xref: /openbmc/linux/arch/x86/kvm/x86.c (revision e1f7c9ee)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70 
71 #define emul_to_vcpu(ctxt) \
72 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84 
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87 
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
91 
92 struct kvm_x86_ops *kvm_x86_ops;
93 EXPORT_SYMBOL_GPL(kvm_x86_ops);
94 
95 static bool ignore_msrs = 0;
96 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
97 
98 unsigned int min_timer_period_us = 500;
99 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
100 
101 bool kvm_has_tsc_control;
102 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
103 u32  kvm_max_guest_tsc_khz;
104 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
105 
106 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
107 static u32 tsc_tolerance_ppm = 250;
108 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
109 
110 static bool backwards_tsc_observed = false;
111 
112 #define KVM_NR_SHARED_MSRS 16
113 
114 struct kvm_shared_msrs_global {
115 	int nr;
116 	u32 msrs[KVM_NR_SHARED_MSRS];
117 };
118 
119 struct kvm_shared_msrs {
120 	struct user_return_notifier urn;
121 	bool registered;
122 	struct kvm_shared_msr_values {
123 		u64 host;
124 		u64 curr;
125 	} values[KVM_NR_SHARED_MSRS];
126 };
127 
128 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
129 static struct kvm_shared_msrs __percpu *shared_msrs;
130 
131 struct kvm_stats_debugfs_item debugfs_entries[] = {
132 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
133 	{ "pf_guest", VCPU_STAT(pf_guest) },
134 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
135 	{ "invlpg", VCPU_STAT(invlpg) },
136 	{ "exits", VCPU_STAT(exits) },
137 	{ "io_exits", VCPU_STAT(io_exits) },
138 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
139 	{ "signal_exits", VCPU_STAT(signal_exits) },
140 	{ "irq_window", VCPU_STAT(irq_window_exits) },
141 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
142 	{ "halt_exits", VCPU_STAT(halt_exits) },
143 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
144 	{ "hypercalls", VCPU_STAT(hypercalls) },
145 	{ "request_irq", VCPU_STAT(request_irq_exits) },
146 	{ "irq_exits", VCPU_STAT(irq_exits) },
147 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
148 	{ "efer_reload", VCPU_STAT(efer_reload) },
149 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
150 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
151 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
152 	{ "irq_injections", VCPU_STAT(irq_injections) },
153 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
154 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
155 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
156 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
157 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
158 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
159 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
160 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
161 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
162 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
163 	{ "largepages", VM_STAT(lpages) },
164 	{ NULL }
165 };
166 
167 u64 __read_mostly host_xcr0;
168 
169 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
170 
171 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
172 {
173 	int i;
174 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
175 		vcpu->arch.apf.gfns[i] = ~0;
176 }
177 
178 static void kvm_on_user_return(struct user_return_notifier *urn)
179 {
180 	unsigned slot;
181 	struct kvm_shared_msrs *locals
182 		= container_of(urn, struct kvm_shared_msrs, urn);
183 	struct kvm_shared_msr_values *values;
184 
185 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
186 		values = &locals->values[slot];
187 		if (values->host != values->curr) {
188 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
189 			values->curr = values->host;
190 		}
191 	}
192 	locals->registered = false;
193 	user_return_notifier_unregister(urn);
194 }
195 
196 static void shared_msr_update(unsigned slot, u32 msr)
197 {
198 	u64 value;
199 	unsigned int cpu = smp_processor_id();
200 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
201 
202 	/* only read, and nobody should modify it at this time,
203 	 * so don't need lock */
204 	if (slot >= shared_msrs_global.nr) {
205 		printk(KERN_ERR "kvm: invalid MSR slot!");
206 		return;
207 	}
208 	rdmsrl_safe(msr, &value);
209 	smsr->values[slot].host = value;
210 	smsr->values[slot].curr = value;
211 }
212 
213 void kvm_define_shared_msr(unsigned slot, u32 msr)
214 {
215 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
216 	if (slot >= shared_msrs_global.nr)
217 		shared_msrs_global.nr = slot + 1;
218 	shared_msrs_global.msrs[slot] = msr;
219 	/* we need ensured the shared_msr_global have been updated */
220 	smp_wmb();
221 }
222 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
223 
224 static void kvm_shared_msr_cpu_online(void)
225 {
226 	unsigned i;
227 
228 	for (i = 0; i < shared_msrs_global.nr; ++i)
229 		shared_msr_update(i, shared_msrs_global.msrs[i]);
230 }
231 
232 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
233 {
234 	unsigned int cpu = smp_processor_id();
235 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
236 	int err;
237 
238 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
239 		return 0;
240 	smsr->values[slot].curr = value;
241 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
242 	if (err)
243 		return 1;
244 
245 	if (!smsr->registered) {
246 		smsr->urn.on_user_return = kvm_on_user_return;
247 		user_return_notifier_register(&smsr->urn);
248 		smsr->registered = true;
249 	}
250 	return 0;
251 }
252 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
253 
254 static void drop_user_return_notifiers(void)
255 {
256 	unsigned int cpu = smp_processor_id();
257 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
258 
259 	if (smsr->registered)
260 		kvm_on_user_return(&smsr->urn);
261 }
262 
263 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
264 {
265 	return vcpu->arch.apic_base;
266 }
267 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
268 
269 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
270 {
271 	u64 old_state = vcpu->arch.apic_base &
272 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
273 	u64 new_state = msr_info->data &
274 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
275 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
276 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
277 
278 	if (!msr_info->host_initiated &&
279 	    ((msr_info->data & reserved_bits) != 0 ||
280 	     new_state == X2APIC_ENABLE ||
281 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
282 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
283 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
284 	      old_state == 0)))
285 		return 1;
286 
287 	kvm_lapic_set_base(vcpu, msr_info->data);
288 	return 0;
289 }
290 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
291 
292 asmlinkage __visible void kvm_spurious_fault(void)
293 {
294 	/* Fault while not rebooting.  We want the trace. */
295 	BUG();
296 }
297 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
298 
299 #define EXCPT_BENIGN		0
300 #define EXCPT_CONTRIBUTORY	1
301 #define EXCPT_PF		2
302 
303 static int exception_class(int vector)
304 {
305 	switch (vector) {
306 	case PF_VECTOR:
307 		return EXCPT_PF;
308 	case DE_VECTOR:
309 	case TS_VECTOR:
310 	case NP_VECTOR:
311 	case SS_VECTOR:
312 	case GP_VECTOR:
313 		return EXCPT_CONTRIBUTORY;
314 	default:
315 		break;
316 	}
317 	return EXCPT_BENIGN;
318 }
319 
320 #define EXCPT_FAULT		0
321 #define EXCPT_TRAP		1
322 #define EXCPT_ABORT		2
323 #define EXCPT_INTERRUPT		3
324 
325 static int exception_type(int vector)
326 {
327 	unsigned int mask;
328 
329 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
330 		return EXCPT_INTERRUPT;
331 
332 	mask = 1 << vector;
333 
334 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
335 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
336 		return EXCPT_TRAP;
337 
338 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
339 		return EXCPT_ABORT;
340 
341 	/* Reserved exceptions will result in fault */
342 	return EXCPT_FAULT;
343 }
344 
345 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
346 		unsigned nr, bool has_error, u32 error_code,
347 		bool reinject)
348 {
349 	u32 prev_nr;
350 	int class1, class2;
351 
352 	kvm_make_request(KVM_REQ_EVENT, vcpu);
353 
354 	if (!vcpu->arch.exception.pending) {
355 	queue:
356 		vcpu->arch.exception.pending = true;
357 		vcpu->arch.exception.has_error_code = has_error;
358 		vcpu->arch.exception.nr = nr;
359 		vcpu->arch.exception.error_code = error_code;
360 		vcpu->arch.exception.reinject = reinject;
361 		return;
362 	}
363 
364 	/* to check exception */
365 	prev_nr = vcpu->arch.exception.nr;
366 	if (prev_nr == DF_VECTOR) {
367 		/* triple fault -> shutdown */
368 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
369 		return;
370 	}
371 	class1 = exception_class(prev_nr);
372 	class2 = exception_class(nr);
373 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
374 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
375 		/* generate double fault per SDM Table 5-5 */
376 		vcpu->arch.exception.pending = true;
377 		vcpu->arch.exception.has_error_code = true;
378 		vcpu->arch.exception.nr = DF_VECTOR;
379 		vcpu->arch.exception.error_code = 0;
380 	} else
381 		/* replace previous exception with a new one in a hope
382 		   that instruction re-execution will regenerate lost
383 		   exception */
384 		goto queue;
385 }
386 
387 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
388 {
389 	kvm_multiple_exception(vcpu, nr, false, 0, false);
390 }
391 EXPORT_SYMBOL_GPL(kvm_queue_exception);
392 
393 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
394 {
395 	kvm_multiple_exception(vcpu, nr, false, 0, true);
396 }
397 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
398 
399 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
400 {
401 	if (err)
402 		kvm_inject_gp(vcpu, 0);
403 	else
404 		kvm_x86_ops->skip_emulated_instruction(vcpu);
405 }
406 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
407 
408 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
409 {
410 	++vcpu->stat.pf_guest;
411 	vcpu->arch.cr2 = fault->address;
412 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
413 }
414 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
415 
416 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
419 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
420 	else
421 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
422 
423 	return fault->nested_page_fault;
424 }
425 
426 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
427 {
428 	atomic_inc(&vcpu->arch.nmi_queued);
429 	kvm_make_request(KVM_REQ_NMI, vcpu);
430 }
431 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
432 
433 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
434 {
435 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
436 }
437 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
438 
439 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
440 {
441 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
442 }
443 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
444 
445 /*
446  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
447  * a #GP and return false.
448  */
449 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
450 {
451 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
452 		return true;
453 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
454 	return false;
455 }
456 EXPORT_SYMBOL_GPL(kvm_require_cpl);
457 
458 /*
459  * This function will be used to read from the physical memory of the currently
460  * running guest. The difference to kvm_read_guest_page is that this function
461  * can read from guest physical or from the guest's guest physical memory.
462  */
463 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
464 			    gfn_t ngfn, void *data, int offset, int len,
465 			    u32 access)
466 {
467 	struct x86_exception exception;
468 	gfn_t real_gfn;
469 	gpa_t ngpa;
470 
471 	ngpa     = gfn_to_gpa(ngfn);
472 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
473 	if (real_gfn == UNMAPPED_GVA)
474 		return -EFAULT;
475 
476 	real_gfn = gpa_to_gfn(real_gfn);
477 
478 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
479 }
480 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
481 
482 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
483 			       void *data, int offset, int len, u32 access)
484 {
485 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
486 				       data, offset, len, access);
487 }
488 
489 /*
490  * Load the pae pdptrs.  Return true is they are all valid.
491  */
492 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
493 {
494 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
495 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
496 	int i;
497 	int ret;
498 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
499 
500 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
501 				      offset * sizeof(u64), sizeof(pdpte),
502 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
503 	if (ret < 0) {
504 		ret = 0;
505 		goto out;
506 	}
507 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
508 		if (is_present_gpte(pdpte[i]) &&
509 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
510 			ret = 0;
511 			goto out;
512 		}
513 	}
514 	ret = 1;
515 
516 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
517 	__set_bit(VCPU_EXREG_PDPTR,
518 		  (unsigned long *)&vcpu->arch.regs_avail);
519 	__set_bit(VCPU_EXREG_PDPTR,
520 		  (unsigned long *)&vcpu->arch.regs_dirty);
521 out:
522 
523 	return ret;
524 }
525 EXPORT_SYMBOL_GPL(load_pdptrs);
526 
527 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
528 {
529 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
530 	bool changed = true;
531 	int offset;
532 	gfn_t gfn;
533 	int r;
534 
535 	if (is_long_mode(vcpu) || !is_pae(vcpu))
536 		return false;
537 
538 	if (!test_bit(VCPU_EXREG_PDPTR,
539 		      (unsigned long *)&vcpu->arch.regs_avail))
540 		return true;
541 
542 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
543 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
544 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
545 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
546 	if (r < 0)
547 		goto out;
548 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
549 out:
550 
551 	return changed;
552 }
553 
554 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
555 {
556 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
557 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
558 				    X86_CR0_CD | X86_CR0_NW;
559 
560 	cr0 |= X86_CR0_ET;
561 
562 #ifdef CONFIG_X86_64
563 	if (cr0 & 0xffffffff00000000UL)
564 		return 1;
565 #endif
566 
567 	cr0 &= ~CR0_RESERVED_BITS;
568 
569 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
570 		return 1;
571 
572 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
573 		return 1;
574 
575 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
576 #ifdef CONFIG_X86_64
577 		if ((vcpu->arch.efer & EFER_LME)) {
578 			int cs_db, cs_l;
579 
580 			if (!is_pae(vcpu))
581 				return 1;
582 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
583 			if (cs_l)
584 				return 1;
585 		} else
586 #endif
587 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
588 						 kvm_read_cr3(vcpu)))
589 			return 1;
590 	}
591 
592 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
593 		return 1;
594 
595 	kvm_x86_ops->set_cr0(vcpu, cr0);
596 
597 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
598 		kvm_clear_async_pf_completion_queue(vcpu);
599 		kvm_async_pf_hash_reset(vcpu);
600 	}
601 
602 	if ((cr0 ^ old_cr0) & update_bits)
603 		kvm_mmu_reset_context(vcpu);
604 	return 0;
605 }
606 EXPORT_SYMBOL_GPL(kvm_set_cr0);
607 
608 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
609 {
610 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
611 }
612 EXPORT_SYMBOL_GPL(kvm_lmsw);
613 
614 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
615 {
616 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
617 			!vcpu->guest_xcr0_loaded) {
618 		/* kvm_set_xcr() also depends on this */
619 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
620 		vcpu->guest_xcr0_loaded = 1;
621 	}
622 }
623 
624 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
625 {
626 	if (vcpu->guest_xcr0_loaded) {
627 		if (vcpu->arch.xcr0 != host_xcr0)
628 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
629 		vcpu->guest_xcr0_loaded = 0;
630 	}
631 }
632 
633 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
634 {
635 	u64 xcr0 = xcr;
636 	u64 old_xcr0 = vcpu->arch.xcr0;
637 	u64 valid_bits;
638 
639 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
640 	if (index != XCR_XFEATURE_ENABLED_MASK)
641 		return 1;
642 	if (!(xcr0 & XSTATE_FP))
643 		return 1;
644 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
645 		return 1;
646 
647 	/*
648 	 * Do not allow the guest to set bits that we do not support
649 	 * saving.  However, xcr0 bit 0 is always set, even if the
650 	 * emulated CPU does not support XSAVE (see fx_init).
651 	 */
652 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
653 	if (xcr0 & ~valid_bits)
654 		return 1;
655 
656 	if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
657 		return 1;
658 
659 	kvm_put_guest_xcr0(vcpu);
660 	vcpu->arch.xcr0 = xcr0;
661 
662 	if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
663 		kvm_update_cpuid(vcpu);
664 	return 0;
665 }
666 
667 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
668 {
669 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
670 	    __kvm_set_xcr(vcpu, index, xcr)) {
671 		kvm_inject_gp(vcpu, 0);
672 		return 1;
673 	}
674 	return 0;
675 }
676 EXPORT_SYMBOL_GPL(kvm_set_xcr);
677 
678 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
679 {
680 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
681 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
682 				   X86_CR4_PAE | X86_CR4_SMEP;
683 	if (cr4 & CR4_RESERVED_BITS)
684 		return 1;
685 
686 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
687 		return 1;
688 
689 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
690 		return 1;
691 
692 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
693 		return 1;
694 
695 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
696 		return 1;
697 
698 	if (is_long_mode(vcpu)) {
699 		if (!(cr4 & X86_CR4_PAE))
700 			return 1;
701 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
702 		   && ((cr4 ^ old_cr4) & pdptr_bits)
703 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
704 				   kvm_read_cr3(vcpu)))
705 		return 1;
706 
707 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
708 		if (!guest_cpuid_has_pcid(vcpu))
709 			return 1;
710 
711 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
712 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
713 			return 1;
714 	}
715 
716 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
717 		return 1;
718 
719 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
720 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
721 		kvm_mmu_reset_context(vcpu);
722 
723 	if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
724 		update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
725 
726 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
727 		kvm_update_cpuid(vcpu);
728 
729 	return 0;
730 }
731 EXPORT_SYMBOL_GPL(kvm_set_cr4);
732 
733 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
734 {
735 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
736 		kvm_mmu_sync_roots(vcpu);
737 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
738 		return 0;
739 	}
740 
741 	if (is_long_mode(vcpu)) {
742 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
743 			return 1;
744 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
745 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
746 		return 1;
747 
748 	vcpu->arch.cr3 = cr3;
749 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
750 	kvm_mmu_new_cr3(vcpu);
751 	return 0;
752 }
753 EXPORT_SYMBOL_GPL(kvm_set_cr3);
754 
755 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
756 {
757 	if (cr8 & CR8_RESERVED_BITS)
758 		return 1;
759 	if (irqchip_in_kernel(vcpu->kvm))
760 		kvm_lapic_set_tpr(vcpu, cr8);
761 	else
762 		vcpu->arch.cr8 = cr8;
763 	return 0;
764 }
765 EXPORT_SYMBOL_GPL(kvm_set_cr8);
766 
767 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
768 {
769 	if (irqchip_in_kernel(vcpu->kvm))
770 		return kvm_lapic_get_cr8(vcpu);
771 	else
772 		return vcpu->arch.cr8;
773 }
774 EXPORT_SYMBOL_GPL(kvm_get_cr8);
775 
776 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
777 {
778 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
779 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
780 }
781 
782 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
783 {
784 	unsigned long dr7;
785 
786 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
787 		dr7 = vcpu->arch.guest_debug_dr7;
788 	else
789 		dr7 = vcpu->arch.dr7;
790 	kvm_x86_ops->set_dr7(vcpu, dr7);
791 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
792 	if (dr7 & DR7_BP_EN_MASK)
793 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
794 }
795 
796 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
797 {
798 	u64 fixed = DR6_FIXED_1;
799 
800 	if (!guest_cpuid_has_rtm(vcpu))
801 		fixed |= DR6_RTM;
802 	return fixed;
803 }
804 
805 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
806 {
807 	switch (dr) {
808 	case 0 ... 3:
809 		vcpu->arch.db[dr] = val;
810 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
811 			vcpu->arch.eff_db[dr] = val;
812 		break;
813 	case 4:
814 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
815 			return 1; /* #UD */
816 		/* fall through */
817 	case 6:
818 		if (val & 0xffffffff00000000ULL)
819 			return -1; /* #GP */
820 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
821 		kvm_update_dr6(vcpu);
822 		break;
823 	case 5:
824 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
825 			return 1; /* #UD */
826 		/* fall through */
827 	default: /* 7 */
828 		if (val & 0xffffffff00000000ULL)
829 			return -1; /* #GP */
830 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
831 		kvm_update_dr7(vcpu);
832 		break;
833 	}
834 
835 	return 0;
836 }
837 
838 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
839 {
840 	int res;
841 
842 	res = __kvm_set_dr(vcpu, dr, val);
843 	if (res > 0)
844 		kvm_queue_exception(vcpu, UD_VECTOR);
845 	else if (res < 0)
846 		kvm_inject_gp(vcpu, 0);
847 
848 	return res;
849 }
850 EXPORT_SYMBOL_GPL(kvm_set_dr);
851 
852 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
853 {
854 	switch (dr) {
855 	case 0 ... 3:
856 		*val = vcpu->arch.db[dr];
857 		break;
858 	case 4:
859 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
860 			return 1;
861 		/* fall through */
862 	case 6:
863 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
864 			*val = vcpu->arch.dr6;
865 		else
866 			*val = kvm_x86_ops->get_dr6(vcpu);
867 		break;
868 	case 5:
869 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
870 			return 1;
871 		/* fall through */
872 	default: /* 7 */
873 		*val = vcpu->arch.dr7;
874 		break;
875 	}
876 
877 	return 0;
878 }
879 
880 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
881 {
882 	if (_kvm_get_dr(vcpu, dr, val)) {
883 		kvm_queue_exception(vcpu, UD_VECTOR);
884 		return 1;
885 	}
886 	return 0;
887 }
888 EXPORT_SYMBOL_GPL(kvm_get_dr);
889 
890 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
891 {
892 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
893 	u64 data;
894 	int err;
895 
896 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
897 	if (err)
898 		return err;
899 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
900 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
901 	return err;
902 }
903 EXPORT_SYMBOL_GPL(kvm_rdpmc);
904 
905 /*
906  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
907  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
908  *
909  * This list is modified at module load time to reflect the
910  * capabilities of the host cpu. This capabilities test skips MSRs that are
911  * kvm-specific. Those are put in the beginning of the list.
912  */
913 
914 #define KVM_SAVE_MSRS_BEGIN	12
915 static u32 msrs_to_save[] = {
916 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
917 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
918 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
919 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
920 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
921 	MSR_KVM_PV_EOI_EN,
922 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
923 	MSR_STAR,
924 #ifdef CONFIG_X86_64
925 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
926 #endif
927 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
928 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
929 };
930 
931 static unsigned num_msrs_to_save;
932 
933 static const u32 emulated_msrs[] = {
934 	MSR_IA32_TSC_ADJUST,
935 	MSR_IA32_TSCDEADLINE,
936 	MSR_IA32_MISC_ENABLE,
937 	MSR_IA32_MCG_STATUS,
938 	MSR_IA32_MCG_CTL,
939 };
940 
941 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
942 {
943 	if (efer & efer_reserved_bits)
944 		return false;
945 
946 	if (efer & EFER_FFXSR) {
947 		struct kvm_cpuid_entry2 *feat;
948 
949 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
950 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
951 			return false;
952 	}
953 
954 	if (efer & EFER_SVME) {
955 		struct kvm_cpuid_entry2 *feat;
956 
957 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
958 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
959 			return false;
960 	}
961 
962 	return true;
963 }
964 EXPORT_SYMBOL_GPL(kvm_valid_efer);
965 
966 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
967 {
968 	u64 old_efer = vcpu->arch.efer;
969 
970 	if (!kvm_valid_efer(vcpu, efer))
971 		return 1;
972 
973 	if (is_paging(vcpu)
974 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
975 		return 1;
976 
977 	efer &= ~EFER_LMA;
978 	efer |= vcpu->arch.efer & EFER_LMA;
979 
980 	kvm_x86_ops->set_efer(vcpu, efer);
981 
982 	/* Update reserved bits */
983 	if ((efer ^ old_efer) & EFER_NX)
984 		kvm_mmu_reset_context(vcpu);
985 
986 	return 0;
987 }
988 
989 void kvm_enable_efer_bits(u64 mask)
990 {
991        efer_reserved_bits &= ~mask;
992 }
993 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
994 
995 /*
996  * Writes msr value into into the appropriate "register".
997  * Returns 0 on success, non-0 otherwise.
998  * Assumes vcpu_load() was already called.
999  */
1000 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1001 {
1002 	switch (msr->index) {
1003 	case MSR_FS_BASE:
1004 	case MSR_GS_BASE:
1005 	case MSR_KERNEL_GS_BASE:
1006 	case MSR_CSTAR:
1007 	case MSR_LSTAR:
1008 		if (is_noncanonical_address(msr->data))
1009 			return 1;
1010 		break;
1011 	case MSR_IA32_SYSENTER_EIP:
1012 	case MSR_IA32_SYSENTER_ESP:
1013 		/*
1014 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1015 		 * non-canonical address is written on Intel but not on
1016 		 * AMD (which ignores the top 32-bits, because it does
1017 		 * not implement 64-bit SYSENTER).
1018 		 *
1019 		 * 64-bit code should hence be able to write a non-canonical
1020 		 * value on AMD.  Making the address canonical ensures that
1021 		 * vmentry does not fail on Intel after writing a non-canonical
1022 		 * value, and that something deterministic happens if the guest
1023 		 * invokes 64-bit SYSENTER.
1024 		 */
1025 		msr->data = get_canonical(msr->data);
1026 	}
1027 	return kvm_x86_ops->set_msr(vcpu, msr);
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_set_msr);
1030 
1031 /*
1032  * Adapt set_msr() to msr_io()'s calling convention
1033  */
1034 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1035 {
1036 	struct msr_data msr;
1037 
1038 	msr.data = *data;
1039 	msr.index = index;
1040 	msr.host_initiated = true;
1041 	return kvm_set_msr(vcpu, &msr);
1042 }
1043 
1044 #ifdef CONFIG_X86_64
1045 struct pvclock_gtod_data {
1046 	seqcount_t	seq;
1047 
1048 	struct { /* extract of a clocksource struct */
1049 		int vclock_mode;
1050 		cycle_t	cycle_last;
1051 		cycle_t	mask;
1052 		u32	mult;
1053 		u32	shift;
1054 	} clock;
1055 
1056 	u64		boot_ns;
1057 	u64		nsec_base;
1058 };
1059 
1060 static struct pvclock_gtod_data pvclock_gtod_data;
1061 
1062 static void update_pvclock_gtod(struct timekeeper *tk)
1063 {
1064 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1065 	u64 boot_ns;
1066 
1067 	boot_ns = ktime_to_ns(ktime_add(tk->tkr.base_mono, tk->offs_boot));
1068 
1069 	write_seqcount_begin(&vdata->seq);
1070 
1071 	/* copy pvclock gtod data */
1072 	vdata->clock.vclock_mode	= tk->tkr.clock->archdata.vclock_mode;
1073 	vdata->clock.cycle_last		= tk->tkr.cycle_last;
1074 	vdata->clock.mask		= tk->tkr.mask;
1075 	vdata->clock.mult		= tk->tkr.mult;
1076 	vdata->clock.shift		= tk->tkr.shift;
1077 
1078 	vdata->boot_ns			= boot_ns;
1079 	vdata->nsec_base		= tk->tkr.xtime_nsec;
1080 
1081 	write_seqcount_end(&vdata->seq);
1082 }
1083 #endif
1084 
1085 
1086 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1087 {
1088 	int version;
1089 	int r;
1090 	struct pvclock_wall_clock wc;
1091 	struct timespec boot;
1092 
1093 	if (!wall_clock)
1094 		return;
1095 
1096 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1097 	if (r)
1098 		return;
1099 
1100 	if (version & 1)
1101 		++version;  /* first time write, random junk */
1102 
1103 	++version;
1104 
1105 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1106 
1107 	/*
1108 	 * The guest calculates current wall clock time by adding
1109 	 * system time (updated by kvm_guest_time_update below) to the
1110 	 * wall clock specified here.  guest system time equals host
1111 	 * system time for us, thus we must fill in host boot time here.
