1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <linux/timekeeper_internal.h> 50 #include <linux/pvclock_gtod.h> 51 #include <trace/events/kvm.h> 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 56 #include <asm/debugreg.h> 57 #include <asm/msr.h> 58 #include <asm/desc.h> 59 #include <asm/mtrr.h> 60 #include <asm/mce.h> 61 #include <asm/i387.h> 62 #include <asm/fpu-internal.h> /* Ugh! */ 63 #include <asm/xcr.h> 64 #include <asm/pvclock.h> 65 #include <asm/div64.h> 66 67 #define MAX_IO_MSRS 256 68 #define KVM_MAX_MCE_BANKS 32 69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 70 71 #define emul_to_vcpu(ctxt) \ 72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 73 74 /* EFER defaults: 75 * - enable syscall per default because its emulated by KVM 76 * - enable LME and LMA per default on 64 bit KVM 77 */ 78 #ifdef CONFIG_X86_64 79 static 80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 81 #else 82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 83 #endif 84 85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 87 88 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 89 static void process_nmi(struct kvm_vcpu *vcpu); 90 91 struct kvm_x86_ops *kvm_x86_ops; 92 EXPORT_SYMBOL_GPL(kvm_x86_ops); 93 94 static bool ignore_msrs = 0; 95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 96 97 bool kvm_has_tsc_control; 98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 99 u32 kvm_max_guest_tsc_khz; 100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 101 102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 103 static u32 tsc_tolerance_ppm = 250; 104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 105 106 #define KVM_NR_SHARED_MSRS 16 107 108 struct kvm_shared_msrs_global { 109 int nr; 110 u32 msrs[KVM_NR_SHARED_MSRS]; 111 }; 112 113 struct kvm_shared_msrs { 114 struct user_return_notifier urn; 115 bool registered; 116 struct kvm_shared_msr_values { 117 u64 host; 118 u64 curr; 119 } values[KVM_NR_SHARED_MSRS]; 120 }; 121 122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 123 static struct kvm_shared_msrs __percpu *shared_msrs; 124 125 struct kvm_stats_debugfs_item debugfs_entries[] = { 126 { "pf_fixed", VCPU_STAT(pf_fixed) }, 127 { "pf_guest", VCPU_STAT(pf_guest) }, 128 { "tlb_flush", VCPU_STAT(tlb_flush) }, 129 { "invlpg", VCPU_STAT(invlpg) }, 130 { "exits", VCPU_STAT(exits) }, 131 { "io_exits", VCPU_STAT(io_exits) }, 132 { "mmio_exits", VCPU_STAT(mmio_exits) }, 133 { "signal_exits", VCPU_STAT(signal_exits) }, 134 { "irq_window", VCPU_STAT(irq_window_exits) }, 135 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 136 { "halt_exits", VCPU_STAT(halt_exits) }, 137 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 138 { "hypercalls", VCPU_STAT(hypercalls) }, 139 { "request_irq", VCPU_STAT(request_irq_exits) }, 140 { "irq_exits", VCPU_STAT(irq_exits) }, 141 { "host_state_reload", VCPU_STAT(host_state_reload) }, 142 { "efer_reload", VCPU_STAT(efer_reload) }, 143 { "fpu_reload", VCPU_STAT(fpu_reload) }, 144 { "insn_emulation", VCPU_STAT(insn_emulation) }, 145 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 146 { "irq_injections", VCPU_STAT(irq_injections) }, 147 { "nmi_injections", VCPU_STAT(nmi_injections) }, 148 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 149 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 150 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 151 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 152 { "mmu_flooded", VM_STAT(mmu_flooded) }, 153 { "mmu_recycled", VM_STAT(mmu_recycled) }, 154 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 155 { "mmu_unsync", VM_STAT(mmu_unsync) }, 156 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 157 { "largepages", VM_STAT(lpages) }, 158 { NULL } 159 }; 160 161 u64 __read_mostly host_xcr0; 162 163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 164 165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 166 { 167 int i; 168 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 169 vcpu->arch.apf.gfns[i] = ~0; 170 } 171 172 static void kvm_on_user_return(struct user_return_notifier *urn) 173 { 174 unsigned slot; 175 struct kvm_shared_msrs *locals 176 = container_of(urn, struct kvm_shared_msrs, urn); 177 struct kvm_shared_msr_values *values; 178 179 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 180 values = &locals->values[slot]; 181 if (values->host != values->curr) { 182 wrmsrl(shared_msrs_global.msrs[slot], values->host); 183 values->curr = values->host; 184 } 185 } 186 locals->registered = false; 187 user_return_notifier_unregister(urn); 188 } 189 190 static void shared_msr_update(unsigned slot, u32 msr) 191 { 192 u64 value; 193 unsigned int cpu = smp_processor_id(); 194 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 195 196 /* only read, and nobody should modify it at this time, 197 * so don't need lock */ 198 if (slot >= shared_msrs_global.nr) { 199 printk(KERN_ERR "kvm: invalid MSR slot!"); 200 return; 201 } 202 rdmsrl_safe(msr, &value); 203 smsr->values[slot].host = value; 204 smsr->values[slot].curr = value; 205 } 206 207 void kvm_define_shared_msr(unsigned slot, u32 msr) 208 { 209 if (slot >= shared_msrs_global.nr) 210 shared_msrs_global.nr = slot + 1; 211 shared_msrs_global.msrs[slot] = msr; 212 /* we need ensured the shared_msr_global have been updated */ 213 smp_wmb(); 214 } 215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 216 217 static void kvm_shared_msr_cpu_online(void) 218 { 219 unsigned i; 220 221 for (i = 0; i < shared_msrs_global.nr; ++i) 222 shared_msr_update(i, shared_msrs_global.msrs[i]); 223 } 224 225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 226 { 227 unsigned int cpu = smp_processor_id(); 228 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 229 230 if (((value ^ smsr->values[slot].curr) & mask) == 0) 231 return; 232 smsr->values[slot].curr = value; 233 wrmsrl(shared_msrs_global.msrs[slot], value); 234 if (!smsr->registered) { 235 smsr->urn.on_user_return = kvm_on_user_return; 236 user_return_notifier_register(&smsr->urn); 237 smsr->registered = true; 238 } 239 } 240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 241 242 static void drop_user_return_notifiers(void *ignore) 243 { 244 unsigned int cpu = smp_processor_id(); 245 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 246 247 if (smsr->registered) 248 kvm_on_user_return(&smsr->urn); 249 } 250 251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 252 { 253 return vcpu->arch.apic_base; 254 } 255 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 256 257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) 258 { 259 /* TODO: reserve bits check */ 260 kvm_lapic_set_base(vcpu, data); 261 } 262 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 263 264 asmlinkage void kvm_spurious_fault(void) 265 { 266 /* Fault while not rebooting. We want the trace. */ 267 BUG(); 268 } 269 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 270 271 #define EXCPT_BENIGN 0 272 #define EXCPT_CONTRIBUTORY 1 273 #define EXCPT_PF 2 274 275 static int exception_class(int vector) 276 { 277 switch (vector) { 278 case PF_VECTOR: 279 return EXCPT_PF; 280 case DE_VECTOR: 281 case TS_VECTOR: 282 case NP_VECTOR: 283 case SS_VECTOR: 284 case GP_VECTOR: 285 return EXCPT_CONTRIBUTORY; 286 default: 287 break; 288 } 289 return EXCPT_BENIGN; 290 } 291 292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 293 unsigned nr, bool has_error, u32 error_code, 294 bool reinject) 295 { 296 u32 prev_nr; 297 int class1, class2; 298 299 kvm_make_request(KVM_REQ_EVENT, vcpu); 300 301 if (!vcpu->arch.exception.pending) { 302 queue: 303 vcpu->arch.exception.pending = true; 304 vcpu->arch.exception.has_error_code = has_error; 305 vcpu->arch.exception.nr = nr; 306 vcpu->arch.exception.error_code = error_code; 307 vcpu->arch.exception.reinject = reinject; 308 return; 309 } 310 311 /* to check exception */ 312 prev_nr = vcpu->arch.exception.nr; 313 if (prev_nr == DF_VECTOR) { 314 /* triple fault -> shutdown */ 315 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 316 return; 317 } 318 class1 = exception_class(prev_nr); 319 class2 = exception_class(nr); 320 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 321 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 322 /* generate double fault per SDM Table 5-5 */ 323 vcpu->arch.exception.pending = true; 324 vcpu->arch.exception.has_error_code = true; 325 vcpu->arch.exception.nr = DF_VECTOR; 326 vcpu->arch.exception.error_code = 0; 327 } else 328 /* replace previous exception with a new one in a hope 329 that instruction re-execution will regenerate lost 330 exception */ 331 goto queue; 332 } 333 334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 335 { 336 kvm_multiple_exception(vcpu, nr, false, 0, false); 337 } 338 EXPORT_SYMBOL_GPL(kvm_queue_exception); 339 340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 341 { 342 kvm_multiple_exception(vcpu, nr, false, 0, true); 343 } 344 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 345 346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 347 { 348 if (err) 349 kvm_inject_gp(vcpu, 0); 350 else 351 kvm_x86_ops->skip_emulated_instruction(vcpu); 352 } 353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 354 355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 356 { 357 ++vcpu->stat.pf_guest; 358 vcpu->arch.cr2 = fault->address; 359 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 360 } 361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 362 363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 364 { 365 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 366 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 367 else 368 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 369 } 370 371 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 372 { 373 atomic_inc(&vcpu->arch.nmi_queued); 374 kvm_make_request(KVM_REQ_NMI, vcpu); 375 } 376 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 377 378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 379 { 380 kvm_multiple_exception(vcpu, nr, true, error_code, false); 381 } 382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 383 384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 385 { 386 kvm_multiple_exception(vcpu, nr, true, error_code, true); 387 } 388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 389 390 /* 391 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 392 * a #GP and return false. 393 */ 394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 395 { 396 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 397 return true; 398 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 399 return false; 400 } 401 EXPORT_SYMBOL_GPL(kvm_require_cpl); 402 403 /* 404 * This function will be used to read from the physical memory of the currently 405 * running guest. The difference to kvm_read_guest_page is that this function 406 * can read from guest physical or from the guest's guest physical memory. 407 */ 408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 409 gfn_t ngfn, void *data, int offset, int len, 410 u32 access) 411 { 412 gfn_t real_gfn; 413 gpa_t ngpa; 414 415 ngpa = gfn_to_gpa(ngfn); 416 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 417 if (real_gfn == UNMAPPED_GVA) 418 return -EFAULT; 419 420 real_gfn = gpa_to_gfn(real_gfn); 421 422 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 423 } 424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 425 426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 427 void *data, int offset, int len, u32 access) 428 { 429 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 430 data, offset, len, access); 431 } 432 433 /* 434 * Load the pae pdptrs. Return true is they are all valid. 435 */ 436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 437 { 438 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 439 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 440 int i; 441 int ret; 442 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 443 444 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 445 offset * sizeof(u64), sizeof(pdpte), 446 PFERR_USER_MASK|PFERR_WRITE_MASK); 447 if (ret < 0) { 448 ret = 0; 449 goto out; 450 } 451 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 452 if (is_present_gpte(pdpte[i]) && 453 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 454 ret = 0; 455 goto out; 456 } 457 } 458 ret = 1; 459 460 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 461 __set_bit(VCPU_EXREG_PDPTR, 462 (unsigned long *)&vcpu->arch.regs_avail); 463 __set_bit(VCPU_EXREG_PDPTR, 464 (unsigned long *)&vcpu->arch.regs_dirty); 465 out: 466 467 return ret; 468 } 469 EXPORT_SYMBOL_GPL(load_pdptrs); 470 471 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 472 { 473 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 474 bool changed = true; 475 int offset; 476 gfn_t gfn; 477 int r; 478 479 if (is_long_mode(vcpu) || !is_pae(vcpu)) 480 return false; 481 482 if (!test_bit(VCPU_EXREG_PDPTR, 483 (unsigned long *)&vcpu->arch.regs_avail)) 484 return true; 485 486 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 487 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 488 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 489 PFERR_USER_MASK | PFERR_WRITE_MASK); 490 if (r < 0) 491 goto out; 492 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 493 out: 494 495 return changed; 496 } 497 498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 499 { 500 unsigned long old_cr0 = kvm_read_cr0(vcpu); 501 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 502 X86_CR0_CD | X86_CR0_NW; 503 504 cr0 |= X86_CR0_ET; 505 506 #ifdef CONFIG_X86_64 507 if (cr0 & 0xffffffff00000000UL) 508 return 1; 509 #endif 510 511 cr0 &= ~CR0_RESERVED_BITS; 512 513 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 514 return 1; 515 516 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 517 return 1; 518 519 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 520 #ifdef CONFIG_X86_64 521 if ((vcpu->arch.efer & EFER_LME)) { 522 int cs_db, cs_l; 523 524 if (!is_pae(vcpu)) 525 return 1; 526 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 527 if (cs_l) 528 return 1; 529 } else 530 #endif 531 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 532 kvm_read_cr3(vcpu))) 533 return 1; 534 } 535 536 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 537 return 1; 538 539 kvm_x86_ops->set_cr0(vcpu, cr0); 540 541 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 542 kvm_clear_async_pf_completion_queue(vcpu); 543 kvm_async_pf_hash_reset(vcpu); 544 } 545 546 if ((cr0 ^ old_cr0) & update_bits) 547 kvm_mmu_reset_context(vcpu); 548 return 0; 549 } 550 EXPORT_SYMBOL_GPL(kvm_set_cr0); 551 552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 553 { 554 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 555 } 556 EXPORT_SYMBOL_GPL(kvm_lmsw); 557 558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 559 { 560 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 561 !vcpu->guest_xcr0_loaded) { 562 /* kvm_set_xcr() also depends on this */ 563 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 564 vcpu->guest_xcr0_loaded = 1; 565 } 566 } 567 568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 569 { 570 if (vcpu->guest_xcr0_loaded) { 571 if (vcpu->arch.xcr0 != host_xcr0) 572 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 573 vcpu->guest_xcr0_loaded = 0; 574 } 575 } 576 577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 578 { 579 u64 xcr0; 580 581 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 582 if (index != XCR_XFEATURE_ENABLED_MASK) 583 return 1; 584 xcr0 = xcr; 585 if (!(xcr0 & XSTATE_FP)) 586 return 1; 587 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 588 return 1; 589 if (xcr0 & ~host_xcr0) 590 return 1; 591 kvm_put_guest_xcr0(vcpu); 592 vcpu->arch.xcr0 = xcr0; 593 return 0; 594 } 595 596 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 597 { 598 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 599 __kvm_set_xcr(vcpu, index, xcr)) { 600 kvm_inject_gp(vcpu, 0); 601 return 1; 602 } 603 return 0; 604 } 605 EXPORT_SYMBOL_GPL(kvm_set_xcr); 606 607 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 608 { 609 unsigned long old_cr4 = kvm_read_cr4(vcpu); 610 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 611 X86_CR4_PAE | X86_CR4_SMEP; 612 if (cr4 & CR4_RESERVED_BITS) 613 return 1; 614 615 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 616 return 1; 617 618 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 619 return 1; 620 621 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) 622 return 1; 623 624 if (is_long_mode(vcpu)) { 625 if (!(cr4 & X86_CR4_PAE)) 626 return 1; 627 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 628 && ((cr4 ^ old_cr4) & pdptr_bits) 629 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 630 kvm_read_cr3(vcpu))) 631 return 1; 632 633 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 634 if (!guest_cpuid_has_pcid(vcpu)) 635 return 1; 636 637 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 638 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 639 return 1; 640 } 641 642 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 643 return 1; 644 645 if (((cr4 ^ old_cr4) & pdptr_bits) || 646 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 647 kvm_mmu_reset_context(vcpu); 648 649 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 650 kvm_update_cpuid(vcpu); 651 652 return 0; 653 } 654 EXPORT_SYMBOL_GPL(kvm_set_cr4); 655 656 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 657 { 658 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 659 kvm_mmu_sync_roots(vcpu); 660 kvm_mmu_flush_tlb(vcpu); 661 return 0; 662 } 663 664 if (is_long_mode(vcpu)) { 665 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) { 666 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) 667 return 1; 668 } else 669 if (cr3 & CR3_L_MODE_RESERVED_BITS) 670 return 1; 671 } else { 672 if (is_pae(vcpu)) { 673 if (cr3 & CR3_PAE_RESERVED_BITS) 674 return 1; 675 if (is_paging(vcpu) && 676 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 677 return 1; 678 } 679 /* 680 * We don't check reserved bits in nonpae mode, because 681 * this isn't enforced, and VMware depends on this. 682 */ 683 } 684 685 vcpu->arch.cr3 = cr3; 686 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 687 vcpu->arch.mmu.new_cr3(vcpu); 688 return 0; 689 } 690 EXPORT_SYMBOL_GPL(kvm_set_cr3); 691 692 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 693 { 694 if (cr8 & CR8_RESERVED_BITS) 695 return 1; 696 if (irqchip_in_kernel(vcpu->kvm)) 697 kvm_lapic_set_tpr(vcpu, cr8); 698 else 699 vcpu->arch.cr8 = cr8; 700 return 0; 701 } 702 EXPORT_SYMBOL_GPL(kvm_set_cr8); 703 704 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 705 { 706 if (irqchip_in_kernel(vcpu->kvm)) 707 return kvm_lapic_get_cr8(vcpu); 708 else 709 return vcpu->arch.cr8; 710 } 711 EXPORT_SYMBOL_GPL(kvm_get_cr8); 712 713 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 714 { 715 unsigned long dr7; 716 717 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 718 dr7 = vcpu->arch.guest_debug_dr7; 719 else 720 dr7 = vcpu->arch.dr7; 721 kvm_x86_ops->set_dr7(vcpu, dr7); 722 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK); 723 } 724 725 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 726 { 727 switch (dr) { 728 case 0 ... 3: 729 vcpu->arch.db[dr] = val; 730 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 731 vcpu->arch.eff_db[dr] = val; 732 break; 733 case 4: 734 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 735 return 1; /* #UD */ 736 /* fall through */ 737 case 6: 738 if (val & 0xffffffff00000000ULL) 739 return -1; /* #GP */ 740 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 741 break; 742 case 5: 743 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 744 return 1; /* #UD */ 745 /* fall through */ 746 default: /* 7 */ 747 if (val & 0xffffffff00000000ULL) 748 return -1; /* #GP */ 749 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 750 kvm_update_dr7(vcpu); 751 break; 752 } 753 754 return 0; 755 } 756 757 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 758 { 759 int res; 760 761 res = __kvm_set_dr(vcpu, dr, val); 762 if (res > 0) 763 kvm_queue_exception(vcpu, UD_VECTOR); 764 else if (res < 0) 765 kvm_inject_gp(vcpu, 0); 766 767 return res; 768 } 769 EXPORT_SYMBOL_GPL(kvm_set_dr); 770 771 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 772 { 773 switch (dr) { 774 case 0 ... 3: 775 *val = vcpu->arch.db[dr]; 776 break; 777 case 4: 778 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 779 return 1; 780 /* fall through */ 781 case 6: 782 *val = vcpu->arch.dr6; 783 break; 784 case 5: 785 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 786 return 1; 787 /* fall through */ 788 default: /* 7 */ 789 *val = vcpu->arch.dr7; 790 break; 791 } 792 793 return 0; 794 } 795 796 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 797 { 798 if (_kvm_get_dr(vcpu, dr, val)) { 799 kvm_queue_exception(vcpu, UD_VECTOR); 800 return 1; 801 } 802 return 0; 803 } 804 EXPORT_SYMBOL_GPL(kvm_get_dr); 805 806 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 807 { 808 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 809 u64 data; 810 int err; 811 812 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 813 if (err) 814 return err; 815 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 816 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 817 return err; 818 } 819 EXPORT_SYMBOL_GPL(kvm_rdpmc); 820 821 /* 822 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 823 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 824 * 825 * This list is modified at module load time to reflect the 826 * capabilities of the host cpu. This capabilities test skips MSRs that are 827 * kvm-specific. Those are put in the beginning of the list. 828 */ 829 830 #define KVM_SAVE_MSRS_BEGIN 10 831 static u32 msrs_to_save[] = { 832 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 833 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 834 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 835 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 836 MSR_KVM_PV_EOI_EN, 837 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 838 MSR_STAR, 839 #ifdef CONFIG_X86_64 840 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 841 #endif 842 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 843 MSR_IA32_FEATURE_CONTROL 844 }; 845 846 static unsigned num_msrs_to_save; 847 848 static const u32 emulated_msrs[] = { 849 MSR_IA32_TSC_ADJUST, 850 MSR_IA32_TSCDEADLINE, 851 MSR_IA32_MISC_ENABLE, 852 MSR_IA32_MCG_STATUS, 853 MSR_IA32_MCG_CTL, 854 }; 855 856 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 857 { 858 if (efer & efer_reserved_bits) 859 return false; 860 861 if (efer & EFER_FFXSR) { 862 struct kvm_cpuid_entry2 *feat; 863 864 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 865 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 866 return false; 867 } 868 869 if (efer & EFER_SVME) { 870 struct kvm_cpuid_entry2 *feat; 871 872 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 873 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 874 return false; 875 } 876 877 return true; 878 } 879 EXPORT_SYMBOL_GPL(kvm_valid_efer); 880 881 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 882 { 883 u64 old_efer = vcpu->arch.efer; 884 885 if (!kvm_valid_efer(vcpu, efer)) 886 return 1; 887 888 if (is_paging(vcpu) 889 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 890 return 1; 891 892 efer &= ~EFER_LMA; 893 efer |= vcpu->arch.efer & EFER_LMA; 894 895 kvm_x86_ops->set_efer(vcpu, efer); 896 897 /* Update reserved bits */ 898 if ((efer ^ old_efer) & EFER_NX) 899 kvm_mmu_reset_context(vcpu); 900 901 return 0; 902 } 903 904 void kvm_enable_efer_bits(u64 mask) 905 { 906 efer_reserved_bits &= ~mask; 907 } 908 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 909 910 911 /* 912 * Writes msr value into into the appropriate "register". 913 * Returns 0 on success, non-0 otherwise. 914 * Assumes vcpu_load() was already called. 