1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 #include "lapic.h" 33 #include "xen.h" 34 #include "smm.h" 35 36 #include <linux/clocksource.h> 37 #include <linux/interrupt.h> 38 #include <linux/kvm.h> 39 #include <linux/fs.h> 40 #include <linux/vmalloc.h> 41 #include <linux/export.h> 42 #include <linux/moduleparam.h> 43 #include <linux/mman.h> 44 #include <linux/highmem.h> 45 #include <linux/iommu.h> 46 #include <linux/cpufreq.h> 47 #include <linux/user-return-notifier.h> 48 #include <linux/srcu.h> 49 #include <linux/slab.h> 50 #include <linux/perf_event.h> 51 #include <linux/uaccess.h> 52 #include <linux/hash.h> 53 #include <linux/pci.h> 54 #include <linux/timekeeper_internal.h> 55 #include <linux/pvclock_gtod.h> 56 #include <linux/kvm_irqfd.h> 57 #include <linux/irqbypass.h> 58 #include <linux/sched/stat.h> 59 #include <linux/sched/isolation.h> 60 #include <linux/mem_encrypt.h> 61 #include <linux/entry-kvm.h> 62 #include <linux/suspend.h> 63 64 #include <trace/events/kvm.h> 65 66 #include <asm/debugreg.h> 67 #include <asm/msr.h> 68 #include <asm/desc.h> 69 #include <asm/mce.h> 70 #include <asm/pkru.h> 71 #include <linux/kernel_stat.h> 72 #include <asm/fpu/api.h> 73 #include <asm/fpu/xcr.h> 74 #include <asm/fpu/xstate.h> 75 #include <asm/pvclock.h> 76 #include <asm/div64.h> 77 #include <asm/irq_remapping.h> 78 #include <asm/mshyperv.h> 79 #include <asm/hypervisor.h> 80 #include <asm/tlbflush.h> 81 #include <asm/intel_pt.h> 82 #include <asm/emulate_prefix.h> 83 #include <asm/sgx.h> 84 #include <clocksource/hyperv_timer.h> 85 86 #define CREATE_TRACE_POINTS 87 #include "trace.h" 88 89 #define MAX_IO_MSRS 256 90 #define KVM_MAX_MCE_BANKS 32 91 92 struct kvm_caps kvm_caps __read_mostly = { 93 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 94 }; 95 EXPORT_SYMBOL_GPL(kvm_caps); 96 97 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 98 99 #define emul_to_vcpu(ctxt) \ 100 ((struct kvm_vcpu *)(ctxt)->vcpu) 101 102 /* EFER defaults: 103 * - enable syscall per default because its emulated by KVM 104 * - enable LME and LMA per default on 64 bit KVM 105 */ 106 #ifdef CONFIG_X86_64 107 static 108 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 109 #else 110 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 111 #endif 112 113 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 114 115 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 116 117 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 118 119 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 120 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 121 122 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 123 static void process_nmi(struct kvm_vcpu *vcpu); 124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 125 static void store_regs(struct kvm_vcpu *vcpu); 126 static int sync_regs(struct kvm_vcpu *vcpu); 127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 128 129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 131 132 static DEFINE_MUTEX(vendor_module_lock); 133 struct kvm_x86_ops kvm_x86_ops __read_mostly; 134 135 #define KVM_X86_OP(func) \ 136 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 137 *(((struct kvm_x86_ops *)0)->func)); 138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 140 #include <asm/kvm-x86-ops.h> 141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 143 144 static bool __read_mostly ignore_msrs = 0; 145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 146 147 bool __read_mostly report_ignored_msrs = true; 148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 149 EXPORT_SYMBOL_GPL(report_ignored_msrs); 150 151 unsigned int min_timer_period_us = 200; 152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 153 154 static bool __read_mostly kvmclock_periodic_sync = true; 155 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 156 157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 158 static u32 __read_mostly tsc_tolerance_ppm = 250; 159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 160 161 /* 162 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 163 * adaptive tuning starting from default advancement of 1000ns. '0' disables 164 * advancement entirely. Any other value is used as-is and disables adaptive 165 * tuning, i.e. allows privileged userspace to set an exact advancement time. 166 */ 167 static int __read_mostly lapic_timer_advance_ns = -1; 168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 169 170 static bool __read_mostly vector_hashing = true; 171 module_param(vector_hashing, bool, S_IRUGO); 172 173 bool __read_mostly enable_vmware_backdoor = false; 174 module_param(enable_vmware_backdoor, bool, S_IRUGO); 175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 176 177 /* 178 * Flags to manipulate forced emulation behavior (any non-zero value will 179 * enable forced emulation). 180 */ 181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 182 static int __read_mostly force_emulation_prefix; 183 module_param(force_emulation_prefix, int, 0644); 184 185 int __read_mostly pi_inject_timer = -1; 186 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 187 188 /* Enable/disable PMU virtualization */ 189 bool __read_mostly enable_pmu = true; 190 EXPORT_SYMBOL_GPL(enable_pmu); 191 module_param(enable_pmu, bool, 0444); 192 193 bool __read_mostly eager_page_split = true; 194 module_param(eager_page_split, bool, 0644); 195 196 /* Enable/disable SMT_RSB bug mitigation */ 197 bool __read_mostly mitigate_smt_rsb; 198 module_param(mitigate_smt_rsb, bool, 0444); 199 200 /* 201 * Restoring the host value for MSRs that are only consumed when running in 202 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 203 * returns to userspace, i.e. the kernel can run with the guest's value. 204 */ 205 #define KVM_MAX_NR_USER_RETURN_MSRS 16 206 207 struct kvm_user_return_msrs { 208 struct user_return_notifier urn; 209 bool registered; 210 struct kvm_user_return_msr_values { 211 u64 host; 212 u64 curr; 213 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 214 }; 215 216 u32 __read_mostly kvm_nr_uret_msrs; 217 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 218 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 219 static struct kvm_user_return_msrs __percpu *user_return_msrs; 220 221 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 222 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 223 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 224 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 225 226 u64 __read_mostly host_efer; 227 EXPORT_SYMBOL_GPL(host_efer); 228 229 bool __read_mostly allow_smaller_maxphyaddr = 0; 230 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 231 232 bool __read_mostly enable_apicv = true; 233 EXPORT_SYMBOL_GPL(enable_apicv); 234 235 u64 __read_mostly host_xss; 236 EXPORT_SYMBOL_GPL(host_xss); 237 238 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 239 KVM_GENERIC_VM_STATS(), 240 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 241 STATS_DESC_COUNTER(VM, mmu_pte_write), 242 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 243 STATS_DESC_COUNTER(VM, mmu_flooded), 244 STATS_DESC_COUNTER(VM, mmu_recycled), 245 STATS_DESC_COUNTER(VM, mmu_cache_miss), 246 STATS_DESC_ICOUNTER(VM, mmu_unsync), 247 STATS_DESC_ICOUNTER(VM, pages_4k), 248 STATS_DESC_ICOUNTER(VM, pages_2m), 249 STATS_DESC_ICOUNTER(VM, pages_1g), 250 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 251 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 252 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 253 }; 254 255 const struct kvm_stats_header kvm_vm_stats_header = { 256 .name_size = KVM_STATS_NAME_SIZE, 257 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 258 .id_offset = sizeof(struct kvm_stats_header), 259 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 260 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 261 sizeof(kvm_vm_stats_desc), 262 }; 263 264 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 265 KVM_GENERIC_VCPU_STATS(), 266 STATS_DESC_COUNTER(VCPU, pf_taken), 267 STATS_DESC_COUNTER(VCPU, pf_fixed), 268 STATS_DESC_COUNTER(VCPU, pf_emulate), 269 STATS_DESC_COUNTER(VCPU, pf_spurious), 270 STATS_DESC_COUNTER(VCPU, pf_fast), 271 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 272 STATS_DESC_COUNTER(VCPU, pf_guest), 273 STATS_DESC_COUNTER(VCPU, tlb_flush), 274 STATS_DESC_COUNTER(VCPU, invlpg), 275 STATS_DESC_COUNTER(VCPU, exits), 276 STATS_DESC_COUNTER(VCPU, io_exits), 277 STATS_DESC_COUNTER(VCPU, mmio_exits), 278 STATS_DESC_COUNTER(VCPU, signal_exits), 279 STATS_DESC_COUNTER(VCPU, irq_window_exits), 280 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 281 STATS_DESC_COUNTER(VCPU, l1d_flush), 282 STATS_DESC_COUNTER(VCPU, halt_exits), 283 STATS_DESC_COUNTER(VCPU, request_irq_exits), 284 STATS_DESC_COUNTER(VCPU, irq_exits), 285 STATS_DESC_COUNTER(VCPU, host_state_reload), 286 STATS_DESC_COUNTER(VCPU, fpu_reload), 287 STATS_DESC_COUNTER(VCPU, insn_emulation), 288 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 289 STATS_DESC_COUNTER(VCPU, hypercalls), 290 STATS_DESC_COUNTER(VCPU, irq_injections), 291 STATS_DESC_COUNTER(VCPU, nmi_injections), 292 STATS_DESC_COUNTER(VCPU, req_event), 293 STATS_DESC_COUNTER(VCPU, nested_run), 294 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 295 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 296 STATS_DESC_COUNTER(VCPU, preemption_reported), 297 STATS_DESC_COUNTER(VCPU, preemption_other), 298 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 299 STATS_DESC_COUNTER(VCPU, notify_window_exits), 300 }; 301 302 const struct kvm_stats_header kvm_vcpu_stats_header = { 303 .name_size = KVM_STATS_NAME_SIZE, 304 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 305 .id_offset = sizeof(struct kvm_stats_header), 306 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 307 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 308 sizeof(kvm_vcpu_stats_desc), 309 }; 310 311 u64 __read_mostly host_xcr0; 312 313 static struct kmem_cache *x86_emulator_cache; 314 315 /* 316 * When called, it means the previous get/set msr reached an invalid msr. 317 * Return true if we want to ignore/silent this failed msr access. 318 */ 319 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 320 { 321 const char *op = write ? "wrmsr" : "rdmsr"; 322 323 if (ignore_msrs) { 324 if (report_ignored_msrs) 325 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 326 op, msr, data); 327 /* Mask the error */ 328 return true; 329 } else { 330 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 331 op, msr, data); 332 return false; 333 } 334 } 335 336 static struct kmem_cache *kvm_alloc_emulator_cache(void) 337 { 338 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 339 unsigned int size = sizeof(struct x86_emulate_ctxt); 340 341 return kmem_cache_create_usercopy("x86_emulator", size, 342 __alignof__(struct x86_emulate_ctxt), 343 SLAB_ACCOUNT, useroffset, 344 size - useroffset, NULL); 345 } 346 347 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 348 349 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 350 { 351 int i; 352 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 353 vcpu->arch.apf.gfns[i] = ~0; 354 } 355 356 static void kvm_on_user_return(struct user_return_notifier *urn) 357 { 358 unsigned slot; 359 struct kvm_user_return_msrs *msrs 360 = container_of(urn, struct kvm_user_return_msrs, urn); 361 struct kvm_user_return_msr_values *values; 362 unsigned long flags; 363 364 /* 365 * Disabling irqs at this point since the following code could be 366 * interrupted and executed through kvm_arch_hardware_disable() 367 */ 368 local_irq_save(flags); 369 if (msrs->registered) { 370 msrs->registered = false; 371 user_return_notifier_unregister(urn); 372 } 373 local_irq_restore(flags); 374 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 375 values = &msrs->values[slot]; 376 if (values->host != values->curr) { 377 wrmsrl(kvm_uret_msrs_list[slot], values->host); 378 values->curr = values->host; 379 } 380 } 381 } 382 383 static int kvm_probe_user_return_msr(u32 msr) 384 { 385 u64 val; 386 int ret; 387 388 preempt_disable(); 389 ret = rdmsrl_safe(msr, &val); 390 if (ret) 391 goto out; 392 ret = wrmsrl_safe(msr, val); 393 out: 394 preempt_enable(); 395 return ret; 396 } 397 398 int kvm_add_user_return_msr(u32 msr) 399 { 400 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 401 402 if (kvm_probe_user_return_msr(msr)) 403 return -1; 404 405 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 406 return kvm_nr_uret_msrs++; 407 } 408 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 409 410 int kvm_find_user_return_msr(u32 msr) 411 { 412 int i; 413 414 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 415 if (kvm_uret_msrs_list[i] == msr) 416 return i; 417 } 418 return -1; 419 } 420 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 421 422 static void kvm_user_return_msr_cpu_online(void) 423 { 424 unsigned int cpu = smp_processor_id(); 425 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 426 u64 value; 427 int i; 428 429 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 430 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 431 msrs->values[i].host = value; 432 msrs->values[i].curr = value; 433 } 434 } 435 436 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 437 { 438 unsigned int cpu = smp_processor_id(); 439 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 440 int err; 441 442 value = (value & mask) | (msrs->values[slot].host & ~mask); 443 if (value == msrs->values[slot].curr) 444 return 0; 445 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 446 if (err) 447 return 1; 448 449 msrs->values[slot].curr = value; 450 if (!msrs->registered) { 451 msrs->urn.on_user_return = kvm_on_user_return; 452 user_return_notifier_register(&msrs->urn); 453 msrs->registered = true; 454 } 455 return 0; 456 } 457 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 458 459 static void drop_user_return_notifiers(void) 460 { 461 unsigned int cpu = smp_processor_id(); 462 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 463 464 if (msrs->registered) 465 kvm_on_user_return(&msrs->urn); 466 } 467 468 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 469 { 470 return vcpu->arch.apic_base; 471 } 472 473 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 474 { 475 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 476 } 477 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 478 479 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 480 { 481 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 482 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 483 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 484 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 485 486 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 487 return 1; 488 if (!msr_info->host_initiated) { 489 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 490 return 1; 491 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 492 return 1; 493 } 494 495 kvm_lapic_set_base(vcpu, msr_info->data); 496 kvm_recalculate_apic_map(vcpu->kvm); 497 return 0; 498 } 499 500 /* 501 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 502 * 503 * Hardware virtualization extension instructions may fault if a reboot turns 504 * off virtualization while processes are running. Usually after catching the 505 * fault we just panic; during reboot instead the instruction is ignored. 506 */ 507 noinstr void kvm_spurious_fault(void) 508 { 509 /* Fault while not rebooting. We want the trace. */ 510 BUG_ON(!kvm_rebooting); 511 } 512 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 513 514 #define EXCPT_BENIGN 0 515 #define EXCPT_CONTRIBUTORY 1 516 #define EXCPT_PF 2 517 518 static int exception_class(int vector) 519 { 520 switch (vector) { 521 case PF_VECTOR: 522 return EXCPT_PF; 523 case DE_VECTOR: 524 case TS_VECTOR: 525 case NP_VECTOR: 526 case SS_VECTOR: 527 case GP_VECTOR: 528 return EXCPT_CONTRIBUTORY; 529 default: 530 break; 531 } 532 return EXCPT_BENIGN; 533 } 534 535 #define EXCPT_FAULT 0 536 #define EXCPT_TRAP 1 537 #define EXCPT_ABORT 2 538 #define EXCPT_INTERRUPT 3 539 #define EXCPT_DB 4 540 541 static int exception_type(int vector) 542 { 543 unsigned int mask; 544 545 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 546 return EXCPT_INTERRUPT; 547 548 mask = 1 << vector; 549 550 /* 551 * #DBs can be trap-like or fault-like, the caller must check other CPU 552 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 553 */ 554 if (mask & (1 << DB_VECTOR)) 555 return EXCPT_DB; 556 557 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 558 return EXCPT_TRAP; 559 560 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 561 return EXCPT_ABORT; 562 563 /* Reserved exceptions will result in fault */ 564 return EXCPT_FAULT; 565 } 566 567 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 568 struct kvm_queued_exception *ex) 569 { 570 if (!ex->has_payload) 571 return; 572 573 switch (ex->vector) { 574 case DB_VECTOR: 575 /* 576 * "Certain debug exceptions may clear bit 0-3. The 577 * remaining contents of the DR6 register are never 578 * cleared by the processor". 579 */ 580 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 581 /* 582 * In order to reflect the #DB exception payload in guest 583 * dr6, three components need to be considered: active low 584 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 585 * DR6_BS and DR6_BT) 586 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 587 * In the target guest dr6: 588 * FIXED_1 bits should always be set. 589 * Active low bits should be cleared if 1-setting in payload. 590 * Active high bits should be set if 1-setting in payload. 591 * 592 * Note, the payload is compatible with the pending debug 593 * exceptions/exit qualification under VMX, that active_low bits 594 * are active high in payload. 595 * So they need to be flipped for DR6. 596 */ 597 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 598 vcpu->arch.dr6 |= ex->payload; 599 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 600 601 /* 602 * The #DB payload is defined as compatible with the 'pending 603 * debug exceptions' field under VMX, not DR6. While bit 12 is 604 * defined in the 'pending debug exceptions' field (enabled 605 * breakpoint), it is reserved and must be zero in DR6. 606 */ 607 vcpu->arch.dr6 &= ~BIT(12); 608 break; 609 case PF_VECTOR: 610 vcpu->arch.cr2 = ex->payload; 611 break; 612 } 613 614 ex->has_payload = false; 615 ex->payload = 0; 616 } 617 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 618 619 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 620 bool has_error_code, u32 error_code, 621 bool has_payload, unsigned long payload) 622 { 623 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 624 625 ex->vector = vector; 626 ex->injected = false; 627 ex->pending = true; 628 ex->has_error_code = has_error_code; 629 ex->error_code = error_code; 630 ex->has_payload = has_payload; 631 ex->payload = payload; 632 } 633 634 /* Forcibly leave the nested mode in cases like a vCPU reset */ 635 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 636 { 637 kvm_x86_ops.nested_ops->leave_nested(vcpu); 638 } 639 640 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 641 unsigned nr, bool has_error, u32 error_code, 642 bool has_payload, unsigned long payload, bool reinject) 643 { 644 u32 prev_nr; 645 int class1, class2; 646 647 kvm_make_request(KVM_REQ_EVENT, vcpu); 648 649 /* 650 * If the exception is destined for L2 and isn't being reinjected, 651 * morph it to a VM-Exit if L1 wants to intercept the exception. A 652 * previously injected exception is not checked because it was checked 653 * when it was original queued, and re-checking is incorrect if _L1_ 654 * injected the exception, in which case it's exempt from interception. 655 */ 656 if (!reinject && is_guest_mode(vcpu) && 657 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 658 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 659 has_payload, payload); 660 return; 661 } 662 663 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 664 queue: 665 if (reinject) { 666 /* 667 * On VM-Entry, an exception can be pending if and only 668 * if event injection was blocked by nested_run_pending. 669 * In that case, however, vcpu_enter_guest() requests an 670 * immediate exit, and the guest shouldn't proceed far 671 * enough to need reinjection. 672 */ 673 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 674 vcpu->arch.exception.injected = true; 675 if (WARN_ON_ONCE(has_payload)) { 676 /* 677 * A reinjected event has already 678 * delivered its payload. 679 */ 680 has_payload = false; 681 payload = 0; 682 } 683 } else { 684 vcpu->arch.exception.pending = true; 685 vcpu->arch.exception.injected = false; 686 } 687 vcpu->arch.exception.has_error_code = has_error; 688 vcpu->arch.exception.vector = nr; 689 vcpu->arch.exception.error_code = error_code; 690 vcpu->arch.exception.has_payload = has_payload; 691 vcpu->arch.exception.payload = payload; 692 if (!is_guest_mode(vcpu)) 693 kvm_deliver_exception_payload(vcpu, 694 &vcpu->arch.exception); 695 return; 696 } 697 698 /* to check exception */ 699 prev_nr = vcpu->arch.exception.vector; 700 if (prev_nr == DF_VECTOR) { 701 /* triple fault -> shutdown */ 702 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 703 return; 704 } 705 class1 = exception_class(prev_nr); 706 class2 = exception_class(nr); 707 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 708 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 709 /* 710 * Synthesize #DF. Clear the previously injected or pending 711 * exception so as not to incorrectly trigger shutdown. 712 */ 713 vcpu->arch.exception.injected = false; 714 vcpu->arch.exception.pending = false; 715 716 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 717 } else { 718 /* replace previous exception with a new one in a hope 719 that instruction re-execution will regenerate lost 720 exception */ 721 goto queue; 722 } 723 } 724 725 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 726 { 727 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 728 } 729 EXPORT_SYMBOL_GPL(kvm_queue_exception); 730 731 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 732 { 733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 734 } 735 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 736 737 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 738 unsigned long payload) 739 { 740 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 741 } 742 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 743 744 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 745 u32 error_code, unsigned long payload) 746 { 747 kvm_multiple_exception(vcpu, nr, true, error_code, 748 true, payload, false); 749 } 750 751 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 752 { 753 if (err) 754 kvm_inject_gp(vcpu, 0); 755 else 756 return kvm_skip_emulated_instruction(vcpu); 757 758 return 1; 759 } 760 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 761 762 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 763 { 764 if (err) { 765 kvm_inject_gp(vcpu, 0); 766 return 1; 767 } 768 769 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 770 EMULTYPE_COMPLETE_USER_EXIT); 771 } 772 773 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 774 { 775 ++vcpu->stat.pf_guest; 776 777 /* 778 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 779 * whether or not L1 wants to intercept "regular" #PF. 780 */ 781 if (is_guest_mode(vcpu) && fault->async_page_fault) 782 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 783 true, fault->error_code, 784 true, fault->address); 785 else 786 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 787 fault->address); 788 } 789 790 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 791 struct x86_exception *fault) 792 { 793 struct kvm_mmu *fault_mmu; 794 WARN_ON_ONCE(fault->vector != PF_VECTOR); 795 796 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 797 vcpu->arch.walk_mmu; 798 799 /* 800 * Invalidate the TLB entry for the faulting address, if it exists, 801 * else the access will fault indefinitely (and to emulate hardware). 802 */ 803 if ((fault->error_code & PFERR_PRESENT_MASK) && 804 !(fault->error_code & PFERR_RSVD_MASK)) 805 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 806 fault_mmu->root.hpa); 807 808 fault_mmu->inject_page_fault(vcpu, fault); 809 } 810 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 811 812 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 813 { 814 atomic_inc(&vcpu->arch.nmi_queued); 815 kvm_make_request(KVM_REQ_NMI, vcpu); 816 } 817 818 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 819 { 820 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 821 } 822 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 823 824 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 825 { 826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 827 } 828 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 829 830 /* 831 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 832 * a #GP and return false. 833 */ 834 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 835 { 836 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 837 return true; 838 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 839 return false; 840 } 841 842 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 843 { 844 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 845 return true; 846 847 kvm_queue_exception(vcpu, UD_VECTOR); 848 return false; 849 } 850 EXPORT_SYMBOL_GPL(kvm_require_dr); 851 852 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 853 { 854 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 855 } 856 857 /* 858 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 859 */ 860 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 861 { 862 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 863 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 864 gpa_t real_gpa; 865 int i; 866 int ret; 867 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 868 869 /* 870 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 871 * to an L1 GPA. 872 */ 873 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 874 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 875 if (real_gpa == INVALID_GPA) 876 return 0; 877 878 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 879 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 880 cr3 & GENMASK(11, 5), sizeof(pdpte)); 881 if (ret < 0) 882 return 0; 883 884 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 885 if ((pdpte[i] & PT_PRESENT_MASK) && 886 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 887 return 0; 888 } 889 } 890 891 /* 892 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 893 * Shadow page roots need to be reconstructed instead. 894 */ 895 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 896 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 897 898 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 899 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 900 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 901 vcpu->arch.pdptrs_from_userspace = false; 902 903 return 1; 904 } 905 EXPORT_SYMBOL_GPL(load_pdptrs); 906 907 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 908 { 909 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 910 kvm_clear_async_pf_completion_queue(vcpu); 911 kvm_async_pf_hash_reset(vcpu); 912 913 /* 914 * Clearing CR0.PG is defined to flush the TLB from the guest's 915 * perspective. 916 */ 917 if (!(cr0 & X86_CR0_PG)) 918 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 919 } 920 921 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 922 kvm_mmu_reset_context(vcpu); 923 924 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 925 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 926 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 927 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 928 } 929 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 930 931 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 932 { 933 unsigned long old_cr0 = kvm_read_cr0(vcpu); 934 935 cr0 |= X86_CR0_ET; 936 937 #ifdef CONFIG_X86_64 938 if (cr0 & 0xffffffff00000000UL) 939 return 1; 940 #endif 941 942 cr0 &= ~CR0_RESERVED_BITS; 943 944 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 945 return 1; 946 947 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 948 return 1; 949 950 #ifdef CONFIG_X86_64 951 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 952 (cr0 & X86_CR0_PG)) { 953 int cs_db, cs_l; 954 955 if (!is_pae(vcpu)) 956 return 1; 957 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 958 if (cs_l) 959 return 1; 960 } 961 #endif 962 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 963 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 964 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 965 return 1; 966 967 if (!(cr0 & X86_CR0_PG) && 968 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 969 return 1; 970 971 static_call(kvm_x86_set_cr0)(vcpu, cr0); 972 973 kvm_post_set_cr0(vcpu, old_cr0, cr0); 974 975 return 0; 976 } 977 EXPORT_SYMBOL_GPL(kvm_set_cr0); 978 979 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 980 { 981 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 982 } 983 EXPORT_SYMBOL_GPL(kvm_lmsw); 984 985 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 986 { 987 if (vcpu->arch.guest_state_protected) 988 return; 989 990 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 991 992 if (vcpu->arch.xcr0 != host_xcr0) 993 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 994 995 if (vcpu->arch.xsaves_enabled && 996 vcpu->arch.ia32_xss != host_xss) 997 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 998 } 999 1000 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1001 if (static_cpu_has(X86_FEATURE_PKU) && 1002 vcpu->arch.pkru != vcpu->arch.host_pkru && 1003 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1004 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 1005 write_pkru(vcpu->arch.pkru); 1006 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1007 } 1008 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1009 1010 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1011 { 1012 if (vcpu->arch.guest_state_protected) 1013 return; 1014 1015 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1016 if (static_cpu_has(X86_FEATURE_PKU) && 1017 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1018 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1019 vcpu->arch.pkru = rdpkru(); 1020 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1021 write_pkru(vcpu->arch.host_pkru); 1022 } 1023 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1024 1025 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1026 1027 if (vcpu->arch.xcr0 != host_xcr0) 1028 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1029 1030 if (vcpu->arch.xsaves_enabled && 1031 vcpu->arch.ia32_xss != host_xss) 1032 wrmsrl(MSR_IA32_XSS, host_xss); 1033 } 1034 1035 } 1036 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1037 1038 #ifdef CONFIG_X86_64 1039 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1040 { 1041 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1042 } 1043 #endif 1044 1045 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1046 { 1047 u64 xcr0 = xcr; 1048 u64 old_xcr0 = vcpu->arch.xcr0; 1049 u64 valid_bits; 1050 1051 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1052 if (index != XCR_XFEATURE_ENABLED_MASK) 1053 return 1; 1054 if (!(xcr0 & XFEATURE_MASK_FP)) 1055 return 1; 1056 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1057 return 1; 1058 1059 /* 1060 * Do not allow the guest to set bits that we do not support 1061 * saving. However, xcr0 bit 0 is always set, even if the 1062 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1063 */ 1064 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1065 if (xcr0 & ~valid_bits) 1066 return 1; 1067 1068 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1069 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1070 return 1; 1071 1072 if (xcr0 & XFEATURE_MASK_AVX512) { 1073 if (!(xcr0 & XFEATURE_MASK_YMM)) 1074 return 1; 1075 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1076 return 1; 1077 } 1078 1079 if ((xcr0 & XFEATURE_MASK_XTILE) && 1080 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1081 return 1; 1082 1083 vcpu->arch.xcr0 = xcr0; 1084 1085 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1086 kvm_update_cpuid_runtime(vcpu); 1087 return 0; 1088 } 1089 1090 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1091 { 1092 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1093 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1094 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1095 kvm_inject_gp(vcpu, 0); 1096 return 1; 1097 } 1098 1099 return kvm_skip_emulated_instruction(vcpu); 1100 } 1101 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1102 1103 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1104 { 1105 if (cr4 & cr4_reserved_bits) 1106 return false; 1107 1108 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1109 return false; 1110 1111 return true; 1112 } 1113 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1114 1115 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1116 { 1117 return __kvm_is_valid_cr4(vcpu, cr4) && 1118 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1119 } 1120 1121 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1122 { 1123 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1124 kvm_mmu_reset_context(vcpu); 1125 1126 /* 1127 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1128 * according to the SDM; however, stale prev_roots could be reused 1129 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1130 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1131 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1132 * so fall through. 1133 */ 1134 if (!tdp_enabled && 1135 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1136 kvm_mmu_unload(vcpu); 1137 1138 /* 1139 * The TLB has to be flushed for all PCIDs if any of the following 1140 * (architecturally required) changes happen: 1141 * - CR4.PCIDE is changed from 1 to 0 1142 * - CR4.PGE is toggled 1143 * 1144 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1145 */ 1146 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1147 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1148 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1149 1150 /* 1151 * The TLB has to be flushed for the current PCID if any of the 1152 * following (architecturally required) changes happen: 1153 * - CR4.SMEP is changed from 0 to 1 1154 * - CR4.PAE is toggled 1155 */ 1156 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1157 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1158 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1159 1160 } 1161 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1162 1163 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1164 { 1165 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1166 1167 if (!kvm_is_valid_cr4(vcpu, cr4)) 1168 return 1; 1169 1170 if (is_long_mode(vcpu)) { 1171 if (!(cr4 & X86_CR4_PAE)) 1172 return 1; 1173 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1174 return 1; 1175 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1176 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1177 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1178 return 1; 1179 1180 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1181 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1182 return 1; 1183 1184 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1185 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1186 return 1; 1187 } 1188 1189 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1190 1191 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1192 1193 return 0; 1194 } 1195 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1196 1197 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1198 { 1199 struct kvm_mmu *mmu = vcpu->arch.mmu; 1200 unsigned long roots_to_free = 0; 1201 int i; 1202 1203 /* 1204 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1205 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1206 * also via the emulator. KVM's TDP page tables are not in the scope of 1207 * the invalidation, but the guest's TLB entries need to be flushed as 1208 * the CPU may have cached entries in its TLB for the target PCID. 1209 */ 1210 if (unlikely(tdp_enabled)) { 1211 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1212 return; 1213 } 1214 1215 /* 1216 * If neither the current CR3 nor any of the prev_roots use the given 1217 * PCID, then nothing needs to be done here because a resync will 1218 * happen anyway before switching to any other CR3. 1219 */ 1220 if (kvm_get_active_pcid(vcpu) == pcid) { 1221 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1222 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1223 } 1224 1225 /* 1226 * If PCID is disabled, there is no need to free prev_roots even if the 1227 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1228 * with PCIDE=0. 1229 */ 1230 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1231 return; 1232 1233 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1234 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1235 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1236 1237 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1238 } 1239 1240 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1241 { 1242 bool skip_tlb_flush = false; 1243 unsigned long pcid = 0; 1244 #ifdef CONFIG_X86_64 1245 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1246 1247 if (pcid_enabled) { 1248 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1249 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1250 pcid = cr3 & X86_CR3_PCID_MASK; 1251 } 1252 #endif 1253 1254 /* PDPTRs are always reloaded for PAE paging. */ 1255 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1256 goto handle_tlb_flush; 1257 1258 /* 1259 * Do not condition the GPA check on long mode, this helper is used to 1260 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1261 * the current vCPU mode is accurate. 1262 */ 1263 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1264 return 1; 1265 1266 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1267 return 1; 1268 1269 if (cr3 != kvm_read_cr3(vcpu)) 1270 kvm_mmu_new_pgd(vcpu, cr3); 1271 1272 vcpu->arch.cr3 = cr3; 1273 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1274 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1275 1276 handle_tlb_flush: 1277 /* 1278 * A load of CR3 that flushes the TLB flushes only the current PCID, 1279 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1280 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1281 * and it's impossible to use a non-zero PCID when PCID is disabled, 1282 * i.e. only PCID=0 can be relevant. 1283 */ 1284 if (!skip_tlb_flush) 1285 kvm_invalidate_pcid(vcpu, pcid); 1286 1287 return 0; 1288 } 1289 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1290 1291 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1292 { 1293 if (cr8 & CR8_RESERVED_BITS) 1294 return 1; 1295 if (lapic_in_kernel(vcpu)) 1296 kvm_lapic_set_tpr(vcpu, cr8); 1297 else 1298 vcpu->arch.cr8 = cr8; 1299 return 0; 1300 } 1301 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1302 1303 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1304 { 1305 if (lapic_in_kernel(vcpu)) 1306 return kvm_lapic_get_cr8(vcpu); 1307 else 1308 return vcpu->arch.cr8; 1309 } 1310 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1311 1312 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1313 { 1314 int i; 1315 1316 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1317 for (i = 0; i < KVM_NR_DB_REGS; i++) 1318 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1319 } 1320 } 1321 1322 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1323 { 1324 unsigned long dr7; 1325 1326 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1327 dr7 = vcpu->arch.guest_debug_dr7; 1328 else 1329 dr7 = vcpu->arch.dr7; 1330 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1331 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1332 if (dr7 & DR7_BP_EN_MASK) 1333 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1334 } 1335 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1336 1337 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1338 { 1339 u64 fixed = DR6_FIXED_1; 1340 1341 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1342 fixed |= DR6_RTM; 1343 1344 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1345 fixed |= DR6_BUS_LOCK; 1346 return fixed; 1347 } 1348 1349 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1350 { 1351 size_t size = ARRAY_SIZE(vcpu->arch.db); 1352 1353 switch (dr) { 1354 case 0 ... 3: 1355 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1356 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1357 vcpu->arch.eff_db[dr] = val; 1358 break; 1359 case 4: 1360 case 6: 1361 if (!kvm_dr6_valid(val)) 1362 return 1; /* #GP */ 1363 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1364 break; 1365 case 5: 1366 default: /* 7 */ 1367 if (!kvm_dr7_valid(val)) 1368 return 1; /* #GP */ 1369 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1370 kvm_update_dr7(vcpu); 1371 break; 1372 } 1373 1374 return 0; 1375 } 1376 EXPORT_SYMBOL_GPL(kvm_set_dr); 1377 1378 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1379 { 1380 size_t size = ARRAY_SIZE(vcpu->arch.db); 1381 1382 switch (dr) { 1383 case 0 ... 3: 1384 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1385 break; 1386 case 4: 1387 case 6: 1388 *val = vcpu->arch.dr6; 1389 break; 1390 case 5: 1391 default: /* 7 */ 1392 *val = vcpu->arch.dr7; 1393 break; 1394 } 1395 } 1396 EXPORT_SYMBOL_GPL(kvm_get_dr); 1397 1398 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1399 { 1400 u32 ecx = kvm_rcx_read(vcpu); 1401 u64 data; 1402 1403 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1404 kvm_inject_gp(vcpu, 0); 1405 return 1; 1406 } 1407 1408 kvm_rax_write(vcpu, (u32)data); 1409 kvm_rdx_write(vcpu, data >> 32); 1410 return kvm_skip_emulated_instruction(vcpu); 1411 } 1412 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1413 1414 /* 1415 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1416 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1417 * 1418 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1419 * extract the supported MSRs from the related const lists. 1420 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1421 * capabilities of the host cpu. This capabilities test skips MSRs that are 1422 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1423 * may depend on host virtualization features rather than host cpu features. 1424 */ 1425 1426 static const u32 msrs_to_save_base[] = { 1427 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1428 MSR_STAR, 1429 #ifdef CONFIG_X86_64 1430 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1431 #endif 1432 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1433 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1434 MSR_IA32_SPEC_CTRL, 1435 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1436 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1437 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1438 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1439 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1440 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1441 MSR_IA32_UMWAIT_CONTROL, 1442 1443 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1444 }; 1445 1446 static const u32 msrs_to_save_pmu[] = { 1447 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1448 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1449 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1450 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1451 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1452 1453 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1454 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1455 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1456 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1457 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1458 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1459 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1460 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1461 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1462 1463 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1464 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1465 1466 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1467 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1468 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1469 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1470 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1471 }; 1472 1473 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1474 ARRAY_SIZE(msrs_to_save_pmu)]; 1475 static unsigned num_msrs_to_save; 1476 1477 static const u32 emulated_msrs_all[] = { 1478 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1479 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1480 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1481 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1482 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1483 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1484 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1485 HV_X64_MSR_RESET, 1486 HV_X64_MSR_VP_INDEX, 1487 HV_X64_MSR_VP_RUNTIME, 1488 HV_X64_MSR_SCONTROL, 1489 HV_X64_MSR_STIMER0_CONFIG, 1490 HV_X64_MSR_VP_ASSIST_PAGE, 1491 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1492 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1493 HV_X64_MSR_SYNDBG_OPTIONS, 1494 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1495 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1496 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1497 1498 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1499 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1500 1501 MSR_IA32_TSC_ADJUST, 1502 MSR_IA32_TSC_DEADLINE, 1503 MSR_IA32_ARCH_CAPABILITIES, 1504 MSR_IA32_PERF_CAPABILITIES, 1505 MSR_IA32_MISC_ENABLE, 1506 MSR_IA32_MCG_STATUS, 1507 MSR_IA32_MCG_CTL, 1508 MSR_IA32_MCG_EXT_CTL, 1509 MSR_IA32_SMBASE, 1510 MSR_SMI_COUNT, 1511 MSR_PLATFORM_INFO, 1512 MSR_MISC_FEATURES_ENABLES, 1513 MSR_AMD64_VIRT_SPEC_CTRL, 1514 MSR_AMD64_TSC_RATIO, 1515 MSR_IA32_POWER_CTL, 1516 MSR_IA32_UCODE_REV, 1517 1518 /* 1519 * The following list leaves out MSRs whose values are determined 1520 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1521 * We always support the "true" VMX control MSRs, even if the host 1522 * processor does not, so I am putting these registers here rather 1523 * than in msrs_to_save_all. 1524 */ 1525 MSR_IA32_VMX_BASIC, 1526 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1527 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1528 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1529 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1530 MSR_IA32_VMX_MISC, 1531 MSR_IA32_VMX_CR0_FIXED0, 1532 MSR_IA32_VMX_CR4_FIXED0, 1533 MSR_IA32_VMX_VMCS_ENUM, 1534 MSR_IA32_VMX_PROCBASED_CTLS2, 1535 MSR_IA32_VMX_EPT_VPID_CAP, 1536 MSR_IA32_VMX_VMFUNC, 1537 1538 MSR_K7_HWCR, 1539 MSR_KVM_POLL_CONTROL, 1540 }; 1541 1542 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1543 static unsigned num_emulated_msrs; 1544 1545 /* 1546 * List of msr numbers which are used to expose MSR-based features that 1547 * can be used by a hypervisor to validate requested CPU features. 1548 */ 1549 static const u32 msr_based_features_all[] = { 1550 MSR_IA32_VMX_BASIC, 1551 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1552 MSR_IA32_VMX_PINBASED_CTLS, 1553 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1554 MSR_IA32_VMX_PROCBASED_CTLS, 1555 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1556 MSR_IA32_VMX_EXIT_CTLS, 1557 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1558 MSR_IA32_VMX_ENTRY_CTLS, 1559 MSR_IA32_VMX_MISC, 1560 MSR_IA32_VMX_CR0_FIXED0, 1561 MSR_IA32_VMX_CR0_FIXED1, 1562 MSR_IA32_VMX_CR4_FIXED0, 1563 MSR_IA32_VMX_CR4_FIXED1, 1564 MSR_IA32_VMX_VMCS_ENUM, 1565 MSR_IA32_VMX_PROCBASED_CTLS2, 1566 MSR_IA32_VMX_EPT_VPID_CAP, 1567 MSR_IA32_VMX_VMFUNC, 1568 1569 MSR_AMD64_DE_CFG, 1570 MSR_IA32_UCODE_REV, 1571 MSR_IA32_ARCH_CAPABILITIES, 1572 MSR_IA32_PERF_CAPABILITIES, 1573 }; 1574 1575 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1576 static unsigned int num_msr_based_features; 1577 1578 /* 1579 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1580 * does not yet virtualize. These include: 1581 * 10 - MISC_PACKAGE_CTRLS 1582 * 11 - ENERGY_FILTERING_CTL 1583 * 12 - DOITM 1584 * 18 - FB_CLEAR_CTRL 1585 * 21 - XAPIC_DISABLE_STATUS 1586 * 23 - OVERCLOCKING_STATUS 1587 */ 1588 1589 #define KVM_SUPPORTED_ARCH_CAP \ 1590 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1591 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1592 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1593 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1594 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1595 1596 static u64 kvm_get_arch_capabilities(void) 1597 { 1598 u64 data = 0; 1599 1600 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1601 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1602 data &= KVM_SUPPORTED_ARCH_CAP; 1603 } 1604 1605 /* 1606 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1607 * the nested hypervisor runs with NX huge pages. If it is not, 1608 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1609 * L1 guests, so it need not worry about its own (L2) guests. 1610 */ 1611 data |= ARCH_CAP_PSCHANGE_MC_NO; 1612 1613 /* 1614 * If we're doing cache flushes (either "always" or "cond") 1615 * we will do one whenever the guest does a vmlaunch/vmresume. 1616 * If an outer hypervisor is doing the cache flush for us 1617 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1618 * capability to the guest too, and if EPT is disabled we're not 1619 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1620 * require a nested hypervisor to do a flush of its own. 1621 */ 1622 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1623 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1624 1625 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1626 data |= ARCH_CAP_RDCL_NO; 1627 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1628 data |= ARCH_CAP_SSB_NO; 1629 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1630 data |= ARCH_CAP_MDS_NO; 1631 1632 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1633 /* 1634 * If RTM=0 because the kernel has disabled TSX, the host might 1635 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1636 * and therefore knows that there cannot be TAA) but keep 1637 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1638 * and we want to allow migrating those guests to tsx=off hosts. 