1112 	 */
1113 	getboottime(&boot);
1114 
1115 	if (kvm->arch.kvmclock_offset) {
1116 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1117 		boot = timespec_sub(boot, ts);
1118 	}
1119 	wc.sec = boot.tv_sec;
1120 	wc.nsec = boot.tv_nsec;
1121 	wc.version = version;
1122 
1123 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1124 
1125 	version++;
1126 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1127 }
1128 
1129 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1130 {
1131 	uint32_t quotient, remainder;
1132 
1133 	/* Don't try to replace with do_div(), this one calculates
1134 	 * "(dividend << 32) / divisor" */
1135 	__asm__ ( "divl %4"
1136 		  : "=a" (quotient), "=d" (remainder)
1137 		  : "0" (0), "1" (dividend), "r" (divisor) );
1138 	return quotient;
1139 }
1140 
1141 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1142 			       s8 *pshift, u32 *pmultiplier)
1143 {
1144 	uint64_t scaled64;
1145 	int32_t  shift = 0;
1146 	uint64_t tps64;
1147 	uint32_t tps32;
1148 
1149 	tps64 = base_khz * 1000LL;
1150 	scaled64 = scaled_khz * 1000LL;
1151 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1152 		tps64 >>= 1;
1153 		shift--;
1154 	}
1155 
1156 	tps32 = (uint32_t)tps64;
1157 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1158 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1159 			scaled64 >>= 1;
1160 		else
1161 			tps32 <<= 1;
1162 		shift++;
1163 	}
1164 
1165 	*pshift = shift;
1166 	*pmultiplier = div_frac(scaled64, tps32);
1167 
1168 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1169 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1170 }
1171 
1172 static inline u64 get_kernel_ns(void)
1173 {
1174 	return ktime_get_boot_ns();
1175 }
1176 
1177 #ifdef CONFIG_X86_64
1178 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1179 #endif
1180 
1181 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1182 unsigned long max_tsc_khz;
1183 
1184 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1185 {
1186 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1187 				   vcpu->arch.virtual_tsc_shift);
1188 }
1189 
1190 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1191 {
1192 	u64 v = (u64)khz * (1000000 + ppm);
1193 	do_div(v, 1000000);
1194 	return v;
1195 }
1196 
1197 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1198 {
1199 	u32 thresh_lo, thresh_hi;
1200 	int use_scaling = 0;
1201 
1202 	/* tsc_khz can be zero if TSC calibration fails */
1203 	if (this_tsc_khz == 0)
1204 		return;
1205 
1206 	/* Compute a scale to convert nanoseconds in TSC cycles */
1207 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1208 			   &vcpu->arch.virtual_tsc_shift,
1209 			   &vcpu->arch.virtual_tsc_mult);
1210 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1211 
1212 	/*
1213 	 * Compute the variation in TSC rate which is acceptable
1214 	 * within the range of tolerance and decide if the
1215 	 * rate being applied is within that bounds of the hardware
1216 	 * rate.  If so, no scaling or compensation need be done.
1217 	 */
1218 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1219 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1220 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1221 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1222 		use_scaling = 1;
1223 	}
1224 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1225 }
1226 
1227 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1228 {
1229 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1230 				      vcpu->arch.virtual_tsc_mult,
1231 				      vcpu->arch.virtual_tsc_shift);
1232 	tsc += vcpu->arch.this_tsc_write;
1233 	return tsc;
1234 }
1235 
1236 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1237 {
1238 #ifdef CONFIG_X86_64
1239 	bool vcpus_matched;
1240 	bool do_request = false;
1241 	struct kvm_arch *ka = &vcpu->kvm->arch;
1242 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1243 
1244 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1245 			 atomic_read(&vcpu->kvm->online_vcpus));
1246 
1247 	if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1248 		if (!ka->use_master_clock)
1249 			do_request = 1;
1250 
1251 	if (!vcpus_matched && ka->use_master_clock)
1252 			do_request = 1;
1253 
1254 	if (do_request)
1255 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1256 
1257 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1258 			    atomic_read(&vcpu->kvm->online_vcpus),
1259 		            ka->use_master_clock, gtod->clock.vclock_mode);
1260 #endif
1261 }
1262 
1263 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1264 {
1265 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1266 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1267 }
1268 
1269 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1270 {
1271 	struct kvm *kvm = vcpu->kvm;
1272 	u64 offset, ns, elapsed;
1273 	unsigned long flags;
1274 	s64 usdiff;
1275 	bool matched;
1276 	bool already_matched;
1277 	u64 data = msr->data;
1278 
1279 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1280 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1281 	ns = get_kernel_ns();
1282 	elapsed = ns - kvm->arch.last_tsc_nsec;
1283 
1284 	if (vcpu->arch.virtual_tsc_khz) {
1285 		int faulted = 0;
1286 
1287 		/* n.b - signed multiplication and division required */
1288 		usdiff = data - kvm->arch.last_tsc_write;
1289 #ifdef CONFIG_X86_64
1290 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1291 #else
1292 		/* do_div() only does unsigned */
1293 		asm("1: idivl %[divisor]\n"
1294 		    "2: xor %%edx, %%edx\n"
1295 		    "   movl $0, %[faulted]\n"
1296 		    "3:\n"
1297 		    ".section .fixup,\"ax\"\n"
1298 		    "4: movl $1, %[faulted]\n"
1299 		    "   jmp  3b\n"
1300 		    ".previous\n"
1301 
1302 		_ASM_EXTABLE(1b, 4b)
1303 
1304 		: "=A"(usdiff), [faulted] "=r" (faulted)
1305 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1306 
1307 #endif
1308 		do_div(elapsed, 1000);
1309 		usdiff -= elapsed;
1310 		if (usdiff < 0)
1311 			usdiff = -usdiff;
1312 
1313 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1314 		if (faulted)
1315 			usdiff = USEC_PER_SEC;
1316 	} else
1317 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1318 
1319 	/*
1320 	 * Special case: TSC write with a small delta (1 second) of virtual
1321 	 * cycle time against real time is interpreted as an attempt to
1322 	 * synchronize the CPU.
1323          *
1324 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1325 	 * TSC, we add elapsed time in this computation.  We could let the
1326 	 * compensation code attempt to catch up if we fall behind, but
1327 	 * it's better to try to match offsets from the beginning.
1328          */
1329 	if (usdiff < USEC_PER_SEC &&
1330 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1331 		if (!check_tsc_unstable()) {
1332 			offset = kvm->arch.cur_tsc_offset;
1333 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1334 		} else {
1335 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1336 			data += delta;
1337 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1338 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1339 		}
1340 		matched = true;
1341 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1342 	} else {
1343 		/*
1344 		 * We split periods of matched TSC writes into generations.
1345 		 * For each generation, we track the original measured
1346 		 * nanosecond time, offset, and write, so if TSCs are in
1347 		 * sync, we can match exact offset, and if not, we can match
1348 		 * exact software computation in compute_guest_tsc()
1349 		 *
1350 		 * These values are tracked in kvm->arch.cur_xxx variables.
1351 		 */
1352 		kvm->arch.cur_tsc_generation++;
1353 		kvm->arch.cur_tsc_nsec = ns;
1354 		kvm->arch.cur_tsc_write = data;
1355 		kvm->arch.cur_tsc_offset = offset;
1356 		matched = false;
1357 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1358 			 kvm->arch.cur_tsc_generation, data);
1359 	}
1360 
1361 	/*
1362 	 * We also track th most recent recorded KHZ, write and time to
1363 	 * allow the matching interval to be extended at each write.
1364 	 */
1365 	kvm->arch.last_tsc_nsec = ns;
1366 	kvm->arch.last_tsc_write = data;
1367 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1368 
1369 	vcpu->arch.last_guest_tsc = data;
1370 
1371 	/* Keep track of which generation this VCPU has synchronized to */
1372 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1373 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1374 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1375 
1376 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1377 		update_ia32_tsc_adjust_msr(vcpu, offset);
1378 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1379 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1380 
1381 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1382 	if (!matched) {
1383 		kvm->arch.nr_vcpus_matched_tsc = 0;
1384 	} else if (!already_matched) {
1385 		kvm->arch.nr_vcpus_matched_tsc++;
1386 	}
1387 
1388 	kvm_track_tsc_matching(vcpu);
1389 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1390 }
1391 
1392 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1393 
1394 #ifdef CONFIG_X86_64
1395 
1396 static cycle_t read_tsc(void)
1397 {
1398 	cycle_t ret;
1399 	u64 last;
1400 
1401 	/*
1402 	 * Empirically, a fence (of type that depends on the CPU)
1403 	 * before rdtsc is enough to ensure that rdtsc is ordered
1404 	 * with respect to loads.  The various CPU manuals are unclear
1405 	 * as to whether rdtsc can be reordered with later loads,
1406 	 * but no one has ever seen it happen.
1407 	 */
1408 	rdtsc_barrier();
1409 	ret = (cycle_t)vget_cycles();
1410 
1411 	last = pvclock_gtod_data.clock.cycle_last;
1412 
1413 	if (likely(ret >= last))
1414 		return ret;
1415 
1416 	/*
1417 	 * GCC likes to generate cmov here, but this branch is extremely
1418 	 * predictable (it's just a funciton of time and the likely is
1419 	 * very likely) and there's a data dependence, so force GCC
1420 	 * to generate a branch instead.  I don't barrier() because
1421 	 * we don't actually need a barrier, and if this function
1422 	 * ever gets inlined it will generate worse code.
1423 	 */
1424 	asm volatile ("");
1425 	return last;
1426 }
1427 
1428 static inline u64 vgettsc(cycle_t *cycle_now)
1429 {
1430 	long v;
1431 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1432 
1433 	*cycle_now = read_tsc();
1434 
1435 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1436 	return v * gtod->clock.mult;
1437 }
1438 
1439 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1440 {
1441 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1442 	unsigned long seq;
1443 	int mode;
1444 	u64 ns;
1445 
1446 	do {
1447 		seq = read_seqcount_begin(&gtod->seq);
1448 		mode = gtod->clock.vclock_mode;
1449 		ns = gtod->nsec_base;
1450 		ns += vgettsc(cycle_now);
1451 		ns >>= gtod->clock.shift;
1452 		ns += gtod->boot_ns;
1453 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1454 	*t = ns;
1455 
1456 	return mode;
1457 }
1458 
1459 /* returns true if host is using tsc clocksource */
1460 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1461 {
1462 	/* checked again under seqlock below */
1463 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1464 		return false;
1465 
1466 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1467 }
1468 #endif
1469 
1470 /*
1471  *
1472  * Assuming a stable TSC across physical CPUS, and a stable TSC
1473  * across virtual CPUs, the following condition is possible.
1474  * Each numbered line represents an event visible to both
1475  * CPUs at the next numbered event.
1476  *
1477  * "timespecX" represents host monotonic time. "tscX" represents
1478  * RDTSC value.
1479  *
1480  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1481  *
1482  * 1.  read timespec0,tsc0
1483  * 2.					| timespec1 = timespec0 + N
1484  * 					| tsc1 = tsc0 + M
1485  * 3. transition to guest		| transition to guest
1486  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1487  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1488  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1489  *
1490  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1491  *
1492  * 	- ret0 < ret1
1493  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1494  *		...
1495  *	- 0 < N - M => M < N
1496  *
1497  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1498  * always the case (the difference between two distinct xtime instances
1499  * might be smaller then the difference between corresponding TSC reads,
1500  * when updating guest vcpus pvclock areas).
1501  *
1502  * To avoid that problem, do not allow visibility of distinct
1503  * system_timestamp/tsc_timestamp values simultaneously: use a master
1504  * copy of host monotonic time values. Update that master copy
1505  * in lockstep.
1506  *
1507  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1508  *
1509  */
1510 
1511 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1512 {
1513 #ifdef CONFIG_X86_64
1514 	struct kvm_arch *ka = &kvm->arch;
1515 	int vclock_mode;
1516 	bool host_tsc_clocksource, vcpus_matched;
1517 
1518 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1519 			atomic_read(&kvm->online_vcpus));
1520 
1521 	/*
1522 	 * If the host uses TSC clock, then passthrough TSC as stable
1523 	 * to the guest.
1524 	 */
1525 	host_tsc_clocksource = kvm_get_time_and_clockread(
1526 					&ka->master_kernel_ns,
1527 					&ka->master_cycle_now);
1528 
1529 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1530 				&& !backwards_tsc_observed;
1531 
1532 	if (ka->use_master_clock)
1533 		atomic_set(&kvm_guest_has_master_clock, 1);
1534 
1535 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1536 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1537 					vcpus_matched);
1538 #endif
1539 }
1540 
1541 static void kvm_gen_update_masterclock(struct kvm *kvm)
1542 {
1543 #ifdef CONFIG_X86_64
1544 	int i;
1545 	struct kvm_vcpu *vcpu;
1546 	struct kvm_arch *ka = &kvm->arch;
1547 
1548 	spin_lock(&ka->pvclock_gtod_sync_lock);
1549 	kvm_make_mclock_inprogress_request(kvm);
1550 	/* no guest entries from this point */
1551 	pvclock_update_vm_gtod_copy(kvm);
1552 
1553 	kvm_for_each_vcpu(i, vcpu, kvm)
1554 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1555 
1556 	/* guest entries allowed */
1557 	kvm_for_each_vcpu(i, vcpu, kvm)
1558 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1559 
1560 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1561 #endif
1562 }
1563 
1564 static int kvm_guest_time_update(struct kvm_vcpu *v)
1565 {
1566 	unsigned long flags, this_tsc_khz;
1567 	struct kvm_vcpu_arch *vcpu = &v->arch;
1568 	struct kvm_arch *ka = &v->kvm->arch;
1569 	s64 kernel_ns;
1570 	u64 tsc_timestamp, host_tsc;
1571 	struct pvclock_vcpu_time_info guest_hv_clock;
1572 	u8 pvclock_flags;
1573 	bool use_master_clock;
1574 
1575 	kernel_ns = 0;
1576 	host_tsc = 0;
1577 
1578 	/*
1579 	 * If the host uses TSC clock, then passthrough TSC as stable
1580 	 * to the guest.
1581 	 */
1582 	spin_lock(&ka->pvclock_gtod_sync_lock);
1583 	use_master_clock = ka->use_master_clock;
1584 	if (use_master_clock) {
1585 		host_tsc = ka->master_cycle_now;
1586 		kernel_ns = ka->master_kernel_ns;
1587 	}
1588 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1589 
1590 	/* Keep irq disabled to prevent changes to the clock */
1591 	local_irq_save(flags);
1592 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1593 	if (unlikely(this_tsc_khz == 0)) {
1594 		local_irq_restore(flags);
1595 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1596 		return 1;
1597 	}
1598 	if (!use_master_clock) {
1599 		host_tsc = native_read_tsc();
1600 		kernel_ns = get_kernel_ns();
1601 	}
1602 
1603 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1604 
1605 	/*
1606 	 * We may have to catch up the TSC to match elapsed wall clock
1607 	 * time for two reasons, even if kvmclock is used.
1608 	 *   1) CPU could have been running below the maximum TSC rate
1609 	 *   2) Broken TSC compensation resets the base at each VCPU
1610 	 *      entry to avoid unknown leaps of TSC even when running
1611 	 *      again on the same CPU.  This may cause apparent elapsed
1612 	 *      time to disappear, and the guest to stand still or run
1613 	 *	very slowly.
1614 	 */
1615 	if (vcpu->tsc_catchup) {
1616 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1617 		if (tsc > tsc_timestamp) {
1618 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1619 			tsc_timestamp = tsc;
1620 		}
1621 	}
1622 
1623 	local_irq_restore(flags);
1624 
1625 	if (!vcpu->pv_time_enabled)
1626 		return 0;
1627 
1628 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1629 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1630 				   &vcpu->hv_clock.tsc_shift,
1631 				   &vcpu->hv_clock.tsc_to_system_mul);
1632 		vcpu->hw_tsc_khz = this_tsc_khz;
1633 	}
1634 
1635 	/* With all the info we got, fill in the values */
1636 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1637 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1638 	vcpu->last_guest_tsc = tsc_timestamp;
1639 
1640 	/*
1641 	 * The interface expects us to write an even number signaling that the
1642 	 * update is finished. Since the guest won't see the intermediate
1643 	 * state, we just increase by 2 at the end.
1644 	 */
1645 	vcpu->hv_clock.version += 2;
1646 
1647 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1648 		&guest_hv_clock, sizeof(guest_hv_clock))))
1649 		return 0;
1650 
1651 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1652 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1653 
1654 	if (vcpu->pvclock_set_guest_stopped_request) {
1655 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1656 		vcpu->pvclock_set_guest_stopped_request = false;
1657 	}
1658 
1659 	/* If the host uses TSC clocksource, then it is stable */
1660 	if (use_master_clock)
1661 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1662 
1663 	vcpu->hv_clock.flags = pvclock_flags;
1664 
1665 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1666 				&vcpu->hv_clock,
1667 				sizeof(vcpu->hv_clock));
1668 	return 0;
1669 }
1670 
1671 /*
1672  * kvmclock updates which are isolated to a given vcpu, such as
1673  * vcpu->cpu migration, should not allow system_timestamp from
1674  * the rest of the vcpus to remain static. Otherwise ntp frequency
1675  * correction applies to one vcpu's system_timestamp but not
1676  * the others.
1677  *
1678  * So in those cases, request a kvmclock update for all vcpus.
1679  * We need to rate-limit these requests though, as they can
1680  * considerably slow guests that have a large number of vcpus.
1681  * The time for a remote vcpu to update its kvmclock is bound
1682  * by the delay we use to rate-limit the updates.
1683  */
1684 
1685 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1686 
1687 static void kvmclock_update_fn(struct work_struct *work)
1688 {
1689 	int i;
1690 	struct delayed_work *dwork = to_delayed_work(work);
1691 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1692 					   kvmclock_update_work);
1693 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1694 	struct kvm_vcpu *vcpu;
1695 
1696 	kvm_for_each_vcpu(i, vcpu, kvm) {
1697 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1698 		kvm_vcpu_kick(vcpu);
1699 	}
1700 }
1701 
1702 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1703 {
1704 	struct kvm *kvm = v->kvm;
1705 
1706 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1707 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1708 					KVMCLOCK_UPDATE_DELAY);
1709 }
1710 
1711 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1712 
1713 static void kvmclock_sync_fn(struct work_struct *work)
1714 {
1715 	struct delayed_work *dwork = to_delayed_work(work);
1716 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1717 					   kvmclock_sync_work);
1718 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1719 
1720 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1721 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1722 					KVMCLOCK_SYNC_PERIOD);
1723 }
1724 
1725 static bool msr_mtrr_valid(unsigned msr)
1726 {
1727 	switch (msr) {
1728 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1729 	case MSR_MTRRfix64K_00000:
1730 	case MSR_MTRRfix16K_80000:
1731 	case MSR_MTRRfix16K_A0000:
1732 	case MSR_MTRRfix4K_C0000:
1733 	case MSR_MTRRfix4K_C8000:
1734 	case MSR_MTRRfix4K_D0000:
1735 	case MSR_MTRRfix4K_D8000:
1736 	case MSR_MTRRfix4K_E0000:
1737 	case MSR_MTRRfix4K_E8000:
1738 	case MSR_MTRRfix4K_F0000:
1739 	case MSR_MTRRfix4K_F8000:
1740 	case MSR_MTRRdefType:
1741 	case MSR_IA32_CR_PAT:
1742 		return true;
1743 	case 0x2f8:
1744 		return true;
1745 	}
1746 	return false;
1747 }
1748 
1749 static bool valid_pat_type(unsigned t)
1750 {
1751 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1752 }
1753 
1754 static bool valid_mtrr_type(unsigned t)
1755 {
1756 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1757 }
1758 
1759 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1760 {
1761 	int i;
1762 	u64 mask;
1763 
1764 	if (!msr_mtrr_valid(msr))
1765 		return false;
1766 
1767 	if (msr == MSR_IA32_CR_PAT) {
1768 		for (i = 0; i < 8; i++)
1769 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1770 				return false;
1771 		return true;
1772 	} else if (msr == MSR_MTRRdefType) {
1773 		if (data & ~0xcff)
1774 			return false;
1775 		return valid_mtrr_type(data & 0xff);
1776 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1777 		for (i = 0; i < 8 ; i++)
1778 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1779 				return false;
1780 		return true;
1781 	}
1782 
1783 	/* variable MTRRs */
1784 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1785 
1786 	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1787 	if ((msr & 1) == 0) {
1788 		/* MTRR base */
1789 		if (!valid_mtrr_type(data & 0xff))
1790 			return false;
1791 		mask |= 0xf00;
1792 	} else
1793 		/* MTRR mask */
1794 		mask |= 0x7ff;
1795 	if (data & mask) {
1796 		kvm_inject_gp(vcpu, 0);
1797 		return false;
1798 	}
1799 
1800 	return true;
1801 }
1802 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1803 
1804 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1805 {
1806 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1807 
1808 	if (!kvm_mtrr_valid(vcpu, msr, data))
1809 		return 1;
1810 
1811 	if (msr == MSR_MTRRdefType) {
1812 		vcpu->arch.mtrr_state.def_type = data;
1813 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1814 	} else if (msr == MSR_MTRRfix64K_00000)
1815 		p[0] = data;
1816 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1817 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1818 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1819 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1820 	else if (msr == MSR_IA32_CR_PAT)
1821 		vcpu->arch.pat = data;
1822 	else {	/* Variable MTRRs */
1823 		int idx, is_mtrr_mask;
1824 		u64 *pt;
1825 
1826 		idx = (msr - 0x200) / 2;
1827 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1828 		if (!is_mtrr_mask)
1829 			pt =
1830 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1831 		else
1832 			pt =
1833 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1834 		*pt = data;
1835 	}
1836 
1837 	kvm_mmu_reset_context(vcpu);
1838 	return 0;
1839 }
1840 
1841 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1842 {
1843 	u64 mcg_cap = vcpu->arch.mcg_cap;
1844 	unsigned bank_num = mcg_cap & 0xff;
1845 
1846 	switch (msr) {
1847 	case MSR_IA32_MCG_STATUS:
1848 		vcpu->arch.mcg_status = data;
1849 		break;
1850 	case MSR_IA32_MCG_CTL:
1851 		if (!(mcg_cap & MCG_CTL_P))
1852 			return 1;
1853 		if (data != 0 && data != ~(u64)0)
1854 			return -1;
1855 		vcpu->arch.mcg_ctl = data;
1856 		break;
1857 	default:
1858 		if (msr >= MSR_IA32_MC0_CTL &&
1859 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1860 			u32 offset = msr - MSR_IA32_MC0_CTL;
1861 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1862 			 * some Linux kernels though clear bit 10 in bank 4 to
1863 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1864 			 * this to avoid an uncatched #GP in the guest
1865 			 */
1866 			if ((offset & 0x3) == 0 &&
1867 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1868 				return -1;
1869 			vcpu->arch.mce_banks[offset] = data;
1870 			break;
1871 		}
1872 		return 1;
1873 	}
1874 	return 0;
1875 }
1876 
1877 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1878 {
1879 	struct kvm *kvm = vcpu->kvm;
1880 	int lm = is_long_mode(vcpu);
1881 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1882 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1883 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1884 		: kvm->arch.xen_hvm_config.blob_size_32;
1885 	u32 page_num = data & ~PAGE_MASK;
1886 	u64 page_addr = data & PAGE_MASK;
1887 	u8 *page;
1888 	int r;
1889 
1890 	r = -E2BIG;
1891 	if (page_num >= blob_size)
1892 		goto out;
1893 	r = -ENOMEM;
1894 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1895 	if (IS_ERR(page)) {
1896 		r = PTR_ERR(page);
1897 		goto out;
1898 	}
1899 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1900 		goto out_free;
1901 	r = 0;
1902 out_free:
1903 	kfree(page);
1904 out:
1905 	return r;
1906 }
1907 
1908 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1909 {
1910 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1911 }
1912 
1913 static bool kvm_hv_msr_partition_wide(u32 msr)
1914 {
1915 	bool r = false;
1916 	switch (msr) {
1917 	case HV_X64_MSR_GUEST_OS_ID:
1918 	case HV_X64_MSR_HYPERCALL:
1919 	case HV_X64_MSR_REFERENCE_TSC:
1920 	case HV_X64_MSR_TIME_REF_COUNT:
1921 		r = true;
1922 		break;
1923 	}
1924 
1925 	return r;
1926 }
1927 
1928 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1929 {
1930 	struct kvm *kvm = vcpu->kvm;
1931 
1932 	switch (msr) {
1933 	case HV_X64_MSR_GUEST_OS_ID:
1934 		kvm->arch.hv_guest_os_id = data;
1935 		/* setting guest os id to zero disables hypercall page */
1936 		if (!kvm->arch.hv_guest_os_id)
1937 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1938 		break;
1939 	case HV_X64_MSR_HYPERCALL: {
1940 		u64 gfn;
1941 		unsigned long addr;
1942 		u8 instructions[4];
1943 
1944 		/* if guest os id is not set hypercall should remain disabled */
1945 		if (!kvm->arch.hv_guest_os_id)
1946 			break;
1947 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1948 			kvm->arch.hv_hypercall = data;
1949 			break;
1950 		}
1951 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1952 		addr = gfn_to_hva(kvm, gfn);
1953 		if (kvm_is_error_hva(addr))
1954 			return 1;
1955 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1956 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1957 		if (__copy_to_user((void __user *)addr, instructions, 4))
1958 			return 1;
1959 		kvm->arch.hv_hypercall = data;
1960 		mark_page_dirty(kvm, gfn);
1961 		break;
1962 	}
1963 	case HV_X64_MSR_REFERENCE_TSC: {
1964 		u64 gfn;
1965 		HV_REFERENCE_TSC_PAGE tsc_ref;
1966 		memset(&tsc_ref, 0, sizeof(tsc_ref));
1967 		kvm->arch.hv_tsc_page = data;
1968 		if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1969 			break;
1970 		gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1971 		if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1972 			&tsc_ref, sizeof(tsc_ref)))
1973 			return 1;
1974 		mark_page_dirty(kvm, gfn);
1975 		break;
1976 	}
1977 	default:
1978 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1979 			    "data 0x%llx\n", msr, data);
1980 		return 1;
1981 	}
1982 	return 0;
1983 }
1984 
1985 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1986 {
1987 	switch (msr) {
1988 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1989 		u64 gfn;
1990 		unsigned long addr;
1991 
1992 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1993 			vcpu->arch.hv_vapic = data;
1994 			if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1995 				return 1;
1996 			break;
1997 		}
1998 		gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1999 		addr = gfn_to_hva(vcpu->kvm, gfn);
2000 		if (kvm_is_error_hva(addr))
2001 			return 1;
2002 		if (__clear_user((void __user *)addr, PAGE_SIZE))
2003 			return 1;
2004 		vcpu->arch.hv_vapic = data;
2005 		mark_page_dirty(vcpu->kvm, gfn);
2006 		if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2007 			return 1;
2008 		break;
2009 	}
2010 	case HV_X64_MSR_EOI:
2011 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2012 	case HV_X64_MSR_ICR:
2013 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2014 	case HV_X64_MSR_TPR:
2015 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2016 	default:
2017 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2018 			    "data 0x%llx\n", msr, data);
2019 		return 1;
2020 	}
2021 
2022 	return 0;
2023 }
2024 
2025 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2026 {
2027 	gpa_t gpa = data & ~0x3f;
2028 
2029 	/* Bits 2:5 are reserved, Should be zero */
2030 	if (data & 0x3c)
2031 		return 1;
2032 
2033 	vcpu->arch.apf.msr_val = data;
2034 
2035 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2036 		kvm_clear_async_pf_completion_queue(vcpu);
2037 		kvm_async_pf_hash_reset(vcpu);
2038 		return 0;
2039 	}
2040 
2041 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2042 					sizeof(u32)))
2043 		return 1;
2044 
2045 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2046 	kvm_async_pf_wakeup_all(vcpu);
2047 	return 0;
2048 }
2049 
2050 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2051 {
2052 	vcpu->arch.pv_time_enabled = false;
2053 }
2054 
2055 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2056 {
2057 	u64 delta;
2058 
2059 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2060 		return;
2061 
2062 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2063 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2064 	vcpu->arch.st.accum_steal = delta;
2065 }
2066 
2067 static void record_steal_time(struct kvm_vcpu *vcpu)
2068 {
2069 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2070 		return;
2071 
2072 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2073 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2074 		return;
2075 
2076 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2077 	vcpu->arch.st.steal.version += 2;
2078 	vcpu->arch.st.accum_steal = 0;
2079 
2080 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2081 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2082 }
2083 
2084 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2085 {
2086 	bool pr = false;
2087 	u32 msr = msr_info->index;
2088 	u64 data = msr_info->data;
2089 
2090 	switch (msr) {
2091 	case MSR_AMD64_NB_CFG:
2092 	case MSR_IA32_UCODE_REV:
2093 	case MSR_IA32_UCODE_WRITE:
2094 	case MSR_VM_HSAVE_PA:
2095 	case MSR_AMD64_PATCH_LOADER:
2096 	case MSR_AMD64_BU_CFG2:
2097 		break;
2098 
2099 	case MSR_EFER:
2100 		return set_efer(vcpu, data);
2101 	case MSR_K7_HWCR:
2102 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2103 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2104 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2105 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2106 		if (data != 0) {
2107 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2108 				    data);
2109 			return 1;
2110 		}
2111 		break;
2112 	case MSR_FAM10H_MMIO_CONF_BASE:
2113 		if (data != 0) {
2114 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2115 				    "0x%llx\n", data);
2116 			return 1;
2117 		}
2118 		break;
2119 	case MSR_IA32_DEBUGCTLMSR:
2120 		if (!data) {
2121 			/* We support the non-activated case already */
2122 			break;
2123 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2124 			/* Values other than LBR and BTF are vendor-specific,
2125 			   thus reserved and should throw a #GP */
2126 			return 1;
2127 		}
2128 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2129 			    __func__, data);
2130 		break;
2131 	case 0x200 ... 0x2ff:
2132 		return set_msr_mtrr(vcpu, msr, data);
2133 	case MSR_IA32_APICBASE:
2134 		return kvm_set_apic_base(vcpu, msr_info);
2135 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2136 		return kvm_x2apic_msr_write(vcpu, msr, data);
2137 	case MSR_IA32_TSCDEADLINE:
2138 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2139 		break;
2140 	case MSR_IA32_TSC_ADJUST:
2141 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2142 			if (!msr_info->host_initiated) {
2143 				u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2144 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2145 			}
2146 			vcpu->arch.ia32_tsc_adjust_msr = data;
2147 		}
2148 		break;
2149 	case MSR_IA32_MISC_ENABLE:
2150 		vcpu->arch.ia32_misc_enable_msr = data;
2151 		break;
2152 	case MSR_KVM_WALL_CLOCK_NEW:
2153 	case MSR_KVM_WALL_CLOCK:
2154 		vcpu->kvm->arch.wall_clock = data;
2155 		kvm_write_wall_clock(vcpu->kvm, data);
2156 		break;
2157 	case MSR_KVM_SYSTEM_TIME_NEW:
2158 	case MSR_KVM_SYSTEM_TIME: {
2159 		u64 gpa_offset;
2160 		kvmclock_reset(vcpu);
2161 
2162 		vcpu->arch.time = data;
2163 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2164 
2165 		/* we verify if the enable bit is set... */
2166 		if (!(data & 1))
2167 			break;
2168 
2169 		gpa_offset = data & ~(PAGE_MASK | 1);
2170 
2171 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2172 		     &vcpu->arch.pv_time, data & ~1ULL,
2173 		     sizeof(struct pvclock_vcpu_time_info)))
2174 			vcpu->arch.pv_time_enabled = false;
2175 		else
2176 			vcpu->arch.pv_time_enabled = true;
2177 
2178 		break;
2179 	}
2180 	case MSR_KVM_ASYNC_PF_EN:
2181 		if (kvm_pv_enable_async_pf(vcpu, data))
2182 			return 1;
2183 		break;
2184 	case MSR_KVM_STEAL_TIME:
2185 
2186 		if (unlikely(!sched_info_on()))
2187 			return 1;
2188 
2189 		if (data & KVM_STEAL_RESERVED_MASK)
2190 			return 1;
2191 
2192 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2193 						data & KVM_STEAL_VALID_BITS,
2194 						sizeof(struct kvm_steal_time)))
2195 			return 1;
2196 
2197 		vcpu->arch.st.msr_val = data;
2198 
2199 		if (!(data & KVM_MSR_ENABLED))
2200 			break;
2201 
2202 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2203 
2204 		preempt_disable();
2205 		accumulate_steal_time(vcpu);
2206 		preempt_enable();
2207 
2208 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2209 
2210 		break;
2211 	case MSR_KVM_PV_EOI_EN:
2212 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2213 			return 1;
2214 		break;
2215 
2216 	case MSR_IA32_MCG_CTL:
2217 	case MSR_IA32_MCG_STATUS:
2218 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2219 		return set_msr_mce(vcpu, msr, data);
2220 
2221 	/* Performance counters are not protected by a CPUID bit,
2222 	 * so we should check all of them in the generic path for the sake of
2223 	 * cross vendor migration.
