xref: /openbmc/linux/arch/x86/kvm/x86.c (revision f3a8b664)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58 
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71 
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76 
77 #define emul_to_vcpu(ctxt) \
78 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79 
80 /* EFER defaults:
81  * - enable syscall per default because its emulated by KVM
82  * - enable LME and LMA per default on 64 bit KVM
83  */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90 
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93 
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96 
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101 
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104 
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107 
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110 
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113 
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32  __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64  __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124 
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128 
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132 
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135 
136 static bool __read_mostly backwards_tsc_observed = false;
137 
138 #define KVM_NR_SHARED_MSRS 16
139 
140 struct kvm_shared_msrs_global {
141 	int nr;
142 	u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144 
145 struct kvm_shared_msrs {
146 	struct user_return_notifier urn;
147 	bool registered;
148 	struct kvm_shared_msr_values {
149 		u64 host;
150 		u64 curr;
151 	} values[KVM_NR_SHARED_MSRS];
152 };
153 
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156 
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
159 	{ "pf_guest", VCPU_STAT(pf_guest) },
160 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
161 	{ "invlpg", VCPU_STAT(invlpg) },
162 	{ "exits", VCPU_STAT(exits) },
163 	{ "io_exits", VCPU_STAT(io_exits) },
164 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
165 	{ "signal_exits", VCPU_STAT(signal_exits) },
166 	{ "irq_window", VCPU_STAT(irq_window_exits) },
167 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
168 	{ "halt_exits", VCPU_STAT(halt_exits) },
169 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 	{ "hypercalls", VCPU_STAT(hypercalls) },
174 	{ "request_irq", VCPU_STAT(request_irq_exits) },
175 	{ "irq_exits", VCPU_STAT(irq_exits) },
176 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
177 	{ "efer_reload", VCPU_STAT(efer_reload) },
178 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
179 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
180 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 	{ "irq_injections", VCPU_STAT(irq_injections) },
182 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
183 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
185 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
188 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
189 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
191 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192 	{ "largepages", VM_STAT(lpages) },
193 	{ NULL }
194 };
195 
196 u64 __read_mostly host_xcr0;
197 
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199 
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202 	int i;
203 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204 		vcpu->arch.apf.gfns[i] = ~0;
205 }
206 
207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209 	unsigned slot;
210 	struct kvm_shared_msrs *locals
211 		= container_of(urn, struct kvm_shared_msrs, urn);
212 	struct kvm_shared_msr_values *values;
213 
214 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
215 		values = &locals->values[slot];
216 		if (values->host != values->curr) {
217 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
218 			values->curr = values->host;
219 		}
220 	}
221 	locals->registered = false;
222 	user_return_notifier_unregister(urn);
223 }
224 
225 static void shared_msr_update(unsigned slot, u32 msr)
226 {
227 	u64 value;
228 	unsigned int cpu = smp_processor_id();
229 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
230 
231 	/* only read, and nobody should modify it at this time,
232 	 * so don't need lock */
233 	if (slot >= shared_msrs_global.nr) {
234 		printk(KERN_ERR "kvm: invalid MSR slot!");
235 		return;
236 	}
237 	rdmsrl_safe(msr, &value);
238 	smsr->values[slot].host = value;
239 	smsr->values[slot].curr = value;
240 }
241 
242 void kvm_define_shared_msr(unsigned slot, u32 msr)
243 {
244 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
245 	shared_msrs_global.msrs[slot] = msr;
246 	if (slot >= shared_msrs_global.nr)
247 		shared_msrs_global.nr = slot + 1;
248 }
249 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
250 
251 static void kvm_shared_msr_cpu_online(void)
252 {
253 	unsigned i;
254 
255 	for (i = 0; i < shared_msrs_global.nr; ++i)
256 		shared_msr_update(i, shared_msrs_global.msrs[i]);
257 }
258 
259 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
260 {
261 	unsigned int cpu = smp_processor_id();
262 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
263 	int err;
264 
265 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
266 		return 0;
267 	smsr->values[slot].curr = value;
268 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
269 	if (err)
270 		return 1;
271 
272 	if (!smsr->registered) {
273 		smsr->urn.on_user_return = kvm_on_user_return;
274 		user_return_notifier_register(&smsr->urn);
275 		smsr->registered = true;
276 	}
277 	return 0;
278 }
279 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
280 
281 static void drop_user_return_notifiers(void)
282 {
283 	unsigned int cpu = smp_processor_id();
284 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
285 
286 	if (smsr->registered)
287 		kvm_on_user_return(&smsr->urn);
288 }
289 
290 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
291 {
292 	return vcpu->arch.apic_base;
293 }
294 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
295 
296 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
297 {
298 	u64 old_state = vcpu->arch.apic_base &
299 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
300 	u64 new_state = msr_info->data &
301 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
302 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
303 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
304 
305 	if (!msr_info->host_initiated &&
306 	    ((msr_info->data & reserved_bits) != 0 ||
307 	     new_state == X2APIC_ENABLE ||
308 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
309 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
310 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
311 	      old_state == 0)))
312 		return 1;
313 
314 	kvm_lapic_set_base(vcpu, msr_info->data);
315 	return 0;
316 }
317 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
318 
319 asmlinkage __visible void kvm_spurious_fault(void)
320 {
321 	/* Fault while not rebooting.  We want the trace. */
322 	BUG();
323 }
324 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
325 
326 #define EXCPT_BENIGN		0
327 #define EXCPT_CONTRIBUTORY	1
328 #define EXCPT_PF		2
329 
330 static int exception_class(int vector)
331 {
332 	switch (vector) {
333 	case PF_VECTOR:
334 		return EXCPT_PF;
335 	case DE_VECTOR:
336 	case TS_VECTOR:
337 	case NP_VECTOR:
338 	case SS_VECTOR:
339 	case GP_VECTOR:
340 		return EXCPT_CONTRIBUTORY;
341 	default:
342 		break;
343 	}
344 	return EXCPT_BENIGN;
345 }
346 
347 #define EXCPT_FAULT		0
348 #define EXCPT_TRAP		1
349 #define EXCPT_ABORT		2
350 #define EXCPT_INTERRUPT		3
351 
352 static int exception_type(int vector)
353 {
354 	unsigned int mask;
355 
356 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
357 		return EXCPT_INTERRUPT;
358 
359 	mask = 1 << vector;
360 
361 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
362 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
363 		return EXCPT_TRAP;
364 
365 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
366 		return EXCPT_ABORT;
367 
368 	/* Reserved exceptions will result in fault */
369 	return EXCPT_FAULT;
370 }
371 
372 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
373 		unsigned nr, bool has_error, u32 error_code,
374 		bool reinject)
375 {
376 	u32 prev_nr;
377 	int class1, class2;
378 
379 	kvm_make_request(KVM_REQ_EVENT, vcpu);
380 
381 	if (!vcpu->arch.exception.pending) {
382 	queue:
383 		if (has_error && !is_protmode(vcpu))
384 			has_error = false;
385 		vcpu->arch.exception.pending = true;
386 		vcpu->arch.exception.has_error_code = has_error;
387 		vcpu->arch.exception.nr = nr;
388 		vcpu->arch.exception.error_code = error_code;
389 		vcpu->arch.exception.reinject = reinject;
390 		return;
391 	}
392 
393 	/* to check exception */
394 	prev_nr = vcpu->arch.exception.nr;
395 	if (prev_nr == DF_VECTOR) {
396 		/* triple fault -> shutdown */
397 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
398 		return;
399 	}
400 	class1 = exception_class(prev_nr);
401 	class2 = exception_class(nr);
402 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
403 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
404 		/* generate double fault per SDM Table 5-5 */
405 		vcpu->arch.exception.pending = true;
406 		vcpu->arch.exception.has_error_code = true;
407 		vcpu->arch.exception.nr = DF_VECTOR;
408 		vcpu->arch.exception.error_code = 0;
409 	} else
410 		/* replace previous exception with a new one in a hope
411 		   that instruction re-execution will regenerate lost
412 		   exception */
413 		goto queue;
414 }
415 
416 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
417 {
418 	kvm_multiple_exception(vcpu, nr, false, 0, false);
419 }
420 EXPORT_SYMBOL_GPL(kvm_queue_exception);
421 
422 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
423 {
424 	kvm_multiple_exception(vcpu, nr, false, 0, true);
425 }
426 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
427 
428 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
429 {
430 	if (err)
431 		kvm_inject_gp(vcpu, 0);
432 	else
433 		kvm_x86_ops->skip_emulated_instruction(vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
436 
437 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439 	++vcpu->stat.pf_guest;
440 	vcpu->arch.cr2 = fault->address;
441 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
442 }
443 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
444 
445 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
446 {
447 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
448 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
449 	else
450 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
451 
452 	return fault->nested_page_fault;
453 }
454 
455 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
456 {
457 	atomic_inc(&vcpu->arch.nmi_queued);
458 	kvm_make_request(KVM_REQ_NMI, vcpu);
459 }
460 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
461 
462 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
463 {
464 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
465 }
466 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
467 
468 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
469 {
470 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
471 }
472 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
473 
474 /*
475  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
476  * a #GP and return false.
477  */
478 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
479 {
480 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
481 		return true;
482 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
483 	return false;
484 }
485 EXPORT_SYMBOL_GPL(kvm_require_cpl);
486 
487 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
488 {
489 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
490 		return true;
491 
492 	kvm_queue_exception(vcpu, UD_VECTOR);
493 	return false;
494 }
495 EXPORT_SYMBOL_GPL(kvm_require_dr);
496 
497 /*
498  * This function will be used to read from the physical memory of the currently
499  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
500  * can read from guest physical or from the guest's guest physical memory.
501  */
502 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
503 			    gfn_t ngfn, void *data, int offset, int len,
504 			    u32 access)
505 {
506 	struct x86_exception exception;
507 	gfn_t real_gfn;
508 	gpa_t ngpa;
509 
510 	ngpa     = gfn_to_gpa(ngfn);
511 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
512 	if (real_gfn == UNMAPPED_GVA)
513 		return -EFAULT;
514 
515 	real_gfn = gpa_to_gfn(real_gfn);
516 
517 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
518 }
519 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
520 
521 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
522 			       void *data, int offset, int len, u32 access)
523 {
524 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
525 				       data, offset, len, access);
526 }
527 
528 /*
529  * Load the pae pdptrs.  Return true is they are all valid.
530  */
531 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
532 {
533 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
534 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
535 	int i;
536 	int ret;
537 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
538 
539 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
540 				      offset * sizeof(u64), sizeof(pdpte),
541 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
542 	if (ret < 0) {
543 		ret = 0;
544 		goto out;
545 	}
546 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
547 		if ((pdpte[i] & PT_PRESENT_MASK) &&
548 		    (pdpte[i] &
549 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
550 			ret = 0;
551 			goto out;
552 		}
553 	}
554 	ret = 1;
555 
556 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
557 	__set_bit(VCPU_EXREG_PDPTR,
558 		  (unsigned long *)&vcpu->arch.regs_avail);
559 	__set_bit(VCPU_EXREG_PDPTR,
560 		  (unsigned long *)&vcpu->arch.regs_dirty);
561 out:
562 
563 	return ret;
564 }
565 EXPORT_SYMBOL_GPL(load_pdptrs);
566 
567 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
568 {
569 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
570 	bool changed = true;
571 	int offset;
572 	gfn_t gfn;
573 	int r;
574 
575 	if (is_long_mode(vcpu) || !is_pae(vcpu))
576 		return false;
577 
578 	if (!test_bit(VCPU_EXREG_PDPTR,
579 		      (unsigned long *)&vcpu->arch.regs_avail))
580 		return true;
581 
582 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
583 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
584 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
585 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
586 	if (r < 0)
587 		goto out;
588 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
589 out:
590 
591 	return changed;
592 }
593 
594 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
595 {
596 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
597 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
598 
599 	cr0 |= X86_CR0_ET;
600 
601 #ifdef CONFIG_X86_64
602 	if (cr0 & 0xffffffff00000000UL)
603 		return 1;
604 #endif
605 
606 	cr0 &= ~CR0_RESERVED_BITS;
607 
608 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
609 		return 1;
610 
611 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
612 		return 1;
613 
614 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
615 #ifdef CONFIG_X86_64
616 		if ((vcpu->arch.efer & EFER_LME)) {
617 			int cs_db, cs_l;
618 
619 			if (!is_pae(vcpu))
620 				return 1;
621 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
622 			if (cs_l)
623 				return 1;
624 		} else
625 #endif
626 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
627 						 kvm_read_cr3(vcpu)))
628 			return 1;
629 	}
630 
631 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
632 		return 1;
633 
634 	kvm_x86_ops->set_cr0(vcpu, cr0);
635 
636 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
637 		kvm_clear_async_pf_completion_queue(vcpu);
638 		kvm_async_pf_hash_reset(vcpu);
639 	}
640 
641 	if ((cr0 ^ old_cr0) & update_bits)
642 		kvm_mmu_reset_context(vcpu);
643 
644 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
645 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
646 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
647 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
648 
649 	return 0;
650 }
651 EXPORT_SYMBOL_GPL(kvm_set_cr0);
652 
653 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
654 {
655 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
656 }
657 EXPORT_SYMBOL_GPL(kvm_lmsw);
658 
659 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
660 {
661 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
662 			!vcpu->guest_xcr0_loaded) {
663 		/* kvm_set_xcr() also depends on this */
664 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
665 		vcpu->guest_xcr0_loaded = 1;
666 	}
667 }
668 
669 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
670 {
671 	if (vcpu->guest_xcr0_loaded) {
672 		if (vcpu->arch.xcr0 != host_xcr0)
673 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
674 		vcpu->guest_xcr0_loaded = 0;
675 	}
676 }
677 
678 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
679 {
680 	u64 xcr0 = xcr;
681 	u64 old_xcr0 = vcpu->arch.xcr0;
682 	u64 valid_bits;
683 
684 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
685 	if (index != XCR_XFEATURE_ENABLED_MASK)
686 		return 1;
687 	if (!(xcr0 & XFEATURE_MASK_FP))
688 		return 1;
689 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
690 		return 1;
691 
692 	/*
693 	 * Do not allow the guest to set bits that we do not support
694 	 * saving.  However, xcr0 bit 0 is always set, even if the
695 	 * emulated CPU does not support XSAVE (see fx_init).
696 	 */
697 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
698 	if (xcr0 & ~valid_bits)
699 		return 1;
700 
701 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
702 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
703 		return 1;
704 
705 	if (xcr0 & XFEATURE_MASK_AVX512) {
706 		if (!(xcr0 & XFEATURE_MASK_YMM))
707 			return 1;
708 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
709 			return 1;
710 	}
711 	vcpu->arch.xcr0 = xcr0;
712 
713 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
714 		kvm_update_cpuid(vcpu);
715 	return 0;
716 }
717 
718 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
719 {
720 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
721 	    __kvm_set_xcr(vcpu, index, xcr)) {
722 		kvm_inject_gp(vcpu, 0);
723 		return 1;
724 	}
725 	return 0;
726 }
727 EXPORT_SYMBOL_GPL(kvm_set_xcr);
728 
729 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
730 {
731 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
732 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
733 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
734 
735 	if (cr4 & CR4_RESERVED_BITS)
736 		return 1;
737 
738 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
739 		return 1;
740 
741 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
742 		return 1;
743 
744 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
745 		return 1;
746 
747 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
748 		return 1;
749 
750 	if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
751 		return 1;
752 
753 	if (is_long_mode(vcpu)) {
754 		if (!(cr4 & X86_CR4_PAE))
755 			return 1;
756 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
757 		   && ((cr4 ^ old_cr4) & pdptr_bits)
758 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
759 				   kvm_read_cr3(vcpu)))
760 		return 1;
761 
762 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
763 		if (!guest_cpuid_has_pcid(vcpu))
764 			return 1;
765 
766 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
767 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
768 			return 1;
769 	}
770 
771 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
772 		return 1;
773 
774 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
775 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
776 		kvm_mmu_reset_context(vcpu);
777 
778 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
779 		kvm_update_cpuid(vcpu);
780 
781 	return 0;
782 }
783 EXPORT_SYMBOL_GPL(kvm_set_cr4);
784 
785 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
786 {
787 #ifdef CONFIG_X86_64
788 	cr3 &= ~CR3_PCID_INVD;
789 #endif
790 
791 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
792 		kvm_mmu_sync_roots(vcpu);
793 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
794 		return 0;
795 	}
796 
797 	if (is_long_mode(vcpu)) {
798 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
799 			return 1;
800 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
801 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
802 		return 1;
803 
804 	vcpu->arch.cr3 = cr3;
805 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
806 	kvm_mmu_new_cr3(vcpu);
807 	return 0;
808 }
809 EXPORT_SYMBOL_GPL(kvm_set_cr3);
810 
811 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
812 {
813 	if (cr8 & CR8_RESERVED_BITS)
814 		return 1;
815 	if (lapic_in_kernel(vcpu))
816 		kvm_lapic_set_tpr(vcpu, cr8);
817 	else
818 		vcpu->arch.cr8 = cr8;
819 	return 0;
820 }
821 EXPORT_SYMBOL_GPL(kvm_set_cr8);
822 
823 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
824 {
825 	if (lapic_in_kernel(vcpu))
826 		return kvm_lapic_get_cr8(vcpu);
827 	else
828 		return vcpu->arch.cr8;
829 }
830 EXPORT_SYMBOL_GPL(kvm_get_cr8);
831 
832 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
833 {
834 	int i;
835 
836 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
837 		for (i = 0; i < KVM_NR_DB_REGS; i++)
838 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
839 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
840 	}
841 }
842 
843 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
844 {
845 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
846 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
847 }
848 
849 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
850 {
851 	unsigned long dr7;
852 
853 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
854 		dr7 = vcpu->arch.guest_debug_dr7;
855 	else
856 		dr7 = vcpu->arch.dr7;
857 	kvm_x86_ops->set_dr7(vcpu, dr7);
858 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
859 	if (dr7 & DR7_BP_EN_MASK)
860 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
861 }
862 
863 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
864 {
865 	u64 fixed = DR6_FIXED_1;
866 
867 	if (!guest_cpuid_has_rtm(vcpu))
868 		fixed |= DR6_RTM;
869 	return fixed;
870 }
871 
872 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
873 {
874 	switch (dr) {
875 	case 0 ... 3:
876 		vcpu->arch.db[dr] = val;
877 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
878 			vcpu->arch.eff_db[dr] = val;
879 		break;
880 	case 4:
881 		/* fall through */
882 	case 6:
883 		if (val & 0xffffffff00000000ULL)
884 			return -1; /* #GP */
885 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
886 		kvm_update_dr6(vcpu);
887 		break;
888 	case 5:
889 		/* fall through */
890 	default: /* 7 */
891 		if (val & 0xffffffff00000000ULL)
892 			return -1; /* #GP */
893 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
894 		kvm_update_dr7(vcpu);
895 		break;
896 	}
897 
898 	return 0;
899 }
900 
901 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
902 {
903 	if (__kvm_set_dr(vcpu, dr, val)) {
904 		kvm_inject_gp(vcpu, 0);
905 		return 1;
906 	}
907 	return 0;
908 }
909 EXPORT_SYMBOL_GPL(kvm_set_dr);
910 
911 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
912 {
913 	switch (dr) {
914 	case 0 ... 3:
915 		*val = vcpu->arch.db[dr];
916 		break;
917 	case 4:
918 		/* fall through */
919 	case 6:
920 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
921 			*val = vcpu->arch.dr6;
922 		else
923 			*val = kvm_x86_ops->get_dr6(vcpu);
924 		break;
925 	case 5:
926 		/* fall through */
927 	default: /* 7 */
928 		*val = vcpu->arch.dr7;
929 		break;
930 	}
931 	return 0;
932 }
933 EXPORT_SYMBOL_GPL(kvm_get_dr);
934 
935 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
936 {
937 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
938 	u64 data;
939 	int err;
940 
941 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
942 	if (err)
943 		return err;
944 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
945 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
946 	return err;
947 }
948 EXPORT_SYMBOL_GPL(kvm_rdpmc);
949 
950 /*
951  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
952  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
953  *
954  * This list is modified at module load time to reflect the
955  * capabilities of the host cpu. This capabilities test skips MSRs that are
956  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
957  * may depend on host virtualization features rather than host cpu features.
958  */
959 
960 static u32 msrs_to_save[] = {
961 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
962 	MSR_STAR,
963 #ifdef CONFIG_X86_64
964 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
965 #endif
966 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
967 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
968 };
969 
970 static unsigned num_msrs_to_save;
971 
972 static u32 emulated_msrs[] = {
973 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
974 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
975 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
976 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
977 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
978 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
979 	HV_X64_MSR_RESET,
980 	HV_X64_MSR_VP_INDEX,
981 	HV_X64_MSR_VP_RUNTIME,
982 	HV_X64_MSR_SCONTROL,
983 	HV_X64_MSR_STIMER0_CONFIG,
984 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
985 	MSR_KVM_PV_EOI_EN,
986 
987 	MSR_IA32_TSC_ADJUST,
988 	MSR_IA32_TSCDEADLINE,
989 	MSR_IA32_MISC_ENABLE,
990 	MSR_IA32_MCG_STATUS,
991 	MSR_IA32_MCG_CTL,
992 	MSR_IA32_MCG_EXT_CTL,
993 	MSR_IA32_SMBASE,
994 };
995 
996 static unsigned num_emulated_msrs;
997 
998 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
999 {
1000 	if (efer & efer_reserved_bits)
1001 		return false;
1002 
1003 	if (efer & EFER_FFXSR) {
1004 		struct kvm_cpuid_entry2 *feat;
1005 
1006 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1007 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1008 			return false;
1009 	}
1010 
1011 	if (efer & EFER_SVME) {
1012 		struct kvm_cpuid_entry2 *feat;
1013 
1014 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1015 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1016 			return false;
1017 	}
1018 
1019 	return true;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1022 
1023 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1024 {
1025 	u64 old_efer = vcpu->arch.efer;
1026 
1027 	if (!kvm_valid_efer(vcpu, efer))
1028 		return 1;
1029 
1030 	if (is_paging(vcpu)
1031 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1032 		return 1;
1033 
1034 	efer &= ~EFER_LMA;
1035 	efer |= vcpu->arch.efer & EFER_LMA;
1036 
1037 	kvm_x86_ops->set_efer(vcpu, efer);
1038 
1039 	/* Update reserved bits */
1040 	if ((efer ^ old_efer) & EFER_NX)
1041 		kvm_mmu_reset_context(vcpu);
1042 
1043 	return 0;
1044 }
1045 
1046 void kvm_enable_efer_bits(u64 mask)
1047 {
1048        efer_reserved_bits &= ~mask;
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1051 
1052 /*
1053  * Writes msr value into into the appropriate "register".
1054  * Returns 0 on success, non-0 otherwise.
1055  * Assumes vcpu_load() was already called.
1056  */
1057 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1058 {
1059 	switch (msr->index) {
1060 	case MSR_FS_BASE:
1061 	case MSR_GS_BASE:
1062 	case MSR_KERNEL_GS_BASE:
1063 	case MSR_CSTAR:
1064 	case MSR_LSTAR:
1065 		if (is_noncanonical_address(msr->data))
1066 			return 1;
1067 		break;
1068 	case MSR_IA32_SYSENTER_EIP:
1069 	case MSR_IA32_SYSENTER_ESP:
1070 		/*
1071 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1072 		 * non-canonical address is written on Intel but not on
1073 		 * AMD (which ignores the top 32-bits, because it does
1074 		 * not implement 64-bit SYSENTER).
1075 		 *
1076 		 * 64-bit code should hence be able to write a non-canonical
1077 		 * value on AMD.  Making the address canonical ensures that
1078 		 * vmentry does not fail on Intel after writing a non-canonical
1079 		 * value, and that something deterministic happens if the guest
1080 		 * invokes 64-bit SYSENTER.
1081 		 */
1082 		msr->data = get_canonical(msr->data);
1083 	}
1084 	return kvm_x86_ops->set_msr(vcpu, msr);
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_set_msr);
1087 
1088 /*
1089  * Adapt set_msr() to msr_io()'s calling convention
1090  */
1091 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1092 {
1093 	struct msr_data msr;
1094 	int r;
1095 
1096 	msr.index = index;
1097 	msr.host_initiated = true;
1098 	r = kvm_get_msr(vcpu, &msr);
1099 	if (r)
1100 		return r;
1101 
1102 	*data = msr.data;
1103 	return 0;
1104 }
1105 
1106 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1107 {
1108 	struct msr_data msr;
1109 
1110 	msr.data = *data;
1111 	msr.index = index;
1112 	msr.host_initiated = true;
1113 	return kvm_set_msr(vcpu, &msr);
1114 }
1115 
1116 #ifdef CONFIG_X86_64
1117 struct pvclock_gtod_data {
1118 	seqcount_t	seq;
1119 
1120 	struct { /* extract of a clocksource struct */
1121 		int vclock_mode;
1122 		cycle_t	cycle_last;
1123 		cycle_t	mask;
1124 		u32	mult;
1125 		u32	shift;
1126 	} clock;
1127 
1128 	u64		boot_ns;
1129 	u64		nsec_base;
1130 };
1131 
1132 static struct pvclock_gtod_data pvclock_gtod_data;
1133 
1134 static void update_pvclock_gtod(struct timekeeper *tk)
1135 {
1136 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1137 	u64 boot_ns;
1138 
1139 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1140 
1141 	write_seqcount_begin(&vdata->seq);
1142 
1143 	/* copy pvclock gtod data */
1144 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1145 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1146 	vdata->clock.mask		= tk->tkr_mono.mask;
1147 	vdata->clock.mult		= tk->tkr_mono.mult;
1148 	vdata->clock.shift		= tk->tkr_mono.shift;
1149 
1150 	vdata->boot_ns			= boot_ns;
1151 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1152 
1153 	write_seqcount_end(&vdata->seq);
1154 }
1155 #endif
1156 
1157 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1158 {
1159 	/*
1160 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1161 	 * vcpu_enter_guest.  This function is only called from
1162 	 * the physical CPU that is running vcpu.
1163 	 */
1164 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1165 }
1166 
1167 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1168 {
1169 	int version;
1170 	int r;
1171 	struct pvclock_wall_clock wc;
1172 	struct timespec64 boot;
1173 
1174 	if (!wall_clock)
1175 		return;
1176 
1177 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1178 	if (r)
1179 		return;
1180 
1181 	if (version & 1)
1182 		++version;  /* first time write, random junk */
1183 
1184 	++version;
1185 
1186 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1187 		return;
1188 
1189 	/*
1190 	 * The guest calculates current wall clock time by adding
1191 	 * system time (updated by kvm_guest_time_update below) to the
1192 	 * wall clock specified here.  guest system time equals host
1193 	 * system time for us, thus we must fill in host boot time here.
1194 	 */
1195 	getboottime64(&boot);
1196 
1197 	if (kvm->arch.kvmclock_offset) {
1198 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1199 		boot = timespec64_sub(boot, ts);
1200 	}
1201 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1202 	wc.nsec = boot.tv_nsec;
1203 	wc.version = version;
1204 
1205 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1206 
1207 	version++;
1208 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1209 }
1210 
1211 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1212 {
1213 	do_shl32_div32(dividend, divisor);
1214 	return dividend;
1215 }
1216 
1217 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1218 			       s8 *pshift, u32 *pmultiplier)
1219 {
1220 	uint64_t scaled64;
1221 	int32_t  shift = 0;
1222 	uint64_t tps64;
1223 	uint32_t tps32;
1224 
1225 	tps64 = base_hz;
1226 	scaled64 = scaled_hz;
1227 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1228 		tps64 >>= 1;
1229 		shift--;
1230 	}
1231 
1232 	tps32 = (uint32_t)tps64;
1233 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1234 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1235 			scaled64 >>= 1;
1236 		else
1237 			tps32 <<= 1;
1238 		shift++;
1239 	}
1240 
1241 	*pshift = shift;
1242 	*pmultiplier = div_frac(scaled64, tps32);
1243 
1244 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1245 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1246 }
1247 
1248 #ifdef CONFIG_X86_64
1249 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1250 #endif
1251 
1252 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1253 static unsigned long max_tsc_khz;
1254 
1255 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1256 {
1257 	u64 v = (u64)khz * (1000000 + ppm);
1258 	do_div(v, 1000000);
1259 	return v;
1260 }
1261 
1262 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1263 {
1264 	u64 ratio;
1265 
1266 	/* Guest TSC same frequency as host TSC? */
1267 	if (!scale) {
1268 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1269 		return 0;
1270 	}
1271 
1272 	/* TSC scaling supported? */
1273 	if (!kvm_has_tsc_control) {
1274 		if (user_tsc_khz > tsc_khz) {
1275 			vcpu->arch.tsc_catchup = 1;
1276 			vcpu->arch.tsc_always_catchup = 1;
1277 			return 0;
1278 		} else {
1279 			WARN(1, "user requested TSC rate below hardware speed\n");
1280 			return -1;
1281 		}
1282 	}
1283 
1284 	/* TSC scaling required  - calculate ratio */
1285 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1286 				user_tsc_khz, tsc_khz);
1287 
1288 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1289 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1290 			  user_tsc_khz);
1291 		return -1;
1292 	}
1293 
1294 	vcpu->arch.tsc_scaling_ratio = ratio;
1295 	return 0;
1296 }
1297 
1298 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1299 {
1300 	u32 thresh_lo, thresh_hi;
1301 	int use_scaling = 0;
1302 
1303 	/* tsc_khz can be zero if TSC calibration fails */
1304 	if (user_tsc_khz == 0) {
1305 		/* set tsc_scaling_ratio to a safe value */
1306 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1307 		return -1;
1308 	}
1309 
1310 	/* Compute a scale to convert nanoseconds in TSC cycles */
1311 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1312 			   &vcpu->arch.virtual_tsc_shift,
1313 			   &vcpu->arch.virtual_tsc_mult);
1314 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1315 
1316 	/*
1317 	 * Compute the variation in TSC rate which is acceptable
1318 	 * within the range of tolerance and decide if the
1319 	 * rate being applied is within that bounds of the hardware
1320 	 * rate.  If so, no scaling or compensation need be done.