915 */ 916 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 917 { 918 return kvm_x86_ops->set_msr(vcpu, msr); 919 } 920 921 /* 922 * Adapt set_msr() to msr_io()'s calling convention 923 */ 924 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 925 { 926 struct msr_data msr; 927 928 msr.data = *data; 929 msr.index = index; 930 msr.host_initiated = true; 931 return kvm_set_msr(vcpu, &msr); 932 } 933 934 #ifdef CONFIG_X86_64 935 struct pvclock_gtod_data { 936 seqcount_t seq; 937 938 struct { /* extract of a clocksource struct */ 939 int vclock_mode; 940 cycle_t cycle_last; 941 cycle_t mask; 942 u32 mult; 943 u32 shift; 944 } clock; 945 946 /* open coded 'struct timespec' */ 947 u64 monotonic_time_snsec; 948 time_t monotonic_time_sec; 949 }; 950 951 static struct pvclock_gtod_data pvclock_gtod_data; 952 953 static void update_pvclock_gtod(struct timekeeper *tk) 954 { 955 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 956 957 write_seqcount_begin(&vdata->seq); 958 959 /* copy pvclock gtod data */ 960 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; 961 vdata->clock.cycle_last = tk->clock->cycle_last; 962 vdata->clock.mask = tk->clock->mask; 963 vdata->clock.mult = tk->mult; 964 vdata->clock.shift = tk->shift; 965 966 vdata->monotonic_time_sec = tk->xtime_sec 967 + tk->wall_to_monotonic.tv_sec; 968 vdata->monotonic_time_snsec = tk->xtime_nsec 969 + (tk->wall_to_monotonic.tv_nsec 970 << tk->shift); 971 while (vdata->monotonic_time_snsec >= 972 (((u64)NSEC_PER_SEC) << tk->shift)) { 973 vdata->monotonic_time_snsec -= 974 ((u64)NSEC_PER_SEC) << tk->shift; 975 vdata->monotonic_time_sec++; 976 } 977 978 write_seqcount_end(&vdata->seq); 979 } 980 #endif 981 982 983 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 984 { 985 int version; 986 int r; 987 struct pvclock_wall_clock wc; 988 struct timespec boot; 989 990 if (!wall_clock) 991 return; 992 993 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 994 if (r) 995 return; 996 997 if (version & 1) 998 ++version; /* first time write, random junk */ 999 1000 ++version; 1001 1002 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1003 1004 /* 1005 * The guest calculates current wall clock time by adding 1006 * system time (updated by kvm_guest_time_update below) to the 1007 * wall clock specified here. guest system time equals host 1008 * system time for us, thus we must fill in host boot time here. 1009 */ 1010 getboottime(&boot); 1011 1012 if (kvm->arch.kvmclock_offset) { 1013 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); 1014 boot = timespec_sub(boot, ts); 1015 } 1016 wc.sec = boot.tv_sec; 1017 wc.nsec = boot.tv_nsec; 1018 wc.version = version; 1019 1020 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1021 1022 version++; 1023 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1024 } 1025 1026 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1027 { 1028 uint32_t quotient, remainder; 1029 1030 /* Don't try to replace with do_div(), this one calculates 1031 * "(dividend << 32) / divisor" */ 1032 __asm__ ( "divl %4" 1033 : "=a" (quotient), "=d" (remainder) 1034 : "0" (0), "1" (dividend), "r" (divisor) ); 1035 return quotient; 1036 } 1037 1038 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 1039 s8 *pshift, u32 *pmultiplier) 1040 { 1041 uint64_t scaled64; 1042 int32_t shift = 0; 1043 uint64_t tps64; 1044 uint32_t tps32; 1045 1046 tps64 = base_khz * 1000LL; 1047 scaled64 = scaled_khz * 1000LL; 1048 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1049 tps64 >>= 1; 1050 shift--; 1051 } 1052 1053 tps32 = (uint32_t)tps64; 1054 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1055 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1056 scaled64 >>= 1; 1057 else 1058 tps32 <<= 1; 1059 shift++; 1060 } 1061 1062 *pshift = shift; 1063 *pmultiplier = div_frac(scaled64, tps32); 1064 1065 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 1066 __func__, base_khz, scaled_khz, shift, *pmultiplier); 1067 } 1068 1069 static inline u64 get_kernel_ns(void) 1070 { 1071 struct timespec ts; 1072 1073 WARN_ON(preemptible()); 1074 ktime_get_ts(&ts); 1075 monotonic_to_bootbased(&ts); 1076 return timespec_to_ns(&ts); 1077 } 1078 1079 #ifdef CONFIG_X86_64 1080 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1081 #endif 1082 1083 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1084 unsigned long max_tsc_khz; 1085 1086 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 1087 { 1088 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 1089 vcpu->arch.virtual_tsc_shift); 1090 } 1091 1092 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1093 { 1094 u64 v = (u64)khz * (1000000 + ppm); 1095 do_div(v, 1000000); 1096 return v; 1097 } 1098 1099 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1100 { 1101 u32 thresh_lo, thresh_hi; 1102 int use_scaling = 0; 1103 1104 /* tsc_khz can be zero if TSC calibration fails */ 1105 if (this_tsc_khz == 0) 1106 return; 1107 1108 /* Compute a scale to convert nanoseconds in TSC cycles */ 1109 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1110 &vcpu->arch.virtual_tsc_shift, 1111 &vcpu->arch.virtual_tsc_mult); 1112 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 1113 1114 /* 1115 * Compute the variation in TSC rate which is acceptable 1116 * within the range of tolerance and decide if the 1117 * rate being applied is within that bounds of the hardware 1118 * rate. If so, no scaling or compensation need be done. 1119 */ 1120 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1121 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1122 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1123 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1124 use_scaling = 1; 1125 } 1126 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1127 } 1128 1129 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1130 { 1131 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1132 vcpu->arch.virtual_tsc_mult, 1133 vcpu->arch.virtual_tsc_shift); 1134 tsc += vcpu->arch.this_tsc_write; 1135 return tsc; 1136 } 1137 1138 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1139 { 1140 #ifdef CONFIG_X86_64 1141 bool vcpus_matched; 1142 bool do_request = false; 1143 struct kvm_arch *ka = &vcpu->kvm->arch; 1144 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1145 1146 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1147 atomic_read(&vcpu->kvm->online_vcpus)); 1148 1149 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) 1150 if (!ka->use_master_clock) 1151 do_request = 1; 1152 1153 if (!vcpus_matched && ka->use_master_clock) 1154 do_request = 1; 1155 1156 if (do_request) 1157 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1158 1159 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1160 atomic_read(&vcpu->kvm->online_vcpus), 1161 ka->use_master_clock, gtod->clock.vclock_mode); 1162 #endif 1163 } 1164 1165 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1166 { 1167 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); 1168 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1169 } 1170 1171 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1172 { 1173 struct kvm *kvm = vcpu->kvm; 1174 u64 offset, ns, elapsed; 1175 unsigned long flags; 1176 s64 usdiff; 1177 bool matched; 1178 u64 data = msr->data; 1179 1180 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1181 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1182 ns = get_kernel_ns(); 1183 elapsed = ns - kvm->arch.last_tsc_nsec; 1184 1185 if (vcpu->arch.virtual_tsc_khz) { 1186 int faulted = 0; 1187 1188 /* n.b - signed multiplication and division required */ 1189 usdiff = data - kvm->arch.last_tsc_write; 1190 #ifdef CONFIG_X86_64 1191 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1192 #else 1193 /* do_div() only does unsigned */ 1194 asm("1: idivl %[divisor]\n" 1195 "2: xor %%edx, %%edx\n" 1196 " movl $0, %[faulted]\n" 1197 "3:\n" 1198 ".section .fixup,\"ax\"\n" 1199 "4: movl $1, %[faulted]\n" 1200 " jmp 3b\n" 1201 ".previous\n" 1202 1203 _ASM_EXTABLE(1b, 4b) 1204 1205 : "=A"(usdiff), [faulted] "=r" (faulted) 1206 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz)); 1207 1208 #endif 1209 do_div(elapsed, 1000); 1210 usdiff -= elapsed; 1211 if (usdiff < 0) 1212 usdiff = -usdiff; 1213 1214 /* idivl overflow => difference is larger than USEC_PER_SEC */ 1215 if (faulted) 1216 usdiff = USEC_PER_SEC; 1217 } else 1218 usdiff = USEC_PER_SEC; /* disable TSC match window below */ 1219 1220 /* 1221 * Special case: TSC write with a small delta (1 second) of virtual 1222 * cycle time against real time is interpreted as an attempt to 1223 * synchronize the CPU. 1224 * 1225 * For a reliable TSC, we can match TSC offsets, and for an unstable 1226 * TSC, we add elapsed time in this computation. We could let the 1227 * compensation code attempt to catch up if we fall behind, but 1228 * it's better to try to match offsets from the beginning. 1229 */ 1230 if (usdiff < USEC_PER_SEC && 1231 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1232 if (!check_tsc_unstable()) { 1233 offset = kvm->arch.cur_tsc_offset; 1234 pr_debug("kvm: matched tsc offset for %llu\n", data); 1235 } else { 1236 u64 delta = nsec_to_cycles(vcpu, elapsed); 1237 data += delta; 1238 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1239 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1240 } 1241 matched = true; 1242 } else { 1243 /* 1244 * We split periods of matched TSC writes into generations. 1245 * For each generation, we track the original measured 1246 * nanosecond time, offset, and write, so if TSCs are in 1247 * sync, we can match exact offset, and if not, we can match 1248 * exact software computation in compute_guest_tsc() 1249 * 1250 * These values are tracked in kvm->arch.cur_xxx variables. 1251 */ 1252 kvm->arch.cur_tsc_generation++; 1253 kvm->arch.cur_tsc_nsec = ns; 1254 kvm->arch.cur_tsc_write = data; 1255 kvm->arch.cur_tsc_offset = offset; 1256 matched = false; 1257 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1258 kvm->arch.cur_tsc_generation, data); 1259 } 1260 1261 /* 1262 * We also track th most recent recorded KHZ, write and time to 1263 * allow the matching interval to be extended at each write. 1264 */ 1265 kvm->arch.last_tsc_nsec = ns; 1266 kvm->arch.last_tsc_write = data; 1267 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1268 1269 /* Reset of TSC must disable overshoot protection below */ 1270 vcpu->arch.hv_clock.tsc_timestamp = 0; 1271 vcpu->arch.last_guest_tsc = data; 1272 1273 /* Keep track of which generation this VCPU has synchronized to */ 1274 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1275 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1276 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1277 1278 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1279 update_ia32_tsc_adjust_msr(vcpu, offset); 1280 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1281 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1282 1283 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1284 if (matched) 1285 kvm->arch.nr_vcpus_matched_tsc++; 1286 else 1287 kvm->arch.nr_vcpus_matched_tsc = 0; 1288 1289 kvm_track_tsc_matching(vcpu); 1290 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1291 } 1292 1293 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1294 1295 #ifdef CONFIG_X86_64 1296 1297 static cycle_t read_tsc(void) 1298 { 1299 cycle_t ret; 1300 u64 last; 1301 1302 /* 1303 * Empirically, a fence (of type that depends on the CPU) 1304 * before rdtsc is enough to ensure that rdtsc is ordered 1305 * with respect to loads. The various CPU manuals are unclear 1306 * as to whether rdtsc can be reordered with later loads, 1307 * but no one has ever seen it happen. 1308 */ 1309 rdtsc_barrier(); 1310 ret = (cycle_t)vget_cycles(); 1311 1312 last = pvclock_gtod_data.clock.cycle_last; 1313 1314 if (likely(ret >= last)) 1315 return ret; 1316 1317 /* 1318 * GCC likes to generate cmov here, but this branch is extremely 1319 * predictable (it's just a funciton of time and the likely is 1320 * very likely) and there's a data dependence, so force GCC 1321 * to generate a branch instead. I don't barrier() because 1322 * we don't actually need a barrier, and if this function 1323 * ever gets inlined it will generate worse code. 1324 */ 1325 asm volatile (""); 1326 return last; 1327 } 1328 1329 static inline u64 vgettsc(cycle_t *cycle_now) 1330 { 1331 long v; 1332 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1333 1334 *cycle_now = read_tsc(); 1335 1336 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1337 return v * gtod->clock.mult; 1338 } 1339 1340 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) 1341 { 1342 unsigned long seq; 1343 u64 ns; 1344 int mode; 1345 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1346 1347 ts->tv_nsec = 0; 1348 do { 1349 seq = read_seqcount_begin(>od->seq); 1350 mode = gtod->clock.vclock_mode; 1351 ts->tv_sec = gtod->monotonic_time_sec; 1352 ns = gtod->monotonic_time_snsec; 1353 ns += vgettsc(cycle_now); 1354 ns >>= gtod->clock.shift; 1355 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1356 timespec_add_ns(ts, ns); 1357 1358 return mode; 1359 } 1360 1361 /* returns true if host is using tsc clocksource */ 1362 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) 1363 { 1364 struct timespec ts; 1365 1366 /* checked again under seqlock below */ 1367 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1368 return false; 1369 1370 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) 1371 return false; 1372 1373 monotonic_to_bootbased(&ts); 1374 *kernel_ns = timespec_to_ns(&ts); 1375 1376 return true; 1377 } 1378 #endif 1379 1380 /* 1381 * 1382 * Assuming a stable TSC across physical CPUS, and a stable TSC 1383 * across virtual CPUs, the following condition is possible. 1384 * Each numbered line represents an event visible to both 1385 * CPUs at the next numbered event. 1386 * 1387 * "timespecX" represents host monotonic time. "tscX" represents 1388 * RDTSC value. 1389 * 1390 * VCPU0 on CPU0 | VCPU1 on CPU1 1391 * 1392 * 1. read timespec0,tsc0 1393 * 2. | timespec1 = timespec0 + N 1394 * | tsc1 = tsc0 + M 1395 * 3. transition to guest | transition to guest 1396 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1397 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1398 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1399 * 1400 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1401 * 1402 * - ret0 < ret1 1403 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1404 * ... 1405 * - 0 < N - M => M < N 1406 * 1407 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1408 * always the case (the difference between two distinct xtime instances 1409 * might be smaller then the difference between corresponding TSC reads, 1410 * when updating guest vcpus pvclock areas). 1411 * 1412 * To avoid that problem, do not allow visibility of distinct 1413 * system_timestamp/tsc_timestamp values simultaneously: use a master 1414 * copy of host monotonic time values. Update that master copy 1415 * in lockstep. 1416 * 1417 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1418 * 1419 */ 1420 1421 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1422 { 1423 #ifdef CONFIG_X86_64 1424 struct kvm_arch *ka = &kvm->arch; 1425 int vclock_mode; 1426 bool host_tsc_clocksource, vcpus_matched; 1427 1428 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1429 atomic_read(&kvm->online_vcpus)); 1430 1431 /* 1432 * If the host uses TSC clock, then passthrough TSC as stable 1433 * to the guest. 1434 */ 1435 host_tsc_clocksource = kvm_get_time_and_clockread( 1436 &ka->master_kernel_ns, 1437 &ka->master_cycle_now); 1438 1439 ka->use_master_clock = host_tsc_clocksource & vcpus_matched; 1440 1441 if (ka->use_master_clock) 1442 atomic_set(&kvm_guest_has_master_clock, 1); 1443 1444 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1445 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1446 vcpus_matched); 1447 #endif 1448 } 1449 1450 static void kvm_gen_update_masterclock(struct kvm *kvm) 1451 { 1452 #ifdef CONFIG_X86_64 1453 int i; 1454 struct kvm_vcpu *vcpu; 1455 struct kvm_arch *ka = &kvm->arch; 1456 1457 spin_lock(&ka->pvclock_gtod_sync_lock); 1458 kvm_make_mclock_inprogress_request(kvm); 1459 /* no guest entries from this point */ 1460 pvclock_update_vm_gtod_copy(kvm); 1461 1462 kvm_for_each_vcpu(i, vcpu, kvm) 1463 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 1464 1465 /* guest entries allowed */ 1466 kvm_for_each_vcpu(i, vcpu, kvm) 1467 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); 1468 1469 spin_unlock(&ka->pvclock_gtod_sync_lock); 1470 #endif 1471 } 1472 1473 static int kvm_guest_time_update(struct kvm_vcpu *v) 1474 { 1475 unsigned long flags, this_tsc_khz; 1476 struct kvm_vcpu_arch *vcpu = &v->arch; 1477 struct kvm_arch *ka = &v->kvm->arch; 1478 s64 kernel_ns, max_kernel_ns; 1479 u64 tsc_timestamp, host_tsc; 1480 struct pvclock_vcpu_time_info guest_hv_clock; 1481 u8 pvclock_flags; 1482 bool use_master_clock; 1483 1484 kernel_ns = 0; 1485 host_tsc = 0; 1486 1487 /* 1488 * If the host uses TSC clock, then passthrough TSC as stable 1489 * to the guest. 1490 */ 1491 spin_lock(&ka->pvclock_gtod_sync_lock); 1492 use_master_clock = ka->use_master_clock; 1493 if (use_master_clock) { 1494 host_tsc = ka->master_cycle_now; 1495 kernel_ns = ka->master_kernel_ns; 1496 } 1497 spin_unlock(&ka->pvclock_gtod_sync_lock); 1498 1499 /* Keep irq disabled to prevent changes to the clock */ 1500 local_irq_save(flags); 1501 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1502 if (unlikely(this_tsc_khz == 0)) { 1503 local_irq_restore(flags); 1504 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1505 return 1; 1506 } 1507 if (!use_master_clock) { 1508 host_tsc = native_read_tsc(); 1509 kernel_ns = get_kernel_ns(); 1510 } 1511 1512 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); 1513 1514 /* 1515 * We may have to catch up the TSC to match elapsed wall clock 1516 * time for two reasons, even if kvmclock is used. 1517 * 1) CPU could have been running below the maximum TSC rate 1518 * 2) Broken TSC compensation resets the base at each VCPU 1519 * entry to avoid unknown leaps of TSC even when running 1520 * again on the same CPU. This may cause apparent elapsed 1521 * time to disappear, and the guest to stand still or run 1522 * very slowly. 1523 */ 1524 if (vcpu->tsc_catchup) { 1525 u64 tsc = compute_guest_tsc(v, kernel_ns); 1526 if (tsc > tsc_timestamp) { 1527 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1528 tsc_timestamp = tsc; 1529 } 1530 } 1531 1532 local_irq_restore(flags); 1533 1534 if (!vcpu->pv_time_enabled) 1535 return 0; 1536 1537 /* 1538 * Time as measured by the TSC may go backwards when resetting the base 1539 * tsc_timestamp. The reason for this is that the TSC resolution is 1540 * higher than the resolution of the other clock scales. Thus, many 1541 * possible measurments of the TSC correspond to one measurement of any 1542 * other clock, and so a spread of values is possible. This is not a 1543 * problem for the computation of the nanosecond clock; with TSC rates 1544 * around 1GHZ, there can only be a few cycles which correspond to one 1545 * nanosecond value, and any path through this code will inevitably 1546 * take longer than that. However, with the kernel_ns value itself, 1547 * the precision may be much lower, down to HZ granularity. If the 1548 * first sampling of TSC against kernel_ns ends in the low part of the 1549 * range, and the second in the high end of the range, we can get: 1550 * 1551 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new 1552 * 1553 * As the sampling errors potentially range in the thousands of cycles, 1554 * it is possible such a time value has already been observed by the 1555 * guest. To protect against this, we must compute the system time as 1556 * observed by the guest and ensure the new system time is greater. 1557 */ 1558 max_kernel_ns = 0; 1559 if (vcpu->hv_clock.tsc_timestamp) { 1560 max_kernel_ns = vcpu->last_guest_tsc - 1561 vcpu->hv_clock.tsc_timestamp; 1562 max_kernel_ns = pvclock_scale_delta(max_kernel_ns, 1563 vcpu->hv_clock.tsc_to_system_mul, 1564 vcpu->hv_clock.tsc_shift); 1565 max_kernel_ns += vcpu->last_kernel_ns; 1566 } 1567 1568 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1569 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1570 &vcpu->hv_clock.tsc_shift, 1571 &vcpu->hv_clock.tsc_to_system_mul); 1572 vcpu->hw_tsc_khz = this_tsc_khz; 1573 } 1574 1575 /* with a master <monotonic time, tsc value> tuple, 1576 * pvclock clock reads always increase at the (scaled) rate 1577 * of guest TSC - no need to deal with sampling errors. 1578 */ 1579 if (!use_master_clock) { 1580 if (max_kernel_ns > kernel_ns) 1581 kernel_ns = max_kernel_ns; 1582 } 1583 /* With all the info we got, fill in the values */ 1584 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1585 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1586 vcpu->last_kernel_ns = kernel_ns; 1587 vcpu->last_guest_tsc = tsc_timestamp; 1588 1589 /* 1590 * The interface expects us to write an even number signaling that the 1591 * update is finished. Since the guest won't see the intermediate 1592 * state, we just increase by 2 at the end. 1593 */ 1594 vcpu->hv_clock.version += 2; 1595 1596 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1597 &guest_hv_clock, sizeof(guest_hv_clock)))) 1598 return 0; 1599 1600 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1601 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1602 1603 if (vcpu->pvclock_set_guest_stopped_request) { 1604 pvclock_flags |= PVCLOCK_GUEST_STOPPED; 1605 vcpu->pvclock_set_guest_stopped_request = false; 1606 } 1607 1608 /* If the host uses TSC clocksource, then it is stable */ 1609 if (use_master_clock) 1610 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1611 1612 vcpu->hv_clock.flags = pvclock_flags; 1613 1614 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1615 &vcpu->hv_clock, 1616 sizeof(vcpu->hv_clock)); 1617 return 0; 1618 } 1619 1620 /* 1621 * kvmclock updates which are isolated to a given vcpu, such as 1622 * vcpu->cpu migration, should not allow system_timestamp from 1623 * the rest of the vcpus to remain static. Otherwise ntp frequency 1624 * correction applies to one vcpu's system_timestamp but not 1625 * the others. 1626 * 1627 * So in those cases, request a kvmclock update for all vcpus. 1628 * The worst case for a remote vcpu to update its kvmclock 1629 * is then bounded by maximum nohz sleep latency. 1630 */ 1631 1632 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 1633 { 1634 int i; 1635 struct kvm *kvm = v->kvm; 1636 struct kvm_vcpu *vcpu; 1637 1638 kvm_for_each_vcpu(i, vcpu, kvm) { 1639 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 1640 kvm_vcpu_kick(vcpu); 1641 } 1642 } 1643 1644 static bool msr_mtrr_valid(unsigned msr) 1645 { 1646 switch (msr) { 1647 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1648 case MSR_MTRRfix64K_00000: 1649 case MSR_MTRRfix16K_80000: 1650 case MSR_MTRRfix16K_A0000: 1651 case MSR_MTRRfix4K_C0000: 1652 case MSR_MTRRfix4K_C8000: 1653 case MSR_MTRRfix4K_D0000: 1654 case MSR_MTRRfix4K_D8000: 1655 case MSR_MTRRfix4K_E0000: 1656 case MSR_MTRRfix4K_E8000: 1657 case MSR_MTRRfix4K_F0000: 1658 case MSR_MTRRfix4K_F8000: 1659 case MSR_MTRRdefType: 1660 case MSR_IA32_CR_PAT: 1661 return true; 1662 case 0x2f8: 1663 return true; 1664 } 1665 return false; 1666 } 1667 1668 static bool valid_pat_type(unsigned t) 1669 { 1670 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1671 } 1672 1673 static bool valid_mtrr_type(unsigned t) 1674 { 1675 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1676 } 1677 1678 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1679 { 1680 int i; 1681 1682 if (!msr_mtrr_valid(msr)) 1683 return false; 1684 1685 if (msr == MSR_IA32_CR_PAT) { 1686 for (i = 0; i < 8; i++) 1687 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1688 return false; 1689 return true; 1690 } else if (msr == MSR_MTRRdefType) { 1691 if (data & ~0xcff) 1692 return false; 1693 return valid_mtrr_type(data & 0xff); 1694 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1695 for (i = 0; i < 8 ; i++) 1696 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1697 return false; 1698 return true; 1699 } 1700 1701 /* variable MTRRs */ 1702 return valid_mtrr_type(data & 0xff); 1703 } 1704 1705 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1706 { 1707 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1708 1709 if (!mtrr_valid(vcpu, msr, data)) 1710 return 1; 1711 1712 if (msr == MSR_MTRRdefType) { 1713 vcpu->arch.mtrr_state.def_type = data; 1714 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1715 } else if (msr == MSR_MTRRfix64K_00000) 1716 p[0] = data; 1717 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1718 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1719 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1720 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1721 else if (msr == MSR_IA32_CR_PAT) 1722 vcpu->arch.pat = data; 1723 else { /* Variable MTRRs */ 1724 int idx, is_mtrr_mask; 1725 u64 *pt; 1726 1727 idx = (msr - 0x200) / 2; 1728 is_mtrr_mask = msr - 0x200 - 2 * idx; 1729 if (!is_mtrr_mask) 1730 pt = 1731 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1732 else 1733 pt = 1734 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1735 *pt = data; 1736 } 1737 1738 kvm_mmu_reset_context(vcpu); 1739 return 0; 1740 } 1741 1742 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1743 { 1744 u64 mcg_cap = vcpu->arch.mcg_cap; 1745 unsigned bank_num = mcg_cap & 0xff; 1746 1747 switch (msr) { 1748 case MSR_IA32_MCG_STATUS: 1749 vcpu->arch.mcg_status = data; 1750 break; 1751 case MSR_IA32_MCG_CTL: 1752 if (!