  */
8543 			vcpu->arch.pio.count = 0;
8544 		} else {
8545 			writeback = false;
8546 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8547 		}
8548 		r = 0;
8549 	} else if (vcpu->mmio_needed) {
8550 		++vcpu->stat.mmio_exits;
8551 
8552 		if (!vcpu->mmio_is_write)
8553 			writeback = false;
8554 		r = 0;
8555 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8556 	} else if (vcpu->arch.complete_userspace_io) {
8557 		writeback = false;
8558 		r = 0;
8559 	} else if (r == EMULATION_RESTART)
8560 		goto restart;
8561 	else
8562 		r = 1;
8563 
8564 writeback:
8565 	if (writeback) {
8566 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8567 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8568 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8569 		if (!ctxt->have_exception ||
8570 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8571 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8572 			if (ctxt->is_branch)
8573 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8574 			kvm_rip_write(vcpu, ctxt->eip);
8575 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8576 				r = kvm_vcpu_do_singlestep(vcpu);
8577 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8578 			__kvm_set_rflags(vcpu, ctxt->eflags);
8579 		}
8580 
8581 		/*
8582 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8583 		 * do nothing, and it will be requested again as soon as
8584 		 * the shadow expires.  But we still need to check here,
8585 		 * because POPF has no interrupt shadow.
8586 		 */
8587 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8588 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8589 	} else
8590 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8591 
8592 	return r;
8593 }
8594 
8595 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8596 {
8597 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8598 }
8599 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8600 
8601 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8602 					void *insn, int insn_len)
8603 {
8604 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8605 }
8606 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8607 
8608 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8609 {
8610 	vcpu->arch.pio.count = 0;
8611 	return 1;
8612 }
8613 
8614 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8615 {
8616 	vcpu->arch.pio.count = 0;
8617 
8618 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8619 		return 1;
8620 
8621 	return kvm_skip_emulated_instruction(vcpu);
8622 }
8623 
8624 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8625 			    unsigned short port)
8626 {
8627 	unsigned long val = kvm_rax_read(vcpu);
8628 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8629 
8630 	if (ret)
8631 		return ret;
8632 
8633 	/*
8634 	 * Workaround userspace that relies on old KVM behavior of %rip being
8635 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8636 	 */
8637 	if (port == 0x7e &&
8638 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8639 		vcpu->arch.complete_userspace_io =
8640 			complete_fast_pio_out_port_0x7e;
8641 		kvm_skip_emulated_instruction(vcpu);
8642 	} else {
8643 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8644 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8645 	}
8646 	return 0;
8647 }
8648 
8649 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8650 {
8651 	unsigned long val;
8652 
8653 	/* We should only ever be called with arch.pio.count equal to 1 */
8654 	BUG_ON(vcpu->arch.pio.count != 1);
8655 
8656 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8657 		vcpu->arch.pio.count = 0;
8658 		return 1;
8659 	}
8660 
8661 	/* For size less than 4 we merge, else we zero extend */
8662 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8663 
8664 	/*
8665 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8666 	 * the copy and tracing
8667 	 */
8668 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8669 	kvm_rax_write(vcpu, val);
8670 
8671 	return kvm_skip_emulated_instruction(vcpu);
8672 }
8673 
8674 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8675 			   unsigned short port)
8676 {
8677 	unsigned long val;
8678 	int ret;
8679 
8680 	/* For size less than 4 we merge, else we zero extend */
8681 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8682 
8683 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8684 	if (ret) {
8685 		kvm_rax_write(vcpu, val);
8686 		return ret;
8687 	}
8688 
8689 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8690 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8691 
8692 	return 0;
8693 }
8694 
8695 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8696 {
8697 	int ret;
8698 
8699 	if (in)
8700 		ret = kvm_fast_pio_in(vcpu, size, port);
8701 	else
8702 		ret = kvm_fast_pio_out(vcpu, size, port);
8703 	return ret && kvm_skip_emulated_instruction(vcpu);
8704 }
8705 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8706 
8707 static int kvmclock_cpu_down_prep(unsigned int cpu)
8708 {
8709 	__this_cpu_write(cpu_tsc_khz, 0);
8710 	return 0;
8711 }
8712 
8713 static void tsc_khz_changed(void *data)
8714 {
8715 	struct cpufreq_freqs *freq = data;
8716 	unsigned long khz = 0;
8717 
8718 	if (data)
8719 		khz = freq->new;
8720 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8721 		khz = cpufreq_quick_get(raw_smp_processor_id());
8722 	if (!khz)
8723 		khz = tsc_khz;
8724 	__this_cpu_write(cpu_tsc_khz, khz);
8725 }
8726 
8727 #ifdef CONFIG_X86_64
8728 static void kvm_hyperv_tsc_notifier(void)
8729 {
8730 	struct kvm *kvm;
8731 	int cpu;
8732 
8733 	mutex_lock(&kvm_lock);
8734 	list_for_each_entry(kvm, &vm_list, vm_list)
8735 		kvm_make_mclock_inprogress_request(kvm);
8736 
8737 	/* no guest entries from this point */
8738 	hyperv_stop_tsc_emulation();
8739 
8740 	/* TSC frequency always matches when on Hyper-V */
8741 	for_each_present_cpu(cpu)
8742 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8743 	kvm_max_guest_tsc_khz = tsc_khz;
8744 
8745 	list_for_each_entry(kvm, &vm_list, vm_list) {
8746 		__kvm_start_pvclock_update(kvm);
8747 		pvclock_update_vm_gtod_copy(kvm);
8748 		kvm_end_pvclock_update(kvm);
8749 	}
8750 
8751 	mutex_unlock(&kvm_lock);
8752 }
8753 #endif
8754 
8755 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8756 {
8757 	struct kvm *kvm;
8758 	struct kvm_vcpu *vcpu;
8759 	int send_ipi = 0;
8760 	unsigned long i;
8761 
8762 	/*
8763 	 * We allow guests to temporarily run on slowing clocks,
8764 	 * provided we notify them after, or to run on accelerating
8765 	 * clocks, provided we notify them before.  Thus time never
8766 	 * goes backwards.
8767 	 *
8768 	 * However, we have a problem.  We can't atomically update
8769 	 * the frequency of a given CPU from this function; it is
8770 	 * merely a notifier, which can be called from any CPU.
8771 	 * Changing the TSC frequency at arbitrary points in time
8772 	 * requires a recomputation of local variables related to
8773 	 * the TSC for each VCPU.  We must flag these local variables
8774 	 * to be updated and be sure the update takes place with the
8775 	 * new frequency before any guests proceed.
8776 	 *
8777 	 * Unfortunately, the combination of hotplug CPU and frequency
8778 	 * change creates an intractable locking scenario; the order
8779 	 * of when these callouts happen is undefined with respect to
8780 	 * CPU hotplug, and they can race with each other.  As such,
8781 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8782 	 * undefined; you can actually have a CPU frequency change take
8783 	 * place in between the computation of X and the setting of the
8784 	 * variable.  To protect against this problem, all updates of
8785 	 * the per_cpu tsc_khz variable are done in an interrupt
8786 	 * protected IPI, and all callers wishing to update the value
8787 	 * must wait for a synchronous IPI to complete (which is trivial
8788 	 * if the caller is on the CPU already).  This establishes the
8789 	 * necessary total order on variable updates.
8790 	 *
8791 	 * Note that because a guest time update may take place
8792 	 * anytime after the setting of the VCPU's request bit, the
8793 	 * correct TSC value must be set before the request.  However,
8794 	 * to ensure the update actually makes it to any guest which
8795 	 * starts running in hardware virtualization between the set
8796 	 * and the acquisition of the spinlock, we must also ping the
8797 	 * CPU after setting the request bit.
8798 	 *
8799 	 */
8800 
8801 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8802 
8803 	mutex_lock(&kvm_lock);
8804 	list_for_each_entry(kvm, &vm_list, vm_list) {
8805 		kvm_for_each_vcpu(i, vcpu, kvm) {
8806 			if (vcpu->cpu != cpu)
8807 				continue;
8808 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8809 			if (vcpu->cpu != raw_smp_processor_id())
8810 				send_ipi = 1;
8811 		}
8812 	}
8813 	mutex_unlock(&kvm_lock);
8814 
8815 	if (freq->old < freq->new && send_ipi) {
8816 		/*
8817 		 * We upscale the frequency.  Must make the guest
8818 		 * doesn't see old kvmclock values while running with
8819 		 * the new frequency, otherwise we risk the guest sees
8820 		 * time go backwards.
8821 		 *
8822 		 * In case we update the frequency for another cpu
8823 		 * (which might be in guest context) send an interrupt
8824 		 * to kick the cpu out of guest context.  Next time
8825 		 * guest context is entered kvmclock will be updated,
8826 		 * so the guest will not see stale values.
8827 		 */
8828 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8829 	}
8830 }
8831 
8832 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8833 				     void *data)
8834 {
8835 	struct cpufreq_freqs *freq = data;
8836 	int cpu;
8837 
8838 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8839 		return 0;
8840 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8841 		return 0;
8842 
8843 	for_each_cpu(cpu, freq->policy->cpus)
8844 		__kvmclock_cpufreq_notifier(freq, cpu);
8845 
8846 	return 0;
8847 }
8848 
8849 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8850 	.notifier_call  = kvmclock_cpufreq_notifier
8851 };
8852 
8853 static int kvmclock_cpu_online(unsigned int cpu)
8854 {
8855 	tsc_khz_changed(NULL);
8856 	return 0;
8857 }
8858 
8859 static void kvm_timer_init(void)
8860 {
8861 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8862 		max_tsc_khz = tsc_khz;
8863 
8864 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
8865 			struct cpufreq_policy *policy;
8866 			int cpu;
8867 
8868 			cpu = get_cpu();
8869 			policy = cpufreq_cpu_get(cpu);
8870 			if (policy) {
8871 				if (policy->cpuinfo.max_freq)
8872 					max_tsc_khz = policy->cpuinfo.max_freq;
8873 				cpufreq_cpu_put(policy);
8874 			}
8875 			put_cpu();
8876 		}
8877 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8878 					  CPUFREQ_TRANSITION_NOTIFIER);
8879 	}
8880 
8881 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8882 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8883 }
8884 
8885 #ifdef CONFIG_X86_64
8886 static void pvclock_gtod_update_fn(struct work_struct *work)
8887 {
8888 	struct kvm *kvm;
8889 	struct kvm_vcpu *vcpu;
8890 	unsigned long i;
8891 
8892 	mutex_lock(&kvm_lock);
8893 	list_for_each_entry(kvm, &vm_list, vm_list)
8894 		kvm_for_each_vcpu(i, vcpu, kvm)
8895 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8896 	atomic_set(&kvm_guest_has_master_clock, 0);
8897 	mutex_unlock(&kvm_lock);
8898 }
8899 
8900 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8901 
8902 /*
8903  * Indirection to move queue_work() out of the tk_core.seq write held
8904  * region to prevent possible deadlocks against time accessors which
8905  * are invoked with work related locks held.
8906  */
8907 static void pvclock_irq_work_fn(struct irq_work *w)
8908 {
8909 	queue_work(system_long_wq, &pvclock_gtod_work);
8910 }
8911 
8912 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8913 
8914 /*
8915  * Notification about pvclock gtod data update.
8916  */
8917 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8918 			       void *priv)
8919 {
8920 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8921 	struct timekeeper *tk = priv;
8922 
8923 	update_pvclock_gtod(tk);
8924 
8925 	/*
8926 	 * Disable master clock if host does not trust, or does not use,
8927 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8928 	 * this is invoked with tk_core.seq write held.
8929 	 */
8930 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8931 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8932 		irq_work_queue(&pvclock_irq_work);
8933 	return 0;
8934 }
8935 
8936 static struct notifier_block pvclock_gtod_notifier = {
8937 	.notifier_call = pvclock_gtod_notify,
8938 };
8939 #endif
8940 
8941 int kvm_arch_init(void *opaque)
8942 {
8943 	struct kvm_x86_init_ops *ops = opaque;
8944 	int r;
8945 
8946 	if (kvm_x86_ops.hardware_enable) {
8947 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8948 		r = -EEXIST;
8949 		goto out;
8950 	}
8951 
8952 	if (!ops->cpu_has_kvm_support()) {
8953 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8954 				   ops->runtime_ops->name);
8955 		r = -EOPNOTSUPP;
8956 		goto out;
8957 	}
8958 	if (ops->disabled_by_bios()) {
8959 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8960 				   ops->runtime_ops->name);
8961 		r = -EOPNOTSUPP;
8962 		goto out;
8963 	}
8964 
8965 	/*
8966 	 * KVM explicitly assumes that the guest has an FPU and
8967 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8968 	 * vCPU's FPU state as a fxregs_state struct.
8969 	 */
8970 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8971 		printk(KERN_ERR "kvm: inadequate fpu\n");
8972 		r = -EOPNOTSUPP;
8973 		goto out;
8974 	}
8975 
8976 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8977 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
8978 		r = -EOPNOTSUPP;
8979 		goto out;
8980 	}
8981 
8982 	r = -ENOMEM;
8983 
8984 	x86_emulator_cache = kvm_alloc_emulator_cache();
8985 	if (!x86_emulator_cache) {
8986 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8987 		goto out;
8988 	}
8989 
8990 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8991 	if (!user_return_msrs) {
8992 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8993 		goto out_free_x86_emulator_cache;
8994 	}
8995 	kvm_nr_uret_msrs = 0;
8996 
8997 	r = kvm_mmu_vendor_module_init();
8998 	if (r)
8999 		goto out_free_percpu;
9000 
9001 	kvm_timer_init();
9002 
9003 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9004 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9005 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9006 	}
9007 
9008 	if (pi_inject_timer == -1)
9009 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9010 #ifdef CONFIG_X86_64
9011 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9012 
9013 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9014 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9015 #endif
9016 
9017 	return 0;
9018 
9019 out_free_percpu:
9020 	free_percpu(user_return_msrs);
9021 out_free_x86_emulator_cache:
9022 	kmem_cache_destroy(x86_emulator_cache);
9023 out:
9024 	return r;
9025 }
9026 
9027 void kvm_arch_exit(void)
9028 {
9029 #ifdef CONFIG_X86_64
9030 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9031 		clear_hv_tscchange_cb();
9032 #endif
9033 	kvm_lapic_exit();
9034 
9035 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9036 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9037 					    CPUFREQ_TRANSITION_NOTIFIER);
9038 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9039 #ifdef CONFIG_X86_64
9040 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9041 	irq_work_sync(&pvclock_irq_work);
9042 	cancel_work_sync(&pvclock_gtod_work);
9043 #endif
9044 	kvm_x86_ops.hardware_enable = NULL;
9045 	kvm_mmu_vendor_module_exit();
9046 	free_percpu(user_return_msrs);
9047 	kmem_cache_destroy(x86_emulator_cache);
9048 #ifdef CONFIG_KVM_XEN
9049 	static_key_deferred_flush(&kvm_xen_enabled);
9050 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9051 #endif
9052 }
9053 
9054 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9055 {
9056 	/*
9057 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9058 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9059 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9060 	 * managed by userspace, in which case userspace is responsible for
9061 	 * handling wake events.
9062 	 */
9063 	++vcpu->stat.halt_exits;
9064 	if (lapic_in_kernel(vcpu)) {
9065 		vcpu->arch.mp_state = state;
9066 		return 1;
9067 	} else {
9068 		vcpu->run->exit_reason = reason;
9069 		return 0;
9070 	}
9071 }
9072 
9073 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9074 {
9075 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9076 }
9077 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9078 
9079 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9080 {
9081 	int ret = kvm_skip_emulated_instruction(vcpu);
9082 	/*
9083 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9084 	 * KVM_EXIT_DEBUG here.