1321 	 */
1322 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1323 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1324 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1325 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1326 		use_scaling = 1;
1327 	}
1328 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1329 }
1330 
1331 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1332 {
1333 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1334 				      vcpu->arch.virtual_tsc_mult,
1335 				      vcpu->arch.virtual_tsc_shift);
1336 	tsc += vcpu->arch.this_tsc_write;
1337 	return tsc;
1338 }
1339 
1340 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1341 {
1342 #ifdef CONFIG_X86_64
1343 	bool vcpus_matched;
1344 	struct kvm_arch *ka = &vcpu->kvm->arch;
1345 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1346 
1347 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1348 			 atomic_read(&vcpu->kvm->online_vcpus));
1349 
1350 	/*
1351 	 * Once the masterclock is enabled, always perform request in
1352 	 * order to update it.
1353 	 *
1354 	 * In order to enable masterclock, the host clocksource must be TSC
1355 	 * and the vcpus need to have matched TSCs.  When that happens,
1356 	 * perform request to enable masterclock.
1357 	 */
1358 	if (ka->use_master_clock ||
1359 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1360 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1361 
1362 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1363 			    atomic_read(&vcpu->kvm->online_vcpus),
1364 		            ka->use_master_clock, gtod->clock.vclock_mode);
1365 #endif
1366 }
1367 
1368 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1369 {
1370 	u64 curr_offset = vcpu->arch.tsc_offset;
1371 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1372 }
1373 
1374 /*
1375  * Multiply tsc by a fixed point number represented by ratio.
1376  *
1377  * The most significant 64-N bits (mult) of ratio represent the
1378  * integral part of the fixed point number; the remaining N bits
1379  * (frac) represent the fractional part, ie. ratio represents a fixed
1380  * point number (mult + frac * 2^(-N)).
1381  *
1382  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1383  */
1384 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1385 {
1386 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1387 }
1388 
1389 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1390 {
1391 	u64 _tsc = tsc;
1392 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1393 
1394 	if (ratio != kvm_default_tsc_scaling_ratio)
1395 		_tsc = __scale_tsc(ratio, tsc);
1396 
1397 	return _tsc;
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1400 
1401 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1402 {
1403 	u64 tsc;
1404 
1405 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1406 
1407 	return target_tsc - tsc;
1408 }
1409 
1410 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1411 {
1412 	return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1415 
1416 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1417 {
1418 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1419 	vcpu->arch.tsc_offset = offset;
1420 }
1421 
1422 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1423 {
1424 	struct kvm *kvm = vcpu->kvm;
1425 	u64 offset, ns, elapsed;
1426 	unsigned long flags;
1427 	s64 usdiff;
1428 	bool matched;
1429 	bool already_matched;
1430 	u64 data = msr->data;
1431 
1432 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1433 	offset = kvm_compute_tsc_offset(vcpu, data);
1434 	ns = ktime_get_boot_ns();
1435 	elapsed = ns - kvm->arch.last_tsc_nsec;
1436 
1437 	if (vcpu->arch.virtual_tsc_khz) {
1438 		int faulted = 0;
1439 
1440 		/* n.b - signed multiplication and division required */
1441 		usdiff = data - kvm->arch.last_tsc_write;
1442 #ifdef CONFIG_X86_64
1443 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1444 #else
1445 		/* do_div() only does unsigned */
1446 		asm("1: idivl %[divisor]\n"
1447 		    "2: xor %%edx, %%edx\n"
1448 		    "   movl $0, %[faulted]\n"
1449 		    "3:\n"
1450 		    ".section .fixup,\"ax\"\n"
1451 		    "4: movl $1, %[faulted]\n"
1452 		    "   jmp  3b\n"
1453 		    ".previous\n"
1454 
1455 		_ASM_EXTABLE(1b, 4b)
1456 
1457 		: "=A"(usdiff), [faulted] "=r" (faulted)
1458 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1459 
1460 #endif
1461 		do_div(elapsed, 1000);
1462 		usdiff -= elapsed;
1463 		if (usdiff < 0)
1464 			usdiff = -usdiff;
1465 
1466 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1467 		if (faulted)
1468 			usdiff = USEC_PER_SEC;
1469 	} else
1470 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1471 
1472 	/*
1473 	 * Special case: TSC write with a small delta (1 second) of virtual
1474 	 * cycle time against real time is interpreted as an attempt to
1475 	 * synchronize the CPU.
1476          *
1477 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1478 	 * TSC, we add elapsed time in this computation.  We could let the
1479 	 * compensation code attempt to catch up if we fall behind, but
1480 	 * it's better to try to match offsets from the beginning.
1481          */
1482 	if (usdiff < USEC_PER_SEC &&
1483 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1484 		if (!check_tsc_unstable()) {
1485 			offset = kvm->arch.cur_tsc_offset;
1486 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1487 		} else {
1488 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1489 			data += delta;
1490 			offset = kvm_compute_tsc_offset(vcpu, data);
1491 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1492 		}
1493 		matched = true;
1494 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1495 	} else {
1496 		/*
1497 		 * We split periods of matched TSC writes into generations.
1498 		 * For each generation, we track the original measured
1499 		 * nanosecond time, offset, and write, so if TSCs are in
1500 		 * sync, we can match exact offset, and if not, we can match
1501 		 * exact software computation in compute_guest_tsc()
1502 		 *
1503 		 * These values are tracked in kvm->arch.cur_xxx variables.
1504 		 */
1505 		kvm->arch.cur_tsc_generation++;
1506 		kvm->arch.cur_tsc_nsec = ns;
1507 		kvm->arch.cur_tsc_write = data;
1508 		kvm->arch.cur_tsc_offset = offset;
1509 		matched = false;
1510 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1511 			 kvm->arch.cur_tsc_generation, data);
1512 	}
1513 
1514 	/*
1515 	 * We also track th most recent recorded KHZ, write and time to
1516 	 * allow the matching interval to be extended at each write.
1517 	 */
1518 	kvm->arch.last_tsc_nsec = ns;
1519 	kvm->arch.last_tsc_write = data;
1520 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1521 
1522 	vcpu->arch.last_guest_tsc = data;
1523 
1524 	/* Keep track of which generation this VCPU has synchronized to */
1525 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1526 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1527 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1528 
1529 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1530 		update_ia32_tsc_adjust_msr(vcpu, offset);
1531 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1532 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1533 
1534 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1535 	if (!matched) {
1536 		kvm->arch.nr_vcpus_matched_tsc = 0;
1537 	} else if (!already_matched) {
1538 		kvm->arch.nr_vcpus_matched_tsc++;
1539 	}
1540 
1541 	kvm_track_tsc_matching(vcpu);
1542 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1543 }
1544 
1545 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1546 
1547 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1548 					   s64 adjustment)
1549 {
1550 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1551 }
1552 
1553 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1554 {
1555 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1556 		WARN_ON(adjustment < 0);
1557 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1558 	adjust_tsc_offset_guest(vcpu, adjustment);
1559 }
1560 
1561 #ifdef CONFIG_X86_64
1562 
1563 static cycle_t read_tsc(void)
1564 {
1565 	cycle_t ret = (cycle_t)rdtsc_ordered();
1566 	u64 last = pvclock_gtod_data.clock.cycle_last;
1567 
1568 	if (likely(ret >= last))
1569 		return ret;
1570 
1571 	/*
1572 	 * GCC likes to generate cmov here, but this branch is extremely
1573 	 * predictable (it's just a function of time and the likely is
1574 	 * very likely) and there's a data dependence, so force GCC
1575 	 * to generate a branch instead.  I don't barrier() because
1576 	 * we don't actually need a barrier, and if this function
1577 	 * ever gets inlined it will generate worse code.
1578 	 */
1579 	asm volatile ("");
1580 	return last;
1581 }
1582 
1583 static inline u64 vgettsc(cycle_t *cycle_now)
1584 {
1585 	long v;
1586 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1587 
1588 	*cycle_now = read_tsc();
1589 
1590 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1591 	return v * gtod->clock.mult;
1592 }
1593 
1594 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1595 {
1596 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1597 	unsigned long seq;
1598 	int mode;
1599 	u64 ns;
1600 
1601 	do {
1602 		seq = read_seqcount_begin(&gtod->seq);
1603 		mode = gtod->clock.vclock_mode;
1604 		ns = gtod->nsec_base;
1605 		ns += vgettsc(cycle_now);
1606 		ns >>= gtod->clock.shift;
1607 		ns += gtod->boot_ns;
1608 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1609 	*t = ns;
1610 
1611 	return mode;
1612 }
1613 
1614 /* returns true if host is using tsc clocksource */
1615 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1616 {
1617 	/* checked again under seqlock below */
1618 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1619 		return false;
1620 
1621 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1622 }
1623 #endif
1624 
1625 /*
1626  *
1627  * Assuming a stable TSC across physical CPUS, and a stable TSC
1628  * across virtual CPUs, the following condition is possible.
1629  * Each numbered line represents an event visible to both
1630  * CPUs at the next numbered event.
1631  *
1632  * "timespecX" represents host monotonic time. "tscX" represents
1633  * RDTSC value.
1634  *
1635  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1636  *
1637  * 1.  read timespec0,tsc0
1638  * 2.					| timespec1 = timespec0 + N
1639  * 					| tsc1 = tsc0 + M
1640  * 3. transition to guest		| transition to guest
1641  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1642  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1643  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1644  *
1645  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1646  *
1647  * 	- ret0 < ret1
1648  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1649  *		...
1650  *	- 0 < N - M => M < N
1651  *
1652  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1653  * always the case (the difference between two distinct xtime instances
1654  * might be smaller then the difference between corresponding TSC reads,
1655  * when updating guest vcpus pvclock areas).
1656  *
1657  * To avoid that problem, do not allow visibility of distinct
1658  * system_timestamp/tsc_timestamp values simultaneously: use a master
1659  * copy of host monotonic time values. Update that master copy
1660  * in lockstep.
1661  *
1662  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1663  *
1664  */
1665 
1666 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1667 {
1668 #ifdef CONFIG_X86_64
1669 	struct kvm_arch *ka = &kvm->arch;
1670 	int vclock_mode;
1671 	bool host_tsc_clocksource, vcpus_matched;
1672 
1673 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1674 			atomic_read(&kvm->online_vcpus));
1675 
1676 	/*
1677 	 * If the host uses TSC clock, then passthrough TSC as stable
1678 	 * to the guest.
1679 	 */
1680 	host_tsc_clocksource = kvm_get_time_and_clockread(
1681 					&ka->master_kernel_ns,
1682 					&ka->master_cycle_now);
1683 
1684 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1685 				&& !backwards_tsc_observed
1686 				&& !ka->boot_vcpu_runs_old_kvmclock;
1687 
1688 	if (ka->use_master_clock)
1689 		atomic_set(&kvm_guest_has_master_clock, 1);
1690 
1691 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1692 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1693 					vcpus_matched);
1694 #endif
1695 }
1696 
1697 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1698 {
1699 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1700 }
1701 
1702 static void kvm_gen_update_masterclock(struct kvm *kvm)
1703 {
1704 #ifdef CONFIG_X86_64
1705 	int i;
1706 	struct kvm_vcpu *vcpu;
1707 	struct kvm_arch *ka = &kvm->arch;
1708 
1709 	spin_lock(&ka->pvclock_gtod_sync_lock);
1710 	kvm_make_mclock_inprogress_request(kvm);
1711 	/* no guest entries from this point */
1712 	pvclock_update_vm_gtod_copy(kvm);
1713 
1714 	kvm_for_each_vcpu(i, vcpu, kvm)
1715 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1716 
1717 	/* guest entries allowed */
1718 	kvm_for_each_vcpu(i, vcpu, kvm)
1719 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1720 
1721 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1722 #endif
1723 }
1724 
1725 static u64 __get_kvmclock_ns(struct kvm *kvm)
1726 {
1727 	struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, 0);
1728 	struct kvm_arch *ka = &kvm->arch;
1729 	s64 ns;
1730 
1731 	if (vcpu->arch.hv_clock.flags & PVCLOCK_TSC_STABLE_BIT) {
1732 		u64 tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1733 		ns = __pvclock_read_cycles(&vcpu->arch.hv_clock, tsc);
1734 	} else {
1735 		ns = ktime_get_boot_ns() + ka->kvmclock_offset;
1736 	}
1737 
1738 	return ns;
1739 }
1740 
1741 u64 get_kvmclock_ns(struct kvm *kvm)
1742 {
1743 	unsigned long flags;
1744 	s64 ns;
1745 
1746 	local_irq_save(flags);
1747 	ns = __get_kvmclock_ns(kvm);
1748 	local_irq_restore(flags);
1749 
1750 	return ns;
1751 }
1752 
1753 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1754 {
1755 	struct kvm_vcpu_arch *vcpu = &v->arch;
1756 	struct pvclock_vcpu_time_info guest_hv_clock;
1757 
1758 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1759 		&guest_hv_clock, sizeof(guest_hv_clock))))
1760 		return;
1761 
1762 	/* This VCPU is paused, but it's legal for a guest to read another
1763 	 * VCPU's kvmclock, so we really have to follow the specification where
1764 	 * it says that version is odd if data is being modified, and even after
1765 	 * it is consistent.
1766 	 *
1767 	 * Version field updates must be kept separate.  This is because
1768 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1769 	 * writes within a string instruction are weakly ordered.  So there
1770 	 * are three writes overall.
1771 	 *
1772 	 * As a small optimization, only write the version field in the first
1773 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1774 	 * version field is the first in the struct.
1775 	 */
1776 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1777 
1778 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1779 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1780 				&vcpu->hv_clock,
1781 				sizeof(vcpu->hv_clock.version));
1782 
1783 	smp_wmb();
1784 
1785 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1786 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1787 
1788 	if (vcpu->pvclock_set_guest_stopped_request) {
1789 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1790 		vcpu->pvclock_set_guest_stopped_request = false;
1791 	}
1792 
1793 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1794 
1795 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1796 				&vcpu->hv_clock,
1797 				sizeof(vcpu->hv_clock));
1798 
1799 	smp_wmb();
1800 
1801 	vcpu->hv_clock.version++;
1802 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1803 				&vcpu->hv_clock,
1804 				sizeof(vcpu->hv_clock.version));
1805 }
1806 
1807 static int kvm_guest_time_update(struct kvm_vcpu *v)
1808 {
1809 	unsigned long flags, tgt_tsc_khz;
1810 	struct kvm_vcpu_arch *vcpu = &v->arch;
1811 	struct kvm_arch *ka = &v->kvm->arch;
1812 	s64 kernel_ns;
1813 	u64 tsc_timestamp, host_tsc;
1814 	u8 pvclock_flags;
1815 	bool use_master_clock;
1816 
1817 	kernel_ns = 0;
1818 	host_tsc = 0;
1819 
1820 	/*
1821 	 * If the host uses TSC clock, then passthrough TSC as stable
1822 	 * to the guest.
1823 	 */
1824 	spin_lock(&ka->pvclock_gtod_sync_lock);
1825 	use_master_clock = ka->use_master_clock;
1826 	if (use_master_clock) {
1827 		host_tsc = ka->master_cycle_now;
1828 		kernel_ns = ka->master_kernel_ns;
1829 	}
1830 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1831 
1832 	/* Keep irq disabled to prevent changes to the clock */
1833 	local_irq_save(flags);
1834 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1835 	if (unlikely(tgt_tsc_khz == 0)) {
1836 		local_irq_restore(flags);
1837 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1838 		return 1;
1839 	}
1840 	if (!use_master_clock) {
1841 		host_tsc = rdtsc();
1842 		kernel_ns = ktime_get_boot_ns();
1843 	}
1844 
1845 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1846 
1847 	/*
1848 	 * We may have to catch up the TSC to match elapsed wall clock
1849 	 * time for two reasons, even if kvmclock is used.
1850 	 *   1) CPU could have been running below the maximum TSC rate
1851 	 *   2) Broken TSC compensation resets the base at each VCPU
1852 	 *      entry to avoid unknown leaps of TSC even when running
1853 	 *      again on the same CPU.  This may cause apparent elapsed
1854 	 *      time to disappear, and the guest to stand still or run
1855 	 *	very slowly.
1856 	 */
1857 	if (vcpu->tsc_catchup) {
1858 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1859 		if (tsc > tsc_timestamp) {
1860 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1861 			tsc_timestamp = tsc;
1862 		}
1863 	}
1864 
1865 	local_irq_restore(flags);
1866 
1867 	/* With all the info we got, fill in the values */
1868 
1869 	if (kvm_has_tsc_control)
1870 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1871 
1872 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1873 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1874 				   &vcpu->hv_clock.tsc_shift,
1875 				   &vcpu->hv_clock.tsc_to_system_mul);
1876 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1877 	}
1878 
1879 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1880 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1881 	vcpu->last_guest_tsc = tsc_timestamp;
1882 
1883 	/* If the host uses TSC clocksource, then it is stable */
1884 	pvclock_flags = 0;
1885 	if (use_master_clock)
1886 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1887 
1888 	vcpu->hv_clock.flags = pvclock_flags;
1889 
1890 	if (vcpu->pv_time_enabled)
1891 		kvm_setup_pvclock_page(v);
1892 	if (v == kvm_get_vcpu(v->kvm, 0))
1893 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1894 	return 0;
1895 }
1896 
1897 /*
1898  * kvmclock updates which are isolated to a given vcpu, such as
1899  * vcpu->cpu migration, should not allow system_timestamp from
1900  * the rest of the vcpus to remain static. Otherwise ntp frequency
1901  * correction applies to one vcpu's system_timestamp but not
1902  * the others.
1903  *
1904  * So in those cases, request a kvmclock update for all vcpus.
1905  * We need to rate-limit these requests though, as they can
1906  * considerably slow guests that have a large number of vcpus.
1907  * The time for a remote vcpu to update its kvmclock is bound
1908  * by the delay we use to rate-limit the updates.
1909  */
1910 
1911 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1912 
1913 static void kvmclock_update_fn(struct work_struct *work)
1914 {
1915 	int i;
1916 	struct delayed_work *dwork = to_delayed_work(work);
1917 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1918 					   kvmclock_update_work);
1919 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1920 	struct kvm_vcpu *vcpu;
1921 
1922 	kvm_for_each_vcpu(i, vcpu, kvm) {
1923 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1924 		kvm_vcpu_kick(vcpu);
1925 	}
1926 }
1927 
1928 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1929 {
1930 	struct kvm *kvm = v->kvm;
1931 
1932 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1933 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1934 					KVMCLOCK_UPDATE_DELAY);
1935 }
1936 
1937 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1938 
1939 static void kvmclock_sync_fn(struct work_struct *work)
1940 {
1941 	struct delayed_work *dwork = to_delayed_work(work);
1942 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1943 					   kvmclock_sync_work);
1944 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1945 
1946 	if (!kvmclock_periodic_sync)
1947 		return;
1948 
1949 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1950 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1951 					KVMCLOCK_SYNC_PERIOD);
1952 }
1953 
1954 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1955 {
1956 	u64 mcg_cap = vcpu->arch.mcg_cap;
1957 	unsigned bank_num = mcg_cap & 0xff;
1958 
1959 	switch (msr) {
1960 	case MSR_IA32_MCG_STATUS:
1961 		vcpu->arch.mcg_status = data;
1962 		break;
1963 	case MSR_IA32_MCG_CTL:
1964 		if (!(mcg_cap & MCG_CTL_P))
1965 			return 1;
1966 		if (data != 0 && data != ~(u64)0)
1967 			return -1;
1968 		vcpu->arch.mcg_ctl = data;
1969 		break;
1970 	default:
1971 		if (msr >= MSR_IA32_MC0_CTL &&
1972 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1973 			u32 offset = msr - MSR_IA32_MC0_CTL;
1974 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1975 			 * some Linux kernels though clear bit 10 in bank 4 to
1976 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1977 			 * this to avoid an uncatched #GP in the guest
1978 			 */
1979 			if ((offset & 0x3) == 0 &&
1980 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1981 				return -1;
1982 			vcpu->arch.mce_banks[offset] = data;
1983 			break;
1984 		}
1985 		return 1;
1986 	}
1987 	return 0;
1988 }
1989 
1990 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1991 {
1992 	struct kvm *kvm = vcpu->kvm;
1993 	int lm = is_long_mode(vcpu);
1994 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1995 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1996 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1997 		: kvm->arch.xen_hvm_config.blob_size_32;
1998 	u32 page_num = data & ~PAGE_MASK;
1999 	u64 page_addr = data & PAGE_MASK;
2000 	u8 *page;
2001 	int r;
2002 
2003 	r = -E2BIG;
2004 	if (page_num >= blob_size)
2005 		goto out;
2006 	r = -ENOMEM;
2007 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2008 	if (IS_ERR(page)) {
2009 		r = PTR_ERR(page);
2010 		goto out;
2011 	}
2012 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2013 		goto out_free;
2014 	r = 0;
2015 out_free:
2016 	kfree(page);
2017 out:
2018 	return r;
2019 }
2020 
2021 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2022 {
2023 	gpa_t gpa = data & ~0x3f;
2024 
2025 	/* Bits 2:5 are reserved, Should be zero */
2026 	if (data & 0x3c)
2027 		return 1;
2028 
2029 	vcpu->arch.apf.msr_val = data;
2030 
2031 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2032 		kvm_clear_async_pf_completion_queue(vcpu);
2033 		kvm_async_pf_hash_reset(vcpu);
2034 		return 0;
2035 	}
2036 
2037 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2038 					sizeof(u32)))
2039 		return 1;
2040 
2041 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2042 	kvm_async_pf_wakeup_all(vcpu);
2043 	return 0;
2044 }
2045 
2046 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2047 {
2048 	vcpu->arch.pv_time_enabled = false;
2049 }
2050 
2051 static void record_steal_time(struct kvm_vcpu *vcpu)
2052 {
2053 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2054 		return;
2055 
2056 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2057 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2058 		return;
2059 
2060 	if (vcpu->arch.st.steal.version & 1)
2061 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2062 
2063 	vcpu->arch.st.steal.version += 1;
2064 
2065 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2066 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2067 
2068 	smp_wmb();
2069 
2070 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2071 		vcpu->arch.st.last_steal;
2072 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2073 
2074 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2075 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2076 
2077 	smp_wmb();
2078 
2079 	vcpu->arch.st.steal.version += 1;
2080 
2081 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2082 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2083 }
2084 
2085 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2086 {
2087 	bool pr = false;
2088 	u32 msr = msr_info->index;
2089 	u64 data = msr_info->data;
2090 
2091 	switch (msr) {
2092 	case MSR_AMD64_NB_CFG:
2093 	case MSR_IA32_UCODE_REV:
2094 	case MSR_IA32_UCODE_WRITE:
2095 	case MSR_VM_HSAVE_PA:
2096 	case MSR_AMD64_PATCH_LOADER:
2097 	case MSR_AMD64_BU_CFG2:
2098 		break;
2099 
2100 	case MSR_EFER:
2101 		return set_efer(vcpu, data);
2102 	case MSR_K7_HWCR:
2103 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2104 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2105 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2106 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2107 		if (data != 0) {
2108 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2109 				    data);
2110 			return 1;
2111 		}
2112 		break;
2113 	case MSR_FAM10H_MMIO_CONF_BASE:
2114 		if (data != 0) {
2115 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2116 				    "0x%llx\n", data);
2117 			return 1;
2118 		}
2119 		break;
2120 	case MSR_IA32_DEBUGCTLMSR:
2121 		if (!data) {
2122 			/* We support the non-activated case already */
2123 			break;
2124 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2125 			/* Values other than LBR and BTF are vendor-specific,
2126 			   thus reserved and should throw a #GP */
2127 			return 1;
2128 		}
2129 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2130 			    __func__, data);
2131 		break;
2132 	case 0x200 ... 0x2ff:
2133 		return kvm_mtrr_set_msr(vcpu, msr, data);
2134 	case MSR_IA32_APICBASE:
2135 		return kvm_set_apic_base(vcpu, msr_info);
2136 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2137 		return kvm_x2apic_msr_write(vcpu, msr, data);
2138 	case MSR_IA32_TSCDEADLINE:
2139 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2140 		break;
2141 	case MSR_IA32_TSC_ADJUST:
2142 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2143 			if (!msr_info->host_initiated) {
2144 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2145 				adjust_tsc_offset_guest(vcpu, adj);
2146 			}
2147 			vcpu->arch.ia32_tsc_adjust_msr = data;
2148 		}
2149 		break;
2150 	case MSR_IA32_MISC_ENABLE:
2151 		vcpu->arch.ia32_misc_enable_msr = data;
2152 		break;
2153 	case MSR_IA32_SMBASE:
2154 		if (!msr_info->host_initiated)
2155 			return 1;
2156 		vcpu->arch.smbase = data;
2157 		break;
2158 	case MSR_KVM_WALL_CLOCK_NEW:
2159 	case MSR_KVM_WALL_CLOCK:
2160 		vcpu->kvm->arch.wall_clock = data;
2161 		kvm_write_wall_clock(vcpu->kvm, data);
2162 		break;
2163 	case MSR_KVM_SYSTEM_TIME_NEW:
2164 	case MSR_KVM_SYSTEM_TIME: {
2165 		u64 gpa_offset;
2166 		struct kvm_arch *ka = &vcpu->kvm->arch;
2167 
2168 		kvmclock_reset(vcpu);
2169 
2170 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2171 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2172 
2173 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2174 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2175 					&vcpu->requests);
2176 
2177 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2178 		}
2179 
2180 		vcpu->arch.time = data;
2181 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2182 
2183 		/* we verify if the enable bit is set... */
2184 		if (!(data & 1))
2185 			break;
2186 
2187 		gpa_offset = data & ~(PAGE_MASK | 1);
2188 
2189 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2190 		     &vcpu->arch.pv_time, data & ~1ULL,
2191 		     sizeof(struct pvclock_vcpu_time_info)))
2192 			vcpu->arch.pv_time_enabled = false;
2193 		else
2194 			vcpu->arch.pv_time_enabled = true;
2195 
2196 		break;
2197 	}
2198 	case MSR_KVM_ASYNC_PF_EN:
2199 		if (kvm_pv_enable_async_pf(vcpu, data))
2200 			return 1;
2201 		break;
2202 	case MSR_KVM_STEAL_TIME:
2203 
2204 		if (unlikely(!sched_info_on()))
2205 			return 1;
2206 
2207 		if (data & KVM_STEAL_RESERVED_MASK)
2208 			return 1;
2209 
2210 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2211 						data & KVM_STEAL_VALID_BITS,
2212 						sizeof(struct kvm_steal_time)))
2213 			return 1;
2214 
2215 		vcpu->arch.st.msr_val = data;
2216 
2217 		if (!(data & KVM_MSR_ENABLED))
2218 			break;
2219 
2220 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2221 
2222 		break;
2223 	case MSR_KVM_PV_EOI_EN:
2224 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2225 			return 1;
2226 		break;
2227 
2228 	case MSR_IA32_MCG_CTL:
2229 	case MSR_IA32_MCG_STATUS:
2230 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2231 		return set_msr_mce(vcpu, msr, data);
2232 
2233 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2234 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2235 		pr = true; /* fall through */
2236 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2237 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2238 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2239 			return kvm_pmu_set_msr(vcpu, msr_info);
2240 
2241 		if (pr || data != 0)
2242 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2243 				    "0x%x data 0x%llx\n", msr, data);
2244 		break;
2245 	case MSR_K7_CLK_CTL:
2246 		/*
2247 		 * Ignore all writes to this no longer documented MSR.
2248 		 * Writes are only relevant for old K7 processors,
2249 		 * all pre-dating SVM, but a recommended workaround from
2250 		 * AMD for these chips. It is possible to specify the
2251 		 * affected processor models on the command line, hence
2252 		 * the need to ignore the workaround.
2253 		 */
2254 		break;
2255 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2256 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2257 	case HV_X64_MSR_CRASH_CTL:
2258 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2259 		return kvm_hv_set_msr_common(vcpu, msr, data,
2260 					     msr_info->host_initiated);
2261 	case MSR_IA32_BBL_CR_CTL3:
2262 		/* Drop writes to this legacy MSR -- see rdmsr
2263 		 * counterpart for further detail.
