1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/sched/isolation.h> 58 #include <linux/mem_encrypt.h> 59 #include <linux/entry-kvm.h> 60 #include <linux/suspend.h> 61 62 #include <trace/events/kvm.h> 63 64 #include <asm/debugreg.h> 65 #include <asm/msr.h> 66 #include <asm/desc.h> 67 #include <asm/mce.h> 68 #include <asm/pkru.h> 69 #include <linux/kernel_stat.h> 70 #include <asm/fpu/api.h> 71 #include <asm/fpu/xcr.h> 72 #include <asm/fpu/xstate.h> 73 #include <asm/pvclock.h> 74 #include <asm/div64.h> 75 #include <asm/irq_remapping.h> 76 #include <asm/mshyperv.h> 77 #include <asm/hypervisor.h> 78 #include <asm/tlbflush.h> 79 #include <asm/intel_pt.h> 80 #include <asm/emulate_prefix.h> 81 #include <asm/sgx.h> 82 #include <clocksource/hyperv_timer.h> 83 84 #define CREATE_TRACE_POINTS 85 #include "trace.h" 86 87 #define MAX_IO_MSRS 256 88 #define KVM_MAX_MCE_BANKS 32 89 90 struct kvm_caps kvm_caps __read_mostly = { 91 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 92 }; 93 EXPORT_SYMBOL_GPL(kvm_caps); 94 95 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 96 97 #define emul_to_vcpu(ctxt) \ 98 ((struct kvm_vcpu *)(ctxt)->vcpu) 99 100 /* EFER defaults: 101 * - enable syscall per default because its emulated by KVM 102 * - enable LME and LMA per default on 64 bit KVM 103 */ 104 #ifdef CONFIG_X86_64 105 static 106 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 107 #else 108 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 109 #endif 110 111 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 112 113 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 114 115 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 116 117 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 118 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 119 120 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 121 static void process_nmi(struct kvm_vcpu *vcpu); 122 static void process_smi(struct kvm_vcpu *vcpu); 123 static void enter_smm(struct kvm_vcpu *vcpu); 124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 125 static void store_regs(struct kvm_vcpu *vcpu); 126 static int sync_regs(struct kvm_vcpu *vcpu); 127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 128 129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 131 132 struct kvm_x86_ops kvm_x86_ops __read_mostly; 133 134 #define KVM_X86_OP(func) \ 135 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 136 *(((struct kvm_x86_ops *)0)->func)); 137 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 138 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 139 #include <asm/kvm-x86-ops.h> 140 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 141 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 142 143 static bool __read_mostly ignore_msrs = 0; 144 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 145 146 bool __read_mostly report_ignored_msrs = true; 147 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 148 EXPORT_SYMBOL_GPL(report_ignored_msrs); 149 150 unsigned int min_timer_period_us = 200; 151 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 152 153 static bool __read_mostly kvmclock_periodic_sync = true; 154 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 155 156 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 157 static u32 __read_mostly tsc_tolerance_ppm = 250; 158 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 159 160 /* 161 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 162 * adaptive tuning starting from default advancement of 1000ns. '0' disables 163 * advancement entirely. Any other value is used as-is and disables adaptive 164 * tuning, i.e. allows privileged userspace to set an exact advancement time. 165 */ 166 static int __read_mostly lapic_timer_advance_ns = -1; 167 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 168 169 static bool __read_mostly vector_hashing = true; 170 module_param(vector_hashing, bool, S_IRUGO); 171 172 bool __read_mostly enable_vmware_backdoor = false; 173 module_param(enable_vmware_backdoor, bool, S_IRUGO); 174 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 175 176 static bool __read_mostly force_emulation_prefix = false; 177 module_param(force_emulation_prefix, bool, S_IRUGO); 178 179 int __read_mostly pi_inject_timer = -1; 180 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 181 182 /* Enable/disable PMU virtualization */ 183 bool __read_mostly enable_pmu = true; 184 EXPORT_SYMBOL_GPL(enable_pmu); 185 module_param(enable_pmu, bool, 0444); 186 187 bool __read_mostly eager_page_split = true; 188 module_param(eager_page_split, bool, 0644); 189 190 /* 191 * Restoring the host value for MSRs that are only consumed when running in 192 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 193 * returns to userspace, i.e. the kernel can run with the guest's value. 194 */ 195 #define KVM_MAX_NR_USER_RETURN_MSRS 16 196 197 struct kvm_user_return_msrs { 198 struct user_return_notifier urn; 199 bool registered; 200 struct kvm_user_return_msr_values { 201 u64 host; 202 u64 curr; 203 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 204 }; 205 206 u32 __read_mostly kvm_nr_uret_msrs; 207 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 208 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 209 static struct kvm_user_return_msrs __percpu *user_return_msrs; 210 211 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 212 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 213 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 214 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 215 216 u64 __read_mostly host_efer; 217 EXPORT_SYMBOL_GPL(host_efer); 218 219 bool __read_mostly allow_smaller_maxphyaddr = 0; 220 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 221 222 bool __read_mostly enable_apicv = true; 223 EXPORT_SYMBOL_GPL(enable_apicv); 224 225 u64 __read_mostly host_xss; 226 EXPORT_SYMBOL_GPL(host_xss); 227 228 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 229 KVM_GENERIC_VM_STATS(), 230 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 231 STATS_DESC_COUNTER(VM, mmu_pte_write), 232 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 233 STATS_DESC_COUNTER(VM, mmu_flooded), 234 STATS_DESC_COUNTER(VM, mmu_recycled), 235 STATS_DESC_COUNTER(VM, mmu_cache_miss), 236 STATS_DESC_ICOUNTER(VM, mmu_unsync), 237 STATS_DESC_ICOUNTER(VM, pages_4k), 238 STATS_DESC_ICOUNTER(VM, pages_2m), 239 STATS_DESC_ICOUNTER(VM, pages_1g), 240 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 241 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 242 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 243 }; 244 245 const struct kvm_stats_header kvm_vm_stats_header = { 246 .name_size = KVM_STATS_NAME_SIZE, 247 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 248 .id_offset = sizeof(struct kvm_stats_header), 249 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 250 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 251 sizeof(kvm_vm_stats_desc), 252 }; 253 254 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 255 KVM_GENERIC_VCPU_STATS(), 256 STATS_DESC_COUNTER(VCPU, pf_taken), 257 STATS_DESC_COUNTER(VCPU, pf_fixed), 258 STATS_DESC_COUNTER(VCPU, pf_emulate), 259 STATS_DESC_COUNTER(VCPU, pf_spurious), 260 STATS_DESC_COUNTER(VCPU, pf_fast), 261 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 262 STATS_DESC_COUNTER(VCPU, pf_guest), 263 STATS_DESC_COUNTER(VCPU, tlb_flush), 264 STATS_DESC_COUNTER(VCPU, invlpg), 265 STATS_DESC_COUNTER(VCPU, exits), 266 STATS_DESC_COUNTER(VCPU, io_exits), 267 STATS_DESC_COUNTER(VCPU, mmio_exits), 268 STATS_DESC_COUNTER(VCPU, signal_exits), 269 STATS_DESC_COUNTER(VCPU, irq_window_exits), 270 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 271 STATS_DESC_COUNTER(VCPU, l1d_flush), 272 STATS_DESC_COUNTER(VCPU, halt_exits), 273 STATS_DESC_COUNTER(VCPU, request_irq_exits), 274 STATS_DESC_COUNTER(VCPU, irq_exits), 275 STATS_DESC_COUNTER(VCPU, host_state_reload), 276 STATS_DESC_COUNTER(VCPU, fpu_reload), 277 STATS_DESC_COUNTER(VCPU, insn_emulation), 278 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 279 STATS_DESC_COUNTER(VCPU, hypercalls), 280 STATS_DESC_COUNTER(VCPU, irq_injections), 281 STATS_DESC_COUNTER(VCPU, nmi_injections), 282 STATS_DESC_COUNTER(VCPU, req_event), 283 STATS_DESC_COUNTER(VCPU, nested_run), 284 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 285 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 286 STATS_DESC_COUNTER(VCPU, preemption_reported), 287 STATS_DESC_COUNTER(VCPU, preemption_other), 288 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 289 STATS_DESC_COUNTER(VCPU, notify_window_exits), 290 }; 291 292 const struct kvm_stats_header kvm_vcpu_stats_header = { 293 .name_size = KVM_STATS_NAME_SIZE, 294 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 295 .id_offset = sizeof(struct kvm_stats_header), 296 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 297 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 298 sizeof(kvm_vcpu_stats_desc), 299 }; 300 301 u64 __read_mostly host_xcr0; 302 303 static struct kmem_cache *x86_emulator_cache; 304 305 /* 306 * When called, it means the previous get/set msr reached an invalid msr. 307 * Return true if we want to ignore/silent this failed msr access. 308 */ 309 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 310 { 311 const char *op = write ? "wrmsr" : "rdmsr"; 312 313 if (ignore_msrs) { 314 if (report_ignored_msrs) 315 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 316 op, msr, data); 317 /* Mask the error */ 318 return true; 319 } else { 320 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 321 op, msr, data); 322 return false; 323 } 324 } 325 326 static struct kmem_cache *kvm_alloc_emulator_cache(void) 327 { 328 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 329 unsigned int size = sizeof(struct x86_emulate_ctxt); 330 331 return kmem_cache_create_usercopy("x86_emulator", size, 332 __alignof__(struct x86_emulate_ctxt), 333 SLAB_ACCOUNT, useroffset, 334 size - useroffset, NULL); 335 } 336 337 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 338 339 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 340 { 341 int i; 342 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 343 vcpu->arch.apf.gfns[i] = ~0; 344 } 345 346 static void kvm_on_user_return(struct user_return_notifier *urn) 347 { 348 unsigned slot; 349 struct kvm_user_return_msrs *msrs 350 = container_of(urn, struct kvm_user_return_msrs, urn); 351 struct kvm_user_return_msr_values *values; 352 unsigned long flags; 353 354 /* 355 * Disabling irqs at this point since the following code could be 356 * interrupted and executed through kvm_arch_hardware_disable() 357 */ 358 local_irq_save(flags); 359 if (msrs->registered) { 360 msrs->registered = false; 361 user_return_notifier_unregister(urn); 362 } 363 local_irq_restore(flags); 364 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 365 values = &msrs->values[slot]; 366 if (values->host != values->curr) { 367 wrmsrl(kvm_uret_msrs_list[slot], values->host); 368 values->curr = values->host; 369 } 370 } 371 } 372 373 static int kvm_probe_user_return_msr(u32 msr) 374 { 375 u64 val; 376 int ret; 377 378 preempt_disable(); 379 ret = rdmsrl_safe(msr, &val); 380 if (ret) 381 goto out; 382 ret = wrmsrl_safe(msr, val); 383 out: 384 preempt_enable(); 385 return ret; 386 } 387 388 int kvm_add_user_return_msr(u32 msr) 389 { 390 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 391 392 if (kvm_probe_user_return_msr(msr)) 393 return -1; 394 395 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 396 return kvm_nr_uret_msrs++; 397 } 398 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 399 400 int kvm_find_user_return_msr(u32 msr) 401 { 402 int i; 403 404 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 405 if (kvm_uret_msrs_list[i] == msr) 406 return i; 407 } 408 return -1; 409 } 410 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 411 412 static void kvm_user_return_msr_cpu_online(void) 413 { 414 unsigned int cpu = smp_processor_id(); 415 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 416 u64 value; 417 int i; 418 419 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 420 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 421 msrs->values[i].host = value; 422 msrs->values[i].curr = value; 423 } 424 } 425 426 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 427 { 428 unsigned int cpu = smp_processor_id(); 429 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 430 int err; 431 432 value = (value & mask) | (msrs->values[slot].host & ~mask); 433 if (value == msrs->values[slot].curr) 434 return 0; 435 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 436 if (err) 437 return 1; 438 439 msrs->values[slot].curr = value; 440 if (!msrs->registered) { 441 msrs->urn.on_user_return = kvm_on_user_return; 442 user_return_notifier_register(&msrs->urn); 443 msrs->registered = true; 444 } 445 return 0; 446 } 447 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 448 449 static void drop_user_return_notifiers(void) 450 { 451 unsigned int cpu = smp_processor_id(); 452 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 453 454 if (msrs->registered) 455 kvm_on_user_return(&msrs->urn); 456 } 457 458 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 459 { 460 return vcpu->arch.apic_base; 461 } 462 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 463 464 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 465 { 466 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 467 } 468 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 469 470 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 471 { 472 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 473 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 474 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 475 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 476 477 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 478 return 1; 479 if (!msr_info->host_initiated) { 480 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 481 return 1; 482 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 483 return 1; 484 } 485 486 kvm_lapic_set_base(vcpu, msr_info->data); 487 kvm_recalculate_apic_map(vcpu->kvm); 488 return 0; 489 } 490 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 491 492 /* 493 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 494 * 495 * Hardware virtualization extension instructions may fault if a reboot turns 496 * off virtualization while processes are running. Usually after catching the 497 * fault we just panic; during reboot instead the instruction is ignored. 