9085 	 */
9086 	return kvm_emulate_halt_noskip(vcpu) && ret;
9087 }
9088 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9089 
9090 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9091 {
9092 	int ret = kvm_skip_emulated_instruction(vcpu);
9093 
9094 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9095 					KVM_EXIT_AP_RESET_HOLD) && ret;
9096 }
9097 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9098 
9099 #ifdef CONFIG_X86_64
9100 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9101 			        unsigned long clock_type)
9102 {
9103 	struct kvm_clock_pairing clock_pairing;
9104 	struct timespec64 ts;
9105 	u64 cycle;
9106 	int ret;
9107 
9108 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9109 		return -KVM_EOPNOTSUPP;
9110 
9111 	/*
9112 	 * When tsc is in permanent catchup mode guests won't be able to use
9113 	 * pvclock_read_retry loop to get consistent view of pvclock
9114 	 */
9115 	if (vcpu->arch.tsc_always_catchup)
9116 		return -KVM_EOPNOTSUPP;
9117 
9118 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9119 		return -KVM_EOPNOTSUPP;
9120 
9121 	clock_pairing.sec = ts.tv_sec;
9122 	clock_pairing.nsec = ts.tv_nsec;
9123 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9124 	clock_pairing.flags = 0;
9125 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9126 
9127 	ret = 0;
9128 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9129 			    sizeof(struct kvm_clock_pairing)))
9130 		ret = -KVM_EFAULT;
9131 
9132 	return ret;
9133 }
9134 #endif
9135 
9136 /*
9137  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9138  *
9139  * @apicid - apicid of vcpu to be kicked.
9140  */
9141 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9142 {
9143 	struct kvm_lapic_irq lapic_irq;
9144 
9145 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
9146 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
9147 	lapic_irq.level = 0;
9148 	lapic_irq.dest_id = apicid;
9149 	lapic_irq.msi_redir_hint = false;
9150 
9151 	lapic_irq.delivery_mode = APIC_DM_REMRD;
9152 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9153 }
9154 
9155 bool kvm_apicv_activated(struct kvm *kvm)
9156 {
9157 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9158 }
9159 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9160 
9161 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9162 {
9163 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9164 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9165 
9166 	return (vm_reasons | vcpu_reasons) == 0;
9167 }
9168 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9169 
9170 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9171 				       enum kvm_apicv_inhibit reason, bool set)
9172 {
9173 	if (set)
9174 		__set_bit(reason, inhibits);
9175 	else
9176 		__clear_bit(reason, inhibits);
9177 
9178 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9179 }
9180 
9181 static void kvm_apicv_init(struct kvm *kvm)
9182 {
9183 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9184 
9185 	init_rwsem(&kvm->arch.apicv_update_lock);
9186 
9187 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9188 
9189 	if (!enable_apicv)
9190 		set_or_clear_apicv_inhibit(inhibits,
9191 					   APICV_INHIBIT_REASON_DISABLE, true);
9192 }
9193 
9194 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9195 {
9196 	struct kvm_vcpu *target = NULL;
9197 	struct kvm_apic_map *map;
9198 
9199 	vcpu->stat.directed_yield_attempted++;
9200 
9201 	if (single_task_running())
9202 		goto no_yield;
9203 
9204 	rcu_read_lock();
9205 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9206 
9207 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9208 		target = map->phys_map[dest_id]->vcpu;
9209 
9210 	rcu_read_unlock();
9211 
9212 	if (!target || !READ_ONCE(target->ready))
9213 		goto no_yield;
9214 
9215 	/* Ignore requests to yield to self */
9216 	if (vcpu == target)
9217 		goto no_yield;
9218 
9219 	if (kvm_vcpu_yield_to(target) <= 0)
9220 		goto no_yield;
9221 
9222 	vcpu->stat.directed_yield_successful++;
9223 
9224 no_yield:
9225 	return;
9226 }
9227 
9228 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9229 {
9230 	u64 ret = vcpu->run->hypercall.ret;
9231 
9232 	if (!is_64_bit_mode(vcpu))
9233 		ret = (u32)ret;
9234 	kvm_rax_write(vcpu, ret);
9235 	++vcpu->stat.hypercalls;
9236 	return kvm_skip_emulated_instruction(vcpu);
9237 }
9238 
9239 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9240 {
9241 	unsigned long nr, a0, a1, a2, a3, ret;
9242 	int op_64_bit;
9243 
9244 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9245 		return kvm_xen_hypercall(vcpu);
9246 
9247 	if (kvm_hv_hypercall_enabled(vcpu))
9248 		return kvm_hv_hypercall(vcpu);
9249 
9250 	nr = kvm_rax_read(vcpu);
9251 	a0 = kvm_rbx_read(vcpu);
9252 	a1 = kvm_rcx_read(vcpu);
9253 	a2 = kvm_rdx_read(vcpu);
9254 	a3 = kvm_rsi_read(vcpu);
9255 
9256 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9257 
9258 	op_64_bit = is_64_bit_hypercall(vcpu);
9259 	if (!op_64_bit) {
9260 		nr &= 0xFFFFFFFF;
9261 		a0 &= 0xFFFFFFFF;
9262 		a1 &= 0xFFFFFFFF;
9263 		a2 &= 0xFFFFFFFF;
9264 		a3 &= 0xFFFFFFFF;
9265 	}
9266 
9267 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9268 		ret = -KVM_EPERM;
9269 		goto out;
9270 	}
9271 
9272 	ret = -KVM_ENOSYS;
9273 
9274 	switch (nr) {
9275 	case KVM_HC_VAPIC_POLL_IRQ:
9276 		ret = 0;
9277 		break;
9278 	case KVM_HC_KICK_CPU:
9279 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9280 			break;
9281 
9282 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9283 		kvm_sched_yield(vcpu, a1);
9284 		ret = 0;
9285 		break;
9286 #ifdef CONFIG_X86_64
9287 	case KVM_HC_CLOCK_PAIRING:
9288 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9289 		break;
9290 #endif
9291 	case KVM_HC_SEND_IPI:
9292 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9293 			break;
9294 
9295 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9296 		break;
9297 	case KVM_HC_SCHED_YIELD:
9298 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9299 			break;
9300 
9301 		kvm_sched_yield(vcpu, a0);
9302 		ret = 0;
9303 		break;
9304 	case KVM_HC_MAP_GPA_RANGE: {
9305 		u64 gpa = a0, npages = a1, attrs = a2;
9306 
9307 		ret = -KVM_ENOSYS;
9308 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9309 			break;
9310 
9311 		if (!PAGE_ALIGNED(gpa) || !npages ||
9312 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9313 			ret = -KVM_EINVAL;
9314 			break;
9315 		}
9316 
9317 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9318 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9319 		vcpu->run->hypercall.args[0]  = gpa;
9320 		vcpu->run->hypercall.args[1]  = npages;
9321 		vcpu->run->hypercall.args[2]  = attrs;
9322 		vcpu->run->hypercall.longmode = op_64_bit;
9323 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9324 		return 0;
9325 	}
9326 	default:
9327 		ret = -KVM_ENOSYS;
9328 		break;
9329 	}
9330 out:
9331 	if (!op_64_bit)
9332 		ret = (u32)ret;
9333 	kvm_rax_write(vcpu, ret);
9334 
9335 	++vcpu->stat.hypercalls;
9336 	return kvm_skip_emulated_instruction(vcpu);
9337 }
9338 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9339 
9340 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9341 {
9342 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9343 	char instruction[3];
9344 	unsigned long rip = kvm_rip_read(vcpu);
9345 
9346 	/*
9347 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9348 	 * the pieces.
9349 	 */
9350 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9351 		ctxt->exception.error_code_valid = false;
9352 		ctxt->exception.vector = UD_VECTOR;
9353 		ctxt->have_exception = true;
9354 		return X86EMUL_PROPAGATE_FAULT;
9355 	}
9356 
9357 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9358 
9359 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9360 		&ctxt->exception);
9361 }
9362 
9363 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9364 {
9365 	return vcpu->run->request_interrupt_window &&
9366 		likely(!pic_in_kernel(vcpu->kvm));
9367 }
9368 
9369 /* Called within kvm->srcu read side.  */
9370 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9371 {
9372 	struct kvm_run *kvm_run = vcpu->run;
9373 
9374 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9375 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9376 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9377 
9378 	kvm_run->ready_for_interrupt_injection =
9379 		pic_in_kernel(vcpu->kvm) ||
9380 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9381 
9382 	if (is_smm(vcpu))
9383 		kvm_run->flags |= KVM_RUN_X86_SMM;
9384 }
9385 
9386 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9387 {
9388 	int max_irr, tpr;
9389 
9390 	if (!kvm_x86_ops.update_cr8_intercept)
9391 		return;
9392 
9393 	if (!lapic_in_kernel(vcpu))
9394 		return;
9395 
9396 	if (vcpu->arch.apicv_active)
9397 		return;
9398 
9399 	if (!vcpu->arch.apic->vapic_addr)
9400 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9401 	else
9402 		max_irr = -1;
9403 
9404 	if (max_irr != -1)
9405 		max_irr >>= 4;
9406 
9407 	tpr = kvm_lapic_get_cr8(vcpu);
9408 
9409 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9410 }
9411 
9412 
9413 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9414 {
9415 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9416 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9417 		return 1;
9418 	}
9419 
9420 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9421 }
9422 
9423 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9424 {
9425 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9426 		vcpu->arch.exception.error_code = false;
9427 	static_call(kvm_x86_queue_exception)(vcpu);
9428 }
9429 
9430 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9431 {
9432 	int r;
9433 	bool can_inject = true;
9434 
9435 	/* try to reinject previous events if any */
9436 
9437 	if (vcpu->arch.exception.injected) {
9438 		kvm_inject_exception(vcpu);
9439 		can_inject = false;
9440 	}
9441 	/*
9442 	 * Do not inject an NMI or interrupt if there is a pending
9443 	 * exception.  Exceptions and interrupts are recognized at
9444 	 * instruction boundaries, i.e. the start of an instruction.
9445 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9446 	 * NMIs and interrupts, i.e. traps are recognized before an
9447 	 * NMI/interrupt that's pending on the same instruction.
9448 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9449 	 * priority, but are only generated (pended) during instruction
9450 	 * execution, i.e. a pending fault-like exception means the
9451 	 * fault occurred on the *previous* instruction and must be
9452 	 * serviced prior to recognizing any new events in order to
9453 	 * fully complete the previous instruction.
9454 	 */
9455 	else if (!vcpu->arch.exception.pending) {
9456 		if (vcpu->arch.nmi_injected) {
9457 			static_call(kvm_x86_inject_nmi)(vcpu);
9458 			can_inject = false;
9459 		} else if (vcpu->arch.interrupt.injected) {
9460 			static_call(kvm_x86_inject_irq)(vcpu);
9461 			can_inject = false;
9462 		}
9463 	}
9464 
9465 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9466 		     vcpu->arch.exception.pending);
9467 
9468 	/*
9469 	 * Call check_nested_events() even if we reinjected a previous event
9470 	 * in order for caller to determine if it should require immediate-exit
9471 	 * from L2 to L1 due to pending L1 events which require exit
9472 	 * from L2 to L1.
9473 	 */
9474 	if (is_guest_mode(vcpu)) {
9475 		r = kvm_check_nested_events(vcpu);
9476 		if (r < 0)
9477 			goto out;
9478 	}
9479 
9480 	/* try to inject new event if pending */
9481 	if (vcpu->arch.exception.pending) {
9482 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
9483 					vcpu->arch.exception.has_error_code,
9484 					vcpu->arch.exception.error_code);
9485 
9486 		vcpu->arch.exception.pending = false;
9487 		vcpu->arch.exception.injected = true;
9488 
9489 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9490 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9491 					     X86_EFLAGS_RF);
9492 
9493 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9494 			kvm_deliver_exception_payload(vcpu);
9495 			if (vcpu->arch.dr7 & DR7_GD) {
9496 				vcpu->arch.dr7 &= ~DR7_GD;
9497 				kvm_update_dr7(vcpu);
9498 			}
9499 		}
9500 
9501 		kvm_inject_exception(vcpu);
9502 		can_inject = false;
9503 	}
9504 
9505 	/* Don't inject interrupts if the user asked to avoid doing so */
9506 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9507 		return 0;
9508 
9509 	/*
9510 	 * Finally, inject interrupt events.  If an event cannot be injected
9511 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9512 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9513 	 * and can architecturally be injected, but we cannot do it right now:
9514 	 * an interrupt could have arrived just now and we have to inject it
9515 	 * as a vmexit, or there could already an event in the queue, which is
9516 	 * indicated by can_inject.  In that case we request an immediate exit
9517 	 * in order to make progress and get back here for another iteration.
9518 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9519 	 */
9520 	if (vcpu->arch.smi_pending) {
9521 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9522 		if (r < 0)
9523 			goto out;
9524 		if (r) {
9525 			vcpu->arch.smi_pending = false;
9526 			++vcpu->arch.smi_count;
9527 			enter_smm(vcpu);
9528 			can_inject = false;
9529 		} else
9530 			static_call(kvm_x86_enable_smi_window)(vcpu);
9531 	}
9532 
9533 	if (vcpu->arch.nmi_pending) {
9534 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9535 		if (r < 0)
9536 			goto out;
9537 		if (r) {
9538 			--vcpu->arch.nmi_pending;
9539 			vcpu->arch.nmi_injected = true;
9540 			static_call(kvm_x86_inject_nmi)(vcpu);
9541 			can_inject = false;
9542 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9543 		}
9544 		if (vcpu->arch.nmi_pending)
9545 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9546 	}
9547 
9548 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9549 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9550 		if (r < 0)
9551 			goto out;
9552 		if (r) {
9553 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9554 			static_call(kvm_x86_inject_irq)(vcpu);
9555 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9556 		}
9557 		if (kvm_cpu_has_injectable_intr(vcpu))
9558 			static_call(kvm_x86_enable_irq_window)(vcpu);
9559 	}
9560 
9561 	if (is_guest_mode(vcpu) &&
9562 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9563 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9564 		*req_immediate_exit = true;
9565 
9566 	WARN_ON(vcpu->arch.exception.pending);
9567 	return 0;
9568 
9569 out:
9570 	if (r == -EBUSY) {
9571 		*req_immediate_exit = true;
9572 		r = 0;
9573 	}
9574 	return r;
9575 }
9576 
9577 static void process_nmi(struct kvm_vcpu *vcpu)
9578 {
9579 	unsigned limit = 2;
9580 
9581 	/*
9582 	 * x86 is limited to one NMI running, and one NMI pending after it.
9583 	 * If an NMI is already in progress, limit further NMIs to just one.
9584 	 * Otherwise, allow two (and we'll inject the first one immediately).