(mcg_cap & MCG_CTL_P)) 1753 return 1; 1754 if (data != 0 && data != ~(u64)0) 1755 return -1; 1756 vcpu->arch.mcg_ctl = data; 1757 break; 1758 default: 1759 if (msr >= MSR_IA32_MC0_CTL && 1760 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1761 u32 offset = msr - MSR_IA32_MC0_CTL; 1762 /* only 0 or all 1s can be written to IA32_MCi_CTL 1763 * some Linux kernels though clear bit 10 in bank 4 to 1764 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1765 * this to avoid an uncatched #GP in the guest 1766 */ 1767 if ((offset & 0x3) == 0 && 1768 data != 0 && (data | (1 << 10)) != ~(u64)0) 1769 return -1; 1770 vcpu->arch.mce_banks[offset] = data; 1771 break; 1772 } 1773 return 1; 1774 } 1775 return 0; 1776 } 1777 1778 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1779 { 1780 struct kvm *kvm = vcpu->kvm; 1781 int lm = is_long_mode(vcpu); 1782 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1783 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1784 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1785 : kvm->arch.xen_hvm_config.blob_size_32; 1786 u32 page_num = data & ~PAGE_MASK; 1787 u64 page_addr = data & PAGE_MASK; 1788 u8 *page; 1789 int r; 1790 1791 r = -E2BIG; 1792 if (page_num >= blob_size) 1793 goto out; 1794 r = -ENOMEM; 1795 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1796 if (IS_ERR(page)) { 1797 r = PTR_ERR(page); 1798 goto out; 1799 } 1800 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1801 goto out_free; 1802 r = 0; 1803 out_free: 1804 kfree(page); 1805 out: 1806 return r; 1807 } 1808 1809 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1810 { 1811 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1812 } 1813 1814 static bool kvm_hv_msr_partition_wide(u32 msr) 1815 { 1816 bool r = false; 1817 switch (msr) { 1818 case HV_X64_MSR_GUEST_OS_ID: 1819 case HV_X64_MSR_HYPERCALL: 1820 r = true; 1821 break; 1822 } 1823 1824 return r; 1825 } 1826 1827 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1828 { 1829 struct kvm *kvm = vcpu->kvm; 1830 1831 switch (msr) { 1832 case HV_X64_MSR_GUEST_OS_ID: 1833 kvm->arch.hv_guest_os_id = data; 1834 /* setting guest os id to zero disables hypercall page */ 1835 if (!kvm->arch.hv_guest_os_id) 1836 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1837 break; 1838 case HV_X64_MSR_HYPERCALL: { 1839 u64 gfn; 1840 unsigned long addr; 1841 u8 instructions[4]; 1842 1843 /* if guest os id is not set hypercall should remain disabled */ 1844 if (!kvm->arch.hv_guest_os_id) 1845 break; 1846 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1847 kvm->arch.hv_hypercall = data; 1848 break; 1849 } 1850 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1851 addr = gfn_to_hva(kvm, gfn); 1852 if (kvm_is_error_hva(addr)) 1853 return 1; 1854 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1855 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1856 if (__copy_to_user((void __user *)addr, instructions, 4)) 1857 return 1; 1858 kvm->arch.hv_hypercall = data; 1859 break; 1860 } 1861 default: 1862 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1863 "data 0x%llx\n", msr, data); 1864 return 1; 1865 } 1866 return 0; 1867 } 1868 1869 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1870 { 1871 switch (msr) { 1872 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1873 unsigned long addr; 1874 1875 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1876 vcpu->arch.hv_vapic = data; 1877 break; 1878 } 1879 addr = gfn_to_hva(vcpu->kvm, data >> 1880 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); 1881 if (kvm_is_error_hva(addr)) 1882 return 1; 1883 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1884 return 1; 1885 vcpu->arch.hv_vapic = data; 1886 break; 1887 } 1888 case HV_X64_MSR_EOI: 1889 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1890 case HV_X64_MSR_ICR: 1891 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1892 case HV_X64_MSR_TPR: 1893 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1894 default: 1895 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1896 "data 0x%llx\n", msr, data); 1897 return 1; 1898 } 1899 1900 return 0; 1901 } 1902 1903 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1904 { 1905 gpa_t gpa = data & ~0x3f; 1906 1907 /* Bits 2:5 are reserved, Should be zero */ 1908 if (data & 0x3c) 1909 return 1; 1910 1911 vcpu->arch.apf.msr_val = data; 1912 1913 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1914 kvm_clear_async_pf_completion_queue(vcpu); 1915 kvm_async_pf_hash_reset(vcpu); 1916 return 0; 1917 } 1918 1919 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 1920 sizeof(u32))) 1921 return 1; 1922 1923 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1924 kvm_async_pf_wakeup_all(vcpu); 1925 return 0; 1926 } 1927 1928 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1929 { 1930 vcpu->arch.pv_time_enabled = false; 1931 } 1932 1933 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1934 { 1935 u64 delta; 1936 1937 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1938 return; 1939 1940 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1941 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1942 vcpu->arch.st.accum_steal = delta; 1943 } 1944 1945 static void record_steal_time(struct kvm_vcpu *vcpu) 1946 { 1947 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1948 return; 1949 1950 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1951 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 1952 return; 1953 1954 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 1955 vcpu->arch.st.steal.version += 2; 1956 vcpu->arch.st.accum_steal = 0; 1957 1958 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1959 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 1960 } 1961 1962 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1963 { 1964 bool pr = false; 1965 u32 msr = msr_info->index; 1966 u64 data = msr_info->data; 1967 1968 switch (msr) { 1969 case MSR_AMD64_NB_CFG: 1970 case MSR_IA32_UCODE_REV: 1971 case MSR_IA32_UCODE_WRITE: 1972 case MSR_VM_HSAVE_PA: 1973 case MSR_AMD64_PATCH_LOADER: 1974 case MSR_AMD64_BU_CFG2: 1975 break; 1976 1977 case MSR_EFER: 1978 return set_efer(vcpu, data); 1979 case MSR_K7_HWCR: 1980 data &= ~(u64)0x40; /* ignore flush filter disable */ 1981 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 1982 data &= ~(u64)0x8; /* ignore TLB cache disable */ 1983 if (data != 0) { 1984 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 1985 data); 1986 return 1; 1987 } 1988 break; 1989 case MSR_FAM10H_MMIO_CONF_BASE: 1990 if (data != 0) { 1991 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 1992 "0x%llx\n", data); 1993 return 1; 1994 } 1995 break; 1996 case MSR_IA32_DEBUGCTLMSR: 1997 if (!data) { 1998 /* We support the non-activated case already */ 1999 break; 2000 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2001 /* Values other than LBR and BTF are vendor-specific, 2002 thus reserved and should throw a #GP */ 2003 return 1; 2004 } 2005 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2006 __func__, data); 2007 break; 2008 case 0x200 ... 0x2ff: 2009 return set_msr_mtrr(vcpu, msr, data); 2010 case MSR_IA32_APICBASE: 2011 kvm_set_apic_base(vcpu, data); 2012 break; 2013 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2014 return kvm_x2apic_msr_write(vcpu, msr, data); 2015 case MSR_IA32_TSCDEADLINE: 2016 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2017 break; 2018 case MSR_IA32_TSC_ADJUST: 2019 if (guest_cpuid_has_tsc_adjust(vcpu)) { 2020 if (!msr_info->host_initiated) { 2021 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2022 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); 2023 } 2024 vcpu->arch.ia32_tsc_adjust_msr = data; 2025 } 2026 break; 2027 case MSR_IA32_MISC_ENABLE: 2028 vcpu->arch.ia32_misc_enable_msr = data; 2029 break; 2030 case MSR_KVM_WALL_CLOCK_NEW: 2031 case MSR_KVM_WALL_CLOCK: 2032 vcpu->kvm->arch.wall_clock = data; 2033 kvm_write_wall_clock(vcpu->kvm, data); 2034 break; 2035 case MSR_KVM_SYSTEM_TIME_NEW: 2036 case MSR_KVM_SYSTEM_TIME: { 2037 u64 gpa_offset; 2038 kvmclock_reset(vcpu); 2039 2040 vcpu->arch.time = data; 2041 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2042 2043 /* we verify if the enable bit is set... */ 2044 if (!(data & 1)) 2045 break; 2046 2047 gpa_offset = data & ~(PAGE_MASK | 1); 2048 2049 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2050 &vcpu->arch.pv_time, data & ~1ULL, 2051 sizeof(struct pvclock_vcpu_time_info))) 2052 vcpu->arch.pv_time_enabled = false; 2053 else 2054 vcpu->arch.pv_time_enabled = true; 2055 2056 break; 2057 } 2058 case MSR_KVM_ASYNC_PF_EN: 2059 if (kvm_pv_enable_async_pf(vcpu, data)) 2060 return 1; 2061 break; 2062 case MSR_KVM_STEAL_TIME: 2063 2064 if (unlikely(!sched_info_on())) 2065 return 1; 2066 2067 if (data & KVM_STEAL_RESERVED_MASK) 2068 return 1; 2069 2070 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2071 data & KVM_STEAL_VALID_BITS, 2072 sizeof(struct kvm_steal_time))) 2073 return 1; 2074 2075 vcpu->arch.st.msr_val = data; 2076 2077 if (!(data & KVM_MSR_ENABLED)) 2078 break; 2079 2080 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2081 2082 preempt_disable(); 2083 accumulate_steal_time(vcpu); 2084 preempt_enable(); 2085 2086 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2087 2088 break; 2089 case MSR_KVM_PV_EOI_EN: 2090 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2091 return 1; 2092 break; 2093 2094 case MSR_IA32_MCG_CTL: 2095 case MSR_IA32_MCG_STATUS: 2096 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2097 return set_msr_mce(vcpu, msr, data); 2098 2099 /* Performance counters are not protected by a CPUID bit, 2100 * so we should check all of them in the generic path for the sake of 2101 * cross vendor migration. 2102 * Writing a zero into the event select MSRs disables them, 2103 * which we perfectly emulate ;-). Any other value should be at least 2104 * reported, some guests depend on them. 2105 */ 2106 case MSR_K7_EVNTSEL0: 2107 case MSR_K7_EVNTSEL1: 2108 case MSR_K7_EVNTSEL2: 2109 case MSR_K7_EVNTSEL3: 2110 if (data != 0) 2111 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2112 "0x%x data 0x%llx\n", msr, data); 2113 break; 2114 /* at least RHEL 4 unconditionally writes to the perfctr registers, 2115 * so we ignore writes to make it happy. 2116 */ 2117 case MSR_K7_PERFCTR0: 2118 case MSR_K7_PERFCTR1: 2119 case MSR_K7_PERFCTR2: 2120 case MSR_K7_PERFCTR3: 2121 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2122 "0x%x data 0x%llx\n", msr, data); 2123 break; 2124 case MSR_P6_PERFCTR0: 2125 case MSR_P6_PERFCTR1: 2126 pr = true; 2127 case MSR_P6_EVNTSEL0: 2128 case MSR_P6_EVNTSEL1: 2129 if (kvm_pmu_msr(vcpu, msr)) 2130 return kvm_pmu_set_msr(vcpu, msr_info); 2131 2132 if (pr || data != 0) 2133 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2134 "0x%x data 0x%llx\n", msr, data); 2135 break; 2136 case MSR_K7_CLK_CTL: 2137 /* 2138 * Ignore all writes to this no longer documented MSR. 2139 * Writes are only relevant for old K7 processors, 2140 * all pre-dating SVM, but a recommended workaround from 2141 * AMD for these chips. It is possible to specify the 2142 * affected processor models on the command line, hence 2143 * the need to ignore the workaround. 2144 */ 2145 break; 2146 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2147 if (kvm_hv_msr_partition_wide(msr)) { 2148 int r; 2149 mutex_lock(&vcpu->kvm->lock); 2150 r = set_msr_hyperv_pw(vcpu, msr, data); 2151 mutex_unlock(&vcpu->kvm->lock); 2152 return r; 2153 } else 2154 return set_msr_hyperv(vcpu, msr, data); 2155 break; 2156 case MSR_IA32_BBL_CR_CTL3: 2157 /* Drop writes to this legacy MSR -- see rdmsr 2158 * counterpart for further detail. 2159 */ 2160 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 2161 break; 2162 case MSR_AMD64_OSVW_ID_LENGTH: 2163 if (!guest_cpuid_has_osvw(vcpu)) 2164 return 1; 2165 vcpu->arch.osvw.length = data; 2166 break; 2167 case MSR_AMD64_OSVW_STATUS: 2168 if (!guest_cpuid_has_osvw(vcpu)) 2169 return 1; 2170 vcpu->arch.osvw.status = data; 2171 break; 2172 default: 2173 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2174 return xen_hvm_config(vcpu, data); 2175 if (kvm_pmu_msr(vcpu, msr)) 2176 return kvm_pmu_set_msr(vcpu, msr_info); 2177 if (!ignore_msrs) { 2178 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 2179 msr, data); 2180 return 1; 2181 } else { 2182 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 2183 msr, data); 2184 break; 2185 } 2186 } 2187 return 0; 2188 } 2189 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2190 2191 2192 /* 2193 * Reads an msr value (of 'msr_index') into 'pdata'. 2194 * Returns 0 on success, non-0 otherwise. 2195 * Assumes vcpu_load() was already called. 2196 */ 2197 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 2198 { 2199 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 2200 } 2201 2202 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2203 { 2204 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 2205 2206 if (!msr_mtrr_valid(msr)) 2207 return 1; 2208 2209 if (msr == MSR_MTRRdefType) 2210 *pdata = vcpu->arch.mtrr_state.def_type + 2211 (vcpu->arch.mtrr_state.enabled << 10); 2212 else if (msr == MSR_MTRRfix64K_00000) 2213 *pdata = p[0]; 2214 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 2215 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 2216 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 2217 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 2218 else if (msr == MSR_IA32_CR_PAT) 2219 *pdata = vcpu->arch.pat; 2220 else { /* Variable MTRRs */ 2221 int idx, is_mtrr_mask; 2222 u64 *pt; 2223 2224 idx = (msr - 0x200) / 2; 2225 is_mtrr_mask = msr - 0x200 - 2 * idx; 2226 if (!is_mtrr_mask) 2227 pt = 2228 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 2229 else 2230 pt = 2231 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 2232 *pdata = *pt; 2233 } 2234 2235 return 0; 2236 } 2237 2238 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2239 { 2240 u64 data; 2241 u64 mcg_cap = vcpu->arch.mcg_cap; 2242 unsigned bank_num = mcg_cap & 0xff; 2243 2244 switch (msr) { 2245 case MSR_IA32_P5_MC_ADDR: 2246 case MSR_IA32_P5_MC_TYPE: 2247 data = 0; 2248 break; 2249 case MSR_IA32_MCG_CAP: 2250 data = vcpu->arch.mcg_cap; 2251 break; 2252 case MSR_IA32_MCG_CTL: 2253 if (!(mcg_cap & MCG_CTL_P)) 2254 return 1; 2255 data = vcpu->arch.mcg_ctl; 2256 break; 2257 case MSR_IA32_MCG_STATUS: 2258 data = vcpu->arch.mcg_status; 2259 break; 2260 default: 2261 if (msr >= MSR_IA32_MC0_CTL && 2262 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 2263 u32 offset = msr - MSR_IA32_MC0_CTL; 2264 data = vcpu->arch.mce_banks[offset]; 2265 break; 2266 } 2267 return 1; 2268 } 2269 *pdata = data; 2270 return 0; 2271 } 2272 2273 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2274 { 2275 u64 data = 0; 2276 struct kvm *kvm = vcpu->kvm; 2277 2278 switch (msr) { 2279 case HV_X64_MSR_GUEST_OS_ID: 2280 data = kvm->arch.hv_guest_os_id; 2281 break; 2282 case HV_X64_MSR_HYPERCALL: 2283 data = kvm->arch.hv_hypercall; 2284 break; 2285 default: 2286 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2287 return 1; 2288 } 2289 2290 *pdata = data; 2291 return 0; 2292 } 2293 2294 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2295 { 2296 u64 data = 0; 2297 2298 switch (msr) { 2299 case HV_X64_MSR_VP_INDEX: { 2300 int r; 2301 struct kvm_vcpu *v; 2302 kvm_for_each_vcpu(r, v, vcpu->kvm) 2303 if (v == vcpu) 2304 data = r; 2305 break; 2306 } 2307 case HV_X64_MSR_EOI: 2308 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 2309 case HV_X64_MSR_ICR: 2310 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 2311 case HV_X64_MSR_TPR: 2312 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 2313 case HV_X64_MSR_APIC_ASSIST_PAGE: 2314 data = vcpu->arch.hv_vapic; 2315 break; 2316 default: 2317 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2318 return 1; 2319 } 2320 *pdata = data; 2321 return 0; 2322 } 2323 2324 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2325 { 2326 u64 data; 2327 2328 switch (msr) { 2329 case MSR_IA32_PLATFORM_ID: 2330 case MSR_IA32_EBL_CR_POWERON: 2331 case MSR_IA32_DEBUGCTLMSR: 2332 case MSR_IA32_LASTBRANCHFROMIP: 2333 case MSR_IA32_LASTBRANCHTOIP: 2334 case MSR_IA32_LASTINTFROMIP: 2335 case MSR_IA32_LASTINTTOIP: 2336 case MSR_K8_SYSCFG: 2337 case MSR_K7_HWCR: 2338 case MSR_VM_HSAVE_PA: 2339 case MSR_K7_EVNTSEL0: 2340 case MSR_K7_PERFCTR0: 2341 case MSR_K8_INT_PENDING_MSG: 2342 case MSR_AMD64_NB_CFG: 2343 case MSR_FAM10H_MMIO_CONF_BASE: 2344 case MSR_AMD64_BU_CFG2: 2345 data = 0; 2346 break; 2347 case MSR_P6_PERFCTR0: 2348 case MSR_P6_PERFCTR1: 2349 case MSR_P6_EVNTSEL0: 2350 case MSR_P6_EVNTSEL1: 2351 if (kvm_pmu_msr(vcpu, msr)) 2352 return kvm_pmu_get_msr(vcpu, msr, pdata); 2353 data = 0; 2354 break; 2355 case MSR_IA32_UCODE_REV: 2356 data = 0x100000000ULL; 2357 break; 2358 case MSR_MTRRcap: 2359 data = 0x500 | KVM_NR_VAR_MTRR; 2360 break; 2361 case 0x200 ... 0x2ff: 2362 return get_msr_mtrr(vcpu, msr, pdata); 2363 case 0xcd: /* fsb frequency */ 2364 data = 3; 2365 break; 2366 /* 2367 * MSR_EBC_FREQUENCY_ID 2368 * Conservative value valid for even the basic CPU models. 2369 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2370 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2371 * and 266MHz for model 3, or 4. Set Core Clock 2372 * Frequency to System Bus Frequency Ratio to 1 (bits 2373 * 31:24) even though these are only valid for CPU 2374 * models > 2, however guests may end up dividing or 2375 * multiplying by zero otherwise. 2376 */ 2377 case MSR_EBC_FREQUENCY_ID: 2378 data = 1 << 24; 2379 break; 2380 case MSR_IA32_APICBASE: 2381 data = kvm_get_apic_base(vcpu); 2382 break; 2383 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2384 return kvm_x2apic_msr_read(vcpu, msr, pdata); 2385 break; 2386 case MSR_IA32_TSCDEADLINE: 2387 data = kvm_get_lapic_tscdeadline_msr(vcpu); 2388 break; 2389 case MSR_IA32_TSC_ADJUST: 2390 data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2391 break; 2392 case MSR_IA32_MISC_ENABLE: 2393 data = vcpu->arch.ia32_misc_enable_msr; 2394 break; 2395 case MSR_IA32_PERF_STATUS: 2396 /* TSC increment by tick */ 2397 data = 1000ULL; 2398 /* CPU multiplier */ 2399 data |= (((uint64_t)4ULL) << 40); 2400 break; 2401 case MSR_EFER: 2402 data = vcpu->arch.efer; 2403 break; 2404 case MSR_KVM_WALL_CLOCK: 2405 case MSR_KVM_WALL_CLOCK_NEW: 2406 data = vcpu->kvm->arch.wall_clock; 2407 break; 2408 case MSR_KVM_SYSTEM_TIME: 2409 case MSR_KVM_SYSTEM_TIME_NEW: 2410 data = vcpu->arch.time; 2411 break; 2412 case MSR_KVM_ASYNC_PF_EN: 2413 data = vcpu->arch.apf.msr_val; 2414 break; 2415 case MSR_KVM_STEAL_TIME: 2416 data = vcpu->arch.st.msr_val; 2417 break; 2418 case MSR_KVM_PV_EOI_EN: 2419 data = vcpu->arch.pv_eoi.msr_val; 2420 break; 2421 case MSR_IA32_P5_MC_ADDR: 2422 case MSR_IA32_P5_MC_TYPE: 2423 case MSR_IA32_MCG_CAP: 2424 case MSR_IA32_MCG_CTL: 2425 case MSR_IA32_MCG_STATUS: 2426 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2427 return get_msr_mce(vcpu, msr, pdata); 2428 case MSR_K7_CLK_CTL: 2429 /* 2430 * Provide expected ramp-up count for K7. All other 2431 * are set to zero, indicating minimum divisors for 2432 * every field. 2433 * 2434 * This prevents guest kernels on AMD host with CPU 2435 * type 6, model 8 and higher from exploding due to 2436 * the rdmsr failing. 2437 */ 2438 data = 0x20000000; 2439 break; 2440 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2441 if (kvm_hv_msr_partition_wide(msr)) { 2442 int r; 2443 mutex_lock(&vcpu->kvm->lock); 2444 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2445 mutex_unlock(&vcpu->kvm->lock); 2446 return r; 2447 } else 2448 return get_msr_hyperv(vcpu, msr, pdata); 2449 break; 2450 case MSR_IA32_BBL_CR_CTL3: 2451 /* This legacy MSR exists but isn't fully documented in current 2452 * silicon. It is however accessed by winxp in very narrow 2453 * scenarios where it sets bit #19, itself documented as 2454 * a "reserved" bit. Best effort attempt to source coherent 2455 * read data here should the balance of the register be 2456 * interpreted by the guest: 2457 * 2458 * L2 cache control register 3: 64GB range, 256KB size, 2459 * enabled, latency 0x1, configured 2460 */ 2461 data = 0xbe702111; 2462 break; 2463 case MSR_AMD64_OSVW_ID_LENGTH: 2464 if (!guest_cpuid_has_osvw(vcpu)) 2465 return 1; 2466 data = vcpu->arch.osvw.length; 2467 break; 2468 case MSR_AMD64_OSVW_STATUS: 2469 if (!guest_cpuid_has_osvw(vcpu)) 2470 return 1; 2471 data = vcpu->arch.osvw.status; 2472 break; 2473 default: 2474 if (kvm_pmu_msr(vcpu, msr)) 2475 return kvm_pmu_get_msr(vcpu, msr, pdata); 2476 if (!ignore_msrs) { 2477 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2478 return 1; 2479 } else { 2480 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2481 data = 0; 2482 } 2483 break; 2484 } 2485 *pdata = data; 2486 return 0; 2487 } 2488 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2489 2490 /* 2491 * Read or write a bunch of msrs. All parameters are kernel addresses. 2492 * 2493 * @return number of msrs set successfully. 2494 */ 2495 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2496 struct kvm_msr_entry *entries, 2497 int (*do_msr)(struct kvm_vcpu *vcpu, 2498 unsigned index, u64 *data)) 2499 { 2500 int i, idx; 2501 2502 idx = srcu_read_lock(&vcpu->kvm->srcu); 2503 for (i = 0; i < msrs->nmsrs; ++i) 2504 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2505 break; 2506 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2507 2508 return i; 2509 } 2510 2511 /* 2512 * Read or write a bunch of msrs. Parameters are user addresses. 2513 * 2514 * @return number of msrs set successfully. 2515 */ 2516 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2517 int (*do_msr)(struct kvm_vcpu *vcpu, 2518 unsigned index, u64 *data), 2519 int writeback) 2520 { 2521 struct kvm_msrs msrs; 2522 struct kvm_msr_entry *entries; 2523 int r, n; 2524 unsigned size; 2525 2526 r = -EFAULT; 2527 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2528 goto out; 2529 2530 r = -E2BIG; 2531 if (msrs.nmsrs >= MAX_IO_MSRS) 2532 goto out; 2533 2534 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2535 entries = memdup_user(user_msrs->entries, size); 2536 if (IS_ERR(entries)) { 2537 r = PTR_ERR(entries); 2538 goto out; 2539 } 2540 2541 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2542 if (r < 0) 2543 goto out_free; 2544 2545 r = -EFAULT; 2546 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2547 goto out_free; 2548 2549 r = n; 2550 2551 out_free: 2552 kfree(entries); 2553 out: 2554 return r; 2555 } 2556 2557 int kvm_dev_ioctl_check_extension(long ext) 2558 { 2559 int r; 2560 2561 switch (ext) { 2562 case KVM_CAP_IRQCHIP: 2563 case KVM_CAP_HLT: 2564 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2565 case KVM_CAP_SET_TSS_ADDR: 2566 case KVM_CAP_EXT_CPUID: 2567 case KVM_CAP_CLOCKSOURCE: 2568 case KVM_CAP_PIT: 2569 case KVM_CAP_NOP_IO_DELAY: 2570 case KVM_CAP_MP_STATE: 2571 case KVM_CAP_SYNC_MMU: 2572 case KVM_CAP_USER_NMI: 2573 case KVM_CAP_REINJECT_CONTROL: 2574 case KVM_CAP_IRQ_INJECT_STATUS: 2575 case KVM_CAP_IRQFD: 2576 case KVM_CAP_IOEVENTFD: 2577 case KVM_CAP_PIT2: 2578 case KVM_CAP_PIT_STATE2: 2579 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2580 case KVM_CAP_XEN_HVM: 2581 case KVM_CAP_ADJUST_CLOCK: 2582 case KVM_CAP_VCPU_EVENTS: 2583 case KVM_CAP_HYPERV: 2584 case KVM_CAP_HYPERV_VAPIC: 2585 case KVM_CAP_HYPERV_SPIN: 2586 case KVM_CAP_PCI_SEGMENT: 2587 case KVM_CAP_DEBUGREGS: 2588 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2589 case KVM_CAP_XSAVE: 2590 case KVM_CAP_ASYNC_PF: 2591 case KVM_CAP_GET_TSC_KHZ: 2592 case KVM_CAP_KVMCLOCK_CTRL: 2593 case KVM_CAP_READONLY_MEM: 2594 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2595 case KVM_CAP_ASSIGN_DEV_IRQ: 2596 case KVM_CAP_PCI_2_3: 2597 #endif 2598 r = 1; 2599 break; 2600 case KVM_CAP_COALESCED_MMIO: 2601 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2602 break; 2603 case KVM_CAP_VAPIC: 2604 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2605 break; 2606 case KVM_CAP_NR_VCPUS: 2607 r = KVM_SOFT_MAX_VCPUS; 2608 break; 2609 case KVM_CAP_MAX_VCPUS: 2610 r = KVM_MAX_VCPUS; 2611 break; 2612 case KVM_CAP_NR_MEMSLOTS: 2613 r = KVM_USER_MEM_SLOTS; 2614 break; 2615 case KVM_CAP_PV_MMU: /* obsolete */ 2616 r = 0; 2617 break; 2618 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2619 case KVM_CAP_IOMMU: 2620 r = iommu_present(&pci_bus_type); 2621 break; 2622 #endif 2623 case KVM_CAP_MCE: 2624 r = KVM_MAX_MCE_BANKS; 2625 break; 2626 case KVM_CAP_XCRS: 2627 r = cpu_has_xsave; 2628 break; 2629 case KVM_CAP_TSC_CONTROL: 2630 r = kvm_has_tsc_control; 2631 break; 2632 case KVM_CAP_TSC_DEADLINE_TIMER: 2633 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2634 break; 2635 default: 2636 r = 0; 2637 break; 2638 } 2639 return r; 2640 2641 } 2642 2643 long kvm_arch_dev_ioctl(struct file *filp, 2644 unsigned int ioctl, unsigned long arg) 2645 { 2646 void __user *argp = (void __user *)arg; 2647 long r; 2648 2649 switch (ioctl) { 2650 case KVM_GET_MSR_INDEX_LIST: { 2651 struct kvm_msr_list __user *user_msr_list = argp; 2652 struct kvm_msr_list msr_list; 2653 unsigned n; 2654 2655 r = -EFAULT; 2656 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2657 goto out; 2658 n = msr_list.nmsrs; 2659 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2660 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2661 goto out; 2662 r = -E2BIG; 2663 if (n < msr_list.nmsrs) 2664 goto out; 2665 r = -EFAULT; 2666 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2667 num_msrs_to_save * sizeof(u32))) 2668 goto out; 2669 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2670 &emulated_msrs, 2671 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2672 goto out; 2673 r = 0; 2674 break; 2675 } 2676 case KVM_GET_SUPPORTED_CPUID: { 2677 struct kvm_cpuid2 __user *cpuid_arg = argp; 2678 struct kvm_cpuid2 cpuid; 2679 2680 r = -EFAULT; 2681 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2682 goto out; 2683 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, 2684 cpuid_arg->entries); 2685 if (r) 2686 goto out; 2687 2688 r = -EFAULT; 2689 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2690 goto out; 2691 r = 0; 2692 break; 2693 } 2694 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2695 u64 mce_cap; 2696 2697 mce_cap = KVM_MCE_CAP_SUPPORTED; 2698 r = -EFAULT; 2699 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2700 goto out; 2701 r = 0; 2702 break; 2703 } 2704 default: 2705 r = -EINVAL; 2706 } 2707 out: 2708 return r; 2709 } 2710 2711 static void wbinvd_ipi(void *garbage) 2712 { 2713 wbinvd(); 2714 } 2715 2716 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2717 { 2718 return vcpu->kvm->arch.iommu_domain && 2719 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); 2720 } 2721 2722 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2723 { 2724 /* Address WBINVD may be executed by guest */ 2725 if (need_emulate_wbinvd(vcpu)) { 2726 if (kvm_x86_ops->has_wbinvd_exit()) 2727 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2728 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2729 smp_call_function_single(vcpu->cpu, 2730 wbinvd_ipi, NULL, 1); 2731 } 2732 2733 kvm_x86_ops->vcpu_load(vcpu, cpu); 2734 2735 /* Apply any externally detected TSC adjustments (due to suspend) */ 2736 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2737 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2738 vcpu->arch.tsc_offset_adjustment = 0; 2739 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2740 } 2741 2742 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2743 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2744 native_read_tsc() - vcpu->arch.last_host_tsc; 2745 if (tsc_delta < 0) 2746 mark_tsc_unstable("KVM discovered backwards TSC"); 2747 if (check_tsc_unstable()) { 2748 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2749 vcpu->arch.last_guest_tsc); 2750 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2751 vcpu->arch.tsc_catchup = 1; 2752 } 2753 /* 2754 * On a host with synchronized TSC, there is no need to update 2755 * kvmclock on vcpu->cpu migration 2756 */ 2757 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2758 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2759 if (vcpu->cpu != cpu) 2760 kvm_migrate_timers(vcpu); 2761 vcpu->cpu = cpu; 2762 } 2763 2764 accumulate_steal_time(vcpu); 2765 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2766 } 2767 2768 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2769 { 2770 kvm_x86_ops->vcpu_put(vcpu); 2771 kvm_put_guest_fpu(vcpu); 2772 vcpu->arch.last_host_tsc = native_read_tsc(); 2773 } 2774 2775 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2776 struct kvm_lapic_state *s) 2777 { 2778 kvm_x86_ops->sync_pir_to_irr(vcpu); 2779 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2780 2781 return 0; 2782 } 2783 2784 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2785 struct kvm_lapic_state *s) 2786 { 2787 kvm_apic_post_state_restore(vcpu, s); 2788 update_cr8_intercept(vcpu); 2789 2790 return 0; 2791 } 2792 2793 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2794 struct kvm_interrupt *irq) 2795 { 2796 if (irq->irq >= KVM_NR_INTERRUPTS) 2797 return -EINVAL; 2798 if (irqchip_in_kernel(vcpu->kvm)) 2799 return -ENXIO; 2800 2801 kvm_queue_interrupt(vcpu, irq->irq, false); 2802 kvm_make_request(KVM_REQ_EVENT, vcpu); 2803 2804 return 0; 2805 } 2806 2807 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2808 { 2809 kvm_inject_nmi(vcpu); 2810 2811 return 0; 2812 } 2813 2814 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2815 struct kvm_tpr_access_ctl *tac) 2816 { 2817 if (tac->flags) 2818 return -EINVAL; 2819 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2820 return 0; 2821 } 2822 2823 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2824 u64 mcg_cap) 2825 { 2826 int r; 2827 unsigned bank_num = mcg_cap & 0xff, bank; 2828 2829 r = -EINVAL; 2830 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2831 goto out; 2832 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2833 goto out; 2834 r = 0; 2835 vcpu->arch.mcg_cap = mcg_cap; 2836 /* Init IA32_MCG_CTL to all 1s */ 2837 if (mcg_cap & MCG_CTL_P) 2838 vcpu->arch.mcg_ctl = ~(u64)0; 2839 /* Init IA32_MCi_CTL to all 1s */ 2840 for (bank = 0; bank < bank_num; bank++) 2841 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2842 out: 2843 return r; 2844 } 2845 2846 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2847 struct kvm_x86_mce *mce) 2848 { 2849 u64 mcg_cap = vcpu->arch.mcg_cap; 2850 unsigned bank_num = mcg_cap & 0xff; 2851 u64 *banks = vcpu->arch.mce_banks; 2852 2853 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2854 return -EINVAL; 2855 /* 2856 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2857 * reporting is disabled 2858 */ 2859 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2860 vcpu->arch.mcg_ctl != ~(u64)0) 2861 return 0; 2862 banks += 4 * mce->bank; 2863 /* 2864 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2865 * reporting is disabled for the bank 2866 */ 2867 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2868 return 0; 2869 if (mce->status & MCI_STATUS_UC) { 2870 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2871 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2872 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2873 return 0; 2874 } 2875 if (banks[1] & MCI_STATUS_VAL) 2876 mce->status |= MCI_STATUS_OVER; 2877 banks[2] = mce->addr; 2878 banks[3] = mce->misc; 2879 vcpu->arch.mcg_status = mce->mcg_status; 2880 banks[1] = mce->status; 2881 kvm_queue_exception(vcpu, MC_VECTOR); 2882 } else if (!