xref: /openbmc/linux/arch/x86/kvm/x86.c (revision f0a86878)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 #include <linux/suspend.h>
61 
62 #include <trace/events/kvm.h>
63 
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <asm/pkru.h>
69 #include <linux/kernel_stat.h>
70 #include <asm/fpu/api.h>
71 #include <asm/fpu/xcr.h>
72 #include <asm/fpu/xstate.h>
73 #include <asm/pvclock.h>
74 #include <asm/div64.h>
75 #include <asm/irq_remapping.h>
76 #include <asm/mshyperv.h>
77 #include <asm/hypervisor.h>
78 #include <asm/tlbflush.h>
79 #include <asm/intel_pt.h>
80 #include <asm/emulate_prefix.h>
81 #include <asm/sgx.h>
82 #include <clocksource/hyperv_timer.h>
83 
84 #define CREATE_TRACE_POINTS
85 #include "trace.h"
86 
87 #define MAX_IO_MSRS 256
88 #define KVM_MAX_MCE_BANKS 32
89 
90 struct kvm_caps kvm_caps __read_mostly = {
91 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
92 };
93 EXPORT_SYMBOL_GPL(kvm_caps);
94 
95 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
96 
97 #define emul_to_vcpu(ctxt) \
98 	((struct kvm_vcpu *)(ctxt)->vcpu)
99 
100 /* EFER defaults:
101  * - enable syscall per default because its emulated by KVM
102  * - enable LME and LMA per default on 64 bit KVM
103  */
104 #ifdef CONFIG_X86_64
105 static
106 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
107 #else
108 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
109 #endif
110 
111 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
112 
113 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
114 
115 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
116 
117 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
118                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
119 
120 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
121 static void process_nmi(struct kvm_vcpu *vcpu);
122 static void process_smi(struct kvm_vcpu *vcpu);
123 static void enter_smm(struct kvm_vcpu *vcpu);
124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
125 static void store_regs(struct kvm_vcpu *vcpu);
126 static int sync_regs(struct kvm_vcpu *vcpu);
127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
128 
129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131 
132 struct kvm_x86_ops kvm_x86_ops __read_mostly;
133 
134 #define KVM_X86_OP(func)					     \
135 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
136 				*(((struct kvm_x86_ops *)0)->func));
137 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
138 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
139 #include <asm/kvm-x86-ops.h>
140 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
141 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
142 
143 static bool __read_mostly ignore_msrs = 0;
144 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
145 
146 bool __read_mostly report_ignored_msrs = true;
147 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
148 EXPORT_SYMBOL_GPL(report_ignored_msrs);
149 
150 unsigned int min_timer_period_us = 200;
151 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
152 
153 static bool __read_mostly kvmclock_periodic_sync = true;
154 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
155 
156 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
157 static u32 __read_mostly tsc_tolerance_ppm = 250;
158 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
159 
160 /*
161  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
162  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
163  * advancement entirely.  Any other value is used as-is and disables adaptive
164  * tuning, i.e. allows privileged userspace to set an exact advancement time.
165  */
166 static int __read_mostly lapic_timer_advance_ns = -1;
167 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
168 
169 static bool __read_mostly vector_hashing = true;
170 module_param(vector_hashing, bool, S_IRUGO);
171 
172 bool __read_mostly enable_vmware_backdoor = false;
173 module_param(enable_vmware_backdoor, bool, S_IRUGO);
174 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
175 
176 /*
177  * Flags to manipulate forced emulation behavior (any non-zero value will
178  * enable forced emulation).
179  */
180 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
181 static int __read_mostly force_emulation_prefix;
182 module_param(force_emulation_prefix, int, 0644);
183 
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186 
187 /* Enable/disable PMU virtualization */
188 bool __read_mostly enable_pmu = true;
189 EXPORT_SYMBOL_GPL(enable_pmu);
190 module_param(enable_pmu, bool, 0444);
191 
192 bool __read_mostly eager_page_split = true;
193 module_param(eager_page_split, bool, 0644);
194 
195 /*
196  * Restoring the host value for MSRs that are only consumed when running in
197  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
198  * returns to userspace, i.e. the kernel can run with the guest's value.
199  */
200 #define KVM_MAX_NR_USER_RETURN_MSRS 16
201 
202 struct kvm_user_return_msrs {
203 	struct user_return_notifier urn;
204 	bool registered;
205 	struct kvm_user_return_msr_values {
206 		u64 host;
207 		u64 curr;
208 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
209 };
210 
211 u32 __read_mostly kvm_nr_uret_msrs;
212 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
213 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
214 static struct kvm_user_return_msrs __percpu *user_return_msrs;
215 
216 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
217 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
218 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
219 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
220 
221 u64 __read_mostly host_efer;
222 EXPORT_SYMBOL_GPL(host_efer);
223 
224 bool __read_mostly allow_smaller_maxphyaddr = 0;
225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
226 
227 bool __read_mostly enable_apicv = true;
228 EXPORT_SYMBOL_GPL(enable_apicv);
229 
230 u64 __read_mostly host_xss;
231 EXPORT_SYMBOL_GPL(host_xss);
232 
233 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
234 	KVM_GENERIC_VM_STATS(),
235 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
236 	STATS_DESC_COUNTER(VM, mmu_pte_write),
237 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
238 	STATS_DESC_COUNTER(VM, mmu_flooded),
239 	STATS_DESC_COUNTER(VM, mmu_recycled),
240 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
241 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
242 	STATS_DESC_ICOUNTER(VM, pages_4k),
243 	STATS_DESC_ICOUNTER(VM, pages_2m),
244 	STATS_DESC_ICOUNTER(VM, pages_1g),
245 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
246 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
247 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
248 };
249 
250 const struct kvm_stats_header kvm_vm_stats_header = {
251 	.name_size = KVM_STATS_NAME_SIZE,
252 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
253 	.id_offset = sizeof(struct kvm_stats_header),
254 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
255 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
256 		       sizeof(kvm_vm_stats_desc),
257 };
258 
259 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
260 	KVM_GENERIC_VCPU_STATS(),
261 	STATS_DESC_COUNTER(VCPU, pf_taken),
262 	STATS_DESC_COUNTER(VCPU, pf_fixed),
263 	STATS_DESC_COUNTER(VCPU, pf_emulate),
264 	STATS_DESC_COUNTER(VCPU, pf_spurious),
265 	STATS_DESC_COUNTER(VCPU, pf_fast),
266 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
267 	STATS_DESC_COUNTER(VCPU, pf_guest),
268 	STATS_DESC_COUNTER(VCPU, tlb_flush),
269 	STATS_DESC_COUNTER(VCPU, invlpg),
270 	STATS_DESC_COUNTER(VCPU, exits),
271 	STATS_DESC_COUNTER(VCPU, io_exits),
272 	STATS_DESC_COUNTER(VCPU, mmio_exits),
273 	STATS_DESC_COUNTER(VCPU, signal_exits),
274 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
275 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
276 	STATS_DESC_COUNTER(VCPU, l1d_flush),
277 	STATS_DESC_COUNTER(VCPU, halt_exits),
278 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
279 	STATS_DESC_COUNTER(VCPU, irq_exits),
280 	STATS_DESC_COUNTER(VCPU, host_state_reload),
281 	STATS_DESC_COUNTER(VCPU, fpu_reload),
282 	STATS_DESC_COUNTER(VCPU, insn_emulation),
283 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
284 	STATS_DESC_COUNTER(VCPU, hypercalls),
285 	STATS_DESC_COUNTER(VCPU, irq_injections),
286 	STATS_DESC_COUNTER(VCPU, nmi_injections),
287 	STATS_DESC_COUNTER(VCPU, req_event),
288 	STATS_DESC_COUNTER(VCPU, nested_run),
289 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
290 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
291 	STATS_DESC_COUNTER(VCPU, preemption_reported),
292 	STATS_DESC_COUNTER(VCPU, preemption_other),
293 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
294 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
295 };
296 
297 const struct kvm_stats_header kvm_vcpu_stats_header = {
298 	.name_size = KVM_STATS_NAME_SIZE,
299 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
300 	.id_offset = sizeof(struct kvm_stats_header),
301 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
302 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
303 		       sizeof(kvm_vcpu_stats_desc),
304 };
305 
306 u64 __read_mostly host_xcr0;
307 
308 static struct kmem_cache *x86_emulator_cache;
309 
310 /*
311  * When called, it means the previous get/set msr reached an invalid msr.
312  * Return true if we want to ignore/silent this failed msr access.
313  */
314 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
315 {
316 	const char *op = write ? "wrmsr" : "rdmsr";
317 
318 	if (ignore_msrs) {
319 		if (report_ignored_msrs)
320 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
321 				      op, msr, data);
322 		/* Mask the error */
323 		return true;
324 	} else {
325 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
326 				      op, msr, data);
327 		return false;
328 	}
329 }
330 
331 static struct kmem_cache *kvm_alloc_emulator_cache(void)
332 {
333 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
334 	unsigned int size = sizeof(struct x86_emulate_ctxt);
335 
336 	return kmem_cache_create_usercopy("x86_emulator", size,
337 					  __alignof__(struct x86_emulate_ctxt),
338 					  SLAB_ACCOUNT, useroffset,
339 					  size - useroffset, NULL);
340 }
341 
342 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
343 
344 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
345 {
346 	int i;
347 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
348 		vcpu->arch.apf.gfns[i] = ~0;
349 }
350 
351 static void kvm_on_user_return(struct user_return_notifier *urn)
352 {
353 	unsigned slot;
354 	struct kvm_user_return_msrs *msrs
355 		= container_of(urn, struct kvm_user_return_msrs, urn);
356 	struct kvm_user_return_msr_values *values;
357 	unsigned long flags;
358 
359 	/*
360 	 * Disabling irqs at this point since the following code could be
361 	 * interrupted and executed through kvm_arch_hardware_disable()
362 	 */
363 	local_irq_save(flags);
364 	if (msrs->registered) {
365 		msrs->registered = false;
366 		user_return_notifier_unregister(urn);
367 	}
368 	local_irq_restore(flags);
369 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
370 		values = &msrs->values[slot];
371 		if (values->host != values->curr) {
372 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
373 			values->curr = values->host;
374 		}
375 	}
376 }
377 
378 static int kvm_probe_user_return_msr(u32 msr)
379 {
380 	u64 val;
381 	int ret;
382 
383 	preempt_disable();
384 	ret = rdmsrl_safe(msr, &val);
385 	if (ret)
386 		goto out;
387 	ret = wrmsrl_safe(msr, val);
388 out:
389 	preempt_enable();
390 	return ret;
391 }
392 
393 int kvm_add_user_return_msr(u32 msr)
394 {
395 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
396 
397 	if (kvm_probe_user_return_msr(msr))
398 		return -1;
399 
400 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
401 	return kvm_nr_uret_msrs++;
402 }
403 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
404 
405 int kvm_find_user_return_msr(u32 msr)
406 {
407 	int i;
408 
409 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
410 		if (kvm_uret_msrs_list[i] == msr)
411 			return i;
412 	}
413 	return -1;
414 }
415 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
416 
417 static void kvm_user_return_msr_cpu_online(void)
418 {
419 	unsigned int cpu = smp_processor_id();
420 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
421 	u64 value;
422 	int i;
423 
424 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
425 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
426 		msrs->values[i].host = value;
427 		msrs->values[i].curr = value;
428 	}
429 }
430 
431 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
432 {
433 	unsigned int cpu = smp_processor_id();
434 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
435 	int err;
436 
437 	value = (value & mask) | (msrs->values[slot].host & ~mask);
438 	if (value == msrs->values[slot].curr)
439 		return 0;
440 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
441 	if (err)
442 		return 1;
443 
444 	msrs->values[slot].curr = value;
445 	if (!msrs->registered) {
446 		msrs->urn.on_user_return = kvm_on_user_return;
447 		user_return_notifier_register(&msrs->urn);
448 		msrs->registered = true;
449 	}
450 	return 0;
451 }
452 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
453 
454 static void drop_user_return_notifiers(void)
455 {
456 	unsigned int cpu = smp_processor_id();
457 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
458 
459 	if (msrs->registered)
460 		kvm_on_user_return(&msrs->urn);
461 }
462 
463 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
464 {
465 	return vcpu->arch.apic_base;
466 }
467 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
468 
469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
470 {
471 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
472 }
473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
474 
475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
476 {
477 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
478 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
479 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
480 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
481 
482 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
483 		return 1;
484 	if (!msr_info->host_initiated) {
485 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
486 			return 1;
487 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
488 			return 1;
489 	}
490 
491 	kvm_lapic_set_base(vcpu, msr_info->data);
492 	kvm_recalculate_apic_map(vcpu->kvm);
493 	return 0;
494 }
495 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
496 
497 /*
498  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
499  *
500  * Hardware virtualization extension instructions may fault if a reboot turns
501  * off virtualization while processes are running.  Usually after catching the
502  * fault we just panic; during reboot instead the instruction is ignored.
503  */
504 noinstr void kvm_spurious_fault(void)
505 {
506 	/* Fault while not rebooting.  We want the trace. */
507 	BUG_ON(!kvm_rebooting);
508 }
509 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
510 
511 #define EXCPT_BENIGN		0
512 #define EXCPT_CONTRIBUTORY	1
513 #define EXCPT_PF		2
514 
515 static int exception_class(int vector)
516 {
517 	switch (vector) {
518 	case PF_VECTOR:
519 		return EXCPT_PF;
520 	case DE_VECTOR:
521 	case TS_VECTOR:
522 	case NP_VECTOR:
523 	case SS_VECTOR:
524 	case GP_VECTOR:
525 		return EXCPT_CONTRIBUTORY;
526 	default:
527 		break;
528 	}
529 	return EXCPT_BENIGN;
530 }
531 
532 #define EXCPT_FAULT		0
533 #define EXCPT_TRAP		1
534 #define EXCPT_ABORT		2
535 #define EXCPT_INTERRUPT		3
536 #define EXCPT_DB		4
537 
538 static int exception_type(int vector)
539 {
540 	unsigned int mask;
541 
542 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
543 		return EXCPT_INTERRUPT;
544 
545 	mask = 1 << vector;
546 
547 	/*
548 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
549 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
550 	 */
551 	if (mask & (1 << DB_VECTOR))
552 		return EXCPT_DB;
553 
554 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
555 		return EXCPT_TRAP;
556 
557 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
558 		return EXCPT_ABORT;
559 
560 	/* Reserved exceptions will result in fault */
561 	return EXCPT_FAULT;
562 }
563 
564 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
565 				   struct kvm_queued_exception *ex)
566 {
567 	if (!ex->has_payload)
568 		return;
569 
570 	switch (ex->vector) {
571 	case DB_VECTOR:
572 		/*
573 		 * "Certain debug exceptions may clear bit 0-3.  The
574 		 * remaining contents of the DR6 register are never
575 		 * cleared by the processor".
576 		 */
577 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
578 		/*
579 		 * In order to reflect the #DB exception payload in guest
580 		 * dr6, three components need to be considered: active low
581 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
582 		 * DR6_BS and DR6_BT)
583 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
584 		 * In the target guest dr6:
585 		 * FIXED_1 bits should always be set.
586 		 * Active low bits should be cleared if 1-setting in payload.
587 		 * Active high bits should be set if 1-setting in payload.
588 		 *
589 		 * Note, the payload is compatible with the pending debug
590 		 * exceptions/exit qualification under VMX, that active_low bits
591 		 * are active high in payload.
592 		 * So they need to be flipped for DR6.
593 		 */
594 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
595 		vcpu->arch.dr6 |= ex->payload;
596 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
597 
598 		/*
599 		 * The #DB payload is defined as compatible with the 'pending
600 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
601 		 * defined in the 'pending debug exceptions' field (enabled
602 		 * breakpoint), it is reserved and must be zero in DR6.
603 		 */
604 		vcpu->arch.dr6 &= ~BIT(12);
605 		break;
606 	case PF_VECTOR:
607 		vcpu->arch.cr2 = ex->payload;
608 		break;
609 	}
610 
611 	ex->has_payload = false;
612 	ex->payload = 0;
613 }
614 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
615 
616 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
617 				       bool has_error_code, u32 error_code,
618 				       bool has_payload, unsigned long payload)
619 {
620 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
621 
622 	ex->vector = vector;
623 	ex->injected = false;
624 	ex->pending = true;
625 	ex->has_error_code = has_error_code;
626 	ex->error_code = error_code;
627 	ex->has_payload = has_payload;
628 	ex->payload = payload;
629 }
630 
631 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
632 		unsigned nr, bool has_error, u32 error_code,
633 	        bool has_payload, unsigned long payload, bool reinject)
634 {
635 	u32 prev_nr;
636 	int class1, class2;
637 
638 	kvm_make_request(KVM_REQ_EVENT, vcpu);
639 
640 	/*
641 	 * If the exception is destined for L2 and isn't being reinjected,
642 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
643 	 * previously injected exception is not checked because it was checked
644 	 * when it was original queued, and re-checking is incorrect if _L1_
645 	 * injected the exception, in which case it's exempt from interception.
646 	 */
647 	if (!reinject && is_guest_mode(vcpu) &&
648 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
649 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
650 					   has_payload, payload);
651 		return;
652 	}
653 
654 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
655 	queue:
656 		if (reinject) {
657 			/*
658 			 * On VM-Entry, an exception can be pending if and only
659 			 * if event injection was blocked by nested_run_pending.
660 			 * In that case, however, vcpu_enter_guest() requests an
661 			 * immediate exit, and the guest shouldn't proceed far
662 			 * enough to need reinjection.
663 			 */
664 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
665 			vcpu->arch.exception.injected = true;
666 			if (WARN_ON_ONCE(has_payload)) {
667 				/*
668 				 * A reinjected event has already
669 				 * delivered its payload.
670 				 */
671 				has_payload = false;
672 				payload = 0;
673 			}
674 		} else {
675 			vcpu->arch.exception.pending = true;
676 			vcpu->arch.exception.injected = false;
677 		}
678 		vcpu->arch.exception.has_error_code = has_error;
679 		vcpu->arch.exception.vector = nr;
680 		vcpu->arch.exception.error_code = error_code;
681 		vcpu->arch.exception.has_payload = has_payload;
682 		vcpu->arch.exception.payload = payload;
683 		if (!is_guest_mode(vcpu))
684 			kvm_deliver_exception_payload(vcpu,
685 						      &vcpu->arch.exception);
686 		return;
687 	}
688 
689 	/* to check exception */
690 	prev_nr = vcpu->arch.exception.vector;
691 	if (prev_nr == DF_VECTOR) {
692 		/* triple fault -> shutdown */
693 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
694 		return;
695 	}
696 	class1 = exception_class(prev_nr);
697 	class2 = exception_class(nr);
698 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
699 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
700 		/*
701 		 * Synthesize #DF.  Clear the previously injected or pending
702 		 * exception so as not to incorrectly trigger shutdown.
703 		 */
704 		vcpu->arch.exception.injected = false;
705 		vcpu->arch.exception.pending = false;
706 
707 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
708 	} else {
709 		/* replace previous exception with a new one in a hope
710 		   that instruction re-execution will regenerate lost
711 		   exception */
712 		goto queue;
713 	}
714 }
715 
716 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
717 {
718 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
719 }
720 EXPORT_SYMBOL_GPL(kvm_queue_exception);
721 
722 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
723 {
724 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
725 }
726 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
727 
728 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
729 			   unsigned long payload)
730 {
731 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
732 }
733 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
734 
735 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
736 				    u32 error_code, unsigned long payload)
737 {
738 	kvm_multiple_exception(vcpu, nr, true, error_code,
739 			       true, payload, false);
740 }
741 
742 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
743 {
744 	if (err)
745 		kvm_inject_gp(vcpu, 0);
746 	else
747 		return kvm_skip_emulated_instruction(vcpu);
748 
749 	return 1;
750 }
751 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
752 
753 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
754 {
755 	if (err) {
756 		kvm_inject_gp(vcpu, 0);
757 		return 1;
758 	}
759 
760 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
761 				       EMULTYPE_COMPLETE_USER_EXIT);
762 }
763 
764 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
765 {
766 	++vcpu->stat.pf_guest;
767 
768 	/*
769 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
770 	 * whether or not L1 wants to intercept "regular" #PF.
771 	 */
772 	if (is_guest_mode(vcpu) && fault->async_page_fault)
773 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
774 					   true, fault->error_code,
775 					   true, fault->address);
776 	else
777 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
778 					fault->address);
779 }
780 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
781 
782 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
783 				    struct x86_exception *fault)
784 {
785 	struct kvm_mmu *fault_mmu;
786 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
787 
788 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
789 					       vcpu->arch.walk_mmu;
790 
791 	/*
792 	 * Invalidate the TLB entry for the faulting address, if it exists,
793 	 * else the access will fault indefinitely (and to emulate hardware).
794 	 */
795 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
796 	    !(fault->error_code & PFERR_RSVD_MASK))
797 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
798 				       fault_mmu->root.hpa);
799 
800 	fault_mmu->inject_page_fault(vcpu, fault);
801 }
802 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
803 
804 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
805 {
806 	atomic_inc(&vcpu->arch.nmi_queued);
807 	kvm_make_request(KVM_REQ_NMI, vcpu);
808 }
809 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
810 
811 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
812 {
813 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
814 }
815 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
816 
817 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
818 {
819 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
820 }
821 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
822 
823 /*
824  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
825  * a #GP and return false.
826  */
827 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
828 {
829 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
830 		return true;
831 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
832 	return false;
833 }
834 EXPORT_SYMBOL_GPL(kvm_require_cpl);
835 
836 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
837 {
838 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
839 		return true;
840 
841 	kvm_queue_exception(vcpu, UD_VECTOR);
842 	return false;
843 }
844 EXPORT_SYMBOL_GPL(kvm_require_dr);
845 
846 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
847 {
848 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
849 }
850 
851 /*
852  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
853  */
854 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
855 {
856 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
857 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
858 	gpa_t real_gpa;
859 	int i;
860 	int ret;
861 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
862 
863 	/*
864 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
865 	 * to an L1 GPA.
866 	 */
867 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
868 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
869 	if (real_gpa == INVALID_GPA)
870 		return 0;
871 
872 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
873 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
874 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
875 	if (ret < 0)
876 		return 0;
877 
878 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
879 		if ((pdpte[i] & PT_PRESENT_MASK) &&
880 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
881 			return 0;
882 		}
883 	}
884 
885 	/*
886 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
887 	 * Shadow page roots need to be reconstructed instead.
888 	 */
889 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
890 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
891 
892 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
893 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
894 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
895 	vcpu->arch.pdptrs_from_userspace = false;
896 
897 	return 1;
898 }
899 EXPORT_SYMBOL_GPL(load_pdptrs);
900 
901 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
902 {
903 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
904 		kvm_clear_async_pf_completion_queue(vcpu);
905 		kvm_async_pf_hash_reset(vcpu);
906 
907 		/*
908 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
909 		 * perspective.
910 		 */
911 		if (!(cr0 & X86_CR0_PG))
912 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
913 	}
914 
915 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
916 		kvm_mmu_reset_context(vcpu);
917 
918 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
919 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
920 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
921 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
922 }
923 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
924 
925 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
926 {
927 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
928 
929 	cr0 |= X86_CR0_ET;
930 
931 #ifdef CONFIG_X86_64
932 	if (cr0 & 0xffffffff00000000UL)
933 		return 1;
934 #endif
935 
936 	cr0 &= ~CR0_RESERVED_BITS;
937 
938 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
939 		return 1;
940 
941 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
942 		return 1;
943 
944 #ifdef CONFIG_X86_64
945 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
946 	    (cr0 & X86_CR0_PG)) {
947 		int cs_db, cs_l;
948 
949 		if (!is_pae(vcpu))
950 			return 1;
951 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
952 		if (cs_l)
953 			return 1;
954 	}
955 #endif
956 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
957 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
958 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
959 		return 1;
960 
961 	if (!(cr0 & X86_CR0_PG) &&
962 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
963 		return 1;
964 
965 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
966 
967 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
968 
969 	return 0;
970 }
971 EXPORT_SYMBOL_GPL(kvm_set_cr0);
972 
973 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
974 {
975 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
976 }
977 EXPORT_SYMBOL_GPL(kvm_lmsw);
978 
979 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
980 {
981 	if (vcpu->arch.guest_state_protected)
982 		return;
983 
984 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
985 
986 		if (vcpu->arch.xcr0 != host_xcr0)
987 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
988 
989 		if (vcpu->arch.xsaves_enabled &&
990 		    vcpu->arch.ia32_xss != host_xss)
991 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
992 	}
993 
994 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
995 	if (static_cpu_has(X86_FEATURE_PKU) &&
996 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
997 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
998 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
999 		write_pkru(vcpu->arch.pkru);
1000 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1001 }
1002 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1003 
1004 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1005 {
1006 	if (vcpu->arch.guest_state_protected)
1007 		return;
1008 
1009 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1010 	if (static_cpu_has(X86_FEATURE_PKU) &&
1011 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1012 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1013 		vcpu->arch.pkru = rdpkru();
1014 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1015 			write_pkru(vcpu->arch.host_pkru);
1016 	}
1017 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1018 
1019 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1020 
1021 		if (vcpu->arch.xcr0 != host_xcr0)
1022 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1023 
1024 		if (vcpu->arch.xsaves_enabled &&
1025 		    vcpu->arch.ia32_xss != host_xss)
1026 			wrmsrl(MSR_IA32_XSS, host_xss);
1027 	}
1028 
1029 }
1030 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1031 
1032 #ifdef CONFIG_X86_64
1033 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1034 {
1035 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1036 }
1037 #endif
1038 
1039 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1040 {
1041 	u64 xcr0 = xcr;
1042 	u64 old_xcr0 = vcpu->arch.xcr0;
1043 	u64 valid_bits;
1044 
1045 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1046 	if (index != XCR_XFEATURE_ENABLED_MASK)
1047 		return 1;
1048 	if (!(xcr0 & XFEATURE_MASK_FP))
1049 		return 1;
1050 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1051 		return 1;
1052 
1053 	/*
1054 	 * Do not allow the guest to set bits that we do not support
1055 	 * saving.  However, xcr0 bit 0 is always set, even if the
1056 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1057 	 */
1058 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1059 	if (xcr0 & ~valid_bits)
1060 		return 1;
1061 
1062 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1063 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1064 		return 1;
1065 
1066 	if (xcr0 & XFEATURE_MASK_AVX512) {
1067 		if (!(xcr0 & XFEATURE_MASK_YMM))
1068 			return 1;
1069 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1070 			return 1;
1071 	}
1072 
1073 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1074 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1075 		return 1;
1076 
1077 	vcpu->arch.xcr0 = xcr0;
1078 
1079 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1080 		kvm_update_cpuid_runtime(vcpu);
1081 	return 0;
1082 }
1083 
1084 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1085 {
1086 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1087 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1088 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1089 		kvm_inject_gp(vcpu, 0);
1090 		return 1;
1091 	}
1092 
1093 	return kvm_skip_emulated_instruction(vcpu);
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1096 
1097 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1098 {
1099 	if (cr4 & cr4_reserved_bits)
1100 		return false;
1101 
1102 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1103 		return false;
1104 
1105 	return true;
1106 }
1107 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1108 
1109 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1110 {
1111 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1112 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1113 }
1114 
1115 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1116 {
1117 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1118 		kvm_mmu_reset_context(vcpu);
1119 
1120 	/*
1121 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1122 	 * according to the SDM; however, stale prev_roots could be reused
1123 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1124 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1125 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1126 	 * so fall through.
1127 	 */
1128 	if (!tdp_enabled &&
1129 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1130 		kvm_mmu_unload(vcpu);
1131 
1132 	/*
1133 	 * The TLB has to be flushed for all PCIDs if any of the following
1134 	 * (architecturally required) changes happen:
1135 	 * - CR4.PCIDE is changed from 1 to 0
1136 	 * - CR4.PGE is toggled
1137 	 *
1138 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1139 	 */
1140 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1141 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1142 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1143 
1144 	/*
1145 	 * The TLB has to be flushed for the current PCID if any of the
1146 	 * following (architecturally required) changes happen:
1147 	 * - CR4.SMEP is changed from 0 to 1
1148 	 * - CR4.PAE is toggled
1149 	 */
1150 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1151 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1152 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1153 
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1156 
1157 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1158 {
1159 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1160 
1161 	if (!kvm_is_valid_cr4(vcpu, cr4))
1162 		return 1;
1163 
1164 	if (is_long_mode(vcpu)) {
1165 		if (!(cr4 & X86_CR4_PAE))
1166 			return 1;
1167 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1168 			return 1;
1169 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1170 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1171 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1172 		return 1;
1173 
1174 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1175 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1176 			return 1;
1177 
1178 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1179 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1180 			return 1;
1181 	}
1182 
1183 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1184 
1185 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1186 
1187 	return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1190 
1191 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1192 {
1193 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1194 	unsigned long roots_to_free = 0;
1195 	int i;
1196 
1197 	/*
1198 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1199 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1200 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1201 	 * the invalidation, but the guest's TLB entries need to be flushed as
1202 	 * the CPU may have cached entries in its TLB for the target PCID.
1203 	 */
1204 	if (unlikely(tdp_enabled)) {
1205 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1206 		return;
1207 	}
1208 
1209 	/*
1210 	 * If neither the current CR3 nor any of the prev_roots use the given
1211 	 * PCID, then nothing needs to be done here because a resync will
1212 	 * happen anyway before switching to any other CR3.
1213 	 */
1214 	if (kvm_get_active_pcid(vcpu) == pcid) {
1215 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1216 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1217 	}
1218 
1219 	/*
1220 	 * If PCID is disabled, there is no need to free prev_roots even if the
1221 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1222 	 * with PCIDE=0.
1223 	 */
1224 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1225 		return;
1226 
1227 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1228 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1229 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1230 
1231 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1232 }
1233 
1234 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1235 {
1236 	bool skip_tlb_flush = false;
1237 	unsigned long pcid = 0;
1238 #ifdef CONFIG_X86_64
1239 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1240 
1241 	if (pcid_enabled) {
1242 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1243 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1244 		pcid = cr3 & X86_CR3_PCID_MASK;
1245 	}
1246 #endif
1247 
1248 	/* PDPTRs are always reloaded for PAE paging. */
1249 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1250 		goto handle_tlb_flush;
1251 
1252 	/*
1253 	 * Do not condition the GPA check on long mode, this helper is used to
1254 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1255 	 * the current vCPU mode is accurate.
1256 	 */
1257 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1258 		return 1;
1259 
1260 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1261 		return 1;
1262 
1263 	if (cr3 != kvm_read_cr3(vcpu))
1264 		kvm_mmu_new_pgd(vcpu, cr3);
1265 
1266 	vcpu->arch.cr3 = cr3;
1267 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1268 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1269 
1270 handle_tlb_flush:
1271 	/*
1272 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1273 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1274 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1275 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1276 	 * i.e. only PCID=0 can be relevant.
1277 	 */
1278 	if (!skip_tlb_flush)
1279 		kvm_invalidate_pcid(vcpu, pcid);
1280 
1281 	return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1284 
1285 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1286 {
1287 	if (cr8 & CR8_RESERVED_BITS)
1288 		return 1;
1289 	if (lapic_in_kernel(vcpu))
1290 		kvm_lapic_set_tpr(vcpu, cr8);
1291 	else
1292 		vcpu->arch.cr8 = cr8;
1293 	return 0;
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1296 
1297 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1298 {
1299 	if (lapic_in_kernel(vcpu))
1300 		return kvm_lapic_get_cr8(vcpu);
1301 	else
1302 		return vcpu->arch.cr8;
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1305 
1306 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1307 {
1308 	int i;
1309 
1310 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1311 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1312 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1313 	}
1314 }
1315 
1316 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1317 {
1318 	unsigned long dr7;
1319 
1320 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1321 		dr7 = vcpu->arch.guest_debug_dr7;
1322 	else
1323 		dr7 = vcpu->arch.dr7;
1324 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1325 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1326 	if (dr7 & DR7_BP_EN_MASK)
1327 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1330 
1331 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1332 {
1333 	u64 fixed = DR6_FIXED_1;
1334 
1335 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1336 		fixed |= DR6_RTM;
1337 
1338 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1339 		fixed |= DR6_BUS_LOCK;
1340 	return fixed;
1341 }
1342 
1343 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1344 {
1345 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1346 
1347 	switch (dr) {
1348 	case 0 ... 3:
1349 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1350 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1351 			vcpu->arch.eff_db[dr] = val;
1352 		break;
1353 	case 4:
1354 	case 6:
1355 		if (!kvm_dr6_valid(val))
1356 			return 1; /* #GP */
1357 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1358 		break;
1359 	case 5:
1360 	default: /* 7 */
1361 		if (!kvm_dr7_valid(val))
1362 			return 1; /* #GP */
1363 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1364 		kvm_update_dr7(vcpu);
1365 		break;
1366 	}
1367 
1368 	return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(kvm_set_dr);
1371 
1372 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1373 {
1374 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1375 
1376 	switch (dr) {
1377 	case 0 ... 3:
1378 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1379 		break;
1380 	case 4:
1381 	case 6:
1382 		*val = vcpu->arch.dr6;
1383 		break;
1384 	case 5:
1385 	default: /* 7 */
1386 		*val = vcpu->arch.dr7;
1387 		break;
1388 	}
1389 }
1390 EXPORT_SYMBOL_GPL(kvm_get_dr);
1391 
1392 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1393 {
1394 	u32 ecx = kvm_rcx_read(vcpu);
1395 	u64 data;
1396 
1397 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1398 		kvm_inject_gp(vcpu, 0);
1399 		return 1;
1400 	}
1401 
1402 	kvm_rax_write(vcpu, (u32)data);
1403 	kvm_rdx_write(vcpu, data >> 32);
1404 	return kvm_skip_emulated_instruction(vcpu);
1405 }
1406 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1407 
1408 /*
1409  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1410  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1411  *
1412  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1413  * extract the supported MSRs from the related const lists.
1414  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1415  * capabilities of the host cpu. This capabilities test skips MSRs that are
1416  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1417  * may depend on host virtualization features rather than host cpu features.
1418  */
1419 
1420 static const u32 msrs_to_save_all[] = {
1421 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1422 	MSR_STAR,
1423 #ifdef CONFIG_X86_64
1424 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1425 #endif
1426 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1427 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1428 	MSR_IA32_SPEC_CTRL,
1429 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1430 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1431 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1432 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1433 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1434 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1435 	MSR_IA32_UMWAIT_CONTROL,
1436 
1437 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1438 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1439 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1440 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1441 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1442 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1443 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1444 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1445 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1446 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1447 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1448 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1449 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1450 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1451 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1452 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1453 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1454 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1455 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1456 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1457 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1458 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1459 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1460 
1461 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1462 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1463 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1464 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1465 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1466 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1467 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1468 };
1469 
1470 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1471 static unsigned num_msrs_to_save;
1472 
1473 static const u32 emulated_msrs_all[] = {
1474 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1475 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1476 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1477 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1478 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1479 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1480 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1481 	HV_X64_MSR_RESET,
1482 	HV_X64_MSR_VP_INDEX,
1483 	HV_X64_MSR_VP_RUNTIME,
1484 	HV_X64_MSR_SCONTROL,
1485 	HV_X64_MSR_STIMER0_CONFIG,
1486 	HV_X64_MSR_VP_ASSIST_PAGE,
1487 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1488 	HV_X64_MSR_TSC_EMULATION_STATUS,
1489 	HV_X64_MSR_SYNDBG_OPTIONS,
1490 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1491 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1492 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1493 
1494 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1495 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1496 
1497 	MSR_IA32_TSC_ADJUST,
1498 	MSR_IA32_TSC_DEADLINE,
1499 	MSR_IA32_ARCH_CAPABILITIES,
1500 	MSR_IA32_PERF_CAPABILITIES,
1501 	MSR_IA32_MISC_ENABLE,
1502 	MSR_IA32_MCG_STATUS,
1503 	MSR_IA32_MCG_CTL,
1504 	MSR_IA32_MCG_EXT_CTL,
1505 	MSR_IA32_SMBASE,
1506 	MSR_SMI_COUNT,
1507 	MSR_PLATFORM_INFO,
1508 	MSR_MISC_FEATURES_ENABLES,
1509 	MSR_AMD64_VIRT_SPEC_CTRL,
1510 	MSR_AMD64_TSC_RATIO,
1511 	MSR_IA32_POWER_CTL,
1512 	MSR_IA32_UCODE_REV,
1513 
1514 	/*
1515 	 * The following list leaves out MSRs whose values are determined
1516 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1517 	 * We always support the "true" VMX control MSRs, even if the host
1518 	 * processor does not, so I am putting these registers here rather
1519 	 * than in msrs_to_save_all.
1520 	 */
1521 	MSR_IA32_VMX_BASIC,
1522 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1523 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1524 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1525 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1526 	MSR_IA32_VMX_MISC,
1527 	MSR_IA32_VMX_CR0_FIXED0,
1528 	MSR_IA32_VMX_CR4_FIXED0,
1529 	MSR_IA32_VMX_VMCS_ENUM,
1530 	MSR_IA32_VMX_PROCBASED_CTLS2,
1531 	MSR_IA32_VMX_EPT_VPID_CAP,
1532 	MSR_IA32_VMX_VMFUNC,
1533 
1534 	MSR_K7_HWCR,
1535 	MSR_KVM_POLL_CONTROL,
1536 };
1537 
1538 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1539 static unsigned num_emulated_msrs;
1540 
1541 /*
1542  * List of msr numbers which are used to expose MSR-based features that
1543  * can be used by a hypervisor to validate requested CPU features.
1544  */
1545 static const u32 msr_based_features_all[] = {
1546 	MSR_IA32_VMX_BASIC,
1547 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1548 	MSR_IA32_VMX_PINBASED_CTLS,
1549 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1550 	MSR_IA32_VMX_PROCBASED_CTLS,
1551 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1552 	MSR_IA32_VMX_EXIT_CTLS,
1553 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1554 	MSR_IA32_VMX_ENTRY_CTLS,
1555 	MSR_IA32_VMX_MISC,
1556 	MSR_IA32_VMX_CR0_FIXED0,
1557 	MSR_IA32_VMX_CR0_FIXED1,
1558 	MSR_IA32_VMX_CR4_FIXED0,
1559 	MSR_IA32_VMX_CR4_FIXED1,
1560 	MSR_IA32_VMX_VMCS_ENUM,
1561 	MSR_IA32_VMX_PROCBASED_CTLS2,
1562 	MSR_IA32_VMX_EPT_VPID_CAP,
1563 	MSR_IA32_VMX_VMFUNC,
1564 
1565 	MSR_F10H_DECFG,
1566 	MSR_IA32_UCODE_REV,
1567 	MSR_IA32_ARCH_CAPABILITIES,
1568 	MSR_IA32_PERF_CAPABILITIES,
1569 };
1570 
1571 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1572 static unsigned int num_msr_based_features;
1573 
1574 /*
1575  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1576  * does not yet virtualize. These include:
1577  *   10 - MISC_PACKAGE_CTRLS
1578  *   11 - ENERGY_FILTERING_CTL
1579  *   12 - DOITM
1580  *   18 - FB_CLEAR_CTRL
1581  *   21 - XAPIC_DISABLE_STATUS
1582  *   23 - OVERCLOCKING_STATUS
1583  */
1584 
1585 #define KVM_SUPPORTED_ARCH_CAP \
1586 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1587 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1588 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1589 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1590 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1591 
1592 static u64 kvm_get_arch_capabilities(void)
1593 {
1594 	u64 data = 0;
1595 
1596 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1597 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1598 		data &= KVM_SUPPORTED_ARCH_CAP;
1599 	}
1600 
1601 	/*
1602 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1603 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1604 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1605 	 * L1 guests, so it need not worry about its own (L2) guests.
1606 	 */
1607 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1608 
1609 	/*
1610 	 * If we're doing cache flushes (either "always" or "cond")
1611 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1612 	 * If an outer hypervisor is doing the cache flush for us
1613 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1614 	 * capability to the guest too, and if EPT is disabled we're not
1615 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1616 	 * require a nested hypervisor to do a flush of its own.
1617 	 */
1618 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1619 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1620 
1621 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1622 		data |= ARCH_CAP_RDCL_NO;
1623 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1624 		data |= ARCH_CAP_SSB_NO;
1625 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1626 		data |= ARCH_CAP_MDS_NO;
1627 
1628 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1629 		/*
1630 		 * If RTM=0 because the kernel has disabled TSX, the host might
1631 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1632 		 * and therefore knows that there cannot be TAA) but keep
1633 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1634 		 * and we want to allow migrating those guests to tsx=off hosts.
1635 		 */
1636 		data &= ~ARCH_CAP_TAA_NO;
1637 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1638 		data |= ARCH_CAP_TAA_NO;
1639 	} else {
1640 		/*
1641 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1642 		 * host so the guest can choose between disabling TSX or
1643 		 * using VERW to clear CPU buffers.
1644 		 */
1645 	}
1646 
1647 	return data;
1648 }
1649 
1650 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1651 {
1652 	switch (msr->index) {
1653 	case MSR_IA32_ARCH_CAPABILITIES:
1654 		msr->data = kvm_get_arch_capabilities();
1655 		break;
1656 	case MSR_IA32_UCODE_REV:
1657 		rdmsrl_safe(msr->index, &msr->data);
1658 		break;
1659 	default:
1660 		return static_call(kvm_x86_get_msr_feature)(msr);
1661 	}
1662 	return 0;
1663 }
1664 
1665 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1666 {
1667 	struct kvm_msr_entry msr;
1668 	int r;
1669 
1670 	msr.index = index;
1671 	r = kvm_get_msr_feature(&msr);
1672 
1673 	if (r == KVM_MSR_RET_INVALID) {
1674 		/* Unconditionally clear the output for simplicity */
1675 		*data = 0;
1676 		if (kvm_msr_ignored_check(index, 0, false))
1677 			r = 0;
1678 	}
1679 
1680 	if (r)
1681 		return r;
1682 
1683 	*data = msr.data;
1684 
1685 	return 0;
1686 }
1687 
1688 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1689 {
1690 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1691 		return false;
1692 
1693 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1694 		return false;
1695 
1696 	if (efer & (EFER_LME | EFER_LMA) &&
1697 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1698 		return false;
1699 
1700 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1701 		return false;
1702 
1703 	return true;
1704 
1705 }
1706 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1707 {
1708 	if (efer & efer_reserved_bits)
1709 		return false;
1710 
1711 	return __kvm_valid_efer(vcpu, efer);
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1714 
1715 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1716 {
1717 	u64 old_efer = vcpu->arch.efer;
1718 	u64 efer = msr_info->data;
1719 	int r;
1720 
1721 	if (efer & efer_reserved_bits)
1722 		return 1;
1723 
1724 	if (!msr_info->host_initiated) {
1725 		if (!__kvm_valid_efer(vcpu, efer))
1726 			return 1;
1727 
1728 		if (is_paging(vcpu) &&
1729 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1730 			return 1;
1731 	}
1732 
1733 	efer &= ~EFER_LMA;
1734 	efer |= vcpu->arch.efer & EFER_LMA;
1735 
1736 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1737 	if (r) {
1738 		WARN_ON(r > 0);
1739 		return r;
1740 	}
1741 
1742 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1743 		kvm_mmu_reset_context(vcpu);
1744 
1745 	return 0;
1746 }
1747 
1748 void kvm_enable_efer_bits(u64 mask)
1749 {
1750        efer_reserved_bits &= ~mask;
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1753 
1754 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1755 {
1756 	struct kvm_x86_msr_filter *msr_filter;
1757 	struct msr_bitmap_range *ranges;
1758 	struct kvm *kvm = vcpu->kvm;
1759 	bool allowed;
1760 	int idx;
1761 	u32 i;
1762 
1763 	/* x2APIC MSRs do not support filtering. */
1764 	if (index >= 0x800 && index <= 0x8ff)
1765 		return true;
1766 
1767 	idx = srcu_read_lock(&kvm->srcu);
1768 
1769 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1770 	if (!msr_filter) {
1771 		allowed = true;
1772 		goto out;
1773 	}
1774 
1775 	allowed = msr_filter->default_allow;
1776 	ranges = msr_filter->ranges;
1777 
1778 	for (i = 0; i < msr_filter->count; i++) {
1779 		u32 start = ranges[i].base;
1780 		u32 end = start + ranges[i].nmsrs;
1781 		u32 flags = ranges[i].flags;
1782 		unsigned long *bitmap = ranges[i].bitmap;
1783 
1784 		if ((index >= start) && (index < end) && (flags & type)) {
1785 			allowed = !!test_bit(index - start, bitmap);
1786 			break;
1787 		}
1788 	}
1789 
1790 out:
1791 	srcu_read_unlock(&kvm->srcu, idx);
1792 
1793 	return allowed;
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1796 
1797 /*
1798  * Write @data into the MSR specified by @index.  Select MSR specific fault
1799  * checks are bypassed if @host_initiated is %true.
1800  * Returns 0 on success, non-0 otherwise.
1801  * Assumes vcpu_load() was already called.
1802  */
1803 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1804 			 bool host_initiated)
1805 {
1806 	struct msr_data msr;
1807 
1808 	switch (index) {
1809 	case MSR_FS_BASE:
1810 	case MSR_GS_BASE:
1811 	case MSR_KERNEL_GS_BASE:
1812 	case MSR_CSTAR:
1813 	case MSR_LSTAR:
1814 		if (is_noncanonical_address(data, vcpu))
1815 			return 1;
1816 		break;
1817 	case MSR_IA32_SYSENTER_EIP:
1818 	case MSR_IA32_SYSENTER_ESP:
1819 		/*
1820 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1821 		 * non-canonical address is written on Intel but not on
1822 		 * AMD (which ignores the top 32-bits, because it does
1823 		 * not implement 64-bit SYSENTER).
1824 		 *
1825 		 * 64-bit code should hence be able to write a non-canonical
1826 		 * value on AMD.  Making the address canonical ensures that
1827 		 * vmentry does not fail on Intel after writing a non-canonical
1828 		 * value, and that something deterministic happens if the guest
1829 		 * invokes 64-bit SYSENTER.
1830 		 */
1831 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1832 		break;
1833 	case MSR_TSC_AUX:
1834 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1835 			return 1;
1836 
1837 		if (!host_initiated &&
1838 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1839 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1840 			return 1;
1841 
1842 		/*
1843 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1844 		 * incomplete and conflicting architectural behavior.  Current
1845 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1846 		 * reserved and always read as zeros.  Enforce Intel's reserved
1847 		 * bits check if and only if the guest CPU is Intel, and clear
1848 		 * the bits in all other cases.  This ensures cross-vendor
1849 		 * migration will provide consistent behavior for the guest.
1850 		 */
1851 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1852 			return 1;
1853 
1854 		data = (u32)data;
1855 		break;
1856 	}
1857 
1858 	msr.data = data;
1859 	msr.index = index;
1860 	msr.host_initiated = host_initiated;
1861 
1862 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1863 }
1864 
1865 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1866 				     u32 index, u64 data, bool host_initiated)
1867 {
1868 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1869 
1870 	if (ret == KVM_MSR_RET_INVALID)
1871 		if (kvm_msr_ignored_check(index, data, true))
1872 			ret = 0;
1873 
1874 	return ret;
1875 }
1876 
1877 /*
1878  * Read the MSR specified by @index into @data.  Select MSR specific fault
1879  * checks are bypassed if @host_initiated is %true.