498 */ 499 noinstr void kvm_spurious_fault(void) 500 { 501 /* Fault while not rebooting. We want the trace. */ 502 BUG_ON(!kvm_rebooting); 503 } 504 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 505 506 #define EXCPT_BENIGN 0 507 #define EXCPT_CONTRIBUTORY 1 508 #define EXCPT_PF 2 509 510 static int exception_class(int vector) 511 { 512 switch (vector) { 513 case PF_VECTOR: 514 return EXCPT_PF; 515 case DE_VECTOR: 516 case TS_VECTOR: 517 case NP_VECTOR: 518 case SS_VECTOR: 519 case GP_VECTOR: 520 return EXCPT_CONTRIBUTORY; 521 default: 522 break; 523 } 524 return EXCPT_BENIGN; 525 } 526 527 #define EXCPT_FAULT 0 528 #define EXCPT_TRAP 1 529 #define EXCPT_ABORT 2 530 #define EXCPT_INTERRUPT 3 531 532 static int exception_type(int vector) 533 { 534 unsigned int mask; 535 536 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 537 return EXCPT_INTERRUPT; 538 539 mask = 1 << vector; 540 541 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 542 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 543 return EXCPT_TRAP; 544 545 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 546 return EXCPT_ABORT; 547 548 /* Reserved exceptions will result in fault */ 549 return EXCPT_FAULT; 550 } 551 552 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 553 { 554 unsigned nr = vcpu->arch.exception.nr; 555 bool has_payload = vcpu->arch.exception.has_payload; 556 unsigned long payload = vcpu->arch.exception.payload; 557 558 if (!has_payload) 559 return; 560 561 switch (nr) { 562 case DB_VECTOR: 563 /* 564 * "Certain debug exceptions may clear bit 0-3. The 565 * remaining contents of the DR6 register are never 566 * cleared by the processor". 567 */ 568 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 569 /* 570 * In order to reflect the #DB exception payload in guest 571 * dr6, three components need to be considered: active low 572 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 573 * DR6_BS and DR6_BT) 574 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 575 * In the target guest dr6: 576 * FIXED_1 bits should always be set. 577 * Active low bits should be cleared if 1-setting in payload. 578 * Active high bits should be set if 1-setting in payload. 579 * 580 * Note, the payload is compatible with the pending debug 581 * exceptions/exit qualification under VMX, that active_low bits 582 * are active high in payload. 583 * So they need to be flipped for DR6. 584 */ 585 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 586 vcpu->arch.dr6 |= payload; 587 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW; 588 589 /* 590 * The #DB payload is defined as compatible with the 'pending 591 * debug exceptions' field under VMX, not DR6. While bit 12 is 592 * defined in the 'pending debug exceptions' field (enabled 593 * breakpoint), it is reserved and must be zero in DR6. 594 */ 595 vcpu->arch.dr6 &= ~BIT(12); 596 break; 597 case PF_VECTOR: 598 vcpu->arch.cr2 = payload; 599 break; 600 } 601 602 vcpu->arch.exception.has_payload = false; 603 vcpu->arch.exception.payload = 0; 604 } 605 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 606 607 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 608 unsigned nr, bool has_error, u32 error_code, 609 bool has_payload, unsigned long payload, bool reinject) 610 { 611 u32 prev_nr; 612 int class1, class2; 613 614 kvm_make_request(KVM_REQ_EVENT, vcpu); 615 616 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 617 queue: 618 if (reinject) { 619 /* 620 * On vmentry, vcpu->arch.exception.pending is only 621 * true if an event injection was blocked by 622 * nested_run_pending. In that case, however, 623 * vcpu_enter_guest requests an immediate exit, 624 * and the guest shouldn't proceed far enough to 625 * need reinjection. 626 */ 627 WARN_ON_ONCE(vcpu->arch.exception.pending); 628 vcpu->arch.exception.injected = true; 629 if (WARN_ON_ONCE(has_payload)) { 630 /* 631 * A reinjected event has already 632 * delivered its payload. 633 */ 634 has_payload = false; 635 payload = 0; 636 } 637 } else { 638 vcpu->arch.exception.pending = true; 639 vcpu->arch.exception.injected = false; 640 } 641 vcpu->arch.exception.has_error_code = has_error; 642 vcpu->arch.exception.nr = nr; 643 vcpu->arch.exception.error_code = error_code; 644 vcpu->arch.exception.has_payload = has_payload; 645 vcpu->arch.exception.payload = payload; 646 if (!is_guest_mode(vcpu)) 647 kvm_deliver_exception_payload(vcpu); 648 return; 649 } 650 651 /* to check exception */ 652 prev_nr = vcpu->arch.exception.nr; 653 if (prev_nr == DF_VECTOR) { 654 /* triple fault -> shutdown */ 655 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 656 return; 657 } 658 class1 = exception_class(prev_nr); 659 class2 = exception_class(nr); 660 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 661 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 662 /* 663 * Generate double fault per SDM Table 5-5. Set 664 * exception.pending = true so that the double fault 665 * can trigger a nested vmexit. 666 */ 667 vcpu->arch.exception.pending = true; 668 vcpu->arch.exception.injected = false; 669 vcpu->arch.exception.has_error_code = true; 670 vcpu->arch.exception.nr = DF_VECTOR; 671 vcpu->arch.exception.error_code = 0; 672 vcpu->arch.exception.has_payload = false; 673 vcpu->arch.exception.payload = 0; 674 } else 675 /* replace previous exception with a new one in a hope 676 that instruction re-execution will regenerate lost 677 exception */ 678 goto queue; 679 } 680 681 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 682 { 683 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 684 } 685 EXPORT_SYMBOL_GPL(kvm_queue_exception); 686 687 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 688 { 689 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 690 } 691 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 692 693 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 694 unsigned long payload) 695 { 696 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 697 } 698 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 699 700 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 701 u32 error_code, unsigned long payload) 702 { 703 kvm_multiple_exception(vcpu, nr, true, error_code, 704 true, payload, false); 705 } 706 707 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 708 { 709 if (err) 710 kvm_inject_gp(vcpu, 0); 711 else 712 return kvm_skip_emulated_instruction(vcpu); 713 714 return 1; 715 } 716 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 717 718 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 719 { 720 if (err) { 721 kvm_inject_gp(vcpu, 0); 722 return 1; 723 } 724 725 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 726 EMULTYPE_COMPLETE_USER_EXIT); 727 } 728 729 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 730 { 731 ++vcpu->stat.pf_guest; 732 vcpu->arch.exception.nested_apf = 733 is_guest_mode(vcpu) && fault->async_page_fault; 734 if (vcpu->arch.exception.nested_apf) { 735 vcpu->arch.apf.nested_apf_token = fault->address; 736 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 737 } else { 738 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 739 fault->address); 740 } 741 } 742 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 743 744 /* Returns true if the page fault was immediately morphed into a VM-Exit. */ 745 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 746 struct x86_exception *fault) 747 { 748 struct kvm_mmu *fault_mmu; 749 WARN_ON_ONCE(fault->vector != PF_VECTOR); 750 751 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 752 vcpu->arch.walk_mmu; 753 754 /* 755 * Invalidate the TLB entry for the faulting address, if it exists, 756 * else the access will fault indefinitely (and to emulate hardware). 757 */ 758 if ((fault->error_code & PFERR_PRESENT_MASK) && 759 !(fault->error_code & PFERR_RSVD_MASK)) 760 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 761 fault_mmu->root.hpa); 762 763 /* 764 * A workaround for KVM's bad exception handling. If KVM injected an 765 * exception into L2, and L2 encountered a #PF while vectoring the 766 * injected exception, manually check to see if L1 wants to intercept 767 * #PF, otherwise queuing the #PF will lead to #DF or a lost exception. 768 * In all other cases, defer the check to nested_ops->check_events(), 769 * which will correctly handle priority (this does not). Note, other 770 * exceptions, e.g. #GP, are theoretically affected, #PF is simply the 771 * most problematic, e.g. when L0 and L1 are both intercepting #PF for 772 * shadow paging. 773 * 774 * TODO: Rewrite exception handling to track injected and pending 775 * (VM-Exit) exceptions separately. 776 */ 777 if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) && 778 kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault)) 779 return true; 780 781 fault_mmu->inject_page_fault(vcpu, fault); 782 return false; 783 } 784 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 785 786 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 787 { 788 atomic_inc(&vcpu->arch.nmi_queued); 789 kvm_make_request(KVM_REQ_NMI, vcpu); 790 } 791 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 792 793 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 794 { 795 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 796 } 797 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 798 799 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 800 { 801 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 802 } 803 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 804 805 /* 806 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 807 * a #GP and return false. 808 */ 809 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 810 { 811 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 812 return true; 813 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 814 return false; 815 } 816 EXPORT_SYMBOL_GPL(kvm_require_cpl); 817 818 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 819 { 820 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 821 return true; 822 823 kvm_queue_exception(vcpu, UD_VECTOR); 824 return false; 825 } 826 EXPORT_SYMBOL_GPL(kvm_require_dr); 827 828 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 829 { 830 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 831 } 832 833 /* 834 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 835 */ 836 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 837 { 838 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 839 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 840 gpa_t real_gpa; 841 int i; 842 int ret; 843 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 844 845 /* 846 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 847 * to an L1 GPA. 848 */ 849 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 850 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 851 if (real_gpa == INVALID_GPA) 852 return 0; 853 854 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 855 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 856 cr3 & GENMASK(11, 5), sizeof(pdpte)); 857 if (ret < 0) 858 return 0; 859 860 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 861 if ((pdpte[i] & PT_PRESENT_MASK) && 862 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 863 return 0; 864 } 865 } 866 867 /* 868 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 869 * Shadow page roots need to be reconstructed instead. 870 */ 871 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 872 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 873 874 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 875 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 876 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 877 vcpu->arch.pdptrs_from_userspace = false; 878 879 return 1; 880 } 881 EXPORT_SYMBOL_GPL(load_pdptrs); 882 883 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 884 { 885 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 886 kvm_clear_async_pf_completion_queue(vcpu); 887 kvm_async_pf_hash_reset(vcpu); 888 889 /* 890 * Clearing CR0.PG is defined to flush the TLB from the guest's 891 * perspective. 892 */ 893 if (!(cr0 & X86_CR0_PG)) 894 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 895 } 896 897 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 898 kvm_mmu_reset_context(vcpu); 899 900 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 901 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 902 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 903 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 904 } 905 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 906 907 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 908 { 909 unsigned long old_cr0 = kvm_read_cr0(vcpu); 910 911 cr0 |= X86_CR0_ET; 912 913 #ifdef CONFIG_X86_64 914 if (cr0 & 0xffffffff00000000UL) 915 return 1; 916 #endif 917 918 cr0 &= ~CR0_RESERVED_BITS; 919 920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 921 return 1; 922 923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 924 return 1; 925 926 #ifdef CONFIG_X86_64 927 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 928 (cr0 & X86_CR0_PG)) { 929 int cs_db, cs_l; 930 931 if (!is_pae(vcpu)) 932 return 1; 933 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 934 if (cs_l) 935 return 1; 936 } 937 #endif 938 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 939 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 940 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 941 return 1; 942 943 if (!