(banks[1] & MCI_STATUS_VAL) 2883 || !(banks[1] & MCI_STATUS_UC)) { 2884 if (banks[1] & MCI_STATUS_VAL) 2885 mce->status |= MCI_STATUS_OVER; 2886 banks[2] = mce->addr; 2887 banks[3] = mce->misc; 2888 banks[1] = mce->status; 2889 } else 2890 banks[1] |= MCI_STATUS_OVER; 2891 return 0; 2892 } 2893 2894 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2895 struct kvm_vcpu_events *events) 2896 { 2897 process_nmi(vcpu); 2898 events->exception.injected = 2899 vcpu->arch.exception.pending && 2900 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2901 events->exception.nr = vcpu->arch.exception.nr; 2902 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2903 events->exception.pad = 0; 2904 events->exception.error_code = vcpu->arch.exception.error_code; 2905 2906 events->interrupt.injected = 2907 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2908 events->interrupt.nr = vcpu->arch.interrupt.nr; 2909 events->interrupt.soft = 0; 2910 events->interrupt.shadow = 2911 kvm_x86_ops->get_interrupt_shadow(vcpu, 2912 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2913 2914 events->nmi.injected = vcpu->arch.nmi_injected; 2915 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2916 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2917 events->nmi.pad = 0; 2918 2919 events->sipi_vector = 0; /* never valid when reporting to user space */ 2920 2921 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2922 | KVM_VCPUEVENT_VALID_SHADOW); 2923 memset(&events->reserved, 0, sizeof(events->reserved)); 2924 } 2925 2926 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2927 struct kvm_vcpu_events *events) 2928 { 2929 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2930 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2931 | KVM_VCPUEVENT_VALID_SHADOW)) 2932 return -EINVAL; 2933 2934 process_nmi(vcpu); 2935 vcpu->arch.exception.pending = events->exception.injected; 2936 vcpu->arch.exception.nr = events->exception.nr; 2937 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 2938 vcpu->arch.exception.error_code = events->exception.error_code; 2939 2940 vcpu->arch.interrupt.pending = events->interrupt.injected; 2941 vcpu->arch.interrupt.nr = events->interrupt.nr; 2942 vcpu->arch.interrupt.soft = events->interrupt.soft; 2943 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 2944 kvm_x86_ops->set_interrupt_shadow(vcpu, 2945 events->interrupt.shadow); 2946 2947 vcpu->arch.nmi_injected = events->nmi.injected; 2948 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 2949 vcpu->arch.nmi_pending = events->nmi.pending; 2950 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 2951 2952 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 2953 kvm_vcpu_has_lapic(vcpu)) 2954 vcpu->arch.apic->sipi_vector = events->sipi_vector; 2955 2956 kvm_make_request(KVM_REQ_EVENT, vcpu); 2957 2958 return 0; 2959 } 2960 2961 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 2962 struct kvm_debugregs *dbgregs) 2963 { 2964 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 2965 dbgregs->dr6 = vcpu->arch.dr6; 2966 dbgregs->dr7 = vcpu->arch.dr7; 2967 dbgregs->flags = 0; 2968 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 2969 } 2970 2971 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 2972 struct kvm_debugregs *dbgregs) 2973 { 2974 if (dbgregs->flags) 2975 return -EINVAL; 2976 2977 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 2978 vcpu->arch.dr6 = dbgregs->dr6; 2979 vcpu->arch.dr7 = dbgregs->dr7; 2980 2981 return 0; 2982 } 2983 2984 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 2985 struct kvm_xsave *guest_xsave) 2986 { 2987 if (cpu_has_xsave) 2988 memcpy(guest_xsave->region, 2989 &vcpu->arch.guest_fpu.state->xsave, 2990 xstate_size); 2991 else { 2992 memcpy(guest_xsave->region, 2993 &vcpu->arch.guest_fpu.state->fxsave, 2994 sizeof(struct i387_fxsave_struct)); 2995 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 2996 XSTATE_FPSSE; 2997 } 2998 } 2999 3000 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3001 struct kvm_xsave *guest_xsave) 3002 { 3003 u64 xstate_bv = 3004 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3005 3006 if (cpu_has_xsave) 3007 memcpy(&vcpu->arch.guest_fpu.state->xsave, 3008 guest_xsave->region, xstate_size); 3009 else { 3010 if (xstate_bv & ~XSTATE_FPSSE) 3011 return -EINVAL; 3012 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 3013 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 3014 } 3015 return 0; 3016 } 3017 3018 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3019 struct kvm_xcrs *guest_xcrs) 3020 { 3021 if (!cpu_has_xsave) { 3022 guest_xcrs->nr_xcrs = 0; 3023 return; 3024 } 3025 3026 guest_xcrs->nr_xcrs = 1; 3027 guest_xcrs->flags = 0; 3028 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3029 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3030 } 3031 3032 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3033 struct kvm_xcrs *guest_xcrs) 3034 { 3035 int i, r = 0; 3036 3037 if (!cpu_has_xsave) 3038 return -EINVAL; 3039 3040 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3041 return -EINVAL; 3042 3043 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3044 /* Only support XCR0 currently */ 3045 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { 3046 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3047 guest_xcrs->xcrs[0].value); 3048 break; 3049 } 3050 if (r) 3051 r = -EINVAL; 3052 return r; 3053 } 3054 3055 /* 3056 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3057 * stopped by the hypervisor. This function will be called from the host only. 3058 * EINVAL is returned when the host attempts to set the flag for a guest that 3059 * does not support pv clocks. 3060 */ 3061 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3062 { 3063 if (!vcpu->arch.pv_time_enabled) 3064 return -EINVAL; 3065 vcpu->arch.pvclock_set_guest_stopped_request = true; 3066 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3067 return 0; 3068 } 3069 3070 long kvm_arch_vcpu_ioctl(struct file *filp, 3071 unsigned int ioctl, unsigned long arg) 3072 { 3073 struct kvm_vcpu *vcpu = filp->private_data; 3074 void __user *argp = (void __user *)arg; 3075 int r; 3076 union { 3077 struct kvm_lapic_state *lapic; 3078 struct kvm_xsave *xsave; 3079 struct kvm_xcrs *xcrs; 3080 void *buffer; 3081 } u; 3082 3083 u.buffer = NULL; 3084 switch (ioctl) { 3085 case KVM_GET_LAPIC: { 3086 r = -EINVAL; 3087 if (!vcpu->arch.apic) 3088 goto out; 3089 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3090 3091 r = -ENOMEM; 3092 if (!u.lapic) 3093 goto out; 3094 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3095 if (r) 3096 goto out; 3097 r = -EFAULT; 3098 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3099 goto out; 3100 r = 0; 3101 break; 3102 } 3103 case KVM_SET_LAPIC: { 3104 r = -EINVAL; 3105 if (!vcpu->arch.apic) 3106 goto out; 3107 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3108 if (IS_ERR(u.lapic)) 3109 return PTR_ERR(u.lapic); 3110 3111 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3112 break; 3113 } 3114 case KVM_INTERRUPT: { 3115 struct kvm_interrupt irq; 3116 3117 r = -EFAULT; 3118 if (copy_from_user(&irq, argp, sizeof irq)) 3119 goto out; 3120 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3121 break; 3122 } 3123 case KVM_NMI: { 3124 r = kvm_vcpu_ioctl_nmi(vcpu); 3125 break; 3126 } 3127 case KVM_SET_CPUID: { 3128 struct kvm_cpuid __user *cpuid_arg = argp; 3129 struct kvm_cpuid cpuid; 3130 3131 r = -EFAULT; 3132 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3133 goto out; 3134 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3135 break; 3136 } 3137 case KVM_SET_CPUID2: { 3138 struct kvm_cpuid2 __user *cpuid_arg = argp; 3139 struct kvm_cpuid2 cpuid; 3140 3141 r = -EFAULT; 3142 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3143 goto out; 3144 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3145 cpuid_arg->entries); 3146 break; 3147 } 3148 case KVM_GET_CPUID2: { 3149 struct kvm_cpuid2 __user *cpuid_arg = argp; 3150 struct kvm_cpuid2 cpuid; 3151 3152 r = -EFAULT; 3153 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3154 goto out; 3155 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3156 cpuid_arg->entries); 3157 if (r) 3158 goto out; 3159 r = -EFAULT; 3160 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3161 goto out; 3162 r = 0; 3163 break; 3164 } 3165 case KVM_GET_MSRS: 3166 r = msr_io(vcpu, argp, kvm_get_msr, 1); 3167 break; 3168 case KVM_SET_MSRS: 3169 r = msr_io(vcpu, argp, do_set_msr, 0); 3170 break; 3171 case KVM_TPR_ACCESS_REPORTING: { 3172 struct kvm_tpr_access_ctl tac; 3173 3174 r = -EFAULT; 3175 if (copy_from_user(&tac, argp, sizeof tac)) 3176 goto out; 3177 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3178 if (r) 3179 goto out; 3180 r = -EFAULT; 3181 if (copy_to_user(argp, &tac, sizeof tac)) 3182 goto out; 3183 r = 0; 3184 break; 3185 }; 3186 case KVM_SET_VAPIC_ADDR: { 3187 struct kvm_vapic_addr va; 3188 3189 r = -EINVAL; 3190 if (!irqchip_in_kernel(vcpu->kvm)) 3191 goto out; 3192 r = -EFAULT; 3193 if (copy_from_user(&va, argp, sizeof va)) 3194 goto out; 3195 r = 0; 3196 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3197 break; 3198 } 3199 case KVM_X86_SETUP_MCE: { 3200 u64 mcg_cap; 3201 3202 r = -EFAULT; 3203 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3204 goto out; 3205 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3206 break; 3207 } 3208 case KVM_X86_SET_MCE: { 3209 struct kvm_x86_mce mce; 3210 3211 r = -EFAULT; 3212 if (copy_from_user(&mce, argp, sizeof mce)) 3213 goto out; 3214 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3215 break; 3216 } 3217 case KVM_GET_VCPU_EVENTS: { 3218 struct kvm_vcpu_events events; 3219 3220 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3221 3222 r = -EFAULT; 3223 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3224 break; 3225 r = 0; 3226 break; 3227 } 3228 case KVM_SET_VCPU_EVENTS: { 3229 struct kvm_vcpu_events events; 3230 3231 r = -EFAULT; 3232 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3233 break; 3234 3235 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3236 break; 3237 } 3238 case KVM_GET_DEBUGREGS: { 3239 struct kvm_debugregs dbgregs; 3240 3241 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3242 3243 r = -EFAULT; 3244 if (copy_to_user(argp, &dbgregs, 3245 sizeof(struct kvm_debugregs))) 3246 break; 3247 r = 0; 3248 break; 3249 } 3250 case KVM_SET_DEBUGREGS: { 3251 struct kvm_debugregs dbgregs; 3252 3253 r = -EFAULT; 3254 if (copy_from_user(&dbgregs, argp, 3255 sizeof(struct kvm_debugregs))) 3256 break; 3257 3258 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3259 break; 3260 } 3261 case KVM_GET_XSAVE: { 3262 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3263 r = -ENOMEM; 3264 if (!u.xsave) 3265 break; 3266 3267 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3268 3269 r = -EFAULT; 3270 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3271 break; 3272 r = 0; 3273 break; 3274 } 3275 case KVM_SET_XSAVE: { 3276 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3277 if (IS_ERR(u.xsave)) 3278 return PTR_ERR(u.xsave); 3279 3280 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3281 break; 3282 } 3283 case KVM_GET_XCRS: { 3284 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3285 r = -ENOMEM; 3286 if (!u.xcrs) 3287 break; 3288 3289 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3290 3291 r = -EFAULT; 3292 if (copy_to_user(argp, u.xcrs, 3293 sizeof(struct kvm_xcrs))) 3294 break; 3295 r = 0; 3296 break; 3297 } 3298 case KVM_SET_XCRS: { 3299 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3300 if (IS_ERR(u.xcrs)) 3301 return PTR_ERR(u.xcrs); 3302 3303 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3304 break; 3305 } 3306 case KVM_SET_TSC_KHZ: { 3307 u32 user_tsc_khz; 3308 3309 r = -EINVAL; 3310 user_tsc_khz = (u32)arg; 3311 3312 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3313 goto out; 3314 3315 if (user_tsc_khz == 0) 3316 user_tsc_khz = tsc_khz; 3317 3318 kvm_set_tsc_khz(vcpu, user_tsc_khz); 3319 3320 r = 0; 3321 goto out; 3322 } 3323 case KVM_GET_TSC_KHZ: { 3324 r = vcpu->arch.virtual_tsc_khz; 3325 goto out; 3326 } 3327 case KVM_KVMCLOCK_CTRL: { 3328 r = kvm_set_guest_paused(vcpu); 3329 goto out; 3330 } 3331 default: 3332 r = -EINVAL; 3333 } 3334 out: 3335 kfree(u.buffer); 3336 return r; 3337 } 3338 3339 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3340 { 3341 return VM_FAULT_SIGBUS; 3342 } 3343 3344 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3345 { 3346 int ret; 3347 3348 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3349 return -EINVAL; 3350 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3351 return ret; 3352 } 3353 3354 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3355 u64 ident_addr) 3356 { 3357 kvm->arch.ept_identity_map_addr = ident_addr; 3358 return 0; 3359 } 3360 3361 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3362 u32 kvm_nr_mmu_pages) 3363 { 3364 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3365 return -EINVAL; 3366 3367 mutex_lock(&kvm->slots_lock); 3368 3369 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3370 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3371 3372 mutex_unlock(&kvm->slots_lock); 3373 return 0; 3374 } 3375 3376 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3377 { 3378 return kvm->arch.n_max_mmu_pages; 3379 } 3380 3381 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3382 { 3383 int r; 3384 3385 r = 0; 3386 switch (chip->chip_id) { 3387 case KVM_IRQCHIP_PIC_MASTER: 3388 memcpy(&chip->chip.pic, 3389 &pic_irqchip(kvm)->pics[0], 3390 sizeof(struct kvm_pic_state)); 3391 break; 3392 case KVM_IRQCHIP_PIC_SLAVE: 3393 memcpy(&chip->chip.pic, 3394 &pic_irqchip(kvm)->pics[1], 3395 sizeof(struct kvm_pic_state)); 3396 break; 3397 case KVM_IRQCHIP_IOAPIC: 3398 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3399 break; 3400 default: 3401 r = -EINVAL; 3402 break; 3403 } 3404 return r; 3405 } 3406 3407 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3408 { 3409 int r; 3410 3411 r = 0; 3412 switch (chip->chip_id) { 3413 case KVM_IRQCHIP_PIC_MASTER: 3414 spin_lock(&pic_irqchip(kvm)->lock); 3415 memcpy(&pic_irqchip(kvm)->pics[0], 3416 &chip->chip.pic, 3417 sizeof(struct kvm_pic_state)); 3418 spin_unlock(&pic_irqchip(kvm)->lock); 3419 break; 3420 case KVM_IRQCHIP_PIC_SLAVE: 3421 spin_lock(&pic_irqchip(kvm)->lock); 3422 memcpy(&pic_irqchip(kvm)->pics[1], 3423 &chip->chip.pic, 3424 sizeof(struct kvm_pic_state)); 3425 spin_unlock(&pic_irqchip(kvm)->lock); 3426 break; 3427 case KVM_IRQCHIP_IOAPIC: 3428 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3429 break; 3430 default: 3431 r = -EINVAL; 3432 break; 3433 } 3434 kvm_pic_update_irq(pic_irqchip(kvm)); 3435 return r; 3436 } 3437 3438 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3439 { 3440 int r = 0; 3441 3442 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3443 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3444 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3445 return r; 3446 } 3447 3448 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3449 { 3450 int r = 0; 3451 3452 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3453 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3454 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3455 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3456 return r; 3457 } 3458 3459 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3460 { 3461 int r = 0; 3462 3463 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3464 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3465 sizeof(ps->channels)); 3466 ps->flags = kvm->arch.vpit->pit_state.flags; 3467 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3468 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3469 return r; 3470 } 3471 3472 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3473 { 3474 int r = 0, start = 0; 3475 u32 prev_legacy, cur_legacy; 3476 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3477 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3478 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3479 if (!prev_legacy && cur_legacy) 3480 start = 1; 3481 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3482 sizeof(kvm->arch.vpit->pit_state.channels)); 3483 kvm->arch.vpit->pit_state.flags = ps->flags; 3484 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3485 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3486 return r; 3487 } 3488 3489 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3490 struct kvm_reinject_control *control) 3491 { 3492 if (!kvm->arch.vpit) 3493 return -ENXIO; 3494 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3495 kvm->arch.vpit->pit_state.reinject = control->pit_reinject; 3496 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3497 return 0; 3498 } 3499 3500 /** 3501 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3502 * @kvm: kvm instance 3503 * @log: slot id and address to which we copy the log 3504 * 3505 * We need to keep it in mind that VCPU threads can write to the bitmap 3506 * concurrently. So, to avoid losing data, we keep the following order for 3507 * each bit: 3508 * 3509 * 1. Take a snapshot of the bit and clear it if needed. 3510 * 2. Write protect the corresponding page. 3511 * 3. Flush TLB's if needed. 3512 * 4. Copy the snapshot to the userspace. 3513 * 3514 * Between 2 and 3, the guest may write to the page using the remaining TLB 3515 * entry. This is not a problem because the page will be reported dirty at 3516 * step 4 using the snapshot taken before and step 3 ensures that successive 3517 * writes will be logged for the next call. 3518 */ 3519 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3520 { 3521 int r; 3522 struct kvm_memory_slot *memslot; 3523 unsigned long n, i; 3524 unsigned long *dirty_bitmap; 3525 unsigned long *dirty_bitmap_buffer; 3526 bool is_dirty = false; 3527 3528 mutex_lock(&kvm->slots_lock); 3529 3530 r = -EINVAL; 3531 if (log->slot >= KVM_USER_MEM_SLOTS) 3532 goto out; 3533 3534 memslot = id_to_memslot(kvm->memslots, log->slot); 3535 3536 dirty_bitmap = memslot->dirty_bitmap; 3537 r = -ENOENT; 3538 if (!dirty_bitmap) 3539 goto out; 3540 3541 n = kvm_dirty_bitmap_bytes(memslot); 3542 3543 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3544 memset(dirty_bitmap_buffer, 0, n); 3545 3546 spin_lock(&kvm->mmu_lock); 3547 3548 for (i = 0; i < n / sizeof(long); i++) { 3549 unsigned long mask; 3550 gfn_t offset; 3551 3552 if (!dirty_bitmap[i]) 3553 continue; 3554 3555 is_dirty = true; 3556 3557 mask = xchg(&dirty_bitmap[i], 0); 3558 dirty_bitmap_buffer[i] = mask; 3559 3560 offset = i * BITS_PER_LONG; 3561 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3562 } 3563 if (is_dirty) 3564 kvm_flush_remote_tlbs(kvm); 3565 3566 spin_unlock(&kvm->mmu_lock); 3567 3568 r = -EFAULT; 3569 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3570 goto out; 3571 3572 r = 0; 3573 out: 3574 mutex_unlock(&kvm->slots_lock); 3575 return r; 3576 } 3577 3578 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3579 bool line_status) 3580 { 3581 if (!irqchip_in_kernel(kvm)) 3582 return -ENXIO; 3583 3584 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3585 irq_event->irq, irq_event->level, 3586 line_status); 3587 return 0; 3588 } 3589 3590 long kvm_arch_vm_ioctl(struct file *filp, 3591 unsigned int ioctl, unsigned long arg) 3592 { 3593 struct kvm *kvm = filp->private_data; 3594 void __user *argp = (void __user *)arg; 3595 int r = -ENOTTY; 3596 /* 3597 * This union makes it completely explicit to gcc-3.x 3598 * that these two variables' stack usage should be 3599 * combined, not added together. 3600 */ 3601 union { 3602 struct kvm_pit_state ps; 3603 struct kvm_pit_state2 ps2; 3604 struct kvm_pit_config pit_config; 3605 } u; 3606 3607 switch (ioctl) { 3608 case KVM_SET_TSS_ADDR: 3609 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3610 break; 3611 case KVM_SET_IDENTITY_MAP_ADDR: { 3612 u64 ident_addr; 3613 3614 r = -EFAULT; 3615 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3616 goto out; 3617 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3618 break; 3619 } 3620 case KVM_SET_NR_MMU_PAGES: 3621 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3622 break; 3623 case KVM_GET_NR_MMU_PAGES: 3624 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3625 break; 3626 case KVM_CREATE_IRQCHIP: { 3627 struct kvm_pic *vpic; 3628 3629 mutex_lock(&kvm->lock); 3630 r = -EEXIST; 3631 if (kvm->arch.vpic) 3632 goto create_irqchip_unlock; 3633 r = -EINVAL; 3634 if (atomic_read(&kvm->online_vcpus)) 3635 goto create_irqchip_unlock; 3636 r = -ENOMEM; 3637 vpic = kvm_create_pic(kvm); 3638 if (vpic) { 3639 r = kvm_ioapic_init(kvm); 3640 if (r) { 3641 mutex_lock(&kvm->slots_lock); 3642 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3643 &vpic->dev_master); 3644 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3645 &vpic->dev_slave); 3646 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3647 &vpic->dev_eclr); 3648 mutex_unlock(&kvm->slots_lock); 3649 kfree(vpic); 3650 goto create_irqchip_unlock; 3651 } 3652 } else 3653 goto create_irqchip_unlock; 3654 smp_wmb(); 3655 kvm->arch.vpic = vpic; 3656 smp_wmb(); 3657 r = kvm_setup_default_irq_routing(kvm); 3658 if (r) { 3659 mutex_lock(&kvm->slots_lock); 3660 mutex_lock(&kvm->irq_lock); 3661 kvm_ioapic_destroy(kvm); 3662 kvm_destroy_pic(kvm); 3663 mutex_unlock(&kvm->irq_lock); 3664 mutex_unlock(&kvm->slots_lock); 3665 } 3666 create_irqchip_unlock: 3667 mutex_unlock(&kvm->lock); 3668 break; 3669 } 3670 case KVM_CREATE_PIT: 3671 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3672 goto create_pit; 3673 case KVM_CREATE_PIT2: 3674 r = -EFAULT; 3675 if (copy_from_user(&u.pit_config, argp, 3676 sizeof(struct kvm_pit_config))) 3677 goto out; 3678 create_pit: 3679 mutex_lock(&kvm->slots_lock); 3680 r = -EEXIST; 3681 if (kvm->arch.vpit) 3682 goto create_pit_unlock; 3683 r = -ENOMEM; 3684 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3685 if (kvm->arch.vpit) 3686 r = 0; 3687 create_pit_unlock: 3688 mutex_unlock(&kvm->slots_lock); 3689 break; 3690 case KVM_GET_IRQCHIP: { 3691 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3692 struct kvm_irqchip *chip; 3693 3694 chip = memdup_user(argp, sizeof(*chip)); 3695 if (IS_ERR(chip)) { 3696 r = PTR_ERR(chip); 3697 goto out; 3698 } 3699 3700 r = -ENXIO; 3701 if (!irqchip_in_kernel(kvm)) 3702 goto get_irqchip_out; 3703 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3704 if (r) 3705 goto get_irqchip_out; 3706 r = -EFAULT; 3707 if (copy_to_user(argp, chip, sizeof *chip)) 3708 goto get_irqchip_out; 3709 r = 0; 3710 get_irqchip_out: 3711 kfree(chip); 3712 break; 3713 } 3714 case KVM_SET_IRQCHIP: { 3715 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3716 struct kvm_irqchip *chip; 3717 3718 chip = memdup_user(argp, sizeof(*chip)); 3719 if (IS_ERR(chip)) { 3720 r = PTR_ERR(chip); 3721 goto out; 3722 } 3723 3724 r = -ENXIO; 3725 if (!irqchip_in_kernel(kvm)) 3726 goto set_irqchip_out; 3727 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3728 if (r) 3729 goto set_irqchip_out; 3730 r = 0; 3731 set_irqchip_out: 3732 kfree(chip); 3733 break; 3734 } 3735 case KVM_GET_PIT: { 3736 r = -EFAULT; 3737 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3738 goto out; 3739 r = -ENXIO; 3740 if (!kvm->arch.vpit) 3741 goto out; 3742 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3743 if (r) 3744 goto out; 3745 r = -EFAULT; 3746 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3747 goto out; 3748 r = 0; 3749 break; 3750 } 3751 case KVM_SET_PIT: { 3752 r = -EFAULT; 3753 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3754 goto out; 3755 r = -ENXIO; 3756 if (!kvm->arch.vpit) 3757 goto out; 3758 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3759 break; 3760 } 3761 case KVM_GET_PIT2: { 3762 r = -ENXIO; 3763 if (!kvm->arch.vpit) 3764 goto out; 3765 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3766 if (r) 3767 goto out; 3768 r = -EFAULT; 3769 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3770 goto out; 3771 r = 0; 3772 break; 3773 } 3774 case KVM_SET_PIT2: { 3775 r = -EFAULT; 3776 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3777 goto out; 3778 r = -ENXIO; 3779 if (!kvm->arch.vpit) 3780 goto out; 3781 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3782 break; 3783 } 3784 case KVM_REINJECT_CONTROL: { 3785 struct kvm_reinject_control control; 3786 r = -EFAULT; 3787 if (copy_from_user(&control, argp, sizeof(control))) 3788 goto out; 3789 r = kvm_vm_ioctl_reinject(kvm, &control); 3790 break; 3791 } 3792 case KVM_XEN_HVM_CONFIG: { 3793 r = -EFAULT; 3794 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3795 sizeof(struct kvm_xen_hvm_config))) 3796 goto out; 3797 r = -EINVAL; 3798 if (kvm->arch.xen_hvm_config.flags) 3799 goto out; 3800 r = 0; 3801 break; 3802 } 3803 case KVM_SET_CLOCK: { 3804 struct kvm_clock_data user_ns; 3805 u64 now_ns; 3806 s64 delta; 3807 3808 r = -EFAULT; 3809 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3810 goto out; 3811 3812 r = -EINVAL; 3813 if (user_ns.flags) 3814 goto out; 3815 3816 r = 0; 3817 local_irq_disable(); 3818 now_ns = get_kernel_ns(); 3819 delta = user_ns.clock - now_ns; 3820 local_irq_enable(); 3821 kvm->arch.kvmclock_offset = delta; 3822 kvm_gen_update_masterclock(kvm); 3823 break; 3824 } 3825 case KVM_GET_CLOCK: { 3826 struct kvm_clock_data user_ns; 3827 u64 now_ns; 3828 3829 local_irq_disable(); 3830 now_ns = get_kernel_ns(); 3831 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3832 local_irq_enable(); 3833 user_ns.flags = 0; 3834 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3835 3836 r = -EFAULT; 3837 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3838 goto out; 3839 r = 0; 3840 break; 3841 } 3842 3843 default: 3844 ; 3845 } 3846 out: 3847 return r; 3848 } 3849 3850 static void kvm_init_msr_list(void) 3851 { 3852 u32 dummy[2]; 3853 unsigned i, j; 3854 3855 /* skip the first msrs in the list. KVM-specific */ 3856 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3857 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3858 continue; 3859 if (j < i) 3860 msrs_to_save[j] = msrs_to_save[i]; 3861 j++; 3862 } 3863 num_msrs_to_save = j; 3864 } 3865 3866 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3867 const void *v) 3868 { 3869 int handled = 0; 3870 int n; 3871 3872 do { 3873 n = min(len, 8); 3874 if (!