1639 */ 1640 data &= ~ARCH_CAP_TAA_NO; 1641 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1642 data |= ARCH_CAP_TAA_NO; 1643 } else { 1644 /* 1645 * Nothing to do here; we emulate TSX_CTRL if present on the 1646 * host so the guest can choose between disabling TSX or 1647 * using VERW to clear CPU buffers. 1648 */ 1649 } 1650 1651 return data; 1652 } 1653 1654 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1655 { 1656 switch (msr->index) { 1657 case MSR_IA32_ARCH_CAPABILITIES: 1658 msr->data = kvm_get_arch_capabilities(); 1659 break; 1660 case MSR_IA32_PERF_CAPABILITIES: 1661 msr->data = kvm_caps.supported_perf_cap; 1662 break; 1663 case MSR_IA32_UCODE_REV: 1664 rdmsrl_safe(msr->index, &msr->data); 1665 break; 1666 default: 1667 return static_call(kvm_x86_get_msr_feature)(msr); 1668 } 1669 return 0; 1670 } 1671 1672 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1673 { 1674 struct kvm_msr_entry msr; 1675 int r; 1676 1677 msr.index = index; 1678 r = kvm_get_msr_feature(&msr); 1679 1680 if (r == KVM_MSR_RET_INVALID) { 1681 /* Unconditionally clear the output for simplicity */ 1682 *data = 0; 1683 if (kvm_msr_ignored_check(index, 0, false)) 1684 r = 0; 1685 } 1686 1687 if (r) 1688 return r; 1689 1690 *data = msr.data; 1691 1692 return 0; 1693 } 1694 1695 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1696 { 1697 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1698 return false; 1699 1700 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1701 return false; 1702 1703 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1704 return false; 1705 1706 if (efer & (EFER_LME | EFER_LMA) && 1707 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1708 return false; 1709 1710 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1711 return false; 1712 1713 return true; 1714 1715 } 1716 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1717 { 1718 if (efer & efer_reserved_bits) 1719 return false; 1720 1721 return __kvm_valid_efer(vcpu, efer); 1722 } 1723 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1724 1725 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1726 { 1727 u64 old_efer = vcpu->arch.efer; 1728 u64 efer = msr_info->data; 1729 int r; 1730 1731 if (efer & efer_reserved_bits) 1732 return 1; 1733 1734 if (!msr_info->host_initiated) { 1735 if (!__kvm_valid_efer(vcpu, efer)) 1736 return 1; 1737 1738 if (is_paging(vcpu) && 1739 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1740 return 1; 1741 } 1742 1743 efer &= ~EFER_LMA; 1744 efer |= vcpu->arch.efer & EFER_LMA; 1745 1746 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1747 if (r) { 1748 WARN_ON(r > 0); 1749 return r; 1750 } 1751 1752 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1753 kvm_mmu_reset_context(vcpu); 1754 1755 return 0; 1756 } 1757 1758 void kvm_enable_efer_bits(u64 mask) 1759 { 1760 efer_reserved_bits &= ~mask; 1761 } 1762 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1763 1764 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1765 { 1766 struct kvm_x86_msr_filter *msr_filter; 1767 struct msr_bitmap_range *ranges; 1768 struct kvm *kvm = vcpu->kvm; 1769 bool allowed; 1770 int idx; 1771 u32 i; 1772 1773 /* x2APIC MSRs do not support filtering. */ 1774 if (index >= 0x800 && index <= 0x8ff) 1775 return true; 1776 1777 idx = srcu_read_lock(&kvm->srcu); 1778 1779 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1780 if (!msr_filter) { 1781 allowed = true; 1782 goto out; 1783 } 1784 1785 allowed = msr_filter->default_allow; 1786 ranges = msr_filter->ranges; 1787 1788 for (i = 0; i < msr_filter->count; i++) { 1789 u32 start = ranges[i].base; 1790 u32 end = start + ranges[i].nmsrs; 1791 u32 flags = ranges[i].flags; 1792 unsigned long *bitmap = ranges[i].bitmap; 1793 1794 if ((index >= start) && (index < end) && (flags & type)) { 1795 allowed = !!test_bit(index - start, bitmap); 1796 break; 1797 } 1798 } 1799 1800 out: 1801 srcu_read_unlock(&kvm->srcu, idx); 1802 1803 return allowed; 1804 } 1805 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1806 1807 /* 1808 * Write @data into the MSR specified by @index. Select MSR specific fault 1809 * checks are bypassed if @host_initiated is %true. 1810 * Returns 0 on success, non-0 otherwise. 1811 * Assumes vcpu_load() was already called. 1812 */ 1813 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1814 bool host_initiated) 1815 { 1816 struct msr_data msr; 1817 1818 switch (index) { 1819 case MSR_FS_BASE: 1820 case MSR_GS_BASE: 1821 case MSR_KERNEL_GS_BASE: 1822 case MSR_CSTAR: 1823 case MSR_LSTAR: 1824 if (is_noncanonical_address(data, vcpu)) 1825 return 1; 1826 break; 1827 case MSR_IA32_SYSENTER_EIP: 1828 case MSR_IA32_SYSENTER_ESP: 1829 /* 1830 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1831 * non-canonical address is written on Intel but not on 1832 * AMD (which ignores the top 32-bits, because it does 1833 * not implement 64-bit SYSENTER). 1834 * 1835 * 64-bit code should hence be able to write a non-canonical 1836 * value on AMD. Making the address canonical ensures that 1837 * vmentry does not fail on Intel after writing a non-canonical 1838 * value, and that something deterministic happens if the guest 1839 * invokes 64-bit SYSENTER. 1840 */ 1841 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1842 break; 1843 case MSR_TSC_AUX: 1844 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1845 return 1; 1846 1847 if (!host_initiated && 1848 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1849 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1850 return 1; 1851 1852 /* 1853 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1854 * incomplete and conflicting architectural behavior. Current 1855 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1856 * reserved and always read as zeros. Enforce Intel's reserved 1857 * bits check if and only if the guest CPU is Intel, and clear 1858 * the bits in all other cases. This ensures cross-vendor 1859 * migration will provide consistent behavior for the guest. 1860 */ 1861 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1862 return 1; 1863 1864 data = (u32)data; 1865 break; 1866 } 1867 1868 msr.data = data; 1869 msr.index = index; 1870 msr.host_initiated = host_initiated; 1871 1872 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1873 } 1874 1875 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1876 u32 index, u64 data, bool host_initiated) 1877 { 1878 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1879 1880 if (ret == KVM_MSR_RET_INVALID) 1881 if (kvm_msr_ignored_check(index, data, true)) 1882 ret = 0; 1883 1884 return ret; 1885 } 1886 1887 /* 1888 * Read the MSR specified by @index into @data. Select MSR specific fault 1889 * checks are bypassed if @host_initiated is %true. 1890 * Returns 0 on success, non-0 otherwise. 1891 * Assumes vcpu_load() was already called. 1892 */ 1893 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1894 bool host_initiated) 1895 { 1896 struct msr_data msr; 1897 int ret; 1898 1899 switch (index) { 1900 case MSR_TSC_AUX: 1901 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1902 return 1; 1903 1904 if (!host_initiated && 1905 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1906 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1907 return 1; 1908 break; 1909 } 1910 1911 msr.index = index; 1912 msr.host_initiated = host_initiated; 1913 1914 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1915 if (!ret) 1916 *data = msr.data; 1917 return ret; 1918 } 1919 1920 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1921 u32 index, u64 *data, bool host_initiated) 1922 { 1923 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1924 1925 if (ret == KVM_MSR_RET_INVALID) { 1926 /* Unconditionally clear *data for simplicity */ 1927 *data = 0; 1928 if (kvm_msr_ignored_check(index, 0, false)) 1929 ret = 0; 1930 } 1931 1932 return ret; 1933 } 1934 1935 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1936 { 1937 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1938 return KVM_MSR_RET_FILTERED; 1939 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1940 } 1941 1942 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1943 { 1944 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1945 return KVM_MSR_RET_FILTERED; 1946 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1947 } 1948 1949 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1950 { 1951 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1952 } 1953 EXPORT_SYMBOL_GPL(kvm_get_msr); 1954 1955 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1956 { 1957 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1958 } 1959 EXPORT_SYMBOL_GPL(kvm_set_msr); 1960 1961 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1962 { 1963 if (!vcpu->run->msr.error) { 1964 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1965 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1966 } 1967 } 1968 1969 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1970 { 1971 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1972 } 1973 1974 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1975 { 1976 complete_userspace_rdmsr(vcpu); 1977 return complete_emulated_msr_access(vcpu); 1978 } 1979 1980 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1981 { 1982 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1983 } 1984 1985 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1986 { 1987 complete_userspace_rdmsr(vcpu); 1988 return complete_fast_msr_access(vcpu); 1989 } 1990 1991 static u64 kvm_msr_reason(int r) 1992 { 1993 switch (r) { 1994 case KVM_MSR_RET_INVALID: 1995 return KVM_MSR_EXIT_REASON_UNKNOWN; 1996 case KVM_MSR_RET_FILTERED: 1997 return KVM_MSR_EXIT_REASON_FILTER; 1998 default: 1999 return KVM_MSR_EXIT_REASON_INVAL; 2000 } 2001 } 2002 2003 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2004 u32 exit_reason, u64 data, 2005 int (*completion)(struct kvm_vcpu *vcpu), 2006 int r) 2007 { 2008 u64 msr_reason = kvm_msr_reason(r); 2009 2010 /* Check if the user wanted to know about this MSR fault */ 2011 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2012 return 0; 2013 2014 vcpu->run->exit_reason = exit_reason; 2015 vcpu->run->msr.error = 0; 2016 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2017 vcpu->run->msr.reason = msr_reason; 2018 vcpu->run->msr.index = index; 2019 vcpu->run->msr.data = data; 2020 vcpu->arch.complete_userspace_io = completion; 2021 2022 return 1; 2023 } 2024 2025 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2026 { 2027 u32 ecx = kvm_rcx_read(vcpu); 2028 u64 data; 2029 int r; 2030 2031 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2032 2033 if (!r) { 2034 trace_kvm_msr_read(ecx, data); 2035 2036 kvm_rax_write(vcpu, data & -1u); 2037 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2038 } else { 2039 /* MSR read failed? See if we should ask user space */ 2040 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2041 complete_fast_rdmsr, r)) 2042 return 0; 2043 trace_kvm_msr_read_ex(ecx); 2044 } 2045 2046 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2047 } 2048 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2049 2050 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2051 { 2052 u32 ecx = kvm_rcx_read(vcpu); 2053 u64 data = kvm_read_edx_eax(vcpu); 2054 int r; 2055 2056 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2057 2058 if (!r) { 2059 trace_kvm_msr_write(ecx, data); 2060 } else { 2061 /* MSR write failed? See if we should ask user space */ 2062 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2063 complete_fast_msr_access, r)) 2064 return 0; 2065 /* Signal all other negative errors to userspace */ 2066 if (r < 0) 2067 return r; 2068 trace_kvm_msr_write_ex(ecx, data); 2069 } 2070 2071 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2072 } 2073 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2074 2075 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2076 { 2077 return kvm_skip_emulated_instruction(vcpu); 2078 } 2079 2080 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2081 { 2082 /* Treat an INVD instruction as a NOP and just skip it. */ 2083 return kvm_emulate_as_nop(vcpu); 2084 } 2085 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2086 2087 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2088 { 2089 kvm_queue_exception(vcpu, UD_VECTOR); 2090 return 1; 2091 } 2092 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2093 2094 2095 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2096 { 2097 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2098 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2099 return kvm_handle_invalid_op(vcpu); 2100 2101 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2102 return kvm_emulate_as_nop(vcpu); 2103 } 2104 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2105 { 2106 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2107 } 2108 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2109 2110 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2111 { 2112 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2113 } 2114 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2115 2116 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2117 { 2118 xfer_to_guest_mode_prepare(); 2119 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2120 xfer_to_guest_mode_work_pending(); 2121 } 2122 2123 /* 2124 * The fast path for frequent and performance sensitive wrmsr emulation, 2125 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2126 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2127 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2128 * other cases which must be called after interrupts are enabled on the host. 2129 */ 2130 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2131 { 2132 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2133 return 1; 2134 2135 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2136 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2137 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2138 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2139 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2140 2141 return 1; 2142 } 2143 2144 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2145 { 2146 if (!kvm_can_use_hv_timer(vcpu)) 2147 return 1; 2148 2149 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2150 return 0; 2151 } 2152 2153 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2154 { 2155 u32 msr = kvm_rcx_read(vcpu); 2156 u64 data; 2157 fastpath_t ret = EXIT_FASTPATH_NONE; 2158 2159 switch (msr) { 2160 case APIC_BASE_MSR + (APIC_ICR >> 4): 2161 data = kvm_read_edx_eax(vcpu); 2162 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2163 kvm_skip_emulated_instruction(vcpu); 2164 ret = EXIT_FASTPATH_EXIT_HANDLED; 2165 } 2166 break; 2167 case MSR_IA32_TSC_DEADLINE: 2168 data = kvm_read_edx_eax(vcpu); 2169 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2170 kvm_skip_emulated_instruction(vcpu); 2171 ret = EXIT_FASTPATH_REENTER_GUEST; 2172 } 2173 break; 2174 default: 2175 break; 2176 } 2177 2178 if (ret != EXIT_FASTPATH_NONE) 2179 trace_kvm_msr_write(msr, data); 2180 2181 return ret; 2182 } 2183 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2184 2185 /* 2186 * Adapt set_msr() to msr_io()'s calling convention 2187 */ 2188 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2189 { 2190 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2191 } 2192 2193 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2194 { 2195 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2196 } 2197 2198 #ifdef CONFIG_X86_64 2199 struct pvclock_clock { 2200 int vclock_mode; 2201 u64 cycle_last; 2202 u64 mask; 2203 u32 mult; 2204 u32 shift; 2205 u64 base_cycles; 2206 u64 offset; 2207 }; 2208 2209 struct pvclock_gtod_data { 2210 seqcount_t seq; 2211 2212 struct pvclock_clock clock; /* extract of a clocksource struct */ 2213 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2214 2215 ktime_t offs_boot; 2216 u64 wall_time_sec; 2217 }; 2218 2219 static struct pvclock_gtod_data pvclock_gtod_data; 2220 2221 static void update_pvclock_gtod(struct timekeeper *tk) 2222 { 2223 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2224 2225 write_seqcount_begin(&vdata->seq); 2226 2227 /* copy pvclock gtod data */ 2228 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2229 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2230 vdata->clock.mask = tk->tkr_mono.mask; 2231 vdata->clock.mult = tk->tkr_mono.mult; 2232 vdata->clock.shift = tk->tkr_mono.shift; 2233 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2234 vdata->clock.offset = tk->tkr_mono.base; 2235 2236 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2237 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2238 vdata->raw_clock.mask = tk->tkr_raw.mask; 2239 vdata->raw_clock.mult = tk->tkr_raw.mult; 2240 vdata->raw_clock.shift = tk->tkr_raw.shift; 2241 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2242 vdata->raw_clock.offset = tk->tkr_raw.base; 2243 2244 vdata->wall_time_sec = tk->xtime_sec; 2245 2246 vdata->offs_boot = tk->offs_boot; 2247 2248 write_seqcount_end(&vdata->seq); 2249 } 2250 2251 static s64 get_kvmclock_base_ns(void) 2252 { 2253 /* Count up from boot time, but with the frequency of the raw clock. */ 2254 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2255 } 2256 #else 2257 static s64 get_kvmclock_base_ns(void) 2258 { 2259 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2260 return ktime_get_boottime_ns(); 2261 } 2262 #endif 2263 2264 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2265 { 2266 int version; 2267 int r; 2268 struct pvclock_wall_clock wc; 2269 u32 wc_sec_hi; 2270 u64 wall_nsec; 2271 2272 if (!wall_clock) 2273 return; 2274 2275 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2276 if (r) 2277 return; 2278 2279 if (version & 1) 2280 ++version; /* first time write, random junk */ 2281 2282 ++version; 2283 2284 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2285 return; 2286 2287 /* 2288 * The guest calculates current wall clock time by adding 2289 * system time (updated by kvm_guest_time_update below) to the 2290 * wall clock specified here. We do the reverse here. 2291 */ 2292 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2293 2294 wc.nsec = do_div(wall_nsec, 1000000000); 2295 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2296 wc.version = version; 2297 2298 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2299 2300 if (sec_hi_ofs) { 2301 wc_sec_hi = wall_nsec >> 32; 2302 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2303 &wc_sec_hi, sizeof(wc_sec_hi)); 2304 } 2305 2306 version++; 2307 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2308 } 2309 2310 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2311 bool old_msr, bool host_initiated) 2312 { 2313 struct kvm_arch *ka = &vcpu->kvm->arch; 2314 2315 if (vcpu->vcpu_id == 0 && !host_initiated) { 2316 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2317 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2318 2319 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2320 } 2321 2322 vcpu->arch.time = system_time; 2323 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2324 2325 /* we verify if the enable bit is set... */ 2326 if (system_time & 1) 2327 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2328 sizeof(struct pvclock_vcpu_time_info)); 2329 else 2330 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2331 2332 return; 2333 } 2334 2335 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2336 { 2337 do_shl32_div32(dividend, divisor); 2338 return dividend; 2339 } 2340 2341 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2342 s8 *pshift, u32 *pmultiplier) 2343 { 2344 uint64_t scaled64; 2345 int32_t shift = 0; 2346 uint64_t tps64; 2347 uint32_t tps32; 2348 2349 tps64 = base_hz; 2350 scaled64 = scaled_hz; 2351 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2352 tps64 >>= 1; 2353 shift--; 2354 } 2355 2356 tps32 = (uint32_t)tps64; 2357 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2358 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2359 scaled64 >>= 1; 2360 else 2361 tps32 <<= 1; 2362 shift++; 2363 } 2364 2365 *pshift = shift; 2366 *pmultiplier = div_frac(scaled64, tps32); 2367 } 2368 2369 #ifdef CONFIG_X86_64 2370 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2371 #endif 2372 2373 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2374 static unsigned long max_tsc_khz; 2375 2376 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2377 { 2378 u64 v = (u64)khz * (1000000 + ppm); 2379 do_div(v, 1000000); 2380 return v; 2381 } 2382 2383 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2384 2385 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2386 { 2387 u64 ratio; 2388 2389 /* Guest TSC same frequency as host TSC? */ 2390 if (!scale) { 2391 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2392 return 0; 2393 } 2394 2395 /* TSC scaling supported? */ 2396 if (!kvm_caps.has_tsc_control) { 2397 if (user_tsc_khz > tsc_khz) { 2398 vcpu->arch.tsc_catchup = 1; 2399 vcpu->arch.tsc_always_catchup = 1; 2400 return 0; 2401 } else { 2402 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2403 return -1; 2404 } 2405 } 2406 2407 /* TSC scaling required - calculate ratio */ 2408 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2409 user_tsc_khz, tsc_khz); 2410 2411 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2412 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2413 user_tsc_khz); 2414 return -1; 2415 } 2416 2417 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2418 return 0; 2419 } 2420 2421 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2422 { 2423 u32 thresh_lo, thresh_hi; 2424 int use_scaling = 0; 2425 2426 /* tsc_khz can be zero if TSC calibration fails */ 2427 if (user_tsc_khz == 0) { 2428 /* set tsc_scaling_ratio to a safe value */ 2429 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2430 return -1; 2431 } 2432 2433 /* Compute a scale to convert nanoseconds in TSC cycles */ 2434 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2435 &vcpu->arch.virtual_tsc_shift, 2436 &vcpu->arch.virtual_tsc_mult); 2437 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2438 2439 /* 2440 * Compute the variation in TSC rate which is acceptable 2441 * within the range of tolerance and decide if the 2442 * rate being applied is within that bounds of the hardware 2443 * rate. If so, no scaling or compensation need be done. 2444 */ 2445 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2446 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2447 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2448 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2449 user_tsc_khz, thresh_lo, thresh_hi); 2450 use_scaling = 1; 2451 } 2452 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2453 } 2454 2455 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2456 { 2457 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2458 vcpu->arch.virtual_tsc_mult, 2459 vcpu->arch.virtual_tsc_shift); 2460 tsc += vcpu->arch.this_tsc_write; 2461 return tsc; 2462 } 2463 2464 #ifdef CONFIG_X86_64 2465 static inline int gtod_is_based_on_tsc(int mode) 2466 { 2467 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2468 } 2469 #endif 2470 2471 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2472 { 2473 #ifdef CONFIG_X86_64 2474 bool vcpus_matched; 2475 struct kvm_arch *ka = &vcpu->kvm->arch; 2476 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2477 2478 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2479 atomic_read(&vcpu->kvm->online_vcpus)); 2480 2481 /* 2482 * Once the masterclock is enabled, always perform request in 2483 * order to update it. 2484 * 2485 * In order to enable masterclock, the host clocksource must be TSC 2486 * and the vcpus need to have matched TSCs. When that happens, 2487 * perform request to enable masterclock. 2488 */ 2489 if (ka->use_master_clock || 2490 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2491 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2492 2493 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2494 atomic_read(&vcpu->kvm->online_vcpus), 2495 ka->use_master_clock, gtod->clock.vclock_mode); 2496 #endif 2497 } 2498 2499 /* 2500 * Multiply tsc by a fixed point number represented by ratio. 2501 * 2502 * The most significant 64-N bits (mult) of ratio represent the 2503 * integral part of the fixed point number; the remaining N bits 2504 * (frac) represent the fractional part, ie. ratio represents a fixed 2505 * point number (mult + frac * 2^(-N)). 2506 * 2507 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2508 */ 2509 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2510 { 2511 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2512 } 2513 2514 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2515 { 2516 u64 _tsc = tsc; 2517 2518 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2519 _tsc = __scale_tsc(ratio, tsc); 2520 2521 return _tsc; 2522 } 2523 2524 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2525 { 2526 u64 tsc; 2527 2528 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2529 2530 return target_tsc - tsc; 2531 } 2532 2533 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2534 { 2535 return vcpu->arch.l1_tsc_offset + 2536 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2537 } 2538 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2539 2540 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2541 { 2542 u64 nested_offset; 2543 2544 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2545 nested_offset = l1_offset; 2546 else 2547 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2548 kvm_caps.tsc_scaling_ratio_frac_bits); 2549 2550 nested_offset += l2_offset; 2551 return nested_offset; 2552 } 2553 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2554 2555 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2556 { 2557 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2558 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2559 kvm_caps.tsc_scaling_ratio_frac_bits); 2560 2561 return l1_multiplier; 2562 } 2563 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2564 2565 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2566 { 2567 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2568 vcpu->arch.l1_tsc_offset, 2569 l1_offset); 2570 2571 vcpu->arch.l1_tsc_offset = l1_offset; 2572 2573 /* 2574 * If we are here because L1 chose not to trap WRMSR to TSC then 2575 * according to the spec this should set L1's TSC (as opposed to 2576 * setting L1's offset for L2). 2577 */ 2578 if (is_guest_mode(vcpu)) 2579 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2580 l1_offset, 2581 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2582 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2583 else 2584 vcpu->arch.tsc_offset = l1_offset; 2585 2586 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2587 } 2588 2589 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2590 { 2591 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2592 2593 /* Userspace is changing the multiplier while L2 is active */ 2594 if (is_guest_mode(vcpu)) 2595 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2596 l1_multiplier, 2597 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2598 else 2599 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2600 2601 if (kvm_caps.has_tsc_control) 2602 static_call(kvm_x86_write_tsc_multiplier)( 2603 vcpu, vcpu->arch.tsc_scaling_ratio); 2604 } 2605 2606 static inline bool kvm_check_tsc_unstable(void) 2607 { 2608 #ifdef CONFIG_X86_64 2609 /* 2610 * TSC is marked unstable when we're running on Hyper-V, 2611 * 'TSC page' clocksource is good. 2612 */ 2613 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2614 return false; 2615 #endif 2616 return check_tsc_unstable(); 2617 } 2618 2619 /* 2620 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2621 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2622 * participates in. 2623 */ 2624 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2625 u64 ns, bool matched) 2626 { 2627 struct kvm *kvm = vcpu->kvm; 2628 2629 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2630 2631 /* 2632 * We also track th most recent recorded KHZ, write and time to 2633 * allow the matching interval to be extended at each write. 2634 */ 2635 kvm->arch.last_tsc_nsec = ns; 2636 kvm->arch.last_tsc_write = tsc; 2637 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2638 kvm->arch.last_tsc_offset = offset; 2639 2640 vcpu->arch.last_guest_tsc = tsc; 2641 2642 kvm_vcpu_write_tsc_offset(vcpu, offset); 2643 2644 if (!matched) { 2645 /* 2646 * We split periods of matched TSC writes into generations. 2647 * For each generation, we track the original measured 2648 * nanosecond time, offset, and write, so if TSCs are in 2649 * sync, we can match exact offset, and if not, we can match 2650 * exact software computation in compute_guest_tsc() 2651 * 2652 * These values are tracked in kvm->arch.cur_xxx variables. 2653 */ 2654 kvm->arch.cur_tsc_generation++; 2655 kvm->arch.cur_tsc_nsec = ns; 2656 kvm->arch.cur_tsc_write = tsc; 2657 kvm->arch.cur_tsc_offset = offset; 2658 kvm->arch.nr_vcpus_matched_tsc = 0; 2659 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2660 kvm->arch.nr_vcpus_matched_tsc++; 2661 } 2662 2663 /* Keep track of which generation this VCPU has synchronized to */ 2664 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2665 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2666 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2667 2668 kvm_track_tsc_matching(vcpu); 2669 } 2670 2671 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2672 { 2673 struct kvm *kvm = vcpu->kvm; 2674 u64 offset, ns, elapsed; 2675 unsigned long flags; 2676 bool matched = false; 2677 bool synchronizing = false; 2678 2679 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2680 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2681 ns = get_kvmclock_base_ns(); 2682 elapsed = ns - kvm->arch.last_tsc_nsec; 2683 2684 if (vcpu->arch.virtual_tsc_khz) { 2685 if (data == 0) { 2686 /* 2687 * detection of vcpu initialization -- need to sync 2688 * with other vCPUs. This particularly helps to keep 2689 * kvm_clock stable after CPU hotplug 2690 */ 2691 synchronizing = true; 2692 } else { 2693 u64 tsc_exp = kvm->arch.last_tsc_write + 2694 nsec_to_cycles(vcpu, elapsed); 2695 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2696 /* 2697 * Special case: TSC write with a small delta (1 second) 2698 * of virtual cycle time against real time is 2699 * interpreted as an attempt to synchronize the CPU. 2700 */ 2701 synchronizing = data < tsc_exp + tsc_hz && 2702 data + tsc_hz > tsc_exp; 2703 } 2704 } 2705 2706 /* 2707 * For a reliable TSC, we can match TSC offsets, and for an unstable 2708 * TSC, we add elapsed time in this computation. We could let the 2709 * compensation code attempt to catch up if we fall behind, but 2710 * it's better to try to match offsets from the beginning. 2711 */ 2712 if (synchronizing && 2713 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2714 if (!kvm_check_tsc_unstable()) { 2715 offset = kvm->arch.cur_tsc_offset; 2716 } else { 2717 u64 delta = nsec_to_cycles(vcpu, elapsed); 2718 data += delta; 2719 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2720 } 2721 matched = true; 2722 } 2723 2724 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2725 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2726 } 2727 2728 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2729 s64 adjustment) 2730 { 2731 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2732 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2733 } 2734 2735 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2736 { 2737 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2738 WARN_ON(adjustment < 0); 2739 adjustment = kvm_scale_tsc((u64) adjustment, 2740 vcpu->arch.l1_tsc_scaling_ratio); 2741 adjust_tsc_offset_guest(vcpu, adjustment); 2742 } 2743 2744 #ifdef CONFIG_X86_64 2745 2746 static u64 read_tsc(void) 2747 { 2748 u64 ret = (u64)rdtsc_ordered(); 2749 u64 last = pvclock_gtod_data.clock.cycle_last; 2750 2751 if (likely(ret >= last)) 2752 return ret; 2753 2754 /* 2755 * GCC likes to generate cmov here, but this branch is extremely 2756 * predictable (it's just a function of time and the likely is 2757 * very likely) and there's a data dependence, so force GCC 2758 * to generate a branch instead. I don't barrier() because 2759 * we don't actually need a barrier, and if this function 2760 * ever gets inlined it will generate worse code. 2761 */ 2762 asm volatile (""); 2763 return last; 2764 } 2765 2766 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2767 int *mode) 2768 { 2769 long v; 2770 u64 tsc_pg_val; 2771 2772 switch (clock->vclock_mode) { 2773 case VDSO_CLOCKMODE_HVCLOCK: 2774 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2775 tsc_timestamp); 2776 if (tsc_pg_val != U64_MAX) { 2777 /* TSC page valid */ 2778 *mode = VDSO_CLOCKMODE_HVCLOCK; 2779 v = (tsc_pg_val - clock->cycle_last) & 2780 clock->mask; 2781 } else { 2782 /* TSC page invalid */ 2783 *mode = VDSO_CLOCKMODE_NONE; 2784 } 2785 break; 2786 case VDSO_CLOCKMODE_TSC: 2787 *mode = VDSO_CLOCKMODE_TSC; 2788 *tsc_timestamp = read_tsc(); 2789 v = (*tsc_timestamp - clock->cycle_last) & 2790 clock->mask; 2791 break; 2792 default: 2793 *mode = VDSO_CLOCKMODE_NONE; 2794 } 2795 2796 if (*mode == VDSO_CLOCKMODE_NONE) 2797 *tsc_timestamp = v = 0; 2798 2799 return v * clock->mult; 2800 } 2801 2802 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2803 { 2804 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2805 unsigned long seq; 2806 int mode; 2807 u64 ns; 2808 2809 do { 2810 seq = read_seqcount_begin(>od->seq); 2811 ns = gtod->raw_clock.base_cycles; 2812 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2813 ns >>= gtod->raw_clock.shift; 2814 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2815 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2816 *t = ns; 2817 2818 return mode; 2819 } 2820 2821 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2822 { 2823 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2824 unsigned long seq; 2825 int mode; 2826 u64 ns; 2827 2828 do { 2829 seq = read_seqcount_begin(>od->seq); 2830 ts->tv_sec = gtod->wall_time_sec; 2831 ns = gtod->clock.base_cycles; 2832 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2833 ns >>= gtod->clock.shift; 2834 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2835 2836 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2837 ts->tv_nsec = ns; 2838 2839 return mode; 2840 } 2841 2842 /* returns true if host is using TSC based clocksource */ 2843 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2844 { 2845 /* checked again under seqlock below */ 2846 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2847 return false; 2848 2849 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2850 tsc_timestamp)); 2851 } 2852 2853 /* returns true if host is using TSC based clocksource */ 2854 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2855 u64 *tsc_timestamp) 2856 { 2857 /* checked again under seqlock below */ 2858 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2859 return false; 2860 2861 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2862 } 2863 #endif 2864 2865 /* 2866 * 2867 * Assuming a stable TSC across physical CPUS, and a stable TSC 2868 * across virtual CPUs, the following condition is possible. 2869 * Each numbered line represents an event visible to both 2870 * CPUs at the next numbered event. 2871 * 2872 * "timespecX" represents host monotonic time. "tscX" represents 2873 * RDTSC value. 2874 * 2875 * VCPU0 on CPU0 | VCPU1 on CPU1 2876 * 2877 * 1. read timespec0,tsc0 2878 * 2. | timespec1 = timespec0 + N 2879 * | tsc1 = tsc0 + M 2880 * 3. transition to guest | transition to guest 2881 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2882 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2883 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2884 * 2885 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2886 * 2887 * - ret0 < ret1 2888 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2889 * ... 2890 * - 0 < N - M => M < N 2891 * 2892 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2893 * always the case (the difference between two distinct xtime instances 2894 * might be smaller then the difference between corresponding TSC reads, 2895 * when updating guest vcpus pvclock areas). 2896 * 2897 * To avoid that problem, do not allow visibility of distinct 2898 * system_timestamp/tsc_timestamp values simultaneously: use a master 2899 * copy of host monotonic time values. Update that master copy 2900 * in lockstep. 2901 * 2902 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2903 * 2904 */ 2905 2906 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2907 { 2908 #ifdef CONFIG_X86_64 2909 struct kvm_arch *ka = &kvm->arch; 2910 int vclock_mode; 2911 bool host_tsc_clocksource, vcpus_matched; 2912 2913 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2914 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2915 atomic_read(&kvm->online_vcpus)); 2916 2917 /* 2918 * If the host uses TSC clock, then passthrough TSC as stable 2919 * to the guest. 2920 */ 2921 host_tsc_clocksource = kvm_get_time_and_clockread( 2922 &ka->master_kernel_ns, 2923 &ka->master_cycle_now); 2924 2925 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2926 && !ka->backwards_tsc_observed 2927 && !ka->boot_vcpu_runs_old_kvmclock; 2928 2929 if (ka->use_master_clock) 2930 atomic_set(&kvm_guest_has_master_clock, 1); 2931 2932 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2933 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2934 vcpus_matched); 2935 #endif 2936 } 2937 2938 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2939 { 2940 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2941 } 2942 2943 static void __kvm_start_pvclock_update(struct kvm *kvm) 2944 { 2945 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2946 write_seqcount_begin(&kvm->arch.pvclock_sc); 2947 } 2948 2949 static void kvm_start_pvclock_update(struct kvm *kvm) 2950 { 2951 kvm_make_mclock_inprogress_request(kvm); 2952 2953 /* no guest entries from this point */ 2954 __kvm_start_pvclock_update(kvm); 2955 } 2956 2957 static void kvm_end_pvclock_update(struct kvm *kvm) 2958 { 2959 struct kvm_arch *ka = &kvm->arch; 2960 struct kvm_vcpu *vcpu; 2961 unsigned long i; 2962 2963 write_seqcount_end(&ka->pvclock_sc); 2964 raw_spin_unlock_irq(&ka->tsc_write_lock); 2965 kvm_for_each_vcpu(i, vcpu, kvm) 2966 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2967 2968 /* guest entries allowed */ 2969 kvm_for_each_vcpu(i, vcpu, kvm) 2970 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2971 } 2972 2973 static void kvm_update_masterclock(struct kvm *kvm) 2974 { 2975 kvm_hv_request_tsc_page_update(kvm); 2976 kvm_start_pvclock_update(kvm); 2977 pvclock_update_vm_gtod_copy(kvm); 2978 kvm_end_pvclock_update(kvm); 2979 } 2980 2981 /* 2982 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 2983 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 2984 * can change during boot even if the TSC is constant, as it's possible for KVM 2985 * to be loaded before TSC calibration completes. Ideally, KVM would get a 2986 * notification when calibration completes, but practically speaking calibration 2987 * will complete before userspace is alive enough to create VMs. 2988 */ 2989 static unsigned long get_cpu_tsc_khz(void) 2990 { 2991 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 2992 return tsc_khz; 2993 else 2994 return __this_cpu_read(cpu_tsc_khz); 2995 } 2996 2997 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2998 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2999 { 3000 struct kvm_arch *ka = &kvm->arch; 3001 struct pvclock_vcpu_time_info hv_clock; 3002 3003 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3004 get_cpu(); 3005 3006 data->flags = 0; 3007 if (ka->use_master_clock && 3008 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3009 #ifdef CONFIG_X86_64 3010 struct timespec64 ts; 3011 3012 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3013 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3014 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3015 } else 3016 #endif 3017 data->host_tsc = rdtsc(); 3018 3019 data->flags |= KVM_CLOCK_TSC_STABLE; 3020 hv_clock.tsc_timestamp = ka->master_cycle_now; 3021 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3022 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3023 &hv_clock.tsc_shift, 3024 &hv_clock.tsc_to_system_mul); 3025 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3026 } else { 3027 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3028 } 3029 3030 put_cpu(); 3031 } 3032 3033 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3034 { 3035 struct kvm_arch *ka = &kvm->arch; 3036 unsigned seq; 3037 3038 do { 3039 seq = read_seqcount_begin(&ka->pvclock_sc); 3040 __get_kvmclock(kvm, data); 3041 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3042 } 3043 3044 u64 get_kvmclock_ns(struct kvm *kvm) 3045 { 3046 struct kvm_clock_data data; 3047 3048 get_kvmclock(kvm, &data); 3049 return data.clock; 3050 } 3051 3052 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3053 struct gfn_to_pfn_cache *gpc, 3054 unsigned int offset) 3055 { 3056 struct kvm_vcpu_arch *vcpu = &v->arch; 3057 struct pvclock_vcpu_time_info *guest_hv_clock; 3058 unsigned long flags; 3059 3060 read_lock_irqsave(&gpc->lock, flags); 3061 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3062 read_unlock_irqrestore(&gpc->lock, flags); 3063 3064 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3065 return; 3066 3067 read_lock_irqsave(&gpc->lock, flags); 3068 } 3069 3070 guest_hv_clock = (void *)(gpc->khva + offset); 3071 3072 /* 3073 * This VCPU is paused, but it's legal for a guest to read another 3074 * VCPU's kvmclock, so we really have to follow the specification where 3075 * it says that version is odd if data is being modified, and even after 3076 * it is consistent. 3077 */ 3078 3079 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3080 smp_wmb(); 3081 3082 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3083 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3084 3085 if (vcpu->pvclock_set_guest_stopped_request) { 3086 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3087 vcpu->pvclock_set_guest_stopped_request = false; 3088 } 3089 3090 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3091 smp_wmb(); 3092 3093 guest_hv_clock->version = ++vcpu->hv_clock.version; 3094 3095 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3096 read_unlock_irqrestore(&gpc->lock, flags); 3097 3098 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3099 } 3100 3101 static int kvm_guest_time_update(struct kvm_vcpu *v) 3102 { 3103 unsigned long flags, tgt_tsc_khz; 3104 unsigned seq; 3105 struct kvm_vcpu_arch *vcpu = &v->arch; 3106 struct kvm_arch *ka = &v->kvm->arch; 3107 s64 kernel_ns; 3108 u64 tsc_timestamp, host_tsc; 3109 u8 pvclock_flags; 3110 bool use_master_clock; 3111 3112 kernel_ns = 0; 3113 host_tsc = 0; 3114 3115 /* 3116 * If the host uses TSC clock, then passthrough TSC as stable 3117 * to the guest. 3118 */ 3119 do { 3120 seq = read_seqcount_begin(&ka->pvclock_sc); 3121 use_master_clock = ka->use_master_clock; 3122 if (use_master_clock) { 3123 host_tsc = ka->master_cycle_now; 3124 kernel_ns = ka->master_kernel_ns; 3125 } 3126 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3127 3128 /* Keep irq disabled to prevent changes to the clock */ 3129 local_irq_save(flags); 3130 tgt_tsc_khz = get_cpu_tsc_khz(); 3131 if (unlikely(tgt_tsc_khz == 0)) { 3132 local_irq_restore(flags); 3133 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3134 return 1; 3135 } 3136 if (!use_master_clock) { 3137 host_tsc = rdtsc(); 3138 kernel_ns = get_kvmclock_base_ns(); 3139 } 3140 3141 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3142 3143 /* 3144 * We may have to catch up the TSC to match elapsed wall clock 3145 * time for two reasons, even if kvmclock is used. 3146 * 1) CPU could have been running below the maximum TSC rate 3147 * 2) Broken TSC compensation resets the base at each VCPU 3148 * entry to avoid unknown leaps of TSC even when running 3149 * again on the same CPU. This may cause apparent elapsed 3150 * time to disappear, and the guest to stand still or run 3151 * very slowly. 3152 */ 3153 if (vcpu->tsc_catchup) { 3154 u64 tsc = compute_guest_tsc(v, kernel_ns); 3155 if (tsc > tsc_timestamp) { 3156 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3157 tsc_timestamp = tsc; 3158 } 3159 } 3160 3161 local_irq_restore(flags); 3162 3163 /* With all the info we got, fill in the values */ 3164 3165 if (kvm_caps.has_tsc_control) 3166 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3167 v->arch.l1_tsc_scaling_ratio); 3168 3169 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3170 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3171 &vcpu->hv_clock.tsc_shift, 3172 &vcpu->hv_clock.tsc_to_system_mul); 3173 vcpu->hw_tsc_khz = tgt_tsc_khz; 3174 kvm_xen_update_tsc_info(v); 3175 } 3176 3177 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3178 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3179 vcpu->last_guest_tsc = tsc_timestamp; 3180 3181 /* If the host uses TSC clocksource, then it is stable */ 3182 pvclock_flags = 0; 3183 if (use_master_clock) 3184 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3185 3186 vcpu->hv_clock.flags = pvclock_flags; 3187 3188 if (vcpu->pv_time.active) 3189 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3190 if (vcpu->xen.vcpu_info_cache.active) 3191 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3192 offsetof(struct compat_vcpu_info, time)); 3193 if (vcpu->xen.vcpu_time_info_cache.active) 3194 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3195 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3196 return 0; 3197 } 3198 3199 /* 3200 * kvmclock updates which are isolated to a given vcpu, such as 3201 * vcpu->cpu migration, should not allow system_timestamp from 3202 * the rest of the vcpus to remain static. Otherwise ntp frequency 3203 * correction applies to one vcpu's system_timestamp but not 3204 * the others. 3205 * 3206 * So in those cases, request a kvmclock update for all vcpus. 3207 * We need to rate-limit these requests though, as they can 3208 * considerably slow guests that have a large number of vcpus. 3209 * The time for a remote vcpu to update its kvmclock is bound 3210 * by the delay we use to rate-limit the updates. 3211 */ 3212 3213 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3214 3215 static void kvmclock_update_fn(struct work_struct *work) 3216 { 3217 unsigned long i; 3218 struct delayed_work *dwork = to_delayed_work(work); 3219 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3220 kvmclock_update_work); 3221 struct kvm *kvm = container_of(ka, struct kvm, arch); 3222 struct kvm_vcpu *vcpu; 3223 3224 kvm_for_each_vcpu(i, vcpu, kvm) { 3225 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3226 kvm_vcpu_kick(vcpu); 3227 } 3228 } 3229 3230 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3231 { 3232 struct kvm *kvm = v->kvm; 3233 3234 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3235 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3236 KVMCLOCK_UPDATE_DELAY); 3237 } 3238 3239 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3240 3241 static void kvmclock_sync_fn(struct work_struct *work) 3242 { 3243 struct delayed_work *dwork = to_delayed_work(work); 3244 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3245 kvmclock_sync_work); 3246 struct kvm *kvm = container_of(ka, struct kvm, arch); 3247 3248 if (!kvmclock_periodic_sync) 3249 return; 3250 3251 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3252 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3253 KVMCLOCK_SYNC_PERIOD); 3254 } 3255 3256 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3257 static bool is_mci_control_msr(u32 msr) 3258 { 3259 return (msr & 3) == 0; 3260 } 3261 static bool is_mci_status_msr(u32 msr) 3262 { 3263 return (msr & 3) == 1; 3264 } 3265 3266 /* 3267 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3268 */ 3269 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3270 { 3271 /* McStatusWrEn enabled? */ 3272 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3273 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3274 3275 return false; 3276 } 3277 3278 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3279 { 3280 u64 mcg_cap = vcpu->arch.mcg_cap; 3281 unsigned bank_num = mcg_cap & 0xff; 3282 u32 msr = msr_info->index; 3283 u64 data = msr_info->data; 3284 u32 offset, last_msr; 3285 3286 switch (msr) { 3287 case MSR_IA32_MCG_STATUS: 3288 vcpu->arch.mcg_status = data; 3289 break; 3290 case MSR_IA32_MCG_CTL: 3291 if (!(mcg_cap & MCG_CTL_P) && 3292 (data || !msr_info->host_initiated)) 3293 return 1; 3294 if (data != 0 && data != ~(u64)0) 3295 return 1; 3296 vcpu->arch.mcg_ctl = data; 3297 break; 3298 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3299 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3300 if (msr > last_msr) 3301 return 1; 3302 3303 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3304 return 1; 3305 /* An attempt to write a 1 to a reserved bit raises #GP */ 3306 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3307 return 1; 3308 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3309 last_msr + 1 - MSR_IA32_MC0_CTL2); 3310 vcpu->arch.mci_ctl2_banks[offset] = data; 3311 break; 3312 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3313 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3314 if (msr > last_msr) 3315 return 1; 3316 3317 /* 3318 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3319 * values are architecturally undefined. But, some Linux 3320 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3321 * issue on AMD K8s, allow bit 10 to be clear when setting all 3322 * other bits in order to avoid an uncaught #GP in the guest. 3323 * 3324 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3325 * single-bit ECC data errors. 3326 */ 3327 if (is_mci_control_msr(msr) && 3328 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3329 return 1; 3330 3331 /* 3332 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3333 * AMD-based CPUs allow non-zero values, but if and only if 3334 * HWCR[McStatusWrEn] is set. 3335 */ 3336 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3337 data != 0 && !can_set_mci_status(vcpu)) 3338 return 1; 3339 3340 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3341 last_msr + 1 - MSR_IA32_MC0_CTL); 3342 vcpu->arch.mce_banks[offset] = data; 3343 break; 3344 default: 3345 return 1; 3346 } 3347 return 0; 3348 } 3349 3350 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3351 { 3352 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3353 3354 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3355 } 3356 3357 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3358 { 3359 gpa_t gpa = data & ~0x3f; 3360 3361 /* Bits 4:5 are reserved, Should be zero */ 3362 if (data & 0x30) 3363 return 1; 3364 3365 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3366 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3367 return 1; 3368 3369 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3370 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3371 return 1; 3372 3373 if (!lapic_in_kernel(vcpu)) 3374 return data ? 