1880  * Returns 0 on success, non-0 otherwise.
1881  * Assumes vcpu_load() was already called.
1882  */
1883 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1884 		  bool host_initiated)
1885 {
1886 	struct msr_data msr;
1887 	int ret;
1888 
1889 	switch (index) {
1890 	case MSR_TSC_AUX:
1891 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1892 			return 1;
1893 
1894 		if (!host_initiated &&
1895 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1896 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1897 			return 1;
1898 		break;
1899 	}
1900 
1901 	msr.index = index;
1902 	msr.host_initiated = host_initiated;
1903 
1904 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1905 	if (!ret)
1906 		*data = msr.data;
1907 	return ret;
1908 }
1909 
1910 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1911 				     u32 index, u64 *data, bool host_initiated)
1912 {
1913 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1914 
1915 	if (ret == KVM_MSR_RET_INVALID) {
1916 		/* Unconditionally clear *data for simplicity */
1917 		*data = 0;
1918 		if (kvm_msr_ignored_check(index, 0, false))
1919 			ret = 0;
1920 	}
1921 
1922 	return ret;
1923 }
1924 
1925 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1926 {
1927 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1928 		return KVM_MSR_RET_FILTERED;
1929 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1930 }
1931 
1932 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1933 {
1934 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1935 		return KVM_MSR_RET_FILTERED;
1936 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1937 }
1938 
1939 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1940 {
1941 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1942 }
1943 EXPORT_SYMBOL_GPL(kvm_get_msr);
1944 
1945 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1946 {
1947 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1948 }
1949 EXPORT_SYMBOL_GPL(kvm_set_msr);
1950 
1951 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1952 {
1953 	if (!vcpu->run->msr.error) {
1954 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1955 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1956 	}
1957 }
1958 
1959 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1960 {
1961 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1962 }
1963 
1964 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1965 {
1966 	complete_userspace_rdmsr(vcpu);
1967 	return complete_emulated_msr_access(vcpu);
1968 }
1969 
1970 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1971 {
1972 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1973 }
1974 
1975 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1976 {
1977 	complete_userspace_rdmsr(vcpu);
1978 	return complete_fast_msr_access(vcpu);
1979 }
1980 
1981 static u64 kvm_msr_reason(int r)
1982 {
1983 	switch (r) {
1984 	case KVM_MSR_RET_INVALID:
1985 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1986 	case KVM_MSR_RET_FILTERED:
1987 		return KVM_MSR_EXIT_REASON_FILTER;
1988 	default:
1989 		return KVM_MSR_EXIT_REASON_INVAL;
1990 	}
1991 }
1992 
1993 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1994 			      u32 exit_reason, u64 data,
1995 			      int (*completion)(struct kvm_vcpu *vcpu),
1996 			      int r)
1997 {
1998 	u64 msr_reason = kvm_msr_reason(r);
1999 
2000 	/* Check if the user wanted to know about this MSR fault */
2001 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2002 		return 0;
2003 
2004 	vcpu->run->exit_reason = exit_reason;
2005 	vcpu->run->msr.error = 0;
2006 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2007 	vcpu->run->msr.reason = msr_reason;
2008 	vcpu->run->msr.index = index;
2009 	vcpu->run->msr.data = data;
2010 	vcpu->arch.complete_userspace_io = completion;
2011 
2012 	return 1;
2013 }
2014 
2015 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2016 {
2017 	u32 ecx = kvm_rcx_read(vcpu);
2018 	u64 data;
2019 	int r;
2020 
2021 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2022 
2023 	if (!r) {
2024 		trace_kvm_msr_read(ecx, data);
2025 
2026 		kvm_rax_write(vcpu, data & -1u);
2027 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2028 	} else {
2029 		/* MSR read failed? See if we should ask user space */
2030 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2031 				       complete_fast_rdmsr, r))
2032 			return 0;
2033 		trace_kvm_msr_read_ex(ecx);
2034 	}
2035 
2036 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2039 
2040 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2041 {
2042 	u32 ecx = kvm_rcx_read(vcpu);
2043 	u64 data = kvm_read_edx_eax(vcpu);
2044 	int r;
2045 
2046 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2047 
2048 	if (!r) {
2049 		trace_kvm_msr_write(ecx, data);
2050 	} else {
2051 		/* MSR write failed? See if we should ask user space */
2052 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2053 				       complete_fast_msr_access, r))
2054 			return 0;
2055 		/* Signal all other negative errors to userspace */
2056 		if (r < 0)
2057 			return r;
2058 		trace_kvm_msr_write_ex(ecx, data);
2059 	}
2060 
2061 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2064 
2065 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2066 {
2067 	return kvm_skip_emulated_instruction(vcpu);
2068 }
2069 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2070 
2071 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2072 {
2073 	/* Treat an INVD instruction as a NOP and just skip it. */
2074 	return kvm_emulate_as_nop(vcpu);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2077 
2078 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2079 {
2080 	kvm_queue_exception(vcpu, UD_VECTOR);
2081 	return 1;
2082 }
2083 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2084 
2085 
2086 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2087 {
2088 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2089 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2090 		return kvm_handle_invalid_op(vcpu);
2091 
2092 	pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn);
2093 	return kvm_emulate_as_nop(vcpu);
2094 }
2095 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2096 {
2097 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2100 
2101 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2102 {
2103 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2104 }
2105 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2106 
2107 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2108 {
2109 	xfer_to_guest_mode_prepare();
2110 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2111 		xfer_to_guest_mode_work_pending();
2112 }
2113 
2114 /*
2115  * The fast path for frequent and performance sensitive wrmsr emulation,
2116  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2117  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2118  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2119  * other cases which must be called after interrupts are enabled on the host.
2120  */
2121 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2122 {
2123 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2124 		return 1;
2125 
2126 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2127 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2128 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2129 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2130 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2131 
2132 	return 1;
2133 }
2134 
2135 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2136 {
2137 	if (!kvm_can_use_hv_timer(vcpu))
2138 		return 1;
2139 
2140 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2141 	return 0;
2142 }
2143 
2144 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2145 {
2146 	u32 msr = kvm_rcx_read(vcpu);
2147 	u64 data;
2148 	fastpath_t ret = EXIT_FASTPATH_NONE;
2149 
2150 	switch (msr) {
2151 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2152 		data = kvm_read_edx_eax(vcpu);
2153 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2154 			kvm_skip_emulated_instruction(vcpu);
2155 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2156 		}
2157 		break;
2158 	case MSR_IA32_TSC_DEADLINE:
2159 		data = kvm_read_edx_eax(vcpu);
2160 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2161 			kvm_skip_emulated_instruction(vcpu);
2162 			ret = EXIT_FASTPATH_REENTER_GUEST;
2163 		}
2164 		break;
2165 	default:
2166 		break;
2167 	}
2168 
2169 	if (ret != EXIT_FASTPATH_NONE)
2170 		trace_kvm_msr_write(msr, data);
2171 
2172 	return ret;
2173 }
2174 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2175 
2176 /*
2177  * Adapt set_msr() to msr_io()'s calling convention
2178  */
2179 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2180 {
2181 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2182 }
2183 
2184 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2185 {
2186 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2187 }
2188 
2189 #ifdef CONFIG_X86_64
2190 struct pvclock_clock {
2191 	int vclock_mode;
2192 	u64 cycle_last;
2193 	u64 mask;
2194 	u32 mult;
2195 	u32 shift;
2196 	u64 base_cycles;
2197 	u64 offset;
2198 };
2199 
2200 struct pvclock_gtod_data {
2201 	seqcount_t	seq;
2202 
2203 	struct pvclock_clock clock; /* extract of a clocksource struct */
2204 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2205 
2206 	ktime_t		offs_boot;
2207 	u64		wall_time_sec;
2208 };
2209 
2210 static struct pvclock_gtod_data pvclock_gtod_data;
2211 
2212 static void update_pvclock_gtod(struct timekeeper *tk)
2213 {
2214 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2215 
2216 	write_seqcount_begin(&vdata->seq);
2217 
2218 	/* copy pvclock gtod data */
2219 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2220 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2221 	vdata->clock.mask		= tk->tkr_mono.mask;
2222 	vdata->clock.mult		= tk->tkr_mono.mult;
2223 	vdata->clock.shift		= tk->tkr_mono.shift;
2224 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2225 	vdata->clock.offset		= tk->tkr_mono.base;
2226 
2227 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2228 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2229 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2230 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2231 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2232 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2233 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2234 
2235 	vdata->wall_time_sec            = tk->xtime_sec;
2236 
2237 	vdata->offs_boot		= tk->offs_boot;
2238 
2239 	write_seqcount_end(&vdata->seq);
2240 }
2241 
2242 static s64 get_kvmclock_base_ns(void)
2243 {
2244 	/* Count up from boot time, but with the frequency of the raw clock.  */
2245 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2246 }
2247 #else
2248 static s64 get_kvmclock_base_ns(void)
2249 {
2250 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2251 	return ktime_get_boottime_ns();
2252 }
2253 #endif
2254 
2255 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2256 {
2257 	int version;
2258 	int r;
2259 	struct pvclock_wall_clock wc;
2260 	u32 wc_sec_hi;
2261 	u64 wall_nsec;
2262 
2263 	if (!wall_clock)
2264 		return;
2265 
2266 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2267 	if (r)
2268 		return;
2269 
2270 	if (version & 1)
2271 		++version;  /* first time write, random junk */
2272 
2273 	++version;
2274 
2275 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2276 		return;
2277 
2278 	/*
2279 	 * The guest calculates current wall clock time by adding
2280 	 * system time (updated by kvm_guest_time_update below) to the
2281 	 * wall clock specified here.  We do the reverse here.
2282 	 */
2283 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2284 
2285 	wc.nsec = do_div(wall_nsec, 1000000000);
2286 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2287 	wc.version = version;
2288 
2289 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2290 
2291 	if (sec_hi_ofs) {
2292 		wc_sec_hi = wall_nsec >> 32;
2293 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2294 				&wc_sec_hi, sizeof(wc_sec_hi));
2295 	}
2296 
2297 	version++;
2298 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2299 }
2300 
2301 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2302 				  bool old_msr, bool host_initiated)
2303 {
2304 	struct kvm_arch *ka = &vcpu->kvm->arch;
2305 
2306 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2307 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2308 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2309 
2310 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2311 	}
2312 
2313 	vcpu->arch.time = system_time;
2314 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2315 
2316 	/* we verify if the enable bit is set... */
2317 	if (system_time & 1) {
2318 		kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2319 					  KVM_HOST_USES_PFN, system_time & ~1ULL,
2320 					  sizeof(struct pvclock_vcpu_time_info));
2321 	} else {
2322 		kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2323 	}
2324 
2325 	return;
2326 }
2327 
2328 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2329 {
2330 	do_shl32_div32(dividend, divisor);
2331 	return dividend;
2332 }
2333 
2334 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2335 			       s8 *pshift, u32 *pmultiplier)
2336 {
2337 	uint64_t scaled64;
2338 	int32_t  shift = 0;
2339 	uint64_t tps64;
2340 	uint32_t tps32;
2341 
2342 	tps64 = base_hz;
2343 	scaled64 = scaled_hz;
2344 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2345 		tps64 >>= 1;
2346 		shift--;
2347 	}
2348 
2349 	tps32 = (uint32_t)tps64;
2350 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2351 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2352 			scaled64 >>= 1;
2353 		else
2354 			tps32 <<= 1;
2355 		shift++;
2356 	}
2357 
2358 	*pshift = shift;
2359 	*pmultiplier = div_frac(scaled64, tps32);
2360 }
2361 
2362 #ifdef CONFIG_X86_64
2363 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2364 #endif
2365 
2366 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2367 static unsigned long max_tsc_khz;
2368 
2369 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2370 {
2371 	u64 v = (u64)khz * (1000000 + ppm);
2372 	do_div(v, 1000000);
2373 	return v;
2374 }
2375 
2376 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2377 
2378 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2379 {
2380 	u64 ratio;
2381 
2382 	/* Guest TSC same frequency as host TSC? */
2383 	if (!scale) {
2384 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2385 		return 0;
2386 	}
2387 
2388 	/* TSC scaling supported? */
2389 	if (!kvm_caps.has_tsc_control) {
2390 		if (user_tsc_khz > tsc_khz) {
2391 			vcpu->arch.tsc_catchup = 1;
2392 			vcpu->arch.tsc_always_catchup = 1;
2393 			return 0;
2394 		} else {
2395 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2396 			return -1;
2397 		}
2398 	}
2399 
2400 	/* TSC scaling required  - calculate ratio */
2401 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2402 				user_tsc_khz, tsc_khz);
2403 
2404 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2405 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2406 			            user_tsc_khz);
2407 		return -1;
2408 	}
2409 
2410 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2411 	return 0;
2412 }
2413 
2414 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2415 {
2416 	u32 thresh_lo, thresh_hi;
2417 	int use_scaling = 0;
2418 
2419 	/* tsc_khz can be zero if TSC calibration fails */
2420 	if (user_tsc_khz == 0) {
2421 		/* set tsc_scaling_ratio to a safe value */
2422 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2423 		return -1;
2424 	}
2425 
2426 	/* Compute a scale to convert nanoseconds in TSC cycles */
2427 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2428 			   &vcpu->arch.virtual_tsc_shift,
2429 			   &vcpu->arch.virtual_tsc_mult);
2430 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2431 
2432 	/*
2433 	 * Compute the variation in TSC rate which is acceptable
2434 	 * within the range of tolerance and decide if the
2435 	 * rate being applied is within that bounds of the hardware
2436 	 * rate.  If so, no scaling or compensation need be done.
2437 	 */
2438 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2439 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2440 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2441 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2442 		use_scaling = 1;
2443 	}
2444 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2445 }
2446 
2447 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2448 {
2449 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2450 				      vcpu->arch.virtual_tsc_mult,
2451 				      vcpu->arch.virtual_tsc_shift);
2452 	tsc += vcpu->arch.this_tsc_write;
2453 	return tsc;
2454 }
2455 
2456 #ifdef CONFIG_X86_64
2457 static inline int gtod_is_based_on_tsc(int mode)
2458 {
2459 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2460 }
2461 #endif
2462 
2463 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2464 {
2465 #ifdef CONFIG_X86_64
2466 	bool vcpus_matched;
2467 	struct kvm_arch *ka = &vcpu->kvm->arch;
2468 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2469 
2470 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2471 			 atomic_read(&vcpu->kvm->online_vcpus));
2472 
2473 	/*
2474 	 * Once the masterclock is enabled, always perform request in
2475 	 * order to update it.
2476 	 *
2477 	 * In order to enable masterclock, the host clocksource must be TSC
2478 	 * and the vcpus need to have matched TSCs.  When that happens,
2479 	 * perform request to enable masterclock.
2480 	 */
2481 	if (ka->use_master_clock ||
2482 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2483 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2484 
2485 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2486 			    atomic_read(&vcpu->kvm->online_vcpus),
2487 		            ka->use_master_clock, gtod->clock.vclock_mode);
2488 #endif
2489 }
2490 
2491 /*
2492  * Multiply tsc by a fixed point number represented by ratio.
2493  *
2494  * The most significant 64-N bits (mult) of ratio represent the
2495  * integral part of the fixed point number; the remaining N bits
2496  * (frac) represent the fractional part, ie. ratio represents a fixed
2497  * point number (mult + frac * 2^(-N)).
2498  *
2499  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2500  */
2501 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2502 {
2503 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2504 }
2505 
2506 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2507 {
2508 	u64 _tsc = tsc;
2509 
2510 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2511 		_tsc = __scale_tsc(ratio, tsc);
2512 
2513 	return _tsc;
2514 }
2515 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2516 
2517 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2518 {
2519 	u64 tsc;
2520 
2521 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2522 
2523 	return target_tsc - tsc;
2524 }
2525 
2526 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2527 {
2528 	return vcpu->arch.l1_tsc_offset +
2529 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2530 }
2531 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2532 
2533 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2534 {
2535 	u64 nested_offset;
2536 
2537 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2538 		nested_offset = l1_offset;
2539 	else
2540 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2541 						kvm_caps.tsc_scaling_ratio_frac_bits);
2542 
2543 	nested_offset += l2_offset;
2544 	return nested_offset;
2545 }
2546 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2547 
2548 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2549 {
2550 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2551 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2552 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2553 
2554 	return l1_multiplier;
2555 }
2556 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2557 
2558 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2559 {
2560 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2561 				   vcpu->arch.l1_tsc_offset,
2562 				   l1_offset);
2563 
2564 	vcpu->arch.l1_tsc_offset = l1_offset;
2565 
2566 	/*
2567 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2568 	 * according to the spec this should set L1's TSC (as opposed to
2569 	 * setting L1's offset for L2).
2570 	 */
2571 	if (is_guest_mode(vcpu))
2572 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2573 			l1_offset,
2574 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2575 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2576 	else
2577 		vcpu->arch.tsc_offset = l1_offset;
2578 
2579 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2580 }
2581 
2582 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2583 {
2584 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2585 
2586 	/* Userspace is changing the multiplier while L2 is active */
2587 	if (is_guest_mode(vcpu))
2588 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2589 			l1_multiplier,
2590 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2591 	else
2592 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2593 
2594 	if (kvm_caps.has_tsc_control)
2595 		static_call(kvm_x86_write_tsc_multiplier)(
2596 			vcpu, vcpu->arch.tsc_scaling_ratio);
2597 }
2598 
2599 static inline bool kvm_check_tsc_unstable(void)
2600 {
2601 #ifdef CONFIG_X86_64
2602 	/*
2603 	 * TSC is marked unstable when we're running on Hyper-V,
2604 	 * 'TSC page' clocksource is good.
2605 	 */
2606 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2607 		return false;
2608 #endif
2609 	return check_tsc_unstable();
2610 }
2611 
2612 /*
2613  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2614  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2615  * participates in.
2616  */
2617 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2618 				  u64 ns, bool matched)
2619 {
2620 	struct kvm *kvm = vcpu->kvm;
2621 
2622 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2623 
2624 	/*
2625 	 * We also track th most recent recorded KHZ, write and time to
2626 	 * allow the matching interval to be extended at each write.
2627 	 */
2628 	kvm->arch.last_tsc_nsec = ns;
2629 	kvm->arch.last_tsc_write = tsc;
2630 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2631 	kvm->arch.last_tsc_offset = offset;
2632 
2633 	vcpu->arch.last_guest_tsc = tsc;
2634 
2635 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2636 
2637 	if (!matched) {
2638 		/*
2639 		 * We split periods of matched TSC writes into generations.
2640 		 * For each generation, we track the original measured
2641 		 * nanosecond time, offset, and write, so if TSCs are in
2642 		 * sync, we can match exact offset, and if not, we can match
2643 		 * exact software computation in compute_guest_tsc()
2644 		 *
2645 		 * These values are tracked in kvm->arch.cur_xxx variables.
2646 		 */
2647 		kvm->arch.cur_tsc_generation++;
2648 		kvm->arch.cur_tsc_nsec = ns;
2649 		kvm->arch.cur_tsc_write = tsc;
2650 		kvm->arch.cur_tsc_offset = offset;
2651 		kvm->arch.nr_vcpus_matched_tsc = 0;
2652 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2653 		kvm->arch.nr_vcpus_matched_tsc++;
2654 	}
2655 
2656 	/* Keep track of which generation this VCPU has synchronized to */
2657 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2658 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2659 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2660 
2661 	kvm_track_tsc_matching(vcpu);
2662 }
2663 
2664 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2665 {
2666 	struct kvm *kvm = vcpu->kvm;
2667 	u64 offset, ns, elapsed;
2668 	unsigned long flags;
2669 	bool matched = false;
2670 	bool synchronizing = false;
2671 
2672 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2673 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2674 	ns = get_kvmclock_base_ns();
2675 	elapsed = ns - kvm->arch.last_tsc_nsec;
2676 
2677 	if (vcpu->arch.virtual_tsc_khz) {
2678 		if (data == 0) {
2679 			/*
2680 			 * detection of vcpu initialization -- need to sync
2681 			 * with other vCPUs. This particularly helps to keep
2682 			 * kvm_clock stable after CPU hotplug
2683 			 */
2684 			synchronizing = true;
2685 		} else {
2686 			u64 tsc_exp = kvm->arch.last_tsc_write +
2687 						nsec_to_cycles(vcpu, elapsed);
2688 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2689 			/*
2690 			 * Special case: TSC write with a small delta (1 second)
2691 			 * of virtual cycle time against real time is
2692 			 * interpreted as an attempt to synchronize the CPU.
2693 			 */
2694 			synchronizing = data < tsc_exp + tsc_hz &&
2695 					data + tsc_hz > tsc_exp;
2696 		}
2697 	}
2698 
2699 	/*
2700 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2701 	 * TSC, we add elapsed time in this computation.  We could let the
2702 	 * compensation code attempt to catch up if we fall behind, but
2703 	 * it's better to try to match offsets from the beginning.
2704          */
2705 	if (synchronizing &&
2706 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2707 		if (!kvm_check_tsc_unstable()) {
2708 			offset = kvm->arch.cur_tsc_offset;
2709 		} else {
2710 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2711 			data += delta;
2712 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2713 		}
2714 		matched = true;
2715 	}
2716 
2717 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2718 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2719 }
2720 
2721 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2722 					   s64 adjustment)
2723 {
2724 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2725 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2726 }
2727 
2728 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2729 {
2730 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2731 		WARN_ON(adjustment < 0);
2732 	adjustment = kvm_scale_tsc((u64) adjustment,
2733 				   vcpu->arch.l1_tsc_scaling_ratio);
2734 	adjust_tsc_offset_guest(vcpu, adjustment);
2735 }
2736 
2737 #ifdef CONFIG_X86_64
2738 
2739 static u64 read_tsc(void)
2740 {
2741 	u64 ret = (u64)rdtsc_ordered();
2742 	u64 last = pvclock_gtod_data.clock.cycle_last;
2743 
2744 	if (likely(ret >= last))
2745 		return ret;
2746 
2747 	/*
2748 	 * GCC likes to generate cmov here, but this branch is extremely
2749 	 * predictable (it's just a function of time and the likely is
2750 	 * very likely) and there's a data dependence, so force GCC
2751 	 * to generate a branch instead.  I don't barrier() because
2752 	 * we don't actually need a barrier, and if this function
2753 	 * ever gets inlined it will generate worse code.
2754 	 */
2755 	asm volatile ("");
2756 	return last;
2757 }
2758 
2759 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2760 			  int *mode)
2761 {
2762 	long v;
2763 	u64 tsc_pg_val;
2764 
2765 	switch (clock->vclock_mode) {
2766 	case VDSO_CLOCKMODE_HVCLOCK:
2767 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2768 						  tsc_timestamp);
2769 		if (tsc_pg_val != U64_MAX) {
2770 			/* TSC page valid */
2771 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2772 			v = (tsc_pg_val - clock->cycle_last) &
2773 				clock->mask;
2774 		} else {
2775 			/* TSC page invalid */
2776 			*mode = VDSO_CLOCKMODE_NONE;
2777 		}
2778 		break;
2779 	case VDSO_CLOCKMODE_TSC:
2780 		*mode = VDSO_CLOCKMODE_TSC;
2781 		*tsc_timestamp = read_tsc();
2782 		v = (*tsc_timestamp - clock->cycle_last) &
2783 			clock->mask;
2784 		break;
2785 	default:
2786 		*mode = VDSO_CLOCKMODE_NONE;
2787 	}
2788 
2789 	if (*mode == VDSO_CLOCKMODE_NONE)
2790 		*tsc_timestamp = v = 0;
2791 
2792 	return v * clock->mult;
2793 }
2794 
2795 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2796 {
2797 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2798 	unsigned long seq;
2799 	int mode;
2800 	u64 ns;
2801 
2802 	do {
2803 		seq = read_seqcount_begin(&gtod->seq);
2804 		ns = gtod->raw_clock.base_cycles;
2805 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2806 		ns >>= gtod->raw_clock.shift;
2807 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2808 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2809 	*t = ns;
2810 
2811 	return mode;
2812 }
2813 
2814 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2815 {
2816 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2817 	unsigned long seq;
2818 	int mode;
2819 	u64 ns;
2820 
2821 	do {
2822 		seq = read_seqcount_begin(&gtod->seq);
2823 		ts->tv_sec = gtod->wall_time_sec;
2824 		ns = gtod->clock.base_cycles;
2825 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2826 		ns >>= gtod->clock.shift;
2827 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2828 
2829 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2830 	ts->tv_nsec = ns;
2831 
2832 	return mode;
2833 }
2834 
2835 /* returns true if host is using TSC based clocksource */
2836 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2837 {
2838 	/* checked again under seqlock below */
2839 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2840 		return false;
2841 
2842 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2843 						      tsc_timestamp));
2844 }
2845 
2846 /* returns true if host is using TSC based clocksource */
2847 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2848 					   u64 *tsc_timestamp)
2849 {
2850 	/* checked again under seqlock below */
2851 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2852 		return false;
2853 
2854 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2855 }
2856 #endif
2857 
2858 /*
2859  *
2860  * Assuming a stable TSC across physical CPUS, and a stable TSC
2861  * across virtual CPUs, the following condition is possible.
2862  * Each numbered line represents an event visible to both
2863  * CPUs at the next numbered event.
2864  *
2865  * "timespecX" represents host monotonic time. "tscX" represents
2866  * RDTSC value.
2867  *
2868  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2869  *
2870  * 1.  read timespec0,tsc0
2871  * 2.					| timespec1 = timespec0 + N
2872  * 					| tsc1 = tsc0 + M
2873  * 3. transition to guest		| transition to guest
2874  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2875  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2876  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2877  *
2878  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2879  *
2880  * 	- ret0 < ret1
2881  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2882  *		...
2883  *	- 0 < N - M => M < N
2884  *
2885  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2886  * always the case (the difference between two distinct xtime instances
2887  * might be smaller then the difference between corresponding TSC reads,
2888  * when updating guest vcpus pvclock areas).
2889  *
2890  * To avoid that problem, do not allow visibility of distinct
2891  * system_timestamp/tsc_timestamp values simultaneously: use a master
2892  * copy of host monotonic time values. Update that master copy
2893  * in lockstep.
2894  *
2895  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2896  *
2897  */
2898 
2899 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2900 {
2901 #ifdef CONFIG_X86_64
2902 	struct kvm_arch *ka = &kvm->arch;
2903 	int vclock_mode;
2904 	bool host_tsc_clocksource, vcpus_matched;
2905 
2906 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2907 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2908 			atomic_read(&kvm->online_vcpus));
2909 
2910 	/*
2911 	 * If the host uses TSC clock, then passthrough TSC as stable
2912 	 * to the guest.
2913 	 */
2914 	host_tsc_clocksource = kvm_get_time_and_clockread(
2915 					&ka->master_kernel_ns,
2916 					&ka->master_cycle_now);
2917 
2918 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2919 				&& !ka->backwards_tsc_observed
2920 				&& !ka->boot_vcpu_runs_old_kvmclock;
2921 
2922 	if (ka->use_master_clock)
2923 		atomic_set(&kvm_guest_has_master_clock, 1);
2924 
2925 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2926 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2927 					vcpus_matched);
2928 #endif
2929 }
2930 
2931 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2932 {
2933 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2934 }
2935 
2936 static void __kvm_start_pvclock_update(struct kvm *kvm)
2937 {
2938 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2939 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2940 }
2941 
2942 static void kvm_start_pvclock_update(struct kvm *kvm)
2943 {
2944 	kvm_make_mclock_inprogress_request(kvm);
2945 
2946 	/* no guest entries from this point */
2947 	__kvm_start_pvclock_update(kvm);
2948 }
2949 
2950 static void kvm_end_pvclock_update(struct kvm *kvm)
2951 {
2952 	struct kvm_arch *ka = &kvm->arch;
2953 	struct kvm_vcpu *vcpu;
2954 	unsigned long i;
2955 
2956 	write_seqcount_end(&ka->pvclock_sc);
2957 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2958 	kvm_for_each_vcpu(i, vcpu, kvm)
2959 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2960 
2961 	/* guest entries allowed */
2962 	kvm_for_each_vcpu(i, vcpu, kvm)
2963 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2964 }
2965 
2966 static void kvm_update_masterclock(struct kvm *kvm)
2967 {
2968 	kvm_hv_request_tsc_page_update(kvm);
2969 	kvm_start_pvclock_update(kvm);
2970 	pvclock_update_vm_gtod_copy(kvm);
2971 	kvm_end_pvclock_update(kvm);
2972 }
2973 
2974 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2975 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2976 {
2977 	struct kvm_arch *ka = &kvm->arch;
2978 	struct pvclock_vcpu_time_info hv_clock;
2979 
2980 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2981 	get_cpu();
2982 
2983 	data->flags = 0;
2984 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2985 #ifdef CONFIG_X86_64
2986 		struct timespec64 ts;
2987 
2988 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2989 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2990 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2991 		} else
2992 #endif
2993 		data->host_tsc = rdtsc();
2994 
2995 		data->flags |= KVM_CLOCK_TSC_STABLE;
2996 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2997 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2998 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2999 				   &hv_clock.tsc_shift,
3000 				   &hv_clock.tsc_to_system_mul);
3001 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3002 	} else {
3003 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3004 	}
3005 
3006 	put_cpu();
3007 }
3008 
3009 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3010 {
3011 	struct kvm_arch *ka = &kvm->arch;
3012 	unsigned seq;
3013 
3014 	do {
3015 		seq = read_seqcount_begin(&ka->pvclock_sc);
3016 		__get_kvmclock(kvm, data);
3017 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3018 }
3019 
3020 u64 get_kvmclock_ns(struct kvm *kvm)
3021 {
3022 	struct kvm_clock_data data;
3023 
3024 	get_kvmclock(kvm, &data);
3025 	return data.clock;
3026 }
3027 
3028 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3029 				    struct gfn_to_pfn_cache *gpc,
3030 				    unsigned int offset)
3031 {
3032 	struct kvm_vcpu_arch *vcpu = &v->arch;
3033 	struct pvclock_vcpu_time_info *guest_hv_clock;
3034 	unsigned long flags;
3035 
3036 	read_lock_irqsave(&gpc->lock, flags);
3037 	while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3038 					   offset + sizeof(*guest_hv_clock))) {
3039 		read_unlock_irqrestore(&gpc->lock, flags);
3040 
3041 		if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3042 						 offset + sizeof(*guest_hv_clock)))
3043 			return;
3044 
3045 		read_lock_irqsave(&gpc->lock, flags);
3046 	}
3047 
3048 	guest_hv_clock = (void *)(gpc->khva + offset);
3049 
3050 	/*
3051 	 * This VCPU is paused, but it's legal for a guest to read another
3052 	 * VCPU's kvmclock, so we really have to follow the specification where
3053 	 * it says that version is odd if data is being modified, and even after
3054 	 * it is consistent.
3055 	 */
3056 
3057 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3058 	smp_wmb();
3059 
3060 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3061 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3062 
3063 	if (vcpu->pvclock_set_guest_stopped_request) {
3064 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3065 		vcpu->pvclock_set_guest_stopped_request = false;
3066 	}
3067 
3068 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3069 	smp_wmb();
3070 
3071 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3072 
3073 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3074 	read_unlock_irqrestore(&gpc->lock, flags);
3075 
3076 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3077 }
3078 
3079 static int kvm_guest_time_update(struct kvm_vcpu *v)
3080 {
3081 	unsigned long flags, tgt_tsc_khz;
3082 	unsigned seq;
3083 	struct kvm_vcpu_arch *vcpu = &v->arch;
3084 	struct kvm_arch *ka = &v->kvm->arch;
3085 	s64 kernel_ns;
3086 	u64 tsc_timestamp, host_tsc;
3087 	u8 pvclock_flags;
3088 	bool use_master_clock;
3089 
3090 	kernel_ns = 0;
3091 	host_tsc = 0;
3092 
3093 	/*
3094 	 * If the host uses TSC clock, then passthrough TSC as stable
3095 	 * to the guest.
3096 	 */
3097 	do {
3098 		seq = read_seqcount_begin(&ka->pvclock_sc);
3099 		use_master_clock = ka->use_master_clock;
3100 		if (use_master_clock) {
3101 			host_tsc = ka->master_cycle_now;
3102 			kernel_ns = ka->master_kernel_ns;
3103 		}
3104 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3105 
3106 	/* Keep irq disabled to prevent changes to the clock */
3107 	local_irq_save(flags);
3108 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3109 	if (unlikely(tgt_tsc_khz == 0)) {
3110 		local_irq_restore(flags);
3111 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3112 		return 1;
3113 	}
3114 	if (!use_master_clock) {
3115 		host_tsc = rdtsc();
3116 		kernel_ns = get_kvmclock_base_ns();
3117 	}
3118 
3119 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3120 
3121 	/*
3122 	 * We may have to catch up the TSC to match elapsed wall clock
3123 	 * time for two reasons, even if kvmclock is used.
3124 	 *   1) CPU could have been running below the maximum TSC rate
3125 	 *   2) Broken TSC compensation resets the base at each VCPU
3126 	 *      entry to avoid unknown leaps of TSC even when running
3127 	 *      again on the same CPU.  This may cause apparent elapsed
3128 	 *      time to disappear, and the guest to stand still or run
3129 	 *	very slowly.
3130 	 */
3131 	if (vcpu->tsc_catchup) {
3132 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3133 		if (tsc > tsc_timestamp) {
3134 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3135 			tsc_timestamp = tsc;
3136 		}
3137 	}
3138 
3139 	local_irq_restore(flags);
3140 
3141 	/* With all the info we got, fill in the values */
3142 
3143 	if (kvm_caps.has_tsc_control)
3144 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3145 					    v->arch.l1_tsc_scaling_ratio);
3146 
3147 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3148 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3149 				   &vcpu->hv_clock.tsc_shift,
3150 				   &vcpu->hv_clock.tsc_to_system_mul);
3151 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3152 	}
3153 
3154 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3155 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3156 	vcpu->last_guest_tsc = tsc_timestamp;
3157 
3158 	/* If the host uses TSC clocksource, then it is stable */
3159 	pvclock_flags = 0;
3160 	if (use_master_clock)
3161 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3162 
3163 	vcpu->hv_clock.flags = pvclock_flags;
3164 
3165 	if (vcpu->pv_time.active)
3166 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3167 	if (vcpu->xen.vcpu_info_cache.active)
3168 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3169 					offsetof(struct compat_vcpu_info, time));
3170 	if (vcpu->xen.vcpu_time_info_cache.active)
3171 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3172 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3173 	return 0;
3174 }
3175 
3176 /*
3177  * kvmclock updates which are isolated to a given vcpu, such as
3178  * vcpu->cpu migration, should not allow system_timestamp from
3179  * the rest of the vcpus to remain static. Otherwise ntp frequency
3180  * correction applies to one vcpu's system_timestamp but not
3181  * the others.
3182  *
3183  * So in those cases, request a kvmclock update for all vcpus.
3184  * We need to rate-limit these requests though, as they can
3185  * considerably slow guests that have a large number of vcpus.
3186  * The time for a remote vcpu to update its kvmclock is bound
3187  * by the delay we use to rate-limit the updates.
3188  */
3189 
3190 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3191 
3192 static void kvmclock_update_fn(struct work_struct *work)
3193 {
3194 	unsigned long i;
3195 	struct delayed_work *dwork = to_delayed_work(work);
3196 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3197 					   kvmclock_update_work);
3198 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3199 	struct kvm_vcpu *vcpu;
3200 
3201 	kvm_for_each_vcpu(i, vcpu, kvm) {
3202 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3203 		kvm_vcpu_kick(vcpu);
3204 	}
3205 }
3206 
3207 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3208 {
3209 	struct kvm *kvm = v->kvm;
3210 
3211 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3212 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3213 					KVMCLOCK_UPDATE_DELAY);
3214 }
3215 
3216 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3217 
3218 static void kvmclock_sync_fn(struct work_struct *work)
3219 {
3220 	struct delayed_work *dwork = to_delayed_work(work);
3221 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3222 					   kvmclock_sync_work);
3223 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3224 
3225 	if (!kvmclock_periodic_sync)
3226 		return;
3227 
3228 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3229 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3230 					KVMCLOCK_SYNC_PERIOD);
3231 }
3232 
3233 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3234 static bool is_mci_control_msr(u32 msr)
3235 {
3236 	return (msr & 3) == 0;
3237 }
3238 static bool is_mci_status_msr(u32 msr)
3239 {
3240 	return (msr & 3) == 1;
3241 }
3242 
3243 /*
3244  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3245  */
3246 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3247 {
3248 	/* McStatusWrEn enabled? */
3249 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3250 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3251 
3252 	return false;
3253 }
3254 
3255 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3256 {
3257 	u64 mcg_cap = vcpu->arch.mcg_cap;
3258 	unsigned bank_num = mcg_cap & 0xff;
3259 	u32 msr = msr_info->index;
3260 	u64 data = msr_info->data;
3261 	u32 offset, last_msr;
3262 
3263 	switch (msr) {
3264 	case MSR_IA32_MCG_STATUS:
3265 		vcpu->arch.mcg_status = data;
3266 		break;
3267 	case MSR_IA32_MCG_CTL:
3268 		if (!(mcg_cap & MCG_CTL_P) &&
3269 		    (data || !msr_info->host_initiated))
3270 			return 1;
3271 		if (data != 0 && data != ~(u64)0)
3272 			return 1;
3273 		vcpu->arch.mcg_ctl = data;
3274 		break;
3275 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3276 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3277 		if (msr > last_msr)
3278 			return 1;
3279 
3280 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3281 			return 1;
3282 		/* An attempt to write a 1 to a reserved bit raises #GP */
3283 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3284 			return 1;
3285 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3286 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3287 		vcpu->arch.mci_ctl2_banks[offset] = data;
3288 		break;
3289 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3290 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3291 		if (msr > last_msr)
3292 			return 1;
3293 
3294 		/*
3295 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3296 		 * values are architecturally undefined.  But, some Linux
3297 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3298 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3299 		 * other bits in order to avoid an uncaught #GP in the guest.
3300 		 *
3301 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3302 		 * single-bit ECC data errors.
3303 		 */
3304 		if (is_mci_control_msr(msr) &&
3305 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3306 			return 1;
3307 
3308 		/*
3309 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3310 		 * AMD-based CPUs allow non-zero values, but if and only if
3311 		 * HWCR[McStatusWrEn] is set.
3312 		 */
3313 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3314 		    data != 0 && !can_set_mci_status(vcpu))
3315 			return 1;
3316 
3317 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3318 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3319 		vcpu->arch.mce_banks[offset] = data;
3320 		break;
3321 	default:
3322 		return 1;
3323 	}
3324 	return 0;
3325 }
3326 
3327 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3328 {
3329 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3330 
3331 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3332 }
3333 
3334 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3335 {
3336 	gpa_t gpa = data & ~0x3f;
3337 
3338 	/* Bits 4:5 are reserved, Should be zero */
3339 	if (data & 0x30)
3340 		return 1;
3341 
3342 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3343 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3344 		return 1;
3345 
3346 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3347 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3348 		return 1;
3349 
3350 	if (!lapic_in_kernel(vcpu))
3351 		return data ? 1 : 0;
3352 
3353 	vcpu->arch.apf.msr_en_val = data;
3354 
3355 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3356 		kvm_clear_async_pf_completion_queue(vcpu);
3357 		kvm_async_pf_hash_reset(vcpu);
3358 		return 0;
3359 	}
3360 
3361 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3362 					sizeof(u64)))
3363 		return 1;
3364 
3365 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3366 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3367 
3368 	kvm_async_pf_wakeup_all(vcpu);
3369 
3370 	return 0;
3371 }
3372 
3373 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3374 {
3375 	/* Bits 8-63 are reserved */
3376 	if (data >> 8)
3377 		return 1;
3378 
3379 	if (!lapic_in_kernel(vcpu))
3380 		return 1;
3381 
3382 	vcpu->arch.apf.msr_int_val = data;
3383 
3384 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3385 
3386 	return 0;
3387 }
3388 
3389 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3390 {
3391 	kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3392 	vcpu->arch.time = 0;
3393 }
3394 
3395 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3396 {
3397 	++vcpu->stat.tlb_flush;
3398 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3399 }
3400 
3401 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3402 {
3403 	++vcpu->stat.tlb_flush;
3404 
3405 	if (!tdp_enabled) {
3406 		/*
3407 		 * A TLB flush on behalf of the guest is equivalent to
3408 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3409 		 * a forced sync of the shadow page tables.  Ensure all the
3410 		 * roots are synced and the guest TLB in hardware is clean.
3411 		 */
3412 		kvm_mmu_sync_roots(vcpu);
3413 		kvm_mmu_sync_prev_roots(vcpu);
3414 	}
3415 
3416 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3417 }
3418 
3419 
3420 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3421 {
3422 	++vcpu->stat.tlb_flush;
3423 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3424 }
3425 
3426 /*
3427  * Service "local" TLB flush requests, which are specific to the current MMU
3428  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3429  * TLB flushes that are targeted at an MMU context also need to be serviced
3430  * prior before nested VM-Enter/VM-Exit.
3431  */
3432 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3433 {
3434 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3435 		kvm_vcpu_flush_tlb_current(vcpu);
3436 
3437 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3438 		kvm_vcpu_flush_tlb_guest(vcpu);
3439 }
3440 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3441 
3442 static void record_steal_time(struct kvm_vcpu *vcpu)
3443 {
3444 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3445 	struct kvm_steal_time __user *st;
3446 	struct kvm_memslots *slots;
3447 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3448 	u64 steal;
3449 	u32 version;
3450 
3451 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3452 		kvm_xen_runstate_set_running(vcpu);
3453 		return;
3454 	}
3455 
3456 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3457 		return;
3458 
3459 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3460 		return;
3461 
3462 	slots = kvm_memslots(vcpu->kvm);
3463 
3464 	if (unlikely(slots->generation != ghc->generation ||
3465 		     gpa != ghc->gpa ||
3466 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3467 		/* We rely on the fact that it fits in a single page. */
3468 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3469 
3470 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3471 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3472 			return;
3473 	}
3474 
3475 	st = (struct kvm_steal_time __user *)ghc->hva;
3476 	/*
3477 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3478 	 * expensive IPIs.
3479 	 */
3480 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3481 		u8 st_preempted = 0;
3482 		int err = -EFAULT;
3483 
3484 		if (!user_access_begin(st, sizeof(*st)))
3485 			return;
3486 
3487 		asm volatile("1: xchgb %0, %2\n"
3488 			     "xor %1, %1\n"
3489 			     "2:\n"
3490 			     _ASM_EXTABLE_UA(1b, 2b)
3491 			     : "+q" (st_preempted),
3492 			       "+&r" (err),
3493 			       "+m" (st->preempted));
3494 		if (err)
3495 			goto out;
3496 
3497 		user_access_end();
3498 
3499 		vcpu->arch.st.preempted = 0;
3500 
3501 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3502 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3503 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3504 			kvm_vcpu_flush_tlb_guest(vcpu);
3505 
3506 		if (!user_access_begin(st, sizeof(*st)))
3507 			goto dirty;
3508 	} else {
3509 		if (!user_access_begin(st, sizeof(*st)))
3510 			return;
3511 
3512 		unsafe_put_user(0, &st->preempted, out);
3513 		vcpu->arch.st.preempted = 0;
3514 	}
3515 
3516 	unsafe_get_user(version, &st->version, out);
3517 	if (version & 1)
3518 		version += 1;  /* first time write, random junk */
3519 
3520 	version += 1;
3521 	unsafe_put_user(version, &st->version, out);
3522 
3523 	smp_wmb();
3524 
3525 	unsafe_get_user(steal, &st->steal, out);
3526 	steal += current->sched_info.run_delay -
3527 		vcpu->arch.st.last_steal;
3528 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3529 	unsafe_put_user(steal, &st->steal, out);
3530 
3531 	version += 1;
3532 	unsafe_put_user(version, &st->version, out);
3533 
3534  out:
3535 	user_access_end();
3536  dirty:
3537 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3538 }
3539 
3540 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3541 {
3542 	bool pr = false;
3543 	u32 msr = msr_info->index;
3544 	u64 data = msr_info->data;
3545 
3546 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3547 		return kvm_xen_write_hypercall_page(vcpu, data);
3548 
3549 	switch (msr) {
3550 	case MSR_AMD64_NB_CFG:
3551 	case MSR_IA32_UCODE_WRITE:
3552 	case MSR_VM_HSAVE_PA:
3553 	case MSR_AMD64_PATCH_LOADER:
3554 	case MSR_AMD64_BU_CFG2:
3555 	case MSR_AMD64_DC_CFG:
3556 	case MSR_F15H_EX_CFG:
3557 		break;
3558 
3559 	case MSR_IA32_UCODE_REV:
3560 		if (msr_info->host_initiated)
3561 			vcpu->arch.microcode_version = data;
3562 		break;
3563 	case MSR_IA32_ARCH_CAPABILITIES:
3564 		if (!msr_info->host_initiated)
3565 			return 1;
3566 		vcpu->arch.arch_capabilities = data;
3567 		break;
3568 	case MSR_IA32_PERF_CAPABILITIES: {
3569 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3570 
3571 		if (!msr_info->host_initiated)
3572 			return 1;
3573 		if (kvm_get_msr_feature(&msr_ent))
3574 			return 1;
3575 		if (data & ~msr_ent.data)
3576 			return 1;
3577 
3578 		vcpu->arch.perf_capabilities = data;
3579 		kvm_pmu_refresh(vcpu);
3580 		return 0;
3581 	}
3582 	case MSR_EFER:
3583 		return set_efer(vcpu, msr_info);
3584 	case MSR_K7_HWCR:
3585 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3586 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3587 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3588 
3589 		/* Handle McStatusWrEn */
3590 		if (data == BIT_ULL(18)) {
3591 			vcpu->arch.msr_hwcr = data;
3592 		} else if (data != 0) {
3593 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3594 				    data);
3595 			return 1;
3596 		}
3597 		break;
3598 	case MSR_FAM10H_MMIO_CONF_BASE:
3599 		if (data != 0) {
3600 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3601 				    "0x%llx\n", data);
3602 			return 1;
3603 		}
3604 		break;
3605 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3606 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3607 		return kvm_mtrr_set_msr(vcpu, msr, data);
3608 	case MSR_IA32_APICBASE:
3609 		return kvm_set_apic_base(vcpu, msr_info);
3610 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3611 		return kvm_x2apic_msr_write(vcpu, msr, data);
3612 	case MSR_IA32_TSC_DEADLINE:
3613 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3614 		break;
3615 	case MSR_IA32_TSC_ADJUST:
3616 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3617 			if (!msr_info->host_initiated) {
3618 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3619 				adjust_tsc_offset_guest(vcpu, adj);
3620 				/* Before back to guest, tsc_timestamp must be adjusted
3621 				 * as well, otherwise guest's percpu pvclock time could jump.