(vcpu->arch.apic && 3875 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3876 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3877 break; 3878 handled += n; 3879 addr += n; 3880 len -= n; 3881 v += n; 3882 } while (len); 3883 3884 return handled; 3885 } 3886 3887 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3888 { 3889 int handled = 0; 3890 int n; 3891 3892 do { 3893 n = min(len, 8); 3894 if (!(vcpu->arch.apic && 3895 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3896 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3897 break; 3898 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 3899 handled += n; 3900 addr += n; 3901 len -= n; 3902 v += n; 3903 } while (len); 3904 3905 return handled; 3906 } 3907 3908 static void kvm_set_segment(struct kvm_vcpu *vcpu, 3909 struct kvm_segment *var, int seg) 3910 { 3911 kvm_x86_ops->set_segment(vcpu, var, seg); 3912 } 3913 3914 void kvm_get_segment(struct kvm_vcpu *vcpu, 3915 struct kvm_segment *var, int seg) 3916 { 3917 kvm_x86_ops->get_segment(vcpu, var, seg); 3918 } 3919 3920 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 3921 { 3922 gpa_t t_gpa; 3923 struct x86_exception exception; 3924 3925 BUG_ON(!mmu_is_nested(vcpu)); 3926 3927 /* NPT walks are always user-walks */ 3928 access |= PFERR_USER_MASK; 3929 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 3930 3931 return t_gpa; 3932 } 3933 3934 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 3935 struct x86_exception *exception) 3936 { 3937 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3938 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3939 } 3940 3941 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 3942 struct x86_exception *exception) 3943 { 3944 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3945 access |= PFERR_FETCH_MASK; 3946 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3947 } 3948 3949 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 3950 struct x86_exception *exception) 3951 { 3952 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3953 access |= PFERR_WRITE_MASK; 3954 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3955 } 3956 3957 /* uses this to access any guest's mapped memory without checking CPL */ 3958 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 3959 struct x86_exception *exception) 3960 { 3961 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 3962 } 3963 3964 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 3965 struct kvm_vcpu *vcpu, u32 access, 3966 struct x86_exception *exception) 3967 { 3968 void *data = val; 3969 int r = X86EMUL_CONTINUE; 3970 3971 while (bytes) { 3972 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 3973 exception); 3974 unsigned offset = addr & (PAGE_SIZE-1); 3975 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 3976 int ret; 3977 3978 if (gpa == UNMAPPED_GVA) 3979 return X86EMUL_PROPAGATE_FAULT; 3980 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 3981 if (ret < 0) { 3982 r = X86EMUL_IO_NEEDED; 3983 goto out; 3984 } 3985 3986 bytes -= toread; 3987 data += toread; 3988 addr += toread; 3989 } 3990 out: 3991 return r; 3992 } 3993 3994 /* used for instruction fetching */ 3995 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 3996 gva_t addr, void *val, unsigned int bytes, 3997 struct x86_exception *exception) 3998 { 3999 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4000 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4001 4002 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 4003 access | PFERR_FETCH_MASK, 4004 exception); 4005 } 4006 4007 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4008 gva_t addr, void *val, unsigned int bytes, 4009 struct x86_exception *exception) 4010 { 4011 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4012 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4013 4014 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4015 exception); 4016 } 4017 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4018 4019 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4020 gva_t addr, void *val, unsigned int bytes, 4021 struct x86_exception *exception) 4022 { 4023 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4024 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4025 } 4026 4027 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4028 gva_t addr, void *val, 4029 unsigned int bytes, 4030 struct x86_exception *exception) 4031 { 4032 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4033 void *data = val; 4034 int r = X86EMUL_CONTINUE; 4035 4036 while (bytes) { 4037 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4038 PFERR_WRITE_MASK, 4039 exception); 4040 unsigned offset = addr & (PAGE_SIZE-1); 4041 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4042 int ret; 4043 4044 if (gpa == UNMAPPED_GVA) 4045 return X86EMUL_PROPAGATE_FAULT; 4046 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 4047 if (ret < 0) { 4048 r = X86EMUL_IO_NEEDED; 4049 goto out; 4050 } 4051 4052 bytes -= towrite; 4053 data += towrite; 4054 addr += towrite; 4055 } 4056 out: 4057 return r; 4058 } 4059 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4060 4061 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4062 gpa_t *gpa, struct x86_exception *exception, 4063 bool write) 4064 { 4065 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4066 | (write ? PFERR_WRITE_MASK : 0); 4067 4068 if (vcpu_match_mmio_gva(vcpu, gva) 4069 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) { 4070 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4071 (gva & (PAGE_SIZE - 1)); 4072 trace_vcpu_match_mmio(gva, *gpa, write, false); 4073 return 1; 4074 } 4075 4076 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4077 4078 if (*gpa == UNMAPPED_GVA) 4079 return -1; 4080 4081 /* For APIC access vmexit */ 4082 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4083 return 1; 4084 4085 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 4086 trace_vcpu_match_mmio(gva, *gpa, write, true); 4087 return 1; 4088 } 4089 4090 return 0; 4091 } 4092 4093 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4094 const void *val, int bytes) 4095 { 4096 int ret; 4097 4098 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 4099 if (ret < 0) 4100 return 0; 4101 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 4102 return 1; 4103 } 4104 4105 struct read_write_emulator_ops { 4106 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4107 int bytes); 4108 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4109 void *val, int bytes); 4110 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4111 int bytes, void *val); 4112 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4113 void *val, int bytes); 4114 bool write; 4115 }; 4116 4117 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4118 { 4119 if (vcpu->mmio_read_completed) { 4120 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4121 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4122 vcpu->mmio_read_completed = 0; 4123 return 1; 4124 } 4125 4126 return 0; 4127 } 4128 4129 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4130 void *val, int bytes) 4131 { 4132 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 4133 } 4134 4135 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4136 void *val, int bytes) 4137 { 4138 return emulator_write_phys(vcpu, gpa, val, bytes); 4139 } 4140 4141 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4142 { 4143 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4144 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4145 } 4146 4147 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4148 void *val, int bytes) 4149 { 4150 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4151 return X86EMUL_IO_NEEDED; 4152 } 4153 4154 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4155 void *val, int bytes) 4156 { 4157 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4158 4159 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4160 return X86EMUL_CONTINUE; 4161 } 4162 4163 static const struct read_write_emulator_ops read_emultor = { 4164 .read_write_prepare = read_prepare, 4165 .read_write_emulate = read_emulate, 4166 .read_write_mmio = vcpu_mmio_read, 4167 .read_write_exit_mmio = read_exit_mmio, 4168 }; 4169 4170 static const struct read_write_emulator_ops write_emultor = { 4171 .read_write_emulate = write_emulate, 4172 .read_write_mmio = write_mmio, 4173 .read_write_exit_mmio = write_exit_mmio, 4174 .write = true, 4175 }; 4176 4177 static int emulator_read_write_onepage(unsigned long addr, void *val, 4178 unsigned int bytes, 4179 struct x86_exception *exception, 4180 struct kvm_vcpu *vcpu, 4181 const struct read_write_emulator_ops *ops) 4182 { 4183 gpa_t gpa; 4184 int handled, ret; 4185 bool write = ops->write; 4186 struct kvm_mmio_fragment *frag; 4187 4188 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4189 4190 if (ret < 0) 4191 return X86EMUL_PROPAGATE_FAULT; 4192 4193 /* For APIC access vmexit */ 4194 if (ret) 4195 goto mmio; 4196 4197 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4198 return X86EMUL_CONTINUE; 4199 4200 mmio: 4201 /* 4202 * Is this MMIO handled locally? 4203 */ 4204 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4205 if (handled == bytes) 4206 return X86EMUL_CONTINUE; 4207 4208 gpa += handled; 4209 bytes -= handled; 4210 val += handled; 4211 4212 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4213 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4214 frag->gpa = gpa; 4215 frag->data = val; 4216 frag->len = bytes; 4217 return X86EMUL_CONTINUE; 4218 } 4219 4220 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 4221 void *val, unsigned int bytes, 4222 struct x86_exception *exception, 4223 const struct read_write_emulator_ops *ops) 4224 { 4225 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4226 gpa_t gpa; 4227 int rc; 4228 4229 if (ops->read_write_prepare && 4230 ops->read_write_prepare(vcpu, val, bytes)) 4231 return X86EMUL_CONTINUE; 4232 4233 vcpu->mmio_nr_fragments = 0; 4234 4235 /* Crossing a page boundary? */ 4236 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4237 int now; 4238 4239 now = -addr & ~PAGE_MASK; 4240 rc = emulator_read_write_onepage(addr, val, now, exception, 4241 vcpu, ops); 4242 4243 if (rc != X86EMUL_CONTINUE) 4244 return rc; 4245 addr += now; 4246 val += now; 4247 bytes -= now; 4248 } 4249 4250 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4251 vcpu, ops); 4252 if (rc != X86EMUL_CONTINUE) 4253 return rc; 4254 4255 if (!vcpu->mmio_nr_fragments) 4256 return rc; 4257 4258 gpa = vcpu->mmio_fragments[0].gpa; 4259 4260 vcpu->mmio_needed = 1; 4261 vcpu->mmio_cur_fragment = 0; 4262 4263 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4264 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4265 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4266 vcpu->run->mmio.phys_addr = gpa; 4267 4268 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4269 } 4270 4271 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4272 unsigned long addr, 4273 void *val, 4274 unsigned int bytes, 4275 struct x86_exception *exception) 4276 { 4277 return emulator_read_write(ctxt, addr, val, bytes, 4278 exception, &read_emultor); 4279 } 4280 4281 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4282 unsigned long addr, 4283 const void *val, 4284 unsigned int bytes, 4285 struct x86_exception *exception) 4286 { 4287 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4288 exception, &write_emultor); 4289 } 4290 4291 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4292 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4293 4294 #ifdef CONFIG_X86_64 4295 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4296 #else 4297 # define CMPXCHG64(ptr, old, new) \ 4298 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4299 #endif 4300 4301 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4302 unsigned long addr, 4303 const void *old, 4304 const void *new, 4305 unsigned int bytes, 4306 struct x86_exception *exception) 4307 { 4308 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4309 gpa_t gpa; 4310 struct page *page; 4311 char *kaddr; 4312 bool exchanged; 4313 4314 /* guests cmpxchg8b have to be emulated atomically */ 4315 if (bytes > 8 || (bytes & (bytes - 1))) 4316 goto emul_write; 4317 4318 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4319 4320 if (gpa == UNMAPPED_GVA || 4321 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4322 goto emul_write; 4323 4324 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4325 goto emul_write; 4326 4327 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4328 if (is_error_page(page)) 4329 goto emul_write; 4330 4331 kaddr = kmap_atomic(page); 4332 kaddr += offset_in_page(gpa); 4333 switch (bytes) { 4334 case 1: 4335 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4336 break; 4337 case 2: 4338 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4339 break; 4340 case 4: 4341 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4342 break; 4343 case 8: 4344 exchanged = CMPXCHG64(kaddr, old, new); 4345 break; 4346 default: 4347 BUG(); 4348 } 4349 kunmap_atomic(kaddr); 4350 kvm_release_page_dirty(page); 4351 4352 if (!exchanged) 4353 return X86EMUL_CMPXCHG_FAILED; 4354 4355 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 4356 4357 return X86EMUL_CONTINUE; 4358 4359 emul_write: 4360 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4361 4362 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4363 } 4364 4365 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4366 { 4367 /* TODO: String I/O for in kernel device */ 4368 int r; 4369 4370 if (vcpu->arch.pio.in) 4371 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 4372 vcpu->arch.pio.size, pd); 4373 else 4374 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 4375 vcpu->arch.pio.port, vcpu->arch.pio.size, 4376 pd); 4377 return r; 4378 } 4379 4380 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4381 unsigned short port, void *val, 4382 unsigned int count, bool in) 4383 { 4384 trace_kvm_pio(!in, port, size, count); 4385 4386 vcpu->arch.pio.port = port; 4387 vcpu->arch.pio.in = in; 4388 vcpu->arch.pio.count = count; 4389 vcpu->arch.pio.size = size; 4390 4391 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4392 vcpu->arch.pio.count = 0; 4393 return 1; 4394 } 4395 4396 vcpu->run->exit_reason = KVM_EXIT_IO; 4397 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4398 vcpu->run->io.size = size; 4399 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4400 vcpu->run->io.count = count; 4401 vcpu->run->io.port = port; 4402 4403 return 0; 4404 } 4405 4406 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4407 int size, unsigned short port, void *val, 4408 unsigned int count) 4409 { 4410 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4411 int ret; 4412 4413 if (vcpu->arch.pio.count) 4414 goto data_avail; 4415 4416 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4417 if (ret) { 4418 data_avail: 4419 memcpy(val, vcpu->arch.pio_data, size * count); 4420 vcpu->arch.pio.count = 0; 4421 return 1; 4422 } 4423 4424 return 0; 4425 } 4426 4427 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4428 int size, unsigned short port, 4429 const void *val, unsigned int count) 4430 { 4431 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4432 4433 memcpy(vcpu->arch.pio_data, val, size * count); 4434 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4435 } 4436 4437 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4438 { 4439 return kvm_x86_ops->get_segment_base(vcpu, seg); 4440 } 4441 4442 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4443 { 4444 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4445 } 4446 4447 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4448 { 4449 if (!need_emulate_wbinvd(vcpu)) 4450 return X86EMUL_CONTINUE; 4451 4452 if (kvm_x86_ops->has_wbinvd_exit()) { 4453 int cpu = get_cpu(); 4454 4455 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4456 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4457 wbinvd_ipi, NULL, 1); 4458 put_cpu(); 4459 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4460 } else 4461 wbinvd(); 4462 return X86EMUL_CONTINUE; 4463 } 4464 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4465 4466 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4467 { 4468 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4469 } 4470 4471 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4472 { 4473 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4474 } 4475 4476 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4477 { 4478 4479 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4480 } 4481 4482 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4483 { 4484 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4485 } 4486 4487 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4488 { 4489 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4490 unsigned long value; 4491 4492 switch (cr) { 4493 case 0: 4494 value = kvm_read_cr0(vcpu); 4495 break; 4496 case 2: 4497 value = vcpu->arch.cr2; 4498 break; 4499 case 3: 4500 value = kvm_read_cr3(vcpu); 4501 break; 4502 case 4: 4503 value = kvm_read_cr4(vcpu); 4504 break; 4505 case 8: 4506 value = kvm_get_cr8(vcpu); 4507 break; 4508 default: 4509 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4510 return 0; 4511 } 4512 4513 return value; 4514 } 4515 4516 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4517 { 4518 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4519 int res = 0; 4520 4521 switch (cr) { 4522 case 0: 4523 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4524 break; 4525 case 2: 4526 vcpu->arch.cr2 = val; 4527 break; 4528 case 3: 4529 res = kvm_set_cr3(vcpu, val); 4530 break; 4531 case 4: 4532 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4533 break; 4534 case 8: 4535 res = kvm_set_cr8(vcpu, val); 4536 break; 4537 default: 4538 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4539 res = -1; 4540 } 4541 4542 return res; 4543 } 4544 4545 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) 4546 { 4547 kvm_set_rflags(emul_to_vcpu(ctxt), val); 4548 } 4549 4550 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4551 { 4552 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4553 } 4554 4555 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4556 { 4557 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4558 } 4559 4560 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4561 { 4562 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4563 } 4564 4565 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4566 { 4567 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4568 } 4569 4570 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4571 { 4572 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4573 } 4574 4575 static unsigned long emulator_get_cached_segment_base( 4576 struct x86_emulate_ctxt *ctxt, int seg) 4577 { 4578 return get_segment_base(emul_to_vcpu(ctxt), seg); 4579 } 4580 4581 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4582 struct desc_struct *desc, u32 *base3, 4583 int seg) 4584 { 4585 struct kvm_segment var; 4586 4587 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4588 *selector = var.selector; 4589 4590 if (var.unusable) { 4591 memset(desc, 0, sizeof(*desc)); 4592 return false; 4593 } 4594 4595 if (var.g) 4596 var.limit >>= 12; 4597 set_desc_limit(desc, var.limit); 4598 set_desc_base(desc, (unsigned long)var.base); 4599 #ifdef CONFIG_X86_64 4600 if (base3) 4601 *base3 = var.base >> 32; 4602 #endif 4603 desc->type = var.type; 4604 desc->s = var.s; 4605 desc->dpl = var.dpl; 4606 desc->p = var.present; 4607 desc->avl = var.avl; 4608 desc->l = var.l; 4609 desc->d = var.db; 4610 desc->g = var.g; 4611 4612 return true; 4613 } 4614 4615 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4616 struct desc_struct *desc, u32 base3, 4617 int seg) 4618 { 4619 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4620 struct kvm_segment var; 4621 4622 var.selector = selector; 4623 var.base = get_desc_base(desc); 4624 #ifdef CONFIG_X86_64 4625 var.base |= ((u64)base3) << 32; 4626 #endif 4627 var.limit = get_desc_limit(desc); 4628 if (desc->g) 4629 var.limit = (var.limit << 12) | 0xfff; 4630 var.type = desc->type; 4631 var.present = desc->p; 4632 var.dpl = desc->dpl; 4633 var.db = desc->d; 4634 var.s = desc->s; 4635 var.l = desc->l; 4636 var.g = desc->g; 4637 var.avl = desc->avl; 4638 var.present = desc->p; 4639 var.unusable = !var.present; 4640 var.padding = 0; 4641 4642 kvm_set_segment(vcpu, &var, seg); 4643 return; 4644 } 4645 4646 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4647 u32 msr_index, u64 *pdata) 4648 { 4649 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4650 } 4651 4652 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4653 u32 msr_index, u64 data) 4654 { 4655 struct msr_data msr; 4656 4657 msr.data = data; 4658 msr.index = msr_index; 4659 msr.host_initiated = false; 4660 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 4661 } 4662 4663 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4664 u32 pmc, u64 *pdata) 4665 { 4666 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4667 } 4668 4669 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4670 { 4671 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4672 } 4673 4674 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4675 { 4676 preempt_disable(); 4677 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4678 /* 4679 * CR0.TS may reference the host fpu state, not the guest fpu state, 4680 * so it may be clear at this point. 4681 */ 4682 clts(); 4683 } 4684 4685 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4686 { 4687 preempt_enable(); 4688 } 4689 4690 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4691 struct x86_instruction_info *info, 4692 enum x86_intercept_stage stage) 4693 { 4694 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4695 } 4696 4697 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4698 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4699 { 4700 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 4701 } 4702 4703 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 4704 { 4705 return kvm_register_read(emul_to_vcpu(ctxt), reg); 4706 } 4707 4708 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 4709 { 4710 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 4711 } 4712 4713 static const struct x86_emulate_ops emulate_ops = { 4714 .read_gpr = emulator_read_gpr, 4715 .write_gpr = emulator_write_gpr, 4716 .read_std = kvm_read_guest_virt_system, 4717 .write_std = kvm_write_guest_virt_system, 4718 .fetch = kvm_fetch_guest_virt, 4719 .read_emulated = emulator_read_emulated, 4720 .write_emulated = emulator_write_emulated, 4721 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4722 .invlpg = emulator_invlpg, 4723 .pio_in_emulated = emulator_pio_in_emulated, 4724 .pio_out_emulated = emulator_pio_out_emulated, 4725 .get_segment = emulator_get_segment, 4726 .set_segment = emulator_set_segment, 4727 .get_cached_segment_base = emulator_get_cached_segment_base, 4728 .get_gdt = emulator_get_gdt, 4729 .get_idt = emulator_get_idt, 4730 .set_gdt = emulator_set_gdt, 4731 .set_idt = emulator_set_idt, 4732 .get_cr = emulator_get_cr, 4733 .set_cr = emulator_set_cr, 4734 .set_rflags = emulator_set_rflags, 4735 .cpl = emulator_get_cpl, 4736 .get_dr = emulator_get_dr, 4737 .set_dr = emulator_set_dr, 4738 .set_msr = emulator_set_msr, 4739 .get_msr = emulator_get_msr, 4740 .read_pmc = emulator_read_pmc, 4741 .halt = emulator_halt, 4742 .wbinvd = emulator_wbinvd, 4743 .fix_hypercall = emulator_fix_hypercall, 4744 .get_fpu = emulator_get_fpu, 4745 .put_fpu = emulator_put_fpu, 4746 .intercept = emulator_intercept, 4747 .get_cpuid = emulator_get_cpuid, 4748 }; 4749 4750 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4751 { 4752 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4753 /* 4754 * an sti; sti; sequence only disable interrupts for the first 4755 * instruction. So, if the last instruction, be it emulated or 4756 * not, left the system with the INT_STI flag enabled, it 4757 * means that the last instruction is an sti. We should not 4758 * leave the flag on in this case. The same goes for mov ss 4759 */ 4760 if (!