2224 	 * Writing a zero into the event select MSRs disables them,
2225 	 * which we perfectly emulate ;-). Any other value should be at least
2226 	 * reported, some guests depend on them.
2227 	 */
2228 	case MSR_K7_EVNTSEL0:
2229 	case MSR_K7_EVNTSEL1:
2230 	case MSR_K7_EVNTSEL2:
2231 	case MSR_K7_EVNTSEL3:
2232 		if (data != 0)
2233 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2234 				    "0x%x data 0x%llx\n", msr, data);
2235 		break;
2236 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2237 	 * so we ignore writes to make it happy.
2238 	 */
2239 	case MSR_K7_PERFCTR0:
2240 	case MSR_K7_PERFCTR1:
2241 	case MSR_K7_PERFCTR2:
2242 	case MSR_K7_PERFCTR3:
2243 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2244 			    "0x%x data 0x%llx\n", msr, data);
2245 		break;
2246 	case MSR_P6_PERFCTR0:
2247 	case MSR_P6_PERFCTR1:
2248 		pr = true;
2249 	case MSR_P6_EVNTSEL0:
2250 	case MSR_P6_EVNTSEL1:
2251 		if (kvm_pmu_msr(vcpu, msr))
2252 			return kvm_pmu_set_msr(vcpu, msr_info);
2253 
2254 		if (pr || data != 0)
2255 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2256 				    "0x%x data 0x%llx\n", msr, data);
2257 		break;
2258 	case MSR_K7_CLK_CTL:
2259 		/*
2260 		 * Ignore all writes to this no longer documented MSR.
2261 		 * Writes are only relevant for old K7 processors,
2262 		 * all pre-dating SVM, but a recommended workaround from
2263 		 * AMD for these chips. It is possible to specify the
2264 		 * affected processor models on the command line, hence
2265 		 * the need to ignore the workaround.
2266 		 */
2267 		break;
2268 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2269 		if (kvm_hv_msr_partition_wide(msr)) {
2270 			int r;
2271 			mutex_lock(&vcpu->kvm->lock);
2272 			r = set_msr_hyperv_pw(vcpu, msr, data);
2273 			mutex_unlock(&vcpu->kvm->lock);
2274 			return r;
2275 		} else
2276 			return set_msr_hyperv(vcpu, msr, data);
2277 		break;
2278 	case MSR_IA32_BBL_CR_CTL3:
2279 		/* Drop writes to this legacy MSR -- see rdmsr
2280 		 * counterpart for further detail.
2281 		 */
2282 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2283 		break;
2284 	case MSR_AMD64_OSVW_ID_LENGTH:
2285 		if (!guest_cpuid_has_osvw(vcpu))
2286 			return 1;
2287 		vcpu->arch.osvw.length = data;
2288 		break;
2289 	case MSR_AMD64_OSVW_STATUS:
2290 		if (!guest_cpuid_has_osvw(vcpu))
2291 			return 1;
2292 		vcpu->arch.osvw.status = data;
2293 		break;
2294 	default:
2295 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2296 			return xen_hvm_config(vcpu, data);
2297 		if (kvm_pmu_msr(vcpu, msr))
2298 			return kvm_pmu_set_msr(vcpu, msr_info);
2299 		if (!ignore_msrs) {
2300 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2301 				    msr, data);
2302 			return 1;
2303 		} else {
2304 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2305 				    msr, data);
2306 			break;
2307 		}
2308 	}
2309 	return 0;
2310 }
2311 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2312 
2313 
2314 /*
2315  * Reads an msr value (of 'msr_index') into 'pdata'.
2316  * Returns 0 on success, non-0 otherwise.
2317  * Assumes vcpu_load() was already called.
2318  */
2319 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2320 {
2321 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2322 }
2323 
2324 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325 {
2326 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2327 
2328 	if (!msr_mtrr_valid(msr))
2329 		return 1;
2330 
2331 	if (msr == MSR_MTRRdefType)
2332 		*pdata = vcpu->arch.mtrr_state.def_type +
2333 			 (vcpu->arch.mtrr_state.enabled << 10);
2334 	else if (msr == MSR_MTRRfix64K_00000)
2335 		*pdata = p[0];
2336 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2337 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2338 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2339 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2340 	else if (msr == MSR_IA32_CR_PAT)
2341 		*pdata = vcpu->arch.pat;
2342 	else {	/* Variable MTRRs */
2343 		int idx, is_mtrr_mask;
2344 		u64 *pt;
2345 
2346 		idx = (msr - 0x200) / 2;
2347 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2348 		if (!is_mtrr_mask)
2349 			pt =
2350 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2351 		else
2352 			pt =
2353 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2354 		*pdata = *pt;
2355 	}
2356 
2357 	return 0;
2358 }
2359 
2360 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2361 {
2362 	u64 data;
2363 	u64 mcg_cap = vcpu->arch.mcg_cap;
2364 	unsigned bank_num = mcg_cap & 0xff;
2365 
2366 	switch (msr) {
2367 	case MSR_IA32_P5_MC_ADDR:
2368 	case MSR_IA32_P5_MC_TYPE:
2369 		data = 0;
2370 		break;
2371 	case MSR_IA32_MCG_CAP:
2372 		data = vcpu->arch.mcg_cap;
2373 		break;
2374 	case MSR_IA32_MCG_CTL:
2375 		if (!(mcg_cap & MCG_CTL_P))
2376 			return 1;
2377 		data = vcpu->arch.mcg_ctl;
2378 		break;
2379 	case MSR_IA32_MCG_STATUS:
2380 		data = vcpu->arch.mcg_status;
2381 		break;
2382 	default:
2383 		if (msr >= MSR_IA32_MC0_CTL &&
2384 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2385 			u32 offset = msr - MSR_IA32_MC0_CTL;
2386 			data = vcpu->arch.mce_banks[offset];
2387 			break;
2388 		}
2389 		return 1;
2390 	}
2391 	*pdata = data;
2392 	return 0;
2393 }
2394 
2395 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2396 {
2397 	u64 data = 0;
2398 	struct kvm *kvm = vcpu->kvm;
2399 
2400 	switch (msr) {
2401 	case HV_X64_MSR_GUEST_OS_ID:
2402 		data = kvm->arch.hv_guest_os_id;
2403 		break;
2404 	case HV_X64_MSR_HYPERCALL:
2405 		data = kvm->arch.hv_hypercall;
2406 		break;
2407 	case HV_X64_MSR_TIME_REF_COUNT: {
2408 		data =
2409 		     div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2410 		break;
2411 	}
2412 	case HV_X64_MSR_REFERENCE_TSC:
2413 		data = kvm->arch.hv_tsc_page;
2414 		break;
2415 	default:
2416 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2417 		return 1;
2418 	}
2419 
2420 	*pdata = data;
2421 	return 0;
2422 }
2423 
2424 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2425 {
2426 	u64 data = 0;
2427 
2428 	switch (msr) {
2429 	case HV_X64_MSR_VP_INDEX: {
2430 		int r;
2431 		struct kvm_vcpu *v;
2432 		kvm_for_each_vcpu(r, v, vcpu->kvm) {
2433 			if (v == vcpu) {
2434 				data = r;
2435 				break;
2436 			}
2437 		}
2438 		break;
2439 	}
2440 	case HV_X64_MSR_EOI:
2441 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2442 	case HV_X64_MSR_ICR:
2443 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2444 	case HV_X64_MSR_TPR:
2445 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2446 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2447 		data = vcpu->arch.hv_vapic;
2448 		break;
2449 	default:
2450 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2451 		return 1;
2452 	}
2453 	*pdata = data;
2454 	return 0;
2455 }
2456 
2457 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2458 {
2459 	u64 data;
2460 
2461 	switch (msr) {
2462 	case MSR_IA32_PLATFORM_ID:
2463 	case MSR_IA32_EBL_CR_POWERON:
2464 	case MSR_IA32_DEBUGCTLMSR:
2465 	case MSR_IA32_LASTBRANCHFROMIP:
2466 	case MSR_IA32_LASTBRANCHTOIP:
2467 	case MSR_IA32_LASTINTFROMIP:
2468 	case MSR_IA32_LASTINTTOIP:
2469 	case MSR_K8_SYSCFG:
2470 	case MSR_K7_HWCR:
2471 	case MSR_VM_HSAVE_PA:
2472 	case MSR_K7_EVNTSEL0:
2473 	case MSR_K7_EVNTSEL1:
2474 	case MSR_K7_EVNTSEL2:
2475 	case MSR_K7_EVNTSEL3:
2476 	case MSR_K7_PERFCTR0:
2477 	case MSR_K7_PERFCTR1:
2478 	case MSR_K7_PERFCTR2:
2479 	case MSR_K7_PERFCTR3:
2480 	case MSR_K8_INT_PENDING_MSG:
2481 	case MSR_AMD64_NB_CFG:
2482 	case MSR_FAM10H_MMIO_CONF_BASE:
2483 	case MSR_AMD64_BU_CFG2:
2484 		data = 0;
2485 		break;
2486 	case MSR_P6_PERFCTR0:
2487 	case MSR_P6_PERFCTR1:
2488 	case MSR_P6_EVNTSEL0:
2489 	case MSR_P6_EVNTSEL1:
2490 		if (kvm_pmu_msr(vcpu, msr))
2491 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2492 		data = 0;
2493 		break;
2494 	case MSR_IA32_UCODE_REV:
2495 		data = 0x100000000ULL;
2496 		break;
2497 	case MSR_MTRRcap:
2498 		data = 0x500 | KVM_NR_VAR_MTRR;
2499 		break;
2500 	case 0x200 ... 0x2ff:
2501 		return get_msr_mtrr(vcpu, msr, pdata);
2502 	case 0xcd: /* fsb frequency */
2503 		data = 3;
2504 		break;
2505 		/*
2506 		 * MSR_EBC_FREQUENCY_ID
2507 		 * Conservative value valid for even the basic CPU models.
2508 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2509 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2510 		 * and 266MHz for model 3, or 4. Set Core Clock
2511 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2512 		 * 31:24) even though these are only valid for CPU
2513 		 * models > 2, however guests may end up dividing or
2514 		 * multiplying by zero otherwise.
2515 		 */
2516 	case MSR_EBC_FREQUENCY_ID:
2517 		data = 1 << 24;
2518 		break;
2519 	case MSR_IA32_APICBASE:
2520 		data = kvm_get_apic_base(vcpu);
2521 		break;
2522 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2523 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2524 		break;
2525 	case MSR_IA32_TSCDEADLINE:
2526 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2527 		break;
2528 	case MSR_IA32_TSC_ADJUST:
2529 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2530 		break;
2531 	case MSR_IA32_MISC_ENABLE:
2532 		data = vcpu->arch.ia32_misc_enable_msr;
2533 		break;
2534 	case MSR_IA32_PERF_STATUS:
2535 		/* TSC increment by tick */
2536 		data = 1000ULL;
2537 		/* CPU multiplier */
2538 		data |= (((uint64_t)4ULL) << 40);
2539 		break;
2540 	case MSR_EFER:
2541 		data = vcpu->arch.efer;
2542 		break;
2543 	case MSR_KVM_WALL_CLOCK:
2544 	case MSR_KVM_WALL_CLOCK_NEW:
2545 		data = vcpu->kvm->arch.wall_clock;
2546 		break;
2547 	case MSR_KVM_SYSTEM_TIME:
2548 	case MSR_KVM_SYSTEM_TIME_NEW:
2549 		data = vcpu->arch.time;
2550 		break;
2551 	case MSR_KVM_ASYNC_PF_EN:
2552 		data = vcpu->arch.apf.msr_val;
2553 		break;
2554 	case MSR_KVM_STEAL_TIME:
2555 		data = vcpu->arch.st.msr_val;
2556 		break;
2557 	case MSR_KVM_PV_EOI_EN:
2558 		data = vcpu->arch.pv_eoi.msr_val;
2559 		break;
2560 	case MSR_IA32_P5_MC_ADDR:
2561 	case MSR_IA32_P5_MC_TYPE:
2562 	case MSR_IA32_MCG_CAP:
2563 	case MSR_IA32_MCG_CTL:
2564 	case MSR_IA32_MCG_STATUS:
2565 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2566 		return get_msr_mce(vcpu, msr, pdata);
2567 	case MSR_K7_CLK_CTL:
2568 		/*
2569 		 * Provide expected ramp-up count for K7. All other
2570 		 * are set to zero, indicating minimum divisors for
2571 		 * every field.
2572 		 *
2573 		 * This prevents guest kernels on AMD host with CPU
2574 		 * type 6, model 8 and higher from exploding due to
2575 		 * the rdmsr failing.
2576 		 */
2577 		data = 0x20000000;
2578 		break;
2579 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2580 		if (kvm_hv_msr_partition_wide(msr)) {
2581 			int r;
2582 			mutex_lock(&vcpu->kvm->lock);
2583 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2584 			mutex_unlock(&vcpu->kvm->lock);
2585 			return r;
2586 		} else
2587 			return get_msr_hyperv(vcpu, msr, pdata);
2588 		break;
2589 	case MSR_IA32_BBL_CR_CTL3:
2590 		/* This legacy MSR exists but isn't fully documented in current
2591 		 * silicon.  It is however accessed by winxp in very narrow
2592 		 * scenarios where it sets bit #19, itself documented as
2593 		 * a "reserved" bit.  Best effort attempt to source coherent
2594 		 * read data here should the balance of the register be
2595 		 * interpreted by the guest:
2596 		 *
2597 		 * L2 cache control register 3: 64GB range, 256KB size,
2598 		 * enabled, latency 0x1, configured
2599 		 */
2600 		data = 0xbe702111;
2601 		break;
2602 	case MSR_AMD64_OSVW_ID_LENGTH:
2603 		if (!guest_cpuid_has_osvw(vcpu))
2604 			return 1;
2605 		data = vcpu->arch.osvw.length;
2606 		break;
2607 	case MSR_AMD64_OSVW_STATUS:
2608 		if (!guest_cpuid_has_osvw(vcpu))
2609 			return 1;
2610 		data = vcpu->arch.osvw.status;
2611 		break;
2612 	default:
2613 		if (kvm_pmu_msr(vcpu, msr))
2614 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2615 		if (!ignore_msrs) {
2616 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2617 			return 1;
2618 		} else {
2619 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2620 			data = 0;
2621 		}
2622 		break;
2623 	}
2624 	*pdata = data;
2625 	return 0;
2626 }
2627 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2628 
2629 /*
2630  * Read or write a bunch of msrs. All parameters are kernel addresses.
2631  *
2632  * @return number of msrs set successfully.
2633  */
2634 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2635 		    struct kvm_msr_entry *entries,
2636 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2637 				  unsigned index, u64 *data))
2638 {
2639 	int i, idx;
2640 
2641 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2642 	for (i = 0; i < msrs->nmsrs; ++i)
2643 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2644 			break;
2645 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2646 
2647 	return i;
2648 }
2649 
2650 /*
2651  * Read or write a bunch of msrs. Parameters are user addresses.
2652  *
2653  * @return number of msrs set successfully.