3622 				 */
3623 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3624 			}
3625 			vcpu->arch.ia32_tsc_adjust_msr = data;
3626 		}
3627 		break;
3628 	case MSR_IA32_MISC_ENABLE: {
3629 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3630 
3631 		if (!msr_info->host_initiated) {
3632 			/* RO bits */
3633 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3634 				return 1;
3635 
3636 			/* R bits, i.e. writes are ignored, but don't fault. */
3637 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3638 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3639 		}
3640 
3641 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3642 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3643 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3644 				return 1;
3645 			vcpu->arch.ia32_misc_enable_msr = data;
3646 			kvm_update_cpuid_runtime(vcpu);
3647 		} else {
3648 			vcpu->arch.ia32_misc_enable_msr = data;
3649 		}
3650 		break;
3651 	}
3652 	case MSR_IA32_SMBASE:
3653 		if (!msr_info->host_initiated)
3654 			return 1;
3655 		vcpu->arch.smbase = data;
3656 		break;
3657 	case MSR_IA32_POWER_CTL:
3658 		vcpu->arch.msr_ia32_power_ctl = data;
3659 		break;
3660 	case MSR_IA32_TSC:
3661 		if (msr_info->host_initiated) {
3662 			kvm_synchronize_tsc(vcpu, data);
3663 		} else {
3664 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3665 			adjust_tsc_offset_guest(vcpu, adj);
3666 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3667 		}
3668 		break;
3669 	case MSR_IA32_XSS:
3670 		if (!msr_info->host_initiated &&
3671 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3672 			return 1;
3673 		/*
3674 		 * KVM supports exposing PT to the guest, but does not support
3675 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3676 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3677 		 */
3678 		if (data & ~kvm_caps.supported_xss)
3679 			return 1;
3680 		vcpu->arch.ia32_xss = data;
3681 		kvm_update_cpuid_runtime(vcpu);
3682 		break;
3683 	case MSR_SMI_COUNT:
3684 		if (!msr_info->host_initiated)
3685 			return 1;
3686 		vcpu->arch.smi_count = data;
3687 		break;
3688 	case MSR_KVM_WALL_CLOCK_NEW:
3689 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3690 			return 1;
3691 
3692 		vcpu->kvm->arch.wall_clock = data;
3693 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3694 		break;
3695 	case MSR_KVM_WALL_CLOCK:
3696 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3697 			return 1;
3698 
3699 		vcpu->kvm->arch.wall_clock = data;
3700 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3701 		break;
3702 	case MSR_KVM_SYSTEM_TIME_NEW:
3703 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3704 			return 1;
3705 
3706 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3707 		break;
3708 	case MSR_KVM_SYSTEM_TIME:
3709 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3710 			return 1;
3711 
3712 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3713 		break;
3714 	case MSR_KVM_ASYNC_PF_EN:
3715 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3716 			return 1;
3717 
3718 		if (kvm_pv_enable_async_pf(vcpu, data))
3719 			return 1;
3720 		break;
3721 	case MSR_KVM_ASYNC_PF_INT:
3722 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3723 			return 1;
3724 
3725 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3726 			return 1;
3727 		break;
3728 	case MSR_KVM_ASYNC_PF_ACK:
3729 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3730 			return 1;
3731 		if (data & 0x1) {
3732 			vcpu->arch.apf.pageready_pending = false;
3733 			kvm_check_async_pf_completion(vcpu);
3734 		}
3735 		break;
3736 	case MSR_KVM_STEAL_TIME:
3737 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3738 			return 1;
3739 
3740 		if (unlikely(!sched_info_on()))
3741 			return 1;
3742 
3743 		if (data & KVM_STEAL_RESERVED_MASK)
3744 			return 1;
3745 
3746 		vcpu->arch.st.msr_val = data;
3747 
3748 		if (!(data & KVM_MSR_ENABLED))
3749 			break;
3750 
3751 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3752 
3753 		break;
3754 	case MSR_KVM_PV_EOI_EN:
3755 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3756 			return 1;
3757 
3758 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3759 			return 1;
3760 		break;
3761 
3762 	case MSR_KVM_POLL_CONTROL:
3763 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3764 			return 1;
3765 
3766 		/* only enable bit supported */
3767 		if (data & (-1ULL << 1))
3768 			return 1;
3769 
3770 		vcpu->arch.msr_kvm_poll_control = data;
3771 		break;
3772 
3773 	case MSR_IA32_MCG_CTL:
3774 	case MSR_IA32_MCG_STATUS:
3775 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3776 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3777 		return set_msr_mce(vcpu, msr_info);
3778 
3779 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3780 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3781 		pr = true;
3782 		fallthrough;
3783 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3784 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3785 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3786 			return kvm_pmu_set_msr(vcpu, msr_info);
3787 
3788 		if (pr || data != 0)
3789 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3790 				    "0x%x data 0x%llx\n", msr, data);
3791 		break;
3792 	case MSR_K7_CLK_CTL:
3793 		/*
3794 		 * Ignore all writes to this no longer documented MSR.
3795 		 * Writes are only relevant for old K7 processors,
3796 		 * all pre-dating SVM, but a recommended workaround from
3797 		 * AMD for these chips. It is possible to specify the
3798 		 * affected processor models on the command line, hence
3799 		 * the need to ignore the workaround.
3800 		 */
3801 		break;
3802 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3803 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3804 	case HV_X64_MSR_SYNDBG_OPTIONS:
3805 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3806 	case HV_X64_MSR_CRASH_CTL:
3807 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3808 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3809 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3810 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3811 		return kvm_hv_set_msr_common(vcpu, msr, data,
3812 					     msr_info->host_initiated);
3813 	case MSR_IA32_BBL_CR_CTL3:
3814 		/* Drop writes to this legacy MSR -- see rdmsr
3815 		 * counterpart for further detail.
3816 		 */
3817 		if (report_ignored_msrs)
3818 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3819 				msr, data);
3820 		break;
3821 	case MSR_AMD64_OSVW_ID_LENGTH:
3822 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3823 			return 1;
3824 		vcpu->arch.osvw.length = data;
3825 		break;
3826 	case MSR_AMD64_OSVW_STATUS:
3827 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3828 			return 1;
3829 		vcpu->arch.osvw.status = data;
3830 		break;
3831 	case MSR_PLATFORM_INFO:
3832 		if (!msr_info->host_initiated ||
3833 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3834 		     cpuid_fault_enabled(vcpu)))
3835 			return 1;
3836 		vcpu->arch.msr_platform_info = data;
3837 		break;
3838 	case MSR_MISC_FEATURES_ENABLES:
3839 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3840 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3841 		     !supports_cpuid_fault(vcpu)))
3842 			return 1;
3843 		vcpu->arch.msr_misc_features_enables = data;
3844 		break;
3845 #ifdef CONFIG_X86_64
3846 	case MSR_IA32_XFD:
3847 		if (!msr_info->host_initiated &&
3848 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3849 			return 1;
3850 
3851 		if (data & ~kvm_guest_supported_xfd(vcpu))
3852 			return 1;
3853 
3854 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3855 		break;
3856 	case MSR_IA32_XFD_ERR:
3857 		if (!msr_info->host_initiated &&
3858 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3859 			return 1;
3860 
3861 		if (data & ~kvm_guest_supported_xfd(vcpu))
3862 			return 1;
3863 
3864 		vcpu->arch.guest_fpu.xfd_err = data;
3865 		break;
3866 #endif
3867 	case MSR_IA32_PEBS_ENABLE:
3868 	case MSR_IA32_DS_AREA:
3869 	case MSR_PEBS_DATA_CFG:
3870 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3871 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3872 			return kvm_pmu_set_msr(vcpu, msr_info);
3873 		/*
3874 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3875 		 * as to-be-saved, even if an MSRs isn't fully supported.
3876 		 */
3877 		return !msr_info->host_initiated || data;
3878 	default:
3879 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3880 			return kvm_pmu_set_msr(vcpu, msr_info);
3881 		return KVM_MSR_RET_INVALID;
3882 	}
3883 	return 0;
3884 }
3885 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3886 
3887 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3888 {
3889 	u64 data;
3890 	u64 mcg_cap = vcpu->arch.mcg_cap;
3891 	unsigned bank_num = mcg_cap & 0xff;
3892 	u32 offset, last_msr;
3893 
3894 	switch (msr) {
3895 	case MSR_IA32_P5_MC_ADDR:
3896 	case MSR_IA32_P5_MC_TYPE:
3897 		data = 0;
3898 		break;
3899 	case MSR_IA32_MCG_CAP:
3900 		data = vcpu->arch.mcg_cap;
3901 		break;
3902 	case MSR_IA32_MCG_CTL:
3903 		if (!(mcg_cap & MCG_CTL_P) && !host)
3904 			return 1;
3905 		data = vcpu->arch.mcg_ctl;
3906 		break;
3907 	case MSR_IA32_MCG_STATUS:
3908 		data = vcpu->arch.mcg_status;
3909 		break;
3910 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3911 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3912 		if (msr > last_msr)
3913 			return 1;
3914 
3915 		if (!(mcg_cap & MCG_CMCI_P) && !host)
3916 			return 1;
3917 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3918 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3919 		data = vcpu->arch.mci_ctl2_banks[offset];
3920 		break;
3921 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3922 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3923 		if (msr > last_msr)
3924 			return 1;
3925 
3926 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3927 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3928 		data = vcpu->arch.mce_banks[offset];
3929 		break;
3930 	default:
3931 		return 1;
3932 	}
3933 	*pdata = data;
3934 	return 0;
3935 }
3936 
3937 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3938 {
3939 	switch (msr_info->index) {
3940 	case MSR_IA32_PLATFORM_ID:
3941 	case MSR_IA32_EBL_CR_POWERON:
3942 	case MSR_IA32_LASTBRANCHFROMIP:
3943 	case MSR_IA32_LASTBRANCHTOIP:
3944 	case MSR_IA32_LASTINTFROMIP:
3945 	case MSR_IA32_LASTINTTOIP:
3946 	case MSR_AMD64_SYSCFG:
3947 	case MSR_K8_TSEG_ADDR:
3948 	case MSR_K8_TSEG_MASK:
3949 	case MSR_VM_HSAVE_PA:
3950 	case MSR_K8_INT_PENDING_MSG:
3951 	case MSR_AMD64_NB_CFG:
3952 	case MSR_FAM10H_MMIO_CONF_BASE:
3953 	case MSR_AMD64_BU_CFG2:
3954 	case MSR_IA32_PERF_CTL:
3955 	case MSR_AMD64_DC_CFG:
3956 	case MSR_F15H_EX_CFG:
3957 	/*
3958 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3959 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3960 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3961 	 * so for existing CPU-specific MSRs.
3962 	 */
3963 	case MSR_RAPL_POWER_UNIT:
3964 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3965 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3966 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3967 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3968 		msr_info->data = 0;
3969 		break;
3970 	case MSR_IA32_PEBS_ENABLE:
3971 	case MSR_IA32_DS_AREA:
3972 	case MSR_PEBS_DATA_CFG:
3973 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3974 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3975 			return kvm_pmu_get_msr(vcpu, msr_info);
3976 		/*
3977 		 * Userspace is allowed to read MSRs that KVM reports as
3978 		 * to-be-saved, even if an MSR isn't fully supported.
3979 		 */
3980 		if (!msr_info->host_initiated)
3981 			return 1;
3982 		msr_info->data = 0;
3983 		break;
3984 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3985 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3986 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3987 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3988 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3989 			return kvm_pmu_get_msr(vcpu, msr_info);
3990 		msr_info->data = 0;
3991 		break;
3992 	case MSR_IA32_UCODE_REV:
3993 		msr_info->data = vcpu->arch.microcode_version;
3994 		break;
3995 	case MSR_IA32_ARCH_CAPABILITIES:
3996 		if (!msr_info->host_initiated &&
3997 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3998 			return 1;
3999 		msr_info->data = vcpu->arch.arch_capabilities;
4000 		break;
4001 	case MSR_IA32_PERF_CAPABILITIES:
4002 		if (!msr_info->host_initiated &&
4003 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4004 			return 1;
4005 		msr_info->data = vcpu->arch.perf_capabilities;
4006 		break;
4007 	case MSR_IA32_POWER_CTL:
4008 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4009 		break;
4010 	case MSR_IA32_TSC: {
4011 		/*
4012 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4013 		 * even when not intercepted. AMD manual doesn't explicitly
4014 		 * state this but appears to behave the same.
4015 		 *
4016 		 * On userspace reads and writes, however, we unconditionally
4017 		 * return L1's TSC value to ensure backwards-compatible
4018 		 * behavior for migration.
4019 		 */
4020 		u64 offset, ratio;
4021 
4022 		if (msr_info->host_initiated) {
4023 			offset = vcpu->arch.l1_tsc_offset;
4024 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4025 		} else {
4026 			offset = vcpu->arch.tsc_offset;
4027 			ratio = vcpu->arch.tsc_scaling_ratio;
4028 		}
4029 
4030 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4031 		break;
4032 	}
4033 	case MSR_MTRRcap:
4034 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4035 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4036 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4037 	case 0xcd: /* fsb frequency */
4038 		msr_info->data = 3;
4039 		break;
4040 		/*
4041 		 * MSR_EBC_FREQUENCY_ID
4042 		 * Conservative value valid for even the basic CPU models.
4043 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4044 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4045 		 * and 266MHz for model 3, or 4. Set Core Clock
4046 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4047 		 * 31:24) even though these are only valid for CPU
4048 		 * models > 2, however guests may end up dividing or
4049 		 * multiplying by zero otherwise.
4050 		 */
4051 	case MSR_EBC_FREQUENCY_ID:
4052 		msr_info->data = 1 << 24;
4053 		break;
4054 	case MSR_IA32_APICBASE:
4055 		msr_info->data = kvm_get_apic_base(vcpu);
4056 		break;
4057 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4058 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4059 	case MSR_IA32_TSC_DEADLINE:
4060 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4061 		break;
4062 	case MSR_IA32_TSC_ADJUST:
4063 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4064 		break;
4065 	case MSR_IA32_MISC_ENABLE:
4066 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4067 		break;
4068 	case MSR_IA32_SMBASE:
4069 		if (!msr_info->host_initiated)
4070 			return 1;
4071 		msr_info->data = vcpu->arch.smbase;
4072 		break;
4073 	case MSR_SMI_COUNT:
4074 		msr_info->data = vcpu->arch.smi_count;
4075 		break;
4076 	case MSR_IA32_PERF_STATUS:
4077 		/* TSC increment by tick */
4078 		msr_info->data = 1000ULL;
4079 		/* CPU multiplier */
4080 		msr_info->data |= (((uint64_t)4ULL) << 40);
4081 		break;
4082 	case MSR_EFER:
4083 		msr_info->data = vcpu->arch.efer;
4084 		break;
4085 	case MSR_KVM_WALL_CLOCK:
4086 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4087 			return 1;
4088 
4089 		msr_info->data = vcpu->kvm->arch.wall_clock;
4090 		break;
4091 	case MSR_KVM_WALL_CLOCK_NEW:
4092 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4093 			return 1;
4094 
4095 		msr_info->data = vcpu->kvm->arch.wall_clock;
4096 		break;
4097 	case MSR_KVM_SYSTEM_TIME:
4098 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4099 			return 1;
4100 
4101 		msr_info->data = vcpu->arch.time;
4102 		break;
4103 	case MSR_KVM_SYSTEM_TIME_NEW:
4104 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4105 			return 1;
4106 
4107 		msr_info->data = vcpu->arch.time;
4108 		break;
4109 	case MSR_KVM_ASYNC_PF_EN:
4110 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4111 			return 1;
4112 
4113 		msr_info->data = vcpu->arch.apf.msr_en_val;
4114 		break;
4115 	case MSR_KVM_ASYNC_PF_INT:
4116 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4117 			return 1;
4118 
4119 		msr_info->data = vcpu->arch.apf.msr_int_val;
4120 		break;
4121 	case MSR_KVM_ASYNC_PF_ACK:
4122 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4123 			return 1;
4124 
4125 		msr_info->data = 0;
4126 		break;
4127 	case MSR_KVM_STEAL_TIME:
4128 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4129 			return 1;
4130 
4131 		msr_info->data = vcpu->arch.st.msr_val;
4132 		break;
4133 	case MSR_KVM_PV_EOI_EN:
4134 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4135 			return 1;
4136 
4137 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4138 		break;
4139 	case MSR_KVM_POLL_CONTROL:
4140 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4141 			return 1;
4142 
4143 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4144 		break;
4145 	case MSR_IA32_P5_MC_ADDR:
4146 	case MSR_IA32_P5_MC_TYPE:
4147 	case MSR_IA32_MCG_CAP:
4148 	case MSR_IA32_MCG_CTL:
4149 	case MSR_IA32_MCG_STATUS:
4150 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4151 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4152 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4153 				   msr_info->host_initiated);
4154 	case MSR_IA32_XSS:
4155 		if (!msr_info->host_initiated &&
4156 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4157 			return 1;
4158 		msr_info->data = vcpu->arch.ia32_xss;
4159 		break;
4160 	case MSR_K7_CLK_CTL:
4161 		/*
4162 		 * Provide expected ramp-up count for K7. All other
4163 		 * are set to zero, indicating minimum divisors for
4164 		 * every field.
4165 		 *
4166 		 * This prevents guest kernels on AMD host with CPU
4167 		 * type 6, model 8 and higher from exploding due to
4168 		 * the rdmsr failing.
4169 		 */
4170 		msr_info->data = 0x20000000;
4171 		break;
4172 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4173 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4174 	case HV_X64_MSR_SYNDBG_OPTIONS:
4175 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4176 	case HV_X64_MSR_CRASH_CTL:
4177 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4178 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4179 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4180 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4181 		return kvm_hv_get_msr_common(vcpu,
4182 					     msr_info->index, &msr_info->data,
4183 					     msr_info->host_initiated);
4184 	case MSR_IA32_BBL_CR_CTL3:
4185 		/* This legacy MSR exists but isn't fully documented in current
4186 		 * silicon.  It is however accessed by winxp in very narrow
4187 		 * scenarios where it sets bit #19, itself documented as
4188 		 * a "reserved" bit.  Best effort attempt to source coherent
4189 		 * read data here should the balance of the register be
4190 		 * interpreted by the guest:
4191 		 *
4192 		 * L2 cache control register 3: 64GB range, 256KB size,
4193 		 * enabled, latency 0x1, configured
4194 		 */
4195 		msr_info->data = 0xbe702111;
4196 		break;
4197 	case MSR_AMD64_OSVW_ID_LENGTH:
4198 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4199 			return 1;
4200 		msr_info->data = vcpu->arch.osvw.length;
4201 		break;
4202 	case MSR_AMD64_OSVW_STATUS:
4203 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4204 			return 1;
4205 		msr_info->data = vcpu->arch.osvw.status;
4206 		break;
4207 	case MSR_PLATFORM_INFO:
4208 		if (!msr_info->host_initiated &&
4209 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4210 			return 1;
4211 		msr_info->data = vcpu->arch.msr_platform_info;
4212 		break;
4213 	case MSR_MISC_FEATURES_ENABLES:
4214 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4215 		break;
4216 	case MSR_K7_HWCR:
4217 		msr_info->data = vcpu->arch.msr_hwcr;
4218 		break;
4219 #ifdef CONFIG_X86_64
4220 	case MSR_IA32_XFD:
4221 		if (!msr_info->host_initiated &&
4222 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4223 			return 1;
4224 
4225 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4226 		break;
4227 	case MSR_IA32_XFD_ERR:
4228 		if (!msr_info->host_initiated &&
4229 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4230 			return 1;
4231 
4232 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4233 		break;
4234 #endif
4235 	default:
4236 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4237 			return kvm_pmu_get_msr(vcpu, msr_info);
4238 		return KVM_MSR_RET_INVALID;
4239 	}
4240 	return 0;
4241 }
4242 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4243 
4244 /*
4245  * Read or write a bunch of msrs. All parameters are kernel addresses.
4246  *
4247  * @return number of msrs set successfully.
4248  */
4249 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4250 		    struct kvm_msr_entry *entries,
4251 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4252 				  unsigned index, u64 *data))
4253 {
4254 	int i;
4255 
4256 	for (i = 0; i < msrs->nmsrs; ++i)
4257 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4258 			break;
4259 
4260 	return i;
4261 }
4262 
4263 /*
4264  * Read or write a bunch of msrs. Parameters are user addresses.
4265  *
4266  * @return number of msrs set successfully.
4267  */
4268 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4269 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4270 				unsigned index, u64 *data),
4271 		  int writeback)
4272 {
4273 	struct kvm_msrs msrs;
4274 	struct kvm_msr_entry *entries;
4275 	int r, n;
4276 	unsigned size;
4277 
4278 	r = -EFAULT;
4279 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4280 		goto out;
4281 
4282 	r = -E2BIG;
4283 	if (msrs.nmsrs >= MAX_IO_MSRS)
4284 		goto out;
4285 
4286 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4287 	entries = memdup_user(user_msrs->entries, size);
4288 	if (IS_ERR(entries)) {
4289 		r = PTR_ERR(entries);
4290 		goto out;
4291 	}
4292 
4293 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4294 	if (r < 0)
4295 		goto out_free;
4296 
4297 	r = -EFAULT;
4298 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4299 		goto out_free;
4300 
4301 	r = n;
4302 
4303 out_free:
4304 	kfree(entries);
4305 out:
4306 	return r;
4307 }
4308 
4309 static inline bool kvm_can_mwait_in_guest(void)
4310 {
4311 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4312 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4313 		boot_cpu_has(X86_FEATURE_ARAT);
4314 }
4315 
4316 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4317 					    struct kvm_cpuid2 __user *cpuid_arg)
4318 {
4319 	struct kvm_cpuid2 cpuid;
4320 	int r;
4321 
4322 	r = -EFAULT;
4323 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4324 		return r;
4325 
4326 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4327 	if (r)
4328 		return r;
4329 
4330 	r = -EFAULT;
4331 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4332 		return r;
4333 
4334 	return 0;
4335 }
4336 
4337 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4338 {
4339 	int r = 0;
4340 
4341 	switch (ext) {
4342 	case KVM_CAP_IRQCHIP:
4343 	case KVM_CAP_HLT:
4344 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4345 	case KVM_CAP_SET_TSS_ADDR:
4346 	case KVM_CAP_EXT_CPUID:
4347 	case KVM_CAP_EXT_EMUL_CPUID:
4348 	case KVM_CAP_CLOCKSOURCE:
4349 	case KVM_CAP_PIT:
4350 	case KVM_CAP_NOP_IO_DELAY:
4351 	case KVM_CAP_MP_STATE:
4352 	case KVM_CAP_SYNC_MMU:
4353 	case KVM_CAP_USER_NMI:
4354 	case KVM_CAP_REINJECT_CONTROL:
4355 	case KVM_CAP_IRQ_INJECT_STATUS:
4356 	case KVM_CAP_IOEVENTFD:
4357 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4358 	case KVM_CAP_PIT2:
4359 	case KVM_CAP_PIT_STATE2:
4360 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4361 	case KVM_CAP_VCPU_EVENTS:
4362 	case KVM_CAP_HYPERV:
4363 	case KVM_CAP_HYPERV_VAPIC:
4364 	case KVM_CAP_HYPERV_SPIN:
4365 	case KVM_CAP_HYPERV_SYNIC:
4366 	case KVM_CAP_HYPERV_SYNIC2:
4367 	case KVM_CAP_HYPERV_VP_INDEX:
4368 	case KVM_CAP_HYPERV_EVENTFD:
4369 	case KVM_CAP_HYPERV_TLBFLUSH:
4370 	case KVM_CAP_HYPERV_SEND_IPI:
4371 	case KVM_CAP_HYPERV_CPUID:
4372 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4373 	case KVM_CAP_SYS_HYPERV_CPUID:
4374 	case KVM_CAP_PCI_SEGMENT:
4375 	case KVM_CAP_DEBUGREGS:
4376 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4377 	case KVM_CAP_XSAVE:
4378 	case KVM_CAP_ASYNC_PF:
4379 	case KVM_CAP_ASYNC_PF_INT:
4380 	case KVM_CAP_GET_TSC_KHZ:
4381 	case KVM_CAP_KVMCLOCK_CTRL:
4382 	case KVM_CAP_READONLY_MEM:
4383 	case KVM_CAP_HYPERV_TIME:
4384 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4385 	case KVM_CAP_TSC_DEADLINE_TIMER:
4386 	case KVM_CAP_DISABLE_QUIRKS:
4387 	case KVM_CAP_SET_BOOT_CPU_ID:
4388  	case KVM_CAP_SPLIT_IRQCHIP:
4389 	case KVM_CAP_IMMEDIATE_EXIT:
4390 	case KVM_CAP_PMU_EVENT_FILTER:
4391 	case KVM_CAP_GET_MSR_FEATURES:
4392 	case KVM_CAP_MSR_PLATFORM_INFO:
4393 	case KVM_CAP_EXCEPTION_PAYLOAD:
4394 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4395 	case KVM_CAP_SET_GUEST_DEBUG:
4396 	case KVM_CAP_LAST_CPU:
4397 	case KVM_CAP_X86_USER_SPACE_MSR:
4398 	case KVM_CAP_X86_MSR_FILTER:
4399 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4400 #ifdef CONFIG_X86_SGX_KVM
4401 	case KVM_CAP_SGX_ATTRIBUTE:
4402 #endif
4403 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4404 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4405 	case KVM_CAP_SREGS2:
4406 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4407 	case KVM_CAP_VCPU_ATTRIBUTES:
4408 	case KVM_CAP_SYS_ATTRIBUTES:
4409 	case KVM_CAP_VAPIC:
4410 	case KVM_CAP_ENABLE_CAP:
4411 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4412 		r = 1;
4413 		break;
4414 	case KVM_CAP_EXIT_HYPERCALL:
4415 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4416 		break;
4417 	case KVM_CAP_SET_GUEST_DEBUG2:
4418 		return KVM_GUESTDBG_VALID_MASK;
4419 #ifdef CONFIG_KVM_XEN
4420 	case KVM_CAP_XEN_HVM:
4421 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4422 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4423 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4424 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4425 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4426 		if (sched_info_on())
4427 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4428 		break;
4429 #endif
4430 	case KVM_CAP_SYNC_REGS:
4431 		r = KVM_SYNC_X86_VALID_FIELDS;
4432 		break;
4433 	case KVM_CAP_ADJUST_CLOCK:
4434 		r = KVM_CLOCK_VALID_FLAGS;
4435 		break;
4436 	case KVM_CAP_X86_DISABLE_EXITS:
4437 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4438 		      KVM_X86_DISABLE_EXITS_CSTATE;
4439 		if(kvm_can_mwait_in_guest())
4440 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4441 		break;
4442 	case KVM_CAP_X86_SMM:
4443 		/* SMBASE is usually relocated above 1M on modern chipsets,
4444 		 * and SMM handlers might indeed rely on 4G segment limits,
4445 		 * so do not report SMM to be available if real mode is
4446 		 * emulated via vm86 mode.  Still, do not go to great lengths
4447 		 * to avoid userspace's usage of the feature, because it is a
4448 		 * fringe case that is not enabled except via specific settings
4449 		 * of the module parameters.
4450 		 */
4451 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4452 		break;
4453 	case KVM_CAP_NR_VCPUS:
4454 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4455 		break;
4456 	case KVM_CAP_MAX_VCPUS:
4457 		r = KVM_MAX_VCPUS;
4458 		break;
4459 	case KVM_CAP_MAX_VCPU_ID:
4460 		r = KVM_MAX_VCPU_IDS;
4461 		break;
4462 	case KVM_CAP_PV_MMU:	/* obsolete */
4463 		r = 0;
4464 		break;
4465 	case KVM_CAP_MCE:
4466 		r = KVM_MAX_MCE_BANKS;
4467 		break;
4468 	case KVM_CAP_XCRS:
4469 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4470 		break;
4471 	case KVM_CAP_TSC_CONTROL:
4472 	case KVM_CAP_VM_TSC_CONTROL:
4473 		r = kvm_caps.has_tsc_control;
4474 		break;
4475 	case KVM_CAP_X2APIC_API:
4476 		r = KVM_X2APIC_API_VALID_FLAGS;
4477 		break;
4478 	case KVM_CAP_NESTED_STATE:
4479 		r = kvm_x86_ops.nested_ops->get_state ?
4480 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4481 		break;
4482 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4483 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4484 		break;
4485 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4486 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4487 		break;
4488 	case KVM_CAP_SMALLER_MAXPHYADDR:
4489 		r = (int) allow_smaller_maxphyaddr;
4490 		break;
4491 	case KVM_CAP_STEAL_TIME:
4492 		r = sched_info_on();
4493 		break;
4494 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4495 		if (kvm_caps.has_bus_lock_exit)
4496 			r = KVM_BUS_LOCK_DETECTION_OFF |
4497 			    KVM_BUS_LOCK_DETECTION_EXIT;
4498 		else
4499 			r = 0;
4500 		break;
4501 	case KVM_CAP_XSAVE2: {
4502 		u64 guest_perm = xstate_get_guest_group_perm();
4503 
4504 		r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4505 		if (r < sizeof(struct kvm_xsave))
4506 			r = sizeof(struct kvm_xsave);
4507 		break;
4508 	}
4509 	case KVM_CAP_PMU_CAPABILITY:
4510 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4511 		break;
4512 	case KVM_CAP_DISABLE_QUIRKS2:
4513 		r = KVM_X86_VALID_QUIRKS;
4514 		break;
4515 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4516 		r = kvm_caps.has_notify_vmexit;
4517 		break;
4518 	default:
4519 		break;
4520 	}
4521 	return r;
4522 }
4523 
4524 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4525 {
4526 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4527 
4528 	if ((u64)(unsigned long)uaddr != attr->addr)
4529 		return ERR_PTR_USR(-EFAULT);
4530 	return uaddr;
4531 }
4532 
4533 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4534 {
4535 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4536 
4537 	if (attr->group)
4538 		return -ENXIO;
4539 
4540 	if (IS_ERR(uaddr))
4541 		return PTR_ERR(uaddr);
4542 
4543 	switch (attr->attr) {
4544 	case KVM_X86_XCOMP_GUEST_SUPP:
4545 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4546 			return -EFAULT;
4547 		return 0;
4548 	default:
4549 		return -ENXIO;
4550 		break;
4551 	}
4552 }
4553 
4554 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4555 {
4556 	if (attr->group)
4557 		return -ENXIO;
4558 
4559 	switch (attr->attr) {
4560 	case KVM_X86_XCOMP_GUEST_SUPP:
4561 		return 0;
4562 	default:
4563 		return -ENXIO;
4564 	}
4565 }
4566 
4567 long kvm_arch_dev_ioctl(struct file *filp,
4568 			unsigned int ioctl, unsigned long arg)
4569 {
4570 	void __user *argp = (void __user *)arg;
4571 	long r;
4572 
4573 	switch (ioctl) {
4574 	case KVM_GET_MSR_INDEX_LIST: {
4575 		struct kvm_msr_list __user *user_msr_list = argp;
4576 		struct kvm_msr_list msr_list;
4577 		unsigned n;
4578 
4579 		r = -EFAULT;
4580 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4581 			goto out;
4582 		n = msr_list.nmsrs;
4583 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4584 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4585 			goto out;
4586 		r = -E2BIG;
4587 		if (n < msr_list.nmsrs)
4588 			goto out;
4589 		r = -EFAULT;
4590 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4591 				 num_msrs_to_save * sizeof(u32)))
4592 			goto out;
4593 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4594 				 &emulated_msrs,
4595 				 num_emulated_msrs * sizeof(u32)))
4596 			goto out;
4597 		r = 0;
4598 		break;
4599 	}
4600 	case KVM_GET_SUPPORTED_CPUID:
4601 	case KVM_GET_EMULATED_CPUID: {
4602 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4603 		struct kvm_cpuid2 cpuid;
4604 
4605 		r = -EFAULT;
4606 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4607 			goto out;
4608 
4609 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4610 					    ioctl);
4611 		if (r)
4612 			goto out;
4613 
4614 		r = -EFAULT;
4615 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4616 			goto out;
4617 		r = 0;
4618 		break;
4619 	}
4620 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4621 		r = -EFAULT;
4622 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4623 				 sizeof(kvm_caps.supported_mce_cap)))
4624 			goto out;
4625 		r = 0;
4626 		break;
4627 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4628 		struct kvm_msr_list __user *user_msr_list = argp;
4629 		struct kvm_msr_list msr_list;
4630 		unsigned int n;
4631 
4632 		r = -EFAULT;
4633 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4634 			goto out;
4635 		n = msr_list.nmsrs;
4636 		msr_list.nmsrs = num_msr_based_features;
4637 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4638 			goto out;
4639 		r = -E2BIG;
4640 		if (n < msr_list.nmsrs)
4641 			goto out;
4642 		r = -EFAULT;
4643 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4644 				 num_msr_based_features * sizeof(u32)))
4645 			goto out;
4646 		r = 0;
4647 		break;
4648 	}
4649 	case KVM_GET_MSRS:
4650 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4651 		break;
4652 	case KVM_GET_SUPPORTED_HV_CPUID:
4653 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4654 		break;
4655 	case KVM_GET_DEVICE_ATTR: {
4656 		struct kvm_device_attr attr;
4657 		r = -EFAULT;
4658 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4659 			break;
4660 		r = kvm_x86_dev_get_attr(&attr);
4661 		break;
4662 	}
4663 	case KVM_HAS_DEVICE_ATTR: {
4664 		struct kvm_device_attr attr;
4665 		r = -EFAULT;
4666 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4667 			break;
4668 		r = kvm_x86_dev_has_attr(&attr);
4669 		break;
4670 	}
4671 	default:
4672 		r = -EINVAL;
4673 		break;
4674 	}
4675 out:
4676 	return r;
4677 }
4678 
4679 static void wbinvd_ipi(void *garbage)
4680 {
4681 	wbinvd();
4682 }
4683 
4684 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4685 {
4686 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4687 }
4688 
4689 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4690 {
4691 	/* Address WBINVD may be executed by guest */
4692 	if (need_emulate_wbinvd(vcpu)) {
4693 		if (static_call(kvm_x86_has_wbinvd_exit)())
4694 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4695 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4696 			smp_call_function_single(vcpu->cpu,
4697 					wbinvd_ipi, NULL, 1);
4698 	}
4699 
4700 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4701 
4702 	/* Save host pkru register if supported */
4703 	vcpu->arch.host_pkru = read_pkru();
4704 
4705 	/* Apply any externally detected TSC adjustments (due to suspend) */
4706 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4707 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4708 		vcpu->arch.tsc_offset_adjustment = 0;
4709 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4710 	}
4711 
4712 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4713 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4714 				rdtsc() - vcpu->arch.last_host_tsc;
4715 		if (tsc_delta < 0)
4716 			mark_tsc_unstable("KVM discovered backwards TSC");
4717 
4718 		if (kvm_check_tsc_unstable()) {
4719 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4720 						vcpu->arch.last_guest_tsc);
4721 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4722 			vcpu->arch.tsc_catchup = 1;
4723 		}
4724 
4725 		if (kvm_lapic_hv_timer_in_use(vcpu))
4726 			kvm_lapic_restart_hv_timer(vcpu);
4727 
4728 		/*
4729 		 * On a host with synchronized TSC, there is no need to update
4730 		 * kvmclock on vcpu->cpu migration
4731 		 */
4732 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4733 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4734 		if (vcpu->cpu != cpu)
4735 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4736 		vcpu->cpu = cpu;
4737 	}
4738 
4739 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4740 }
4741 
4742 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4743 {
4744 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4745 	struct kvm_steal_time __user *st;
4746 	struct kvm_memslots *slots;
4747 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4748 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4749 
4750 	/*
4751 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4752 	 * an instruction boundary and will not trigger guest emulation of any
4753 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4754 	 * when this is true, for example allowing the vCPU to be marked
4755 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4756 	 */
4757 	if (!vcpu->arch.at_instruction_boundary) {
4758 		vcpu->stat.preemption_other++;
4759 		return;
4760 	}
4761 
4762 	vcpu->stat.preemption_reported++;
4763 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4764 		return;
4765 
4766 	if (vcpu->arch.st.preempted)
4767 		return;
4768 
4769 	/* This happens on process exit */
4770 	if (unlikely(current->mm != vcpu->kvm->mm))
4771 		return;
4772 
4773 	slots = kvm_memslots(vcpu->kvm);
4774 
4775 	if (unlikely(slots->generation != ghc->generation ||
4776 		     gpa != ghc->gpa ||
4777 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4778 		return;
4779 
4780 	st = (struct kvm_steal_time __user *)ghc->hva;
4781 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4782 
4783 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4784 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4785 
4786 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4787 }
4788 
4789 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4790 {
4791 	int idx;
4792 
4793 	if (vcpu->preempted) {
4794 		if (!vcpu->arch.guest_state_protected)
4795 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4796 
4797 		/*
4798 		 * Take the srcu lock as memslots will be accessed to check the gfn
4799 		 * cache generation against the memslots generation.
4800 		 */
4801 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4802 		if (kvm_xen_msr_enabled(vcpu->kvm))
4803 			kvm_xen_runstate_set_preempted(vcpu);
4804 		else
4805 			kvm_steal_time_set_preempted(vcpu);
4806 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4807 	}
4808 
4809 	static_call(kvm_x86_vcpu_put)(vcpu);
4810 	vcpu->arch.last_host_tsc = rdtsc();
4811 }
4812 
4813 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4814 				    struct kvm_lapic_state *s)
4815 {
4816 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4817 
4818 	return kvm_apic_get_state(vcpu, s);
4819 }
4820 
4821 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4822 				    struct kvm_lapic_state *s)
4823 {
4824 	int r;
4825 
4826 	r = kvm_apic_set_state(vcpu, s);
4827 	if (r)
4828 		return r;
4829 	update_cr8_intercept(vcpu);
4830 
4831 	return 0;
4832 }
4833 
4834 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4835 {
4836 	/*
4837 	 * We can accept userspace's request for interrupt injection
4838 	 * as long as we have a place to store the interrupt number.
4839 	 * The actual injection will happen when the CPU is able to
4840 	 * deliver the interrupt.
4841 	 */
4842 	if (kvm_cpu_has_extint(vcpu))
4843 		return false;
4844 
4845 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4846 	return (!lapic_in_kernel(vcpu) ||
4847 		kvm_apic_accept_pic_intr(vcpu));
4848 }
4849 
4850 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4851 {
4852 	/*
4853 	 * Do not cause an interrupt window exit if an exception
4854 	 * is pending or an event needs reinjection; userspace
4855 	 * might want to inject the interrupt manually using KVM_SET_REGS
4856 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4857 	 * instruction boundary and with no events half-injected.
4858 	 */
4859 	return (kvm_arch_interrupt_allowed(vcpu) &&
4860 		kvm_cpu_accept_dm_intr(vcpu) &&
4861 		!kvm_event_needs_reinjection(vcpu) &&
4862 		!kvm_is_exception_pending(vcpu));
4863 }
4864 
4865 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4866 				    struct kvm_interrupt *irq)
4867 {
4868 	if (irq->irq >= KVM_NR_INTERRUPTS)
4869 		return -EINVAL;
4870 
4871 	if (!irqchip_in_kernel(vcpu->kvm)) {
4872 		kvm_queue_interrupt(vcpu, irq->irq, false);
4873 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4874 		return 0;
4875 	}
4876 
4877 	/*
4878 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4879 	 * fail for in-kernel 8259.
4880 	 */
4881 	if (pic_in_kernel(vcpu->kvm))
4882 		return -ENXIO;
4883 
4884 	if (vcpu->arch.pending_external_vector != -1)
4885 		return -EEXIST;
4886 
4887 	vcpu->arch.pending_external_vector = irq->irq;
4888 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4889 	return 0;
4890 }
4891 
4892 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4893 {
4894 	kvm_inject_nmi(vcpu);
4895 
4896 	return 0;
4897 }
4898 
4899 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4900 {
4901 	kvm_make_request(KVM_REQ_SMI, vcpu);
4902 
4903 	return 0;
4904 }
4905 
4906 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4907 					   struct kvm_tpr_access_ctl *tac)
4908 {
4909 	if (tac->flags)
4910 		return -EINVAL;
4911 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4912 	return 0;
4913 }
4914 
4915 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4916 					u64 mcg_cap)
4917 {
4918 	int r;
4919 	unsigned bank_num = mcg_cap & 0xff, bank;
4920 
4921 	r = -EINVAL;
4922 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4923 		goto out;
4924 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4925 		goto out;
4926 	r = 0;
4927 	vcpu->arch.mcg_cap = mcg_cap;
4928 	/* Init IA32_MCG_CTL to all 1s */
4929 	if (mcg_cap & MCG_CTL_P)
4930 		vcpu->arch.mcg_ctl = ~(u64)0;
4931 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4932 	for (bank = 0; bank < bank_num; bank++) {
4933 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4934 		if (mcg_cap & MCG_CMCI_P)
4935 			vcpu->arch.mci_ctl2_banks[bank] = 0;
4936 	}
4937 
4938 	kvm_apic_after_set_mcg_cap(vcpu);
4939 
4940 	static_call(kvm_x86_setup_mce)(vcpu);
4941 out:
4942 	return r;
4943 }
4944 
4945 /*
4946  * Validate this is an UCNA (uncorrectable no action) error by checking the
4947  * MCG_STATUS and MCi_STATUS registers:
4948  * - none of the bits for Machine Check Exceptions are set
4949  * - both the VAL (valid) and UC (uncorrectable) bits are set
4950  * MCI_STATUS_PCC - Processor Context Corrupted
4951  * MCI_STATUS_S - Signaled as a Machine Check Exception
4952  * MCI_STATUS_AR - Software recoverable Action Required
4953  */
4954 static bool is_ucna(struct kvm_x86_mce *mce)
4955 {
4956 	return	!mce->mcg_status &&
4957 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4958 		(mce->status & MCI_STATUS_VAL) &&
4959 		(mce->status & MCI_STATUS_UC);
4960 }
4961 
4962 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4963 {
4964 	u64 mcg_cap = vcpu->arch.mcg_cap;
4965 
4966 	banks[1] = mce->status;
4967 	banks[2] = mce->addr;
4968 	banks[3] = mce->misc;
4969 	vcpu->arch.mcg_status = mce->mcg_status;
4970 
4971 	if (!(mcg_cap & MCG_CMCI_P) ||
4972 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4973 		return 0;
4974 
4975 	if (lapic_in_kernel(vcpu))
4976 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4977 
4978 	return 0;
4979 }
4980 
4981 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4982 				      struct kvm_x86_mce *mce)
4983 {
4984 	u64 mcg_cap = vcpu->arch.mcg_cap;
4985 	unsigned bank_num = mcg_cap & 0xff;
4986 	u64 *banks = vcpu->arch.mce_banks;
4987 
4988 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4989 		return -EINVAL;
4990 
4991 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
4992 
4993 	if (is_ucna(mce))
4994 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
4995 
4996 	/*
4997 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4998 	 * reporting is disabled
4999 	 */
5000 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5001 	    vcpu->arch.mcg_ctl != ~(u64)0)
5002 		return 0;
5003 	/*
5004 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5005 	 * reporting is disabled for the bank
5006 	 */
5007 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5008 		return 0;
5009 	if (mce->status & MCI_STATUS_UC) {
5010 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5011 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
5012 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5013 			return 0;
5014 		}
5015 		if (banks[1] & MCI_STATUS_VAL)
5016 			mce->status |= MCI_STATUS_OVER;
5017 		banks[2] = mce->addr;
5018 		banks[3] = mce->misc;
5019 		vcpu->arch.mcg_status = mce->mcg_status;
5020 		banks[1] = mce->status;
5021 		kvm_queue_exception(vcpu, MC_VECTOR);
5022 	} else if (!(banks[1] & MCI_STATUS_VAL)
5023 		   || !(banks[1] & MCI_STATUS_UC)) {
5024 		if (banks[1] & MCI_STATUS_VAL)
5025 			mce->status |= MCI_STATUS_OVER;
5026 		banks[2] = mce->addr;
5027 		banks[3] = mce->misc;
5028 		banks[1] = mce->status;
5029 	} else
5030 		banks[1] |= MCI_STATUS_OVER;
5031 	return 0;
5032 }
5033 
5034 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5035 					       struct kvm_vcpu_events *events)
5036 {
5037 	struct kvm_queued_exception *ex;
5038 
5039 	process_nmi(vcpu);
5040 
5041 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5042 		process_smi(vcpu);
5043 
5044 	/*
5045 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5046 	 * the only time there can be two queued exceptions is if there's a
5047 	 * non-exiting _injected_ exception, and a pending exiting exception.
5048 	 * In that case, ignore the VM-Exiting exception as it's an extension
5049 	 * of the injected exception.
5050 	 */
5051 	if (vcpu->arch.exception_vmexit.pending &&
5052 	    !vcpu->arch.exception.pending &&
5053 	    !vcpu->arch.exception.injected)
5054 		ex = &vcpu->arch.exception_vmexit;
5055 	else
5056 		ex = &vcpu->arch.exception;
5057 
5058 	/*
5059 	 * In guest mode, payload delivery should be deferred if the exception
5060 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5061 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5062 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5063 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5064 	 * the payload if the capability hasn't been requested.
5065 	 */
5066 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5067 	    ex->pending && ex->has_payload)
5068 		kvm_deliver_exception_payload(vcpu, ex);
5069 
5070 	/*
5071 	 * The API doesn't provide the instruction length for software
5072 	 * exceptions, so don't report them. As long as the guest RIP
5073 	 * isn't advanced, we should expect to encounter the exception
5074 	 * again.