1 : 0; 3375 3376 vcpu->arch.apf.msr_en_val = data; 3377 3378 if (!kvm_pv_async_pf_enabled(vcpu)) { 3379 kvm_clear_async_pf_completion_queue(vcpu); 3380 kvm_async_pf_hash_reset(vcpu); 3381 return 0; 3382 } 3383 3384 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3385 sizeof(u64))) 3386 return 1; 3387 3388 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3389 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3390 3391 kvm_async_pf_wakeup_all(vcpu); 3392 3393 return 0; 3394 } 3395 3396 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3397 { 3398 /* Bits 8-63 are reserved */ 3399 if (data >> 8) 3400 return 1; 3401 3402 if (!lapic_in_kernel(vcpu)) 3403 return 1; 3404 3405 vcpu->arch.apf.msr_int_val = data; 3406 3407 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3408 3409 return 0; 3410 } 3411 3412 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3413 { 3414 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3415 vcpu->arch.time = 0; 3416 } 3417 3418 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3419 { 3420 ++vcpu->stat.tlb_flush; 3421 static_call(kvm_x86_flush_tlb_all)(vcpu); 3422 3423 /* Flushing all ASIDs flushes the current ASID... */ 3424 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3425 } 3426 3427 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3428 { 3429 ++vcpu->stat.tlb_flush; 3430 3431 if (!tdp_enabled) { 3432 /* 3433 * A TLB flush on behalf of the guest is equivalent to 3434 * INVPCID(all), toggling CR4.PGE, etc., which requires 3435 * a forced sync of the shadow page tables. Ensure all the 3436 * roots are synced and the guest TLB in hardware is clean. 3437 */ 3438 kvm_mmu_sync_roots(vcpu); 3439 kvm_mmu_sync_prev_roots(vcpu); 3440 } 3441 3442 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3443 3444 /* 3445 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3446 * grained flushing. 3447 */ 3448 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3449 } 3450 3451 3452 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3453 { 3454 ++vcpu->stat.tlb_flush; 3455 static_call(kvm_x86_flush_tlb_current)(vcpu); 3456 } 3457 3458 /* 3459 * Service "local" TLB flush requests, which are specific to the current MMU 3460 * context. In addition to the generic event handling in vcpu_enter_guest(), 3461 * TLB flushes that are targeted at an MMU context also need to be serviced 3462 * prior before nested VM-Enter/VM-Exit. 3463 */ 3464 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3465 { 3466 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3467 kvm_vcpu_flush_tlb_current(vcpu); 3468 3469 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3470 kvm_vcpu_flush_tlb_guest(vcpu); 3471 } 3472 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3473 3474 static void record_steal_time(struct kvm_vcpu *vcpu) 3475 { 3476 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3477 struct kvm_steal_time __user *st; 3478 struct kvm_memslots *slots; 3479 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3480 u64 steal; 3481 u32 version; 3482 3483 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3484 kvm_xen_runstate_set_running(vcpu); 3485 return; 3486 } 3487 3488 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3489 return; 3490 3491 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3492 return; 3493 3494 slots = kvm_memslots(vcpu->kvm); 3495 3496 if (unlikely(slots->generation != ghc->generation || 3497 gpa != ghc->gpa || 3498 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3499 /* We rely on the fact that it fits in a single page. */ 3500 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3501 3502 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3503 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3504 return; 3505 } 3506 3507 st = (struct kvm_steal_time __user *)ghc->hva; 3508 /* 3509 * Doing a TLB flush here, on the guest's behalf, can avoid 3510 * expensive IPIs. 3511 */ 3512 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3513 u8 st_preempted = 0; 3514 int err = -EFAULT; 3515 3516 if (!user_access_begin(st, sizeof(*st))) 3517 return; 3518 3519 asm volatile("1: xchgb %0, %2\n" 3520 "xor %1, %1\n" 3521 "2:\n" 3522 _ASM_EXTABLE_UA(1b, 2b) 3523 : "+q" (st_preempted), 3524 "+&r" (err), 3525 "+m" (st->preempted)); 3526 if (err) 3527 goto out; 3528 3529 user_access_end(); 3530 3531 vcpu->arch.st.preempted = 0; 3532 3533 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3534 st_preempted & KVM_VCPU_FLUSH_TLB); 3535 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3536 kvm_vcpu_flush_tlb_guest(vcpu); 3537 3538 if (!user_access_begin(st, sizeof(*st))) 3539 goto dirty; 3540 } else { 3541 if (!user_access_begin(st, sizeof(*st))) 3542 return; 3543 3544 unsafe_put_user(0, &st->preempted, out); 3545 vcpu->arch.st.preempted = 0; 3546 } 3547 3548 unsafe_get_user(version, &st->version, out); 3549 if (version & 1) 3550 version += 1; /* first time write, random junk */ 3551 3552 version += 1; 3553 unsafe_put_user(version, &st->version, out); 3554 3555 smp_wmb(); 3556 3557 unsafe_get_user(steal, &st->steal, out); 3558 steal += current->sched_info.run_delay - 3559 vcpu->arch.st.last_steal; 3560 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3561 unsafe_put_user(steal, &st->steal, out); 3562 3563 version += 1; 3564 unsafe_put_user(version, &st->version, out); 3565 3566 out: 3567 user_access_end(); 3568 dirty: 3569 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3570 } 3571 3572 static bool kvm_is_msr_to_save(u32 msr_index) 3573 { 3574 unsigned int i; 3575 3576 for (i = 0; i < num_msrs_to_save; i++) { 3577 if (msrs_to_save[i] == msr_index) 3578 return true; 3579 } 3580 3581 return false; 3582 } 3583 3584 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3585 { 3586 u32 msr = msr_info->index; 3587 u64 data = msr_info->data; 3588 3589 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3590 return kvm_xen_write_hypercall_page(vcpu, data); 3591 3592 switch (msr) { 3593 case MSR_AMD64_NB_CFG: 3594 case MSR_IA32_UCODE_WRITE: 3595 case MSR_VM_HSAVE_PA: 3596 case MSR_AMD64_PATCH_LOADER: 3597 case MSR_AMD64_BU_CFG2: 3598 case MSR_AMD64_DC_CFG: 3599 case MSR_F15H_EX_CFG: 3600 break; 3601 3602 case MSR_IA32_UCODE_REV: 3603 if (msr_info->host_initiated) 3604 vcpu->arch.microcode_version = data; 3605 break; 3606 case MSR_IA32_ARCH_CAPABILITIES: 3607 if (!msr_info->host_initiated) 3608 return 1; 3609 vcpu->arch.arch_capabilities = data; 3610 break; 3611 case MSR_IA32_PERF_CAPABILITIES: 3612 if (!msr_info->host_initiated) 3613 return 1; 3614 if (data & ~kvm_caps.supported_perf_cap) 3615 return 1; 3616 3617 vcpu->arch.perf_capabilities = data; 3618 kvm_pmu_refresh(vcpu); 3619 return 0; 3620 case MSR_EFER: 3621 return set_efer(vcpu, msr_info); 3622 case MSR_K7_HWCR: 3623 data &= ~(u64)0x40; /* ignore flush filter disable */ 3624 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3625 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3626 3627 /* Handle McStatusWrEn */ 3628 if (data == BIT_ULL(18)) { 3629 vcpu->arch.msr_hwcr = data; 3630 } else if (data != 0) { 3631 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3632 return 1; 3633 } 3634 break; 3635 case MSR_FAM10H_MMIO_CONF_BASE: 3636 if (data != 0) { 3637 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3638 return 1; 3639 } 3640 break; 3641 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3642 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3643 return kvm_mtrr_set_msr(vcpu, msr, data); 3644 case MSR_IA32_APICBASE: 3645 return kvm_set_apic_base(vcpu, msr_info); 3646 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3647 return kvm_x2apic_msr_write(vcpu, msr, data); 3648 case MSR_IA32_TSC_DEADLINE: 3649 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3650 break; 3651 case MSR_IA32_TSC_ADJUST: 3652 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3653 if (!msr_info->host_initiated) { 3654 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3655 adjust_tsc_offset_guest(vcpu, adj); 3656 /* Before back to guest, tsc_timestamp must be adjusted 3657 * as well, otherwise guest's percpu pvclock time could jump. 3658 */ 3659 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3660 } 3661 vcpu->arch.ia32_tsc_adjust_msr = data; 3662 } 3663 break; 3664 case MSR_IA32_MISC_ENABLE: { 3665 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3666 3667 if (!msr_info->host_initiated) { 3668 /* RO bits */ 3669 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3670 return 1; 3671 3672 /* R bits, i.e. writes are ignored, but don't fault. */ 3673 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3674 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3675 } 3676 3677 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3678 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3679 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3680 return 1; 3681 vcpu->arch.ia32_misc_enable_msr = data; 3682 kvm_update_cpuid_runtime(vcpu); 3683 } else { 3684 vcpu->arch.ia32_misc_enable_msr = data; 3685 } 3686 break; 3687 } 3688 case MSR_IA32_SMBASE: 3689 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3690 return 1; 3691 vcpu->arch.smbase = data; 3692 break; 3693 case MSR_IA32_POWER_CTL: 3694 vcpu->arch.msr_ia32_power_ctl = data; 3695 break; 3696 case MSR_IA32_TSC: 3697 if (msr_info->host_initiated) { 3698 kvm_synchronize_tsc(vcpu, data); 3699 } else { 3700 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3701 adjust_tsc_offset_guest(vcpu, adj); 3702 vcpu->arch.ia32_tsc_adjust_msr += adj; 3703 } 3704 break; 3705 case MSR_IA32_XSS: 3706 if (!msr_info->host_initiated && 3707 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3708 return 1; 3709 /* 3710 * KVM supports exposing PT to the guest, but does not support 3711 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3712 * XSAVES/XRSTORS to save/restore PT MSRs. 3713 */ 3714 if (data & ~kvm_caps.supported_xss) 3715 return 1; 3716 vcpu->arch.ia32_xss = data; 3717 kvm_update_cpuid_runtime(vcpu); 3718 break; 3719 case MSR_SMI_COUNT: 3720 if (!msr_info->host_initiated) 3721 return 1; 3722 vcpu->arch.smi_count = data; 3723 break; 3724 case MSR_KVM_WALL_CLOCK_NEW: 3725 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3726 return 1; 3727 3728 vcpu->kvm->arch.wall_clock = data; 3729 kvm_write_wall_clock(vcpu->kvm, data, 0); 3730 break; 3731 case MSR_KVM_WALL_CLOCK: 3732 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3733 return 1; 3734 3735 vcpu->kvm->arch.wall_clock = data; 3736 kvm_write_wall_clock(vcpu->kvm, data, 0); 3737 break; 3738 case MSR_KVM_SYSTEM_TIME_NEW: 3739 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3740 return 1; 3741 3742 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3743 break; 3744 case MSR_KVM_SYSTEM_TIME: 3745 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3746 return 1; 3747 3748 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3749 break; 3750 case MSR_KVM_ASYNC_PF_EN: 3751 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3752 return 1; 3753 3754 if (kvm_pv_enable_async_pf(vcpu, data)) 3755 return 1; 3756 break; 3757 case MSR_KVM_ASYNC_PF_INT: 3758 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3759 return 1; 3760 3761 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3762 return 1; 3763 break; 3764 case MSR_KVM_ASYNC_PF_ACK: 3765 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3766 return 1; 3767 if (data & 0x1) { 3768 vcpu->arch.apf.pageready_pending = false; 3769 kvm_check_async_pf_completion(vcpu); 3770 } 3771 break; 3772 case MSR_KVM_STEAL_TIME: 3773 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3774 return 1; 3775 3776 if (unlikely(!sched_info_on())) 3777 return 1; 3778 3779 if (data & KVM_STEAL_RESERVED_MASK) 3780 return 1; 3781 3782 vcpu->arch.st.msr_val = data; 3783 3784 if (!(data & KVM_MSR_ENABLED)) 3785 break; 3786 3787 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3788 3789 break; 3790 case MSR_KVM_PV_EOI_EN: 3791 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3792 return 1; 3793 3794 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3795 return 1; 3796 break; 3797 3798 case MSR_KVM_POLL_CONTROL: 3799 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3800 return 1; 3801 3802 /* only enable bit supported */ 3803 if (data & (-1ULL << 1)) 3804 return 1; 3805 3806 vcpu->arch.msr_kvm_poll_control = data; 3807 break; 3808 3809 case MSR_IA32_MCG_CTL: 3810 case MSR_IA32_MCG_STATUS: 3811 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3812 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3813 return set_msr_mce(vcpu, msr_info); 3814 3815 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3816 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3817 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3818 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3819 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3820 return kvm_pmu_set_msr(vcpu, msr_info); 3821 3822 if (data) 3823 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3824 break; 3825 case MSR_K7_CLK_CTL: 3826 /* 3827 * Ignore all writes to this no longer documented MSR. 3828 * Writes are only relevant for old K7 processors, 3829 * all pre-dating SVM, but a recommended workaround from 3830 * AMD for these chips. It is possible to specify the 3831 * affected processor models on the command line, hence 3832 * the need to ignore the workaround. 3833 */ 3834 break; 3835 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3836 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3837 case HV_X64_MSR_SYNDBG_OPTIONS: 3838 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3839 case HV_X64_MSR_CRASH_CTL: 3840 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3841 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3842 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3843 case HV_X64_MSR_TSC_EMULATION_STATUS: 3844 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3845 return kvm_hv_set_msr_common(vcpu, msr, data, 3846 msr_info->host_initiated); 3847 case MSR_IA32_BBL_CR_CTL3: 3848 /* Drop writes to this legacy MSR -- see rdmsr 3849 * counterpart for further detail. 3850 */ 3851 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3852 break; 3853 case MSR_AMD64_OSVW_ID_LENGTH: 3854 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3855 return 1; 3856 vcpu->arch.osvw.length = data; 3857 break; 3858 case MSR_AMD64_OSVW_STATUS: 3859 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3860 return 1; 3861 vcpu->arch.osvw.status = data; 3862 break; 3863 case MSR_PLATFORM_INFO: 3864 if (!msr_info->host_initiated || 3865 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3866 cpuid_fault_enabled(vcpu))) 3867 return 1; 3868 vcpu->arch.msr_platform_info = data; 3869 break; 3870 case MSR_MISC_FEATURES_ENABLES: 3871 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3872 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3873 !supports_cpuid_fault(vcpu))) 3874 return 1; 3875 vcpu->arch.msr_misc_features_enables = data; 3876 break; 3877 #ifdef CONFIG_X86_64 3878 case MSR_IA32_XFD: 3879 if (!msr_info->host_initiated && 3880 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3881 return 1; 3882 3883 if (data & ~kvm_guest_supported_xfd(vcpu)) 3884 return 1; 3885 3886 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3887 break; 3888 case MSR_IA32_XFD_ERR: 3889 if (!msr_info->host_initiated && 3890 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3891 return 1; 3892 3893 if (data & ~kvm_guest_supported_xfd(vcpu)) 3894 return 1; 3895 3896 vcpu->arch.guest_fpu.xfd_err = data; 3897 break; 3898 #endif 3899 default: 3900 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3901 return kvm_pmu_set_msr(vcpu, msr_info); 3902 3903 /* 3904 * Userspace is allowed to write '0' to MSRs that KVM reports 3905 * as to-be-saved, even if an MSRs isn't fully supported. 3906 */ 3907 if (msr_info->host_initiated && !data && 3908 kvm_is_msr_to_save(msr)) 3909 break; 3910 3911 return KVM_MSR_RET_INVALID; 3912 } 3913 return 0; 3914 } 3915 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3916 3917 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3918 { 3919 u64 data; 3920 u64 mcg_cap = vcpu->arch.mcg_cap; 3921 unsigned bank_num = mcg_cap & 0xff; 3922 u32 offset, last_msr; 3923 3924 switch (msr) { 3925 case MSR_IA32_P5_MC_ADDR: 3926 case MSR_IA32_P5_MC_TYPE: 3927 data = 0; 3928 break; 3929 case MSR_IA32_MCG_CAP: 3930 data = vcpu->arch.mcg_cap; 3931 break; 3932 case MSR_IA32_MCG_CTL: 3933 if (!(mcg_cap & MCG_CTL_P) && !host) 3934 return 1; 3935 data = vcpu->arch.mcg_ctl; 3936 break; 3937 case MSR_IA32_MCG_STATUS: 3938 data = vcpu->arch.mcg_status; 3939 break; 3940 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3941 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3942 if (msr > last_msr) 3943 return 1; 3944 3945 if (!(mcg_cap & MCG_CMCI_P) && !host) 3946 return 1; 3947 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3948 last_msr + 1 - MSR_IA32_MC0_CTL2); 3949 data = vcpu->arch.mci_ctl2_banks[offset]; 3950 break; 3951 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3952 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3953 if (msr > last_msr) 3954 return 1; 3955 3956 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3957 last_msr + 1 - MSR_IA32_MC0_CTL); 3958 data = vcpu->arch.mce_banks[offset]; 3959 break; 3960 default: 3961 return 1; 3962 } 3963 *pdata = data; 3964 return 0; 3965 } 3966 3967 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3968 { 3969 switch (msr_info->index) { 3970 case MSR_IA32_PLATFORM_ID: 3971 case MSR_IA32_EBL_CR_POWERON: 3972 case MSR_IA32_LASTBRANCHFROMIP: 3973 case MSR_IA32_LASTBRANCHTOIP: 3974 case MSR_IA32_LASTINTFROMIP: 3975 case MSR_IA32_LASTINTTOIP: 3976 case MSR_AMD64_SYSCFG: 3977 case MSR_K8_TSEG_ADDR: 3978 case MSR_K8_TSEG_MASK: 3979 case MSR_VM_HSAVE_PA: 3980 case MSR_K8_INT_PENDING_MSG: 3981 case MSR_AMD64_NB_CFG: 3982 case MSR_FAM10H_MMIO_CONF_BASE: 3983 case MSR_AMD64_BU_CFG2: 3984 case MSR_IA32_PERF_CTL: 3985 case MSR_AMD64_DC_CFG: 3986 case MSR_F15H_EX_CFG: 3987 /* 3988 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3989 * limit) MSRs. Just return 0, as we do not want to expose the host 3990 * data here. Do not conditionalize this on CPUID, as KVM does not do 3991 * so for existing CPU-specific MSRs. 3992 */ 3993 case MSR_RAPL_POWER_UNIT: 3994 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3995 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3996 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3997 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3998 msr_info->data = 0; 3999 break; 4000 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4001 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4002 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4003 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4004 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4005 return kvm_pmu_get_msr(vcpu, msr_info); 4006 msr_info->data = 0; 4007 break; 4008 case MSR_IA32_UCODE_REV: 4009 msr_info->data = vcpu->arch.microcode_version; 4010 break; 4011 case MSR_IA32_ARCH_CAPABILITIES: 4012 if (!msr_info->host_initiated && 4013 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4014 return 1; 4015 msr_info->data = vcpu->arch.arch_capabilities; 4016 break; 4017 case MSR_IA32_PERF_CAPABILITIES: 4018 if (!msr_info->host_initiated && 4019 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4020 return 1; 4021 msr_info->data = vcpu->arch.perf_capabilities; 4022 break; 4023 case MSR_IA32_POWER_CTL: 4024 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4025 break; 4026 case MSR_IA32_TSC: { 4027 /* 4028 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4029 * even when not intercepted. AMD manual doesn't explicitly 4030 * state this but appears to behave the same. 4031 * 4032 * On userspace reads and writes, however, we unconditionally 4033 * return L1's TSC value to ensure backwards-compatible 4034 * behavior for migration. 4035 */ 4036 u64 offset, ratio; 4037 4038 if (msr_info->host_initiated) { 4039 offset = vcpu->arch.l1_tsc_offset; 4040 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4041 } else { 4042 offset = vcpu->arch.tsc_offset; 4043 ratio = vcpu->arch.tsc_scaling_ratio; 4044 } 4045 4046 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4047 break; 4048 } 4049 case MSR_MTRRcap: 4050 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4051 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4052 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4053 case 0xcd: /* fsb frequency */ 4054 msr_info->data = 3; 4055 break; 4056 /* 4057 * MSR_EBC_FREQUENCY_ID 4058 * Conservative value valid for even the basic CPU models. 4059 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4060 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4061 * and 266MHz for model 3, or 4. Set Core Clock 4062 * Frequency to System Bus Frequency Ratio to 1 (bits 4063 * 31:24) even though these are only valid for CPU 4064 * models > 2, however guests may end up dividing or 4065 * multiplying by zero otherwise. 4066 */ 4067 case MSR_EBC_FREQUENCY_ID: 4068 msr_info->data = 1 << 24; 4069 break; 4070 case MSR_IA32_APICBASE: 4071 msr_info->data = kvm_get_apic_base(vcpu); 4072 break; 4073 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4074 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4075 case MSR_IA32_TSC_DEADLINE: 4076 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4077 break; 4078 case MSR_IA32_TSC_ADJUST: 4079 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4080 break; 4081 case MSR_IA32_MISC_ENABLE: 4082 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4083 break; 4084 case MSR_IA32_SMBASE: 4085 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4086 return 1; 4087 msr_info->data = vcpu->arch.smbase; 4088 break; 4089 case MSR_SMI_COUNT: 4090 msr_info->data = vcpu->arch.smi_count; 4091 break; 4092 case MSR_IA32_PERF_STATUS: 4093 /* TSC increment by tick */ 4094 msr_info->data = 1000ULL; 4095 /* CPU multiplier */ 4096 msr_info->data |= (((uint64_t)4ULL) << 40); 4097 break; 4098 case MSR_EFER: 4099 msr_info->data = vcpu->arch.efer; 4100 break; 4101 case MSR_KVM_WALL_CLOCK: 4102 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4103 return 1; 4104 4105 msr_info->data = vcpu->kvm->arch.wall_clock; 4106 break; 4107 case MSR_KVM_WALL_CLOCK_NEW: 4108 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4109 return 1; 4110 4111 msr_info->data = vcpu->kvm->arch.wall_clock; 4112 break; 4113 case MSR_KVM_SYSTEM_TIME: 4114 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4115 return 1; 4116 4117 msr_info->data = vcpu->arch.time; 4118 break; 4119 case MSR_KVM_SYSTEM_TIME_NEW: 4120 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4121 return 1; 4122 4123 msr_info->data = vcpu->arch.time; 4124 break; 4125 case MSR_KVM_ASYNC_PF_EN: 4126 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4127 return 1; 4128 4129 msr_info->data = vcpu->arch.apf.msr_en_val; 4130 break; 4131 case MSR_KVM_ASYNC_PF_INT: 4132 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4133 return 1; 4134 4135 msr_info->data = vcpu->arch.apf.msr_int_val; 4136 break; 4137 case MSR_KVM_ASYNC_PF_ACK: 4138 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4139 return 1; 4140 4141 msr_info->data = 0; 4142 break; 4143 case MSR_KVM_STEAL_TIME: 4144 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4145 return 1; 4146 4147 msr_info->data = vcpu->arch.st.msr_val; 4148 break; 4149 case MSR_KVM_PV_EOI_EN: 4150 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4151 return 1; 4152 4153 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4154 break; 4155 case MSR_KVM_POLL_CONTROL: 4156 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4157 return 1; 4158 4159 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4160 break; 4161 case MSR_IA32_P5_MC_ADDR: 4162 case MSR_IA32_P5_MC_TYPE: 4163 case MSR_IA32_MCG_CAP: 4164 case MSR_IA32_MCG_CTL: 4165 case MSR_IA32_MCG_STATUS: 4166 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4167 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4168 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4169 msr_info->host_initiated); 4170 case MSR_IA32_XSS: 4171 if (!msr_info->host_initiated && 4172 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4173 return 1; 4174 msr_info->data = vcpu->arch.ia32_xss; 4175 break; 4176 case MSR_K7_CLK_CTL: 4177 /* 4178 * Provide expected ramp-up count for K7. All other 4179 * are set to zero, indicating minimum divisors for 4180 * every field. 4181 * 4182 * This prevents guest kernels on AMD host with CPU 4183 * type 6, model 8 and higher from exploding due to 4184 * the rdmsr failing. 4185 */ 4186 msr_info->data = 0x20000000; 4187 break; 4188 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4189 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4190 case HV_X64_MSR_SYNDBG_OPTIONS: 4191 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4192 case HV_X64_MSR_CRASH_CTL: 4193 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4194 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4195 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4196 case HV_X64_MSR_TSC_EMULATION_STATUS: 4197 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4198 return kvm_hv_get_msr_common(vcpu, 4199 msr_info->index, &msr_info->data, 4200 msr_info->host_initiated); 4201 case MSR_IA32_BBL_CR_CTL3: 4202 /* This legacy MSR exists but isn't fully documented in current 4203 * silicon. It is however accessed by winxp in very narrow 4204 * scenarios where it sets bit #19, itself documented as 4205 * a "reserved" bit. Best effort attempt to source coherent 4206 * read data here should the balance of the register be 4207 * interpreted by the guest: 4208 * 4209 * L2 cache control register 3: 64GB range, 256KB size, 4210 * enabled, latency 0x1, configured 4211 */ 4212 msr_info->data = 0xbe702111; 4213 break; 4214 case MSR_AMD64_OSVW_ID_LENGTH: 4215 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4216 return 1; 4217 msr_info->data = vcpu->arch.osvw.length; 4218 break; 4219 case MSR_AMD64_OSVW_STATUS: 4220 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4221 return 1; 4222 msr_info->data = vcpu->arch.osvw.status; 4223 break; 4224 case MSR_PLATFORM_INFO: 4225 if (!msr_info->host_initiated && 4226 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4227 return 1; 4228 msr_info->data = vcpu->arch.msr_platform_info; 4229 break; 4230 case MSR_MISC_FEATURES_ENABLES: 4231 msr_info->data = vcpu->arch.msr_misc_features_enables; 4232 break; 4233 case MSR_K7_HWCR: 4234 msr_info->data = vcpu->arch.msr_hwcr; 4235 break; 4236 #ifdef CONFIG_X86_64 4237 case MSR_IA32_XFD: 4238 if (!msr_info->host_initiated && 4239 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4240 return 1; 4241 4242 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4243 break; 4244 case MSR_IA32_XFD_ERR: 4245 if (!msr_info->host_initiated && 4246 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4247 return 1; 4248 4249 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4250 break; 4251 #endif 4252 default: 4253 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4254 return kvm_pmu_get_msr(vcpu, msr_info); 4255 4256 /* 4257 * Userspace is allowed to read MSRs that KVM reports as 4258 * to-be-saved, even if an MSR isn't fully supported. 4259 */ 4260 if (msr_info->host_initiated && 4261 kvm_is_msr_to_save(msr_info->index)) { 4262 msr_info->data = 0; 4263 break; 4264 } 4265 4266 return KVM_MSR_RET_INVALID; 4267 } 4268 return 0; 4269 } 4270 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4271 4272 /* 4273 * Read or write a bunch of msrs. All parameters are kernel addresses. 4274 * 4275 * @return number of msrs set successfully. 4276 */ 4277 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4278 struct kvm_msr_entry *entries, 4279 int (*do_msr)(struct kvm_vcpu *vcpu, 4280 unsigned index, u64 *data)) 4281 { 4282 int i; 4283 4284 for (i = 0; i < msrs->nmsrs; ++i) 4285 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4286 break; 4287 4288 return i; 4289 } 4290 4291 /* 4292 * Read or write a bunch of msrs. Parameters are user addresses. 4293 * 4294 * @return number of msrs set successfully. 4295 */ 4296 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4297 int (*do_msr)(struct kvm_vcpu *vcpu, 4298 unsigned index, u64 *data), 4299 int writeback) 4300 { 4301 struct kvm_msrs msrs; 4302 struct kvm_msr_entry *entries; 4303 unsigned size; 4304 int r; 4305 4306 r = -EFAULT; 4307 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4308 goto out; 4309 4310 r = -E2BIG; 4311 if (msrs.nmsrs >= MAX_IO_MSRS) 4312 goto out; 4313 4314 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4315 entries = memdup_user(user_msrs->entries, size); 4316 if (IS_ERR(entries)) { 4317 r = PTR_ERR(entries); 4318 goto out; 4319 } 4320 4321 r = __msr_io(vcpu, &msrs, entries, do_msr); 4322 4323 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4324 r = -EFAULT; 4325 4326 kfree(entries); 4327 out: 4328 return r; 4329 } 4330 4331 static inline bool kvm_can_mwait_in_guest(void) 4332 { 4333 return boot_cpu_has(X86_FEATURE_MWAIT) && 4334 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4335 boot_cpu_has(X86_FEATURE_ARAT); 4336 } 4337 4338 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4339 struct kvm_cpuid2 __user *cpuid_arg) 4340 { 4341 struct kvm_cpuid2 cpuid; 4342 int r; 4343 4344 r = -EFAULT; 4345 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4346 return r; 4347 4348 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4349 if (r) 4350 return r; 4351 4352 r = -EFAULT; 4353 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4354 return r; 4355 4356 return 0; 4357 } 4358 4359 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4360 { 4361 int r = 0; 4362 4363 switch (ext) { 4364 case KVM_CAP_IRQCHIP: 4365 case KVM_CAP_HLT: 4366 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4367 case KVM_CAP_SET_TSS_ADDR: 4368 case KVM_CAP_EXT_CPUID: 4369 case KVM_CAP_EXT_EMUL_CPUID: 4370 case KVM_CAP_CLOCKSOURCE: 4371 case KVM_CAP_PIT: 4372 case KVM_CAP_NOP_IO_DELAY: 4373 case KVM_CAP_MP_STATE: 4374 case KVM_CAP_SYNC_MMU: 4375 case KVM_CAP_USER_NMI: 4376 case KVM_CAP_REINJECT_CONTROL: 4377 case KVM_CAP_IRQ_INJECT_STATUS: 4378 case KVM_CAP_IOEVENTFD: 4379 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4380 case KVM_CAP_PIT2: 4381 case KVM_CAP_PIT_STATE2: 4382 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4383 case KVM_CAP_VCPU_EVENTS: 4384 case KVM_CAP_HYPERV: 4385 case KVM_CAP_HYPERV_VAPIC: 4386 case KVM_CAP_HYPERV_SPIN: 4387 case KVM_CAP_HYPERV_SYNIC: 4388 case KVM_CAP_HYPERV_SYNIC2: 4389 case KVM_CAP_HYPERV_VP_INDEX: 4390 case KVM_CAP_HYPERV_EVENTFD: 4391 case KVM_CAP_HYPERV_TLBFLUSH: 4392 case KVM_CAP_HYPERV_SEND_IPI: 4393 case KVM_CAP_HYPERV_CPUID: 4394 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4395 case KVM_CAP_SYS_HYPERV_CPUID: 4396 case KVM_CAP_PCI_SEGMENT: 4397 case KVM_CAP_DEBUGREGS: 4398 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4399 case KVM_CAP_XSAVE: 4400 case KVM_CAP_ASYNC_PF: 4401 case KVM_CAP_ASYNC_PF_INT: 4402 case KVM_CAP_GET_TSC_KHZ: 4403 case KVM_CAP_KVMCLOCK_CTRL: 4404 case KVM_CAP_READONLY_MEM: 4405 case KVM_CAP_HYPERV_TIME: 4406 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4407 case KVM_CAP_TSC_DEADLINE_TIMER: 4408 case KVM_CAP_DISABLE_QUIRKS: 4409 case KVM_CAP_SET_BOOT_CPU_ID: 4410 case KVM_CAP_SPLIT_IRQCHIP: 4411 case KVM_CAP_IMMEDIATE_EXIT: 4412 case KVM_CAP_PMU_EVENT_FILTER: 4413 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4414 case KVM_CAP_GET_MSR_FEATURES: 4415 case KVM_CAP_MSR_PLATFORM_INFO: 4416 case KVM_CAP_EXCEPTION_PAYLOAD: 4417 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4418 case KVM_CAP_SET_GUEST_DEBUG: 4419 case KVM_CAP_LAST_CPU: 4420 case KVM_CAP_X86_USER_SPACE_MSR: 4421 case KVM_CAP_X86_MSR_FILTER: 4422 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4423 #ifdef CONFIG_X86_SGX_KVM 4424 case KVM_CAP_SGX_ATTRIBUTE: 4425 #endif 4426 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4427 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4428 case KVM_CAP_SREGS2: 4429 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4430 case KVM_CAP_VCPU_ATTRIBUTES: 4431 case KVM_CAP_SYS_ATTRIBUTES: 4432 case KVM_CAP_VAPIC: 4433 case KVM_CAP_ENABLE_CAP: 4434 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4435 case KVM_CAP_IRQFD_RESAMPLE: 4436 r = 1; 4437 break; 4438 case KVM_CAP_EXIT_HYPERCALL: 4439 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4440 break; 4441 case KVM_CAP_SET_GUEST_DEBUG2: 4442 return KVM_GUESTDBG_VALID_MASK; 4443 #ifdef CONFIG_KVM_XEN 4444 case KVM_CAP_XEN_HVM: 4445 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4446 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4447 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4448 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4449 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4450 if (sched_info_on()) 4451 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4452 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4453 break; 4454 #endif 4455 case KVM_CAP_SYNC_REGS: 4456 r = KVM_SYNC_X86_VALID_FIELDS; 4457 break; 4458 case KVM_CAP_ADJUST_CLOCK: 4459 r = KVM_CLOCK_VALID_FLAGS; 4460 break; 4461 case KVM_CAP_X86_DISABLE_EXITS: 4462 r = KVM_X86_DISABLE_EXITS_PAUSE; 4463 4464 if (!mitigate_smt_rsb) { 4465 r |= KVM_X86_DISABLE_EXITS_HLT | 4466 KVM_X86_DISABLE_EXITS_CSTATE; 4467 4468 if (kvm_can_mwait_in_guest()) 4469 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4470 } 4471 break; 4472 case KVM_CAP_X86_SMM: 4473 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4474 break; 4475 4476 /* SMBASE is usually relocated above 1M on modern chipsets, 4477 * and SMM handlers might indeed rely on 4G segment limits, 4478 * so do not report SMM to be available if real mode is 4479 * emulated via vm86 mode. Still, do not go to great lengths 4480 * to avoid userspace's usage of the feature, because it is a 4481 * fringe case that is not enabled except via specific settings 4482 * of the module parameters. 4483 */ 4484 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4485 break; 4486 case KVM_CAP_NR_VCPUS: 4487 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4488 break; 4489 case KVM_CAP_MAX_VCPUS: 4490 r = KVM_MAX_VCPUS; 4491 break; 4492 case KVM_CAP_MAX_VCPU_ID: 4493 r = KVM_MAX_VCPU_IDS; 4494 break; 4495 case KVM_CAP_PV_MMU: /* obsolete */ 4496 r = 0; 4497 break; 4498 case KVM_CAP_MCE: 4499 r = KVM_MAX_MCE_BANKS; 4500 break; 4501 case KVM_CAP_XCRS: 4502 r = boot_cpu_has(X86_FEATURE_XSAVE); 4503 break; 4504 case KVM_CAP_TSC_CONTROL: 4505 case KVM_CAP_VM_TSC_CONTROL: 4506 r = kvm_caps.has_tsc_control; 4507 break; 4508 case KVM_CAP_X2APIC_API: 4509 r = KVM_X2APIC_API_VALID_FLAGS; 4510 break; 4511 case KVM_CAP_NESTED_STATE: 4512 r = kvm_x86_ops.nested_ops->get_state ? 4513 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4514 break; 4515 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4516 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4517 break; 4518 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4519 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4520 break; 4521 case KVM_CAP_SMALLER_MAXPHYADDR: 4522 r = (int) allow_smaller_maxphyaddr; 4523 break; 4524 case KVM_CAP_STEAL_TIME: 4525 r = sched_info_on(); 4526 break; 4527 case KVM_CAP_X86_BUS_LOCK_EXIT: 4528 if (kvm_caps.has_bus_lock_exit) 4529 r = KVM_BUS_LOCK_DETECTION_OFF | 4530 KVM_BUS_LOCK_DETECTION_EXIT; 4531 else 4532 r = 0; 4533 break; 4534 case KVM_CAP_XSAVE2: { 4535 u64 guest_perm = xstate_get_guest_group_perm(); 4536 4537 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4538 if (r < sizeof(struct kvm_xsave)) 4539 r = sizeof(struct kvm_xsave); 4540 break; 4541 } 4542 case KVM_CAP_PMU_CAPABILITY: 4543 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4544 break; 4545 case KVM_CAP_DISABLE_QUIRKS2: 4546 r = KVM_X86_VALID_QUIRKS; 4547 break; 4548 case KVM_CAP_X86_NOTIFY_VMEXIT: 4549 r = kvm_caps.has_notify_vmexit; 4550 break; 4551 default: 4552 break; 4553 } 4554 return r; 4555 } 4556 4557 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4558 { 4559 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4560 4561 if ((u64)(unsigned long)uaddr != attr->addr) 4562 return ERR_PTR_USR(-EFAULT); 4563 return uaddr; 4564 } 4565 4566 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4567 { 4568 u64 __user *uaddr = kvm_get_attr_addr(attr); 4569 4570 if (attr->group) 4571 return -ENXIO; 4572 4573 if (IS_ERR(uaddr)) 4574 return PTR_ERR(uaddr); 4575 4576 switch (attr->attr) { 4577 case KVM_X86_XCOMP_GUEST_SUPP: 4578 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4579 return -EFAULT; 4580 return 0; 4581 default: 4582 return -ENXIO; 4583 break; 4584 } 4585 } 4586 4587 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4588 { 4589 if (attr->group) 4590 return -ENXIO; 4591 4592 switch (attr->attr) { 4593 case KVM_X86_XCOMP_GUEST_SUPP: 4594 return 0; 4595 default: 4596 return -ENXIO; 4597 } 4598 } 4599 4600 long kvm_arch_dev_ioctl(struct file *filp, 4601 unsigned int ioctl, unsigned long arg) 4602 { 4603 void __user *argp = (void __user *)arg; 4604 long r; 4605 4606 switch (ioctl) { 4607 case KVM_GET_MSR_INDEX_LIST: { 4608 struct kvm_msr_list __user *user_msr_list = argp; 4609 struct kvm_msr_list msr_list; 4610 unsigned n; 4611 4612 r = -EFAULT; 4613 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4614 goto out; 4615 n = msr_list.nmsrs; 4616 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4617 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4618 goto out; 4619 r = -E2BIG; 4620 if (n < msr_list.nmsrs) 4621 goto out; 4622 r = -EFAULT; 4623 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4624 num_msrs_to_save * sizeof(u32))) 4625 goto out; 4626 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4627 &emulated_msrs, 4628 num_emulated_msrs * sizeof(u32))) 4629 goto out; 4630 r = 0; 4631 break; 4632 } 4633 case KVM_GET_SUPPORTED_CPUID: 4634 case KVM_GET_EMULATED_CPUID: { 4635 struct kvm_cpuid2 __user *cpuid_arg = argp; 4636 struct kvm_cpuid2 cpuid; 4637 4638 r = -EFAULT; 4639 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4640 goto out; 4641 4642 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4643 ioctl); 4644 if (r) 4645 goto out; 4646 4647 r = -EFAULT; 4648 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4649 goto out; 4650 r = 0; 4651 break; 4652 } 4653 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4654 r = -EFAULT; 4655 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4656 sizeof(kvm_caps.supported_mce_cap))) 4657 goto out; 4658 r = 0; 4659 break; 4660 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4661 struct kvm_msr_list __user *user_msr_list = argp; 4662 struct kvm_msr_list msr_list; 4663 unsigned int n; 4664 4665 r = -EFAULT; 4666 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4667 goto out; 4668 n = msr_list.nmsrs; 4669 msr_list.nmsrs = num_msr_based_features; 4670 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4671 goto out; 4672 r = -E2BIG; 4673 if (n < msr_list.nmsrs) 4674 goto out; 4675 r = -EFAULT; 4676 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4677 num_msr_based_features * sizeof(u32))) 4678 goto out; 4679 r = 0; 4680 break; 4681 } 4682 case KVM_GET_MSRS: 4683 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4684 break; 4685 case KVM_GET_SUPPORTED_HV_CPUID: 4686 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4687 break; 4688 case KVM_GET_DEVICE_ATTR: { 4689 struct kvm_device_attr attr; 4690 r = -EFAULT; 4691 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4692 break; 4693 r = kvm_x86_dev_get_attr(&attr); 4694 break; 4695 } 4696 case KVM_HAS_DEVICE_ATTR: { 4697 struct kvm_device_attr attr; 4698 r = -EFAULT; 4699 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4700 break; 4701 r = kvm_x86_dev_has_attr(&attr); 4702 break; 4703 } 4704 default: 4705 r = -EINVAL; 4706 break; 4707 } 4708 out: 4709 return r; 4710 } 4711 4712 static void wbinvd_ipi(void *garbage) 4713 { 4714 wbinvd(); 4715 } 4716 4717 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4718 { 4719 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4720 } 4721 4722 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4723 { 4724 /* Address WBINVD may be executed by guest */ 4725 if (need_emulate_wbinvd(vcpu)) { 4726 if (static_call(kvm_x86_has_wbinvd_exit)()) 4727 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4728 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4729 smp_call_function_single(vcpu->cpu, 4730 wbinvd_ipi, NULL, 1); 4731 } 4732 4733 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4734 4735 /* Save host pkru register if supported */ 4736 vcpu->arch.host_pkru = read_pkru(); 4737 4738 /* Apply any externally detected TSC adjustments (due to suspend) */ 4739 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4740 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4741 vcpu->arch.tsc_offset_adjustment = 0; 4742 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4743 } 4744 4745 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4746 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4747 rdtsc() - vcpu->arch.last_host_tsc; 4748 if (tsc_delta < 0) 4749 mark_tsc_unstable("KVM discovered backwards TSC"); 4750 4751 if (kvm_check_tsc_unstable()) { 4752 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4753 vcpu->arch.last_guest_tsc); 4754 kvm_vcpu_write_tsc_offset(vcpu, offset); 4755 vcpu->arch.tsc_catchup = 1; 4756 } 4757 4758 if (kvm_lapic_hv_timer_in_use(vcpu)) 4759 kvm_lapic_restart_hv_timer(vcpu); 4760 4761 /* 4762 * On a host with synchronized TSC, there is no need to update 4763 * kvmclock on vcpu->cpu migration 4764 */ 4765 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4766 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4767 if (vcpu->cpu != cpu) 4768 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4769 vcpu->cpu = cpu; 4770 } 4771 4772 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4773 } 4774 4775 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4776 { 4777 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4778 struct kvm_steal_time __user *st; 4779 struct kvm_memslots *slots; 4780 static const u8 preempted = KVM_VCPU_PREEMPTED; 4781 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4782 4783 /* 4784 * The vCPU can be marked preempted if and only if the VM-Exit was on 4785 * an instruction boundary and will not trigger guest emulation of any 4786 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4787 * when this is true, for example allowing the vCPU to be marked 4788 * preempted if and only if the VM-Exit was due to a host interrupt. 4789 */ 4790 if (!vcpu->arch.at_instruction_boundary) { 4791 vcpu->stat.preemption_other++; 4792 return; 4793 } 4794 4795 vcpu->stat.preemption_reported++; 4796 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4797 return; 4798 4799 if (vcpu->arch.st.preempted) 4800 return; 4801 4802 /* This happens on process exit */ 4803 if (unlikely(current->mm != vcpu->kvm->mm)) 4804 return; 4805 4806 slots = kvm_memslots(vcpu->kvm); 4807 4808 if (unlikely(slots->generation != ghc->generation || 4809 gpa != ghc->gpa || 4810 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4811 return; 4812 4813 st = (struct kvm_steal_time __user *)ghc->hva; 4814 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4815 4816 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4817 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4818 4819 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4820 } 4821 4822 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4823 { 4824 int idx; 4825 4826 if (vcpu->preempted) { 4827 if (!vcpu->arch.guest_state_protected) 4828 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4829 4830 /* 4831 * Take the srcu lock as memslots will be accessed to check the gfn 4832 * cache generation against the memslots generation. 4833 */ 4834 idx = srcu_read_lock(&vcpu->kvm->srcu); 4835 if (kvm_xen_msr_enabled(vcpu->kvm)) 4836 kvm_xen_runstate_set_preempted(vcpu); 4837 else 4838 kvm_steal_time_set_preempted(vcpu); 4839 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4840 } 4841 4842 static_call(kvm_x86_vcpu_put)(vcpu); 4843 vcpu->arch.last_host_tsc = rdtsc(); 4844 } 4845 4846 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4847 struct kvm_lapic_state *s) 4848 { 4849 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4850 4851 return kvm_apic_get_state(vcpu, s); 4852 } 4853 4854 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4855 struct kvm_lapic_state *s) 4856 { 4857 int r; 4858 4859 r = kvm_apic_set_state(vcpu, s); 4860 if (r) 4861 return r; 4862 update_cr8_intercept(vcpu); 4863 4864 return 0; 4865 } 4866 4867 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4868 { 4869 /* 4870 * We can accept userspace's request for interrupt injection 4871 * as long as we have a place to store the interrupt number. 4872 * The actual injection will happen when the CPU is able to 4873 * deliver the interrupt. 4874 */ 4875 if (kvm_cpu_has_extint(vcpu)) 4876 return false; 4877 4878 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4879 return (!lapic_in_kernel(vcpu) || 4880 kvm_apic_accept_pic_intr(vcpu)); 4881 } 4882 4883 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4884 { 4885 /* 4886 * Do not cause an interrupt window exit if an exception 4887 * is pending or an event needs reinjection; userspace 4888 * might want to inject the interrupt manually using KVM_SET_REGS 4889 * or KVM_SET_SREGS. For that to work, we must be at an 4890 * instruction boundary and with no events half-injected. 4891 */ 4892 return (kvm_arch_interrupt_allowed(vcpu) && 4893 kvm_cpu_accept_dm_intr(vcpu) && 4894 !kvm_event_needs_reinjection(vcpu) && 4895 !kvm_is_exception_pending(vcpu)); 4896 } 4897 4898 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4899 struct kvm_interrupt *irq) 4900 { 4901 if (irq->irq >= KVM_NR_INTERRUPTS) 4902 return -EINVAL; 4903 4904 if (!irqchip_in_kernel(vcpu->kvm)) { 4905 kvm_queue_interrupt(vcpu, irq->irq, false); 4906 kvm_make_request(KVM_REQ_EVENT, vcpu); 4907 return 0; 4908 } 4909 4910 /* 4911 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4912 * fail for in-kernel 8259. 4913 */ 4914 if (pic_in_kernel(vcpu->kvm)) 4915 return -ENXIO; 4916 4917 if (vcpu->arch.pending_external_vector != -1) 4918 return -EEXIST; 4919 4920 vcpu->arch.pending_external_vector = irq->irq; 4921 kvm_make_request(KVM_REQ_EVENT, vcpu); 4922 return 0; 4923 } 4924 4925 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4926 { 4927 kvm_inject_nmi(vcpu); 4928 4929 return 0; 4930 } 4931 4932 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4933 struct kvm_tpr_access_ctl *tac) 4934 { 4935 if (tac->flags) 4936 return -EINVAL; 4937 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4938 return 0; 4939 } 4940 4941 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4942 u64 mcg_cap) 4943 { 4944 int r; 4945 unsigned bank_num = mcg_cap & 0xff, bank; 4946 4947 r = -EINVAL; 4948 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4949 goto out; 4950 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4951 goto out; 4952 r = 0; 4953 vcpu->arch.mcg_cap = mcg_cap; 4954 /* Init IA32_MCG_CTL to all 1s */ 4955 if (mcg_cap & MCG_CTL_P) 4956 vcpu->arch.mcg_ctl = ~(u64)0; 4957 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4958 for (bank = 0; bank < bank_num; bank++) { 4959 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4960 if (mcg_cap & MCG_CMCI_P) 4961 vcpu->arch.mci_ctl2_banks[bank] = 0; 4962 } 4963 4964 kvm_apic_after_set_mcg_cap(vcpu); 4965 4966 static_call(kvm_x86_setup_mce)(vcpu); 4967 out: 4968 return r; 4969 } 4970 4971 /* 4972 * Validate this is an UCNA (uncorrectable no action) error by checking the 4973 * MCG_STATUS and MCi_STATUS registers: 4974 * - none of the bits for Machine Check Exceptions are set 4975 * - both the VAL (valid) and UC (uncorrectable) bits are set 4976 * MCI_STATUS_PCC - Processor Context Corrupted 4977 * MCI_STATUS_S - Signaled as a Machine Check Exception 4978 * MCI_STATUS_AR - Software recoverable Action Required 4979 */ 4980 static bool is_ucna(struct kvm_x86_mce *mce) 4981 { 4982 return !mce->mcg_status && 4983 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4984 (mce->status & MCI_STATUS_VAL) && 4985 (mce->status & MCI_STATUS_UC); 4986 } 4987 4988 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4989 { 4990 u64 mcg_cap = vcpu->arch.mcg_cap; 4991 4992 banks[1] = mce->status; 4993 banks[2] = mce->addr; 4994 banks[3] = mce->misc; 4995 vcpu->arch.mcg_status = mce->mcg_status; 4996 4997 if (!(mcg_cap & MCG_CMCI_P) || 4998 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4999 return 0; 5000 5001 if (lapic_in_kernel(vcpu)) 5002 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5003 5004 return 0; 5005 } 5006 5007 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5008 struct kvm_x86_mce *mce) 5009 { 5010 u64 mcg_cap = vcpu->arch.mcg_cap; 5011 unsigned bank_num = mcg_cap & 0xff; 5012 u64 *banks = vcpu->arch.mce_banks; 5013 5014 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5015 return -EINVAL; 5016 5017 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5018 5019 if (is_ucna(mce)) 5020 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5021 5022 /* 5023 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5024 * reporting is disabled 5025 */ 5026 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5027 vcpu->arch.mcg_ctl != ~(u64)0) 5028 return 0; 5029 /* 5030 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5031 * reporting is disabled for the bank 5032 */ 5033 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5034 return 0; 5035 if (mce->status & MCI_STATUS_UC) { 5036 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5037 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5038 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5039 return 0; 5040 } 5041 if (banks[1] & MCI_STATUS_VAL) 5042 mce->status |= MCI_STATUS_OVER; 5043 banks[2] = mce->addr; 5044 banks[3] = mce->misc; 5045 vcpu->arch.mcg_status = mce->mcg_status; 5046 banks[1] = mce->status; 5047 kvm_queue_exception(vcpu, MC_VECTOR); 5048 } else if (!(banks[1] & MCI_STATUS_VAL) 5049 || !