2264 		 */
2265 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2266 		break;
2267 	case MSR_AMD64_OSVW_ID_LENGTH:
2268 		if (!guest_cpuid_has_osvw(vcpu))
2269 			return 1;
2270 		vcpu->arch.osvw.length = data;
2271 		break;
2272 	case MSR_AMD64_OSVW_STATUS:
2273 		if (!guest_cpuid_has_osvw(vcpu))
2274 			return 1;
2275 		vcpu->arch.osvw.status = data;
2276 		break;
2277 	default:
2278 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2279 			return xen_hvm_config(vcpu, data);
2280 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2281 			return kvm_pmu_set_msr(vcpu, msr_info);
2282 		if (!ignore_msrs) {
2283 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2284 				    msr, data);
2285 			return 1;
2286 		} else {
2287 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2288 				    msr, data);
2289 			break;
2290 		}
2291 	}
2292 	return 0;
2293 }
2294 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2295 
2296 
2297 /*
2298  * Reads an msr value (of 'msr_index') into 'pdata'.
2299  * Returns 0 on success, non-0 otherwise.
2300  * Assumes vcpu_load() was already called.
2301  */
2302 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2303 {
2304 	return kvm_x86_ops->get_msr(vcpu, msr);
2305 }
2306 EXPORT_SYMBOL_GPL(kvm_get_msr);
2307 
2308 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2309 {
2310 	u64 data;
2311 	u64 mcg_cap = vcpu->arch.mcg_cap;
2312 	unsigned bank_num = mcg_cap & 0xff;
2313 
2314 	switch (msr) {
2315 	case MSR_IA32_P5_MC_ADDR:
2316 	case MSR_IA32_P5_MC_TYPE:
2317 		data = 0;
2318 		break;
2319 	case MSR_IA32_MCG_CAP:
2320 		data = vcpu->arch.mcg_cap;
2321 		break;
2322 	case MSR_IA32_MCG_CTL:
2323 		if (!(mcg_cap & MCG_CTL_P))
2324 			return 1;
2325 		data = vcpu->arch.mcg_ctl;
2326 		break;
2327 	case MSR_IA32_MCG_STATUS:
2328 		data = vcpu->arch.mcg_status;
2329 		break;
2330 	default:
2331 		if (msr >= MSR_IA32_MC0_CTL &&
2332 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2333 			u32 offset = msr - MSR_IA32_MC0_CTL;
2334 			data = vcpu->arch.mce_banks[offset];
2335 			break;
2336 		}
2337 		return 1;
2338 	}
2339 	*pdata = data;
2340 	return 0;
2341 }
2342 
2343 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2344 {
2345 	switch (msr_info->index) {
2346 	case MSR_IA32_PLATFORM_ID:
2347 	case MSR_IA32_EBL_CR_POWERON:
2348 	case MSR_IA32_DEBUGCTLMSR:
2349 	case MSR_IA32_LASTBRANCHFROMIP:
2350 	case MSR_IA32_LASTBRANCHTOIP:
2351 	case MSR_IA32_LASTINTFROMIP:
2352 	case MSR_IA32_LASTINTTOIP:
2353 	case MSR_K8_SYSCFG:
2354 	case MSR_K8_TSEG_ADDR:
2355 	case MSR_K8_TSEG_MASK:
2356 	case MSR_K7_HWCR:
2357 	case MSR_VM_HSAVE_PA:
2358 	case MSR_K8_INT_PENDING_MSG:
2359 	case MSR_AMD64_NB_CFG:
2360 	case MSR_FAM10H_MMIO_CONF_BASE:
2361 	case MSR_AMD64_BU_CFG2:
2362 	case MSR_IA32_PERF_CTL:
2363 		msr_info->data = 0;
2364 		break;
2365 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2366 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2367 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2368 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2369 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2370 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2371 		msr_info->data = 0;
2372 		break;
2373 	case MSR_IA32_UCODE_REV:
2374 		msr_info->data = 0x100000000ULL;
2375 		break;
2376 	case MSR_MTRRcap:
2377 	case 0x200 ... 0x2ff:
2378 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2379 	case 0xcd: /* fsb frequency */
2380 		msr_info->data = 3;
2381 		break;
2382 		/*
2383 		 * MSR_EBC_FREQUENCY_ID
2384 		 * Conservative value valid for even the basic CPU models.
2385 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2386 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2387 		 * and 266MHz for model 3, or 4. Set Core Clock
2388 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2389 		 * 31:24) even though these are only valid for CPU
2390 		 * models > 2, however guests may end up dividing or
2391 		 * multiplying by zero otherwise.
2392 		 */
2393 	case MSR_EBC_FREQUENCY_ID:
2394 		msr_info->data = 1 << 24;
2395 		break;
2396 	case MSR_IA32_APICBASE:
2397 		msr_info->data = kvm_get_apic_base(vcpu);
2398 		break;
2399 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2400 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2401 		break;
2402 	case MSR_IA32_TSCDEADLINE:
2403 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2404 		break;
2405 	case MSR_IA32_TSC_ADJUST:
2406 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2407 		break;
2408 	case MSR_IA32_MISC_ENABLE:
2409 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2410 		break;
2411 	case MSR_IA32_SMBASE:
2412 		if (!msr_info->host_initiated)
2413 			return 1;
2414 		msr_info->data = vcpu->arch.smbase;
2415 		break;
2416 	case MSR_IA32_PERF_STATUS:
2417 		/* TSC increment by tick */
2418 		msr_info->data = 1000ULL;
2419 		/* CPU multiplier */
2420 		msr_info->data |= (((uint64_t)4ULL) << 40);
2421 		break;
2422 	case MSR_EFER:
2423 		msr_info->data = vcpu->arch.efer;
2424 		break;
2425 	case MSR_KVM_WALL_CLOCK:
2426 	case MSR_KVM_WALL_CLOCK_NEW:
2427 		msr_info->data = vcpu->kvm->arch.wall_clock;
2428 		break;
2429 	case MSR_KVM_SYSTEM_TIME:
2430 	case MSR_KVM_SYSTEM_TIME_NEW:
2431 		msr_info->data = vcpu->arch.time;
2432 		break;
2433 	case MSR_KVM_ASYNC_PF_EN:
2434 		msr_info->data = vcpu->arch.apf.msr_val;
2435 		break;
2436 	case MSR_KVM_STEAL_TIME:
2437 		msr_info->data = vcpu->arch.st.msr_val;
2438 		break;
2439 	case MSR_KVM_PV_EOI_EN:
2440 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2441 		break;
2442 	case MSR_IA32_P5_MC_ADDR:
2443 	case MSR_IA32_P5_MC_TYPE:
2444 	case MSR_IA32_MCG_CAP:
2445 	case MSR_IA32_MCG_CTL:
2446 	case MSR_IA32_MCG_STATUS:
2447 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2448 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2449 	case MSR_K7_CLK_CTL:
2450 		/*
2451 		 * Provide expected ramp-up count for K7. All other
2452 		 * are set to zero, indicating minimum divisors for
2453 		 * every field.
2454 		 *
2455 		 * This prevents guest kernels on AMD host with CPU
2456 		 * type 6, model 8 and higher from exploding due to
2457 		 * the rdmsr failing.
2458 		 */
2459 		msr_info->data = 0x20000000;
2460 		break;
2461 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2462 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2463 	case HV_X64_MSR_CRASH_CTL:
2464 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2465 		return kvm_hv_get_msr_common(vcpu,
2466 					     msr_info->index, &msr_info->data);
2467 		break;
2468 	case MSR_IA32_BBL_CR_CTL3:
2469 		/* This legacy MSR exists but isn't fully documented in current
2470 		 * silicon.  It is however accessed by winxp in very narrow
2471 		 * scenarios where it sets bit #19, itself documented as
2472 		 * a "reserved" bit.  Best effort attempt to source coherent
2473 		 * read data here should the balance of the register be
2474 		 * interpreted by the guest:
2475 		 *
2476 		 * L2 cache control register 3: 64GB range, 256KB size,
2477 		 * enabled, latency 0x1, configured
2478 		 */
2479 		msr_info->data = 0xbe702111;
2480 		break;
2481 	case MSR_AMD64_OSVW_ID_LENGTH:
2482 		if (!guest_cpuid_has_osvw(vcpu))
2483 			return 1;
2484 		msr_info->data = vcpu->arch.osvw.length;
2485 		break;
2486 	case MSR_AMD64_OSVW_STATUS:
2487 		if (!guest_cpuid_has_osvw(vcpu))
2488 			return 1;
2489 		msr_info->data = vcpu->arch.osvw.status;
2490 		break;
2491 	default:
2492 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2493 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2494 		if (!ignore_msrs) {
2495 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2496 			return 1;
2497 		} else {
2498 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2499 			msr_info->data = 0;
2500 		}
2501 		break;
2502 	}
2503 	return 0;
2504 }
2505 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2506 
2507 /*
2508  * Read or write a bunch of msrs. All parameters are kernel addresses.
2509  *
2510  * @return number of msrs set successfully.
2511  */
2512 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2513 		    struct kvm_msr_entry *entries,
2514 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2515 				  unsigned index, u64 *data))
2516 {
2517 	int i, idx;
2518 
2519 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2520 	for (i = 0; i < msrs->nmsrs; ++i)
2521 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2522 			break;
2523 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2524 
2525 	return i;
2526 }
2527 
2528 /*
2529  * Read or write a bunch of msrs. Parameters are user addresses.
2530  *
2531  * @return number of msrs set successfully.
2532  */
2533 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2534 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2535 				unsigned index, u64 *data),
2536 		  int writeback)
2537 {
2538 	struct kvm_msrs msrs;
2539 	struct kvm_msr_entry *entries;
2540 	int r, n;
2541 	unsigned size;
2542 
2543 	r = -EFAULT;
2544 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2545 		goto out;
2546 
2547 	r = -E2BIG;
2548 	if (msrs.nmsrs >= MAX_IO_MSRS)
2549 		goto out;
2550 
2551 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2552 	entries = memdup_user(user_msrs->entries, size);
2553 	if (IS_ERR(entries)) {
2554 		r = PTR_ERR(entries);
2555 		goto out;
2556 	}
2557 
2558 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2559 	if (r < 0)
2560 		goto out_free;
2561 
2562 	r = -EFAULT;
2563 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2564 		goto out_free;
2565 
2566 	r = n;
2567 
2568 out_free:
2569 	kfree(entries);
2570 out:
2571 	return r;
2572 }
2573 
2574 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2575 {
2576 	int r;
2577 
2578 	switch (ext) {
2579 	case KVM_CAP_IRQCHIP:
2580 	case KVM_CAP_HLT:
2581 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2582 	case KVM_CAP_SET_TSS_ADDR:
2583 	case KVM_CAP_EXT_CPUID:
2584 	case KVM_CAP_EXT_EMUL_CPUID:
2585 	case KVM_CAP_CLOCKSOURCE:
2586 	case KVM_CAP_PIT:
2587 	case KVM_CAP_NOP_IO_DELAY:
2588 	case KVM_CAP_MP_STATE:
2589 	case KVM_CAP_SYNC_MMU:
2590 	case KVM_CAP_USER_NMI:
2591 	case KVM_CAP_REINJECT_CONTROL:
2592 	case KVM_CAP_IRQ_INJECT_STATUS:
2593 	case KVM_CAP_IOEVENTFD:
2594 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2595 	case KVM_CAP_PIT2:
2596 	case KVM_CAP_PIT_STATE2:
2597 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2598 	case KVM_CAP_XEN_HVM:
2599 	case KVM_CAP_ADJUST_CLOCK:
2600 	case KVM_CAP_VCPU_EVENTS:
2601 	case KVM_CAP_HYPERV:
2602 	case KVM_CAP_HYPERV_VAPIC:
2603 	case KVM_CAP_HYPERV_SPIN:
2604 	case KVM_CAP_HYPERV_SYNIC:
2605 	case KVM_CAP_PCI_SEGMENT:
2606 	case KVM_CAP_DEBUGREGS:
2607 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2608 	case KVM_CAP_XSAVE:
2609 	case KVM_CAP_ASYNC_PF:
2610 	case KVM_CAP_GET_TSC_KHZ:
2611 	case KVM_CAP_KVMCLOCK_CTRL:
2612 	case KVM_CAP_READONLY_MEM:
2613 	case KVM_CAP_HYPERV_TIME:
2614 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2615 	case KVM_CAP_TSC_DEADLINE_TIMER:
2616 	case KVM_CAP_ENABLE_CAP_VM:
2617 	case KVM_CAP_DISABLE_QUIRKS:
2618 	case KVM_CAP_SET_BOOT_CPU_ID:
2619  	case KVM_CAP_SPLIT_IRQCHIP:
2620 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2621 	case KVM_CAP_ASSIGN_DEV_IRQ:
2622 	case KVM_CAP_PCI_2_3:
2623 #endif
2624 		r = 1;
2625 		break;
2626 	case KVM_CAP_X86_SMM:
2627 		/* SMBASE is usually relocated above 1M on modern chipsets,
2628 		 * and SMM handlers might indeed rely on 4G segment limits,
2629 		 * so do not report SMM to be available if real mode is
2630 		 * emulated via vm86 mode.  Still, do not go to great lengths
2631 		 * to avoid userspace's usage of the feature, because it is a
2632 		 * fringe case that is not enabled except via specific settings
2633 		 * of the module parameters.
2634 		 */
2635 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2636 		break;
2637 	case KVM_CAP_COALESCED_MMIO:
2638 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2639 		break;
2640 	case KVM_CAP_VAPIC:
2641 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2642 		break;
2643 	case KVM_CAP_NR_VCPUS:
2644 		r = KVM_SOFT_MAX_VCPUS;
2645 		break;
2646 	case KVM_CAP_MAX_VCPUS:
2647 		r = KVM_MAX_VCPUS;
2648 		break;
2649 	case KVM_CAP_NR_MEMSLOTS:
2650 		r = KVM_USER_MEM_SLOTS;
2651 		break;
2652 	case KVM_CAP_PV_MMU:	/* obsolete */
2653 		r = 0;
2654 		break;
2655 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2656 	case KVM_CAP_IOMMU:
2657 		r = iommu_present(&pci_bus_type);
2658 		break;
2659 #endif
2660 	case KVM_CAP_MCE:
2661 		r = KVM_MAX_MCE_BANKS;
2662 		break;
2663 	case KVM_CAP_XCRS:
2664 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2665 		break;
2666 	case KVM_CAP_TSC_CONTROL:
2667 		r = kvm_has_tsc_control;
2668 		break;
2669 	case KVM_CAP_X2APIC_API:
2670 		r = KVM_X2APIC_API_VALID_FLAGS;
2671 		break;
2672 	default:
2673 		r = 0;
2674 		break;
2675 	}
2676 	return r;
2677 
2678 }
2679 
2680 long kvm_arch_dev_ioctl(struct file *filp,
2681 			unsigned int ioctl, unsigned long arg)
2682 {
2683 	void __user *argp = (void __user *)arg;
2684 	long r;
2685 
2686 	switch (ioctl) {
2687 	case KVM_GET_MSR_INDEX_LIST: {
2688 		struct kvm_msr_list __user *user_msr_list = argp;
2689 		struct kvm_msr_list msr_list;
2690 		unsigned n;
2691 
2692 		r = -EFAULT;
2693 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2694 			goto out;
2695 		n = msr_list.nmsrs;
2696 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2697 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2698 			goto out;
2699 		r = -E2BIG;
2700 		if (n < msr_list.nmsrs)
2701 			goto out;
2702 		r = -EFAULT;
2703 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2704 				 num_msrs_to_save * sizeof(u32)))
2705 			goto out;
2706 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2707 				 &emulated_msrs,
2708 				 num_emulated_msrs * sizeof(u32)))
2709 			goto out;
2710 		r = 0;
2711 		break;
2712 	}
2713 	case KVM_GET_SUPPORTED_CPUID:
2714 	case KVM_GET_EMULATED_CPUID: {
2715 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2716 		struct kvm_cpuid2 cpuid;
2717 
2718 		r = -EFAULT;
2719 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2720 			goto out;
2721 
2722 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2723 					    ioctl);
2724 		if (r)
2725 			goto out;
2726 
2727 		r = -EFAULT;
2728 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2729 			goto out;
2730 		r = 0;
2731 		break;
2732 	}
2733 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2734 		r = -EFAULT;
2735 		if (copy_to_user(argp, &kvm_mce_cap_supported,
2736 				 sizeof(kvm_mce_cap_supported)))
2737 			goto out;
2738 		r = 0;
2739 		break;
2740 	}
2741 	default:
2742 		r = -EINVAL;
2743 	}
2744 out:
2745 	return r;
2746 }
2747 
2748 static void wbinvd_ipi(void *garbage)
2749 {
2750 	wbinvd();
2751 }
2752 
2753 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2754 {
2755 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2756 }
2757 
2758 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2759 {
2760 	set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2761 }
2762 
2763 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2764 {
2765 	/* Address WBINVD may be executed by guest */
2766 	if (need_emulate_wbinvd(vcpu)) {
2767 		if (kvm_x86_ops->has_wbinvd_exit())
2768 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2769 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2770 			smp_call_function_single(vcpu->cpu,
2771 					wbinvd_ipi, NULL, 1);
2772 	}
2773 
2774 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2775 
2776 	/* Apply any externally detected TSC adjustments (due to suspend) */
2777 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2778 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2779 		vcpu->arch.tsc_offset_adjustment = 0;
2780 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2781 	}
2782 
2783 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2784 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2785 				rdtsc() - vcpu->arch.last_host_tsc;
2786 		if (tsc_delta < 0)
2787 			mark_tsc_unstable("KVM discovered backwards TSC");
2788 
2789 		if (check_tsc_unstable()) {
2790 			u64 offset = kvm_compute_tsc_offset(vcpu,
2791 						vcpu->arch.last_guest_tsc);
2792 			kvm_vcpu_write_tsc_offset(vcpu, offset);
2793 			vcpu->arch.tsc_catchup = 1;
2794 		}
2795 		if (kvm_lapic_hv_timer_in_use(vcpu) &&
2796 				kvm_x86_ops->set_hv_timer(vcpu,
2797 					kvm_get_lapic_tscdeadline_msr(vcpu)))
2798 			kvm_lapic_switch_to_sw_timer(vcpu);
2799 		/*
2800 		 * On a host with synchronized TSC, there is no need to update
2801 		 * kvmclock on vcpu->cpu migration
2802 		 */
2803 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2804 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2805 		if (vcpu->cpu != cpu)
2806 			kvm_migrate_timers(vcpu);
2807 		vcpu->cpu = cpu;
2808 	}
2809 
2810 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2811 }
2812 
2813 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2814 {
2815 	kvm_x86_ops->vcpu_put(vcpu);
2816 	kvm_put_guest_fpu(vcpu);
2817 	vcpu->arch.last_host_tsc = rdtsc();
2818 }
2819 
2820 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2821 				    struct kvm_lapic_state *s)
2822 {
2823 	if (vcpu->arch.apicv_active)
2824 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2825 
2826 	return kvm_apic_get_state(vcpu, s);
2827 }
2828 
2829 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2830 				    struct kvm_lapic_state *s)
2831 {
2832 	int r;
2833 
2834 	r = kvm_apic_set_state(vcpu, s);
2835 	if (r)
2836 		return r;
2837 	update_cr8_intercept(vcpu);
2838 
2839 	return 0;
2840 }
2841 
2842 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2843 {
2844 	return (!lapic_in_kernel(vcpu) ||
2845 		kvm_apic_accept_pic_intr(vcpu));
2846 }
2847 
2848 /*
2849  * if userspace requested an interrupt window, check that the
2850  * interrupt window is open.
2851  *
2852  * No need to exit to userspace if we already have an interrupt queued.
2853  */
2854 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2855 {
2856 	return kvm_arch_interrupt_allowed(vcpu) &&
2857 		!kvm_cpu_has_interrupt(vcpu) &&
2858 		!kvm_event_needs_reinjection(vcpu) &&
2859 		kvm_cpu_accept_dm_intr(vcpu);
2860 }
2861 
2862 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2863 				    struct kvm_interrupt *irq)
2864 {
2865 	if (irq->irq >= KVM_NR_INTERRUPTS)
2866 		return -EINVAL;
2867 
2868 	if (!irqchip_in_kernel(vcpu->kvm)) {
2869 		kvm_queue_interrupt(vcpu, irq->irq, false);
2870 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2871 		return 0;
2872 	}
2873 
2874 	/*
2875 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2876 	 * fail for in-kernel 8259.
2877 	 */
2878 	if (pic_in_kernel(vcpu->kvm))
2879 		return -ENXIO;
2880 
2881 	if (vcpu->arch.pending_external_vector != -1)
2882 		return -EEXIST;
2883 
2884 	vcpu->arch.pending_external_vector = irq->irq;
2885 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2886 	return 0;
2887 }
2888 
2889 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2890 {
2891 	kvm_inject_nmi(vcpu);
2892 
2893 	return 0;
2894 }
2895 
2896 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2897 {
2898 	kvm_make_request(KVM_REQ_SMI, vcpu);
2899 
2900 	return 0;
2901 }
2902 
2903 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2904 					   struct kvm_tpr_access_ctl *tac)
2905 {
2906 	if (tac->flags)
2907 		return -EINVAL;
2908 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2909 	return 0;
2910 }
2911 
2912 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2913 					u64 mcg_cap)
2914 {
2915 	int r;
2916 	unsigned bank_num = mcg_cap & 0xff, bank;
2917 
2918 	r = -EINVAL;
2919 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2920 		goto out;
2921 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2922 		goto out;
2923 	r = 0;
2924 	vcpu->arch.mcg_cap = mcg_cap;
2925 	/* Init IA32_MCG_CTL to all 1s */
2926 	if (mcg_cap & MCG_CTL_P)
2927 		vcpu->arch.mcg_ctl = ~(u64)0;
2928 	/* Init IA32_MCi_CTL to all 1s */
2929 	for (bank = 0; bank < bank_num; bank++)
2930 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2931 
2932 	if (kvm_x86_ops->setup_mce)
2933 		kvm_x86_ops->setup_mce(vcpu);
2934 out:
2935 	return r;
2936 }
2937 
2938 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2939 				      struct kvm_x86_mce *mce)
2940 {
2941 	u64 mcg_cap = vcpu->arch.mcg_cap;
2942 	unsigned bank_num = mcg_cap & 0xff;
2943 	u64 *banks = vcpu->arch.mce_banks;
2944 
2945 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2946 		return -EINVAL;
2947 	/*
2948 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2949 	 * reporting is disabled
2950 	 */
2951 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2952 	    vcpu->arch.mcg_ctl != ~(u64)0)
2953 		return 0;
2954 	banks += 4 * mce->bank;
2955 	/*
2956 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2957 	 * reporting is disabled for the bank
2958 	 */
2959 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2960 		return 0;
2961 	if (mce->status & MCI_STATUS_UC) {
2962 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2963 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2964 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2965 			return 0;
2966 		}
2967 		if (banks[1] & MCI_STATUS_VAL)
2968 			mce->status |= MCI_STATUS_OVER;
2969 		banks[2] = mce->addr;
2970 		banks[3] = mce->misc;
2971 		vcpu->arch.mcg_status = mce->mcg_status;
2972 		banks[1] = mce->status;
2973 		kvm_queue_exception(vcpu, MC_VECTOR);
2974 	} else if (!(banks[1] & MCI_STATUS_VAL)
2975 		   || !(banks[1] & MCI_STATUS_UC)) {
2976 		if (banks[1] & MCI_STATUS_VAL)
2977 			mce->status |= MCI_STATUS_OVER;
2978 		banks[2] = mce->addr;
2979 		banks[3] = mce->misc;
2980 		banks[1] = mce->status;
2981 	} else
2982 		banks[1] |= MCI_STATUS_OVER;
2983 	return 0;
2984 }
2985 
2986 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2987 					       struct kvm_vcpu_events *events)
2988 {
2989 	process_nmi(vcpu);
2990 	events->exception.injected =
2991 		vcpu->arch.exception.pending &&
2992 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2993 	events->exception.nr = vcpu->arch.exception.nr;
2994 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2995 	events->exception.pad = 0;
2996 	events->exception.error_code = vcpu->arch.exception.error_code;
2997 
2998 	events->interrupt.injected =
2999 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3000 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3001 	events->interrupt.soft = 0;
3002 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3003 
3004 	events->nmi.injected = vcpu->arch.nmi_injected;
3005 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3006 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3007 	events->nmi.pad = 0;
3008 
3009 	events->sipi_vector = 0; /* never valid when reporting to user space */
3010 
3011 	events->smi.smm = is_smm(vcpu);
3012 	events->smi.pending = vcpu->arch.smi_pending;
3013 	events->smi.smm_inside_nmi =
3014 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3015 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3016 
3017 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3018 			 | KVM_VCPUEVENT_VALID_SHADOW
3019 			 | KVM_VCPUEVENT_VALID_SMM);
3020 	memset(&events->reserved, 0, sizeof(events->reserved));
3021 }
3022 
3023 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3024 					      struct kvm_vcpu_events *events)
3025 {
3026 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3027 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3028 			      | KVM_VCPUEVENT_VALID_SHADOW
3029 			      | KVM_VCPUEVENT_VALID_SMM))
3030 		return -EINVAL;
3031 
3032 	if (events->exception.injected &&
3033 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3034 		return -EINVAL;
3035 
3036 	process_nmi(vcpu);
3037 	vcpu->arch.exception.pending = events->exception.injected;
3038 	vcpu->arch.exception.nr = events->exception.nr;
3039 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3040 	vcpu->arch.exception.error_code = events->exception.error_code;
3041 
3042 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3043 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3044 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3045 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3046 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3047 						  events->interrupt.shadow);
3048 
3049 	vcpu->arch.nmi_injected = events->nmi.injected;
3050 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3051 		vcpu->arch.nmi_pending = events->nmi.pending;
3052 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3053 
3054 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3055 	    lapic_in_kernel(vcpu))
3056 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3057 
3058 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3059 		if (events->smi.smm)
3060 			vcpu->arch.hflags |= HF_SMM_MASK;
3061 		else
3062 			vcpu->arch.hflags &= ~HF_SMM_MASK;
3063 		vcpu->arch.smi_pending = events->smi.pending;
3064 		if (events->smi.smm_inside_nmi)
3065 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3066 		else
3067 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3068 		if (lapic_in_kernel(vcpu)) {
3069 			if (events->smi.latched_init)
3070 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3071 			else
3072 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3073 		}
3074 	}
3075 
3076 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3077 
3078 	return 0;
3079 }
3080 
3081 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3082 					     struct kvm_debugregs *dbgregs)
3083 {
3084 	unsigned long val;
3085 
3086 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3087 	kvm_get_dr(vcpu, 6, &val);
3088 	dbgregs->dr6 = val;
3089 	dbgregs->dr7 = vcpu->arch.dr7;
3090 	dbgregs->flags = 0;
3091 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3092 }
3093 
3094 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3095 					    struct kvm_debugregs *dbgregs)
3096 {
3097 	if (dbgregs->flags)
3098 		return -EINVAL;
3099 
3100 	if (dbgregs->dr6 & ~0xffffffffull)
3101 		return -EINVAL;
3102 	if (dbgregs->dr7 & ~0xffffffffull)
3103 		return -EINVAL;
3104 
3105 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3106 	kvm_update_dr0123(vcpu);
3107 	vcpu->arch.dr6 = dbgregs->dr6;
3108 	kvm_update_dr6(vcpu);
3109 	vcpu->arch.dr7 = dbgregs->dr7;
3110 	kvm_update_dr7(vcpu);
3111 
3112 	return 0;
3113 }
3114 
3115 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3116 
3117 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3118 {
3119 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3120 	u64 xstate_bv = xsave->header.xfeatures;
3121 	u64 valid;
3122 
3123 	/*
3124 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3125 	 * leaves 0 and 1 in the loop below.
3126 	 */
3127 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3128 
3129 	/* Set XSTATE_BV */
3130 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3131 
3132 	/*
3133 	 * Copy each region from the possibly compacted offset to the
3134 	 * non-compacted offset.
3135 	 */
3136 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3137 	while (valid) {
3138 		u64 feature = valid & -valid;
3139 		int index = fls64(feature) - 1;
3140 		void *src = get_xsave_addr(xsave, feature);
3141 
3142 		if (src) {
3143 			u32 size, offset, ecx, edx;
3144 			cpuid_count(XSTATE_CPUID, index,
3145 				    &size, &offset, &ecx, &edx);
3146 			memcpy(dest + offset, src, size);
3147 		}
3148 
3149 		valid -= feature;
3150 	}
3151 }
3152 
3153 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3154 {
3155 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3156 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3157 	u64 valid;
3158 
3159 	/*
3160 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3161 	 * leaves 0 and 1 in the loop below.
3162 	 */
3163 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3164 
3165 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3166 	xsave->header.xfeatures = xstate_bv;
3167 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3168 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3169 
3170 	/*
3171 	 * Copy each region from the non-compacted offset to the
3172 	 * possibly compacted offset.