5075 	 */
5076 	if (kvm_exception_is_soft(ex->vector)) {
5077 		events->exception.injected = 0;
5078 		events->exception.pending = 0;
5079 	} else {
5080 		events->exception.injected = ex->injected;
5081 		events->exception.pending = ex->pending;
5082 		/*
5083 		 * For ABI compatibility, deliberately conflate
5084 		 * pending and injected exceptions when
5085 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5086 		 */
5087 		if (!vcpu->kvm->arch.exception_payload_enabled)
5088 			events->exception.injected |= ex->pending;
5089 	}
5090 	events->exception.nr = ex->vector;
5091 	events->exception.has_error_code = ex->has_error_code;
5092 	events->exception.error_code = ex->error_code;
5093 	events->exception_has_payload = ex->has_payload;
5094 	events->exception_payload = ex->payload;
5095 
5096 	events->interrupt.injected =
5097 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5098 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5099 	events->interrupt.soft = 0;
5100 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5101 
5102 	events->nmi.injected = vcpu->arch.nmi_injected;
5103 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
5104 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5105 	events->nmi.pad = 0;
5106 
5107 	events->sipi_vector = 0; /* never valid when reporting to user space */
5108 
5109 	events->smi.smm = is_smm(vcpu);
5110 	events->smi.pending = vcpu->arch.smi_pending;
5111 	events->smi.smm_inside_nmi =
5112 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5113 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5114 
5115 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5116 			 | KVM_VCPUEVENT_VALID_SHADOW
5117 			 | KVM_VCPUEVENT_VALID_SMM);
5118 	if (vcpu->kvm->arch.exception_payload_enabled)
5119 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5120 	if (vcpu->kvm->arch.triple_fault_event) {
5121 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5122 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5123 	}
5124 
5125 	memset(&events->reserved, 0, sizeof(events->reserved));
5126 }
5127 
5128 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
5129 
5130 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5131 					      struct kvm_vcpu_events *events)
5132 {
5133 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5134 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5135 			      | KVM_VCPUEVENT_VALID_SHADOW
5136 			      | KVM_VCPUEVENT_VALID_SMM
5137 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5138 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5139 		return -EINVAL;
5140 
5141 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5142 		if (!vcpu->kvm->arch.exception_payload_enabled)
5143 			return -EINVAL;
5144 		if (events->exception.pending)
5145 			events->exception.injected = 0;
5146 		else
5147 			events->exception_has_payload = 0;
5148 	} else {
5149 		events->exception.pending = 0;
5150 		events->exception_has_payload = 0;
5151 	}
5152 
5153 	if ((events->exception.injected || events->exception.pending) &&
5154 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5155 		return -EINVAL;
5156 
5157 	/* INITs are latched while in SMM */
5158 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5159 	    (events->smi.smm || events->smi.pending) &&
5160 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5161 		return -EINVAL;
5162 
5163 	process_nmi(vcpu);
5164 
5165 	/*
5166 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5167 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5168 	 * pending exceptions, already-injected exceptions are not subject to
5169 	 * intercpetion.  Note, userspace that conflates pending and injected
5170 	 * is hosed, and will incorrectly convert an injected exception into a
5171 	 * pending exception, which in turn may cause a spurious VM-Exit.
5172 	 */
5173 	vcpu->arch.exception_from_userspace = events->exception.pending;
5174 
5175 	vcpu->arch.exception_vmexit.pending = false;
5176 
5177 	vcpu->arch.exception.injected = events->exception.injected;
5178 	vcpu->arch.exception.pending = events->exception.pending;
5179 	vcpu->arch.exception.vector = events->exception.nr;
5180 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5181 	vcpu->arch.exception.error_code = events->exception.error_code;
5182 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5183 	vcpu->arch.exception.payload = events->exception_payload;
5184 
5185 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5186 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5187 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5188 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5189 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5190 						events->interrupt.shadow);
5191 
5192 	vcpu->arch.nmi_injected = events->nmi.injected;
5193 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5194 		vcpu->arch.nmi_pending = events->nmi.pending;
5195 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5196 
5197 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5198 	    lapic_in_kernel(vcpu))
5199 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5200 
5201 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5202 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5203 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
5204 			kvm_smm_changed(vcpu, events->smi.smm);
5205 		}
5206 
5207 		vcpu->arch.smi_pending = events->smi.pending;
5208 
5209 		if (events->smi.smm) {
5210 			if (events->smi.smm_inside_nmi)
5211 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5212 			else
5213 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5214 		}
5215 
5216 		if (lapic_in_kernel(vcpu)) {
5217 			if (events->smi.latched_init)
5218 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5219 			else
5220 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5221 		}
5222 	}
5223 
5224 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5225 		if (!vcpu->kvm->arch.triple_fault_event)
5226 			return -EINVAL;
5227 		if (events->triple_fault.pending)
5228 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5229 		else
5230 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5231 	}
5232 
5233 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5234 
5235 	return 0;
5236 }
5237 
5238 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5239 					     struct kvm_debugregs *dbgregs)
5240 {
5241 	unsigned long val;
5242 
5243 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5244 	kvm_get_dr(vcpu, 6, &val);
5245 	dbgregs->dr6 = val;
5246 	dbgregs->dr7 = vcpu->arch.dr7;
5247 	dbgregs->flags = 0;
5248 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5249 }
5250 
5251 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5252 					    struct kvm_debugregs *dbgregs)
5253 {
5254 	if (dbgregs->flags)
5255 		return -EINVAL;
5256 
5257 	if (!kvm_dr6_valid(dbgregs->dr6))
5258 		return -EINVAL;
5259 	if (!kvm_dr7_valid(dbgregs->dr7))
5260 		return -EINVAL;
5261 
5262 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5263 	kvm_update_dr0123(vcpu);
5264 	vcpu->arch.dr6 = dbgregs->dr6;
5265 	vcpu->arch.dr7 = dbgregs->dr7;
5266 	kvm_update_dr7(vcpu);
5267 
5268 	return 0;
5269 }
5270 
5271 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5272 					 struct kvm_xsave *guest_xsave)
5273 {
5274 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5275 		return;
5276 
5277 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5278 				       guest_xsave->region,
5279 				       sizeof(guest_xsave->region),
5280 				       vcpu->arch.pkru);
5281 }
5282 
5283 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5284 					  u8 *state, unsigned int size)
5285 {
5286 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5287 		return;
5288 
5289 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5290 				       state, size, vcpu->arch.pkru);
5291 }
5292 
5293 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5294 					struct kvm_xsave *guest_xsave)
5295 {
5296 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5297 		return 0;
5298 
5299 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5300 					      guest_xsave->region,
5301 					      kvm_caps.supported_xcr0,
5302 					      &vcpu->arch.pkru);
5303 }
5304 
5305 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5306 					struct kvm_xcrs *guest_xcrs)
5307 {
5308 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5309 		guest_xcrs->nr_xcrs = 0;
5310 		return;
5311 	}
5312 
5313 	guest_xcrs->nr_xcrs = 1;
5314 	guest_xcrs->flags = 0;
5315 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5316 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5317 }
5318 
5319 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5320 				       struct kvm_xcrs *guest_xcrs)
5321 {
5322 	int i, r = 0;
5323 
5324 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5325 		return -EINVAL;
5326 
5327 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5328 		return -EINVAL;
5329 
5330 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5331 		/* Only support XCR0 currently */
5332 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5333 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5334 				guest_xcrs->xcrs[i].value);
5335 			break;
5336 		}
5337 	if (r)
5338 		r = -EINVAL;
5339 	return r;
5340 }
5341 
5342 /*
5343  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5344  * stopped by the hypervisor.  This function will be called from the host only.
5345  * EINVAL is returned when the host attempts to set the flag for a guest that
5346  * does not support pv clocks.
5347  */
5348 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5349 {
5350 	if (!vcpu->arch.pv_time.active)
5351 		return -EINVAL;
5352 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5353 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5354 	return 0;
5355 }
5356 
5357 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5358 				 struct kvm_device_attr *attr)
5359 {
5360 	int r;
5361 
5362 	switch (attr->attr) {
5363 	case KVM_VCPU_TSC_OFFSET:
5364 		r = 0;
5365 		break;
5366 	default:
5367 		r = -ENXIO;
5368 	}
5369 
5370 	return r;
5371 }
5372 
5373 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5374 				 struct kvm_device_attr *attr)
5375 {
5376 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5377 	int r;
5378 
5379 	if (IS_ERR(uaddr))
5380 		return PTR_ERR(uaddr);
5381 
5382 	switch (attr->attr) {
5383 	case KVM_VCPU_TSC_OFFSET:
5384 		r = -EFAULT;
5385 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5386 			break;
5387 		r = 0;
5388 		break;
5389 	default:
5390 		r = -ENXIO;
5391 	}
5392 
5393 	return r;
5394 }
5395 
5396 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5397 				 struct kvm_device_attr *attr)
5398 {
5399 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5400 	struct kvm *kvm = vcpu->kvm;
5401 	int r;
5402 
5403 	if (IS_ERR(uaddr))
5404 		return PTR_ERR(uaddr);
5405 
5406 	switch (attr->attr) {
5407 	case KVM_VCPU_TSC_OFFSET: {
5408 		u64 offset, tsc, ns;
5409 		unsigned long flags;
5410 		bool matched;
5411 
5412 		r = -EFAULT;
5413 		if (get_user(offset, uaddr))
5414 			break;
5415 
5416 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5417 
5418 		matched = (vcpu->arch.virtual_tsc_khz &&
5419 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5420 			   kvm->arch.last_tsc_offset == offset);
5421 
5422 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5423 		ns = get_kvmclock_base_ns();
5424 
5425 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5426 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5427 
5428 		r = 0;
5429 		break;
5430 	}
5431 	default:
5432 		r = -ENXIO;
5433 	}
5434 
5435 	return r;
5436 }
5437 
5438 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5439 				      unsigned int ioctl,
5440 				      void __user *argp)
5441 {
5442 	struct kvm_device_attr attr;
5443 	int r;
5444 
5445 	if (copy_from_user(&attr, argp, sizeof(attr)))
5446 		return -EFAULT;
5447 
5448 	if (attr.group != KVM_VCPU_TSC_CTRL)
5449 		return -ENXIO;
5450 
5451 	switch (ioctl) {
5452 	case KVM_HAS_DEVICE_ATTR:
5453 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5454 		break;
5455 	case KVM_GET_DEVICE_ATTR:
5456 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5457 		break;
5458 	case KVM_SET_DEVICE_ATTR:
5459 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5460 		break;
5461 	}
5462 
5463 	return r;
5464 }
5465 
5466 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5467 				     struct kvm_enable_cap *cap)
5468 {
5469 	int r;
5470 	uint16_t vmcs_version;
5471 	void __user *user_ptr;
5472 
5473 	if (cap->flags)
5474 		return -EINVAL;
5475 
5476 	switch (cap->cap) {
5477 	case KVM_CAP_HYPERV_SYNIC2:
5478 		if (cap->args[0])
5479 			return -EINVAL;
5480 		fallthrough;
5481 
5482 	case KVM_CAP_HYPERV_SYNIC:
5483 		if (!irqchip_in_kernel(vcpu->kvm))
5484 			return -EINVAL;
5485 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5486 					     KVM_CAP_HYPERV_SYNIC2);
5487 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5488 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5489 			return -ENOTTY;
5490 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5491 		if (!r) {
5492 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5493 			if (copy_to_user(user_ptr, &vmcs_version,
5494 					 sizeof(vmcs_version)))
5495 				r = -EFAULT;
5496 		}
5497 		return r;
5498 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5499 		if (!kvm_x86_ops.enable_direct_tlbflush)
5500 			return -ENOTTY;
5501 
5502 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5503 
5504 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5505 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5506 
5507 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5508 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5509 		if (vcpu->arch.pv_cpuid.enforce)
5510 			kvm_update_pv_runtime(vcpu);
5511 
5512 		return 0;
5513 	default:
5514 		return -EINVAL;
5515 	}
5516 }
5517 
5518 long kvm_arch_vcpu_ioctl(struct file *filp,
5519 			 unsigned int ioctl, unsigned long arg)
5520 {
5521 	struct kvm_vcpu *vcpu = filp->private_data;
5522 	void __user *argp = (void __user *)arg;
5523 	int r;
5524 	union {
5525 		struct kvm_sregs2 *sregs2;
5526 		struct kvm_lapic_state *lapic;
5527 		struct kvm_xsave *xsave;
5528 		struct kvm_xcrs *xcrs;
5529 		void *buffer;
5530 	} u;
5531 
5532 	vcpu_load(vcpu);
5533 
5534 	u.buffer = NULL;
5535 	switch (ioctl) {
5536 	case KVM_GET_LAPIC: {
5537 		r = -EINVAL;
5538 		if (!lapic_in_kernel(vcpu))
5539 			goto out;
5540 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5541 				GFP_KERNEL_ACCOUNT);
5542 
5543 		r = -ENOMEM;
5544 		if (!u.lapic)
5545 			goto out;
5546 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5547 		if (r)
5548 			goto out;
5549 		r = -EFAULT;
5550 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5551 			goto out;
5552 		r = 0;
5553 		break;
5554 	}
5555 	case KVM_SET_LAPIC: {
5556 		r = -EINVAL;
5557 		if (!lapic_in_kernel(vcpu))
5558 			goto out;
5559 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5560 		if (IS_ERR(u.lapic)) {
5561 			r = PTR_ERR(u.lapic);
5562 			goto out_nofree;
5563 		}
5564 
5565 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5566 		break;
5567 	}
5568 	case KVM_INTERRUPT: {
5569 		struct kvm_interrupt irq;
5570 
5571 		r = -EFAULT;
5572 		if (copy_from_user(&irq, argp, sizeof(irq)))
5573 			goto out;
5574 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5575 		break;
5576 	}
5577 	case KVM_NMI: {
5578 		r = kvm_vcpu_ioctl_nmi(vcpu);
5579 		break;
5580 	}
5581 	case KVM_SMI: {
5582 		r = kvm_vcpu_ioctl_smi(vcpu);
5583 		break;
5584 	}
5585 	case KVM_SET_CPUID: {
5586 		struct kvm_cpuid __user *cpuid_arg = argp;
5587 		struct kvm_cpuid cpuid;
5588 
5589 		r = -EFAULT;
5590 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5591 			goto out;
5592 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5593 		break;
5594 	}
5595 	case KVM_SET_CPUID2: {
5596 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5597 		struct kvm_cpuid2 cpuid;
5598 
5599 		r = -EFAULT;
5600 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5601 			goto out;
5602 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5603 					      cpuid_arg->entries);
5604 		break;
5605 	}
5606 	case KVM_GET_CPUID2: {
5607 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5608 		struct kvm_cpuid2 cpuid;
5609 
5610 		r = -EFAULT;
5611 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5612 			goto out;
5613 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5614 					      cpuid_arg->entries);
5615 		if (r)
5616 			goto out;
5617 		r = -EFAULT;
5618 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5619 			goto out;
5620 		r = 0;
5621 		break;
5622 	}
5623 	case KVM_GET_MSRS: {
5624 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5625 		r = msr_io(vcpu, argp, do_get_msr, 1);
5626 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5627 		break;
5628 	}
5629 	case KVM_SET_MSRS: {
5630 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5631 		r = msr_io(vcpu, argp, do_set_msr, 0);
5632 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5633 		break;
5634 	}
5635 	case KVM_TPR_ACCESS_REPORTING: {
5636 		struct kvm_tpr_access_ctl tac;
5637 
5638 		r = -EFAULT;
5639 		if (copy_from_user(&tac, argp, sizeof(tac)))
5640 			goto out;
5641 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5642 		if (r)
5643 			goto out;
5644 		r = -EFAULT;
5645 		if (copy_to_user(argp, &tac, sizeof(tac)))
5646 			goto out;
5647 		r = 0;
5648 		break;
5649 	};
5650 	case KVM_SET_VAPIC_ADDR: {
5651 		struct kvm_vapic_addr va;
5652 		int idx;
5653 
5654 		r = -EINVAL;
5655 		if (!lapic_in_kernel(vcpu))
5656 			goto out;
5657 		r = -EFAULT;
5658 		if (copy_from_user(&va, argp, sizeof(va)))
5659 			goto out;
5660 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5661 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5662 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5663 		break;
5664 	}
5665 	case KVM_X86_SETUP_MCE: {
5666 		u64 mcg_cap;
5667 
5668 		r = -EFAULT;
5669 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5670 			goto out;
5671 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5672 		break;
5673 	}
5674 	case KVM_X86_SET_MCE: {
5675 		struct kvm_x86_mce mce;
5676 
5677 		r = -EFAULT;
5678 		if (copy_from_user(&mce, argp, sizeof(mce)))
5679 			goto out;
5680 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5681 		break;
5682 	}
5683 	case KVM_GET_VCPU_EVENTS: {
5684 		struct kvm_vcpu_events events;
5685 
5686 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5687 
5688 		r = -EFAULT;
5689 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5690 			break;
5691 		r = 0;
5692 		break;
5693 	}
5694 	case KVM_SET_VCPU_EVENTS: {
5695 		struct kvm_vcpu_events events;
5696 
5697 		r = -EFAULT;
5698 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5699 			break;
5700 
5701 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5702 		break;
5703 	}
5704 	case KVM_GET_DEBUGREGS: {
5705 		struct kvm_debugregs dbgregs;
5706 
5707 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5708 
5709 		r = -EFAULT;
5710 		if (copy_to_user(argp, &dbgregs,
5711 				 sizeof(struct kvm_debugregs)))
5712 			break;
5713 		r = 0;
5714 		break;
5715 	}
5716 	case KVM_SET_DEBUGREGS: {
5717 		struct kvm_debugregs dbgregs;
5718 
5719 		r = -EFAULT;
5720 		if (copy_from_user(&dbgregs, argp,
5721 				   sizeof(struct kvm_debugregs)))
5722 			break;
5723 
5724 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5725 		break;
5726 	}
5727 	case KVM_GET_XSAVE: {
5728 		r = -EINVAL;
5729 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5730 			break;
5731 
5732 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5733 		r = -ENOMEM;
5734 		if (!u.xsave)
5735 			break;
5736 
5737 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5738 
5739 		r = -EFAULT;
5740 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5741 			break;
5742 		r = 0;
5743 		break;
5744 	}
5745 	case KVM_SET_XSAVE: {
5746 		int size = vcpu->arch.guest_fpu.uabi_size;
5747 
5748 		u.xsave = memdup_user(argp, size);
5749 		if (IS_ERR(u.xsave)) {
5750 			r = PTR_ERR(u.xsave);
5751 			goto out_nofree;
5752 		}
5753 
5754 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5755 		break;
5756 	}
5757 
5758 	case KVM_GET_XSAVE2: {
5759 		int size = vcpu->arch.guest_fpu.uabi_size;
5760 
5761 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5762 		r = -ENOMEM;
5763 		if (!u.xsave)
5764 			break;
5765 
5766 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5767 
5768 		r = -EFAULT;
5769 		if (copy_to_user(argp, u.xsave, size))
5770 			break;
5771 
5772 		r = 0;
5773 		break;
5774 	}
5775 
5776 	case KVM_GET_XCRS: {
5777 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5778 		r = -ENOMEM;
5779 		if (!u.xcrs)
5780 			break;
5781 
5782 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5783 
5784 		r = -EFAULT;
5785 		if (copy_to_user(argp, u.xcrs,
5786 				 sizeof(struct kvm_xcrs)))
5787 			break;
5788 		r = 0;
5789 		break;
5790 	}
5791 	case KVM_SET_XCRS: {
5792 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5793 		if (IS_ERR(u.xcrs)) {
5794 			r = PTR_ERR(u.xcrs);
5795 			goto out_nofree;
5796 		}
5797 
5798 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5799 		break;
5800 	}
5801 	case KVM_SET_TSC_KHZ: {
5802 		u32 user_tsc_khz;
5803 
5804 		r = -EINVAL;
5805 		user_tsc_khz = (u32)arg;
5806 
5807 		if (kvm_caps.has_tsc_control &&
5808 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5809 			goto out;
5810 
5811 		if (user_tsc_khz == 0)
5812 			user_tsc_khz = tsc_khz;
5813 
5814 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5815 			r = 0;
5816 
5817 		goto out;
5818 	}
5819 	case KVM_GET_TSC_KHZ: {
5820 		r = vcpu->arch.virtual_tsc_khz;
5821 		goto out;
5822 	}
5823 	case KVM_KVMCLOCK_CTRL: {
5824 		r = kvm_set_guest_paused(vcpu);
5825 		goto out;
5826 	}
5827 	case KVM_ENABLE_CAP: {
5828 		struct kvm_enable_cap cap;
5829 
5830 		r = -EFAULT;
5831 		if (copy_from_user(&cap, argp, sizeof(cap)))
5832 			goto out;
5833 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5834 		break;
5835 	}
5836 	case KVM_GET_NESTED_STATE: {
5837 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5838 		u32 user_data_size;
5839 
5840 		r = -EINVAL;
5841 		if (!kvm_x86_ops.nested_ops->get_state)
5842 			break;
5843 
5844 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5845 		r = -EFAULT;
5846 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5847 			break;
5848 
5849 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5850 						     user_data_size);
5851 		if (r < 0)
5852 			break;
5853 
5854 		if (r > user_data_size) {
5855 			if (put_user(r, &user_kvm_nested_state->size))
5856 				r = -EFAULT;
5857 			else
5858 				r = -E2BIG;
5859 			break;
5860 		}
5861 
5862 		r = 0;
5863 		break;
5864 	}
5865 	case KVM_SET_NESTED_STATE: {
5866 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5867 		struct kvm_nested_state kvm_state;
5868 		int idx;
5869 
5870 		r = -EINVAL;
5871 		if (!kvm_x86_ops.nested_ops->set_state)
5872 			break;
5873 
5874 		r = -EFAULT;
5875 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5876 			break;
5877 
5878 		r = -EINVAL;
5879 		if (kvm_state.size < sizeof(kvm_state))
5880 			break;
5881 
5882 		if (kvm_state.flags &
5883 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5884 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5885 		      | KVM_STATE_NESTED_GIF_SET))
5886 			break;
5887 
5888 		/* nested_run_pending implies guest_mode.  */
5889 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5890 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5891 			break;
5892 
5893 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5894 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5895 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5896 		break;
5897 	}
5898 	case KVM_GET_SUPPORTED_HV_CPUID:
5899 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5900 		break;
5901 #ifdef CONFIG_KVM_XEN
5902 	case KVM_XEN_VCPU_GET_ATTR: {
5903 		struct kvm_xen_vcpu_attr xva;
5904 
5905 		r = -EFAULT;
5906 		if (copy_from_user(&xva, argp, sizeof(xva)))
5907 			goto out;
5908 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5909 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5910 			r = -EFAULT;
5911 		break;
5912 	}
5913 	case KVM_XEN_VCPU_SET_ATTR: {
5914 		struct kvm_xen_vcpu_attr xva;
5915 
5916 		r = -EFAULT;
5917 		if (copy_from_user(&xva, argp, sizeof(xva)))
5918 			goto out;
5919 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5920 		break;
5921 	}
5922 #endif
5923 	case KVM_GET_SREGS2: {
5924 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5925 		r = -ENOMEM;
5926 		if (!u.sregs2)
5927 			goto out;
5928 		__get_sregs2(vcpu, u.sregs2);
5929 		r = -EFAULT;
5930 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5931 			goto out;
5932 		r = 0;
5933 		break;
5934 	}
5935 	case KVM_SET_SREGS2: {
5936 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5937 		if (IS_ERR(u.sregs2)) {
5938 			r = PTR_ERR(u.sregs2);
5939 			u.sregs2 = NULL;
5940 			goto out;
5941 		}
5942 		r = __set_sregs2(vcpu, u.sregs2);
5943 		break;
5944 	}
5945 	case KVM_HAS_DEVICE_ATTR:
5946 	case KVM_GET_DEVICE_ATTR:
5947 	case KVM_SET_DEVICE_ATTR:
5948 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5949 		break;
5950 	default:
5951 		r = -EINVAL;
5952 	}
5953 out:
5954 	kfree(u.buffer);
5955 out_nofree:
5956 	vcpu_put(vcpu);
5957 	return r;
5958 }
5959 
5960 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5961 {
5962 	return VM_FAULT_SIGBUS;
5963 }
5964 
5965 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5966 {
5967 	int ret;
5968 
5969 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5970 		return -EINVAL;
5971 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5972 	return ret;
5973 }
5974 
5975 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5976 					      u64 ident_addr)
5977 {
5978 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5979 }
5980 
5981 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5982 					 unsigned long kvm_nr_mmu_pages)
5983 {
5984 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5985 		return -EINVAL;
5986 
5987 	mutex_lock(&kvm->slots_lock);
5988 
5989 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5990 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5991 
5992 	mutex_unlock(&kvm->slots_lock);
5993 	return 0;
5994 }
5995 
5996 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5997 {
5998 	return kvm->arch.n_max_mmu_pages;
5999 }
6000 
6001 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6002 {
6003 	struct kvm_pic *pic = kvm->arch.vpic;
6004 	int r;
6005 
6006 	r = 0;
6007 	switch (chip->chip_id) {
6008 	case KVM_IRQCHIP_PIC_MASTER:
6009 		memcpy(&chip->chip.pic, &pic->pics[0],
6010 			sizeof(struct kvm_pic_state));
6011 		break;
6012 	case KVM_IRQCHIP_PIC_SLAVE:
6013 		memcpy(&chip->chip.pic, &pic->pics[1],
6014 			sizeof(struct kvm_pic_state));
6015 		break;
6016 	case KVM_IRQCHIP_IOAPIC:
6017 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6018 		break;
6019 	default:
6020 		r = -EINVAL;
6021 		break;
6022 	}
6023 	return r;
6024 }
6025 
6026 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6027 {
6028 	struct kvm_pic *pic = kvm->arch.vpic;
6029 	int r;
6030 
6031 	r = 0;
6032 	switch (chip->chip_id) {
6033 	case KVM_IRQCHIP_PIC_MASTER:
6034 		spin_lock(&pic->lock);
6035 		memcpy(&pic->pics[0], &chip->chip.pic,
6036 			sizeof(struct kvm_pic_state));
6037 		spin_unlock(&pic->lock);
6038 		break;
6039 	case KVM_IRQCHIP_PIC_SLAVE:
6040 		spin_lock(&pic->lock);
6041 		memcpy(&pic->pics[1], &chip->chip.pic,
6042 			sizeof(struct kvm_pic_state));
6043 		spin_unlock(&pic->lock);
6044 		break;
6045 	case KVM_IRQCHIP_IOAPIC:
6046 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6047 		break;
6048 	default:
6049 		r = -EINVAL;
6050 		break;
6051 	}
6052 	kvm_pic_update_irq(pic);
6053 	return r;
6054 }
6055 
6056 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6057 {
6058 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6059 
6060 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6061 
6062 	mutex_lock(&kps->lock);
6063 	memcpy(ps, &kps->channels, sizeof(*ps));
6064 	mutex_unlock(&kps->lock);
6065 	return 0;
6066 }
6067 
6068 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6069 {
6070 	int i;
6071 	struct kvm_pit *pit = kvm->arch.vpit;
6072 
6073 	mutex_lock(&pit->pit_state.lock);
6074 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6075 	for (i = 0; i < 3; i++)
6076 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6077 	mutex_unlock(&pit->pit_state.lock);
6078 	return 0;
6079 }
6080 
6081 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6082 {
6083 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6084 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6085 		sizeof(ps->channels));
6086 	ps->flags = kvm->arch.vpit->pit_state.flags;
6087 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6088 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6089 	return 0;
6090 }
6091 
6092 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6093 {
6094 	int start = 0;
6095 	int i;
6096 	u32 prev_legacy, cur_legacy;
6097 	struct kvm_pit *pit = kvm->arch.vpit;
6098 
6099 	mutex_lock(&pit->pit_state.lock);
6100 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6101 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6102 	if (!prev_legacy && cur_legacy)
6103 		start = 1;
6104 	memcpy(&pit->pit_state.channels, &ps->channels,
6105 	       sizeof(pit->pit_state.channels));
6106 	pit->pit_state.flags = ps->flags;
6107 	for (i = 0; i < 3; i++)
6108 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6109 				   start && i == 0);
6110 	mutex_unlock(&pit->pit_state.lock);
6111 	return 0;
6112 }
6113 
6114 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6115 				 struct kvm_reinject_control *control)
6116 {
6117 	struct kvm_pit *pit = kvm->arch.vpit;
6118 
6119 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6120 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6121 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6122 	 */
6123 	mutex_lock(&pit->pit_state.lock);
6124 	kvm_pit_set_reinject(pit, control->pit_reinject);
6125 	mutex_unlock(&pit->pit_state.lock);
6126 
6127 	return 0;
6128 }
6129 
6130 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6131 {
6132 
6133 	/*
6134 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6135 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6136 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6137 	 * VM-Exit.
6138 	 */
6139 	struct kvm_vcpu *vcpu;
6140 	unsigned long i;
6141 
6142 	kvm_for_each_vcpu(i, vcpu, kvm)
6143 		kvm_vcpu_kick(vcpu);
6144 }
6145 
6146 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6147 			bool line_status)
6148 {
6149 	if (!irqchip_in_kernel(kvm))
6150 		return -ENXIO;
6151 
6152 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6153 					irq_event->irq, irq_event->level,
6154 					line_status);
6155 	return 0;
6156 }
6157 
6158 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6159 			    struct kvm_enable_cap *cap)
6160 {
6161 	int r;
6162 
6163 	if (cap->flags)
6164 		return -EINVAL;
6165 
6166 	switch (cap->cap) {
6167 	case KVM_CAP_DISABLE_QUIRKS2:
6168 		r = -EINVAL;
6169 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6170 			break;
6171 		fallthrough;
6172 	case KVM_CAP_DISABLE_QUIRKS:
6173 		kvm->arch.disabled_quirks = cap->args[0];
6174 		r = 0;
6175 		break;
6176 	case KVM_CAP_SPLIT_IRQCHIP: {
6177 		mutex_lock(&kvm->lock);
6178 		r = -EINVAL;
6179 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6180 			goto split_irqchip_unlock;
6181 		r = -EEXIST;
6182 		if (irqchip_in_kernel(kvm))
6183 			goto split_irqchip_unlock;
6184 		if (kvm->created_vcpus)
6185 			goto split_irqchip_unlock;
6186 		r = kvm_setup_empty_irq_routing(kvm);
6187 		if (r)
6188 			goto split_irqchip_unlock;
6189 		/* Pairs with irqchip_in_kernel. */
6190 		smp_wmb();
6191 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6192 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6193 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6194 		r = 0;
6195 split_irqchip_unlock:
6196 		mutex_unlock(&kvm->lock);
6197 		break;
6198 	}
6199 	case KVM_CAP_X2APIC_API:
6200 		r = -EINVAL;
6201 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6202 			break;
6203 
6204 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6205 			kvm->arch.x2apic_format = true;
6206 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6207 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6208 
6209 		r = 0;
6210 		break;
6211 	case KVM_CAP_X86_DISABLE_EXITS:
6212 		r = -EINVAL;
6213 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6214 			break;
6215 
6216 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6217 			kvm_can_mwait_in_guest())
6218 			kvm->arch.mwait_in_guest = true;
6219 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6220 			kvm->arch.hlt_in_guest = true;
6221 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6222 			kvm->arch.pause_in_guest = true;
6223 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6224 			kvm->arch.cstate_in_guest = true;
6225 		r = 0;
6226 		break;
6227 	case KVM_CAP_MSR_PLATFORM_INFO:
6228 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6229 		r = 0;
6230 		break;
6231 	case KVM_CAP_EXCEPTION_PAYLOAD:
6232 		kvm->arch.exception_payload_enabled = cap->args[0];
6233 		r = 0;
6234 		break;
6235 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6236 		kvm->arch.triple_fault_event = cap->args[0];
6237 		r = 0;
6238 		break;
6239 	case KVM_CAP_X86_USER_SPACE_MSR:
6240 		r = -EINVAL;
6241 		if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
6242 				     KVM_MSR_EXIT_REASON_UNKNOWN |
6243 				     KVM_MSR_EXIT_REASON_FILTER))
6244 			break;
6245 		kvm->arch.user_space_msr_mask = cap->args[0];
6246 		r = 0;
6247 		break;
6248 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6249 		r = -EINVAL;
6250 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6251 			break;
6252 
6253 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6254 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6255 			break;
6256 
6257 		if (kvm_caps.has_bus_lock_exit &&
6258 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6259 			kvm->arch.bus_lock_detection_enabled = true;
6260 		r = 0;
6261 		break;
6262 #ifdef CONFIG_X86_SGX_KVM
6263 	case KVM_CAP_SGX_ATTRIBUTE: {
6264 		unsigned long allowed_attributes = 0;
6265 
6266 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6267 		if (r)
6268 			break;
6269 
6270 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6271 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6272 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6273 			kvm->arch.sgx_provisioning_allowed = true;
6274 		else
6275 			r = -EINVAL;
6276 		break;
6277 	}
6278 #endif
6279 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6280 		r = -EINVAL;
6281 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6282 			break;
6283 
6284 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6285 		break;
6286 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6287 		r = -EINVAL;
6288 		if (!kvm_x86_ops.vm_move_enc_context_from)
6289 			break;
6290 
6291 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6292 		break;
6293 	case KVM_CAP_EXIT_HYPERCALL:
6294 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6295 			r = -EINVAL;
6296 			break;
6297 		}
6298 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6299 		r = 0;
6300 		break;
6301 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6302 		r = -EINVAL;
6303 		if (cap->args[0] & ~1)
6304 			break;
6305 		kvm->arch.exit_on_emulation_error = cap->args[0];
6306 		r = 0;
6307 		break;
6308 	case KVM_CAP_PMU_CAPABILITY:
6309 		r = -EINVAL;
6310 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6311 			break;
6312 
6313 		mutex_lock(&kvm->lock);
6314 		if (!kvm->created_vcpus) {
6315 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6316 			r = 0;
6317 		}
6318 		mutex_unlock(&kvm->lock);
6319 		break;
6320 	case KVM_CAP_MAX_VCPU_ID:
6321 		r = -EINVAL;
6322 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6323 			break;
6324 
6325 		mutex_lock(&kvm->lock);
6326 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6327 			r = 0;
6328 		} else if (!kvm->arch.max_vcpu_ids) {
6329 			kvm->arch.max_vcpu_ids = cap->args[0];
6330 			r = 0;
6331 		}
6332 		mutex_unlock(&kvm->lock);
6333 		break;
6334 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6335 		r = -EINVAL;
6336 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6337 			break;
6338 		if (!kvm_caps.has_notify_vmexit)
6339 			break;
6340 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6341 			break;
6342 		mutex_lock(&kvm->lock);
6343 		if (!kvm->created_vcpus) {
6344 			kvm->arch.notify_window = cap->args[0] >> 32;
6345 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6346 			r = 0;
6347 		}
6348 		mutex_unlock(&kvm->lock);
6349 		break;
6350 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6351 		r = -EINVAL;
6352 
6353 		/*
6354 		 * Since the risk of disabling NX hugepages is a guest crashing
6355 		 * the system, ensure the userspace process has permission to
6356 		 * reboot the system.
6357 		 *
6358 		 * Note that unlike the reboot() syscall, the process must have
6359 		 * this capability in the root namespace because exposing
6360 		 * /dev/kvm into a container does not limit the scope of the
6361 		 * iTLB multihit bug to that container. In other words,
6362 		 * this must use capable(), not ns_capable().
6363 		 */
6364 		if (!capable(CAP_SYS_BOOT)) {
6365 			r = -EPERM;
6366 			break;
6367 		}
6368 
6369 		if (cap->args[0])
6370 			break;
6371 
6372 		mutex_lock(&kvm->lock);
6373 		if (!kvm->created_vcpus) {
6374 			kvm->arch.disable_nx_huge_pages = true;
6375 			r = 0;
6376 		}
6377 		mutex_unlock(&kvm->lock);
6378 		break;
6379 	default:
6380 		r = -EINVAL;
6381 		break;
6382 	}
6383 	return r;
6384 }
6385 
6386 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6387 {
6388 	struct kvm_x86_msr_filter *msr_filter;
6389 
6390 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6391 	if (!msr_filter)
6392 		return NULL;
6393 
6394 	msr_filter->default_allow = default_allow;
6395 	return msr_filter;
6396 }
6397 
6398 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6399 {
6400 	u32 i;
6401 
6402 	if (!msr_filter)
6403 		return;
6404 
6405 	for (i = 0; i < msr_filter->count; i++)
6406 		kfree(msr_filter->ranges[i].bitmap);
6407 
6408 	kfree(msr_filter);
6409 }
6410 
6411 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6412 			      struct kvm_msr_filter_range *user_range)
6413 {
6414 	unsigned long *bitmap = NULL;
6415 	size_t bitmap_size;
6416 
6417 	if (!user_range->nmsrs)
6418 		return 0;
6419 
6420 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6421 		return -EINVAL;
6422 
6423 	if (!user_range->flags)
6424 		return -EINVAL;
6425 
6426 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6427 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6428 		return -EINVAL;
6429 
6430 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6431 	if (IS_ERR(bitmap))
6432 		return PTR_ERR(bitmap);
6433 
6434 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6435 		.flags = user_range->flags,
6436 		.base = user_range->base,
6437 		.nmsrs = user_range->nmsrs,
6438 		.bitmap = bitmap,
6439 	};
6440 
6441 	msr_filter->count++;
6442 	return 0;
6443 }
6444 
6445 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6446 {
6447 	struct kvm_msr_filter __user *user_msr_filter = argp;
6448 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6449 	struct kvm_msr_filter filter;
6450 	bool default_allow;
6451 	bool empty = true;
6452 	int r = 0;
6453 	u32 i;
6454 
6455 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6456 		return -EFAULT;
6457 
6458 	if (filter.flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
6459 		return -EINVAL;
6460 
6461 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6462 		empty &= !filter.ranges[i].nmsrs;
6463 
6464 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6465 	if (empty && !default_allow)
6466 		return -EINVAL;
6467 
6468 	new_filter = kvm_alloc_msr_filter(default_allow);
6469 	if (!new_filter)
6470 		return -ENOMEM;
6471 
6472 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6473 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6474 		if (r) {
6475 			kvm_free_msr_filter(new_filter);
6476 			return r;
6477 		}
6478 	}
6479 
6480 	mutex_lock(&kvm->lock);
6481 
6482 	/* The per-VM filter is protected by kvm->lock... */
6483 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6484 
6485 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6486 	synchronize_srcu(&kvm->srcu);
6487 
6488 	kvm_free_msr_filter(old_filter);
6489 
6490 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6491 	mutex_unlock(&kvm->lock);
6492 
6493 	return 0;
6494 }
6495 
6496 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6497 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6498 {
6499 	struct kvm_vcpu *vcpu;
6500 	unsigned long i;
6501 	int ret = 0;
6502 
6503 	mutex_lock(&kvm->lock);
6504 	kvm_for_each_vcpu(i, vcpu, kvm) {
6505 		if (!vcpu->arch.pv_time.active)
6506 			continue;
6507 
6508 		ret = kvm_set_guest_paused(vcpu);
6509 		if (ret) {
6510 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6511 				vcpu->vcpu_id, ret);
6512 			break;
6513 		}
6514 	}
6515 	mutex_unlock(&kvm->lock);
6516 
6517 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6518 }
6519 
6520 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6521 {
6522 	switch (state) {
6523 	case PM_HIBERNATION_PREPARE:
6524 	case PM_SUSPEND_PREPARE:
6525 		return kvm_arch_suspend_notifier(kvm);
6526 	}
6527 
6528 	return NOTIFY_DONE;
6529 }
6530 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6531 
6532 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6533 {
6534 	struct kvm_clock_data data = { 0 };
6535 
6536 	get_kvmclock(kvm, &data);
6537 	if (copy_to_user(argp, &data, sizeof(data)))
6538 		return -EFAULT;
6539 
6540 	return 0;
6541 }
6542 
6543 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6544 {
6545 	struct kvm_arch *ka = &kvm->arch;
6546 	struct kvm_clock_data data;
6547 	u64 now_raw_ns;
6548 
6549 	if (copy_from_user(&data, argp, sizeof(data)))
6550 		return -EFAULT;
6551 
6552 	/*
6553 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6554 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6555 	 */
6556 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6557 		return -EINVAL;
6558 
6559 	kvm_hv_request_tsc_page_update(kvm);
6560 	kvm_start_pvclock_update(kvm);
6561 	pvclock_update_vm_gtod_copy(kvm);
6562 
6563 	/*
6564 	 * This pairs with kvm_guest_time_update(): when masterclock is
6565 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6566 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6567 	 * is slightly ahead) here we risk going negative on unsigned
6568 	 * 'system_time' when 'data.clock' is very small.
6569 	 */
6570 	if (data.flags & KVM_CLOCK_REALTIME) {
6571 		u64 now_real_ns = ktime_get_real_ns();
6572 
6573 		/*
6574 		 * Avoid stepping the kvmclock backwards.
6575 		 */
6576 		if (now_real_ns > data.realtime)
6577 			data.clock += now_real_ns - data.realtime;
6578 	}
6579 
6580 	if (ka->use_master_clock)
6581 		now_raw_ns = ka->master_kernel_ns;
6582 	else
6583 		now_raw_ns = get_kvmclock_base_ns();
6584 	ka->kvmclock_offset = data.clock - now_raw_ns;
6585 	kvm_end_pvclock_update(kvm);
6586 	return 0;
6587 }
6588 
6589 long kvm_arch_vm_ioctl(struct file *filp,
6590 		       unsigned int ioctl, unsigned long arg)
6591 {
6592 	struct kvm *kvm = filp->private_data;
6593 	void __user *argp = (void __user *)arg;
6594 	int r = -ENOTTY;
6595 	/*
6596 	 * This union makes it completely explicit to gcc-3.x
6597 	 * that these two variables' stack usage should be
6598 	 * combined, not added together.
6599 	 */
6600 	union {
6601 		struct kvm_pit_state ps;
6602 		struct kvm_pit_state2 ps2;
6603 		struct kvm_pit_config pit_config;
6604 	} u;
6605 
6606 	switch (ioctl) {
6607 	case KVM_SET_TSS_ADDR:
6608 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6609 		break;
6610 	case KVM_SET_IDENTITY_MAP_ADDR: {
6611 		u64 ident_addr;
6612 
6613 		mutex_lock(&kvm->lock);
6614 		r = -EINVAL;
6615 		if (kvm->created_vcpus)
6616 			goto set_identity_unlock;
6617 		r = -EFAULT;
6618 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6619 			goto set_identity_unlock;
6620 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6621 set_identity_unlock:
6622 		mutex_unlock(&kvm->lock);
6623 		break;
6624 	}
6625 	case KVM_SET_NR_MMU_PAGES:
6626 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6627 		break;
6628 	case KVM_GET_NR_MMU_PAGES:
6629 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6630 		break;
6631 	case KVM_CREATE_IRQCHIP: {
6632 		mutex_lock(&kvm->lock);
6633 
6634 		r = -EEXIST;
6635 		if (irqchip_in_kernel(kvm))
6636 			goto create_irqchip_unlock;
6637 
6638 		r = -EINVAL;
6639 		if (kvm->created_vcpus)
6640 			goto create_irqchip_unlock;
6641 
6642 		r = kvm_pic_init(kvm);
6643 		if (r)
6644 			goto create_irqchip_unlock;
6645 
6646 		r = kvm_ioapic_init(kvm);
6647 		if (r) {
6648 			kvm_pic_destroy(kvm);
6649 			goto create_irqchip_unlock;
6650 		}
6651 
6652 		r = kvm_setup_default_irq_routing(kvm);
6653 		if (r) {
6654 			kvm_ioapic_destroy(kvm);
6655 			kvm_pic_destroy(kvm);
6656 			goto create_irqchip_unlock;
6657 		}
6658 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6659 		smp_wmb();
6660 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6661 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6662 	create_irqchip_unlock:
6663 		mutex_unlock(&kvm->lock);
6664 		break;
6665 	}
6666 	case KVM_CREATE_PIT:
6667 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6668 		goto create_pit;
6669 	case KVM_CREATE_PIT2:
6670 		r = -EFAULT;
6671 		if (copy_from_user(&u.pit_config, argp,
6672 				   sizeof(struct kvm_pit_config)))
6673 			goto out;
6674 	create_pit:
6675 		mutex_lock(&kvm->lock);
6676 		r = -EEXIST;
6677 		if (kvm->arch.vpit)
6678 			goto create_pit_unlock;
6679 		r = -ENOMEM;
6680 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6681 		if (kvm->arch.vpit)
6682 			r = 0;
6683 	create_pit_unlock:
6684 		mutex_unlock(&kvm->lock);
6685 		break;
6686 	case KVM_GET_IRQCHIP: {
6687 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6688 		struct kvm_irqchip *chip;
6689 
6690 		chip = memdup_user(argp, sizeof(*chip));
6691 		if (IS_ERR(chip)) {
6692 			r = PTR_ERR(chip);
6693 			goto out;
6694 		}
6695 
6696 		r = -ENXIO;
6697 		if (!irqchip_kernel(kvm))
6698 			goto get_irqchip_out;
6699 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6700 		if (r)
6701 			goto get_irqchip_out;
6702 		r = -EFAULT;
6703 		if (copy_to_user(argp, chip, sizeof(*chip)))
6704 			goto get_irqchip_out;
6705 		r = 0;
6706 	get_irqchip_out:
6707 		kfree(chip);
6708 		break;
6709 	}
6710 	case KVM_SET_IRQCHIP: {
6711 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6712 		struct kvm_irqchip *chip;
6713 
6714 		chip = memdup_user(argp, sizeof(*chip));
6715 		if (IS_ERR(chip)) {
6716 			r = PTR_ERR(chip);
6717 			goto out;
6718 		}
6719 
6720 		r = -ENXIO;
6721 		if (!irqchip_kernel(kvm))
6722 			goto set_irqchip_out;
6723 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6724 	set_irqchip_out:
6725 		kfree(chip);
6726 		break;
6727 	}
6728 	case KVM_GET_PIT: {
6729 		r = -EFAULT;
6730 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6731 			goto out;
6732 		r = -ENXIO;
6733 		if (!kvm->arch.vpit)
6734 			goto out;
6735 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6736 		if (r)
6737 			goto out;
6738 		r = -EFAULT;
6739 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6740 			goto out;
6741 		r = 0;
6742 		break;
6743 	}
6744 	case KVM_SET_PIT: {
6745 		r = -EFAULT;
6746 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6747 			goto out;
6748 		mutex_lock(&kvm->lock);
6749 		r = -ENXIO;
6750 		if (!kvm->arch.vpit)
6751 			goto set_pit_out;
6752 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6753 set_pit_out:
6754 		mutex_unlock(&kvm->lock);
6755 		break;
6756 	}
6757 	case KVM_GET_PIT2: {
6758 		r = -ENXIO;
6759 		if (!kvm->arch.vpit)
6760 			goto out;
6761 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6762 		if (r)
6763 			goto out;
6764 		r = -EFAULT;
6765 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6766 			goto out;
6767 		r = 0;
6768 		break;
6769 	}
6770 	case KVM_SET_PIT2: {
6771 		r = -EFAULT;
6772 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6773 			goto out;
6774 		mutex_lock(&kvm->lock);
6775 		r = -ENXIO;
6776 		if (!kvm->arch.vpit)
6777 			goto set_pit2_out;
6778 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6779 set_pit2_out:
6780 		mutex_unlock(&kvm->lock);
6781 		break;
6782 	}
6783 	case KVM_REINJECT_CONTROL: {
6784 		struct kvm_reinject_control control;
6785 		r =  -EFAULT;
6786 		if (copy_from_user(&control, argp, sizeof(control)))
6787 			goto out;
6788 		r = -ENXIO;
6789 		if (!kvm->arch.vpit)
6790 			goto out;
6791 		r = kvm_vm_ioctl_reinject(kvm, &control);
6792 		break;
6793 	}
6794 	case KVM_SET_BOOT_CPU_ID:
6795 		r = 0;
6796 		mutex_lock(&kvm->lock);
6797 		if (kvm->created_vcpus)
6798 			r = -EBUSY;
6799 		else
6800 			kvm->arch.bsp_vcpu_id = arg;
6801 		mutex_unlock(&kvm->lock);
6802 		break;
6803 #ifdef CONFIG_KVM_XEN
6804 	case KVM_XEN_HVM_CONFIG: {
6805 		struct kvm_xen_hvm_config xhc;
6806 		r = -EFAULT;
6807 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6808 			goto out;
6809 		r = kvm_xen_hvm_config(kvm, &xhc);
6810 		break;
6811 	}
6812 	case KVM_XEN_HVM_GET_ATTR: {
6813 		struct kvm_xen_hvm_attr xha;
6814 
6815 		r = -EFAULT;
6816 		if (copy_from_user(&xha, argp, sizeof(xha)))
6817 			goto out;
6818 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6819 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6820 			r = -EFAULT;
6821 		break;
6822 	}
6823 	case KVM_XEN_HVM_SET_ATTR: {
6824 		struct kvm_xen_hvm_attr xha;
6825 
6826 		r = -EFAULT;
6827 		if (copy_from_user(&xha, argp, sizeof(xha)))
6828 			goto out;
6829 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6830 		break;
6831 	}
6832 	case KVM_XEN_HVM_EVTCHN_SEND: {
6833 		struct kvm_irq_routing_xen_evtchn uxe;
6834 
6835 		r = -EFAULT;
6836 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6837 			goto out;
6838 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6839 		break;
6840 	}
6841 #endif
6842 	case KVM_SET_CLOCK:
6843 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6844 		break;
6845 	case KVM_GET_CLOCK:
6846 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6847 		break;
6848 	case KVM_SET_TSC_KHZ: {
6849 		u32 user_tsc_khz;
6850 
6851 		r = -EINVAL;
6852 		user_tsc_khz = (u32)arg;
6853 
6854 		if (kvm_caps.has_tsc_control &&
6855 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6856 			goto out;
6857 
6858 		if (user_tsc_khz == 0)
6859 			user_tsc_khz = tsc_khz;
6860 
6861 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6862 		r = 0;
6863 
6864 		goto out;
6865 	}
6866 	case KVM_GET_TSC_KHZ: {
6867 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6868 		goto out;
6869 	}
6870 	case KVM_MEMORY_ENCRYPT_OP: {
6871 		r = -ENOTTY;
6872 		if (!kvm_x86_ops.mem_enc_ioctl)
6873 			goto out;
6874 
6875 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6876 		break;
6877 	}
6878 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6879 		struct kvm_enc_region region;
6880 
6881 		r = -EFAULT;
6882 		if (copy_from_user(&region, argp, sizeof(region)))
6883 			goto out;
6884 
6885 		r = -ENOTTY;
6886 		if (!kvm_x86_ops.mem_enc_register_region)
6887 			goto out;
6888 
6889 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6890 		break;
6891 	}
6892 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6893 		struct kvm_enc_region region;
6894 
6895 		r = -EFAULT;
6896 		if (copy_from_user(&region, argp, sizeof(region)))
6897 			goto out;
6898 
6899 		r = -ENOTTY;
6900 		if (!kvm_x86_ops.mem_enc_unregister_region)
6901 			goto out;
6902 
6903 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6904 		break;
6905 	}
6906 	case KVM_HYPERV_EVENTFD: {
6907 		struct kvm_hyperv_eventfd hvevfd;
6908 
6909 		r = -EFAULT;
6910 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6911 			goto out;
6912 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6913 		break;
6914 	}
6915 	case KVM_SET_PMU_EVENT_FILTER:
6916 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6917 		break;
6918 	case KVM_X86_SET_MSR_FILTER:
6919 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6920 		break;
6921 	default:
6922 		r = -ENOTTY;
6923 	}
6924 out:
6925 	return r;
6926 }
6927 
6928 static void kvm_init_msr_list(void)
6929 {
6930 	u32 dummy[2];
6931 	unsigned i;
6932 
6933 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6934 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6935 
6936 	num_msrs_to_save = 0;
6937 	num_emulated_msrs = 0;
6938 	num_msr_based_features = 0;
6939 
6940 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6941 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6942 			continue;
6943 
6944 		/*
6945 		 * Even MSRs that are valid in the host may not be exposed
6946 		 * to the guests in some cases.