2654  */
2655 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2656 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2657 				unsigned index, u64 *data),
2658 		  int writeback)
2659 {
2660 	struct kvm_msrs msrs;
2661 	struct kvm_msr_entry *entries;
2662 	int r, n;
2663 	unsigned size;
2664 
2665 	r = -EFAULT;
2666 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2667 		goto out;
2668 
2669 	r = -E2BIG;
2670 	if (msrs.nmsrs >= MAX_IO_MSRS)
2671 		goto out;
2672 
2673 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2674 	entries = memdup_user(user_msrs->entries, size);
2675 	if (IS_ERR(entries)) {
2676 		r = PTR_ERR(entries);
2677 		goto out;
2678 	}
2679 
2680 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2681 	if (r < 0)
2682 		goto out_free;
2683 
2684 	r = -EFAULT;
2685 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2686 		goto out_free;
2687 
2688 	r = n;
2689 
2690 out_free:
2691 	kfree(entries);
2692 out:
2693 	return r;
2694 }
2695 
2696 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2697 {
2698 	int r;
2699 
2700 	switch (ext) {
2701 	case KVM_CAP_IRQCHIP:
2702 	case KVM_CAP_HLT:
2703 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2704 	case KVM_CAP_SET_TSS_ADDR:
2705 	case KVM_CAP_EXT_CPUID:
2706 	case KVM_CAP_EXT_EMUL_CPUID:
2707 	case KVM_CAP_CLOCKSOURCE:
2708 	case KVM_CAP_PIT:
2709 	case KVM_CAP_NOP_IO_DELAY:
2710 	case KVM_CAP_MP_STATE:
2711 	case KVM_CAP_SYNC_MMU:
2712 	case KVM_CAP_USER_NMI:
2713 	case KVM_CAP_REINJECT_CONTROL:
2714 	case KVM_CAP_IRQ_INJECT_STATUS:
2715 	case KVM_CAP_IRQFD:
2716 	case KVM_CAP_IOEVENTFD:
2717 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2718 	case KVM_CAP_PIT2:
2719 	case KVM_CAP_PIT_STATE2:
2720 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2721 	case KVM_CAP_XEN_HVM:
2722 	case KVM_CAP_ADJUST_CLOCK:
2723 	case KVM_CAP_VCPU_EVENTS:
2724 	case KVM_CAP_HYPERV:
2725 	case KVM_CAP_HYPERV_VAPIC:
2726 	case KVM_CAP_HYPERV_SPIN:
2727 	case KVM_CAP_PCI_SEGMENT:
2728 	case KVM_CAP_DEBUGREGS:
2729 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2730 	case KVM_CAP_XSAVE:
2731 	case KVM_CAP_ASYNC_PF:
2732 	case KVM_CAP_GET_TSC_KHZ:
2733 	case KVM_CAP_KVMCLOCK_CTRL:
2734 	case KVM_CAP_READONLY_MEM:
2735 	case KVM_CAP_HYPERV_TIME:
2736 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2737 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2738 	case KVM_CAP_ASSIGN_DEV_IRQ:
2739 	case KVM_CAP_PCI_2_3:
2740 #endif
2741 		r = 1;
2742 		break;
2743 	case KVM_CAP_COALESCED_MMIO:
2744 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2745 		break;
2746 	case KVM_CAP_VAPIC:
2747 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2748 		break;
2749 	case KVM_CAP_NR_VCPUS:
2750 		r = KVM_SOFT_MAX_VCPUS;
2751 		break;
2752 	case KVM_CAP_MAX_VCPUS:
2753 		r = KVM_MAX_VCPUS;
2754 		break;
2755 	case KVM_CAP_NR_MEMSLOTS:
2756 		r = KVM_USER_MEM_SLOTS;
2757 		break;
2758 	case KVM_CAP_PV_MMU:	/* obsolete */
2759 		r = 0;
2760 		break;
2761 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2762 	case KVM_CAP_IOMMU:
2763 		r = iommu_present(&pci_bus_type);
2764 		break;
2765 #endif
2766 	case KVM_CAP_MCE:
2767 		r = KVM_MAX_MCE_BANKS;
2768 		break;
2769 	case KVM_CAP_XCRS:
2770 		r = cpu_has_xsave;
2771 		break;
2772 	case KVM_CAP_TSC_CONTROL:
2773 		r = kvm_has_tsc_control;
2774 		break;
2775 	case KVM_CAP_TSC_DEADLINE_TIMER:
2776 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2777 		break;
2778 	default:
2779 		r = 0;
2780 		break;
2781 	}
2782 	return r;
2783 
2784 }
2785 
2786 long kvm_arch_dev_ioctl(struct file *filp,
2787 			unsigned int ioctl, unsigned long arg)
2788 {
2789 	void __user *argp = (void __user *)arg;
2790 	long r;
2791 
2792 	switch (ioctl) {
2793 	case KVM_GET_MSR_INDEX_LIST: {
2794 		struct kvm_msr_list __user *user_msr_list = argp;
2795 		struct kvm_msr_list msr_list;
2796 		unsigned n;
2797 
2798 		r = -EFAULT;
2799 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2800 			goto out;
2801 		n = msr_list.nmsrs;
2802 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2803 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2804 			goto out;
2805 		r = -E2BIG;
2806 		if (n < msr_list.nmsrs)
2807 			goto out;
2808 		r = -EFAULT;
2809 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2810 				 num_msrs_to_save * sizeof(u32)))
2811 			goto out;
2812 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2813 				 &emulated_msrs,
2814 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2815 			goto out;
2816 		r = 0;
2817 		break;
2818 	}
2819 	case KVM_GET_SUPPORTED_CPUID:
2820 	case KVM_GET_EMULATED_CPUID: {
2821 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2822 		struct kvm_cpuid2 cpuid;
2823 
2824 		r = -EFAULT;
2825 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2826 			goto out;
2827 
2828 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2829 					    ioctl);
2830 		if (r)
2831 			goto out;
2832 
2833 		r = -EFAULT;
2834 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2835 			goto out;
2836 		r = 0;
2837 		break;
2838 	}
2839 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2840 		u64 mce_cap;
2841 
2842 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2843 		r = -EFAULT;
2844 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2845 			goto out;
2846 		r = 0;
2847 		break;
2848 	}
2849 	default:
2850 		r = -EINVAL;
2851 	}
2852 out:
2853 	return r;
2854 }
2855 
2856 static void wbinvd_ipi(void *garbage)
2857 {
2858 	wbinvd();
2859 }
2860 
2861 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2862 {
2863 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2864 }
2865 
2866 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2867 {
2868 	/* Address WBINVD may be executed by guest */
2869 	if (need_emulate_wbinvd(vcpu)) {
2870 		if (kvm_x86_ops->has_wbinvd_exit())
2871 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2872 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2873 			smp_call_function_single(vcpu->cpu,
2874 					wbinvd_ipi, NULL, 1);
2875 	}
2876 
2877 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2878 
2879 	/* Apply any externally detected TSC adjustments (due to suspend) */
2880 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2881 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2882 		vcpu->arch.tsc_offset_adjustment = 0;
2883 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2884 	}
2885 
2886 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2887 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2888 				native_read_tsc() - vcpu->arch.last_host_tsc;
2889 		if (tsc_delta < 0)
2890 			mark_tsc_unstable("KVM discovered backwards TSC");
2891 		if (check_tsc_unstable()) {
2892 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2893 						vcpu->arch.last_guest_tsc);
2894 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2895 			vcpu->arch.tsc_catchup = 1;
2896 		}
2897 		/*
2898 		 * On a host with synchronized TSC, there is no need to update
2899 		 * kvmclock on vcpu->cpu migration
2900 		 */
2901 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2902 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2903 		if (vcpu->cpu != cpu)
2904 			kvm_migrate_timers(vcpu);
2905 		vcpu->cpu = cpu;
2906 	}
2907 
2908 	accumulate_steal_time(vcpu);
2909 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2910 }
2911 
2912 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2913 {
2914 	kvm_x86_ops->vcpu_put(vcpu);
2915 	kvm_put_guest_fpu(vcpu);
2916 	vcpu->arch.last_host_tsc = native_read_tsc();
2917 }
2918 
2919 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2920 				    struct kvm_lapic_state *s)
2921 {
2922 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2923 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2924 
2925 	return 0;
2926 }
2927 
2928 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2929 				    struct kvm_lapic_state *s)
2930 {
2931 	kvm_apic_post_state_restore(vcpu, s);
2932 	update_cr8_intercept(vcpu);
2933 
2934 	return 0;
2935 }
2936 
2937 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2938 				    struct kvm_interrupt *irq)
2939 {
2940 	if (irq->irq >= KVM_NR_INTERRUPTS)
2941 		return -EINVAL;
2942 	if (irqchip_in_kernel(vcpu->kvm))
2943 		return -ENXIO;
2944 
2945 	kvm_queue_interrupt(vcpu, irq->irq, false);
2946 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2947 
2948 	return 0;
2949 }
2950 
2951 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2952 {
2953 	kvm_inject_nmi(vcpu);
2954 
2955 	return 0;
2956 }
2957 
2958 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2959 					   struct kvm_tpr_access_ctl *tac)
2960 {
2961 	if (tac->flags)
2962 		return -EINVAL;
2963 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2964 	return 0;
2965 }
2966 
2967 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2968 					u64 mcg_cap)
2969 {
2970 	int r;
2971 	unsigned bank_num = mcg_cap & 0xff, bank;
2972 
2973 	r = -EINVAL;
2974 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2975 		goto out;
2976 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2977 		goto out;
2978 	r = 0;
2979 	vcpu->arch.mcg_cap = mcg_cap;
2980 	/* Init IA32_MCG_CTL to all 1s */
2981 	if (mcg_cap & MCG_CTL_P)
2982 		vcpu->arch.mcg_ctl = ~(u64)0;
2983 	/* Init IA32_MCi_CTL to all 1s */
2984 	for (bank = 0; bank < bank_num; bank++)
2985 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2986 out:
2987 	return r;
2988 }
2989 
2990 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2991 				      struct kvm_x86_mce *mce)
2992 {
2993 	u64 mcg_cap = vcpu->arch.mcg_cap;
2994 	unsigned bank_num = mcg_cap & 0xff;
2995 	u64 *banks = vcpu->arch.mce_banks;
2996 
2997 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2998 		return -EINVAL;
2999 	/*
3000 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3001 	 * reporting is disabled
3002 	 */
3003 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3004 	    vcpu->arch.mcg_ctl != ~(u64)0)
3005 		return 0;
3006 	banks += 4 * mce->bank;
3007 	/*
3008 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3009 	 * reporting is disabled for the bank
3010 	 */
3011 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3012 		return 0;
3013 	if (mce->status & MCI_STATUS_UC) {
3014 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3015 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3016 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3017 			return 0;
3018 		}
3019 		if (banks[1] & MCI_STATUS_VAL)
3020 			mce->status |= MCI_STATUS_OVER;
3021 		banks[2] = mce->addr;
3022 		banks[3] = mce->misc;
3023 		vcpu->arch.mcg_status = mce->mcg_status;
3024 		banks[1] = mce->status;
3025 		kvm_queue_exception(vcpu, MC_VECTOR);
3026 	} else if (!(banks[1] & MCI_STATUS_VAL)
3027 		   || !(banks[1] & MCI_STATUS_UC)) {
3028 		if (banks[1] & MCI_STATUS_VAL)
3029 			mce->status |= MCI_STATUS_OVER;
3030 		banks[2] = mce->addr;
3031 		banks[3] = mce->misc;
3032 		banks[1] = mce->status;
3033 	} else
3034 		banks[1] |= MCI_STATUS_OVER;
3035 	return 0;
3036 }
3037 
3038 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3039 					       struct kvm_vcpu_events *events)
3040 {
3041 	process_nmi(vcpu);
3042 	events->exception.injected =
3043 		vcpu->arch.exception.pending &&
3044 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3045 	events->exception.nr = vcpu->arch.exception.nr;
3046 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3047 	events->exception.pad = 0;
3048 	events->exception.error_code = vcpu->arch.exception.error_code;
3049 
3050 	events->interrupt.injected =
3051 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3052 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3053 	events->interrupt.soft = 0;
3054 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3055 
3056 	events->nmi.injected = vcpu->arch.nmi_injected;
3057 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3058 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3059 	events->nmi.pad = 0;
3060 
3061 	events->sipi_vector = 0; /* never valid when reporting to user space */
3062 
3063 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3064 			 | KVM_VCPUEVENT_VALID_SHADOW);
3065 	memset(&events->reserved, 0, sizeof(events->reserved));
3066 }
3067 
3068 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3069 					      struct kvm_vcpu_events *events)
3070 {
3071 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3072 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3073 			      | KVM_VCPUEVENT_VALID_SHADOW))
3074 		return -EINVAL;
3075 
3076 	process_nmi(vcpu);
3077 	vcpu->arch.exception.pending = events->exception.injected;
3078 	vcpu->arch.exception.nr = events->exception.nr;
3079 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3080 	vcpu->arch.exception.error_code = events->exception.error_code;
3081 
3082 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3083 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3084 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3085 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3086 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3087 						  events->interrupt.shadow);
3088 
3089 	vcpu->arch.nmi_injected = events->nmi.injected;
3090 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3091 		vcpu->arch.nmi_pending = events->nmi.pending;
3092 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3093 
3094 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3095 	    kvm_vcpu_has_lapic(vcpu))
3096 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3097 
3098 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3099 
3100 	return 0;
3101 }
3102 
3103 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3104 					     struct kvm_debugregs *dbgregs)
3105 {
3106 	unsigned long val;
3107 
3108 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3109 	_kvm_get_dr(vcpu, 6, &val);
3110 	dbgregs->dr6 = val;
3111 	dbgregs->dr7 = vcpu->arch.dr7;
3112 	dbgregs->flags = 0;
3113 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3114 }
3115 
3116 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3117 					    struct kvm_debugregs *dbgregs)
3118 {
3119 	if (dbgregs->flags)
3120 		return -EINVAL;
3121 
3122 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3123 	vcpu->arch.dr6 = dbgregs->dr6;
3124 	kvm_update_dr6(vcpu);
3125 	vcpu->arch.dr7 = dbgregs->dr7;
3126 	kvm_update_dr7(vcpu);
3127 
3128 	return 0;
3129 }
3130 
3131 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3132 					 struct kvm_xsave *guest_xsave)
3133 {
3134 	if (cpu_has_xsave) {
3135 		memcpy(guest_xsave->region,
3136 			&vcpu->arch.guest_fpu.state->xsave,
3137 			vcpu->arch.guest_xstate_size);
3138 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3139 			vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3140 	} else {
3141 		memcpy(guest_xsave->region,
3142 			&vcpu->arch.guest_fpu.state->fxsave,
3143 			sizeof(struct i387_fxsave_struct));
3144 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3145 			XSTATE_FPSSE;
3146 	}
3147 }
3148 
3149 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3150 					struct kvm_xsave *guest_xsave)
3151 {
3152 	u64 xstate_bv =
3153 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3154 
3155 	if (cpu_has_xsave) {
3156 		/*
3157 		 * Here we allow setting states that are not present in
3158 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3159 		 * with old userspace.
3160 		 */
3161 		if (xstate_bv & ~kvm_supported_xcr0())
3162 			return -EINVAL;
3163 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
3164 			guest_xsave->region, vcpu->arch.guest_xstate_size);
3165 	} else {
3166 		if (xstate_bv & ~XSTATE_FPSSE)
3167 			return -EINVAL;
3168 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3169 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
3170 	}
3171 	return 0;
3172 }
3173 
3174 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3175 					struct kvm_xcrs *guest_xcrs)
3176 {
3177 	if (!cpu_has_xsave) {
3178 		guest_xcrs->nr_xcrs = 0;
3179 		return;
3180 	}
3181 
3182 	guest_xcrs->nr_xcrs = 1;
3183 	guest_xcrs->flags = 0;
3184 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3185 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3186 }
3187 
3188 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3189 				       struct kvm_xcrs *guest_xcrs)
3190 {
3191 	int i, r = 0;
3192 
3193 	if (!cpu_has_xsave)
3194 		return -EINVAL;
3195 
3196 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3197 		return -EINVAL;
3198 
3199 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3200 		/* Only support XCR0 currently */
3201 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3202 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3203 				guest_xcrs->xcrs[i].value);
3204 			break;
3205 		}
3206 	if (r)
3207 		r = -EINVAL;
3208 	return r;
3209 }
3210 
3211 /*
3212  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3213  * stopped by the hypervisor.  This function will be called from the host only.
3214  * EINVAL is returned when the host attempts to set the flag for a guest that
3215  * does not support pv clocks.
3216  */
3217 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3218 {
3219 	if (!vcpu->arch.pv_time_enabled)
3220 		return -EINVAL;
3221 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3222 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3223 	return 0;
3224 }
3225 
3226 long kvm_arch_vcpu_ioctl(struct file *filp,
3227 			 unsigned int ioctl, unsigned long arg)
3228 {
3229 	struct kvm_vcpu *vcpu = filp->private_data;
3230 	void __user *argp = (void __user *)arg;
3231 	int r;
3232 	union {
3233 		struct kvm_lapic_state *lapic;
3234 		struct kvm_xsave *xsave;
3235 		struct kvm_xcrs *xcrs;
3236 		void *buffer;
3237 	} u;
3238 
3239 	u.buffer = NULL;
3240 	switch (ioctl) {
3241 	case KVM_GET_LAPIC: {
3242 		r = -EINVAL;
3243 		if (!vcpu->arch.apic)
3244 			goto out;
3245 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3246 
3247 		r = -ENOMEM;
3248 		if (!u.lapic)
3249 			goto out;
3250 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3251 		if (r)
3252 			goto out;
3253 		r = -EFAULT;
3254 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3255 			goto out;
3256 		r = 0;
3257 		break;
3258 	}
3259 	case KVM_SET_LAPIC: {
3260 		r = -EINVAL;
3261 		if (!vcpu->arch.apic)
3262 			goto out;
3263 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3264 		if (IS_ERR(u.lapic))
3265 			return PTR_ERR(u.lapic);
3266 
3267 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3268 		break;
3269 	}
3270 	case KVM_INTERRUPT: {
3271 		struct kvm_interrupt irq;
3272 
3273 		r = -EFAULT;
3274 		if (copy_from_user(&irq, argp, sizeof irq))
3275 			goto out;
3276 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3277 		break;
3278 	}
3279 	case KVM_NMI: {
3280 		r = kvm_vcpu_ioctl_nmi(vcpu);
3281 		break;
3282 	}
3283 	case KVM_SET_CPUID: {
3284 		struct kvm_cpuid __user *cpuid_arg = argp;
3285 		struct kvm_cpuid cpuid;
3286 
3287 		r = -EFAULT;
3288 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3289 			goto out;
3290 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3291 		break;
3292 	}
3293 	case KVM_SET_CPUID2: {
3294 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3295 		struct kvm_cpuid2 cpuid;
3296 
3297 		r = -EFAULT;
3298 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3299 			goto out;
3300 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3301 					      cpuid_arg->entries);
3302 		break;
3303 	}
3304 	case KVM_GET_CPUID2: {
3305 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3306 		struct kvm_cpuid2 cpuid;
3307 
3308 		r = -EFAULT;
3309 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3310 			goto out;
3311 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3312 					      cpuid_arg->entries);
3313 		if (r)
3314 			goto out;
3315 		r = -EFAULT;
3316 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3317 			goto out;
3318 		r = 0;
3319 		break;
3320 	}
3321 	case KVM_GET_MSRS:
3322 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3323 		break;
3324 	case KVM_SET_MSRS:
3325 		r = msr_io(vcpu, argp, do_set_msr, 0);
3326 		break;
3327 	case KVM_TPR_ACCESS_REPORTING: {
3328 		struct kvm_tpr_access_ctl tac;
3329 
3330 		r = -EFAULT;
3331 		if (copy_from_user(&tac, argp, sizeof tac))
3332 			goto out;
3333 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3334 		if (r)
3335 			goto out;
3336 		r = -EFAULT;
3337 		if (copy_to_user(argp, &tac, sizeof tac))
3338 			goto out;
3339 		r = 0;
3340 		break;
3341 	};
3342 	case KVM_SET_VAPIC_ADDR: {
3343 		struct kvm_vapic_addr va;
3344 
3345 		r = -EINVAL;
3346 		if (!irqchip_in_kernel(vcpu->kvm))
3347 			goto out;
3348 		r = -EFAULT;
3349 		if (copy_from_user(&va, argp, sizeof va))
3350 			goto out;
3351 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3352 		break;
3353 	}
3354 	case KVM_X86_SETUP_MCE: {
3355 		u64 mcg_cap;
3356 
3357 		r = -EFAULT;
3358 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3359 			goto out;
3360 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3361 		break;
3362 	}
3363 	case KVM_X86_SET_MCE: {
3364 		struct kvm_x86_mce mce;
3365 
3366 		r = -EFAULT;
3367 		if (copy_from_user(&mce, argp, sizeof mce))
3368 			goto out;
3369 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3370 		break;
3371 	}
3372 	case KVM_GET_VCPU_EVENTS: {
3373 		struct kvm_vcpu_events events;
3374 
3375 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3376 
3377 		r = -EFAULT;
3378 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3379 			break;
3380 		r = 0;
3381 		break;
3382 	}
3383 	case KVM_SET_VCPU_EVENTS: {
3384 		struct kvm_vcpu_events events;
3385 
3386 		r = -EFAULT;
3387 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3388 			break;
3389 
3390 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3391 		break;
3392 	}
3393 	case KVM_GET_DEBUGREGS: {
3394 		struct kvm_debugregs dbgregs;
3395 
3396 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3397 
3398 		r = -EFAULT;
3399 		if (copy_to_user(argp, &dbgregs,
3400 				 sizeof(struct kvm_debugregs)))
3401 			break;
3402 		r = 0;
3403 		break;
3404 	}
3405 	case KVM_SET_DEBUGREGS: {
3406 		struct kvm_debugregs dbgregs;
3407 
3408 		r = -EFAULT;
3409 		if (copy_from_user(&dbgregs, argp,
3410 				   sizeof(struct kvm_debugregs)))
3411 			break;
3412 
3413 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3414 		break;
3415 	}
3416 	case KVM_GET_XSAVE: {
3417 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3418 		r = -ENOMEM;
3419 		if (!u.xsave)
3420 			break;
3421 
3422 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3423 
3424 		r = -EFAULT;
3425 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3426 			break;
3427 		r = 0;
3428 		break;
3429 	}
3430 	case KVM_SET_XSAVE: {
3431 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3432 		if (IS_ERR(u.xsave))
3433 			return PTR_ERR(u.xsave);
3434 
3435 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3436 		break;
3437 	}
3438 	case KVM_GET_XCRS: {
3439 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3440 		r = -ENOMEM;
3441 		if (!u.xcrs)
3442 			break;
3443 
3444 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3445 
3446 		r = -EFAULT;
3447 		if (copy_to_user(argp, u.xcrs,
3448 				 sizeof(struct kvm_xcrs)))
3449 			break;
3450 		r = 0;
3451 		break;
3452 	}
3453 	case KVM_SET_XCRS: {
3454 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3455 		if (IS_ERR(u.xcrs))
3456 			return PTR_ERR(u.xcrs);
3457 
3458 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3459 		break;
3460 	}
3461 	case KVM_SET_TSC_KHZ: {
3462 		u32 user_tsc_khz;
3463 
3464 		r = -EINVAL;
3465 		user_tsc_khz = (u32)arg;
3466 
3467 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3468 			goto out;
3469 
3470 		if (user_tsc_khz == 0)
3471 			user_tsc_khz = tsc_khz;
3472 
3473 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3474 
3475 		r = 0;
3476 		goto out;
3477 	}
3478 	case KVM_GET_TSC_KHZ: {
3479 		r = vcpu->arch.virtual_tsc_khz;
3480 		goto out;
3481 	}
3482 	case KVM_KVMCLOCK_CTRL: {
3483 		r = kvm_set_guest_paused(vcpu);
3484 		goto out;
3485 	}
3486 	default:
3487 		r = -EINVAL;
3488 	}
3489 out:
3490 	kfree(u.buffer);
3491 	return r;
3492 }
3493 
3494 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3495 {
3496 	return VM_FAULT_SIGBUS;
3497 }
3498 
3499 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3500 {
3501 	int ret;
3502 
3503 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3504 		return -EINVAL;
3505 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3506 	return ret;
3507 }
3508 
3509 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3510 					      u64 ident_addr)
3511 {
3512 	kvm->arch.ept_identity_map_addr = ident_addr;
3513 	return 0;
3514 }
3515 
3516 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3517 					  u32 kvm_nr_mmu_pages)
3518 {
3519 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3520 		return -EINVAL;
3521 
3522 	mutex_lock(&kvm->slots_lock);
3523 
3524 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3525 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3526 
3527 	mutex_unlock(&kvm->slots_lock);
3528 	return 0;
3529 }
3530 
3531 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3532 {
3533 	return kvm->arch.n_max_mmu_pages;
3534 }
3535 
3536 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3537 {
3538 	int r;
3539 
3540 	r = 0;
3541 	switch (chip->chip_id) {
3542 	case KVM_IRQCHIP_PIC_MASTER:
3543 		memcpy(&chip->chip.pic,
3544 			&pic_irqchip(kvm)->pics[0],
3545 			sizeof(struct kvm_pic_state));
3546 		break;
3547 	case KVM_IRQCHIP_PIC_SLAVE:
3548 		memcpy(&chip->chip.pic,
3549 			&pic_irqchip(kvm)->pics[1],
3550 			sizeof(struct kvm_pic_state));
3551 		break;
3552 	case KVM_IRQCHIP_IOAPIC:
3553 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3554 		break;
3555 	default:
3556 		r = -EINVAL;
3557 		break;
3558 	}
3559 	return r;
3560 }
3561 
3562 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3563 {
3564 	int r;
3565 
3566 	r = 0;
3567 	switch (chip->chip_id) {
3568 	case KVM_IRQCHIP_PIC_MASTER:
3569 		spin_lock(&pic_irqchip(kvm)->lock);
3570 		memcpy(&pic_irqchip(kvm)->pics[0],
3571 			&chip->chip.pic,
3572 			sizeof(struct kvm_pic_state));
3573 		spin_unlock(&pic_irqchip(kvm)->lock);
3574 		break;
3575 	case KVM_IRQCHIP_PIC_SLAVE:
3576 		spin_lock(&pic_irqchip(kvm)->lock);
3577 		memcpy(&pic_irqchip(kvm)->pics[1],
3578 			&chip->chip.pic,
3579 			sizeof(struct kvm_pic_state));
3580 		spin_unlock(&pic_irqchip(kvm)->lock);
3581 		break;
3582 	case KVM_IRQCHIP_IOAPIC:
3583 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3584 		break;
3585 	default:
3586 		r = -EINVAL;
3587 		break;
3588 	}
3589 	kvm_pic_update_irq(pic_irqchip(kvm));
3590 	return r;
3591 }
3592 
3593 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3594 {
3595 	int r = 0;
3596 
3597 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3598 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3599 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3600 	return r;
3601 }
3602 
3603 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3604 {
3605 	int r = 0;
3606 
3607 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3608 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3609 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3610 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3611 	return r;
3612 }
3613 
3614 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3615 {
3616 	int r = 0;
3617 
3618 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3619 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3620 		sizeof(ps->channels));
3621 	ps->flags = kvm->arch.vpit->pit_state.flags;
3622 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3623 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3624 	return r;
3625 }
3626 
3627 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3628 {
3629 	int r = 0, start = 0;
3630 	u32 prev_legacy, cur_legacy;
3631 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3632 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3633 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3634 	if (!prev_legacy && cur_legacy)
3635 		start = 1;
3636 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3637 	       sizeof(kvm->arch.vpit->pit_state.channels));
3638 	kvm->arch.vpit->pit_state.flags = ps->flags;
3639 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3640 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3641 	return r;
3642 }
3643 
3644 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3645 				 struct kvm_reinject_control *control)
3646 {
3647 	if (!kvm->arch.vpit)
3648 		return -ENXIO;
3649 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3650 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3651 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3652 	return 0;
3653 }
3654 
3655 /**
3656  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3657  * @kvm: kvm instance
3658  * @log: slot id and address to which we copy the log
3659  *
3660  * We need to keep it in mind that VCPU threads can write to the bitmap
3661  * concurrently.  So, to avoid losing data, we keep the following order for
3662  * each bit:
3663  *
3664  *   1. Take a snapshot of the bit and clear it if needed.
3665  *   2. Write protect the corresponding page.
3666  *   3. Flush TLB's if needed.
3667  *   4. Copy the snapshot to the userspace.
3668  *
3669  * Between 2 and 3, the guest may write to the page using the remaining TLB
3670  * entry.  This is not a problem because the page will be reported dirty at
3671  * step 4 using the snapshot taken before and step 3 ensures that successive
3672  * writes will be logged for the next call.
3673  */
3674 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3675 {
3676 	int r;
3677 	struct kvm_memory_slot *memslot;
3678 	unsigned long n, i;
3679 	unsigned long *dirty_bitmap;
3680 	unsigned long *dirty_bitmap_buffer;
3681 	bool is_dirty = false;
3682 
3683 	mutex_lock(&kvm->slots_lock);
3684 
3685 	r = -EINVAL;
3686 	if (log->slot >= KVM_USER_MEM_SLOTS)
3687 		goto out;
3688 
3689 	memslot = id_to_memslot(kvm->memslots, log->slot);
3690 
3691 	dirty_bitmap = memslot->dirty_bitmap;
3692 	r = -ENOENT;
3693 	if (!dirty_bitmap)
3694 		goto out;
3695 
3696 	n = kvm_dirty_bitmap_bytes(memslot);
3697 
3698 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3699 	memset(dirty_bitmap_buffer, 0, n);
3700 
3701 	spin_lock(&kvm->mmu_lock);
3702 
3703 	for (i = 0; i < n / sizeof(long); i++) {
3704 		unsigned long mask;
3705 		gfn_t offset;
3706 
3707 		if (!dirty_bitmap[i])
3708 			continue;
3709 
3710 		is_dirty = true;
3711 
3712 		mask = xchg(&dirty_bitmap[i], 0);
3713 		dirty_bitmap_buffer[i] = mask;
3714 
3715 		offset = i * BITS_PER_LONG;
3716 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3717 	}
3718 
3719 	spin_unlock(&kvm->mmu_lock);
3720 
3721 	/* See the comments in kvm_mmu_slot_remove_write_access(). */
3722 	lockdep_assert_held(&kvm->slots_lock);
3723 
3724 	/*
3725 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3726 	 * kvm_mmu_slot_remove_write_access().
3727 	 */
3728 	if (is_dirty)
3729 		kvm_flush_remote_tlbs(kvm);
3730 
3731 	r = -EFAULT;
3732 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3733 		goto out;
3734 
3735 	r = 0;
3736 out:
3737 	mutex_unlock(&kvm->slots_lock);
3738 	return r;
3739 }
3740 
3741 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3742 			bool line_status)
3743 {
3744 	if (!irqchip_in_kernel(kvm))
3745 		return -ENXIO;
3746 
3747 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3748 					irq_event->irq, irq_event->level,
3749 					line_status);
3750 	return 0;
3751 }
3752 
3753 long kvm_arch_vm_ioctl(struct file *filp,
3754 		       unsigned int ioctl, unsigned long arg)
3755 {
3756 	struct kvm *kvm = filp->private_data;
3757 	void __user *argp = (void __user *)arg;
3758 	int r = -ENOTTY;
3759 	/*
3760 	 * This union makes it completely explicit to gcc-3.x
3761 	 * that these two variables' stack usage should be
3762 	 * combined, not added together.