(banks[1] & MCI_STATUS_UC)) { 5050 if (banks[1] & MCI_STATUS_VAL) 5051 mce->status |= MCI_STATUS_OVER; 5052 banks[2] = mce->addr; 5053 banks[3] = mce->misc; 5054 banks[1] = mce->status; 5055 } else 5056 banks[1] |= MCI_STATUS_OVER; 5057 return 0; 5058 } 5059 5060 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5061 struct kvm_vcpu_events *events) 5062 { 5063 struct kvm_queued_exception *ex; 5064 5065 process_nmi(vcpu); 5066 5067 #ifdef CONFIG_KVM_SMM 5068 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5069 process_smi(vcpu); 5070 #endif 5071 5072 /* 5073 * KVM's ABI only allows for one exception to be migrated. Luckily, 5074 * the only time there can be two queued exceptions is if there's a 5075 * non-exiting _injected_ exception, and a pending exiting exception. 5076 * In that case, ignore the VM-Exiting exception as it's an extension 5077 * of the injected exception. 5078 */ 5079 if (vcpu->arch.exception_vmexit.pending && 5080 !vcpu->arch.exception.pending && 5081 !vcpu->arch.exception.injected) 5082 ex = &vcpu->arch.exception_vmexit; 5083 else 5084 ex = &vcpu->arch.exception; 5085 5086 /* 5087 * In guest mode, payload delivery should be deferred if the exception 5088 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5089 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5090 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5091 * propagate the payload and so it cannot be safely deferred. Deliver 5092 * the payload if the capability hasn't been requested. 5093 */ 5094 if (!vcpu->kvm->arch.exception_payload_enabled && 5095 ex->pending && ex->has_payload) 5096 kvm_deliver_exception_payload(vcpu, ex); 5097 5098 memset(events, 0, sizeof(*events)); 5099 5100 /* 5101 * The API doesn't provide the instruction length for software 5102 * exceptions, so don't report them. As long as the guest RIP 5103 * isn't advanced, we should expect to encounter the exception 5104 * again. 5105 */ 5106 if (!kvm_exception_is_soft(ex->vector)) { 5107 events->exception.injected = ex->injected; 5108 events->exception.pending = ex->pending; 5109 /* 5110 * For ABI compatibility, deliberately conflate 5111 * pending and injected exceptions when 5112 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5113 */ 5114 if (!vcpu->kvm->arch.exception_payload_enabled) 5115 events->exception.injected |= ex->pending; 5116 } 5117 events->exception.nr = ex->vector; 5118 events->exception.has_error_code = ex->has_error_code; 5119 events->exception.error_code = ex->error_code; 5120 events->exception_has_payload = ex->has_payload; 5121 events->exception_payload = ex->payload; 5122 5123 events->interrupt.injected = 5124 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5125 events->interrupt.nr = vcpu->arch.interrupt.nr; 5126 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5127 5128 events->nmi.injected = vcpu->arch.nmi_injected; 5129 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5130 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5131 5132 /* events->sipi_vector is never valid when reporting to user space */ 5133 5134 #ifdef CONFIG_KVM_SMM 5135 events->smi.smm = is_smm(vcpu); 5136 events->smi.pending = vcpu->arch.smi_pending; 5137 events->smi.smm_inside_nmi = 5138 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5139 #endif 5140 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5141 5142 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5143 | KVM_VCPUEVENT_VALID_SHADOW 5144 | KVM_VCPUEVENT_VALID_SMM); 5145 if (vcpu->kvm->arch.exception_payload_enabled) 5146 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5147 if (vcpu->kvm->arch.triple_fault_event) { 5148 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5149 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5150 } 5151 } 5152 5153 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5154 struct kvm_vcpu_events *events) 5155 { 5156 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5157 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5158 | KVM_VCPUEVENT_VALID_SHADOW 5159 | KVM_VCPUEVENT_VALID_SMM 5160 | KVM_VCPUEVENT_VALID_PAYLOAD 5161 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5162 return -EINVAL; 5163 5164 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5165 if (!vcpu->kvm->arch.exception_payload_enabled) 5166 return -EINVAL; 5167 if (events->exception.pending) 5168 events->exception.injected = 0; 5169 else 5170 events->exception_has_payload = 0; 5171 } else { 5172 events->exception.pending = 0; 5173 events->exception_has_payload = 0; 5174 } 5175 5176 if ((events->exception.injected || events->exception.pending) && 5177 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5178 return -EINVAL; 5179 5180 /* INITs are latched while in SMM */ 5181 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5182 (events->smi.smm || events->smi.pending) && 5183 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5184 return -EINVAL; 5185 5186 process_nmi(vcpu); 5187 5188 /* 5189 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5190 * morph the exception to a VM-Exit if appropriate. Do this only for 5191 * pending exceptions, already-injected exceptions are not subject to 5192 * intercpetion. Note, userspace that conflates pending and injected 5193 * is hosed, and will incorrectly convert an injected exception into a 5194 * pending exception, which in turn may cause a spurious VM-Exit. 5195 */ 5196 vcpu->arch.exception_from_userspace = events->exception.pending; 5197 5198 vcpu->arch.exception_vmexit.pending = false; 5199 5200 vcpu->arch.exception.injected = events->exception.injected; 5201 vcpu->arch.exception.pending = events->exception.pending; 5202 vcpu->arch.exception.vector = events->exception.nr; 5203 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5204 vcpu->arch.exception.error_code = events->exception.error_code; 5205 vcpu->arch.exception.has_payload = events->exception_has_payload; 5206 vcpu->arch.exception.payload = events->exception_payload; 5207 5208 vcpu->arch.interrupt.injected = events->interrupt.injected; 5209 vcpu->arch.interrupt.nr = events->interrupt.nr; 5210 vcpu->arch.interrupt.soft = events->interrupt.soft; 5211 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5212 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5213 events->interrupt.shadow); 5214 5215 vcpu->arch.nmi_injected = events->nmi.injected; 5216 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5217 vcpu->arch.nmi_pending = events->nmi.pending; 5218 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5219 5220 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5221 lapic_in_kernel(vcpu)) 5222 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5223 5224 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5225 #ifdef CONFIG_KVM_SMM 5226 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5227 kvm_leave_nested(vcpu); 5228 kvm_smm_changed(vcpu, events->smi.smm); 5229 } 5230 5231 vcpu->arch.smi_pending = events->smi.pending; 5232 5233 if (events->smi.smm) { 5234 if (events->smi.smm_inside_nmi) 5235 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5236 else 5237 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5238 } 5239 5240 #else 5241 if (events->smi.smm || events->smi.pending || 5242 events->smi.smm_inside_nmi) 5243 return -EINVAL; 5244 #endif 5245 5246 if (lapic_in_kernel(vcpu)) { 5247 if (events->smi.latched_init) 5248 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5249 else 5250 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5251 } 5252 } 5253 5254 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5255 if (!vcpu->kvm->arch.triple_fault_event) 5256 return -EINVAL; 5257 if (events->triple_fault.pending) 5258 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5259 else 5260 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5261 } 5262 5263 kvm_make_request(KVM_REQ_EVENT, vcpu); 5264 5265 return 0; 5266 } 5267 5268 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5269 struct kvm_debugregs *dbgregs) 5270 { 5271 unsigned long val; 5272 5273 memset(dbgregs, 0, sizeof(*dbgregs)); 5274 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5275 kvm_get_dr(vcpu, 6, &val); 5276 dbgregs->dr6 = val; 5277 dbgregs->dr7 = vcpu->arch.dr7; 5278 } 5279 5280 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5281 struct kvm_debugregs *dbgregs) 5282 { 5283 if (dbgregs->flags) 5284 return -EINVAL; 5285 5286 if (!kvm_dr6_valid(dbgregs->dr6)) 5287 return -EINVAL; 5288 if (!kvm_dr7_valid(dbgregs->dr7)) 5289 return -EINVAL; 5290 5291 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5292 kvm_update_dr0123(vcpu); 5293 vcpu->arch.dr6 = dbgregs->dr6; 5294 vcpu->arch.dr7 = dbgregs->dr7; 5295 kvm_update_dr7(vcpu); 5296 5297 return 0; 5298 } 5299 5300 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5301 struct kvm_xsave *guest_xsave) 5302 { 5303 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5304 return; 5305 5306 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5307 guest_xsave->region, 5308 sizeof(guest_xsave->region), 5309 vcpu->arch.pkru); 5310 } 5311 5312 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5313 u8 *state, unsigned int size) 5314 { 5315 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5316 return; 5317 5318 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5319 state, size, vcpu->arch.pkru); 5320 } 5321 5322 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5323 struct kvm_xsave *guest_xsave) 5324 { 5325 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5326 return 0; 5327 5328 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5329 guest_xsave->region, 5330 kvm_caps.supported_xcr0, 5331 &vcpu->arch.pkru); 5332 } 5333 5334 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5335 struct kvm_xcrs *guest_xcrs) 5336 { 5337 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5338 guest_xcrs->nr_xcrs = 0; 5339 return; 5340 } 5341 5342 guest_xcrs->nr_xcrs = 1; 5343 guest_xcrs->flags = 0; 5344 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5345 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5346 } 5347 5348 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5349 struct kvm_xcrs *guest_xcrs) 5350 { 5351 int i, r = 0; 5352 5353 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5354 return -EINVAL; 5355 5356 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5357 return -EINVAL; 5358 5359 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5360 /* Only support XCR0 currently */ 5361 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5362 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5363 guest_xcrs->xcrs[i].value); 5364 break; 5365 } 5366 if (r) 5367 r = -EINVAL; 5368 return r; 5369 } 5370 5371 /* 5372 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5373 * stopped by the hypervisor. This function will be called from the host only. 5374 * EINVAL is returned when the host attempts to set the flag for a guest that 5375 * does not support pv clocks. 5376 */ 5377 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5378 { 5379 if (!vcpu->arch.pv_time.active) 5380 return -EINVAL; 5381 vcpu->arch.pvclock_set_guest_stopped_request = true; 5382 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5383 return 0; 5384 } 5385 5386 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5387 struct kvm_device_attr *attr) 5388 { 5389 int r; 5390 5391 switch (attr->attr) { 5392 case KVM_VCPU_TSC_OFFSET: 5393 r = 0; 5394 break; 5395 default: 5396 r = -ENXIO; 5397 } 5398 5399 return r; 5400 } 5401 5402 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5403 struct kvm_device_attr *attr) 5404 { 5405 u64 __user *uaddr = kvm_get_attr_addr(attr); 5406 int r; 5407 5408 if (IS_ERR(uaddr)) 5409 return PTR_ERR(uaddr); 5410 5411 switch (attr->attr) { 5412 case KVM_VCPU_TSC_OFFSET: 5413 r = -EFAULT; 5414 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5415 break; 5416 r = 0; 5417 break; 5418 default: 5419 r = -ENXIO; 5420 } 5421 5422 return r; 5423 } 5424 5425 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5426 struct kvm_device_attr *attr) 5427 { 5428 u64 __user *uaddr = kvm_get_attr_addr(attr); 5429 struct kvm *kvm = vcpu->kvm; 5430 int r; 5431 5432 if (IS_ERR(uaddr)) 5433 return PTR_ERR(uaddr); 5434 5435 switch (attr->attr) { 5436 case KVM_VCPU_TSC_OFFSET: { 5437 u64 offset, tsc, ns; 5438 unsigned long flags; 5439 bool matched; 5440 5441 r = -EFAULT; 5442 if (get_user(offset, uaddr)) 5443 break; 5444 5445 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5446 5447 matched = (vcpu->arch.virtual_tsc_khz && 5448 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5449 kvm->arch.last_tsc_offset == offset); 5450 5451 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5452 ns = get_kvmclock_base_ns(); 5453 5454 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5455 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5456 5457 r = 0; 5458 break; 5459 } 5460 default: 5461 r = -ENXIO; 5462 } 5463 5464 return r; 5465 } 5466 5467 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5468 unsigned int ioctl, 5469 void __user *argp) 5470 { 5471 struct kvm_device_attr attr; 5472 int r; 5473 5474 if (copy_from_user(&attr, argp, sizeof(attr))) 5475 return -EFAULT; 5476 5477 if (attr.group != KVM_VCPU_TSC_CTRL) 5478 return -ENXIO; 5479 5480 switch (ioctl) { 5481 case KVM_HAS_DEVICE_ATTR: 5482 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5483 break; 5484 case KVM_GET_DEVICE_ATTR: 5485 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5486 break; 5487 case KVM_SET_DEVICE_ATTR: 5488 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5489 break; 5490 } 5491 5492 return r; 5493 } 5494 5495 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5496 struct kvm_enable_cap *cap) 5497 { 5498 int r; 5499 uint16_t vmcs_version; 5500 void __user *user_ptr; 5501 5502 if (cap->flags) 5503 return -EINVAL; 5504 5505 switch (cap->cap) { 5506 case KVM_CAP_HYPERV_SYNIC2: 5507 if (cap->args[0]) 5508 return -EINVAL; 5509 fallthrough; 5510 5511 case KVM_CAP_HYPERV_SYNIC: 5512 if (!irqchip_in_kernel(vcpu->kvm)) 5513 return -EINVAL; 5514 return kvm_hv_activate_synic(vcpu, cap->cap == 5515 KVM_CAP_HYPERV_SYNIC2); 5516 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5517 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5518 return -ENOTTY; 5519 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5520 if (!r) { 5521 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5522 if (copy_to_user(user_ptr, &vmcs_version, 5523 sizeof(vmcs_version))) 5524 r = -EFAULT; 5525 } 5526 return r; 5527 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5528 if (!kvm_x86_ops.enable_l2_tlb_flush) 5529 return -ENOTTY; 5530 5531 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5532 5533 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5534 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5535 5536 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5537 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5538 if (vcpu->arch.pv_cpuid.enforce) 5539 kvm_update_pv_runtime(vcpu); 5540 5541 return 0; 5542 default: 5543 return -EINVAL; 5544 } 5545 } 5546 5547 long kvm_arch_vcpu_ioctl(struct file *filp, 5548 unsigned int ioctl, unsigned long arg) 5549 { 5550 struct kvm_vcpu *vcpu = filp->private_data; 5551 void __user *argp = (void __user *)arg; 5552 int r; 5553 union { 5554 struct kvm_sregs2 *sregs2; 5555 struct kvm_lapic_state *lapic; 5556 struct kvm_xsave *xsave; 5557 struct kvm_xcrs *xcrs; 5558 void *buffer; 5559 } u; 5560 5561 vcpu_load(vcpu); 5562 5563 u.buffer = NULL; 5564 switch (ioctl) { 5565 case KVM_GET_LAPIC: { 5566 r = -EINVAL; 5567 if (!lapic_in_kernel(vcpu)) 5568 goto out; 5569 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5570 GFP_KERNEL_ACCOUNT); 5571 5572 r = -ENOMEM; 5573 if (!u.lapic) 5574 goto out; 5575 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5576 if (r) 5577 goto out; 5578 r = -EFAULT; 5579 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5580 goto out; 5581 r = 0; 5582 break; 5583 } 5584 case KVM_SET_LAPIC: { 5585 r = -EINVAL; 5586 if (!lapic_in_kernel(vcpu)) 5587 goto out; 5588 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5589 if (IS_ERR(u.lapic)) { 5590 r = PTR_ERR(u.lapic); 5591 goto out_nofree; 5592 } 5593 5594 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5595 break; 5596 } 5597 case KVM_INTERRUPT: { 5598 struct kvm_interrupt irq; 5599 5600 r = -EFAULT; 5601 if (copy_from_user(&irq, argp, sizeof(irq))) 5602 goto out; 5603 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5604 break; 5605 } 5606 case KVM_NMI: { 5607 r = kvm_vcpu_ioctl_nmi(vcpu); 5608 break; 5609 } 5610 case KVM_SMI: { 5611 r = kvm_inject_smi(vcpu); 5612 break; 5613 } 5614 case KVM_SET_CPUID: { 5615 struct kvm_cpuid __user *cpuid_arg = argp; 5616 struct kvm_cpuid cpuid; 5617 5618 r = -EFAULT; 5619 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5620 goto out; 5621 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5622 break; 5623 } 5624 case KVM_SET_CPUID2: { 5625 struct kvm_cpuid2 __user *cpuid_arg = argp; 5626 struct kvm_cpuid2 cpuid; 5627 5628 r = -EFAULT; 5629 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5630 goto out; 5631 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5632 cpuid_arg->entries); 5633 break; 5634 } 5635 case KVM_GET_CPUID2: { 5636 struct kvm_cpuid2 __user *cpuid_arg = argp; 5637 struct kvm_cpuid2 cpuid; 5638 5639 r = -EFAULT; 5640 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5641 goto out; 5642 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5643 cpuid_arg->entries); 5644 if (r) 5645 goto out; 5646 r = -EFAULT; 5647 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5648 goto out; 5649 r = 0; 5650 break; 5651 } 5652 case KVM_GET_MSRS: { 5653 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5654 r = msr_io(vcpu, argp, do_get_msr, 1); 5655 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5656 break; 5657 } 5658 case KVM_SET_MSRS: { 5659 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5660 r = msr_io(vcpu, argp, do_set_msr, 0); 5661 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5662 break; 5663 } 5664 case KVM_TPR_ACCESS_REPORTING: { 5665 struct kvm_tpr_access_ctl tac; 5666 5667 r = -EFAULT; 5668 if (copy_from_user(&tac, argp, sizeof(tac))) 5669 goto out; 5670 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5671 if (r) 5672 goto out; 5673 r = -EFAULT; 5674 if (copy_to_user(argp, &tac, sizeof(tac))) 5675 goto out; 5676 r = 0; 5677 break; 5678 }; 5679 case KVM_SET_VAPIC_ADDR: { 5680 struct kvm_vapic_addr va; 5681 int idx; 5682 5683 r = -EINVAL; 5684 if (!lapic_in_kernel(vcpu)) 5685 goto out; 5686 r = -EFAULT; 5687 if (copy_from_user(&va, argp, sizeof(va))) 5688 goto out; 5689 idx = srcu_read_lock(&vcpu->kvm->srcu); 5690 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5691 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5692 break; 5693 } 5694 case KVM_X86_SETUP_MCE: { 5695 u64 mcg_cap; 5696 5697 r = -EFAULT; 5698 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5699 goto out; 5700 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5701 break; 5702 } 5703 case KVM_X86_SET_MCE: { 5704 struct kvm_x86_mce mce; 5705 5706 r = -EFAULT; 5707 if (copy_from_user(&mce, argp, sizeof(mce))) 5708 goto out; 5709 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5710 break; 5711 } 5712 case KVM_GET_VCPU_EVENTS: { 5713 struct kvm_vcpu_events events; 5714 5715 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5716 5717 r = -EFAULT; 5718 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5719 break; 5720 r = 0; 5721 break; 5722 } 5723 case KVM_SET_VCPU_EVENTS: { 5724 struct kvm_vcpu_events events; 5725 5726 r = -EFAULT; 5727 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5728 break; 5729 5730 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5731 break; 5732 } 5733 case KVM_GET_DEBUGREGS: { 5734 struct kvm_debugregs dbgregs; 5735 5736 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5737 5738 r = -EFAULT; 5739 if (copy_to_user(argp, &dbgregs, 5740 sizeof(struct kvm_debugregs))) 5741 break; 5742 r = 0; 5743 break; 5744 } 5745 case KVM_SET_DEBUGREGS: { 5746 struct kvm_debugregs dbgregs; 5747 5748 r = -EFAULT; 5749 if (copy_from_user(&dbgregs, argp, 5750 sizeof(struct kvm_debugregs))) 5751 break; 5752 5753 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5754 break; 5755 } 5756 case KVM_GET_XSAVE: { 5757 r = -EINVAL; 5758 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5759 break; 5760 5761 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5762 r = -ENOMEM; 5763 if (!u.xsave) 5764 break; 5765 5766 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5767 5768 r = -EFAULT; 5769 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5770 break; 5771 r = 0; 5772 break; 5773 } 5774 case KVM_SET_XSAVE: { 5775 int size = vcpu->arch.guest_fpu.uabi_size; 5776 5777 u.xsave = memdup_user(argp, size); 5778 if (IS_ERR(u.xsave)) { 5779 r = PTR_ERR(u.xsave); 5780 goto out_nofree; 5781 } 5782 5783 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5784 break; 5785 } 5786 5787 case KVM_GET_XSAVE2: { 5788 int size = vcpu->arch.guest_fpu.uabi_size; 5789 5790 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5791 r = -ENOMEM; 5792 if (!u.xsave) 5793 break; 5794 5795 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5796 5797 r = -EFAULT; 5798 if (copy_to_user(argp, u.xsave, size)) 5799 break; 5800 5801 r = 0; 5802 break; 5803 } 5804 5805 case KVM_GET_XCRS: { 5806 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5807 r = -ENOMEM; 5808 if (!u.xcrs) 5809 break; 5810 5811 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5812 5813 r = -EFAULT; 5814 if (copy_to_user(argp, u.xcrs, 5815 sizeof(struct kvm_xcrs))) 5816 break; 5817 r = 0; 5818 break; 5819 } 5820 case KVM_SET_XCRS: { 5821 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5822 if (IS_ERR(u.xcrs)) { 5823 r = PTR_ERR(u.xcrs); 5824 goto out_nofree; 5825 } 5826 5827 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5828 break; 5829 } 5830 case KVM_SET_TSC_KHZ: { 5831 u32 user_tsc_khz; 5832 5833 r = -EINVAL; 5834 user_tsc_khz = (u32)arg; 5835 5836 if (kvm_caps.has_tsc_control && 5837 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5838 goto out; 5839 5840 if (user_tsc_khz == 0) 5841 user_tsc_khz = tsc_khz; 5842 5843 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5844 r = 0; 5845 5846 goto out; 5847 } 5848 case KVM_GET_TSC_KHZ: { 5849 r = vcpu->arch.virtual_tsc_khz; 5850 goto out; 5851 } 5852 case KVM_KVMCLOCK_CTRL: { 5853 r = kvm_set_guest_paused(vcpu); 5854 goto out; 5855 } 5856 case KVM_ENABLE_CAP: { 5857 struct kvm_enable_cap cap; 5858 5859 r = -EFAULT; 5860 if (copy_from_user(&cap, argp, sizeof(cap))) 5861 goto out; 5862 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5863 break; 5864 } 5865 case KVM_GET_NESTED_STATE: { 5866 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5867 u32 user_data_size; 5868 5869 r = -EINVAL; 5870 if (!kvm_x86_ops.nested_ops->get_state) 5871 break; 5872 5873 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5874 r = -EFAULT; 5875 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5876 break; 5877 5878 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5879 user_data_size); 5880 if (r < 0) 5881 break; 5882 5883 if (r > user_data_size) { 5884 if (put_user(r, &user_kvm_nested_state->size)) 5885 r = -EFAULT; 5886 else 5887 r = -E2BIG; 5888 break; 5889 } 5890 5891 r = 0; 5892 break; 5893 } 5894 case KVM_SET_NESTED_STATE: { 5895 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5896 struct kvm_nested_state kvm_state; 5897 int idx; 5898 5899 r = -EINVAL; 5900 if (!kvm_x86_ops.nested_ops->set_state) 5901 break; 5902 5903 r = -EFAULT; 5904 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5905 break; 5906 5907 r = -EINVAL; 5908 if (kvm_state.size < sizeof(kvm_state)) 5909 break; 5910 5911 if (kvm_state.flags & 5912 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5913 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5914 | KVM_STATE_NESTED_GIF_SET)) 5915 break; 5916 5917 /* nested_run_pending implies guest_mode. */ 5918 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5919 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5920 break; 5921 5922 idx = srcu_read_lock(&vcpu->kvm->srcu); 5923 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5924 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5925 break; 5926 } 5927 case KVM_GET_SUPPORTED_HV_CPUID: 5928 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5929 break; 5930 #ifdef CONFIG_KVM_XEN 5931 case KVM_XEN_VCPU_GET_ATTR: { 5932 struct kvm_xen_vcpu_attr xva; 5933 5934 r = -EFAULT; 5935 if (copy_from_user(&xva, argp, sizeof(xva))) 5936 goto out; 5937 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5938 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5939 r = -EFAULT; 5940 break; 5941 } 5942 case KVM_XEN_VCPU_SET_ATTR: { 5943 struct kvm_xen_vcpu_attr xva; 5944 5945 r = -EFAULT; 5946 if (copy_from_user(&xva, argp, sizeof(xva))) 5947 goto out; 5948 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5949 break; 5950 } 5951 #endif 5952 case KVM_GET_SREGS2: { 5953 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5954 r = -ENOMEM; 5955 if (!u.sregs2) 5956 goto out; 5957 __get_sregs2(vcpu, u.sregs2); 5958 r = -EFAULT; 5959 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5960 goto out; 5961 r = 0; 5962 break; 5963 } 5964 case KVM_SET_SREGS2: { 5965 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5966 if (IS_ERR(u.sregs2)) { 5967 r = PTR_ERR(u.sregs2); 5968 u.sregs2 = NULL; 5969 goto out; 5970 } 5971 r = __set_sregs2(vcpu, u.sregs2); 5972 break; 5973 } 5974 case KVM_HAS_DEVICE_ATTR: 5975 case KVM_GET_DEVICE_ATTR: 5976 case KVM_SET_DEVICE_ATTR: 5977 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5978 break; 5979 default: 5980 r = -EINVAL; 5981 } 5982 out: 5983 kfree(u.buffer); 5984 out_nofree: 5985 vcpu_put(vcpu); 5986 return r; 5987 } 5988 5989 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5990 { 5991 return VM_FAULT_SIGBUS; 5992 } 5993 5994 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5995 { 5996 int ret; 5997 5998 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5999 return -EINVAL; 6000 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6001 return ret; 6002 } 6003 6004 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6005 u64 ident_addr) 6006 { 6007 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6008 } 6009 6010 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6011 unsigned long kvm_nr_mmu_pages) 6012 { 6013 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6014 return -EINVAL; 6015 6016 mutex_lock(&kvm->slots_lock); 6017 6018 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6019 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6020 6021 mutex_unlock(&kvm->slots_lock); 6022 return 0; 6023 } 6024 6025 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 6026 { 6027 return kvm->arch.n_max_mmu_pages; 6028 } 6029 6030 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6031 { 6032 struct kvm_pic *pic = kvm->arch.vpic; 6033 int r; 6034 6035 r = 0; 6036 switch (chip->chip_id) { 6037 case KVM_IRQCHIP_PIC_MASTER: 6038 memcpy(&chip->chip.pic, &pic->pics[0], 6039 sizeof(struct kvm_pic_state)); 6040 break; 6041 case KVM_IRQCHIP_PIC_SLAVE: 6042 memcpy(&chip->chip.pic, &pic->pics[1], 6043 sizeof(struct kvm_pic_state)); 6044 break; 6045 case KVM_IRQCHIP_IOAPIC: 6046 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6047 break; 6048 default: 6049 r = -EINVAL; 6050 break; 6051 } 6052 return r; 6053 } 6054 6055 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6056 { 6057 struct kvm_pic *pic = kvm->arch.vpic; 6058 int r; 6059 6060 r = 0; 6061 switch (chip->chip_id) { 6062 case KVM_IRQCHIP_PIC_MASTER: 6063 spin_lock(&pic->lock); 6064 memcpy(&pic->pics[0], &chip->chip.pic, 6065 sizeof(struct kvm_pic_state)); 6066 spin_unlock(&pic->lock); 6067 break; 6068 case KVM_IRQCHIP_PIC_SLAVE: 6069 spin_lock(&pic->lock); 6070 memcpy(&pic->pics[1], &chip->chip.pic, 6071 sizeof(struct kvm_pic_state)); 6072 spin_unlock(&pic->lock); 6073 break; 6074 case KVM_IRQCHIP_IOAPIC: 6075 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6076 break; 6077 default: 6078 r = -EINVAL; 6079 break; 6080 } 6081 kvm_pic_update_irq(pic); 6082 return r; 6083 } 6084 6085 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6086 { 6087 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6088 6089 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6090 6091 mutex_lock(&kps->lock); 6092 memcpy(ps, &kps->channels, sizeof(*ps)); 6093 mutex_unlock(&kps->lock); 6094 return 0; 6095 } 6096 6097 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6098 { 6099 int i; 6100 struct kvm_pit *pit = kvm->arch.vpit; 6101 6102 mutex_lock(&pit->pit_state.lock); 6103 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6104 for (i = 0; i < 3; i++) 6105 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6106 mutex_unlock(&pit->pit_state.lock); 6107 return 0; 6108 } 6109 6110 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6111 { 6112 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6113 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6114 sizeof(ps->channels)); 6115 ps->flags = kvm->arch.vpit->pit_state.flags; 6116 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6117 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6118 return 0; 6119 } 6120 6121 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6122 { 6123 int start = 0; 6124 int i; 6125 u32 prev_legacy, cur_legacy; 6126 struct kvm_pit *pit = kvm->arch.vpit; 6127 6128 mutex_lock(&pit->pit_state.lock); 6129 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6130 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6131 if (!prev_legacy && cur_legacy) 6132 start = 1; 6133 memcpy(&pit->pit_state.channels, &ps->channels, 6134 sizeof(pit->pit_state.channels)); 6135 pit->pit_state.flags = ps->flags; 6136 for (i = 0; i < 3; i++) 6137 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6138 start && i == 0); 6139 mutex_unlock(&pit->pit_state.lock); 6140 return 0; 6141 } 6142 6143 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6144 struct kvm_reinject_control *control) 6145 { 6146 struct kvm_pit *pit = kvm->arch.vpit; 6147 6148 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6149 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6150 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6151 */ 6152 mutex_lock(&pit->pit_state.lock); 6153 kvm_pit_set_reinject(pit, control->pit_reinject); 6154 mutex_unlock(&pit->pit_state.lock); 6155 6156 return 0; 6157 } 6158 6159 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6160 { 6161 6162 /* 6163 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6164 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6165 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6166 * VM-Exit. 6167 */ 6168 struct kvm_vcpu *vcpu; 6169 unsigned long i; 6170 6171 kvm_for_each_vcpu(i, vcpu, kvm) 6172 kvm_vcpu_kick(vcpu); 6173 } 6174 6175 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6176 bool line_status) 6177 { 6178 if (!irqchip_in_kernel(kvm)) 6179 return -ENXIO; 6180 6181 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6182 irq_event->irq, irq_event->level, 6183 line_status); 6184 return 0; 6185 } 6186 6187 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6188 struct kvm_enable_cap *cap) 6189 { 6190 int r; 6191 6192 if (cap->flags) 6193 return -EINVAL; 6194 6195 switch (cap->cap) { 6196 case KVM_CAP_DISABLE_QUIRKS2: 6197 r = -EINVAL; 6198 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6199 break; 6200 fallthrough; 6201 case KVM_CAP_DISABLE_QUIRKS: 6202 kvm->arch.disabled_quirks = cap->args[0]; 6203 r = 0; 6204 break; 6205 case KVM_CAP_SPLIT_IRQCHIP: { 6206 mutex_lock(&kvm->lock); 6207 r = -EINVAL; 6208 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6209 goto split_irqchip_unlock; 6210 r = -EEXIST; 6211 if (irqchip_in_kernel(kvm)) 6212 goto split_irqchip_unlock; 6213 if (kvm->created_vcpus) 6214 goto split_irqchip_unlock; 6215 r = kvm_setup_empty_irq_routing(kvm); 6216 if (r) 6217 goto split_irqchip_unlock; 6218 /* Pairs with irqchip_in_kernel. */ 6219 smp_wmb(); 6220 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6221 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6222 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6223 r = 0; 6224 split_irqchip_unlock: 6225 mutex_unlock(&kvm->lock); 6226 break; 6227 } 6228 case KVM_CAP_X2APIC_API: 6229 r = -EINVAL; 6230 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6231 break; 6232 6233 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6234 kvm->arch.x2apic_format = true; 6235 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6236 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6237 6238 r = 0; 6239 break; 6240 case KVM_CAP_X86_DISABLE_EXITS: 6241 r = -EINVAL; 6242 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6243 break; 6244 6245 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6246 kvm->arch.pause_in_guest = true; 6247 6248 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6249 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6250 6251 if (!mitigate_smt_rsb) { 6252 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6253 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6254 pr_warn_once(SMT_RSB_MSG); 6255 6256 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6257 kvm_can_mwait_in_guest()) 6258 kvm->arch.mwait_in_guest = true; 6259 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6260 kvm->arch.hlt_in_guest = true; 6261 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6262 kvm->arch.cstate_in_guest = true; 6263 } 6264 6265 r = 0; 6266 break; 6267 case KVM_CAP_MSR_PLATFORM_INFO: 6268 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6269 r = 0; 6270 break; 6271 case KVM_CAP_EXCEPTION_PAYLOAD: 6272 kvm->arch.exception_payload_enabled = cap->args[0]; 6273 r = 0; 6274 break; 6275 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6276 kvm->arch.triple_fault_event = cap->args[0]; 6277 r = 0; 6278 break; 6279 case KVM_CAP_X86_USER_SPACE_MSR: 6280 r = -EINVAL; 6281 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6282 break; 6283 kvm->arch.user_space_msr_mask = cap->args[0]; 6284 r = 0; 6285 break; 6286 case KVM_CAP_X86_BUS_LOCK_EXIT: 6287 r = -EINVAL; 6288 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6289 break; 6290 6291 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6292 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6293 break; 6294 6295 if (kvm_caps.has_bus_lock_exit && 6296 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6297 kvm->arch.bus_lock_detection_enabled = true; 6298 r = 0; 6299 break; 6300 #ifdef CONFIG_X86_SGX_KVM 6301 case KVM_CAP_SGX_ATTRIBUTE: { 6302 unsigned long allowed_attributes = 0; 6303 6304 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6305 if (r) 6306 break; 6307 6308 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6309 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6310 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6311 kvm->arch.sgx_provisioning_allowed = true; 6312 else 6313 r = -EINVAL; 6314 break; 6315 } 6316 #endif 6317 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6318 r = -EINVAL; 6319 if (!kvm_x86_ops.vm_copy_enc_context_from) 6320 break; 6321 6322 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6323 break; 6324 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6325 r = -EINVAL; 6326 if (!kvm_x86_ops.vm_move_enc_context_from) 6327 break; 6328 6329 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6330 break; 6331 case KVM_CAP_EXIT_HYPERCALL: 6332 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6333 r = -EINVAL; 6334 break; 6335 } 6336 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6337 r = 0; 6338 break; 6339 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6340 r = -EINVAL; 6341 if (cap->args[0] & ~1) 6342 break; 6343 kvm->arch.exit_on_emulation_error = cap->args[0]; 6344 r = 0; 6345 break; 6346 case KVM_CAP_PMU_CAPABILITY: 6347 r = -EINVAL; 6348 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6349 break; 6350 6351 mutex_lock(&kvm->lock); 6352 if (!kvm->created_vcpus) { 6353 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6354 r = 0; 6355 } 6356 mutex_unlock(&kvm->lock); 6357 break; 6358 case KVM_CAP_MAX_VCPU_ID: 6359 r = -EINVAL; 6360 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6361 break; 6362 6363 mutex_lock(&kvm->lock); 6364 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6365 r = 0; 6366 } else if (!kvm->arch.max_vcpu_ids) { 6367 kvm->arch.max_vcpu_ids = cap->args[0]; 6368 r = 0; 6369 } 6370 mutex_unlock(&kvm->lock); 6371 break; 6372 case KVM_CAP_X86_NOTIFY_VMEXIT: 6373 r = -EINVAL; 6374 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6375 break; 6376 if (!kvm_caps.has_notify_vmexit) 6377 break; 6378 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6379 break; 6380 mutex_lock(&kvm->lock); 6381 if (!kvm->created_vcpus) { 6382 kvm->arch.notify_window = cap->args[0] >> 32; 6383 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6384 r = 0; 6385 } 6386 mutex_unlock(&kvm->lock); 6387 break; 6388 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6389 r = -EINVAL; 6390 6391 /* 6392 * Since the risk of disabling NX hugepages is a guest crashing 6393 * the system, ensure the userspace process has permission to 6394 * reboot the system. 6395 * 6396 * Note that unlike the reboot() syscall, the process must have 6397 * this capability in the root namespace because exposing 6398 * /dev/kvm into a container does not limit the scope of the 6399 * iTLB multihit bug to that container. In other words, 6400 * this must use capable(), not ns_capable(). 6401 */ 6402 if (!capable(CAP_SYS_BOOT)) { 6403 r = -EPERM; 6404 break; 6405 } 6406 6407 if (cap->args[0]) 6408 break; 6409 6410 mutex_lock(&kvm->lock); 6411 if (!kvm->created_vcpus) { 6412 kvm->arch.disable_nx_huge_pages = true; 6413 r = 0; 6414 } 6415 mutex_unlock(&kvm->lock); 6416 break; 6417 default: 6418 r = -EINVAL; 6419 break; 6420 } 6421 return r; 6422 } 6423 6424 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6425 { 6426 struct kvm_x86_msr_filter *msr_filter; 6427 6428 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6429 if (!msr_filter) 6430 return NULL; 6431 6432 msr_filter->default_allow = default_allow; 6433 return msr_filter; 6434 } 6435 6436 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6437 { 6438 u32 i; 6439 6440 if (!msr_filter) 6441 return; 6442 6443 for (i = 0; i < msr_filter->count; i++) 6444 kfree(msr_filter->ranges[i].bitmap); 6445 6446 kfree(msr_filter); 6447 } 6448 6449 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6450 struct kvm_msr_filter_range *user_range) 6451 { 6452 unsigned long *bitmap = NULL; 6453 size_t bitmap_size; 6454 6455 if (!user_range->nmsrs) 6456 return 0; 6457 6458 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6459 return -EINVAL; 6460 6461 if (!user_range->flags) 6462 return -EINVAL; 6463 6464 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6465 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6466 return -EINVAL; 6467 6468 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6469 if (IS_ERR(bitmap)) 6470 return PTR_ERR(bitmap); 6471 6472 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6473 .flags = user_range->flags, 6474 .base = user_range->base, 6475 .nmsrs = user_range->nmsrs, 6476 .bitmap = bitmap, 6477 }; 6478 6479 msr_filter->count++; 6480 return 0; 6481 } 6482 6483 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6484 struct kvm_msr_filter *filter) 6485 { 6486 struct kvm_x86_msr_filter *new_filter, *old_filter; 6487 bool default_allow; 6488 bool empty = true; 6489 int r; 6490 u32 i; 6491 6492 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6493 return -EINVAL; 6494 6495 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6496 empty &= !filter->ranges[i].nmsrs; 6497 6498 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6499 if (empty && !default_allow) 6500 return -EINVAL; 6501 6502 new_filter = kvm_alloc_msr_filter(default_allow); 6503 if (!new_filter) 6504 return -ENOMEM; 6505 6506 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6507 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6508 if (r) { 6509 kvm_free_msr_filter(new_filter); 6510 return r; 6511 } 6512 } 6513 6514 mutex_lock(&kvm->lock); 6515 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6516 mutex_is_locked(&kvm->lock)); 6517 mutex_unlock(&kvm->lock); 6518 synchronize_srcu(&kvm->srcu); 6519 6520 kvm_free_msr_filter(old_filter); 6521 6522 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6523 6524 return 0; 6525 } 6526 6527 #ifdef CONFIG_KVM_COMPAT 6528 /* for KVM_X86_SET_MSR_FILTER */ 6529 struct kvm_msr_filter_range_compat { 6530 __u32 flags; 6531 __u32 nmsrs; 6532 __u32 base; 6533 __u32 bitmap; 6534 }; 6535 6536 struct kvm_msr_filter_compat { 6537 __u32 flags; 6538 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6539 }; 6540 6541 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6542 6543 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6544 unsigned long arg) 6545 { 6546 void __user *argp = (void __user *)arg; 6547 struct kvm *kvm = filp->private_data; 6548 long r = -ENOTTY; 6549 6550 switch (ioctl) { 6551 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6552 struct kvm_msr_filter __user *user_msr_filter = argp; 6553 struct kvm_msr_filter_compat filter_compat; 6554 struct kvm_msr_filter filter; 6555 int i; 6556 6557 if (copy_from_user(&filter_compat, user_msr_filter, 6558 sizeof(filter_compat))) 6559 return -EFAULT; 6560 6561 filter.flags = filter_compat.flags; 6562 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6563 struct kvm_msr_filter_range_compat *cr; 6564 6565 cr = &filter_compat.ranges[i]; 6566 filter.ranges[i] = (struct kvm_msr_filter_range) { 6567 .flags = cr->flags, 6568 .nmsrs = cr->nmsrs, 6569 .base = cr->base, 6570 .bitmap = (__u8 *)(ulong)cr->bitmap, 6571 }; 6572 } 6573 6574 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6575 break; 6576 } 6577 } 6578 6579 return r; 6580 } 6581 #endif 6582 6583 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6584 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6585 { 6586 struct kvm_vcpu *vcpu; 6587 unsigned long i; 6588 int ret = 0; 6589 6590 mutex_lock(&kvm->lock); 6591 kvm_for_each_vcpu(i, vcpu, kvm) { 6592 if (!vcpu->arch.pv_time.active) 6593 continue; 6594 6595 ret = kvm_set_guest_paused(vcpu); 6596 if (ret) { 6597 kvm_err("Failed to pause guest VCPU%d: %d\n", 6598 vcpu->vcpu_id, ret); 6599 break; 6600 } 6601 } 6602 mutex_unlock(&kvm->lock); 6603 6604 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6605 } 6606 6607 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6608 { 6609 switch (state) { 6610 case PM_HIBERNATION_PREPARE: 6611 case PM_SUSPEND_PREPARE: 6612 return kvm_arch_suspend_notifier(kvm); 6613 } 6614 6615 return NOTIFY_DONE; 6616 } 6617 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6618 6619 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6620 { 6621 struct kvm_clock_data data = { 0 }; 6622 6623 get_kvmclock(kvm, &data); 6624 if (copy_to_user(argp, &data, sizeof(data))) 6625 return -EFAULT; 6626 6627 return 0; 6628 } 6629 6630 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6631 { 6632 struct kvm_arch *ka = &kvm->arch; 6633 struct kvm_clock_data data; 6634 u64 now_raw_ns; 6635 6636 if (copy_from_user(&data, argp, sizeof(data))) 6637 return -EFAULT; 6638 6639 /* 6640 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6641 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6642 */ 6643 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6644 return -EINVAL; 6645 6646 kvm_hv_request_tsc_page_update(kvm); 6647 kvm_start_pvclock_update(kvm); 6648 pvclock_update_vm_gtod_copy(kvm); 6649 6650 /* 6651 * This pairs with kvm_guest_time_update(): when masterclock is 6652 * in use, we use master_kernel_ns + kvmclock_offset to set 6653 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6654 * is slightly ahead) here we risk going negative on unsigned 6655 * 'system_time' when 'data.clock' is very small. 6656 */ 6657 if (data.flags & KVM_CLOCK_REALTIME) { 6658 u64 now_real_ns = ktime_get_real_ns(); 6659 6660 /* 6661 * Avoid stepping the kvmclock backwards. 6662 */ 6663 if (now_real_ns > data.realtime) 6664 data.clock += now_real_ns - data.realtime; 6665 } 6666 6667 if (ka->use_master_clock) 6668 now_raw_ns = ka->master_kernel_ns; 6669 else 6670 now_raw_ns = get_kvmclock_base_ns(); 6671 ka->kvmclock_offset = data.clock - now_raw_ns; 6672 kvm_end_pvclock_update(kvm); 6673 return 0; 6674 } 6675 6676 long kvm_arch_vm_ioctl(struct file *filp, 6677 unsigned int ioctl, unsigned long arg) 6678 { 6679 struct kvm *kvm = filp->private_data; 6680 void __user *argp = (void __user *)arg; 6681 int r = -ENOTTY; 6682 /* 6683 * This union makes it completely explicit to gcc-3.x 6684 * that these two variables' stack usage should be 6685 * combined, not added together. 6686 */ 6687 union { 6688 struct kvm_pit_state ps; 6689 struct kvm_pit_state2 ps2; 6690 struct kvm_pit_config pit_config; 6691 } u; 6692 6693 switch (ioctl) { 6694 case KVM_SET_TSS_ADDR: 6695 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6696 break; 6697 case KVM_SET_IDENTITY_MAP_ADDR: { 6698 u64 ident_addr; 6699 6700 mutex_lock(&kvm->lock); 6701 r = -EINVAL; 6702 if (kvm->created_vcpus) 6703 goto set_identity_unlock; 6704 r = -EFAULT; 6705 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6706 goto set_identity_unlock; 6707 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6708 set_identity_unlock: 6709 mutex_unlock(&kvm->lock); 6710 break; 6711 } 6712 case KVM_SET_NR_MMU_PAGES: 6713 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6714 break; 6715 case KVM_GET_NR_MMU_PAGES: 6716 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6717 break; 6718 case KVM_CREATE_IRQCHIP: { 6719 mutex_lock(&kvm->lock); 6720 6721 r = -EEXIST; 6722 if (irqchip_in_kernel(kvm)) 6723 goto create_irqchip_unlock; 6724 6725 r = -EINVAL; 6726 if (kvm->created_vcpus) 6727 goto create_irqchip_unlock; 6728 6729 r = kvm_pic_init(kvm); 6730 if (r) 6731 goto create_irqchip_unlock; 6732 6733 r = kvm_ioapic_init(kvm); 6734 if (r) { 6735 kvm_pic_destroy(kvm); 6736 goto create_irqchip_unlock; 6737 } 6738 6739 r = kvm_setup_default_irq_routing(kvm); 6740 if (r) { 6741 kvm_ioapic_destroy(kvm); 6742 kvm_pic_destroy(kvm); 6743 goto create_irqchip_unlock; 6744 } 6745 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6746 smp_wmb(); 6747 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6748 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6749 create_irqchip_unlock: 6750 mutex_unlock(&kvm->lock); 6751 break; 6752 } 6753 case KVM_CREATE_PIT: 6754 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6755 goto create_pit; 6756 case KVM_CREATE_PIT2: 6757 r = -EFAULT; 6758 if (copy_from_user(&u.pit_config, argp, 6759 sizeof(struct kvm_pit_config))) 6760 goto out; 6761 create_pit: 6762 mutex_lock(&kvm->lock); 6763 r = -EEXIST; 6764 if (kvm->arch.vpit) 6765 goto create_pit_unlock; 6766 r = -ENOMEM; 6767 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6768 if (kvm->arch.vpit) 6769 r = 0; 6770 create_pit_unlock: 6771 mutex_unlock(&kvm->lock); 6772 break; 6773 case KVM_GET_IRQCHIP: { 6774 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6775 struct kvm_irqchip *chip; 6776 6777 chip = memdup_user(argp, sizeof(*chip)); 6778 if (IS_ERR(chip)) { 6779 r = PTR_ERR(chip); 6780 goto out; 6781 } 6782 6783 r = -ENXIO; 6784 if (!irqchip_kernel(kvm)) 6785 goto get_irqchip_out; 6786 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6787 if (r) 6788 goto get_irqchip_out; 6789 r = -EFAULT; 6790 if (copy_to_user(argp, chip, sizeof(*chip))) 6791 goto get_irqchip_out; 6792 r = 0; 6793 get_irqchip_out: 6794 kfree(chip); 6795 break; 6796 } 6797 case KVM_SET_IRQCHIP: { 6798 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6799 struct kvm_irqchip *chip; 6800 6801 chip = memdup_user(argp, sizeof(*chip)); 6802 if (IS_ERR(chip)) { 6803 r = PTR_ERR(chip); 6804 goto out; 6805 } 6806 6807 r = -ENXIO; 6808 if (!irqchip_kernel(kvm)) 6809 goto set_irqchip_out; 6810 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6811 set_irqchip_out: 6812 kfree(chip); 6813 break; 6814 } 6815 case KVM_GET_PIT: { 6816 r = -EFAULT; 6817 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6818 goto out; 6819 r = -ENXIO; 6820 if (!kvm->arch.vpit) 6821 goto out; 6822 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6823 if (r) 6824 goto out; 6825 r = -EFAULT; 6826 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6827 goto out; 6828 r = 0; 6829 break; 6830 } 6831 case KVM_SET_PIT: { 6832 r = -EFAULT; 6833 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6834 goto out; 6835 mutex_lock(&kvm->lock); 6836 r = -ENXIO; 6837 if (!kvm->arch.vpit) 6838 goto set_pit_out; 6839 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6840 set_pit_out: 6841 mutex_unlock(&kvm->lock); 6842 break; 6843 } 6844 case KVM_GET_PIT2: { 6845 r = -ENXIO; 6846 if (!kvm->arch.vpit) 6847 goto out; 6848 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6849 if (r) 6850 goto out; 6851 r = -EFAULT; 6852 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6853 goto out; 6854 r = 0; 6855 break; 6856 } 6857 case KVM_SET_PIT2: { 6858 r = -EFAULT; 6859 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6860 goto out; 6861 mutex_lock(&kvm->lock); 6862 r = -ENXIO; 6863 if (!kvm->arch.vpit) 6864 goto set_pit2_out; 6865 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6866 set_pit2_out: 6867 mutex_unlock(&kvm->lock); 6868 break; 6869 } 6870 case KVM_REINJECT_CONTROL: { 6871 struct kvm_reinject_control control; 6872 r = -EFAULT; 6873 if (copy_from_user(&control, argp, sizeof(control))) 6874 goto out; 6875 r = -ENXIO; 6876 if (!kvm->arch.vpit) 6877 goto out; 6878 r = kvm_vm_ioctl_reinject(kvm, &control); 6879 break; 6880 } 6881 case KVM_SET_BOOT_CPU_ID: 6882 r = 0; 6883 mutex_lock(&kvm->lock); 6884 if (kvm->created_vcpus) 6885 r = -EBUSY; 6886 else 6887 kvm->arch.bsp_vcpu_id = arg; 6888 mutex_unlock(&kvm->lock); 6889 break; 6890 #ifdef CONFIG_KVM_XEN 6891 case KVM_XEN_HVM_CONFIG: { 6892 struct kvm_xen_hvm_config xhc; 6893 r = -EFAULT; 6894 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6895 goto out; 6896 r = kvm_xen_hvm_config(kvm, &xhc); 6897 break; 6898 } 6899 case KVM_XEN_HVM_GET_ATTR: { 6900 struct kvm_xen_hvm_attr xha; 6901 6902 r = -EFAULT; 6903 if (copy_from_user(&xha, argp, sizeof(xha))) 6904 goto out; 6905 r = kvm_xen_hvm_get_attr(kvm, &xha); 6906 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6907 r = -EFAULT; 6908 break; 6909 } 6910 case KVM_XEN_HVM_SET_ATTR: { 6911 struct kvm_xen_hvm_attr xha; 6912 6913 r = -EFAULT; 6914 if (copy_from_user(&xha, argp, sizeof(xha))) 6915 goto out; 6916 r = kvm_xen_hvm_set_attr(kvm, &xha); 6917 break; 6918 } 6919 case KVM_XEN_HVM_EVTCHN_SEND: { 6920 struct kvm_irq_routing_xen_evtchn uxe; 6921 6922 r = -EFAULT; 6923 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6924 goto out; 6925 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6926 break; 6927 } 6928 #endif 6929 case KVM_SET_CLOCK: 6930 r = kvm_vm_ioctl_set_clock(kvm, argp); 6931 break; 6932 case KVM_GET_CLOCK: 6933 r = kvm_vm_ioctl_get_clock(kvm, argp); 6934 break; 6935 case KVM_SET_TSC_KHZ: { 6936 u32 user_tsc_khz; 6937 6938 r = -EINVAL; 6939 user_tsc_khz = (u32)arg; 6940 6941 if (kvm_caps.has_tsc_control && 6942 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6943 goto out; 6944 6945 if (user_tsc_khz == 0) 6946 user_tsc_khz = tsc_khz; 6947 6948 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6949 r = 0; 6950 6951 goto out; 6952 } 6953 case KVM_GET_TSC_KHZ: { 6954 r = READ_ONCE(kvm->arch.default_tsc_khz); 6955 goto out; 6956 } 6957 case KVM_MEMORY_ENCRYPT_OP: { 6958 r = -ENOTTY; 6959 if (!kvm_x86_ops.mem_enc_ioctl) 6960 goto out; 6961 6962 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6963 break; 6964 } 6965 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6966 struct kvm_enc_region region; 6967 6968 r = -EFAULT; 6969 if (copy_from_user(®ion, argp, sizeof(region))) 6970 goto out; 6971 6972 r = -ENOTTY; 6973 if (!kvm_x86_ops.mem_enc_register_region) 6974 goto out; 6975 6976 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6977 break; 6978 } 6979 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6980 struct kvm_enc_region region; 6981 6982 r = -EFAULT; 6983 if (copy_from_user(®ion, argp, sizeof(region))) 6984 goto out; 6985 6986 r = -ENOTTY; 6987 if (!kvm_x86_ops.mem_enc_unregister_region) 6988 goto out; 6989 6990 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6991 break; 6992 } 6993 case KVM_HYPERV_EVENTFD: { 6994 struct kvm_hyperv_eventfd hvevfd; 6995 6996 r = -EFAULT; 6997 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6998 goto out; 6999 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7000 break; 7001 } 7002 case KVM_SET_PMU_EVENT_FILTER: 7003 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7004 break; 7005 case KVM_X86_SET_MSR_FILTER: { 7006 struct kvm_msr_filter __user *user_msr_filter = argp; 7007 struct kvm_msr_filter filter; 7008 7009 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7010 return -EFAULT; 7011 7012 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7013 break; 7014 } 7015 default: 7016 r = -ENOTTY; 7017 } 7018 out: 7019 return r; 7020 } 7021 7022 static void kvm_probe_msr_to_save(u32 msr_index) 7023 { 7024 u32 dummy[2]; 7025 7026 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7027 return; 7028 7029 /* 7030 * Even MSRs that are valid in the host may not be exposed to guests in 7031 * some cases. 