6947 		 */
6948 		switch (msrs_to_save_all[i]) {
6949 		case MSR_IA32_BNDCFGS:
6950 			if (!kvm_mpx_supported())
6951 				continue;
6952 			break;
6953 		case MSR_TSC_AUX:
6954 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6955 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6956 				continue;
6957 			break;
6958 		case MSR_IA32_UMWAIT_CONTROL:
6959 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6960 				continue;
6961 			break;
6962 		case MSR_IA32_RTIT_CTL:
6963 		case MSR_IA32_RTIT_STATUS:
6964 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6965 				continue;
6966 			break;
6967 		case MSR_IA32_RTIT_CR3_MATCH:
6968 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6969 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6970 				continue;
6971 			break;
6972 		case MSR_IA32_RTIT_OUTPUT_BASE:
6973 		case MSR_IA32_RTIT_OUTPUT_MASK:
6974 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6975 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6976 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6977 				continue;
6978 			break;
6979 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6980 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6981 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6982 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6983 				continue;
6984 			break;
6985 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6986 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6987 			    min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
6988 				continue;
6989 			break;
6990 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6991 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6992 			    min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
6993 				continue;
6994 			break;
6995 		case MSR_IA32_XFD:
6996 		case MSR_IA32_XFD_ERR:
6997 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6998 				continue;
6999 			break;
7000 		default:
7001 			break;
7002 		}
7003 
7004 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
7005 	}
7006 
7007 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7008 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7009 			continue;
7010 
7011 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7012 	}
7013 
7014 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
7015 		struct kvm_msr_entry msr;
7016 
7017 		msr.index = msr_based_features_all[i];
7018 		if (kvm_get_msr_feature(&msr))
7019 			continue;
7020 
7021 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
7022 	}
7023 }
7024 
7025 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7026 			   const void *v)
7027 {
7028 	int handled = 0;
7029 	int n;
7030 
7031 	do {
7032 		n = min(len, 8);
7033 		if (!(lapic_in_kernel(vcpu) &&
7034 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7035 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7036 			break;
7037 		handled += n;
7038 		addr += n;
7039 		len -= n;
7040 		v += n;
7041 	} while (len);
7042 
7043 	return handled;
7044 }
7045 
7046 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7047 {
7048 	int handled = 0;
7049 	int n;
7050 
7051 	do {
7052 		n = min(len, 8);
7053 		if (!(lapic_in_kernel(vcpu) &&
7054 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7055 					 addr, n, v))
7056 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7057 			break;
7058 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7059 		handled += n;
7060 		addr += n;
7061 		len -= n;
7062 		v += n;
7063 	} while (len);
7064 
7065 	return handled;
7066 }
7067 
7068 static void kvm_set_segment(struct kvm_vcpu *vcpu,
7069 			struct kvm_segment *var, int seg)
7070 {
7071 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7072 }
7073 
7074 void kvm_get_segment(struct kvm_vcpu *vcpu,
7075 		     struct kvm_segment *var, int seg)
7076 {
7077 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7078 }
7079 
7080 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7081 			   struct x86_exception *exception)
7082 {
7083 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7084 	gpa_t t_gpa;
7085 
7086 	BUG_ON(!mmu_is_nested(vcpu));
7087 
7088 	/* NPT walks are always user-walks */
7089 	access |= PFERR_USER_MASK;
7090 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7091 
7092 	return t_gpa;
7093 }
7094 
7095 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7096 			      struct x86_exception *exception)
7097 {
7098 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7099 
7100 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7101 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7102 }
7103 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7104 
7105  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
7106 				struct x86_exception *exception)
7107 {
7108 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7109 
7110 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7111 	access |= PFERR_FETCH_MASK;
7112 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7113 }
7114 
7115 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7116 			       struct x86_exception *exception)
7117 {
7118 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7119 
7120 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7121 	access |= PFERR_WRITE_MASK;
7122 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7123 }
7124 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7125 
7126 /* uses this to access any guest's mapped memory without checking CPL */
7127 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7128 				struct x86_exception *exception)
7129 {
7130 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7131 
7132 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7133 }
7134 
7135 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7136 				      struct kvm_vcpu *vcpu, u64 access,
7137 				      struct x86_exception *exception)
7138 {
7139 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7140 	void *data = val;
7141 	int r = X86EMUL_CONTINUE;
7142 
7143 	while (bytes) {
7144 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7145 		unsigned offset = addr & (PAGE_SIZE-1);
7146 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7147 		int ret;
7148 
7149 		if (gpa == INVALID_GPA)
7150 			return X86EMUL_PROPAGATE_FAULT;
7151 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7152 					       offset, toread);
7153 		if (ret < 0) {
7154 			r = X86EMUL_IO_NEEDED;
7155 			goto out;
7156 		}
7157 
7158 		bytes -= toread;
7159 		data += toread;
7160 		addr += toread;
7161 	}
7162 out:
7163 	return r;
7164 }
7165 
7166 /* used for instruction fetching */
7167 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7168 				gva_t addr, void *val, unsigned int bytes,
7169 				struct x86_exception *exception)
7170 {
7171 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7172 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7173 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7174 	unsigned offset;
7175 	int ret;
7176 
7177 	/* Inline kvm_read_guest_virt_helper for speed.  */
7178 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7179 				    exception);
7180 	if (unlikely(gpa == INVALID_GPA))
7181 		return X86EMUL_PROPAGATE_FAULT;
7182 
7183 	offset = addr & (PAGE_SIZE-1);
7184 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7185 		bytes = (unsigned)PAGE_SIZE - offset;
7186 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7187 				       offset, bytes);
7188 	if (unlikely(ret < 0))
7189 		return X86EMUL_IO_NEEDED;
7190 
7191 	return X86EMUL_CONTINUE;
7192 }
7193 
7194 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7195 			       gva_t addr, void *val, unsigned int bytes,
7196 			       struct x86_exception *exception)
7197 {
7198 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7199 
7200 	/*
7201 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7202 	 * is returned, but our callers are not ready for that and they blindly
7203 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7204 	 * uninitialized kernel stack memory into cr2 and error code.
7205 	 */
7206 	memset(exception, 0, sizeof(*exception));
7207 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7208 					  exception);
7209 }
7210 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7211 
7212 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7213 			     gva_t addr, void *val, unsigned int bytes,
7214 			     struct x86_exception *exception, bool system)
7215 {
7216 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7217 	u64 access = 0;
7218 
7219 	if (system)
7220 		access |= PFERR_IMPLICIT_ACCESS;
7221 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7222 		access |= PFERR_USER_MASK;
7223 
7224 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7225 }
7226 
7227 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
7228 		unsigned long addr, void *val, unsigned int bytes)
7229 {
7230 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7231 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
7232 
7233 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
7234 }
7235 
7236 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7237 				      struct kvm_vcpu *vcpu, u64 access,
7238 				      struct x86_exception *exception)
7239 {
7240 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7241 	void *data = val;
7242 	int r = X86EMUL_CONTINUE;
7243 
7244 	while (bytes) {
7245 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7246 		unsigned offset = addr & (PAGE_SIZE-1);
7247 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7248 		int ret;
7249 
7250 		if (gpa == INVALID_GPA)
7251 			return X86EMUL_PROPAGATE_FAULT;
7252 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7253 		if (ret < 0) {
7254 			r = X86EMUL_IO_NEEDED;
7255 			goto out;
7256 		}
7257 
7258 		bytes -= towrite;
7259 		data += towrite;
7260 		addr += towrite;
7261 	}
7262 out:
7263 	return r;
7264 }
7265 
7266 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7267 			      unsigned int bytes, struct x86_exception *exception,
7268 			      bool system)
7269 {
7270 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7271 	u64 access = PFERR_WRITE_MASK;
7272 
7273 	if (system)
7274 		access |= PFERR_IMPLICIT_ACCESS;
7275 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7276 		access |= PFERR_USER_MASK;
7277 
7278 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7279 					   access, exception);
7280 }
7281 
7282 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7283 				unsigned int bytes, struct x86_exception *exception)
7284 {
7285 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7286 	vcpu->arch.l1tf_flush_l1d = true;
7287 
7288 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7289 					   PFERR_WRITE_MASK, exception);
7290 }
7291 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7292 
7293 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7294 				void *insn, int insn_len)
7295 {
7296 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7297 							    insn, insn_len);
7298 }
7299 
7300 int handle_ud(struct kvm_vcpu *vcpu)
7301 {
7302 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7303 	int fep_flags = READ_ONCE(force_emulation_prefix);
7304 	int emul_type = EMULTYPE_TRAP_UD;
7305 	char sig[5]; /* ud2; .ascii "kvm" */
7306 	struct x86_exception e;
7307 
7308 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7309 		return 1;
7310 
7311 	if (fep_flags &&
7312 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7313 				sig, sizeof(sig), &e) == 0 &&
7314 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7315 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7316 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7317 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7318 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7319 	}
7320 
7321 	return kvm_emulate_instruction(vcpu, emul_type);
7322 }
7323 EXPORT_SYMBOL_GPL(handle_ud);
7324 
7325 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7326 			    gpa_t gpa, bool write)
7327 {
7328 	/* For APIC access vmexit */
7329 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7330 		return 1;
7331 
7332 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7333 		trace_vcpu_match_mmio(gva, gpa, write, true);
7334 		return 1;
7335 	}
7336 
7337 	return 0;
7338 }
7339 
7340 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7341 				gpa_t *gpa, struct x86_exception *exception,
7342 				bool write)
7343 {
7344 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7345 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7346 		| (write ? PFERR_WRITE_MASK : 0);
7347 
7348 	/*
7349 	 * currently PKRU is only applied to ept enabled guest so
7350 	 * there is no pkey in EPT page table for L1 guest or EPT
7351 	 * shadow page table for L2 guest.
7352 	 */
7353 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7354 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7355 			      vcpu->arch.mmio_access, 0, access))) {
7356 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7357 					(gva & (PAGE_SIZE - 1));
7358 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7359 		return 1;
7360 	}
7361 
7362 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7363 
7364 	if (*gpa == INVALID_GPA)
7365 		return -1;
7366 
7367 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7368 }
7369 
7370 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7371 			const void *val, int bytes)
7372 {
7373 	int ret;
7374 
7375 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7376 	if (ret < 0)
7377 		return 0;
7378 	kvm_page_track_write(vcpu, gpa, val, bytes);
7379 	return 1;
7380 }
7381 
7382 struct read_write_emulator_ops {
7383 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7384 				  int bytes);
7385 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7386 				  void *val, int bytes);
7387 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7388 			       int bytes, void *val);
7389 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7390 				    void *val, int bytes);
7391 	bool write;
7392 };
7393 
7394 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7395 {
7396 	if (vcpu->mmio_read_completed) {
7397 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7398 			       vcpu->mmio_fragments[0].gpa, val);
7399 		vcpu->mmio_read_completed = 0;
7400 		return 1;
7401 	}
7402 
7403 	return 0;
7404 }
7405 
7406 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7407 			void *val, int bytes)
7408 {
7409 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7410 }
7411 
7412 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7413 			 void *val, int bytes)
7414 {
7415 	return emulator_write_phys(vcpu, gpa, val, bytes);
7416 }
7417 
7418 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7419 {
7420 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7421 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7422 }
7423 
7424 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7425 			  void *val, int bytes)
7426 {
7427 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7428 	return X86EMUL_IO_NEEDED;
7429 }
7430 
7431 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7432 			   void *val, int bytes)
7433 {
7434 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7435 
7436 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7437 	return X86EMUL_CONTINUE;
7438 }
7439 
7440 static const struct read_write_emulator_ops read_emultor = {
7441 	.read_write_prepare = read_prepare,
7442 	.read_write_emulate = read_emulate,
7443 	.read_write_mmio = vcpu_mmio_read,
7444 	.read_write_exit_mmio = read_exit_mmio,
7445 };
7446 
7447 static const struct read_write_emulator_ops write_emultor = {
7448 	.read_write_emulate = write_emulate,
7449 	.read_write_mmio = write_mmio,
7450 	.read_write_exit_mmio = write_exit_mmio,
7451 	.write = true,
7452 };
7453 
7454 static int emulator_read_write_onepage(unsigned long addr, void *val,
7455 				       unsigned int bytes,
7456 				       struct x86_exception *exception,
7457 				       struct kvm_vcpu *vcpu,
7458 				       const struct read_write_emulator_ops *ops)
7459 {
7460 	gpa_t gpa;
7461 	int handled, ret;
7462 	bool write = ops->write;
7463 	struct kvm_mmio_fragment *frag;
7464 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7465 
7466 	/*
7467 	 * If the exit was due to a NPF we may already have a GPA.
7468 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7469 	 * Note, this cannot be used on string operations since string
7470 	 * operation using rep will only have the initial GPA from the NPF
7471 	 * occurred.
7472 	 */
7473 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7474 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7475 		gpa = ctxt->gpa_val;
7476 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7477 	} else {
7478 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7479 		if (ret < 0)
7480 			return X86EMUL_PROPAGATE_FAULT;
7481 	}
7482 
7483 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7484 		return X86EMUL_CONTINUE;
7485 
7486 	/*
7487 	 * Is this MMIO handled locally?
7488 	 */
7489 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7490 	if (handled == bytes)
7491 		return X86EMUL_CONTINUE;
7492 
7493 	gpa += handled;
7494 	bytes -= handled;
7495 	val += handled;
7496 
7497 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7498 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7499 	frag->gpa = gpa;
7500 	frag->data = val;
7501 	frag->len = bytes;
7502 	return X86EMUL_CONTINUE;
7503 }
7504 
7505 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7506 			unsigned long addr,
7507 			void *val, unsigned int bytes,
7508 			struct x86_exception *exception,
7509 			const struct read_write_emulator_ops *ops)
7510 {
7511 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7512 	gpa_t gpa;
7513 	int rc;
7514 
7515 	if (ops->read_write_prepare &&
7516 		  ops->read_write_prepare(vcpu, val, bytes))
7517 		return X86EMUL_CONTINUE;
7518 
7519 	vcpu->mmio_nr_fragments = 0;
7520 
7521 	/* Crossing a page boundary? */
7522 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7523 		int now;
7524 
7525 		now = -addr & ~PAGE_MASK;
7526 		rc = emulator_read_write_onepage(addr, val, now, exception,
7527 						 vcpu, ops);
7528 
7529 		if (rc != X86EMUL_CONTINUE)
7530 			return rc;
7531 		addr += now;
7532 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7533 			addr = (u32)addr;
7534 		val += now;
7535 		bytes -= now;
7536 	}
7537 
7538 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7539 					 vcpu, ops);
7540 	if (rc != X86EMUL_CONTINUE)
7541 		return rc;
7542 
7543 	if (!vcpu->mmio_nr_fragments)
7544 		return rc;
7545 
7546 	gpa = vcpu->mmio_fragments[0].gpa;
7547 
7548 	vcpu->mmio_needed = 1;
7549 	vcpu->mmio_cur_fragment = 0;
7550 
7551 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7552 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7553 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7554 	vcpu->run->mmio.phys_addr = gpa;
7555 
7556 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7557 }
7558 
7559 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7560 				  unsigned long addr,
7561 				  void *val,
7562 				  unsigned int bytes,
7563 				  struct x86_exception *exception)
7564 {
7565 	return emulator_read_write(ctxt, addr, val, bytes,
7566 				   exception, &read_emultor);
7567 }
7568 
7569 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7570 			    unsigned long addr,
7571 			    const void *val,
7572 			    unsigned int bytes,
7573 			    struct x86_exception *exception)
7574 {
7575 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7576 				   exception, &write_emultor);
7577 }
7578 
7579 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7580 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7581 
7582 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7583 				     unsigned long addr,
7584 				     const void *old,
7585 				     const void *new,
7586 				     unsigned int bytes,
7587 				     struct x86_exception *exception)
7588 {
7589 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7590 	u64 page_line_mask;
7591 	unsigned long hva;
7592 	gpa_t gpa;
7593 	int r;
7594 
7595 	/* guests cmpxchg8b have to be emulated atomically */
7596 	if (bytes > 8 || (bytes & (bytes - 1)))
7597 		goto emul_write;
7598 
7599 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7600 
7601 	if (gpa == INVALID_GPA ||
7602 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7603 		goto emul_write;
7604 
7605 	/*
7606 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7607 	 * enabled in the host and the access splits a cache line.
7608 	 */
7609 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7610 		page_line_mask = ~(cache_line_size() - 1);
7611 	else
7612 		page_line_mask = PAGE_MASK;
7613 
7614 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7615 		goto emul_write;
7616 
7617 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7618 	if (kvm_is_error_hva(hva))
7619 		goto emul_write;
7620 
7621 	hva += offset_in_page(gpa);
7622 
7623 	switch (bytes) {
7624 	case 1:
7625 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7626 		break;
7627 	case 2:
7628 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7629 		break;
7630 	case 4:
7631 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7632 		break;
7633 	case 8:
7634 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7635 		break;
7636 	default:
7637 		BUG();
7638 	}
7639 
7640 	if (r < 0)
7641 		return X86EMUL_UNHANDLEABLE;
7642 	if (r)
7643 		return X86EMUL_CMPXCHG_FAILED;
7644 
7645 	kvm_page_track_write(vcpu, gpa, new, bytes);
7646 
7647 	return X86EMUL_CONTINUE;
7648 
7649 emul_write:
7650 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7651 
7652 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7653 }
7654 
7655 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7656 			       unsigned short port, void *data,
7657 			       unsigned int count, bool in)
7658 {
7659 	unsigned i;
7660 	int r;
7661 
7662 	WARN_ON_ONCE(vcpu->arch.pio.count);
7663 	for (i = 0; i < count; i++) {
7664 		if (in)
7665 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7666 		else
7667 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7668 
7669 		if (r) {
7670 			if (i == 0)
7671 				goto userspace_io;
7672 
7673 			/*
7674 			 * Userspace must have unregistered the device while PIO
7675 			 * was running.  Drop writes / read as 0.
7676 			 */
7677 			if (in)
7678 				memset(data, 0, size * (count - i));
7679 			break;
7680 		}
7681 
7682 		data += size;
7683 	}
7684 	return 1;
7685 
7686 userspace_io:
7687 	vcpu->arch.pio.port = port;
7688 	vcpu->arch.pio.in = in;
7689 	vcpu->arch.pio.count = count;
7690 	vcpu->arch.pio.size = size;
7691 
7692 	if (in)
7693 		memset(vcpu->arch.pio_data, 0, size * count);
7694 	else
7695 		memcpy(vcpu->arch.pio_data, data, size * count);
7696 
7697 	vcpu->run->exit_reason = KVM_EXIT_IO;
7698 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7699 	vcpu->run->io.size = size;
7700 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7701 	vcpu->run->io.count = count;
7702 	vcpu->run->io.port = port;
7703 	return 0;
7704 }
7705 
7706 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7707       			   unsigned short port, void *val, unsigned int count)
7708 {
7709 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7710 	if (r)
7711 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7712 
7713 	return r;
7714 }
7715 
7716 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7717 {
7718 	int size = vcpu->arch.pio.size;
7719 	unsigned int count = vcpu->arch.pio.count;
7720 	memcpy(val, vcpu->arch.pio_data, size * count);
7721 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7722 	vcpu->arch.pio.count = 0;
7723 }
7724 
7725 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7726 				    int size, unsigned short port, void *val,
7727 				    unsigned int count)
7728 {
7729 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7730 	if (vcpu->arch.pio.count) {
7731 		/*
7732 		 * Complete a previous iteration that required userspace I/O.
7733 		 * Note, @count isn't guaranteed to match pio.count as userspace
7734 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7735 		 * shenanigans as KVM doesn't support modifying the rep count,
7736 		 * and the emulator ensures @count doesn't overflow the buffer.
7737 		 */
7738 		complete_emulator_pio_in(vcpu, val);
7739 		return 1;
7740 	}
7741 
7742 	return emulator_pio_in(vcpu, size, port, val, count);
7743 }
7744 
7745 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7746 			    unsigned short port, const void *val,
7747 			    unsigned int count)
7748 {
7749 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7750 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7751 }
7752 
7753 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7754 				     int size, unsigned short port,
7755 				     const void *val, unsigned int count)
7756 {
7757 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7758 }
7759 
7760 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7761 {
7762 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7763 }
7764 
7765 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7766 {
7767 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7768 }
7769 
7770 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7771 {
7772 	if (!need_emulate_wbinvd(vcpu))
7773 		return X86EMUL_CONTINUE;
7774 
7775 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7776 		int cpu = get_cpu();
7777 
7778 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7779 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7780 				wbinvd_ipi, NULL, 1);
7781 		put_cpu();
7782 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7783 	} else
7784 		wbinvd();
7785 	return X86EMUL_CONTINUE;
7786 }
7787 
7788 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7789 {
7790 	kvm_emulate_wbinvd_noskip(vcpu);
7791 	return kvm_skip_emulated_instruction(vcpu);
7792 }
7793 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7794 
7795 
7796 
7797 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7798 {
7799 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7800 }
7801 
7802 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7803 			    unsigned long *dest)
7804 {
7805 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7806 }
7807 
7808 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7809 			   unsigned long value)
7810 {
7811 
7812 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7813 }
7814 
7815 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7816 {
7817 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7818 }
7819 
7820 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7821 {
7822 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7823 	unsigned long value;
7824 
7825 	switch (cr) {
7826 	case 0:
7827 		value = kvm_read_cr0(vcpu);
7828 		break;
7829 	case 2:
7830 		value = vcpu->arch.cr2;
7831 		break;
7832 	case 3:
7833 		value = kvm_read_cr3(vcpu);
7834 		break;
7835 	case 4:
7836 		value = kvm_read_cr4(vcpu);
7837 		break;
7838 	case 8:
7839 		value = kvm_get_cr8(vcpu);
7840 		break;
7841 	default:
7842 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7843 		return 0;
7844 	}
7845 
7846 	return value;
7847 }
7848 
7849 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7850 {
7851 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7852 	int res = 0;
7853 
7854 	switch (cr) {
7855 	case 0:
7856 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7857 		break;
7858 	case 2:
7859 		vcpu->arch.cr2 = val;
7860 		break;
7861 	case 3:
7862 		res = kvm_set_cr3(vcpu, val);
7863 		break;
7864 	case 4:
7865 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7866 		break;
7867 	case 8:
7868 		res = kvm_set_cr8(vcpu, val);
7869 		break;
7870 	default:
7871 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7872 		res = -1;
7873 	}
7874 
7875 	return res;
7876 }
7877 
7878 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7879 {
7880 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7881 }
7882 
7883 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7884 {
7885 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7886 }
7887 
7888 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7889 {
7890 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7891 }
7892 
7893 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7894 {
7895 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7896 }
7897 
7898 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7899 {
7900 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7901 }
7902 
7903 static unsigned long emulator_get_cached_segment_base(
7904 	struct x86_emulate_ctxt *ctxt, int seg)
7905 {
7906 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7907 }
7908 
7909 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7910 				 struct desc_struct *desc, u32 *base3,
7911 				 int seg)
7912 {
7913 	struct kvm_segment var;
7914 
7915 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7916 	*selector = var.selector;
7917 
7918 	if (var.unusable) {
7919 		memset(desc, 0, sizeof(*desc));
7920 		if (base3)
7921 			*base3 = 0;
7922 		return false;
7923 	}
7924 
7925 	if (var.g)
7926 		var.limit >>= 12;
7927 	set_desc_limit(desc, var.limit);
7928 	set_desc_base(desc, (unsigned long)var.base);
7929 #ifdef CONFIG_X86_64
7930 	if (base3)
7931 		*base3 = var.base >> 32;
7932 #endif
7933 	desc->type = var.type;
7934 	desc->s = var.s;
7935 	desc->dpl = var.dpl;
7936 	desc->p = var.present;
7937 	desc->avl = var.avl;
7938 	desc->l = var.l;
7939 	desc->d = var.db;
7940 	desc->g = var.g;
7941 
7942 	return true;
7943 }
7944 
7945 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7946 				 struct desc_struct *desc, u32 base3,
7947 				 int seg)
7948 {
7949 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7950 	struct kvm_segment var;
7951 
7952 	var.selector = selector;
7953 	var.base = get_desc_base(desc);
7954 #ifdef CONFIG_X86_64
7955 	var.base |= ((u64)base3) << 32;
7956 #endif
7957 	var.limit = get_desc_limit(desc);
7958 	if (desc->g)
7959 		var.limit = (var.limit << 12) | 0xfff;
7960 	var.type = desc->type;
7961 	var.dpl = desc->dpl;
7962 	var.db = desc->d;
7963 	var.s = desc->s;
7964 	var.l = desc->l;
7965 	var.g = desc->g;
7966 	var.avl = desc->avl;
7967 	var.present = desc->p;
7968 	var.unusable = !var.present;
7969 	var.padding = 0;
7970 
7971 	kvm_set_segment(vcpu, &var, seg);
7972 	return;
7973 }
7974 
7975 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7976 					u32 msr_index, u64 *pdata)
7977 {
7978 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7979 	int r;
7980 
7981 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7982 	if (r < 0)
7983 		return X86EMUL_UNHANDLEABLE;
7984 
7985 	if (r) {
7986 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7987 				       complete_emulated_rdmsr, r))
7988 			return X86EMUL_IO_NEEDED;
7989 
7990 		trace_kvm_msr_read_ex(msr_index);
7991 		return X86EMUL_PROPAGATE_FAULT;
7992 	}
7993 
7994 	trace_kvm_msr_read(msr_index, *pdata);
7995 	return X86EMUL_CONTINUE;
7996 }
7997 
7998 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7999 					u32 msr_index, u64 data)
8000 {
8001 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8002 	int r;
8003 
8004 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8005 	if (r < 0)
8006 		return X86EMUL_UNHANDLEABLE;
8007 
8008 	if (r) {
8009 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8010 				       complete_emulated_msr_access, r))
8011 			return X86EMUL_IO_NEEDED;
8012 
8013 		trace_kvm_msr_write_ex(msr_index, data);
8014 		return X86EMUL_PROPAGATE_FAULT;
8015 	}
8016 
8017 	trace_kvm_msr_write(msr_index, data);
8018 	return X86EMUL_CONTINUE;
8019 }
8020 
8021 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8022 			    u32 msr_index, u64 *pdata)
8023 {
8024 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8025 }
8026 
8027 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
8028 			    u32 msr_index, u64 data)
8029 {
8030 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
8031 }
8032 
8033 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
8034 {
8035 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8036 
8037 	return vcpu->arch.smbase;
8038 }
8039 
8040 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
8041 {
8042 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8043 
8044 	vcpu->arch.smbase = smbase;
8045 }
8046 
8047 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8048 			      u32 pmc)
8049 {
8050 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8051 		return 0;
8052 	return -EINVAL;
8053 }
8054 
8055 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8056 			     u32 pmc, u64 *pdata)
8057 {
8058 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8059 }
8060 
8061 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8062 {
8063 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8064 }
8065 
8066 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8067 			      struct x86_instruction_info *info,
8068 			      enum x86_intercept_stage stage)
8069 {
8070 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8071 					    &ctxt->exception);
8072 }
8073 
8074 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8075 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8076 			      bool exact_only)
8077 {
8078 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8079 }
8080 
8081 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8082 {
8083 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8084 }
8085 
8086 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8087 {
8088 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8089 }
8090 
8091 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8092 {
8093 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8094 }
8095 
8096 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8097 {
8098 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8099 }
8100 
8101 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8102 {
8103 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8104 }
8105 
8106 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8107 {
8108 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8109 }
8110 
8111 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8112 {
8113 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8114 }
8115 
8116 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8117 {
8118 	return emul_to_vcpu(ctxt)->arch.hflags;
8119 }
8120 
8121 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
8122 {
8123 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8124 
8125 	kvm_smm_changed(vcpu, false);
8126 }
8127 
8128 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
8129 				  const char *smstate)
8130 {
8131 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
8132 }
8133 
8134 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8135 {
8136 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8137 }
8138 
8139 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8140 {
8141 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8142 }
8143 
8144 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8145 {
8146 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8147 
8148 	if (!kvm->vm_bugged)
8149 		kvm_vm_bugged(kvm);
8150 }
8151 
8152 static const struct x86_emulate_ops emulate_ops = {
8153 	.vm_bugged           = emulator_vm_bugged,
8154 	.read_gpr            = emulator_read_gpr,
8155 	.write_gpr           = emulator_write_gpr,
8156 	.read_std            = emulator_read_std,
8157 	.write_std           = emulator_write_std,
8158 	.read_phys           = kvm_read_guest_phys_system,
8159 	.fetch               = kvm_fetch_guest_virt,
8160 	.read_emulated       = emulator_read_emulated,
8161 	.write_emulated      = emulator_write_emulated,
8162 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8163 	.invlpg              = emulator_invlpg,
8164 	.pio_in_emulated     = emulator_pio_in_emulated,
8165 	.pio_out_emulated    = emulator_pio_out_emulated,
8166 	.get_segment         = emulator_get_segment,
8167 	.set_segment         = emulator_set_segment,
8168 	.get_cached_segment_base = emulator_get_cached_segment_base,
8169 	.get_gdt             = emulator_get_gdt,
8170 	.get_idt	     = emulator_get_idt,
8171 	.set_gdt             = emulator_set_gdt,
8172 	.set_idt	     = emulator_set_idt,
8173 	.get_cr              = emulator_get_cr,
8174 	.set_cr              = emulator_set_cr,
8175 	.cpl                 = emulator_get_cpl,
8176 	.get_dr              = emulator_get_dr,
8177 	.set_dr              = emulator_set_dr,
8178 	.get_smbase          = emulator_get_smbase,
8179 	.set_smbase          = emulator_set_smbase,
8180 	.set_msr_with_filter = emulator_set_msr_with_filter,
8181 	.get_msr_with_filter = emulator_get_msr_with_filter,
8182 	.set_msr             = emulator_set_msr,
8183 	.get_msr             = emulator_get_msr,
8184 	.check_pmc	     = emulator_check_pmc,
8185 	.read_pmc            = emulator_read_pmc,
8186 	.halt                = emulator_halt,
8187 	.wbinvd              = emulator_wbinvd,
8188 	.fix_hypercall       = emulator_fix_hypercall,
8189 	.intercept           = emulator_intercept,
8190 	.get_cpuid           = emulator_get_cpuid,
8191 	.guest_has_long_mode = emulator_guest_has_long_mode,
8192 	.guest_has_movbe     = emulator_guest_has_movbe,
8193 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8194 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8195 	.set_nmi_mask        = emulator_set_nmi_mask,
8196 	.get_hflags          = emulator_get_hflags,
8197 	.exiting_smm         = emulator_exiting_smm,
8198 	.leave_smm           = emulator_leave_smm,
8199 	.triple_fault        = emulator_triple_fault,
8200 	.set_xcr             = emulator_set_xcr,
8201 };
8202 
8203 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8204 {
8205 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8206 	/*
8207 	 * an sti; sti; sequence only disable interrupts for the first
8208 	 * instruction. So, if the last instruction, be it emulated or
8209 	 * not, left the system with the INT_STI flag enabled, it
8210 	 * means that the last instruction is an sti. We should not
8211 	 * leave the flag on in this case. The same goes for mov ss
8212 	 */
8213 	if (int_shadow & mask)
8214 		mask = 0;
8215 	if (unlikely(int_shadow || mask)) {
8216 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8217 		if (!mask)
8218 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8219 	}
8220 }
8221 
8222 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8223 {
8224 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8225 
8226 	if (ctxt->exception.vector == PF_VECTOR)
8227 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8228 	else if (ctxt->exception.error_code_valid)
8229 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8230 				      ctxt->exception.error_code);
8231 	else
8232 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8233 }
8234 
8235 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8236 {
8237 	struct x86_emulate_ctxt *ctxt;
8238 
8239 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8240 	if (!ctxt) {
8241 		pr_err("kvm: failed to allocate vcpu's emulator\n");
8242 		return NULL;
8243 	}
8244 
8245 	ctxt->vcpu = vcpu;
8246 	ctxt->ops = &emulate_ops;
8247 	vcpu->arch.emulate_ctxt = ctxt;
8248 
8249 	return ctxt;
8250 }
8251 
8252 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8253 {
8254 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8255 	int cs_db, cs_l;
8256 
8257 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8258 
8259 	ctxt->gpa_available = false;
8260 	ctxt->eflags = kvm_get_rflags(vcpu);
8261 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8262 
8263 	ctxt->eip = kvm_rip_read(vcpu);
8264 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8265 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8266 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8267 		     cs_db				? X86EMUL_MODE_PROT32 :
8268 							  X86EMUL_MODE_PROT16;
8269 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8270 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
8271 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
8272 
8273 	ctxt->interruptibility = 0;
8274 	ctxt->have_exception = false;
8275 	ctxt->exception.vector = -1;
8276 	ctxt->perm_ok = false;
8277 
8278 	init_decode_cache(ctxt);
8279 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8280 }
8281 
8282 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8283 {
8284 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8285 	int ret;
8286 
8287 	init_emulate_ctxt(vcpu);
8288 
8289 	ctxt->op_bytes = 2;
8290 	ctxt->ad_bytes = 2;
8291 	ctxt->_eip = ctxt->eip + inc_eip;
8292 	ret = emulate_int_real(ctxt, irq);
8293 
8294 	if (ret != X86EMUL_CONTINUE) {
8295 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8296 	} else {
8297 		ctxt->eip = ctxt->_eip;
8298 		kvm_rip_write(vcpu, ctxt->eip);
8299 		kvm_set_rflags(vcpu, ctxt->eflags);
8300 	}
8301 }
8302 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8303 
8304 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8305 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8306 {
8307 	struct kvm_run *run = vcpu->run;
8308 	u64 info[5];
8309 	u8 info_start;
8310 
8311 	/*
8312 	 * Zero the whole array used to retrieve the exit info, as casting to
8313 	 * u32 for select entries will leave some chunks uninitialized.
8314 	 */
8315 	memset(&info, 0, sizeof(info));
8316 
8317 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8318 					   &info[2], (u32 *)&info[3],
8319 					   (u32 *)&info[4]);
8320 
8321 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8322 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8323 
8324 	/*
8325 	 * There's currently space for 13 entries, but 5 are used for the exit
8326 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8327 	 * when expanding kvm_run.emulation_failure in the future.
8328 	 */
8329 	if (WARN_ON_ONCE(ndata > 4))
8330 		ndata = 4;
8331 
8332 	/* Always include the flags as a 'data' entry. */
8333 	info_start = 1;
8334 	run->emulation_failure.flags = 0;
8335 
8336 	if (insn_size) {
8337 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8338 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8339 		info_start += 2;
8340 		run->emulation_failure.flags |=
8341 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8342 		run->emulation_failure.insn_size = insn_size;
8343 		memset(run->emulation_failure.insn_bytes, 0x90,
8344 		       sizeof(run->emulation_failure.insn_bytes));
8345 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8346 	}
8347 
8348 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8349 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8350 	       ndata * sizeof(data[0]));
8351 
8352 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8353 }
8354 
8355 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8356 {
8357 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8358 
8359 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8360 				       ctxt->fetch.end - ctxt->fetch.data);
8361 }
8362 
8363 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8364 					  u8 ndata)
8365 {
8366 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8367 }
8368 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8369 
8370 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8371 {
8372 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8373 }
8374 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8375 
8376 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8377 {
8378 	struct kvm *kvm = vcpu->kvm;
8379 
8380 	++vcpu->stat.insn_emulation_fail;
8381 	trace_kvm_emulate_insn_failed(vcpu);
8382 
8383 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8384 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8385 		return 1;
8386 	}
8387 
8388 	if (kvm->arch.exit_on_emulation_error ||
8389 	    (emulation_type & EMULTYPE_SKIP)) {
8390 		prepare_emulation_ctxt_failure_exit(vcpu);
8391 		return 0;
8392 	}
8393 
8394 	kvm_queue_exception(vcpu, UD_VECTOR);
8395 
8396 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8397 		prepare_emulation_ctxt_failure_exit(vcpu);
8398 		return 0;
8399 	}
8400 
8401 	return 1;
8402 }
8403 
8404 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8405 				  bool write_fault_to_shadow_pgtable,
8406 				  int emulation_type)
8407 {
8408 	gpa_t gpa = cr2_or_gpa;
8409 	kvm_pfn_t pfn;
8410 
8411 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8412 		return false;
8413 
8414 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8415 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8416 		return false;
8417 
8418 	if (!vcpu->arch.mmu->root_role.direct) {
8419 		/*
8420 		 * Write permission should be allowed since only
8421 		 * write access need to be emulated.
8422 		 */
8423 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8424 
8425 		/*
8426 		 * If the mapping is invalid in guest, let cpu retry
8427 		 * it to generate fault.
8428 		 */
8429 		if (gpa == INVALID_GPA)
8430 			return true;
8431 	}
8432 
8433 	/*
8434 	 * Do not retry the unhandleable instruction if it faults on the
8435 	 * readonly host memory, otherwise it will goto a infinite loop:
8436 	 * retry instruction -> write #PF -> emulation fail -> retry
8437 	 * instruction -> ...
8438 	 */
8439 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8440 
8441 	/*
8442 	 * If the instruction failed on the error pfn, it can not be fixed,
8443 	 * report the error to userspace.
8444 	 */
8445 	if (is_error_noslot_pfn(pfn))
8446 		return false;
8447 
8448 	kvm_release_pfn_clean(pfn);
8449 
8450 	/* The instructions are well-emulated on direct mmu. */
8451 	if (vcpu->arch.mmu->root_role.direct) {
8452 		unsigned int indirect_shadow_pages;
8453 
8454 		write_lock(&vcpu->kvm->mmu_lock);
8455 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8456 		write_unlock(&vcpu->kvm->mmu_lock);
8457 
8458 		if (indirect_shadow_pages)
8459 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8460 
8461 		return true;
8462 	}
8463 
8464 	/*
8465 	 * if emulation was due to access to shadowed page table
8466 	 * and it failed try to unshadow page and re-enter the
8467 	 * guest to let CPU execute the instruction.
8468 	 */
8469 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8470 
8471 	/*
8472 	 * If the access faults on its page table, it can not
8473 	 * be fixed by unprotecting shadow page and it should
8474 	 * be reported to userspace.
8475 	 */
8476 	return !write_fault_to_shadow_pgtable;
8477 }
8478 
8479 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8480 			      gpa_t cr2_or_gpa,  int emulation_type)
8481 {
8482 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8483 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8484 
8485 	last_retry_eip = vcpu->arch.last_retry_eip;
8486 	last_retry_addr = vcpu->arch.last_retry_addr;
8487 
8488 	/*
8489 	 * If the emulation is caused by #PF and it is non-page_table
8490 	 * writing instruction, it means the VM-EXIT is caused by shadow
8491 	 * page protected, we can zap the shadow page and retry this
8492 	 * instruction directly.
8493 	 *
8494 	 * Note: if the guest uses a non-page-table modifying instruction
8495 	 * on the PDE that points to the instruction, then we will unmap
8496 	 * the instruction and go to an infinite loop. So, we cache the
8497 	 * last retried eip and the last fault address, if we meet the eip
8498 	 * and the address again, we can break out of the potential infinite
8499 	 * loop.
8500 	 */
8501 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8502 
8503 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8504 		return false;
8505 
8506 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8507 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8508 		return false;
8509 
8510 	if (x86_page_table_writing_insn(ctxt))
8511 		return false;
8512 
8513 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8514 		return false;
8515 
8516 	vcpu->arch.last_retry_eip = ctxt->eip;
8517 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8518 
8519 	if (!vcpu->arch.mmu->root_role.direct)
8520 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8521 
8522 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8523 
8524 	return true;
8525 }
8526 
8527 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8528 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8529 
8530 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8531 {
8532 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8533 
8534 	if (entering_smm) {
8535 		vcpu->arch.hflags |= HF_SMM_MASK;
8536 	} else {
8537 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8538 
8539 		/* Process a latched INIT or SMI, if any.  */
8540 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8541 
8542 		/*
8543 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8544 		 * on SMM exit we still need to reload them from
8545 		 * guest memory
8546 		 */
8547 		vcpu->arch.pdptrs_from_userspace = false;
8548 	}
8549 
8550 	kvm_mmu_reset_context(vcpu);
8551 }
8552 
8553 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8554 				unsigned long *db)
8555 {
8556 	u32 dr6 = 0;
8557 	int i;
8558 	u32 enable, rwlen;
8559 
8560 	enable = dr7;
8561 	rwlen = dr7 >> 16;
8562 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8563 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8564 			dr6 |= (1 << i);
8565 	return dr6;
8566 }
8567 
8568 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8569 {
8570 	struct kvm_run *kvm_run = vcpu->run;
8571 
8572 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8573 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8574 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8575 		kvm_run->debug.arch.exception = DB_VECTOR;
8576 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8577 		return 0;
8578 	}
8579 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8580 	return 1;
8581 }
8582 
8583 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8584 {
8585 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8586 	int r;
8587 
8588 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8589 	if (unlikely(!r))
8590 		return 0;
8591 
8592 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8593 
8594 	/*
8595 	 * rflags is the old, "raw" value of the flags.  The new value has
8596 	 * not been saved yet.
8597 	 *
8598 	 * This is correct even for TF set by the guest, because "the
8599 	 * processor will not generate this exception after the instruction
8600 	 * that sets the TF flag".
8601 	 */
8602 	if (unlikely(rflags & X86_EFLAGS_TF))
8603 		r = kvm_vcpu_do_singlestep(vcpu);
8604 	return r;
8605 }
8606 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8607 
8608 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8609 {
8610 	u32 shadow;
8611 
8612 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8613 		return true;
8614 
8615 	/*
8616 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8617 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8618 	 * to avoid the relatively expensive CPUID lookup.
8619 	 */
8620 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8621 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8622 	       guest_cpuid_is_intel(vcpu);
8623 }
8624 
8625 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8626 					   int emulation_type, int *r)
8627 {
8628 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8629 
8630 	/*
8631 	 * Do not check for code breakpoints if hardware has already done the
8632 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8633 	 * the instruction has passed all exception checks, and all intercepted
8634 	 * exceptions that trigger emulation have lower priority than code
8635 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8636 	 * means any code breakpoints have already been serviced.
8637 	 *
8638 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8639 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8640 	 * the instruction being emulated.  The intent of forced emulation is
8641 	 * to behave as if KVM intercepted the instruction without an exception
8642 	 * and without a prefix.
8643 	 */
8644 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8645 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8646 		return false;
8647 
8648 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8649 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8650 		struct kvm_run *kvm_run = vcpu->run;
8651 		unsigned long eip = kvm_get_linear_rip(vcpu);
8652 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8653 					   vcpu->arch.guest_debug_dr7,
8654 					   vcpu->arch.eff_db);
8655 
8656 		if (dr6 != 0) {
8657 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8658 			kvm_run->debug.arch.pc = eip;
8659 			kvm_run->debug.arch.exception = DB_VECTOR;
8660 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8661 			*r = 0;
8662 			return true;
8663 		}
8664 	}
8665 
8666 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8667 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8668 		unsigned long eip = kvm_get_linear_rip(vcpu);
8669 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8670 					   vcpu->arch.dr7,
8671 					   vcpu->arch.db);
8672 
8673 		if (dr6 != 0) {
8674 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8675 			*r = 1;
8676 			return true;
8677 		}
8678 	}
8679 
8680 	return false;
8681 }
8682 
8683 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8684 {
8685 	switch (ctxt->opcode_len) {
8686 	case 1:
8687 		switch (ctxt->b) {
8688 		case 0xe4:	/* IN */
8689 		case 0xe5:
8690 		case 0xec:
8691 		case 0xed:
8692 		case 0xe6:	/* OUT */
8693 		case 0xe7:
8694 		case 0xee:
8695 		case 0xef:
8696 		case 0x6c:	/* INS */
8697 		case 0x6d:
8698 		case 0x6e:	/* OUTS */
8699 		case 0x6f:
8700 			return true;
8701 		}
8702 		break;
8703 	case 2:
8704 		switch (ctxt->b) {
8705 		case 0x33:	/* RDPMC */
8706 			return true;
8707 		}
8708 		break;
8709 	}
8710 
8711 	return false;
8712 }
8713 
8714 /*
8715  * Decode an instruction for emulation.  The caller is responsible for handling
8716  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8717  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8718  * code breakpoints have higher priority and thus have already been done by
8719  * hardware.