(cr0 & X86_CR0_PG) && 944 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 945 return 1; 946 947 static_call(kvm_x86_set_cr0)(vcpu, cr0); 948 949 kvm_post_set_cr0(vcpu, old_cr0, cr0); 950 951 return 0; 952 } 953 EXPORT_SYMBOL_GPL(kvm_set_cr0); 954 955 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 956 { 957 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 958 } 959 EXPORT_SYMBOL_GPL(kvm_lmsw); 960 961 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 962 { 963 if (vcpu->arch.guest_state_protected) 964 return; 965 966 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 967 968 if (vcpu->arch.xcr0 != host_xcr0) 969 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 970 971 if (vcpu->arch.xsaves_enabled && 972 vcpu->arch.ia32_xss != host_xss) 973 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 974 } 975 976 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 977 if (static_cpu_has(X86_FEATURE_PKU) && 978 vcpu->arch.pkru != vcpu->arch.host_pkru && 979 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 980 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 981 write_pkru(vcpu->arch.pkru); 982 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 983 } 984 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 985 986 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 987 { 988 if (vcpu->arch.guest_state_protected) 989 return; 990 991 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 992 if (static_cpu_has(X86_FEATURE_PKU) && 993 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 994 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 995 vcpu->arch.pkru = rdpkru(); 996 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 997 write_pkru(vcpu->arch.host_pkru); 998 } 999 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1000 1001 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1002 1003 if (vcpu->arch.xcr0 != host_xcr0) 1004 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1005 1006 if (vcpu->arch.xsaves_enabled && 1007 vcpu->arch.ia32_xss != host_xss) 1008 wrmsrl(MSR_IA32_XSS, host_xss); 1009 } 1010 1011 } 1012 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1013 1014 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu) 1015 { 1016 return vcpu->arch.guest_fpu.fpstate->user_xfeatures; 1017 } 1018 1019 #ifdef CONFIG_X86_64 1020 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1021 { 1022 return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC; 1023 } 1024 #endif 1025 1026 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1027 { 1028 u64 xcr0 = xcr; 1029 u64 old_xcr0 = vcpu->arch.xcr0; 1030 u64 valid_bits; 1031 1032 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1033 if (index != XCR_XFEATURE_ENABLED_MASK) 1034 return 1; 1035 if (!(xcr0 & XFEATURE_MASK_FP)) 1036 return 1; 1037 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1038 return 1; 1039 1040 /* 1041 * Do not allow the guest to set bits that we do not support 1042 * saving. However, xcr0 bit 0 is always set, even if the 1043 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1044 */ 1045 valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP; 1046 if (xcr0 & ~valid_bits) 1047 return 1; 1048 1049 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1050 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1051 return 1; 1052 1053 if (xcr0 & XFEATURE_MASK_AVX512) { 1054 if (!(xcr0 & XFEATURE_MASK_YMM)) 1055 return 1; 1056 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1057 return 1; 1058 } 1059 1060 if ((xcr0 & XFEATURE_MASK_XTILE) && 1061 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1062 return 1; 1063 1064 vcpu->arch.xcr0 = xcr0; 1065 1066 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1067 kvm_update_cpuid_runtime(vcpu); 1068 return 0; 1069 } 1070 1071 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1072 { 1073 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1074 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1075 kvm_inject_gp(vcpu, 0); 1076 return 1; 1077 } 1078 1079 return kvm_skip_emulated_instruction(vcpu); 1080 } 1081 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1082 1083 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1084 { 1085 if (cr4 & cr4_reserved_bits) 1086 return false; 1087 1088 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1089 return false; 1090 1091 return true; 1092 } 1093 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1094 1095 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1096 { 1097 return __kvm_is_valid_cr4(vcpu, cr4) && 1098 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1099 } 1100 1101 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1102 { 1103 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1104 kvm_mmu_reset_context(vcpu); 1105 1106 /* 1107 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1108 * according to the SDM; however, stale prev_roots could be reused 1109 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1110 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1111 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1112 * so fall through. 1113 */ 1114 if (!tdp_enabled && 1115 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1116 kvm_mmu_unload(vcpu); 1117 1118 /* 1119 * The TLB has to be flushed for all PCIDs if any of the following 1120 * (architecturally required) changes happen: 1121 * - CR4.PCIDE is changed from 1 to 0 1122 * - CR4.PGE is toggled 1123 * 1124 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1125 */ 1126 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1127 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1128 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1129 1130 /* 1131 * The TLB has to be flushed for the current PCID if any of the 1132 * following (architecturally required) changes happen: 1133 * - CR4.SMEP is changed from 0 to 1 1134 * - CR4.PAE is toggled 1135 */ 1136 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1137 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1138 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1139 1140 } 1141 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1142 1143 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1144 { 1145 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1146 1147 if (!kvm_is_valid_cr4(vcpu, cr4)) 1148 return 1; 1149 1150 if (is_long_mode(vcpu)) { 1151 if (!(cr4 & X86_CR4_PAE)) 1152 return 1; 1153 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1154 return 1; 1155 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1156 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1157 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1158 return 1; 1159 1160 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1161 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1162 return 1; 1163 1164 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1165 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1166 return 1; 1167 } 1168 1169 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1170 1171 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1172 1173 return 0; 1174 } 1175 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1176 1177 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1178 { 1179 struct kvm_mmu *mmu = vcpu->arch.mmu; 1180 unsigned long roots_to_free = 0; 1181 int i; 1182 1183 /* 1184 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1185 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1186 * also via the emulator. KVM's TDP page tables are not in the scope of 1187 * the invalidation, but the guest's TLB entries need to be flushed as 1188 * the CPU may have cached entries in its TLB for the target PCID. 1189 */ 1190 if (unlikely(tdp_enabled)) { 1191 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1192 return; 1193 } 1194 1195 /* 1196 * If neither the current CR3 nor any of the prev_roots use the given 1197 * PCID, then nothing needs to be done here because a resync will 1198 * happen anyway before switching to any other CR3. 1199 */ 1200 if (kvm_get_active_pcid(vcpu) == pcid) { 1201 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1202 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1203 } 1204 1205 /* 1206 * If PCID is disabled, there is no need to free prev_roots even if the 1207 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1208 * with PCIDE=0. 1209 */ 1210 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1211 return; 1212 1213 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1214 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1215 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1216 1217 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1218 } 1219 1220 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1221 { 1222 bool skip_tlb_flush = false; 1223 unsigned long pcid = 0; 1224 #ifdef CONFIG_X86_64 1225 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1226 1227 if (pcid_enabled) { 1228 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1229 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1230 pcid = cr3 & X86_CR3_PCID_MASK; 1231 } 1232 #endif 1233 1234 /* PDPTRs are always reloaded for PAE paging. */ 1235 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1236 goto handle_tlb_flush; 1237 1238 /* 1239 * Do not condition the GPA check on long mode, this helper is used to 1240 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1241 * the current vCPU mode is accurate. 1242 */ 1243 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1244 return 1; 1245 1246 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1247 return 1; 1248 1249 if (cr3 != kvm_read_cr3(vcpu)) 1250 kvm_mmu_new_pgd(vcpu, cr3); 1251 1252 vcpu->arch.cr3 = cr3; 1253 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1254 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1255 1256 handle_tlb_flush: 1257 /* 1258 * A load of CR3 that flushes the TLB flushes only the current PCID, 1259 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1260 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1261 * and it's impossible to use a non-zero PCID when PCID is disabled, 1262 * i.e. only PCID=0 can be relevant. 1263 */ 1264 if (!skip_tlb_flush) 1265 kvm_invalidate_pcid(vcpu, pcid); 1266 1267 return 0; 1268 } 1269 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1270 1271 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1272 { 1273 if (cr8 & CR8_RESERVED_BITS) 1274 return 1; 1275 if (lapic_in_kernel(vcpu)) 1276 kvm_lapic_set_tpr(vcpu, cr8); 1277 else 1278 vcpu->arch.cr8 = cr8; 1279 return 0; 1280 } 1281 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1282 1283 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1284 { 1285 if (lapic_in_kernel(vcpu)) 1286 return kvm_lapic_get_cr8(vcpu); 1287 else 1288 return vcpu->arch.cr8; 1289 } 1290 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1291 1292 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1293 { 1294 int i; 1295 1296 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1297 for (i = 0; i < KVM_NR_DB_REGS; i++) 1298 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1299 } 1300 } 1301 1302 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1303 { 1304 unsigned long dr7; 1305 1306 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1307 dr7 = vcpu->arch.guest_debug_dr7; 1308 else 1309 dr7 = vcpu->arch.dr7; 1310 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1311 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1312 if (dr7 & DR7_BP_EN_MASK) 1313 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1314 } 1315 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1316 1317 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1318 { 1319 u64 fixed = DR6_FIXED_1; 1320 1321 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1322 fixed |= DR6_RTM; 1323 1324 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1325 fixed |= DR6_BUS_LOCK; 1326 return fixed; 1327 } 1328 1329 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1330 { 1331 size_t size = ARRAY_SIZE(vcpu->arch.db); 1332 1333 switch (dr) { 1334 case 0 ... 3: 1335 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1336 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1337 vcpu->arch.eff_db[dr] = val; 1338 break; 1339 case 4: 1340 case 6: 1341 if (!kvm_dr6_valid(val)) 1342 return 1; /* #GP */ 1343 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1344 break; 1345 case 5: 1346 default: /* 7 */ 1347 if (!kvm_dr7_valid(val)) 1348 return 1; /* #GP */ 1349 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1350 kvm_update_dr7(vcpu); 1351 break; 1352 } 1353 1354 return 0; 1355 } 1356 EXPORT_SYMBOL_GPL(kvm_set_dr); 1357 1358 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1359 { 1360 size_t size = ARRAY_SIZE(vcpu->arch.db); 1361 1362 switch (dr) { 1363 case 0 ... 3: 1364 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1365 break; 1366 case 4: 1367 case 6: 1368 *val = vcpu->arch.dr6; 1369 break; 1370 case 5: 1371 default: /* 7 */ 1372 *val = vcpu->arch.dr7; 1373 break; 1374 } 1375 } 1376 EXPORT_SYMBOL_GPL(kvm_get_dr); 1377 1378 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1379 { 1380 u32 ecx = kvm_rcx_read(vcpu); 1381 u64 data; 1382 1383 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1384 kvm_inject_gp(vcpu, 0); 1385 return 1; 1386 } 1387 1388 kvm_rax_write(vcpu, (u32)data); 1389 kvm_rdx_write(vcpu, data >> 32); 1390 return kvm_skip_emulated_instruction(vcpu); 1391 } 1392 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1393 1394 /* 1395 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1396 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1397 * 1398 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1399 * extract the supported MSRs from the related const lists. 1400 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1401 * capabilities of the host cpu. This capabilities test skips MSRs that are 1402 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1403 * may depend on host virtualization features rather than host cpu features. 