3763 	 */
3764 	union {
3765 		struct kvm_pit_state ps;
3766 		struct kvm_pit_state2 ps2;
3767 		struct kvm_pit_config pit_config;
3768 	} u;
3769 
3770 	switch (ioctl) {
3771 	case KVM_SET_TSS_ADDR:
3772 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3773 		break;
3774 	case KVM_SET_IDENTITY_MAP_ADDR: {
3775 		u64 ident_addr;
3776 
3777 		r = -EFAULT;
3778 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3779 			goto out;
3780 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3781 		break;
3782 	}
3783 	case KVM_SET_NR_MMU_PAGES:
3784 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3785 		break;
3786 	case KVM_GET_NR_MMU_PAGES:
3787 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3788 		break;
3789 	case KVM_CREATE_IRQCHIP: {
3790 		struct kvm_pic *vpic;
3791 
3792 		mutex_lock(&kvm->lock);
3793 		r = -EEXIST;
3794 		if (kvm->arch.vpic)
3795 			goto create_irqchip_unlock;
3796 		r = -EINVAL;
3797 		if (atomic_read(&kvm->online_vcpus))
3798 			goto create_irqchip_unlock;
3799 		r = -ENOMEM;
3800 		vpic = kvm_create_pic(kvm);
3801 		if (vpic) {
3802 			r = kvm_ioapic_init(kvm);
3803 			if (r) {
3804 				mutex_lock(&kvm->slots_lock);
3805 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3806 							  &vpic->dev_master);
3807 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3808 							  &vpic->dev_slave);
3809 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3810 							  &vpic->dev_eclr);
3811 				mutex_unlock(&kvm->slots_lock);
3812 				kfree(vpic);
3813 				goto create_irqchip_unlock;
3814 			}
3815 		} else
3816 			goto create_irqchip_unlock;
3817 		smp_wmb();
3818 		kvm->arch.vpic = vpic;
3819 		smp_wmb();
3820 		r = kvm_setup_default_irq_routing(kvm);
3821 		if (r) {
3822 			mutex_lock(&kvm->slots_lock);
3823 			mutex_lock(&kvm->irq_lock);
3824 			kvm_ioapic_destroy(kvm);
3825 			kvm_destroy_pic(kvm);
3826 			mutex_unlock(&kvm->irq_lock);
3827 			mutex_unlock(&kvm->slots_lock);
3828 		}
3829 	create_irqchip_unlock:
3830 		mutex_unlock(&kvm->lock);
3831 		break;
3832 	}
3833 	case KVM_CREATE_PIT:
3834 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3835 		goto create_pit;
3836 	case KVM_CREATE_PIT2:
3837 		r = -EFAULT;
3838 		if (copy_from_user(&u.pit_config, argp,
3839 				   sizeof(struct kvm_pit_config)))
3840 			goto out;
3841 	create_pit:
3842 		mutex_lock(&kvm->slots_lock);
3843 		r = -EEXIST;
3844 		if (kvm->arch.vpit)
3845 			goto create_pit_unlock;
3846 		r = -ENOMEM;
3847 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3848 		if (kvm->arch.vpit)
3849 			r = 0;
3850 	create_pit_unlock:
3851 		mutex_unlock(&kvm->slots_lock);
3852 		break;
3853 	case KVM_GET_IRQCHIP: {
3854 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3855 		struct kvm_irqchip *chip;
3856 
3857 		chip = memdup_user(argp, sizeof(*chip));
3858 		if (IS_ERR(chip)) {
3859 			r = PTR_ERR(chip);
3860 			goto out;
3861 		}
3862 
3863 		r = -ENXIO;
3864 		if (!irqchip_in_kernel(kvm))
3865 			goto get_irqchip_out;
3866 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3867 		if (r)
3868 			goto get_irqchip_out;
3869 		r = -EFAULT;
3870 		if (copy_to_user(argp, chip, sizeof *chip))
3871 			goto get_irqchip_out;
3872 		r = 0;
3873 	get_irqchip_out:
3874 		kfree(chip);
3875 		break;
3876 	}
3877 	case KVM_SET_IRQCHIP: {
3878 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3879 		struct kvm_irqchip *chip;
3880 
3881 		chip = memdup_user(argp, sizeof(*chip));
3882 		if (IS_ERR(chip)) {
3883 			r = PTR_ERR(chip);
3884 			goto out;
3885 		}
3886 
3887 		r = -ENXIO;
3888 		if (!irqchip_in_kernel(kvm))
3889 			goto set_irqchip_out;
3890 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3891 		if (r)
3892 			goto set_irqchip_out;
3893 		r = 0;
3894 	set_irqchip_out:
3895 		kfree(chip);
3896 		break;
3897 	}
3898 	case KVM_GET_PIT: {
3899 		r = -EFAULT;
3900 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3901 			goto out;
3902 		r = -ENXIO;
3903 		if (!kvm->arch.vpit)
3904 			goto out;
3905 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3906 		if (r)
3907 			goto out;
3908 		r = -EFAULT;
3909 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3910 			goto out;
3911 		r = 0;
3912 		break;
3913 	}
3914 	case KVM_SET_PIT: {
3915 		r = -EFAULT;
3916 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3917 			goto out;
3918 		r = -ENXIO;
3919 		if (!kvm->arch.vpit)
3920 			goto out;
3921 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3922 		break;
3923 	}
3924 	case KVM_GET_PIT2: {
3925 		r = -ENXIO;
3926 		if (!kvm->arch.vpit)
3927 			goto out;
3928 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3929 		if (r)
3930 			goto out;
3931 		r = -EFAULT;
3932 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3933 			goto out;
3934 		r = 0;
3935 		break;
3936 	}
3937 	case KVM_SET_PIT2: {
3938 		r = -EFAULT;
3939 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3940 			goto out;
3941 		r = -ENXIO;
3942 		if (!kvm->arch.vpit)
3943 			goto out;
3944 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3945 		break;
3946 	}
3947 	case KVM_REINJECT_CONTROL: {
3948 		struct kvm_reinject_control control;
3949 		r =  -EFAULT;
3950 		if (copy_from_user(&control, argp, sizeof(control)))
3951 			goto out;
3952 		r = kvm_vm_ioctl_reinject(kvm, &control);
3953 		break;
3954 	}
3955 	case KVM_XEN_HVM_CONFIG: {
3956 		r = -EFAULT;
3957 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3958 				   sizeof(struct kvm_xen_hvm_config)))
3959 			goto out;
3960 		r = -EINVAL;
3961 		if (kvm->arch.xen_hvm_config.flags)
3962 			goto out;
3963 		r = 0;
3964 		break;
3965 	}
3966 	case KVM_SET_CLOCK: {
3967 		struct kvm_clock_data user_ns;
3968 		u64 now_ns;
3969 		s64 delta;
3970 
3971 		r = -EFAULT;
3972 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3973 			goto out;
3974 
3975 		r = -EINVAL;
3976 		if (user_ns.flags)
3977 			goto out;
3978 
3979 		r = 0;
3980 		local_irq_disable();
3981 		now_ns = get_kernel_ns();
3982 		delta = user_ns.clock - now_ns;
3983 		local_irq_enable();
3984 		kvm->arch.kvmclock_offset = delta;
3985 		kvm_gen_update_masterclock(kvm);
3986 		break;
3987 	}
3988 	case KVM_GET_CLOCK: {
3989 		struct kvm_clock_data user_ns;
3990 		u64 now_ns;
3991 
3992 		local_irq_disable();
3993 		now_ns = get_kernel_ns();
3994 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3995 		local_irq_enable();
3996 		user_ns.flags = 0;
3997 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3998 
3999 		r = -EFAULT;
4000 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4001 			goto out;
4002 		r = 0;
4003 		break;
4004 	}
4005 
4006 	default:
4007 		;
4008 	}
4009 out:
4010 	return r;
4011 }
4012 
4013 static void kvm_init_msr_list(void)
4014 {
4015 	u32 dummy[2];
4016 	unsigned i, j;
4017 
4018 	/* skip the first msrs in the list. KVM-specific */
4019 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4020 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4021 			continue;
4022 
4023 		/*
4024 		 * Even MSRs that are valid in the host may not be exposed
4025 		 * to the guests in some cases.  We could work around this
4026 		 * in VMX with the generic MSR save/load machinery, but it
4027 		 * is not really worthwhile since it will really only
4028 		 * happen with nested virtualization.
4029 		 */
4030 		switch (msrs_to_save[i]) {
4031 		case MSR_IA32_BNDCFGS:
4032 			if (!kvm_x86_ops->mpx_supported())
4033 				continue;
4034 			break;
4035 		default:
4036 			break;
4037 		}
4038 
4039 		if (j < i)
4040 			msrs_to_save[j] = msrs_to_save[i];
4041 		j++;
4042 	}
4043 	num_msrs_to_save = j;
4044 }
4045 
4046 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4047 			   const void *v)
4048 {
4049 	int handled = 0;
4050 	int n;
4051 
4052 	do {
4053 		n = min(len, 8);
4054 		if (!(vcpu->arch.apic &&
4055 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
4056 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4057 			break;
4058 		handled += n;
4059 		addr += n;
4060 		len -= n;
4061 		v += n;
4062 	} while (len);
4063 
4064 	return handled;
4065 }
4066 
4067 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4068 {
4069 	int handled = 0;
4070 	int n;
4071 
4072 	do {
4073 		n = min(len, 8);
4074 		if (!(vcpu->arch.apic &&
4075 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
4076 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4077 			break;
4078 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4079 		handled += n;
4080 		addr += n;
4081 		len -= n;
4082 		v += n;
4083 	} while (len);
4084 
4085 	return handled;
4086 }
4087 
4088 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4089 			struct kvm_segment *var, int seg)
4090 {
4091 	kvm_x86_ops->set_segment(vcpu, var, seg);
4092 }
4093 
4094 void kvm_get_segment(struct kvm_vcpu *vcpu,
4095 		     struct kvm_segment *var, int seg)
4096 {
4097 	kvm_x86_ops->get_segment(vcpu, var, seg);
4098 }
4099 
4100 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4101 			   struct x86_exception *exception)
4102 {
4103 	gpa_t t_gpa;
4104 
4105 	BUG_ON(!mmu_is_nested(vcpu));
4106 
4107 	/* NPT walks are always user-walks */
4108 	access |= PFERR_USER_MASK;
4109 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4110 
4111 	return t_gpa;
4112 }
4113 
4114 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4115 			      struct x86_exception *exception)
4116 {
4117 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4118 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4119 }
4120 
4121  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4122 				struct x86_exception *exception)
4123 {
4124 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4125 	access |= PFERR_FETCH_MASK;
4126 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4127 }
4128 
4129 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4130 			       struct x86_exception *exception)
4131 {
4132 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4133 	access |= PFERR_WRITE_MASK;
4134 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4135 }
4136 
4137 /* uses this to access any guest's mapped memory without checking CPL */
4138 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4139 				struct x86_exception *exception)
4140 {
4141 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4142 }
4143 
4144 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4145 				      struct kvm_vcpu *vcpu, u32 access,
4146 				      struct x86_exception *exception)
4147 {
4148 	void *data = val;
4149 	int r = X86EMUL_CONTINUE;
4150 
4151 	while (bytes) {
4152 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4153 							    exception);
4154 		unsigned offset = addr & (PAGE_SIZE-1);
4155 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4156 		int ret;
4157 
4158 		if (gpa == UNMAPPED_GVA)
4159 			return X86EMUL_PROPAGATE_FAULT;
4160 		ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4161 					  offset, toread);
4162 		if (ret < 0) {
4163 			r = X86EMUL_IO_NEEDED;
4164 			goto out;
4165 		}
4166 
4167 		bytes -= toread;
4168 		data += toread;
4169 		addr += toread;
4170 	}
4171 out:
4172 	return r;
4173 }
4174 
4175 /* used for instruction fetching */
4176 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4177 				gva_t addr, void *val, unsigned int bytes,
4178 				struct x86_exception *exception)
4179 {
4180 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4181 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4182 	unsigned offset;
4183 	int ret;
4184 
4185 	/* Inline kvm_read_guest_virt_helper for speed.  */
4186 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4187 						    exception);
4188 	if (unlikely(gpa == UNMAPPED_GVA))
4189 		return X86EMUL_PROPAGATE_FAULT;
4190 
4191 	offset = addr & (PAGE_SIZE-1);
4192 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4193 		bytes = (unsigned)PAGE_SIZE - offset;
4194 	ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4195 				  offset, bytes);
4196 	if (unlikely(ret < 0))
4197 		return X86EMUL_IO_NEEDED;
4198 
4199 	return X86EMUL_CONTINUE;
4200 }
4201 
4202 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4203 			       gva_t addr, void *val, unsigned int bytes,
4204 			       struct x86_exception *exception)
4205 {
4206 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4207 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4208 
4209 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4210 					  exception);
4211 }
4212 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4213 
4214 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4215 				      gva_t addr, void *val, unsigned int bytes,
4216 				      struct x86_exception *exception)
4217 {
4218 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4219 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4220 }
4221 
4222 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4223 				       gva_t addr, void *val,
4224 				       unsigned int bytes,
4225 				       struct x86_exception *exception)
4226 {
4227 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4228 	void *data = val;
4229 	int r = X86EMUL_CONTINUE;
4230 
4231 	while (bytes) {
4232 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4233 							     PFERR_WRITE_MASK,
4234 							     exception);
4235 		unsigned offset = addr & (PAGE_SIZE-1);
4236 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4237 		int ret;
4238 
4239 		if (gpa == UNMAPPED_GVA)
4240 			return X86EMUL_PROPAGATE_FAULT;
4241 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4242 		if (ret < 0) {
4243 			r = X86EMUL_IO_NEEDED;
4244 			goto out;
4245 		}
4246 
4247 		bytes -= towrite;
4248 		data += towrite;
4249 		addr += towrite;
4250 	}
4251 out:
4252 	return r;
4253 }
4254 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4255 
4256 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4257 				gpa_t *gpa, struct x86_exception *exception,
4258 				bool write)
4259 {
4260 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4261 		| (write ? PFERR_WRITE_MASK : 0);
4262 
4263 	if (vcpu_match_mmio_gva(vcpu, gva)
4264 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4265 				 vcpu->arch.access, access)) {
4266 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4267 					(gva & (PAGE_SIZE - 1));
4268 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4269 		return 1;
4270 	}
4271 
4272 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4273 
4274 	if (*gpa == UNMAPPED_GVA)
4275 		return -1;
4276 
4277 	/* For APIC access vmexit */
4278 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4279 		return 1;
4280 
4281 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4282 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4283 		return 1;
4284 	}
4285 
4286 	return 0;
4287 }
4288 
4289 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4290 			const void *val, int bytes)
4291 {
4292 	int ret;
4293 
4294 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4295 	if (ret < 0)
4296 		return 0;
4297 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4298 	return 1;
4299 }
4300 
4301 struct read_write_emulator_ops {
4302 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4303 				  int bytes);
4304 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4305 				  void *val, int bytes);
4306 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4307 			       int bytes, void *val);
4308 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4309 				    void *val, int bytes);
4310 	bool write;
4311 };
4312 
4313 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4314 {
4315 	if (vcpu->mmio_read_completed) {
4316 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4317 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4318 		vcpu->mmio_read_completed = 0;
4319 		return 1;
4320 	}
4321 
4322 	return 0;
4323 }
4324 
4325 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4326 			void *val, int bytes)
4327 {
4328 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4329 }
4330 
4331 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4332 			 void *val, int bytes)
4333 {
4334 	return emulator_write_phys(vcpu, gpa, val, bytes);
4335 }
4336 
4337 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4338 {
4339 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4340 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4341 }
4342 
4343 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4344 			  void *val, int bytes)
4345 {
4346 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4347 	return X86EMUL_IO_NEEDED;
4348 }
4349 
4350 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4351 			   void *val, int bytes)
4352 {
4353 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4354 
4355 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4356 	return X86EMUL_CONTINUE;
4357 }
4358 
4359 static const struct read_write_emulator_ops read_emultor = {
4360 	.read_write_prepare = read_prepare,
4361 	.read_write_emulate = read_emulate,
4362 	.read_write_mmio = vcpu_mmio_read,
4363 	.read_write_exit_mmio = read_exit_mmio,
4364 };
4365 
4366 static const struct read_write_emulator_ops write_emultor = {
4367 	.read_write_emulate = write_emulate,
4368 	.read_write_mmio = write_mmio,
4369 	.read_write_exit_mmio = write_exit_mmio,
4370 	.write = true,
4371 };
4372 
4373 static int emulator_read_write_onepage(unsigned long addr, void *val,
4374 				       unsigned int bytes,
4375 				       struct x86_exception *exception,
4376 				       struct kvm_vcpu *vcpu,
4377 				       const struct read_write_emulator_ops *ops)
4378 {
4379 	gpa_t gpa;
4380 	int handled, ret;
4381 	bool write = ops->write;
4382 	struct kvm_mmio_fragment *frag;
4383 
4384 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4385 
4386 	if (ret < 0)
4387 		return X86EMUL_PROPAGATE_FAULT;
4388 
4389 	/* For APIC access vmexit */
4390 	if (ret)
4391 		goto mmio;
4392 
4393 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4394 		return X86EMUL_CONTINUE;
4395 
4396 mmio:
4397 	/*
4398 	 * Is this MMIO handled locally?
4399 	 */
4400 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4401 	if (handled == bytes)
4402 		return X86EMUL_CONTINUE;
4403 
4404 	gpa += handled;
4405 	bytes -= handled;
4406 	val += handled;
4407 
4408 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4409 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4410 	frag->gpa = gpa;
4411 	frag->data = val;
4412 	frag->len = bytes;
4413 	return X86EMUL_CONTINUE;
4414 }
4415 
4416 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4417 			void *val, unsigned int bytes,
4418 			struct x86_exception *exception,
4419 			const struct read_write_emulator_ops *ops)
4420 {
4421 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4422 	gpa_t gpa;
4423 	int rc;
4424 
4425 	if (ops->read_write_prepare &&
4426 		  ops->read_write_prepare(vcpu, val, bytes))
4427 		return X86EMUL_CONTINUE;
4428 
4429 	vcpu->mmio_nr_fragments = 0;
4430 
4431 	/* Crossing a page boundary? */
4432 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4433 		int now;
4434 
4435 		now = -addr & ~PAGE_MASK;
4436 		rc = emulator_read_write_onepage(addr, val, now, exception,
4437 						 vcpu, ops);
4438 
4439 		if (rc != X86EMUL_CONTINUE)
4440 			return rc;
4441 		addr += now;
4442 		val += now;
4443 		bytes -= now;
4444 	}
4445 
4446 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4447 					 vcpu, ops);
4448 	if (rc != X86EMUL_CONTINUE)
4449 		return rc;
4450 
4451 	if (!vcpu->mmio_nr_fragments)
4452 		return rc;
4453 
4454 	gpa = vcpu->mmio_fragments[0].gpa;
4455 
4456 	vcpu->mmio_needed = 1;
4457 	vcpu->mmio_cur_fragment = 0;
4458 
4459 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4460 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4461 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4462 	vcpu->run->mmio.phys_addr = gpa;
4463 
4464 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4465 }
4466 
4467 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4468 				  unsigned long addr,
4469 				  void *val,
4470 				  unsigned int bytes,
4471 				  struct x86_exception *exception)
4472 {
4473 	return emulator_read_write(ctxt, addr, val, bytes,
4474 				   exception, &read_emultor);
4475 }
4476 
4477 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4478 			    unsigned long addr,
4479 			    const void *val,
4480 			    unsigned int bytes,
4481 			    struct x86_exception *exception)
4482 {
4483 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4484 				   exception, &write_emultor);
4485 }
4486 
4487 #define CMPXCHG_TYPE(t, ptr, old, new) \
4488 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4489 
4490 #ifdef CONFIG_X86_64
4491 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4492 #else
4493 #  define CMPXCHG64(ptr, old, new) \
4494 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4495 #endif
4496 
4497 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4498 				     unsigned long addr,
4499 				     const void *old,
4500 				     const void *new,
4501 				     unsigned int bytes,
4502 				     struct x86_exception *exception)
4503 {
4504 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4505 	gpa_t gpa;
4506 	struct page *page;
4507 	char *kaddr;
4508 	bool exchanged;
4509 
4510 	/* guests cmpxchg8b have to be emulated atomically */
4511 	if (bytes > 8 || (bytes & (bytes - 1)))
4512 		goto emul_write;
4513 
4514 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4515 
4516 	if (gpa == UNMAPPED_GVA ||
4517 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4518 		goto emul_write;
4519 
4520 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4521 		goto emul_write;
4522 
4523 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4524 	if (is_error_page(page))
4525 		goto emul_write;
4526 
4527 	kaddr = kmap_atomic(page);
4528 	kaddr += offset_in_page(gpa);
4529 	switch (bytes) {
4530 	case 1:
4531 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4532 		break;
4533 	case 2:
4534 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4535 		break;
4536 	case 4:
4537 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4538 		break;
4539 	case 8:
4540 		exchanged = CMPXCHG64(kaddr, old, new);
4541 		break;
4542 	default:
4543 		BUG();
4544 	}
4545 	kunmap_atomic(kaddr);
4546 	kvm_release_page_dirty(page);
4547 
4548 	if (!exchanged)
4549 		return X86EMUL_CMPXCHG_FAILED;
4550 
4551 	mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4552 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4553 
4554 	return X86EMUL_CONTINUE;
4555 
4556 emul_write:
4557 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4558 
4559 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4560 }
4561 
4562 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4563 {
4564 	/* TODO: String I/O for in kernel device */
4565 	int r;
4566 
4567 	if (vcpu->arch.pio.in)
4568 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4569 				    vcpu->arch.pio.size, pd);
4570 	else
4571 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4572 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4573 				     pd);
4574 	return r;
4575 }
4576 
4577 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4578 			       unsigned short port, void *val,
4579 			       unsigned int count, bool in)
4580 {
4581 	vcpu->arch.pio.port = port;
4582 	vcpu->arch.pio.in = in;
4583 	vcpu->arch.pio.count  = count;
4584 	vcpu->arch.pio.size = size;
4585 
4586 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4587 		vcpu->arch.pio.count = 0;
4588 		return 1;
4589 	}
4590 
4591 	vcpu->run->exit_reason = KVM_EXIT_IO;
4592 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4593 	vcpu->run->io.size = size;
4594 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4595 	vcpu->run->io.count = count;
4596 	vcpu->run->io.port = port;
4597 
4598 	return 0;
4599 }
4600 
4601 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4602 				    int size, unsigned short port, void *val,
4603 				    unsigned int count)
4604 {
4605 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4606 	int ret;
4607 
4608 	if (vcpu->arch.pio.count)
4609 		goto data_avail;
4610 
4611 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4612 	if (ret) {
4613 data_avail:
4614 		memcpy(val, vcpu->arch.pio_data, size * count);
4615 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4616 		vcpu->arch.pio.count = 0;
4617 		return 1;
4618 	}
4619 
4620 	return 0;
4621 }
4622 
4623 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4624 				     int size, unsigned short port,
4625 				     const void *val, unsigned int count)
4626 {
4627 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4628 
4629 	memcpy(vcpu->arch.pio_data, val, size * count);
4630 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4631 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4632 }
4633 
4634 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4635 {
4636 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4637 }
4638 
4639 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4640 {
4641 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4642 }
4643 
4644 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4645 {
4646 	if (!need_emulate_wbinvd(vcpu))
4647 		return X86EMUL_CONTINUE;
4648 
4649 	if (kvm_x86_ops->has_wbinvd_exit()) {
4650 		int cpu = get_cpu();
4651 
4652 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4653 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4654 				wbinvd_ipi, NULL, 1);
4655 		put_cpu();
4656 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4657 	} else
4658 		wbinvd();
4659 	return X86EMUL_CONTINUE;
4660 }
4661 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4662 
4663 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4664 {
4665 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4666 }
4667 
4668 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4669 {
4670 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4671 }
4672 
4673 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4674 {
4675 
4676 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4677 }
4678 
4679 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4680 {
4681 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4682 }
4683 
4684 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4685 {
4686 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4687 	unsigned long value;
4688 
4689 	switch (cr) {
4690 	case 0:
4691 		value = kvm_read_cr0(vcpu);
4692 		break;
4693 	case 2:
4694 		value = vcpu->arch.cr2;
4695 		break;
4696 	case 3:
4697 		value = kvm_read_cr3(vcpu);
4698 		break;
4699 	case 4:
4700 		value = kvm_read_cr4(vcpu);
4701 		break;
4702 	case 8:
4703 		value = kvm_get_cr8(vcpu);
4704 		break;
4705 	default:
4706 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4707 		return 0;
4708 	}
4709 
4710 	return value;
4711 }
4712 
4713 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4714 {
4715 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4716 	int res = 0;
4717 
4718 	switch (cr) {
4719 	case 0:
4720 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4721 		break;
4722 	case 2:
4723 		vcpu->arch.cr2 = val;
4724 		break;
4725 	case 3:
4726 		res = kvm_set_cr3(vcpu, val);
4727 		break;
4728 	case 4:
4729 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4730 		break;
4731 	case 8:
4732 		res = kvm_set_cr8(vcpu, val);
4733 		break;
4734 	default:
4735 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4736 		res = -1;
4737 	}
4738 
4739 	return res;
4740 }
4741 
4742 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4743 {
4744 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4745 }
4746 
4747 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4748 {
4749 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4750 }
4751 
4752 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4753 {
4754 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4755 }
4756 
4757 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4758 {
4759 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4760 }
4761 
4762 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4763 {
4764 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4765 }
4766 
4767 static unsigned long emulator_get_cached_segment_base(
4768 	struct x86_emulate_ctxt *ctxt, int seg)
4769 {
4770 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4771 }
4772 
4773 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4774 				 struct desc_struct *desc, u32 *base3,
4775 				 int seg)
4776 {
4777 	struct kvm_segment var;
4778 
4779 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4780 	*selector = var.selector;
4781 
4782 	if (var.unusable) {
4783 		memset(desc, 0, sizeof(*desc));
4784 		return false;
4785 	}
4786 
4787 	if (var.g)
4788 		var.limit >>= 12;
4789 	set_desc_limit(desc, var.limit);
4790 	set_desc_base(desc, (unsigned long)var.base);
4791 #ifdef CONFIG_X86_64
4792 	if (base3)
4793 		*base3 = var.base >> 32;
4794 #endif
4795 	desc->type = var.type;
4796 	desc->s = var.s;
4797 	desc->dpl = var.dpl;
4798 	desc->p = var.present;
4799 	desc->avl = var.avl;
4800 	desc->l = var.l;
4801 	desc->d = var.db;
4802 	desc->g = var.g;
4803 
4804 	return true;
4805 }
4806 
4807 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4808 				 struct desc_struct *desc, u32 base3,
4809 				 int seg)
4810 {
4811 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4812 	struct kvm_segment var;
4813 
4814 	var.selector = selector;
4815 	var.base = get_desc_base(desc);
4816 #ifdef CONFIG_X86_64
4817 	var.base |= ((u64)base3) << 32;
4818 #endif
4819 	var.limit = get_desc_limit(desc);
4820 	if (desc->g)
4821 		var.limit = (var.limit << 12) | 0xfff;
4822 	var.type = desc->type;
4823 	var.dpl = desc->dpl;
4824 	var.db = desc->d;
4825 	var.s = desc->s;
4826 	var.l = desc->l;
4827 	var.g = desc->g;
4828 	var.avl = desc->avl;
4829 	var.present = desc->p;
4830 	var.unusable = !var.present;
4831 	var.padding = 0;
4832 
4833 	kvm_set_segment(vcpu, &var, seg);
4834 	return;
4835 }
4836 
4837 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4838 			    u32 msr_index, u64 *pdata)
4839 {
4840 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4841 }
4842 
4843 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4844 			    u32 msr_index, u64 data)
4845 {
4846 	struct msr_data msr;
4847 
4848 	msr.data = data;
4849 	msr.index = msr_index;
4850 	msr.host_initiated = false;
4851 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4852 }
4853 
4854 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4855 			      u32 pmc)
4856 {
4857 	return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4858 }
4859 
4860 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4861 			     u32 pmc, u64 *pdata)
4862 {
4863 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4864 }
4865 
4866 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4867 {
4868 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4869 }
4870 
4871 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4872 {
4873 	preempt_disable();
4874 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4875 	/*
4876 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4877 	 * so it may be clear at this point.