9585 	 */
9586 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9587 		limit = 1;
9588 
9589 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9590 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9591 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9592 }
9593 
9594 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9595 {
9596 	u32 flags = 0;
9597 	flags |= seg->g       << 23;
9598 	flags |= seg->db      << 22;
9599 	flags |= seg->l       << 21;
9600 	flags |= seg->avl     << 20;
9601 	flags |= seg->present << 15;
9602 	flags |= seg->dpl     << 13;
9603 	flags |= seg->s       << 12;
9604 	flags |= seg->type    << 8;
9605 	return flags;
9606 }
9607 
9608 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9609 {
9610 	struct kvm_segment seg;
9611 	int offset;
9612 
9613 	kvm_get_segment(vcpu, &seg, n);
9614 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9615 
9616 	if (n < 3)
9617 		offset = 0x7f84 + n * 12;
9618 	else
9619 		offset = 0x7f2c + (n - 3) * 12;
9620 
9621 	put_smstate(u32, buf, offset + 8, seg.base);
9622 	put_smstate(u32, buf, offset + 4, seg.limit);
9623 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9624 }
9625 
9626 #ifdef CONFIG_X86_64
9627 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9628 {
9629 	struct kvm_segment seg;
9630 	int offset;
9631 	u16 flags;
9632 
9633 	kvm_get_segment(vcpu, &seg, n);
9634 	offset = 0x7e00 + n * 16;
9635 
9636 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9637 	put_smstate(u16, buf, offset, seg.selector);
9638 	put_smstate(u16, buf, offset + 2, flags);
9639 	put_smstate(u32, buf, offset + 4, seg.limit);
9640 	put_smstate(u64, buf, offset + 8, seg.base);
9641 }
9642 #endif
9643 
9644 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9645 {
9646 	struct desc_ptr dt;
9647 	struct kvm_segment seg;
9648 	unsigned long val;
9649 	int i;
9650 
9651 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9652 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9653 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9654 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9655 
9656 	for (i = 0; i < 8; i++)
9657 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9658 
9659 	kvm_get_dr(vcpu, 6, &val);
9660 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9661 	kvm_get_dr(vcpu, 7, &val);
9662 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9663 
9664 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9665 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9666 	put_smstate(u32, buf, 0x7f64, seg.base);
9667 	put_smstate(u32, buf, 0x7f60, seg.limit);
9668 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9669 
9670 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9671 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9672 	put_smstate(u32, buf, 0x7f80, seg.base);
9673 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9674 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9675 
9676 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9677 	put_smstate(u32, buf, 0x7f74, dt.address);
9678 	put_smstate(u32, buf, 0x7f70, dt.size);
9679 
9680 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9681 	put_smstate(u32, buf, 0x7f58, dt.address);
9682 	put_smstate(u32, buf, 0x7f54, dt.size);
9683 
9684 	for (i = 0; i < 6; i++)
9685 		enter_smm_save_seg_32(vcpu, buf, i);
9686 
9687 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9688 
9689 	/* revision id */
9690 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9691 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9692 }
9693 
9694 #ifdef CONFIG_X86_64
9695 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9696 {
9697 	struct desc_ptr dt;
9698 	struct kvm_segment seg;
9699 	unsigned long val;
9700 	int i;
9701 
9702 	for (i = 0; i < 16; i++)
9703 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9704 
9705 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9706 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9707 
9708 	kvm_get_dr(vcpu, 6, &val);
9709 	put_smstate(u64, buf, 0x7f68, val);
9710 	kvm_get_dr(vcpu, 7, &val);
9711 	put_smstate(u64, buf, 0x7f60, val);
9712 
9713 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9714 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9715 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9716 
9717 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9718 
9719 	/* revision id */
9720 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9721 
9722 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9723 
9724 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9725 	put_smstate(u16, buf, 0x7e90, seg.selector);
9726 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9727 	put_smstate(u32, buf, 0x7e94, seg.limit);
9728 	put_smstate(u64, buf, 0x7e98, seg.base);
9729 
9730 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9731 	put_smstate(u32, buf, 0x7e84, dt.size);
9732 	put_smstate(u64, buf, 0x7e88, dt.address);
9733 
9734 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9735 	put_smstate(u16, buf, 0x7e70, seg.selector);
9736 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9737 	put_smstate(u32, buf, 0x7e74, seg.limit);
9738 	put_smstate(u64, buf, 0x7e78, seg.base);
9739 
9740 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9741 	put_smstate(u32, buf, 0x7e64, dt.size);
9742 	put_smstate(u64, buf, 0x7e68, dt.address);
9743 
9744 	for (i = 0; i < 6; i++)
9745 		enter_smm_save_seg_64(vcpu, buf, i);
9746 }
9747 #endif
9748 
9749 static void enter_smm(struct kvm_vcpu *vcpu)
9750 {
9751 	struct kvm_segment cs, ds;
9752 	struct desc_ptr dt;
9753 	unsigned long cr0;
9754 	char buf[512];
9755 
9756 	memset(buf, 0, 512);
9757 #ifdef CONFIG_X86_64
9758 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9759 		enter_smm_save_state_64(vcpu, buf);
9760 	else
9761 #endif
9762 		enter_smm_save_state_32(vcpu, buf);
9763 
9764 	/*
9765 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9766 	 * state (e.g. leave guest mode) after we've saved the state into the
9767 	 * SMM state-save area.
9768 	 */
9769 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9770 
9771 	kvm_smm_changed(vcpu, true);
9772 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9773 
9774 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9775 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9776 	else
9777 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9778 
9779 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9780 	kvm_rip_write(vcpu, 0x8000);
9781 
9782 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9783 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9784 	vcpu->arch.cr0 = cr0;
9785 
9786 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9787 
9788 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9789 	dt.address = dt.size = 0;
9790 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9791 
9792 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9793 
9794 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9795 	cs.base = vcpu->arch.smbase;
9796 
9797 	ds.selector = 0;
9798 	ds.base = 0;
9799 
9800 	cs.limit    = ds.limit = 0xffffffff;
9801 	cs.type     = ds.type = 0x3;
9802 	cs.dpl      = ds.dpl = 0;
9803 	cs.db       = ds.db = 0;
9804 	cs.s        = ds.s = 1;
9805 	cs.l        = ds.l = 0;
9806 	cs.g        = ds.g = 1;
9807 	cs.avl      = ds.avl = 0;
9808 	cs.present  = ds.present = 1;
9809 	cs.unusable = ds.unusable = 0;
9810 	cs.padding  = ds.padding = 0;
9811 
9812 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9813 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9814 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9815 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9816 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9817 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9818 
9819 #ifdef CONFIG_X86_64
9820 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9821 		static_call(kvm_x86_set_efer)(vcpu, 0);
9822 #endif
9823 
9824 	kvm_update_cpuid_runtime(vcpu);
9825 	kvm_mmu_reset_context(vcpu);
9826 }
9827 
9828 static void process_smi(struct kvm_vcpu *vcpu)
9829 {
9830 	vcpu->arch.smi_pending = true;
9831 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9832 }
9833 
9834 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9835 				       unsigned long *vcpu_bitmap)
9836 {
9837 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9838 }
9839 
9840 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9841 {
9842 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9843 }
9844 
9845 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9846 {
9847 	bool activate;
9848 
9849 	if (!lapic_in_kernel(vcpu))
9850 		return;
9851 
9852 	down_read(&vcpu->kvm->arch.apicv_update_lock);
9853 
9854 	activate = kvm_vcpu_apicv_activated(vcpu);
9855 
9856 	if (vcpu->arch.apicv_active == activate)
9857 		goto out;
9858 
9859 	vcpu->arch.apicv_active = activate;
9860 	kvm_apic_update_apicv(vcpu);
9861 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9862 
9863 	/*
9864 	 * When APICv gets disabled, we may still have injected interrupts
9865 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9866 	 * still active when the interrupt got accepted. Make sure
9867 	 * inject_pending_event() is called to check for that.
9868 	 */
9869 	if (!vcpu->arch.apicv_active)
9870 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9871 
9872 out:
9873 	up_read(&vcpu->kvm->arch.apicv_update_lock);
9874 }
9875 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9876 
9877 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9878 				      enum kvm_apicv_inhibit reason, bool set)
9879 {
9880 	unsigned long old, new;
9881 
9882 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9883 
9884 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
9885 		return;
9886 
9887 	old = new = kvm->arch.apicv_inhibit_reasons;
9888 
9889 	set_or_clear_apicv_inhibit(&new, reason, set);
9890 
9891 	if (!!old != !!new) {
9892 		/*
9893 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9894 		 * false positives in the sanity check WARN in svm_vcpu_run().
9895 		 * This task will wait for all vCPUs to ack the kick IRQ before
9896 		 * updating apicv_inhibit_reasons, and all other vCPUs will
9897 		 * block on acquiring apicv_update_lock so that vCPUs can't
9898 		 * redo svm_vcpu_run() without seeing the new inhibit state.
9899 		 *
9900 		 * Note, holding apicv_update_lock and taking it in the read
9901 		 * side (handling the request) also prevents other vCPUs from
9902 		 * servicing the request with a stale apicv_inhibit_reasons.
9903 		 */
9904 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9905 		kvm->arch.apicv_inhibit_reasons = new;
9906 		if (new) {
9907 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9908 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
9909 		}
9910 	} else {
9911 		kvm->arch.apicv_inhibit_reasons = new;
9912 	}
9913 }
9914 
9915 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9916 				    enum kvm_apicv_inhibit reason, bool set)
9917 {
9918 	if (!enable_apicv)
9919 		return;
9920 
9921 	down_write(&kvm->arch.apicv_update_lock);
9922 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
9923 	up_write(&kvm->arch.apicv_update_lock);
9924 }
9925 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
9926 
9927 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9928 {
9929 	if (!kvm_apic_present(vcpu))
9930 		return;
9931 
9932 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9933 
9934 	if (irqchip_split(vcpu->kvm))
9935 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9936 	else {
9937 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9938 		if (ioapic_in_kernel(vcpu->kvm))
9939 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9940 	}
9941 
9942 	if (is_guest_mode(vcpu))
9943 		vcpu->arch.load_eoi_exitmap_pending = true;
9944 	else
9945 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9946 }
9947 
9948 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9949 {
9950 	u64 eoi_exit_bitmap[4];
9951 
9952 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9953 		return;
9954 
9955 	if (to_hv_vcpu(vcpu)) {
9956 		bitmap_or((ulong *)eoi_exit_bitmap,
9957 			  vcpu->arch.ioapic_handled_vectors,
9958 			  to_hv_synic(vcpu)->vec_bitmap, 256);
9959 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9960 		return;
9961 	}
9962 
9963 	static_call_cond(kvm_x86_load_eoi_exitmap)(
9964 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9965 }
9966 
9967 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9968 					    unsigned long start, unsigned long end)
9969 {
9970 	unsigned long apic_address;
9971 
9972 	/*
9973 	 * The physical address of apic access page is stored in the VMCS.
9974 	 * Update it when it becomes invalid.
9975 	 */
9976 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9977 	if (start <= apic_address && apic_address < end)
9978 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9979 }
9980 
9981 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9982 {
9983 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
9984 }
9985 
9986 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9987 {
9988 	if (!lapic_in_kernel(vcpu))
9989 		return;
9990 
9991 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
9992 }
9993 
9994 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9995 {
9996 	smp_send_reschedule(vcpu->cpu);
9997 }
9998 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9999 
10000 /*
10001  * Called within kvm->srcu read side.
10002  * Returns 1 to let vcpu_run() continue the guest execution loop without
10003  * exiting to the userspace.  Otherwise, the value will be returned to the
10004  * userspace.
10005  */
10006 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10007 {
10008 	int r;
10009 	bool req_int_win =
10010 		dm_request_for_irq_injection(vcpu) &&
10011 		kvm_cpu_accept_dm_intr(vcpu);
10012 	fastpath_t exit_fastpath;
10013 
10014 	bool req_immediate_exit = false;
10015 
10016 	/* Forbid vmenter if vcpu dirty ring is soft-full */
10017 	if (unlikely(vcpu->kvm->dirty_ring_size &&
10018 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10019 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10020 		trace_kvm_dirty_ring_exit(vcpu);
10021 		r = 0;
10022 		goto out;
10023 	}
10024 
10025 	if (kvm_request_pending(vcpu)) {
10026 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10027 			r = -EIO;
10028 			goto out;
10029 		}
10030 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10031 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10032 				r = 0;
10033 				goto out;
10034 			}
10035 		}
10036 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10037 			kvm_mmu_free_obsolete_roots(vcpu);
10038 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10039 			__kvm_migrate_timers(vcpu);
10040 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10041 			kvm_update_masterclock(vcpu->kvm);
10042 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10043 			kvm_gen_kvmclock_update(vcpu);
10044 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10045 			r = kvm_guest_time_update(vcpu);
10046 			if (unlikely(r))
10047 				goto out;
10048 		}
10049 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10050 			kvm_mmu_sync_roots(vcpu);
10051 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10052 			kvm_mmu_load_pgd(vcpu);
10053 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10054 			kvm_vcpu_flush_tlb_all(vcpu);
10055 
10056 			/* Flushing all ASIDs flushes the current ASID... */
10057 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10058 		}
10059 		kvm_service_local_tlb_flush_requests(vcpu);
10060 
10061 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10062 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10063 			r = 0;
10064 			goto out;
10065 		}
10066 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10067 			if (is_guest_mode(vcpu)) {
10068 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10069 			} else {
10070 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10071 				vcpu->mmio_needed = 0;
10072 				r = 0;
10073 				goto out;
10074 			}
10075 		}
10076 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10077 			/* Page is swapped out. Do synthetic halt */
10078 			vcpu->arch.apf.halted = true;
10079 			r = 1;
10080 			goto out;
10081 		}
10082 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10083 			record_steal_time(vcpu);
10084 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10085 			process_smi(vcpu);
10086 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10087 			process_nmi(vcpu);
10088 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10089 			kvm_pmu_handle_event(vcpu);
10090 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10091 			kvm_pmu_deliver_pmi(vcpu);
10092 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10093 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10094 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10095 				     vcpu->arch.ioapic_handled_vectors)) {
10096 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10097 				vcpu->run->eoi.vector =
10098 						vcpu->arch.pending_ioapic_eoi;
10099 				r = 0;
10100 				goto out;
10101 			}
10102 		}
10103 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10104 			vcpu_scan_ioapic(vcpu);
10105 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10106 			vcpu_load_eoi_exitmap(vcpu);
10107 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10108 			kvm_vcpu_reload_apic_access_page(vcpu);
10109 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10110 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10111 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10112 			vcpu->run->system_event.ndata = 0;
10113 			r = 0;
10114 			goto out;
10115 		}
10116 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10117 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10118 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10119 			vcpu->run->system_event.ndata = 0;
10120 			r = 0;
10121 			goto out;
10122 		}
10123 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10124 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10125 
10126 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10127 			vcpu->run->hyperv = hv_vcpu->exit;
10128 			r = 0;
10129 			goto out;
10130 		}
10131 
10132 		/*
10133 		 * KVM_REQ_HV_STIMER has to be processed after
10134 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10135 		 * depend on the guest clock being up-to-date
10136 		 */
10137 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10138 			kvm_hv_process_stimers(vcpu);
10139 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10140 			kvm_vcpu_update_apicv(vcpu);
10141 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10142 			kvm_check_async_pf_completion(vcpu);
10143 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10144 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10145 
10146 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10147 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10148 	}
10149 
10150 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10151 	    kvm_xen_has_interrupt(vcpu)) {
10152 		++vcpu->stat.req_event;
10153 		r = kvm_apic_accept_events(vcpu);
10154 		if (r < 0) {
10155 			r = 0;
10156 			goto out;
10157 		}
10158 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10159 			r = 1;
10160 			goto out;
10161 		}
10162 
10163 		r = inject_pending_event(vcpu, &req_immediate_exit);
10164 		if (r < 0) {
10165 			r = 0;
10166 			goto out;
10167 		}
10168 		if (req_int_win)
10169 			static_call(kvm_x86_enable_irq_window)(vcpu);
10170 
10171 		if (kvm_lapic_enabled(vcpu)) {
10172 			update_cr8_intercept(vcpu);
10173 			kvm_lapic_sync_to_vapic(vcpu);
10174 		}
10175 	}
10176 
10177 	r = kvm_mmu_reload(vcpu);
10178 	if (unlikely(r)) {
10179 		goto cancel_injection;
10180 	}
10181 
10182 	preempt_disable();
10183 
10184 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10185 
10186 	/*
10187 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10188 	 * IPI are then delayed after guest entry, which ensures that they
10189 	 * result in virtual interrupt delivery.
10190 	 */
10191 	local_irq_disable();
10192 
10193 	/* Store vcpu->apicv_active before vcpu->mode.  */
10194 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10195 
10196 	kvm_vcpu_srcu_read_unlock(vcpu);
10197 
10198 	/*
10199 	 * 1) We should set ->mode before checking ->requests.  Please see
10200 	 * the comment in kvm_vcpu_exiting_guest_mode().
10201 	 *
10202 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10203 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10204 	 * (see vmx_deliver_posted_interrupt).
10205 	 *
10206 	 * 3) This also orders the write to mode from any reads to the page
10207 	 * tables done while the VCPU is running.  Please see the comment
10208 	 * in kvm_flush_remote_tlbs.