1404 */ 1405 1406 static const u32 msrs_to_save_all[] = { 1407 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1408 MSR_STAR, 1409 #ifdef CONFIG_X86_64 1410 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1411 #endif 1412 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1413 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1414 MSR_IA32_SPEC_CTRL, 1415 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1416 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1417 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1418 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1419 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1420 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1421 MSR_IA32_UMWAIT_CONTROL, 1422 1423 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1424 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1425 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1426 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1427 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1428 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1429 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1430 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1431 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1432 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1433 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1434 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1435 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1436 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1437 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1438 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1439 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1440 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1441 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1442 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1443 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1444 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1445 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1446 1447 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1448 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1449 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1450 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1451 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1452 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1453 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1454 }; 1455 1456 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1457 static unsigned num_msrs_to_save; 1458 1459 static const u32 emulated_msrs_all[] = { 1460 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1461 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1462 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1463 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1464 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1465 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1466 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1467 HV_X64_MSR_RESET, 1468 HV_X64_MSR_VP_INDEX, 1469 HV_X64_MSR_VP_RUNTIME, 1470 HV_X64_MSR_SCONTROL, 1471 HV_X64_MSR_STIMER0_CONFIG, 1472 HV_X64_MSR_VP_ASSIST_PAGE, 1473 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1474 HV_X64_MSR_TSC_EMULATION_STATUS, 1475 HV_X64_MSR_SYNDBG_OPTIONS, 1476 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1477 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1478 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1479 1480 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1481 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1482 1483 MSR_IA32_TSC_ADJUST, 1484 MSR_IA32_TSC_DEADLINE, 1485 MSR_IA32_ARCH_CAPABILITIES, 1486 MSR_IA32_PERF_CAPABILITIES, 1487 MSR_IA32_MISC_ENABLE, 1488 MSR_IA32_MCG_STATUS, 1489 MSR_IA32_MCG_CTL, 1490 MSR_IA32_MCG_EXT_CTL, 1491 MSR_IA32_SMBASE, 1492 MSR_SMI_COUNT, 1493 MSR_PLATFORM_INFO, 1494 MSR_MISC_FEATURES_ENABLES, 1495 MSR_AMD64_VIRT_SPEC_CTRL, 1496 MSR_AMD64_TSC_RATIO, 1497 MSR_IA32_POWER_CTL, 1498 MSR_IA32_UCODE_REV, 1499 1500 /* 1501 * The following list leaves out MSRs whose values are determined 1502 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1503 * We always support the "true" VMX control MSRs, even if the host 1504 * processor does not, so I am putting these registers here rather 1505 * than in msrs_to_save_all. 1506 */ 1507 MSR_IA32_VMX_BASIC, 1508 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1509 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1510 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1511 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1512 MSR_IA32_VMX_MISC, 1513 MSR_IA32_VMX_CR0_FIXED0, 1514 MSR_IA32_VMX_CR4_FIXED0, 1515 MSR_IA32_VMX_VMCS_ENUM, 1516 MSR_IA32_VMX_PROCBASED_CTLS2, 1517 MSR_IA32_VMX_EPT_VPID_CAP, 1518 MSR_IA32_VMX_VMFUNC, 1519 1520 MSR_K7_HWCR, 1521 MSR_KVM_POLL_CONTROL, 1522 }; 1523 1524 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1525 static unsigned num_emulated_msrs; 1526 1527 /* 1528 * List of msr numbers which are used to expose MSR-based features that 1529 * can be used by a hypervisor to validate requested CPU features. 1530 */ 1531 static const u32 msr_based_features_all[] = { 1532 MSR_IA32_VMX_BASIC, 1533 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1534 MSR_IA32_VMX_PINBASED_CTLS, 1535 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1536 MSR_IA32_VMX_PROCBASED_CTLS, 1537 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1538 MSR_IA32_VMX_EXIT_CTLS, 1539 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1540 MSR_IA32_VMX_ENTRY_CTLS, 1541 MSR_IA32_VMX_MISC, 1542 MSR_IA32_VMX_CR0_FIXED0, 1543 MSR_IA32_VMX_CR0_FIXED1, 1544 MSR_IA32_VMX_CR4_FIXED0, 1545 MSR_IA32_VMX_CR4_FIXED1, 1546 MSR_IA32_VMX_VMCS_ENUM, 1547 MSR_IA32_VMX_PROCBASED_CTLS2, 1548 MSR_IA32_VMX_EPT_VPID_CAP, 1549 MSR_IA32_VMX_VMFUNC, 1550 1551 MSR_F10H_DECFG, 1552 MSR_IA32_UCODE_REV, 1553 MSR_IA32_ARCH_CAPABILITIES, 1554 MSR_IA32_PERF_CAPABILITIES, 1555 }; 1556 1557 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1558 static unsigned int num_msr_based_features; 1559 1560 static u64 kvm_get_arch_capabilities(void) 1561 { 1562 u64 data = 0; 1563 1564 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1565 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1566 1567 /* 1568 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1569 * the nested hypervisor runs with NX huge pages. If it is not, 1570 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1571 * L1 guests, so it need not worry about its own (L2) guests. 1572 */ 1573 data |= ARCH_CAP_PSCHANGE_MC_NO; 1574 1575 /* 1576 * If we're doing cache flushes (either "always" or "cond") 1577 * we will do one whenever the guest does a vmlaunch/vmresume. 1578 * If an outer hypervisor is doing the cache flush for us 1579 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1580 * capability to the guest too, and if EPT is disabled we're not 1581 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1582 * require a nested hypervisor to do a flush of its own. 1583 */ 1584 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1585 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1586 1587 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1588 data |= ARCH_CAP_RDCL_NO; 1589 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1590 data |= ARCH_CAP_SSB_NO; 1591 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1592 data |= ARCH_CAP_MDS_NO; 1593 1594 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1595 /* 1596 * If RTM=0 because the kernel has disabled TSX, the host might 1597 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1598 * and therefore knows that there cannot be TAA) but keep 1599 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1600 * and we want to allow migrating those guests to tsx=off hosts. 1601 */ 1602 data &= ~ARCH_CAP_TAA_NO; 1603 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1604 data |= ARCH_CAP_TAA_NO; 1605 } else { 1606 /* 1607 * Nothing to do here; we emulate TSX_CTRL if present on the 1608 * host so the guest can choose between disabling TSX or 1609 * using VERW to clear CPU buffers. 1610 */ 1611 } 1612 1613 /* Guests don't need to know "Fill buffer clear control" exists */ 1614 data &= ~ARCH_CAP_FB_CLEAR_CTRL; 1615 1616 return data; 1617 } 1618 1619 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1620 { 1621 switch (msr->index) { 1622 case MSR_IA32_ARCH_CAPABILITIES: 1623 msr->data = kvm_get_arch_capabilities(); 1624 break; 1625 case MSR_IA32_UCODE_REV: 1626 rdmsrl_safe(msr->index, &msr->data); 1627 break; 1628 default: 1629 return static_call(kvm_x86_get_msr_feature)(msr); 1630 } 1631 return 0; 1632 } 1633 1634 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1635 { 1636 struct kvm_msr_entry msr; 1637 int r; 1638 1639 msr.index = index; 1640 r = kvm_get_msr_feature(&msr); 1641 1642 if (r == KVM_MSR_RET_INVALID) { 1643 /* Unconditionally clear the output for simplicity */ 1644 *data = 0; 1645 if (kvm_msr_ignored_check(index, 0, false)) 1646 r = 0; 1647 } 1648 1649 if (r) 1650 return r; 1651 1652 *data = msr.data; 1653 1654 return 0; 1655 } 1656 1657 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1658 { 1659 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1660 return false; 1661 1662 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1663 return false; 1664 1665 if (efer & (EFER_LME | EFER_LMA) && 1666 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1667 return false; 1668 1669 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1670 return false; 1671 1672 return true; 1673 1674 } 1675 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1676 { 1677 if (efer & efer_reserved_bits) 1678 return false; 1679 1680 return __kvm_valid_efer(vcpu, efer); 1681 } 1682 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1683 1684 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1685 { 1686 u64 old_efer = vcpu->arch.efer; 1687 u64 efer = msr_info->data; 1688 int r; 1689 1690 if (efer & efer_reserved_bits) 1691 return 1; 1692 1693 if (!msr_info->host_initiated) { 1694 if (!__kvm_valid_efer(vcpu, efer)) 1695 return 1; 1696 1697 if (is_paging(vcpu) && 1698 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1699 return 1; 1700 } 1701 1702 efer &= ~EFER_LMA; 1703 efer |= vcpu->arch.efer & EFER_LMA; 1704 1705 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1706 if (r) { 1707 WARN_ON(r > 0); 1708 return r; 1709 } 1710 1711 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1712 kvm_mmu_reset_context(vcpu); 1713 1714 return 0; 1715 } 1716 1717 void kvm_enable_efer_bits(u64 mask) 1718 { 1719 efer_reserved_bits &= ~mask; 1720 } 1721 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1722 1723 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1724 { 1725 struct kvm_x86_msr_filter *msr_filter; 1726 struct msr_bitmap_range *ranges; 1727 struct kvm *kvm = vcpu->kvm; 1728 bool allowed; 1729 int idx; 1730 u32 i; 1731 1732 /* x2APIC MSRs do not support filtering. */ 1733 if (index >= 0x800 && index <= 0x8ff) 1734 return true; 1735 1736 idx = srcu_read_lock(&kvm->srcu); 1737 1738 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1739 if (!msr_filter) { 1740 allowed = true; 1741 goto out; 1742 } 1743 1744 allowed = msr_filter->default_allow; 1745 ranges = msr_filter->ranges; 1746 1747 for (i = 0; i < msr_filter->count; i++) { 1748 u32 start = ranges[i].base; 1749 u32 end = start + ranges[i].nmsrs; 1750 u32 flags = ranges[i].flags; 1751 unsigned long *bitmap = ranges[i].bitmap; 1752 1753 if ((index >= start) && (index < end) && (flags & type)) { 1754 allowed = !!test_bit(index - start, bitmap); 1755 break; 1756 } 1757 } 1758 1759 out: 1760 srcu_read_unlock(&kvm->srcu, idx); 1761 1762 return allowed; 1763 } 1764 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1765 1766 /* 1767 * Write @data into the MSR specified by @index. Select MSR specific fault 1768 * checks are bypassed if @host_initiated is %true. 1769 * Returns 0 on success, non-0 otherwise. 1770 * Assumes vcpu_load() was already called. 1771 */ 1772 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1773 bool host_initiated) 1774 { 1775 struct msr_data msr; 1776 1777 switch (index) { 1778 case MSR_FS_BASE: 1779 case MSR_GS_BASE: 1780 case MSR_KERNEL_GS_BASE: 1781 case MSR_CSTAR: 1782 case MSR_LSTAR: 1783 if (is_noncanonical_address(data, vcpu)) 1784 return 1; 1785 break; 1786 case MSR_IA32_SYSENTER_EIP: 1787 case MSR_IA32_SYSENTER_ESP: 1788 /* 1789 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1790 * non-canonical address is written on Intel but not on 1791 * AMD (which ignores the top 32-bits, because it does 1792 * not implement 64-bit SYSENTER). 1793 * 1794 * 64-bit code should hence be able to write a non-canonical 1795 * value on AMD. Making the address canonical ensures that 1796 * vmentry does not fail on Intel after writing a non-canonical 1797 * value, and that something deterministic happens if the guest 1798 * invokes 64-bit SYSENTER. 1799 */ 1800 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1801 break; 1802 case MSR_TSC_AUX: 1803 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1804 return 1; 1805 1806 if (!host_initiated && 1807 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1808 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1809 return 1; 1810 1811 /* 1812 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1813 * incomplete and conflicting architectural behavior. Current 1814 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1815 * reserved and always read as zeros. Enforce Intel's reserved 1816 * bits check if and only if the guest CPU is Intel, and clear 1817 * the bits in all other cases. This ensures cross-vendor 1818 * migration will provide consistent behavior for the guest. 