4878 	 */
4879 	clts();
4880 }
4881 
4882 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4883 {
4884 	preempt_enable();
4885 }
4886 
4887 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4888 			      struct x86_instruction_info *info,
4889 			      enum x86_intercept_stage stage)
4890 {
4891 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4892 }
4893 
4894 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4895 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4896 {
4897 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4898 }
4899 
4900 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4901 {
4902 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4903 }
4904 
4905 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4906 {
4907 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4908 }
4909 
4910 static const struct x86_emulate_ops emulate_ops = {
4911 	.read_gpr            = emulator_read_gpr,
4912 	.write_gpr           = emulator_write_gpr,
4913 	.read_std            = kvm_read_guest_virt_system,
4914 	.write_std           = kvm_write_guest_virt_system,
4915 	.fetch               = kvm_fetch_guest_virt,
4916 	.read_emulated       = emulator_read_emulated,
4917 	.write_emulated      = emulator_write_emulated,
4918 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4919 	.invlpg              = emulator_invlpg,
4920 	.pio_in_emulated     = emulator_pio_in_emulated,
4921 	.pio_out_emulated    = emulator_pio_out_emulated,
4922 	.get_segment         = emulator_get_segment,
4923 	.set_segment         = emulator_set_segment,
4924 	.get_cached_segment_base = emulator_get_cached_segment_base,
4925 	.get_gdt             = emulator_get_gdt,
4926 	.get_idt	     = emulator_get_idt,
4927 	.set_gdt             = emulator_set_gdt,
4928 	.set_idt	     = emulator_set_idt,
4929 	.get_cr              = emulator_get_cr,
4930 	.set_cr              = emulator_set_cr,
4931 	.cpl                 = emulator_get_cpl,
4932 	.get_dr              = emulator_get_dr,
4933 	.set_dr              = emulator_set_dr,
4934 	.set_msr             = emulator_set_msr,
4935 	.get_msr             = emulator_get_msr,
4936 	.check_pmc	     = emulator_check_pmc,
4937 	.read_pmc            = emulator_read_pmc,
4938 	.halt                = emulator_halt,
4939 	.wbinvd              = emulator_wbinvd,
4940 	.fix_hypercall       = emulator_fix_hypercall,
4941 	.get_fpu             = emulator_get_fpu,
4942 	.put_fpu             = emulator_put_fpu,
4943 	.intercept           = emulator_intercept,
4944 	.get_cpuid           = emulator_get_cpuid,
4945 };
4946 
4947 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4948 {
4949 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
4950 	/*
4951 	 * an sti; sti; sequence only disable interrupts for the first
4952 	 * instruction. So, if the last instruction, be it emulated or
4953 	 * not, left the system with the INT_STI flag enabled, it
4954 	 * means that the last instruction is an sti. We should not
4955 	 * leave the flag on in this case. The same goes for mov ss
4956 	 */
4957 	if (int_shadow & mask)
4958 		mask = 0;
4959 	if (unlikely(int_shadow || mask)) {
4960 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4961 		if (!mask)
4962 			kvm_make_request(KVM_REQ_EVENT, vcpu);
4963 	}
4964 }
4965 
4966 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
4967 {
4968 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4969 	if (ctxt->exception.vector == PF_VECTOR)
4970 		return kvm_propagate_fault(vcpu, &ctxt->exception);
4971 
4972 	if (ctxt->exception.error_code_valid)
4973 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4974 				      ctxt->exception.error_code);
4975 	else
4976 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4977 	return false;
4978 }
4979 
4980 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4981 {
4982 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4983 	int cs_db, cs_l;
4984 
4985 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4986 
4987 	ctxt->eflags = kvm_get_rflags(vcpu);
4988 	ctxt->eip = kvm_rip_read(vcpu);
4989 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4990 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4991 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
4992 		     cs_db				? X86EMUL_MODE_PROT32 :
4993 							  X86EMUL_MODE_PROT16;
4994 	ctxt->guest_mode = is_guest_mode(vcpu);
4995 
4996 	init_decode_cache(ctxt);
4997 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4998 }
4999 
5000 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5001 {
5002 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5003 	int ret;
5004 
5005 	init_emulate_ctxt(vcpu);
5006 
5007 	ctxt->op_bytes = 2;
5008 	ctxt->ad_bytes = 2;
5009 	ctxt->_eip = ctxt->eip + inc_eip;
5010 	ret = emulate_int_real(ctxt, irq);
5011 
5012 	if (ret != X86EMUL_CONTINUE)
5013 		return EMULATE_FAIL;
5014 
5015 	ctxt->eip = ctxt->_eip;
5016 	kvm_rip_write(vcpu, ctxt->eip);
5017 	kvm_set_rflags(vcpu, ctxt->eflags);
5018 
5019 	if (irq == NMI_VECTOR)
5020 		vcpu->arch.nmi_pending = 0;
5021 	else
5022 		vcpu->arch.interrupt.pending = false;
5023 
5024 	return EMULATE_DONE;
5025 }
5026 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5027 
5028 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5029 {
5030 	int r = EMULATE_DONE;
5031 
5032 	++vcpu->stat.insn_emulation_fail;
5033 	trace_kvm_emulate_insn_failed(vcpu);
5034 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5035 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5036 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5037 		vcpu->run->internal.ndata = 0;
5038 		r = EMULATE_FAIL;
5039 	}
5040 	kvm_queue_exception(vcpu, UD_VECTOR);
5041 
5042 	return r;
5043 }
5044 
5045 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5046 				  bool write_fault_to_shadow_pgtable,
5047 				  int emulation_type)
5048 {
5049 	gpa_t gpa = cr2;
5050 	pfn_t pfn;
5051 
5052 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5053 		return false;
5054 
5055 	if (!vcpu->arch.mmu.direct_map) {
5056 		/*
5057 		 * Write permission should be allowed since only
5058 		 * write access need to be emulated.
5059 		 */
5060 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5061 
5062 		/*
5063 		 * If the mapping is invalid in guest, let cpu retry
5064 		 * it to generate fault.
5065 		 */
5066 		if (gpa == UNMAPPED_GVA)
5067 			return true;
5068 	}
5069 
5070 	/*
5071 	 * Do not retry the unhandleable instruction if it faults on the
5072 	 * readonly host memory, otherwise it will goto a infinite loop:
5073 	 * retry instruction -> write #PF -> emulation fail -> retry
5074 	 * instruction -> ...
5075 	 */
5076 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5077 
5078 	/*
5079 	 * If the instruction failed on the error pfn, it can not be fixed,
5080 	 * report the error to userspace.
5081 	 */
5082 	if (is_error_noslot_pfn(pfn))
5083 		return false;
5084 
5085 	kvm_release_pfn_clean(pfn);
5086 
5087 	/* The instructions are well-emulated on direct mmu. */
5088 	if (vcpu->arch.mmu.direct_map) {
5089 		unsigned int indirect_shadow_pages;
5090 
5091 		spin_lock(&vcpu->kvm->mmu_lock);
5092 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5093 		spin_unlock(&vcpu->kvm->mmu_lock);
5094 
5095 		if (indirect_shadow_pages)
5096 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5097 
5098 		return true;
5099 	}
5100 
5101 	/*
5102 	 * if emulation was due to access to shadowed page table
5103 	 * and it failed try to unshadow page and re-enter the
5104 	 * guest to let CPU execute the instruction.
5105 	 */
5106 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5107 
5108 	/*
5109 	 * If the access faults on its page table, it can not
5110 	 * be fixed by unprotecting shadow page and it should
5111 	 * be reported to userspace.
5112 	 */
5113 	return !write_fault_to_shadow_pgtable;
5114 }
5115 
5116 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5117 			      unsigned long cr2,  int emulation_type)
5118 {
5119 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5120 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5121 
5122 	last_retry_eip = vcpu->arch.last_retry_eip;
5123 	last_retry_addr = vcpu->arch.last_retry_addr;
5124 
5125 	/*
5126 	 * If the emulation is caused by #PF and it is non-page_table
5127 	 * writing instruction, it means the VM-EXIT is caused by shadow
5128 	 * page protected, we can zap the shadow page and retry this
5129 	 * instruction directly.
5130 	 *
5131 	 * Note: if the guest uses a non-page-table modifying instruction
5132 	 * on the PDE that points to the instruction, then we will unmap
5133 	 * the instruction and go to an infinite loop. So, we cache the
5134 	 * last retried eip and the last fault address, if we meet the eip
5135 	 * and the address again, we can break out of the potential infinite
5136 	 * loop.
5137 	 */
5138 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5139 
5140 	if (!(emulation_type & EMULTYPE_RETRY))
5141 		return false;
5142 
5143 	if (x86_page_table_writing_insn(ctxt))
5144 		return false;
5145 
5146 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5147 		return false;
5148 
5149 	vcpu->arch.last_retry_eip = ctxt->eip;
5150 	vcpu->arch.last_retry_addr = cr2;
5151 
5152 	if (!vcpu->arch.mmu.direct_map)
5153 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5154 
5155 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5156 
5157 	return true;
5158 }
5159 
5160 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5161 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5162 
5163 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5164 				unsigned long *db)
5165 {
5166 	u32 dr6 = 0;
5167 	int i;
5168 	u32 enable, rwlen;
5169 
5170 	enable = dr7;
5171 	rwlen = dr7 >> 16;
5172 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5173 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5174 			dr6 |= (1 << i);
5175 	return dr6;
5176 }
5177 
5178 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5179 {
5180 	struct kvm_run *kvm_run = vcpu->run;
5181 
5182 	/*
5183 	 * rflags is the old, "raw" value of the flags.  The new value has
5184 	 * not been saved yet.
5185 	 *
5186 	 * This is correct even for TF set by the guest, because "the
5187 	 * processor will not generate this exception after the instruction
5188 	 * that sets the TF flag".
5189 	 */
5190 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5191 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5192 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5193 						  DR6_RTM;
5194 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5195 			kvm_run->debug.arch.exception = DB_VECTOR;
5196 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5197 			*r = EMULATE_USER_EXIT;
5198 		} else {
5199 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5200 			/*
5201 			 * "Certain debug exceptions may clear bit 0-3.  The
5202 			 * remaining contents of the DR6 register are never
5203 			 * cleared by the processor".
5204 			 */
5205 			vcpu->arch.dr6 &= ~15;
5206 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5207 			kvm_queue_exception(vcpu, DB_VECTOR);
5208 		}
5209 	}
5210 }
5211 
5212 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5213 {
5214 	struct kvm_run *kvm_run = vcpu->run;
5215 	unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5216 	u32 dr6 = 0;
5217 
5218 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5219 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5220 		dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5221 					   vcpu->arch.guest_debug_dr7,
5222 					   vcpu->arch.eff_db);
5223 
5224 		if (dr6 != 0) {
5225 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5226 			kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5227 				get_segment_base(vcpu, VCPU_SREG_CS);
5228 
5229 			kvm_run->debug.arch.exception = DB_VECTOR;
5230 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5231 			*r = EMULATE_USER_EXIT;
5232 			return true;
5233 		}
5234 	}
5235 
5236 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5237 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5238 		dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5239 					   vcpu->arch.dr7,
5240 					   vcpu->arch.db);
5241 
5242 		if (dr6 != 0) {
5243 			vcpu->arch.dr6 &= ~15;
5244 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5245 			kvm_queue_exception(vcpu, DB_VECTOR);
5246 			*r = EMULATE_DONE;
5247 			return true;
5248 		}
5249 	}
5250 
5251 	return false;
5252 }
5253 
5254 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5255 			    unsigned long cr2,
5256 			    int emulation_type,
5257 			    void *insn,
5258 			    int insn_len)
5259 {
5260 	int r;
5261 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5262 	bool writeback = true;
5263 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5264 
5265 	/*
5266 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5267 	 * never reused.
5268 	 */
5269 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5270 	kvm_clear_exception_queue(vcpu);
5271 
5272 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5273 		init_emulate_ctxt(vcpu);
5274 
5275 		/*
5276 		 * We will reenter on the same instruction since
5277 		 * we do not set complete_userspace_io.  This does not
5278 		 * handle watchpoints yet, those would be handled in
5279 		 * the emulate_ops.
5280 		 */
5281 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5282 			return r;
5283 
5284 		ctxt->interruptibility = 0;
5285 		ctxt->have_exception = false;
5286 		ctxt->exception.vector = -1;
5287 		ctxt->perm_ok = false;
5288 
5289 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5290 
5291 		r = x86_decode_insn(ctxt, insn, insn_len);
5292 
5293 		trace_kvm_emulate_insn_start(vcpu);
5294 		++vcpu->stat.insn_emulation;
5295 		if (r != EMULATION_OK)  {
5296 			if (emulation_type & EMULTYPE_TRAP_UD)
5297 				return EMULATE_FAIL;
5298 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5299 						emulation_type))
5300 				return EMULATE_DONE;
5301 			if (emulation_type & EMULTYPE_SKIP)
5302 				return EMULATE_FAIL;
5303 			return handle_emulation_failure(vcpu);
5304 		}
5305 	}
5306 
5307 	if (emulation_type & EMULTYPE_SKIP) {
5308 		kvm_rip_write(vcpu, ctxt->_eip);
5309 		if (ctxt->eflags & X86_EFLAGS_RF)
5310 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5311 		return EMULATE_DONE;
5312 	}
5313 
5314 	if (retry_instruction(ctxt, cr2, emulation_type))
5315 		return EMULATE_DONE;
5316 
5317 	/* this is needed for vmware backdoor interface to work since it
5318 	   changes registers values  during IO operation */
5319 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5320 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5321 		emulator_invalidate_register_cache(ctxt);
5322 	}
5323 
5324 restart:
5325 	r = x86_emulate_insn(ctxt);
5326 
5327 	if (r == EMULATION_INTERCEPTED)
5328 		return EMULATE_DONE;
5329 
5330 	if (r == EMULATION_FAILED) {
5331 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5332 					emulation_type))
5333 			return EMULATE_DONE;
5334 
5335 		return handle_emulation_failure(vcpu);
5336 	}
5337 
5338 	if (ctxt->have_exception) {
5339 		r = EMULATE_DONE;
5340 		if (inject_emulated_exception(vcpu))
5341 			return r;
5342 	} else if (vcpu->arch.pio.count) {
5343 		if (!vcpu->arch.pio.in) {
5344 			/* FIXME: return into emulator if single-stepping.  */
5345 			vcpu->arch.pio.count = 0;
5346 		} else {
5347 			writeback = false;
5348 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5349 		}
5350 		r = EMULATE_USER_EXIT;
5351 	} else if (vcpu->mmio_needed) {
5352 		if (!vcpu->mmio_is_write)
5353 			writeback = false;
5354 		r = EMULATE_USER_EXIT;
5355 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5356 	} else if (r == EMULATION_RESTART)
5357 		goto restart;
5358 	else
5359 		r = EMULATE_DONE;
5360 
5361 	if (writeback) {
5362 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5363 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5364 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5365 		kvm_rip_write(vcpu, ctxt->eip);
5366 		if (r == EMULATE_DONE)
5367 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5368 		__kvm_set_rflags(vcpu, ctxt->eflags);
5369 
5370 		/*
5371 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5372 		 * do nothing, and it will be requested again as soon as
5373 		 * the shadow expires.  But we still need to check here,
5374 		 * because POPF has no interrupt shadow.
5375 		 */
5376 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5377 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5378 	} else
5379 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5380 
5381 	return r;
5382 }
5383 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5384 
5385 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5386 {
5387 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5388 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5389 					    size, port, &val, 1);
5390 	/* do not return to emulator after return from userspace */
5391 	vcpu->arch.pio.count = 0;
5392 	return ret;
5393 }
5394 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5395 
5396 static void tsc_bad(void *info)
5397 {
5398 	__this_cpu_write(cpu_tsc_khz, 0);
5399 }
5400 
5401 static void tsc_khz_changed(void *data)
5402 {
5403 	struct cpufreq_freqs *freq = data;
5404 	unsigned long khz = 0;
5405 
5406 	if (data)
5407 		khz = freq->new;
5408 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5409 		khz = cpufreq_quick_get(raw_smp_processor_id());
5410 	if (!khz)
5411 		khz = tsc_khz;
5412 	__this_cpu_write(cpu_tsc_khz, khz);
5413 }
5414 
5415 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5416 				     void *data)
5417 {
5418 	struct cpufreq_freqs *freq = data;
5419 	struct kvm *kvm;
5420 	struct kvm_vcpu *vcpu;
5421 	int i, send_ipi = 0;
5422 
5423 	/*
5424 	 * We allow guests to temporarily run on slowing clocks,
5425 	 * provided we notify them after, or to run on accelerating
5426 	 * clocks, provided we notify them before.  Thus time never
5427 	 * goes backwards.
5428 	 *
5429 	 * However, we have a problem.  We can't atomically update
5430 	 * the frequency of a given CPU from this function; it is
5431 	 * merely a notifier, which can be called from any CPU.
5432 	 * Changing the TSC frequency at arbitrary points in time
5433 	 * requires a recomputation of local variables related to
5434 	 * the TSC for each VCPU.  We must flag these local variables
5435 	 * to be updated and be sure the update takes place with the
5436 	 * new frequency before any guests proceed.
5437 	 *
5438 	 * Unfortunately, the combination of hotplug CPU and frequency
5439 	 * change creates an intractable locking scenario; the order
5440 	 * of when these callouts happen is undefined with respect to
5441 	 * CPU hotplug, and they can race with each other.  As such,
5442 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5443 	 * undefined; you can actually have a CPU frequency change take
5444 	 * place in between the computation of X and the setting of the
5445 	 * variable.  To protect against this problem, all updates of
5446 	 * the per_cpu tsc_khz variable are done in an interrupt
5447 	 * protected IPI, and all callers wishing to update the value
5448 	 * must wait for a synchronous IPI to complete (which is trivial
5449 	 * if the caller is on the CPU already).  This establishes the
5450 	 * necessary total order on variable updates.
5451 	 *
5452 	 * Note that because a guest time update may take place
5453 	 * anytime after the setting of the VCPU's request bit, the
5454 	 * correct TSC value must be set before the request.  However,
5455 	 * to ensure the update actually makes it to any guest which
5456 	 * starts running in hardware virtualization between the set
5457 	 * and the acquisition of the spinlock, we must also ping the
5458 	 * CPU after setting the request bit.
5459 	 *
5460 	 */
5461 
5462 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5463 		return 0;
5464 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5465 		return 0;
5466 
5467 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5468 
5469 	spin_lock(&kvm_lock);
5470 	list_for_each_entry(kvm, &vm_list, vm_list) {
5471 		kvm_for_each_vcpu(i, vcpu, kvm) {
5472 			if (vcpu->cpu != freq->cpu)
5473 				continue;
5474 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5475 			if (vcpu->cpu != smp_processor_id())
5476 				send_ipi = 1;
5477 		}
5478 	}
5479 	spin_unlock(&kvm_lock);
5480 
5481 	if (freq->old < freq->new && send_ipi) {
5482 		/*
5483 		 * We upscale the frequency.  Must make the guest
5484 		 * doesn't see old kvmclock values while running with
5485 		 * the new frequency, otherwise we risk the guest sees
5486 		 * time go backwards.
5487 		 *
5488 		 * In case we update the frequency for another cpu
5489 		 * (which might be in guest context) send an interrupt
5490 		 * to kick the cpu out of guest context.  Next time
5491 		 * guest context is entered kvmclock will be updated,
5492 		 * so the guest will not see stale values.
5493 		 */
5494 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5495 	}
5496 	return 0;
5497 }
5498 
5499 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5500 	.notifier_call  = kvmclock_cpufreq_notifier
5501 };
5502 
5503 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5504 					unsigned long action, void *hcpu)
5505 {
5506 	unsigned int cpu = (unsigned long)hcpu;
5507 
5508 	switch (action) {
5509 		case CPU_ONLINE:
5510 		case CPU_DOWN_FAILED:
5511 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5512 			break;
5513 		case CPU_DOWN_PREPARE:
5514 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5515 			break;
5516 	}
5517 	return NOTIFY_OK;
5518 }
5519 
5520 static struct notifier_block kvmclock_cpu_notifier_block = {
5521 	.notifier_call  = kvmclock_cpu_notifier,
5522 	.priority = -INT_MAX
5523 };
5524 
5525 static void kvm_timer_init(void)
5526 {
5527 	int cpu;
5528 
5529 	max_tsc_khz = tsc_khz;
5530 
5531 	cpu_notifier_register_begin();
5532 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5533 #ifdef CONFIG_CPU_FREQ
5534 		struct cpufreq_policy policy;
5535 		memset(&policy, 0, sizeof(policy));
5536 		cpu = get_cpu();
5537 		cpufreq_get_policy(&policy, cpu);
5538 		if (policy.cpuinfo.max_freq)
5539 			max_tsc_khz = policy.cpuinfo.max_freq;
5540 		put_cpu();
5541 #endif
5542 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5543 					  CPUFREQ_TRANSITION_NOTIFIER);
5544 	}
5545 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5546 	for_each_online_cpu(cpu)
5547 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5548 
5549 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5550 	cpu_notifier_register_done();
5551 
5552 }
5553 
5554 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5555 
5556 int kvm_is_in_guest(void)
5557 {
5558 	return __this_cpu_read(current_vcpu) != NULL;
5559 }
5560 
5561 static int kvm_is_user_mode(void)
5562 {
5563 	int user_mode = 3;
5564 
5565 	if (__this_cpu_read(current_vcpu))
5566 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5567 
5568 	return user_mode != 0;
5569 }
5570 
5571 static unsigned long kvm_get_guest_ip(void)
5572 {
5573 	unsigned long ip = 0;
5574 
5575 	if (__this_cpu_read(current_vcpu))
5576 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5577 
5578 	return ip;
5579 }
5580 
5581 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5582 	.is_in_guest		= kvm_is_in_guest,
5583 	.is_user_mode		= kvm_is_user_mode,
5584 	.get_guest_ip		= kvm_get_guest_ip,
5585 };
5586 
5587 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5588 {
5589 	__this_cpu_write(current_vcpu, vcpu);
5590 }
5591 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5592 
5593 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5594 {
5595 	__this_cpu_write(current_vcpu, NULL);
5596 }
5597 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5598 
5599 static void kvm_set_mmio_spte_mask(void)
5600 {
5601 	u64 mask;
5602 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5603 
5604 	/*
5605 	 * Set the reserved bits and the present bit of an paging-structure
5606 	 * entry to generate page fault with PFER.RSV = 1.
5607 	 */
5608 	 /* Mask the reserved physical address bits. */
5609 	mask = rsvd_bits(maxphyaddr, 51);
5610 
5611 	/* Bit 62 is always reserved for 32bit host. */
5612 	mask |= 0x3ull << 62;
5613 
5614 	/* Set the present bit. */
5615 	mask |= 1ull;
5616 
5617 #ifdef CONFIG_X86_64
5618 	/*
5619 	 * If reserved bit is not supported, clear the present bit to disable
5620 	 * mmio page fault.
5621 	 */
5622 	if (maxphyaddr == 52)
5623 		mask &= ~1ull;
5624 #endif
5625 
5626 	kvm_mmu_set_mmio_spte_mask(mask);
5627 }
5628 
5629 #ifdef CONFIG_X86_64
5630 static void pvclock_gtod_update_fn(struct work_struct *work)
5631 {
5632 	struct kvm *kvm;
5633 
5634 	struct kvm_vcpu *vcpu;
5635 	int i;
5636 
5637 	spin_lock(&kvm_lock);
5638 	list_for_each_entry(kvm, &vm_list, vm_list)
5639 		kvm_for_each_vcpu(i, vcpu, kvm)
5640 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5641 	atomic_set(&kvm_guest_has_master_clock, 0);
5642 	spin_unlock(&kvm_lock);
5643 }
5644 
5645 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5646 
5647 /*
5648  * Notification about pvclock gtod data update.
5649  */
5650 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5651 			       void *priv)
5652 {
5653 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5654 	struct timekeeper *tk = priv;
5655 
5656 	update_pvclock_gtod(tk);
5657 
5658 	/* disable master clock if host does not trust, or does not
5659 	 * use, TSC clocksource
5660 	 */
5661 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5662 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5663 		queue_work(system_long_wq, &pvclock_gtod_work);
5664 
5665 	return 0;
5666 }
5667 
5668 static struct notifier_block pvclock_gtod_notifier = {
5669 	.notifier_call = pvclock_gtod_notify,
5670 };
5671 #endif
5672 
5673 int kvm_arch_init(void *opaque)
5674 {
5675 	int r;
5676 	struct kvm_x86_ops *ops = opaque;
5677 
5678 	if (kvm_x86_ops) {
5679 		printk(KERN_ERR "kvm: already loaded the other module\n");
5680 		r = -EEXIST;
5681 		goto out;
5682 	}
5683 
5684 	if (!ops->cpu_has_kvm_support()) {
5685 		printk(KERN_ERR "kvm: no hardware support\n");
5686 		r = -EOPNOTSUPP;
5687 		goto out;
5688 	}
5689 	if (ops->disabled_by_bios()) {
5690 		printk(KERN_ERR "kvm: disabled by bios\n");
5691 		r = -EOPNOTSUPP;
5692 		goto out;
5693 	}
5694 
5695 	r = -ENOMEM;
5696 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5697 	if (!shared_msrs) {
5698 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5699 		goto out;
5700 	}
5701 
5702 	r = kvm_mmu_module_init();
5703 	if (r)
5704 		goto out_free_percpu;
5705 
5706 	kvm_set_mmio_spte_mask();
5707 
5708 	kvm_x86_ops = ops;
5709 	kvm_init_msr_list();
5710 
5711 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5712 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5713 
5714 	kvm_timer_init();
5715 
5716 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5717 
5718 	if (cpu_has_xsave)
5719 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5720 
5721 	kvm_lapic_init();
5722 #ifdef CONFIG_X86_64
5723 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5724 #endif
5725 
5726 	return 0;
5727 
5728 out_free_percpu:
5729 	free_percpu(shared_msrs);
5730 out:
5731 	return r;
5732 }
5733 
5734 void kvm_arch_exit(void)
5735 {
5736 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5737 
5738 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5739 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5740 					    CPUFREQ_TRANSITION_NOTIFIER);
5741 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5742 #ifdef CONFIG_X86_64
5743 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5744 #endif
5745 	kvm_x86_ops = NULL;
5746 	kvm_mmu_module_exit();
5747 	free_percpu(shared_msrs);
5748 }
5749 
5750 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5751 {
5752 	++vcpu->stat.halt_exits;
5753 	if (irqchip_in_kernel(vcpu->kvm)) {
5754 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5755 		return 1;
5756 	} else {
5757 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5758 		return 0;
5759 	}
5760 }
5761 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5762 
5763 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5764 {
5765 	u64 param, ingpa, outgpa, ret;
5766 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5767 	bool fast, longmode;
5768 
5769 	/*
5770 	 * hypercall generates UD from non zero cpl and real mode
5771 	 * per HYPER-V spec
5772 	 */
5773 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5774 		kvm_queue_exception(vcpu, UD_VECTOR);
5775 		return 0;
5776 	}
5777 
5778 	longmode = is_64_bit_mode(vcpu);
5779 
5780 	if (!longmode) {
5781 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5782 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5783 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5784 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5785 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5786 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5787 	}
5788 #ifdef CONFIG_X86_64
5789 	else {
5790 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5791 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5792 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5793 	}
5794 #endif
5795 
5796 	code = param & 0xffff;
5797 	fast = (param >> 16) & 0x1;
5798 	rep_cnt = (param >> 32) & 0xfff;
5799 	rep_idx = (param >> 48) & 0xfff;
5800 
5801 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5802 
5803 	switch (code) {
5804 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5805 		kvm_vcpu_on_spin(vcpu);
5806 		break;
5807 	default:
5808 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5809 		break;
5810 	}
5811 
5812 	ret = res | (((u64)rep_done & 0xfff) << 32);
5813 	if (longmode) {
5814 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5815 	} else {
5816 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5817 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5818 	}
5819 
5820 	return 1;
5821 }
5822 
5823 /*
5824  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5825  *
5826  * @apicid - apicid of vcpu to be kicked.