10209 	 */
10210 	smp_mb__after_srcu_read_unlock();
10211 
10212 	/*
10213 	 * Process pending posted interrupts to handle the case where the
10214 	 * notification IRQ arrived in the host, or was never sent (because the
10215 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10216 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10217 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10218 	 */
10219 	if (kvm_lapic_enabled(vcpu))
10220 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10221 
10222 	if (kvm_vcpu_exit_request(vcpu)) {
10223 		vcpu->mode = OUTSIDE_GUEST_MODE;
10224 		smp_wmb();
10225 		local_irq_enable();
10226 		preempt_enable();
10227 		kvm_vcpu_srcu_read_lock(vcpu);
10228 		r = 1;
10229 		goto cancel_injection;
10230 	}
10231 
10232 	if (req_immediate_exit) {
10233 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10234 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10235 	}
10236 
10237 	fpregs_assert_state_consistent();
10238 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10239 		switch_fpu_return();
10240 
10241 	if (vcpu->arch.guest_fpu.xfd_err)
10242 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10243 
10244 	if (unlikely(vcpu->arch.switch_db_regs)) {
10245 		set_debugreg(0, 7);
10246 		set_debugreg(vcpu->arch.eff_db[0], 0);
10247 		set_debugreg(vcpu->arch.eff_db[1], 1);
10248 		set_debugreg(vcpu->arch.eff_db[2], 2);
10249 		set_debugreg(vcpu->arch.eff_db[3], 3);
10250 	} else if (unlikely(hw_breakpoint_active())) {
10251 		set_debugreg(0, 7);
10252 	}
10253 
10254 	guest_timing_enter_irqoff();
10255 
10256 	for (;;) {
10257 		/*
10258 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10259 		 * update must kick and wait for all vCPUs before toggling the
10260 		 * per-VM state, and responsing vCPUs must wait for the update
10261 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10262 		 */
10263 		WARN_ON_ONCE(kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu));
10264 
10265 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10266 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10267 			break;
10268 
10269 		if (kvm_lapic_enabled(vcpu))
10270 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10271 
10272 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10273 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10274 			break;
10275 		}
10276 	}
10277 
10278 	/*
10279 	 * Do this here before restoring debug registers on the host.  And
10280 	 * since we do this before handling the vmexit, a DR access vmexit
10281 	 * can (a) read the correct value of the debug registers, (b) set
10282 	 * KVM_DEBUGREG_WONT_EXIT again.
10283 	 */
10284 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10285 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10286 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10287 		kvm_update_dr0123(vcpu);
10288 		kvm_update_dr7(vcpu);
10289 	}
10290 
10291 	/*
10292 	 * If the guest has used debug registers, at least dr7
10293 	 * will be disabled while returning to the host.
10294 	 * If we don't have active breakpoints in the host, we don't
10295 	 * care about the messed up debug address registers. But if
10296 	 * we have some of them active, restore the old state.
10297 	 */
10298 	if (hw_breakpoint_active())
10299 		hw_breakpoint_restore();
10300 
10301 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10302 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10303 
10304 	vcpu->mode = OUTSIDE_GUEST_MODE;
10305 	smp_wmb();
10306 
10307 	/*
10308 	 * Sync xfd before calling handle_exit_irqoff() which may
10309 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10310 	 * in #NM irqoff handler).
10311 	 */
10312 	if (vcpu->arch.xfd_no_write_intercept)
10313 		fpu_sync_guest_vmexit_xfd_state();
10314 
10315 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10316 
10317 	if (vcpu->arch.guest_fpu.xfd_err)
10318 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10319 
10320 	/*
10321 	 * Consume any pending interrupts, including the possible source of
10322 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10323 	 * An instruction is required after local_irq_enable() to fully unblock
10324 	 * interrupts on processors that implement an interrupt shadow, the
10325 	 * stat.exits increment will do nicely.
10326 	 */
10327 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10328 	local_irq_enable();
10329 	++vcpu->stat.exits;
10330 	local_irq_disable();
10331 	kvm_after_interrupt(vcpu);
10332 
10333 	/*
10334 	 * Wait until after servicing IRQs to account guest time so that any
10335 	 * ticks that occurred while running the guest are properly accounted
10336 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10337 	 * of accounting via context tracking, but the loss of accuracy is
10338 	 * acceptable for all known use cases.
10339 	 */
10340 	guest_timing_exit_irqoff();
10341 
10342 	local_irq_enable();
10343 	preempt_enable();
10344 
10345 	kvm_vcpu_srcu_read_lock(vcpu);
10346 
10347 	/*
10348 	 * Profile KVM exit RIPs:
10349 	 */
10350 	if (unlikely(prof_on == KVM_PROFILING)) {
10351 		unsigned long rip = kvm_rip_read(vcpu);
10352 		profile_hit(KVM_PROFILING, (void *)rip);
10353 	}
10354 
10355 	if (unlikely(vcpu->arch.tsc_always_catchup))
10356 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10357 
10358 	if (vcpu->arch.apic_attention)
10359 		kvm_lapic_sync_from_vapic(vcpu);
10360 
10361 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10362 	return r;
10363 
10364 cancel_injection:
10365 	if (req_immediate_exit)
10366 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10367 	static_call(kvm_x86_cancel_injection)(vcpu);
10368 	if (unlikely(vcpu->arch.apic_attention))
10369 		kvm_lapic_sync_from_vapic(vcpu);
10370 out:
10371 	return r;
10372 }
10373 
10374 /* Called within kvm->srcu read side.  */
10375 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10376 {
10377 	bool hv_timer;
10378 
10379 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10380 		/*
10381 		 * Switch to the software timer before halt-polling/blocking as
10382 		 * the guest's timer may be a break event for the vCPU, and the
10383 		 * hypervisor timer runs only when the CPU is in guest mode.
10384 		 * Switch before halt-polling so that KVM recognizes an expired
10385 		 * timer before blocking.
10386 		 */
10387 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10388 		if (hv_timer)
10389 			kvm_lapic_switch_to_sw_timer(vcpu);
10390 
10391 		kvm_vcpu_srcu_read_unlock(vcpu);
10392 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10393 			kvm_vcpu_halt(vcpu);
10394 		else
10395 			kvm_vcpu_block(vcpu);
10396 		kvm_vcpu_srcu_read_lock(vcpu);
10397 
10398 		if (hv_timer)
10399 			kvm_lapic_switch_to_hv_timer(vcpu);
10400 
10401 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10402 			return 1;
10403 	}
10404 
10405 	if (kvm_apic_accept_events(vcpu) < 0)
10406 		return 0;
10407 	switch(vcpu->arch.mp_state) {
10408 	case KVM_MP_STATE_HALTED:
10409 	case KVM_MP_STATE_AP_RESET_HOLD:
10410 		vcpu->arch.pv.pv_unhalted = false;
10411 		vcpu->arch.mp_state =
10412 			KVM_MP_STATE_RUNNABLE;
10413 		fallthrough;
10414 	case KVM_MP_STATE_RUNNABLE:
10415 		vcpu->arch.apf.halted = false;
10416 		break;
10417 	case KVM_MP_STATE_INIT_RECEIVED:
10418 		break;
10419 	default:
10420 		return -EINTR;
10421 	}
10422 	return 1;
10423 }
10424 
10425 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10426 {
10427 	if (is_guest_mode(vcpu))
10428 		kvm_check_nested_events(vcpu);
10429 
10430 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10431 		!vcpu->arch.apf.halted);
10432 }
10433 
10434 /* Called within kvm->srcu read side.  */
10435 static int vcpu_run(struct kvm_vcpu *vcpu)
10436 {
10437 	int r;
10438 
10439 	vcpu->arch.l1tf_flush_l1d = true;
10440 
10441 	for (;;) {
10442 		/*
10443 		 * If another guest vCPU requests a PV TLB flush in the middle
10444 		 * of instruction emulation, the rest of the emulation could
10445 		 * use a stale page translation. Assume that any code after
10446 		 * this point can start executing an instruction.
10447 		 */
10448 		vcpu->arch.at_instruction_boundary = false;
10449 		if (kvm_vcpu_running(vcpu)) {
10450 			r = vcpu_enter_guest(vcpu);
10451 		} else {
10452 			r = vcpu_block(vcpu);
10453 		}
10454 
10455 		if (r <= 0)
10456 			break;
10457 
10458 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10459 		if (kvm_xen_has_pending_events(vcpu))
10460 			kvm_xen_inject_pending_events(vcpu);
10461 
10462 		if (kvm_cpu_has_pending_timer(vcpu))
10463 			kvm_inject_pending_timer_irqs(vcpu);
10464 
10465 		if (dm_request_for_irq_injection(vcpu) &&
10466 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10467 			r = 0;
10468 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10469 			++vcpu->stat.request_irq_exits;
10470 			break;
10471 		}
10472 
10473 		if (__xfer_to_guest_mode_work_pending()) {
10474 			kvm_vcpu_srcu_read_unlock(vcpu);
10475 			r = xfer_to_guest_mode_handle_work(vcpu);
10476 			kvm_vcpu_srcu_read_lock(vcpu);
10477 			if (r)
10478 				return r;
10479 		}
10480 	}
10481 
10482 	return r;
10483 }
10484 
10485 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10486 {
10487 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10488 }
10489 
10490 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10491 {
10492 	BUG_ON(!vcpu->arch.pio.count);
10493 
10494 	return complete_emulated_io(vcpu);
10495 }
10496 
10497 /*
10498  * Implements the following, as a state machine:
10499  *
10500  * read:
10501  *   for each fragment
10502  *     for each mmio piece in the fragment
10503  *       write gpa, len
10504  *       exit
10505  *       copy data
10506  *   execute insn
10507  *
10508  * write:
10509  *   for each fragment
10510  *     for each mmio piece in the fragment
10511  *       write gpa, len
10512  *       copy data
10513  *       exit
10514  */
10515 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10516 {
10517 	struct kvm_run *run = vcpu->run;
10518 	struct kvm_mmio_fragment *frag;
10519 	unsigned len;
10520 
10521 	BUG_ON(!vcpu->mmio_needed);
10522 
10523 	/* Complete previous fragment */
10524 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10525 	len = min(8u, frag->len);
10526 	if (!vcpu->mmio_is_write)
10527 		memcpy(frag->data, run->mmio.data, len);
10528 
10529 	if (frag->len <= 8) {
10530 		/* Switch to the next fragment. */
10531 		frag++;
10532 		vcpu->mmio_cur_fragment++;
10533 	} else {
10534 		/* Go forward to the next mmio piece. */
10535 		frag->data += len;
10536 		frag->gpa += len;
10537 		frag->len -= len;
10538 	}
10539 
10540 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10541 		vcpu->mmio_needed = 0;
10542 
10543 		/* FIXME: return into emulator if single-stepping.  */
10544 		if (vcpu->mmio_is_write)
10545 			return 1;
10546 		vcpu->mmio_read_completed = 1;
10547 		return complete_emulated_io(vcpu);
10548 	}
10549 
10550 	run->exit_reason = KVM_EXIT_MMIO;
10551 	run->mmio.phys_addr = frag->gpa;
10552 	if (vcpu->mmio_is_write)
10553 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10554 	run->mmio.len = min(8u, frag->len);
10555 	run->mmio.is_write = vcpu->mmio_is_write;
10556 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10557 	return 0;
10558 }
10559 
10560 /* Swap (qemu) user FPU context for the guest FPU context. */
10561 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10562 {
10563 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10564 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10565 	trace_kvm_fpu(1);
10566 }
10567 
10568 /* When vcpu_run ends, restore user space FPU context. */
10569 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10570 {
10571 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10572 	++vcpu->stat.fpu_reload;
10573 	trace_kvm_fpu(0);
10574 }
10575 
10576 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10577 {
10578 	struct kvm_run *kvm_run = vcpu->run;
10579 	int r;
10580 
10581 	vcpu_load(vcpu);
10582 	kvm_sigset_activate(vcpu);
10583 	kvm_run->flags = 0;
10584 	kvm_load_guest_fpu(vcpu);
10585 
10586 	kvm_vcpu_srcu_read_lock(vcpu);
10587 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10588 		if (kvm_run->immediate_exit) {
10589 			r = -EINTR;
10590 			goto out;
10591 		}
10592 		/*
10593 		 * It should be impossible for the hypervisor timer to be in
10594 		 * use before KVM has ever run the vCPU.
10595 		 */
10596 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10597 
10598 		kvm_vcpu_srcu_read_unlock(vcpu);
10599 		kvm_vcpu_block(vcpu);
10600 		kvm_vcpu_srcu_read_lock(vcpu);
10601 
10602 		if (kvm_apic_accept_events(vcpu) < 0) {
10603 			r = 0;
10604 			goto out;
10605 		}
10606 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10607 		r = -EAGAIN;
10608 		if (signal_pending(current)) {
10609 			r = -EINTR;
10610 			kvm_run->exit_reason = KVM_EXIT_INTR;
10611 			++vcpu->stat.signal_exits;
10612 		}
10613 		goto out;
10614 	}
10615 
10616 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10617 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10618 		r = -EINVAL;
10619 		goto out;
10620 	}
10621 
10622 	if (kvm_run->kvm_dirty_regs) {
10623 		r = sync_regs(vcpu);
10624 		if (r != 0)
10625 			goto out;
10626 	}
10627 
10628 	/* re-sync apic's tpr */
10629 	if (!lapic_in_kernel(vcpu)) {
10630 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10631 			r = -EINVAL;
10632 			goto out;
10633 		}
10634 	}
10635 
10636 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10637 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10638 		vcpu->arch.complete_userspace_io = NULL;
10639 		r = cui(vcpu);
10640 		if (r <= 0)
10641 			goto out;
10642 	} else
10643 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10644 
10645 	if (kvm_run->immediate_exit) {
10646 		r = -EINTR;
10647 		goto out;
10648 	}
10649 
10650 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10651 	if (r <= 0)
10652 		goto out;
10653 
10654 	r = vcpu_run(vcpu);
10655 
10656 out:
10657 	kvm_put_guest_fpu(vcpu);
10658 	if (kvm_run->kvm_valid_regs)
10659 		store_regs(vcpu);
10660 	post_kvm_run_save(vcpu);
10661 	kvm_vcpu_srcu_read_unlock(vcpu);
10662 
10663 	kvm_sigset_deactivate(vcpu);
10664 	vcpu_put(vcpu);
10665 	return r;
10666 }
10667 
10668 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10669 {
10670 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10671 		/*
10672 		 * We are here if userspace calls get_regs() in the middle of
10673 		 * instruction emulation. Registers state needs to be copied
10674 		 * back from emulation context to vcpu. Userspace shouldn't do
10675 		 * that usually, but some bad designed PV devices (vmware
10676 		 * backdoor interface) need this to work
10677 		 */
10678 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10679 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10680 	}
10681 	regs->rax = kvm_rax_read(vcpu);
10682 	regs->rbx = kvm_rbx_read(vcpu);
10683 	regs->rcx = kvm_rcx_read(vcpu);
10684 	regs->rdx = kvm_rdx_read(vcpu);
10685 	regs->rsi = kvm_rsi_read(vcpu);
10686 	regs->rdi = kvm_rdi_read(vcpu);
10687 	regs->rsp = kvm_rsp_read(vcpu);
10688 	regs->rbp = kvm_rbp_read(vcpu);
10689 #ifdef CONFIG_X86_64
10690 	regs->r8 = kvm_r8_read(vcpu);
10691 	regs->r9 = kvm_r9_read(vcpu);
10692 	regs->r10 = kvm_r10_read(vcpu);
10693 	regs->r11 = kvm_r11_read(vcpu);
10694 	regs->r12 = kvm_r12_read(vcpu);
10695 	regs->r13 = kvm_r13_read(vcpu);
10696 	regs->r14 = kvm_r14_read(vcpu);
10697 	regs->r15 = kvm_r15_read(vcpu);
10698 #endif
10699 
10700 	regs->rip = kvm_rip_read(vcpu);
10701 	regs->rflags = kvm_get_rflags(vcpu);
10702 }
10703 
10704 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10705 {
10706 	vcpu_load(vcpu);
10707 	__get_regs(vcpu, regs);
10708 	vcpu_put(vcpu);
10709 	return 0;
10710 }
10711 
10712 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10713 {
10714 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10715 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10716 
10717 	kvm_rax_write(vcpu, regs->rax);
10718 	kvm_rbx_write(vcpu, regs->rbx);
10719 	kvm_rcx_write(vcpu, regs->rcx);
10720 	kvm_rdx_write(vcpu, regs->rdx);
10721 	kvm_rsi_write(vcpu, regs->rsi);
10722 	kvm_rdi_write(vcpu, regs->rdi);
10723 	kvm_rsp_write(vcpu, regs->rsp);
10724 	kvm_rbp_write(vcpu, regs->rbp);
10725 #ifdef CONFIG_X86_64
10726 	kvm_r8_write(vcpu, regs->r8);
10727 	kvm_r9_write(vcpu, regs->r9);
10728 	kvm_r10_write(vcpu, regs->r10);
10729 	kvm_r11_write(vcpu, regs->r11);
10730 	kvm_r12_write(vcpu, regs->r12);
10731 	kvm_r13_write(vcpu, regs->r13);
10732 	kvm_r14_write(vcpu, regs->r14);
10733 	kvm_r15_write(vcpu, regs->r15);
10734 #endif
10735 
10736 	kvm_rip_write(vcpu, regs->rip);
10737 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10738 
10739 	vcpu->arch.exception.pending = false;
10740 
10741 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10742 }
10743 
10744 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10745 {
10746 	vcpu_load(vcpu);
10747 	__set_regs(vcpu, regs);
10748 	vcpu_put(vcpu);
10749 	return 0;
10750 }
10751 
10752 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10753 {
10754 	struct desc_ptr dt;
10755 
10756 	if (vcpu->arch.guest_state_protected)
10757 		goto skip_protected_regs;
10758 
10759 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10760 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10761 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10762 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10763 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10764 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10765 
10766 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10767 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10768 
10769 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10770 	sregs->idt.limit = dt.size;
10771 	sregs->idt.base = dt.address;
10772 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10773 	sregs->gdt.limit = dt.size;
10774 	sregs->gdt.base = dt.address;
10775 
10776 	sregs->cr2 = vcpu->arch.cr2;
10777 	sregs->cr3 = kvm_read_cr3(vcpu);
10778 
10779 skip_protected_regs:
10780 	sregs->cr0 = kvm_read_cr0(vcpu);
10781 	sregs->cr4 = kvm_read_cr4(vcpu);
10782 	sregs->cr8 = kvm_get_cr8(vcpu);
10783 	sregs->efer = vcpu->arch.efer;
10784 	sregs->apic_base = kvm_get_apic_base(vcpu);
10785 }
10786 
10787 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10788 {
10789 	__get_sregs_common(vcpu, sregs);
10790 
10791 	if (vcpu->arch.guest_state_protected)
10792 		return;
10793 
10794 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10795 		set_bit(vcpu->arch.interrupt.nr,
10796 			(unsigned long *)sregs->interrupt_bitmap);
10797 }
10798 
10799 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10800 {
10801 	int i;
10802 
10803 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10804 
10805 	if (vcpu->arch.guest_state_protected)
10806 		return;
10807 
10808 	if (is_pae_paging(vcpu)) {
10809 		for (i = 0 ; i < 4 ; i++)
10810 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10811 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10812 	}
10813 }
10814 
10815 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10816 				  struct kvm_sregs *sregs)
10817 {
10818 	vcpu_load(vcpu);
10819 	__get_sregs(vcpu, sregs);
10820 	vcpu_put(vcpu);
10821 	return 0;
10822 }
10823 
10824 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10825 				    struct kvm_mp_state *mp_state)
10826 {
10827 	int r;
10828 
10829 	vcpu_load(vcpu);
10830 	if (kvm_mpx_supported())
10831 		kvm_load_guest_fpu(vcpu);
10832 
10833 	r = kvm_apic_accept_events(vcpu);
10834 	if (r < 0)
10835 		goto out;
10836 	r = 0;
10837 
10838 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10839 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10840 	    vcpu->arch.pv.pv_unhalted)
10841 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10842 	else
10843 		mp_state->mp_state = vcpu->arch.mp_state;
10844 
10845 out:
10846 	if (kvm_mpx_supported())
10847 		kvm_put_guest_fpu(vcpu);
10848 	vcpu_put(vcpu);
10849 	return r;
10850 }
10851 
10852 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10853 				    struct kvm_mp_state *mp_state)
10854 {
10855 	int ret = -EINVAL;
10856 
10857 	vcpu_load(vcpu);
10858 
10859 	if (!lapic_in_kernel(vcpu) &&
10860 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10861 		goto out;
10862 
10863 	/*
10864 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10865 	 * INIT state; latched init should be reported using
10866 	 * KVM_SET_VCPU_EVENTS, so reject it here.