1819 */ 1820 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1821 return 1; 1822 1823 data = (u32)data; 1824 break; 1825 } 1826 1827 msr.data = data; 1828 msr.index = index; 1829 msr.host_initiated = host_initiated; 1830 1831 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1832 } 1833 1834 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1835 u32 index, u64 data, bool host_initiated) 1836 { 1837 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1838 1839 if (ret == KVM_MSR_RET_INVALID) 1840 if (kvm_msr_ignored_check(index, data, true)) 1841 ret = 0; 1842 1843 return ret; 1844 } 1845 1846 /* 1847 * Read the MSR specified by @index into @data. Select MSR specific fault 1848 * checks are bypassed if @host_initiated is %true. 1849 * Returns 0 on success, non-0 otherwise. 1850 * Assumes vcpu_load() was already called. 1851 */ 1852 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1853 bool host_initiated) 1854 { 1855 struct msr_data msr; 1856 int ret; 1857 1858 switch (index) { 1859 case MSR_TSC_AUX: 1860 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1861 return 1; 1862 1863 if (!host_initiated && 1864 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1865 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1866 return 1; 1867 break; 1868 } 1869 1870 msr.index = index; 1871 msr.host_initiated = host_initiated; 1872 1873 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1874 if (!ret) 1875 *data = msr.data; 1876 return ret; 1877 } 1878 1879 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1880 u32 index, u64 *data, bool host_initiated) 1881 { 1882 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1883 1884 if (ret == KVM_MSR_RET_INVALID) { 1885 /* Unconditionally clear *data for simplicity */ 1886 *data = 0; 1887 if (kvm_msr_ignored_check(index, 0, false)) 1888 ret = 0; 1889 } 1890 1891 return ret; 1892 } 1893 1894 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1895 { 1896 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1897 return KVM_MSR_RET_FILTERED; 1898 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1899 } 1900 1901 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1902 { 1903 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1904 return KVM_MSR_RET_FILTERED; 1905 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1906 } 1907 1908 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1909 { 1910 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1911 } 1912 EXPORT_SYMBOL_GPL(kvm_get_msr); 1913 1914 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1915 { 1916 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1917 } 1918 EXPORT_SYMBOL_GPL(kvm_set_msr); 1919 1920 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1921 { 1922 if (!vcpu->run->msr.error) { 1923 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1924 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1925 } 1926 } 1927 1928 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1929 { 1930 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1931 } 1932 1933 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1934 { 1935 complete_userspace_rdmsr(vcpu); 1936 return complete_emulated_msr_access(vcpu); 1937 } 1938 1939 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1940 { 1941 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1942 } 1943 1944 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1945 { 1946 complete_userspace_rdmsr(vcpu); 1947 return complete_fast_msr_access(vcpu); 1948 } 1949 1950 static u64 kvm_msr_reason(int r) 1951 { 1952 switch (r) { 1953 case KVM_MSR_RET_INVALID: 1954 return KVM_MSR_EXIT_REASON_UNKNOWN; 1955 case KVM_MSR_RET_FILTERED: 1956 return KVM_MSR_EXIT_REASON_FILTER; 1957 default: 1958 return KVM_MSR_EXIT_REASON_INVAL; 1959 } 1960 } 1961 1962 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1963 u32 exit_reason, u64 data, 1964 int (*completion)(struct kvm_vcpu *vcpu), 1965 int r) 1966 { 1967 u64 msr_reason = kvm_msr_reason(r); 1968 1969 /* Check if the user wanted to know about this MSR fault */ 1970 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1971 return 0; 1972 1973 vcpu->run->exit_reason = exit_reason; 1974 vcpu->run->msr.error = 0; 1975 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1976 vcpu->run->msr.reason = msr_reason; 1977 vcpu->run->msr.index = index; 1978 vcpu->run->msr.data = data; 1979 vcpu->arch.complete_userspace_io = completion; 1980 1981 return 1; 1982 } 1983 1984 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1985 { 1986 u32 ecx = kvm_rcx_read(vcpu); 1987 u64 data; 1988 int r; 1989 1990 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 1991 1992 if (!r) { 1993 trace_kvm_msr_read(ecx, data); 1994 1995 kvm_rax_write(vcpu, data & -1u); 1996 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1997 } else { 1998 /* MSR read failed? See if we should ask user space */ 1999 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2000 complete_fast_rdmsr, r)) 2001 return 0; 2002 trace_kvm_msr_read_ex(ecx); 2003 } 2004 2005 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2006 } 2007 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2008 2009 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2010 { 2011 u32 ecx = kvm_rcx_read(vcpu); 2012 u64 data = kvm_read_edx_eax(vcpu); 2013 int r; 2014 2015 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2016 2017 if (!r) { 2018 trace_kvm_msr_write(ecx, data); 2019 } else { 2020 /* MSR write failed? See if we should ask user space */ 2021 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2022 complete_fast_msr_access, r)) 2023 return 0; 2024 /* Signal all other negative errors to userspace */ 2025 if (r < 0) 2026 return r; 2027 trace_kvm_msr_write_ex(ecx, data); 2028 } 2029 2030 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2031 } 2032 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2033 2034 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2035 { 2036 return kvm_skip_emulated_instruction(vcpu); 2037 } 2038 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop); 2039 2040 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2041 { 2042 /* Treat an INVD instruction as a NOP and just skip it. */ 2043 return kvm_emulate_as_nop(vcpu); 2044 } 2045 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2046 2047 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2048 { 2049 kvm_queue_exception(vcpu, UD_VECTOR); 2050 return 1; 2051 } 2052 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2053 2054 2055 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2056 { 2057 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2058 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2059 return kvm_handle_invalid_op(vcpu); 2060 2061 pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn); 2062 return kvm_emulate_as_nop(vcpu); 2063 } 2064 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2065 { 2066 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2067 } 2068 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2069 2070 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2071 { 2072 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2073 } 2074 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2075 2076 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2077 { 2078 xfer_to_guest_mode_prepare(); 2079 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2080 xfer_to_guest_mode_work_pending(); 2081 } 2082 2083 /* 2084 * The fast path for frequent and performance sensitive wrmsr emulation, 2085 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2086 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2087 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2088 * other cases which must be called after interrupts are enabled on the host. 2089 */ 2090 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2091 { 2092 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2093 return 1; 2094 2095 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2096 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2097 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2098 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2099 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2100 2101 return 1; 2102 } 2103 2104 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2105 { 2106 if (!kvm_can_use_hv_timer(vcpu)) 2107 return 1; 2108 2109 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2110 return 0; 2111 } 2112 2113 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2114 { 2115 u32 msr = kvm_rcx_read(vcpu); 2116 u64 data; 2117 fastpath_t ret = EXIT_FASTPATH_NONE; 2118 2119 switch (msr) { 2120 case APIC_BASE_MSR + (APIC_ICR >> 4): 2121 data = kvm_read_edx_eax(vcpu); 2122 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2123 kvm_skip_emulated_instruction(vcpu); 2124 ret = EXIT_FASTPATH_EXIT_HANDLED; 2125 } 2126 break; 2127 case MSR_IA32_TSC_DEADLINE: 2128 data = kvm_read_edx_eax(vcpu); 2129 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2130 kvm_skip_emulated_instruction(vcpu); 2131 ret = EXIT_FASTPATH_REENTER_GUEST; 2132 } 2133 break; 2134 default: 2135 break; 2136 } 2137 2138 if (ret != EXIT_FASTPATH_NONE) 2139 trace_kvm_msr_write(msr, data); 2140 2141 return ret; 2142 } 2143 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2144 2145 /* 2146 * Adapt set_msr() to msr_io()'s calling convention 2147 */ 2148 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2149 { 2150 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2151 } 2152 2153 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2154 { 2155 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2156 } 2157 2158 #ifdef CONFIG_X86_64 2159 struct pvclock_clock { 2160 int vclock_mode; 2161 u64 cycle_last; 2162 u64 mask; 2163 u32 mult; 2164 u32 shift; 2165 u64 base_cycles; 2166 u64 offset; 2167 }; 2168 2169 struct pvclock_gtod_data { 2170 seqcount_t seq; 2171 2172 struct pvclock_clock clock; /* extract of a clocksource struct */ 2173 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2174 2175 ktime_t offs_boot; 2176 u64 wall_time_sec; 2177 }; 2178 2179 static struct pvclock_gtod_data pvclock_gtod_data; 2180 2181 static void update_pvclock_gtod(struct timekeeper *tk) 2182 { 2183 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2184 2185 write_seqcount_begin(&vdata->seq); 2186 2187 /* copy pvclock gtod data */ 2188 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2189 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2190 vdata->clock.mask = tk->tkr_mono.mask; 2191 vdata->clock.mult = tk->tkr_mono.mult; 2192 vdata->clock.shift = tk->tkr_mono.shift; 2193 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2194 vdata->clock.offset = tk->tkr_mono.base; 2195 2196 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2197 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2198 vdata->raw_clock.mask = tk->tkr_raw.mask; 2199 vdata->raw_clock.mult = tk->tkr_raw.mult; 2200 vdata->raw_clock.shift = tk->tkr_raw.shift; 2201 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2202 vdata->raw_clock.offset = tk->tkr_raw.base; 2203 2204 vdata->wall_time_sec = tk->xtime_sec; 2205 2206 vdata->offs_boot = tk->offs_boot; 2207 2208 write_seqcount_end(&vdata->seq); 2209 } 2210 2211 static s64 get_kvmclock_base_ns(void) 2212 { 2213 /* Count up from boot time, but with the frequency of the raw clock. */ 2214 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2215 } 2216 #else 2217 static s64 get_kvmclock_base_ns(void) 2218 { 2219 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2220 return ktime_get_boottime_ns(); 2221 } 2222 #endif 2223 2224 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2225 { 2226 int version; 2227 int r; 2228 struct pvclock_wall_clock wc; 2229 u32 wc_sec_hi; 2230 u64 wall_nsec; 2231 2232 if (!wall_clock) 2233 return; 2234 2235 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2236 if (r) 2237 return; 2238 2239 if (version & 1) 2240 ++version; /* first time write, random junk */ 2241 2242 ++version; 2243 2244 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2245 return; 2246 2247 /* 2248 * The guest calculates current wall clock time by adding 2249 * system time (updated by kvm_guest_time_update below) to the 2250 * wall clock specified here. We do the reverse here. 2251 */ 2252 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2253 2254 wc.nsec = do_div(wall_nsec, 1000000000); 2255 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2256 wc.version = version; 2257 2258 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2259 2260 if (sec_hi_ofs) { 2261 wc_sec_hi = wall_nsec >> 32; 2262 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2263 &wc_sec_hi, sizeof(wc_sec_hi)); 2264 } 2265 2266 version++; 2267 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2268 } 2269 2270 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2271 bool old_msr, bool host_initiated) 2272 { 2273 struct kvm_arch *ka = &vcpu->kvm->arch; 2274 2275 if (vcpu->vcpu_id == 0 && !host_initiated) { 2276 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2277 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2278 2279 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2280 } 2281 2282 vcpu->arch.time = system_time; 2283 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2284 2285 /* we verify if the enable bit is set... */ 2286 if (system_time & 1) { 2287 kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu, 2288 KVM_HOST_USES_PFN, system_time & ~1ULL, 2289 sizeof(struct pvclock_vcpu_time_info)); 2290 } else { 2291 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time); 2292 } 2293 2294 return; 2295 } 2296 2297 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2298 { 2299 do_shl32_div32(dividend, divisor); 2300 return dividend; 2301 } 2302 2303 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2304 s8 *pshift, u32 *pmultiplier) 2305 { 2306 uint64_t scaled64; 2307 int32_t shift = 0; 2308 uint64_t tps64; 2309 uint32_t tps32; 2310 2311 tps64 = base_hz; 2312 scaled64 = scaled_hz; 2313 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2314 