3173 	 */
3174 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3175 	while (valid) {
3176 		u64 feature = valid & -valid;
3177 		int index = fls64(feature) - 1;
3178 		void *dest = get_xsave_addr(xsave, feature);
3179 
3180 		if (dest) {
3181 			u32 size, offset, ecx, edx;
3182 			cpuid_count(XSTATE_CPUID, index,
3183 				    &size, &offset, &ecx, &edx);
3184 			memcpy(dest, src + offset, size);
3185 		}
3186 
3187 		valid -= feature;
3188 	}
3189 }
3190 
3191 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3192 					 struct kvm_xsave *guest_xsave)
3193 {
3194 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3195 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3196 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3197 	} else {
3198 		memcpy(guest_xsave->region,
3199 			&vcpu->arch.guest_fpu.state.fxsave,
3200 			sizeof(struct fxregs_state));
3201 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3202 			XFEATURE_MASK_FPSSE;
3203 	}
3204 }
3205 
3206 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3207 					struct kvm_xsave *guest_xsave)
3208 {
3209 	u64 xstate_bv =
3210 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3211 
3212 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3213 		/*
3214 		 * Here we allow setting states that are not present in
3215 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3216 		 * with old userspace.
3217 		 */
3218 		if (xstate_bv & ~kvm_supported_xcr0())
3219 			return -EINVAL;
3220 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3221 	} else {
3222 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3223 			return -EINVAL;
3224 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3225 			guest_xsave->region, sizeof(struct fxregs_state));
3226 	}
3227 	return 0;
3228 }
3229 
3230 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3231 					struct kvm_xcrs *guest_xcrs)
3232 {
3233 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3234 		guest_xcrs->nr_xcrs = 0;
3235 		return;
3236 	}
3237 
3238 	guest_xcrs->nr_xcrs = 1;
3239 	guest_xcrs->flags = 0;
3240 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3241 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3242 }
3243 
3244 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3245 				       struct kvm_xcrs *guest_xcrs)
3246 {
3247 	int i, r = 0;
3248 
3249 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3250 		return -EINVAL;
3251 
3252 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3253 		return -EINVAL;
3254 
3255 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3256 		/* Only support XCR0 currently */
3257 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3258 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3259 				guest_xcrs->xcrs[i].value);
3260 			break;
3261 		}
3262 	if (r)
3263 		r = -EINVAL;
3264 	return r;
3265 }
3266 
3267 /*
3268  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3269  * stopped by the hypervisor.  This function will be called from the host only.
3270  * EINVAL is returned when the host attempts to set the flag for a guest that
3271  * does not support pv clocks.
3272  */
3273 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3274 {
3275 	if (!vcpu->arch.pv_time_enabled)
3276 		return -EINVAL;
3277 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3278 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3279 	return 0;
3280 }
3281 
3282 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3283 				     struct kvm_enable_cap *cap)
3284 {
3285 	if (cap->flags)
3286 		return -EINVAL;
3287 
3288 	switch (cap->cap) {
3289 	case KVM_CAP_HYPERV_SYNIC:
3290 		return kvm_hv_activate_synic(vcpu);
3291 	default:
3292 		return -EINVAL;
3293 	}
3294 }
3295 
3296 long kvm_arch_vcpu_ioctl(struct file *filp,
3297 			 unsigned int ioctl, unsigned long arg)
3298 {
3299 	struct kvm_vcpu *vcpu = filp->private_data;
3300 	void __user *argp = (void __user *)arg;
3301 	int r;
3302 	union {
3303 		struct kvm_lapic_state *lapic;
3304 		struct kvm_xsave *xsave;
3305 		struct kvm_xcrs *xcrs;
3306 		void *buffer;
3307 	} u;
3308 
3309 	u.buffer = NULL;
3310 	switch (ioctl) {
3311 	case KVM_GET_LAPIC: {
3312 		r = -EINVAL;
3313 		if (!lapic_in_kernel(vcpu))
3314 			goto out;
3315 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3316 
3317 		r = -ENOMEM;
3318 		if (!u.lapic)
3319 			goto out;
3320 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3321 		if (r)
3322 			goto out;
3323 		r = -EFAULT;
3324 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3325 			goto out;
3326 		r = 0;
3327 		break;
3328 	}
3329 	case KVM_SET_LAPIC: {
3330 		r = -EINVAL;
3331 		if (!lapic_in_kernel(vcpu))
3332 			goto out;
3333 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3334 		if (IS_ERR(u.lapic))
3335 			return PTR_ERR(u.lapic);
3336 
3337 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3338 		break;
3339 	}
3340 	case KVM_INTERRUPT: {
3341 		struct kvm_interrupt irq;
3342 
3343 		r = -EFAULT;
3344 		if (copy_from_user(&irq, argp, sizeof irq))
3345 			goto out;
3346 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3347 		break;
3348 	}
3349 	case KVM_NMI: {
3350 		r = kvm_vcpu_ioctl_nmi(vcpu);
3351 		break;
3352 	}
3353 	case KVM_SMI: {
3354 		r = kvm_vcpu_ioctl_smi(vcpu);
3355 		break;
3356 	}
3357 	case KVM_SET_CPUID: {
3358 		struct kvm_cpuid __user *cpuid_arg = argp;
3359 		struct kvm_cpuid cpuid;
3360 
3361 		r = -EFAULT;
3362 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3363 			goto out;
3364 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3365 		break;
3366 	}
3367 	case KVM_SET_CPUID2: {
3368 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3369 		struct kvm_cpuid2 cpuid;
3370 
3371 		r = -EFAULT;
3372 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3373 			goto out;
3374 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3375 					      cpuid_arg->entries);
3376 		break;
3377 	}
3378 	case KVM_GET_CPUID2: {
3379 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3380 		struct kvm_cpuid2 cpuid;
3381 
3382 		r = -EFAULT;
3383 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3384 			goto out;
3385 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3386 					      cpuid_arg->entries);
3387 		if (r)
3388 			goto out;
3389 		r = -EFAULT;
3390 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3391 			goto out;
3392 		r = 0;
3393 		break;
3394 	}
3395 	case KVM_GET_MSRS:
3396 		r = msr_io(vcpu, argp, do_get_msr, 1);
3397 		break;
3398 	case KVM_SET_MSRS:
3399 		r = msr_io(vcpu, argp, do_set_msr, 0);
3400 		break;
3401 	case KVM_TPR_ACCESS_REPORTING: {
3402 		struct kvm_tpr_access_ctl tac;
3403 
3404 		r = -EFAULT;
3405 		if (copy_from_user(&tac, argp, sizeof tac))
3406 			goto out;
3407 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3408 		if (r)
3409 			goto out;
3410 		r = -EFAULT;
3411 		if (copy_to_user(argp, &tac, sizeof tac))
3412 			goto out;
3413 		r = 0;
3414 		break;
3415 	};
3416 	case KVM_SET_VAPIC_ADDR: {
3417 		struct kvm_vapic_addr va;
3418 
3419 		r = -EINVAL;
3420 		if (!lapic_in_kernel(vcpu))
3421 			goto out;
3422 		r = -EFAULT;
3423 		if (copy_from_user(&va, argp, sizeof va))
3424 			goto out;
3425 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3426 		break;
3427 	}
3428 	case KVM_X86_SETUP_MCE: {
3429 		u64 mcg_cap;
3430 
3431 		r = -EFAULT;
3432 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3433 			goto out;
3434 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3435 		break;
3436 	}
3437 	case KVM_X86_SET_MCE: {
3438 		struct kvm_x86_mce mce;
3439 
3440 		r = -EFAULT;
3441 		if (copy_from_user(&mce, argp, sizeof mce))
3442 			goto out;
3443 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3444 		break;
3445 	}
3446 	case KVM_GET_VCPU_EVENTS: {
3447 		struct kvm_vcpu_events events;
3448 
3449 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3450 
3451 		r = -EFAULT;
3452 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3453 			break;
3454 		r = 0;
3455 		break;
3456 	}
3457 	case KVM_SET_VCPU_EVENTS: {
3458 		struct kvm_vcpu_events events;
3459 
3460 		r = -EFAULT;
3461 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3462 			break;
3463 
3464 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3465 		break;
3466 	}
3467 	case KVM_GET_DEBUGREGS: {
3468 		struct kvm_debugregs dbgregs;
3469 
3470 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3471 
3472 		r = -EFAULT;
3473 		if (copy_to_user(argp, &dbgregs,
3474 				 sizeof(struct kvm_debugregs)))
3475 			break;
3476 		r = 0;
3477 		break;
3478 	}
3479 	case KVM_SET_DEBUGREGS: {
3480 		struct kvm_debugregs dbgregs;
3481 
3482 		r = -EFAULT;
3483 		if (copy_from_user(&dbgregs, argp,
3484 				   sizeof(struct kvm_debugregs)))
3485 			break;
3486 
3487 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3488 		break;
3489 	}
3490 	case KVM_GET_XSAVE: {
3491 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3492 		r = -ENOMEM;
3493 		if (!u.xsave)
3494 			break;
3495 
3496 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3497 
3498 		r = -EFAULT;
3499 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3500 			break;
3501 		r = 0;
3502 		break;
3503 	}
3504 	case KVM_SET_XSAVE: {
3505 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3506 		if (IS_ERR(u.xsave))
3507 			return PTR_ERR(u.xsave);
3508 
3509 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3510 		break;
3511 	}
3512 	case KVM_GET_XCRS: {
3513 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3514 		r = -ENOMEM;
3515 		if (!u.xcrs)
3516 			break;
3517 
3518 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3519 
3520 		r = -EFAULT;
3521 		if (copy_to_user(argp, u.xcrs,
3522 				 sizeof(struct kvm_xcrs)))
3523 			break;
3524 		r = 0;
3525 		break;
3526 	}
3527 	case KVM_SET_XCRS: {
3528 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3529 		if (IS_ERR(u.xcrs))
3530 			return PTR_ERR(u.xcrs);
3531 
3532 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3533 		break;
3534 	}
3535 	case KVM_SET_TSC_KHZ: {
3536 		u32 user_tsc_khz;
3537 
3538 		r = -EINVAL;
3539 		user_tsc_khz = (u32)arg;
3540 
3541 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3542 			goto out;
3543 
3544 		if (user_tsc_khz == 0)
3545 			user_tsc_khz = tsc_khz;
3546 
3547 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3548 			r = 0;
3549 
3550 		goto out;
3551 	}
3552 	case KVM_GET_TSC_KHZ: {
3553 		r = vcpu->arch.virtual_tsc_khz;
3554 		goto out;
3555 	}
3556 	case KVM_KVMCLOCK_CTRL: {
3557 		r = kvm_set_guest_paused(vcpu);
3558 		goto out;
3559 	}
3560 	case KVM_ENABLE_CAP: {
3561 		struct kvm_enable_cap cap;
3562 
3563 		r = -EFAULT;
3564 		if (copy_from_user(&cap, argp, sizeof(cap)))
3565 			goto out;
3566 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3567 		break;
3568 	}
3569 	default:
3570 		r = -EINVAL;
3571 	}
3572 out:
3573 	kfree(u.buffer);
3574 	return r;
3575 }
3576 
3577 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3578 {
3579 	return VM_FAULT_SIGBUS;
3580 }
3581 
3582 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3583 {
3584 	int ret;
3585 
3586 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3587 		return -EINVAL;
3588 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3589 	return ret;
3590 }
3591 
3592 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3593 					      u64 ident_addr)
3594 {
3595 	kvm->arch.ept_identity_map_addr = ident_addr;
3596 	return 0;
3597 }
3598 
3599 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3600 					  u32 kvm_nr_mmu_pages)
3601 {
3602 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3603 		return -EINVAL;
3604 
3605 	mutex_lock(&kvm->slots_lock);
3606 
3607 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3608 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3609 
3610 	mutex_unlock(&kvm->slots_lock);
3611 	return 0;
3612 }
3613 
3614 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3615 {
3616 	return kvm->arch.n_max_mmu_pages;
3617 }
3618 
3619 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3620 {
3621 	int r;
3622 
3623 	r = 0;
3624 	switch (chip->chip_id) {
3625 	case KVM_IRQCHIP_PIC_MASTER:
3626 		memcpy(&chip->chip.pic,
3627 			&pic_irqchip(kvm)->pics[0],
3628 			sizeof(struct kvm_pic_state));
3629 		break;
3630 	case KVM_IRQCHIP_PIC_SLAVE:
3631 		memcpy(&chip->chip.pic,
3632 			&pic_irqchip(kvm)->pics[1],
3633 			sizeof(struct kvm_pic_state));
3634 		break;
3635 	case KVM_IRQCHIP_IOAPIC:
3636 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3637 		break;
3638 	default:
3639 		r = -EINVAL;
3640 		break;
3641 	}
3642 	return r;
3643 }
3644 
3645 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3646 {
3647 	int r;
3648 
3649 	r = 0;
3650 	switch (chip->chip_id) {
3651 	case KVM_IRQCHIP_PIC_MASTER:
3652 		spin_lock(&pic_irqchip(kvm)->lock);
3653 		memcpy(&pic_irqchip(kvm)->pics[0],
3654 			&chip->chip.pic,
3655 			sizeof(struct kvm_pic_state));
3656 		spin_unlock(&pic_irqchip(kvm)->lock);
3657 		break;
3658 	case KVM_IRQCHIP_PIC_SLAVE:
3659 		spin_lock(&pic_irqchip(kvm)->lock);
3660 		memcpy(&pic_irqchip(kvm)->pics[1],
3661 			&chip->chip.pic,
3662 			sizeof(struct kvm_pic_state));
3663 		spin_unlock(&pic_irqchip(kvm)->lock);
3664 		break;
3665 	case KVM_IRQCHIP_IOAPIC:
3666 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3667 		break;
3668 	default:
3669 		r = -EINVAL;
3670 		break;
3671 	}
3672 	kvm_pic_update_irq(pic_irqchip(kvm));
3673 	return r;
3674 }
3675 
3676 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3677 {
3678 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3679 
3680 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3681 
3682 	mutex_lock(&kps->lock);
3683 	memcpy(ps, &kps->channels, sizeof(*ps));
3684 	mutex_unlock(&kps->lock);
3685 	return 0;
3686 }
3687 
3688 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3689 {
3690 	int i;
3691 	struct kvm_pit *pit = kvm->arch.vpit;
3692 
3693 	mutex_lock(&pit->pit_state.lock);
3694 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3695 	for (i = 0; i < 3; i++)
3696 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3697 	mutex_unlock(&pit->pit_state.lock);
3698 	return 0;
3699 }
3700 
3701 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3702 {
3703 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3704 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3705 		sizeof(ps->channels));
3706 	ps->flags = kvm->arch.vpit->pit_state.flags;
3707 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3708 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3709 	return 0;
3710 }
3711 
3712 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3713 {
3714 	int start = 0;
3715 	int i;
3716 	u32 prev_legacy, cur_legacy;
3717 	struct kvm_pit *pit = kvm->arch.vpit;
3718 
3719 	mutex_lock(&pit->pit_state.lock);
3720 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3721 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3722 	if (!prev_legacy && cur_legacy)
3723 		start = 1;
3724 	memcpy(&pit->pit_state.channels, &ps->channels,
3725 	       sizeof(pit->pit_state.channels));
3726 	pit->pit_state.flags = ps->flags;
3727 	for (i = 0; i < 3; i++)
3728 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3729 				   start && i == 0);
3730 	mutex_unlock(&pit->pit_state.lock);
3731 	return 0;
3732 }
3733 
3734 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3735 				 struct kvm_reinject_control *control)
3736 {
3737 	struct kvm_pit *pit = kvm->arch.vpit;
3738 
3739 	if (!pit)
3740 		return -ENXIO;
3741 
3742 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3743 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3744 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3745 	 */
3746 	mutex_lock(&pit->pit_state.lock);
3747 	kvm_pit_set_reinject(pit, control->pit_reinject);
3748 	mutex_unlock(&pit->pit_state.lock);
3749 
3750 	return 0;
3751 }
3752 
3753 /**
3754  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3755  * @kvm: kvm instance
3756  * @log: slot id and address to which we copy the log
3757  *
3758  * Steps 1-4 below provide general overview of dirty page logging. See
3759  * kvm_get_dirty_log_protect() function description for additional details.
3760  *
3761  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3762  * always flush the TLB (step 4) even if previous step failed  and the dirty
3763  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3764  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3765  * writes will be marked dirty for next log read.
3766  *
3767  *   1. Take a snapshot of the bit and clear it if needed.
3768  *   2. Write protect the corresponding page.
3769  *   3. Copy the snapshot to the userspace.
3770  *   4. Flush TLB's if needed.
3771  */
3772 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3773 {
3774 	bool is_dirty = false;
3775 	int r;
3776 
3777 	mutex_lock(&kvm->slots_lock);
3778 
3779 	/*
3780 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3781 	 */
3782 	if (kvm_x86_ops->flush_log_dirty)
3783 		kvm_x86_ops->flush_log_dirty(kvm);
3784 
3785 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3786 
3787 	/*
3788 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3789 	 * kvm_mmu_slot_remove_write_access().
3790 	 */
3791 	lockdep_assert_held(&kvm->slots_lock);
3792 	if (is_dirty)
3793 		kvm_flush_remote_tlbs(kvm);
3794 
3795 	mutex_unlock(&kvm->slots_lock);
3796 	return r;
3797 }
3798 
3799 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3800 			bool line_status)
3801 {
3802 	if (!irqchip_in_kernel(kvm))
3803 		return -ENXIO;
3804 
3805 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3806 					irq_event->irq, irq_event->level,
3807 					line_status);
3808 	return 0;
3809 }
3810 
3811 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3812 				   struct kvm_enable_cap *cap)
3813 {
3814 	int r;
3815 
3816 	if (cap->flags)
3817 		return -EINVAL;
3818 
3819 	switch (cap->cap) {
3820 	case KVM_CAP_DISABLE_QUIRKS:
3821 		kvm->arch.disabled_quirks = cap->args[0];
3822 		r = 0;
3823 		break;
3824 	case KVM_CAP_SPLIT_IRQCHIP: {
3825 		mutex_lock(&kvm->lock);
3826 		r = -EINVAL;
3827 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3828 			goto split_irqchip_unlock;
3829 		r = -EEXIST;
3830 		if (irqchip_in_kernel(kvm))
3831 			goto split_irqchip_unlock;
3832 		if (kvm->created_vcpus)
3833 			goto split_irqchip_unlock;
3834 		r = kvm_setup_empty_irq_routing(kvm);
3835 		if (r)
3836 			goto split_irqchip_unlock;
3837 		/* Pairs with irqchip_in_kernel. */
3838 		smp_wmb();
3839 		kvm->arch.irqchip_split = true;
3840 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3841 		r = 0;
3842 split_irqchip_unlock:
3843 		mutex_unlock(&kvm->lock);
3844 		break;
3845 	}
3846 	case KVM_CAP_X2APIC_API:
3847 		r = -EINVAL;
3848 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3849 			break;
3850 
3851 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3852 			kvm->arch.x2apic_format = true;
3853 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3854 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
3855 
3856 		r = 0;
3857 		break;
3858 	default:
3859 		r = -EINVAL;
3860 		break;
3861 	}
3862 	return r;
3863 }
3864 
3865 long kvm_arch_vm_ioctl(struct file *filp,
3866 		       unsigned int ioctl, unsigned long arg)
3867 {
3868 	struct kvm *kvm = filp->private_data;
3869 	void __user *argp = (void __user *)arg;
3870 	int r = -ENOTTY;
3871 	/*
3872 	 * This union makes it completely explicit to gcc-3.x
3873 	 * that these two variables' stack usage should be
3874 	 * combined, not added together.
3875 	 */
3876 	union {
3877 		struct kvm_pit_state ps;
3878 		struct kvm_pit_state2 ps2;
3879 		struct kvm_pit_config pit_config;
3880 	} u;
3881 
3882 	switch (ioctl) {
3883 	case KVM_SET_TSS_ADDR:
3884 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3885 		break;
3886 	case KVM_SET_IDENTITY_MAP_ADDR: {
3887 		u64 ident_addr;
3888 
3889 		r = -EFAULT;
3890 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3891 			goto out;
3892 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3893 		break;
3894 	}
3895 	case KVM_SET_NR_MMU_PAGES:
3896 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3897 		break;
3898 	case KVM_GET_NR_MMU_PAGES:
3899 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3900 		break;
3901 	case KVM_CREATE_IRQCHIP: {
3902 		struct kvm_pic *vpic;
3903 
3904 		mutex_lock(&kvm->lock);
3905 		r = -EEXIST;
3906 		if (kvm->arch.vpic)
3907 			goto create_irqchip_unlock;
3908 		r = -EINVAL;
3909 		if (kvm->created_vcpus)
3910 			goto create_irqchip_unlock;
3911 		r = -ENOMEM;
3912 		vpic = kvm_create_pic(kvm);
3913 		if (vpic) {
3914 			r = kvm_ioapic_init(kvm);
3915 			if (r) {
3916 				mutex_lock(&kvm->slots_lock);
3917 				kvm_destroy_pic(vpic);
3918 				mutex_unlock(&kvm->slots_lock);
3919 				goto create_irqchip_unlock;
3920 			}
3921 		} else
3922 			goto create_irqchip_unlock;
3923 		r = kvm_setup_default_irq_routing(kvm);
3924 		if (r) {
3925 			mutex_lock(&kvm->slots_lock);
3926 			mutex_lock(&kvm->irq_lock);
3927 			kvm_ioapic_destroy(kvm);
3928 			kvm_destroy_pic(vpic);
3929 			mutex_unlock(&kvm->irq_lock);
3930 			mutex_unlock(&kvm->slots_lock);
3931 			goto create_irqchip_unlock;
3932 		}
3933 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3934 		smp_wmb();
3935 		kvm->arch.vpic = vpic;
3936 	create_irqchip_unlock:
3937 		mutex_unlock(&kvm->lock);
3938 		break;
3939 	}
3940 	case KVM_CREATE_PIT:
3941 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3942 		goto create_pit;
3943 	case KVM_CREATE_PIT2:
3944 		r = -EFAULT;
3945 		if (copy_from_user(&u.pit_config, argp,
3946 				   sizeof(struct kvm_pit_config)))
3947 			goto out;
3948 	create_pit:
3949 		mutex_lock(&kvm->lock);
3950 		r = -EEXIST;
3951 		if (kvm->arch.vpit)
3952 			goto create_pit_unlock;
3953 		r = -ENOMEM;
3954 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3955 		if (kvm->arch.vpit)
3956 			r = 0;
3957 	create_pit_unlock:
3958 		mutex_unlock(&kvm->lock);
3959 		break;
3960 	case KVM_GET_IRQCHIP: {
3961 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3962 		struct kvm_irqchip *chip;
3963 
3964 		chip = memdup_user(argp, sizeof(*chip));
3965 		if (IS_ERR(chip)) {
3966 			r = PTR_ERR(chip);
3967 			goto out;
3968 		}
3969 
3970 		r = -ENXIO;
3971 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3972 			goto get_irqchip_out;
3973 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3974 		if (r)
3975 			goto get_irqchip_out;
3976 		r = -EFAULT;
3977 		if (copy_to_user(argp, chip, sizeof *chip))
3978 			goto get_irqchip_out;
3979 		r = 0;
3980 	get_irqchip_out:
3981 		kfree(chip);
3982 		break;
3983 	}
3984 	case KVM_SET_IRQCHIP: {
3985 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3986 		struct kvm_irqchip *chip;
3987 
3988 		chip = memdup_user(argp, sizeof(*chip));
3989 		if (IS_ERR(chip)) {
3990 			r = PTR_ERR(chip);
3991 			goto out;
3992 		}
3993 
3994 		r = -ENXIO;
3995 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3996 			goto set_irqchip_out;
3997 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3998 		if (r)
3999 			goto set_irqchip_out;
4000 		r = 0;
4001 	set_irqchip_out:
4002 		kfree(chip);
4003 		break;
4004 	}
4005 	case KVM_GET_PIT: {
4006 		r = -EFAULT;
4007 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4008 			goto out;
4009 		r = -ENXIO;
4010 		if (!kvm->arch.vpit)
4011 			goto out;
4012 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4013 		if (r)
4014 			goto out;
4015 		r = -EFAULT;
4016 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4017 			goto out;
4018 		r = 0;
4019 		break;
4020 	}
4021 	case KVM_SET_PIT: {
4022 		r = -EFAULT;
4023 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4024 			goto out;
4025 		r = -ENXIO;
4026 		if (!kvm->arch.vpit)
4027 			goto out;
4028 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4029 		break;
4030 	}
4031 	case KVM_GET_PIT2: {
4032 		r = -ENXIO;
4033 		if (!kvm->arch.vpit)
4034 			goto out;
4035 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4036 		if (r)
4037 			goto out;
4038 		r = -EFAULT;
4039 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4040 			goto out;
4041 		r = 0;
4042 		break;
4043 	}
4044 	case KVM_SET_PIT2: {
4045 		r = -EFAULT;
4046 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4047 			goto out;
4048 		r = -ENXIO;
4049 		if (!kvm->arch.vpit)
4050 			goto out;
4051 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4052 		break;
4053 	}
4054 	case KVM_REINJECT_CONTROL: {
4055 		struct kvm_reinject_control control;
4056 		r =  -EFAULT;
4057 		if (copy_from_user(&control, argp, sizeof(control)))
4058 			goto out;
4059 		r = kvm_vm_ioctl_reinject(kvm, &control);
4060 		break;
4061 	}
4062 	case KVM_SET_BOOT_CPU_ID:
4063 		r = 0;
4064 		mutex_lock(&kvm->lock);
4065 		if (kvm->created_vcpus)
4066 			r = -EBUSY;
4067 		else
4068 			kvm->arch.bsp_vcpu_id = arg;
4069 		mutex_unlock(&kvm->lock);
4070 		break;
4071 	case KVM_XEN_HVM_CONFIG: {
4072 		r = -EFAULT;
4073 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4074 				   sizeof(struct kvm_xen_hvm_config)))
4075 			goto out;
4076 		r = -EINVAL;
4077 		if (kvm->arch.xen_hvm_config.flags)
4078 			goto out;
4079 		r = 0;
4080 		break;
4081 	}
4082 	case KVM_SET_CLOCK: {
4083 		struct kvm_clock_data user_ns;
4084 		u64 now_ns;
4085 
4086 		r = -EFAULT;
4087 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4088 			goto out;
4089 
4090 		r = -EINVAL;
4091 		if (user_ns.flags)
4092 			goto out;
4093 
4094 		r = 0;
4095 		local_irq_disable();
4096 		now_ns = __get_kvmclock_ns(kvm);
4097 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4098 		local_irq_enable();
4099 		kvm_gen_update_masterclock(kvm);
4100 		break;
4101 	}
4102 	case KVM_GET_CLOCK: {
4103 		struct kvm_clock_data user_ns;
4104 		u64 now_ns;
4105 
4106 		now_ns = get_kvmclock_ns(kvm);
4107 		user_ns.clock = now_ns;
4108 		user_ns.flags = 0;
4109 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4110 
4111 		r = -EFAULT;
4112 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4113 			goto out;
4114 		r = 0;
4115 		break;
4116 	}
4117 	case KVM_ENABLE_CAP: {
4118 		struct kvm_enable_cap cap;
4119 
4120 		r = -EFAULT;
4121 		if (copy_from_user(&cap, argp, sizeof(cap)))
4122 			goto out;
4123 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4124 		break;
4125 	}
4126 	default:
4127 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4128 	}
4129 out:
4130 	return r;
4131 }
4132 
4133 static void kvm_init_msr_list(void)
4134 {
4135 	u32 dummy[2];
4136 	unsigned i, j;
4137 
4138 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4139 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4140 			continue;
4141 
4142 		/*
4143 		 * Even MSRs that are valid in the host may not be exposed
4144 		 * to the guests in some cases.