10867 	 */
10868 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10869 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10870 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10871 		goto out;
10872 
10873 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10874 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10875 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10876 	} else
10877 		vcpu->arch.mp_state = mp_state->mp_state;
10878 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10879 
10880 	ret = 0;
10881 out:
10882 	vcpu_put(vcpu);
10883 	return ret;
10884 }
10885 
10886 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10887 		    int reason, bool has_error_code, u32 error_code)
10888 {
10889 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10890 	int ret;
10891 
10892 	init_emulate_ctxt(vcpu);
10893 
10894 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10895 				   has_error_code, error_code);
10896 	if (ret) {
10897 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10898 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10899 		vcpu->run->internal.ndata = 0;
10900 		return 0;
10901 	}
10902 
10903 	kvm_rip_write(vcpu, ctxt->eip);
10904 	kvm_set_rflags(vcpu, ctxt->eflags);
10905 	return 1;
10906 }
10907 EXPORT_SYMBOL_GPL(kvm_task_switch);
10908 
10909 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10910 {
10911 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10912 		/*
10913 		 * When EFER.LME and CR0.PG are set, the processor is in
10914 		 * 64-bit mode (though maybe in a 32-bit code segment).
10915 		 * CR4.PAE and EFER.LMA must be set.
10916 		 */
10917 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10918 			return false;
10919 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10920 			return false;
10921 	} else {
10922 		/*
10923 		 * Not in 64-bit mode: EFER.LMA is clear and the code
10924 		 * segment cannot be 64-bit.
10925 		 */
10926 		if (sregs->efer & EFER_LMA || sregs->cs.l)
10927 			return false;
10928 	}
10929 
10930 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
10931 }
10932 
10933 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10934 		int *mmu_reset_needed, bool update_pdptrs)
10935 {
10936 	struct msr_data apic_base_msr;
10937 	int idx;
10938 	struct desc_ptr dt;
10939 
10940 	if (!kvm_is_valid_sregs(vcpu, sregs))
10941 		return -EINVAL;
10942 
10943 	apic_base_msr.data = sregs->apic_base;
10944 	apic_base_msr.host_initiated = true;
10945 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
10946 		return -EINVAL;
10947 
10948 	if (vcpu->arch.guest_state_protected)
10949 		return 0;
10950 
10951 	dt.size = sregs->idt.limit;
10952 	dt.address = sregs->idt.base;
10953 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10954 	dt.size = sregs->gdt.limit;
10955 	dt.address = sregs->gdt.base;
10956 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
10957 
10958 	vcpu->arch.cr2 = sregs->cr2;
10959 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10960 	vcpu->arch.cr3 = sregs->cr3;
10961 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10962 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10963 
10964 	kvm_set_cr8(vcpu, sregs->cr8);
10965 
10966 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10967 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10968 
10969 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10970 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10971 	vcpu->arch.cr0 = sregs->cr0;
10972 
10973 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10974 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10975 
10976 	if (update_pdptrs) {
10977 		idx = srcu_read_lock(&vcpu->kvm->srcu);
10978 		if (is_pae_paging(vcpu)) {
10979 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10980 			*mmu_reset_needed = 1;
10981 		}
10982 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
10983 	}
10984 
10985 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10986 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10987 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10988 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10989 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10990 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10991 
10992 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10993 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10994 
10995 	update_cr8_intercept(vcpu);
10996 
10997 	/* Older userspace won't unhalt the vcpu on reset. */
10998 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10999 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11000 	    !is_protmode(vcpu))
11001 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11002 
11003 	return 0;
11004 }
11005 
11006 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11007 {
11008 	int pending_vec, max_bits;
11009 	int mmu_reset_needed = 0;
11010 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11011 
11012 	if (ret)
11013 		return ret;
11014 
11015 	if (mmu_reset_needed)
11016 		kvm_mmu_reset_context(vcpu);
11017 
11018 	max_bits = KVM_NR_INTERRUPTS;
11019 	pending_vec = find_first_bit(
11020 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11021 
11022 	if (pending_vec < max_bits) {
11023 		kvm_queue_interrupt(vcpu, pending_vec, false);
11024 		pr_debug("Set back pending irq %d\n", pending_vec);
11025 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11026 	}
11027 	return 0;
11028 }
11029 
11030 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11031 {
11032 	int mmu_reset_needed = 0;
11033 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11034 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11035 		!(sregs2->efer & EFER_LMA);
11036 	int i, ret;
11037 
11038 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11039 		return -EINVAL;
11040 
11041 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11042 		return -EINVAL;
11043 
11044 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11045 				 &mmu_reset_needed, !valid_pdptrs);
11046 	if (ret)
11047 		return ret;
11048 
11049 	if (valid_pdptrs) {
11050 		for (i = 0; i < 4 ; i++)
11051 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11052 
11053 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11054 		mmu_reset_needed = 1;
11055 		vcpu->arch.pdptrs_from_userspace = true;
11056 	}
11057 	if (mmu_reset_needed)
11058 		kvm_mmu_reset_context(vcpu);
11059 	return 0;
11060 }
11061 
11062 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11063 				  struct kvm_sregs *sregs)
11064 {
11065 	int ret;
11066 
11067 	vcpu_load(vcpu);
11068 	ret = __set_sregs(vcpu, sregs);
11069 	vcpu_put(vcpu);
11070 	return ret;
11071 }
11072 
11073 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11074 {
11075 	bool set = false;
11076 	struct kvm_vcpu *vcpu;
11077 	unsigned long i;
11078 
11079 	if (!enable_apicv)
11080 		return;
11081 
11082 	down_write(&kvm->arch.apicv_update_lock);
11083 
11084 	kvm_for_each_vcpu(i, vcpu, kvm) {
11085 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11086 			set = true;
11087 			break;
11088 		}
11089 	}
11090 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11091 	up_write(&kvm->arch.apicv_update_lock);
11092 }
11093 
11094 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11095 					struct kvm_guest_debug *dbg)
11096 {
11097 	unsigned long rflags;
11098 	int i, r;
11099 
11100 	if (vcpu->arch.guest_state_protected)
11101 		return -EINVAL;
11102 
11103 	vcpu_load(vcpu);
11104 
11105 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11106 		r = -EBUSY;
11107 		if (vcpu->arch.exception.pending)
11108 			goto out;
11109 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11110 			kvm_queue_exception(vcpu, DB_VECTOR);
11111 		else
11112 			kvm_queue_exception(vcpu, BP_VECTOR);
11113 	}
11114 
11115 	/*
11116 	 * Read rflags as long as potentially injected trace flags are still
11117 	 * filtered out.
11118 	 */
11119 	rflags = kvm_get_rflags(vcpu);
11120 
11121 	vcpu->guest_debug = dbg->control;
11122 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11123 		vcpu->guest_debug = 0;
11124 
11125 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11126 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11127 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11128 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11129 	} else {
11130 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11131 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11132 	}
11133 	kvm_update_dr7(vcpu);
11134 
11135 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11136 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11137 
11138 	/*
11139 	 * Trigger an rflags update that will inject or remove the trace
11140 	 * flags.
11141 	 */
11142 	kvm_set_rflags(vcpu, rflags);
11143 
11144 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11145 
11146 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11147 
11148 	r = 0;
11149 
11150 out:
11151 	vcpu_put(vcpu);
11152 	return r;
11153 }
11154 
11155 /*
11156  * Translate a guest virtual address to a guest physical address.
11157  */
11158 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11159 				    struct kvm_translation *tr)
11160 {
11161 	unsigned long vaddr = tr->linear_address;
11162 	gpa_t gpa;
11163 	int idx;
11164 
11165 	vcpu_load(vcpu);
11166 
11167 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11168 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11169 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11170 	tr->physical_address = gpa;
11171 	tr->valid = gpa != UNMAPPED_GVA;
11172 	tr->writeable = 1;
11173 	tr->usermode = 0;
11174 
11175 	vcpu_put(vcpu);
11176 	return 0;
11177 }
11178 
11179 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11180 {
11181 	struct fxregs_state *fxsave;
11182 
11183 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11184 		return 0;
11185 
11186 	vcpu_load(vcpu);
11187 
11188 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11189 	memcpy(fpu->fpr, fxsave->st_space, 128);
11190 	fpu->fcw = fxsave->cwd;
11191 	fpu->fsw = fxsave->swd;
11192 	fpu->ftwx = fxsave->twd;
11193 	fpu->last_opcode = fxsave->fop;
11194 	fpu->last_ip = fxsave->rip;
11195 	fpu->last_dp = fxsave->rdp;
11196 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11197 
11198 	vcpu_put(vcpu);
11199 	return 0;
11200 }
11201 
11202 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11203 {
11204 	struct fxregs_state *fxsave;
11205 
11206 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11207 		return 0;
11208 
11209 	vcpu_load(vcpu);
11210 
11211 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11212 
11213 	memcpy(fxsave->st_space, fpu->fpr, 128);
11214 	fxsave->cwd = fpu->fcw;
11215 	fxsave->swd = fpu->fsw;
11216 	fxsave->twd = fpu->ftwx;
11217 	fxsave->fop = fpu->last_opcode;
11218 	fxsave->rip = fpu->last_ip;
11219 	fxsave->rdp = fpu->last_dp;
11220 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11221 
11222 	vcpu_put(vcpu);
11223 	return 0;
11224 }
11225 
11226 static void store_regs(struct kvm_vcpu *vcpu)
11227 {
11228 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11229 
11230 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11231 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11232 
11233 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11234 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11235 
11236 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11237 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11238 				vcpu, &vcpu->run->s.regs.events);
11239 }
11240 
11241 static int sync_regs(struct kvm_vcpu *vcpu)
11242 {
11243 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11244 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11245 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11246 	}
11247 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11248 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11249 			return -EINVAL;
11250 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11251 	}
11252 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11253 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11254 				vcpu, &vcpu->run->s.regs.events))
11255 			return -EINVAL;
11256 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11257 	}
11258 
11259 	return 0;
11260 }
11261 
11262 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11263 {
11264 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11265 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11266 			     "guest TSC will not be reliable\n");
11267 
11268 	return 0;
11269 }
11270 
11271 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11272 {
11273 	struct page *page;
11274 	int r;
11275 
11276 	vcpu->arch.last_vmentry_cpu = -1;
11277 	vcpu->arch.regs_avail = ~0;
11278 	vcpu->arch.regs_dirty = ~0;
11279 
11280 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11281 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11282 	else
11283 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11284 
11285 	r = kvm_mmu_create(vcpu);
11286 	if (r < 0)
11287 		return r;
11288 
11289 	if (irqchip_in_kernel(vcpu->kvm)) {
11290 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11291 		if (r < 0)
11292 			goto fail_mmu_destroy;
11293 
11294 		/*
11295 		 * Defer evaluating inhibits until the vCPU is first run, as
11296 		 * this vCPU will not get notified of any changes until this
11297 		 * vCPU is visible to other vCPUs (marked online and added to
11298 		 * the set of vCPUs).  Opportunistically mark APICv active as
11299 		 * VMX in particularly is highly unlikely to have inhibits.
11300 		 * Ignore the current per-VM APICv state so that vCPU creation
11301 		 * is guaranteed to run with a deterministic value, the request
11302 		 * will ensure the vCPU gets the correct state before VM-Entry.