(int_shadow & mask)) 4761 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4762 } 4763 4764 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4765 { 4766 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4767 if (ctxt->exception.vector == PF_VECTOR) 4768 kvm_propagate_fault(vcpu, &ctxt->exception); 4769 else if (ctxt->exception.error_code_valid) 4770 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4771 ctxt->exception.error_code); 4772 else 4773 kvm_queue_exception(vcpu, ctxt->exception.vector); 4774 } 4775 4776 static void init_decode_cache(struct x86_emulate_ctxt *ctxt) 4777 { 4778 memset(&ctxt->twobyte, 0, 4779 (void *)&ctxt->_regs - (void *)&ctxt->twobyte); 4780 4781 ctxt->fetch.start = 0; 4782 ctxt->fetch.end = 0; 4783 ctxt->io_read.pos = 0; 4784 ctxt->io_read.end = 0; 4785 ctxt->mem_read.pos = 0; 4786 ctxt->mem_read.end = 0; 4787 } 4788 4789 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4790 { 4791 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4792 int cs_db, cs_l; 4793 4794 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4795 4796 ctxt->eflags = kvm_get_rflags(vcpu); 4797 ctxt->eip = kvm_rip_read(vcpu); 4798 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4799 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4800 cs_l ? X86EMUL_MODE_PROT64 : 4801 cs_db ? X86EMUL_MODE_PROT32 : 4802 X86EMUL_MODE_PROT16; 4803 ctxt->guest_mode = is_guest_mode(vcpu); 4804 4805 init_decode_cache(ctxt); 4806 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4807 } 4808 4809 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4810 { 4811 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4812 int ret; 4813 4814 init_emulate_ctxt(vcpu); 4815 4816 ctxt->op_bytes = 2; 4817 ctxt->ad_bytes = 2; 4818 ctxt->_eip = ctxt->eip + inc_eip; 4819 ret = emulate_int_real(ctxt, irq); 4820 4821 if (ret != X86EMUL_CONTINUE) 4822 return EMULATE_FAIL; 4823 4824 ctxt->eip = ctxt->_eip; 4825 kvm_rip_write(vcpu, ctxt->eip); 4826 kvm_set_rflags(vcpu, ctxt->eflags); 4827 4828 if (irq == NMI_VECTOR) 4829 vcpu->arch.nmi_pending = 0; 4830 else 4831 vcpu->arch.interrupt.pending = false; 4832 4833 return EMULATE_DONE; 4834 } 4835 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4836 4837 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4838 { 4839 int r = EMULATE_DONE; 4840 4841 ++vcpu->stat.insn_emulation_fail; 4842 trace_kvm_emulate_insn_failed(vcpu); 4843 if (!is_guest_mode(vcpu)) { 4844 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4845 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4846 vcpu->run->internal.ndata = 0; 4847 r = EMULATE_FAIL; 4848 } 4849 kvm_queue_exception(vcpu, UD_VECTOR); 4850 4851 return r; 4852 } 4853 4854 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 4855 bool write_fault_to_shadow_pgtable, 4856 int emulation_type) 4857 { 4858 gpa_t gpa = cr2; 4859 pfn_t pfn; 4860 4861 if (emulation_type & EMULTYPE_NO_REEXECUTE) 4862 return false; 4863 4864 if (!vcpu->arch.mmu.direct_map) { 4865 /* 4866 * Write permission should be allowed since only 4867 * write access need to be emulated. 4868 */ 4869 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4870 4871 /* 4872 * If the mapping is invalid in guest, let cpu retry 4873 * it to generate fault. 4874 */ 4875 if (gpa == UNMAPPED_GVA) 4876 return true; 4877 } 4878 4879 /* 4880 * Do not retry the unhandleable instruction if it faults on the 4881 * readonly host memory, otherwise it will goto a infinite loop: 4882 * retry instruction -> write #PF -> emulation fail -> retry 4883 * instruction -> ... 4884 */ 4885 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 4886 4887 /* 4888 * If the instruction failed on the error pfn, it can not be fixed, 4889 * report the error to userspace. 4890 */ 4891 if (is_error_noslot_pfn(pfn)) 4892 return false; 4893 4894 kvm_release_pfn_clean(pfn); 4895 4896 /* The instructions are well-emulated on direct mmu. */ 4897 if (vcpu->arch.mmu.direct_map) { 4898 unsigned int indirect_shadow_pages; 4899 4900 spin_lock(&vcpu->kvm->mmu_lock); 4901 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 4902 spin_unlock(&vcpu->kvm->mmu_lock); 4903 4904 if (indirect_shadow_pages) 4905 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 4906 4907 return true; 4908 } 4909 4910 /* 4911 * if emulation was due to access to shadowed page table 4912 * and it failed try to unshadow page and re-enter the 4913 * guest to let CPU execute the instruction. 4914 */ 4915 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 4916 4917 /* 4918 * If the access faults on its page table, it can not 4919 * be fixed by unprotecting shadow page and it should 4920 * be reported to userspace. 4921 */ 4922 return !write_fault_to_shadow_pgtable; 4923 } 4924 4925 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 4926 unsigned long cr2, int emulation_type) 4927 { 4928 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4929 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 4930 4931 last_retry_eip = vcpu->arch.last_retry_eip; 4932 last_retry_addr = vcpu->arch.last_retry_addr; 4933 4934 /* 4935 * If the emulation is caused by #PF and it is non-page_table 4936 * writing instruction, it means the VM-EXIT is caused by shadow 4937 * page protected, we can zap the shadow page and retry this 4938 * instruction directly. 4939 * 4940 * Note: if the guest uses a non-page-table modifying instruction 4941 * on the PDE that points to the instruction, then we will unmap 4942 * the instruction and go to an infinite loop. So, we cache the 4943 * last retried eip and the last fault address, if we meet the eip 4944 * and the address again, we can break out of the potential infinite 4945 * loop. 4946 */ 4947 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 4948 4949 if (!(emulation_type & EMULTYPE_RETRY)) 4950 return false; 4951 4952 if (x86_page_table_writing_insn(ctxt)) 4953 return false; 4954 4955 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 4956 return false; 4957 4958 vcpu->arch.last_retry_eip = ctxt->eip; 4959 vcpu->arch.last_retry_addr = cr2; 4960 4961 if (!vcpu->arch.mmu.direct_map) 4962 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4963 4964 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 4965 4966 return true; 4967 } 4968 4969 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 4970 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 4971 4972 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 4973 unsigned long *db) 4974 { 4975 u32 dr6 = 0; 4976 int i; 4977 u32 enable, rwlen; 4978 4979 enable = dr7; 4980 rwlen = dr7 >> 16; 4981 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 4982 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 4983 dr6 |= (1 << i); 4984 return dr6; 4985 } 4986 4987 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r) 4988 { 4989 struct kvm_run *kvm_run = vcpu->run; 4990 4991 /* 4992 * Use the "raw" value to see if TF was passed to the processor. 4993 * Note that the new value of the flags has not been saved yet. 4994 * 4995 * This is correct even for TF set by the guest, because "the 4996 * processor will not generate this exception after the instruction 4997 * that sets the TF flag". 4998 */ 4999 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5000 5001 if (unlikely(rflags & X86_EFLAGS_TF)) { 5002 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5003 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1; 5004 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5005 kvm_run->debug.arch.exception = DB_VECTOR; 5006 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5007 *r = EMULATE_USER_EXIT; 5008 } else { 5009 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF; 5010 /* 5011 * "Certain debug exceptions may clear bit 0-3. The 5012 * remaining contents of the DR6 register are never 5013 * cleared by the processor". 5014 */ 5015 vcpu->arch.dr6 &= ~15; 5016 vcpu->arch.dr6 |= DR6_BS; 5017 kvm_queue_exception(vcpu, DB_VECTOR); 5018 } 5019 } 5020 } 5021 5022 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5023 { 5024 struct kvm_run *kvm_run = vcpu->run; 5025 unsigned long eip = vcpu->arch.emulate_ctxt.eip; 5026 u32 dr6 = 0; 5027 5028 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5029 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5030 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5031 vcpu->arch.guest_debug_dr7, 5032 vcpu->arch.eff_db); 5033 5034 if (dr6 != 0) { 5035 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; 5036 kvm_run->debug.arch.pc = kvm_rip_read(vcpu) + 5037 get_segment_base(vcpu, VCPU_SREG_CS); 5038 5039 kvm_run->debug.arch.exception = DB_VECTOR; 5040 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5041 *r = EMULATE_USER_EXIT; 5042 return true; 5043 } 5044 } 5045 5046 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) { 5047 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5048 vcpu->arch.dr7, 5049 vcpu->arch.db); 5050 5051 if (dr6 != 0) { 5052 vcpu->arch.dr6 &= ~15; 5053 vcpu->arch.dr6 |= dr6; 5054 kvm_queue_exception(vcpu, DB_VECTOR); 5055 *r = EMULATE_DONE; 5056 return true; 5057 } 5058 } 5059 5060 return false; 5061 } 5062 5063 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5064 unsigned long cr2, 5065 int emulation_type, 5066 void *insn, 5067 int insn_len) 5068 { 5069 int r; 5070 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5071 bool writeback = true; 5072 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5073 5074 /* 5075 * Clear write_fault_to_shadow_pgtable here to ensure it is 5076 * never reused. 5077 */ 5078 vcpu->arch.write_fault_to_shadow_pgtable = false; 5079 kvm_clear_exception_queue(vcpu); 5080 5081 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5082 init_emulate_ctxt(vcpu); 5083 5084 /* 5085 * We will reenter on the same instruction since 5086 * we do not set complete_userspace_io. This does not 5087 * handle watchpoints yet, those would be handled in 5088 * the emulate_ops. 5089 */ 5090 if (kvm_vcpu_check_breakpoint(vcpu, &r)) 5091 return r; 5092 5093 ctxt->interruptibility = 0; 5094 ctxt->have_exception = false; 5095 ctxt->perm_ok = false; 5096 5097 ctxt->only_vendor_specific_insn 5098 = emulation_type & EMULTYPE_TRAP_UD; 5099 5100 r = x86_decode_insn(ctxt, insn, insn_len); 5101 5102 trace_kvm_emulate_insn_start(vcpu); 5103 ++vcpu->stat.insn_emulation; 5104 if (r != EMULATION_OK) { 5105 if (emulation_type & EMULTYPE_TRAP_UD) 5106 return EMULATE_FAIL; 5107 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5108 emulation_type)) 5109 return EMULATE_DONE; 5110 if (emulation_type & EMULTYPE_SKIP) 5111 return EMULATE_FAIL; 5112 return handle_emulation_failure(vcpu); 5113 } 5114 } 5115 5116 if (emulation_type & EMULTYPE_SKIP) { 5117 kvm_rip_write(vcpu, ctxt->_eip); 5118 return EMULATE_DONE; 5119 } 5120 5121 if (retry_instruction(ctxt, cr2, emulation_type)) 5122 return EMULATE_DONE; 5123 5124 /* this is needed for vmware backdoor interface to work since it 5125 changes registers values during IO operation */ 5126 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5127 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5128 emulator_invalidate_register_cache(ctxt); 5129 } 5130 5131 restart: 5132 r = x86_emulate_insn(ctxt); 5133 5134 if (r == EMULATION_INTERCEPTED) 5135 return EMULATE_DONE; 5136 5137 if (r == EMULATION_FAILED) { 5138 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5139 emulation_type)) 5140 return EMULATE_DONE; 5141 5142 return handle_emulation_failure(vcpu); 5143 } 5144 5145 if (ctxt->have_exception) { 5146 inject_emulated_exception(vcpu); 5147 r = EMULATE_DONE; 5148 } else if (vcpu->arch.pio.count) { 5149 if (!vcpu->arch.pio.in) { 5150 /* FIXME: return into emulator if single-stepping. */ 5151 vcpu->arch.pio.count = 0; 5152 } else { 5153 writeback = false; 5154 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5155 } 5156 r = EMULATE_USER_EXIT; 5157 } else if (vcpu->mmio_needed) { 5158 if (!vcpu->mmio_is_write) 5159 writeback = false; 5160 r = EMULATE_USER_EXIT; 5161 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5162 } else if (r == EMULATION_RESTART) 5163 goto restart; 5164 else 5165 r = EMULATE_DONE; 5166 5167 if (writeback) { 5168 toggle_interruptibility(vcpu, ctxt->interruptibility); 5169 kvm_make_request(KVM_REQ_EVENT, vcpu); 5170 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5171 kvm_rip_write(vcpu, ctxt->eip); 5172 if (r == EMULATE_DONE) 5173 kvm_vcpu_check_singlestep(vcpu, &r); 5174 kvm_set_rflags(vcpu, ctxt->eflags); 5175 } else 5176 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5177 5178 return r; 5179 } 5180 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5181 5182 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5183 { 5184 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5185 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5186 size, port, &val, 1); 5187 /* do not return to emulator after return from userspace */ 5188 vcpu->arch.pio.count = 0; 5189 return ret; 5190 } 5191 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5192 5193 static void tsc_bad(void *info) 5194 { 5195 __this_cpu_write(cpu_tsc_khz, 0); 5196 } 5197 5198 static void tsc_khz_changed(void *data) 5199 { 5200 struct cpufreq_freqs *freq = data; 5201 unsigned long khz = 0; 5202 5203 if (data) 5204 khz = freq->new; 5205 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5206 khz = cpufreq_quick_get(raw_smp_processor_id()); 5207 if (!khz) 5208 khz = tsc_khz; 5209 __this_cpu_write(cpu_tsc_khz, khz); 5210 } 5211 5212 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5213 void *data) 5214 { 5215 struct cpufreq_freqs *freq = data; 5216 struct kvm *kvm; 5217 struct kvm_vcpu *vcpu; 5218 int i, send_ipi = 0; 5219 5220 /* 5221 * We allow guests to temporarily run on slowing clocks, 5222 * provided we notify them after, or to run on accelerating 5223 * clocks, provided we notify them before. Thus time never 5224 * goes backwards. 5225 * 5226 * However, we have a problem. We can't atomically update 5227 * the frequency of a given CPU from this function; it is 5228 * merely a notifier, which can be called from any CPU. 5229 * Changing the TSC frequency at arbitrary points in time 5230 * requires a recomputation of local variables related to 5231 * the TSC for each VCPU. We must flag these local variables 5232 * to be updated and be sure the update takes place with the 5233 * new frequency before any guests proceed. 5234 * 5235 * Unfortunately, the combination of hotplug CPU and frequency 5236 * change creates an intractable locking scenario; the order 5237 * of when these callouts happen is undefined with respect to 5238 * CPU hotplug, and they can race with each other. As such, 5239 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5240 * undefined; you can actually have a CPU frequency change take 5241 * place in between the computation of X and the setting of the 5242 * variable. To protect against this problem, all updates of 5243 * the per_cpu tsc_khz variable are done in an interrupt 5244 * protected IPI, and all callers wishing to update the value 5245 * must wait for a synchronous IPI to complete (which is trivial 5246 * if the caller is on the CPU already). This establishes the 5247 * necessary total order on variable updates. 5248 * 5249 * Note that because a guest time update may take place 5250 * anytime after the setting of the VCPU's request bit, the 5251 * correct TSC value must be set before the request. However, 5252 * to ensure the update actually makes it to any guest which 5253 * starts running in hardware virtualization between the set 5254 * and the acquisition of the spinlock, we must also ping the 5255 * CPU after setting the request bit. 5256 * 5257 */ 5258 5259 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5260 return 0; 5261 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5262 return 0; 5263 5264 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5265 5266 raw_spin_lock(&kvm_lock); 5267 list_for_each_entry(kvm, &vm_list, vm_list) { 5268 kvm_for_each_vcpu(i, vcpu, kvm) { 5269 if (vcpu->cpu != freq->cpu) 5270 continue; 5271 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5272 if (vcpu->cpu != smp_processor_id()) 5273 send_ipi = 1; 5274 } 5275 } 5276 raw_spin_unlock(&kvm_lock); 5277 5278 if (freq->old < freq->new && send_ipi) { 5279 /* 5280 * We upscale the frequency. Must make the guest 5281 * doesn't see old kvmclock values while running with 5282 * the new frequency, otherwise we risk the guest sees 5283 * time go backwards. 5284 * 5285 * In case we update the frequency for another cpu 5286 * (which might be in guest context) send an interrupt 5287 * to kick the cpu out of guest context. Next time 5288 * guest context is entered kvmclock will be updated, 5289 * so the guest will not see stale values. 5290 */ 5291 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5292 } 5293 return 0; 5294 } 5295 5296 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5297 .notifier_call = kvmclock_cpufreq_notifier 5298 }; 5299 5300 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 5301 unsigned long action, void *hcpu) 5302 { 5303 unsigned int cpu = (unsigned long)hcpu; 5304 5305 switch (action) { 5306 case CPU_ONLINE: 5307 case CPU_DOWN_FAILED: 5308 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5309 break; 5310 case CPU_DOWN_PREPARE: 5311 smp_call_function_single(cpu, tsc_bad, NULL, 1); 5312 break; 5313 } 5314 return NOTIFY_OK; 5315 } 5316 5317 static struct notifier_block kvmclock_cpu_notifier_block = { 5318 .notifier_call = kvmclock_cpu_notifier, 5319 .priority = -INT_MAX 5320 }; 5321 5322 static void kvm_timer_init(void) 5323 { 5324 int cpu; 5325 5326 max_tsc_khz = tsc_khz; 5327 register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5328 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5329 #ifdef CONFIG_CPU_FREQ 5330 struct cpufreq_policy policy; 5331 memset(&policy, 0, sizeof(policy)); 5332 cpu = get_cpu(); 5333 cpufreq_get_policy(&policy, cpu); 5334 if (policy.cpuinfo.max_freq) 5335 max_tsc_khz = policy.cpuinfo.max_freq; 5336 put_cpu(); 5337 #endif 5338 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5339 CPUFREQ_TRANSITION_NOTIFIER); 5340 } 5341 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5342 for_each_online_cpu(cpu) 5343 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5344 } 5345 5346 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5347 5348 int kvm_is_in_guest(void) 5349 { 5350 return __this_cpu_read(current_vcpu) != NULL; 5351 } 5352 5353 static int kvm_is_user_mode(void) 5354 { 5355 int user_mode = 3; 5356 5357 if (__this_cpu_read(current_vcpu)) 5358 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5359 5360 return user_mode != 0; 5361 } 5362 5363 static unsigned long kvm_get_guest_ip(void) 5364 { 5365 unsigned long ip = 0; 5366 5367 if (__this_cpu_read(current_vcpu)) 5368 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5369 5370 return ip; 5371 } 5372 5373 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5374 .is_in_guest = kvm_is_in_guest, 5375 .is_user_mode = kvm_is_user_mode, 5376 .get_guest_ip = kvm_get_guest_ip, 5377 }; 5378 5379 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5380 { 5381 __this_cpu_write(current_vcpu, vcpu); 5382 } 5383 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5384 5385 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5386 { 5387 __this_cpu_write(current_vcpu, NULL); 5388 } 5389 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5390 5391 static void kvm_set_mmio_spte_mask(void) 5392 { 5393 u64 mask; 5394 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5395 5396 /* 5397 * Set the reserved bits and the present bit of an paging-structure 5398 * entry to generate page fault with PFER.RSV = 1. 5399 */ 5400 /* Mask the reserved physical address bits. */ 5401 mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr; 5402 5403 /* Bit 62 is always reserved for 32bit host. */ 5404 mask |= 0x3ull << 62; 5405 5406 /* Set the present bit. */ 5407 mask |= 1ull; 5408 5409 #ifdef CONFIG_X86_64 5410 /* 5411 * If reserved bit is not supported, clear the present bit to disable 5412 * mmio page fault. 5413 */ 5414 if (maxphyaddr == 52) 5415 mask &= ~1ull; 5416 #endif 5417 5418 kvm_mmu_set_mmio_spte_mask(mask); 5419 } 5420 5421 #ifdef CONFIG_X86_64 5422 static void pvclock_gtod_update_fn(struct work_struct *work) 5423 { 5424 struct kvm *kvm; 5425 5426 struct kvm_vcpu *vcpu; 5427 int i; 5428 5429 raw_spin_lock(&kvm_lock); 5430 list_for_each_entry(kvm, &vm_list, vm_list) 5431 kvm_for_each_vcpu(i, vcpu, kvm) 5432 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); 5433 atomic_set(&kvm_guest_has_master_clock, 0); 5434 raw_spin_unlock(&kvm_lock); 5435 } 5436 5437 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 5438 5439 /* 5440 * Notification about pvclock gtod data update. 5441 */ 5442 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 5443 void *priv) 5444 { 5445 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 5446 struct timekeeper *tk = priv; 5447 5448 update_pvclock_gtod(tk); 5449 5450 /* disable master clock if host does not trust, or does not 5451 * use, TSC clocksource 5452 */ 5453 if (gtod->clock.vclock_mode != VCLOCK_TSC && 5454 atomic_read(&kvm_guest_has_master_clock) != 0) 5455 queue_work(system_long_wq, &pvclock_gtod_work); 5456 5457 return 0; 5458 } 5459 5460 static struct notifier_block pvclock_gtod_notifier = { 5461 .notifier_call = pvclock_gtod_notify, 5462 }; 5463 #endif 5464 5465 int kvm_arch_init(void *opaque) 5466 { 5467 int r; 5468 struct kvm_x86_ops *ops = opaque; 5469 5470 if (kvm_x86_ops) { 5471 printk(KERN_ERR "kvm: already loaded the other module\n"); 5472 r = -EEXIST; 5473 goto out; 5474 } 5475 5476 if (!ops->cpu_has_kvm_support()) { 5477 printk(KERN_ERR "kvm: no hardware support\n"); 5478 r = -EOPNOTSUPP; 5479 goto out; 5480 } 5481 if (ops->disabled_by_bios()) { 5482 printk(KERN_ERR "kvm: disabled by bios\n"); 5483 r = -EOPNOTSUPP; 5484 goto out; 5485 } 5486 5487 r = -ENOMEM; 5488 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 5489 if (!shared_msrs) { 5490 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 5491 goto out; 5492 } 5493 5494 r = kvm_mmu_module_init(); 5495 if (r) 5496 goto out_free_percpu; 5497 5498 kvm_set_mmio_spte_mask(); 5499 kvm_init_msr_list(); 5500 5501 kvm_x86_ops = ops; 5502 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 5503 PT_DIRTY_MASK, PT64_NX_MASK, 0); 5504 5505 kvm_timer_init(); 5506 5507 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5508 5509 if (cpu_has_xsave) 5510 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 5511 5512 kvm_lapic_init(); 5513 #ifdef CONFIG_X86_64 5514 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 5515 #endif 5516 5517 return 0; 5518 5519 out_free_percpu: 5520 free_percpu(shared_msrs); 5521 out: 5522 return r; 5523 } 5524 5525 void kvm_arch_exit(void) 5526 { 5527 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5528 5529 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5530 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 5531 CPUFREQ_TRANSITION_NOTIFIER); 5532 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5533 #ifdef CONFIG_X86_64 5534 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 5535 #endif 5536 kvm_x86_ops = NULL; 5537 kvm_mmu_module_exit(); 5538 free_percpu(shared_msrs); 5539 } 5540 5541 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 5542 { 5543 ++vcpu->stat.halt_exits; 5544 if (irqchip_in_kernel(vcpu->kvm)) { 5545 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 5546 return 1; 5547 } else { 5548 vcpu->run->exit_reason = KVM_EXIT_HLT; 5549 return 0; 5550 } 5551 } 5552 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 5553 5554 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 5555 { 5556 u64 param, ingpa, outgpa, ret; 5557 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 5558 bool fast, longmode; 5559 int cs_db, cs_l; 5560 5561 /* 5562 * hypercall generates UD from non zero cpl and real mode 5563 * per HYPER-V spec 5564 */ 5565 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 5566 kvm_queue_exception(vcpu, UD_VECTOR); 5567 return 0; 5568 } 5569 5570 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5571 longmode = is_long_mode(vcpu) && cs_l == 1; 5572 5573 if (!longmode) { 5574 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 5575 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 5576 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 5577 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 5578 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 5579 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 5580 } 5581 #ifdef CONFIG_X86_64 5582 else { 5583 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 5584 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 5585 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 5586 } 5587 #endif 5588 5589 code = param & 0xffff; 5590 fast = (param >> 16) & 0x1; 5591 rep_cnt = (param >> 32) & 0xfff; 5592 rep_idx = (param >> 48) & 0xfff; 5593 5594 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 5595 5596 switch (code) { 5597 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 5598 kvm_vcpu_on_spin(vcpu); 5599 break; 5600 default: 5601 res = HV_STATUS_INVALID_HYPERCALL_CODE; 5602 break; 5603 } 5604 5605 ret = res | (((u64)rep_done & 0xfff) << 32); 5606 if (longmode) { 5607 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5608 } else { 5609 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5610 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5611 } 5612 5613 return 1; 5614 } 5615 5616 /* 5617 * kvm_pv_kick_cpu_op: Kick a vcpu. 5618 * 5619 * @apicid - apicid of vcpu to be kicked. 