7032 */ 7033 switch (msr_index) { 7034 case MSR_IA32_BNDCFGS: 7035 if (!kvm_mpx_supported()) 7036 return; 7037 break; 7038 case MSR_TSC_AUX: 7039 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7040 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7041 return; 7042 break; 7043 case MSR_IA32_UMWAIT_CONTROL: 7044 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7045 return; 7046 break; 7047 case MSR_IA32_RTIT_CTL: 7048 case MSR_IA32_RTIT_STATUS: 7049 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7050 return; 7051 break; 7052 case MSR_IA32_RTIT_CR3_MATCH: 7053 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7054 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7055 return; 7056 break; 7057 case MSR_IA32_RTIT_OUTPUT_BASE: 7058 case MSR_IA32_RTIT_OUTPUT_MASK: 7059 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7060 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7061 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7062 return; 7063 break; 7064 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7065 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7066 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7067 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7068 return; 7069 break; 7070 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7071 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7072 kvm_pmu_cap.num_counters_gp) 7073 return; 7074 break; 7075 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7076 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7077 kvm_pmu_cap.num_counters_gp) 7078 return; 7079 break; 7080 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7081 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7082 kvm_pmu_cap.num_counters_fixed) 7083 return; 7084 break; 7085 case MSR_IA32_XFD: 7086 case MSR_IA32_XFD_ERR: 7087 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7088 return; 7089 break; 7090 default: 7091 break; 7092 } 7093 7094 msrs_to_save[num_msrs_to_save++] = msr_index; 7095 } 7096 7097 static void kvm_init_msr_list(void) 7098 { 7099 unsigned i; 7100 7101 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7102 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7103 7104 num_msrs_to_save = 0; 7105 num_emulated_msrs = 0; 7106 num_msr_based_features = 0; 7107 7108 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7109 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7110 7111 if (enable_pmu) { 7112 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7113 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7114 } 7115 7116 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7117 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7118 continue; 7119 7120 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7121 } 7122 7123 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7124 struct kvm_msr_entry msr; 7125 7126 msr.index = msr_based_features_all[i]; 7127 if (kvm_get_msr_feature(&msr)) 7128 continue; 7129 7130 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7131 } 7132 } 7133 7134 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7135 const void *v) 7136 { 7137 int handled = 0; 7138 int n; 7139 7140 do { 7141 n = min(len, 8); 7142 if (!(lapic_in_kernel(vcpu) && 7143 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7144 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7145 break; 7146 handled += n; 7147 addr += n; 7148 len -= n; 7149 v += n; 7150 } while (len); 7151 7152 return handled; 7153 } 7154 7155 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7156 { 7157 int handled = 0; 7158 int n; 7159 7160 do { 7161 n = min(len, 8); 7162 if (!(lapic_in_kernel(vcpu) && 7163 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7164 addr, n, v)) 7165 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7166 break; 7167 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7168 handled += n; 7169 addr += n; 7170 len -= n; 7171 v += n; 7172 } while (len); 7173 7174 return handled; 7175 } 7176 7177 void kvm_set_segment(struct kvm_vcpu *vcpu, 7178 struct kvm_segment *var, int seg) 7179 { 7180 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7181 } 7182 7183 void kvm_get_segment(struct kvm_vcpu *vcpu, 7184 struct kvm_segment *var, int seg) 7185 { 7186 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7187 } 7188 7189 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7190 struct x86_exception *exception) 7191 { 7192 struct kvm_mmu *mmu = vcpu->arch.mmu; 7193 gpa_t t_gpa; 7194 7195 BUG_ON(!mmu_is_nested(vcpu)); 7196 7197 /* NPT walks are always user-walks */ 7198 access |= PFERR_USER_MASK; 7199 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7200 7201 return t_gpa; 7202 } 7203 7204 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7205 struct x86_exception *exception) 7206 { 7207 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7208 7209 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7210 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7211 } 7212 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7213 7214 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7215 struct x86_exception *exception) 7216 { 7217 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7218 7219 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7220 access |= PFERR_WRITE_MASK; 7221 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7222 } 7223 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7224 7225 /* uses this to access any guest's mapped memory without checking CPL */ 7226 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7227 struct x86_exception *exception) 7228 { 7229 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7230 7231 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7232 } 7233 7234 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7235 struct kvm_vcpu *vcpu, u64 access, 7236 struct x86_exception *exception) 7237 { 7238 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7239 void *data = val; 7240 int r = X86EMUL_CONTINUE; 7241 7242 while (bytes) { 7243 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7244 unsigned offset = addr & (PAGE_SIZE-1); 7245 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7246 int ret; 7247 7248 if (gpa == INVALID_GPA) 7249 return X86EMUL_PROPAGATE_FAULT; 7250 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7251 offset, toread); 7252 if (ret < 0) { 7253 r = X86EMUL_IO_NEEDED; 7254 goto out; 7255 } 7256 7257 bytes -= toread; 7258 data += toread; 7259 addr += toread; 7260 } 7261 out: 7262 return r; 7263 } 7264 7265 /* used for instruction fetching */ 7266 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7267 gva_t addr, void *val, unsigned int bytes, 7268 struct x86_exception *exception) 7269 { 7270 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7271 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7272 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7273 unsigned offset; 7274 int ret; 7275 7276 /* Inline kvm_read_guest_virt_helper for speed. */ 7277 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7278 exception); 7279 if (unlikely(gpa == INVALID_GPA)) 7280 return X86EMUL_PROPAGATE_FAULT; 7281 7282 offset = addr & (PAGE_SIZE-1); 7283 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7284 bytes = (unsigned)PAGE_SIZE - offset; 7285 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7286 offset, bytes); 7287 if (unlikely(ret < 0)) 7288 return X86EMUL_IO_NEEDED; 7289 7290 return X86EMUL_CONTINUE; 7291 } 7292 7293 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7294 gva_t addr, void *val, unsigned int bytes, 7295 struct x86_exception *exception) 7296 { 7297 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7298 7299 /* 7300 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7301 * is returned, but our callers are not ready for that and they blindly 7302 * call kvm_inject_page_fault. Ensure that they at least do not leak 7303 * uninitialized kernel stack memory into cr2 and error code. 7304 */ 7305 memset(exception, 0, sizeof(*exception)); 7306 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7307 exception); 7308 } 7309 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7310 7311 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7312 gva_t addr, void *val, unsigned int bytes, 7313 struct x86_exception *exception, bool system) 7314 { 7315 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7316 u64 access = 0; 7317 7318 if (system) 7319 access |= PFERR_IMPLICIT_ACCESS; 7320 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7321 access |= PFERR_USER_MASK; 7322 7323 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7324 } 7325 7326 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7327 struct kvm_vcpu *vcpu, u64 access, 7328 struct x86_exception *exception) 7329 { 7330 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7331 void *data = val; 7332 int r = X86EMUL_CONTINUE; 7333 7334 while (bytes) { 7335 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7336 unsigned offset = addr & (PAGE_SIZE-1); 7337 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7338 int ret; 7339 7340 if (gpa == INVALID_GPA) 7341 return X86EMUL_PROPAGATE_FAULT; 7342 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7343 if (ret < 0) { 7344 r = X86EMUL_IO_NEEDED; 7345 goto out; 7346 } 7347 7348 bytes -= towrite; 7349 data += towrite; 7350 addr += towrite; 7351 } 7352 out: 7353 return r; 7354 } 7355 7356 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7357 unsigned int bytes, struct x86_exception *exception, 7358 bool system) 7359 { 7360 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7361 u64 access = PFERR_WRITE_MASK; 7362 7363 if (system) 7364 access |= PFERR_IMPLICIT_ACCESS; 7365 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7366 access |= PFERR_USER_MASK; 7367 7368 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7369 access, exception); 7370 } 7371 7372 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7373 unsigned int bytes, struct x86_exception *exception) 7374 { 7375 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7376 vcpu->arch.l1tf_flush_l1d = true; 7377 7378 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7379 PFERR_WRITE_MASK, exception); 7380 } 7381 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7382 7383 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7384 void *insn, int insn_len) 7385 { 7386 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7387 insn, insn_len); 7388 } 7389 7390 int handle_ud(struct kvm_vcpu *vcpu) 7391 { 7392 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7393 int fep_flags = READ_ONCE(force_emulation_prefix); 7394 int emul_type = EMULTYPE_TRAP_UD; 7395 char sig[5]; /* ud2; .ascii "kvm" */ 7396 struct x86_exception e; 7397 7398 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7399 return 1; 7400 7401 if (fep_flags && 7402 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7403 sig, sizeof(sig), &e) == 0 && 7404 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7405 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7406 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7407 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7408 emul_type = EMULTYPE_TRAP_UD_FORCED; 7409 } 7410 7411 return kvm_emulate_instruction(vcpu, emul_type); 7412 } 7413 EXPORT_SYMBOL_GPL(handle_ud); 7414 7415 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7416 gpa_t gpa, bool write) 7417 { 7418 /* For APIC access vmexit */ 7419 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7420 return 1; 7421 7422 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7423 trace_vcpu_match_mmio(gva, gpa, write, true); 7424 return 1; 7425 } 7426 7427 return 0; 7428 } 7429 7430 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7431 gpa_t *gpa, struct x86_exception *exception, 7432 bool write) 7433 { 7434 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7435 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7436 | (write ? PFERR_WRITE_MASK : 0); 7437 7438 /* 7439 * currently PKRU is only applied to ept enabled guest so 7440 * there is no pkey in EPT page table for L1 guest or EPT 7441 * shadow page table for L2 guest. 7442 */ 7443 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7444 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7445 vcpu->arch.mmio_access, 0, access))) { 7446 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7447 (gva & (PAGE_SIZE - 1)); 7448 trace_vcpu_match_mmio(gva, *gpa, write, false); 7449 return 1; 7450 } 7451 7452 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7453 7454 if (*gpa == INVALID_GPA) 7455 return -1; 7456 7457 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7458 } 7459 7460 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7461 const void *val, int bytes) 7462 { 7463 int ret; 7464 7465 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7466 if (ret < 0) 7467 return 0; 7468 kvm_page_track_write(vcpu, gpa, val, bytes); 7469 return 1; 7470 } 7471 7472 struct read_write_emulator_ops { 7473 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7474 int bytes); 7475 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7476 void *val, int bytes); 7477 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7478 int bytes, void *val); 7479 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7480 void *val, int bytes); 7481 bool write; 7482 }; 7483 7484 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7485 { 7486 if (vcpu->mmio_read_completed) { 7487 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7488 vcpu->mmio_fragments[0].gpa, val); 7489 vcpu->mmio_read_completed = 0; 7490 return 1; 7491 } 7492 7493 return 0; 7494 } 7495 7496 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7497 void *val, int bytes) 7498 { 7499 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7500 } 7501 7502 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7503 void *val, int bytes) 7504 { 7505 return emulator_write_phys(vcpu, gpa, val, bytes); 7506 } 7507 7508 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7509 { 7510 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7511 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7512 } 7513 7514 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7515 void *val, int bytes) 7516 { 7517 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7518 return X86EMUL_IO_NEEDED; 7519 } 7520 7521 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7522 void *val, int bytes) 7523 { 7524 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7525 7526 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7527 return X86EMUL_CONTINUE; 7528 } 7529 7530 static const struct read_write_emulator_ops read_emultor = { 7531 .read_write_prepare = read_prepare, 7532 .read_write_emulate = read_emulate, 7533 .read_write_mmio = vcpu_mmio_read, 7534 .read_write_exit_mmio = read_exit_mmio, 7535 }; 7536 7537 static const struct read_write_emulator_ops write_emultor = { 7538 .read_write_emulate = write_emulate, 7539 .read_write_mmio = write_mmio, 7540 .read_write_exit_mmio = write_exit_mmio, 7541 .write = true, 7542 }; 7543 7544 static int emulator_read_write_onepage(unsigned long addr, void *val, 7545 unsigned int bytes, 7546 struct x86_exception *exception, 7547 struct kvm_vcpu *vcpu, 7548 const struct read_write_emulator_ops *ops) 7549 { 7550 gpa_t gpa; 7551 int handled, ret; 7552 bool write = ops->write; 7553 struct kvm_mmio_fragment *frag; 7554 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7555 7556 /* 7557 * If the exit was due to a NPF we may already have a GPA. 7558 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7559 * Note, this cannot be used on string operations since string 7560 * operation using rep will only have the initial GPA from the NPF 7561 * occurred. 7562 */ 7563 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7564 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7565 gpa = ctxt->gpa_val; 7566 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7567 } else { 7568 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7569 if (ret < 0) 7570 return X86EMUL_PROPAGATE_FAULT; 7571 } 7572 7573 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7574 return X86EMUL_CONTINUE; 7575 7576 /* 7577 * Is this MMIO handled locally? 7578 */ 7579 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7580 if (handled == bytes) 7581 return X86EMUL_CONTINUE; 7582 7583 gpa += handled; 7584 bytes -= handled; 7585 val += handled; 7586 7587 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7588 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7589 frag->gpa = gpa; 7590 frag->data = val; 7591 frag->len = bytes; 7592 return X86EMUL_CONTINUE; 7593 } 7594 7595 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7596 unsigned long addr, 7597 void *val, unsigned int bytes, 7598 struct x86_exception *exception, 7599 const struct read_write_emulator_ops *ops) 7600 { 7601 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7602 gpa_t gpa; 7603 int rc; 7604 7605 if (ops->read_write_prepare && 7606 ops->read_write_prepare(vcpu, val, bytes)) 7607 return X86EMUL_CONTINUE; 7608 7609 vcpu->mmio_nr_fragments = 0; 7610 7611 /* Crossing a page boundary? */ 7612 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7613 int now; 7614 7615 now = -addr & ~PAGE_MASK; 7616 rc = emulator_read_write_onepage(addr, val, now, exception, 7617 vcpu, ops); 7618 7619 if (rc != X86EMUL_CONTINUE) 7620 return rc; 7621 addr += now; 7622 if (ctxt->mode != X86EMUL_MODE_PROT64) 7623 addr = (u32)addr; 7624 val += now; 7625 bytes -= now; 7626 } 7627 7628 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7629 vcpu, ops); 7630 if (rc != X86EMUL_CONTINUE) 7631 return rc; 7632 7633 if (!vcpu->mmio_nr_fragments) 7634 return rc; 7635 7636 gpa = vcpu->mmio_fragments[0].gpa; 7637 7638 vcpu->mmio_needed = 1; 7639 vcpu->mmio_cur_fragment = 0; 7640 7641 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7642 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7643 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7644 vcpu->run->mmio.phys_addr = gpa; 7645 7646 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7647 } 7648 7649 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7650 unsigned long addr, 7651 void *val, 7652 unsigned int bytes, 7653 struct x86_exception *exception) 7654 { 7655 return emulator_read_write(ctxt, addr, val, bytes, 7656 exception, &read_emultor); 7657 } 7658 7659 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7660 unsigned long addr, 7661 const void *val, 7662 unsigned int bytes, 7663 struct x86_exception *exception) 7664 { 7665 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7666 exception, &write_emultor); 7667 } 7668 7669 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7670 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7671 7672 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7673 unsigned long addr, 7674 const void *old, 7675 const void *new, 7676 unsigned int bytes, 7677 struct x86_exception *exception) 7678 { 7679 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7680 u64 page_line_mask; 7681 unsigned long hva; 7682 gpa_t gpa; 7683 int r; 7684 7685 /* guests cmpxchg8b have to be emulated atomically */ 7686 if (bytes > 8 || (bytes & (bytes - 1))) 7687 goto emul_write; 7688 7689 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7690 7691 if (gpa == INVALID_GPA || 7692 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7693 goto emul_write; 7694 7695 /* 7696 * Emulate the atomic as a straight write to avoid #AC if SLD is 7697 * enabled in the host and the access splits a cache line. 7698 */ 7699 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7700 page_line_mask = ~(cache_line_size() - 1); 7701 else 7702 page_line_mask = PAGE_MASK; 7703 7704 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7705 goto emul_write; 7706 7707 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7708 if (kvm_is_error_hva(hva)) 7709 goto emul_write; 7710 7711 hva += offset_in_page(gpa); 7712 7713 switch (bytes) { 7714 case 1: 7715 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7716 break; 7717 case 2: 7718 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7719 break; 7720 case 4: 7721 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7722 break; 7723 case 8: 7724 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7725 break; 7726 default: 7727 BUG(); 7728 } 7729 7730 if (r < 0) 7731 return X86EMUL_UNHANDLEABLE; 7732 if (r) 7733 return X86EMUL_CMPXCHG_FAILED; 7734 7735 kvm_page_track_write(vcpu, gpa, new, bytes); 7736 7737 return X86EMUL_CONTINUE; 7738 7739 emul_write: 7740 pr_warn_once("emulating exchange as write\n"); 7741 7742 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7743 } 7744 7745 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7746 unsigned short port, void *data, 7747 unsigned int count, bool in) 7748 { 7749 unsigned i; 7750 int r; 7751 7752 WARN_ON_ONCE(vcpu->arch.pio.count); 7753 for (i = 0; i < count; i++) { 7754 if (in) 7755 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7756 else 7757 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7758 7759 if (r) { 7760 if (i == 0) 7761 goto userspace_io; 7762 7763 /* 7764 * Userspace must have unregistered the device while PIO 7765 * was running. Drop writes / read as 0. 7766 */ 7767 if (in) 7768 memset(data, 0, size * (count - i)); 7769 break; 7770 } 7771 7772 data += size; 7773 } 7774 return 1; 7775 7776 userspace_io: 7777 vcpu->arch.pio.port = port; 7778 vcpu->arch.pio.in = in; 7779 vcpu->arch.pio.count = count; 7780 vcpu->arch.pio.size = size; 7781 7782 if (in) 7783 memset(vcpu->arch.pio_data, 0, size * count); 7784 else 7785 memcpy(vcpu->arch.pio_data, data, size * count); 7786 7787 vcpu->run->exit_reason = KVM_EXIT_IO; 7788 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7789 vcpu->run->io.size = size; 7790 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7791 vcpu->run->io.count = count; 7792 vcpu->run->io.port = port; 7793 return 0; 7794 } 7795 7796 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7797 unsigned short port, void *val, unsigned int count) 7798 { 7799 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7800 if (r) 7801 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7802 7803 return r; 7804 } 7805 7806 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7807 { 7808 int size = vcpu->arch.pio.size; 7809 unsigned int count = vcpu->arch.pio.count; 7810 memcpy(val, vcpu->arch.pio_data, size * count); 7811 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7812 vcpu->arch.pio.count = 0; 7813 } 7814 7815 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7816 int size, unsigned short port, void *val, 7817 unsigned int count) 7818 { 7819 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7820 if (vcpu->arch.pio.count) { 7821 /* 7822 * Complete a previous iteration that required userspace I/O. 7823 * Note, @count isn't guaranteed to match pio.count as userspace 7824 * can modify ECX before rerunning the vCPU. Ignore any such 7825 * shenanigans as KVM doesn't support modifying the rep count, 7826 * and the emulator ensures @count doesn't overflow the buffer. 7827 */ 7828 complete_emulator_pio_in(vcpu, val); 7829 return 1; 7830 } 7831 7832 return emulator_pio_in(vcpu, size, port, val, count); 7833 } 7834 7835 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7836 unsigned short port, const void *val, 7837 unsigned int count) 7838 { 7839 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7840 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7841 } 7842 7843 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7844 int size, unsigned short port, 7845 const void *val, unsigned int count) 7846 { 7847 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7848 } 7849 7850 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7851 { 7852 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7853 } 7854 7855 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7856 { 7857 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7858 } 7859 7860 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7861 { 7862 if (!need_emulate_wbinvd(vcpu)) 7863 return X86EMUL_CONTINUE; 7864 7865 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7866 int cpu = get_cpu(); 7867 7868 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7869 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7870 wbinvd_ipi, NULL, 1); 7871 put_cpu(); 7872 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7873 } else 7874 wbinvd(); 7875 return X86EMUL_CONTINUE; 7876 } 7877 7878 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7879 { 7880 kvm_emulate_wbinvd_noskip(vcpu); 7881 return kvm_skip_emulated_instruction(vcpu); 7882 } 7883 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7884 7885 7886 7887 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7888 { 7889 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7890 } 7891 7892 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7893 unsigned long *dest) 7894 { 7895 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7896 } 7897 7898 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7899 unsigned long value) 7900 { 7901 7902 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7903 } 7904 7905 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7906 { 7907 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7908 } 7909 7910 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7911 { 7912 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7913 unsigned long value; 7914 7915 switch (cr) { 7916 case 0: 7917 value = kvm_read_cr0(vcpu); 7918 break; 7919 case 2: 7920 value = vcpu->arch.cr2; 7921 break; 7922 case 3: 7923 value = kvm_read_cr3(vcpu); 7924 break; 7925 case 4: 7926 value = kvm_read_cr4(vcpu); 7927 break; 7928 case 8: 7929 value = kvm_get_cr8(vcpu); 7930 break; 7931 default: 7932 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7933 return 0; 7934 } 7935 7936 return value; 7937 } 7938 7939 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7940 { 7941 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7942 int res = 0; 7943 7944 switch (cr) { 7945 case 0: 7946 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7947 break; 7948 case 2: 7949 vcpu->arch.cr2 = val; 7950 break; 7951 case 3: 7952 res = kvm_set_cr3(vcpu, val); 7953 break; 7954 case 4: 7955 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7956 break; 7957 case 8: 7958 res = kvm_set_cr8(vcpu, val); 7959 break; 7960 default: 7961 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7962 res = -1; 7963 } 7964 7965 return res; 7966 } 7967 7968 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7969 { 7970 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7971 } 7972 7973 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7974 { 7975 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7976 } 7977 7978 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7979 { 7980 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7981 } 7982 7983 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7984 { 7985 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7986 } 7987 7988 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7989 { 7990 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7991 } 7992 7993 static unsigned long emulator_get_cached_segment_base( 7994 struct x86_emulate_ctxt *ctxt, int seg) 7995 { 7996 return get_segment_base(emul_to_vcpu(ctxt), seg); 7997 } 7998 7999 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8000 struct desc_struct *desc, u32 *base3, 8001 int seg) 8002 { 8003 struct kvm_segment var; 8004 8005 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8006 *selector = var.selector; 8007 8008 if (var.unusable) { 8009 memset(desc, 0, sizeof(*desc)); 8010 if (base3) 8011 *base3 = 0; 8012 return false; 8013 } 8014 8015 if (var.g) 8016 var.limit >>= 12; 8017 set_desc_limit(desc, var.limit); 8018 set_desc_base(desc, (unsigned long)var.base); 8019 #ifdef CONFIG_X86_64 8020 if (base3) 8021 *base3 = var.base >> 32; 8022 #endif 8023 desc->type = var.type; 8024 desc->s = var.s; 8025 desc->dpl = var.dpl; 8026 desc->p = var.present; 8027 desc->avl = var.avl; 8028 desc->l = var.l; 8029 desc->d = var.db; 8030 desc->g = var.g; 8031 8032 return true; 8033 } 8034 8035 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8036 struct desc_struct *desc, u32 base3, 8037 int seg) 8038 { 8039 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8040 struct kvm_segment var; 8041 8042 var.selector = selector; 8043 var.base = get_desc_base(desc); 8044 #ifdef CONFIG_X86_64 8045 var.base |= ((u64)base3) << 32; 8046 #endif 8047 var.limit = get_desc_limit(desc); 8048 if (desc->g) 8049 var.limit = (var.limit << 12) | 0xfff; 8050 var.type = desc->type; 8051 var.dpl = desc->dpl; 8052 var.db = desc->d; 8053 var.s = desc->s; 8054 var.l = desc->l; 8055 var.g = desc->g; 8056 var.avl = desc->avl; 8057 var.present = desc->p; 8058 var.unusable = !var.present; 8059 var.padding = 0; 8060 8061 kvm_set_segment(vcpu, &var, seg); 8062 return; 8063 } 8064 8065 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8066 u32 msr_index, u64 *pdata) 8067 { 8068 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8069 int r; 8070 8071 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8072 if (r < 0) 8073 return X86EMUL_UNHANDLEABLE; 8074 8075 if (r) { 8076 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8077 complete_emulated_rdmsr, r)) 8078 return X86EMUL_IO_NEEDED; 8079 8080 trace_kvm_msr_read_ex(msr_index); 8081 return X86EMUL_PROPAGATE_FAULT; 8082 } 8083 8084 trace_kvm_msr_read(msr_index, *pdata); 8085 return X86EMUL_CONTINUE; 8086 } 8087 8088 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8089 u32 msr_index, u64 data) 8090 { 8091 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8092 int r; 8093 8094 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8095 if (r < 0) 8096 return X86EMUL_UNHANDLEABLE; 8097 8098 if (r) { 8099 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8100 complete_emulated_msr_access, r)) 8101 return X86EMUL_IO_NEEDED; 8102 8103 trace_kvm_msr_write_ex(msr_index, data); 8104 return X86EMUL_PROPAGATE_FAULT; 8105 } 8106 8107 trace_kvm_msr_write(msr_index, data); 8108 return X86EMUL_CONTINUE; 8109 } 8110 8111 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8112 u32 msr_index, u64 *pdata) 8113 { 8114 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8115 } 8116 8117 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8118 u32 pmc) 8119 { 8120 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8121 return 0; 8122 return -EINVAL; 8123 } 8124 8125 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8126 u32 pmc, u64 *pdata) 8127 { 8128 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8129 } 8130 8131 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8132 { 8133 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8134 } 8135 8136 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8137 struct x86_instruction_info *info, 8138 enum x86_intercept_stage stage) 8139 { 8140 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8141 &ctxt->exception); 8142 } 8143 8144 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8145 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8146 bool exact_only) 8147 { 8148 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8149 } 8150 8151 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8152 { 8153 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8154 } 8155 8156 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8157 { 8158 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8159 } 8160 8161 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8162 { 8163 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8164 } 8165 8166 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8167 { 8168 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8169 } 8170 8171 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8172 { 8173 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8174 } 8175 8176 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8177 { 8178 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8179 } 8180 8181 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8182 { 8183 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8184 } 8185 8186 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8187 { 8188 return is_smm(emul_to_vcpu(ctxt)); 8189 } 8190 8191 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8192 { 8193 return is_guest_mode(emul_to_vcpu(ctxt)); 8194 } 8195 8196 #ifndef CONFIG_KVM_SMM 8197 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8198 { 8199 WARN_ON_ONCE(1); 8200 return X86EMUL_UNHANDLEABLE; 8201 } 8202 #endif 8203 8204 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8205 { 8206 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8207 } 8208 8209 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8210 { 8211 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8212 } 8213 8214 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8215 { 8216 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8217 8218 if (!kvm->vm_bugged) 8219 kvm_vm_bugged(kvm); 8220 } 8221 8222 static const struct x86_emulate_ops emulate_ops = { 8223 .vm_bugged = emulator_vm_bugged, 8224 .read_gpr = emulator_read_gpr, 8225 .write_gpr = emulator_write_gpr, 8226 .read_std = emulator_read_std, 8227 .write_std = emulator_write_std, 8228 .fetch = kvm_fetch_guest_virt, 8229 .read_emulated = emulator_read_emulated, 8230 .write_emulated = emulator_write_emulated, 8231 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8232 .invlpg = emulator_invlpg, 8233 .pio_in_emulated = emulator_pio_in_emulated, 8234 .pio_out_emulated = emulator_pio_out_emulated, 8235 .get_segment = emulator_get_segment, 8236 .set_segment = emulator_set_segment, 8237 .get_cached_segment_base = emulator_get_cached_segment_base, 8238 .get_gdt = emulator_get_gdt, 8239 .get_idt = emulator_get_idt, 8240 .set_gdt = emulator_set_gdt, 8241 .set_idt = emulator_set_idt, 8242 .get_cr = emulator_get_cr, 8243 .set_cr = emulator_set_cr, 8244 .cpl = emulator_get_cpl, 8245 .get_dr = emulator_get_dr, 8246 .set_dr = emulator_set_dr, 8247 .set_msr_with_filter = emulator_set_msr_with_filter, 8248 .get_msr_with_filter = emulator_get_msr_with_filter, 8249 .get_msr = emulator_get_msr, 8250 .check_pmc = emulator_check_pmc, 8251 .read_pmc = emulator_read_pmc, 8252 .halt = emulator_halt, 8253 .wbinvd = emulator_wbinvd, 8254 .fix_hypercall = emulator_fix_hypercall, 8255 .intercept = emulator_intercept, 8256 .get_cpuid = emulator_get_cpuid, 8257 .guest_has_long_mode = emulator_guest_has_long_mode, 8258 .guest_has_movbe = emulator_guest_has_movbe, 8259 .guest_has_fxsr = emulator_guest_has_fxsr, 8260 .guest_has_rdpid = emulator_guest_has_rdpid, 8261 .set_nmi_mask = emulator_set_nmi_mask, 8262 .is_smm = emulator_is_smm, 8263 .is_guest_mode = emulator_is_guest_mode, 8264 .leave_smm = emulator_leave_smm, 8265 .triple_fault = emulator_triple_fault, 8266 .set_xcr = emulator_set_xcr, 8267 }; 8268 8269 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8270 { 8271 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8272 /* 8273 * an sti; sti; sequence only disable interrupts for the first 8274 * instruction. So, if the last instruction, be it emulated or 8275 * not, left the system with the INT_STI flag enabled, it 8276 * means that the last instruction is an sti. We should not 8277 * leave the flag on in this case. The same goes for mov ss 8278 */ 8279 if (int_shadow & mask) 8280 mask = 0; 8281 if (unlikely(int_shadow || mask)) { 8282 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8283 if (!mask) 8284 kvm_make_request(KVM_REQ_EVENT, vcpu); 8285 } 8286 } 8287 8288 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8289 { 8290 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8291 8292 if (ctxt->exception.vector == PF_VECTOR) 8293 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8294 else if (ctxt->exception.error_code_valid) 8295 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8296 ctxt->exception.error_code); 8297 else 8298 kvm_queue_exception(vcpu, ctxt->exception.vector); 8299 } 8300 8301 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8302 { 8303 struct x86_emulate_ctxt *ctxt; 8304 8305 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8306 if (!ctxt) { 8307 pr_err("failed to allocate vcpu's emulator\n"); 8308 return NULL; 8309 } 8310 8311 ctxt->vcpu = vcpu; 8312 ctxt->ops = &emulate_ops; 8313 vcpu->arch.emulate_ctxt = ctxt; 8314 8315 return ctxt; 8316 } 8317 8318 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8319 { 8320 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8321 int cs_db, cs_l; 8322 8323 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8324 8325 ctxt->gpa_available = false; 8326 ctxt->eflags = kvm_get_rflags(vcpu); 8327 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8328 8329 ctxt->eip = kvm_rip_read(vcpu); 8330 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8331 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8332 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8333 cs_db ? X86EMUL_MODE_PROT32 : 8334 X86EMUL_MODE_PROT16; 8335 ctxt->interruptibility = 0; 8336 ctxt->have_exception = false; 8337 ctxt->exception.vector = -1; 8338 ctxt->perm_ok = false; 8339 8340 init_decode_cache(ctxt); 8341 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8342 } 8343 8344 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8345 { 8346 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8347 int ret; 8348 8349 init_emulate_ctxt(vcpu); 8350 8351 ctxt->op_bytes = 2; 8352 ctxt->ad_bytes = 2; 8353 ctxt->_eip = ctxt->eip + inc_eip; 8354 ret = emulate_int_real(ctxt, irq); 8355 8356 if (ret != X86EMUL_CONTINUE) { 8357 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8358 } else { 8359 ctxt->eip = ctxt->_eip; 8360 kvm_rip_write(vcpu, ctxt->eip); 8361 kvm_set_rflags(vcpu, ctxt->eflags); 8362 } 8363 } 8364 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8365 8366 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8367 u8 ndata, u8 *insn_bytes, u8 insn_size) 8368 { 8369 struct kvm_run *run = vcpu->run; 8370 u64 info[5]; 8371 u8 info_start; 8372 8373 /* 8374 * Zero the whole array used to retrieve the exit info, as casting to 8375 * u32 for select entries will leave some chunks uninitialized. 8376 */ 8377 memset(&info, 0, sizeof(info)); 8378 8379 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8380 &info[2], (u32 *)&info[3], 8381 (u32 *)&info[4]); 8382 8383 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8384 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8385 8386 /* 8387 * There's currently space for 13 entries, but 5 are used for the exit 8388 * reason and info. Restrict to 4 to reduce the maintenance burden 8389 * when expanding kvm_run.emulation_failure in the future. 8390 */ 8391 if (WARN_ON_ONCE(ndata > 4)) 8392 ndata = 4; 8393 8394 /* Always include the flags as a 'data' entry. */ 8395 info_start = 1; 8396 run->emulation_failure.flags = 0; 8397 8398 if (insn_size) { 8399 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8400 sizeof(run->emulation_failure.insn_bytes) != 16)); 8401 info_start += 2; 8402 run->emulation_failure.flags |= 8403 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8404 run->emulation_failure.insn_size = insn_size; 8405 memset(run->emulation_failure.insn_bytes, 0x90, 8406 sizeof(run->emulation_failure.insn_bytes)); 8407 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8408 } 8409 8410 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8411 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8412 ndata * sizeof(data[0])); 8413 8414 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8415 } 8416 8417 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8418 { 8419 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8420 8421 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8422 ctxt->fetch.end - ctxt->fetch.data); 8423 } 8424 8425 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8426 u8 ndata) 8427 { 8428 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8429 } 8430 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8431 8432 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8433 { 8434 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8435 } 8436 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8437 8438 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8439 { 8440 struct kvm *kvm = vcpu->kvm; 8441 8442 ++vcpu->stat.insn_emulation_fail; 8443 trace_kvm_emulate_insn_failed(vcpu); 8444 8445 if (emulation_type & EMULTYPE_VMWARE_GP) { 8446 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8447 return 1; 8448 } 8449 8450 if (kvm->arch.exit_on_emulation_error || 8451 (emulation_type & EMULTYPE_SKIP)) { 8452 prepare_emulation_ctxt_failure_exit(vcpu); 8453 return 0; 8454 } 8455 8456 kvm_queue_exception(vcpu, UD_VECTOR); 8457 8458 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8459 prepare_emulation_ctxt_failure_exit(vcpu); 8460 return 0; 8461 } 8462 8463 return 1; 8464 } 8465 8466 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8467 bool write_fault_to_shadow_pgtable, 8468 int emulation_type) 8469 { 8470 gpa_t gpa = cr2_or_gpa; 8471 kvm_pfn_t pfn; 8472 8473 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8474 return false; 8475 8476 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8477 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8478 return false; 8479 8480 if (!vcpu->arch.mmu->root_role.direct) { 8481 /* 8482 * Write permission should be allowed since only 8483 * write access need to be emulated. 8484 */ 8485 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8486 8487 /* 8488 * If the mapping is invalid in guest, let cpu retry 8489 * it to generate fault. 8490 */ 8491 if (gpa == INVALID_GPA) 8492 return true; 8493 } 8494 8495 /* 8496 * Do not retry the unhandleable instruction if it faults on the 8497 * readonly host memory, otherwise it will goto a infinite loop: 8498 * retry instruction -> write #PF -> emulation fail -> retry 8499 * instruction -> ... 8500 */ 8501 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8502 8503 /* 8504 * If the instruction failed on the error pfn, it can not be fixed, 8505 * report the error to userspace. 8506 */ 8507 if (is_error_noslot_pfn(pfn)) 8508 return false; 8509 8510 kvm_release_pfn_clean(pfn); 8511 8512 /* The instructions are well-emulated on direct mmu. */ 8513 if (vcpu->arch.mmu->root_role.direct) { 8514 unsigned int indirect_shadow_pages; 8515 8516 write_lock(&vcpu->kvm->mmu_lock); 8517 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8518 write_unlock(&vcpu->kvm->mmu_lock); 8519 8520 if (indirect_shadow_pages) 8521 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8522 8523 return true; 8524 } 8525 8526 /* 8527 * if emulation was due to access to shadowed page table 8528 * and it failed try to unshadow page and re-enter the 8529 * guest to let CPU execute the instruction. 8530 */ 8531 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8532 8533 /* 8534 * If the access faults on its page table, it can not 8535 * be fixed by unprotecting shadow page and it should 8536 * be reported to userspace. 8537 */ 8538 return !write_fault_to_shadow_pgtable; 8539 } 8540 8541 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8542 gpa_t cr2_or_gpa, int emulation_type) 8543 { 8544 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8545 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8546 8547 last_retry_eip = vcpu->arch.last_retry_eip; 8548 last_retry_addr = vcpu->arch.last_retry_addr; 8549 8550 /* 8551 * If the emulation is caused by #PF and it is non-page_table 8552 * writing instruction, it means the VM-EXIT is caused by shadow 8553 * page protected, we can zap the shadow page and retry this 8554 * instruction directly. 8555 * 8556 * Note: if the guest uses a non-page-table modifying instruction 8557 * on the PDE that points to the instruction, then we will unmap 8558 * the instruction and go to an infinite loop. So, we cache the 8559 * last retried eip and the last fault address, if we meet the eip 8560 * and the address again, we can break out of the potential infinite 8561 * loop. 8562 */ 8563 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8564 8565 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8566 return false; 8567 8568 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8569 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8570 return false; 8571 8572 if (x86_page_table_writing_insn(ctxt)) 8573 return false; 8574 8575 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8576 return false; 8577 8578 vcpu->arch.last_retry_eip = ctxt->eip; 8579 vcpu->arch.last_retry_addr = cr2_or_gpa; 8580 8581 if (!vcpu->arch.mmu->root_role.direct) 8582 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8583 8584 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8585 8586 return true; 8587 } 8588 8589 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8590 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8591 8592 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8593 unsigned long *db) 8594 { 8595 u32 dr6 = 0; 8596 int i; 8597 u32 enable, rwlen; 8598 8599 enable = dr7; 8600 rwlen = dr7 >> 16; 8601 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8602 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8603 dr6 |= (1 << i); 8604 return dr6; 8605 } 8606 8607 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8608 { 8609 struct kvm_run *kvm_run = vcpu->run; 8610 8611 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8612 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8613 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8614 kvm_run->debug.arch.exception = DB_VECTOR; 8615 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8616 return 0; 8617 } 8618 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8619 return 1; 8620 } 8621 8622 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8623 { 8624 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8625 int r; 8626 8627 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8628 if (unlikely(!r)) 8629 return 0; 8630 8631 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8632 8633 /* 8634 * rflags is the old, "raw" value of the flags. The new value has 8635 * not been saved yet. 8636 * 8637 * This is correct even for TF set by the guest, because "the 8638 * processor will not generate this exception after the instruction 8639 * that sets the TF flag". 8640 */ 8641 if (unlikely(rflags & X86_EFLAGS_TF)) 8642 r = kvm_vcpu_do_singlestep(vcpu); 8643 return r; 8644 } 8645 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8646 8647 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8648 { 8649 u32 shadow; 8650 8651 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8652 return true; 8653 8654 /* 8655 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8656 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8657 * to avoid the relatively expensive CPUID lookup. 8658 */ 8659 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8660 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8661 guest_cpuid_is_intel(vcpu); 8662 } 8663 8664 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8665 int emulation_type, int *r) 8666 { 8667 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8668 8669 /* 8670 * Do not check for code breakpoints if hardware has already done the 8671 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8672 * the instruction has passed all exception checks, and all intercepted 8673 * exceptions that trigger emulation have lower priority than code 8674 * breakpoints, i.e. the fact that the intercepted exception occurred 8675 * means any code breakpoints have already been serviced. 8676 * 8677 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8678 * hardware has checked the RIP of the magic prefix, but not the RIP of 8679 * the instruction being emulated. The intent of forced emulation is 8680 * to behave as if KVM intercepted the instruction without an exception 8681 * and without a prefix. 