tps64 >>= 1; 2315 shift--; 2316 } 2317 2318 tps32 = (uint32_t)tps64; 2319 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2320 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2321 scaled64 >>= 1; 2322 else 2323 tps32 <<= 1; 2324 shift++; 2325 } 2326 2327 *pshift = shift; 2328 *pmultiplier = div_frac(scaled64, tps32); 2329 } 2330 2331 #ifdef CONFIG_X86_64 2332 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2333 #endif 2334 2335 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2336 static unsigned long max_tsc_khz; 2337 2338 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2339 { 2340 u64 v = (u64)khz * (1000000 + ppm); 2341 do_div(v, 1000000); 2342 return v; 2343 } 2344 2345 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2346 2347 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2348 { 2349 u64 ratio; 2350 2351 /* Guest TSC same frequency as host TSC? */ 2352 if (!scale) { 2353 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2354 return 0; 2355 } 2356 2357 /* TSC scaling supported? */ 2358 if (!kvm_caps.has_tsc_control) { 2359 if (user_tsc_khz > tsc_khz) { 2360 vcpu->arch.tsc_catchup = 1; 2361 vcpu->arch.tsc_always_catchup = 1; 2362 return 0; 2363 } else { 2364 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2365 return -1; 2366 } 2367 } 2368 2369 /* TSC scaling required - calculate ratio */ 2370 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2371 user_tsc_khz, tsc_khz); 2372 2373 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2374 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2375 user_tsc_khz); 2376 return -1; 2377 } 2378 2379 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2380 return 0; 2381 } 2382 2383 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2384 { 2385 u32 thresh_lo, thresh_hi; 2386 int use_scaling = 0; 2387 2388 /* tsc_khz can be zero if TSC calibration fails */ 2389 if (user_tsc_khz == 0) { 2390 /* set tsc_scaling_ratio to a safe value */ 2391 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2392 return -1; 2393 } 2394 2395 /* Compute a scale to convert nanoseconds in TSC cycles */ 2396 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2397 &vcpu->arch.virtual_tsc_shift, 2398 &vcpu->arch.virtual_tsc_mult); 2399 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2400 2401 /* 2402 * Compute the variation in TSC rate which is acceptable 2403 * within the range of tolerance and decide if the 2404 * rate being applied is within that bounds of the hardware 2405 * rate. If so, no scaling or compensation need be done. 2406 */ 2407 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2408 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2409 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2410 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2411 use_scaling = 1; 2412 } 2413 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2414 } 2415 2416 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2417 { 2418 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2419 vcpu->arch.virtual_tsc_mult, 2420 vcpu->arch.virtual_tsc_shift); 2421 tsc += vcpu->arch.this_tsc_write; 2422 return tsc; 2423 } 2424 2425 #ifdef CONFIG_X86_64 2426 static inline int gtod_is_based_on_tsc(int mode) 2427 { 2428 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2429 } 2430 #endif 2431 2432 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2433 { 2434 #ifdef CONFIG_X86_64 2435 bool vcpus_matched; 2436 struct kvm_arch *ka = &vcpu->kvm->arch; 2437 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2438 2439 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2440 atomic_read(&vcpu->kvm->online_vcpus)); 2441 2442 /* 2443 * Once the masterclock is enabled, always perform request in 2444 * order to update it. 2445 * 2446 * In order to enable masterclock, the host clocksource must be TSC 2447 * and the vcpus need to have matched TSCs. When that happens, 2448 * perform request to enable masterclock. 2449 */ 2450 if (ka->use_master_clock || 2451 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2452 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2453 2454 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2455 atomic_read(&vcpu->kvm->online_vcpus), 2456 ka->use_master_clock, gtod->clock.vclock_mode); 2457 #endif 2458 } 2459 2460 /* 2461 * Multiply tsc by a fixed point number represented by ratio. 2462 * 2463 * The most significant 64-N bits (mult) of ratio represent the 2464 * integral part of the fixed point number; the remaining N bits 2465 * (frac) represent the fractional part, ie. ratio represents a fixed 2466 * point number (mult + frac * 2^(-N)). 2467 * 2468 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2469 */ 2470 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2471 { 2472 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2473 } 2474 2475 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2476 { 2477 u64 _tsc = tsc; 2478 2479 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2480 _tsc = __scale_tsc(ratio, tsc); 2481 2482 return _tsc; 2483 } 2484 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2485 2486 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2487 { 2488 u64 tsc; 2489 2490 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2491 2492 return target_tsc - tsc; 2493 } 2494 2495 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2496 { 2497 return vcpu->arch.l1_tsc_offset + 2498 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2499 } 2500 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2501 2502 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2503 { 2504 u64 nested_offset; 2505 2506 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2507 nested_offset = l1_offset; 2508 else 2509 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2510 kvm_caps.tsc_scaling_ratio_frac_bits); 2511 2512 nested_offset += l2_offset; 2513 return nested_offset; 2514 } 2515 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2516 2517 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2518 { 2519 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2520 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2521 kvm_caps.tsc_scaling_ratio_frac_bits); 2522 2523 return l1_multiplier; 2524 } 2525 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2526 2527 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2528 { 2529 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2530 vcpu->arch.l1_tsc_offset, 2531 l1_offset); 2532 2533 vcpu->arch.l1_tsc_offset = l1_offset; 2534 2535 /* 2536 * If we are here because L1 chose not to trap WRMSR to TSC then 2537 * according to the spec this should set L1's TSC (as opposed to 2538 * setting L1's offset for L2). 2539 */ 2540 if (is_guest_mode(vcpu)) 2541 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2542 l1_offset, 2543 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2544 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2545 else 2546 vcpu->arch.tsc_offset = l1_offset; 2547 2548 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2549 } 2550 2551 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2552 { 2553 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2554 2555 /* Userspace is changing the multiplier while L2 is active */ 2556 if (is_guest_mode(vcpu)) 2557 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2558 l1_multiplier, 2559 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2560 else 2561 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2562 2563 if (kvm_caps.has_tsc_control) 2564 static_call(kvm_x86_write_tsc_multiplier)( 2565 vcpu, vcpu->arch.tsc_scaling_ratio); 2566 } 2567 2568 static inline bool kvm_check_tsc_unstable(void) 2569 { 2570 #ifdef CONFIG_X86_64 2571 /* 2572 * TSC is marked unstable when we're running on Hyper-V, 2573 * 'TSC page' clocksource is good. 2574 */ 2575 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2576 return false; 2577 #endif 2578 return check_tsc_unstable(); 2579 } 2580 2581 /* 2582 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2583 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2584 * participates in. 2585 */ 2586 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2587 u64 ns, bool matched) 2588 { 2589 struct kvm *kvm = vcpu->kvm; 2590 2591 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2592 2593 /* 2594 * We also track th most recent recorded KHZ, write and time to 2595 * allow the matching interval to be extended at each write. 2596 */ 2597 kvm->arch.last_tsc_nsec = ns; 2598 kvm->arch.last_tsc_write = tsc; 2599 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2600 kvm->arch.last_tsc_offset = offset; 2601 2602 vcpu->arch.last_guest_tsc = tsc; 2603 2604 kvm_vcpu_write_tsc_offset(vcpu, offset); 2605 2606 if (!matched) { 2607 /* 2608 * We split periods of matched TSC writes into generations. 2609 * For each generation, we track the original measured 2610 * nanosecond time, offset, and write, so if TSCs are in 2611 * sync, we can match exact offset, and if not, we can match 2612 * exact software computation in compute_guest_tsc() 2613 * 2614 * These values are tracked in kvm->arch.cur_xxx variables. 2615 */ 2616 kvm->arch.cur_tsc_generation++; 2617 kvm->arch.cur_tsc_nsec = ns; 2618 kvm->arch.cur_tsc_write = tsc; 2619 kvm->arch.cur_tsc_offset = offset; 2620 kvm->arch.nr_vcpus_matched_tsc = 0; 2621 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2622 kvm->arch.nr_vcpus_matched_tsc++; 2623 } 2624 2625 /* Keep track of which generation this VCPU has synchronized to */ 2626 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2627 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2628 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2629 2630 kvm_track_tsc_matching(vcpu); 2631 } 2632 2633 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2634 { 2635 struct kvm *kvm = vcpu->kvm; 2636 u64 offset, ns, elapsed; 2637 unsigned long flags; 2638 bool matched = false; 2639 bool synchronizing = false; 2640 2641 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2642 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2643 ns = get_kvmclock_base_ns(); 2644 elapsed = ns - kvm->arch.last_tsc_nsec; 2645 2646 if (vcpu->arch.virtual_tsc_khz) { 2647 if (data == 0) { 2648 /* 2649 * detection of vcpu initialization -- need to sync 2650 * with other vCPUs. This particularly helps to keep 2651 * kvm_clock stable after CPU hotplug 2652 */ 2653 synchronizing = true; 2654 } else { 2655 u64 tsc_exp = kvm->arch.last_tsc_write + 2656 nsec_to_cycles(vcpu, elapsed); 2657 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2658 /* 2659 * Special case: TSC write with a small delta (1 second) 2660 * of virtual cycle time against real time is 2661 * interpreted as an attempt to synchronize the CPU. 2662 */ 2663 synchronizing = data < tsc_exp + tsc_hz && 2664 data + tsc_hz > tsc_exp; 2665 } 2666 } 2667 2668 /* 2669 * For a reliable TSC, we can match TSC offsets, and for an unstable 2670 * TSC, we add elapsed time in this computation. We could let the 2671 * compensation code attempt to catch up if we fall behind, but 2672 * it's better to try to match offsets from the beginning. 2673 */ 2674 if (synchronizing && 2675 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2676 if (!kvm_check_tsc_unstable()) { 2677 offset = kvm->arch.cur_tsc_offset; 2678 } else { 2679 u64 delta = nsec_to_cycles(vcpu, elapsed); 2680 data += delta; 2681 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2682 } 2683 matched = true; 2684 } 2685 2686 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2687 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2688 } 2689 2690 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2691 s64 adjustment) 2692 { 2693 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2694 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2695 } 2696 2697 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2698 { 2699 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2700 WARN_ON(adjustment < 0); 2701 adjustment = kvm_scale_tsc((u64) adjustment, 2702 vcpu->arch.l1_tsc_scaling_ratio); 2703 adjust_tsc_offset_guest(vcpu, adjustment); 2704 } 2705 2706 #ifdef CONFIG_X86_64 2707 2708 static u64 read_tsc(void) 2709 { 2710 u64 ret = (u64)rdtsc_ordered(); 2711 u64 last = pvclock_gtod_data.clock.cycle_last; 2712 2713 if (likely(ret >= last)) 2714 return ret; 2715 2716 /* 2717 * GCC likes to generate cmov here, but this branch is extremely 2718 * predictable (it's just a function of time and the likely is 2719 * very likely) and there's a data dependence, so force GCC 2720 * to generate a branch instead. I don't barrier() because 2721 * we don't actually need a barrier, and if this function 2722 * ever gets inlined it will generate worse code. 2723 */ 2724 asm volatile (""); 2725 return last; 2726 } 2727 2728 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2729 int *mode) 2730 { 2731 long v; 2732 u64 tsc_pg_val; 2733 2734 switch (clock->vclock_mode) { 2735 case VDSO_CLOCKMODE_HVCLOCK: 2736 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2737 tsc_timestamp); 2738 if (tsc_pg_val != U64_MAX) { 2739 /* TSC page valid */ 2740 *mode = VDSO_CLOCKMODE_HVCLOCK; 2741 v = (tsc_pg_val - clock->cycle_last) & 2742 clock->mask; 2743 } else { 2744 /* TSC page invalid */ 2745 *mode = VDSO_CLOCKMODE_NONE; 2746 } 2747 break; 2748 case VDSO_CLOCKMODE_TSC: 2749 *mode = VDSO_CLOCKMODE_TSC; 2750 *tsc_timestamp = read_tsc(); 2751 v = (*tsc_timestamp - clock->cycle_last) & 2752 clock->mask; 2753 break; 2754 default: 2755 *mode = VDSO_CLOCKMODE_NONE; 2756 } 2757 2758 if (*mode == VDSO_CLOCKMODE_NONE) 2759 *tsc_timestamp = v = 0; 2760 2761 return v * clock->mult; 2762 } 2763 2764 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2765 { 2766 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2767 unsigned long seq; 2768 int mode; 2769 u64 ns; 2770 2771 do { 2772 seq = read_seqcount_begin(>od->seq); 2773 ns = gtod->raw_clock.base_cycles; 2774 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2775 ns >>= gtod->raw_clock.shift; 2776 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2777 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2778 *t = ns; 2779 2780 return mode; 2781 } 2782 2783 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2784 { 2785 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2786 unsigned long seq; 2787 int mode; 2788 u64 ns; 2789 2790 do { 2791 seq = read_seqcount_begin(>od->seq); 2792 ts->tv_sec = gtod->wall_time_sec; 2793 ns = gtod->clock.base_cycles; 2794 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2795 ns >>= gtod->clock.shift; 2796 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2797 2798 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2799 ts->tv_nsec = ns; 2800 2801 return mode; 2802 } 2803 2804 /* returns true if host is using TSC based clocksource */ 2805 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2806 { 2807 /* checked again under seqlock below */ 2808 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2809 return false; 2810 2811 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2812 tsc_timestamp)); 2813 } 2814 2815 /* returns true if host is using TSC based clocksource */ 2816 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2817 u64 *tsc_timestamp) 2818 { 2819 /* checked again under seqlock below */ 2820 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2821 return false; 2822 2823 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2824 } 2825 #endif 2826 2827 /* 2828 * 2829 * Assuming a stable TSC across physical CPUS, and a stable TSC 2830 * across virtual CPUs, the following condition is possible. 