8720  *
8721  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8722  *     response to a machine check.
8723  */
8724 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8725 				    void *insn, int insn_len)
8726 {
8727 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8728 	int r;
8729 
8730 	init_emulate_ctxt(vcpu);
8731 
8732 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8733 
8734 	trace_kvm_emulate_insn_start(vcpu);
8735 	++vcpu->stat.insn_emulation;
8736 
8737 	return r;
8738 }
8739 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8740 
8741 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8742 			    int emulation_type, void *insn, int insn_len)
8743 {
8744 	int r;
8745 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8746 	bool writeback = true;
8747 	bool write_fault_to_spt;
8748 
8749 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8750 		return 1;
8751 
8752 	vcpu->arch.l1tf_flush_l1d = true;
8753 
8754 	/*
8755 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8756 	 * never reused.
8757 	 */
8758 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8759 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8760 
8761 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8762 		kvm_clear_exception_queue(vcpu);
8763 
8764 		/*
8765 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8766 		 * are fault-like and are higher priority than any faults on
8767 		 * the code fetch itself.
8768 		 */
8769 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8770 			return r;
8771 
8772 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8773 						    insn, insn_len);
8774 		if (r != EMULATION_OK)  {
8775 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8776 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8777 				kvm_queue_exception(vcpu, UD_VECTOR);
8778 				return 1;
8779 			}
8780 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8781 						  write_fault_to_spt,
8782 						  emulation_type))
8783 				return 1;
8784 			if (ctxt->have_exception) {
8785 				/*
8786 				 * #UD should result in just EMULATION_FAILED, and trap-like
8787 				 * exception should not be encountered during decode.
8788 				 */
8789 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8790 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8791 				inject_emulated_exception(vcpu);
8792 				return 1;
8793 			}
8794 			return handle_emulation_failure(vcpu, emulation_type);
8795 		}
8796 	}
8797 
8798 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8799 	    !is_vmware_backdoor_opcode(ctxt)) {
8800 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8801 		return 1;
8802 	}
8803 
8804 	/*
8805 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8806 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8807 	 * The caller is responsible for updating interruptibility state and
8808 	 * injecting single-step #DBs.
8809 	 */
8810 	if (emulation_type & EMULTYPE_SKIP) {
8811 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8812 			ctxt->eip = (u32)ctxt->_eip;
8813 		else
8814 			ctxt->eip = ctxt->_eip;
8815 
8816 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8817 			r = 1;
8818 			goto writeback;
8819 		}
8820 
8821 		kvm_rip_write(vcpu, ctxt->eip);
8822 		if (ctxt->eflags & X86_EFLAGS_RF)
8823 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8824 		return 1;
8825 	}
8826 
8827 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8828 		return 1;
8829 
8830 	/* this is needed for vmware backdoor interface to work since it
8831 	   changes registers values  during IO operation */
8832 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8833 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8834 		emulator_invalidate_register_cache(ctxt);
8835 	}
8836 
8837 restart:
8838 	if (emulation_type & EMULTYPE_PF) {
8839 		/* Save the faulting GPA (cr2) in the address field */
8840 		ctxt->exception.address = cr2_or_gpa;
8841 
8842 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8843 		if (vcpu->arch.mmu->root_role.direct) {
8844 			ctxt->gpa_available = true;
8845 			ctxt->gpa_val = cr2_or_gpa;
8846 		}
8847 	} else {
8848 		/* Sanitize the address out of an abundance of paranoia. */
8849 		ctxt->exception.address = 0;
8850 	}
8851 
8852 	r = x86_emulate_insn(ctxt);
8853 
8854 	if (r == EMULATION_INTERCEPTED)
8855 		return 1;
8856 
8857 	if (r == EMULATION_FAILED) {
8858 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8859 					emulation_type))
8860 			return 1;
8861 
8862 		return handle_emulation_failure(vcpu, emulation_type);
8863 	}
8864 
8865 	if (ctxt->have_exception) {
8866 		r = 1;
8867 		inject_emulated_exception(vcpu);
8868 	} else if (vcpu->arch.pio.count) {
8869 		if (!vcpu->arch.pio.in) {
8870 			/* FIXME: return into emulator if single-stepping.  */
8871 			vcpu->arch.pio.count = 0;
8872 		} else {
8873 			writeback = false;
8874 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8875 		}
8876 		r = 0;
8877 	} else if (vcpu->mmio_needed) {
8878 		++vcpu->stat.mmio_exits;
8879 
8880 		if (!vcpu->mmio_is_write)
8881 			writeback = false;
8882 		r = 0;
8883 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8884 	} else if (vcpu->arch.complete_userspace_io) {
8885 		writeback = false;
8886 		r = 0;
8887 	} else if (r == EMULATION_RESTART)
8888 		goto restart;
8889 	else
8890 		r = 1;
8891 
8892 writeback:
8893 	if (writeback) {
8894 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8895 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8896 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8897 
8898 		/*
8899 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
8900 		 * only supports code breakpoints and general detect #DB, both
8901 		 * of which are fault-like.
8902 		 */
8903 		if (!ctxt->have_exception ||
8904 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8905 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8906 			if (ctxt->is_branch)
8907 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8908 			kvm_rip_write(vcpu, ctxt->eip);
8909 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8910 				r = kvm_vcpu_do_singlestep(vcpu);
8911 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8912 			__kvm_set_rflags(vcpu, ctxt->eflags);
8913 		}
8914 
8915 		/*
8916 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8917 		 * do nothing, and it will be requested again as soon as
8918 		 * the shadow expires.  But we still need to check here,
8919 		 * because POPF has no interrupt shadow.
8920 		 */
8921 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8922 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8923 	} else
8924 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8925 
8926 	return r;
8927 }
8928 
8929 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8930 {
8931 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8932 }
8933 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8934 
8935 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8936 					void *insn, int insn_len)
8937 {
8938 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8939 }
8940 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8941 
8942 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8943 {
8944 	vcpu->arch.pio.count = 0;
8945 	return 1;
8946 }
8947 
8948 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8949 {
8950 	vcpu->arch.pio.count = 0;
8951 
8952 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8953 		return 1;
8954 
8955 	return kvm_skip_emulated_instruction(vcpu);
8956 }
8957 
8958 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8959 			    unsigned short port)
8960 {
8961 	unsigned long val = kvm_rax_read(vcpu);
8962 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8963 
8964 	if (ret)
8965 		return ret;
8966 
8967 	/*
8968 	 * Workaround userspace that relies on old KVM behavior of %rip being
8969 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8970 	 */
8971 	if (port == 0x7e &&
8972 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8973 		vcpu->arch.complete_userspace_io =
8974 			complete_fast_pio_out_port_0x7e;
8975 		kvm_skip_emulated_instruction(vcpu);
8976 	} else {
8977 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8978 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8979 	}
8980 	return 0;
8981 }
8982 
8983 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8984 {
8985 	unsigned long val;
8986 
8987 	/* We should only ever be called with arch.pio.count equal to 1 */
8988 	BUG_ON(vcpu->arch.pio.count != 1);
8989 
8990 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8991 		vcpu->arch.pio.count = 0;
8992 		return 1;
8993 	}
8994 
8995 	/* For size less than 4 we merge, else we zero extend */
8996 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8997 
8998 	complete_emulator_pio_in(vcpu, &val);
8999 	kvm_rax_write(vcpu, val);
9000 
9001 	return kvm_skip_emulated_instruction(vcpu);
9002 }
9003 
9004 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9005 			   unsigned short port)
9006 {
9007 	unsigned long val;
9008 	int ret;
9009 
9010 	/* For size less than 4 we merge, else we zero extend */
9011 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9012 
9013 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9014 	if (ret) {
9015 		kvm_rax_write(vcpu, val);
9016 		return ret;
9017 	}
9018 
9019 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9020 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9021 
9022 	return 0;
9023 }
9024 
9025 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9026 {
9027 	int ret;
9028 
9029 	if (in)
9030 		ret = kvm_fast_pio_in(vcpu, size, port);
9031 	else
9032 		ret = kvm_fast_pio_out(vcpu, size, port);
9033 	return ret && kvm_skip_emulated_instruction(vcpu);
9034 }
9035 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9036 
9037 static int kvmclock_cpu_down_prep(unsigned int cpu)
9038 {
9039 	__this_cpu_write(cpu_tsc_khz, 0);
9040 	return 0;
9041 }
9042 
9043 static void tsc_khz_changed(void *data)
9044 {
9045 	struct cpufreq_freqs *freq = data;
9046 	unsigned long khz = 0;
9047 
9048 	if (data)
9049 		khz = freq->new;
9050 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9051 		khz = cpufreq_quick_get(raw_smp_processor_id());
9052 	if (!khz)
9053 		khz = tsc_khz;
9054 	__this_cpu_write(cpu_tsc_khz, khz);
9055 }
9056 
9057 #ifdef CONFIG_X86_64
9058 static void kvm_hyperv_tsc_notifier(void)
9059 {
9060 	struct kvm *kvm;
9061 	int cpu;
9062 
9063 	mutex_lock(&kvm_lock);
9064 	list_for_each_entry(kvm, &vm_list, vm_list)
9065 		kvm_make_mclock_inprogress_request(kvm);
9066 
9067 	/* no guest entries from this point */
9068 	hyperv_stop_tsc_emulation();
9069 
9070 	/* TSC frequency always matches when on Hyper-V */
9071 	for_each_present_cpu(cpu)
9072 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9073 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9074 
9075 	list_for_each_entry(kvm, &vm_list, vm_list) {
9076 		__kvm_start_pvclock_update(kvm);
9077 		pvclock_update_vm_gtod_copy(kvm);
9078 		kvm_end_pvclock_update(kvm);
9079 	}
9080 
9081 	mutex_unlock(&kvm_lock);
9082 }
9083 #endif
9084 
9085 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9086 {
9087 	struct kvm *kvm;
9088 	struct kvm_vcpu *vcpu;
9089 	int send_ipi = 0;
9090 	unsigned long i;
9091 
9092 	/*
9093 	 * We allow guests to temporarily run on slowing clocks,
9094 	 * provided we notify them after, or to run on accelerating
9095 	 * clocks, provided we notify them before.  Thus time never
9096 	 * goes backwards.
9097 	 *
9098 	 * However, we have a problem.  We can't atomically update
9099 	 * the frequency of a given CPU from this function; it is
9100 	 * merely a notifier, which can be called from any CPU.
9101 	 * Changing the TSC frequency at arbitrary points in time
9102 	 * requires a recomputation of local variables related to
9103 	 * the TSC for each VCPU.  We must flag these local variables
9104 	 * to be updated and be sure the update takes place with the
9105 	 * new frequency before any guests proceed.
9106 	 *
9107 	 * Unfortunately, the combination of hotplug CPU and frequency
9108 	 * change creates an intractable locking scenario; the order
9109 	 * of when these callouts happen is undefined with respect to
9110 	 * CPU hotplug, and they can race with each other.  As such,
9111 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9112 	 * undefined; you can actually have a CPU frequency change take
9113 	 * place in between the computation of X and the setting of the
9114 	 * variable.  To protect against this problem, all updates of
9115 	 * the per_cpu tsc_khz variable are done in an interrupt
9116 	 * protected IPI, and all callers wishing to update the value
9117 	 * must wait for a synchronous IPI to complete (which is trivial
9118 	 * if the caller is on the CPU already).  This establishes the
9119 	 * necessary total order on variable updates.
9120 	 *
9121 	 * Note that because a guest time update may take place
9122 	 * anytime after the setting of the VCPU's request bit, the
9123 	 * correct TSC value must be set before the request.  However,
9124 	 * to ensure the update actually makes it to any guest which
9125 	 * starts running in hardware virtualization between the set
9126 	 * and the acquisition of the spinlock, we must also ping the
9127 	 * CPU after setting the request bit.
9128 	 *
9129 	 */
9130 
9131 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9132 
9133 	mutex_lock(&kvm_lock);
9134 	list_for_each_entry(kvm, &vm_list, vm_list) {
9135 		kvm_for_each_vcpu(i, vcpu, kvm) {
9136 			if (vcpu->cpu != cpu)
9137 				continue;
9138 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9139 			if (vcpu->cpu != raw_smp_processor_id())
9140 				send_ipi = 1;
9141 		}
9142 	}
9143 	mutex_unlock(&kvm_lock);
9144 
9145 	if (freq->old < freq->new && send_ipi) {
9146 		/*
9147 		 * We upscale the frequency.  Must make the guest
9148 		 * doesn't see old kvmclock values while running with
9149 		 * the new frequency, otherwise we risk the guest sees
9150 		 * time go backwards.
9151 		 *
9152 		 * In case we update the frequency for another cpu
9153 		 * (which might be in guest context) send an interrupt
9154 		 * to kick the cpu out of guest context.  Next time
9155 		 * guest context is entered kvmclock will be updated,
9156 		 * so the guest will not see stale values.
9157 		 */
9158 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9159 	}
9160 }
9161 
9162 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9163 				     void *data)
9164 {
9165 	struct cpufreq_freqs *freq = data;
9166 	int cpu;
9167 
9168 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9169 		return 0;
9170 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9171 		return 0;
9172 
9173 	for_each_cpu(cpu, freq->policy->cpus)
9174 		__kvmclock_cpufreq_notifier(freq, cpu);
9175 
9176 	return 0;
9177 }
9178 
9179 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9180 	.notifier_call  = kvmclock_cpufreq_notifier
9181 };
9182 
9183 static int kvmclock_cpu_online(unsigned int cpu)
9184 {
9185 	tsc_khz_changed(NULL);
9186 	return 0;
9187 }
9188 
9189 static void kvm_timer_init(void)
9190 {
9191 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9192 		max_tsc_khz = tsc_khz;
9193 
9194 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9195 			struct cpufreq_policy *policy;
9196 			int cpu;
9197 
9198 			cpu = get_cpu();
9199 			policy = cpufreq_cpu_get(cpu);
9200 			if (policy) {
9201 				if (policy->cpuinfo.max_freq)
9202 					max_tsc_khz = policy->cpuinfo.max_freq;
9203 				cpufreq_cpu_put(policy);
9204 			}
9205 			put_cpu();
9206 		}
9207 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9208 					  CPUFREQ_TRANSITION_NOTIFIER);
9209 	}
9210 
9211 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9212 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9213 }
9214 
9215 #ifdef CONFIG_X86_64
9216 static void pvclock_gtod_update_fn(struct work_struct *work)
9217 {
9218 	struct kvm *kvm;
9219 	struct kvm_vcpu *vcpu;
9220 	unsigned long i;
9221 
9222 	mutex_lock(&kvm_lock);
9223 	list_for_each_entry(kvm, &vm_list, vm_list)
9224 		kvm_for_each_vcpu(i, vcpu, kvm)
9225 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9226 	atomic_set(&kvm_guest_has_master_clock, 0);
9227 	mutex_unlock(&kvm_lock);
9228 }
9229 
9230 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9231 
9232 /*
9233  * Indirection to move queue_work() out of the tk_core.seq write held
9234  * region to prevent possible deadlocks against time accessors which
9235  * are invoked with work related locks held.
9236  */
9237 static void pvclock_irq_work_fn(struct irq_work *w)
9238 {
9239 	queue_work(system_long_wq, &pvclock_gtod_work);
9240 }
9241 
9242 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9243 
9244 /*
9245  * Notification about pvclock gtod data update.
9246  */
9247 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9248 			       void *priv)
9249 {
9250 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9251 	struct timekeeper *tk = priv;
9252 
9253 	update_pvclock_gtod(tk);
9254 
9255 	/*
9256 	 * Disable master clock if host does not trust, or does not use,
9257 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9258 	 * this is invoked with tk_core.seq write held.
9259 	 */
9260 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9261 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9262 		irq_work_queue(&pvclock_irq_work);
9263 	return 0;
9264 }
9265 
9266 static struct notifier_block pvclock_gtod_notifier = {
9267 	.notifier_call = pvclock_gtod_notify,
9268 };
9269 #endif
9270 
9271 int kvm_arch_init(void *opaque)
9272 {
9273 	struct kvm_x86_init_ops *ops = opaque;
9274 	u64 host_pat;
9275 	int r;
9276 
9277 	if (kvm_x86_ops.hardware_enable) {
9278 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
9279 		return -EEXIST;
9280 	}
9281 
9282 	if (!ops->cpu_has_kvm_support()) {
9283 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
9284 				   ops->runtime_ops->name);
9285 		return -EOPNOTSUPP;
9286 	}
9287 	if (ops->disabled_by_bios()) {
9288 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
9289 				   ops->runtime_ops->name);
9290 		return -EOPNOTSUPP;
9291 	}
9292 
9293 	/*
9294 	 * KVM explicitly assumes that the guest has an FPU and
9295 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9296 	 * vCPU's FPU state as a fxregs_state struct.
9297 	 */
9298 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9299 		printk(KERN_ERR "kvm: inadequate fpu\n");
9300 		return -EOPNOTSUPP;
9301 	}
9302 
9303 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9304 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9305 		return -EOPNOTSUPP;
9306 	}
9307 
9308 	/*
9309 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9310 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9311 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9312 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9313 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9314 	 */
9315 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9316 	    (host_pat & GENMASK(2, 0)) != 6) {
9317 		pr_err("kvm: host PAT[0] is not WB\n");
9318 		return -EIO;
9319 	}
9320 
9321 	x86_emulator_cache = kvm_alloc_emulator_cache();
9322 	if (!x86_emulator_cache) {
9323 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
9324 		return -ENOMEM;
9325 	}
9326 
9327 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9328 	if (!user_return_msrs) {
9329 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9330 		r = -ENOMEM;
9331 		goto out_free_x86_emulator_cache;
9332 	}
9333 	kvm_nr_uret_msrs = 0;
9334 
9335 	r = kvm_mmu_vendor_module_init();
9336 	if (r)
9337 		goto out_free_percpu;
9338 
9339 	kvm_timer_init();
9340 
9341 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9342 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9343 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9344 	}
9345 
9346 	if (pi_inject_timer == -1)
9347 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9348 #ifdef CONFIG_X86_64
9349 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9350 
9351 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9352 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9353 #endif
9354 
9355 	return 0;
9356 
9357 out_free_percpu:
9358 	free_percpu(user_return_msrs);
9359 out_free_x86_emulator_cache:
9360 	kmem_cache_destroy(x86_emulator_cache);
9361 	return r;
9362 }
9363 
9364 void kvm_arch_exit(void)
9365 {
9366 #ifdef CONFIG_X86_64
9367 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9368 		clear_hv_tscchange_cb();
9369 #endif
9370 	kvm_lapic_exit();
9371 
9372 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9373 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9374 					    CPUFREQ_TRANSITION_NOTIFIER);
9375 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9376 #ifdef CONFIG_X86_64
9377 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9378 	irq_work_sync(&pvclock_irq_work);
9379 	cancel_work_sync(&pvclock_gtod_work);
9380 #endif
9381 	kvm_x86_ops.hardware_enable = NULL;
9382 	kvm_mmu_vendor_module_exit();
9383 	free_percpu(user_return_msrs);
9384 	kmem_cache_destroy(x86_emulator_cache);
9385 #ifdef CONFIG_KVM_XEN
9386 	static_key_deferred_flush(&kvm_xen_enabled);
9387 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9388 #endif
9389 }
9390 
9391 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9392 {
9393 	/*
9394 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9395 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9396 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9397 	 * managed by userspace, in which case userspace is responsible for
9398 	 * handling wake events.
9399 	 */
9400 	++vcpu->stat.halt_exits;
9401 	if (lapic_in_kernel(vcpu)) {
9402 		vcpu->arch.mp_state = state;
9403 		return 1;
9404 	} else {
9405 		vcpu->run->exit_reason = reason;
9406 		return 0;
9407 	}
9408 }
9409 
9410 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9411 {
9412 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9413 }
9414 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9415 
9416 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9417 {
9418 	int ret = kvm_skip_emulated_instruction(vcpu);
9419 	/*
9420 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9421 	 * KVM_EXIT_DEBUG here.
9422 	 */
9423 	return kvm_emulate_halt_noskip(vcpu) && ret;
9424 }
9425 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9426 
9427 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9428 {
9429 	int ret = kvm_skip_emulated_instruction(vcpu);
9430 
9431 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9432 					KVM_EXIT_AP_RESET_HOLD) && ret;
9433 }
9434 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9435 
9436 #ifdef CONFIG_X86_64
9437 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9438 			        unsigned long clock_type)
9439 {
9440 	struct kvm_clock_pairing clock_pairing;
9441 	struct timespec64 ts;
9442 	u64 cycle;
9443 	int ret;
9444 
9445 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9446 		return -KVM_EOPNOTSUPP;
9447 
9448 	/*
9449 	 * When tsc is in permanent catchup mode guests won't be able to use
9450 	 * pvclock_read_retry loop to get consistent view of pvclock
9451 	 */
9452 	if (vcpu->arch.tsc_always_catchup)
9453 		return -KVM_EOPNOTSUPP;
9454 
9455 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9456 		return -KVM_EOPNOTSUPP;
9457 
9458 	clock_pairing.sec = ts.tv_sec;
9459 	clock_pairing.nsec = ts.tv_nsec;
9460 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9461 	clock_pairing.flags = 0;
9462 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9463 
9464 	ret = 0;
9465 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9466 			    sizeof(struct kvm_clock_pairing)))
9467 		ret = -KVM_EFAULT;
9468 
9469 	return ret;
9470 }
9471 #endif
9472 
9473 /*
9474  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9475  *
9476  * @apicid - apicid of vcpu to be kicked.
9477  */
9478 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9479 {
9480 	/*
9481 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9482 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9483 	 */
9484 	struct kvm_lapic_irq lapic_irq = {
9485 		.delivery_mode = APIC_DM_REMRD,
9486 		.dest_mode = APIC_DEST_PHYSICAL,
9487 		.shorthand = APIC_DEST_NOSHORT,
9488 		.dest_id = apicid,
9489 	};
9490 
9491 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9492 }
9493 
9494 bool kvm_apicv_activated(struct kvm *kvm)
9495 {
9496 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9497 }
9498 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9499 
9500 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9501 {
9502 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9503 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9504 
9505 	return (vm_reasons | vcpu_reasons) == 0;
9506 }
9507 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9508 
9509 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9510 				       enum kvm_apicv_inhibit reason, bool set)
9511 {
9512 	if (set)
9513 		__set_bit(reason, inhibits);
9514 	else
9515 		__clear_bit(reason, inhibits);
9516 
9517 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9518 }
9519 
9520 static void kvm_apicv_init(struct kvm *kvm)
9521 {
9522 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9523 
9524 	init_rwsem(&kvm->arch.apicv_update_lock);
9525 
9526 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9527 
9528 	if (!enable_apicv)
9529 		set_or_clear_apicv_inhibit(inhibits,
9530 					   APICV_INHIBIT_REASON_DISABLE, true);
9531 }
9532 
9533 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9534 {
9535 	struct kvm_vcpu *target = NULL;
9536 	struct kvm_apic_map *map;
9537 
9538 	vcpu->stat.directed_yield_attempted++;
9539 
9540 	if (single_task_running())
9541 		goto no_yield;
9542 
9543 	rcu_read_lock();
9544 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9545 
9546 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9547 		target = map->phys_map[dest_id]->vcpu;
9548 
9549 	rcu_read_unlock();
9550 
9551 	if (!target || !READ_ONCE(target->ready))
9552 		goto no_yield;
9553 
9554 	/* Ignore requests to yield to self */
9555 	if (vcpu == target)
9556 		goto no_yield;
9557 
9558 	if (kvm_vcpu_yield_to(target) <= 0)
9559 		goto no_yield;
9560 
9561 	vcpu->stat.directed_yield_successful++;
9562 
9563 no_yield:
9564 	return;
9565 }
9566 
9567 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9568 {
9569 	u64 ret = vcpu->run->hypercall.ret;
9570 
9571 	if (!is_64_bit_mode(vcpu))
9572 		ret = (u32)ret;
9573 	kvm_rax_write(vcpu, ret);
9574 	++vcpu->stat.hypercalls;
9575 	return kvm_skip_emulated_instruction(vcpu);
9576 }
9577 
9578 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9579 {
9580 	unsigned long nr, a0, a1, a2, a3, ret;
9581 	int op_64_bit;
9582 
9583 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9584 		return kvm_xen_hypercall(vcpu);
9585 
9586 	if (kvm_hv_hypercall_enabled(vcpu))
9587 		return kvm_hv_hypercall(vcpu);
9588 
9589 	nr = kvm_rax_read(vcpu);
9590 	a0 = kvm_rbx_read(vcpu);
9591 	a1 = kvm_rcx_read(vcpu);
9592 	a2 = kvm_rdx_read(vcpu);
9593 	a3 = kvm_rsi_read(vcpu);
9594 
9595 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9596 
9597 	op_64_bit = is_64_bit_hypercall(vcpu);
9598 	if (!op_64_bit) {
9599 		nr &= 0xFFFFFFFF;
9600 		a0 &= 0xFFFFFFFF;
9601 		a1 &= 0xFFFFFFFF;
9602 		a2 &= 0xFFFFFFFF;
9603 		a3 &= 0xFFFFFFFF;
9604 	}
9605 
9606 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9607 		ret = -KVM_EPERM;
9608 		goto out;
9609 	}
9610 
9611 	ret = -KVM_ENOSYS;
9612 
9613 	switch (nr) {
9614 	case KVM_HC_VAPIC_POLL_IRQ:
9615 		ret = 0;
9616 		break;
9617 	case KVM_HC_KICK_CPU:
9618 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9619 			break;
9620 
9621 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9622 		kvm_sched_yield(vcpu, a1);
9623 		ret = 0;
9624 		break;
9625 #ifdef CONFIG_X86_64
9626 	case KVM_HC_CLOCK_PAIRING:
9627 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9628 		break;
9629 #endif
9630 	case KVM_HC_SEND_IPI:
9631 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9632 			break;
9633 
9634 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9635 		break;
9636 	case KVM_HC_SCHED_YIELD:
9637 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9638 			break;
9639 
9640 		kvm_sched_yield(vcpu, a0);
9641 		ret = 0;
9642 		break;
9643 	case KVM_HC_MAP_GPA_RANGE: {
9644 		u64 gpa = a0, npages = a1, attrs = a2;
9645 
9646 		ret = -KVM_ENOSYS;
9647 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9648 			break;
9649 
9650 		if (!PAGE_ALIGNED(gpa) || !npages ||
9651 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9652 			ret = -KVM_EINVAL;
9653 			break;
9654 		}
9655 
9656 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9657 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9658 		vcpu->run->hypercall.args[0]  = gpa;
9659 		vcpu->run->hypercall.args[1]  = npages;
9660 		vcpu->run->hypercall.args[2]  = attrs;
9661 		vcpu->run->hypercall.longmode = op_64_bit;
9662 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9663 		return 0;
9664 	}
9665 	default:
9666 		ret = -KVM_ENOSYS;
9667 		break;
9668 	}
9669 out:
9670 	if (!op_64_bit)
9671 		ret = (u32)ret;
9672 	kvm_rax_write(vcpu, ret);
9673 
9674 	++vcpu->stat.hypercalls;
9675 	return kvm_skip_emulated_instruction(vcpu);
9676 }
9677 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9678 
9679 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9680 {
9681 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9682 	char instruction[3];
9683 	unsigned long rip = kvm_rip_read(vcpu);
9684 
9685 	/*
9686 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9687 	 * the pieces.
9688 	 */
9689 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9690 		ctxt->exception.error_code_valid = false;
9691 		ctxt->exception.vector = UD_VECTOR;
9692 		ctxt->have_exception = true;
9693 		return X86EMUL_PROPAGATE_FAULT;
9694 	}
9695 
9696 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9697 
9698 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9699 		&ctxt->exception);
9700 }
9701 
9702 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9703 {
9704 	return vcpu->run->request_interrupt_window &&
9705 		likely(!pic_in_kernel(vcpu->kvm));
9706 }
9707 
9708 /* Called within kvm->srcu read side.  */
9709 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9710 {
9711 	struct kvm_run *kvm_run = vcpu->run;
9712 
9713 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9714 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9715 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9716 
9717 	kvm_run->ready_for_interrupt_injection =
9718 		pic_in_kernel(vcpu->kvm) ||
9719 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9720 
9721 	if (is_smm(vcpu))
9722 		kvm_run->flags |= KVM_RUN_X86_SMM;
9723 }
9724 
9725 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9726 {
9727 	int max_irr, tpr;
9728 
9729 	if (!kvm_x86_ops.update_cr8_intercept)
9730 		return;
9731 
9732 	if (!lapic_in_kernel(vcpu))
9733 		return;
9734 
9735 	if (vcpu->arch.apic->apicv_active)
9736 		return;
9737 
9738 	if (!vcpu->arch.apic->vapic_addr)
9739 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9740 	else
9741 		max_irr = -1;
9742 
9743 	if (max_irr != -1)
9744 		max_irr >>= 4;
9745 
9746 	tpr = kvm_lapic_get_cr8(vcpu);
9747 
9748 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9749 }
9750 
9751 
9752 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9753 {
9754 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9755 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9756 		return 1;
9757 	}
9758 
9759 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9760 }
9761 
9762 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9763 {
9764 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
9765 				vcpu->arch.exception.has_error_code,
9766 				vcpu->arch.exception.error_code,
9767 				vcpu->arch.exception.injected);
9768 
9769 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9770 		vcpu->arch.exception.error_code = false;
9771 	static_call(kvm_x86_inject_exception)(vcpu);
9772 }
9773 
9774 /*
9775  * Check for any event (interrupt or exception) that is ready to be injected,
9776  * and if there is at least one event, inject the event with the highest
9777  * priority.  This handles both "pending" events, i.e. events that have never
9778  * been injected into the guest, and "injected" events, i.e. events that were
9779  * injected as part of a previous VM-Enter, but weren't successfully delivered
9780  * and need to be re-injected.
9781  *
9782  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9783  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
9784  * be able to inject exceptions in the "middle" of an instruction, and so must
9785  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
9786  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
9787  * boundaries is necessary and correct.
9788  *
9789  * For simplicity, KVM uses a single path to inject all events (except events
9790  * that are injected directly from L1 to L2) and doesn't explicitly track
9791  * instruction boundaries for asynchronous events.  However, because VM-Exits
9792  * that can occur during instruction execution typically result in KVM skipping
9793  * the instruction or injecting an exception, e.g. instruction and exception
9794  * intercepts, and because pending exceptions have higher priority than pending
9795  * interrupts, KVM still honors instruction boundaries in most scenarios.
9796  *
9797  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
9798  * the instruction or inject an exception, then KVM can incorrecty inject a new
9799  * asynchrounous event if the event became pending after the CPU fetched the
9800  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
9801  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
9802  * injected on the restarted instruction instead of being deferred until the
9803  * instruction completes.
9804  *
9805  * In practice, this virtualization hole is unlikely to be observed by the
9806  * guest, and even less likely to cause functional problems.  To detect the
9807  * hole, the guest would have to trigger an event on a side effect of an early
9808  * phase of instruction execution, e.g. on the instruction fetch from memory.
9809  * And for it to be a functional problem, the guest would need to depend on the
9810  * ordering between that side effect, the instruction completing, _and_ the
9811  * delivery of the asynchronous event.
9812  */
9813 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
9814 				       bool *req_immediate_exit)
9815 {
9816 	bool can_inject;
9817 	int r;
9818 
9819 	/*
9820 	 * Process nested events first, as nested VM-Exit supercedes event
9821 	 * re-injection.  If there's an event queued for re-injection, it will
9822 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
9823 	 */
9824 	if (is_guest_mode(vcpu))
9825 		r = kvm_check_nested_events(vcpu);
9826 	else
9827 		r = 0;
9828 
9829 	/*
9830 	 * Re-inject exceptions and events *especially* if immediate entry+exit
9831 	 * to/from L2 is needed, as any event that has already been injected
9832 	 * into L2 needs to complete its lifecycle before injecting a new event.
9833 	 *
9834 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
9835 	 * This collision arises if an exception occurred while vectoring the
9836 	 * injected event, KVM intercepted said exception, and KVM ultimately
9837 	 * determined the fault belongs to the guest and queues the exception
9838 	 * for injection back into the guest.
9839 	 *
9840 	 * "Injected" interrupts can also collide with pending exceptions if
9841 	 * userspace ignores the "ready for injection" flag and blindly queues
9842 	 * an interrupt.  In that case, prioritizing the exception is correct,
9843 	 * as the exception "occurred" before the exit to userspace.  Trap-like
9844 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
9845 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
9846 	 * priority, they're only generated (pended) during instruction
9847 	 * execution, and interrupts are recognized at instruction boundaries.
9848 	 * Thus a pending fault-like exception means the fault occurred on the
9849 	 * *previous* instruction and must be serviced prior to recognizing any
9850 	 * new events in order to fully complete the previous instruction.
9851 	 */
9852 	if (vcpu->arch.exception.injected)
9853 		kvm_inject_exception(vcpu);
9854 	else if (kvm_is_exception_pending(vcpu))
9855 		; /* see above */
9856 	else if (vcpu->arch.nmi_injected)
9857 		static_call(kvm_x86_inject_nmi)(vcpu);
9858 	else if (vcpu->arch.interrupt.injected)
9859 		static_call(kvm_x86_inject_irq)(vcpu, true);
9860 
9861 	/*
9862 	 * Exceptions that morph to VM-Exits are handled above, and pending
9863 	 * exceptions on top of injected exceptions that do not VM-Exit should
9864 	 * either morph to #DF or, sadly, override the injected exception.
9865 	 */
9866 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9867 		     vcpu->arch.exception.pending);
9868 
9869 	/*
9870 	 * Bail if immediate entry+exit to/from the guest is needed to complete
9871 	 * nested VM-Enter or event re-injection so that a different pending
9872 	 * event can be serviced (or if KVM needs to exit to userspace).
9873 	 *
9874 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
9875 	 * VM-Exit will have cleared exceptions that were meant for L2, but
9876 	 * there may now be events that can be injected into L1.
9877 	 */
9878 	if (r < 0)
9879 		goto out;
9880 
9881 	/*
9882 	 * A pending exception VM-Exit should either result in nested VM-Exit
9883 	 * or force an immediate re-entry and exit to/from L2, and exception
9884 	 * VM-Exits cannot be injected (flag should _never_ be set).
9885 	 */
9886 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
9887 		     vcpu->arch.exception_vmexit.pending);
9888 
9889 	/*
9890 	 * New events, other than exceptions, cannot be injected if KVM needs
9891 	 * to re-inject a previous event.  See above comments on re-injecting
9892 	 * for why pending exceptions get priority.
9893 	 */
9894 	can_inject = !kvm_event_needs_reinjection(vcpu);
9895 
9896 	if (vcpu->arch.exception.pending) {
9897 		/*
9898 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
9899 		 * value pushed on the stack.  Trap-like exception and all #DBs
9900 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
9901 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
9902 		 *
9903 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
9904 		 * describe the behavior of General Detect #DBs, which are
9905 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
9906 		 */
9907 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
9908 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9909 					     X86_EFLAGS_RF);
9910 
9911 		if (vcpu->arch.exception.vector == DB_VECTOR) {
9912 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
9913 			if (vcpu->arch.dr7 & DR7_GD) {
9914 				vcpu->arch.dr7 &= ~DR7_GD;
9915 				kvm_update_dr7(vcpu);
9916 			}
9917 		}
9918 
9919 		kvm_inject_exception(vcpu);
9920 
9921 		vcpu->arch.exception.pending = false;
9922 		vcpu->arch.exception.injected = true;
9923 
9924 		can_inject = false;
9925 	}
9926 
9927 	/* Don't inject interrupts if the user asked to avoid doing so */
9928 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9929 		return 0;
9930 
9931 	/*
9932 	 * Finally, inject interrupt events.  If an event cannot be injected
9933 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9934 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9935 	 * and can architecturally be injected, but we cannot do it right now:
9936 	 * an interrupt could have arrived just now and we have to inject it
9937 	 * as a vmexit, or there could already an event in the queue, which is
9938 	 * indicated by can_inject.  In that case we request an immediate exit
9939 	 * in order to make progress and get back here for another iteration.
9940 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9941 	 */
9942 	if (vcpu->arch.smi_pending) {
9943 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9944 		if (r < 0)
9945 			goto out;
9946 		if (r) {
9947 			vcpu->arch.smi_pending = false;
9948 			++vcpu->arch.smi_count;
9949 			enter_smm(vcpu);
9950 			can_inject = false;
9951 		} else
9952 			static_call(kvm_x86_enable_smi_window)(vcpu);
9953 	}
9954 
9955 	if (vcpu->arch.nmi_pending) {
9956 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9957 		if (r < 0)
9958 			goto out;
9959 		if (r) {
9960 			--vcpu->arch.nmi_pending;
9961 			vcpu->arch.nmi_injected = true;
9962 			static_call(kvm_x86_inject_nmi)(vcpu);
9963 			can_inject = false;
9964 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9965 		}
9966 		if (vcpu->arch.nmi_pending)
9967 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9968 	}
9969 
9970 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9971 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9972 		if (r < 0)
9973 			goto out;
9974 		if (r) {
9975 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9976 			static_call(kvm_x86_inject_irq)(vcpu, false);
9977 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9978 		}
9979 		if (kvm_cpu_has_injectable_intr(vcpu))
9980 			static_call(kvm_x86_enable_irq_window)(vcpu);
9981 	}
9982 
9983 	if (is_guest_mode(vcpu) &&
9984 	    kvm_x86_ops.nested_ops->has_events &&
9985 	    kvm_x86_ops.nested_ops->has_events(vcpu))
9986 		*req_immediate_exit = true;
9987 
9988 	WARN_ON(kvm_is_exception_pending(vcpu));
9989 	return 0;
9990 
9991 out:
9992 	if (r == -EBUSY) {
9993 		*req_immediate_exit = true;
9994 		r = 0;
9995 	}
9996 	return r;
9997 }
9998 
9999 static void process_nmi(struct kvm_vcpu *vcpu)
10000 {
10001 	unsigned limit = 2;
10002 
10003 	/*
10004 	 * x86 is limited to one NMI running, and one NMI pending after it.
10005 	 * If an NMI is already in progress, limit further NMIs to just one.
10006 	 * Otherwise, allow two (and we'll inject the first one immediately).
10007 	 */
10008 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10009 		limit = 1;
10010 
10011 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10012 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10013 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10014 }
10015 
10016 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
10017 {
10018 	u32 flags = 0;
10019 	flags |= seg->g       << 23;
10020 	flags |= seg->db      << 22;
10021 	flags |= seg->l       << 21;
10022 	flags |= seg->avl     << 20;
10023 	flags |= seg->present << 15;
10024 	flags |= seg->dpl     << 13;
10025 	flags |= seg->s       << 12;
10026 	flags |= seg->type    << 8;
10027 	return flags;
10028 }
10029 
10030 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
10031 {
10032 	struct kvm_segment seg;
10033 	int offset;
10034 
10035 	kvm_get_segment(vcpu, &seg, n);
10036 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
10037 
10038 	if (n < 3)
10039 		offset = 0x7f84 + n * 12;
10040 	else
10041 		offset = 0x7f2c + (n - 3) * 12;
10042 
10043 	put_smstate(u32, buf, offset + 8, seg.base);
10044 	put_smstate(u32, buf, offset + 4, seg.limit);
10045 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
10046 }
10047 
10048 #ifdef CONFIG_X86_64
10049 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
10050 {
10051 	struct kvm_segment seg;
10052 	int offset;
10053 	u16 flags;
10054 
10055 	kvm_get_segment(vcpu, &seg, n);
10056 	offset = 0x7e00 + n * 16;
10057 
10058 	flags = enter_smm_get_segment_flags(&seg) >> 8;
10059 	put_smstate(u16, buf, offset, seg.selector);
10060 	put_smstate(u16, buf, offset + 2, flags);
10061 	put_smstate(u32, buf, offset + 4, seg.limit);
10062 	put_smstate(u64, buf, offset + 8, seg.base);
10063 }
10064 #endif
10065 
10066 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
10067 {
10068 	struct desc_ptr dt;
10069 	struct kvm_segment seg;
10070 	unsigned long val;
10071 	int i;
10072 
10073 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
10074 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
10075 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
10076 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
10077 
10078 	for (i = 0; i < 8; i++)
10079 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
10080 
10081 	kvm_get_dr(vcpu, 6, &val);
10082 	put_smstate(u32, buf, 0x7fcc, (u32)val);
10083 	kvm_get_dr(vcpu, 7, &val);
10084 	put_smstate(u32, buf, 0x7fc8, (u32)val);
10085 
10086 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
10087 	put_smstate(u32, buf, 0x7fc4, seg.selector);
10088 	put_smstate(u32, buf, 0x7f64, seg.base);
10089 	put_smstate(u32, buf, 0x7f60, seg.limit);
10090 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
10091 
10092 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
10093 	put_smstate(u32, buf, 0x7fc0, seg.selector);
10094 	put_smstate(u32, buf, 0x7f80, seg.base);
10095 	put_smstate(u32, buf, 0x7f7c, seg.limit);
10096 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
10097 
10098 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10099 	put_smstate(u32, buf, 0x7f74, dt.address);
10100 	put_smstate(u32, buf, 0x7f70, dt.size);
10101 
10102 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10103 	put_smstate(u32, buf, 0x7f58, dt.address);
10104 	put_smstate(u32, buf, 0x7f54, dt.size);
10105 
10106 	for (i = 0; i < 6; i++)
10107 		enter_smm_save_seg_32(vcpu, buf, i);
10108 
10109 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
10110 
10111 	/* revision id */
10112 	put_smstate(u32, buf, 0x7efc, 0x00020000);
10113 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
10114 }
10115 
10116 #ifdef CONFIG_X86_64
10117 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
10118 {
10119 	struct desc_ptr dt;
10120 	struct kvm_segment seg;
10121 	unsigned long val;
10122 	int i;
10123 
10124 	for (i = 0; i < 16; i++)
10125 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
10126 
10127 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
10128 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
10129 
10130 	kvm_get_dr(vcpu, 6, &val);
10131 	put_smstate(u64, buf, 0x7f68, val);
10132 	kvm_get_dr(vcpu, 7, &val);
10133 	put_smstate(u64, buf, 0x7f60, val);
10134 
10135 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
10136 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
10137 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
10138 
10139 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
10140 
10141 	/* revision id */
10142 	put_smstate(u32, buf, 0x7efc, 0x00020064);
10143 
10144 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
10145 
10146 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
10147 	put_smstate(u16, buf, 0x7e90, seg.selector);
10148 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
10149 	put_smstate(u32, buf, 0x7e94, seg.limit);
10150 	put_smstate(u64, buf, 0x7e98, seg.base);
10151 
10152 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10153 	put_smstate(u32, buf, 0x7e84, dt.size);
10154 	put_smstate(u64, buf, 0x7e88, dt.address);
10155 
10156 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
10157 	put_smstate(u16, buf, 0x7e70, seg.selector);
10158 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
10159 	put_smstate(u32, buf, 0x7e74, seg.limit);
10160 	put_smstate(u64, buf, 0x7e78, seg.base);
10161 
10162 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10163 	put_smstate(u32, buf, 0x7e64, dt.size);
10164 	put_smstate(u64, buf, 0x7e68, dt.address);
10165 
10166 	for (i = 0; i < 6; i++)
10167 		enter_smm_save_seg_64(vcpu, buf, i);
10168 }
10169 #endif
10170 
10171 static void enter_smm(struct kvm_vcpu *vcpu)
10172 {
10173 	struct kvm_segment cs, ds;
10174 	struct desc_ptr dt;
10175 	unsigned long cr0;
10176 	char buf[512];
10177 
10178 	memset(buf, 0, 512);
10179 #ifdef CONFIG_X86_64
10180 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10181 		enter_smm_save_state_64(vcpu, buf);
10182 	else
10183 #endif
10184 		enter_smm_save_state_32(vcpu, buf);
10185 
10186 	/*
10187 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
10188 	 * state (e.g. leave guest mode) after we've saved the state into the
10189 	 * SMM state-save area.
10190 	 */
10191 	static_call(kvm_x86_enter_smm)(vcpu, buf);
10192 
10193 	kvm_smm_changed(vcpu, true);
10194 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
10195 
10196 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
10197 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
10198 	else
10199 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
10200 
10201 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10202 	kvm_rip_write(vcpu, 0x8000);
10203 
10204 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
10205 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
10206 	vcpu->arch.cr0 = cr0;
10207 
10208 	static_call(kvm_x86_set_cr4)(vcpu, 0);
10209 
10210 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
10211 	dt.address = dt.size = 0;
10212 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10213 
10214 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
10215 
10216 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
10217 	cs.base = vcpu->arch.smbase;
10218 
10219 	ds.selector = 0;
10220 	ds.base = 0;
10221 
10222 	cs.limit    = ds.limit = 0xffffffff;
10223 	cs.type     = ds.type = 0x3;
10224 	cs.dpl      = ds.dpl = 0;
10225 	cs.db       = ds.db = 0;
10226 	cs.s        = ds.s = 1;
10227 	cs.l        = ds.l = 0;
10228 	cs.g        = ds.g = 1;
10229 	cs.avl      = ds.avl = 0;
10230 	cs.present  = ds.present = 1;
10231 	cs.unusable = ds.unusable = 0;
10232 	cs.padding  = ds.padding = 0;
10233 
10234 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10235 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
10236 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
10237 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
10238 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
10239 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
10240 
10241 #ifdef CONFIG_X86_64
10242 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10243 		static_call(kvm_x86_set_efer)(vcpu, 0);
10244 #endif
10245 
10246 	kvm_update_cpuid_runtime(vcpu);
10247 	kvm_mmu_reset_context(vcpu);
10248 }
10249 
10250 static void process_smi(struct kvm_vcpu *vcpu)
10251 {
10252 	vcpu->arch.smi_pending = true;
10253 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10254 }
10255 
10256 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10257 				       unsigned long *vcpu_bitmap)
10258 {
10259 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10260 }
10261 
10262 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10263 {
10264 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10265 }
10266 
10267 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10268 {
10269 	struct kvm_lapic *apic = vcpu->arch.apic;
10270 	bool activate;
10271 
10272 	if (!lapic_in_kernel(vcpu))
10273 		return;
10274 
10275 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10276 	preempt_disable();
10277 
10278 	/* Do not activate APICV when APIC is disabled */
10279 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10280 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10281 
10282 	if (apic->apicv_active == activate)
10283 		goto out;
10284 
10285 	apic->apicv_active = activate;
10286 	kvm_apic_update_apicv(vcpu);
10287 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10288 
10289 	/*
10290 	 * When APICv gets disabled, we may still have injected interrupts
10291 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10292 	 * still active when the interrupt got accepted. Make sure
10293 	 * kvm_check_and_inject_events() is called to check for that.