8682 */ 8683 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8684 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8685 return false; 8686 8687 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8688 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8689 struct kvm_run *kvm_run = vcpu->run; 8690 unsigned long eip = kvm_get_linear_rip(vcpu); 8691 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8692 vcpu->arch.guest_debug_dr7, 8693 vcpu->arch.eff_db); 8694 8695 if (dr6 != 0) { 8696 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8697 kvm_run->debug.arch.pc = eip; 8698 kvm_run->debug.arch.exception = DB_VECTOR; 8699 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8700 *r = 0; 8701 return true; 8702 } 8703 } 8704 8705 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8706 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8707 unsigned long eip = kvm_get_linear_rip(vcpu); 8708 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8709 vcpu->arch.dr7, 8710 vcpu->arch.db); 8711 8712 if (dr6 != 0) { 8713 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8714 *r = 1; 8715 return true; 8716 } 8717 } 8718 8719 return false; 8720 } 8721 8722 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8723 { 8724 switch (ctxt->opcode_len) { 8725 case 1: 8726 switch (ctxt->b) { 8727 case 0xe4: /* IN */ 8728 case 0xe5: 8729 case 0xec: 8730 case 0xed: 8731 case 0xe6: /* OUT */ 8732 case 0xe7: 8733 case 0xee: 8734 case 0xef: 8735 case 0x6c: /* INS */ 8736 case 0x6d: 8737 case 0x6e: /* OUTS */ 8738 case 0x6f: 8739 return true; 8740 } 8741 break; 8742 case 2: 8743 switch (ctxt->b) { 8744 case 0x33: /* RDPMC */ 8745 return true; 8746 } 8747 break; 8748 } 8749 8750 return false; 8751 } 8752 8753 /* 8754 * Decode an instruction for emulation. The caller is responsible for handling 8755 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8756 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8757 * code breakpoints have higher priority and thus have already been done by 8758 * hardware. 8759 * 8760 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8761 * response to a machine check. 8762 */ 8763 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8764 void *insn, int insn_len) 8765 { 8766 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8767 int r; 8768 8769 init_emulate_ctxt(vcpu); 8770 8771 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8772 8773 trace_kvm_emulate_insn_start(vcpu); 8774 ++vcpu->stat.insn_emulation; 8775 8776 return r; 8777 } 8778 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8779 8780 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8781 int emulation_type, void *insn, int insn_len) 8782 { 8783 int r; 8784 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8785 bool writeback = true; 8786 bool write_fault_to_spt; 8787 8788 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8789 return 1; 8790 8791 vcpu->arch.l1tf_flush_l1d = true; 8792 8793 /* 8794 * Clear write_fault_to_shadow_pgtable here to ensure it is 8795 * never reused. 8796 */ 8797 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8798 vcpu->arch.write_fault_to_shadow_pgtable = false; 8799 8800 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8801 kvm_clear_exception_queue(vcpu); 8802 8803 /* 8804 * Return immediately if RIP hits a code breakpoint, such #DBs 8805 * are fault-like and are higher priority than any faults on 8806 * the code fetch itself. 8807 */ 8808 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8809 return r; 8810 8811 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8812 insn, insn_len); 8813 if (r != EMULATION_OK) { 8814 if ((emulation_type & EMULTYPE_TRAP_UD) || 8815 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8816 kvm_queue_exception(vcpu, UD_VECTOR); 8817 return 1; 8818 } 8819 if (reexecute_instruction(vcpu, cr2_or_gpa, 8820 write_fault_to_spt, 8821 emulation_type)) 8822 return 1; 8823 8824 if (ctxt->have_exception && 8825 !(emulation_type & EMULTYPE_SKIP)) { 8826 /* 8827 * #UD should result in just EMULATION_FAILED, and trap-like 8828 * exception should not be encountered during decode. 8829 */ 8830 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8831 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8832 inject_emulated_exception(vcpu); 8833 return 1; 8834 } 8835 return handle_emulation_failure(vcpu, emulation_type); 8836 } 8837 } 8838 8839 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8840 !is_vmware_backdoor_opcode(ctxt)) { 8841 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8842 return 1; 8843 } 8844 8845 /* 8846 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8847 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8848 * The caller is responsible for updating interruptibility state and 8849 * injecting single-step #DBs. 8850 */ 8851 if (emulation_type & EMULTYPE_SKIP) { 8852 if (ctxt->mode != X86EMUL_MODE_PROT64) 8853 ctxt->eip = (u32)ctxt->_eip; 8854 else 8855 ctxt->eip = ctxt->_eip; 8856 8857 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8858 r = 1; 8859 goto writeback; 8860 } 8861 8862 kvm_rip_write(vcpu, ctxt->eip); 8863 if (ctxt->eflags & X86_EFLAGS_RF) 8864 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8865 return 1; 8866 } 8867 8868 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8869 return 1; 8870 8871 /* this is needed for vmware backdoor interface to work since it 8872 changes registers values during IO operation */ 8873 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8874 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8875 emulator_invalidate_register_cache(ctxt); 8876 } 8877 8878 restart: 8879 if (emulation_type & EMULTYPE_PF) { 8880 /* Save the faulting GPA (cr2) in the address field */ 8881 ctxt->exception.address = cr2_or_gpa; 8882 8883 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8884 if (vcpu->arch.mmu->root_role.direct) { 8885 ctxt->gpa_available = true; 8886 ctxt->gpa_val = cr2_or_gpa; 8887 } 8888 } else { 8889 /* Sanitize the address out of an abundance of paranoia. */ 8890 ctxt->exception.address = 0; 8891 } 8892 8893 r = x86_emulate_insn(ctxt); 8894 8895 if (r == EMULATION_INTERCEPTED) 8896 return 1; 8897 8898 if (r == EMULATION_FAILED) { 8899 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8900 emulation_type)) 8901 return 1; 8902 8903 return handle_emulation_failure(vcpu, emulation_type); 8904 } 8905 8906 if (ctxt->have_exception) { 8907 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 8908 vcpu->mmio_needed = false; 8909 r = 1; 8910 inject_emulated_exception(vcpu); 8911 } else if (vcpu->arch.pio.count) { 8912 if (!vcpu->arch.pio.in) { 8913 /* FIXME: return into emulator if single-stepping. */ 8914 vcpu->arch.pio.count = 0; 8915 } else { 8916 writeback = false; 8917 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8918 } 8919 r = 0; 8920 } else if (vcpu->mmio_needed) { 8921 ++vcpu->stat.mmio_exits; 8922 8923 if (!vcpu->mmio_is_write) 8924 writeback = false; 8925 r = 0; 8926 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8927 } else if (vcpu->arch.complete_userspace_io) { 8928 writeback = false; 8929 r = 0; 8930 } else if (r == EMULATION_RESTART) 8931 goto restart; 8932 else 8933 r = 1; 8934 8935 writeback: 8936 if (writeback) { 8937 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8938 toggle_interruptibility(vcpu, ctxt->interruptibility); 8939 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8940 8941 /* 8942 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8943 * only supports code breakpoints and general detect #DB, both 8944 * of which are fault-like. 8945 */ 8946 if (!ctxt->have_exception || 8947 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8948 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8949 if (ctxt->is_branch) 8950 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8951 kvm_rip_write(vcpu, ctxt->eip); 8952 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8953 r = kvm_vcpu_do_singlestep(vcpu); 8954 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8955 __kvm_set_rflags(vcpu, ctxt->eflags); 8956 } 8957 8958 /* 8959 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8960 * do nothing, and it will be requested again as soon as 8961 * the shadow expires. But we still need to check here, 8962 * because POPF has no interrupt shadow. 8963 */ 8964 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8965 kvm_make_request(KVM_REQ_EVENT, vcpu); 8966 } else 8967 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8968 8969 return r; 8970 } 8971 8972 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8973 { 8974 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8975 } 8976 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8977 8978 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8979 void *insn, int insn_len) 8980 { 8981 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8982 } 8983 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8984 8985 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8986 { 8987 vcpu->arch.pio.count = 0; 8988 return 1; 8989 } 8990 8991 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8992 { 8993 vcpu->arch.pio.count = 0; 8994 8995 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8996 return 1; 8997 8998 return kvm_skip_emulated_instruction(vcpu); 8999 } 9000 9001 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9002 unsigned short port) 9003 { 9004 unsigned long val = kvm_rax_read(vcpu); 9005 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9006 9007 if (ret) 9008 return ret; 9009 9010 /* 9011 * Workaround userspace that relies on old KVM behavior of %rip being 9012 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9013 */ 9014 if (port == 0x7e && 9015 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9016 vcpu->arch.complete_userspace_io = 9017 complete_fast_pio_out_port_0x7e; 9018 kvm_skip_emulated_instruction(vcpu); 9019 } else { 9020 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9021 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9022 } 9023 return 0; 9024 } 9025 9026 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9027 { 9028 unsigned long val; 9029 9030 /* We should only ever be called with arch.pio.count equal to 1 */ 9031 BUG_ON(vcpu->arch.pio.count != 1); 9032 9033 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9034 vcpu->arch.pio.count = 0; 9035 return 1; 9036 } 9037 9038 /* For size less than 4 we merge, else we zero extend */ 9039 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9040 9041 complete_emulator_pio_in(vcpu, &val); 9042 kvm_rax_write(vcpu, val); 9043 9044 return kvm_skip_emulated_instruction(vcpu); 9045 } 9046 9047 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9048 unsigned short port) 9049 { 9050 unsigned long val; 9051 int ret; 9052 9053 /* For size less than 4 we merge, else we zero extend */ 9054 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9055 9056 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9057 if (ret) { 9058 kvm_rax_write(vcpu, val); 9059 return ret; 9060 } 9061 9062 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9063 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9064 9065 return 0; 9066 } 9067 9068 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9069 { 9070 int ret; 9071 9072 if (in) 9073 ret = kvm_fast_pio_in(vcpu, size, port); 9074 else 9075 ret = kvm_fast_pio_out(vcpu, size, port); 9076 return ret && kvm_skip_emulated_instruction(vcpu); 9077 } 9078 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9079 9080 static int kvmclock_cpu_down_prep(unsigned int cpu) 9081 { 9082 __this_cpu_write(cpu_tsc_khz, 0); 9083 return 0; 9084 } 9085 9086 static void tsc_khz_changed(void *data) 9087 { 9088 struct cpufreq_freqs *freq = data; 9089 unsigned long khz = 0; 9090 9091 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9092 9093 if (data) 9094 khz = freq->new; 9095 else 9096 khz = cpufreq_quick_get(raw_smp_processor_id()); 9097 if (!khz) 9098 khz = tsc_khz; 9099 __this_cpu_write(cpu_tsc_khz, khz); 9100 } 9101 9102 #ifdef CONFIG_X86_64 9103 static void kvm_hyperv_tsc_notifier(void) 9104 { 9105 struct kvm *kvm; 9106 int cpu; 9107 9108 mutex_lock(&kvm_lock); 9109 list_for_each_entry(kvm, &vm_list, vm_list) 9110 kvm_make_mclock_inprogress_request(kvm); 9111 9112 /* no guest entries from this point */ 9113 hyperv_stop_tsc_emulation(); 9114 9115 /* TSC frequency always matches when on Hyper-V */ 9116 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9117 for_each_present_cpu(cpu) 9118 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9119 } 9120 kvm_caps.max_guest_tsc_khz = tsc_khz; 9121 9122 list_for_each_entry(kvm, &vm_list, vm_list) { 9123 __kvm_start_pvclock_update(kvm); 9124 pvclock_update_vm_gtod_copy(kvm); 9125 kvm_end_pvclock_update(kvm); 9126 } 9127 9128 mutex_unlock(&kvm_lock); 9129 } 9130 #endif 9131 9132 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9133 { 9134 struct kvm *kvm; 9135 struct kvm_vcpu *vcpu; 9136 int send_ipi = 0; 9137 unsigned long i; 9138 9139 /* 9140 * We allow guests to temporarily run on slowing clocks, 9141 * provided we notify them after, or to run on accelerating 9142 * clocks, provided we notify them before. Thus time never 9143 * goes backwards. 9144 * 9145 * However, we have a problem. We can't atomically update 9146 * the frequency of a given CPU from this function; it is 9147 * merely a notifier, which can be called from any CPU. 9148 * Changing the TSC frequency at arbitrary points in time 9149 * requires a recomputation of local variables related to 9150 * the TSC for each VCPU. We must flag these local variables 9151 * to be updated and be sure the update takes place with the 9152 * new frequency before any guests proceed. 9153 * 9154 * Unfortunately, the combination of hotplug CPU and frequency 9155 * change creates an intractable locking scenario; the order 9156 * of when these callouts happen is undefined with respect to 9157 * CPU hotplug, and they can race with each other. As such, 9158 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9159 * undefined; you can actually have a CPU frequency change take 9160 * place in between the computation of X and the setting of the 9161 * variable. To protect against this problem, all updates of 9162 * the per_cpu tsc_khz variable are done in an interrupt 9163 * protected IPI, and all callers wishing to update the value 9164 * must wait for a synchronous IPI to complete (which is trivial 9165 * if the caller is on the CPU already). This establishes the 9166 * necessary total order on variable updates. 9167 * 9168 * Note that because a guest time update may take place 9169 * anytime after the setting of the VCPU's request bit, the 9170 * correct TSC value must be set before the request. However, 9171 * to ensure the update actually makes it to any guest which 9172 * starts running in hardware virtualization between the set 9173 * and the acquisition of the spinlock, we must also ping the 9174 * CPU after setting the request bit. 9175 * 9176 */ 9177 9178 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9179 9180 mutex_lock(&kvm_lock); 9181 list_for_each_entry(kvm, &vm_list, vm_list) { 9182 kvm_for_each_vcpu(i, vcpu, kvm) { 9183 if (vcpu->cpu != cpu) 9184 continue; 9185 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9186 if (vcpu->cpu != raw_smp_processor_id()) 9187 send_ipi = 1; 9188 } 9189 } 9190 mutex_unlock(&kvm_lock); 9191 9192 if (freq->old < freq->new && send_ipi) { 9193 /* 9194 * We upscale the frequency. Must make the guest 9195 * doesn't see old kvmclock values while running with 9196 * the new frequency, otherwise we risk the guest sees 9197 * time go backwards. 9198 * 9199 * In case we update the frequency for another cpu 9200 * (which might be in guest context) send an interrupt 9201 * to kick the cpu out of guest context. Next time 9202 * guest context is entered kvmclock will be updated, 9203 * so the guest will not see stale values. 9204 */ 9205 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9206 } 9207 } 9208 9209 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9210 void *data) 9211 { 9212 struct cpufreq_freqs *freq = data; 9213 int cpu; 9214 9215 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9216 return 0; 9217 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9218 return 0; 9219 9220 for_each_cpu(cpu, freq->policy->cpus) 9221 __kvmclock_cpufreq_notifier(freq, cpu); 9222 9223 return 0; 9224 } 9225 9226 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9227 .notifier_call = kvmclock_cpufreq_notifier 9228 }; 9229 9230 static int kvmclock_cpu_online(unsigned int cpu) 9231 { 9232 tsc_khz_changed(NULL); 9233 return 0; 9234 } 9235 9236 static void kvm_timer_init(void) 9237 { 9238 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9239 max_tsc_khz = tsc_khz; 9240 9241 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9242 struct cpufreq_policy *policy; 9243 int cpu; 9244 9245 cpu = get_cpu(); 9246 policy = cpufreq_cpu_get(cpu); 9247 if (policy) { 9248 if (policy->cpuinfo.max_freq) 9249 max_tsc_khz = policy->cpuinfo.max_freq; 9250 cpufreq_cpu_put(policy); 9251 } 9252 put_cpu(); 9253 } 9254 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9255 CPUFREQ_TRANSITION_NOTIFIER); 9256 9257 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9258 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9259 } 9260 } 9261 9262 #ifdef CONFIG_X86_64 9263 static void pvclock_gtod_update_fn(struct work_struct *work) 9264 { 9265 struct kvm *kvm; 9266 struct kvm_vcpu *vcpu; 9267 unsigned long i; 9268 9269 mutex_lock(&kvm_lock); 9270 list_for_each_entry(kvm, &vm_list, vm_list) 9271 kvm_for_each_vcpu(i, vcpu, kvm) 9272 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9273 atomic_set(&kvm_guest_has_master_clock, 0); 9274 mutex_unlock(&kvm_lock); 9275 } 9276 9277 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9278 9279 /* 9280 * Indirection to move queue_work() out of the tk_core.seq write held 9281 * region to prevent possible deadlocks against time accessors which 9282 * are invoked with work related locks held. 9283 */ 9284 static void pvclock_irq_work_fn(struct irq_work *w) 9285 { 9286 queue_work(system_long_wq, &pvclock_gtod_work); 9287 } 9288 9289 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9290 9291 /* 9292 * Notification about pvclock gtod data update. 9293 */ 9294 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9295 void *priv) 9296 { 9297 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9298 struct timekeeper *tk = priv; 9299 9300 update_pvclock_gtod(tk); 9301 9302 /* 9303 * Disable master clock if host does not trust, or does not use, 9304 * TSC based clocksource. Delegate queue_work() to irq_work as 9305 * this is invoked with tk_core.seq write held. 9306 */ 9307 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9308 atomic_read(&kvm_guest_has_master_clock) != 0) 9309 irq_work_queue(&pvclock_irq_work); 9310 return 0; 9311 } 9312 9313 static struct notifier_block pvclock_gtod_notifier = { 9314 .notifier_call = pvclock_gtod_notify, 9315 }; 9316 #endif 9317 9318 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9319 { 9320 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9321 9322 #define __KVM_X86_OP(func) \ 9323 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9324 #define KVM_X86_OP(func) \ 9325 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9326 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9327 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9328 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9329 (void *)__static_call_return0); 9330 #include <asm/kvm-x86-ops.h> 9331 #undef __KVM_X86_OP 9332 9333 kvm_pmu_ops_update(ops->pmu_ops); 9334 } 9335 9336 static int kvm_x86_check_processor_compatibility(void) 9337 { 9338 int cpu = smp_processor_id(); 9339 struct cpuinfo_x86 *c = &cpu_data(cpu); 9340 9341 /* 9342 * Compatibility checks are done when loading KVM and when enabling 9343 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9344 * compatible, i.e. KVM should never perform a compatibility check on 9345 * an offline CPU. 9346 */ 9347 WARN_ON(!cpu_online(cpu)); 9348 9349 if (__cr4_reserved_bits(cpu_has, c) != 9350 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9351 return -EIO; 9352 9353 return static_call(kvm_x86_check_processor_compatibility)(); 9354 } 9355 9356 static void kvm_x86_check_cpu_compat(void *ret) 9357 { 9358 *(int *)ret = kvm_x86_check_processor_compatibility(); 9359 } 9360 9361 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9362 { 9363 u64 host_pat; 9364 int r, cpu; 9365 9366 if (kvm_x86_ops.hardware_enable) { 9367 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9368 return -EEXIST; 9369 } 9370 9371 /* 9372 * KVM explicitly assumes that the guest has an FPU and 9373 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9374 * vCPU's FPU state as a fxregs_state struct. 9375 */ 9376 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9377 pr_err("inadequate fpu\n"); 9378 return -EOPNOTSUPP; 9379 } 9380 9381 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9382 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9383 return -EOPNOTSUPP; 9384 } 9385 9386 /* 9387 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9388 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9389 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9390 * with an exception. PAT[0] is set to WB on RESET and also by the 9391 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9392 */ 9393 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9394 (host_pat & GENMASK(2, 0)) != 6) { 9395 pr_err("host PAT[0] is not WB\n"); 9396 return -EIO; 9397 } 9398 9399 x86_emulator_cache = kvm_alloc_emulator_cache(); 9400 if (!x86_emulator_cache) { 9401 pr_err("failed to allocate cache for x86 emulator\n"); 9402 return -ENOMEM; 9403 } 9404 9405 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9406 if (!user_return_msrs) { 9407 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9408 r = -ENOMEM; 9409 goto out_free_x86_emulator_cache; 9410 } 9411 kvm_nr_uret_msrs = 0; 9412 9413 r = kvm_mmu_vendor_module_init(); 9414 if (r) 9415 goto out_free_percpu; 9416 9417 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9418 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9419 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9420 } 9421 9422 rdmsrl_safe(MSR_EFER, &host_efer); 9423 9424 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9425 rdmsrl(MSR_IA32_XSS, host_xss); 9426 9427 kvm_init_pmu_capability(ops->pmu_ops); 9428 9429 r = ops->hardware_setup(); 9430 if (r != 0) 9431 goto out_mmu_exit; 9432 9433 kvm_ops_update(ops); 9434 9435 for_each_online_cpu(cpu) { 9436 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9437 if (r < 0) 9438 goto out_unwind_ops; 9439 } 9440 9441 /* 9442 * Point of no return! DO NOT add error paths below this point unless 9443 * absolutely necessary, as most operations from this point forward 9444 * require unwinding. 9445 */ 9446 kvm_timer_init(); 9447 9448 if (pi_inject_timer == -1) 9449 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9450 #ifdef CONFIG_X86_64 9451 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9452 9453 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9454 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9455 #endif 9456 9457 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9458 9459 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9460 kvm_caps.supported_xss = 0; 9461 9462 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9463 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9464 #undef __kvm_cpu_cap_has 9465 9466 if (kvm_caps.has_tsc_control) { 9467 /* 9468 * Make sure the user can only configure tsc_khz values that 9469 * fit into a signed integer. 9470 * A min value is not calculated because it will always 9471 * be 1 on all machines. 9472 */ 9473 u64 max = min(0x7fffffffULL, 9474 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9475 kvm_caps.max_guest_tsc_khz = max; 9476 } 9477 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9478 kvm_init_msr_list(); 9479 return 0; 9480 9481 out_unwind_ops: 9482 kvm_x86_ops.hardware_enable = NULL; 9483 static_call(kvm_x86_hardware_unsetup)(); 9484 out_mmu_exit: 9485 kvm_mmu_vendor_module_exit(); 9486 out_free_percpu: 9487 free_percpu(user_return_msrs); 9488 out_free_x86_emulator_cache: 9489 kmem_cache_destroy(x86_emulator_cache); 9490 return r; 9491 } 9492 9493 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9494 { 9495 int r; 9496 9497 mutex_lock(&vendor_module_lock); 9498 r = __kvm_x86_vendor_init(ops); 9499 mutex_unlock(&vendor_module_lock); 9500 9501 return r; 9502 } 9503 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9504 9505 void kvm_x86_vendor_exit(void) 9506 { 9507 kvm_unregister_perf_callbacks(); 9508 9509 #ifdef CONFIG_X86_64 9510 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9511 clear_hv_tscchange_cb(); 9512 #endif 9513 kvm_lapic_exit(); 9514 9515 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9516 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9517 CPUFREQ_TRANSITION_NOTIFIER); 9518 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9519 } 9520 #ifdef CONFIG_X86_64 9521 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9522 irq_work_sync(&pvclock_irq_work); 9523 cancel_work_sync(&pvclock_gtod_work); 9524 #endif 9525 static_call(kvm_x86_hardware_unsetup)(); 9526 kvm_mmu_vendor_module_exit(); 9527 free_percpu(user_return_msrs); 9528 kmem_cache_destroy(x86_emulator_cache); 9529 #ifdef CONFIG_KVM_XEN 9530 static_key_deferred_flush(&kvm_xen_enabled); 9531 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9532 #endif 9533 mutex_lock(&vendor_module_lock); 9534 kvm_x86_ops.hardware_enable = NULL; 9535 mutex_unlock(&vendor_module_lock); 9536 } 9537 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9538 9539 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9540 { 9541 /* 9542 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9543 * local APIC is in-kernel, the run loop will detect the non-runnable 9544 * state and halt the vCPU. Exit to userspace if the local APIC is 9545 * managed by userspace, in which case userspace is responsible for 9546 * handling wake events. 9547 */ 9548 ++vcpu->stat.halt_exits; 9549 if (lapic_in_kernel(vcpu)) { 9550 vcpu->arch.mp_state = state; 9551 return 1; 9552 } else { 9553 vcpu->run->exit_reason = reason; 9554 return 0; 9555 } 9556 } 9557 9558 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9559 { 9560 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9561 } 9562 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9563 9564 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9565 { 9566 int ret = kvm_skip_emulated_instruction(vcpu); 9567 /* 9568 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9569 * KVM_EXIT_DEBUG here. 9570 */ 9571 return kvm_emulate_halt_noskip(vcpu) && ret; 9572 } 9573 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9574 9575 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9576 { 9577 int ret = kvm_skip_emulated_instruction(vcpu); 9578 9579 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9580 KVM_EXIT_AP_RESET_HOLD) && ret; 9581 } 9582 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9583 9584 #ifdef CONFIG_X86_64 9585 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9586 unsigned long clock_type) 9587 { 9588 struct kvm_clock_pairing clock_pairing; 9589 struct timespec64 ts; 9590 u64 cycle; 9591 int ret; 9592 9593 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9594 return -KVM_EOPNOTSUPP; 9595 9596 /* 9597 * When tsc is in permanent catchup mode guests won't be able to use 9598 * pvclock_read_retry loop to get consistent view of pvclock 9599 */ 9600 if (vcpu->arch.tsc_always_catchup) 9601 return -KVM_EOPNOTSUPP; 9602 9603 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9604 return -KVM_EOPNOTSUPP; 9605 9606 clock_pairing.sec = ts.tv_sec; 9607 clock_pairing.nsec = ts.tv_nsec; 9608 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9609 clock_pairing.flags = 0; 9610 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9611 9612 ret = 0; 9613 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9614 sizeof(struct kvm_clock_pairing))) 9615 ret = -KVM_EFAULT; 9616 9617 return ret; 9618 } 9619 #endif 9620 9621 /* 9622 * kvm_pv_kick_cpu_op: Kick a vcpu. 9623 * 9624 * @apicid - apicid of vcpu to be kicked. 9625 */ 9626 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9627 { 9628 /* 9629 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9630 * common code, e.g. for tracing. Defer initialization to the compiler. 9631 */ 9632 struct kvm_lapic_irq lapic_irq = { 9633 .delivery_mode = APIC_DM_REMRD, 9634 .dest_mode = APIC_DEST_PHYSICAL, 9635 .shorthand = APIC_DEST_NOSHORT, 9636 .dest_id = apicid, 9637 }; 9638 9639 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9640 } 9641 9642 bool kvm_apicv_activated(struct kvm *kvm) 9643 { 9644 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9645 } 9646 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9647 9648 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9649 { 9650 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9651 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9652 9653 return (vm_reasons | vcpu_reasons) == 0; 9654 } 9655 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9656 9657 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9658 enum kvm_apicv_inhibit reason, bool set) 9659 { 9660 if (set) 9661 __set_bit(reason, inhibits); 9662 else 9663 __clear_bit(reason, inhibits); 9664 9665 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9666 } 9667 9668 static void kvm_apicv_init(struct kvm *kvm) 9669 { 9670 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9671 9672 init_rwsem(&kvm->arch.apicv_update_lock); 9673 9674 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9675 9676 if (!enable_apicv) 9677 set_or_clear_apicv_inhibit(inhibits, 9678 APICV_INHIBIT_REASON_DISABLE, true); 9679 } 9680 9681 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9682 { 9683 struct kvm_vcpu *target = NULL; 9684 struct kvm_apic_map *map; 9685 9686 vcpu->stat.directed_yield_attempted++; 9687 9688 if (single_task_running()) 9689 goto no_yield; 9690 9691 rcu_read_lock(); 9692 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9693 9694 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9695 target = map->phys_map[dest_id]->vcpu; 9696 9697 rcu_read_unlock(); 9698 9699 if (!target || !READ_ONCE(target->ready)) 9700 goto no_yield; 9701 9702 /* Ignore requests to yield to self */ 9703 if (vcpu == target) 9704 goto no_yield; 9705 9706 if (kvm_vcpu_yield_to(target) <= 0) 9707 goto no_yield; 9708 9709 vcpu->stat.directed_yield_successful++; 9710 9711 no_yield: 9712 return; 9713 } 9714 9715 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9716 { 9717 u64 ret = vcpu->run->hypercall.ret; 9718 9719 if (!is_64_bit_mode(vcpu)) 9720 ret = (u32)ret; 9721 kvm_rax_write(vcpu, ret); 9722 ++vcpu->stat.hypercalls; 9723 return kvm_skip_emulated_instruction(vcpu); 9724 } 9725 9726 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9727 { 9728 unsigned long nr, a0, a1, a2, a3, ret; 9729 int op_64_bit; 9730 9731 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9732 return kvm_xen_hypercall(vcpu); 9733 9734 if (kvm_hv_hypercall_enabled(vcpu)) 9735 return kvm_hv_hypercall(vcpu); 9736 9737 nr = kvm_rax_read(vcpu); 9738 a0 = kvm_rbx_read(vcpu); 9739 a1 = kvm_rcx_read(vcpu); 9740 a2 = kvm_rdx_read(vcpu); 9741 a3 = kvm_rsi_read(vcpu); 9742 9743 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9744 9745 op_64_bit = is_64_bit_hypercall(vcpu); 9746 if (!op_64_bit) { 9747 nr &= 0xFFFFFFFF; 9748 a0 &= 0xFFFFFFFF; 9749 a1 &= 0xFFFFFFFF; 9750 a2 &= 0xFFFFFFFF; 9751 a3 &= 0xFFFFFFFF; 9752 } 9753 9754 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9755 ret = -KVM_EPERM; 9756 goto out; 9757 } 9758 9759 ret = -KVM_ENOSYS; 9760 9761 switch (nr) { 9762 case KVM_HC_VAPIC_POLL_IRQ: 9763 ret = 0; 9764 break; 9765 case KVM_HC_KICK_CPU: 9766 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9767 break; 9768 9769 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9770 kvm_sched_yield(vcpu, a1); 9771 ret = 0; 9772 break; 9773 #ifdef CONFIG_X86_64 9774 case KVM_HC_CLOCK_PAIRING: 9775 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9776 break; 9777 #endif 9778 case KVM_HC_SEND_IPI: 9779 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9780 break; 9781 9782 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9783 break; 9784 case KVM_HC_SCHED_YIELD: 9785 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9786 break; 9787 9788 kvm_sched_yield(vcpu, a0); 9789 ret = 0; 9790 break; 9791 case KVM_HC_MAP_GPA_RANGE: { 9792 u64 gpa = a0, npages = a1, attrs = a2; 9793 9794 ret = -KVM_ENOSYS; 9795 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9796 break; 9797 9798 if (!PAGE_ALIGNED(gpa) || !npages || 9799 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9800 ret = -KVM_EINVAL; 9801 break; 9802 } 9803 9804 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9805 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9806 vcpu->run->hypercall.args[0] = gpa; 9807 vcpu->run->hypercall.args[1] = npages; 9808 vcpu->run->hypercall.args[2] = attrs; 9809 vcpu->run->hypercall.longmode = op_64_bit; 9810 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9811 return 0; 9812 } 9813 default: 9814 ret = -KVM_ENOSYS; 9815 break; 9816 } 9817 out: 9818 if (!op_64_bit) 9819 ret = (u32)ret; 9820 kvm_rax_write(vcpu, ret); 9821 9822 ++vcpu->stat.hypercalls; 9823 return kvm_skip_emulated_instruction(vcpu); 9824 } 9825 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9826 9827 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9828 { 9829 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9830 char instruction[3]; 9831 unsigned long rip = kvm_rip_read(vcpu); 9832 9833 /* 9834 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9835 * the pieces. 9836 */ 9837 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9838 ctxt->exception.error_code_valid = false; 9839 ctxt->exception.vector = UD_VECTOR; 9840 ctxt->have_exception = true; 9841 return X86EMUL_PROPAGATE_FAULT; 9842 } 9843 9844 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9845 9846 return emulator_write_emulated(ctxt, rip, instruction, 3, 9847 &ctxt->exception); 9848 } 9849 9850 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9851 { 9852 return vcpu->run->request_interrupt_window && 9853 likely(!pic_in_kernel(vcpu->kvm)); 9854 } 9855 9856 /* Called within kvm->srcu read side. */ 9857 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9858 { 9859 struct kvm_run *kvm_run = vcpu->run; 9860 9861 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9862 kvm_run->cr8 = kvm_get_cr8(vcpu); 9863 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9864 9865 kvm_run->ready_for_interrupt_injection = 9866 pic_in_kernel(vcpu->kvm) || 9867 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9868 9869 if (is_smm(vcpu)) 9870 kvm_run->flags |= KVM_RUN_X86_SMM; 9871 } 9872 9873 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9874 { 9875 int max_irr, tpr; 9876 9877 if (!kvm_x86_ops.update_cr8_intercept) 9878 return; 9879 9880 if (!lapic_in_kernel(vcpu)) 9881 return; 9882 9883 if (vcpu->arch.apic->apicv_active) 9884 return; 9885 9886 if (!vcpu->arch.apic->vapic_addr) 9887 max_irr = kvm_lapic_find_highest_irr(vcpu); 9888 else 9889 max_irr = -1; 9890 9891 if (max_irr != -1) 9892 max_irr >>= 4; 9893 9894 tpr = kvm_lapic_get_cr8(vcpu); 9895 9896 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9897 } 9898 9899 9900 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9901 { 9902 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9903 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9904 return 1; 9905 } 9906 9907 return kvm_x86_ops.nested_ops->check_events(vcpu); 9908 } 9909 9910 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9911 { 9912 /* 9913 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 9914 * exceptions don't report error codes. The presence of an error code 9915 * is carried with the exception and only stripped when the exception 9916 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 9917 * report an error code despite the CPU being in Real Mode. 9918 */ 9919 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 9920 9921 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9922 vcpu->arch.exception.has_error_code, 9923 vcpu->arch.exception.error_code, 9924 vcpu->arch.exception.injected); 9925 9926 static_call(kvm_x86_inject_exception)(vcpu); 9927 } 9928 9929 /* 9930 * Check for any event (interrupt or exception) that is ready to be injected, 9931 * and if there is at least one event, inject the event with the highest 9932 * priority. This handles both "pending" events, i.e. events that have never 9933 * been injected into the guest, and "injected" events, i.e. events that were 9934 * injected as part of a previous VM-Enter, but weren't successfully delivered 9935 * and need to be re-injected. 9936 * 9937 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9938 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9939 * be able to inject exceptions in the "middle" of an instruction, and so must 9940 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9941 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9942 * boundaries is necessary and correct. 9943 * 9944 * For simplicity, KVM uses a single path to inject all events (except events 9945 * that are injected directly from L1 to L2) and doesn't explicitly track 9946 * instruction boundaries for asynchronous events. However, because VM-Exits 9947 * that can occur during instruction execution typically result in KVM skipping 9948 * the instruction or injecting an exception, e.g. instruction and exception 9949 * intercepts, and because pending exceptions have higher priority than pending 9950 * interrupts, KVM still honors instruction boundaries in most scenarios. 9951 * 9952 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9953 * the instruction or inject an exception, then KVM can incorrecty inject a new 9954 * asynchrounous event if the event became pending after the CPU fetched the 9955 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9956 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9957 * injected on the restarted instruction instead of being deferred until the 9958 * instruction completes. 9959 * 9960 * In practice, this virtualization hole is unlikely to be observed by the 9961 * guest, and even less likely to cause functional problems. To detect the 9962 * hole, the guest would have to trigger an event on a side effect of an early 9963 * phase of instruction execution, e.g. on the instruction fetch from memory. 9964 * And for it to be a functional problem, the guest would need to depend on the 9965 * ordering between that side effect, the instruction completing, _and_ the 9966 * delivery of the asynchronous event. 9967 */ 9968 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9969 bool *req_immediate_exit) 9970 { 9971 bool can_inject; 9972 int r; 9973 9974 /* 9975 * Process nested events first, as nested VM-Exit supercedes event 9976 * re-injection. If there's an event queued for re-injection, it will 9977 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9978 */ 9979 if (is_guest_mode(vcpu)) 9980 r = kvm_check_nested_events(vcpu); 9981 else 9982 r = 0; 9983 9984 /* 9985 * Re-inject exceptions and events *especially* if immediate entry+exit 9986 * to/from L2 is needed, as any event that has already been injected 9987 * into L2 needs to complete its lifecycle before injecting a new event. 9988 * 9989 * Don't re-inject an NMI or interrupt if there is a pending exception. 9990 * This collision arises if an exception occurred while vectoring the 9991 * injected event, KVM intercepted said exception, and KVM ultimately 9992 * determined the fault belongs to the guest and queues the exception 9993 * for injection back into the guest. 9994 * 9995 * "Injected" interrupts can also collide with pending exceptions if 9996 * userspace ignores the "ready for injection" flag and blindly queues 9997 * an interrupt. In that case, prioritizing the exception is correct, 9998 * as the exception "occurred" before the exit to userspace. Trap-like 9999 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10000 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10001 * priority, they're only generated (pended) during instruction 10002 * execution, and interrupts are recognized at instruction boundaries. 10003 * Thus a pending fault-like exception means the fault occurred on the 10004 * *previous* instruction and must be serviced prior to recognizing any 10005 * new events in order to fully complete the previous instruction. 10006 */ 10007 if (vcpu->arch.exception.injected) 10008 kvm_inject_exception(vcpu); 10009 else if (kvm_is_exception_pending(vcpu)) 10010 ; /* see above */ 10011 else if (vcpu->arch.nmi_injected) 10012 static_call(kvm_x86_inject_nmi)(vcpu); 10013 else if (vcpu->arch.interrupt.injected) 10014 static_call(kvm_x86_inject_irq)(vcpu, true); 10015 10016 /* 10017 * Exceptions that morph to VM-Exits are handled above, and pending 10018 * exceptions on top of injected exceptions that do not VM-Exit should 10019 * either morph to #DF or, sadly, override the injected exception. 10020 */ 10021 WARN_ON_ONCE(vcpu->arch.exception.injected && 10022 vcpu->arch.exception.pending); 10023 10024 /* 10025 * Bail if immediate entry+exit to/from the guest is needed to complete 10026 * nested VM-Enter or event re-injection so that a different pending 10027 * event can be serviced (or if KVM needs to exit to userspace). 10028 * 10029 * Otherwise, continue processing events even if VM-Exit occurred. The 10030 * VM-Exit will have cleared exceptions that were meant for L2, but 10031 * there may now be events that can be injected into L1. 10032 */ 10033 if (r < 0) 10034 goto out; 10035 10036 /* 10037 * A pending exception VM-Exit should either result in nested VM-Exit 10038 * or force an immediate re-entry and exit to/from L2, and exception 10039 * VM-Exits cannot be injected (flag should _never_ be set). 10040 */ 10041 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10042 vcpu->arch.exception_vmexit.pending); 10043 10044 /* 10045 * New events, other than exceptions, cannot be injected if KVM needs 10046 * to re-inject a previous event. See above comments on re-injecting 10047 * for why pending exceptions get priority. 10048 */ 10049 can_inject = !kvm_event_needs_reinjection(vcpu); 10050 10051 if (vcpu->arch.exception.pending) { 10052 /* 10053 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10054 * value pushed on the stack. Trap-like exception and all #DBs 10055 * leave RF as-is (KVM follows Intel's behavior in this regard; 10056 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10057 * 10058 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10059 * describe the behavior of General Detect #DBs, which are 10060 * fault-like. They do _not_ set RF, a la code breakpoints. 10061 */ 10062 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10063 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10064 X86_EFLAGS_RF); 10065 10066 if (vcpu->arch.exception.vector == DB_VECTOR) { 10067 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10068 if (vcpu->arch.dr7 & DR7_GD) { 10069 vcpu->arch.dr7 &= ~DR7_GD; 10070 kvm_update_dr7(vcpu); 10071 } 10072 } 10073 10074 kvm_inject_exception(vcpu); 10075 10076 vcpu->arch.exception.pending = false; 10077 vcpu->arch.exception.injected = true; 10078 10079 can_inject = false; 10080 } 10081 10082 /* Don't inject interrupts if the user asked to avoid doing so */ 10083 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10084 return 0; 10085 10086 /* 10087 * Finally, inject interrupt events. If an event cannot be injected 10088 * due to architectural conditions (e.g. IF=0) a window-open exit 10089 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10090 * and can architecturally be injected, but we cannot do it right now: 10091 * an interrupt could have arrived just now and we have to inject it 10092 * as a vmexit, or there could already an event in the queue, which is 10093 * indicated by can_inject. In that case we request an immediate exit 10094 * in order to make progress and get back here for another iteration. 10095 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10096 */ 10097 #ifdef CONFIG_KVM_SMM 10098 if (vcpu->arch.smi_pending) { 10099 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10100 if (r < 0) 10101 goto out; 10102 if (r) { 10103 vcpu->arch.smi_pending = false; 10104 ++vcpu->arch.smi_count; 10105 enter_smm(vcpu); 10106 can_inject = false; 10107 } else 10108 static_call(kvm_x86_enable_smi_window)(vcpu); 10109 } 10110 #endif 10111 10112 if (vcpu->arch.nmi_pending) { 10113 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10114 if (r < 0) 10115 goto out; 10116 if (r) { 10117 --vcpu->arch.nmi_pending; 10118 vcpu->arch.nmi_injected = true; 10119 static_call(kvm_x86_inject_nmi)(vcpu); 10120 can_inject = false; 10121 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10122 } 10123 if (vcpu->arch.nmi_pending) 10124 static_call(kvm_x86_enable_nmi_window)(vcpu); 10125 } 10126 10127 if (kvm_cpu_has_injectable_intr(vcpu)) { 10128 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10129 if (r < 0) 10130 goto out; 10131 if (r) { 10132 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10133 static_call(kvm_x86_inject_irq)(vcpu, false); 10134 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10135 } 10136 if (kvm_cpu_has_injectable_intr(vcpu)) 10137 static_call(kvm_x86_enable_irq_window)(vcpu); 10138 } 10139 10140 if (is_guest_mode(vcpu) && 10141 kvm_x86_ops.nested_ops->has_events && 10142 kvm_x86_ops.nested_ops->has_events(vcpu)) 10143 *req_immediate_exit = true; 10144 10145 /* 10146 * KVM must never queue a new exception while injecting an event; KVM 10147 * is done emulating and should only propagate the to-be-injected event 10148 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10149 * infinite loop as KVM will bail from VM-Enter to inject the pending 10150 * exception and start the cycle all over. 10151 * 10152 * Exempt triple faults as they have special handling and won't put the 10153 * vCPU into an infinite loop. Triple fault can be queued when running 10154 * VMX without unrestricted guest, as that requires KVM to emulate Real 10155 * Mode events (see kvm_inject_realmode_interrupt()). 10156 */ 10157 WARN_ON_ONCE(vcpu->arch.exception.pending || 10158 vcpu->arch.exception_vmexit.pending); 10159 return 0; 10160 10161 out: 10162 if (r == -EBUSY) { 10163 *req_immediate_exit = true; 10164 r = 0; 10165 } 10166 return r; 10167 } 10168 10169 static void process_nmi(struct kvm_vcpu *vcpu) 10170 { 10171 unsigned limit = 2; 10172 10173 /* 10174 * x86 is limited to one NMI running, and one NMI pending after it. 10175 * If an NMI is already in progress, limit further NMIs to just one. 10176 * Otherwise, allow two (and we'll inject the first one immediately). 10177 */ 10178 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10179 limit = 1; 10180 10181 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10182 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10183 kvm_make_request(KVM_REQ_EVENT, vcpu); 10184 } 10185 10186 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10187 unsigned long *vcpu_bitmap) 10188 { 10189 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10190 } 10191 10192 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10193 { 10194 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10195 } 10196 10197 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10198 { 10199 struct kvm_lapic *apic = vcpu->arch.apic; 10200 bool activate; 10201 10202 if (!lapic_in_kernel(vcpu)) 10203 return; 10204 10205 down_read(&vcpu->kvm->arch.apicv_update_lock); 10206 preempt_disable(); 10207 10208 /* Do not activate APICV when APIC is disabled */ 10209 activate = kvm_vcpu_apicv_activated(vcpu) && 10210 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10211 10212 if (apic->apicv_active == activate) 10213 goto out; 10214 10215 apic->apicv_active = activate; 10216 kvm_apic_update_apicv(vcpu); 10217 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10218 10219 /* 10220 * When APICv gets disabled, we may still have injected interrupts 10221 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10222 * still active when the interrupt got accepted. Make sure 10223 * kvm_check_and_inject_events() is called to check for that. 10224 */ 10225 if (!apic->apicv_active) 10226 kvm_make_request(KVM_REQ_EVENT, vcpu); 10227 10228 out: 10229 preempt_enable(); 10230 up_read(&vcpu->kvm->arch.apicv_update_lock); 10231 } 10232 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10233 10234 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10235 { 10236 if (!lapic_in_kernel(vcpu)) 10237 return; 10238 10239 /* 10240 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10241 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10242 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10243 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10244 * this case so that KVM can the AVIC doorbell to inject interrupts to 10245 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10246 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10247 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10248 * access page is sticky. 10249 */ 10250 if (apic_x2apic_mode(vcpu->arch.apic) && 10251 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10252 kvm_inhibit_apic_access_page(vcpu); 10253 10254 __kvm_vcpu_update_apicv(vcpu); 10255 } 10256 10257 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10258 enum kvm_apicv_inhibit reason, bool set) 10259 { 10260 unsigned long old, new; 10261 10262 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10263 10264 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10265 return; 10266 10267 old = new = kvm->arch.apicv_inhibit_reasons; 10268 10269 set_or_clear_apicv_inhibit(&new, reason, set); 10270 10271 if (!!old != !!new) { 10272 /* 10273 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10274 * false positives in the sanity check WARN in svm_vcpu_run(). 10275 * This task will wait for all vCPUs to ack the kick IRQ before 10276 * updating apicv_inhibit_reasons, and all other vCPUs will 10277 * block on acquiring apicv_update_lock so that vCPUs can't 10278 * redo svm_vcpu_run() without seeing the new inhibit state. 10279 * 10280 * Note, holding apicv_update_lock and taking it in the read 10281 * side (handling the request) also prevents other vCPUs from 10282 * servicing the request with a stale apicv_inhibit_reasons. 10283 */ 10284 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10285 kvm->arch.apicv_inhibit_reasons = new; 10286 if (new) { 10287 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10288 int idx = srcu_read_lock(&kvm->srcu); 10289 10290 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10291 srcu_read_unlock(&kvm->srcu, idx); 10292 } 10293 } else { 10294 kvm->arch.apicv_inhibit_reasons = new; 10295 } 10296 } 10297 10298 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10299 enum kvm_apicv_inhibit reason, bool set) 10300 { 10301 if (!enable_apicv) 10302 return; 10303 10304 down_write(&kvm->arch.apicv_update_lock); 10305 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10306 up_write(&kvm->arch.apicv_update_lock); 10307 } 10308 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10309 10310 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10311 { 10312 if (!kvm_apic_present(vcpu)) 10313 return; 10314 10315 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10316 10317 if (irqchip_split(vcpu->kvm)) 10318 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10319 else { 10320 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10321 if (ioapic_in_kernel(vcpu->kvm)) 10322 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10323 } 10324 10325 if (is_guest_mode(vcpu)) 10326 vcpu->arch.load_eoi_exitmap_pending = true; 10327 else 10328 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10329 } 10330 10331 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10332 { 10333 u64 eoi_exit_bitmap[4]; 10334 10335 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10336 return; 10337 10338 if (to_hv_vcpu(vcpu)) { 10339 bitmap_or((ulong *)eoi_exit_bitmap, 10340 vcpu->arch.ioapic_handled_vectors, 10341 to_hv_synic(vcpu)->vec_bitmap, 256); 10342 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10343 return; 10344 } 10345 10346 static_call_cond(kvm_x86_load_eoi_exitmap)( 10347 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10348 } 10349 10350 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10351 unsigned long start, unsigned long end) 10352 { 10353 unsigned long apic_address; 10354 10355 /* 10356 * The physical address of apic access page is stored in the VMCS. 10357 * Update it when it becomes invalid. 