11303 		 */
11304 		if (enable_apicv) {
11305 			vcpu->arch.apicv_active = true;
11306 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11307 		}
11308 	} else
11309 		static_branch_inc(&kvm_has_noapic_vcpu);
11310 
11311 	r = -ENOMEM;
11312 
11313 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11314 	if (!page)
11315 		goto fail_free_lapic;
11316 	vcpu->arch.pio_data = page_address(page);
11317 
11318 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11319 				       GFP_KERNEL_ACCOUNT);
11320 	if (!vcpu->arch.mce_banks)
11321 		goto fail_free_pio_data;
11322 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11323 
11324 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11325 				GFP_KERNEL_ACCOUNT))
11326 		goto fail_free_mce_banks;
11327 
11328 	if (!alloc_emulate_ctxt(vcpu))
11329 		goto free_wbinvd_dirty_mask;
11330 
11331 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11332 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11333 		goto free_emulate_ctxt;
11334 	}
11335 
11336 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11337 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11338 
11339 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11340 
11341 	kvm_async_pf_hash_reset(vcpu);
11342 	kvm_pmu_init(vcpu);
11343 
11344 	vcpu->arch.pending_external_vector = -1;
11345 	vcpu->arch.preempted_in_kernel = false;
11346 
11347 #if IS_ENABLED(CONFIG_HYPERV)
11348 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11349 #endif
11350 
11351 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11352 	if (r)
11353 		goto free_guest_fpu;
11354 
11355 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11356 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11357 	kvm_xen_init_vcpu(vcpu);
11358 	kvm_vcpu_mtrr_init(vcpu);
11359 	vcpu_load(vcpu);
11360 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11361 	kvm_vcpu_reset(vcpu, false);
11362 	kvm_init_mmu(vcpu);
11363 	vcpu_put(vcpu);
11364 	return 0;
11365 
11366 free_guest_fpu:
11367 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11368 free_emulate_ctxt:
11369 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11370 free_wbinvd_dirty_mask:
11371 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11372 fail_free_mce_banks:
11373 	kfree(vcpu->arch.mce_banks);
11374 fail_free_pio_data:
11375 	free_page((unsigned long)vcpu->arch.pio_data);
11376 fail_free_lapic:
11377 	kvm_free_lapic(vcpu);
11378 fail_mmu_destroy:
11379 	kvm_mmu_destroy(vcpu);
11380 	return r;
11381 }
11382 
11383 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11384 {
11385 	struct kvm *kvm = vcpu->kvm;
11386 
11387 	if (mutex_lock_killable(&vcpu->mutex))
11388 		return;
11389 	vcpu_load(vcpu);
11390 	kvm_synchronize_tsc(vcpu, 0);
11391 	vcpu_put(vcpu);
11392 
11393 	/* poll control enabled by default */
11394 	vcpu->arch.msr_kvm_poll_control = 1;
11395 
11396 	mutex_unlock(&vcpu->mutex);
11397 
11398 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11399 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11400 						KVMCLOCK_SYNC_PERIOD);
11401 }
11402 
11403 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11404 {
11405 	int idx;
11406 
11407 	kvmclock_reset(vcpu);
11408 
11409 	static_call(kvm_x86_vcpu_free)(vcpu);
11410 
11411 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11412 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11413 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11414 
11415 	kvm_xen_destroy_vcpu(vcpu);
11416 	kvm_hv_vcpu_uninit(vcpu);
11417 	kvm_pmu_destroy(vcpu);
11418 	kfree(vcpu->arch.mce_banks);
11419 	kvm_free_lapic(vcpu);
11420 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11421 	kvm_mmu_destroy(vcpu);
11422 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11423 	free_page((unsigned long)vcpu->arch.pio_data);
11424 	kvfree(vcpu->arch.cpuid_entries);
11425 	if (!lapic_in_kernel(vcpu))
11426 		static_branch_dec(&kvm_has_noapic_vcpu);
11427 }
11428 
11429 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11430 {
11431 	struct kvm_cpuid_entry2 *cpuid_0x1;
11432 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11433 	unsigned long new_cr0;
11434 
11435 	/*
11436 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11437 	 * to handle side effects.  RESET emulation hits those flows and relies
11438 	 * on emulated/virtualized registers, including those that are loaded
11439 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11440 	 * to detect improper or missing initialization.
11441 	 */
11442 	WARN_ON_ONCE(!init_event &&
11443 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11444 
11445 	kvm_lapic_reset(vcpu, init_event);
11446 
11447 	vcpu->arch.hflags = 0;
11448 
11449 	vcpu->arch.smi_pending = 0;
11450 	vcpu->arch.smi_count = 0;
11451 	atomic_set(&vcpu->arch.nmi_queued, 0);
11452 	vcpu->arch.nmi_pending = 0;
11453 	vcpu->arch.nmi_injected = false;
11454 	kvm_clear_interrupt_queue(vcpu);
11455 	kvm_clear_exception_queue(vcpu);
11456 
11457 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11458 	kvm_update_dr0123(vcpu);
11459 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11460 	vcpu->arch.dr7 = DR7_FIXED_1;
11461 	kvm_update_dr7(vcpu);
11462 
11463 	vcpu->arch.cr2 = 0;
11464 
11465 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11466 	vcpu->arch.apf.msr_en_val = 0;
11467 	vcpu->arch.apf.msr_int_val = 0;
11468 	vcpu->arch.st.msr_val = 0;
11469 
11470 	kvmclock_reset(vcpu);
11471 
11472 	kvm_clear_async_pf_completion_queue(vcpu);
11473 	kvm_async_pf_hash_reset(vcpu);
11474 	vcpu->arch.apf.halted = false;
11475 
11476 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11477 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11478 
11479 		/*
11480 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11481 		 * called with loaded FPU and does not let userspace fix the state.
11482 		 */
11483 		if (init_event)
11484 			kvm_put_guest_fpu(vcpu);
11485 
11486 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11487 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11488 
11489 		if (init_event)
11490 			kvm_load_guest_fpu(vcpu);
11491 	}
11492 
11493 	if (!init_event) {
11494 		kvm_pmu_reset(vcpu);
11495 		vcpu->arch.smbase = 0x30000;
11496 
11497 		vcpu->arch.msr_misc_features_enables = 0;
11498 
11499 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11500 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11501 	}
11502 
11503 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11504 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11505 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11506 
11507 	/*
11508 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11509 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11510 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11511 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11512 	 * on RESET.  But, go through the motions in case that's ever remedied.
11513 	 */
11514 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11515 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11516 
11517 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11518 
11519 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11520 	kvm_rip_write(vcpu, 0xfff0);
11521 
11522 	vcpu->arch.cr3 = 0;
11523 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11524 
11525 	/*
11526 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11527 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11528 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11529 	 */
11530 	new_cr0 = X86_CR0_ET;
11531 	if (init_event)
11532 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11533 	else
11534 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11535 
11536 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11537 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11538 	static_call(kvm_x86_set_efer)(vcpu, 0);
11539 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11540 
11541 	/*
11542 	 * On the standard CR0/CR4/EFER modification paths, there are several
11543 	 * complex conditions determining whether the MMU has to be reset and/or
11544 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11545 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11546 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11547 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11548 	 */
11549 	if (old_cr0 & X86_CR0_PG) {
11550 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11551 		kvm_mmu_reset_context(vcpu);
11552 	}
11553 
11554 	/*
11555 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11556 	 * APM states the TLBs are untouched by INIT, but it also states that
11557 	 * the TLBs are flushed on "External initialization of the processor."
11558 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11559 	 * benefit in relying on the guest to flush the TLB immediately after
11560 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11561 	 * performance perspective.
11562 	 */
11563 	if (init_event)
11564 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11565 }
11566 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11567 
11568 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11569 {
11570 	struct kvm_segment cs;
11571 
11572 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11573 	cs.selector = vector << 8;
11574 	cs.base = vector << 12;
11575 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11576 	kvm_rip_write(vcpu, 0);
11577 }
11578 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11579 
11580 int kvm_arch_hardware_enable(void)
11581 {
11582 	struct kvm *kvm;
11583 	struct kvm_vcpu *vcpu;
11584 	unsigned long i;
11585 	int ret;
11586 	u64 local_tsc;
11587 	u64 max_tsc = 0;
11588 	bool stable, backwards_tsc = false;
11589 
11590 	kvm_user_return_msr_cpu_online();
11591 	ret = static_call(kvm_x86_hardware_enable)();
11592 	if (ret != 0)
11593 		return ret;
11594 
11595 	local_tsc = rdtsc();
11596 	stable = !kvm_check_tsc_unstable();
11597 	list_for_each_entry(kvm, &vm_list, vm_list) {
11598 		kvm_for_each_vcpu(i, vcpu, kvm) {
11599 			if (!stable && vcpu->cpu == smp_processor_id())
11600 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11601 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11602 				backwards_tsc = true;
11603 				if (vcpu->arch.last_host_tsc > max_tsc)
11604 					max_tsc = vcpu->arch.last_host_tsc;
11605 			}
11606 		}
11607 	}
11608 
11609 	/*
11610 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11611 	 * platforms that reset TSC during suspend or hibernate actions, but
11612 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11613 	 * detect that condition here, which happens early in CPU bringup,
11614 	 * before any KVM threads can be running.  Unfortunately, we can't
11615 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11616 	 * enough into CPU bringup that we know how much real time has actually
11617 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11618 	 * variables that haven't been updated yet.
11619 	 *
11620 	 * So we simply find the maximum observed TSC above, then record the
11621 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11622 	 * the adjustment will be applied.  Note that we accumulate
11623 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11624 	 * gets a chance to run again.  In the event that no KVM threads get a
11625 	 * chance to run, we will miss the entire elapsed period, as we'll have
11626 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11627 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11628 	 * uniform across all VCPUs (not to mention the scenario is extremely
11629 	 * unlikely). It is possible that a second hibernate recovery happens
11630 	 * much faster than a first, causing the observed TSC here to be
11631 	 * smaller; this would require additional padding adjustment, which is
11632 	 * why we set last_host_tsc to the local tsc observed here.
11633 	 *
11634 	 * N.B. - this code below runs only on platforms with reliable TSC,
11635 	 * as that is the only way backwards_tsc is set above.  Also note
11636 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11637 	 * have the same delta_cyc adjustment applied if backwards_tsc
11638 	 * is detected.  Note further, this adjustment is only done once,
11639 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11640 	 * called multiple times (one for each physical CPU bringup).
11641 	 *
11642 	 * Platforms with unreliable TSCs don't have to deal with this, they
11643 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11644 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11645 	 * guarantee that they stay in perfect synchronization.
11646 	 */
11647 	if (backwards_tsc) {
11648 		u64 delta_cyc = max_tsc - local_tsc;
11649 		list_for_each_entry(kvm, &vm_list, vm_list) {
11650 			kvm->arch.backwards_tsc_observed = true;
11651 			kvm_for_each_vcpu(i, vcpu, kvm) {
11652 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11653 				vcpu->arch.last_host_tsc = local_tsc;
11654 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11655 			}
11656 
11657 			/*
11658 			 * We have to disable TSC offset matching.. if you were
11659 			 * booting a VM while issuing an S4 host suspend....
11660 			 * you may have some problem.  Solving this issue is
11661 			 * left as an exercise to the reader.
11662 			 */
11663 			kvm->arch.last_tsc_nsec = 0;
11664 			kvm->arch.last_tsc_write = 0;
11665 		}
11666 
11667 	}
11668 	return 0;
11669 }
11670 
11671 void kvm_arch_hardware_disable(void)
11672 {
11673 	static_call(kvm_x86_hardware_disable)();
11674 	drop_user_return_notifiers();
11675 }
11676 
11677 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11678 {
11679 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11680 
11681 #define __KVM_X86_OP(func) \
11682 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11683 #define KVM_X86_OP(func) \
11684 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11685 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11686 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11687 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11688 					   (void *)__static_call_return0);
11689 #include <asm/kvm-x86-ops.h>
11690 #undef __KVM_X86_OP
11691 
11692 	kvm_pmu_ops_update(ops->pmu_ops);
11693 }
11694 
11695 int kvm_arch_hardware_setup(void *opaque)
11696 {
11697 	struct kvm_x86_init_ops *ops = opaque;
11698 	int r;
11699 
11700 	rdmsrl_safe(MSR_EFER, &host_efer);
11701 
11702 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11703 		rdmsrl(MSR_IA32_XSS, host_xss);
11704 
11705 	r = ops->hardware_setup();
11706 	if (r != 0)
11707 		return r;
11708 
11709 	kvm_ops_update(ops);
11710 
11711 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11712 
11713 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11714 		supported_xss = 0;
11715 
11716 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11717 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11718 #undef __kvm_cpu_cap_has
11719 
11720 	if (kvm_has_tsc_control) {
11721 		/*
11722 		 * Make sure the user can only configure tsc_khz values that
11723 		 * fit into a signed integer.
11724 		 * A min value is not calculated because it will always
11725 		 * be 1 on all machines.
11726 		 */
11727 		u64 max = min(0x7fffffffULL,
11728 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11729 		kvm_max_guest_tsc_khz = max;
11730 	}
11731 	kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11732 	kvm_init_msr_list();
11733 	return 0;
11734 }
11735 
11736 void kvm_arch_hardware_unsetup(void)
11737 {
11738 	kvm_unregister_perf_callbacks();
11739 
11740 	static_call(kvm_x86_hardware_unsetup)();
11741 }
11742 
11743 int kvm_arch_check_processor_compat(void *opaque)
11744 {
11745 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11746 	struct kvm_x86_init_ops *ops = opaque;
11747 
11748 	WARN_ON(!irqs_disabled());
11749 
11750 	if (__cr4_reserved_bits(cpu_has, c) !=
11751 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11752 		return -EIO;
11753 
11754 	return ops->check_processor_compatibility();
11755 }
11756 
11757 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11758 {
11759 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11760 }
11761 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11762 
11763 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11764 {
11765 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11766 }
11767 
11768 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11769 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11770 
11771 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11772 {
11773 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11774 
11775 	vcpu->arch.l1tf_flush_l1d = true;
11776 	if (pmu->version && unlikely(pmu->event_count)) {
11777 		pmu->need_cleanup = true;
11778 		kvm_make_request(KVM_REQ_PMU, vcpu);
11779 	}
11780 	static_call(kvm_x86_sched_in)(vcpu, cpu);
11781 }
11782 
11783 void kvm_arch_free_vm(struct kvm *kvm)
11784 {
11785 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
11786 	__kvm_arch_free_vm(kvm);
11787 }
11788 
11789 
11790 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11791 {
11792 	int ret;
11793 	unsigned long flags;
11794 
11795 	if (type)
11796 		return -EINVAL;
11797 
11798 	ret = kvm_page_track_init(kvm);
11799 	if (ret)
11800 		goto out;
11801 
11802 	ret = kvm_mmu_init_vm(kvm);
11803 	if (ret)
11804 		goto out_page_track;
11805 
11806 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11807 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11808 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11809 
11810 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11811 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11812 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11813 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11814 		&kvm->arch.irq_sources_bitmap);
11815 
11816 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11817 	mutex_init(&kvm->arch.apic_map_lock);
11818 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11819 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11820 
11821 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11822 	pvclock_update_vm_gtod_copy(kvm);
11823 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11824 
11825 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
11826 	kvm->arch.guest_can_read_msr_platform_info = true;
11827 	kvm->arch.enable_pmu = enable_pmu;
11828 
11829 #if IS_ENABLED(CONFIG_HYPERV)
11830 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11831 	kvm->arch.hv_root_tdp = INVALID_PAGE;
11832 #endif
11833 
11834 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11835 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11836 
11837 	kvm_apicv_init(kvm);
11838 	kvm_hv_init_vm(kvm);
11839 	kvm_xen_init_vm(kvm);
11840 
11841 	return static_call(kvm_x86_vm_init)(kvm);
11842 
11843 out_page_track:
11844 	kvm_page_track_cleanup(kvm);
11845 out:
11846 	return ret;
11847 }
11848 
11849 int kvm_arch_post_init_vm(struct kvm *kvm)
11850 {
11851 	return kvm_mmu_post_init_vm(kvm);
11852 }
11853 
11854 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11855 {
11856 	vcpu_load(vcpu);
11857 	kvm_mmu_unload(vcpu);
11858 	vcpu_put(vcpu);
11859 }
11860 
11861 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
11862 {
11863 	unsigned long i;
11864 	struct kvm_vcpu *vcpu;
11865 
11866 	kvm_for_each_vcpu(i, vcpu, kvm) {
11867 		kvm_clear_async_pf_completion_queue(vcpu);
11868 		kvm_unload_vcpu_mmu(vcpu);
11869 	}
11870 }
11871 
11872 void kvm_arch_sync_events(struct kvm *kvm)
11873 {
11874 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11875 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11876 	kvm_free_pit(kvm);
11877 }
11878 
11879 /**
11880  * __x86_set_memory_region: Setup KVM internal memory slot
11881  *
11882  * @kvm: the kvm pointer to the VM.