2831 * Each numbered line represents an event visible to both 2832 * CPUs at the next numbered event. 2833 * 2834 * "timespecX" represents host monotonic time. "tscX" represents 2835 * RDTSC value. 2836 * 2837 * VCPU0 on CPU0 | VCPU1 on CPU1 2838 * 2839 * 1. read timespec0,tsc0 2840 * 2. | timespec1 = timespec0 + N 2841 * | tsc1 = tsc0 + M 2842 * 3. transition to guest | transition to guest 2843 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2844 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2845 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2846 * 2847 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2848 * 2849 * - ret0 < ret1 2850 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2851 * ... 2852 * - 0 < N - M => M < N 2853 * 2854 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2855 * always the case (the difference between two distinct xtime instances 2856 * might be smaller then the difference between corresponding TSC reads, 2857 * when updating guest vcpus pvclock areas). 2858 * 2859 * To avoid that problem, do not allow visibility of distinct 2860 * system_timestamp/tsc_timestamp values simultaneously: use a master 2861 * copy of host monotonic time values. Update that master copy 2862 * in lockstep. 2863 * 2864 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2865 * 2866 */ 2867 2868 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2869 { 2870 #ifdef CONFIG_X86_64 2871 struct kvm_arch *ka = &kvm->arch; 2872 int vclock_mode; 2873 bool host_tsc_clocksource, vcpus_matched; 2874 2875 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2876 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2877 atomic_read(&kvm->online_vcpus)); 2878 2879 /* 2880 * If the host uses TSC clock, then passthrough TSC as stable 2881 * to the guest. 2882 */ 2883 host_tsc_clocksource = kvm_get_time_and_clockread( 2884 &ka->master_kernel_ns, 2885 &ka->master_cycle_now); 2886 2887 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2888 && !ka->backwards_tsc_observed 2889 && !ka->boot_vcpu_runs_old_kvmclock; 2890 2891 if (ka->use_master_clock) 2892 atomic_set(&kvm_guest_has_master_clock, 1); 2893 2894 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2895 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2896 vcpus_matched); 2897 #endif 2898 } 2899 2900 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2901 { 2902 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2903 } 2904 2905 static void __kvm_start_pvclock_update(struct kvm *kvm) 2906 { 2907 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2908 write_seqcount_begin(&kvm->arch.pvclock_sc); 2909 } 2910 2911 static void kvm_start_pvclock_update(struct kvm *kvm) 2912 { 2913 kvm_make_mclock_inprogress_request(kvm); 2914 2915 /* no guest entries from this point */ 2916 __kvm_start_pvclock_update(kvm); 2917 } 2918 2919 static void kvm_end_pvclock_update(struct kvm *kvm) 2920 { 2921 struct kvm_arch *ka = &kvm->arch; 2922 struct kvm_vcpu *vcpu; 2923 unsigned long i; 2924 2925 write_seqcount_end(&ka->pvclock_sc); 2926 raw_spin_unlock_irq(&ka->tsc_write_lock); 2927 kvm_for_each_vcpu(i, vcpu, kvm) 2928 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2929 2930 /* guest entries allowed */ 2931 kvm_for_each_vcpu(i, vcpu, kvm) 2932 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2933 } 2934 2935 static void kvm_update_masterclock(struct kvm *kvm) 2936 { 2937 kvm_hv_request_tsc_page_update(kvm); 2938 kvm_start_pvclock_update(kvm); 2939 pvclock_update_vm_gtod_copy(kvm); 2940 kvm_end_pvclock_update(kvm); 2941 } 2942 2943 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2944 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2945 { 2946 struct kvm_arch *ka = &kvm->arch; 2947 struct pvclock_vcpu_time_info hv_clock; 2948 2949 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2950 get_cpu(); 2951 2952 data->flags = 0; 2953 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) { 2954 #ifdef CONFIG_X86_64 2955 struct timespec64 ts; 2956 2957 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 2958 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 2959 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 2960 } else 2961 #endif 2962 data->host_tsc = rdtsc(); 2963 2964 data->flags |= KVM_CLOCK_TSC_STABLE; 2965 hv_clock.tsc_timestamp = ka->master_cycle_now; 2966 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2967 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2968 &hv_clock.tsc_shift, 2969 &hv_clock.tsc_to_system_mul); 2970 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 2971 } else { 2972 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 2973 } 2974 2975 put_cpu(); 2976 } 2977 2978 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2979 { 2980 struct kvm_arch *ka = &kvm->arch; 2981 unsigned seq; 2982 2983 do { 2984 seq = read_seqcount_begin(&ka->pvclock_sc); 2985 __get_kvmclock(kvm, data); 2986 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 2987 } 2988 2989 u64 get_kvmclock_ns(struct kvm *kvm) 2990 { 2991 struct kvm_clock_data data; 2992 2993 get_kvmclock(kvm, &data); 2994 return data.clock; 2995 } 2996 2997 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 2998 struct gfn_to_pfn_cache *gpc, 2999 unsigned int offset) 3000 { 3001 struct kvm_vcpu_arch *vcpu = &v->arch; 3002 struct pvclock_vcpu_time_info *guest_hv_clock; 3003 unsigned long flags; 3004 3005 read_lock_irqsave(&gpc->lock, flags); 3006 while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa, 3007 offset + sizeof(*guest_hv_clock))) { 3008 read_unlock_irqrestore(&gpc->lock, flags); 3009 3010 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa, 3011 offset + sizeof(*guest_hv_clock))) 3012 return; 3013 3014 read_lock_irqsave(&gpc->lock, flags); 3015 } 3016 3017 guest_hv_clock = (void *)(gpc->khva + offset); 3018 3019 /* 3020 * This VCPU is paused, but it's legal for a guest to read another 3021 * VCPU's kvmclock, so we really have to follow the specification where 3022 * it says that version is odd if data is being modified, and even after 3023 * it is consistent. 3024 */ 3025 3026 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3027 smp_wmb(); 3028 3029 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3030 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3031 3032 if (vcpu->pvclock_set_guest_stopped_request) { 3033 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3034 vcpu->pvclock_set_guest_stopped_request = false; 3035 } 3036 3037 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3038 smp_wmb(); 3039 3040 guest_hv_clock->version = ++vcpu->hv_clock.version; 3041 3042 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3043 read_unlock_irqrestore(&gpc->lock, flags); 3044 3045 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3046 } 3047 3048 static int kvm_guest_time_update(struct kvm_vcpu *v) 3049 { 3050 unsigned long flags, tgt_tsc_khz; 3051 unsigned seq; 3052 struct kvm_vcpu_arch *vcpu = &v->arch; 3053 struct kvm_arch *ka = &v->kvm->arch; 3054 s64 kernel_ns; 3055 u64 tsc_timestamp, host_tsc; 3056 u8 pvclock_flags; 3057 bool use_master_clock; 3058 3059 kernel_ns = 0; 3060 host_tsc = 0; 3061 3062 /* 3063 * If the host uses TSC clock, then passthrough TSC as stable 3064 * to the guest. 3065 */ 3066 do { 3067 seq = read_seqcount_begin(&ka->pvclock_sc); 3068 use_master_clock = ka->use_master_clock; 3069 if (use_master_clock) { 3070 host_tsc = ka->master_cycle_now; 3071 kernel_ns = ka->master_kernel_ns; 3072 } 3073 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3074 3075 /* Keep irq disabled to prevent changes to the clock */ 3076 local_irq_save(flags); 3077 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 3078 if (unlikely(tgt_tsc_khz == 0)) { 3079 local_irq_restore(flags); 3080 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3081 return 1; 3082 } 3083 if (!use_master_clock) { 3084 host_tsc = rdtsc(); 3085 kernel_ns = get_kvmclock_base_ns(); 3086 } 3087 3088 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3089 3090 /* 3091 * We may have to catch up the TSC to match elapsed wall clock 3092 * time for two reasons, even if kvmclock is used. 3093 * 1) CPU could have been running below the maximum TSC rate 3094 * 2) Broken TSC compensation resets the base at each VCPU 3095 * entry to avoid unknown leaps of TSC even when running 3096 * again on the same CPU. This may cause apparent elapsed 3097 * time to disappear, and the guest to stand still or run 3098 * very slowly. 3099 */ 3100 if (vcpu->tsc_catchup) { 3101 u64 tsc = compute_guest_tsc(v, kernel_ns); 3102 if (tsc > tsc_timestamp) { 3103 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3104 tsc_timestamp = tsc; 3105 } 3106 } 3107 3108 local_irq_restore(flags); 3109 3110 /* With all the info we got, fill in the values */ 3111 3112 if (kvm_caps.has_tsc_control) 3113 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3114 v->arch.l1_tsc_scaling_ratio); 3115 3116 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3117 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3118 &vcpu->hv_clock.tsc_shift, 3119 &vcpu->hv_clock.tsc_to_system_mul); 3120 vcpu->hw_tsc_khz = tgt_tsc_khz; 3121 } 3122 3123 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3124 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3125 vcpu->last_guest_tsc = tsc_timestamp; 3126 3127 /* If the host uses TSC clocksource, then it is stable */ 3128 pvclock_flags = 0; 3129 if (use_master_clock) 3130 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3131 3132 vcpu->hv_clock.flags = pvclock_flags; 3133 3134 if (vcpu->pv_time.active) 3135 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3136 if (vcpu->xen.vcpu_info_cache.active) 3137 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3138 offsetof(struct compat_vcpu_info, time)); 3139 if (vcpu->xen.vcpu_time_info_cache.active) 3140 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3141 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3142 return 0; 3143 } 3144 3145 /* 3146 * kvmclock updates which are isolated to a given vcpu, such as 3147 * vcpu->cpu migration, should not allow system_timestamp from 3148 * the rest of the vcpus to remain static. Otherwise ntp frequency 3149 * correction applies to one vcpu's system_timestamp but not 3150 * the others. 3151 * 3152 * So in those cases, request a kvmclock update for all vcpus. 3153 * We need to rate-limit these requests though, as they can 3154 * considerably slow guests that have a large number of vcpus. 3155 * The time for a remote vcpu to update its kvmclock is bound 3156 * by the delay we use to rate-limit the updates. 3157 */ 3158 3159 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3160 3161 static void kvmclock_update_fn(struct work_struct *work) 3162 { 3163 unsigned long i; 3164 struct delayed_work *dwork = to_delayed_work(work); 3165 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3166 kvmclock_update_work); 3167 struct kvm *kvm = container_of(ka, struct kvm, arch); 3168 struct kvm_vcpu *vcpu; 3169 3170 kvm_for_each_vcpu(i, vcpu, kvm) { 3171 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3172 kvm_vcpu_kick(vcpu); 3173 } 3174 } 3175 3176 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3177 { 3178 struct kvm *kvm = v->kvm; 3179 3180 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3181 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3182 KVMCLOCK_UPDATE_DELAY); 3183 } 3184 3185 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3186 3187 static void kvmclock_sync_fn(struct work_struct *work) 3188 { 3189 struct delayed_work *dwork = to_delayed_work(work); 3190 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3191 kvmclock_sync_work); 3192 struct kvm *kvm = container_of(ka, struct kvm, arch); 3193 3194 if (!kvmclock_periodic_sync) 3195 return; 3196 3197 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3198 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3199 KVMCLOCK_SYNC_PERIOD); 3200 } 3201 3202 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3203 static bool is_mci_control_msr(u32 msr) 3204 { 3205 return (msr & 3) == 0; 3206 } 3207 static bool is_mci_status_msr(u32 msr) 3208 { 3209 return (msr & 3) == 1; 3210 } 3211 3212 /* 3213 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3214 */ 3215 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3216 { 3217 /* McStatusWrEn enabled? */ 3218 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3219 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3220 3221 return false; 3222 } 3223 3224 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3225 { 3226 u64 mcg_cap = vcpu->arch.mcg_cap; 3227 unsigned bank_num = mcg_cap & 0xff; 3228 u32 msr = msr_info->index; 3229 u64 data = msr_info->data; 3230 u32 offset, last_msr; 3231 3232 switch (msr) { 3233 case MSR_IA32_MCG_STATUS: 3234 vcpu->arch.mcg_status = data; 3235 break; 3236 case MSR_IA32_MCG_CTL: 3237 if (!