4145 		 */
4146 		switch (msrs_to_save[i]) {
4147 		case MSR_IA32_BNDCFGS:
4148 			if (!kvm_x86_ops->mpx_supported())
4149 				continue;
4150 			break;
4151 		case MSR_TSC_AUX:
4152 			if (!kvm_x86_ops->rdtscp_supported())
4153 				continue;
4154 			break;
4155 		default:
4156 			break;
4157 		}
4158 
4159 		if (j < i)
4160 			msrs_to_save[j] = msrs_to_save[i];
4161 		j++;
4162 	}
4163 	num_msrs_to_save = j;
4164 
4165 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4166 		switch (emulated_msrs[i]) {
4167 		case MSR_IA32_SMBASE:
4168 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4169 				continue;
4170 			break;
4171 		default:
4172 			break;
4173 		}
4174 
4175 		if (j < i)
4176 			emulated_msrs[j] = emulated_msrs[i];
4177 		j++;
4178 	}
4179 	num_emulated_msrs = j;
4180 }
4181 
4182 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4183 			   const void *v)
4184 {
4185 	int handled = 0;
4186 	int n;
4187 
4188 	do {
4189 		n = min(len, 8);
4190 		if (!(lapic_in_kernel(vcpu) &&
4191 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4192 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4193 			break;
4194 		handled += n;
4195 		addr += n;
4196 		len -= n;
4197 		v += n;
4198 	} while (len);
4199 
4200 	return handled;
4201 }
4202 
4203 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4204 {
4205 	int handled = 0;
4206 	int n;
4207 
4208 	do {
4209 		n = min(len, 8);
4210 		if (!(lapic_in_kernel(vcpu) &&
4211 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4212 					 addr, n, v))
4213 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4214 			break;
4215 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4216 		handled += n;
4217 		addr += n;
4218 		len -= n;
4219 		v += n;
4220 	} while (len);
4221 
4222 	return handled;
4223 }
4224 
4225 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4226 			struct kvm_segment *var, int seg)
4227 {
4228 	kvm_x86_ops->set_segment(vcpu, var, seg);
4229 }
4230 
4231 void kvm_get_segment(struct kvm_vcpu *vcpu,
4232 		     struct kvm_segment *var, int seg)
4233 {
4234 	kvm_x86_ops->get_segment(vcpu, var, seg);
4235 }
4236 
4237 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4238 			   struct x86_exception *exception)
4239 {
4240 	gpa_t t_gpa;
4241 
4242 	BUG_ON(!mmu_is_nested(vcpu));
4243 
4244 	/* NPT walks are always user-walks */
4245 	access |= PFERR_USER_MASK;
4246 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4247 
4248 	return t_gpa;
4249 }
4250 
4251 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4252 			      struct x86_exception *exception)
4253 {
4254 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4255 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4256 }
4257 
4258  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4259 				struct x86_exception *exception)
4260 {
4261 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4262 	access |= PFERR_FETCH_MASK;
4263 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4264 }
4265 
4266 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4267 			       struct x86_exception *exception)
4268 {
4269 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4270 	access |= PFERR_WRITE_MASK;
4271 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4272 }
4273 
4274 /* uses this to access any guest's mapped memory without checking CPL */
4275 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4276 				struct x86_exception *exception)
4277 {
4278 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4279 }
4280 
4281 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4282 				      struct kvm_vcpu *vcpu, u32 access,
4283 				      struct x86_exception *exception)
4284 {
4285 	void *data = val;
4286 	int r = X86EMUL_CONTINUE;
4287 
4288 	while (bytes) {
4289 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4290 							    exception);
4291 		unsigned offset = addr & (PAGE_SIZE-1);
4292 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4293 		int ret;
4294 
4295 		if (gpa == UNMAPPED_GVA)
4296 			return X86EMUL_PROPAGATE_FAULT;
4297 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4298 					       offset, toread);
4299 		if (ret < 0) {
4300 			r = X86EMUL_IO_NEEDED;
4301 			goto out;
4302 		}
4303 
4304 		bytes -= toread;
4305 		data += toread;
4306 		addr += toread;
4307 	}
4308 out:
4309 	return r;
4310 }
4311 
4312 /* used for instruction fetching */
4313 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4314 				gva_t addr, void *val, unsigned int bytes,
4315 				struct x86_exception *exception)
4316 {
4317 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4318 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4319 	unsigned offset;
4320 	int ret;
4321 
4322 	/* Inline kvm_read_guest_virt_helper for speed.  */
4323 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4324 						    exception);
4325 	if (unlikely(gpa == UNMAPPED_GVA))
4326 		return X86EMUL_PROPAGATE_FAULT;
4327 
4328 	offset = addr & (PAGE_SIZE-1);
4329 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4330 		bytes = (unsigned)PAGE_SIZE - offset;
4331 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4332 				       offset, bytes);
4333 	if (unlikely(ret < 0))
4334 		return X86EMUL_IO_NEEDED;
4335 
4336 	return X86EMUL_CONTINUE;
4337 }
4338 
4339 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4340 			       gva_t addr, void *val, unsigned int bytes,
4341 			       struct x86_exception *exception)
4342 {
4343 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4344 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4345 
4346 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4347 					  exception);
4348 }
4349 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4350 
4351 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4352 				      gva_t addr, void *val, unsigned int bytes,
4353 				      struct x86_exception *exception)
4354 {
4355 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4356 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4357 }
4358 
4359 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4360 		unsigned long addr, void *val, unsigned int bytes)
4361 {
4362 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4363 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4364 
4365 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4366 }
4367 
4368 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4369 				       gva_t addr, void *val,
4370 				       unsigned int bytes,
4371 				       struct x86_exception *exception)
4372 {
4373 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4374 	void *data = val;
4375 	int r = X86EMUL_CONTINUE;
4376 
4377 	while (bytes) {
4378 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4379 							     PFERR_WRITE_MASK,
4380 							     exception);
4381 		unsigned offset = addr & (PAGE_SIZE-1);
4382 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4383 		int ret;
4384 
4385 		if (gpa == UNMAPPED_GVA)
4386 			return X86EMUL_PROPAGATE_FAULT;
4387 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4388 		if (ret < 0) {
4389 			r = X86EMUL_IO_NEEDED;
4390 			goto out;
4391 		}
4392 
4393 		bytes -= towrite;
4394 		data += towrite;
4395 		addr += towrite;
4396 	}
4397 out:
4398 	return r;
4399 }
4400 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4401 
4402 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4403 				gpa_t *gpa, struct x86_exception *exception,
4404 				bool write)
4405 {
4406 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4407 		| (write ? PFERR_WRITE_MASK : 0);
4408 
4409 	/*
4410 	 * currently PKRU is only applied to ept enabled guest so
4411 	 * there is no pkey in EPT page table for L1 guest or EPT
4412 	 * shadow page table for L2 guest.
4413 	 */
4414 	if (vcpu_match_mmio_gva(vcpu, gva)
4415 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4416 				 vcpu->arch.access, 0, access)) {
4417 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4418 					(gva & (PAGE_SIZE - 1));
4419 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4420 		return 1;
4421 	}
4422 
4423 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4424 
4425 	if (*gpa == UNMAPPED_GVA)
4426 		return -1;
4427 
4428 	/* For APIC access vmexit */
4429 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4430 		return 1;
4431 
4432 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4433 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4434 		return 1;
4435 	}
4436 
4437 	return 0;
4438 }
4439 
4440 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4441 			const void *val, int bytes)
4442 {
4443 	int ret;
4444 
4445 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4446 	if (ret < 0)
4447 		return 0;
4448 	kvm_page_track_write(vcpu, gpa, val, bytes);
4449 	return 1;
4450 }
4451 
4452 struct read_write_emulator_ops {
4453 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4454 				  int bytes);
4455 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4456 				  void *val, int bytes);
4457 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4458 			       int bytes, void *val);
4459 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4460 				    void *val, int bytes);
4461 	bool write;
4462 };
4463 
4464 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4465 {
4466 	if (vcpu->mmio_read_completed) {
4467 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4468 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4469 		vcpu->mmio_read_completed = 0;
4470 		return 1;
4471 	}
4472 
4473 	return 0;
4474 }
4475 
4476 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4477 			void *val, int bytes)
4478 {
4479 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4480 }
4481 
4482 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4483 			 void *val, int bytes)
4484 {
4485 	return emulator_write_phys(vcpu, gpa, val, bytes);
4486 }
4487 
4488 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4489 {
4490 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4491 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4492 }
4493 
4494 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4495 			  void *val, int bytes)
4496 {
4497 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4498 	return X86EMUL_IO_NEEDED;
4499 }
4500 
4501 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4502 			   void *val, int bytes)
4503 {
4504 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4505 
4506 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4507 	return X86EMUL_CONTINUE;
4508 }
4509 
4510 static const struct read_write_emulator_ops read_emultor = {
4511 	.read_write_prepare = read_prepare,
4512 	.read_write_emulate = read_emulate,
4513 	.read_write_mmio = vcpu_mmio_read,
4514 	.read_write_exit_mmio = read_exit_mmio,
4515 };
4516 
4517 static const struct read_write_emulator_ops write_emultor = {
4518 	.read_write_emulate = write_emulate,
4519 	.read_write_mmio = write_mmio,
4520 	.read_write_exit_mmio = write_exit_mmio,
4521 	.write = true,
4522 };
4523 
4524 static int emulator_read_write_onepage(unsigned long addr, void *val,
4525 				       unsigned int bytes,
4526 				       struct x86_exception *exception,
4527 				       struct kvm_vcpu *vcpu,
4528 				       const struct read_write_emulator_ops *ops)
4529 {
4530 	gpa_t gpa;
4531 	int handled, ret;
4532 	bool write = ops->write;
4533 	struct kvm_mmio_fragment *frag;
4534 
4535 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4536 
4537 	if (ret < 0)
4538 		return X86EMUL_PROPAGATE_FAULT;
4539 
4540 	/* For APIC access vmexit */
4541 	if (ret)
4542 		goto mmio;
4543 
4544 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4545 		return X86EMUL_CONTINUE;
4546 
4547 mmio:
4548 	/*
4549 	 * Is this MMIO handled locally?
4550 	 */
4551 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4552 	if (handled == bytes)
4553 		return X86EMUL_CONTINUE;
4554 
4555 	gpa += handled;
4556 	bytes -= handled;
4557 	val += handled;
4558 
4559 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4560 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4561 	frag->gpa = gpa;
4562 	frag->data = val;
4563 	frag->len = bytes;
4564 	return X86EMUL_CONTINUE;
4565 }
4566 
4567 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4568 			unsigned long addr,
4569 			void *val, unsigned int bytes,
4570 			struct x86_exception *exception,
4571 			const struct read_write_emulator_ops *ops)
4572 {
4573 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4574 	gpa_t gpa;
4575 	int rc;
4576 
4577 	if (ops->read_write_prepare &&
4578 		  ops->read_write_prepare(vcpu, val, bytes))
4579 		return X86EMUL_CONTINUE;
4580 
4581 	vcpu->mmio_nr_fragments = 0;
4582 
4583 	/* Crossing a page boundary? */
4584 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4585 		int now;
4586 
4587 		now = -addr & ~PAGE_MASK;
4588 		rc = emulator_read_write_onepage(addr, val, now, exception,
4589 						 vcpu, ops);
4590 
4591 		if (rc != X86EMUL_CONTINUE)
4592 			return rc;
4593 		addr += now;
4594 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4595 			addr = (u32)addr;
4596 		val += now;
4597 		bytes -= now;
4598 	}
4599 
4600 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4601 					 vcpu, ops);
4602 	if (rc != X86EMUL_CONTINUE)
4603 		return rc;
4604 
4605 	if (!vcpu->mmio_nr_fragments)
4606 		return rc;
4607 
4608 	gpa = vcpu->mmio_fragments[0].gpa;
4609 
4610 	vcpu->mmio_needed = 1;
4611 	vcpu->mmio_cur_fragment = 0;
4612 
4613 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4614 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4615 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4616 	vcpu->run->mmio.phys_addr = gpa;
4617 
4618 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4619 }
4620 
4621 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4622 				  unsigned long addr,
4623 				  void *val,
4624 				  unsigned int bytes,
4625 				  struct x86_exception *exception)
4626 {
4627 	return emulator_read_write(ctxt, addr, val, bytes,
4628 				   exception, &read_emultor);
4629 }
4630 
4631 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4632 			    unsigned long addr,
4633 			    const void *val,
4634 			    unsigned int bytes,
4635 			    struct x86_exception *exception)
4636 {
4637 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4638 				   exception, &write_emultor);
4639 }
4640 
4641 #define CMPXCHG_TYPE(t, ptr, old, new) \
4642 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4643 
4644 #ifdef CONFIG_X86_64
4645 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4646 #else
4647 #  define CMPXCHG64(ptr, old, new) \
4648 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4649 #endif
4650 
4651 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4652 				     unsigned long addr,
4653 				     const void *old,
4654 				     const void *new,
4655 				     unsigned int bytes,
4656 				     struct x86_exception *exception)
4657 {
4658 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4659 	gpa_t gpa;
4660 	struct page *page;
4661 	char *kaddr;
4662 	bool exchanged;
4663 
4664 	/* guests cmpxchg8b have to be emulated atomically */
4665 	if (bytes > 8 || (bytes & (bytes - 1)))
4666 		goto emul_write;
4667 
4668 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4669 
4670 	if (gpa == UNMAPPED_GVA ||
4671 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4672 		goto emul_write;
4673 
4674 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4675 		goto emul_write;
4676 
4677 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4678 	if (is_error_page(page))
4679 		goto emul_write;
4680 
4681 	kaddr = kmap_atomic(page);
4682 	kaddr += offset_in_page(gpa);
4683 	switch (bytes) {
4684 	case 1:
4685 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4686 		break;
4687 	case 2:
4688 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4689 		break;
4690 	case 4:
4691 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4692 		break;
4693 	case 8:
4694 		exchanged = CMPXCHG64(kaddr, old, new);
4695 		break;
4696 	default:
4697 		BUG();
4698 	}
4699 	kunmap_atomic(kaddr);
4700 	kvm_release_page_dirty(page);
4701 
4702 	if (!exchanged)
4703 		return X86EMUL_CMPXCHG_FAILED;
4704 
4705 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4706 	kvm_page_track_write(vcpu, gpa, new, bytes);
4707 
4708 	return X86EMUL_CONTINUE;
4709 
4710 emul_write:
4711 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4712 
4713 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4714 }
4715 
4716 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4717 {
4718 	/* TODO: String I/O for in kernel device */
4719 	int r;
4720 
4721 	if (vcpu->arch.pio.in)
4722 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4723 				    vcpu->arch.pio.size, pd);
4724 	else
4725 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4726 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4727 				     pd);
4728 	return r;
4729 }
4730 
4731 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4732 			       unsigned short port, void *val,
4733 			       unsigned int count, bool in)
4734 {
4735 	vcpu->arch.pio.port = port;
4736 	vcpu->arch.pio.in = in;
4737 	vcpu->arch.pio.count  = count;
4738 	vcpu->arch.pio.size = size;
4739 
4740 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4741 		vcpu->arch.pio.count = 0;
4742 		return 1;
4743 	}
4744 
4745 	vcpu->run->exit_reason = KVM_EXIT_IO;
4746 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4747 	vcpu->run->io.size = size;
4748 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4749 	vcpu->run->io.count = count;
4750 	vcpu->run->io.port = port;
4751 
4752 	return 0;
4753 }
4754 
4755 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4756 				    int size, unsigned short port, void *val,
4757 				    unsigned int count)
4758 {
4759 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4760 	int ret;
4761 
4762 	if (vcpu->arch.pio.count)
4763 		goto data_avail;
4764 
4765 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4766 	if (ret) {
4767 data_avail:
4768 		memcpy(val, vcpu->arch.pio_data, size * count);
4769 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4770 		vcpu->arch.pio.count = 0;
4771 		return 1;
4772 	}
4773 
4774 	return 0;
4775 }
4776 
4777 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4778 				     int size, unsigned short port,
4779 				     const void *val, unsigned int count)
4780 {
4781 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4782 
4783 	memcpy(vcpu->arch.pio_data, val, size * count);
4784 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4785 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4786 }
4787 
4788 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4789 {
4790 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4791 }
4792 
4793 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4794 {
4795 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4796 }
4797 
4798 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4799 {
4800 	if (!need_emulate_wbinvd(vcpu))
4801 		return X86EMUL_CONTINUE;
4802 
4803 	if (kvm_x86_ops->has_wbinvd_exit()) {
4804 		int cpu = get_cpu();
4805 
4806 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4807 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4808 				wbinvd_ipi, NULL, 1);
4809 		put_cpu();
4810 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4811 	} else
4812 		wbinvd();
4813 	return X86EMUL_CONTINUE;
4814 }
4815 
4816 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4817 {
4818 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4819 	return kvm_emulate_wbinvd_noskip(vcpu);
4820 }
4821 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4822 
4823 
4824 
4825 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4826 {
4827 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4828 }
4829 
4830 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4831 			   unsigned long *dest)
4832 {
4833 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4834 }
4835 
4836 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4837 			   unsigned long value)
4838 {
4839 
4840 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4841 }
4842 
4843 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4844 {
4845 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4846 }
4847 
4848 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4849 {
4850 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4851 	unsigned long value;
4852 
4853 	switch (cr) {
4854 	case 0:
4855 		value = kvm_read_cr0(vcpu);
4856 		break;
4857 	case 2:
4858 		value = vcpu->arch.cr2;
4859 		break;
4860 	case 3:
4861 		value = kvm_read_cr3(vcpu);
4862 		break;
4863 	case 4:
4864 		value = kvm_read_cr4(vcpu);
4865 		break;
4866 	case 8:
4867 		value = kvm_get_cr8(vcpu);
4868 		break;
4869 	default:
4870 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4871 		return 0;
4872 	}
4873 
4874 	return value;
4875 }
4876 
4877 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4878 {
4879 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4880 	int res = 0;
4881 
4882 	switch (cr) {
4883 	case 0:
4884 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4885 		break;
4886 	case 2:
4887 		vcpu->arch.cr2 = val;
4888 		break;
4889 	case 3:
4890 		res = kvm_set_cr3(vcpu, val);
4891 		break;
4892 	case 4:
4893 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4894 		break;
4895 	case 8:
4896 		res = kvm_set_cr8(vcpu, val);
4897 		break;
4898 	default:
4899 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4900 		res = -1;
4901 	}
4902 
4903 	return res;
4904 }
4905 
4906 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4907 {
4908 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4909 }
4910 
4911 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4912 {
4913 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4914 }
4915 
4916 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4917 {
4918 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4919 }
4920 
4921 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4922 {
4923 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4924 }
4925 
4926 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4927 {
4928 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4929 }
4930 
4931 static unsigned long emulator_get_cached_segment_base(
4932 	struct x86_emulate_ctxt *ctxt, int seg)
4933 {
4934 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4935 }
4936 
4937 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4938 				 struct desc_struct *desc, u32 *base3,
4939 				 int seg)
4940 {
4941 	struct kvm_segment var;
4942 
4943 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4944 	*selector = var.selector;
4945 
4946 	if (var.unusable) {
4947 		memset(desc, 0, sizeof(*desc));
4948 		return false;
4949 	}
4950 
4951 	if (var.g)
4952 		var.limit >>= 12;
4953 	set_desc_limit(desc, var.limit);
4954 	set_desc_base(desc, (unsigned long)var.base);
4955 #ifdef CONFIG_X86_64
4956 	if (base3)
4957 		*base3 = var.base >> 32;
4958 #endif
4959 	desc->type = var.type;
4960 	desc->s = var.s;
4961 	desc->dpl = var.dpl;
4962 	desc->p = var.present;
4963 	desc->avl = var.avl;
4964 	desc->l = var.l;
4965 	desc->d = var.db;
4966 	desc->g = var.g;
4967 
4968 	return true;
4969 }
4970 
4971 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4972 				 struct desc_struct *desc, u32 base3,
4973 				 int seg)
4974 {
4975 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4976 	struct kvm_segment var;
4977 
4978 	var.selector = selector;
4979 	var.base = get_desc_base(desc);
4980 #ifdef CONFIG_X86_64
4981 	var.base |= ((u64)base3) << 32;
4982 #endif
4983 	var.limit = get_desc_limit(desc);
4984 	if (desc->g)
4985 		var.limit = (var.limit << 12) | 0xfff;
4986 	var.type = desc->type;
4987 	var.dpl = desc->dpl;
4988 	var.db = desc->d;
4989 	var.s = desc->s;
4990 	var.l = desc->l;
4991 	var.g = desc->g;
4992 	var.avl = desc->avl;
4993 	var.present = desc->p;
4994 	var.unusable = !var.present;
4995 	var.padding = 0;
4996 
4997 	kvm_set_segment(vcpu, &var, seg);
4998 	return;
4999 }
5000 
5001 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5002 			    u32 msr_index, u64 *pdata)
5003 {
5004 	struct msr_data msr;
5005 	int r;
5006 
5007 	msr.index = msr_index;
5008 	msr.host_initiated = false;
5009 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5010 	if (r)
5011 		return r;
5012 
5013 	*pdata = msr.data;
5014 	return 0;
5015 }
5016 
5017 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5018 			    u32 msr_index, u64 data)
5019 {
5020 	struct msr_data msr;
5021 
5022 	msr.data = data;
5023 	msr.index = msr_index;
5024 	msr.host_initiated = false;
5025 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5026 }
5027 
5028 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5029 {
5030 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5031 
5032 	return vcpu->arch.smbase;
5033 }
5034 
5035 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5036 {
5037 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5038 
5039 	vcpu->arch.smbase = smbase;
5040 }
5041 
5042 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5043 			      u32 pmc)
5044 {
5045 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5046 }
5047 
5048 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5049 			     u32 pmc, u64 *pdata)
5050 {
5051 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5052 }
5053 
5054 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5055 {
5056 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5057 }
5058 
5059 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5060 {
5061 	preempt_disable();
5062 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5063 	/*
5064 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
5065 	 * so it may be clear at this point.
5066 	 */
5067 	clts();
5068 }
5069 
5070 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5071 {
5072 	preempt_enable();
5073 }
5074 
5075 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5076 			      struct x86_instruction_info *info,
5077 			      enum x86_intercept_stage stage)
5078 {
5079 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5080 }
5081 
5082 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5083 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5084 {
5085 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5086 }
5087 
5088 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5089 {
5090 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5091 }
5092 
5093 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5094 {
5095 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5096 }
5097 
5098 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5099 {
5100 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5101 }
5102 
5103 static const struct x86_emulate_ops emulate_ops = {
5104 	.read_gpr            = emulator_read_gpr,
5105 	.write_gpr           = emulator_write_gpr,
5106 	.read_std            = kvm_read_guest_virt_system,
5107 	.write_std           = kvm_write_guest_virt_system,
5108 	.read_phys           = kvm_read_guest_phys_system,
5109 	.fetch               = kvm_fetch_guest_virt,
5110 	.read_emulated       = emulator_read_emulated,
5111 	.write_emulated      = emulator_write_emulated,
5112 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5113 	.invlpg              = emulator_invlpg,
5114 	.pio_in_emulated     = emulator_pio_in_emulated,
5115 	.pio_out_emulated    = emulator_pio_out_emulated,
5116 	.get_segment         = emulator_get_segment,
5117 	.set_segment         = emulator_set_segment,
5118 	.get_cached_segment_base = emulator_get_cached_segment_base,
5119 	.get_gdt             = emulator_get_gdt,
5120 	.get_idt	     = emulator_get_idt,
5121 	.set_gdt             = emulator_set_gdt,
5122 	.set_idt	     = emulator_set_idt,
5123 	.get_cr              = emulator_get_cr,
5124 	.set_cr              = emulator_set_cr,
5125 	.cpl                 = emulator_get_cpl,
5126 	.get_dr              = emulator_get_dr,
5127 	.set_dr              = emulator_set_dr,
5128 	.get_smbase          = emulator_get_smbase,
5129 	.set_smbase          = emulator_set_smbase,
5130 	.set_msr             = emulator_set_msr,
5131 	.get_msr             = emulator_get_msr,
5132 	.check_pmc	     = emulator_check_pmc,
5133 	.read_pmc            = emulator_read_pmc,
5134 	.halt                = emulator_halt,
5135 	.wbinvd              = emulator_wbinvd,
5136 	.fix_hypercall       = emulator_fix_hypercall,
5137 	.get_fpu             = emulator_get_fpu,
5138 	.put_fpu             = emulator_put_fpu,
5139 	.intercept           = emulator_intercept,
5140 	.get_cpuid           = emulator_get_cpuid,
5141 	.set_nmi_mask        = emulator_set_nmi_mask,
5142 };
5143 
5144 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5145 {
5146 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5147 	/*
5148 	 * an sti; sti; sequence only disable interrupts for the first
5149 	 * instruction. So, if the last instruction, be it emulated or
5150 	 * not, left the system with the INT_STI flag enabled, it
5151 	 * means that the last instruction is an sti. We should not
5152 	 * leave the flag on in this case. The same goes for mov ss
5153 	 */
5154 	if (int_shadow & mask)
5155 		mask = 0;
5156 	if (unlikely(int_shadow || mask)) {
5157 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5158 		if (!mask)
5159 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5160 	}
5161 }
5162 
5163 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5164 {
5165 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5166 	if (ctxt->exception.vector == PF_VECTOR)
5167 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5168 
5169 	if (ctxt->exception.error_code_valid)
5170 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5171 				      ctxt->exception.error_code);
5172 	else
5173 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5174 	return false;
5175 }
5176 
5177 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5178 {
5179 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5180 	int cs_db, cs_l;
5181 
5182 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5183 
5184 	ctxt->eflags = kvm_get_rflags(vcpu);
5185 	ctxt->eip = kvm_rip_read(vcpu);
5186 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5187 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5188 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5189 		     cs_db				? X86EMUL_MODE_PROT32 :
5190 							  X86EMUL_MODE_PROT16;
5191 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5192 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5193 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5194 	ctxt->emul_flags = vcpu->arch.hflags;
5195 
5196 	init_decode_cache(ctxt);
5197 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5198 }
5199 
5200 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5201 {
5202 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5203 	int ret;
5204 
5205 	init_emulate_ctxt(vcpu);
5206 
5207 	ctxt->op_bytes = 2;
5208 	ctxt->ad_bytes = 2;
5209 	ctxt->_eip = ctxt->eip + inc_eip;
5210 	ret = emulate_int_real(ctxt, irq);
5211 
5212 	if (ret != X86EMUL_CONTINUE)
5213 		return EMULATE_FAIL;
5214 
5215 	ctxt->eip = ctxt->_eip;
5216 	kvm_rip_write(vcpu, ctxt->eip);
5217 	kvm_set_rflags(vcpu, ctxt->eflags);
5218 
5219 	if (irq == NMI_VECTOR)
5220 		vcpu->arch.nmi_pending = 0;
5221 	else
5222 		vcpu->arch.interrupt.pending = false;
5223 
5224 	return EMULATE_DONE;
5225 }
5226 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5227 
5228 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5229 {
5230 	int r = EMULATE_DONE;
5231 
5232 	++vcpu->stat.insn_emulation_fail;
5233 	trace_kvm_emulate_insn_failed(vcpu);
5234 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5235 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5236 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5237 		vcpu->run->internal.ndata = 0;
5238 		r = EMULATE_FAIL;
5239 	}
5240 	kvm_queue_exception(vcpu, UD_VECTOR);
5241 
5242 	return r;
5243 }
5244 
5245 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5246 				  bool write_fault_to_shadow_pgtable,
5247 				  int emulation_type)
5248 {
5249 	gpa_t gpa = cr2;
5250 	kvm_pfn_t pfn;
5251 
5252 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5253 		return false;
5254 
5255 	if (!vcpu->arch.mmu.direct_map) {
5256 		/*
5257 		 * Write permission should be allowed since only
5258 		 * write access need to be emulated.
5259 		 */
5260 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5261 
5262 		/*
5263 		 * If the mapping is invalid in guest, let cpu retry
5264 		 * it to generate fault.
5265 		 */
5266 		if (gpa == UNMAPPED_GVA)
5267 			return true;
5268 	}
5269 
5270 	/*
5271 	 * Do not retry the unhandleable instruction if it faults on the
5272 	 * readonly host memory, otherwise it will goto a infinite loop:
5273 	 * retry instruction -> write #PF -> emulation fail -> retry
5274 	 * instruction -> ...
5275 	 */
5276 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5277 
5278 	/*
5279 	 * If the instruction failed on the error pfn, it can not be fixed,
5280 	 * report the error to userspace.
5281 	 */
5282 	if (is_error_noslot_pfn(pfn))
5283 		return false;
5284 
5285 	kvm_release_pfn_clean(pfn);
5286 
5287 	/* The instructions are well-emulated on direct mmu. */
5288 	if (vcpu->arch.mmu.direct_map) {
5289 		unsigned int indirect_shadow_pages;
5290 
5291 		spin_lock(&vcpu->kvm->mmu_lock);
5292 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5293 		spin_unlock(&vcpu->kvm->mmu_lock);
5294 
5295 		if (indirect_shadow_pages)
5296 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5297 
5298 		return true;
5299 	}
5300 
5301 	/*
5302 	 * if emulation was due to access to shadowed page table
5303 	 * and it failed try to unshadow page and re-enter the
5304 	 * guest to let CPU execute the instruction.
5305 	 */
5306 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5307 
5308 	/*
5309 	 * If the access faults on its page table, it can not
5310 	 * be fixed by unprotecting shadow page and it should
5311 	 * be reported to userspace.
5312 	 */
5313 	return !write_fault_to_shadow_pgtable;
5314 }
5315 
5316 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5317 			      unsigned long cr2,  int emulation_type)
5318 {
5319 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5320 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5321 
5322 	last_retry_eip = vcpu->arch.last_retry_eip;
5323 	last_retry_addr = vcpu->arch.last_retry_addr;
5324 
5325 	/*
5326 	 * If the emulation is caused by #PF and it is non-page_table
5327 	 * writing instruction, it means the VM-EXIT is caused by shadow
5328 	 * page protected, we can zap the shadow page and retry this
5329 	 * instruction directly.
5330 	 *
5331 	 * Note: if the guest uses a non-page-table modifying instruction
5332 	 * on the PDE that points to the instruction, then we will unmap
5333 	 * the instruction and go to an infinite loop. So, we cache the
5334 	 * last retried eip and the last fault address, if we meet the eip
5335 	 * and the address again, we can break out of the potential infinite
5336 	 * loop.