11883  * @id: the slot ID to setup.
11884  * @gpa: the GPA to install the slot (unused when @size == 0).
11885  * @size: the size of the slot. Set to zero to uninstall a slot.
11886  *
11887  * This function helps to setup a KVM internal memory slot.  Specify
11888  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11889  * slot.  The return code can be one of the following:
11890  *
11891  *   HVA:           on success (uninstall will return a bogus HVA)
11892  *   -errno:        on error
11893  *
11894  * The caller should always use IS_ERR() to check the return value
11895  * before use.  Note, the KVM internal memory slots are guaranteed to
11896  * remain valid and unchanged until the VM is destroyed, i.e., the
11897  * GPA->HVA translation will not change.  However, the HVA is a user
11898  * address, i.e. its accessibility is not guaranteed, and must be
11899  * accessed via __copy_{to,from}_user().
11900  */
11901 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11902 				      u32 size)
11903 {
11904 	int i, r;
11905 	unsigned long hva, old_npages;
11906 	struct kvm_memslots *slots = kvm_memslots(kvm);
11907 	struct kvm_memory_slot *slot;
11908 
11909 	/* Called with kvm->slots_lock held.  */
11910 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11911 		return ERR_PTR_USR(-EINVAL);
11912 
11913 	slot = id_to_memslot(slots, id);
11914 	if (size) {
11915 		if (slot && slot->npages)
11916 			return ERR_PTR_USR(-EEXIST);
11917 
11918 		/*
11919 		 * MAP_SHARED to prevent internal slot pages from being moved
11920 		 * by fork()/COW.
11921 		 */
11922 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11923 			      MAP_SHARED | MAP_ANONYMOUS, 0);
11924 		if (IS_ERR((void *)hva))
11925 			return (void __user *)hva;
11926 	} else {
11927 		if (!slot || !slot->npages)
11928 			return NULL;
11929 
11930 		old_npages = slot->npages;
11931 		hva = slot->userspace_addr;
11932 	}
11933 
11934 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11935 		struct kvm_userspace_memory_region m;
11936 
11937 		m.slot = id | (i << 16);
11938 		m.flags = 0;
11939 		m.guest_phys_addr = gpa;
11940 		m.userspace_addr = hva;
11941 		m.memory_size = size;
11942 		r = __kvm_set_memory_region(kvm, &m);
11943 		if (r < 0)
11944 			return ERR_PTR_USR(r);
11945 	}
11946 
11947 	if (!size)
11948 		vm_munmap(hva, old_npages * PAGE_SIZE);
11949 
11950 	return (void __user *)hva;
11951 }
11952 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11953 
11954 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11955 {
11956 	kvm_mmu_pre_destroy_vm(kvm);
11957 }
11958 
11959 void kvm_arch_destroy_vm(struct kvm *kvm)
11960 {
11961 	if (current->mm == kvm->mm) {
11962 		/*
11963 		 * Free memory regions allocated on behalf of userspace,
11964 		 * unless the memory map has changed due to process exit
11965 		 * or fd copying.
11966 		 */
11967 		mutex_lock(&kvm->slots_lock);
11968 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11969 					0, 0);
11970 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11971 					0, 0);
11972 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11973 		mutex_unlock(&kvm->slots_lock);
11974 	}
11975 	kvm_unload_vcpu_mmus(kvm);
11976 	static_call_cond(kvm_x86_vm_destroy)(kvm);
11977 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11978 	kvm_pic_destroy(kvm);
11979 	kvm_ioapic_destroy(kvm);
11980 	kvm_destroy_vcpus(kvm);
11981 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11982 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11983 	kvm_mmu_uninit_vm(kvm);
11984 	kvm_page_track_cleanup(kvm);
11985 	kvm_xen_destroy_vm(kvm);
11986 	kvm_hv_destroy_vm(kvm);
11987 }
11988 
11989 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11990 {
11991 	int i;
11992 
11993 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11994 		kvfree(slot->arch.rmap[i]);
11995 		slot->arch.rmap[i] = NULL;
11996 	}
11997 }
11998 
11999 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12000 {
12001 	int i;
12002 
12003 	memslot_rmap_free(slot);
12004 
12005 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12006 		kvfree(slot->arch.lpage_info[i - 1]);
12007 		slot->arch.lpage_info[i - 1] = NULL;
12008 	}
12009 
12010 	kvm_page_track_free_memslot(slot);
12011 }
12012 
12013 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12014 {
12015 	const int sz = sizeof(*slot->arch.rmap[0]);
12016 	int i;
12017 
12018 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12019 		int level = i + 1;
12020 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12021 
12022 		if (slot->arch.rmap[i])
12023 			continue;
12024 
12025 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12026 		if (!slot->arch.rmap[i]) {
12027 			memslot_rmap_free(slot);
12028 			return -ENOMEM;
12029 		}
12030 	}
12031 
12032 	return 0;
12033 }
12034 
12035 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12036 				      struct kvm_memory_slot *slot)
12037 {
12038 	unsigned long npages = slot->npages;
12039 	int i, r;
12040 
12041 	/*
12042 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12043 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12044 	 * the new memslot is successful.
12045 	 */
12046 	memset(&slot->arch, 0, sizeof(slot->arch));
12047 
12048 	if (kvm_memslots_have_rmaps(kvm)) {
12049 		r = memslot_rmap_alloc(slot, npages);
12050 		if (r)
12051 			return r;
12052 	}
12053 
12054 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12055 		struct kvm_lpage_info *linfo;
12056 		unsigned long ugfn;
12057 		int lpages;
12058 		int level = i + 1;
12059 
12060 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12061 
12062 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12063 		if (!linfo)
12064 			goto out_free;
12065 
12066 		slot->arch.lpage_info[i - 1] = linfo;
12067 
12068 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12069 			linfo[0].disallow_lpage = 1;
12070 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12071 			linfo[lpages - 1].disallow_lpage = 1;
12072 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12073 		/*
12074 		 * If the gfn and userspace address are not aligned wrt each
12075 		 * other, disable large page support for this slot.
12076 		 */
12077 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12078 			unsigned long j;
12079 
12080 			for (j = 0; j < lpages; ++j)
12081 				linfo[j].disallow_lpage = 1;
12082 		}
12083 	}
12084 
12085 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12086 		goto out_free;
12087 
12088 	return 0;
12089 
12090 out_free:
12091 	memslot_rmap_free(slot);
12092 
12093 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12094 		kvfree(slot->arch.lpage_info[i - 1]);
12095 		slot->arch.lpage_info[i - 1] = NULL;
12096 	}
12097 	return -ENOMEM;
12098 }
12099 
12100 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12101 {
12102 	struct kvm_vcpu *vcpu;
12103 	unsigned long i;
12104 
12105 	/*
12106 	 * memslots->generation has been incremented.
12107 	 * mmio generation may have reached its maximum value.
12108 	 */
12109 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12110 
12111 	/* Force re-initialization of steal_time cache */
12112 	kvm_for_each_vcpu(i, vcpu, kvm)
12113 		kvm_vcpu_kick(vcpu);
12114 }
12115 
12116 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12117 				   const struct kvm_memory_slot *old,
12118 				   struct kvm_memory_slot *new,
12119 				   enum kvm_mr_change change)
12120 {
12121 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12122 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12123 			return -EINVAL;
12124 
12125 		return kvm_alloc_memslot_metadata(kvm, new);
12126 	}
12127 
12128 	if (change == KVM_MR_FLAGS_ONLY)
12129 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12130 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12131 		return -EIO;
12132 
12133 	return 0;
12134 }
12135 
12136 
12137 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12138 {
12139 	struct kvm_arch *ka = &kvm->arch;
12140 
12141 	if (!kvm_x86_ops.cpu_dirty_log_size)
12142 		return;
12143 
12144 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12145 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12146 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12147 
12148 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12149 }
12150 
12151 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12152 				     struct kvm_memory_slot *old,
12153 				     const struct kvm_memory_slot *new,
12154 				     enum kvm_mr_change change)
12155 {
12156 	u32 old_flags = old ? old->flags : 0;
12157 	u32 new_flags = new ? new->flags : 0;
12158 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12159 
12160 	/*
12161 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12162 	 * applies to all operations.
12163 	 */
12164 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12165 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12166 
12167 	/*
12168 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12169 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12170 	 *
12171 	 * For a memslot with dirty logging disabled:
12172 	 * CREATE:      No dirty mappings will already exist.
12173 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12174 	 *		kvm_arch_flush_shadow_memslot()
12175 	 *
12176 	 * For a memslot with dirty logging enabled:
12177 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12178 	 *		and no dirty bits to clear.
12179 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12180 	 *		kvm_arch_flush_shadow_memslot().
12181 	 */
12182 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12183 		return;
12184 
12185 	/*
12186 	 * READONLY and non-flags changes were filtered out above, and the only
12187 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12188 	 * logging isn't being toggled on or off.
12189 	 */
12190 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12191 		return;
12192 
12193 	if (!log_dirty_pages) {
12194 		/*
12195 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12196 		 * large sptes have to be split.  If live migration succeeds,
12197 		 * the guest in the source machine will be destroyed and large
12198 		 * sptes will be created in the destination.  However, if the
12199 		 * guest continues to run in the source machine (for example if
12200 		 * live migration fails), small sptes will remain around and
12201 		 * cause bad performance.
12202 		 *
12203 		 * Scan sptes if dirty logging has been stopped, dropping those
12204 		 * which can be collapsed into a single large-page spte.  Later
12205 		 * page faults will create the large-page sptes.
12206 		 */
12207 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12208 	} else {
12209 		/*
12210 		 * Initially-all-set does not require write protecting any page,
12211 		 * because they're all assumed to be dirty.
12212 		 */
12213 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12214 			return;
12215 
12216 		if (READ_ONCE(eager_page_split))
12217 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12218 
12219 		if (kvm_x86_ops.cpu_dirty_log_size) {
12220 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12221 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12222 		} else {
12223 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12224 		}
12225 	}
12226 }
12227 
12228 void kvm_arch_commit_memory_region(struct kvm *kvm,
12229 				struct kvm_memory_slot *old,
12230 				const struct kvm_memory_slot *new,
12231 				enum kvm_mr_change change)
12232 {
12233 	if (!kvm->arch.n_requested_mmu_pages &&
12234 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12235 		unsigned long nr_mmu_pages;
12236 
12237 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12238 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12239 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12240 	}
12241 
12242 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12243 
12244 	/* Free the arrays associated with the old memslot. */
12245 	if (change == KVM_MR_MOVE)
12246 		kvm_arch_free_memslot(kvm, old);
12247 }
12248 
12249 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12250 {
12251 	kvm_mmu_zap_all(kvm);
12252 }
12253 
12254 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12255 				   struct kvm_memory_slot *slot)
12256 {
12257 	kvm_page_track_flush_slot(kvm, slot);
12258 }
12259 
12260 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12261 {
12262 	return (is_guest_mode(vcpu) &&
12263 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12264 }
12265 
12266 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12267 {
12268 	if (!list_empty_careful(&vcpu->async_pf.done))
12269 		return true;
12270 
12271 	if (kvm_apic_has_events(vcpu))
12272 		return true;
12273 
12274 	if (vcpu->arch.pv.pv_unhalted)
12275 		return true;
12276 
12277 	if (vcpu->arch.exception.pending)
12278 		return true;
12279 
12280 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12281 	    (vcpu->arch.nmi_pending &&
12282 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12283 		return true;
12284 
12285 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12286 	    (vcpu->arch.smi_pending &&
12287 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12288 		return true;
12289 
12290 	if (kvm_arch_interrupt_allowed(vcpu) &&
12291 	    (kvm_cpu_has_interrupt(vcpu) ||
12292 	    kvm_guest_apic_has_interrupt(vcpu)))
12293 		return true;
12294 
12295 	if (kvm_hv_has_stimer_pending(vcpu))
12296 		return true;
12297 
12298 	if (is_guest_mode(vcpu) &&
12299 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
12300 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12301 		return true;
12302 
12303 	if (kvm_xen_has_pending_events(vcpu))
12304 		return true;
12305 
12306 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
12307 		return true;
12308 
12309 	return false;
12310 }
12311 
12312 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12313 {
12314 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12315 }
12316 
12317 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12318 {
12319 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12320 		return true;
12321 
12322 	return false;
12323 }
12324 
12325 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12326 {
12327 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12328 		return true;
12329 
12330 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12331 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12332 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12333 		return true;
12334 
12335 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12336 }
12337 
12338 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12339 {
12340 	if (vcpu->arch.guest_state_protected)
12341 		return true;
12342 
12343 	return vcpu->arch.preempted_in_kernel;
12344 }
12345 
12346 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12347 {
12348 	return kvm_rip_read(vcpu);
12349 }
12350 
12351 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12352 {
12353 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12354 }
12355 
12356 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12357 {
12358 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12359 }
12360 
12361 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12362 {
12363 	/* Can't read the RIP when guest state is protected, just return 0 */
12364 	if (vcpu->arch.guest_state_protected)
12365 		return 0;
12366 
12367 	if (is_64_bit_mode(vcpu))
12368 		return kvm_rip_read(vcpu);
12369 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12370 		     kvm_rip_read(vcpu));
12371 }
12372 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12373 
12374 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12375 {
12376 	return kvm_get_linear_rip(vcpu) == linear_rip;
12377 }
12378 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12379 
12380 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12381 {
12382 	unsigned long rflags;
12383 
12384 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12385 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12386 		rflags &= ~X86_EFLAGS_TF;
12387 	return rflags;
12388 }
12389 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12390 
12391 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12392 {
12393 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12394 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12395 		rflags |= X86_EFLAGS_TF;
12396 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12397 }
12398 
12399 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12400 {
12401 	__kvm_set_rflags(vcpu, rflags);
12402 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12403 }
12404 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12405 
12406 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12407 {
12408 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12409 
12410 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12411 }
12412 
12413 static inline u32 kvm_async_pf_next_probe(u32 key)
12414 {
12415 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12416 }
12417 
12418 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12419 {
12420 	u32 key = kvm_async_pf_hash_fn(gfn);
12421 
12422 	while (vcpu->arch.apf.gfns[key] != ~0)
12423 		key = kvm_async_pf_next_probe(key);
12424 
12425 	vcpu->arch.apf.gfns[key] = gfn;
12426 }
12427 
12428 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12429 {
12430 	int i;
12431 	u32 key = kvm_async_pf_hash_fn(gfn);
12432 
12433 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12434 		     (vcpu->arch.apf.gfns[key] != gfn &&
12435 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12436 		key = kvm_async_pf_next_probe(key);
12437 
12438 	return key;
12439 }
12440 
12441 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12442 {
12443 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12444 }
12445 
12446 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12447 {
12448 	u32 i, j, k;
12449 
12450 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12451 
12452 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12453 		return;
12454 
12455 	while (true) {
12456 		vcpu->arch.apf.gfns[i] = ~0;
12457 		do {
12458 			j = kvm_async_pf_next_probe(j);
12459 			if (vcpu->arch.apf.gfns[j] == ~0)
12460 				return;
12461 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12462 			/*
12463 			 * k lies cyclically in ]i,j]
12464 			 * |    i.k.j |
12465 			 * |....j i.k.| or  |.k..j i...|
12466 			 */
12467 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12468 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12469 		i = j;
12470 	}
12471 }
12472 
12473 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12474 {
12475 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12476 
12477 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12478 				      sizeof(reason));
12479 }
12480 
12481 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12482 {
12483 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12484 
12485 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12486 					     &token, offset, sizeof(token));
12487 }
12488 
12489 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12490 {
12491 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12492 	u32 val;
12493 
12494 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12495 					 &val, offset, sizeof(val)))
12496 		return false;
12497 
12498 	return !val;
12499 }
12500 
12501 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12502 {
12503 
12504 	if (!kvm_pv_async_pf_enabled(vcpu))
12505 		return false;
12506 
12507 	if (vcpu->arch.apf.send_user_only &&
12508 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12509 		return false;
12510 
12511 	if (is_guest_mode(vcpu)) {
12512 		/*
12513 		 * L1 needs to opt into the special #PF vmexits that are
12514 		 * used to deliver async page faults.