5827  */
5828 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5829 {
5830 	struct kvm_lapic_irq lapic_irq;
5831 
5832 	lapic_irq.shorthand = 0;
5833 	lapic_irq.dest_mode = 0;
5834 	lapic_irq.dest_id = apicid;
5835 
5836 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5837 	kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5838 }
5839 
5840 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5841 {
5842 	unsigned long nr, a0, a1, a2, a3, ret;
5843 	int op_64_bit, r = 1;
5844 
5845 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5846 		return kvm_hv_hypercall(vcpu);
5847 
5848 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5849 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5850 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5851 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5852 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5853 
5854 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5855 
5856 	op_64_bit = is_64_bit_mode(vcpu);
5857 	if (!op_64_bit) {
5858 		nr &= 0xFFFFFFFF;
5859 		a0 &= 0xFFFFFFFF;
5860 		a1 &= 0xFFFFFFFF;
5861 		a2 &= 0xFFFFFFFF;
5862 		a3 &= 0xFFFFFFFF;
5863 	}
5864 
5865 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5866 		ret = -KVM_EPERM;
5867 		goto out;
5868 	}
5869 
5870 	switch (nr) {
5871 	case KVM_HC_VAPIC_POLL_IRQ:
5872 		ret = 0;
5873 		break;
5874 	case KVM_HC_KICK_CPU:
5875 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5876 		ret = 0;
5877 		break;
5878 	default:
5879 		ret = -KVM_ENOSYS;
5880 		break;
5881 	}
5882 out:
5883 	if (!op_64_bit)
5884 		ret = (u32)ret;
5885 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5886 	++vcpu->stat.hypercalls;
5887 	return r;
5888 }
5889 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5890 
5891 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5892 {
5893 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5894 	char instruction[3];
5895 	unsigned long rip = kvm_rip_read(vcpu);
5896 
5897 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5898 
5899 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5900 }
5901 
5902 /*
5903  * Check if userspace requested an interrupt window, and that the
5904  * interrupt window is open.
5905  *
5906  * No need to exit to userspace if we already have an interrupt queued.
5907  */
5908 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5909 {
5910 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5911 		vcpu->run->request_interrupt_window &&
5912 		kvm_arch_interrupt_allowed(vcpu));
5913 }
5914 
5915 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5916 {
5917 	struct kvm_run *kvm_run = vcpu->run;
5918 
5919 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5920 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5921 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5922 	if (irqchip_in_kernel(vcpu->kvm))
5923 		kvm_run->ready_for_interrupt_injection = 1;
5924 	else
5925 		kvm_run->ready_for_interrupt_injection =
5926 			kvm_arch_interrupt_allowed(vcpu) &&
5927 			!kvm_cpu_has_interrupt(vcpu) &&
5928 			!kvm_event_needs_reinjection(vcpu);
5929 }
5930 
5931 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5932 {
5933 	int max_irr, tpr;
5934 
5935 	if (!kvm_x86_ops->update_cr8_intercept)
5936 		return;
5937 
5938 	if (!vcpu->arch.apic)
5939 		return;
5940 
5941 	if (!vcpu->arch.apic->vapic_addr)
5942 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5943 	else
5944 		max_irr = -1;
5945 
5946 	if (max_irr != -1)
5947 		max_irr >>= 4;
5948 
5949 	tpr = kvm_lapic_get_cr8(vcpu);
5950 
5951 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5952 }
5953 
5954 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5955 {
5956 	int r;
5957 
5958 	/* try to reinject previous events if any */
5959 	if (vcpu->arch.exception.pending) {
5960 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5961 					vcpu->arch.exception.has_error_code,
5962 					vcpu->arch.exception.error_code);
5963 
5964 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5965 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5966 					     X86_EFLAGS_RF);
5967 
5968 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5969 					  vcpu->arch.exception.has_error_code,
5970 					  vcpu->arch.exception.error_code,
5971 					  vcpu->arch.exception.reinject);
5972 		return 0;
5973 	}
5974 
5975 	if (vcpu->arch.nmi_injected) {
5976 		kvm_x86_ops->set_nmi(vcpu);
5977 		return 0;
5978 	}
5979 
5980 	if (vcpu->arch.interrupt.pending) {
5981 		kvm_x86_ops->set_irq(vcpu);
5982 		return 0;
5983 	}
5984 
5985 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5986 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5987 		if (r != 0)
5988 			return r;
5989 	}
5990 
5991 	/* try to inject new event if pending */
5992 	if (vcpu->arch.nmi_pending) {
5993 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5994 			--vcpu->arch.nmi_pending;
5995 			vcpu->arch.nmi_injected = true;
5996 			kvm_x86_ops->set_nmi(vcpu);
5997 		}
5998 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
5999 		/*
6000 		 * Because interrupts can be injected asynchronously, we are
6001 		 * calling check_nested_events again here to avoid a race condition.
6002 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6003 		 * proposal and current concerns.  Perhaps we should be setting
6004 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6005 		 */
6006 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6007 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6008 			if (r != 0)
6009 				return r;
6010 		}
6011 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6012 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6013 					    false);
6014 			kvm_x86_ops->set_irq(vcpu);
6015 		}
6016 	}
6017 	return 0;
6018 }
6019 
6020 static void process_nmi(struct kvm_vcpu *vcpu)
6021 {
6022 	unsigned limit = 2;
6023 
6024 	/*
6025 	 * x86 is limited to one NMI running, and one NMI pending after it.
6026 	 * If an NMI is already in progress, limit further NMIs to just one.
6027 	 * Otherwise, allow two (and we'll inject the first one immediately).
6028 	 */
6029 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6030 		limit = 1;
6031 
6032 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6033 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6034 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6035 }
6036 
6037 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6038 {
6039 	u64 eoi_exit_bitmap[4];
6040 	u32 tmr[8];
6041 
6042 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6043 		return;
6044 
6045 	memset(eoi_exit_bitmap, 0, 32);
6046 	memset(tmr, 0, 32);
6047 
6048 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6049 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6050 	kvm_apic_update_tmr(vcpu, tmr);
6051 }
6052 
6053 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6054 {
6055 	++vcpu->stat.tlb_flush;
6056 	kvm_x86_ops->tlb_flush(vcpu);
6057 }
6058 
6059 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6060 {
6061 	struct page *page = NULL;
6062 
6063 	if (!irqchip_in_kernel(vcpu->kvm))
6064 		return;
6065 
6066 	if (!kvm_x86_ops->set_apic_access_page_addr)
6067 		return;
6068 
6069 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6070 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6071 
6072 	/*
6073 	 * Do not pin apic access page in memory, the MMU notifier
6074 	 * will call us again if it is migrated or swapped out.
6075 	 */
6076 	put_page(page);
6077 }
6078 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6079 
6080 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6081 					   unsigned long address)
6082 {
6083 	/*
6084 	 * The physical address of apic access page is stored in the VMCS.
6085 	 * Update it when it becomes invalid.
6086 	 */
6087 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6088 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6089 }
6090 
6091 /*
6092  * Returns 1 to let __vcpu_run() continue the guest execution loop without
6093  * exiting to the userspace.  Otherwise, the value will be returned to the
6094  * userspace.
6095  */
6096 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6097 {
6098 	int r;
6099 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6100 		vcpu->run->request_interrupt_window;
6101 	bool req_immediate_exit = false;
6102 
6103 	if (vcpu->requests) {
6104 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6105 			kvm_mmu_unload(vcpu);
6106 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6107 			__kvm_migrate_timers(vcpu);
6108 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6109 			kvm_gen_update_masterclock(vcpu->kvm);
6110 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6111 			kvm_gen_kvmclock_update(vcpu);
6112 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6113 			r = kvm_guest_time_update(vcpu);
6114 			if (unlikely(r))
6115 				goto out;
6116 		}
6117 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6118 			kvm_mmu_sync_roots(vcpu);
6119 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6120 			kvm_vcpu_flush_tlb(vcpu);
6121 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6122 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6123 			r = 0;
6124 			goto out;
6125 		}
6126 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6127 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6128 			r = 0;
6129 			goto out;
6130 		}
6131 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6132 			vcpu->fpu_active = 0;
6133 			kvm_x86_ops->fpu_deactivate(vcpu);
6134 		}
6135 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6136 			/* Page is swapped out. Do synthetic halt */
6137 			vcpu->arch.apf.halted = true;
6138 			r = 1;
6139 			goto out;
6140 		}
6141 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6142 			record_steal_time(vcpu);
6143 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6144 			process_nmi(vcpu);
6145 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6146 			kvm_handle_pmu_event(vcpu);
6147 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6148 			kvm_deliver_pmi(vcpu);
6149 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6150 			vcpu_scan_ioapic(vcpu);
6151 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6152 			kvm_vcpu_reload_apic_access_page(vcpu);
6153 	}
6154 
6155 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6156 		kvm_apic_accept_events(vcpu);
6157 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6158 			r = 1;
6159 			goto out;
6160 		}
6161 
6162 		if (inject_pending_event(vcpu, req_int_win) != 0)
6163 			req_immediate_exit = true;
6164 		/* enable NMI/IRQ window open exits if needed */
6165 		else if (vcpu->arch.nmi_pending)
6166 			kvm_x86_ops->enable_nmi_window(vcpu);
6167 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6168 			kvm_x86_ops->enable_irq_window(vcpu);
6169 
6170 		if (kvm_lapic_enabled(vcpu)) {
6171 			/*
6172 			 * Update architecture specific hints for APIC
6173 			 * virtual interrupt delivery.
6174 			 */
6175 			if (kvm_x86_ops->hwapic_irr_update)
6176 				kvm_x86_ops->hwapic_irr_update(vcpu,
6177 					kvm_lapic_find_highest_irr(vcpu));
6178 			update_cr8_intercept(vcpu);
6179 			kvm_lapic_sync_to_vapic(vcpu);
6180 		}
6181 	}
6182 
6183 	r = kvm_mmu_reload(vcpu);
6184 	if (unlikely(r)) {
6185 		goto cancel_injection;
6186 	}
6187 
6188 	preempt_disable();
6189 
6190 	kvm_x86_ops->prepare_guest_switch(vcpu);
6191 	if (vcpu->fpu_active)
6192 		kvm_load_guest_fpu(vcpu);
6193 	kvm_load_guest_xcr0(vcpu);
6194 
6195 	vcpu->mode = IN_GUEST_MODE;
6196 
6197 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6198 
6199 	/* We should set ->mode before check ->requests,
6200 	 * see the comment in make_all_cpus_request.
6201 	 */
6202 	smp_mb__after_srcu_read_unlock();
6203 
6204 	local_irq_disable();
6205 
6206 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6207 	    || need_resched() || signal_pending(current)) {
6208 		vcpu->mode = OUTSIDE_GUEST_MODE;
6209 		smp_wmb();
6210 		local_irq_enable();
6211 		preempt_enable();
6212 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6213 		r = 1;
6214 		goto cancel_injection;
6215 	}
6216 
6217 	if (req_immediate_exit)
6218 		smp_send_reschedule(vcpu->cpu);
6219 
6220 	kvm_guest_enter();
6221 
6222 	if (unlikely(vcpu->arch.switch_db_regs)) {
6223 		set_debugreg(0, 7);
6224 		set_debugreg(vcpu->arch.eff_db[0], 0);
6225 		set_debugreg(vcpu->arch.eff_db[1], 1);
6226 		set_debugreg(vcpu->arch.eff_db[2], 2);
6227 		set_debugreg(vcpu->arch.eff_db[3], 3);
6228 		set_debugreg(vcpu->arch.dr6, 6);
6229 	}
6230 
6231 	trace_kvm_entry(vcpu->vcpu_id);
6232 	kvm_x86_ops->run(vcpu);
6233 
6234 	/*
6235 	 * Do this here before restoring debug registers on the host.  And
6236 	 * since we do this before handling the vmexit, a DR access vmexit
6237 	 * can (a) read the correct value of the debug registers, (b) set
6238 	 * KVM_DEBUGREG_WONT_EXIT again.
6239 	 */
6240 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6241 		int i;
6242 
6243 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6244 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6245 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6246 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6247 	}
6248 
6249 	/*
6250 	 * If the guest has used debug registers, at least dr7
6251 	 * will be disabled while returning to the host.
6252 	 * If we don't have active breakpoints in the host, we don't
6253 	 * care about the messed up debug address registers. But if
6254 	 * we have some of them active, restore the old state.
6255 	 */
6256 	if (hw_breakpoint_active())
6257 		hw_breakpoint_restore();
6258 
6259 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6260 							   native_read_tsc());
6261 
6262 	vcpu->mode = OUTSIDE_GUEST_MODE;
6263 	smp_wmb();
6264 
6265 	/* Interrupt is enabled by handle_external_intr() */
6266 	kvm_x86_ops->handle_external_intr(vcpu);
6267 
6268 	++vcpu->stat.exits;
6269 
6270 	/*
6271 	 * We must have an instruction between local_irq_enable() and
6272 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6273 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6274 	 * But we need to prevent reordering, hence this barrier():
6275 	 */
6276 	barrier();
6277 
6278 	kvm_guest_exit();
6279 
6280 	preempt_enable();
6281 
6282 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6283 
6284 	/*
6285 	 * Profile KVM exit RIPs:
6286 	 */
6287 	if (unlikely(prof_on == KVM_PROFILING)) {
6288 		unsigned long rip = kvm_rip_read(vcpu);
6289 		profile_hit(KVM_PROFILING, (void *)rip);
6290 	}
6291 
6292 	if (unlikely(vcpu->arch.tsc_always_catchup))
6293 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6294 
6295 	if (vcpu->arch.apic_attention)
6296 		kvm_lapic_sync_from_vapic(vcpu);
6297 
6298 	r = kvm_x86_ops->handle_exit(vcpu);
6299 	return r;
6300 
6301 cancel_injection:
6302 	kvm_x86_ops->cancel_injection(vcpu);
6303 	if (unlikely(vcpu->arch.apic_attention))
6304 		kvm_lapic_sync_from_vapic(vcpu);
6305 out:
6306 	return r;
6307 }
6308 
6309 
6310 static int __vcpu_run(struct kvm_vcpu *vcpu)
6311 {
6312 	int r;
6313 	struct kvm *kvm = vcpu->kvm;
6314 
6315 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6316 
6317 	r = 1;
6318 	while (r > 0) {
6319 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6320 		    !vcpu->arch.apf.halted)
6321 			r = vcpu_enter_guest(vcpu);
6322 		else {
6323 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6324 			kvm_vcpu_block(vcpu);
6325 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6326 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6327 				kvm_apic_accept_events(vcpu);
6328 				switch(vcpu->arch.mp_state) {
6329 				case KVM_MP_STATE_HALTED:
6330 					vcpu->arch.pv.pv_unhalted = false;
6331 					vcpu->arch.mp_state =
6332 						KVM_MP_STATE_RUNNABLE;
6333 				case KVM_MP_STATE_RUNNABLE:
6334 					vcpu->arch.apf.halted = false;
6335 					break;
6336 				case KVM_MP_STATE_INIT_RECEIVED:
6337 					break;
6338 				default:
6339 					r = -EINTR;
6340 					break;
6341 				}
6342 			}
6343 		}
6344 
6345 		if (r <= 0)
6346 			break;
6347 
6348 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6349 		if (kvm_cpu_has_pending_timer(vcpu))
6350 			kvm_inject_pending_timer_irqs(vcpu);
6351 
6352 		if (dm_request_for_irq_injection(vcpu)) {
6353 			r = -EINTR;
6354 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6355 			++vcpu->stat.request_irq_exits;
6356 		}
6357 
6358 		kvm_check_async_pf_completion(vcpu);
6359 
6360 		if (signal_pending(current)) {
6361 			r = -EINTR;
6362 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6363 			++vcpu->stat.signal_exits;
6364 		}
6365 		if (need_resched()) {
6366 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6367 			cond_resched();
6368 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6369 		}
6370 	}
6371 
6372 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6373 
6374 	return r;
6375 }
6376 
6377 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6378 {
6379 	int r;
6380 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6381 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6382 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6383 	if (r != EMULATE_DONE)
6384 		return 0;
6385 	return 1;
6386 }
6387 
6388 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6389 {
6390 	BUG_ON(!vcpu->arch.pio.count);
6391 
6392 	return complete_emulated_io(vcpu);
6393 }
6394 
6395 /*
6396  * Implements the following, as a state machine:
6397  *
6398  * read:
6399  *   for each fragment
6400  *     for each mmio piece in the fragment
6401  *       write gpa, len
6402  *       exit
6403  *       copy data
6404  *   execute insn
6405  *
6406  * write:
6407  *   for each fragment
6408  *     for each mmio piece in the fragment
6409  *       write gpa, len
6410  *       copy data
6411  *       exit
6412  */
6413 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6414 {
6415 	struct kvm_run *run = vcpu->run;
6416 	struct kvm_mmio_fragment *frag;
6417 	unsigned len;
6418 
6419 	BUG_ON(!vcpu->mmio_needed);
6420 
6421 	/* Complete previous fragment */
6422 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6423 	len = min(8u, frag->len);
6424 	if (!vcpu->mmio_is_write)
6425 		memcpy(frag->data, run->mmio.data, len);
6426 
6427 	if (frag->len <= 8) {
6428 		/* Switch to the next fragment. */
6429 		frag++;
6430 		vcpu->mmio_cur_fragment++;
6431 	} else {
6432 		/* Go forward to the next mmio piece. */
6433 		frag->data += len;
6434 		frag->gpa += len;
6435 		frag->len -= len;
6436 	}
6437 
6438 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6439 		vcpu->mmio_needed = 0;
6440 
6441 		/* FIXME: return into emulator if single-stepping.  */
6442 		if (vcpu->mmio_is_write)
6443 			return 1;
6444 		vcpu->mmio_read_completed = 1;
6445 		return complete_emulated_io(vcpu);
6446 	}
6447 
6448 	run->exit_reason = KVM_EXIT_MMIO;
6449 	run->mmio.phys_addr = frag->gpa;
6450 	if (vcpu->mmio_is_write)
6451 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6452 	run->mmio.len = min(8u, frag->len);
6453 	run->mmio.is_write = vcpu->mmio_is_write;
6454 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6455 	return 0;
6456 }
6457 
6458 
6459 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6460 {
6461 	int r;
6462 	sigset_t sigsaved;
6463 
6464 	if (!tsk_used_math(current) && init_fpu(current))
6465 		return -ENOMEM;
6466 
6467 	if (vcpu->sigset_active)
6468 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6469 
6470 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6471 		kvm_vcpu_block(vcpu);
6472 		kvm_apic_accept_events(vcpu);
6473 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6474 		r = -EAGAIN;
6475 		goto out;
6476 	}
6477 
6478 	/* re-sync apic's tpr */
6479 	if (!irqchip_in_kernel(vcpu->kvm)) {
6480 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6481 			r = -EINVAL;
6482 			goto out;
6483 		}
6484 	}
6485 
6486 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6487 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6488 		vcpu->arch.complete_userspace_io = NULL;
6489 		r = cui(vcpu);
6490 		if (r <= 0)
6491 			goto out;
6492 	} else
6493 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6494 
6495 	r = __vcpu_run(vcpu);
6496 
6497 out:
6498 	post_kvm_run_save(vcpu);
6499 	if (vcpu->sigset_active)
6500 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6501 
6502 	return r;
6503 }
6504 
6505 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6506 {
6507 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6508 		/*
6509 		 * We are here if userspace calls get_regs() in the middle of
6510 		 * instruction emulation. Registers state needs to be copied
6511 		 * back from emulation context to vcpu. Userspace shouldn't do
6512 		 * that usually, but some bad designed PV devices (vmware
6513 		 * backdoor interface) need this to work
6514 		 */
6515 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6516 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6517 	}
6518 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6519 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6520 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6521 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6522 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6523 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6524 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6525 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6526 #ifdef CONFIG_X86_64
6527 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6528 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6529 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6530 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6531 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6532 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6533 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6534 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6535 #endif
6536 
6537 	regs->rip = kvm_rip_read(vcpu);
6538 	regs->rflags = kvm_get_rflags(vcpu);
6539 
6540 	return 0;
6541 }
6542 
6543 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6544 {
6545 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6546 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6547 
6548 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6549 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6550 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6551 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6552 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6553 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6554 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6555 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6556 #ifdef CONFIG_X86_64
6557 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6558 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6559 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6560 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6561 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6562 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6563 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6564 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6565 #endif
6566 
6567 	kvm_rip_write(vcpu, regs->rip);
6568 	kvm_set_rflags(vcpu, regs->rflags);
6569 
6570 	vcpu->arch.exception.pending = false;
6571 
6572 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6573 
6574 	return 0;
6575 }
6576 
6577 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6578 {
6579 	struct kvm_segment cs;
6580 
6581 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6582 	*db = cs.db;
6583 	*l = cs.l;
6584 }
6585 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6586 
6587 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6588 				  struct kvm_sregs *sregs)
6589 {
6590 	struct desc_ptr dt;
6591 
6592 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6593 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6594 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6595 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6596 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6597 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6598 
6599 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6600 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6601 
6602 	kvm_x86_ops->get_idt(vcpu, &dt);
6603 	sregs->idt.limit = dt.size;
6604 	sregs->idt.base = dt.address;
6605 	kvm_x86_ops->get_gdt(vcpu, &dt);
6606 	sregs->gdt.limit = dt.size;
6607 	sregs->gdt.base = dt.address;
6608 
6609 	sregs->cr0 = kvm_read_cr0(vcpu);
6610 	sregs->cr2 = vcpu->arch.cr2;
6611 	sregs->cr3 = kvm_read_cr3(vcpu);
6612 	sregs->cr4 = kvm_read_cr4(vcpu);
6613 	sregs->cr8 = kvm_get_cr8(vcpu);
6614 	sregs->efer = vcpu->arch.efer;
6615 	sregs->apic_base = kvm_get_apic_base(vcpu);
6616 
6617 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6618 
6619 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6620 		set_bit(vcpu->arch.interrupt.nr,
6621 			(unsigned long *)sregs->interrupt_bitmap);
6622 
6623 	return 0;
6624 }
6625 
6626 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6627 				    struct kvm_mp_state *mp_state)
6628 {
6629 	kvm_apic_accept_events(vcpu);
6630 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6631 					vcpu->arch.pv.pv_unhalted)
6632 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6633 	else
6634 		mp_state->mp_state = vcpu->arch.mp_state;
6635 
6636 	return 0;
6637 }
6638 
6639 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6640 				    struct kvm_mp_state *mp_state)
6641 {
6642 	if (!kvm_vcpu_has_lapic(vcpu) &&
6643 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6644 		return -EINVAL;
6645 
6646 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6647 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6648 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6649 	} else
6650 		vcpu->arch.mp_state = mp_state->mp_state;
6651 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6652 	return 0;
6653 }
6654 
6655 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6656 		    int reason, bool has_error_code, u32 error_code)
6657 {
6658 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6659 	int ret;
6660 
6661 	init_emulate_ctxt(vcpu);
6662 
6663 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6664 				   has_error_code, error_code);
6665 
6666 	if (ret)
6667 		return EMULATE_FAIL;
6668 
6669 	kvm_rip_write(vcpu, ctxt->eip);
6670 	kvm_set_rflags(vcpu, ctxt->eflags);
6671 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6672 	return EMULATE_DONE;
6673 }
6674 EXPORT_SYMBOL_GPL(kvm_task_switch);
6675 
6676 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6677 				  struct kvm_sregs *sregs)
6678 {
6679 	struct msr_data apic_base_msr;
6680 	int mmu_reset_needed = 0;
6681 	int pending_vec, max_bits, idx;
6682 	struct desc_ptr dt;
6683 
6684 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6685 		return -EINVAL;
6686 
6687 	dt.size = sregs->idt.limit;
6688 	dt.address = sregs->idt.base;
6689 	kvm_x86_ops->set_idt(vcpu, &dt);
6690 	dt.size = sregs->gdt.limit;
6691 	dt.address = sregs->gdt.base;
6692 	kvm_x86_ops->set_gdt(vcpu, &dt);
6693 
6694 	vcpu->arch.cr2 = sregs->cr2;
6695 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6696 	vcpu->arch.cr3 = sregs->cr3;
6697 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6698 
6699 	kvm_set_cr8(vcpu, sregs->cr8);
6700 
6701 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6702 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6703 	apic_base_msr.data = sregs->apic_base;
6704 	apic_base_msr.host_initiated = true;
6705 	kvm_set_apic_base(vcpu, &apic_base_msr);
6706 
6707 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6708 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6709 	vcpu->arch.cr0 = sregs->cr0;
6710 
6711 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6712 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6713 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6714 		kvm_update_cpuid(vcpu);
6715 
6716 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6717 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6718 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6719 		mmu_reset_needed = 1;
6720 	}
6721 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6722 
6723 	if (mmu_reset_needed)
6724 		kvm_mmu_reset_context(vcpu);
6725 
6726 	max_bits = KVM_NR_INTERRUPTS;
6727 	pending_vec = find_first_bit(
6728 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6729 	if (pending_vec < max_bits) {
6730 		kvm_queue_interrupt(vcpu, pending_vec, false);
6731 		pr_debug("Set back pending irq %d\n", pending_vec);
6732 	}
6733 
6734 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6735 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6736 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6737 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6738 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6739 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6740 
6741 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6742 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6743 
6744 	update_cr8_intercept(vcpu);
6745 
6746 	/* Older userspace won't unhalt the vcpu on reset. */
6747 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6748 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6749 	    !is_protmode(vcpu))
6750 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6751 
6752 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6753 
6754 	return 0;
6755 }
6756 
6757 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6758 					struct kvm_guest_debug *dbg)
6759 {
6760 	unsigned long rflags;
6761 	int i, r;
6762 
6763 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6764 		r = -EBUSY;
6765 		if (vcpu->arch.exception.pending)
6766 			goto out;
6767 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6768 			kvm_queue_exception(vcpu, DB_VECTOR);
6769 		else
6770 			kvm_queue_exception(vcpu, BP_VECTOR);
6771 	}
6772 
6773 	/*
6774 	 * Read rflags as long as potentially injected trace flags are still
6775 	 * filtered out.
6776 	 */
6777 	rflags = kvm_get_rflags(vcpu);
6778 
6779 	vcpu->guest_debug = dbg->control;
6780 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6781 		vcpu->guest_debug = 0;
6782 
6783 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6784 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6785 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6786 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6787 	} else {
6788 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6789 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6790 	}
6791 	kvm_update_dr7(vcpu);
6792 
6793 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6794 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6795 			get_segment_base(vcpu, VCPU_SREG_CS);
6796 
6797 	/*
6798 	 * Trigger an rflags update that will inject or remove the trace
6799 	 * flags.