5337 	 */
5338 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5339 
5340 	if (!(emulation_type & EMULTYPE_RETRY))
5341 		return false;
5342 
5343 	if (x86_page_table_writing_insn(ctxt))
5344 		return false;
5345 
5346 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5347 		return false;
5348 
5349 	vcpu->arch.last_retry_eip = ctxt->eip;
5350 	vcpu->arch.last_retry_addr = cr2;
5351 
5352 	if (!vcpu->arch.mmu.direct_map)
5353 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5354 
5355 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5356 
5357 	return true;
5358 }
5359 
5360 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5361 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5362 
5363 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5364 {
5365 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5366 		/* This is a good place to trace that we are exiting SMM.  */
5367 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5368 
5369 		/* Process a latched INIT or SMI, if any.  */
5370 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5371 	}
5372 
5373 	kvm_mmu_reset_context(vcpu);
5374 }
5375 
5376 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5377 {
5378 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5379 
5380 	vcpu->arch.hflags = emul_flags;
5381 
5382 	if (changed & HF_SMM_MASK)
5383 		kvm_smm_changed(vcpu);
5384 }
5385 
5386 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5387 				unsigned long *db)
5388 {
5389 	u32 dr6 = 0;
5390 	int i;
5391 	u32 enable, rwlen;
5392 
5393 	enable = dr7;
5394 	rwlen = dr7 >> 16;
5395 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5396 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5397 			dr6 |= (1 << i);
5398 	return dr6;
5399 }
5400 
5401 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5402 {
5403 	struct kvm_run *kvm_run = vcpu->run;
5404 
5405 	/*
5406 	 * rflags is the old, "raw" value of the flags.  The new value has
5407 	 * not been saved yet.
5408 	 *
5409 	 * This is correct even for TF set by the guest, because "the
5410 	 * processor will not generate this exception after the instruction
5411 	 * that sets the TF flag".
5412 	 */
5413 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5414 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5415 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5416 						  DR6_RTM;
5417 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5418 			kvm_run->debug.arch.exception = DB_VECTOR;
5419 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5420 			*r = EMULATE_USER_EXIT;
5421 		} else {
5422 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5423 			/*
5424 			 * "Certain debug exceptions may clear bit 0-3.  The
5425 			 * remaining contents of the DR6 register are never
5426 			 * cleared by the processor".
5427 			 */
5428 			vcpu->arch.dr6 &= ~15;
5429 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5430 			kvm_queue_exception(vcpu, DB_VECTOR);
5431 		}
5432 	}
5433 }
5434 
5435 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5436 {
5437 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5438 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5439 		struct kvm_run *kvm_run = vcpu->run;
5440 		unsigned long eip = kvm_get_linear_rip(vcpu);
5441 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5442 					   vcpu->arch.guest_debug_dr7,
5443 					   vcpu->arch.eff_db);
5444 
5445 		if (dr6 != 0) {
5446 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5447 			kvm_run->debug.arch.pc = eip;
5448 			kvm_run->debug.arch.exception = DB_VECTOR;
5449 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5450 			*r = EMULATE_USER_EXIT;
5451 			return true;
5452 		}
5453 	}
5454 
5455 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5456 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5457 		unsigned long eip = kvm_get_linear_rip(vcpu);
5458 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5459 					   vcpu->arch.dr7,
5460 					   vcpu->arch.db);
5461 
5462 		if (dr6 != 0) {
5463 			vcpu->arch.dr6 &= ~15;
5464 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5465 			kvm_queue_exception(vcpu, DB_VECTOR);
5466 			*r = EMULATE_DONE;
5467 			return true;
5468 		}
5469 	}
5470 
5471 	return false;
5472 }
5473 
5474 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5475 			    unsigned long cr2,
5476 			    int emulation_type,
5477 			    void *insn,
5478 			    int insn_len)
5479 {
5480 	int r;
5481 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5482 	bool writeback = true;
5483 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5484 
5485 	/*
5486 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5487 	 * never reused.
5488 	 */
5489 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5490 	kvm_clear_exception_queue(vcpu);
5491 
5492 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5493 		init_emulate_ctxt(vcpu);
5494 
5495 		/*
5496 		 * We will reenter on the same instruction since
5497 		 * we do not set complete_userspace_io.  This does not
5498 		 * handle watchpoints yet, those would be handled in
5499 		 * the emulate_ops.
5500 		 */
5501 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5502 			return r;
5503 
5504 		ctxt->interruptibility = 0;
5505 		ctxt->have_exception = false;
5506 		ctxt->exception.vector = -1;
5507 		ctxt->perm_ok = false;
5508 
5509 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5510 
5511 		r = x86_decode_insn(ctxt, insn, insn_len);
5512 
5513 		trace_kvm_emulate_insn_start(vcpu);
5514 		++vcpu->stat.insn_emulation;
5515 		if (r != EMULATION_OK)  {
5516 			if (emulation_type & EMULTYPE_TRAP_UD)
5517 				return EMULATE_FAIL;
5518 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5519 						emulation_type))
5520 				return EMULATE_DONE;
5521 			if (emulation_type & EMULTYPE_SKIP)
5522 				return EMULATE_FAIL;
5523 			return handle_emulation_failure(vcpu);
5524 		}
5525 	}
5526 
5527 	if (emulation_type & EMULTYPE_SKIP) {
5528 		kvm_rip_write(vcpu, ctxt->_eip);
5529 		if (ctxt->eflags & X86_EFLAGS_RF)
5530 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5531 		return EMULATE_DONE;
5532 	}
5533 
5534 	if (retry_instruction(ctxt, cr2, emulation_type))
5535 		return EMULATE_DONE;
5536 
5537 	/* this is needed for vmware backdoor interface to work since it
5538 	   changes registers values  during IO operation */
5539 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5540 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5541 		emulator_invalidate_register_cache(ctxt);
5542 	}
5543 
5544 restart:
5545 	r = x86_emulate_insn(ctxt);
5546 
5547 	if (r == EMULATION_INTERCEPTED)
5548 		return EMULATE_DONE;
5549 
5550 	if (r == EMULATION_FAILED) {
5551 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5552 					emulation_type))
5553 			return EMULATE_DONE;
5554 
5555 		return handle_emulation_failure(vcpu);
5556 	}
5557 
5558 	if (ctxt->have_exception) {
5559 		r = EMULATE_DONE;
5560 		if (inject_emulated_exception(vcpu))
5561 			return r;
5562 	} else if (vcpu->arch.pio.count) {
5563 		if (!vcpu->arch.pio.in) {
5564 			/* FIXME: return into emulator if single-stepping.  */
5565 			vcpu->arch.pio.count = 0;
5566 		} else {
5567 			writeback = false;
5568 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5569 		}
5570 		r = EMULATE_USER_EXIT;
5571 	} else if (vcpu->mmio_needed) {
5572 		if (!vcpu->mmio_is_write)
5573 			writeback = false;
5574 		r = EMULATE_USER_EXIT;
5575 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5576 	} else if (r == EMULATION_RESTART)
5577 		goto restart;
5578 	else
5579 		r = EMULATE_DONE;
5580 
5581 	if (writeback) {
5582 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5583 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5584 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5585 		if (vcpu->arch.hflags != ctxt->emul_flags)
5586 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5587 		kvm_rip_write(vcpu, ctxt->eip);
5588 		if (r == EMULATE_DONE)
5589 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5590 		if (!ctxt->have_exception ||
5591 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5592 			__kvm_set_rflags(vcpu, ctxt->eflags);
5593 
5594 		/*
5595 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5596 		 * do nothing, and it will be requested again as soon as
5597 		 * the shadow expires.  But we still need to check here,
5598 		 * because POPF has no interrupt shadow.
5599 		 */
5600 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5601 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5602 	} else
5603 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5604 
5605 	return r;
5606 }
5607 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5608 
5609 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5610 {
5611 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5612 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5613 					    size, port, &val, 1);
5614 	/* do not return to emulator after return from userspace */
5615 	vcpu->arch.pio.count = 0;
5616 	return ret;
5617 }
5618 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5619 
5620 static int kvmclock_cpu_down_prep(unsigned int cpu)
5621 {
5622 	__this_cpu_write(cpu_tsc_khz, 0);
5623 	return 0;
5624 }
5625 
5626 static void tsc_khz_changed(void *data)
5627 {
5628 	struct cpufreq_freqs *freq = data;
5629 	unsigned long khz = 0;
5630 
5631 	if (data)
5632 		khz = freq->new;
5633 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5634 		khz = cpufreq_quick_get(raw_smp_processor_id());
5635 	if (!khz)
5636 		khz = tsc_khz;
5637 	__this_cpu_write(cpu_tsc_khz, khz);
5638 }
5639 
5640 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5641 				     void *data)
5642 {
5643 	struct cpufreq_freqs *freq = data;
5644 	struct kvm *kvm;
5645 	struct kvm_vcpu *vcpu;
5646 	int i, send_ipi = 0;
5647 
5648 	/*
5649 	 * We allow guests to temporarily run on slowing clocks,
5650 	 * provided we notify them after, or to run on accelerating
5651 	 * clocks, provided we notify them before.  Thus time never
5652 	 * goes backwards.
5653 	 *
5654 	 * However, we have a problem.  We can't atomically update
5655 	 * the frequency of a given CPU from this function; it is
5656 	 * merely a notifier, which can be called from any CPU.
5657 	 * Changing the TSC frequency at arbitrary points in time
5658 	 * requires a recomputation of local variables related to
5659 	 * the TSC for each VCPU.  We must flag these local variables
5660 	 * to be updated and be sure the update takes place with the
5661 	 * new frequency before any guests proceed.
5662 	 *
5663 	 * Unfortunately, the combination of hotplug CPU and frequency
5664 	 * change creates an intractable locking scenario; the order
5665 	 * of when these callouts happen is undefined with respect to
5666 	 * CPU hotplug, and they can race with each other.  As such,
5667 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5668 	 * undefined; you can actually have a CPU frequency change take
5669 	 * place in between the computation of X and the setting of the
5670 	 * variable.  To protect against this problem, all updates of
5671 	 * the per_cpu tsc_khz variable are done in an interrupt
5672 	 * protected IPI, and all callers wishing to update the value
5673 	 * must wait for a synchronous IPI to complete (which is trivial
5674 	 * if the caller is on the CPU already).  This establishes the
5675 	 * necessary total order on variable updates.
5676 	 *
5677 	 * Note that because a guest time update may take place
5678 	 * anytime after the setting of the VCPU's request bit, the
5679 	 * correct TSC value must be set before the request.  However,
5680 	 * to ensure the update actually makes it to any guest which
5681 	 * starts running in hardware virtualization between the set
5682 	 * and the acquisition of the spinlock, we must also ping the
5683 	 * CPU after setting the request bit.
5684 	 *
5685 	 */
5686 
5687 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5688 		return 0;
5689 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5690 		return 0;
5691 
5692 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5693 
5694 	spin_lock(&kvm_lock);
5695 	list_for_each_entry(kvm, &vm_list, vm_list) {
5696 		kvm_for_each_vcpu(i, vcpu, kvm) {
5697 			if (vcpu->cpu != freq->cpu)
5698 				continue;
5699 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5700 			if (vcpu->cpu != smp_processor_id())
5701 				send_ipi = 1;
5702 		}
5703 	}
5704 	spin_unlock(&kvm_lock);
5705 
5706 	if (freq->old < freq->new && send_ipi) {
5707 		/*
5708 		 * We upscale the frequency.  Must make the guest
5709 		 * doesn't see old kvmclock values while running with
5710 		 * the new frequency, otherwise we risk the guest sees
5711 		 * time go backwards.
5712 		 *
5713 		 * In case we update the frequency for another cpu
5714 		 * (which might be in guest context) send an interrupt
5715 		 * to kick the cpu out of guest context.  Next time
5716 		 * guest context is entered kvmclock will be updated,
5717 		 * so the guest will not see stale values.
5718 		 */
5719 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5720 	}
5721 	return 0;
5722 }
5723 
5724 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5725 	.notifier_call  = kvmclock_cpufreq_notifier
5726 };
5727 
5728 static int kvmclock_cpu_online(unsigned int cpu)
5729 {
5730 	tsc_khz_changed(NULL);
5731 	return 0;
5732 }
5733 
5734 static void kvm_timer_init(void)
5735 {
5736 	max_tsc_khz = tsc_khz;
5737 
5738 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5739 #ifdef CONFIG_CPU_FREQ
5740 		struct cpufreq_policy policy;
5741 		int cpu;
5742 
5743 		memset(&policy, 0, sizeof(policy));
5744 		cpu = get_cpu();
5745 		cpufreq_get_policy(&policy, cpu);
5746 		if (policy.cpuinfo.max_freq)
5747 			max_tsc_khz = policy.cpuinfo.max_freq;
5748 		put_cpu();
5749 #endif
5750 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5751 					  CPUFREQ_TRANSITION_NOTIFIER);
5752 	}
5753 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5754 
5755 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE",
5756 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
5757 }
5758 
5759 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5760 
5761 int kvm_is_in_guest(void)
5762 {
5763 	return __this_cpu_read(current_vcpu) != NULL;
5764 }
5765 
5766 static int kvm_is_user_mode(void)
5767 {
5768 	int user_mode = 3;
5769 
5770 	if (__this_cpu_read(current_vcpu))
5771 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5772 
5773 	return user_mode != 0;
5774 }
5775 
5776 static unsigned long kvm_get_guest_ip(void)
5777 {
5778 	unsigned long ip = 0;
5779 
5780 	if (__this_cpu_read(current_vcpu))
5781 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5782 
5783 	return ip;
5784 }
5785 
5786 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5787 	.is_in_guest		= kvm_is_in_guest,
5788 	.is_user_mode		= kvm_is_user_mode,
5789 	.get_guest_ip		= kvm_get_guest_ip,
5790 };
5791 
5792 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5793 {
5794 	__this_cpu_write(current_vcpu, vcpu);
5795 }
5796 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5797 
5798 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5799 {
5800 	__this_cpu_write(current_vcpu, NULL);
5801 }
5802 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5803 
5804 static void kvm_set_mmio_spte_mask(void)
5805 {
5806 	u64 mask;
5807 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5808 
5809 	/*
5810 	 * Set the reserved bits and the present bit of an paging-structure
5811 	 * entry to generate page fault with PFER.RSV = 1.
5812 	 */
5813 	 /* Mask the reserved physical address bits. */
5814 	mask = rsvd_bits(maxphyaddr, 51);
5815 
5816 	/* Bit 62 is always reserved for 32bit host. */
5817 	mask |= 0x3ull << 62;
5818 
5819 	/* Set the present bit. */
5820 	mask |= 1ull;
5821 
5822 #ifdef CONFIG_X86_64
5823 	/*
5824 	 * If reserved bit is not supported, clear the present bit to disable
5825 	 * mmio page fault.
5826 	 */
5827 	if (maxphyaddr == 52)
5828 		mask &= ~1ull;
5829 #endif
5830 
5831 	kvm_mmu_set_mmio_spte_mask(mask);
5832 }
5833 
5834 #ifdef CONFIG_X86_64
5835 static void pvclock_gtod_update_fn(struct work_struct *work)
5836 {
5837 	struct kvm *kvm;
5838 
5839 	struct kvm_vcpu *vcpu;
5840 	int i;
5841 
5842 	spin_lock(&kvm_lock);
5843 	list_for_each_entry(kvm, &vm_list, vm_list)
5844 		kvm_for_each_vcpu(i, vcpu, kvm)
5845 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5846 	atomic_set(&kvm_guest_has_master_clock, 0);
5847 	spin_unlock(&kvm_lock);
5848 }
5849 
5850 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5851 
5852 /*
5853  * Notification about pvclock gtod data update.
5854  */
5855 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5856 			       void *priv)
5857 {
5858 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5859 	struct timekeeper *tk = priv;
5860 
5861 	update_pvclock_gtod(tk);
5862 
5863 	/* disable master clock if host does not trust, or does not
5864 	 * use, TSC clocksource
5865 	 */
5866 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5867 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5868 		queue_work(system_long_wq, &pvclock_gtod_work);
5869 
5870 	return 0;
5871 }
5872 
5873 static struct notifier_block pvclock_gtod_notifier = {
5874 	.notifier_call = pvclock_gtod_notify,
5875 };
5876 #endif
5877 
5878 int kvm_arch_init(void *opaque)
5879 {
5880 	int r;
5881 	struct kvm_x86_ops *ops = opaque;
5882 
5883 	if (kvm_x86_ops) {
5884 		printk(KERN_ERR "kvm: already loaded the other module\n");
5885 		r = -EEXIST;
5886 		goto out;
5887 	}
5888 
5889 	if (!ops->cpu_has_kvm_support()) {
5890 		printk(KERN_ERR "kvm: no hardware support\n");
5891 		r = -EOPNOTSUPP;
5892 		goto out;
5893 	}
5894 	if (ops->disabled_by_bios()) {
5895 		printk(KERN_ERR "kvm: disabled by bios\n");
5896 		r = -EOPNOTSUPP;
5897 		goto out;
5898 	}
5899 
5900 	r = -ENOMEM;
5901 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5902 	if (!shared_msrs) {
5903 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5904 		goto out;
5905 	}
5906 
5907 	r = kvm_mmu_module_init();
5908 	if (r)
5909 		goto out_free_percpu;
5910 
5911 	kvm_set_mmio_spte_mask();
5912 
5913 	kvm_x86_ops = ops;
5914 
5915 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5916 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
5917 			PT_PRESENT_MASK);
5918 	kvm_timer_init();
5919 
5920 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5921 
5922 	if (boot_cpu_has(X86_FEATURE_XSAVE))
5923 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5924 
5925 	kvm_lapic_init();
5926 #ifdef CONFIG_X86_64
5927 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5928 #endif
5929 
5930 	return 0;
5931 
5932 out_free_percpu:
5933 	free_percpu(shared_msrs);
5934 out:
5935 	return r;
5936 }
5937 
5938 void kvm_arch_exit(void)
5939 {
5940 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5941 
5942 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5943 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5944 					    CPUFREQ_TRANSITION_NOTIFIER);
5945 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
5946 #ifdef CONFIG_X86_64
5947 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5948 #endif
5949 	kvm_x86_ops = NULL;
5950 	kvm_mmu_module_exit();
5951 	free_percpu(shared_msrs);
5952 }
5953 
5954 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5955 {
5956 	++vcpu->stat.halt_exits;
5957 	if (lapic_in_kernel(vcpu)) {
5958 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5959 		return 1;
5960 	} else {
5961 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5962 		return 0;
5963 	}
5964 }
5965 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5966 
5967 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5968 {
5969 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5970 	return kvm_vcpu_halt(vcpu);
5971 }
5972 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5973 
5974 /*
5975  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5976  *
5977  * @apicid - apicid of vcpu to be kicked.
5978  */
5979 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5980 {
5981 	struct kvm_lapic_irq lapic_irq;
5982 
5983 	lapic_irq.shorthand = 0;
5984 	lapic_irq.dest_mode = 0;
5985 	lapic_irq.dest_id = apicid;
5986 	lapic_irq.msi_redir_hint = false;
5987 
5988 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5989 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5990 }
5991 
5992 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5993 {
5994 	vcpu->arch.apicv_active = false;
5995 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5996 }
5997 
5998 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5999 {
6000 	unsigned long nr, a0, a1, a2, a3, ret;
6001 	int op_64_bit, r = 1;
6002 
6003 	kvm_x86_ops->skip_emulated_instruction(vcpu);
6004 
6005 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6006 		return kvm_hv_hypercall(vcpu);
6007 
6008 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6009 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6010 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6011 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6012 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6013 
6014 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6015 
6016 	op_64_bit = is_64_bit_mode(vcpu);
6017 	if (!op_64_bit) {
6018 		nr &= 0xFFFFFFFF;
6019 		a0 &= 0xFFFFFFFF;
6020 		a1 &= 0xFFFFFFFF;
6021 		a2 &= 0xFFFFFFFF;
6022 		a3 &= 0xFFFFFFFF;
6023 	}
6024 
6025 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6026 		ret = -KVM_EPERM;
6027 		goto out;
6028 	}
6029 
6030 	switch (nr) {
6031 	case KVM_HC_VAPIC_POLL_IRQ:
6032 		ret = 0;
6033 		break;
6034 	case KVM_HC_KICK_CPU:
6035 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6036 		ret = 0;
6037 		break;
6038 	default:
6039 		ret = -KVM_ENOSYS;
6040 		break;
6041 	}
6042 out:
6043 	if (!op_64_bit)
6044 		ret = (u32)ret;
6045 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6046 	++vcpu->stat.hypercalls;
6047 	return r;
6048 }
6049 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6050 
6051 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6052 {
6053 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6054 	char instruction[3];
6055 	unsigned long rip = kvm_rip_read(vcpu);
6056 
6057 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6058 
6059 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6060 }
6061 
6062 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6063 {
6064 	return vcpu->run->request_interrupt_window &&
6065 		likely(!pic_in_kernel(vcpu->kvm));
6066 }
6067 
6068 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6069 {
6070 	struct kvm_run *kvm_run = vcpu->run;
6071 
6072 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6073 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6074 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6075 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6076 	kvm_run->ready_for_interrupt_injection =
6077 		pic_in_kernel(vcpu->kvm) ||
6078 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6079 }
6080 
6081 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6082 {
6083 	int max_irr, tpr;
6084 
6085 	if (!kvm_x86_ops->update_cr8_intercept)
6086 		return;
6087 
6088 	if (!lapic_in_kernel(vcpu))
6089 		return;
6090 
6091 	if (vcpu->arch.apicv_active)
6092 		return;
6093 
6094 	if (!vcpu->arch.apic->vapic_addr)
6095 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6096 	else
6097 		max_irr = -1;
6098 
6099 	if (max_irr != -1)
6100 		max_irr >>= 4;
6101 
6102 	tpr = kvm_lapic_get_cr8(vcpu);
6103 
6104 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6105 }
6106 
6107 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6108 {
6109 	int r;
6110 
6111 	/* try to reinject previous events if any */
6112 	if (vcpu->arch.exception.pending) {
6113 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6114 					vcpu->arch.exception.has_error_code,
6115 					vcpu->arch.exception.error_code);
6116 
6117 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6118 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6119 					     X86_EFLAGS_RF);
6120 
6121 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6122 		    (vcpu->arch.dr7 & DR7_GD)) {
6123 			vcpu->arch.dr7 &= ~DR7_GD;
6124 			kvm_update_dr7(vcpu);
6125 		}
6126 
6127 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6128 					  vcpu->arch.exception.has_error_code,
6129 					  vcpu->arch.exception.error_code,
6130 					  vcpu->arch.exception.reinject);
6131 		return 0;
6132 	}
6133 
6134 	if (vcpu->arch.nmi_injected) {
6135 		kvm_x86_ops->set_nmi(vcpu);
6136 		return 0;
6137 	}
6138 
6139 	if (vcpu->arch.interrupt.pending) {
6140 		kvm_x86_ops->set_irq(vcpu);
6141 		return 0;
6142 	}
6143 
6144 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6145 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6146 		if (r != 0)
6147 			return r;
6148 	}
6149 
6150 	/* try to inject new event if pending */
6151 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6152 		vcpu->arch.smi_pending = false;
6153 		enter_smm(vcpu);
6154 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6155 		--vcpu->arch.nmi_pending;
6156 		vcpu->arch.nmi_injected = true;
6157 		kvm_x86_ops->set_nmi(vcpu);
6158 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6159 		/*
6160 		 * Because interrupts can be injected asynchronously, we are
6161 		 * calling check_nested_events again here to avoid a race condition.
6162 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6163 		 * proposal and current concerns.  Perhaps we should be setting
6164 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6165 		 */
6166 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6167 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6168 			if (r != 0)
6169 				return r;
6170 		}
6171 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6172 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6173 					    false);
6174 			kvm_x86_ops->set_irq(vcpu);
6175 		}
6176 	}
6177 
6178 	return 0;
6179 }
6180 
6181 static void process_nmi(struct kvm_vcpu *vcpu)
6182 {
6183 	unsigned limit = 2;
6184 
6185 	/*
6186 	 * x86 is limited to one NMI running, and one NMI pending after it.
6187 	 * If an NMI is already in progress, limit further NMIs to just one.
6188 	 * Otherwise, allow two (and we'll inject the first one immediately).
6189 	 */
6190 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6191 		limit = 1;
6192 
6193 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6194 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6195 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6196 }
6197 
6198 #define put_smstate(type, buf, offset, val)			  \
6199 	*(type *)((buf) + (offset) - 0x7e00) = val
6200 
6201 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6202 {
6203 	u32 flags = 0;
6204 	flags |= seg->g       << 23;
6205 	flags |= seg->db      << 22;
6206 	flags |= seg->l       << 21;
6207 	flags |= seg->avl     << 20;
6208 	flags |= seg->present << 15;
6209 	flags |= seg->dpl     << 13;
6210 	flags |= seg->s       << 12;
6211 	flags |= seg->type    << 8;
6212 	return flags;
6213 }
6214 
6215 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6216 {
6217 	struct kvm_segment seg;
6218 	int offset;
6219 
6220 	kvm_get_segment(vcpu, &seg, n);
6221 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6222 
6223 	if (n < 3)
6224 		offset = 0x7f84 + n * 12;
6225 	else
6226 		offset = 0x7f2c + (n - 3) * 12;
6227 
6228 	put_smstate(u32, buf, offset + 8, seg.base);
6229 	put_smstate(u32, buf, offset + 4, seg.limit);
6230 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6231 }
6232 
6233 #ifdef CONFIG_X86_64
6234 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6235 {
6236 	struct kvm_segment seg;
6237 	int offset;
6238 	u16 flags;
6239 
6240 	kvm_get_segment(vcpu, &seg, n);
6241 	offset = 0x7e00 + n * 16;
6242 
6243 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6244 	put_smstate(u16, buf, offset, seg.selector);
6245 	put_smstate(u16, buf, offset + 2, flags);
6246 	put_smstate(u32, buf, offset + 4, seg.limit);
6247 	put_smstate(u64, buf, offset + 8, seg.base);
6248 }
6249 #endif
6250 
6251 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6252 {
6253 	struct desc_ptr dt;
6254 	struct kvm_segment seg;
6255 	unsigned long val;
6256 	int i;
6257 
6258 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6259 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6260 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6261 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6262 
6263 	for (i = 0; i < 8; i++)
6264 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6265 
6266 	kvm_get_dr(vcpu, 6, &val);
6267 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6268 	kvm_get_dr(vcpu, 7, &val);
6269 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6270 
6271 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6272 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6273 	put_smstate(u32, buf, 0x7f64, seg.base);
6274 	put_smstate(u32, buf, 0x7f60, seg.limit);
6275 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6276 
6277 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6278 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6279 	put_smstate(u32, buf, 0x7f80, seg.base);
6280 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6281 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6282 
6283 	kvm_x86_ops->get_gdt(vcpu, &dt);
6284 	put_smstate(u32, buf, 0x7f74, dt.address);
6285 	put_smstate(u32, buf, 0x7f70, dt.size);
6286 
6287 	kvm_x86_ops->get_idt(vcpu, &dt);
6288 	put_smstate(u32, buf, 0x7f58, dt.address);
6289 	put_smstate(u32, buf, 0x7f54, dt.size);
6290 
6291 	for (i = 0; i < 6; i++)
6292 		enter_smm_save_seg_32(vcpu, buf, i);
6293 
6294 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6295 
6296 	/* revision id */
6297 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6298 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6299 }
6300 
6301 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6302 {
6303 #ifdef CONFIG_X86_64
6304 	struct desc_ptr dt;
6305 	struct kvm_segment seg;
6306 	unsigned long val;
6307 	int i;
6308 
6309 	for (i = 0; i < 16; i++)
6310 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6311 
6312 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6313 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6314 
6315 	kvm_get_dr(vcpu, 6, &val);
6316 	put_smstate(u64, buf, 0x7f68, val);
6317 	kvm_get_dr(vcpu, 7, &val);
6318 	put_smstate(u64, buf, 0x7f60, val);
6319 
6320 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6321 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6322 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6323 
6324 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6325 
6326 	/* revision id */
6327 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6328 
6329 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6330 
6331 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6332 	put_smstate(u16, buf, 0x7e90, seg.selector);
6333 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6334 	put_smstate(u32, buf, 0x7e94, seg.limit);
6335 	put_smstate(u64, buf, 0x7e98, seg.base);
6336 
6337 	kvm_x86_ops->get_idt(vcpu, &dt);
6338 	put_smstate(u32, buf, 0x7e84, dt.size);
6339 	put_smstate(u64, buf, 0x7e88, dt.address);
6340 
6341 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6342 	put_smstate(u16, buf, 0x7e70, seg.selector);
6343 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6344 	put_smstate(u32, buf, 0x7e74, seg.limit);
6345 	put_smstate(u64, buf, 0x7e78, seg.base);
6346 
6347 	kvm_x86_ops->get_gdt(vcpu, &dt);
6348 	put_smstate(u32, buf, 0x7e64, dt.size);
6349 	put_smstate(u64, buf, 0x7e68, dt.address);
6350 
6351 	for (i = 0; i < 6; i++)
6352 		enter_smm_save_seg_64(vcpu, buf, i);
6353 #else
6354 	WARN_ON_ONCE(1);
6355 #endif
6356 }
6357 
6358 static void enter_smm(struct kvm_vcpu *vcpu)
6359 {
6360 	struct kvm_segment cs, ds;
6361 	struct desc_ptr dt;
6362 	char buf[512];
6363 	u32 cr0;
6364 
6365 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6366 	vcpu->arch.hflags |= HF_SMM_MASK;
6367 	memset(buf, 0, 512);
6368 	if (guest_cpuid_has_longmode(vcpu))
6369 		enter_smm_save_state_64(vcpu, buf);
6370 	else
6371 		enter_smm_save_state_32(vcpu, buf);
6372 
6373 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6374 
6375 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6376 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6377 	else
6378 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6379 
6380 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6381 	kvm_rip_write(vcpu, 0x8000);
6382 
6383 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6384 	kvm_x86_ops->set_cr0(vcpu, cr0);
6385 	vcpu->arch.cr0 = cr0;
6386 
6387 	kvm_x86_ops->set_cr4(vcpu, 0);
6388 
6389 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6390 	dt.address = dt.size = 0;
6391 	kvm_x86_ops->set_idt(vcpu, &dt);
6392 
6393 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6394 
6395 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6396 	cs.base = vcpu->arch.smbase;
6397 
6398 	ds.selector = 0;
6399 	ds.base = 0;
6400 
6401 	cs.limit    = ds.limit = 0xffffffff;
6402 	cs.type     = ds.type = 0x3;
6403 	cs.dpl      = ds.dpl = 0;
6404 	cs.db       = ds.db = 0;
6405 	cs.s        = ds.s = 1;
6406 	cs.l        = ds.l = 0;
6407 	cs.g        = ds.g = 1;
6408 	cs.avl      = ds.avl = 0;
6409 	cs.present  = ds.present = 1;
6410 	cs.unusable = ds.unusable = 0;
6411 	cs.padding  = ds.padding = 0;
6412 
6413 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6414 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6415 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6416 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6417 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6418 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6419 
6420 	if (guest_cpuid_has_longmode(vcpu))
6421 		kvm_x86_ops->set_efer(vcpu, 0);
6422 
6423 	kvm_update_cpuid(vcpu);
6424 	kvm_mmu_reset_context(vcpu);
6425 }
6426 
6427 static void process_smi(struct kvm_vcpu *vcpu)
6428 {
6429 	vcpu->arch.smi_pending = true;
6430 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6431 }
6432 
6433 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6434 {
6435 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6436 }
6437 
6438 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6439 {
6440 	u64 eoi_exit_bitmap[4];
6441 
6442 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6443 		return;
6444 
6445 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6446 
6447 	if (irqchip_split(vcpu->kvm))
6448 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6449 	else {
6450 		if (vcpu->arch.apicv_active)
6451 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6452 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6453 	}
6454 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6455 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6456 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6457 }
6458 
6459 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6460 {
6461 	++vcpu->stat.tlb_flush;
6462 	kvm_x86_ops->tlb_flush(vcpu);
6463 }
6464 
6465 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6466 {
6467 	struct page *page = NULL;
6468 
6469 	if (!lapic_in_kernel(vcpu))
6470 		return;
6471 
6472 	if (!kvm_x86_ops->set_apic_access_page_addr)
6473 		return;
6474 
6475 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6476 	if (is_error_page(page))
6477 		return;
6478 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6479 
6480 	/*
6481 	 * Do not pin apic access page in memory, the MMU notifier
6482 	 * will call us again if it is migrated or swapped out.