5620 */ 5621 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 5622 { 5623 struct kvm_lapic_irq lapic_irq; 5624 5625 lapic_irq.shorthand = 0; 5626 lapic_irq.dest_mode = 0; 5627 lapic_irq.dest_id = apicid; 5628 5629 lapic_irq.delivery_mode = APIC_DM_REMRD; 5630 kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL); 5631 } 5632 5633 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5634 { 5635 unsigned long nr, a0, a1, a2, a3, ret; 5636 int r = 1; 5637 5638 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5639 return kvm_hv_hypercall(vcpu); 5640 5641 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5642 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5643 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5644 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5645 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5646 5647 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5648 5649 if (!is_long_mode(vcpu)) { 5650 nr &= 0xFFFFFFFF; 5651 a0 &= 0xFFFFFFFF; 5652 a1 &= 0xFFFFFFFF; 5653 a2 &= 0xFFFFFFFF; 5654 a3 &= 0xFFFFFFFF; 5655 } 5656 5657 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5658 ret = -KVM_EPERM; 5659 goto out; 5660 } 5661 5662 switch (nr) { 5663 case KVM_HC_VAPIC_POLL_IRQ: 5664 ret = 0; 5665 break; 5666 case KVM_HC_KICK_CPU: 5667 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 5668 ret = 0; 5669 break; 5670 default: 5671 ret = -KVM_ENOSYS; 5672 break; 5673 } 5674 out: 5675 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5676 ++vcpu->stat.hypercalls; 5677 return r; 5678 } 5679 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5680 5681 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5682 { 5683 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5684 char instruction[3]; 5685 unsigned long rip = kvm_rip_read(vcpu); 5686 5687 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5688 5689 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5690 } 5691 5692 /* 5693 * Check if userspace requested an interrupt window, and that the 5694 * interrupt window is open. 5695 * 5696 * No need to exit to userspace if we already have an interrupt queued. 5697 */ 5698 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5699 { 5700 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5701 vcpu->run->request_interrupt_window && 5702 kvm_arch_interrupt_allowed(vcpu)); 5703 } 5704 5705 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5706 { 5707 struct kvm_run *kvm_run = vcpu->run; 5708 5709 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5710 kvm_run->cr8 = kvm_get_cr8(vcpu); 5711 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5712 if (irqchip_in_kernel(vcpu->kvm)) 5713 kvm_run->ready_for_interrupt_injection = 1; 5714 else 5715 kvm_run->ready_for_interrupt_injection = 5716 kvm_arch_interrupt_allowed(vcpu) && 5717 !kvm_cpu_has_interrupt(vcpu) && 5718 !kvm_event_needs_reinjection(vcpu); 5719 } 5720 5721 static int vapic_enter(struct kvm_vcpu *vcpu) 5722 { 5723 struct kvm_lapic *apic = vcpu->arch.apic; 5724 struct page *page; 5725 5726 if (!apic || !apic->vapic_addr) 5727 return 0; 5728 5729 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5730 if (is_error_page(page)) 5731 return -EFAULT; 5732 5733 vcpu->arch.apic->vapic_page = page; 5734 return 0; 5735 } 5736 5737 static void vapic_exit(struct kvm_vcpu *vcpu) 5738 { 5739 struct kvm_lapic *apic = vcpu->arch.apic; 5740 int idx; 5741 5742 if (!apic || !apic->vapic_addr) 5743 return; 5744 5745 idx = srcu_read_lock(&vcpu->kvm->srcu); 5746 kvm_release_page_dirty(apic->vapic_page); 5747 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5748 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5749 } 5750 5751 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5752 { 5753 int max_irr, tpr; 5754 5755 if (!kvm_x86_ops->update_cr8_intercept) 5756 return; 5757 5758 if (!vcpu->arch.apic) 5759 return; 5760 5761 if (!vcpu->arch.apic->vapic_addr) 5762 max_irr = kvm_lapic_find_highest_irr(vcpu); 5763 else 5764 max_irr = -1; 5765 5766 if (max_irr != -1) 5767 max_irr >>= 4; 5768 5769 tpr = kvm_lapic_get_cr8(vcpu); 5770 5771 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5772 } 5773 5774 static void inject_pending_event(struct kvm_vcpu *vcpu) 5775 { 5776 /* try to reinject previous events if any */ 5777 if (vcpu->arch.exception.pending) { 5778 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5779 vcpu->arch.exception.has_error_code, 5780 vcpu->arch.exception.error_code); 5781 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5782 vcpu->arch.exception.has_error_code, 5783 vcpu->arch.exception.error_code, 5784 vcpu->arch.exception.reinject); 5785 return; 5786 } 5787 5788 if (vcpu->arch.nmi_injected) { 5789 kvm_x86_ops->set_nmi(vcpu); 5790 return; 5791 } 5792 5793 if (vcpu->arch.interrupt.pending) { 5794 kvm_x86_ops->set_irq(vcpu); 5795 return; 5796 } 5797 5798 /* try to inject new event if pending */ 5799 if (vcpu->arch.nmi_pending) { 5800 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5801 --vcpu->arch.nmi_pending; 5802 vcpu->arch.nmi_injected = true; 5803 kvm_x86_ops->set_nmi(vcpu); 5804 } 5805 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 5806 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5807 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5808 false); 5809 kvm_x86_ops->set_irq(vcpu); 5810 } 5811 } 5812 } 5813 5814 static void process_nmi(struct kvm_vcpu *vcpu) 5815 { 5816 unsigned limit = 2; 5817 5818 /* 5819 * x86 is limited to one NMI running, and one NMI pending after it. 5820 * If an NMI is already in progress, limit further NMIs to just one. 5821 * Otherwise, allow two (and we'll inject the first one immediately). 5822 */ 5823 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5824 limit = 1; 5825 5826 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5827 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5828 kvm_make_request(KVM_REQ_EVENT, vcpu); 5829 } 5830 5831 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 5832 { 5833 u64 eoi_exit_bitmap[4]; 5834 u32 tmr[8]; 5835 5836 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 5837 return; 5838 5839 memset(eoi_exit_bitmap, 0, 32); 5840 memset(tmr, 0, 32); 5841 5842 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr); 5843 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 5844 kvm_apic_update_tmr(vcpu, tmr); 5845 } 5846 5847 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5848 { 5849 int r; 5850 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5851 vcpu->run->request_interrupt_window; 5852 bool req_immediate_exit = false; 5853 5854 if (vcpu->requests) { 5855 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5856 kvm_mmu_unload(vcpu); 5857 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5858 __kvm_migrate_timers(vcpu); 5859 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 5860 kvm_gen_update_masterclock(vcpu->kvm); 5861 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 5862 kvm_gen_kvmclock_update(vcpu); 5863 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5864 r = kvm_guest_time_update(vcpu); 5865 if (unlikely(r)) 5866 goto out; 5867 } 5868 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5869 kvm_mmu_sync_roots(vcpu); 5870 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5871 kvm_x86_ops->tlb_flush(vcpu); 5872 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5873 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5874 r = 0; 5875 goto out; 5876 } 5877 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5878 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5879 r = 0; 5880 goto out; 5881 } 5882 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5883 vcpu->fpu_active = 0; 5884 kvm_x86_ops->fpu_deactivate(vcpu); 5885 } 5886 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5887 /* Page is swapped out. Do synthetic halt */ 5888 vcpu->arch.apf.halted = true; 5889 r = 1; 5890 goto out; 5891 } 5892 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5893 record_steal_time(vcpu); 5894 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5895 process_nmi(vcpu); 5896 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5897 kvm_handle_pmu_event(vcpu); 5898 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5899 kvm_deliver_pmi(vcpu); 5900 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 5901 vcpu_scan_ioapic(vcpu); 5902 } 5903 5904 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5905 kvm_apic_accept_events(vcpu); 5906 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 5907 r = 1; 5908 goto out; 5909 } 5910 5911 inject_pending_event(vcpu); 5912 5913 /* enable NMI/IRQ window open exits if needed */ 5914 if (vcpu->arch.nmi_pending) 5915 req_immediate_exit = 5916 kvm_x86_ops->enable_nmi_window(vcpu) != 0; 5917 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 5918 req_immediate_exit = 5919 kvm_x86_ops->enable_irq_window(vcpu) != 0; 5920 5921 if (kvm_lapic_enabled(vcpu)) { 5922 /* 5923 * Update architecture specific hints for APIC 5924 * virtual interrupt delivery. 5925 */ 5926 if (kvm_x86_ops->hwapic_irr_update) 5927 kvm_x86_ops->hwapic_irr_update(vcpu, 5928 kvm_lapic_find_highest_irr(vcpu)); 5929 update_cr8_intercept(vcpu); 5930 kvm_lapic_sync_to_vapic(vcpu); 5931 } 5932 } 5933 5934 r = kvm_mmu_reload(vcpu); 5935 if (unlikely(r)) { 5936 goto cancel_injection; 5937 } 5938 5939 preempt_disable(); 5940 5941 kvm_x86_ops->prepare_guest_switch(vcpu); 5942 if (vcpu->fpu_active) 5943 kvm_load_guest_fpu(vcpu); 5944 kvm_load_guest_xcr0(vcpu); 5945 5946 vcpu->mode = IN_GUEST_MODE; 5947 5948 /* We should set ->mode before check ->requests, 5949 * see the comment in make_all_cpus_request. 5950 */ 5951 smp_mb(); 5952 5953 local_irq_disable(); 5954 5955 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 5956 || need_resched() || signal_pending(current)) { 5957 vcpu->mode = OUTSIDE_GUEST_MODE; 5958 smp_wmb(); 5959 local_irq_enable(); 5960 preempt_enable(); 5961 r = 1; 5962 goto cancel_injection; 5963 } 5964 5965 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5966 5967 if (req_immediate_exit) 5968 smp_send_reschedule(vcpu->cpu); 5969 5970 kvm_guest_enter(); 5971 5972 if (unlikely(vcpu->arch.switch_db_regs)) { 5973 set_debugreg(0, 7); 5974 set_debugreg(vcpu->arch.eff_db[0], 0); 5975 set_debugreg(vcpu->arch.eff_db[1], 1); 5976 set_debugreg(vcpu->arch.eff_db[2], 2); 5977 set_debugreg(vcpu->arch.eff_db[3], 3); 5978 } 5979 5980 trace_kvm_entry(vcpu->vcpu_id); 5981 kvm_x86_ops->run(vcpu); 5982 5983 /* 5984 * If the guest has used debug registers, at least dr7 5985 * will be disabled while returning to the host. 5986 * If we don't have active breakpoints in the host, we don't 5987 * care about the messed up debug address registers. But if 5988 * we have some of them active, restore the old state. 5989 */ 5990 if (hw_breakpoint_active()) 5991 hw_breakpoint_restore(); 5992 5993 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, 5994 native_read_tsc()); 5995 5996 vcpu->mode = OUTSIDE_GUEST_MODE; 5997 smp_wmb(); 5998 5999 /* Interrupt is enabled by handle_external_intr() */ 6000 kvm_x86_ops->handle_external_intr(vcpu); 6001 6002 ++vcpu->stat.exits; 6003 6004 /* 6005 * We must have an instruction between local_irq_enable() and 6006 * kvm_guest_exit(), so the timer interrupt isn't delayed by 6007 * the interrupt shadow. The stat.exits increment will do nicely. 6008 * But we need to prevent reordering, hence this barrier(): 6009 */ 6010 barrier(); 6011 6012 kvm_guest_exit(); 6013 6014 preempt_enable(); 6015 6016 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6017 6018 /* 6019 * Profile KVM exit RIPs: 6020 */ 6021 if (unlikely(prof_on == KVM_PROFILING)) { 6022 unsigned long rip = kvm_rip_read(vcpu); 6023 profile_hit(KVM_PROFILING, (void *)rip); 6024 } 6025 6026 if (unlikely(vcpu->arch.tsc_always_catchup)) 6027 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6028 6029 if (vcpu->arch.apic_attention) 6030 kvm_lapic_sync_from_vapic(vcpu); 6031 6032 r = kvm_x86_ops->handle_exit(vcpu); 6033 return r; 6034 6035 cancel_injection: 6036 kvm_x86_ops->cancel_injection(vcpu); 6037 if (unlikely(vcpu->arch.apic_attention)) 6038 kvm_lapic_sync_from_vapic(vcpu); 6039 out: 6040 return r; 6041 } 6042 6043 6044 static int __vcpu_run(struct kvm_vcpu *vcpu) 6045 { 6046 int r; 6047 struct kvm *kvm = vcpu->kvm; 6048 6049 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6050 r = vapic_enter(vcpu); 6051 if (r) { 6052 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6053 return r; 6054 } 6055 6056 r = 1; 6057 while (r > 0) { 6058 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6059 !vcpu->arch.apf.halted) 6060 r = vcpu_enter_guest(vcpu); 6061 else { 6062 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6063 kvm_vcpu_block(vcpu); 6064 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6065 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { 6066 kvm_apic_accept_events(vcpu); 6067 switch(vcpu->arch.mp_state) { 6068 case KVM_MP_STATE_HALTED: 6069 vcpu->arch.pv.pv_unhalted = false; 6070 vcpu->arch.mp_state = 6071 KVM_MP_STATE_RUNNABLE; 6072 case KVM_MP_STATE_RUNNABLE: 6073 vcpu->arch.apf.halted = false; 6074 break; 6075 case KVM_MP_STATE_INIT_RECEIVED: 6076 break; 6077 default: 6078 r = -EINTR; 6079 break; 6080 } 6081 } 6082 } 6083 6084 if (r <= 0) 6085 break; 6086 6087 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 6088 if (kvm_cpu_has_pending_timer(vcpu)) 6089 kvm_inject_pending_timer_irqs(vcpu); 6090 6091 if (dm_request_for_irq_injection(vcpu)) { 6092 r = -EINTR; 6093 vcpu->run->exit_reason = KVM_EXIT_INTR; 6094 ++vcpu->stat.request_irq_exits; 6095 } 6096 6097 kvm_check_async_pf_completion(vcpu); 6098 6099 if (signal_pending(current)) { 6100 r = -EINTR; 6101 vcpu->run->exit_reason = KVM_EXIT_INTR; 6102 ++vcpu->stat.signal_exits; 6103 } 6104 if (need_resched()) { 6105 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6106 kvm_resched(vcpu); 6107 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6108 } 6109 } 6110 6111 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6112 6113 vapic_exit(vcpu); 6114 6115 return r; 6116 } 6117 6118 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 6119 { 6120 int r; 6121 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6122 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 6123 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6124 if (r != EMULATE_DONE) 6125 return 0; 6126 return 1; 6127 } 6128 6129 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 6130 { 6131 BUG_ON(!vcpu->arch.pio.count); 6132 6133 return complete_emulated_io(vcpu); 6134 } 6135 6136 /* 6137 * Implements the following, as a state machine: 6138 * 6139 * read: 6140 * for each fragment 6141 * for each mmio piece in the fragment 6142 * write gpa, len 6143 * exit 6144 * copy data 6145 * execute insn 6146 * 6147 * write: 6148 * for each fragment 6149 * for each mmio piece in the fragment 6150 * write gpa, len 6151 * copy data 6152 * exit 6153 */ 6154 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 6155 { 6156 struct kvm_run *run = vcpu->run; 6157 struct kvm_mmio_fragment *frag; 6158 unsigned len; 6159 6160 BUG_ON(!vcpu->mmio_needed); 6161 6162 /* Complete previous fragment */ 6163 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 6164 len = min(8u, frag->len); 6165 if (!vcpu->mmio_is_write) 6166 memcpy(frag->data, run->mmio.data, len); 6167 6168 if (frag->len <= 8) { 6169 /* Switch to the next fragment. */ 6170 frag++; 6171 vcpu->mmio_cur_fragment++; 6172 } else { 6173 /* Go forward to the next mmio piece. */ 6174 frag->data += len; 6175 frag->gpa += len; 6176 frag->len -= len; 6177 } 6178 6179 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { 6180 vcpu->mmio_needed = 0; 6181 6182 /* FIXME: return into emulator if single-stepping. */ 6183 if (vcpu->mmio_is_write) 6184 return 1; 6185 vcpu->mmio_read_completed = 1; 6186 return complete_emulated_io(vcpu); 6187 } 6188 6189 run->exit_reason = KVM_EXIT_MMIO; 6190 run->mmio.phys_addr = frag->gpa; 6191 if (vcpu->mmio_is_write) 6192 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 6193 run->mmio.len = min(8u, frag->len); 6194 run->mmio.is_write = vcpu->mmio_is_write; 6195 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6196 return 0; 6197 } 6198 6199 6200 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 6201 { 6202 int r; 6203 sigset_t sigsaved; 6204 6205 if (!tsk_used_math(current) && init_fpu(current)) 6206 return -ENOMEM; 6207 6208 if (vcpu->sigset_active) 6209 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 6210 6211 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 6212 kvm_vcpu_block(vcpu); 6213 kvm_apic_accept_events(vcpu); 6214 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 6215 r = -EAGAIN; 6216 goto out; 6217 } 6218 6219 /* re-sync apic's tpr */ 6220 if (!irqchip_in_kernel(vcpu->kvm)) { 6221 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 6222 r = -EINVAL; 6223 goto out; 6224 } 6225 } 6226 6227 if (unlikely(vcpu->arch.complete_userspace_io)) { 6228 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 6229 vcpu->arch.complete_userspace_io = NULL; 6230 r = cui(vcpu); 6231 if (r <= 0) 6232 goto out; 6233 } else 6234 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 6235 6236 r = __vcpu_run(vcpu); 6237 6238 out: 6239 post_kvm_run_save(vcpu); 6240 if (vcpu->sigset_active) 6241 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 6242 6243 return r; 6244 } 6245 6246 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6247 { 6248 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 6249 /* 6250 * We are here if userspace calls get_regs() in the middle of 6251 * instruction emulation. Registers state needs to be copied 6252 * back from emulation context to vcpu. Userspace shouldn't do 6253 * that usually, but some bad designed PV devices (vmware 6254 * backdoor interface) need this to work 6255 */ 6256 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 6257 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6258 } 6259 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 6260 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 6261 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 6262 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 6263 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 6264 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 6265 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 6266 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 6267 #ifdef CONFIG_X86_64 6268 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 6269 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 6270 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 6271 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 6272 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 6273 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 6274 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 6275 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 6276 #endif 6277 6278 regs->rip = kvm_rip_read(vcpu); 6279 regs->rflags = kvm_get_rflags(vcpu); 6280 6281 return 0; 6282 } 6283 6284 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6285 { 6286 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 6287 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6288 6289 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 6290 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 6291 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 6292 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 6293 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 6294 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 6295 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 6296 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 6297 #ifdef CONFIG_X86_64 6298 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 6299 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 6300 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 6301 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 6302 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 6303 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 6304 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 6305 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 6306 #endif 6307 6308 kvm_rip_write(vcpu, regs->rip); 6309 kvm_set_rflags(vcpu, regs->rflags); 6310 6311 vcpu->arch.exception.pending = false; 6312 6313 kvm_make_request(KVM_REQ_EVENT, vcpu); 6314 6315 return 0; 6316 } 6317 6318 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 6319 { 6320 struct kvm_segment cs; 6321 6322 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6323 *db = cs.db; 6324 *l = cs.l; 6325 } 6326 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 6327 6328 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 6329 struct kvm_sregs *sregs) 6330 { 6331 struct desc_ptr dt; 6332 6333 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6334 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6335 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6336 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6337 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6338 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6339 6340 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6341 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6342 6343 kvm_x86_ops->get_idt(vcpu, &dt); 6344 sregs->idt.limit = dt.size; 6345 sregs->idt.base = dt.address; 6346 kvm_x86_ops->get_gdt(vcpu, &dt); 6347 sregs->gdt.limit = dt.size; 6348 sregs->gdt.base = dt.address; 6349 6350 sregs->cr0 = kvm_read_cr0(vcpu); 6351 sregs->cr2 = vcpu->arch.cr2; 6352 sregs->cr3 = kvm_read_cr3(vcpu); 6353 sregs->cr4 = kvm_read_cr4(vcpu); 6354 sregs->cr8 = kvm_get_cr8(vcpu); 6355 sregs->efer = vcpu->arch.efer; 6356 sregs->apic_base = kvm_get_apic_base(vcpu); 6357 6358 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 6359 6360 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 6361 set_bit(vcpu->arch.interrupt.nr, 6362 (unsigned long *)sregs->interrupt_bitmap); 6363 6364 return 0; 6365 } 6366 6367 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 6368 struct kvm_mp_state *mp_state) 6369 { 6370 kvm_apic_accept_events(vcpu); 6371 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 6372 vcpu->arch.pv.pv_unhalted) 6373 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 6374 else 6375 mp_state->mp_state = vcpu->arch.mp_state; 6376 6377 return 0; 6378 } 6379 6380 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 6381 struct kvm_mp_state *mp_state) 6382 { 6383 if (!kvm_vcpu_has_lapic(vcpu) && 6384 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 6385 return -EINVAL; 6386 6387 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 6388 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 6389 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 6390 } else 6391 vcpu->arch.mp_state = mp_state->mp_state; 6392 kvm_make_request(KVM_REQ_EVENT, vcpu); 6393 return 0; 6394 } 6395 6396 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 6397 int reason, bool has_error_code, u32 error_code) 6398 { 6399 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6400 int ret; 6401 6402 init_emulate_ctxt(vcpu); 6403 6404 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 6405 has_error_code, error_code); 6406 6407 if (ret) 6408 return EMULATE_FAIL; 6409 6410 kvm_rip_write(vcpu, ctxt->eip); 6411 kvm_set_rflags(vcpu, ctxt->eflags); 6412 kvm_make_request(KVM_REQ_EVENT, vcpu); 6413 return EMULATE_DONE; 6414 } 6415 EXPORT_SYMBOL_GPL(kvm_task_switch); 6416 6417 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 6418 struct kvm_sregs *sregs) 6419 { 6420 int mmu_reset_needed = 0; 6421 int pending_vec, max_bits, idx; 6422 struct desc_ptr dt; 6423 6424 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 6425 return -EINVAL; 6426 6427 dt.size = sregs->idt.limit; 6428 dt.address = sregs->idt.base; 6429 kvm_x86_ops->set_idt(vcpu, &dt); 6430 dt.size = sregs->gdt.limit; 6431 dt.address = sregs->gdt.base; 6432 kvm_x86_ops->set_gdt(vcpu, &dt); 6433 6434 vcpu->arch.cr2 = sregs->cr2; 6435 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 6436 vcpu->arch.cr3 = sregs->cr3; 6437 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 6438 6439 kvm_set_cr8(vcpu, sregs->cr8); 6440 6441 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 6442 kvm_x86_ops->set_efer(vcpu, sregs->efer); 6443 kvm_set_apic_base(vcpu, sregs->apic_base); 6444 6445 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 6446 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 6447 vcpu->arch.cr0 = sregs->cr0; 6448 6449 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 6450 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 6451 if (sregs->cr4 & X86_CR4_OSXSAVE) 6452 kvm_update_cpuid(vcpu); 6453 6454 idx = srcu_read_lock(&vcpu->kvm->srcu); 6455 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 6456 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 6457 mmu_reset_needed = 1; 6458 } 6459 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6460 6461 if (mmu_reset_needed) 6462 kvm_mmu_reset_context(vcpu); 6463 6464 max_bits = KVM_NR_INTERRUPTS; 6465 pending_vec = find_first_bit( 6466 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 6467 if (pending_vec < max_bits) { 6468 kvm_queue_interrupt(vcpu, pending_vec, false); 6469 pr_debug("Set back pending irq %d\n", pending_vec); 6470 } 6471 6472 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6473 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6474 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6475 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6476 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6477 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6478 6479 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6480 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6481 6482 update_cr8_intercept(vcpu); 6483 6484 /* Older userspace won't unhalt the vcpu on reset. */ 6485 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 6486 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 6487 !is_protmode(vcpu)) 6488 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6489 6490 kvm_make_request(KVM_REQ_EVENT, vcpu); 6491 6492 return 0; 6493 } 6494 6495 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 6496 struct kvm_guest_debug *dbg) 6497 { 6498 unsigned long rflags; 6499 int i, r; 6500 6501 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 6502 r = -EBUSY; 6503 if (vcpu->arch.exception.pending) 6504 goto out; 6505 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 6506 kvm_queue_exception(vcpu, DB_VECTOR); 6507 else 6508 kvm_queue_exception(vcpu, BP_VECTOR); 6509 } 6510 6511 /* 6512 * Read rflags as long as potentially injected trace flags are still 6513 * filtered out. 6514 */ 6515 rflags = kvm_get_rflags(vcpu); 6516 6517 vcpu->guest_debug = dbg->control; 6518 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 6519 vcpu->guest_debug = 0; 6520 6521 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 6522 for (i = 0; i < KVM_NR_DB_REGS; ++i) 6523 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 6524 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 6525 } else { 6526 for (i = 0; i < KVM_NR_DB_REGS; i++) 6527 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 6528 } 6529 kvm_update_dr7(vcpu); 6530 6531 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6532 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 6533 get_segment_base(vcpu, VCPU_SREG_CS); 6534 6535 /* 6536 * Trigger an rflags update that will inject or remove the trace 6537 * flags. 