6800 	 */
6801 	kvm_set_rflags(vcpu, rflags);
6802 
6803 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6804 
6805 	r = 0;
6806 
6807 out:
6808 
6809 	return r;
6810 }
6811 
6812 /*
6813  * Translate a guest virtual address to a guest physical address.
6814  */
6815 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6816 				    struct kvm_translation *tr)
6817 {
6818 	unsigned long vaddr = tr->linear_address;
6819 	gpa_t gpa;
6820 	int idx;
6821 
6822 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6823 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6824 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6825 	tr->physical_address = gpa;
6826 	tr->valid = gpa != UNMAPPED_GVA;
6827 	tr->writeable = 1;
6828 	tr->usermode = 0;
6829 
6830 	return 0;
6831 }
6832 
6833 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6834 {
6835 	struct i387_fxsave_struct *fxsave =
6836 			&vcpu->arch.guest_fpu.state->fxsave;
6837 
6838 	memcpy(fpu->fpr, fxsave->st_space, 128);
6839 	fpu->fcw = fxsave->cwd;
6840 	fpu->fsw = fxsave->swd;
6841 	fpu->ftwx = fxsave->twd;
6842 	fpu->last_opcode = fxsave->fop;
6843 	fpu->last_ip = fxsave->rip;
6844 	fpu->last_dp = fxsave->rdp;
6845 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6846 
6847 	return 0;
6848 }
6849 
6850 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6851 {
6852 	struct i387_fxsave_struct *fxsave =
6853 			&vcpu->arch.guest_fpu.state->fxsave;
6854 
6855 	memcpy(fxsave->st_space, fpu->fpr, 128);
6856 	fxsave->cwd = fpu->fcw;
6857 	fxsave->swd = fpu->fsw;
6858 	fxsave->twd = fpu->ftwx;
6859 	fxsave->fop = fpu->last_opcode;
6860 	fxsave->rip = fpu->last_ip;
6861 	fxsave->rdp = fpu->last_dp;
6862 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6863 
6864 	return 0;
6865 }
6866 
6867 int fx_init(struct kvm_vcpu *vcpu)
6868 {
6869 	int err;
6870 
6871 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6872 	if (err)
6873 		return err;
6874 
6875 	fpu_finit(&vcpu->arch.guest_fpu);
6876 
6877 	/*
6878 	 * Ensure guest xcr0 is valid for loading
6879 	 */
6880 	vcpu->arch.xcr0 = XSTATE_FP;
6881 
6882 	vcpu->arch.cr0 |= X86_CR0_ET;
6883 
6884 	return 0;
6885 }
6886 EXPORT_SYMBOL_GPL(fx_init);
6887 
6888 static void fx_free(struct kvm_vcpu *vcpu)
6889 {
6890 	fpu_free(&vcpu->arch.guest_fpu);
6891 }
6892 
6893 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6894 {
6895 	if (vcpu->guest_fpu_loaded)
6896 		return;
6897 
6898 	/*
6899 	 * Restore all possible states in the guest,
6900 	 * and assume host would use all available bits.
6901 	 * Guest xcr0 would be loaded later.
6902 	 */
6903 	kvm_put_guest_xcr0(vcpu);
6904 	vcpu->guest_fpu_loaded = 1;
6905 	__kernel_fpu_begin();
6906 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6907 	trace_kvm_fpu(1);
6908 }
6909 
6910 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6911 {
6912 	kvm_put_guest_xcr0(vcpu);
6913 
6914 	if (!vcpu->guest_fpu_loaded)
6915 		return;
6916 
6917 	vcpu->guest_fpu_loaded = 0;
6918 	fpu_save_init(&vcpu->arch.guest_fpu);
6919 	__kernel_fpu_end();
6920 	++vcpu->stat.fpu_reload;
6921 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6922 	trace_kvm_fpu(0);
6923 }
6924 
6925 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6926 {
6927 	kvmclock_reset(vcpu);
6928 
6929 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6930 	fx_free(vcpu);
6931 	kvm_x86_ops->vcpu_free(vcpu);
6932 }
6933 
6934 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6935 						unsigned int id)
6936 {
6937 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6938 		printk_once(KERN_WARNING
6939 		"kvm: SMP vm created on host with unstable TSC; "
6940 		"guest TSC will not be reliable\n");
6941 	return kvm_x86_ops->vcpu_create(kvm, id);
6942 }
6943 
6944 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6945 {
6946 	int r;
6947 
6948 	vcpu->arch.mtrr_state.have_fixed = 1;
6949 	r = vcpu_load(vcpu);
6950 	if (r)
6951 		return r;
6952 	kvm_vcpu_reset(vcpu);
6953 	kvm_mmu_setup(vcpu);
6954 	vcpu_put(vcpu);
6955 
6956 	return r;
6957 }
6958 
6959 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6960 {
6961 	int r;
6962 	struct msr_data msr;
6963 	struct kvm *kvm = vcpu->kvm;
6964 
6965 	r = vcpu_load(vcpu);
6966 	if (r)
6967 		return r;
6968 	msr.data = 0x0;
6969 	msr.index = MSR_IA32_TSC;
6970 	msr.host_initiated = true;
6971 	kvm_write_tsc(vcpu, &msr);
6972 	vcpu_put(vcpu);
6973 
6974 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
6975 					KVMCLOCK_SYNC_PERIOD);
6976 
6977 	return r;
6978 }
6979 
6980 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6981 {
6982 	int r;
6983 	vcpu->arch.apf.msr_val = 0;
6984 
6985 	r = vcpu_load(vcpu);
6986 	BUG_ON(r);
6987 	kvm_mmu_unload(vcpu);
6988 	vcpu_put(vcpu);
6989 
6990 	fx_free(vcpu);
6991 	kvm_x86_ops->vcpu_free(vcpu);
6992 }
6993 
6994 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6995 {
6996 	atomic_set(&vcpu->arch.nmi_queued, 0);
6997 	vcpu->arch.nmi_pending = 0;
6998 	vcpu->arch.nmi_injected = false;
6999 	kvm_clear_interrupt_queue(vcpu);
7000 	kvm_clear_exception_queue(vcpu);
7001 
7002 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7003 	vcpu->arch.dr6 = DR6_INIT;
7004 	kvm_update_dr6(vcpu);
7005 	vcpu->arch.dr7 = DR7_FIXED_1;
7006 	kvm_update_dr7(vcpu);
7007 
7008 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7009 	vcpu->arch.apf.msr_val = 0;
7010 	vcpu->arch.st.msr_val = 0;
7011 
7012 	kvmclock_reset(vcpu);
7013 
7014 	kvm_clear_async_pf_completion_queue(vcpu);
7015 	kvm_async_pf_hash_reset(vcpu);
7016 	vcpu->arch.apf.halted = false;
7017 
7018 	kvm_pmu_reset(vcpu);
7019 
7020 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7021 	vcpu->arch.regs_avail = ~0;
7022 	vcpu->arch.regs_dirty = ~0;
7023 
7024 	kvm_x86_ops->vcpu_reset(vcpu);
7025 }
7026 
7027 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
7028 {
7029 	struct kvm_segment cs;
7030 
7031 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7032 	cs.selector = vector << 8;
7033 	cs.base = vector << 12;
7034 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7035 	kvm_rip_write(vcpu, 0);
7036 }
7037 
7038 int kvm_arch_hardware_enable(void)
7039 {
7040 	struct kvm *kvm;
7041 	struct kvm_vcpu *vcpu;
7042 	int i;
7043 	int ret;
7044 	u64 local_tsc;
7045 	u64 max_tsc = 0;
7046 	bool stable, backwards_tsc = false;
7047 
7048 	kvm_shared_msr_cpu_online();
7049 	ret = kvm_x86_ops->hardware_enable();
7050 	if (ret != 0)
7051 		return ret;
7052 
7053 	local_tsc = native_read_tsc();
7054 	stable = !check_tsc_unstable();
7055 	list_for_each_entry(kvm, &vm_list, vm_list) {
7056 		kvm_for_each_vcpu(i, vcpu, kvm) {
7057 			if (!stable && vcpu->cpu == smp_processor_id())
7058 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7059 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7060 				backwards_tsc = true;
7061 				if (vcpu->arch.last_host_tsc > max_tsc)
7062 					max_tsc = vcpu->arch.last_host_tsc;
7063 			}
7064 		}
7065 	}
7066 
7067 	/*
7068 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7069 	 * platforms that reset TSC during suspend or hibernate actions, but
7070 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7071 	 * detect that condition here, which happens early in CPU bringup,
7072 	 * before any KVM threads can be running.  Unfortunately, we can't
7073 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7074 	 * enough into CPU bringup that we know how much real time has actually
7075 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7076 	 * variables that haven't been updated yet.
7077 	 *
7078 	 * So we simply find the maximum observed TSC above, then record the
7079 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7080 	 * the adjustment will be applied.  Note that we accumulate
7081 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7082 	 * gets a chance to run again.  In the event that no KVM threads get a
7083 	 * chance to run, we will miss the entire elapsed period, as we'll have
7084 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7085 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7086 	 * uniform across all VCPUs (not to mention the scenario is extremely
7087 	 * unlikely). It is possible that a second hibernate recovery happens
7088 	 * much faster than a first, causing the observed TSC here to be
7089 	 * smaller; this would require additional padding adjustment, which is
7090 	 * why we set last_host_tsc to the local tsc observed here.
7091 	 *
7092 	 * N.B. - this code below runs only on platforms with reliable TSC,
7093 	 * as that is the only way backwards_tsc is set above.  Also note
7094 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7095 	 * have the same delta_cyc adjustment applied if backwards_tsc
7096 	 * is detected.  Note further, this adjustment is only done once,
7097 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7098 	 * called multiple times (one for each physical CPU bringup).
7099 	 *
7100 	 * Platforms with unreliable TSCs don't have to deal with this, they
7101 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7102 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7103 	 * guarantee that they stay in perfect synchronization.
7104 	 */
7105 	if (backwards_tsc) {
7106 		u64 delta_cyc = max_tsc - local_tsc;
7107 		backwards_tsc_observed = true;
7108 		list_for_each_entry(kvm, &vm_list, vm_list) {
7109 			kvm_for_each_vcpu(i, vcpu, kvm) {
7110 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7111 				vcpu->arch.last_host_tsc = local_tsc;
7112 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7113 			}
7114 
7115 			/*
7116 			 * We have to disable TSC offset matching.. if you were
7117 			 * booting a VM while issuing an S4 host suspend....
7118 			 * you may have some problem.  Solving this issue is
7119 			 * left as an exercise to the reader.
7120 			 */
7121 			kvm->arch.last_tsc_nsec = 0;
7122 			kvm->arch.last_tsc_write = 0;
7123 		}
7124 
7125 	}
7126 	return 0;
7127 }
7128 
7129 void kvm_arch_hardware_disable(void)
7130 {
7131 	kvm_x86_ops->hardware_disable();
7132 	drop_user_return_notifiers();
7133 }
7134 
7135 int kvm_arch_hardware_setup(void)
7136 {
7137 	return kvm_x86_ops->hardware_setup();
7138 }
7139 
7140 void kvm_arch_hardware_unsetup(void)
7141 {
7142 	kvm_x86_ops->hardware_unsetup();
7143 }
7144 
7145 void kvm_arch_check_processor_compat(void *rtn)
7146 {
7147 	kvm_x86_ops->check_processor_compatibility(rtn);
7148 }
7149 
7150 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7151 {
7152 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7153 }
7154 
7155 struct static_key kvm_no_apic_vcpu __read_mostly;
7156 
7157 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7158 {
7159 	struct page *page;
7160 	struct kvm *kvm;
7161 	int r;
7162 
7163 	BUG_ON(vcpu->kvm == NULL);
7164 	kvm = vcpu->kvm;
7165 
7166 	vcpu->arch.pv.pv_unhalted = false;
7167 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7168 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7169 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7170 	else
7171 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7172 
7173 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7174 	if (!page) {
7175 		r = -ENOMEM;
7176 		goto fail;
7177 	}
7178 	vcpu->arch.pio_data = page_address(page);
7179 
7180 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7181 
7182 	r = kvm_mmu_create(vcpu);
7183 	if (r < 0)
7184 		goto fail_free_pio_data;
7185 
7186 	if (irqchip_in_kernel(kvm)) {
7187 		r = kvm_create_lapic(vcpu);
7188 		if (r < 0)
7189 			goto fail_mmu_destroy;
7190 	} else
7191 		static_key_slow_inc(&kvm_no_apic_vcpu);
7192 
7193 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7194 				       GFP_KERNEL);
7195 	if (!vcpu->arch.mce_banks) {
7196 		r = -ENOMEM;
7197 		goto fail_free_lapic;
7198 	}
7199 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7200 
7201 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7202 		r = -ENOMEM;
7203 		goto fail_free_mce_banks;
7204 	}
7205 
7206 	r = fx_init(vcpu);
7207 	if (r)
7208 		goto fail_free_wbinvd_dirty_mask;
7209 
7210 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7211 	vcpu->arch.pv_time_enabled = false;
7212 
7213 	vcpu->arch.guest_supported_xcr0 = 0;
7214 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7215 
7216 	kvm_async_pf_hash_reset(vcpu);
7217 	kvm_pmu_init(vcpu);
7218 
7219 	return 0;
7220 fail_free_wbinvd_dirty_mask:
7221 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7222 fail_free_mce_banks:
7223 	kfree(vcpu->arch.mce_banks);
7224 fail_free_lapic:
7225 	kvm_free_lapic(vcpu);
7226 fail_mmu_destroy:
7227 	kvm_mmu_destroy(vcpu);
7228 fail_free_pio_data:
7229 	free_page((unsigned long)vcpu->arch.pio_data);
7230 fail:
7231 	return r;
7232 }
7233 
7234 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7235 {
7236 	int idx;
7237 
7238 	kvm_pmu_destroy(vcpu);
7239 	kfree(vcpu->arch.mce_banks);
7240 	kvm_free_lapic(vcpu);
7241 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7242 	kvm_mmu_destroy(vcpu);
7243 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7244 	free_page((unsigned long)vcpu->arch.pio_data);
7245 	if (!irqchip_in_kernel(vcpu->kvm))
7246 		static_key_slow_dec(&kvm_no_apic_vcpu);
7247 }
7248 
7249 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7250 {
7251 	kvm_x86_ops->sched_in(vcpu, cpu);
7252 }
7253 
7254 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7255 {
7256 	if (type)
7257 		return -EINVAL;
7258 
7259 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7260 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7261 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7262 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7263 
7264 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7265 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7266 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7267 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7268 		&kvm->arch.irq_sources_bitmap);
7269 
7270 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7271 	mutex_init(&kvm->arch.apic_map_lock);
7272 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7273 
7274 	pvclock_update_vm_gtod_copy(kvm);
7275 
7276 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7277 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7278 
7279 	return 0;
7280 }
7281 
7282 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7283 {
7284 	int r;
7285 	r = vcpu_load(vcpu);
7286 	BUG_ON(r);
7287 	kvm_mmu_unload(vcpu);
7288 	vcpu_put(vcpu);
7289 }
7290 
7291 static void kvm_free_vcpus(struct kvm *kvm)
7292 {
7293 	unsigned int i;
7294 	struct kvm_vcpu *vcpu;
7295 
7296 	/*
7297 	 * Unpin any mmu pages first.
7298 	 */
7299 	kvm_for_each_vcpu(i, vcpu, kvm) {
7300 		kvm_clear_async_pf_completion_queue(vcpu);
7301 		kvm_unload_vcpu_mmu(vcpu);
7302 	}
7303 	kvm_for_each_vcpu(i, vcpu, kvm)
7304 		kvm_arch_vcpu_free(vcpu);
7305 
7306 	mutex_lock(&kvm->lock);
7307 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7308 		kvm->vcpus[i] = NULL;
7309 
7310 	atomic_set(&kvm->online_vcpus, 0);
7311 	mutex_unlock(&kvm->lock);
7312 }
7313 
7314 void kvm_arch_sync_events(struct kvm *kvm)
7315 {
7316 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7317 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7318 	kvm_free_all_assigned_devices(kvm);
7319 	kvm_free_pit(kvm);
7320 }
7321 
7322 void kvm_arch_destroy_vm(struct kvm *kvm)
7323 {
7324 	if (current->mm == kvm->mm) {
7325 		/*
7326 		 * Free memory regions allocated on behalf of userspace,
7327 		 * unless the the memory map has changed due to process exit
7328 		 * or fd copying.
7329 		 */
7330 		struct kvm_userspace_memory_region mem;
7331 		memset(&mem, 0, sizeof(mem));
7332 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7333 		kvm_set_memory_region(kvm, &mem);
7334 
7335 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7336 		kvm_set_memory_region(kvm, &mem);
7337 
7338 		mem.slot = TSS_PRIVATE_MEMSLOT;
7339 		kvm_set_memory_region(kvm, &mem);
7340 	}
7341 	kvm_iommu_unmap_guest(kvm);
7342 	kfree(kvm->arch.vpic);
7343 	kfree(kvm->arch.vioapic);
7344 	kvm_free_vcpus(kvm);
7345 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7346 }
7347 
7348 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7349 			   struct kvm_memory_slot *dont)
7350 {
7351 	int i;
7352 
7353 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7354 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7355 			kvm_kvfree(free->arch.rmap[i]);
7356 			free->arch.rmap[i] = NULL;
7357 		}
7358 		if (i == 0)
7359 			continue;
7360 
7361 		if (!dont || free->arch.lpage_info[i - 1] !=
7362 			     dont->arch.lpage_info[i - 1]) {
7363 			kvm_kvfree(free->arch.lpage_info[i - 1]);
7364 			free->arch.lpage_info[i - 1] = NULL;
7365 		}
7366 	}
7367 }
7368 
7369 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7370 			    unsigned long npages)
7371 {
7372 	int i;
7373 
7374 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7375 		unsigned long ugfn;
7376 		int lpages;
7377 		int level = i + 1;
7378 
7379 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7380 				      slot->base_gfn, level) + 1;
7381 
7382 		slot->arch.rmap[i] =
7383 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7384 		if (!slot->arch.rmap[i])
7385 			goto out_free;
7386 		if (i == 0)
7387 			continue;
7388 
7389 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7390 					sizeof(*slot->arch.lpage_info[i - 1]));
7391 		if (!slot->arch.lpage_info[i - 1])
7392 			goto out_free;
7393 
7394 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7395 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7396 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7397 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7398 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7399 		/*
7400 		 * If the gfn and userspace address are not aligned wrt each
7401 		 * other, or if explicitly asked to, disable large page
7402 		 * support for this slot
7403 		 */
7404 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7405 		    !kvm_largepages_enabled()) {
7406 			unsigned long j;
7407 
7408 			for (j = 0; j < lpages; ++j)
7409 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7410 		}
7411 	}
7412 
7413 	return 0;
7414 
7415 out_free:
7416 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7417 		kvm_kvfree(slot->arch.rmap[i]);
7418 		slot->arch.rmap[i] = NULL;
7419 		if (i == 0)
7420 			continue;
7421 
7422 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
7423 		slot->arch.lpage_info[i - 1] = NULL;
7424 	}
7425 	return -ENOMEM;
7426 }
7427 
7428 void kvm_arch_memslots_updated(struct kvm *kvm)
7429 {
7430 	/*
7431 	 * memslots->generation has been incremented.
7432 	 * mmio generation may have reached its maximum value.
7433 	 */
7434 	kvm_mmu_invalidate_mmio_sptes(kvm);
7435 }
7436 
7437 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7438 				struct kvm_memory_slot *memslot,
7439 				struct kvm_userspace_memory_region *mem,
7440 				enum kvm_mr_change change)
7441 {
7442 	/*
7443 	 * Only private memory slots need to be mapped here since
7444 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7445 	 */
7446 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7447 		unsigned long userspace_addr;
7448 
7449 		/*
7450 		 * MAP_SHARED to prevent internal slot pages from being moved
7451 		 * by fork()/COW.
7452 		 */
7453 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7454 					 PROT_READ | PROT_WRITE,
7455 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7456 
7457 		if (IS_ERR((void *)userspace_addr))
7458 			return PTR_ERR((void *)userspace_addr);
7459 
7460 		memslot->userspace_addr = userspace_addr;
7461 	}
7462 
7463 	return 0;
7464 }
7465 
7466 void kvm_arch_commit_memory_region(struct kvm *kvm,
7467 				struct kvm_userspace_memory_region *mem,
7468 				const struct kvm_memory_slot *old,
7469 				enum kvm_mr_change change)
7470 {
7471 
7472 	int nr_mmu_pages = 0;
7473 
7474 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7475 		int ret;
7476 
7477 		ret = vm_munmap(old->userspace_addr,
7478 				old->npages * PAGE_SIZE);
7479 		if (ret < 0)
7480 			printk(KERN_WARNING
7481 			       "kvm_vm_ioctl_set_memory_region: "
7482 			       "failed to munmap memory\n");
7483 	}
7484 
7485 	if (!kvm->arch.n_requested_mmu_pages)
7486 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7487 
7488 	if (nr_mmu_pages)
7489 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7490 	/*
7491 	 * Write protect all pages for dirty logging.
7492 	 *
7493 	 * All the sptes including the large sptes which point to this
7494 	 * slot are set to readonly. We can not create any new large
7495 	 * spte on this slot until the end of the logging.
7496 	 *
7497 	 * See the comments in fast_page_fault().
7498 	 */
7499 	if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7500 		kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7501 }
7502 
7503 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7504 {
7505 	kvm_mmu_invalidate_zap_all_pages(kvm);
7506 }
7507 
7508 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7509 				   struct kvm_memory_slot *slot)
7510 {
7511 	kvm_mmu_invalidate_zap_all_pages(kvm);
7512 }
7513 
7514 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7515 {
7516 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7517 		kvm_x86_ops->check_nested_events(vcpu, false);
7518 
7519 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7520 		!vcpu->arch.apf.halted)
7521 		|| !list_empty_careful(&vcpu->async_pf.done)
7522 		|| kvm_apic_has_events(vcpu)
7523 		|| vcpu->arch.pv.pv_unhalted
7524 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7525 		(kvm_arch_interrupt_allowed(vcpu) &&
7526 		 kvm_cpu_has_interrupt(vcpu));
7527 }
7528 
7529 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7530 {
7531 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7532 }
7533 
7534 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7535 {
7536 	return kvm_x86_ops->interrupt_allowed(vcpu);
7537 }
7538 
7539 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7540 {
7541 	unsigned long current_rip = kvm_rip_read(vcpu) +
7542 		get_segment_base(vcpu, VCPU_SREG_CS);
7543 
7544 	return current_rip == linear_rip;
7545 }
7546 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7547 
7548 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7549 {
7550 	unsigned long rflags;
7551 
7552 	rflags = kvm_x86_ops->get_rflags(vcpu);
7553 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7554 		rflags &= ~X86_EFLAGS_TF;
7555 	return rflags;
7556 }
7557 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7558 
7559 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7560 {
7561 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7562 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7563 		rflags |= X86_EFLAGS_TF;
7564 	kvm_x86_ops->set_rflags(vcpu, rflags);
7565 }
7566 
7567 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7568 {
7569 	__kvm_set_rflags(vcpu, rflags);
7570 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7571 }
7572 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7573 
7574 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7575 {
7576 	int r;
7577 
7578 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7579 	      work->wakeup_all)
7580 		return;
7581 
7582 	r = kvm_mmu_reload(vcpu);
7583 	if (unlikely(r))
7584 		return;
7585 
7586 	if (!vcpu->arch.mmu.direct_map &&
7587 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7588 		return;
7589 
7590 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7591 }
7592 
7593 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7594 {
7595 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7596 }
7597 
7598 static inline u32 kvm_async_pf_next_probe(u32 key)
7599 {
7600 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7601 }
7602 
7603 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7604 {
7605 	u32 key = kvm_async_pf_hash_fn(gfn);
7606 
7607 	while (vcpu->arch.apf.gfns[key] != ~0)
7608 		key = kvm_async_pf_next_probe(key);
7609 
7610 	vcpu->arch.apf.gfns[key] = gfn;
7611 }
7612 
7613 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7614 {
7615 	int i;
7616 	u32 key = kvm_async_pf_hash_fn(gfn);
7617 
7618 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7619 		     (vcpu->arch.apf.gfns[key] != gfn &&
7620 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7621 		key = kvm_async_pf_next_probe(key);
7622 
7623 	return key;
7624 }
7625 
7626 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7627 {
7628 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7629 }
7630 
7631 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7632 {
7633 	u32 i, j, k;
7634 
7635 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7636 	while (true) {
7637 		vcpu->arch.apf.gfns[i] = ~0;
7638 		do {
7639 			j = kvm_async_pf_next_probe(j);
7640 			if (vcpu->arch.apf.gfns[j] == ~0)
7641 				return;
7642 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7643 			/*
7644 			 * k lies cyclically in ]i,j]
7645 			 * |    i.k.j |
7646 			 * |....j i.k.| or  |.k..j i...|
7647 			 */
7648 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7649 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7650 		i = j;
7651 	}
7652 }
7653 
7654 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7655 {
7656 
7657 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7658 				      sizeof(val));
7659 }
7660 
7661 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7662 				     struct kvm_async_pf *work)
7663 {
7664 	struct x86_exception fault;
7665 
7666 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7667 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7668 
7669 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7670 	    (vcpu->arch.apf.send_user_only &&
7671 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7672 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7673 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7674 		fault.vector = PF_VECTOR;
7675 		fault.error_code_valid = true;
7676 		fault.error_code = 0;
7677 		fault.nested_page_fault = false;
7678 		fault.address = work->arch.token;
7679 		kvm_inject_page_fault(vcpu, &fault);
7680 	}
7681 }
7682 
7683 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7684 				 struct kvm_async_pf *work)
7685 {
7686 	struct x86_exception fault;
7687 
7688 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7689 	if (work->wakeup_all)
7690 		work->arch.token = ~0; /* broadcast wakeup */
7691 	else
7692 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7693 
7694 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7695 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7696 		fault.vector = PF_VECTOR;
7697 		fault.error_code_valid = true;
7698 		fault.error_code = 0;
7699 		fault.nested_page_fault = false;
7700 		fault.address = work->arch.token;
7701 		kvm_inject_page_fault(vcpu, &fault);
7702 	}
7703 	vcpu->arch.apf.halted = false;
7704 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7705 }
7706 
7707 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7708 {
7709 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7710 		return true;
7711 	else
7712 		return !kvm_event_needs_reinjection(vcpu) &&
7713 			kvm_x86_ops->interrupt_allowed(vcpu);
7714 }
7715 
7716 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7717 {
7718 	atomic_inc(&kvm->arch.noncoherent_dma_count);
7719 }
7720 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7721 
7722 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7723 {
7724 	atomic_dec(&kvm->arch.noncoherent_dma_count);
7725 }
7726 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7727 
7728 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7729 {
7730 	return atomic_read(&kvm->arch.noncoherent_dma_count);
7731 }
7732 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7733 
7734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7743 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7744 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7745 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7746 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7747 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7748