12515 		 */
12516 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12517 	} else {
12518 		/*
12519 		 * Play it safe in case the guest temporarily disables paging.
12520 		 * The real mode IDT in particular is unlikely to have a #PF
12521 		 * exception setup.
12522 		 */
12523 		return is_paging(vcpu);
12524 	}
12525 }
12526 
12527 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12528 {
12529 	if (unlikely(!lapic_in_kernel(vcpu) ||
12530 		     kvm_event_needs_reinjection(vcpu) ||
12531 		     vcpu->arch.exception.pending))
12532 		return false;
12533 
12534 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12535 		return false;
12536 
12537 	/*
12538 	 * If interrupts are off we cannot even use an artificial
12539 	 * halt state.
12540 	 */
12541 	return kvm_arch_interrupt_allowed(vcpu);
12542 }
12543 
12544 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12545 				     struct kvm_async_pf *work)
12546 {
12547 	struct x86_exception fault;
12548 
12549 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12550 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12551 
12552 	if (kvm_can_deliver_async_pf(vcpu) &&
12553 	    !apf_put_user_notpresent(vcpu)) {
12554 		fault.vector = PF_VECTOR;
12555 		fault.error_code_valid = true;
12556 		fault.error_code = 0;
12557 		fault.nested_page_fault = false;
12558 		fault.address = work->arch.token;
12559 		fault.async_page_fault = true;
12560 		kvm_inject_page_fault(vcpu, &fault);
12561 		return true;
12562 	} else {
12563 		/*
12564 		 * It is not possible to deliver a paravirtualized asynchronous
12565 		 * page fault, but putting the guest in an artificial halt state
12566 		 * can be beneficial nevertheless: if an interrupt arrives, we
12567 		 * can deliver it timely and perhaps the guest will schedule
12568 		 * another process.  When the instruction that triggered a page
12569 		 * fault is retried, hopefully the page will be ready in the host.
12570 		 */
12571 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12572 		return false;
12573 	}
12574 }
12575 
12576 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12577 				 struct kvm_async_pf *work)
12578 {
12579 	struct kvm_lapic_irq irq = {
12580 		.delivery_mode = APIC_DM_FIXED,
12581 		.vector = vcpu->arch.apf.vec
12582 	};
12583 
12584 	if (work->wakeup_all)
12585 		work->arch.token = ~0; /* broadcast wakeup */
12586 	else
12587 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12588 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12589 
12590 	if ((work->wakeup_all || work->notpresent_injected) &&
12591 	    kvm_pv_async_pf_enabled(vcpu) &&
12592 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12593 		vcpu->arch.apf.pageready_pending = true;
12594 		kvm_apic_set_irq(vcpu, &irq, NULL);
12595 	}
12596 
12597 	vcpu->arch.apf.halted = false;
12598 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12599 }
12600 
12601 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12602 {
12603 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12604 	if (!vcpu->arch.apf.pageready_pending)
12605 		kvm_vcpu_kick(vcpu);
12606 }
12607 
12608 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12609 {
12610 	if (!kvm_pv_async_pf_enabled(vcpu))
12611 		return true;
12612 	else
12613 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12614 }
12615 
12616 void kvm_arch_start_assignment(struct kvm *kvm)
12617 {
12618 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12619 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12620 }
12621 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12622 
12623 void kvm_arch_end_assignment(struct kvm *kvm)
12624 {
12625 	atomic_dec(&kvm->arch.assigned_device_count);
12626 }
12627 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12628 
12629 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12630 {
12631 	return atomic_read(&kvm->arch.assigned_device_count);
12632 }
12633 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12634 
12635 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12636 {
12637 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12638 }
12639 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12640 
12641 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12642 {
12643 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12644 }
12645 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12646 
12647 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12648 {
12649 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12650 }
12651 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12652 
12653 bool kvm_arch_has_irq_bypass(void)
12654 {
12655 	return true;
12656 }
12657 
12658 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12659 				      struct irq_bypass_producer *prod)
12660 {
12661 	struct kvm_kernel_irqfd *irqfd =
12662 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12663 	int ret;
12664 
12665 	irqfd->producer = prod;
12666 	kvm_arch_start_assignment(irqfd->kvm);
12667 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12668 					 prod->irq, irqfd->gsi, 1);
12669 
12670 	if (ret)
12671 		kvm_arch_end_assignment(irqfd->kvm);
12672 
12673 	return ret;
12674 }
12675 
12676 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12677 				      struct irq_bypass_producer *prod)
12678 {
12679 	int ret;
12680 	struct kvm_kernel_irqfd *irqfd =
12681 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12682 
12683 	WARN_ON(irqfd->producer != prod);
12684 	irqfd->producer = NULL;
12685 
12686 	/*
12687 	 * When producer of consumer is unregistered, we change back to
12688 	 * remapped mode, so we can re-use the current implementation
12689 	 * when the irq is masked/disabled or the consumer side (KVM
12690 	 * int this case doesn't want to receive the interrupts.
12691 	*/
12692 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12693 	if (ret)
12694 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12695 		       " fails: %d\n", irqfd->consumer.token, ret);
12696 
12697 	kvm_arch_end_assignment(irqfd->kvm);
12698 }
12699 
12700 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12701 				   uint32_t guest_irq, bool set)
12702 {
12703 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12704 }
12705 
12706 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12707 				  struct kvm_kernel_irq_routing_entry *new)
12708 {
12709 	if (new->type != KVM_IRQ_ROUTING_MSI)
12710 		return true;
12711 
12712 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12713 }
12714 
12715 bool kvm_vector_hashing_enabled(void)
12716 {
12717 	return vector_hashing;
12718 }
12719 
12720 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12721 {
12722 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12723 }
12724 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12725 
12726 
12727 int kvm_spec_ctrl_test_value(u64 value)
12728 {
12729 	/*
12730 	 * test that setting IA32_SPEC_CTRL to given value
12731 	 * is allowed by the host processor
12732 	 */
12733 
12734 	u64 saved_value;
12735 	unsigned long flags;
12736 	int ret = 0;
12737 
12738 	local_irq_save(flags);
12739 
12740 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12741 		ret = 1;
12742 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12743 		ret = 1;
12744 	else
12745 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12746 
12747 	local_irq_restore(flags);
12748 
12749 	return ret;
12750 }
12751 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12752 
12753 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12754 {
12755 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12756 	struct x86_exception fault;
12757 	u64 access = error_code &
12758 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12759 
12760 	if (!(error_code & PFERR_PRESENT_MASK) ||
12761 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12762 		/*
12763 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12764 		 * tables probably do not match the TLB.  Just proceed
12765 		 * with the error code that the processor gave.
12766 		 */
12767 		fault.vector = PF_VECTOR;
12768 		fault.error_code_valid = true;
12769 		fault.error_code = error_code;
12770 		fault.nested_page_fault = false;
12771 		fault.address = gva;
12772 	}
12773 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12774 }
12775 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12776 
12777 /*
12778  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12779  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12780  * indicates whether exit to userspace is needed.
12781  */
12782 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12783 			      struct x86_exception *e)
12784 {
12785 	if (r == X86EMUL_PROPAGATE_FAULT) {
12786 		kvm_inject_emulated_page_fault(vcpu, e);
12787 		return 1;
12788 	}
12789 
12790 	/*
12791 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12792 	 * while handling a VMX instruction KVM could've handled the request
12793 	 * correctly by exiting to userspace and performing I/O but there
12794 	 * doesn't seem to be a real use-case behind such requests, just return
12795 	 * KVM_EXIT_INTERNAL_ERROR for now.
12796 	 */
12797 	kvm_prepare_emulation_failure_exit(vcpu);
12798 
12799 	return 0;
12800 }
12801 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12802 
12803 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12804 {
12805 	bool pcid_enabled;
12806 	struct x86_exception e;
12807 	struct {
12808 		u64 pcid;
12809 		u64 gla;
12810 	} operand;
12811 	int r;
12812 
12813 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12814 	if (r != X86EMUL_CONTINUE)
12815 		return kvm_handle_memory_failure(vcpu, r, &e);
12816 
12817 	if (operand.pcid >> 12 != 0) {
12818 		kvm_inject_gp(vcpu, 0);
12819 		return 1;
12820 	}
12821 
12822 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12823 
12824 	switch (type) {
12825 	case INVPCID_TYPE_INDIV_ADDR:
12826 		if ((!pcid_enabled && (operand.pcid != 0)) ||
12827 		    is_noncanonical_address(operand.gla, vcpu)) {
12828 			kvm_inject_gp(vcpu, 0);
12829 			return 1;
12830 		}
12831 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12832 		return kvm_skip_emulated_instruction(vcpu);
12833 
12834 	case INVPCID_TYPE_SINGLE_CTXT:
12835 		if (!pcid_enabled && (operand.pcid != 0)) {
12836 			kvm_inject_gp(vcpu, 0);
12837 			return 1;
12838 		}
12839 
12840 		kvm_invalidate_pcid(vcpu, operand.pcid);
12841 		return kvm_skip_emulated_instruction(vcpu);
12842 
12843 	case INVPCID_TYPE_ALL_NON_GLOBAL:
12844 		/*
12845 		 * Currently, KVM doesn't mark global entries in the shadow
12846 		 * page tables, so a non-global flush just degenerates to a
12847 		 * global flush. If needed, we could optimize this later by
12848 		 * keeping track of global entries in shadow page tables.
12849 		 */
12850 
12851 		fallthrough;
12852 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
12853 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12854 		return kvm_skip_emulated_instruction(vcpu);
12855 
12856 	default:
12857 		kvm_inject_gp(vcpu, 0);
12858 		return 1;
12859 	}
12860 }
12861 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12862 
12863 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12864 {
12865 	struct kvm_run *run = vcpu->run;
12866 	struct kvm_mmio_fragment *frag;
12867 	unsigned int len;
12868 
12869 	BUG_ON(!vcpu->mmio_needed);
12870 
12871 	/* Complete previous fragment */
12872 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12873 	len = min(8u, frag->len);
12874 	if (!vcpu->mmio_is_write)
12875 		memcpy(frag->data, run->mmio.data, len);
12876 
12877 	if (frag->len <= 8) {
12878 		/* Switch to the next fragment. */
12879 		frag++;
12880 		vcpu->mmio_cur_fragment++;
12881 	} else {
12882 		/* Go forward to the next mmio piece. */
12883 		frag->data += len;
12884 		frag->gpa += len;
12885 		frag->len -= len;
12886 	}
12887 
12888 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12889 		vcpu->mmio_needed = 0;
12890 
12891 		// VMG change, at this point, we're always done
12892 		// RIP has already been advanced
12893 		return 1;
12894 	}
12895 
12896 	// More MMIO is needed
12897 	run->mmio.phys_addr = frag->gpa;
12898 	run->mmio.len = min(8u, frag->len);
12899 	run->mmio.is_write = vcpu->mmio_is_write;
12900 	if (run->mmio.is_write)
12901 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12902 	run->exit_reason = KVM_EXIT_MMIO;
12903 
12904 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12905 
12906 	return 0;
12907 }
12908 
12909 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12910 			  void *data)
12911 {
12912 	int handled;
12913 	struct kvm_mmio_fragment *frag;
12914 
12915 	if (!data)
12916 		return -EINVAL;
12917 
12918 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12919 	if (handled == bytes)
12920 		return 1;
12921 
12922 	bytes -= handled;
12923 	gpa += handled;
12924 	data += handled;
12925 
12926 	/*TODO: Check if need to increment number of frags */
12927 	frag = vcpu->mmio_fragments;
12928 	vcpu->mmio_nr_fragments = 1;
12929 	frag->len = bytes;
12930 	frag->gpa = gpa;
12931 	frag->data = data;
12932 
12933 	vcpu->mmio_needed = 1;
12934 	vcpu->mmio_cur_fragment = 0;
12935 
12936 	vcpu->run->mmio.phys_addr = gpa;
12937 	vcpu->run->mmio.len = min(8u, frag->len);
12938 	vcpu->run->mmio.is_write = 1;
12939 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12940 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12941 
12942 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12943 
12944 	return 0;
12945 }
12946 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12947 
12948 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12949 			 void *data)
12950 {
12951 	int handled;
12952 	struct kvm_mmio_fragment *frag;
12953 
12954 	if (!data)
12955 		return -EINVAL;
12956 
12957 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12958 	if (handled == bytes)
12959 		return 1;
12960 
12961 	bytes -= handled;
12962 	gpa += handled;
12963 	data += handled;
12964 
12965 	/*TODO: Check if need to increment number of frags */
12966 	frag = vcpu->mmio_fragments;
12967 	vcpu->mmio_nr_fragments = 1;
12968 	frag->len = bytes;
12969 	frag->gpa = gpa;
12970 	frag->data = data;
12971 
12972 	vcpu->mmio_needed = 1;
12973 	vcpu->mmio_cur_fragment = 0;
12974 
12975 	vcpu->run->mmio.phys_addr = gpa;
12976 	vcpu->run->mmio.len = min(8u, frag->len);
12977 	vcpu->run->mmio.is_write = 0;
12978 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12979 
12980 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12981 
12982 	return 0;
12983 }
12984 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12985 
12986 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12987 			   unsigned int port);
12988 
12989 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12990 {
12991 	int size = vcpu->arch.pio.size;
12992 	int port = vcpu->arch.pio.port;
12993 
12994 	vcpu->arch.pio.count = 0;
12995 	if (vcpu->arch.sev_pio_count)
12996 		return kvm_sev_es_outs(vcpu, size, port);
12997 	return 1;
12998 }
12999 
13000 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13001 			   unsigned int port)
13002 {
13003 	for (;;) {
13004 		unsigned int count =
13005 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13006 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13007 
13008 		/* memcpy done already by emulator_pio_out.  */
13009 		vcpu->arch.sev_pio_count -= count;
13010 		vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13011 		if (!ret)
13012 			break;
13013 
13014 		/* Emulation done by the kernel.  */
13015 		if (!vcpu->arch.sev_pio_count)
13016 			return 1;
13017 	}
13018 
13019 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13020 	return 0;
13021 }
13022 
13023 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13024 			  unsigned int port);
13025 
13026 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13027 {
13028 	unsigned count = vcpu->arch.pio.count;
13029 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13030 	vcpu->arch.sev_pio_count -= count;
13031 	vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13032 }
13033 
13034 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13035 {
13036 	int size = vcpu->arch.pio.size;
13037 	int port = vcpu->arch.pio.port;
13038 
13039 	advance_sev_es_emulated_ins(vcpu);
13040 	if (vcpu->arch.sev_pio_count)
13041 		return kvm_sev_es_ins(vcpu, size, port);
13042 	return 1;
13043 }
13044 
13045 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13046 			  unsigned int port)
13047 {
13048 	for (;;) {
13049 		unsigned int count =
13050 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13051 		if (!__emulator_pio_in(vcpu, size, port, count))
13052 			break;
13053 
13054 		/* Emulation done by the kernel.  */
13055 		advance_sev_es_emulated_ins(vcpu);
13056 		if (!vcpu->arch.sev_pio_count)
13057 			return 1;
13058 	}
13059 
13060 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13061 	return 0;
13062 }
13063 
13064 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13065 			 unsigned int port, void *data,  unsigned int count,
13066 			 int in)
13067 {
13068 	vcpu->arch.sev_pio_data = data;
13069 	vcpu->arch.sev_pio_count = count;
13070 	return in ? kvm_sev_es_ins(vcpu, size, port)
13071 		  : kvm_sev_es_outs(vcpu, size, port);
13072 }
13073 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13074 
13075 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13076 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13081 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13082 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
13083 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13084 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13085 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13086 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13091 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13092 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13093 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13094 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13095 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13096 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13097 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13098 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13099 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13100 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13101 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13102 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13103 
13104 static int __init kvm_x86_init(void)
13105 {
13106 	kvm_mmu_x86_module_init();
13107 	return 0;
13108 }
13109 module_init(kvm_x86_init);
13110 
13111 static void __exit kvm_x86_exit(void)
13112 {
13113 	/*
13114 	 * If module_init() is implemented, module_exit() must also be
13115 	 * implemented to allow module unload.
13116 	 */
13117 }
13118 module_exit(kvm_x86_exit);
13119