10358 */ 10359 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10360 if (start <= apic_address && apic_address < end) 10361 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10362 } 10363 10364 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10365 { 10366 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10367 } 10368 10369 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10370 { 10371 if (!lapic_in_kernel(vcpu)) 10372 return; 10373 10374 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10375 } 10376 10377 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10378 { 10379 smp_send_reschedule(vcpu->cpu); 10380 } 10381 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10382 10383 /* 10384 * Called within kvm->srcu read side. 10385 * Returns 1 to let vcpu_run() continue the guest execution loop without 10386 * exiting to the userspace. Otherwise, the value will be returned to the 10387 * userspace. 10388 */ 10389 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10390 { 10391 int r; 10392 bool req_int_win = 10393 dm_request_for_irq_injection(vcpu) && 10394 kvm_cpu_accept_dm_intr(vcpu); 10395 fastpath_t exit_fastpath; 10396 10397 bool req_immediate_exit = false; 10398 10399 if (kvm_request_pending(vcpu)) { 10400 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10401 r = -EIO; 10402 goto out; 10403 } 10404 10405 if (kvm_dirty_ring_check_request(vcpu)) { 10406 r = 0; 10407 goto out; 10408 } 10409 10410 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10411 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10412 r = 0; 10413 goto out; 10414 } 10415 } 10416 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10417 kvm_mmu_free_obsolete_roots(vcpu); 10418 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10419 __kvm_migrate_timers(vcpu); 10420 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10421 kvm_update_masterclock(vcpu->kvm); 10422 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10423 kvm_gen_kvmclock_update(vcpu); 10424 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10425 r = kvm_guest_time_update(vcpu); 10426 if (unlikely(r)) 10427 goto out; 10428 } 10429 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10430 kvm_mmu_sync_roots(vcpu); 10431 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10432 kvm_mmu_load_pgd(vcpu); 10433 10434 /* 10435 * Note, the order matters here, as flushing "all" TLB entries 10436 * also flushes the "current" TLB entries, i.e. servicing the 10437 * flush "all" will clear any request to flush "current". 10438 */ 10439 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10440 kvm_vcpu_flush_tlb_all(vcpu); 10441 10442 kvm_service_local_tlb_flush_requests(vcpu); 10443 10444 /* 10445 * Fall back to a "full" guest flush if Hyper-V's precise 10446 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10447 * the flushes are considered "remote" and not "local" because 10448 * the requests can be initiated from other vCPUs. 10449 */ 10450 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10451 kvm_hv_vcpu_flush_tlb(vcpu)) 10452 kvm_vcpu_flush_tlb_guest(vcpu); 10453 10454 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10455 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10456 r = 0; 10457 goto out; 10458 } 10459 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10460 if (is_guest_mode(vcpu)) 10461 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10462 10463 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10464 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10465 vcpu->mmio_needed = 0; 10466 r = 0; 10467 goto out; 10468 } 10469 } 10470 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10471 /* Page is swapped out. Do synthetic halt */ 10472 vcpu->arch.apf.halted = true; 10473 r = 1; 10474 goto out; 10475 } 10476 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10477 record_steal_time(vcpu); 10478 #ifdef CONFIG_KVM_SMM 10479 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10480 process_smi(vcpu); 10481 #endif 10482 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10483 process_nmi(vcpu); 10484 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10485 kvm_pmu_handle_event(vcpu); 10486 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10487 kvm_pmu_deliver_pmi(vcpu); 10488 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10489 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10490 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10491 vcpu->arch.ioapic_handled_vectors)) { 10492 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10493 vcpu->run->eoi.vector = 10494 vcpu->arch.pending_ioapic_eoi; 10495 r = 0; 10496 goto out; 10497 } 10498 } 10499 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10500 vcpu_scan_ioapic(vcpu); 10501 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10502 vcpu_load_eoi_exitmap(vcpu); 10503 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10504 kvm_vcpu_reload_apic_access_page(vcpu); 10505 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10506 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10507 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10508 vcpu->run->system_event.ndata = 0; 10509 r = 0; 10510 goto out; 10511 } 10512 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10513 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10514 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10515 vcpu->run->system_event.ndata = 0; 10516 r = 0; 10517 goto out; 10518 } 10519 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10520 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10521 10522 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10523 vcpu->run->hyperv = hv_vcpu->exit; 10524 r = 0; 10525 goto out; 10526 } 10527 10528 /* 10529 * KVM_REQ_HV_STIMER has to be processed after 10530 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10531 * depend on the guest clock being up-to-date 10532 */ 10533 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10534 kvm_hv_process_stimers(vcpu); 10535 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10536 kvm_vcpu_update_apicv(vcpu); 10537 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10538 kvm_check_async_pf_completion(vcpu); 10539 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10540 static_call(kvm_x86_msr_filter_changed)(vcpu); 10541 10542 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10543 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10544 } 10545 10546 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10547 kvm_xen_has_interrupt(vcpu)) { 10548 ++vcpu->stat.req_event; 10549 r = kvm_apic_accept_events(vcpu); 10550 if (r < 0) { 10551 r = 0; 10552 goto out; 10553 } 10554 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10555 r = 1; 10556 goto out; 10557 } 10558 10559 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10560 if (r < 0) { 10561 r = 0; 10562 goto out; 10563 } 10564 if (req_int_win) 10565 static_call(kvm_x86_enable_irq_window)(vcpu); 10566 10567 if (kvm_lapic_enabled(vcpu)) { 10568 update_cr8_intercept(vcpu); 10569 kvm_lapic_sync_to_vapic(vcpu); 10570 } 10571 } 10572 10573 r = kvm_mmu_reload(vcpu); 10574 if (unlikely(r)) { 10575 goto cancel_injection; 10576 } 10577 10578 preempt_disable(); 10579 10580 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10581 10582 /* 10583 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10584 * IPI are then delayed after guest entry, which ensures that they 10585 * result in virtual interrupt delivery. 10586 */ 10587 local_irq_disable(); 10588 10589 /* Store vcpu->apicv_active before vcpu->mode. */ 10590 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10591 10592 kvm_vcpu_srcu_read_unlock(vcpu); 10593 10594 /* 10595 * 1) We should set ->mode before checking ->requests. Please see 10596 * the comment in kvm_vcpu_exiting_guest_mode(). 10597 * 10598 * 2) For APICv, we should set ->mode before checking PID.ON. This 10599 * pairs with the memory barrier implicit in pi_test_and_set_on 10600 * (see vmx_deliver_posted_interrupt). 10601 * 10602 * 3) This also orders the write to mode from any reads to the page 10603 * tables done while the VCPU is running. Please see the comment 10604 * in kvm_flush_remote_tlbs. 10605 */ 10606 smp_mb__after_srcu_read_unlock(); 10607 10608 /* 10609 * Process pending posted interrupts to handle the case where the 10610 * notification IRQ arrived in the host, or was never sent (because the 10611 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10612 * status, KVM doesn't update assigned devices when APICv is inhibited, 10613 * i.e. they can post interrupts even if APICv is temporarily disabled. 10614 */ 10615 if (kvm_lapic_enabled(vcpu)) 10616 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10617 10618 if (kvm_vcpu_exit_request(vcpu)) { 10619 vcpu->mode = OUTSIDE_GUEST_MODE; 10620 smp_wmb(); 10621 local_irq_enable(); 10622 preempt_enable(); 10623 kvm_vcpu_srcu_read_lock(vcpu); 10624 r = 1; 10625 goto cancel_injection; 10626 } 10627 10628 if (req_immediate_exit) { 10629 kvm_make_request(KVM_REQ_EVENT, vcpu); 10630 static_call(kvm_x86_request_immediate_exit)(vcpu); 10631 } 10632 10633 fpregs_assert_state_consistent(); 10634 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10635 switch_fpu_return(); 10636 10637 if (vcpu->arch.guest_fpu.xfd_err) 10638 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10639 10640 if (unlikely(vcpu->arch.switch_db_regs)) { 10641 set_debugreg(0, 7); 10642 set_debugreg(vcpu->arch.eff_db[0], 0); 10643 set_debugreg(vcpu->arch.eff_db[1], 1); 10644 set_debugreg(vcpu->arch.eff_db[2], 2); 10645 set_debugreg(vcpu->arch.eff_db[3], 3); 10646 } else if (unlikely(hw_breakpoint_active())) { 10647 set_debugreg(0, 7); 10648 } 10649 10650 guest_timing_enter_irqoff(); 10651 10652 for (;;) { 10653 /* 10654 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10655 * update must kick and wait for all vCPUs before toggling the 10656 * per-VM state, and responsing vCPUs must wait for the update 10657 * to complete before servicing KVM_REQ_APICV_UPDATE. 10658 */ 10659 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10660 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10661 10662 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10663 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10664 break; 10665 10666 if (kvm_lapic_enabled(vcpu)) 10667 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10668 10669 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10670 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10671 break; 10672 } 10673 } 10674 10675 /* 10676 * Do this here before restoring debug registers on the host. And 10677 * since we do this before handling the vmexit, a DR access vmexit 10678 * can (a) read the correct value of the debug registers, (b) set 10679 * KVM_DEBUGREG_WONT_EXIT again. 10680 */ 10681 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10682 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10683 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10684 kvm_update_dr0123(vcpu); 10685 kvm_update_dr7(vcpu); 10686 } 10687 10688 /* 10689 * If the guest has used debug registers, at least dr7 10690 * will be disabled while returning to the host. 10691 * If we don't have active breakpoints in the host, we don't 10692 * care about the messed up debug address registers. But if 10693 * we have some of them active, restore the old state. 10694 */ 10695 if (hw_breakpoint_active()) 10696 hw_breakpoint_restore(); 10697 10698 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10699 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10700 10701 vcpu->mode = OUTSIDE_GUEST_MODE; 10702 smp_wmb(); 10703 10704 /* 10705 * Sync xfd before calling handle_exit_irqoff() which may 10706 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10707 * in #NM irqoff handler). 10708 */ 10709 if (vcpu->arch.xfd_no_write_intercept) 10710 fpu_sync_guest_vmexit_xfd_state(); 10711 10712 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10713 10714 if (vcpu->arch.guest_fpu.xfd_err) 10715 wrmsrl(MSR_IA32_XFD_ERR, 0); 10716 10717 /* 10718 * Consume any pending interrupts, including the possible source of 10719 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10720 * An instruction is required after local_irq_enable() to fully unblock 10721 * interrupts on processors that implement an interrupt shadow, the 10722 * stat.exits increment will do nicely. 10723 */ 10724 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10725 local_irq_enable(); 10726 ++vcpu->stat.exits; 10727 local_irq_disable(); 10728 kvm_after_interrupt(vcpu); 10729 10730 /* 10731 * Wait until after servicing IRQs to account guest time so that any 10732 * ticks that occurred while running the guest are properly accounted 10733 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10734 * of accounting via context tracking, but the loss of accuracy is 10735 * acceptable for all known use cases. 10736 */ 10737 guest_timing_exit_irqoff(); 10738 10739 local_irq_enable(); 10740 preempt_enable(); 10741 10742 kvm_vcpu_srcu_read_lock(vcpu); 10743 10744 /* 10745 * Profile KVM exit RIPs: 10746 */ 10747 if (unlikely(prof_on == KVM_PROFILING)) { 10748 unsigned long rip = kvm_rip_read(vcpu); 10749 profile_hit(KVM_PROFILING, (void *)rip); 10750 } 10751 10752 if (unlikely(vcpu->arch.tsc_always_catchup)) 10753 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10754 10755 if (vcpu->arch.apic_attention) 10756 kvm_lapic_sync_from_vapic(vcpu); 10757 10758 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10759 return r; 10760 10761 cancel_injection: 10762 if (req_immediate_exit) 10763 kvm_make_request(KVM_REQ_EVENT, vcpu); 10764 static_call(kvm_x86_cancel_injection)(vcpu); 10765 if (unlikely(vcpu->arch.apic_attention)) 10766 kvm_lapic_sync_from_vapic(vcpu); 10767 out: 10768 return r; 10769 } 10770 10771 /* Called within kvm->srcu read side. */ 10772 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10773 { 10774 bool hv_timer; 10775 10776 if (!kvm_arch_vcpu_runnable(vcpu)) { 10777 /* 10778 * Switch to the software timer before halt-polling/blocking as 10779 * the guest's timer may be a break event for the vCPU, and the 10780 * hypervisor timer runs only when the CPU is in guest mode. 10781 * Switch before halt-polling so that KVM recognizes an expired 10782 * timer before blocking. 10783 */ 10784 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10785 if (hv_timer) 10786 kvm_lapic_switch_to_sw_timer(vcpu); 10787 10788 kvm_vcpu_srcu_read_unlock(vcpu); 10789 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10790 kvm_vcpu_halt(vcpu); 10791 else 10792 kvm_vcpu_block(vcpu); 10793 kvm_vcpu_srcu_read_lock(vcpu); 10794 10795 if (hv_timer) 10796 kvm_lapic_switch_to_hv_timer(vcpu); 10797 10798 /* 10799 * If the vCPU is not runnable, a signal or another host event 10800 * of some kind is pending; service it without changing the 10801 * vCPU's activity state. 10802 */ 10803 if (!kvm_arch_vcpu_runnable(vcpu)) 10804 return 1; 10805 } 10806 10807 /* 10808 * Evaluate nested events before exiting the halted state. This allows 10809 * the halt state to be recorded properly in the VMCS12's activity 10810 * state field (AMD does not have a similar field and a VM-Exit always 10811 * causes a spurious wakeup from HLT). 10812 */ 10813 if (is_guest_mode(vcpu)) { 10814 if (kvm_check_nested_events(vcpu) < 0) 10815 return 0; 10816 } 10817 10818 if (kvm_apic_accept_events(vcpu) < 0) 10819 return 0; 10820 switch(vcpu->arch.mp_state) { 10821 case KVM_MP_STATE_HALTED: 10822 case KVM_MP_STATE_AP_RESET_HOLD: 10823 vcpu->arch.pv.pv_unhalted = false; 10824 vcpu->arch.mp_state = 10825 KVM_MP_STATE_RUNNABLE; 10826 fallthrough; 10827 case KVM_MP_STATE_RUNNABLE: 10828 vcpu->arch.apf.halted = false; 10829 break; 10830 case KVM_MP_STATE_INIT_RECEIVED: 10831 break; 10832 default: 10833 WARN_ON_ONCE(1); 10834 break; 10835 } 10836 return 1; 10837 } 10838 10839 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10840 { 10841 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10842 !vcpu->arch.apf.halted); 10843 } 10844 10845 /* Called within kvm->srcu read side. */ 10846 static int vcpu_run(struct kvm_vcpu *vcpu) 10847 { 10848 int r; 10849 10850 vcpu->arch.l1tf_flush_l1d = true; 10851 10852 for (;;) { 10853 /* 10854 * If another guest vCPU requests a PV TLB flush in the middle 10855 * of instruction emulation, the rest of the emulation could 10856 * use a stale page translation. Assume that any code after 10857 * this point can start executing an instruction. 10858 */ 10859 vcpu->arch.at_instruction_boundary = false; 10860 if (kvm_vcpu_running(vcpu)) { 10861 r = vcpu_enter_guest(vcpu); 10862 } else { 10863 r = vcpu_block(vcpu); 10864 } 10865 10866 if (r <= 0) 10867 break; 10868 10869 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10870 if (kvm_xen_has_pending_events(vcpu)) 10871 kvm_xen_inject_pending_events(vcpu); 10872 10873 if (kvm_cpu_has_pending_timer(vcpu)) 10874 kvm_inject_pending_timer_irqs(vcpu); 10875 10876 if (dm_request_for_irq_injection(vcpu) && 10877 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10878 r = 0; 10879 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10880 ++vcpu->stat.request_irq_exits; 10881 break; 10882 } 10883 10884 if (__xfer_to_guest_mode_work_pending()) { 10885 kvm_vcpu_srcu_read_unlock(vcpu); 10886 r = xfer_to_guest_mode_handle_work(vcpu); 10887 kvm_vcpu_srcu_read_lock(vcpu); 10888 if (r) 10889 return r; 10890 } 10891 } 10892 10893 return r; 10894 } 10895 10896 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10897 { 10898 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10899 } 10900 10901 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10902 { 10903 BUG_ON(!vcpu->arch.pio.count); 10904 10905 return complete_emulated_io(vcpu); 10906 } 10907 10908 /* 10909 * Implements the following, as a state machine: 10910 * 10911 * read: 10912 * for each fragment 10913 * for each mmio piece in the fragment 10914 * write gpa, len 10915 * exit 10916 * copy data 10917 * execute insn 10918 * 10919 * write: 10920 * for each fragment 10921 * for each mmio piece in the fragment 10922 * write gpa, len 10923 * copy data 10924 * exit 10925 */ 10926 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10927 { 10928 struct kvm_run *run = vcpu->run; 10929 struct kvm_mmio_fragment *frag; 10930 unsigned len; 10931 10932 BUG_ON(!vcpu->mmio_needed); 10933 10934 /* Complete previous fragment */ 10935 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10936 len = min(8u, frag->len); 10937 if (!vcpu->mmio_is_write) 10938 memcpy(frag->data, run->mmio.data, len); 10939 10940 if (frag->len <= 8) { 10941 /* Switch to the next fragment. */ 10942 frag++; 10943 vcpu->mmio_cur_fragment++; 10944 } else { 10945 /* Go forward to the next mmio piece. */ 10946 frag->data += len; 10947 frag->gpa += len; 10948 frag->len -= len; 10949 } 10950 10951 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10952 vcpu->mmio_needed = 0; 10953 10954 /* FIXME: return into emulator if single-stepping. */ 10955 if (vcpu->mmio_is_write) 10956 return 1; 10957 vcpu->mmio_read_completed = 1; 10958 return complete_emulated_io(vcpu); 10959 } 10960 10961 run->exit_reason = KVM_EXIT_MMIO; 10962 run->mmio.phys_addr = frag->gpa; 10963 if (vcpu->mmio_is_write) 10964 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10965 run->mmio.len = min(8u, frag->len); 10966 run->mmio.is_write = vcpu->mmio_is_write; 10967 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10968 return 0; 10969 } 10970 10971 /* Swap (qemu) user FPU context for the guest FPU context. */ 10972 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10973 { 10974 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10975 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10976 trace_kvm_fpu(1); 10977 } 10978 10979 /* When vcpu_run ends, restore user space FPU context. */ 10980 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10981 { 10982 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10983 ++vcpu->stat.fpu_reload; 10984 trace_kvm_fpu(0); 10985 } 10986 10987 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10988 { 10989 struct kvm_queued_exception *ex = &vcpu->arch.exception; 10990 struct kvm_run *kvm_run = vcpu->run; 10991 int r; 10992 10993 vcpu_load(vcpu); 10994 kvm_sigset_activate(vcpu); 10995 kvm_run->flags = 0; 10996 kvm_load_guest_fpu(vcpu); 10997 10998 kvm_vcpu_srcu_read_lock(vcpu); 10999 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11000 if (kvm_run->immediate_exit) { 11001 r = -EINTR; 11002 goto out; 11003 } 11004 /* 11005 * It should be impossible for the hypervisor timer to be in 11006 * use before KVM has ever run the vCPU. 11007 */ 11008 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 11009 11010 kvm_vcpu_srcu_read_unlock(vcpu); 11011 kvm_vcpu_block(vcpu); 11012 kvm_vcpu_srcu_read_lock(vcpu); 11013 11014 if (kvm_apic_accept_events(vcpu) < 0) { 11015 r = 0; 11016 goto out; 11017 } 11018 r = -EAGAIN; 11019 if (signal_pending(current)) { 11020 r = -EINTR; 11021 kvm_run->exit_reason = KVM_EXIT_INTR; 11022 ++vcpu->stat.signal_exits; 11023 } 11024 goto out; 11025 } 11026 11027 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11028 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11029 r = -EINVAL; 11030 goto out; 11031 } 11032 11033 if (kvm_run->kvm_dirty_regs) { 11034 r = sync_regs(vcpu); 11035 if (r != 0) 11036 goto out; 11037 } 11038 11039 /* re-sync apic's tpr */ 11040 if (!lapic_in_kernel(vcpu)) { 11041 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11042 r = -EINVAL; 11043 goto out; 11044 } 11045 } 11046 11047 /* 11048 * If userspace set a pending exception and L2 is active, convert it to 11049 * a pending VM-Exit if L1 wants to intercept the exception. 11050 */ 11051 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11052 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11053 ex->error_code)) { 11054 kvm_queue_exception_vmexit(vcpu, ex->vector, 11055 ex->has_error_code, ex->error_code, 11056 ex->has_payload, ex->payload); 11057 ex->injected = false; 11058 ex->pending = false; 11059 } 11060 vcpu->arch.exception_from_userspace = false; 11061 11062 if (unlikely(vcpu->arch.complete_userspace_io)) { 11063 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11064 vcpu->arch.complete_userspace_io = NULL; 11065 r = cui(vcpu); 11066 if (r <= 0) 11067 goto out; 11068 } else { 11069 WARN_ON_ONCE(vcpu->arch.pio.count); 11070 WARN_ON_ONCE(vcpu->mmio_needed); 11071 } 11072 11073 if (kvm_run->immediate_exit) { 11074 r = -EINTR; 11075 goto out; 11076 } 11077 11078 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11079 if (r <= 0) 11080 goto out; 11081 11082 r = vcpu_run(vcpu); 11083 11084 out: 11085 kvm_put_guest_fpu(vcpu); 11086 if (kvm_run->kvm_valid_regs) 11087 store_regs(vcpu); 11088 post_kvm_run_save(vcpu); 11089 kvm_vcpu_srcu_read_unlock(vcpu); 11090 11091 kvm_sigset_deactivate(vcpu); 11092 vcpu_put(vcpu); 11093 return r; 11094 } 11095 11096 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11097 { 11098 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11099 /* 11100 * We are here if userspace calls get_regs() in the middle of 11101 * instruction emulation. Registers state needs to be copied 11102 * back from emulation context to vcpu. Userspace shouldn't do 11103 * that usually, but some bad designed PV devices (vmware 11104 * backdoor interface) need this to work 11105 */ 11106 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11107 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11108 } 11109 regs->rax = kvm_rax_read(vcpu); 11110 regs->rbx = kvm_rbx_read(vcpu); 11111 regs->rcx = kvm_rcx_read(vcpu); 11112 regs->rdx = kvm_rdx_read(vcpu); 11113 regs->rsi = kvm_rsi_read(vcpu); 11114 regs->rdi = kvm_rdi_read(vcpu); 11115 regs->rsp = kvm_rsp_read(vcpu); 11116 regs->rbp = kvm_rbp_read(vcpu); 11117 #ifdef CONFIG_X86_64 11118 regs->r8 = kvm_r8_read(vcpu); 11119 regs->r9 = kvm_r9_read(vcpu); 11120 regs->r10 = kvm_r10_read(vcpu); 11121 regs->r11 = kvm_r11_read(vcpu); 11122 regs->r12 = kvm_r12_read(vcpu); 11123 regs->r13 = kvm_r13_read(vcpu); 11124 regs->r14 = kvm_r14_read(vcpu); 11125 regs->r15 = kvm_r15_read(vcpu); 11126 #endif 11127 11128 regs->rip = kvm_rip_read(vcpu); 11129 regs->rflags = kvm_get_rflags(vcpu); 11130 } 11131 11132 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11133 { 11134 vcpu_load(vcpu); 11135 __get_regs(vcpu, regs); 11136 vcpu_put(vcpu); 11137 return 0; 11138 } 11139 11140 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11141 { 11142 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11143 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11144 11145 kvm_rax_write(vcpu, regs->rax); 11146 kvm_rbx_write(vcpu, regs->rbx); 11147 kvm_rcx_write(vcpu, regs->rcx); 11148 kvm_rdx_write(vcpu, regs->rdx); 11149 kvm_rsi_write(vcpu, regs->rsi); 11150 kvm_rdi_write(vcpu, regs->rdi); 11151 kvm_rsp_write(vcpu, regs->rsp); 11152 kvm_rbp_write(vcpu, regs->rbp); 11153 #ifdef CONFIG_X86_64 11154 kvm_r8_write(vcpu, regs->r8); 11155 kvm_r9_write(vcpu, regs->r9); 11156 kvm_r10_write(vcpu, regs->r10); 11157 kvm_r11_write(vcpu, regs->r11); 11158 kvm_r12_write(vcpu, regs->r12); 11159 kvm_r13_write(vcpu, regs->r13); 11160 kvm_r14_write(vcpu, regs->r14); 11161 kvm_r15_write(vcpu, regs->r15); 11162 #endif 11163 11164 kvm_rip_write(vcpu, regs->rip); 11165 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11166 11167 vcpu->arch.exception.pending = false; 11168 vcpu->arch.exception_vmexit.pending = false; 11169 11170 kvm_make_request(KVM_REQ_EVENT, vcpu); 11171 } 11172 11173 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11174 { 11175 vcpu_load(vcpu); 11176 __set_regs(vcpu, regs); 11177 vcpu_put(vcpu); 11178 return 0; 11179 } 11180 11181 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11182 { 11183 struct desc_ptr dt; 11184 11185 if (vcpu->arch.guest_state_protected) 11186 goto skip_protected_regs; 11187 11188 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11189 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11190 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11191 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11192 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11193 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11194 11195 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11196 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11197 11198 static_call(kvm_x86_get_idt)(vcpu, &dt); 11199 sregs->idt.limit = dt.size; 11200 sregs->idt.base = dt.address; 11201 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11202 sregs->gdt.limit = dt.size; 11203 sregs->gdt.base = dt.address; 11204 11205 sregs->cr2 = vcpu->arch.cr2; 11206 sregs->cr3 = kvm_read_cr3(vcpu); 11207 11208 skip_protected_regs: 11209 sregs->cr0 = kvm_read_cr0(vcpu); 11210 sregs->cr4 = kvm_read_cr4(vcpu); 11211 sregs->cr8 = kvm_get_cr8(vcpu); 11212 sregs->efer = vcpu->arch.efer; 11213 sregs->apic_base = kvm_get_apic_base(vcpu); 11214 } 11215 11216 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11217 { 11218 __get_sregs_common(vcpu, sregs); 11219 11220 if (vcpu->arch.guest_state_protected) 11221 return; 11222 11223 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11224 set_bit(vcpu->arch.interrupt.nr, 11225 (unsigned long *)sregs->interrupt_bitmap); 11226 } 11227 11228 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11229 { 11230 int i; 11231 11232 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11233 11234 if (vcpu->arch.guest_state_protected) 11235 return; 11236 11237 if (is_pae_paging(vcpu)) { 11238 for (i = 0 ; i < 4 ; i++) 11239 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11240 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11241 } 11242 } 11243 11244 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11245 struct kvm_sregs *sregs) 11246 { 11247 vcpu_load(vcpu); 11248 __get_sregs(vcpu, sregs); 11249 vcpu_put(vcpu); 11250 return 0; 11251 } 11252 11253 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11254 struct kvm_mp_state *mp_state) 11255 { 11256 int r; 11257 11258 vcpu_load(vcpu); 11259 if (kvm_mpx_supported()) 11260 kvm_load_guest_fpu(vcpu); 11261 11262 r = kvm_apic_accept_events(vcpu); 11263 if (r < 0) 11264 goto out; 11265 r = 0; 11266 11267 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11268 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11269 vcpu->arch.pv.pv_unhalted) 11270 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11271 else 11272 mp_state->mp_state = vcpu->arch.mp_state; 11273 11274 out: 11275 if (kvm_mpx_supported()) 11276 kvm_put_guest_fpu(vcpu); 11277 vcpu_put(vcpu); 11278 return r; 11279 } 11280 11281 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11282 struct kvm_mp_state *mp_state) 11283 { 11284 int ret = -EINVAL; 11285 11286 vcpu_load(vcpu); 11287 11288 switch (mp_state->mp_state) { 11289 case KVM_MP_STATE_UNINITIALIZED: 11290 case KVM_MP_STATE_HALTED: 11291 case KVM_MP_STATE_AP_RESET_HOLD: 11292 case KVM_MP_STATE_INIT_RECEIVED: 11293 case KVM_MP_STATE_SIPI_RECEIVED: 11294 if (!lapic_in_kernel(vcpu)) 11295 goto out; 11296 break; 11297 11298 case KVM_MP_STATE_RUNNABLE: 11299 break; 11300 11301 default: 11302 goto out; 11303 } 11304 11305 /* 11306 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11307 * forcing the guest into INIT/SIPI if those events are supposed to be 11308 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11309 * if an SMI is pending as well. 11310 */ 11311 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11312 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11313 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11314 goto out; 11315 11316 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11317 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11318 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11319 } else 11320 vcpu->arch.mp_state = mp_state->mp_state; 11321 kvm_make_request(KVM_REQ_EVENT, vcpu); 11322 11323 ret = 0; 11324 out: 11325 vcpu_put(vcpu); 11326 return ret; 11327 } 11328 11329 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11330 int reason, bool has_error_code, u32 error_code) 11331 { 11332 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11333 int ret; 11334 11335 init_emulate_ctxt(vcpu); 11336 11337 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11338 has_error_code, error_code); 11339 if (ret) { 11340 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11341 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11342 vcpu->run->internal.ndata = 0; 11343 return 0; 11344 } 11345 11346 kvm_rip_write(vcpu, ctxt->eip); 11347 kvm_set_rflags(vcpu, ctxt->eflags); 11348 return 1; 11349 } 11350 EXPORT_SYMBOL_GPL(kvm_task_switch); 11351 11352 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11353 { 11354 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11355 /* 11356 * When EFER.LME and CR0.PG are set, the processor is in 11357 * 64-bit mode (though maybe in a 32-bit code segment). 11358 * CR4.PAE and EFER.LMA must be set. 11359 */ 11360 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11361 return false; 11362 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11363 return false; 11364 } else { 11365 /* 11366 * Not in 64-bit mode: EFER.LMA is clear and the code 11367 * segment cannot be 64-bit. 11368 */ 11369 if (sregs->efer & EFER_LMA || sregs->cs.l) 11370 return false; 11371 } 11372 11373 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11374 } 11375 11376 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11377 int *mmu_reset_needed, bool update_pdptrs) 11378 { 11379 struct msr_data apic_base_msr; 11380 int idx; 11381 struct desc_ptr dt; 11382 11383 if (!kvm_is_valid_sregs(vcpu, sregs)) 11384 return -EINVAL; 11385 11386 apic_base_msr.data = sregs->apic_base; 11387 apic_base_msr.host_initiated = true; 11388 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11389 return -EINVAL; 11390 11391 if (vcpu->arch.guest_state_protected) 11392 return 0; 11393 11394 dt.size = sregs->idt.limit; 11395 dt.address = sregs->idt.base; 11396 static_call(kvm_x86_set_idt)(vcpu, &dt); 11397 dt.size = sregs->gdt.limit; 11398 dt.address = sregs->gdt.base; 11399 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11400 11401 vcpu->arch.cr2 = sregs->cr2; 11402 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11403 vcpu->arch.cr3 = sregs->cr3; 11404 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11405 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11406 11407 kvm_set_cr8(vcpu, sregs->cr8); 11408 11409 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11410 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11411 11412 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11413 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11414 vcpu->arch.cr0 = sregs->cr0; 11415 11416 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11417 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11418 11419 if (update_pdptrs) { 11420 idx = srcu_read_lock(&vcpu->kvm->srcu); 11421 if (is_pae_paging(vcpu)) { 11422 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11423 *mmu_reset_needed = 1; 11424 } 11425 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11426 } 11427 11428 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11429 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11430 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11431 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11432 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11433 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11434 11435 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11436 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11437 11438 update_cr8_intercept(vcpu); 11439 11440 /* Older userspace won't unhalt the vcpu on reset. */ 11441 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11442 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11443 !is_protmode(vcpu)) 11444 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11445 11446 return 0; 11447 } 11448 11449 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11450 { 11451 int pending_vec, max_bits; 11452 int mmu_reset_needed = 0; 11453 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11454 11455 if (ret) 11456 return ret; 11457 11458 if (mmu_reset_needed) 11459 kvm_mmu_reset_context(vcpu); 11460 11461 max_bits = KVM_NR_INTERRUPTS; 11462 pending_vec = find_first_bit( 11463 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11464 11465 if (pending_vec < max_bits) { 11466 kvm_queue_interrupt(vcpu, pending_vec, false); 11467 pr_debug("Set back pending irq %d\n", pending_vec); 11468 kvm_make_request(KVM_REQ_EVENT, vcpu); 11469 } 11470 return 0; 11471 } 11472 11473 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11474 { 11475 int mmu_reset_needed = 0; 11476 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11477 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11478 !(sregs2->efer & EFER_LMA); 11479 int i, ret; 11480 11481 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11482 return -EINVAL; 11483 11484 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11485 return -EINVAL; 11486 11487 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11488 &mmu_reset_needed, !valid_pdptrs); 11489 if (ret) 11490 return ret; 11491 11492 if (valid_pdptrs) { 11493 for (i = 0; i < 4 ; i++) 11494 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11495 11496 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11497 mmu_reset_needed = 1; 11498 vcpu->arch.pdptrs_from_userspace = true; 11499 } 11500 if (mmu_reset_needed) 11501 kvm_mmu_reset_context(vcpu); 11502 return 0; 11503 } 11504 11505 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11506 struct kvm_sregs *sregs) 11507 { 11508 int ret; 11509 11510 vcpu_load(vcpu); 11511 ret = __set_sregs(vcpu, sregs); 11512 vcpu_put(vcpu); 11513 return ret; 11514 } 11515 11516 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11517 { 11518 bool set = false; 11519 struct kvm_vcpu *vcpu; 11520 unsigned long i; 11521 11522 if (!enable_apicv) 11523 return; 11524 11525 down_write(&kvm->arch.apicv_update_lock); 11526 11527 kvm_for_each_vcpu(i, vcpu, kvm) { 11528 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11529 set = true; 11530 break; 11531 } 11532 } 11533 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11534 up_write(&kvm->arch.apicv_update_lock); 11535 } 11536 11537 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11538 struct kvm_guest_debug *dbg) 11539 { 11540 unsigned long rflags; 11541 int i, r; 11542 11543 if (vcpu->arch.guest_state_protected) 11544 return -EINVAL; 11545 11546 vcpu_load(vcpu); 11547 11548 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11549 r = -EBUSY; 11550 if (kvm_is_exception_pending(vcpu)) 11551 goto out; 11552 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11553 kvm_queue_exception(vcpu, DB_VECTOR); 11554 else 11555 kvm_queue_exception(vcpu, BP_VECTOR); 11556 } 11557 11558 /* 11559 * Read rflags as long as potentially injected trace flags are still 11560 * filtered out. 11561 */ 11562 rflags = kvm_get_rflags(vcpu); 11563 11564 vcpu->guest_debug = dbg->control; 11565 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11566 vcpu->guest_debug = 0; 11567 11568 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11569 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11570 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11571 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11572 } else { 11573 for (i = 0; i < KVM_NR_DB_REGS; i++) 11574 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11575 } 11576 kvm_update_dr7(vcpu); 11577 11578 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11579 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11580 11581 /* 11582 * Trigger an rflags update that will inject or remove the trace 11583 * flags. 11584 */ 11585 kvm_set_rflags(vcpu, rflags); 11586 11587 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11588 11589 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11590 11591 r = 0; 11592 11593 out: 11594 vcpu_put(vcpu); 11595 return r; 11596 } 11597 11598 /* 11599 * Translate a guest virtual address to a guest physical address. 11600 */ 11601 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11602 struct kvm_translation *tr) 11603 { 11604 unsigned long vaddr = tr->linear_address; 11605 gpa_t gpa; 11606 int idx; 11607 11608 vcpu_load(vcpu); 11609 11610 idx = srcu_read_lock(&vcpu->kvm->srcu); 11611 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11612 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11613 tr->physical_address = gpa; 11614 tr->valid = gpa != INVALID_GPA; 11615 tr->writeable = 1; 11616 tr->usermode = 0; 11617 11618 vcpu_put(vcpu); 11619 return 0; 11620 } 11621 11622 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11623 { 11624 struct fxregs_state *fxsave; 11625 11626 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11627 return 0; 11628 11629 vcpu_load(vcpu); 11630 11631 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11632 memcpy(fpu->fpr, fxsave->st_space, 128); 11633 fpu->fcw = fxsave->cwd; 11634 fpu->fsw = fxsave->swd; 11635 fpu->ftwx = fxsave->twd; 11636 fpu->last_opcode = fxsave->fop; 11637 fpu->last_ip = fxsave->rip; 11638 fpu->last_dp = fxsave->rdp; 11639 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11640 11641 vcpu_put(vcpu); 11642 return 0; 11643 } 11644 11645 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11646 { 11647 struct fxregs_state *fxsave; 11648 11649 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11650 return 0; 11651 11652 vcpu_load(vcpu); 11653 11654 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11655 11656 memcpy(fxsave->st_space, fpu->fpr, 128); 11657 fxsave->cwd = fpu->fcw; 11658 fxsave->swd = fpu->fsw; 11659 fxsave->twd = fpu->ftwx; 11660 fxsave->fop = fpu->last_opcode; 11661 fxsave->rip = fpu->last_ip; 11662 fxsave->rdp = fpu->last_dp; 11663 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11664 11665 vcpu_put(vcpu); 11666 return 0; 11667 } 11668 11669 static void store_regs(struct kvm_vcpu *vcpu) 11670 { 11671 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11672 11673 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11674 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11675 11676 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11677 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11678 11679 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11680 kvm_vcpu_ioctl_x86_get_vcpu_events( 11681 vcpu, &vcpu->run->s.regs.events); 11682 } 11683 11684 static int sync_regs(struct kvm_vcpu *vcpu) 11685 { 11686 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11687 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11688 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11689 } 11690 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11691 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11692 return -EINVAL; 11693 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11694 } 11695 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11696 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11697 vcpu, &vcpu->run->s.regs.events)) 11698 return -EINVAL; 11699 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11700 } 11701 11702 return 0; 11703 } 11704 11705 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11706 { 11707 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11708 pr_warn_once("SMP vm created on host with unstable TSC; " 11709 "guest TSC will not be reliable\n"); 11710 11711 if (!kvm->arch.max_vcpu_ids) 11712 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11713 11714 if (id >= kvm->arch.max_vcpu_ids) 11715 return -EINVAL; 11716 11717 return static_call(kvm_x86_vcpu_precreate)(kvm); 11718 } 11719 11720 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11721 { 11722 struct page *page; 11723 int r; 11724 11725 vcpu->arch.last_vmentry_cpu = -1; 11726 vcpu->arch.regs_avail = ~0; 11727 vcpu->arch.regs_dirty = ~0; 11728 11729 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11730 11731 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11732 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11733 else 11734 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11735 11736 r = kvm_mmu_create(vcpu); 11737 if (r < 0) 11738 return r; 11739 11740 if (irqchip_in_kernel(vcpu->kvm)) { 11741 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11742 if (r < 0) 11743 goto fail_mmu_destroy; 11744 11745 /* 11746 * Defer evaluating inhibits until the vCPU is first run, as 11747 * this vCPU will not get notified of any changes until this 11748 * vCPU is visible to other vCPUs (marked online and added to 11749 * the set of vCPUs). Opportunistically mark APICv active as 11750 * VMX in particularly is highly unlikely to have inhibits. 11751 * Ignore the current per-VM APICv state so that vCPU creation 11752 * is guaranteed to run with a deterministic value, the request 11753 * will ensure the vCPU gets the correct state before VM-Entry. 11754 */ 11755 if (enable_apicv) { 11756 vcpu->arch.apic->apicv_active = true; 11757 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11758 } 11759 } else 11760 static_branch_inc(&kvm_has_noapic_vcpu); 11761 11762 r = -ENOMEM; 11763 11764 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11765 if (!page) 11766 goto fail_free_lapic; 11767 vcpu->arch.pio_data = page_address(page); 11768 11769 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11770 GFP_KERNEL_ACCOUNT); 11771 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11772 GFP_KERNEL_ACCOUNT); 11773 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11774 goto fail_free_mce_banks; 11775 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11776 11777 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11778 GFP_KERNEL_ACCOUNT)) 11779 goto fail_free_mce_banks; 11780 11781 if (!alloc_emulate_ctxt(vcpu)) 11782 goto free_wbinvd_dirty_mask; 11783 11784 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11785 pr_err("failed to allocate vcpu's fpu\n"); 11786 goto free_emulate_ctxt; 11787 } 11788 11789 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11790 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11791 11792 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11793 11794 kvm_async_pf_hash_reset(vcpu); 11795 11796 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11797 kvm_pmu_init(vcpu); 11798 11799 vcpu->arch.pending_external_vector = -1; 11800 vcpu->arch.preempted_in_kernel = false; 11801 11802 #if IS_ENABLED(CONFIG_HYPERV) 11803 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11804 #endif 11805 11806 r = static_call(kvm_x86_vcpu_create)(vcpu); 11807 if (r) 11808 goto free_guest_fpu; 11809 11810 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11811 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11812 kvm_xen_init_vcpu(vcpu); 11813 kvm_vcpu_mtrr_init(vcpu); 11814 vcpu_load(vcpu); 11815 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11816 kvm_vcpu_reset(vcpu, false); 11817 kvm_init_mmu(vcpu); 11818 vcpu_put(vcpu); 11819 return 0; 11820 11821 free_guest_fpu: 11822 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11823 free_emulate_ctxt: 11824 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11825 free_wbinvd_dirty_mask: 11826 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11827 fail_free_mce_banks: 11828 kfree(vcpu->arch.mce_banks); 11829 kfree(vcpu->arch.mci_ctl2_banks); 11830 free_page((unsigned long)vcpu->arch.pio_data); 11831 fail_free_lapic: 11832 kvm_free_lapic(vcpu); 11833 fail_mmu_destroy: 11834 kvm_mmu_destroy(vcpu); 11835 return r; 11836 } 11837 11838 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11839 { 11840 struct kvm *kvm = vcpu->kvm; 11841 11842 if (mutex_lock_killable(&vcpu->mutex)) 11843 return; 11844 vcpu_load(vcpu); 11845 kvm_synchronize_tsc(vcpu, 0); 11846 vcpu_put(vcpu); 11847 11848 /* poll control enabled by default */ 11849 vcpu->arch.msr_kvm_poll_control = 1; 11850 11851 mutex_unlock(&vcpu->mutex); 11852 11853 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11854 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11855 KVMCLOCK_SYNC_PERIOD); 11856 } 11857 11858 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11859 { 11860 int idx; 11861 11862 kvmclock_reset(vcpu); 11863 11864 static_call(kvm_x86_vcpu_free)(vcpu); 11865 11866 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11867 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11868 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11869 11870 kvm_xen_destroy_vcpu(vcpu); 11871 kvm_hv_vcpu_uninit(vcpu); 11872 kvm_pmu_destroy(vcpu); 11873 kfree(vcpu->arch.mce_banks); 11874 kfree(vcpu->arch.mci_ctl2_banks); 11875 kvm_free_lapic(vcpu); 11876 idx = srcu_read_lock(&vcpu->kvm->srcu); 11877 kvm_mmu_destroy(vcpu); 11878 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11879 free_page((unsigned long)vcpu->arch.pio_data); 11880 kvfree(vcpu->arch.cpuid_entries); 11881 if (!lapic_in_kernel(vcpu)) 11882 static_branch_dec(&kvm_has_noapic_vcpu); 11883 } 11884 11885 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11886 { 11887 struct kvm_cpuid_entry2 *cpuid_0x1; 11888 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11889 unsigned long new_cr0; 11890 11891 /* 11892 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11893 * to handle side effects. RESET emulation hits those flows and relies 11894 * on emulated/virtualized registers, including those that are loaded 11895 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11896 * to detect improper or missing initialization. 11897 */ 11898 WARN_ON_ONCE(!init_event && 11899 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11900 11901 /* 11902 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11903 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11904 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11905 * bits), i.e. virtualization is disabled. 11906 */ 11907 if (is_guest_mode(vcpu)) 11908 kvm_leave_nested(vcpu); 11909 11910 kvm_lapic_reset(vcpu, init_event); 11911 11912 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 11913 vcpu->arch.hflags = 0; 11914 11915 vcpu->arch.smi_pending = 0; 11916 vcpu->arch.smi_count = 0; 11917 atomic_set(&vcpu->arch.nmi_queued, 0); 11918 vcpu->arch.nmi_pending = 0; 11919 vcpu->arch.nmi_injected = false; 11920 kvm_clear_interrupt_queue(vcpu); 11921 kvm_clear_exception_queue(vcpu); 11922 11923 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11924 kvm_update_dr0123(vcpu); 11925 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11926 vcpu->arch.dr7 = DR7_FIXED_1; 11927 kvm_update_dr7(vcpu); 11928 11929 vcpu->arch.cr2 = 0; 11930 11931 kvm_make_request(KVM_REQ_EVENT, vcpu); 11932 vcpu->arch.apf.msr_en_val = 0; 11933 vcpu->arch.apf.msr_int_val = 0; 11934 vcpu->arch.st.msr_val = 0; 11935 11936 kvmclock_reset(vcpu); 11937 11938 kvm_clear_async_pf_completion_queue(vcpu); 11939 kvm_async_pf_hash_reset(vcpu); 11940 vcpu->arch.apf.halted = false; 11941 11942 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11943 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11944 11945 /* 11946 * All paths that lead to INIT are required to load the guest's 11947 * FPU state (because most paths are buried in KVM_RUN). 11948 */ 11949 if (init_event) 11950 kvm_put_guest_fpu(vcpu); 11951 11952 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11953 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11954 11955 if (init_event) 11956 kvm_load_guest_fpu(vcpu); 11957 } 11958 11959 if (!init_event) { 11960 kvm_pmu_reset(vcpu); 11961 vcpu->arch.smbase = 0x30000; 11962 11963 vcpu->arch.msr_misc_features_enables = 0; 11964 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11965 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11966 11967 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11968 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11969 } 11970 11971 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11972 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11973 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11974 11975 /* 11976 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11977 * if no CPUID match is found. Note, it's impossible to get a match at 11978 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11979 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11980 * on RESET. But, go through the motions in case that's ever remedied. 