6483 	 */
6484 	put_page(page);
6485 }
6486 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6487 
6488 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6489 					   unsigned long address)
6490 {
6491 	/*
6492 	 * The physical address of apic access page is stored in the VMCS.
6493 	 * Update it when it becomes invalid.
6494 	 */
6495 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6496 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6497 }
6498 
6499 /*
6500  * Returns 1 to let vcpu_run() continue the guest execution loop without
6501  * exiting to the userspace.  Otherwise, the value will be returned to the
6502  * userspace.
6503  */
6504 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6505 {
6506 	int r;
6507 	bool req_int_win =
6508 		dm_request_for_irq_injection(vcpu) &&
6509 		kvm_cpu_accept_dm_intr(vcpu);
6510 
6511 	bool req_immediate_exit = false;
6512 
6513 	if (vcpu->requests) {
6514 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6515 			kvm_mmu_unload(vcpu);
6516 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6517 			__kvm_migrate_timers(vcpu);
6518 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6519 			kvm_gen_update_masterclock(vcpu->kvm);
6520 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6521 			kvm_gen_kvmclock_update(vcpu);
6522 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6523 			r = kvm_guest_time_update(vcpu);
6524 			if (unlikely(r))
6525 				goto out;
6526 		}
6527 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6528 			kvm_mmu_sync_roots(vcpu);
6529 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6530 			kvm_vcpu_flush_tlb(vcpu);
6531 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6532 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6533 			r = 0;
6534 			goto out;
6535 		}
6536 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6537 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6538 			r = 0;
6539 			goto out;
6540 		}
6541 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6542 			vcpu->fpu_active = 0;
6543 			kvm_x86_ops->fpu_deactivate(vcpu);
6544 		}
6545 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6546 			/* Page is swapped out. Do synthetic halt */
6547 			vcpu->arch.apf.halted = true;
6548 			r = 1;
6549 			goto out;
6550 		}
6551 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6552 			record_steal_time(vcpu);
6553 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6554 			process_smi(vcpu);
6555 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6556 			process_nmi(vcpu);
6557 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6558 			kvm_pmu_handle_event(vcpu);
6559 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6560 			kvm_pmu_deliver_pmi(vcpu);
6561 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6562 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6563 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6564 				     vcpu->arch.ioapic_handled_vectors)) {
6565 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6566 				vcpu->run->eoi.vector =
6567 						vcpu->arch.pending_ioapic_eoi;
6568 				r = 0;
6569 				goto out;
6570 			}
6571 		}
6572 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6573 			vcpu_scan_ioapic(vcpu);
6574 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6575 			kvm_vcpu_reload_apic_access_page(vcpu);
6576 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6577 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6578 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6579 			r = 0;
6580 			goto out;
6581 		}
6582 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6583 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6584 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6585 			r = 0;
6586 			goto out;
6587 		}
6588 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6589 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6590 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6591 			r = 0;
6592 			goto out;
6593 		}
6594 
6595 		/*
6596 		 * KVM_REQ_HV_STIMER has to be processed after
6597 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6598 		 * depend on the guest clock being up-to-date
6599 		 */
6600 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6601 			kvm_hv_process_stimers(vcpu);
6602 	}
6603 
6604 	/*
6605 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6606 	 * VT-d hardware, so we have to update RVI unconditionally.
6607 	 */
6608 	if (kvm_lapic_enabled(vcpu)) {
6609 		/*
6610 		 * Update architecture specific hints for APIC
6611 		 * virtual interrupt delivery.
6612 		 */
6613 		if (vcpu->arch.apicv_active)
6614 			kvm_x86_ops->hwapic_irr_update(vcpu,
6615 				kvm_lapic_find_highest_irr(vcpu));
6616 	}
6617 
6618 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6619 		kvm_apic_accept_events(vcpu);
6620 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6621 			r = 1;
6622 			goto out;
6623 		}
6624 
6625 		if (inject_pending_event(vcpu, req_int_win) != 0)
6626 			req_immediate_exit = true;
6627 		else {
6628 			/* Enable NMI/IRQ window open exits if needed.
6629 			 *
6630 			 * SMIs have two cases: 1) they can be nested, and
6631 			 * then there is nothing to do here because RSM will
6632 			 * cause a vmexit anyway; 2) or the SMI can be pending
6633 			 * because inject_pending_event has completed the
6634 			 * injection of an IRQ or NMI from the previous vmexit,
6635 			 * and then we request an immediate exit to inject the SMI.
6636 			 */
6637 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
6638 				req_immediate_exit = true;
6639 			if (vcpu->arch.nmi_pending)
6640 				kvm_x86_ops->enable_nmi_window(vcpu);
6641 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6642 				kvm_x86_ops->enable_irq_window(vcpu);
6643 		}
6644 
6645 		if (kvm_lapic_enabled(vcpu)) {
6646 			update_cr8_intercept(vcpu);
6647 			kvm_lapic_sync_to_vapic(vcpu);
6648 		}
6649 	}
6650 
6651 	r = kvm_mmu_reload(vcpu);
6652 	if (unlikely(r)) {
6653 		goto cancel_injection;
6654 	}
6655 
6656 	preempt_disable();
6657 
6658 	kvm_x86_ops->prepare_guest_switch(vcpu);
6659 	if (vcpu->fpu_active)
6660 		kvm_load_guest_fpu(vcpu);
6661 	vcpu->mode = IN_GUEST_MODE;
6662 
6663 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6664 
6665 	/*
6666 	 * We should set ->mode before check ->requests,
6667 	 * Please see the comment in kvm_make_all_cpus_request.
6668 	 * This also orders the write to mode from any reads
6669 	 * to the page tables done while the VCPU is running.
6670 	 * Please see the comment in kvm_flush_remote_tlbs.
6671 	 */
6672 	smp_mb__after_srcu_read_unlock();
6673 
6674 	local_irq_disable();
6675 
6676 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6677 	    || need_resched() || signal_pending(current)) {
6678 		vcpu->mode = OUTSIDE_GUEST_MODE;
6679 		smp_wmb();
6680 		local_irq_enable();
6681 		preempt_enable();
6682 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6683 		r = 1;
6684 		goto cancel_injection;
6685 	}
6686 
6687 	kvm_load_guest_xcr0(vcpu);
6688 
6689 	if (req_immediate_exit) {
6690 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6691 		smp_send_reschedule(vcpu->cpu);
6692 	}
6693 
6694 	trace_kvm_entry(vcpu->vcpu_id);
6695 	wait_lapic_expire(vcpu);
6696 	guest_enter_irqoff();
6697 
6698 	if (unlikely(vcpu->arch.switch_db_regs)) {
6699 		set_debugreg(0, 7);
6700 		set_debugreg(vcpu->arch.eff_db[0], 0);
6701 		set_debugreg(vcpu->arch.eff_db[1], 1);
6702 		set_debugreg(vcpu->arch.eff_db[2], 2);
6703 		set_debugreg(vcpu->arch.eff_db[3], 3);
6704 		set_debugreg(vcpu->arch.dr6, 6);
6705 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6706 	}
6707 
6708 	kvm_x86_ops->run(vcpu);
6709 
6710 	/*
6711 	 * Do this here before restoring debug registers on the host.  And
6712 	 * since we do this before handling the vmexit, a DR access vmexit
6713 	 * can (a) read the correct value of the debug registers, (b) set
6714 	 * KVM_DEBUGREG_WONT_EXIT again.
6715 	 */
6716 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6717 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6718 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6719 		kvm_update_dr0123(vcpu);
6720 		kvm_update_dr6(vcpu);
6721 		kvm_update_dr7(vcpu);
6722 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6723 	}
6724 
6725 	/*
6726 	 * If the guest has used debug registers, at least dr7
6727 	 * will be disabled while returning to the host.
6728 	 * If we don't have active breakpoints in the host, we don't
6729 	 * care about the messed up debug address registers. But if
6730 	 * we have some of them active, restore the old state.
6731 	 */
6732 	if (hw_breakpoint_active())
6733 		hw_breakpoint_restore();
6734 
6735 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6736 
6737 	vcpu->mode = OUTSIDE_GUEST_MODE;
6738 	smp_wmb();
6739 
6740 	kvm_put_guest_xcr0(vcpu);
6741 
6742 	kvm_x86_ops->handle_external_intr(vcpu);
6743 
6744 	++vcpu->stat.exits;
6745 
6746 	guest_exit_irqoff();
6747 
6748 	local_irq_enable();
6749 	preempt_enable();
6750 
6751 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6752 
6753 	/*
6754 	 * Profile KVM exit RIPs:
6755 	 */
6756 	if (unlikely(prof_on == KVM_PROFILING)) {
6757 		unsigned long rip = kvm_rip_read(vcpu);
6758 		profile_hit(KVM_PROFILING, (void *)rip);
6759 	}
6760 
6761 	if (unlikely(vcpu->arch.tsc_always_catchup))
6762 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6763 
6764 	if (vcpu->arch.apic_attention)
6765 		kvm_lapic_sync_from_vapic(vcpu);
6766 
6767 	r = kvm_x86_ops->handle_exit(vcpu);
6768 	return r;
6769 
6770 cancel_injection:
6771 	kvm_x86_ops->cancel_injection(vcpu);
6772 	if (unlikely(vcpu->arch.apic_attention))
6773 		kvm_lapic_sync_from_vapic(vcpu);
6774 out:
6775 	return r;
6776 }
6777 
6778 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6779 {
6780 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6781 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6782 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6783 		kvm_vcpu_block(vcpu);
6784 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6785 
6786 		if (kvm_x86_ops->post_block)
6787 			kvm_x86_ops->post_block(vcpu);
6788 
6789 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6790 			return 1;
6791 	}
6792 
6793 	kvm_apic_accept_events(vcpu);
6794 	switch(vcpu->arch.mp_state) {
6795 	case KVM_MP_STATE_HALTED:
6796 		vcpu->arch.pv.pv_unhalted = false;
6797 		vcpu->arch.mp_state =
6798 			KVM_MP_STATE_RUNNABLE;
6799 	case KVM_MP_STATE_RUNNABLE:
6800 		vcpu->arch.apf.halted = false;
6801 		break;
6802 	case KVM_MP_STATE_INIT_RECEIVED:
6803 		break;
6804 	default:
6805 		return -EINTR;
6806 		break;
6807 	}
6808 	return 1;
6809 }
6810 
6811 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6812 {
6813 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6814 		!vcpu->arch.apf.halted);
6815 }
6816 
6817 static int vcpu_run(struct kvm_vcpu *vcpu)
6818 {
6819 	int r;
6820 	struct kvm *kvm = vcpu->kvm;
6821 
6822 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6823 
6824 	for (;;) {
6825 		if (kvm_vcpu_running(vcpu)) {
6826 			r = vcpu_enter_guest(vcpu);
6827 		} else {
6828 			r = vcpu_block(kvm, vcpu);
6829 		}
6830 
6831 		if (r <= 0)
6832 			break;
6833 
6834 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6835 		if (kvm_cpu_has_pending_timer(vcpu))
6836 			kvm_inject_pending_timer_irqs(vcpu);
6837 
6838 		if (dm_request_for_irq_injection(vcpu) &&
6839 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6840 			r = 0;
6841 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6842 			++vcpu->stat.request_irq_exits;
6843 			break;
6844 		}
6845 
6846 		kvm_check_async_pf_completion(vcpu);
6847 
6848 		if (signal_pending(current)) {
6849 			r = -EINTR;
6850 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6851 			++vcpu->stat.signal_exits;
6852 			break;
6853 		}
6854 		if (need_resched()) {
6855 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6856 			cond_resched();
6857 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6858 		}
6859 	}
6860 
6861 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6862 
6863 	return r;
6864 }
6865 
6866 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6867 {
6868 	int r;
6869 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6870 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6871 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6872 	if (r != EMULATE_DONE)
6873 		return 0;
6874 	return 1;
6875 }
6876 
6877 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6878 {
6879 	BUG_ON(!vcpu->arch.pio.count);
6880 
6881 	return complete_emulated_io(vcpu);
6882 }
6883 
6884 /*
6885  * Implements the following, as a state machine:
6886  *
6887  * read:
6888  *   for each fragment
6889  *     for each mmio piece in the fragment
6890  *       write gpa, len
6891  *       exit
6892  *       copy data
6893  *   execute insn
6894  *
6895  * write:
6896  *   for each fragment
6897  *     for each mmio piece in the fragment
6898  *       write gpa, len
6899  *       copy data
6900  *       exit
6901  */
6902 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6903 {
6904 	struct kvm_run *run = vcpu->run;
6905 	struct kvm_mmio_fragment *frag;
6906 	unsigned len;
6907 
6908 	BUG_ON(!vcpu->mmio_needed);
6909 
6910 	/* Complete previous fragment */
6911 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6912 	len = min(8u, frag->len);
6913 	if (!vcpu->mmio_is_write)
6914 		memcpy(frag->data, run->mmio.data, len);
6915 
6916 	if (frag->len <= 8) {
6917 		/* Switch to the next fragment. */
6918 		frag++;
6919 		vcpu->mmio_cur_fragment++;
6920 	} else {
6921 		/* Go forward to the next mmio piece. */
6922 		frag->data += len;
6923 		frag->gpa += len;
6924 		frag->len -= len;
6925 	}
6926 
6927 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6928 		vcpu->mmio_needed = 0;
6929 
6930 		/* FIXME: return into emulator if single-stepping.  */
6931 		if (vcpu->mmio_is_write)
6932 			return 1;
6933 		vcpu->mmio_read_completed = 1;
6934 		return complete_emulated_io(vcpu);
6935 	}
6936 
6937 	run->exit_reason = KVM_EXIT_MMIO;
6938 	run->mmio.phys_addr = frag->gpa;
6939 	if (vcpu->mmio_is_write)
6940 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6941 	run->mmio.len = min(8u, frag->len);
6942 	run->mmio.is_write = vcpu->mmio_is_write;
6943 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6944 	return 0;
6945 }
6946 
6947 
6948 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6949 {
6950 	struct fpu *fpu = &current->thread.fpu;
6951 	int r;
6952 	sigset_t sigsaved;
6953 
6954 	fpu__activate_curr(fpu);
6955 
6956 	if (vcpu->sigset_active)
6957 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6958 
6959 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6960 		kvm_vcpu_block(vcpu);
6961 		kvm_apic_accept_events(vcpu);
6962 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6963 		r = -EAGAIN;
6964 		goto out;
6965 	}
6966 
6967 	/* re-sync apic's tpr */
6968 	if (!lapic_in_kernel(vcpu)) {
6969 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6970 			r = -EINVAL;
6971 			goto out;
6972 		}
6973 	}
6974 
6975 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6976 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6977 		vcpu->arch.complete_userspace_io = NULL;
6978 		r = cui(vcpu);
6979 		if (r <= 0)
6980 			goto out;
6981 	} else
6982 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6983 
6984 	r = vcpu_run(vcpu);
6985 
6986 out:
6987 	post_kvm_run_save(vcpu);
6988 	if (vcpu->sigset_active)
6989 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6990 
6991 	return r;
6992 }
6993 
6994 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6995 {
6996 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6997 		/*
6998 		 * We are here if userspace calls get_regs() in the middle of
6999 		 * instruction emulation. Registers state needs to be copied
7000 		 * back from emulation context to vcpu. Userspace shouldn't do
7001 		 * that usually, but some bad designed PV devices (vmware
7002 		 * backdoor interface) need this to work
7003 		 */
7004 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7005 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7006 	}
7007 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7008 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7009 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7010 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7011 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7012 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7013 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7014 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7015 #ifdef CONFIG_X86_64
7016 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7017 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7018 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7019 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7020 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7021 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7022 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7023 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7024 #endif
7025 
7026 	regs->rip = kvm_rip_read(vcpu);
7027 	regs->rflags = kvm_get_rflags(vcpu);
7028 
7029 	return 0;
7030 }
7031 
7032 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7033 {
7034 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7035 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7036 
7037 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7038 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7039 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7040 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7041 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7042 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7043 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7044 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7045 #ifdef CONFIG_X86_64
7046 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7047 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7048 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7049 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7050 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7051 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7052 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7053 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7054 #endif
7055 
7056 	kvm_rip_write(vcpu, regs->rip);
7057 	kvm_set_rflags(vcpu, regs->rflags);
7058 
7059 	vcpu->arch.exception.pending = false;
7060 
7061 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7062 
7063 	return 0;
7064 }
7065 
7066 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7067 {
7068 	struct kvm_segment cs;
7069 
7070 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7071 	*db = cs.db;
7072 	*l = cs.l;
7073 }
7074 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7075 
7076 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7077 				  struct kvm_sregs *sregs)
7078 {
7079 	struct desc_ptr dt;
7080 
7081 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7082 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7083 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7084 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7085 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7086 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7087 
7088 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7089 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7090 
7091 	kvm_x86_ops->get_idt(vcpu, &dt);
7092 	sregs->idt.limit = dt.size;
7093 	sregs->idt.base = dt.address;
7094 	kvm_x86_ops->get_gdt(vcpu, &dt);
7095 	sregs->gdt.limit = dt.size;
7096 	sregs->gdt.base = dt.address;
7097 
7098 	sregs->cr0 = kvm_read_cr0(vcpu);
7099 	sregs->cr2 = vcpu->arch.cr2;
7100 	sregs->cr3 = kvm_read_cr3(vcpu);
7101 	sregs->cr4 = kvm_read_cr4(vcpu);
7102 	sregs->cr8 = kvm_get_cr8(vcpu);
7103 	sregs->efer = vcpu->arch.efer;
7104 	sregs->apic_base = kvm_get_apic_base(vcpu);
7105 
7106 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7107 
7108 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7109 		set_bit(vcpu->arch.interrupt.nr,
7110 			(unsigned long *)sregs->interrupt_bitmap);
7111 
7112 	return 0;
7113 }
7114 
7115 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7116 				    struct kvm_mp_state *mp_state)
7117 {
7118 	kvm_apic_accept_events(vcpu);
7119 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7120 					vcpu->arch.pv.pv_unhalted)
7121 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7122 	else
7123 		mp_state->mp_state = vcpu->arch.mp_state;
7124 
7125 	return 0;
7126 }
7127 
7128 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7129 				    struct kvm_mp_state *mp_state)
7130 {
7131 	if (!lapic_in_kernel(vcpu) &&
7132 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7133 		return -EINVAL;
7134 
7135 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7136 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7137 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7138 	} else
7139 		vcpu->arch.mp_state = mp_state->mp_state;
7140 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7141 	return 0;
7142 }
7143 
7144 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7145 		    int reason, bool has_error_code, u32 error_code)
7146 {
7147 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7148 	int ret;
7149 
7150 	init_emulate_ctxt(vcpu);
7151 
7152 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7153 				   has_error_code, error_code);
7154 
7155 	if (ret)
7156 		return EMULATE_FAIL;
7157 
7158 	kvm_rip_write(vcpu, ctxt->eip);
7159 	kvm_set_rflags(vcpu, ctxt->eflags);
7160 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7161 	return EMULATE_DONE;
7162 }
7163 EXPORT_SYMBOL_GPL(kvm_task_switch);
7164 
7165 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7166 				  struct kvm_sregs *sregs)
7167 {
7168 	struct msr_data apic_base_msr;
7169 	int mmu_reset_needed = 0;
7170 	int pending_vec, max_bits, idx;
7171 	struct desc_ptr dt;
7172 
7173 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7174 		return -EINVAL;
7175 
7176 	dt.size = sregs->idt.limit;
7177 	dt.address = sregs->idt.base;
7178 	kvm_x86_ops->set_idt(vcpu, &dt);
7179 	dt.size = sregs->gdt.limit;
7180 	dt.address = sregs->gdt.base;
7181 	kvm_x86_ops->set_gdt(vcpu, &dt);
7182 
7183 	vcpu->arch.cr2 = sregs->cr2;
7184 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7185 	vcpu->arch.cr3 = sregs->cr3;
7186 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7187 
7188 	kvm_set_cr8(vcpu, sregs->cr8);
7189 
7190 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7191 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7192 	apic_base_msr.data = sregs->apic_base;
7193 	apic_base_msr.host_initiated = true;
7194 	kvm_set_apic_base(vcpu, &apic_base_msr);
7195 
7196 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7197 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7198 	vcpu->arch.cr0 = sregs->cr0;
7199 
7200 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7201 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7202 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7203 		kvm_update_cpuid(vcpu);
7204 
7205 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7206 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7207 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7208 		mmu_reset_needed = 1;
7209 	}
7210 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7211 
7212 	if (mmu_reset_needed)
7213 		kvm_mmu_reset_context(vcpu);
7214 
7215 	max_bits = KVM_NR_INTERRUPTS;
7216 	pending_vec = find_first_bit(
7217 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7218 	if (pending_vec < max_bits) {
7219 		kvm_queue_interrupt(vcpu, pending_vec, false);
7220 		pr_debug("Set back pending irq %d\n", pending_vec);
7221 	}
7222 
7223 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7224 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7225 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7226 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7227 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7228 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7229 
7230 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7231 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7232 
7233 	update_cr8_intercept(vcpu);
7234 
7235 	/* Older userspace won't unhalt the vcpu on reset. */
7236 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7237 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7238 	    !is_protmode(vcpu))
7239 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7240 
7241 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7242 
7243 	return 0;
7244 }
7245 
7246 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7247 					struct kvm_guest_debug *dbg)
7248 {
7249 	unsigned long rflags;
7250 	int i, r;
7251 
7252 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7253 		r = -EBUSY;
7254 		if (vcpu->arch.exception.pending)
7255 			goto out;
7256 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7257 			kvm_queue_exception(vcpu, DB_VECTOR);
7258 		else
7259 			kvm_queue_exception(vcpu, BP_VECTOR);
7260 	}
7261 
7262 	/*
7263 	 * Read rflags as long as potentially injected trace flags are still
7264 	 * filtered out.
7265 	 */
7266 	rflags = kvm_get_rflags(vcpu);
7267 
7268 	vcpu->guest_debug = dbg->control;
7269 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7270 		vcpu->guest_debug = 0;
7271 
7272 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7273 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7274 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7275 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7276 	} else {
7277 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7278 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7279 	}
7280 	kvm_update_dr7(vcpu);
7281 
7282 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7283 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7284 			get_segment_base(vcpu, VCPU_SREG_CS);
7285 
7286 	/*
7287 	 * Trigger an rflags update that will inject or remove the trace
7288 	 * flags.
7289 	 */
7290 	kvm_set_rflags(vcpu, rflags);
7291 
7292 	kvm_x86_ops->update_bp_intercept(vcpu);
7293 
7294 	r = 0;
7295 
7296 out:
7297 
7298 	return r;
7299 }
7300 
7301 /*
7302  * Translate a guest virtual address to a guest physical address.
7303  */
7304 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7305 				    struct kvm_translation *tr)
7306 {
7307 	unsigned long vaddr = tr->linear_address;
7308 	gpa_t gpa;
7309 	int idx;
7310 
7311 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7312 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7313 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7314 	tr->physical_address = gpa;
7315 	tr->valid = gpa != UNMAPPED_GVA;
7316 	tr->writeable = 1;
7317 	tr->usermode = 0;
7318 
7319 	return 0;
7320 }
7321 
7322 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7323 {
7324 	struct fxregs_state *fxsave =
7325 			&vcpu->arch.guest_fpu.state.fxsave;
7326 
7327 	memcpy(fpu->fpr, fxsave->st_space, 128);
7328 	fpu->fcw = fxsave->cwd;
7329 	fpu->fsw = fxsave->swd;
7330 	fpu->ftwx = fxsave->twd;
7331 	fpu->last_opcode = fxsave->fop;
7332 	fpu->last_ip = fxsave->rip;
7333 	fpu->last_dp = fxsave->rdp;
7334 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7335 
7336 	return 0;
7337 }
7338 
7339 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7340 {
7341 	struct fxregs_state *fxsave =
7342 			&vcpu->arch.guest_fpu.state.fxsave;
7343 
7344 	memcpy(fxsave->st_space, fpu->fpr, 128);
7345 	fxsave->cwd = fpu->fcw;
7346 	fxsave->swd = fpu->fsw;
7347 	fxsave->twd = fpu->ftwx;
7348 	fxsave->fop = fpu->last_opcode;
7349 	fxsave->rip = fpu->last_ip;
7350 	fxsave->rdp = fpu->last_dp;
7351 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7352 
7353 	return 0;
7354 }
7355 
7356 static void fx_init(struct kvm_vcpu *vcpu)
7357 {
7358 	fpstate_init(&vcpu->arch.guest_fpu.state);
7359 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7360 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7361 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7362 
7363 	/*
7364 	 * Ensure guest xcr0 is valid for loading
7365 	 */
7366 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7367 
7368 	vcpu->arch.cr0 |= X86_CR0_ET;
7369 }
7370 
7371 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7372 {
7373 	if (vcpu->guest_fpu_loaded)
7374 		return;
7375 
7376 	/*
7377 	 * Restore all possible states in the guest,
7378 	 * and assume host would use all available bits.
7379 	 * Guest xcr0 would be loaded later.
7380 	 */
7381 	vcpu->guest_fpu_loaded = 1;
7382 	__kernel_fpu_begin();
7383 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7384 	trace_kvm_fpu(1);
7385 }
7386 
7387 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7388 {
7389 	if (!vcpu->guest_fpu_loaded) {
7390 		vcpu->fpu_counter = 0;
7391 		return;
7392 	}
7393 
7394 	vcpu->guest_fpu_loaded = 0;
7395 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7396 	__kernel_fpu_end();
7397 	++vcpu->stat.fpu_reload;
7398 	/*
7399 	 * If using eager FPU mode, or if the guest is a frequent user
7400 	 * of the FPU, just leave the FPU active for next time.
7401 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7402 	 * the FPU in bursts will revert to loading it on demand.