10294 	 */
10295 	if (!apic->apicv_active)
10296 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10297 
10298 out:
10299 	preempt_enable();
10300 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10301 }
10302 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
10303 
10304 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10305 				      enum kvm_apicv_inhibit reason, bool set)
10306 {
10307 	unsigned long old, new;
10308 
10309 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10310 
10311 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
10312 		return;
10313 
10314 	old = new = kvm->arch.apicv_inhibit_reasons;
10315 
10316 	set_or_clear_apicv_inhibit(&new, reason, set);
10317 
10318 	if (!!old != !!new) {
10319 		/*
10320 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10321 		 * false positives in the sanity check WARN in svm_vcpu_run().
10322 		 * This task will wait for all vCPUs to ack the kick IRQ before
10323 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10324 		 * block on acquiring apicv_update_lock so that vCPUs can't
10325 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10326 		 *
10327 		 * Note, holding apicv_update_lock and taking it in the read
10328 		 * side (handling the request) also prevents other vCPUs from
10329 		 * servicing the request with a stale apicv_inhibit_reasons.
10330 		 */
10331 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10332 		kvm->arch.apicv_inhibit_reasons = new;
10333 		if (new) {
10334 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10335 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10336 		}
10337 	} else {
10338 		kvm->arch.apicv_inhibit_reasons = new;
10339 	}
10340 }
10341 
10342 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10343 				    enum kvm_apicv_inhibit reason, bool set)
10344 {
10345 	if (!enable_apicv)
10346 		return;
10347 
10348 	down_write(&kvm->arch.apicv_update_lock);
10349 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10350 	up_write(&kvm->arch.apicv_update_lock);
10351 }
10352 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10353 
10354 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10355 {
10356 	if (!kvm_apic_present(vcpu))
10357 		return;
10358 
10359 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10360 
10361 	if (irqchip_split(vcpu->kvm))
10362 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10363 	else {
10364 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10365 		if (ioapic_in_kernel(vcpu->kvm))
10366 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10367 	}
10368 
10369 	if (is_guest_mode(vcpu))
10370 		vcpu->arch.load_eoi_exitmap_pending = true;
10371 	else
10372 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10373 }
10374 
10375 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10376 {
10377 	u64 eoi_exit_bitmap[4];
10378 
10379 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10380 		return;
10381 
10382 	if (to_hv_vcpu(vcpu)) {
10383 		bitmap_or((ulong *)eoi_exit_bitmap,
10384 			  vcpu->arch.ioapic_handled_vectors,
10385 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10386 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10387 		return;
10388 	}
10389 
10390 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10391 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10392 }
10393 
10394 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10395 					    unsigned long start, unsigned long end)
10396 {
10397 	unsigned long apic_address;
10398 
10399 	/*
10400 	 * The physical address of apic access page is stored in the VMCS.
10401 	 * Update it when it becomes invalid.
10402 	 */
10403 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10404 	if (start <= apic_address && apic_address < end)
10405 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10406 }
10407 
10408 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10409 {
10410 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10411 }
10412 
10413 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10414 {
10415 	if (!lapic_in_kernel(vcpu))
10416 		return;
10417 
10418 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10419 }
10420 
10421 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10422 {
10423 	smp_send_reschedule(vcpu->cpu);
10424 }
10425 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10426 
10427 /*
10428  * Called within kvm->srcu read side.
10429  * Returns 1 to let vcpu_run() continue the guest execution loop without
10430  * exiting to the userspace.  Otherwise, the value will be returned to the
10431  * userspace.
10432  */
10433 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10434 {
10435 	int r;
10436 	bool req_int_win =
10437 		dm_request_for_irq_injection(vcpu) &&
10438 		kvm_cpu_accept_dm_intr(vcpu);
10439 	fastpath_t exit_fastpath;
10440 
10441 	bool req_immediate_exit = false;
10442 
10443 	/* Forbid vmenter if vcpu dirty ring is soft-full */
10444 	if (unlikely(vcpu->kvm->dirty_ring_size &&
10445 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10446 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10447 		trace_kvm_dirty_ring_exit(vcpu);
10448 		r = 0;
10449 		goto out;
10450 	}
10451 
10452 	if (kvm_request_pending(vcpu)) {
10453 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10454 			r = -EIO;
10455 			goto out;
10456 		}
10457 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10458 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10459 				r = 0;
10460 				goto out;
10461 			}
10462 		}
10463 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10464 			kvm_mmu_free_obsolete_roots(vcpu);
10465 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10466 			__kvm_migrate_timers(vcpu);
10467 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10468 			kvm_update_masterclock(vcpu->kvm);
10469 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10470 			kvm_gen_kvmclock_update(vcpu);
10471 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10472 			r = kvm_guest_time_update(vcpu);
10473 			if (unlikely(r))
10474 				goto out;
10475 		}
10476 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10477 			kvm_mmu_sync_roots(vcpu);
10478 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10479 			kvm_mmu_load_pgd(vcpu);
10480 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10481 			kvm_vcpu_flush_tlb_all(vcpu);
10482 
10483 			/* Flushing all ASIDs flushes the current ASID... */
10484 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10485 		}
10486 		kvm_service_local_tlb_flush_requests(vcpu);
10487 
10488 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10489 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10490 			r = 0;
10491 			goto out;
10492 		}
10493 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10494 			if (is_guest_mode(vcpu)) {
10495 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10496 			} else {
10497 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10498 				vcpu->mmio_needed = 0;
10499 				r = 0;
10500 				goto out;
10501 			}
10502 		}
10503 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10504 			/* Page is swapped out. Do synthetic halt */
10505 			vcpu->arch.apf.halted = true;
10506 			r = 1;
10507 			goto out;
10508 		}
10509 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10510 			record_steal_time(vcpu);
10511 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10512 			process_smi(vcpu);
10513 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10514 			process_nmi(vcpu);
10515 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10516 			kvm_pmu_handle_event(vcpu);
10517 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10518 			kvm_pmu_deliver_pmi(vcpu);
10519 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10520 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10521 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10522 				     vcpu->arch.ioapic_handled_vectors)) {
10523 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10524 				vcpu->run->eoi.vector =
10525 						vcpu->arch.pending_ioapic_eoi;
10526 				r = 0;
10527 				goto out;
10528 			}
10529 		}
10530 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10531 			vcpu_scan_ioapic(vcpu);
10532 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10533 			vcpu_load_eoi_exitmap(vcpu);
10534 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10535 			kvm_vcpu_reload_apic_access_page(vcpu);
10536 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10537 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10538 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10539 			vcpu->run->system_event.ndata = 0;
10540 			r = 0;
10541 			goto out;
10542 		}
10543 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10544 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10545 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10546 			vcpu->run->system_event.ndata = 0;
10547 			r = 0;
10548 			goto out;
10549 		}
10550 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10551 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10552 
10553 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10554 			vcpu->run->hyperv = hv_vcpu->exit;
10555 			r = 0;
10556 			goto out;
10557 		}
10558 
10559 		/*
10560 		 * KVM_REQ_HV_STIMER has to be processed after
10561 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10562 		 * depend on the guest clock being up-to-date
10563 		 */
10564 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10565 			kvm_hv_process_stimers(vcpu);
10566 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10567 			kvm_vcpu_update_apicv(vcpu);
10568 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10569 			kvm_check_async_pf_completion(vcpu);
10570 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10571 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10572 
10573 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10574 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10575 	}
10576 
10577 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10578 	    kvm_xen_has_interrupt(vcpu)) {
10579 		++vcpu->stat.req_event;
10580 		r = kvm_apic_accept_events(vcpu);
10581 		if (r < 0) {
10582 			r = 0;
10583 			goto out;
10584 		}
10585 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10586 			r = 1;
10587 			goto out;
10588 		}
10589 
10590 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10591 		if (r < 0) {
10592 			r = 0;
10593 			goto out;
10594 		}
10595 		if (req_int_win)
10596 			static_call(kvm_x86_enable_irq_window)(vcpu);
10597 
10598 		if (kvm_lapic_enabled(vcpu)) {
10599 			update_cr8_intercept(vcpu);
10600 			kvm_lapic_sync_to_vapic(vcpu);
10601 		}
10602 	}
10603 
10604 	r = kvm_mmu_reload(vcpu);
10605 	if (unlikely(r)) {
10606 		goto cancel_injection;
10607 	}
10608 
10609 	preempt_disable();
10610 
10611 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10612 
10613 	/*
10614 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10615 	 * IPI are then delayed after guest entry, which ensures that they
10616 	 * result in virtual interrupt delivery.
10617 	 */
10618 	local_irq_disable();
10619 
10620 	/* Store vcpu->apicv_active before vcpu->mode.  */
10621 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10622 
10623 	kvm_vcpu_srcu_read_unlock(vcpu);
10624 
10625 	/*
10626 	 * 1) We should set ->mode before checking ->requests.  Please see
10627 	 * the comment in kvm_vcpu_exiting_guest_mode().
10628 	 *
10629 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10630 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10631 	 * (see vmx_deliver_posted_interrupt).
10632 	 *
10633 	 * 3) This also orders the write to mode from any reads to the page
10634 	 * tables done while the VCPU is running.  Please see the comment
10635 	 * in kvm_flush_remote_tlbs.
10636 	 */
10637 	smp_mb__after_srcu_read_unlock();
10638 
10639 	/*
10640 	 * Process pending posted interrupts to handle the case where the
10641 	 * notification IRQ arrived in the host, or was never sent (because the
10642 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10643 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10644 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10645 	 */
10646 	if (kvm_lapic_enabled(vcpu))
10647 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10648 
10649 	if (kvm_vcpu_exit_request(vcpu)) {
10650 		vcpu->mode = OUTSIDE_GUEST_MODE;
10651 		smp_wmb();
10652 		local_irq_enable();
10653 		preempt_enable();
10654 		kvm_vcpu_srcu_read_lock(vcpu);
10655 		r = 1;
10656 		goto cancel_injection;
10657 	}
10658 
10659 	if (req_immediate_exit) {
10660 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10661 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10662 	}
10663 
10664 	fpregs_assert_state_consistent();
10665 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10666 		switch_fpu_return();
10667 
10668 	if (vcpu->arch.guest_fpu.xfd_err)
10669 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10670 
10671 	if (unlikely(vcpu->arch.switch_db_regs)) {
10672 		set_debugreg(0, 7);
10673 		set_debugreg(vcpu->arch.eff_db[0], 0);
10674 		set_debugreg(vcpu->arch.eff_db[1], 1);
10675 		set_debugreg(vcpu->arch.eff_db[2], 2);
10676 		set_debugreg(vcpu->arch.eff_db[3], 3);
10677 	} else if (unlikely(hw_breakpoint_active())) {
10678 		set_debugreg(0, 7);
10679 	}
10680 
10681 	guest_timing_enter_irqoff();
10682 
10683 	for (;;) {
10684 		/*
10685 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10686 		 * update must kick and wait for all vCPUs before toggling the
10687 		 * per-VM state, and responsing vCPUs must wait for the update
10688 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10689 		 */
10690 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10691 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10692 
10693 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10694 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10695 			break;
10696 
10697 		if (kvm_lapic_enabled(vcpu))
10698 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10699 
10700 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10701 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10702 			break;
10703 		}
10704 	}
10705 
10706 	/*
10707 	 * Do this here before restoring debug registers on the host.  And
10708 	 * since we do this before handling the vmexit, a DR access vmexit
10709 	 * can (a) read the correct value of the debug registers, (b) set
10710 	 * KVM_DEBUGREG_WONT_EXIT again.
10711 	 */
10712 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10713 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10714 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10715 		kvm_update_dr0123(vcpu);
10716 		kvm_update_dr7(vcpu);
10717 	}
10718 
10719 	/*
10720 	 * If the guest has used debug registers, at least dr7
10721 	 * will be disabled while returning to the host.
10722 	 * If we don't have active breakpoints in the host, we don't
10723 	 * care about the messed up debug address registers. But if
10724 	 * we have some of them active, restore the old state.
10725 	 */
10726 	if (hw_breakpoint_active())
10727 		hw_breakpoint_restore();
10728 
10729 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10730 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10731 
10732 	vcpu->mode = OUTSIDE_GUEST_MODE;
10733 	smp_wmb();
10734 
10735 	/*
10736 	 * Sync xfd before calling handle_exit_irqoff() which may
10737 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10738 	 * in #NM irqoff handler).
10739 	 */
10740 	if (vcpu->arch.xfd_no_write_intercept)
10741 		fpu_sync_guest_vmexit_xfd_state();
10742 
10743 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10744 
10745 	if (vcpu->arch.guest_fpu.xfd_err)
10746 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10747 
10748 	/*
10749 	 * Consume any pending interrupts, including the possible source of
10750 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10751 	 * An instruction is required after local_irq_enable() to fully unblock
10752 	 * interrupts on processors that implement an interrupt shadow, the
10753 	 * stat.exits increment will do nicely.
10754 	 */
10755 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10756 	local_irq_enable();
10757 	++vcpu->stat.exits;
10758 	local_irq_disable();
10759 	kvm_after_interrupt(vcpu);
10760 
10761 	/*
10762 	 * Wait until after servicing IRQs to account guest time so that any
10763 	 * ticks that occurred while running the guest are properly accounted
10764 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10765 	 * of accounting via context tracking, but the loss of accuracy is
10766 	 * acceptable for all known use cases.
10767 	 */
10768 	guest_timing_exit_irqoff();
10769 
10770 	local_irq_enable();
10771 	preempt_enable();
10772 
10773 	kvm_vcpu_srcu_read_lock(vcpu);
10774 
10775 	/*
10776 	 * Profile KVM exit RIPs:
10777 	 */
10778 	if (unlikely(prof_on == KVM_PROFILING)) {
10779 		unsigned long rip = kvm_rip_read(vcpu);
10780 		profile_hit(KVM_PROFILING, (void *)rip);
10781 	}
10782 
10783 	if (unlikely(vcpu->arch.tsc_always_catchup))
10784 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10785 
10786 	if (vcpu->arch.apic_attention)
10787 		kvm_lapic_sync_from_vapic(vcpu);
10788 
10789 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10790 	return r;
10791 
10792 cancel_injection:
10793 	if (req_immediate_exit)
10794 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10795 	static_call(kvm_x86_cancel_injection)(vcpu);
10796 	if (unlikely(vcpu->arch.apic_attention))
10797 		kvm_lapic_sync_from_vapic(vcpu);
10798 out:
10799 	return r;
10800 }
10801 
10802 /* Called within kvm->srcu read side.  */
10803 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10804 {
10805 	bool hv_timer;
10806 
10807 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10808 		/*
10809 		 * Switch to the software timer before halt-polling/blocking as
10810 		 * the guest's timer may be a break event for the vCPU, and the
10811 		 * hypervisor timer runs only when the CPU is in guest mode.
10812 		 * Switch before halt-polling so that KVM recognizes an expired
10813 		 * timer before blocking.
10814 		 */
10815 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10816 		if (hv_timer)
10817 			kvm_lapic_switch_to_sw_timer(vcpu);
10818 
10819 		kvm_vcpu_srcu_read_unlock(vcpu);
10820 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10821 			kvm_vcpu_halt(vcpu);
10822 		else
10823 			kvm_vcpu_block(vcpu);
10824 		kvm_vcpu_srcu_read_lock(vcpu);
10825 
10826 		if (hv_timer)
10827 			kvm_lapic_switch_to_hv_timer(vcpu);
10828 
10829 		/*
10830 		 * If the vCPU is not runnable, a signal or another host event
10831 		 * of some kind is pending; service it without changing the
10832 		 * vCPU's activity state.
10833 		 */
10834 		if (!kvm_arch_vcpu_runnable(vcpu))
10835 			return 1;
10836 	}
10837 
10838 	/*
10839 	 * Evaluate nested events before exiting the halted state.  This allows
10840 	 * the halt state to be recorded properly in the VMCS12's activity
10841 	 * state field (AMD does not have a similar field and a VM-Exit always
10842 	 * causes a spurious wakeup from HLT).
10843 	 */
10844 	if (is_guest_mode(vcpu)) {
10845 		if (kvm_check_nested_events(vcpu) < 0)
10846 			return 0;
10847 	}
10848 
10849 	if (kvm_apic_accept_events(vcpu) < 0)
10850 		return 0;
10851 	switch(vcpu->arch.mp_state) {
10852 	case KVM_MP_STATE_HALTED:
10853 	case KVM_MP_STATE_AP_RESET_HOLD:
10854 		vcpu->arch.pv.pv_unhalted = false;
10855 		vcpu->arch.mp_state =
10856 			KVM_MP_STATE_RUNNABLE;
10857 		fallthrough;
10858 	case KVM_MP_STATE_RUNNABLE:
10859 		vcpu->arch.apf.halted = false;
10860 		break;
10861 	case KVM_MP_STATE_INIT_RECEIVED:
10862 		break;
10863 	default:
10864 		WARN_ON_ONCE(1);
10865 		break;
10866 	}
10867 	return 1;
10868 }
10869 
10870 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10871 {
10872 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10873 		!vcpu->arch.apf.halted);
10874 }
10875 
10876 /* Called within kvm->srcu read side.  */
10877 static int vcpu_run(struct kvm_vcpu *vcpu)
10878 {
10879 	int r;
10880 
10881 	vcpu->arch.l1tf_flush_l1d = true;
10882 
10883 	for (;;) {
10884 		/*
10885 		 * If another guest vCPU requests a PV TLB flush in the middle
10886 		 * of instruction emulation, the rest of the emulation could
10887 		 * use a stale page translation. Assume that any code after
10888 		 * this point can start executing an instruction.
10889 		 */
10890 		vcpu->arch.at_instruction_boundary = false;
10891 		if (kvm_vcpu_running(vcpu)) {
10892 			r = vcpu_enter_guest(vcpu);
10893 		} else {
10894 			r = vcpu_block(vcpu);
10895 		}
10896 
10897 		if (r <= 0)
10898 			break;
10899 
10900 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10901 		if (kvm_xen_has_pending_events(vcpu))
10902 			kvm_xen_inject_pending_events(vcpu);
10903 
10904 		if (kvm_cpu_has_pending_timer(vcpu))
10905 			kvm_inject_pending_timer_irqs(vcpu);
10906 
10907 		if (dm_request_for_irq_injection(vcpu) &&
10908 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10909 			r = 0;
10910 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10911 			++vcpu->stat.request_irq_exits;
10912 			break;
10913 		}
10914 
10915 		if (__xfer_to_guest_mode_work_pending()) {
10916 			kvm_vcpu_srcu_read_unlock(vcpu);
10917 			r = xfer_to_guest_mode_handle_work(vcpu);
10918 			kvm_vcpu_srcu_read_lock(vcpu);
10919 			if (r)
10920 				return r;
10921 		}
10922 	}
10923 
10924 	return r;
10925 }
10926 
10927 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10928 {
10929 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10930 }
10931 
10932 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10933 {
10934 	BUG_ON(!vcpu->arch.pio.count);
10935 
10936 	return complete_emulated_io(vcpu);
10937 }
10938 
10939 /*
10940  * Implements the following, as a state machine:
10941  *
10942  * read:
10943  *   for each fragment
10944  *     for each mmio piece in the fragment
10945  *       write gpa, len
10946  *       exit
10947  *       copy data
10948  *   execute insn
10949  *
10950  * write:
10951  *   for each fragment
10952  *     for each mmio piece in the fragment
10953  *       write gpa, len
10954  *       copy data
10955  *       exit
10956  */
10957 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10958 {
10959 	struct kvm_run *run = vcpu->run;
10960 	struct kvm_mmio_fragment *frag;
10961 	unsigned len;
10962 
10963 	BUG_ON(!vcpu->mmio_needed);
10964 
10965 	/* Complete previous fragment */
10966 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10967 	len = min(8u, frag->len);
10968 	if (!vcpu->mmio_is_write)
10969 		memcpy(frag->data, run->mmio.data, len);
10970 
10971 	if (frag->len <= 8) {
10972 		/* Switch to the next fragment. */
10973 		frag++;
10974 		vcpu->mmio_cur_fragment++;
10975 	} else {
10976 		/* Go forward to the next mmio piece. */
10977 		frag->data += len;
10978 		frag->gpa += len;
10979 		frag->len -= len;
10980 	}
10981 
10982 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10983 		vcpu->mmio_needed = 0;
10984 
10985 		/* FIXME: return into emulator if single-stepping.  */
10986 		if (vcpu->mmio_is_write)
10987 			return 1;
10988 		vcpu->mmio_read_completed = 1;
10989 		return complete_emulated_io(vcpu);
10990 	}
10991 
10992 	run->exit_reason = KVM_EXIT_MMIO;
10993 	run->mmio.phys_addr = frag->gpa;
10994 	if (vcpu->mmio_is_write)
10995 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10996 	run->mmio.len = min(8u, frag->len);
10997 	run->mmio.is_write = vcpu->mmio_is_write;
10998 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10999 	return 0;
11000 }
11001 
11002 /* Swap (qemu) user FPU context for the guest FPU context. */
11003 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11004 {
11005 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11006 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11007 	trace_kvm_fpu(1);
11008 }
11009 
11010 /* When vcpu_run ends, restore user space FPU context. */
11011 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11012 {
11013 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11014 	++vcpu->stat.fpu_reload;
11015 	trace_kvm_fpu(0);
11016 }
11017 
11018 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11019 {
11020 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11021 	struct kvm_run *kvm_run = vcpu->run;
11022 	int r;
11023 
11024 	vcpu_load(vcpu);
11025 	kvm_sigset_activate(vcpu);
11026 	kvm_run->flags = 0;
11027 	kvm_load_guest_fpu(vcpu);
11028 
11029 	kvm_vcpu_srcu_read_lock(vcpu);
11030 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11031 		if (kvm_run->immediate_exit) {
11032 			r = -EINTR;
11033 			goto out;
11034 		}
11035 		/*
11036 		 * It should be impossible for the hypervisor timer to be in
11037 		 * use before KVM has ever run the vCPU.
11038 		 */
11039 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
11040 
11041 		kvm_vcpu_srcu_read_unlock(vcpu);
11042 		kvm_vcpu_block(vcpu);
11043 		kvm_vcpu_srcu_read_lock(vcpu);
11044 
11045 		if (kvm_apic_accept_events(vcpu) < 0) {
11046 			r = 0;
11047 			goto out;
11048 		}
11049 		r = -EAGAIN;
11050 		if (signal_pending(current)) {
11051 			r = -EINTR;
11052 			kvm_run->exit_reason = KVM_EXIT_INTR;
11053 			++vcpu->stat.signal_exits;
11054 		}
11055 		goto out;
11056 	}
11057 
11058 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11059 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11060 		r = -EINVAL;
11061 		goto out;
11062 	}
11063 
11064 	if (kvm_run->kvm_dirty_regs) {
11065 		r = sync_regs(vcpu);
11066 		if (r != 0)
11067 			goto out;
11068 	}
11069 
11070 	/* re-sync apic's tpr */
11071 	if (!lapic_in_kernel(vcpu)) {
11072 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11073 			r = -EINVAL;
11074 			goto out;
11075 		}
11076 	}
11077 
11078 	/*
11079 	 * If userspace set a pending exception and L2 is active, convert it to
11080 	 * a pending VM-Exit if L1 wants to intercept the exception.
11081 	 */
11082 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11083 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11084 							ex->error_code)) {
11085 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11086 					   ex->has_error_code, ex->error_code,
11087 					   ex->has_payload, ex->payload);
11088 		ex->injected = false;
11089 		ex->pending = false;
11090 	}
11091 	vcpu->arch.exception_from_userspace = false;
11092 
11093 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11094 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11095 		vcpu->arch.complete_userspace_io = NULL;
11096 		r = cui(vcpu);
11097 		if (r <= 0)
11098 			goto out;
11099 	} else {
11100 		WARN_ON_ONCE(vcpu->arch.pio.count);
11101 		WARN_ON_ONCE(vcpu->mmio_needed);
11102 	}
11103 
11104 	if (kvm_run->immediate_exit) {
11105 		r = -EINTR;
11106 		goto out;
11107 	}
11108 
11109 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11110 	if (r <= 0)
11111 		goto out;
11112 
11113 	r = vcpu_run(vcpu);
11114 
11115 out:
11116 	kvm_put_guest_fpu(vcpu);
11117 	if (kvm_run->kvm_valid_regs)
11118 		store_regs(vcpu);
11119 	post_kvm_run_save(vcpu);
11120 	kvm_vcpu_srcu_read_unlock(vcpu);
11121 
11122 	kvm_sigset_deactivate(vcpu);
11123 	vcpu_put(vcpu);
11124 	return r;
11125 }
11126 
11127 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11128 {
11129 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11130 		/*
11131 		 * We are here if userspace calls get_regs() in the middle of
11132 		 * instruction emulation. Registers state needs to be copied
11133 		 * back from emulation context to vcpu. Userspace shouldn't do
11134 		 * that usually, but some bad designed PV devices (vmware
11135 		 * backdoor interface) need this to work
11136 		 */
11137 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11138 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11139 	}
11140 	regs->rax = kvm_rax_read(vcpu);
11141 	regs->rbx = kvm_rbx_read(vcpu);
11142 	regs->rcx = kvm_rcx_read(vcpu);
11143 	regs->rdx = kvm_rdx_read(vcpu);
11144 	regs->rsi = kvm_rsi_read(vcpu);
11145 	regs->rdi = kvm_rdi_read(vcpu);
11146 	regs->rsp = kvm_rsp_read(vcpu);
11147 	regs->rbp = kvm_rbp_read(vcpu);
11148 #ifdef CONFIG_X86_64
11149 	regs->r8 = kvm_r8_read(vcpu);
11150 	regs->r9 = kvm_r9_read(vcpu);
11151 	regs->r10 = kvm_r10_read(vcpu);
11152 	regs->r11 = kvm_r11_read(vcpu);
11153 	regs->r12 = kvm_r12_read(vcpu);
11154 	regs->r13 = kvm_r13_read(vcpu);
11155 	regs->r14 = kvm_r14_read(vcpu);
11156 	regs->r15 = kvm_r15_read(vcpu);
11157 #endif
11158 
11159 	regs->rip = kvm_rip_read(vcpu);
11160 	regs->rflags = kvm_get_rflags(vcpu);
11161 }
11162 
11163 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11164 {
11165 	vcpu_load(vcpu);
11166 	__get_regs(vcpu, regs);
11167 	vcpu_put(vcpu);
11168 	return 0;
11169 }
11170 
11171 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11172 {
11173 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11174 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11175 
11176 	kvm_rax_write(vcpu, regs->rax);
11177 	kvm_rbx_write(vcpu, regs->rbx);
11178 	kvm_rcx_write(vcpu, regs->rcx);
11179 	kvm_rdx_write(vcpu, regs->rdx);
11180 	kvm_rsi_write(vcpu, regs->rsi);
11181 	kvm_rdi_write(vcpu, regs->rdi);
11182 	kvm_rsp_write(vcpu, regs->rsp);
11183 	kvm_rbp_write(vcpu, regs->rbp);
11184 #ifdef CONFIG_X86_64
11185 	kvm_r8_write(vcpu, regs->r8);
11186 	kvm_r9_write(vcpu, regs->r9);
11187 	kvm_r10_write(vcpu, regs->r10);
11188 	kvm_r11_write(vcpu, regs->r11);
11189 	kvm_r12_write(vcpu, regs->r12);
11190 	kvm_r13_write(vcpu, regs->r13);
11191 	kvm_r14_write(vcpu, regs->r14);
11192 	kvm_r15_write(vcpu, regs->r15);
11193 #endif
11194 
11195 	kvm_rip_write(vcpu, regs->rip);
11196 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11197 
11198 	vcpu->arch.exception.pending = false;
11199 	vcpu->arch.exception_vmexit.pending = false;
11200 
11201 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11202 }
11203 
11204 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11205 {
11206 	vcpu_load(vcpu);
11207 	__set_regs(vcpu, regs);
11208 	vcpu_put(vcpu);
11209 	return 0;
11210 }
11211 
11212 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11213 {
11214 	struct desc_ptr dt;
11215 
11216 	if (vcpu->arch.guest_state_protected)
11217 		goto skip_protected_regs;
11218 
11219 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11220 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11221 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11222 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11223 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11224 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11225 
11226 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11227 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11228 
11229 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11230 	sregs->idt.limit = dt.size;
11231 	sregs->idt.base = dt.address;
11232 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11233 	sregs->gdt.limit = dt.size;
11234 	sregs->gdt.base = dt.address;
11235 
11236 	sregs->cr2 = vcpu->arch.cr2;
11237 	sregs->cr3 = kvm_read_cr3(vcpu);
11238 
11239 skip_protected_regs:
11240 	sregs->cr0 = kvm_read_cr0(vcpu);
11241 	sregs->cr4 = kvm_read_cr4(vcpu);
11242 	sregs->cr8 = kvm_get_cr8(vcpu);
11243 	sregs->efer = vcpu->arch.efer;
11244 	sregs->apic_base = kvm_get_apic_base(vcpu);
11245 }
11246 
11247 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11248 {
11249 	__get_sregs_common(vcpu, sregs);
11250 
11251 	if (vcpu->arch.guest_state_protected)
11252 		return;
11253 
11254 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11255 		set_bit(vcpu->arch.interrupt.nr,
11256 			(unsigned long *)sregs->interrupt_bitmap);
11257 }
11258 
11259 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11260 {
11261 	int i;
11262 
11263 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11264 
11265 	if (vcpu->arch.guest_state_protected)
11266 		return;
11267 
11268 	if (is_pae_paging(vcpu)) {
11269 		for (i = 0 ; i < 4 ; i++)
11270 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11271 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11272 	}
11273 }
11274 
11275 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11276 				  struct kvm_sregs *sregs)
11277 {
11278 	vcpu_load(vcpu);
11279 	__get_sregs(vcpu, sregs);
11280 	vcpu_put(vcpu);
11281 	return 0;
11282 }
11283 
11284 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11285 				    struct kvm_mp_state *mp_state)
11286 {
11287 	int r;
11288 
11289 	vcpu_load(vcpu);
11290 	if (kvm_mpx_supported())
11291 		kvm_load_guest_fpu(vcpu);
11292 
11293 	r = kvm_apic_accept_events(vcpu);
11294 	if (r < 0)
11295 		goto out;
11296 	r = 0;
11297 
11298 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11299 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11300 	    vcpu->arch.pv.pv_unhalted)
11301 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11302 	else
11303 		mp_state->mp_state = vcpu->arch.mp_state;
11304 
11305 out:
11306 	if (kvm_mpx_supported())
11307 		kvm_put_guest_fpu(vcpu);
11308 	vcpu_put(vcpu);
11309 	return r;
11310 }
11311 
11312 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11313 				    struct kvm_mp_state *mp_state)
11314 {
11315 	int ret = -EINVAL;
11316 
11317 	vcpu_load(vcpu);
11318 
11319 	switch (mp_state->mp_state) {
11320 	case KVM_MP_STATE_UNINITIALIZED:
11321 	case KVM_MP_STATE_HALTED:
11322 	case KVM_MP_STATE_AP_RESET_HOLD:
11323 	case KVM_MP_STATE_INIT_RECEIVED:
11324 	case KVM_MP_STATE_SIPI_RECEIVED:
11325 		if (!lapic_in_kernel(vcpu))
11326 			goto out;
11327 		break;
11328 
11329 	case KVM_MP_STATE_RUNNABLE:
11330 		break;
11331 
11332 	default:
11333 		goto out;
11334 	}
11335 
11336 	/*
11337 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11338 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11339 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11340 	 * if an SMI is pending as well.
11341 	 */
11342 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11343 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11344 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11345 		goto out;
11346 
11347 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11348 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11349 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11350 	} else
11351 		vcpu->arch.mp_state = mp_state->mp_state;
11352 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11353 
11354 	ret = 0;
11355 out:
11356 	vcpu_put(vcpu);
11357 	return ret;
11358 }
11359 
11360 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11361 		    int reason, bool has_error_code, u32 error_code)
11362 {
11363 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11364 	int ret;
11365 
11366 	init_emulate_ctxt(vcpu);
11367 
11368 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11369 				   has_error_code, error_code);
11370 	if (ret) {
11371 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11372 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11373 		vcpu->run->internal.ndata = 0;
11374 		return 0;
11375 	}
11376 
11377 	kvm_rip_write(vcpu, ctxt->eip);
11378 	kvm_set_rflags(vcpu, ctxt->eflags);
11379 	return 1;
11380 }
11381 EXPORT_SYMBOL_GPL(kvm_task_switch);
11382 
11383 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11384 {
11385 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11386 		/*
11387 		 * When EFER.LME and CR0.PG are set, the processor is in
11388 		 * 64-bit mode (though maybe in a 32-bit code segment).
11389 		 * CR4.PAE and EFER.LMA must be set.
11390 		 */
11391 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11392 			return false;
11393 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11394 			return false;
11395 	} else {
11396 		/*
11397 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11398 		 * segment cannot be 64-bit.
11399 		 */
11400 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11401 			return false;
11402 	}
11403 
11404 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11405 }
11406 
11407 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11408 		int *mmu_reset_needed, bool update_pdptrs)
11409 {
11410 	struct msr_data apic_base_msr;
11411 	int idx;
11412 	struct desc_ptr dt;
11413 
11414 	if (!kvm_is_valid_sregs(vcpu, sregs))
11415 		return -EINVAL;
11416 
11417 	apic_base_msr.data = sregs->apic_base;
11418 	apic_base_msr.host_initiated = true;
11419 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11420 		return -EINVAL;
11421 
11422 	if (vcpu->arch.guest_state_protected)
11423 		return 0;
11424 
11425 	dt.size = sregs->idt.limit;
11426 	dt.address = sregs->idt.base;
11427 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11428 	dt.size = sregs->gdt.limit;
11429 	dt.address = sregs->gdt.base;
11430 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11431 
11432 	vcpu->arch.cr2 = sregs->cr2;
11433 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11434 	vcpu->arch.cr3 = sregs->cr3;
11435 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11436 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11437 
11438 	kvm_set_cr8(vcpu, sregs->cr8);
11439 
11440 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11441 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11442 
11443 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11444 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11445 	vcpu->arch.cr0 = sregs->cr0;
11446 
11447 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11448 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11449 
11450 	if (update_pdptrs) {
11451 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11452 		if (is_pae_paging(vcpu)) {
11453 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11454 			*mmu_reset_needed = 1;
11455 		}
11456 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11457 	}
11458 
11459 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11460 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11461 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11462 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11463 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11464 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11465 
11466 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11467 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11468 
11469 	update_cr8_intercept(vcpu);
11470 
11471 	/* Older userspace won't unhalt the vcpu on reset. */
11472 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11473 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11474 	    !is_protmode(vcpu))
11475 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11476 
11477 	return 0;
11478 }
11479 
11480 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11481 {
11482 	int pending_vec, max_bits;
11483 	int mmu_reset_needed = 0;
11484 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11485 
11486 	if (ret)
11487 		return ret;
11488 
11489 	if (mmu_reset_needed)
11490 		kvm_mmu_reset_context(vcpu);
11491 
11492 	max_bits = KVM_NR_INTERRUPTS;
11493 	pending_vec = find_first_bit(
11494 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11495 
11496 	if (pending_vec < max_bits) {
11497 		kvm_queue_interrupt(vcpu, pending_vec, false);
11498 		pr_debug("Set back pending irq %d\n", pending_vec);
11499 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11500 	}
11501 	return 0;
11502 }
11503 
11504 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11505 {
11506 	int mmu_reset_needed = 0;
11507 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11508 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11509 		!(sregs2->efer & EFER_LMA);
11510 	int i, ret;
11511 
11512 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11513 		return -EINVAL;
11514 
11515 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11516 		return -EINVAL;
11517 
11518 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11519 				 &mmu_reset_needed, !valid_pdptrs);
11520 	if (ret)
11521 		return ret;
11522 
11523 	if (valid_pdptrs) {
11524 		for (i = 0; i < 4 ; i++)
11525 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11526 
11527 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11528 		mmu_reset_needed = 1;
11529 		vcpu->arch.pdptrs_from_userspace = true;
11530 	}
11531 	if (mmu_reset_needed)
11532 		kvm_mmu_reset_context(vcpu);
11533 	return 0;
11534 }
11535 
11536 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11537 				  struct kvm_sregs *sregs)
11538 {
11539 	int ret;
11540 
11541 	vcpu_load(vcpu);
11542 	ret = __set_sregs(vcpu, sregs);
11543 	vcpu_put(vcpu);
11544 	return ret;
11545 }
11546 
11547 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11548 {
11549 	bool set = false;
11550 	struct kvm_vcpu *vcpu;
11551 	unsigned long i;
11552 
11553 	if (!enable_apicv)
11554 		return;
11555 
11556 	down_write(&kvm->arch.apicv_update_lock);
11557 
11558 	kvm_for_each_vcpu(i, vcpu, kvm) {
11559 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11560 			set = true;
11561 			break;
11562 		}
11563 	}
11564 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11565 	up_write(&kvm->arch.apicv_update_lock);
11566 }
11567 
11568 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11569 					struct kvm_guest_debug *dbg)
11570 {
11571 	unsigned long rflags;
11572 	int i, r;
11573 
11574 	if (vcpu->arch.guest_state_protected)
11575 		return -EINVAL;
11576 
11577 	vcpu_load(vcpu);
11578 
11579 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11580 		r = -EBUSY;
11581 		if (kvm_is_exception_pending(vcpu))
11582 			goto out;
11583 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11584 			kvm_queue_exception(vcpu, DB_VECTOR);
11585 		else
11586 			kvm_queue_exception(vcpu, BP_VECTOR);
11587 	}
11588 
11589 	/*
11590 	 * Read rflags as long as potentially injected trace flags are still
11591 	 * filtered out.
11592 	 */
11593 	rflags = kvm_get_rflags(vcpu);
11594 
11595 	vcpu->guest_debug = dbg->control;
11596 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11597 		vcpu->guest_debug = 0;
11598 
11599 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11600 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11601 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11602 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11603 	} else {
11604 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11605 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11606 	}
11607 	kvm_update_dr7(vcpu);
11608 
11609 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11610 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11611 
11612 	/*
11613 	 * Trigger an rflags update that will inject or remove the trace
11614 	 * flags.
11615 	 */
11616 	kvm_set_rflags(vcpu, rflags);
11617 
11618 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11619 
11620 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11621 
11622 	r = 0;
11623 
11624 out:
11625 	vcpu_put(vcpu);
11626 	return r;
11627 }
11628 
11629 /*
11630  * Translate a guest virtual address to a guest physical address.
11631  */
11632 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11633 				    struct kvm_translation *tr)
11634 {
11635 	unsigned long vaddr = tr->linear_address;
11636 	gpa_t gpa;
11637 	int idx;
11638 
11639 	vcpu_load(vcpu);
11640 
11641 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11642 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11643 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11644 	tr->physical_address = gpa;
11645 	tr->valid = gpa != INVALID_GPA;
11646 	tr->writeable = 1;
11647 	tr->usermode = 0;
11648 
11649 	vcpu_put(vcpu);
11650 	return 0;
11651 }
11652 
11653 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11654 {
11655 	struct fxregs_state *fxsave;
11656 
11657 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11658 		return 0;
11659 
11660 	vcpu_load(vcpu);
11661 
11662 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11663 	memcpy(fpu->fpr, fxsave->st_space, 128);
11664 	fpu->fcw = fxsave->cwd;
11665 	fpu->fsw = fxsave->swd;
11666 	fpu->ftwx = fxsave->twd;
11667 	fpu->last_opcode = fxsave->fop;
11668 	fpu->last_ip = fxsave->rip;
11669 	fpu->last_dp = fxsave->rdp;
11670 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11671 
11672 	vcpu_put(vcpu);
11673 	return 0;
11674 }
11675 
11676 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11677 {
11678 	struct fxregs_state *fxsave;
11679 
11680 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11681 		return 0;
11682 
11683 	vcpu_load(vcpu);
11684 
11685 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11686 
11687 	memcpy(fxsave->st_space, fpu->fpr, 128);
11688 	fxsave->cwd = fpu->fcw;
11689 	fxsave->swd = fpu->fsw;
11690 	fxsave->twd = fpu->ftwx;
11691 	fxsave->fop = fpu->last_opcode;
11692 	fxsave->rip = fpu->last_ip;
11693 	fxsave->rdp = fpu->last_dp;
11694 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11695 
11696 	vcpu_put(vcpu);
11697 	return 0;
11698 }
11699 
11700 static void store_regs(struct kvm_vcpu *vcpu)
11701 {
11702 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11703 
11704 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11705 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11706 
11707 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11708 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11709 
11710 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11711 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11712 				vcpu, &vcpu->run->s.regs.events);
11713 }
11714 
11715 static int sync_regs(struct kvm_vcpu *vcpu)
11716 {
11717 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11718 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11719 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11720 	}
11721 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11722 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11723 			return -EINVAL;
11724 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11725 	}
11726 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11727 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11728 				vcpu, &vcpu->run->s.regs.events))
11729 			return -EINVAL;
11730 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11731 	}
11732 
11733 	return 0;
11734 }
11735 
11736 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11737 {
11738 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11739 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11740 			     "guest TSC will not be reliable\n");
11741 
11742 	if (!kvm->arch.max_vcpu_ids)
11743 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11744 
11745 	if (id >= kvm->arch.max_vcpu_ids)
11746 		return -EINVAL;
11747 
11748 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11749 }
11750 
11751 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11752 {
11753 	struct page *page;
11754 	int r;
11755 
11756 	vcpu->arch.last_vmentry_cpu = -1;
11757 	vcpu->arch.regs_avail = ~0;
11758 	vcpu->arch.regs_dirty = ~0;
11759 
11760 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11761 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11762 	else
11763 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11764 
11765 	r = kvm_mmu_create(vcpu);
11766 	if (r < 0)
11767 		return r;
11768 
11769 	if (irqchip_in_kernel(vcpu->kvm)) {
11770 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11771 		if (r < 0)
11772 			goto fail_mmu_destroy;
11773 
11774 		/*
11775 		 * Defer evaluating inhibits until the vCPU is first run, as
11776 		 * this vCPU will not get notified of any changes until this
11777 		 * vCPU is visible to other vCPUs (marked online and added to
11778 		 * the set of vCPUs).  Opportunistically mark APICv active as
11779 		 * VMX in particularly is highly unlikely to have inhibits.
11780 		 * Ignore the current per-VM APICv state so that vCPU creation
11781 		 * is guaranteed to run with a deterministic value, the request
11782 		 * will ensure the vCPU gets the correct state before VM-Entry.
11783 		 */
11784 		if (enable_apicv) {
11785 			vcpu->arch.apic->apicv_active = true;
11786 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11787 		}
11788 	} else
11789 		static_branch_inc(&kvm_has_noapic_vcpu);
11790 
11791 	r = -ENOMEM;
11792 
11793 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11794 	if (!page)
11795 		goto fail_free_lapic;
11796 	vcpu->arch.pio_data = page_address(page);
11797 
11798 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11799 				       GFP_KERNEL_ACCOUNT);
11800 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11801 					    GFP_KERNEL_ACCOUNT);
11802 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11803 		goto fail_free_mce_banks;
11804 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11805 
11806 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11807 				GFP_KERNEL_ACCOUNT))
11808 		goto fail_free_mce_banks;
11809 
11810 	if (!alloc_emulate_ctxt(vcpu))
11811 		goto free_wbinvd_dirty_mask;
11812 
11813 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11814 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11815 		goto free_emulate_ctxt;
11816 	}
11817 
11818 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11819 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11820 
11821 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11822 
11823 	kvm_async_pf_hash_reset(vcpu);
11824 	kvm_pmu_init(vcpu);
11825 
11826 	vcpu->arch.pending_external_vector = -1;
11827 	vcpu->arch.preempted_in_kernel = false;
11828 
11829 #if IS_ENABLED(CONFIG_HYPERV)
11830 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11831 #endif
11832 
11833 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11834 	if (r)
11835 		goto free_guest_fpu;
11836 
11837 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11838 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11839 	kvm_xen_init_vcpu(vcpu);
11840 	kvm_vcpu_mtrr_init(vcpu);
11841 	vcpu_load(vcpu);
11842 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11843 	kvm_vcpu_reset(vcpu, false);
11844 	kvm_init_mmu(vcpu);
11845 	vcpu_put(vcpu);
11846 	return 0;
11847 
11848 free_guest_fpu:
11849 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11850 free_emulate_ctxt:
11851 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11852 free_wbinvd_dirty_mask:
11853 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11854 fail_free_mce_banks:
11855 	kfree(vcpu->arch.mce_banks);
11856 	kfree(vcpu->arch.mci_ctl2_banks);
11857 	free_page((unsigned long)vcpu->arch.pio_data);
11858 fail_free_lapic:
11859 	kvm_free_lapic(vcpu);
11860 fail_mmu_destroy:
11861 	kvm_mmu_destroy(vcpu);
11862 	return r;
11863 }
11864 
11865 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11866 {
11867 	struct kvm *kvm = vcpu->kvm;
11868 
11869 	if (mutex_lock_killable(&vcpu->mutex))
11870 		return;
11871 	vcpu_load(vcpu);
11872 	kvm_synchronize_tsc(vcpu, 0);
11873 	vcpu_put(vcpu);
11874 
11875 	/* poll control enabled by default */
11876 	vcpu->arch.msr_kvm_poll_control = 1;
11877 
11878 	mutex_unlock(&vcpu->mutex);
11879 
11880 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11881 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11882 						KVMCLOCK_SYNC_PERIOD);
11883 }
11884 
11885 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11886 {
11887 	int idx;
11888 
11889 	kvmclock_reset(vcpu);
11890 
11891 	static_call(kvm_x86_vcpu_free)(vcpu);
11892 
11893 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11894 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11895 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11896 
11897 	kvm_xen_destroy_vcpu(vcpu);
11898 	kvm_hv_vcpu_uninit(vcpu);
11899 	kvm_pmu_destroy(vcpu);
11900 	kfree(vcpu->arch.mce_banks);
11901 	kfree(vcpu->arch.mci_ctl2_banks);
11902 	kvm_free_lapic(vcpu);
11903 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11904 	kvm_mmu_destroy(vcpu);
11905 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11906 	free_page((unsigned long)vcpu->arch.pio_data);
11907 	kvfree(vcpu->arch.cpuid_entries);
11908 	if (!lapic_in_kernel(vcpu))
11909 		static_branch_dec(&kvm_has_noapic_vcpu);
11910 }
11911 
11912 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11913 {
11914 	struct kvm_cpuid_entry2 *cpuid_0x1;
11915 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11916 	unsigned long new_cr0;
11917 
11918 	/*
11919 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11920 	 * to handle side effects.  RESET emulation hits those flows and relies
11921 	 * on emulated/virtualized registers, including those that are loaded
11922 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11923 	 * to detect improper or missing initialization.