11981 */ 11982 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11983 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11984 11985 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11986 11987 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11988 kvm_rip_write(vcpu, 0xfff0); 11989 11990 vcpu->arch.cr3 = 0; 11991 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11992 11993 /* 11994 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11995 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11996 * (or qualify) that with a footnote stating that CD/NW are preserved. 11997 */ 11998 new_cr0 = X86_CR0_ET; 11999 if (init_event) 12000 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12001 else 12002 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12003 12004 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12005 static_call(kvm_x86_set_cr4)(vcpu, 0); 12006 static_call(kvm_x86_set_efer)(vcpu, 0); 12007 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12008 12009 /* 12010 * On the standard CR0/CR4/EFER modification paths, there are several 12011 * complex conditions determining whether the MMU has to be reset and/or 12012 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12013 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12014 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12015 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12016 */ 12017 if (old_cr0 & X86_CR0_PG) { 12018 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12019 kvm_mmu_reset_context(vcpu); 12020 } 12021 12022 /* 12023 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12024 * APM states the TLBs are untouched by INIT, but it also states that 12025 * the TLBs are flushed on "External initialization of the processor." 12026 * Flush the guest TLB regardless of vendor, there is no meaningful 12027 * benefit in relying on the guest to flush the TLB immediately after 12028 * INIT. A spurious TLB flush is benign and likely negligible from a 12029 * performance perspective. 12030 */ 12031 if (init_event) 12032 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12033 } 12034 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12035 12036 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12037 { 12038 struct kvm_segment cs; 12039 12040 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12041 cs.selector = vector << 8; 12042 cs.base = vector << 12; 12043 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12044 kvm_rip_write(vcpu, 0); 12045 } 12046 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12047 12048 int kvm_arch_hardware_enable(void) 12049 { 12050 struct kvm *kvm; 12051 struct kvm_vcpu *vcpu; 12052 unsigned long i; 12053 int ret; 12054 u64 local_tsc; 12055 u64 max_tsc = 0; 12056 bool stable, backwards_tsc = false; 12057 12058 kvm_user_return_msr_cpu_online(); 12059 12060 ret = kvm_x86_check_processor_compatibility(); 12061 if (ret) 12062 return ret; 12063 12064 ret = static_call(kvm_x86_hardware_enable)(); 12065 if (ret != 0) 12066 return ret; 12067 12068 local_tsc = rdtsc(); 12069 stable = !kvm_check_tsc_unstable(); 12070 list_for_each_entry(kvm, &vm_list, vm_list) { 12071 kvm_for_each_vcpu(i, vcpu, kvm) { 12072 if (!stable && vcpu->cpu == smp_processor_id()) 12073 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12074 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12075 backwards_tsc = true; 12076 if (vcpu->arch.last_host_tsc > max_tsc) 12077 max_tsc = vcpu->arch.last_host_tsc; 12078 } 12079 } 12080 } 12081 12082 /* 12083 * Sometimes, even reliable TSCs go backwards. This happens on 12084 * platforms that reset TSC during suspend or hibernate actions, but 12085 * maintain synchronization. We must compensate. Fortunately, we can 12086 * detect that condition here, which happens early in CPU bringup, 12087 * before any KVM threads can be running. Unfortunately, we can't 12088 * bring the TSCs fully up to date with real time, as we aren't yet far 12089 * enough into CPU bringup that we know how much real time has actually 12090 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12091 * variables that haven't been updated yet. 12092 * 12093 * So we simply find the maximum observed TSC above, then record the 12094 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12095 * the adjustment will be applied. Note that we accumulate 12096 * adjustments, in case multiple suspend cycles happen before some VCPU 12097 * gets a chance to run again. In the event that no KVM threads get a 12098 * chance to run, we will miss the entire elapsed period, as we'll have 12099 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12100 * loose cycle time. This isn't too big a deal, since the loss will be 12101 * uniform across all VCPUs (not to mention the scenario is extremely 12102 * unlikely). It is possible that a second hibernate recovery happens 12103 * much faster than a first, causing the observed TSC here to be 12104 * smaller; this would require additional padding adjustment, which is 12105 * why we set last_host_tsc to the local tsc observed here. 12106 * 12107 * N.B. - this code below runs only on platforms with reliable TSC, 12108 * as that is the only way backwards_tsc is set above. Also note 12109 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12110 * have the same delta_cyc adjustment applied if backwards_tsc 12111 * is detected. Note further, this adjustment is only done once, 12112 * as we reset last_host_tsc on all VCPUs to stop this from being 12113 * called multiple times (one for each physical CPU bringup). 12114 * 12115 * Platforms with unreliable TSCs don't have to deal with this, they 12116 * will be compensated by the logic in vcpu_load, which sets the TSC to 12117 * catchup mode. This will catchup all VCPUs to real time, but cannot 12118 * guarantee that they stay in perfect synchronization. 12119 */ 12120 if (backwards_tsc) { 12121 u64 delta_cyc = max_tsc - local_tsc; 12122 list_for_each_entry(kvm, &vm_list, vm_list) { 12123 kvm->arch.backwards_tsc_observed = true; 12124 kvm_for_each_vcpu(i, vcpu, kvm) { 12125 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12126 vcpu->arch.last_host_tsc = local_tsc; 12127 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12128 } 12129 12130 /* 12131 * We have to disable TSC offset matching.. if you were 12132 * booting a VM while issuing an S4 host suspend.... 12133 * you may have some problem. Solving this issue is 12134 * left as an exercise to the reader. 12135 */ 12136 kvm->arch.last_tsc_nsec = 0; 12137 kvm->arch.last_tsc_write = 0; 12138 } 12139 12140 } 12141 return 0; 12142 } 12143 12144 void kvm_arch_hardware_disable(void) 12145 { 12146 static_call(kvm_x86_hardware_disable)(); 12147 drop_user_return_notifiers(); 12148 } 12149 12150 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12151 { 12152 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12153 } 12154 12155 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12156 { 12157 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12158 } 12159 12160 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12161 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12162 12163 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12164 { 12165 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12166 12167 vcpu->arch.l1tf_flush_l1d = true; 12168 if (pmu->version && unlikely(pmu->event_count)) { 12169 pmu->need_cleanup = true; 12170 kvm_make_request(KVM_REQ_PMU, vcpu); 12171 } 12172 static_call(kvm_x86_sched_in)(vcpu, cpu); 12173 } 12174 12175 void kvm_arch_free_vm(struct kvm *kvm) 12176 { 12177 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12178 __kvm_arch_free_vm(kvm); 12179 } 12180 12181 12182 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12183 { 12184 int ret; 12185 unsigned long flags; 12186 12187 if (type) 12188 return -EINVAL; 12189 12190 ret = kvm_page_track_init(kvm); 12191 if (ret) 12192 goto out; 12193 12194 ret = kvm_mmu_init_vm(kvm); 12195 if (ret) 12196 goto out_page_track; 12197 12198 ret = static_call(kvm_x86_vm_init)(kvm); 12199 if (ret) 12200 goto out_uninit_mmu; 12201 12202 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12203 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12204 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12205 12206 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12207 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12208 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12209 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12210 &kvm->arch.irq_sources_bitmap); 12211 12212 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12213 mutex_init(&kvm->arch.apic_map_lock); 12214 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12215 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12216 12217 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12218 pvclock_update_vm_gtod_copy(kvm); 12219 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12220 12221 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12222 kvm->arch.guest_can_read_msr_platform_info = true; 12223 kvm->arch.enable_pmu = enable_pmu; 12224 12225 #if IS_ENABLED(CONFIG_HYPERV) 12226 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12227 kvm->arch.hv_root_tdp = INVALID_PAGE; 12228 #endif 12229 12230 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12231 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12232 12233 kvm_apicv_init(kvm); 12234 kvm_hv_init_vm(kvm); 12235 kvm_xen_init_vm(kvm); 12236 12237 return 0; 12238 12239 out_uninit_mmu: 12240 kvm_mmu_uninit_vm(kvm); 12241 out_page_track: 12242 kvm_page_track_cleanup(kvm); 12243 out: 12244 return ret; 12245 } 12246 12247 int kvm_arch_post_init_vm(struct kvm *kvm) 12248 { 12249 return kvm_mmu_post_init_vm(kvm); 12250 } 12251 12252 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12253 { 12254 vcpu_load(vcpu); 12255 kvm_mmu_unload(vcpu); 12256 vcpu_put(vcpu); 12257 } 12258 12259 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12260 { 12261 unsigned long i; 12262 struct kvm_vcpu *vcpu; 12263 12264 kvm_for_each_vcpu(i, vcpu, kvm) { 12265 kvm_clear_async_pf_completion_queue(vcpu); 12266 kvm_unload_vcpu_mmu(vcpu); 12267 } 12268 } 12269 12270 void kvm_arch_sync_events(struct kvm *kvm) 12271 { 12272 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12273 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12274 kvm_free_pit(kvm); 12275 } 12276 12277 /** 12278 * __x86_set_memory_region: Setup KVM internal memory slot 12279 * 12280 * @kvm: the kvm pointer to the VM. 12281 * @id: the slot ID to setup. 12282 * @gpa: the GPA to install the slot (unused when @size == 0). 12283 * @size: the size of the slot. Set to zero to uninstall a slot. 12284 * 12285 * This function helps to setup a KVM internal memory slot. Specify 12286 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12287 * slot. The return code can be one of the following: 12288 * 12289 * HVA: on success (uninstall will return a bogus HVA) 12290 * -errno: on error 12291 * 12292 * The caller should always use IS_ERR() to check the return value 12293 * before use. Note, the KVM internal memory slots are guaranteed to 12294 * remain valid and unchanged until the VM is destroyed, i.e., the 12295 * GPA->HVA translation will not change. However, the HVA is a user 12296 * address, i.e. its accessibility is not guaranteed, and must be 12297 * accessed via __copy_{to,from}_user(). 12298 */ 12299 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12300 u32 size) 12301 { 12302 int i, r; 12303 unsigned long hva, old_npages; 12304 struct kvm_memslots *slots = kvm_memslots(kvm); 12305 struct kvm_memory_slot *slot; 12306 12307 /* Called with kvm->slots_lock held. */ 12308 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12309 return ERR_PTR_USR(-EINVAL); 12310 12311 slot = id_to_memslot(slots, id); 12312 if (size) { 12313 if (slot && slot->npages) 12314 return ERR_PTR_USR(-EEXIST); 12315 12316 /* 12317 * MAP_SHARED to prevent internal slot pages from being moved 12318 * by fork()/COW. 12319 */ 12320 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12321 MAP_SHARED | MAP_ANONYMOUS, 0); 12322 if (IS_ERR_VALUE(hva)) 12323 return (void __user *)hva; 12324 } else { 12325 if (!slot || !slot->npages) 12326 return NULL; 12327 12328 old_npages = slot->npages; 12329 hva = slot->userspace_addr; 12330 } 12331 12332 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12333 struct kvm_userspace_memory_region m; 12334 12335 m.slot = id | (i << 16); 12336 m.flags = 0; 12337 m.guest_phys_addr = gpa; 12338 m.userspace_addr = hva; 12339 m.memory_size = size; 12340 r = __kvm_set_memory_region(kvm, &m); 12341 if (r < 0) 12342 return ERR_PTR_USR(r); 12343 } 12344 12345 if (!size) 12346 vm_munmap(hva, old_npages * PAGE_SIZE); 12347 12348 return (void __user *)hva; 12349 } 12350 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12351 12352 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12353 { 12354 kvm_mmu_pre_destroy_vm(kvm); 12355 } 12356 12357 void kvm_arch_destroy_vm(struct kvm *kvm) 12358 { 12359 if (current->mm == kvm->mm) { 12360 /* 12361 * Free memory regions allocated on behalf of userspace, 12362 * unless the memory map has changed due to process exit 12363 * or fd copying. 12364 */ 12365 mutex_lock(&kvm->slots_lock); 12366 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12367 0, 0); 12368 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12369 0, 0); 12370 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12371 mutex_unlock(&kvm->slots_lock); 12372 } 12373 kvm_unload_vcpu_mmus(kvm); 12374 static_call_cond(kvm_x86_vm_destroy)(kvm); 12375 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12376 kvm_pic_destroy(kvm); 12377 kvm_ioapic_destroy(kvm); 12378 kvm_destroy_vcpus(kvm); 12379 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12380 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12381 kvm_mmu_uninit_vm(kvm); 12382 kvm_page_track_cleanup(kvm); 12383 kvm_xen_destroy_vm(kvm); 12384 kvm_hv_destroy_vm(kvm); 12385 } 12386 12387 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12388 { 12389 int i; 12390 12391 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12392 kvfree(slot->arch.rmap[i]); 12393 slot->arch.rmap[i] = NULL; 12394 } 12395 } 12396 12397 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12398 { 12399 int i; 12400 12401 memslot_rmap_free(slot); 12402 12403 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12404 kvfree(slot->arch.lpage_info[i - 1]); 12405 slot->arch.lpage_info[i - 1] = NULL; 12406 } 12407 12408 kvm_page_track_free_memslot(slot); 12409 } 12410 12411 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12412 { 12413 const int sz = sizeof(*slot->arch.rmap[0]); 12414 int i; 12415 12416 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12417 int level = i + 1; 12418 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12419 12420 if (slot->arch.rmap[i]) 12421 continue; 12422 12423 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12424 if (!slot->arch.rmap[i]) { 12425 memslot_rmap_free(slot); 12426 return -ENOMEM; 12427 } 12428 } 12429 12430 return 0; 12431 } 12432 12433 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12434 struct kvm_memory_slot *slot) 12435 { 12436 unsigned long npages = slot->npages; 12437 int i, r; 12438 12439 /* 12440 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12441 * old arrays will be freed by __kvm_set_memory_region() if installing 12442 * the new memslot is successful. 12443 */ 12444 memset(&slot->arch, 0, sizeof(slot->arch)); 12445 12446 if (kvm_memslots_have_rmaps(kvm)) { 12447 r = memslot_rmap_alloc(slot, npages); 12448 if (r) 12449 return r; 12450 } 12451 12452 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12453 struct kvm_lpage_info *linfo; 12454 unsigned long ugfn; 12455 int lpages; 12456 int level = i + 1; 12457 12458 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12459 12460 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12461 if (!linfo) 12462 goto out_free; 12463 12464 slot->arch.lpage_info[i - 1] = linfo; 12465 12466 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12467 linfo[0].disallow_lpage = 1; 12468 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12469 linfo[lpages - 1].disallow_lpage = 1; 12470 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12471 /* 12472 * If the gfn and userspace address are not aligned wrt each 12473 * other, disable large page support for this slot. 12474 */ 12475 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12476 unsigned long j; 12477 12478 for (j = 0; j < lpages; ++j) 12479 linfo[j].disallow_lpage = 1; 12480 } 12481 } 12482 12483 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12484 goto out_free; 12485 12486 return 0; 12487 12488 out_free: 12489 memslot_rmap_free(slot); 12490 12491 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12492 kvfree(slot->arch.lpage_info[i - 1]); 12493 slot->arch.lpage_info[i - 1] = NULL; 12494 } 12495 return -ENOMEM; 12496 } 12497 12498 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12499 { 12500 struct kvm_vcpu *vcpu; 12501 unsigned long i; 12502 12503 /* 12504 * memslots->generation has been incremented. 12505 * mmio generation may have reached its maximum value. 12506 */ 12507 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12508 12509 /* Force re-initialization of steal_time cache */ 12510 kvm_for_each_vcpu(i, vcpu, kvm) 12511 kvm_vcpu_kick(vcpu); 12512 } 12513 12514 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12515 const struct kvm_memory_slot *old, 12516 struct kvm_memory_slot *new, 12517 enum kvm_mr_change change) 12518 { 12519 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12520 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12521 return -EINVAL; 12522 12523 return kvm_alloc_memslot_metadata(kvm, new); 12524 } 12525 12526 if (change == KVM_MR_FLAGS_ONLY) 12527 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12528 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12529 return -EIO; 12530 12531 return 0; 12532 } 12533 12534 12535 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12536 { 12537 int nr_slots; 12538 12539 if (!kvm_x86_ops.cpu_dirty_log_size) 12540 return; 12541 12542 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12543 if ((enable && nr_slots == 1) || !nr_slots) 12544 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12545 } 12546 12547 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12548 struct kvm_memory_slot *old, 12549 const struct kvm_memory_slot *new, 12550 enum kvm_mr_change change) 12551 { 12552 u32 old_flags = old ? old->flags : 0; 12553 u32 new_flags = new ? new->flags : 0; 12554 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12555 12556 /* 12557 * Update CPU dirty logging if dirty logging is being toggled. This 12558 * applies to all operations. 12559 */ 12560 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12561 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12562 12563 /* 12564 * Nothing more to do for RO slots (which can't be dirtied and can't be 12565 * made writable) or CREATE/MOVE/DELETE of a slot. 12566 * 12567 * For a memslot with dirty logging disabled: 12568 * CREATE: No dirty mappings will already exist. 12569 * MOVE/DELETE: The old mappings will already have been cleaned up by 12570 * kvm_arch_flush_shadow_memslot() 12571 * 12572 * For a memslot with dirty logging enabled: 12573 * CREATE: No shadow pages exist, thus nothing to write-protect 12574 * and no dirty bits to clear. 12575 * MOVE/DELETE: The old mappings will already have been cleaned up by 12576 * kvm_arch_flush_shadow_memslot(). 12577 */ 12578 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12579 return; 12580 12581 /* 12582 * READONLY and non-flags changes were filtered out above, and the only 12583 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12584 * logging isn't being toggled on or off. 12585 */ 12586 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12587 return; 12588 12589 if (!log_dirty_pages) { 12590 /* 12591 * Dirty logging tracks sptes in 4k granularity, meaning that 12592 * large sptes have to be split. If live migration succeeds, 12593 * the guest in the source machine will be destroyed and large 12594 * sptes will be created in the destination. However, if the 12595 * guest continues to run in the source machine (for example if 12596 * live migration fails), small sptes will remain around and 12597 * cause bad performance. 12598 * 12599 * Scan sptes if dirty logging has been stopped, dropping those 12600 * which can be collapsed into a single large-page spte. Later 12601 * page faults will create the large-page sptes. 12602 */ 12603 kvm_mmu_zap_collapsible_sptes(kvm, new); 12604 } else { 12605 /* 12606 * Initially-all-set does not require write protecting any page, 12607 * because they're all assumed to be dirty. 12608 */ 12609 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12610 return; 12611 12612 if (READ_ONCE(eager_page_split)) 12613 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12614 12615 if (kvm_x86_ops.cpu_dirty_log_size) { 12616 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12617 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12618 } else { 12619 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12620 } 12621 12622 /* 12623 * Unconditionally flush the TLBs after enabling dirty logging. 12624 * A flush is almost always going to be necessary (see below), 12625 * and unconditionally flushing allows the helpers to omit 12626 * the subtly complex checks when removing write access. 12627 * 12628 * Do the flush outside of mmu_lock to reduce the amount of 12629 * time mmu_lock is held. Flushing after dropping mmu_lock is 12630 * safe as KVM only needs to guarantee the slot is fully 12631 * write-protected before returning to userspace, i.e. before 12632 * userspace can consume the dirty status. 12633 * 12634 * Flushing outside of mmu_lock requires KVM to be careful when 12635 * making decisions based on writable status of an SPTE, e.g. a 12636 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12637 * 12638 * Specifically, KVM also write-protects guest page tables to 12639 * monitor changes when using shadow paging, and must guarantee 12640 * no CPUs can write to those page before mmu_lock is dropped. 12641 * Because CPUs may have stale TLB entries at this point, a 12642 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12643 * 12644 * KVM also allows making SPTES writable outside of mmu_lock, 12645 * e.g. to allow dirty logging without taking mmu_lock. 12646 * 12647 * To handle these scenarios, KVM uses a separate software-only 12648 * bit (MMU-writable) to track if a SPTE is !writable due to 12649 * a guest page table being write-protected (KVM clears the 12650 * MMU-writable flag when write-protecting for shadow paging). 12651 * 12652 * The use of MMU-writable is also the primary motivation for 12653 * the unconditional flush. Because KVM must guarantee that a 12654 * CPU doesn't contain stale, writable TLB entries for a 12655 * !MMU-writable SPTE, KVM must flush if it encounters any 12656 * MMU-writable SPTE regardless of whether the actual hardware 12657 * writable bit was set. I.e. KVM is almost guaranteed to need 12658 * to flush, while unconditionally flushing allows the "remove 12659 * write access" helpers to ignore MMU-writable entirely. 12660 * 12661 * See is_writable_pte() for more details (the case involving 12662 * access-tracked SPTEs is particularly relevant). 12663 */ 12664 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12665 } 12666 } 12667 12668 void kvm_arch_commit_memory_region(struct kvm *kvm, 12669 struct kvm_memory_slot *old, 12670 const struct kvm_memory_slot *new, 12671 enum kvm_mr_change change) 12672 { 12673 if (!kvm->arch.n_requested_mmu_pages && 12674 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12675 unsigned long nr_mmu_pages; 12676 12677 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12678 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12679 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12680 } 12681 12682 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12683 12684 /* Free the arrays associated with the old memslot. */ 12685 if (change == KVM_MR_MOVE) 12686 kvm_arch_free_memslot(kvm, old); 12687 } 12688 12689 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12690 { 12691 kvm_mmu_zap_all(kvm); 12692 } 12693 12694 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12695 struct kvm_memory_slot *slot) 12696 { 12697 kvm_page_track_flush_slot(kvm, slot); 12698 } 12699 12700 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12701 { 12702 return (is_guest_mode(vcpu) && 12703 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12704 } 12705 12706 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12707 { 12708 if (!list_empty_careful(&vcpu->async_pf.done)) 12709 return true; 12710 12711 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12712 kvm_apic_init_sipi_allowed(vcpu)) 12713 return true; 12714 12715 if (vcpu->arch.pv.pv_unhalted) 12716 return true; 12717 12718 if (kvm_is_exception_pending(vcpu)) 12719 return true; 12720 12721 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12722 (vcpu->arch.nmi_pending && 12723 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12724 return true; 12725 12726 #ifdef CONFIG_KVM_SMM 12727 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12728 (vcpu->arch.smi_pending && 12729 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12730 return true; 12731 #endif 12732 12733 if (kvm_arch_interrupt_allowed(vcpu) && 12734 (kvm_cpu_has_interrupt(vcpu) || 12735 kvm_guest_apic_has_interrupt(vcpu))) 12736 return true; 12737 12738 if (kvm_hv_has_stimer_pending(vcpu)) 12739 return true; 12740 12741 if (is_guest_mode(vcpu) && 12742 kvm_x86_ops.nested_ops->has_events && 12743 kvm_x86_ops.nested_ops->has_events(vcpu)) 12744 return true; 12745 12746 if (kvm_xen_has_pending_events(vcpu)) 12747 return true; 12748 12749 return false; 12750 } 12751 12752 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12753 { 12754 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12755 } 12756 12757 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12758 { 12759 if (kvm_vcpu_apicv_active(vcpu) && 12760 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12761 return true; 12762 12763 return false; 12764 } 12765 12766 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12767 { 12768 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12769 return true; 12770 12771 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12772 #ifdef CONFIG_KVM_SMM 12773 kvm_test_request(KVM_REQ_SMI, vcpu) || 12774 #endif 12775 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12776 return true; 12777 12778 return kvm_arch_dy_has_pending_interrupt(vcpu); 12779 } 12780 12781 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12782 { 12783 if (vcpu->arch.guest_state_protected) 12784 return true; 12785 12786 return vcpu->arch.preempted_in_kernel; 12787 } 12788 12789 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12790 { 12791 return kvm_rip_read(vcpu); 12792 } 12793 12794 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12795 { 12796 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12797 } 12798 12799 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12800 { 12801 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12802 } 12803 12804 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12805 { 12806 /* Can't read the RIP when guest state is protected, just return 0 */ 12807 if (vcpu->arch.guest_state_protected) 12808 return 0; 12809 12810 if (is_64_bit_mode(vcpu)) 12811 return kvm_rip_read(vcpu); 12812 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12813 kvm_rip_read(vcpu)); 12814 } 12815 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12816 12817 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12818 { 12819 return kvm_get_linear_rip(vcpu) == linear_rip; 12820 } 12821 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12822 12823 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12824 { 12825 unsigned long rflags; 12826 12827 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12828 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12829 rflags &= ~X86_EFLAGS_TF; 12830 return rflags; 12831 } 12832 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12833 12834 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12835 { 12836 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12837 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12838 rflags |= X86_EFLAGS_TF; 12839 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12840 } 12841 12842 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12843 { 12844 __kvm_set_rflags(vcpu, rflags); 12845 kvm_make_request(KVM_REQ_EVENT, vcpu); 12846 } 12847 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12848 12849 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12850 { 12851 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12852 12853 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12854 } 12855 12856 static inline u32 kvm_async_pf_next_probe(u32 key) 12857 { 12858 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12859 } 12860 12861 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12862 { 12863 u32 key = kvm_async_pf_hash_fn(gfn); 12864 12865 while (vcpu->arch.apf.gfns[key] != ~0) 12866 key = kvm_async_pf_next_probe(key); 12867 12868 vcpu->arch.apf.gfns[key] = gfn; 12869 } 12870 12871 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12872 { 12873 int i; 12874 u32 key = kvm_async_pf_hash_fn(gfn); 12875 12876 for (i = 0; i < ASYNC_PF_PER_VCPU && 12877 (vcpu->arch.apf.gfns[key] != gfn && 12878 vcpu->arch.apf.gfns[key] != ~0); i++) 12879 key = kvm_async_pf_next_probe(key); 12880 12881 return key; 12882 } 12883 12884 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12885 { 12886 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12887 } 12888 12889 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12890 { 12891 u32 i, j, k; 12892 12893 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12894 12895 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12896 return; 12897 12898 while (true) { 12899 vcpu->arch.apf.gfns[i] = ~0; 12900 do { 12901 j = kvm_async_pf_next_probe(j); 12902 if (vcpu->arch.apf.gfns[j] == ~0) 12903 return; 12904 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12905 /* 12906 * k lies cyclically in ]i,j] 12907 * | i.k.j | 12908 * |....j i.k.| or |.k..j i...| 12909 */ 12910 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12911 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12912 i = j; 12913 } 12914 } 12915 12916 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12917 { 12918 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12919 12920 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12921 sizeof(reason)); 12922 } 12923 12924 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12925 { 12926 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12927 12928 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12929 &token, offset, sizeof(token)); 12930 } 12931 12932 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12933 { 12934 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12935 u32 val; 12936 12937 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12938 &val, offset, sizeof(val))) 12939 return false; 12940 12941 return !val; 12942 } 12943 12944 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12945 { 12946 12947 if (!kvm_pv_async_pf_enabled(vcpu)) 12948 return false; 12949 12950 if (vcpu->arch.apf.send_user_only && 12951 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12952 return false; 12953 12954 if (is_guest_mode(vcpu)) { 12955 /* 12956 * L1 needs to opt into the special #PF vmexits that are 12957 * used to deliver async page faults. 12958 */ 12959 return vcpu->arch.apf.delivery_as_pf_vmexit; 12960 } else { 12961 /* 12962 * Play it safe in case the guest temporarily disables paging. 12963 * The real mode IDT in particular is unlikely to have a #PF 12964 * exception setup. 12965 */ 12966 return is_paging(vcpu); 12967 } 12968 } 12969 12970 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12971 { 12972 if (unlikely(!lapic_in_kernel(vcpu) || 12973 kvm_event_needs_reinjection(vcpu) || 12974 kvm_is_exception_pending(vcpu))) 12975 return false; 12976 12977 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12978 return false; 12979 12980 /* 12981 * If interrupts are off we cannot even use an artificial 12982 * halt state. 12983 */ 12984 return kvm_arch_interrupt_allowed(vcpu); 12985 } 12986 12987 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12988 struct kvm_async_pf *work) 12989 { 12990 struct x86_exception fault; 12991 12992 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12993 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12994 12995 if (kvm_can_deliver_async_pf(vcpu) && 12996 !apf_put_user_notpresent(vcpu)) { 12997 fault.vector = PF_VECTOR; 12998 fault.error_code_valid = true; 12999 fault.error_code = 0; 13000 fault.nested_page_fault = false; 13001 fault.address = work->arch.token; 13002 fault.async_page_fault = true; 13003 kvm_inject_page_fault(vcpu, &fault); 13004 return true; 13005 } else { 13006 /* 13007 * It is not possible to deliver a paravirtualized asynchronous 13008 * page fault, but putting the guest in an artificial halt state 13009 * can be beneficial nevertheless: if an interrupt arrives, we 13010 * can deliver it timely and perhaps the guest will schedule 13011 * another process. When the instruction that triggered a page 13012 * fault is retried, hopefully the page will be ready in the host. 13013 */ 13014 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13015 return false; 13016 } 13017 } 13018 13019 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13020 struct kvm_async_pf *work) 13021 { 13022 struct kvm_lapic_irq irq = { 13023 .delivery_mode = APIC_DM_FIXED, 13024 .vector = vcpu->arch.apf.vec 13025 }; 13026 13027 if (work->wakeup_all) 13028 work->arch.token = ~0; /* broadcast wakeup */ 13029 else 13030 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13031 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13032 13033 if ((work->wakeup_all || work->notpresent_injected) && 13034 kvm_pv_async_pf_enabled(vcpu) && 13035 !apf_put_user_ready(vcpu, work->arch.token)) { 13036 vcpu->arch.apf.pageready_pending = true; 13037 kvm_apic_set_irq(vcpu, &irq, NULL); 13038 } 13039 13040 vcpu->arch.apf.halted = false; 13041 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13042 } 13043 13044 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13045 { 13046 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13047 if (!vcpu->arch.apf.pageready_pending) 13048 kvm_vcpu_kick(vcpu); 13049 } 13050 13051 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13052 { 13053 if (!kvm_pv_async_pf_enabled(vcpu)) 13054 return true; 13055 else 13056 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13057 } 13058 13059 void kvm_arch_start_assignment(struct kvm *kvm) 13060 { 13061 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13062 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13063 } 13064 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13065 13066 void kvm_arch_end_assignment(struct kvm *kvm) 13067 { 13068 atomic_dec(&kvm->arch.assigned_device_count); 13069 } 13070 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13071 13072 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13073 { 13074 return arch_atomic_read(&kvm->arch.assigned_device_count); 13075 } 13076 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13077 13078 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13079 { 13080 atomic_inc(&kvm->arch.noncoherent_dma_count); 13081 } 13082 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13083 13084 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13085 { 13086 atomic_dec(&kvm->arch.noncoherent_dma_count); 13087 } 13088 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13089 13090 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13091 { 13092 return atomic_read(&kvm->arch.noncoherent_dma_count); 13093 } 13094 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13095 13096 bool kvm_arch_has_irq_bypass(void) 13097 { 13098 return true; 13099 } 13100 13101 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13102 struct irq_bypass_producer *prod) 13103 { 13104 struct kvm_kernel_irqfd *irqfd = 13105 container_of(cons, struct kvm_kernel_irqfd, consumer); 13106 int ret; 13107 13108 irqfd->producer = prod; 13109 kvm_arch_start_assignment(irqfd->kvm); 13110 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13111 prod->irq, irqfd->gsi, 1); 13112 13113 if (ret) 13114 kvm_arch_end_assignment(irqfd->kvm); 13115 13116 return ret; 13117 } 13118 13119 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13120 struct irq_bypass_producer *prod) 13121 { 13122 int ret; 13123 struct kvm_kernel_irqfd *irqfd = 13124 container_of(cons, struct kvm_kernel_irqfd, consumer); 13125 13126 WARN_ON(irqfd->producer != prod); 13127 irqfd->producer = NULL; 13128 13129 /* 13130 * When producer of consumer is unregistered, we change back to 13131 * remapped mode, so we can re-use the current implementation 13132 * when the irq is masked/disabled or the consumer side (KVM 13133 * int this case doesn't want to receive the interrupts. 13134 */ 13135 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13136 if (ret) 13137 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13138 " fails: %d\n", irqfd->consumer.token, ret); 13139 13140 kvm_arch_end_assignment(irqfd->kvm); 13141 } 13142 13143 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13144 uint32_t guest_irq, bool set) 13145 { 13146 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13147 } 13148 13149 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13150 struct kvm_kernel_irq_routing_entry *new) 13151 { 13152 if (new->type != KVM_IRQ_ROUTING_MSI) 13153 return true; 13154 13155 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13156 } 13157 13158 bool kvm_vector_hashing_enabled(void) 13159 { 13160 return vector_hashing; 13161 } 13162 13163 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13164 { 13165 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13166 } 13167 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13168 13169 13170 int kvm_spec_ctrl_test_value(u64 value) 13171 { 13172 /* 13173 * test that setting IA32_SPEC_CTRL to given value 13174 * is allowed by the host processor 13175 */ 13176 13177 u64 saved_value; 13178 unsigned long flags; 13179 int ret = 0; 13180 13181 local_irq_save(flags); 13182 13183 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13184 ret = 1; 13185 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13186 ret = 1; 13187 else 13188 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13189 13190 local_irq_restore(flags); 13191 13192 return ret; 13193 } 13194 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13195 13196 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13197 { 13198 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13199 struct x86_exception fault; 13200 u64 access = error_code & 13201 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13202 13203 if (!(error_code & PFERR_PRESENT_MASK) || 13204 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13205 /* 13206 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13207 * tables probably do not match the TLB. Just proceed 13208 * with the error code that the processor gave. 13209 */ 13210 fault.vector = PF_VECTOR; 13211 fault.error_code_valid = true; 13212 fault.error_code = error_code; 13213 fault.nested_page_fault = false; 13214 fault.address = gva; 13215 fault.async_page_fault = false; 13216 } 13217 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13218 } 13219 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13220 13221 /* 13222 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13223 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13224 * indicates whether exit to userspace is needed. 13225 */ 13226 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13227 struct x86_exception *e) 13228 { 13229 if (r == X86EMUL_PROPAGATE_FAULT) { 13230 if (KVM_BUG_ON(!e, vcpu->kvm)) 13231 return -EIO; 13232 13233 kvm_inject_emulated_page_fault(vcpu, e); 13234 return 1; 13235 } 13236 13237 /* 13238 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13239 * while handling a VMX instruction KVM could've handled the request 13240 * correctly by exiting to userspace and performing I/O but there 13241 * doesn't seem to be a real use-case behind such requests, just return 13242 * KVM_EXIT_INTERNAL_ERROR for now. 13243 */ 13244 kvm_prepare_emulation_failure_exit(vcpu); 13245 13246 return 0; 13247 } 13248 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13249 13250 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13251 { 13252 bool pcid_enabled; 13253 struct x86_exception e; 13254 struct { 13255 u64 pcid; 13256 u64 gla; 13257 } operand; 13258 int r; 13259 13260 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13261 if (r != X86EMUL_CONTINUE) 13262 return kvm_handle_memory_failure(vcpu, r, &e); 13263 13264 if (operand.pcid >> 12 != 0) { 13265 kvm_inject_gp(vcpu, 0); 13266 return 1; 13267 } 13268 13269 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13270 13271 switch (type) { 13272 case INVPCID_TYPE_INDIV_ADDR: 13273 if ((!pcid_enabled && (operand.pcid != 0)) || 13274 is_noncanonical_address(operand.gla, vcpu)) { 13275 kvm_inject_gp(vcpu, 0); 13276 return 1; 13277 } 13278 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13279 return kvm_skip_emulated_instruction(vcpu); 13280 13281 case INVPCID_TYPE_SINGLE_CTXT: 13282 if (!pcid_enabled && (operand.pcid != 0)) { 13283 kvm_inject_gp(vcpu, 0); 13284 return 1; 13285 } 13286 13287 kvm_invalidate_pcid(vcpu, operand.pcid); 13288 return kvm_skip_emulated_instruction(vcpu); 13289 13290 case INVPCID_TYPE_ALL_NON_GLOBAL: 13291 /* 13292 * Currently, KVM doesn't mark global entries in the shadow 13293 * page tables, so a non-global flush just degenerates to a 13294 * global flush. If needed, we could optimize this later by 13295 * keeping track of global entries in shadow page tables. 13296 */ 13297 13298 fallthrough; 13299 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13300 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13301 return kvm_skip_emulated_instruction(vcpu); 13302 13303 default: 13304 kvm_inject_gp(vcpu, 0); 13305 return 1; 13306 } 13307 } 13308 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13309 13310 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13311 { 13312 struct kvm_run *run = vcpu->run; 13313 struct kvm_mmio_fragment *frag; 13314 unsigned int len; 13315 13316 BUG_ON(!vcpu->mmio_needed); 13317 13318 /* Complete previous fragment */ 13319 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13320 len = min(8u, frag->len); 13321 if (!vcpu->mmio_is_write) 13322 memcpy(frag->data, run->mmio.data, len); 13323 13324 if (frag->len <= 8) { 13325 /* Switch to the next fragment. */ 13326 frag++; 13327 vcpu->mmio_cur_fragment++; 13328 } else { 13329 /* Go forward to the next mmio piece. */ 13330 frag->data += len; 13331 frag->gpa += len; 13332 frag->len -= len; 13333 } 13334 13335 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13336 vcpu->mmio_needed = 0; 13337 13338 // VMG change, at this point, we're always done 13339 // RIP has already been advanced 13340 return 1; 13341 } 13342 13343 // More MMIO is needed 13344 run->mmio.phys_addr = frag->gpa; 13345 run->mmio.len = min(8u, frag->len); 13346 run->mmio.is_write = vcpu->mmio_is_write; 13347 if (run->mmio.is_write) 13348 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13349 run->exit_reason = KVM_EXIT_MMIO; 13350 13351 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13352 13353 return 0; 13354 } 13355 13356 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13357 void *data) 13358 { 13359 int handled; 13360 struct kvm_mmio_fragment *frag; 13361 13362 if (!data) 13363 return -EINVAL; 13364 13365 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13366 if (handled == bytes) 13367 return 1; 13368 13369 bytes -= handled; 13370 gpa += handled; 13371 data += handled; 13372 13373 /*TODO: Check if need to increment number of frags */ 13374 frag = vcpu->mmio_fragments; 13375 vcpu->mmio_nr_fragments = 1; 13376 frag->len = bytes; 13377 frag->gpa = gpa; 13378 frag->data = data; 13379 13380 vcpu->mmio_needed = 1; 13381 vcpu->mmio_cur_fragment = 0; 13382 13383 vcpu->run->mmio.phys_addr = gpa; 13384 vcpu->run->mmio.len = min(8u, frag->len); 13385 vcpu->run->mmio.is_write = 1; 13386 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13387 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13388 13389 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13390 13391 return 0; 13392 } 13393 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13394 13395 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13396 void *data) 13397 { 13398 int handled; 13399 struct kvm_mmio_fragment *frag; 13400 13401 if (!data) 13402 return -EINVAL; 13403 13404 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13405 if (handled == bytes) 13406 return 1; 13407 13408 bytes -= handled; 13409 gpa += handled; 13410 data += handled; 13411 13412 /*TODO: Check if need to increment number of frags */ 13413 frag = vcpu->mmio_fragments; 13414 vcpu->mmio_nr_fragments = 1; 13415 frag->len = bytes; 13416 frag->gpa = gpa; 13417 frag->data = data; 13418 13419 vcpu->mmio_needed = 1; 13420 vcpu->mmio_cur_fragment = 0; 13421 13422 vcpu->run->mmio.phys_addr = gpa; 13423 vcpu->run->mmio.len = min(8u, frag->len); 13424 vcpu->run->mmio.is_write = 0; 13425 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13426 13427 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13428 13429 return 0; 13430 } 13431 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13432 13433 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13434 { 13435 vcpu->arch.sev_pio_count -= count; 13436 vcpu->arch.sev_pio_data += count * size; 13437 } 13438 13439 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13440 unsigned int port); 13441 13442 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13443 { 13444 int size = vcpu->arch.pio.size; 13445 int port = vcpu->arch.pio.port; 13446 13447 vcpu->arch.pio.count = 0; 13448 if (vcpu->arch.sev_pio_count) 13449 return kvm_sev_es_outs(vcpu, size, port); 13450 return 1; 13451 } 13452 13453 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13454 unsigned int port) 13455 { 13456 for (;;) { 13457 unsigned int count = 13458 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13459 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13460 13461 /* memcpy done already by emulator_pio_out. */ 13462 advance_sev_es_emulated_pio(vcpu, count, size); 13463 if (!ret) 13464 break; 13465 13466 /* Emulation done by the kernel. */ 13467 if (!vcpu->arch.sev_pio_count) 13468 return 1; 13469 } 13470 13471 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13472 return 0; 13473 } 13474 13475 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13476 unsigned int port); 13477 13478 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13479 { 13480 unsigned count = vcpu->arch.pio.count; 13481 int size = vcpu->arch.pio.size; 13482 int port = vcpu->arch.pio.port; 13483 13484 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13485 advance_sev_es_emulated_pio(vcpu, count, size); 13486 if (vcpu->arch.sev_pio_count) 13487 return kvm_sev_es_ins(vcpu, size, port); 13488 return 1; 13489 } 13490 13491 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13492 unsigned int port) 13493 { 13494 for (;;) { 13495 unsigned int count = 13496 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13497 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13498 break; 13499 13500 /* Emulation done by the kernel. */ 13501 advance_sev_es_emulated_pio(vcpu, count, size); 13502 if (!vcpu->arch.sev_pio_count) 13503 return 1; 13504 } 13505 13506 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13507 return 0; 13508 } 13509 13510 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13511 unsigned int port, void *data, unsigned int count, 13512 int in) 13513 { 13514 vcpu->arch.sev_pio_data = data; 13515 vcpu->arch.sev_pio_count = count; 13516 return in ? kvm_sev_es_ins(vcpu, size, port) 13517 : kvm_sev_es_outs(vcpu, size, port); 13518 } 13519 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13520 13521 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13522 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13523 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13524 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13525 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13526 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13527 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13528 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13529 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13530 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13531 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13532 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13533 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13534 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13535 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13536 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13537 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13538 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13539 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13540 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13541 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13542 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13543 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13544 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13545 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13546 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13547 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13548 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13549 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13550 13551 static int __init kvm_x86_init(void) 13552 { 13553 kvm_mmu_x86_module_init(); 13554 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13555 return 0; 13556 } 13557 module_init(kvm_x86_init); 13558 13559 static void __exit kvm_x86_exit(void) 13560 { 13561 /* 13562 * If module_init() is implemented, module_exit() must also be 13563 * implemented to allow module unload. 13564 */ 13565 } 13566 module_exit(kvm_x86_exit); 13567