7403 	 */
7404 	if (!use_eager_fpu()) {
7405 		if (++vcpu->fpu_counter < 5)
7406 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7407 	}
7408 	trace_kvm_fpu(0);
7409 }
7410 
7411 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7412 {
7413 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7414 
7415 	kvmclock_reset(vcpu);
7416 
7417 	kvm_x86_ops->vcpu_free(vcpu);
7418 	free_cpumask_var(wbinvd_dirty_mask);
7419 }
7420 
7421 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7422 						unsigned int id)
7423 {
7424 	struct kvm_vcpu *vcpu;
7425 
7426 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7427 		printk_once(KERN_WARNING
7428 		"kvm: SMP vm created on host with unstable TSC; "
7429 		"guest TSC will not be reliable\n");
7430 
7431 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7432 
7433 	return vcpu;
7434 }
7435 
7436 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7437 {
7438 	int r;
7439 
7440 	kvm_vcpu_mtrr_init(vcpu);
7441 	r = vcpu_load(vcpu);
7442 	if (r)
7443 		return r;
7444 	kvm_vcpu_reset(vcpu, false);
7445 	kvm_mmu_setup(vcpu);
7446 	vcpu_put(vcpu);
7447 	return r;
7448 }
7449 
7450 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7451 {
7452 	struct msr_data msr;
7453 	struct kvm *kvm = vcpu->kvm;
7454 
7455 	if (vcpu_load(vcpu))
7456 		return;
7457 	msr.data = 0x0;
7458 	msr.index = MSR_IA32_TSC;
7459 	msr.host_initiated = true;
7460 	kvm_write_tsc(vcpu, &msr);
7461 	vcpu_put(vcpu);
7462 
7463 	if (!kvmclock_periodic_sync)
7464 		return;
7465 
7466 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7467 					KVMCLOCK_SYNC_PERIOD);
7468 }
7469 
7470 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7471 {
7472 	int r;
7473 	vcpu->arch.apf.msr_val = 0;
7474 
7475 	r = vcpu_load(vcpu);
7476 	BUG_ON(r);
7477 	kvm_mmu_unload(vcpu);
7478 	vcpu_put(vcpu);
7479 
7480 	kvm_x86_ops->vcpu_free(vcpu);
7481 }
7482 
7483 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7484 {
7485 	vcpu->arch.hflags = 0;
7486 
7487 	vcpu->arch.smi_pending = 0;
7488 	atomic_set(&vcpu->arch.nmi_queued, 0);
7489 	vcpu->arch.nmi_pending = 0;
7490 	vcpu->arch.nmi_injected = false;
7491 	kvm_clear_interrupt_queue(vcpu);
7492 	kvm_clear_exception_queue(vcpu);
7493 
7494 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7495 	kvm_update_dr0123(vcpu);
7496 	vcpu->arch.dr6 = DR6_INIT;
7497 	kvm_update_dr6(vcpu);
7498 	vcpu->arch.dr7 = DR7_FIXED_1;
7499 	kvm_update_dr7(vcpu);
7500 
7501 	vcpu->arch.cr2 = 0;
7502 
7503 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7504 	vcpu->arch.apf.msr_val = 0;
7505 	vcpu->arch.st.msr_val = 0;
7506 
7507 	kvmclock_reset(vcpu);
7508 
7509 	kvm_clear_async_pf_completion_queue(vcpu);
7510 	kvm_async_pf_hash_reset(vcpu);
7511 	vcpu->arch.apf.halted = false;
7512 
7513 	if (!init_event) {
7514 		kvm_pmu_reset(vcpu);
7515 		vcpu->arch.smbase = 0x30000;
7516 	}
7517 
7518 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7519 	vcpu->arch.regs_avail = ~0;
7520 	vcpu->arch.regs_dirty = ~0;
7521 
7522 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7523 }
7524 
7525 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7526 {
7527 	struct kvm_segment cs;
7528 
7529 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7530 	cs.selector = vector << 8;
7531 	cs.base = vector << 12;
7532 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7533 	kvm_rip_write(vcpu, 0);
7534 }
7535 
7536 int kvm_arch_hardware_enable(void)
7537 {
7538 	struct kvm *kvm;
7539 	struct kvm_vcpu *vcpu;
7540 	int i;
7541 	int ret;
7542 	u64 local_tsc;
7543 	u64 max_tsc = 0;
7544 	bool stable, backwards_tsc = false;
7545 
7546 	kvm_shared_msr_cpu_online();
7547 	ret = kvm_x86_ops->hardware_enable();
7548 	if (ret != 0)
7549 		return ret;
7550 
7551 	local_tsc = rdtsc();
7552 	stable = !check_tsc_unstable();
7553 	list_for_each_entry(kvm, &vm_list, vm_list) {
7554 		kvm_for_each_vcpu(i, vcpu, kvm) {
7555 			if (!stable && vcpu->cpu == smp_processor_id())
7556 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7557 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7558 				backwards_tsc = true;
7559 				if (vcpu->arch.last_host_tsc > max_tsc)
7560 					max_tsc = vcpu->arch.last_host_tsc;
7561 			}
7562 		}
7563 	}
7564 
7565 	/*
7566 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7567 	 * platforms that reset TSC during suspend or hibernate actions, but
7568 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7569 	 * detect that condition here, which happens early in CPU bringup,
7570 	 * before any KVM threads can be running.  Unfortunately, we can't
7571 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7572 	 * enough into CPU bringup that we know how much real time has actually
7573 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7574 	 * variables that haven't been updated yet.
7575 	 *
7576 	 * So we simply find the maximum observed TSC above, then record the
7577 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7578 	 * the adjustment will be applied.  Note that we accumulate
7579 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7580 	 * gets a chance to run again.  In the event that no KVM threads get a
7581 	 * chance to run, we will miss the entire elapsed period, as we'll have
7582 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7583 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7584 	 * uniform across all VCPUs (not to mention the scenario is extremely
7585 	 * unlikely). It is possible that a second hibernate recovery happens
7586 	 * much faster than a first, causing the observed TSC here to be
7587 	 * smaller; this would require additional padding adjustment, which is
7588 	 * why we set last_host_tsc to the local tsc observed here.
7589 	 *
7590 	 * N.B. - this code below runs only on platforms with reliable TSC,
7591 	 * as that is the only way backwards_tsc is set above.  Also note
7592 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7593 	 * have the same delta_cyc adjustment applied if backwards_tsc
7594 	 * is detected.  Note further, this adjustment is only done once,
7595 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7596 	 * called multiple times (one for each physical CPU bringup).
7597 	 *
7598 	 * Platforms with unreliable TSCs don't have to deal with this, they
7599 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7600 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7601 	 * guarantee that they stay in perfect synchronization.
7602 	 */
7603 	if (backwards_tsc) {
7604 		u64 delta_cyc = max_tsc - local_tsc;
7605 		backwards_tsc_observed = true;
7606 		list_for_each_entry(kvm, &vm_list, vm_list) {
7607 			kvm_for_each_vcpu(i, vcpu, kvm) {
7608 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7609 				vcpu->arch.last_host_tsc = local_tsc;
7610 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7611 			}
7612 
7613 			/*
7614 			 * We have to disable TSC offset matching.. if you were
7615 			 * booting a VM while issuing an S4 host suspend....
7616 			 * you may have some problem.  Solving this issue is
7617 			 * left as an exercise to the reader.
7618 			 */
7619 			kvm->arch.last_tsc_nsec = 0;
7620 			kvm->arch.last_tsc_write = 0;
7621 		}
7622 
7623 	}
7624 	return 0;
7625 }
7626 
7627 void kvm_arch_hardware_disable(void)
7628 {
7629 	kvm_x86_ops->hardware_disable();
7630 	drop_user_return_notifiers();
7631 }
7632 
7633 int kvm_arch_hardware_setup(void)
7634 {
7635 	int r;
7636 
7637 	r = kvm_x86_ops->hardware_setup();
7638 	if (r != 0)
7639 		return r;
7640 
7641 	if (kvm_has_tsc_control) {
7642 		/*
7643 		 * Make sure the user can only configure tsc_khz values that
7644 		 * fit into a signed integer.
7645 		 * A min value is not calculated needed because it will always
7646 		 * be 1 on all machines.
7647 		 */
7648 		u64 max = min(0x7fffffffULL,
7649 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7650 		kvm_max_guest_tsc_khz = max;
7651 
7652 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7653 	}
7654 
7655 	kvm_init_msr_list();
7656 	return 0;
7657 }
7658 
7659 void kvm_arch_hardware_unsetup(void)
7660 {
7661 	kvm_x86_ops->hardware_unsetup();
7662 }
7663 
7664 void kvm_arch_check_processor_compat(void *rtn)
7665 {
7666 	kvm_x86_ops->check_processor_compatibility(rtn);
7667 }
7668 
7669 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7670 {
7671 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7672 }
7673 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7674 
7675 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7676 {
7677 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7678 }
7679 
7680 struct static_key kvm_no_apic_vcpu __read_mostly;
7681 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7682 
7683 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7684 {
7685 	struct page *page;
7686 	struct kvm *kvm;
7687 	int r;
7688 
7689 	BUG_ON(vcpu->kvm == NULL);
7690 	kvm = vcpu->kvm;
7691 
7692 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7693 	vcpu->arch.pv.pv_unhalted = false;
7694 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7695 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7696 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7697 	else
7698 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7699 
7700 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7701 	if (!page) {
7702 		r = -ENOMEM;
7703 		goto fail;
7704 	}
7705 	vcpu->arch.pio_data = page_address(page);
7706 
7707 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7708 
7709 	r = kvm_mmu_create(vcpu);
7710 	if (r < 0)
7711 		goto fail_free_pio_data;
7712 
7713 	if (irqchip_in_kernel(kvm)) {
7714 		r = kvm_create_lapic(vcpu);
7715 		if (r < 0)
7716 			goto fail_mmu_destroy;
7717 	} else
7718 		static_key_slow_inc(&kvm_no_apic_vcpu);
7719 
7720 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7721 				       GFP_KERNEL);
7722 	if (!vcpu->arch.mce_banks) {
7723 		r = -ENOMEM;
7724 		goto fail_free_lapic;
7725 	}
7726 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7727 
7728 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7729 		r = -ENOMEM;
7730 		goto fail_free_mce_banks;
7731 	}
7732 
7733 	fx_init(vcpu);
7734 
7735 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7736 	vcpu->arch.pv_time_enabled = false;
7737 
7738 	vcpu->arch.guest_supported_xcr0 = 0;
7739 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7740 
7741 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7742 
7743 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7744 
7745 	kvm_async_pf_hash_reset(vcpu);
7746 	kvm_pmu_init(vcpu);
7747 
7748 	vcpu->arch.pending_external_vector = -1;
7749 
7750 	kvm_hv_vcpu_init(vcpu);
7751 
7752 	return 0;
7753 
7754 fail_free_mce_banks:
7755 	kfree(vcpu->arch.mce_banks);
7756 fail_free_lapic:
7757 	kvm_free_lapic(vcpu);
7758 fail_mmu_destroy:
7759 	kvm_mmu_destroy(vcpu);
7760 fail_free_pio_data:
7761 	free_page((unsigned long)vcpu->arch.pio_data);
7762 fail:
7763 	return r;
7764 }
7765 
7766 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7767 {
7768 	int idx;
7769 
7770 	kvm_hv_vcpu_uninit(vcpu);
7771 	kvm_pmu_destroy(vcpu);
7772 	kfree(vcpu->arch.mce_banks);
7773 	kvm_free_lapic(vcpu);
7774 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7775 	kvm_mmu_destroy(vcpu);
7776 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7777 	free_page((unsigned long)vcpu->arch.pio_data);
7778 	if (!lapic_in_kernel(vcpu))
7779 		static_key_slow_dec(&kvm_no_apic_vcpu);
7780 }
7781 
7782 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7783 {
7784 	kvm_x86_ops->sched_in(vcpu, cpu);
7785 }
7786 
7787 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7788 {
7789 	if (type)
7790 		return -EINVAL;
7791 
7792 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7793 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7794 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7795 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7796 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7797 
7798 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7799 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7800 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7801 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7802 		&kvm->arch.irq_sources_bitmap);
7803 
7804 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7805 	mutex_init(&kvm->arch.apic_map_lock);
7806 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7807 
7808 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
7809 	pvclock_update_vm_gtod_copy(kvm);
7810 
7811 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7812 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7813 
7814 	kvm_page_track_init(kvm);
7815 	kvm_mmu_init_vm(kvm);
7816 
7817 	if (kvm_x86_ops->vm_init)
7818 		return kvm_x86_ops->vm_init(kvm);
7819 
7820 	return 0;
7821 }
7822 
7823 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7824 {
7825 	int r;
7826 	r = vcpu_load(vcpu);
7827 	BUG_ON(r);
7828 	kvm_mmu_unload(vcpu);
7829 	vcpu_put(vcpu);
7830 }
7831 
7832 static void kvm_free_vcpus(struct kvm *kvm)
7833 {
7834 	unsigned int i;
7835 	struct kvm_vcpu *vcpu;
7836 
7837 	/*
7838 	 * Unpin any mmu pages first.
7839 	 */
7840 	kvm_for_each_vcpu(i, vcpu, kvm) {
7841 		kvm_clear_async_pf_completion_queue(vcpu);
7842 		kvm_unload_vcpu_mmu(vcpu);
7843 	}
7844 	kvm_for_each_vcpu(i, vcpu, kvm)
7845 		kvm_arch_vcpu_free(vcpu);
7846 
7847 	mutex_lock(&kvm->lock);
7848 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7849 		kvm->vcpus[i] = NULL;
7850 
7851 	atomic_set(&kvm->online_vcpus, 0);
7852 	mutex_unlock(&kvm->lock);
7853 }
7854 
7855 void kvm_arch_sync_events(struct kvm *kvm)
7856 {
7857 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7858 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7859 	kvm_free_all_assigned_devices(kvm);
7860 	kvm_free_pit(kvm);
7861 }
7862 
7863 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7864 {
7865 	int i, r;
7866 	unsigned long hva;
7867 	struct kvm_memslots *slots = kvm_memslots(kvm);
7868 	struct kvm_memory_slot *slot, old;
7869 
7870 	/* Called with kvm->slots_lock held.  */
7871 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7872 		return -EINVAL;
7873 
7874 	slot = id_to_memslot(slots, id);
7875 	if (size) {
7876 		if (slot->npages)
7877 			return -EEXIST;
7878 
7879 		/*
7880 		 * MAP_SHARED to prevent internal slot pages from being moved
7881 		 * by fork()/COW.
7882 		 */
7883 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7884 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7885 		if (IS_ERR((void *)hva))
7886 			return PTR_ERR((void *)hva);
7887 	} else {
7888 		if (!slot->npages)
7889 			return 0;
7890 
7891 		hva = 0;
7892 	}
7893 
7894 	old = *slot;
7895 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7896 		struct kvm_userspace_memory_region m;
7897 
7898 		m.slot = id | (i << 16);
7899 		m.flags = 0;
7900 		m.guest_phys_addr = gpa;
7901 		m.userspace_addr = hva;
7902 		m.memory_size = size;
7903 		r = __kvm_set_memory_region(kvm, &m);
7904 		if (r < 0)
7905 			return r;
7906 	}
7907 
7908 	if (!size) {
7909 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7910 		WARN_ON(r < 0);
7911 	}
7912 
7913 	return 0;
7914 }
7915 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7916 
7917 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7918 {
7919 	int r;
7920 
7921 	mutex_lock(&kvm->slots_lock);
7922 	r = __x86_set_memory_region(kvm, id, gpa, size);
7923 	mutex_unlock(&kvm->slots_lock);
7924 
7925 	return r;
7926 }
7927 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7928 
7929 void kvm_arch_destroy_vm(struct kvm *kvm)
7930 {
7931 	if (current->mm == kvm->mm) {
7932 		/*
7933 		 * Free memory regions allocated on behalf of userspace,
7934 		 * unless the the memory map has changed due to process exit
7935 		 * or fd copying.
7936 		 */
7937 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7938 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7939 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7940 	}
7941 	if (kvm_x86_ops->vm_destroy)
7942 		kvm_x86_ops->vm_destroy(kvm);
7943 	kvm_iommu_unmap_guest(kvm);
7944 	kfree(kvm->arch.vpic);
7945 	kfree(kvm->arch.vioapic);
7946 	kvm_free_vcpus(kvm);
7947 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7948 	kvm_mmu_uninit_vm(kvm);
7949 }
7950 
7951 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7952 			   struct kvm_memory_slot *dont)
7953 {
7954 	int i;
7955 
7956 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7957 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7958 			kvfree(free->arch.rmap[i]);
7959 			free->arch.rmap[i] = NULL;
7960 		}
7961 		if (i == 0)
7962 			continue;
7963 
7964 		if (!dont || free->arch.lpage_info[i - 1] !=
7965 			     dont->arch.lpage_info[i - 1]) {
7966 			kvfree(free->arch.lpage_info[i - 1]);
7967 			free->arch.lpage_info[i - 1] = NULL;
7968 		}
7969 	}
7970 
7971 	kvm_page_track_free_memslot(free, dont);
7972 }
7973 
7974 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7975 			    unsigned long npages)
7976 {
7977 	int i;
7978 
7979 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7980 		struct kvm_lpage_info *linfo;
7981 		unsigned long ugfn;
7982 		int lpages;
7983 		int level = i + 1;
7984 
7985 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7986 				      slot->base_gfn, level) + 1;
7987 
7988 		slot->arch.rmap[i] =
7989 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7990 		if (!slot->arch.rmap[i])
7991 			goto out_free;
7992 		if (i == 0)
7993 			continue;
7994 
7995 		linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7996 		if (!linfo)
7997 			goto out_free;
7998 
7999 		slot->arch.lpage_info[i - 1] = linfo;
8000 
8001 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8002 			linfo[0].disallow_lpage = 1;
8003 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8004 			linfo[lpages - 1].disallow_lpage = 1;
8005 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8006 		/*
8007 		 * If the gfn and userspace address are not aligned wrt each
8008 		 * other, or if explicitly asked to, disable large page
8009 		 * support for this slot
8010 		 */
8011 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8012 		    !kvm_largepages_enabled()) {
8013 			unsigned long j;
8014 
8015 			for (j = 0; j < lpages; ++j)
8016 				linfo[j].disallow_lpage = 1;
8017 		}
8018 	}
8019 
8020 	if (kvm_page_track_create_memslot(slot, npages))
8021 		goto out_free;
8022 
8023 	return 0;
8024 
8025 out_free:
8026 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8027 		kvfree(slot->arch.rmap[i]);
8028 		slot->arch.rmap[i] = NULL;
8029 		if (i == 0)
8030 			continue;
8031 
8032 		kvfree(slot->arch.lpage_info[i - 1]);
8033 		slot->arch.lpage_info[i - 1] = NULL;
8034 	}
8035 	return -ENOMEM;
8036 }
8037 
8038 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8039 {
8040 	/*
8041 	 * memslots->generation has been incremented.
8042 	 * mmio generation may have reached its maximum value.
8043 	 */
8044 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8045 }
8046 
8047 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8048 				struct kvm_memory_slot *memslot,
8049 				const struct kvm_userspace_memory_region *mem,
8050 				enum kvm_mr_change change)
8051 {
8052 	return 0;
8053 }
8054 
8055 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8056 				     struct kvm_memory_slot *new)
8057 {
8058 	/* Still write protect RO slot */
8059 	if (new->flags & KVM_MEM_READONLY) {
8060 		kvm_mmu_slot_remove_write_access(kvm, new);
8061 		return;
8062 	}
8063 
8064 	/*
8065 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8066 	 *
8067 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8068 	 *
8069 	 *  - KVM_MR_CREATE with dirty logging is disabled
8070 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8071 	 *
8072 	 * The reason is, in case of PML, we need to set D-bit for any slots
8073 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8074 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8075 	 * guarantees leaving PML enabled during guest's lifetime won't have
8076 	 * any additonal overhead from PML when guest is running with dirty
8077 	 * logging disabled for memory slots.
8078 	 *
8079 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8080 	 * to dirty logging mode.
8081 	 *
8082 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8083 	 *
8084 	 * In case of write protect:
8085 	 *
8086 	 * Write protect all pages for dirty logging.
8087 	 *
8088 	 * All the sptes including the large sptes which point to this
8089 	 * slot are set to readonly. We can not create any new large
8090 	 * spte on this slot until the end of the logging.
8091 	 *
8092 	 * See the comments in fast_page_fault().
8093 	 */
8094 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8095 		if (kvm_x86_ops->slot_enable_log_dirty)
8096 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8097 		else
8098 			kvm_mmu_slot_remove_write_access(kvm, new);
8099 	} else {
8100 		if (kvm_x86_ops->slot_disable_log_dirty)
8101 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8102 	}
8103 }
8104 
8105 void kvm_arch_commit_memory_region(struct kvm *kvm,
8106 				const struct kvm_userspace_memory_region *mem,
8107 				const struct kvm_memory_slot *old,
8108 				const struct kvm_memory_slot *new,
8109 				enum kvm_mr_change change)
8110 {
8111 	int nr_mmu_pages = 0;
8112 
8113 	if (!kvm->arch.n_requested_mmu_pages)
8114 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8115 
8116 	if (nr_mmu_pages)
8117 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8118 
8119 	/*
8120 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8121 	 * sptes have to be split.  If live migration is successful, the guest
8122 	 * in the source machine will be destroyed and large sptes will be
8123 	 * created in the destination. However, if the guest continues to run
8124 	 * in the source machine (for example if live migration fails), small
8125 	 * sptes will remain around and cause bad performance.
8126 	 *
8127 	 * Scan sptes if dirty logging has been stopped, dropping those
8128 	 * which can be collapsed into a single large-page spte.  Later
8129 	 * page faults will create the large-page sptes.
8130 	 */
8131 	if ((change != KVM_MR_DELETE) &&
8132 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8133 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8134 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8135 
8136 	/*
8137 	 * Set up write protection and/or dirty logging for the new slot.
8138 	 *
8139 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8140 	 * been zapped so no dirty logging staff is needed for old slot. For
8141 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8142 	 * new and it's also covered when dealing with the new slot.
8143 	 *
8144 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8145 	 */
8146 	if (change != KVM_MR_DELETE)
8147 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8148 }
8149 
8150 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8151 {
8152 	kvm_mmu_invalidate_zap_all_pages(kvm);
8153 }
8154 
8155 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8156 				   struct kvm_memory_slot *slot)
8157 {
8158 	kvm_mmu_invalidate_zap_all_pages(kvm);
8159 }
8160 
8161 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8162 {
8163 	if (!list_empty_careful(&vcpu->async_pf.done))
8164 		return true;
8165 
8166 	if (kvm_apic_has_events(vcpu))
8167 		return true;
8168 
8169 	if (vcpu->arch.pv.pv_unhalted)
8170 		return true;
8171 
8172 	if (atomic_read(&vcpu->arch.nmi_queued))
8173 		return true;
8174 
8175 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8176 		return true;
8177 
8178 	if (kvm_arch_interrupt_allowed(vcpu) &&
8179 	    kvm_cpu_has_interrupt(vcpu))
8180 		return true;
8181 
8182 	if (kvm_hv_has_stimer_pending(vcpu))
8183 		return true;
8184 
8185 	return false;
8186 }
8187 
8188 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8189 {
8190 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8191 		kvm_x86_ops->check_nested_events(vcpu, false);
8192 
8193 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8194 }
8195 
8196 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8197 {
8198 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8199 }
8200 
8201 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8202 {
8203 	return kvm_x86_ops->interrupt_allowed(vcpu);
8204 }
8205 
8206 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8207 {
8208 	if (is_64_bit_mode(vcpu))
8209 		return kvm_rip_read(vcpu);
8210 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8211 		     kvm_rip_read(vcpu));
8212 }
8213 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8214 
8215 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8216 {
8217 	return kvm_get_linear_rip(vcpu) == linear_rip;
8218 }
8219 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8220 
8221 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8222 {
8223 	unsigned long rflags;
8224 
8225 	rflags = kvm_x86_ops->get_rflags(vcpu);
8226 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8227 		rflags &= ~X86_EFLAGS_TF;
8228 	return rflags;
8229 }
8230 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8231 
8232 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8233 {
8234 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8235 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8236 		rflags |= X86_EFLAGS_TF;
8237 	kvm_x86_ops->set_rflags(vcpu, rflags);
8238 }
8239 
8240 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8241 {
8242 	__kvm_set_rflags(vcpu, rflags);
8243 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8244 }
8245 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8246 
8247 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8248 {
8249 	int r;
8250 
8251 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8252 	      work->wakeup_all)
8253 		return;
8254 
8255 	r = kvm_mmu_reload(vcpu);
8256 	if (unlikely(r))
8257 		return;
8258 
8259 	if (!vcpu->arch.mmu.direct_map &&
8260 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8261 		return;
8262 
8263 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8264 }
8265 
8266 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8267 {
8268 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8269 }
8270 
8271 static inline u32 kvm_async_pf_next_probe(u32 key)
8272 {
8273 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8274 }
8275 
8276 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8277 {
8278 	u32 key = kvm_async_pf_hash_fn(gfn);
8279 
8280 	while (vcpu->arch.apf.gfns[key] != ~0)
8281 		key = kvm_async_pf_next_probe(key);
8282 
8283 	vcpu->arch.apf.gfns[key] = gfn;
8284 }
8285 
8286 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8287 {
8288 	int i;
8289 	u32 key = kvm_async_pf_hash_fn(gfn);
8290 
8291 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8292 		     (vcpu->arch.apf.gfns[key] != gfn &&
8293 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8294 		key = kvm_async_pf_next_probe(key);
8295 
8296 	return key;
8297 }
8298 
8299 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8300 {
8301 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8302 }
8303 
8304 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8305 {
8306 	u32 i, j, k;
8307 
8308 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8309 	while (true) {
8310 		vcpu->arch.apf.gfns[i] = ~0;
8311 		do {
8312 			j = kvm_async_pf_next_probe(j);
8313 			if (vcpu->arch.apf.gfns[j] == ~0)
8314 				return;
8315 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8316 			/*
8317 			 * k lies cyclically in ]i,j]
8318 			 * |    i.k.j |
8319 			 * |....j i.k.| or  |.k..j i...|
8320 			 */
8321 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8322 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8323 		i = j;
8324 	}
8325 }
8326 
8327 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8328 {
8329 
8330 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8331 				      sizeof(val));
8332 }
8333 
8334 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8335 				     struct kvm_async_pf *work)
8336 {
8337 	struct x86_exception fault;
8338 
8339 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8340 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8341 
8342 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8343 	    (vcpu->arch.apf.send_user_only &&
8344 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8345 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8346 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8347 		fault.vector = PF_VECTOR;
8348 		fault.error_code_valid = true;
8349 		fault.error_code = 0;
8350 		fault.nested_page_fault = false;
8351 		fault.address = work->arch.token;
8352 		kvm_inject_page_fault(vcpu, &fault);
8353 	}
8354 }
8355 
8356 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8357 				 struct kvm_async_pf *work)
8358 {
8359 	struct x86_exception fault;
8360 
8361 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8362 	if (work->wakeup_all)
8363 		work->arch.token = ~0; /* broadcast wakeup */
8364 	else
8365 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8366 
8367 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8368 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8369 		fault.vector = PF_VECTOR;
8370 		fault.error_code_valid = true;
8371 		fault.error_code = 0;
8372 		fault.nested_page_fault = false;
8373 		fault.address = work->arch.token;
8374 		kvm_inject_page_fault(vcpu, &fault);
8375 	}
8376 	vcpu->arch.apf.halted = false;
8377 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8378 }
8379 
8380 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8381 {
8382 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8383 		return true;
8384 	else
8385 		return !kvm_event_needs_reinjection(vcpu) &&
8386 			kvm_x86_ops->interrupt_allowed(vcpu);
8387 }
8388 
8389 void kvm_arch_start_assignment(struct kvm *kvm)
8390 {
8391 	atomic_inc(&kvm->arch.assigned_device_count);
8392 }
8393 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8394 
8395 void kvm_arch_end_assignment(struct kvm *kvm)
8396 {
8397 	atomic_dec(&kvm->arch.assigned_device_count);
8398 }
8399 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8400 
8401 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8402 {
8403 	return atomic_read(&kvm->arch.assigned_device_count);
8404 }
8405 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8406 
8407 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8408 {
8409 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8410 }
8411 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8412 
8413 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8414 {
8415 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8416 }
8417 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8418 
8419 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8420 {
8421 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8422 }
8423 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8424 
8425 bool kvm_arch_has_irq_bypass(void)
8426 {
8427 	return kvm_x86_ops->update_pi_irte != NULL;
8428 }
8429 
8430 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8431 				      struct irq_bypass_producer *prod)
8432 {
8433 	struct kvm_kernel_irqfd *irqfd =
8434 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8435 
8436 	irqfd->producer = prod;
8437 
8438 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8439 					   prod->irq, irqfd->gsi, 1);
8440 }
8441 
8442 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8443 				      struct irq_bypass_producer *prod)
8444 {
8445 	int ret;
8446 	struct kvm_kernel_irqfd *irqfd =
8447 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8448 
8449 	WARN_ON(irqfd->producer != prod);
8450 	irqfd->producer = NULL;
8451 
8452 	/*
8453 	 * When producer of consumer is unregistered, we change back to
8454 	 * remapped mode, so we can re-use the current implementation
8455 	 * when the irq is masked/disabled or the consumer side (KVM
8456 	 * int this case doesn't want to receive the interrupts.
8457 	*/
8458 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8459 	if (ret)
8460 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8461 		       " fails: %d\n", irqfd->consumer.token, ret);
8462 }
8463 
8464 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8465 				   uint32_t guest_irq, bool set)
8466 {
8467 	if (!kvm_x86_ops->update_pi_irte)
8468 		return -EINVAL;
8469 
8470 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8471 }
8472 
8473 bool kvm_vector_hashing_enabled(void)
8474 {
8475 	return vector_hashing;
8476 }
8477 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8478 
8479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8480 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8488 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8490 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8492 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8493 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8495 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8496 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8497 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8498