11924 	 */
11925 	WARN_ON_ONCE(!init_event &&
11926 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11927 
11928 	kvm_lapic_reset(vcpu, init_event);
11929 
11930 	vcpu->arch.hflags = 0;
11931 
11932 	vcpu->arch.smi_pending = 0;
11933 	vcpu->arch.smi_count = 0;
11934 	atomic_set(&vcpu->arch.nmi_queued, 0);
11935 	vcpu->arch.nmi_pending = 0;
11936 	vcpu->arch.nmi_injected = false;
11937 	kvm_clear_interrupt_queue(vcpu);
11938 	kvm_clear_exception_queue(vcpu);
11939 
11940 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11941 	kvm_update_dr0123(vcpu);
11942 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11943 	vcpu->arch.dr7 = DR7_FIXED_1;
11944 	kvm_update_dr7(vcpu);
11945 
11946 	vcpu->arch.cr2 = 0;
11947 
11948 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11949 	vcpu->arch.apf.msr_en_val = 0;
11950 	vcpu->arch.apf.msr_int_val = 0;
11951 	vcpu->arch.st.msr_val = 0;
11952 
11953 	kvmclock_reset(vcpu);
11954 
11955 	kvm_clear_async_pf_completion_queue(vcpu);
11956 	kvm_async_pf_hash_reset(vcpu);
11957 	vcpu->arch.apf.halted = false;
11958 
11959 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11960 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11961 
11962 		/*
11963 		 * All paths that lead to INIT are required to load the guest's
11964 		 * FPU state (because most paths are buried in KVM_RUN).
11965 		 */
11966 		if (init_event)
11967 			kvm_put_guest_fpu(vcpu);
11968 
11969 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11970 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11971 
11972 		if (init_event)
11973 			kvm_load_guest_fpu(vcpu);
11974 	}
11975 
11976 	if (!init_event) {
11977 		kvm_pmu_reset(vcpu);
11978 		vcpu->arch.smbase = 0x30000;
11979 
11980 		vcpu->arch.msr_misc_features_enables = 0;
11981 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
11982 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
11983 
11984 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11985 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11986 	}
11987 
11988 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11989 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11990 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11991 
11992 	/*
11993 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11994 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11995 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11996 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11997 	 * on RESET.  But, go through the motions in case that's ever remedied.
11998 	 */
11999 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12000 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12001 
12002 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12003 
12004 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12005 	kvm_rip_write(vcpu, 0xfff0);
12006 
12007 	vcpu->arch.cr3 = 0;
12008 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12009 
12010 	/*
12011 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12012 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12013 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12014 	 */
12015 	new_cr0 = X86_CR0_ET;
12016 	if (init_event)
12017 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12018 	else
12019 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12020 
12021 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12022 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12023 	static_call(kvm_x86_set_efer)(vcpu, 0);
12024 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12025 
12026 	/*
12027 	 * On the standard CR0/CR4/EFER modification paths, there are several
12028 	 * complex conditions determining whether the MMU has to be reset and/or
12029 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12030 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12031 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12032 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12033 	 */
12034 	if (old_cr0 & X86_CR0_PG) {
12035 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12036 		kvm_mmu_reset_context(vcpu);
12037 	}
12038 
12039 	/*
12040 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12041 	 * APM states the TLBs are untouched by INIT, but it also states that
12042 	 * the TLBs are flushed on "External initialization of the processor."
12043 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12044 	 * benefit in relying on the guest to flush the TLB immediately after
12045 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12046 	 * performance perspective.
12047 	 */
12048 	if (init_event)
12049 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12050 }
12051 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12052 
12053 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12054 {
12055 	struct kvm_segment cs;
12056 
12057 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12058 	cs.selector = vector << 8;
12059 	cs.base = vector << 12;
12060 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12061 	kvm_rip_write(vcpu, 0);
12062 }
12063 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12064 
12065 int kvm_arch_hardware_enable(void)
12066 {
12067 	struct kvm *kvm;
12068 	struct kvm_vcpu *vcpu;
12069 	unsigned long i;
12070 	int ret;
12071 	u64 local_tsc;
12072 	u64 max_tsc = 0;
12073 	bool stable, backwards_tsc = false;
12074 
12075 	kvm_user_return_msr_cpu_online();
12076 	ret = static_call(kvm_x86_hardware_enable)();
12077 	if (ret != 0)
12078 		return ret;
12079 
12080 	local_tsc = rdtsc();
12081 	stable = !kvm_check_tsc_unstable();
12082 	list_for_each_entry(kvm, &vm_list, vm_list) {
12083 		kvm_for_each_vcpu(i, vcpu, kvm) {
12084 			if (!stable && vcpu->cpu == smp_processor_id())
12085 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12086 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12087 				backwards_tsc = true;
12088 				if (vcpu->arch.last_host_tsc > max_tsc)
12089 					max_tsc = vcpu->arch.last_host_tsc;
12090 			}
12091 		}
12092 	}
12093 
12094 	/*
12095 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12096 	 * platforms that reset TSC during suspend or hibernate actions, but
12097 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12098 	 * detect that condition here, which happens early in CPU bringup,
12099 	 * before any KVM threads can be running.  Unfortunately, we can't
12100 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12101 	 * enough into CPU bringup that we know how much real time has actually
12102 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12103 	 * variables that haven't been updated yet.
12104 	 *
12105 	 * So we simply find the maximum observed TSC above, then record the
12106 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12107 	 * the adjustment will be applied.  Note that we accumulate
12108 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12109 	 * gets a chance to run again.  In the event that no KVM threads get a
12110 	 * chance to run, we will miss the entire elapsed period, as we'll have
12111 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12112 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12113 	 * uniform across all VCPUs (not to mention the scenario is extremely
12114 	 * unlikely). It is possible that a second hibernate recovery happens
12115 	 * much faster than a first, causing the observed TSC here to be
12116 	 * smaller; this would require additional padding adjustment, which is
12117 	 * why we set last_host_tsc to the local tsc observed here.
12118 	 *
12119 	 * N.B. - this code below runs only on platforms with reliable TSC,
12120 	 * as that is the only way backwards_tsc is set above.  Also note
12121 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12122 	 * have the same delta_cyc adjustment applied if backwards_tsc
12123 	 * is detected.  Note further, this adjustment is only done once,
12124 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12125 	 * called multiple times (one for each physical CPU bringup).
12126 	 *
12127 	 * Platforms with unreliable TSCs don't have to deal with this, they
12128 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12129 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12130 	 * guarantee that they stay in perfect synchronization.
12131 	 */
12132 	if (backwards_tsc) {
12133 		u64 delta_cyc = max_tsc - local_tsc;
12134 		list_for_each_entry(kvm, &vm_list, vm_list) {
12135 			kvm->arch.backwards_tsc_observed = true;
12136 			kvm_for_each_vcpu(i, vcpu, kvm) {
12137 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12138 				vcpu->arch.last_host_tsc = local_tsc;
12139 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12140 			}
12141 
12142 			/*
12143 			 * We have to disable TSC offset matching.. if you were
12144 			 * booting a VM while issuing an S4 host suspend....
12145 			 * you may have some problem.  Solving this issue is
12146 			 * left as an exercise to the reader.
12147 			 */
12148 			kvm->arch.last_tsc_nsec = 0;
12149 			kvm->arch.last_tsc_write = 0;
12150 		}
12151 
12152 	}
12153 	return 0;
12154 }
12155 
12156 void kvm_arch_hardware_disable(void)
12157 {
12158 	static_call(kvm_x86_hardware_disable)();
12159 	drop_user_return_notifiers();
12160 }
12161 
12162 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
12163 {
12164 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
12165 
12166 #define __KVM_X86_OP(func) \
12167 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
12168 #define KVM_X86_OP(func) \
12169 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
12170 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
12171 #define KVM_X86_OP_OPTIONAL_RET0(func) \
12172 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
12173 					   (void *)__static_call_return0);
12174 #include <asm/kvm-x86-ops.h>
12175 #undef __KVM_X86_OP
12176 
12177 	kvm_pmu_ops_update(ops->pmu_ops);
12178 }
12179 
12180 int kvm_arch_hardware_setup(void *opaque)
12181 {
12182 	struct kvm_x86_init_ops *ops = opaque;
12183 	int r;
12184 
12185 	rdmsrl_safe(MSR_EFER, &host_efer);
12186 
12187 	if (boot_cpu_has(X86_FEATURE_XSAVES))
12188 		rdmsrl(MSR_IA32_XSS, host_xss);
12189 
12190 	kvm_init_pmu_capability();
12191 
12192 	r = ops->hardware_setup();
12193 	if (r != 0)
12194 		return r;
12195 
12196 	kvm_ops_update(ops);
12197 
12198 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
12199 
12200 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
12201 		kvm_caps.supported_xss = 0;
12202 
12203 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
12204 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
12205 #undef __kvm_cpu_cap_has
12206 
12207 	if (kvm_caps.has_tsc_control) {
12208 		/*
12209 		 * Make sure the user can only configure tsc_khz values that
12210 		 * fit into a signed integer.
12211 		 * A min value is not calculated because it will always
12212 		 * be 1 on all machines.
12213 		 */
12214 		u64 max = min(0x7fffffffULL,
12215 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
12216 		kvm_caps.max_guest_tsc_khz = max;
12217 	}
12218 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
12219 	kvm_init_msr_list();
12220 	return 0;
12221 }
12222 
12223 void kvm_arch_hardware_unsetup(void)
12224 {
12225 	kvm_unregister_perf_callbacks();
12226 
12227 	static_call(kvm_x86_hardware_unsetup)();
12228 }
12229 
12230 int kvm_arch_check_processor_compat(void *opaque)
12231 {
12232 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
12233 	struct kvm_x86_init_ops *ops = opaque;
12234 
12235 	WARN_ON(!irqs_disabled());
12236 
12237 	if (__cr4_reserved_bits(cpu_has, c) !=
12238 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
12239 		return -EIO;
12240 
12241 	return ops->check_processor_compatibility();
12242 }
12243 
12244 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12245 {
12246 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12247 }
12248 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
12249 
12250 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12251 {
12252 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12253 }
12254 
12255 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12256 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12257 
12258 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12259 {
12260 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12261 
12262 	vcpu->arch.l1tf_flush_l1d = true;
12263 	if (pmu->version && unlikely(pmu->event_count)) {
12264 		pmu->need_cleanup = true;
12265 		kvm_make_request(KVM_REQ_PMU, vcpu);
12266 	}
12267 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12268 }
12269 
12270 void kvm_arch_free_vm(struct kvm *kvm)
12271 {
12272 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12273 	__kvm_arch_free_vm(kvm);
12274 }
12275 
12276 
12277 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12278 {
12279 	int ret;
12280 	unsigned long flags;
12281 
12282 	if (type)
12283 		return -EINVAL;
12284 
12285 	ret = kvm_page_track_init(kvm);
12286 	if (ret)
12287 		goto out;
12288 
12289 	ret = kvm_mmu_init_vm(kvm);
12290 	if (ret)
12291 		goto out_page_track;
12292 
12293 	ret = static_call(kvm_x86_vm_init)(kvm);
12294 	if (ret)
12295 		goto out_uninit_mmu;
12296 
12297 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12298 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12299 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12300 
12301 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12302 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12303 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12304 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12305 		&kvm->arch.irq_sources_bitmap);
12306 
12307 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12308 	mutex_init(&kvm->arch.apic_map_lock);
12309 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12310 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12311 
12312 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12313 	pvclock_update_vm_gtod_copy(kvm);
12314 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12315 
12316 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12317 	kvm->arch.guest_can_read_msr_platform_info = true;
12318 	kvm->arch.enable_pmu = enable_pmu;
12319 
12320 #if IS_ENABLED(CONFIG_HYPERV)
12321 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12322 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12323 #endif
12324 
12325 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12326 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12327 
12328 	kvm_apicv_init(kvm);
12329 	kvm_hv_init_vm(kvm);
12330 	kvm_xen_init_vm(kvm);
12331 
12332 	return 0;
12333 
12334 out_uninit_mmu:
12335 	kvm_mmu_uninit_vm(kvm);
12336 out_page_track:
12337 	kvm_page_track_cleanup(kvm);
12338 out:
12339 	return ret;
12340 }
12341 
12342 int kvm_arch_post_init_vm(struct kvm *kvm)
12343 {
12344 	return kvm_mmu_post_init_vm(kvm);
12345 }
12346 
12347 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12348 {
12349 	vcpu_load(vcpu);
12350 	kvm_mmu_unload(vcpu);
12351 	vcpu_put(vcpu);
12352 }
12353 
12354 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12355 {
12356 	unsigned long i;
12357 	struct kvm_vcpu *vcpu;
12358 
12359 	kvm_for_each_vcpu(i, vcpu, kvm) {
12360 		kvm_clear_async_pf_completion_queue(vcpu);
12361 		kvm_unload_vcpu_mmu(vcpu);
12362 	}
12363 }
12364 
12365 void kvm_arch_sync_events(struct kvm *kvm)
12366 {
12367 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12368 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12369 	kvm_free_pit(kvm);
12370 }
12371 
12372 /**
12373  * __x86_set_memory_region: Setup KVM internal memory slot
12374  *
12375  * @kvm: the kvm pointer to the VM.
12376  * @id: the slot ID to setup.
12377  * @gpa: the GPA to install the slot (unused when @size == 0).
12378  * @size: the size of the slot. Set to zero to uninstall a slot.
12379  *
12380  * This function helps to setup a KVM internal memory slot.  Specify
12381  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12382  * slot.  The return code can be one of the following:
12383  *
12384  *   HVA:           on success (uninstall will return a bogus HVA)
12385  *   -errno:        on error
12386  *
12387  * The caller should always use IS_ERR() to check the return value
12388  * before use.  Note, the KVM internal memory slots are guaranteed to
12389  * remain valid and unchanged until the VM is destroyed, i.e., the
12390  * GPA->HVA translation will not change.  However, the HVA is a user
12391  * address, i.e. its accessibility is not guaranteed, and must be
12392  * accessed via __copy_{to,from}_user().
12393  */
12394 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12395 				      u32 size)
12396 {
12397 	int i, r;
12398 	unsigned long hva, old_npages;
12399 	struct kvm_memslots *slots = kvm_memslots(kvm);
12400 	struct kvm_memory_slot *slot;
12401 
12402 	/* Called with kvm->slots_lock held.  */
12403 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12404 		return ERR_PTR_USR(-EINVAL);
12405 
12406 	slot = id_to_memslot(slots, id);
12407 	if (size) {
12408 		if (slot && slot->npages)
12409 			return ERR_PTR_USR(-EEXIST);
12410 
12411 		/*
12412 		 * MAP_SHARED to prevent internal slot pages from being moved
12413 		 * by fork()/COW.
12414 		 */
12415 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12416 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12417 		if (IS_ERR((void *)hva))
12418 			return (void __user *)hva;
12419 	} else {
12420 		if (!slot || !slot->npages)
12421 			return NULL;
12422 
12423 		old_npages = slot->npages;
12424 		hva = slot->userspace_addr;
12425 	}
12426 
12427 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12428 		struct kvm_userspace_memory_region m;
12429 
12430 		m.slot = id | (i << 16);
12431 		m.flags = 0;
12432 		m.guest_phys_addr = gpa;
12433 		m.userspace_addr = hva;
12434 		m.memory_size = size;
12435 		r = __kvm_set_memory_region(kvm, &m);
12436 		if (r < 0)
12437 			return ERR_PTR_USR(r);
12438 	}
12439 
12440 	if (!size)
12441 		vm_munmap(hva, old_npages * PAGE_SIZE);
12442 
12443 	return (void __user *)hva;
12444 }
12445 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12446 
12447 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12448 {
12449 	kvm_mmu_pre_destroy_vm(kvm);
12450 }
12451 
12452 void kvm_arch_destroy_vm(struct kvm *kvm)
12453 {
12454 	if (current->mm == kvm->mm) {
12455 		/*
12456 		 * Free memory regions allocated on behalf of userspace,
12457 		 * unless the memory map has changed due to process exit
12458 		 * or fd copying.
12459 		 */
12460 		mutex_lock(&kvm->slots_lock);
12461 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12462 					0, 0);
12463 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12464 					0, 0);
12465 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12466 		mutex_unlock(&kvm->slots_lock);
12467 	}
12468 	kvm_unload_vcpu_mmus(kvm);
12469 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12470 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12471 	kvm_pic_destroy(kvm);
12472 	kvm_ioapic_destroy(kvm);
12473 	kvm_destroy_vcpus(kvm);
12474 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12475 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12476 	kvm_mmu_uninit_vm(kvm);
12477 	kvm_page_track_cleanup(kvm);
12478 	kvm_xen_destroy_vm(kvm);
12479 	kvm_hv_destroy_vm(kvm);
12480 }
12481 
12482 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12483 {
12484 	int i;
12485 
12486 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12487 		kvfree(slot->arch.rmap[i]);
12488 		slot->arch.rmap[i] = NULL;
12489 	}
12490 }
12491 
12492 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12493 {
12494 	int i;
12495 
12496 	memslot_rmap_free(slot);
12497 
12498 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12499 		kvfree(slot->arch.lpage_info[i - 1]);
12500 		slot->arch.lpage_info[i - 1] = NULL;
12501 	}
12502 
12503 	kvm_page_track_free_memslot(slot);
12504 }
12505 
12506 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12507 {
12508 	const int sz = sizeof(*slot->arch.rmap[0]);
12509 	int i;
12510 
12511 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12512 		int level = i + 1;
12513 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12514 
12515 		if (slot->arch.rmap[i])
12516 			continue;
12517 
12518 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12519 		if (!slot->arch.rmap[i]) {
12520 			memslot_rmap_free(slot);
12521 			return -ENOMEM;
12522 		}
12523 	}
12524 
12525 	return 0;
12526 }
12527 
12528 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12529 				      struct kvm_memory_slot *slot)
12530 {
12531 	unsigned long npages = slot->npages;
12532 	int i, r;
12533 
12534 	/*
12535 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12536 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12537 	 * the new memslot is successful.
12538 	 */
12539 	memset(&slot->arch, 0, sizeof(slot->arch));
12540 
12541 	if (kvm_memslots_have_rmaps(kvm)) {
12542 		r = memslot_rmap_alloc(slot, npages);
12543 		if (r)
12544 			return r;
12545 	}
12546 
12547 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12548 		struct kvm_lpage_info *linfo;
12549 		unsigned long ugfn;
12550 		int lpages;
12551 		int level = i + 1;
12552 
12553 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12554 
12555 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12556 		if (!linfo)
12557 			goto out_free;
12558 
12559 		slot->arch.lpage_info[i - 1] = linfo;
12560 
12561 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12562 			linfo[0].disallow_lpage = 1;
12563 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12564 			linfo[lpages - 1].disallow_lpage = 1;
12565 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12566 		/*
12567 		 * If the gfn and userspace address are not aligned wrt each
12568 		 * other, disable large page support for this slot.
12569 		 */
12570 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12571 			unsigned long j;
12572 
12573 			for (j = 0; j < lpages; ++j)
12574 				linfo[j].disallow_lpage = 1;
12575 		}
12576 	}
12577 
12578 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12579 		goto out_free;
12580 
12581 	return 0;
12582 
12583 out_free:
12584 	memslot_rmap_free(slot);
12585 
12586 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12587 		kvfree(slot->arch.lpage_info[i - 1]);
12588 		slot->arch.lpage_info[i - 1] = NULL;
12589 	}
12590 	return -ENOMEM;
12591 }
12592 
12593 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12594 {
12595 	struct kvm_vcpu *vcpu;
12596 	unsigned long i;
12597 
12598 	/*
12599 	 * memslots->generation has been incremented.
12600 	 * mmio generation may have reached its maximum value.
12601 	 */
12602 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12603 
12604 	/* Force re-initialization of steal_time cache */
12605 	kvm_for_each_vcpu(i, vcpu, kvm)
12606 		kvm_vcpu_kick(vcpu);
12607 }
12608 
12609 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12610 				   const struct kvm_memory_slot *old,
12611 				   struct kvm_memory_slot *new,
12612 				   enum kvm_mr_change change)
12613 {
12614 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12615 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12616 			return -EINVAL;
12617 
12618 		return kvm_alloc_memslot_metadata(kvm, new);
12619 	}
12620 
12621 	if (change == KVM_MR_FLAGS_ONLY)
12622 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12623 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12624 		return -EIO;
12625 
12626 	return 0;
12627 }
12628 
12629 
12630 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12631 {
12632 	struct kvm_arch *ka = &kvm->arch;
12633 
12634 	if (!kvm_x86_ops.cpu_dirty_log_size)
12635 		return;
12636 
12637 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12638 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12639 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12640 
12641 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12642 }
12643 
12644 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12645 				     struct kvm_memory_slot *old,
12646 				     const struct kvm_memory_slot *new,
12647 				     enum kvm_mr_change change)
12648 {
12649 	u32 old_flags = old ? old->flags : 0;
12650 	u32 new_flags = new ? new->flags : 0;
12651 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12652 
12653 	/*
12654 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12655 	 * applies to all operations.
12656 	 */
12657 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12658 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12659 
12660 	/*
12661 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12662 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12663 	 *
12664 	 * For a memslot with dirty logging disabled:
12665 	 * CREATE:      No dirty mappings will already exist.
12666 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12667 	 *		kvm_arch_flush_shadow_memslot()
12668 	 *
12669 	 * For a memslot with dirty logging enabled:
12670 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12671 	 *		and no dirty bits to clear.
12672 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12673 	 *		kvm_arch_flush_shadow_memslot().
12674 	 */
12675 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12676 		return;
12677 
12678 	/*
12679 	 * READONLY and non-flags changes were filtered out above, and the only
12680 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12681 	 * logging isn't being toggled on or off.
12682 	 */
12683 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12684 		return;
12685 
12686 	if (!log_dirty_pages) {
12687 		/*
12688 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12689 		 * large sptes have to be split.  If live migration succeeds,
12690 		 * the guest in the source machine will be destroyed and large
12691 		 * sptes will be created in the destination.  However, if the
12692 		 * guest continues to run in the source machine (for example if
12693 		 * live migration fails), small sptes will remain around and
12694 		 * cause bad performance.
12695 		 *
12696 		 * Scan sptes if dirty logging has been stopped, dropping those
12697 		 * which can be collapsed into a single large-page spte.  Later
12698 		 * page faults will create the large-page sptes.
12699 		 */
12700 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12701 	} else {
12702 		/*
12703 		 * Initially-all-set does not require write protecting any page,
12704 		 * because they're all assumed to be dirty.
12705 		 */
12706 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12707 			return;
12708 
12709 		if (READ_ONCE(eager_page_split))
12710 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12711 
12712 		if (kvm_x86_ops.cpu_dirty_log_size) {
12713 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12714 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12715 		} else {
12716 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12717 		}
12718 
12719 		/*
12720 		 * Unconditionally flush the TLBs after enabling dirty logging.
12721 		 * A flush is almost always going to be necessary (see below),
12722 		 * and unconditionally flushing allows the helpers to omit
12723 		 * the subtly complex checks when removing write access.
12724 		 *
12725 		 * Do the flush outside of mmu_lock to reduce the amount of
12726 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12727 		 * safe as KVM only needs to guarantee the slot is fully
12728 		 * write-protected before returning to userspace, i.e. before
12729 		 * userspace can consume the dirty status.
12730 		 *
12731 		 * Flushing outside of mmu_lock requires KVM to be careful when
12732 		 * making decisions based on writable status of an SPTE, e.g. a
12733 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12734 		 *
12735 		 * Specifically, KVM also write-protects guest page tables to
12736 		 * monitor changes when using shadow paging, and must guarantee
12737 		 * no CPUs can write to those page before mmu_lock is dropped.
12738 		 * Because CPUs may have stale TLB entries at this point, a
12739 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12740 		 *
12741 		 * KVM also allows making SPTES writable outside of mmu_lock,
12742 		 * e.g. to allow dirty logging without taking mmu_lock.
12743 		 *
12744 		 * To handle these scenarios, KVM uses a separate software-only
12745 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12746 		 * a guest page table being write-protected (KVM clears the
12747 		 * MMU-writable flag when write-protecting for shadow paging).
12748 		 *
12749 		 * The use of MMU-writable is also the primary motivation for
12750 		 * the unconditional flush.  Because KVM must guarantee that a
12751 		 * CPU doesn't contain stale, writable TLB entries for a
12752 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12753 		 * MMU-writable SPTE regardless of whether the actual hardware
12754 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12755 		 * to flush, while unconditionally flushing allows the "remove
12756 		 * write access" helpers to ignore MMU-writable entirely.
12757 		 *
12758 		 * See is_writable_pte() for more details (the case involving
12759 		 * access-tracked SPTEs is particularly relevant).
12760 		 */
12761 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12762 	}
12763 }
12764 
12765 void kvm_arch_commit_memory_region(struct kvm *kvm,
12766 				struct kvm_memory_slot *old,
12767 				const struct kvm_memory_slot *new,
12768 				enum kvm_mr_change change)
12769 {
12770 	if (!kvm->arch.n_requested_mmu_pages &&
12771 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12772 		unsigned long nr_mmu_pages;
12773 
12774 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12775 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12776 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12777 	}
12778 
12779 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12780 
12781 	/* Free the arrays associated with the old memslot. */
12782 	if (change == KVM_MR_MOVE)
12783 		kvm_arch_free_memslot(kvm, old);
12784 }
12785 
12786 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12787 {
12788 	kvm_mmu_zap_all(kvm);
12789 }
12790 
12791 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12792 				   struct kvm_memory_slot *slot)
12793 {
12794 	kvm_page_track_flush_slot(kvm, slot);
12795 }
12796 
12797 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12798 {
12799 	return (is_guest_mode(vcpu) &&
12800 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12801 }
12802 
12803 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12804 {
12805 	if (!list_empty_careful(&vcpu->async_pf.done))
12806 		return true;
12807 
12808 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12809 	    kvm_apic_init_sipi_allowed(vcpu))
12810 		return true;
12811 
12812 	if (vcpu->arch.pv.pv_unhalted)
12813 		return true;
12814 
12815 	if (kvm_is_exception_pending(vcpu))
12816 		return true;
12817 
12818 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12819 	    (vcpu->arch.nmi_pending &&
12820 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12821 		return true;
12822 
12823 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12824 	    (vcpu->arch.smi_pending &&
12825 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12826 		return true;
12827 
12828 	if (kvm_arch_interrupt_allowed(vcpu) &&
12829 	    (kvm_cpu_has_interrupt(vcpu) ||
12830 	    kvm_guest_apic_has_interrupt(vcpu)))
12831 		return true;
12832 
12833 	if (kvm_hv_has_stimer_pending(vcpu))
12834 		return true;
12835 
12836 	if (is_guest_mode(vcpu) &&
12837 	    kvm_x86_ops.nested_ops->has_events &&
12838 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12839 		return true;
12840 
12841 	if (kvm_xen_has_pending_events(vcpu))
12842 		return true;
12843 
12844 	return false;
12845 }
12846 
12847 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12848 {
12849 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12850 }
12851 
12852 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12853 {
12854 	if (kvm_vcpu_apicv_active(vcpu) &&
12855 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12856 		return true;
12857 
12858 	return false;
12859 }
12860 
12861 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12862 {
12863 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12864 		return true;
12865 
12866 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12867 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12868 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12869 		return true;
12870 
12871 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12872 }
12873 
12874 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12875 {
12876 	if (vcpu->arch.guest_state_protected)
12877 		return true;
12878 
12879 	return vcpu->arch.preempted_in_kernel;
12880 }
12881 
12882 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12883 {
12884 	return kvm_rip_read(vcpu);
12885 }
12886 
12887 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12888 {
12889 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12890 }
12891 
12892 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12893 {
12894 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12895 }
12896 
12897 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12898 {
12899 	/* Can't read the RIP when guest state is protected, just return 0 */
12900 	if (vcpu->arch.guest_state_protected)
12901 		return 0;
12902 
12903 	if (is_64_bit_mode(vcpu))
12904 		return kvm_rip_read(vcpu);
12905 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12906 		     kvm_rip_read(vcpu));
12907 }
12908 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12909 
12910 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12911 {
12912 	return kvm_get_linear_rip(vcpu) == linear_rip;
12913 }
12914 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12915 
12916 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12917 {
12918 	unsigned long rflags;
12919 
12920 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12921 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12922 		rflags &= ~X86_EFLAGS_TF;
12923 	return rflags;
12924 }
12925 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12926 
12927 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12928 {
12929 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12930 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12931 		rflags |= X86_EFLAGS_TF;
12932 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12933 }
12934 
12935 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12936 {
12937 	__kvm_set_rflags(vcpu, rflags);
12938 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12939 }
12940 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12941 
12942 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12943 {
12944 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12945 
12946 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12947 }
12948 
12949 static inline u32 kvm_async_pf_next_probe(u32 key)
12950 {
12951 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12952 }
12953 
12954 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12955 {
12956 	u32 key = kvm_async_pf_hash_fn(gfn);
12957 
12958 	while (vcpu->arch.apf.gfns[key] != ~0)
12959 		key = kvm_async_pf_next_probe(key);
12960 
12961 	vcpu->arch.apf.gfns[key] = gfn;
12962 }
12963 
12964 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12965 {
12966 	int i;
12967 	u32 key = kvm_async_pf_hash_fn(gfn);
12968 
12969 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12970 		     (vcpu->arch.apf.gfns[key] != gfn &&
12971 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12972 		key = kvm_async_pf_next_probe(key);
12973 
12974 	return key;
12975 }
12976 
12977 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12978 {
12979 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12980 }
12981 
12982 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12983 {
12984 	u32 i, j, k;
12985 
12986 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12987 
12988 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12989 		return;
12990 
12991 	while (true) {
12992 		vcpu->arch.apf.gfns[i] = ~0;
12993 		do {
12994 			j = kvm_async_pf_next_probe(j);
12995 			if (vcpu->arch.apf.gfns[j] == ~0)
12996 				return;
12997 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12998 			/*
12999 			 * k lies cyclically in ]i,j]
13000 			 * |    i.k.j |
13001 			 * |....j i.k.| or  |.k..j i...|
13002 			 */
13003 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13004 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13005 		i = j;
13006 	}
13007 }
13008 
13009 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13010 {
13011 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13012 
13013 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13014 				      sizeof(reason));
13015 }
13016 
13017 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13018 {
13019 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13020 
13021 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13022 					     &token, offset, sizeof(token));
13023 }
13024 
13025 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13026 {
13027 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13028 	u32 val;
13029 
13030 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13031 					 &val, offset, sizeof(val)))
13032 		return false;
13033 
13034 	return !val;
13035 }
13036 
13037 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13038 {
13039 
13040 	if (!kvm_pv_async_pf_enabled(vcpu))
13041 		return false;
13042 
13043 	if (vcpu->arch.apf.send_user_only &&
13044 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13045 		return false;
13046 
13047 	if (is_guest_mode(vcpu)) {
13048 		/*
13049 		 * L1 needs to opt into the special #PF vmexits that are
13050 		 * used to deliver async page faults.
13051 		 */
13052 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13053 	} else {
13054 		/*
13055 		 * Play it safe in case the guest temporarily disables paging.
13056 		 * The real mode IDT in particular is unlikely to have a #PF
13057 		 * exception setup.
13058 		 */
13059 		return is_paging(vcpu);
13060 	}
13061 }
13062 
13063 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13064 {
13065 	if (unlikely(!lapic_in_kernel(vcpu) ||
13066 		     kvm_event_needs_reinjection(vcpu) ||
13067 		     kvm_is_exception_pending(vcpu)))
13068 		return false;
13069 
13070 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13071 		return false;
13072 
13073 	/*
13074 	 * If interrupts are off we cannot even use an artificial
13075 	 * halt state.
13076 	 */
13077 	return kvm_arch_interrupt_allowed(vcpu);
13078 }
13079 
13080 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13081 				     struct kvm_async_pf *work)
13082 {
13083 	struct x86_exception fault;
13084 
13085 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13086 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13087 
13088 	if (kvm_can_deliver_async_pf(vcpu) &&
13089 	    !apf_put_user_notpresent(vcpu)) {
13090 		fault.vector = PF_VECTOR;
13091 		fault.error_code_valid = true;
13092 		fault.error_code = 0;
13093 		fault.nested_page_fault = false;
13094 		fault.address = work->arch.token;
13095 		fault.async_page_fault = true;
13096 		kvm_inject_page_fault(vcpu, &fault);
13097 		return true;
13098 	} else {
13099 		/*
13100 		 * It is not possible to deliver a paravirtualized asynchronous
13101 		 * page fault, but putting the guest in an artificial halt state
13102 		 * can be beneficial nevertheless: if an interrupt arrives, we
13103 		 * can deliver it timely and perhaps the guest will schedule
13104 		 * another process.  When the instruction that triggered a page
13105 		 * fault is retried, hopefully the page will be ready in the host.
13106 		 */
13107 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13108 		return false;
13109 	}
13110 }
13111 
13112 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13113 				 struct kvm_async_pf *work)
13114 {
13115 	struct kvm_lapic_irq irq = {
13116 		.delivery_mode = APIC_DM_FIXED,
13117 		.vector = vcpu->arch.apf.vec
13118 	};
13119 
13120 	if (work->wakeup_all)
13121 		work->arch.token = ~0; /* broadcast wakeup */
13122 	else
13123 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13124 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13125 
13126 	if ((work->wakeup_all || work->notpresent_injected) &&
13127 	    kvm_pv_async_pf_enabled(vcpu) &&
13128 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13129 		vcpu->arch.apf.pageready_pending = true;
13130 		kvm_apic_set_irq(vcpu, &irq, NULL);
13131 	}
13132 
13133 	vcpu->arch.apf.halted = false;
13134 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13135 }
13136 
13137 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13138 {
13139 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13140 	if (!vcpu->arch.apf.pageready_pending)
13141 		kvm_vcpu_kick(vcpu);
13142 }
13143 
13144 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13145 {
13146 	if (!kvm_pv_async_pf_enabled(vcpu))
13147 		return true;
13148 	else
13149 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13150 }
13151 
13152 void kvm_arch_start_assignment(struct kvm *kvm)
13153 {
13154 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13155 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13156 }
13157 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13158 
13159 void kvm_arch_end_assignment(struct kvm *kvm)
13160 {
13161 	atomic_dec(&kvm->arch.assigned_device_count);
13162 }
13163 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13164 
13165 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13166 {
13167 	return arch_atomic_read(&kvm->arch.assigned_device_count);
13168 }
13169 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13170 
13171 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13172 {
13173 	atomic_inc(&kvm->arch.noncoherent_dma_count);
13174 }
13175 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13176 
13177 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13178 {
13179 	atomic_dec(&kvm->arch.noncoherent_dma_count);
13180 }
13181 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13182 
13183 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13184 {
13185 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13186 }
13187 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13188 
13189 bool kvm_arch_has_irq_bypass(void)
13190 {
13191 	return true;
13192 }
13193 
13194 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13195 				      struct irq_bypass_producer *prod)
13196 {
13197 	struct kvm_kernel_irqfd *irqfd =
13198 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13199 	int ret;
13200 
13201 	irqfd->producer = prod;
13202 	kvm_arch_start_assignment(irqfd->kvm);
13203 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13204 					 prod->irq, irqfd->gsi, 1);
13205 
13206 	if (ret)
13207 		kvm_arch_end_assignment(irqfd->kvm);
13208 
13209 	return ret;
13210 }
13211 
13212 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13213 				      struct irq_bypass_producer *prod)
13214 {
13215 	int ret;
13216 	struct kvm_kernel_irqfd *irqfd =
13217 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13218 
13219 	WARN_ON(irqfd->producer != prod);
13220 	irqfd->producer = NULL;
13221 
13222 	/*
13223 	 * When producer of consumer is unregistered, we change back to
13224 	 * remapped mode, so we can re-use the current implementation
13225 	 * when the irq is masked/disabled or the consumer side (KVM
13226 	 * int this case doesn't want to receive the interrupts.
13227 	*/
13228 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13229 	if (ret)
13230 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13231 		       " fails: %d\n", irqfd->consumer.token, ret);
13232 
13233 	kvm_arch_end_assignment(irqfd->kvm);
13234 }
13235 
13236 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13237 				   uint32_t guest_irq, bool set)
13238 {
13239 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13240 }
13241 
13242 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13243 				  struct kvm_kernel_irq_routing_entry *new)
13244 {
13245 	if (new->type != KVM_IRQ_ROUTING_MSI)
13246 		return true;
13247 
13248 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13249 }
13250 
13251 bool kvm_vector_hashing_enabled(void)
13252 {
13253 	return vector_hashing;
13254 }
13255 
13256 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13257 {
13258 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13259 }
13260 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13261 
13262 
13263 int kvm_spec_ctrl_test_value(u64 value)
13264 {
13265 	/*
13266 	 * test that setting IA32_SPEC_CTRL to given value
13267 	 * is allowed by the host processor
13268 	 */
13269 
13270 	u64 saved_value;
13271 	unsigned long flags;
13272 	int ret = 0;
13273 
13274 	local_irq_save(flags);
13275 
13276 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13277 		ret = 1;
13278 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13279 		ret = 1;
13280 	else
13281 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13282 
13283 	local_irq_restore(flags);
13284 
13285 	return ret;
13286 }
13287 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13288 
13289 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13290 {
13291 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13292 	struct x86_exception fault;
13293 	u64 access = error_code &
13294 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13295 
13296 	if (!(error_code & PFERR_PRESENT_MASK) ||
13297 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13298 		/*
13299 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13300 		 * tables probably do not match the TLB.  Just proceed
13301 		 * with the error code that the processor gave.
13302 		 */
13303 		fault.vector = PF_VECTOR;
13304 		fault.error_code_valid = true;
13305 		fault.error_code = error_code;
13306 		fault.nested_page_fault = false;
13307 		fault.address = gva;
13308 		fault.async_page_fault = false;
13309 	}
13310 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13311 }
13312 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13313 
13314 /*
13315  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13316  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13317  * indicates whether exit to userspace is needed.
13318  */
13319 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13320 			      struct x86_exception *e)
13321 {
13322 	if (r == X86EMUL_PROPAGATE_FAULT) {
13323 		kvm_inject_emulated_page_fault(vcpu, e);
13324 		return 1;
13325 	}
13326 
13327 	/*
13328 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13329 	 * while handling a VMX instruction KVM could've handled the request
13330 	 * correctly by exiting to userspace and performing I/O but there
13331 	 * doesn't seem to be a real use-case behind such requests, just return
13332 	 * KVM_EXIT_INTERNAL_ERROR for now.
13333 	 */
13334 	kvm_prepare_emulation_failure_exit(vcpu);
13335 
13336 	return 0;
13337 }
13338 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13339 
13340 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13341 {
13342 	bool pcid_enabled;
13343 	struct x86_exception e;
13344 	struct {
13345 		u64 pcid;
13346 		u64 gla;
13347 	} operand;
13348 	int r;
13349 
13350 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13351 	if (r != X86EMUL_CONTINUE)
13352 		return kvm_handle_memory_failure(vcpu, r, &e);
13353 
13354 	if (operand.pcid >> 12 != 0) {
13355 		kvm_inject_gp(vcpu, 0);
13356 		return 1;
13357 	}
13358 
13359 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13360 
13361 	switch (type) {
13362 	case INVPCID_TYPE_INDIV_ADDR:
13363 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13364 		    is_noncanonical_address(operand.gla, vcpu)) {
13365 			kvm_inject_gp(vcpu, 0);
13366 			return 1;
13367 		}
13368 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13369 		return kvm_skip_emulated_instruction(vcpu);
13370 
13371 	case INVPCID_TYPE_SINGLE_CTXT:
13372 		if (!pcid_enabled && (operand.pcid != 0)) {
13373 			kvm_inject_gp(vcpu, 0);
13374 			return 1;
13375 		}
13376 
13377 		kvm_invalidate_pcid(vcpu, operand.pcid);
13378 		return kvm_skip_emulated_instruction(vcpu);
13379 
13380 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13381 		/*
13382 		 * Currently, KVM doesn't mark global entries in the shadow
13383 		 * page tables, so a non-global flush just degenerates to a
13384 		 * global flush. If needed, we could optimize this later by
13385 		 * keeping track of global entries in shadow page tables.
13386 		 */
13387 
13388 		fallthrough;
13389 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13390 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13391 		return kvm_skip_emulated_instruction(vcpu);
13392 
13393 	default:
13394 		kvm_inject_gp(vcpu, 0);
13395 		return 1;
13396 	}
13397 }
13398 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13399 
13400 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13401 {
13402 	struct kvm_run *run = vcpu->run;
13403 	struct kvm_mmio_fragment *frag;
13404 	unsigned int len;
13405 
13406 	BUG_ON(!vcpu->mmio_needed);
13407 
13408 	/* Complete previous fragment */
13409 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13410 	len = min(8u, frag->len);
13411 	if (!vcpu->mmio_is_write)
13412 		memcpy(frag->data, run->mmio.data, len);
13413 
13414 	if (frag->len <= 8) {
13415 		/* Switch to the next fragment. */
13416 		frag++;
13417 		vcpu->mmio_cur_fragment++;
13418 	} else {
13419 		/* Go forward to the next mmio piece. */
13420 		frag->data += len;
13421 		frag->gpa += len;
13422 		frag->len -= len;
13423 	}
13424 
13425 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13426 		vcpu->mmio_needed = 0;
13427 
13428 		// VMG change, at this point, we're always done
13429 		// RIP has already been advanced
13430 		return 1;
13431 	}
13432 
13433 	// More MMIO is needed
13434 	run->mmio.phys_addr = frag->gpa;
13435 	run->mmio.len = min(8u, frag->len);
13436 	run->mmio.is_write = vcpu->mmio_is_write;
13437 	if (run->mmio.is_write)
13438 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13439 	run->exit_reason = KVM_EXIT_MMIO;
13440 
13441 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13442 
13443 	return 0;
13444 }
13445 
13446 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13447 			  void *data)
13448 {
13449 	int handled;
13450 	struct kvm_mmio_fragment *frag;
13451 
13452 	if (!data)
13453 		return -EINVAL;
13454 
13455 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13456 	if (handled == bytes)
13457 		return 1;
13458 
13459 	bytes -= handled;
13460 	gpa += handled;
13461 	data += handled;
13462 
13463 	/*TODO: Check if need to increment number of frags */
13464 	frag = vcpu->mmio_fragments;
13465 	vcpu->mmio_nr_fragments = 1;
13466 	frag->len = bytes;
13467 	frag->gpa = gpa;
13468 	frag->data = data;
13469 
13470 	vcpu->mmio_needed = 1;
13471 	vcpu->mmio_cur_fragment = 0;
13472 
13473 	vcpu->run->mmio.phys_addr = gpa;
13474 	vcpu->run->mmio.len = min(8u, frag->len);
13475 	vcpu->run->mmio.is_write = 1;
13476 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13477 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13478 
13479 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13480 
13481 	return 0;
13482 }
13483 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13484 
13485 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13486 			 void *data)
13487 {
13488 	int handled;
13489 	struct kvm_mmio_fragment *frag;
13490 
13491 	if (!data)
13492 		return -EINVAL;
13493 
13494 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13495 	if (handled == bytes)
13496 		return 1;
13497 
13498 	bytes -= handled;
13499 	gpa += handled;
13500 	data += handled;
13501 
13502 	/*TODO: Check if need to increment number of frags */
13503 	frag = vcpu->mmio_fragments;
13504 	vcpu->mmio_nr_fragments = 1;
13505 	frag->len = bytes;
13506 	frag->gpa = gpa;
13507 	frag->data = data;
13508 
13509 	vcpu->mmio_needed = 1;
13510 	vcpu->mmio_cur_fragment = 0;
13511 
13512 	vcpu->run->mmio.phys_addr = gpa;
13513 	vcpu->run->mmio.len = min(8u, frag->len);
13514 	vcpu->run->mmio.is_write = 0;
13515 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13516 
13517 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13518 
13519 	return 0;
13520 }
13521 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13522 
13523 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13524 {
13525 	vcpu->arch.sev_pio_count -= count;
13526 	vcpu->arch.sev_pio_data += count * size;
13527 }
13528 
13529 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13530 			   unsigned int port);
13531 
13532 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13533 {
13534 	int size = vcpu->arch.pio.size;
13535 	int port = vcpu->arch.pio.port;
13536 
13537 	vcpu->arch.pio.count = 0;
13538 	if (vcpu->arch.sev_pio_count)
13539 		return kvm_sev_es_outs(vcpu, size, port);
13540 	return 1;
13541 }
13542 
13543 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13544 			   unsigned int port)
13545 {
13546 	for (;;) {
13547 		unsigned int count =
13548 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13549 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13550 
13551 		/* memcpy done already by emulator_pio_out.  */
13552 		advance_sev_es_emulated_pio(vcpu, count, size);
13553 		if (!ret)
13554 			break;
13555 
13556 		/* Emulation done by the kernel.  */
13557 		if (!vcpu->arch.sev_pio_count)
13558 			return 1;
13559 	}
13560 
13561 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13562 	return 0;
13563 }
13564 
13565 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13566 			  unsigned int port);
13567 
13568 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13569 {
13570 	unsigned count = vcpu->arch.pio.count;
13571 	int size = vcpu->arch.pio.size;
13572 	int port = vcpu->arch.pio.port;
13573 
13574 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13575 	advance_sev_es_emulated_pio(vcpu, count, size);
13576 	if (vcpu->arch.sev_pio_count)
13577 		return kvm_sev_es_ins(vcpu, size, port);
13578 	return 1;
13579 }
13580 
13581 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13582 			  unsigned int port)
13583 {
13584 	for (;;) {
13585 		unsigned int count =
13586 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13587 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13588 			break;
13589 
13590 		/* Emulation done by the kernel.  */
13591 		advance_sev_es_emulated_pio(vcpu, count, size);
13592 		if (!vcpu->arch.sev_pio_count)
13593 			return 1;
13594 	}
13595 
13596 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13597 	return 0;
13598 }
13599 
13600 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13601 			 unsigned int port, void *data,  unsigned int count,
13602 			 int in)
13603 {
13604 	vcpu->arch.sev_pio_data = data;
13605 	vcpu->arch.sev_pio_count = count;
13606 	return in ? kvm_sev_es_ins(vcpu, size, port)
13607 		  : kvm_sev_es_outs(vcpu, size, port);
13608 }
13609 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13610 
13611 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13612 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13613 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13614 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13615 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13616 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13640 
13641 static int __init kvm_x86_init(void)
13642 {
13643 	kvm_mmu_x86_module_init();
13644 	return 0;
13645 }
13646 module_init(kvm_x86_init);
13647 
13648 static void __exit kvm_x86_exit(void)
13649 {
13650 	/*
13651 	 * If module_init() is implemented, module_exit() must also be
13652 	 * implemented to allow module unload.
13653 	 */
13654 }
13655 module_exit(kvm_x86_exit);
13656