6538 */ 6539 kvm_set_rflags(vcpu, rflags); 6540 6541 kvm_x86_ops->update_db_bp_intercept(vcpu); 6542 6543 r = 0; 6544 6545 out: 6546 6547 return r; 6548 } 6549 6550 /* 6551 * Translate a guest virtual address to a guest physical address. 6552 */ 6553 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 6554 struct kvm_translation *tr) 6555 { 6556 unsigned long vaddr = tr->linear_address; 6557 gpa_t gpa; 6558 int idx; 6559 6560 idx = srcu_read_lock(&vcpu->kvm->srcu); 6561 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 6562 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6563 tr->physical_address = gpa; 6564 tr->valid = gpa != UNMAPPED_GVA; 6565 tr->writeable = 1; 6566 tr->usermode = 0; 6567 6568 return 0; 6569 } 6570 6571 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6572 { 6573 struct i387_fxsave_struct *fxsave = 6574 &vcpu->arch.guest_fpu.state->fxsave; 6575 6576 memcpy(fpu->fpr, fxsave->st_space, 128); 6577 fpu->fcw = fxsave->cwd; 6578 fpu->fsw = fxsave->swd; 6579 fpu->ftwx = fxsave->twd; 6580 fpu->last_opcode = fxsave->fop; 6581 fpu->last_ip = fxsave->rip; 6582 fpu->last_dp = fxsave->rdp; 6583 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 6584 6585 return 0; 6586 } 6587 6588 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6589 { 6590 struct i387_fxsave_struct *fxsave = 6591 &vcpu->arch.guest_fpu.state->fxsave; 6592 6593 memcpy(fxsave->st_space, fpu->fpr, 128); 6594 fxsave->cwd = fpu->fcw; 6595 fxsave->swd = fpu->fsw; 6596 fxsave->twd = fpu->ftwx; 6597 fxsave->fop = fpu->last_opcode; 6598 fxsave->rip = fpu->last_ip; 6599 fxsave->rdp = fpu->last_dp; 6600 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 6601 6602 return 0; 6603 } 6604 6605 int fx_init(struct kvm_vcpu *vcpu) 6606 { 6607 int err; 6608 6609 err = fpu_alloc(&vcpu->arch.guest_fpu); 6610 if (err) 6611 return err; 6612 6613 fpu_finit(&vcpu->arch.guest_fpu); 6614 6615 /* 6616 * Ensure guest xcr0 is valid for loading 6617 */ 6618 vcpu->arch.xcr0 = XSTATE_FP; 6619 6620 vcpu->arch.cr0 |= X86_CR0_ET; 6621 6622 return 0; 6623 } 6624 EXPORT_SYMBOL_GPL(fx_init); 6625 6626 static void fx_free(struct kvm_vcpu *vcpu) 6627 { 6628 fpu_free(&vcpu->arch.guest_fpu); 6629 } 6630 6631 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 6632 { 6633 if (vcpu->guest_fpu_loaded) 6634 return; 6635 6636 /* 6637 * Restore all possible states in the guest, 6638 * and assume host would use all available bits. 6639 * Guest xcr0 would be loaded later. 6640 */ 6641 kvm_put_guest_xcr0(vcpu); 6642 vcpu->guest_fpu_loaded = 1; 6643 __kernel_fpu_begin(); 6644 fpu_restore_checking(&vcpu->arch.guest_fpu); 6645 trace_kvm_fpu(1); 6646 } 6647 6648 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 6649 { 6650 kvm_put_guest_xcr0(vcpu); 6651 6652 if (!vcpu->guest_fpu_loaded) 6653 return; 6654 6655 vcpu->guest_fpu_loaded = 0; 6656 fpu_save_init(&vcpu->arch.guest_fpu); 6657 __kernel_fpu_end(); 6658 ++vcpu->stat.fpu_reload; 6659 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 6660 trace_kvm_fpu(0); 6661 } 6662 6663 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 6664 { 6665 kvmclock_reset(vcpu); 6666 6667 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6668 fx_free(vcpu); 6669 kvm_x86_ops->vcpu_free(vcpu); 6670 } 6671 6672 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 6673 unsigned int id) 6674 { 6675 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 6676 printk_once(KERN_WARNING 6677 "kvm: SMP vm created on host with unstable TSC; " 6678 "guest TSC will not be reliable\n"); 6679 return kvm_x86_ops->vcpu_create(kvm, id); 6680 } 6681 6682 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 6683 { 6684 int r; 6685 6686 vcpu->arch.mtrr_state.have_fixed = 1; 6687 r = vcpu_load(vcpu); 6688 if (r) 6689 return r; 6690 kvm_vcpu_reset(vcpu); 6691 r = kvm_mmu_setup(vcpu); 6692 vcpu_put(vcpu); 6693 6694 return r; 6695 } 6696 6697 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 6698 { 6699 int r; 6700 struct msr_data msr; 6701 6702 r = vcpu_load(vcpu); 6703 if (r) 6704 return r; 6705 msr.data = 0x0; 6706 msr.index = MSR_IA32_TSC; 6707 msr.host_initiated = true; 6708 kvm_write_tsc(vcpu, &msr); 6709 vcpu_put(vcpu); 6710 6711 return r; 6712 } 6713 6714 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6715 { 6716 int r; 6717 vcpu->arch.apf.msr_val = 0; 6718 6719 r = vcpu_load(vcpu); 6720 BUG_ON(r); 6721 kvm_mmu_unload(vcpu); 6722 vcpu_put(vcpu); 6723 6724 fx_free(vcpu); 6725 kvm_x86_ops->vcpu_free(vcpu); 6726 } 6727 6728 void kvm_vcpu_reset(struct kvm_vcpu *vcpu) 6729 { 6730 atomic_set(&vcpu->arch.nmi_queued, 0); 6731 vcpu->arch.nmi_pending = 0; 6732 vcpu->arch.nmi_injected = false; 6733 6734 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6735 vcpu->arch.dr6 = DR6_FIXED_1; 6736 vcpu->arch.dr7 = DR7_FIXED_1; 6737 kvm_update_dr7(vcpu); 6738 6739 kvm_make_request(KVM_REQ_EVENT, vcpu); 6740 vcpu->arch.apf.msr_val = 0; 6741 vcpu->arch.st.msr_val = 0; 6742 6743 kvmclock_reset(vcpu); 6744 6745 kvm_clear_async_pf_completion_queue(vcpu); 6746 kvm_async_pf_hash_reset(vcpu); 6747 vcpu->arch.apf.halted = false; 6748 6749 kvm_pmu_reset(vcpu); 6750 6751 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 6752 vcpu->arch.regs_avail = ~0; 6753 vcpu->arch.regs_dirty = ~0; 6754 6755 kvm_x86_ops->vcpu_reset(vcpu); 6756 } 6757 6758 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector) 6759 { 6760 struct kvm_segment cs; 6761 6762 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6763 cs.selector = vector << 8; 6764 cs.base = vector << 12; 6765 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 6766 kvm_rip_write(vcpu, 0); 6767 } 6768 6769 int kvm_arch_hardware_enable(void *garbage) 6770 { 6771 struct kvm *kvm; 6772 struct kvm_vcpu *vcpu; 6773 int i; 6774 int ret; 6775 u64 local_tsc; 6776 u64 max_tsc = 0; 6777 bool stable, backwards_tsc = false; 6778 6779 kvm_shared_msr_cpu_online(); 6780 ret = kvm_x86_ops->hardware_enable(garbage); 6781 if (ret != 0) 6782 return ret; 6783 6784 local_tsc = native_read_tsc(); 6785 stable = !check_tsc_unstable(); 6786 list_for_each_entry(kvm, &vm_list, vm_list) { 6787 kvm_for_each_vcpu(i, vcpu, kvm) { 6788 if (!stable && vcpu->cpu == smp_processor_id()) 6789 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6790 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6791 backwards_tsc = true; 6792 if (vcpu->arch.last_host_tsc > max_tsc) 6793 max_tsc = vcpu->arch.last_host_tsc; 6794 } 6795 } 6796 } 6797 6798 /* 6799 * Sometimes, even reliable TSCs go backwards. This happens on 6800 * platforms that reset TSC during suspend or hibernate actions, but 6801 * maintain synchronization. We must compensate. Fortunately, we can 6802 * detect that condition here, which happens early in CPU bringup, 6803 * before any KVM threads can be running. Unfortunately, we can't 6804 * bring the TSCs fully up to date with real time, as we aren't yet far 6805 * enough into CPU bringup that we know how much real time has actually 6806 * elapsed; our helper function, get_kernel_ns() will be using boot 6807 * variables that haven't been updated yet. 6808 * 6809 * So we simply find the maximum observed TSC above, then record the 6810 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6811 * the adjustment will be applied. Note that we accumulate 6812 * adjustments, in case multiple suspend cycles happen before some VCPU 6813 * gets a chance to run again. In the event that no KVM threads get a 6814 * chance to run, we will miss the entire elapsed period, as we'll have 6815 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6816 * loose cycle time. This isn't too big a deal, since the loss will be 6817 * uniform across all VCPUs (not to mention the scenario is extremely 6818 * unlikely). It is possible that a second hibernate recovery happens 6819 * much faster than a first, causing the observed TSC here to be 6820 * smaller; this would require additional padding adjustment, which is 6821 * why we set last_host_tsc to the local tsc observed here. 6822 * 6823 * N.B. - this code below runs only on platforms with reliable TSC, 6824 * as that is the only way backwards_tsc is set above. Also note 6825 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6826 * have the same delta_cyc adjustment applied if backwards_tsc 6827 * is detected. Note further, this adjustment is only done once, 6828 * as we reset last_host_tsc on all VCPUs to stop this from being 6829 * called multiple times (one for each physical CPU bringup). 6830 * 6831 * Platforms with unreliable TSCs don't have to deal with this, they 6832 * will be compensated by the logic in vcpu_load, which sets the TSC to 6833 * catchup mode. This will catchup all VCPUs to real time, but cannot 6834 * guarantee that they stay in perfect synchronization. 6835 */ 6836 if (backwards_tsc) { 6837 u64 delta_cyc = max_tsc - local_tsc; 6838 list_for_each_entry(kvm, &vm_list, vm_list) { 6839 kvm_for_each_vcpu(i, vcpu, kvm) { 6840 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6841 vcpu->arch.last_host_tsc = local_tsc; 6842 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, 6843 &vcpu->requests); 6844 } 6845 6846 /* 6847 * We have to disable TSC offset matching.. if you were 6848 * booting a VM while issuing an S4 host suspend.... 6849 * you may have some problem. Solving this issue is 6850 * left as an exercise to the reader. 6851 */ 6852 kvm->arch.last_tsc_nsec = 0; 6853 kvm->arch.last_tsc_write = 0; 6854 } 6855 6856 } 6857 return 0; 6858 } 6859 6860 void kvm_arch_hardware_disable(void *garbage) 6861 { 6862 kvm_x86_ops->hardware_disable(garbage); 6863 drop_user_return_notifiers(garbage); 6864 } 6865 6866 int kvm_arch_hardware_setup(void) 6867 { 6868 return kvm_x86_ops->hardware_setup(); 6869 } 6870 6871 void kvm_arch_hardware_unsetup(void) 6872 { 6873 kvm_x86_ops->hardware_unsetup(); 6874 } 6875 6876 void kvm_arch_check_processor_compat(void *rtn) 6877 { 6878 kvm_x86_ops->check_processor_compatibility(rtn); 6879 } 6880 6881 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6882 { 6883 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6884 } 6885 6886 struct static_key kvm_no_apic_vcpu __read_mostly; 6887 6888 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6889 { 6890 struct page *page; 6891 struct kvm *kvm; 6892 int r; 6893 6894 BUG_ON(vcpu->kvm == NULL); 6895 kvm = vcpu->kvm; 6896 6897 vcpu->arch.pv.pv_unhalted = false; 6898 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 6899 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 6900 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6901 else 6902 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 6903 6904 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 6905 if (!page) { 6906 r = -ENOMEM; 6907 goto fail; 6908 } 6909 vcpu->arch.pio_data = page_address(page); 6910 6911 kvm_set_tsc_khz(vcpu, max_tsc_khz); 6912 6913 r = kvm_mmu_create(vcpu); 6914 if (r < 0) 6915 goto fail_free_pio_data; 6916 6917 if (irqchip_in_kernel(kvm)) { 6918 r = kvm_create_lapic(vcpu); 6919 if (r < 0) 6920 goto fail_mmu_destroy; 6921 } else 6922 static_key_slow_inc(&kvm_no_apic_vcpu); 6923 6924 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 6925 GFP_KERNEL); 6926 if (!vcpu->arch.mce_banks) { 6927 r = -ENOMEM; 6928 goto fail_free_lapic; 6929 } 6930 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 6931 6932 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 6933 r = -ENOMEM; 6934 goto fail_free_mce_banks; 6935 } 6936 6937 r = fx_init(vcpu); 6938 if (r) 6939 goto fail_free_wbinvd_dirty_mask; 6940 6941 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 6942 vcpu->arch.pv_time_enabled = false; 6943 kvm_async_pf_hash_reset(vcpu); 6944 kvm_pmu_init(vcpu); 6945 6946 return 0; 6947 fail_free_wbinvd_dirty_mask: 6948 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6949 fail_free_mce_banks: 6950 kfree(vcpu->arch.mce_banks); 6951 fail_free_lapic: 6952 kvm_free_lapic(vcpu); 6953 fail_mmu_destroy: 6954 kvm_mmu_destroy(vcpu); 6955 fail_free_pio_data: 6956 free_page((unsigned long)vcpu->arch.pio_data); 6957 fail: 6958 return r; 6959 } 6960 6961 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 6962 { 6963 int idx; 6964 6965 kvm_pmu_destroy(vcpu); 6966 kfree(vcpu->arch.mce_banks); 6967 kvm_free_lapic(vcpu); 6968 idx = srcu_read_lock(&vcpu->kvm->srcu); 6969 kvm_mmu_destroy(vcpu); 6970 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6971 free_page((unsigned long)vcpu->arch.pio_data); 6972 if (!irqchip_in_kernel(vcpu->kvm)) 6973 static_key_slow_dec(&kvm_no_apic_vcpu); 6974 } 6975 6976 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 6977 { 6978 if (type) 6979 return -EINVAL; 6980 6981 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6982 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 6983 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 6984 6985 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 6986 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 6987 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 6988 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 6989 &kvm->arch.irq_sources_bitmap); 6990 6991 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 6992 mutex_init(&kvm->arch.apic_map_lock); 6993 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 6994 6995 pvclock_update_vm_gtod_copy(kvm); 6996 6997 return 0; 6998 } 6999 7000 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 7001 { 7002 int r; 7003 r = vcpu_load(vcpu); 7004 BUG_ON(r); 7005 kvm_mmu_unload(vcpu); 7006 vcpu_put(vcpu); 7007 } 7008 7009 static void kvm_free_vcpus(struct kvm *kvm) 7010 { 7011 unsigned int i; 7012 struct kvm_vcpu *vcpu; 7013 7014 /* 7015 * Unpin any mmu pages first. 7016 */ 7017 kvm_for_each_vcpu(i, vcpu, kvm) { 7018 kvm_clear_async_pf_completion_queue(vcpu); 7019 kvm_unload_vcpu_mmu(vcpu); 7020 } 7021 kvm_for_each_vcpu(i, vcpu, kvm) 7022 kvm_arch_vcpu_free(vcpu); 7023 7024 mutex_lock(&kvm->lock); 7025 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 7026 kvm->vcpus[i] = NULL; 7027 7028 atomic_set(&kvm->online_vcpus, 0); 7029 mutex_unlock(&kvm->lock); 7030 } 7031 7032 void kvm_arch_sync_events(struct kvm *kvm) 7033 { 7034 kvm_free_all_assigned_devices(kvm); 7035 kvm_free_pit(kvm); 7036 } 7037 7038 void kvm_arch_destroy_vm(struct kvm *kvm) 7039 { 7040 if (current->mm == kvm->mm) { 7041 /* 7042 * Free memory regions allocated on behalf of userspace, 7043 * unless the the memory map has changed due to process exit 7044 * or fd copying. 7045 */ 7046 struct kvm_userspace_memory_region mem; 7047 memset(&mem, 0, sizeof(mem)); 7048 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; 7049 kvm_set_memory_region(kvm, &mem); 7050 7051 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; 7052 kvm_set_memory_region(kvm, &mem); 7053 7054 mem.slot = TSS_PRIVATE_MEMSLOT; 7055 kvm_set_memory_region(kvm, &mem); 7056 } 7057 kvm_iommu_unmap_guest(kvm); 7058 kfree(kvm->arch.vpic); 7059 kfree(kvm->arch.vioapic); 7060 kvm_free_vcpus(kvm); 7061 if (kvm->arch.apic_access_page) 7062 put_page(kvm->arch.apic_access_page); 7063 if (kvm->arch.ept_identity_pagetable) 7064 put_page(kvm->arch.ept_identity_pagetable); 7065 kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 7066 } 7067 7068 void kvm_arch_free_memslot(struct kvm_memory_slot *free, 7069 struct kvm_memory_slot *dont) 7070 { 7071 int i; 7072 7073 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7074 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 7075 kvm_kvfree(free->arch.rmap[i]); 7076 free->arch.rmap[i] = NULL; 7077 } 7078 if (i == 0) 7079 continue; 7080 7081 if (!dont || free->arch.lpage_info[i - 1] != 7082 dont->arch.lpage_info[i - 1]) { 7083 kvm_kvfree(free->arch.lpage_info[i - 1]); 7084 free->arch.lpage_info[i - 1] = NULL; 7085 } 7086 } 7087 } 7088 7089 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) 7090 { 7091 int i; 7092 7093 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7094 unsigned long ugfn; 7095 int lpages; 7096 int level = i + 1; 7097 7098 lpages = gfn_to_index(slot->base_gfn + npages - 1, 7099 slot->base_gfn, level) + 1; 7100 7101 slot->arch.rmap[i] = 7102 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 7103 if (!slot->arch.rmap[i]) 7104 goto out_free; 7105 if (i == 0) 7106 continue; 7107 7108 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * 7109 sizeof(*slot->arch.lpage_info[i - 1])); 7110 if (!slot->arch.lpage_info[i - 1]) 7111 goto out_free; 7112 7113 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 7114 slot->arch.lpage_info[i - 1][0].write_count = 1; 7115 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 7116 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; 7117 ugfn = slot->userspace_addr >> PAGE_SHIFT; 7118 /* 7119 * If the gfn and userspace address are not aligned wrt each 7120 * other, or if explicitly asked to, disable large page 7121 * support for this slot 7122 */ 7123 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 7124 !kvm_largepages_enabled()) { 7125 unsigned long j; 7126 7127 for (j = 0; j < lpages; ++j) 7128 slot->arch.lpage_info[i - 1][j].write_count = 1; 7129 } 7130 } 7131 7132 return 0; 7133 7134 out_free: 7135 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7136 kvm_kvfree(slot->arch.rmap[i]); 7137 slot->arch.rmap[i] = NULL; 7138 if (i == 0) 7139 continue; 7140 7141 kvm_kvfree(slot->arch.lpage_info[i - 1]); 7142 slot->arch.lpage_info[i - 1] = NULL; 7143 } 7144 return -ENOMEM; 7145 } 7146 7147 void kvm_arch_memslots_updated(struct kvm *kvm) 7148 { 7149 /* 7150 * memslots->generation has been incremented. 7151 * mmio generation may have reached its maximum value. 7152 */ 7153 kvm_mmu_invalidate_mmio_sptes(kvm); 7154 } 7155 7156 int kvm_arch_prepare_memory_region(struct kvm *kvm, 7157 struct kvm_memory_slot *memslot, 7158 struct kvm_userspace_memory_region *mem, 7159 enum kvm_mr_change change) 7160 { 7161 /* 7162 * Only private memory slots need to be mapped here since 7163 * KVM_SET_MEMORY_REGION ioctl is no longer supported. 7164 */ 7165 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) { 7166 unsigned long userspace_addr; 7167 7168 /* 7169 * MAP_SHARED to prevent internal slot pages from being moved 7170 * by fork()/COW. 7171 */ 7172 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE, 7173 PROT_READ | PROT_WRITE, 7174 MAP_SHARED | MAP_ANONYMOUS, 0); 7175 7176 if (IS_ERR((void *)userspace_addr)) 7177 return PTR_ERR((void *)userspace_addr); 7178 7179 memslot->userspace_addr = userspace_addr; 7180 } 7181 7182 return 0; 7183 } 7184 7185 void kvm_arch_commit_memory_region(struct kvm *kvm, 7186 struct kvm_userspace_memory_region *mem, 7187 const struct kvm_memory_slot *old, 7188 enum kvm_mr_change change) 7189 { 7190 7191 int nr_mmu_pages = 0; 7192 7193 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) { 7194 int ret; 7195 7196 ret = vm_munmap(old->userspace_addr, 7197 old->npages * PAGE_SIZE); 7198 if (ret < 0) 7199 printk(KERN_WARNING 7200 "kvm_vm_ioctl_set_memory_region: " 7201 "failed to munmap memory\n"); 7202 } 7203 7204 if (!kvm->arch.n_requested_mmu_pages) 7205 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 7206 7207 if (nr_mmu_pages) 7208 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 7209 /* 7210 * Write protect all pages for dirty logging. 7211 * Existing largepage mappings are destroyed here and new ones will 7212 * not be created until the end of the logging. 7213 */ 7214 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) 7215 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 7216 } 7217 7218 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7219 { 7220 kvm_mmu_invalidate_zap_all_pages(kvm); 7221 } 7222 7223 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7224 struct kvm_memory_slot *slot) 7225 { 7226 kvm_mmu_invalidate_zap_all_pages(kvm); 7227 } 7228 7229 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 7230 { 7231 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 7232 !vcpu->arch.apf.halted) 7233 || !list_empty_careful(&vcpu->async_pf.done) 7234 || kvm_apic_has_events(vcpu) 7235 || vcpu->arch.pv.pv_unhalted 7236 || atomic_read(&vcpu->arch.nmi_queued) || 7237 (kvm_arch_interrupt_allowed(vcpu) && 7238 kvm_cpu_has_interrupt(vcpu)); 7239 } 7240 7241 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 7242 { 7243 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 7244 } 7245 7246 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 7247 { 7248 return kvm_x86_ops->interrupt_allowed(vcpu); 7249 } 7250 7251 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 7252 { 7253 unsigned long current_rip = kvm_rip_read(vcpu) + 7254 get_segment_base(vcpu, VCPU_SREG_CS); 7255 7256 return current_rip == linear_rip; 7257 } 7258 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 7259 7260 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 7261 { 7262 unsigned long rflags; 7263 7264 rflags = kvm_x86_ops->get_rflags(vcpu); 7265 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7266 rflags &= ~X86_EFLAGS_TF; 7267 return rflags; 7268 } 7269 EXPORT_SYMBOL_GPL(kvm_get_rflags); 7270 7271 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 7272 { 7273 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 7274 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 7275 rflags |= X86_EFLAGS_TF; 7276 kvm_x86_ops->set_rflags(vcpu, rflags); 7277 kvm_make_request(KVM_REQ_EVENT, vcpu); 7278 } 7279 EXPORT_SYMBOL_GPL(kvm_set_rflags); 7280 7281 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 7282 { 7283 int r; 7284 7285 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 7286 is_error_page(work->page)) 7287 return; 7288 7289 r = kvm_mmu_reload(vcpu); 7290 if (unlikely(r)) 7291 return; 7292 7293 if (!vcpu->arch.mmu.direct_map && 7294 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 7295 return; 7296 7297 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 7298 } 7299 7300 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 7301 { 7302 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 7303 } 7304 7305 static inline u32 kvm_async_pf_next_probe(u32 key) 7306 { 7307 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 7308 } 7309 7310 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7311 { 7312 u32 key = kvm_async_pf_hash_fn(gfn); 7313 7314 while (vcpu->arch.apf.gfns[key] != ~0) 7315 key = kvm_async_pf_next_probe(key); 7316 7317 vcpu->arch.apf.gfns[key] = gfn; 7318 } 7319 7320 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 7321 { 7322 int i; 7323 u32 key = kvm_async_pf_hash_fn(gfn); 7324 7325 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 7326 (vcpu->arch.apf.gfns[key] != gfn && 7327 vcpu->arch.apf.gfns[key] != ~0); i++) 7328 key = kvm_async_pf_next_probe(key); 7329 7330 return key; 7331 } 7332 7333 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7334 { 7335 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 7336 } 7337 7338 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7339 { 7340 u32 i, j, k; 7341 7342 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 7343 while (true) { 7344 vcpu->arch.apf.gfns[i] = ~0; 7345 do { 7346 j = kvm_async_pf_next_probe(j); 7347 if (vcpu->arch.apf.gfns[j] == ~0) 7348 return; 7349 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 7350 /* 7351 * k lies cyclically in ]i,j] 7352 * | i.k.j | 7353 * |....j i.k.| or |.k..j i...| 7354 */ 7355 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 7356 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 7357 i = j; 7358 } 7359 } 7360 7361 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 7362 { 7363 7364 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 7365 sizeof(val)); 7366 } 7367 7368 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 7369 struct kvm_async_pf *work) 7370 { 7371 struct x86_exception fault; 7372 7373 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 7374 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 7375 7376 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 7377 (vcpu->arch.apf.send_user_only && 7378 kvm_x86_ops->get_cpl(vcpu) == 0)) 7379 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 7380 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 7381 fault.vector = PF_VECTOR; 7382 fault.error_code_valid = true; 7383 fault.error_code = 0; 7384 fault.nested_page_fault = false; 7385 fault.address = work->arch.token; 7386 kvm_inject_page_fault(vcpu, &fault); 7387 } 7388 } 7389 7390 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 7391 struct kvm_async_pf *work) 7392 { 7393 struct x86_exception fault; 7394 7395 trace_kvm_async_pf_ready(work->arch.token, work->gva); 7396 if (is_error_page(work->page)) 7397 work->arch.token = ~0; /* broadcast wakeup */ 7398 else 7399 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 7400 7401 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 7402 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 7403 fault.vector = PF_VECTOR; 7404 fault.error_code_valid = true; 7405 fault.error_code = 0; 7406 fault.nested_page_fault = false; 7407 fault.address = work->arch.token; 7408 kvm_inject_page_fault(vcpu, &fault); 7409 } 7410 vcpu->arch.apf.halted = false; 7411 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7412 } 7413 7414 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 7415 { 7416 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 7417 return true; 7418 else 7419 return !kvm_event_needs_reinjection(vcpu) && 7420 kvm_x86_ops->interrupt_allowed(vcpu); 7421 } 7422 7423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 7424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 7425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 7426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 7427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 7428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 7429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 7430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 7431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 7432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 7433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 7434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 7435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 7436