(mcg_cap & MCG_CTL_P) && 3238 (data || !msr_info->host_initiated)) 3239 return 1; 3240 if (data != 0 && data != ~(u64)0) 3241 return 1; 3242 vcpu->arch.mcg_ctl = data; 3243 break; 3244 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3245 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3246 if (msr > last_msr) 3247 return 1; 3248 3249 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3250 return 1; 3251 /* An attempt to write a 1 to a reserved bit raises #GP */ 3252 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3253 return 1; 3254 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3255 last_msr + 1 - MSR_IA32_MC0_CTL2); 3256 vcpu->arch.mci_ctl2_banks[offset] = data; 3257 break; 3258 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3259 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3260 if (msr > last_msr) 3261 return 1; 3262 3263 /* 3264 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3265 * values are architecturally undefined. But, some Linux 3266 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3267 * issue on AMD K8s, allow bit 10 to be clear when setting all 3268 * other bits in order to avoid an uncaught #GP in the guest. 3269 * 3270 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3271 * single-bit ECC data errors. 3272 */ 3273 if (is_mci_control_msr(msr) && 3274 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3275 return 1; 3276 3277 /* 3278 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3279 * AMD-based CPUs allow non-zero values, but if and only if 3280 * HWCR[McStatusWrEn] is set. 3281 */ 3282 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3283 data != 0 && !can_set_mci_status(vcpu)) 3284 return 1; 3285 3286 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3287 last_msr + 1 - MSR_IA32_MC0_CTL); 3288 vcpu->arch.mce_banks[offset] = data; 3289 break; 3290 default: 3291 return 1; 3292 } 3293 return 0; 3294 } 3295 3296 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3297 { 3298 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3299 3300 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3301 } 3302 3303 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3304 { 3305 gpa_t gpa = data & ~0x3f; 3306 3307 /* Bits 4:5 are reserved, Should be zero */ 3308 if (data & 0x30) 3309 return 1; 3310 3311 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3312 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3313 return 1; 3314 3315 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3316 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3317 return 1; 3318 3319 if (!lapic_in_kernel(vcpu)) 3320 return data ? 1 : 0; 3321 3322 vcpu->arch.apf.msr_en_val = data; 3323 3324 if (!kvm_pv_async_pf_enabled(vcpu)) { 3325 kvm_clear_async_pf_completion_queue(vcpu); 3326 kvm_async_pf_hash_reset(vcpu); 3327 return 0; 3328 } 3329 3330 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3331 sizeof(u64))) 3332 return 1; 3333 3334 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3335 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3336 3337 kvm_async_pf_wakeup_all(vcpu); 3338 3339 return 0; 3340 } 3341 3342 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3343 { 3344 /* Bits 8-63 are reserved */ 3345 if (data >> 8) 3346 return 1; 3347 3348 if (!lapic_in_kernel(vcpu)) 3349 return 1; 3350 3351 vcpu->arch.apf.msr_int_val = data; 3352 3353 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3354 3355 return 0; 3356 } 3357 3358 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3359 { 3360 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time); 3361 vcpu->arch.time = 0; 3362 } 3363 3364 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3365 { 3366 ++vcpu->stat.tlb_flush; 3367 static_call(kvm_x86_flush_tlb_all)(vcpu); 3368 } 3369 3370 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3371 { 3372 ++vcpu->stat.tlb_flush; 3373 3374 if (!tdp_enabled) { 3375 /* 3376 * A TLB flush on behalf of the guest is equivalent to 3377 * INVPCID(all), toggling CR4.PGE, etc., which requires 3378 * a forced sync of the shadow page tables. Ensure all the 3379 * roots are synced and the guest TLB in hardware is clean. 3380 */ 3381 kvm_mmu_sync_roots(vcpu); 3382 kvm_mmu_sync_prev_roots(vcpu); 3383 } 3384 3385 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3386 } 3387 3388 3389 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3390 { 3391 ++vcpu->stat.tlb_flush; 3392 static_call(kvm_x86_flush_tlb_current)(vcpu); 3393 } 3394 3395 /* 3396 * Service "local" TLB flush requests, which are specific to the current MMU 3397 * context. In addition to the generic event handling in vcpu_enter_guest(), 3398 * TLB flushes that are targeted at an MMU context also need to be serviced 3399 * prior before nested VM-Enter/VM-Exit. 3400 */ 3401 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3402 { 3403 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3404 kvm_vcpu_flush_tlb_current(vcpu); 3405 3406 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3407 kvm_vcpu_flush_tlb_guest(vcpu); 3408 } 3409 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3410 3411 static void record_steal_time(struct kvm_vcpu *vcpu) 3412 { 3413 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3414 struct kvm_steal_time __user *st; 3415 struct kvm_memslots *slots; 3416 u64 steal; 3417 u32 version; 3418 3419 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3420 kvm_xen_runstate_set_running(vcpu); 3421 return; 3422 } 3423 3424 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3425 return; 3426 3427 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3428 return; 3429 3430 slots = kvm_memslots(vcpu->kvm); 3431 3432 if (unlikely(slots->generation != ghc->generation || 3433 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3434 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3435 3436 /* We rely on the fact that it fits in a single page. */ 3437 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3438 3439 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) || 3440 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3441 return; 3442 } 3443 3444 st = (struct kvm_steal_time __user *)ghc->hva; 3445 /* 3446 * Doing a TLB flush here, on the guest's behalf, can avoid 3447 * expensive IPIs. 3448 */ 3449 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3450 u8 st_preempted = 0; 3451 int err = -EFAULT; 3452 3453 if (!user_access_begin(st, sizeof(*st))) 3454 return; 3455 3456 asm volatile("1: xchgb %0, %2\n" 3457 "xor %1, %1\n" 3458 "2:\n" 3459 _ASM_EXTABLE_UA(1b, 2b) 3460 : "+q" (st_preempted), 3461 "+&r" (err), 3462 "+m" (st->preempted)); 3463 if (err) 3464 goto out; 3465 3466 user_access_end(); 3467 3468 vcpu->arch.st.preempted = 0; 3469 3470 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3471 st_preempted & KVM_VCPU_FLUSH_TLB); 3472 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3473 kvm_vcpu_flush_tlb_guest(vcpu); 3474 3475 if (!user_access_begin(st, sizeof(*st))) 3476 goto dirty; 3477 } else { 3478 if (!user_access_begin(st, sizeof(*st))) 3479 return; 3480 3481 unsafe_put_user(0, &st->preempted, out); 3482 vcpu->arch.st.preempted = 0; 3483 } 3484 3485 unsafe_get_user(version, &st->version, out); 3486 if (version & 1) 3487 version += 1; /* first time write, random junk */ 3488 3489 version += 1; 3490 unsafe_put_user(version, &st->version, out); 3491 3492 smp_wmb(); 3493 3494 unsafe_get_user(steal, &st->steal, out); 3495 steal += current->sched_info.run_delay - 3496 vcpu->arch.st.last_steal; 3497 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3498 unsafe_put_user(steal, &st->steal, out); 3499 3500 version += 1; 3501 unsafe_put_user(version, &st->version, out); 3502 3503 out: 3504 user_access_end(); 3505 dirty: 3506 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3507 } 3508 3509 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3510 { 3511 bool pr = false; 3512 u32 msr = msr_info->index; 3513 u64 data = msr_info->data; 3514 3515 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3516 return kvm_xen_write_hypercall_page(vcpu, data); 3517 3518 switch (msr) { 3519 case MSR_AMD64_NB_CFG: 3520 case MSR_IA32_UCODE_WRITE: 3521 case MSR_VM_HSAVE_PA: 3522 case MSR_AMD64_PATCH_LOADER: 3523 case MSR_AMD64_BU_CFG2: 3524 case MSR_AMD64_DC_CFG: 3525 case MSR_F15H_EX_CFG: 3526 break; 3527 3528 case MSR_IA32_UCODE_REV: 3529 if (msr_info->host_initiated) 3530 vcpu->arch.microcode_version = data; 3531 break; 3532 case MSR_IA32_ARCH_CAPABILITIES: 3533 if (!msr_info->host_initiated) 3534 return 1; 3535 vcpu->arch.arch_capabilities = data; 3536 break; 3537 case MSR_IA32_PERF_CAPABILITIES: { 3538 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3539 3540 if (!msr_info->host_initiated) 3541 return 1; 3542 if (kvm_get_msr_feature(&msr_ent)) 3543 return 1; 3544 if (data & ~msr_ent.data) 3545 return 1; 3546 3547 vcpu->arch.perf_capabilities = data; 3548 3549 return 0; 3550 } 3551 case MSR_EFER: 3552 return set_efer(vcpu, msr_info); 3553 case MSR_K7_HWCR: 3554 data &= ~(u64)0x40; /* ignore flush filter disable */ 3555 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3556 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3557 3558 /* Handle McStatusWrEn */ 3559 if (data == BIT_ULL(18)) { 3560 vcpu->arch.msr_hwcr = data; 3561 } else if (data != 0) { 3562 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3563 data); 3564 return 1; 3565 } 3566 break; 3567 case MSR_FAM10H_MMIO_CONF_BASE: 3568 if (data != 0) { 3569 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3570 "0x%llx\n", data); 3571 return 1; 3572 } 3573 break; 3574 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3575 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3576 return kvm_mtrr_set_msr(vcpu, msr, data); 3577 case MSR_IA32_APICBASE: 3578 return kvm_set_apic_base(vcpu, msr_info); 3579 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3580 return kvm_x2apic_msr_write(vcpu, msr, data); 3581 case MSR_IA32_TSC_DEADLINE: 3582 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3583 break; 3584 case MSR_IA32_TSC_ADJUST: 3585 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3586 if (!msr_info->host_initiated) { 3587 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3588 adjust_tsc_offset_guest(vcpu, adj); 3589 /* Before back to guest, tsc_timestamp must be adjusted 3590 * as well, otherwise guest's percpu pvclock time could jump. 3591 */ 3592 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3593 } 3594 vcpu->arch.ia32_tsc_adjust_msr = data; 3595 } 3596 break; 3597 case MSR_IA32_MISC_ENABLE: { 3598 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3599 3600 if (!msr_info->host_initiated) { 3601 /* RO bits */ 3602 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3603 return 1; 3604 3605 /* R bits, i.e. writes are ignored, but don't fault. */ 3606 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3607 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3608 } 3609 3610 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3611 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3612 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3613 return 1; 3614 vcpu->arch.ia32_misc_enable_msr = data; 3615 kvm_update_cpuid_runtime(vcpu); 3616 } else { 3617 vcpu->arch.ia32_misc_enable_msr = data; 3618 } 3619 break; 3620 } 3621 case MSR_IA32_SMBASE: 3622 if (!msr_info->host_initiated) 3623 return 1; 3624 vcpu->arch.smbase = data; 3625 break; 3626 case MSR_IA32_POWER_CTL: 3627 vcpu->arch.msr_ia32_power_ctl = data; 3628 break; 3629 case MSR_IA32_TSC: 3630 if (msr_info->host_initiated) { 3631 kvm_synchronize_tsc(vcpu, data); 3632 } else { 3633 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3634 adjust_tsc_offset_guest(vcpu, adj); 3635 vcpu->arch.ia32_tsc_adjust_msr += adj; 3636 } 3637 break; 3638 case MSR_IA32_XSS: 3639 if (!msr_info->host_initiated && 3640 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3641 return 1; 3642 /* 3643 * KVM supports exposing PT to the guest, but does not support 3644 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3645 * XSAVES/XRSTORS to save/restore PT MSRs. 3646 */ 3647 if (data & ~kvm_caps.supported_xss) 3648 return 1; 3649 vcpu->arch.ia32_xss = data; 3650 kvm_update_cpuid_runtime(vcpu); 3651 break; 3652 case MSR_SMI_COUNT: 3653 if (!msr_info->host_initiated) 3654 return 1; 3655 vcpu->arch.smi_count = data; 3656 break; 3657 case MSR_KVM_WALL_CLOCK_NEW: 3658 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3659 return 1; 3660 3661 vcpu->kvm->arch.wall_clock = data; 3662 kvm_write_wall_clock(vcpu->kvm, data, 0); 3663 break; 3664 case MSR_KVM_WALL_CLOCK: 3665 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3666 return 1; 3667 3668 vcpu->kvm->arch.wall_clock = data; 3669 kvm_write_wall_clock(vcpu->kvm, data, 0); 3670 break; 3671 case MSR_KVM_SYSTEM_TIME_NEW: 3672 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3673 return 1; 3674 3675 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3676 break; 3677 case MSR_KVM_SYSTEM_TIME: 3678 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3679 return 1; 3680 3681 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3682 break; 3683 case MSR_KVM_ASYNC_PF_EN: 3684 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3685 return 1; 3686 3687 if (kvm_pv_enable_async_pf(vcpu, data)) 3688 return 1; 3689 break; 3690 case MSR_KVM_ASYNC_PF_INT: 3691 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3692 return 1; 3693 3694 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3695 return 1; 3696 break; 3697 case MSR_KVM_ASYNC_PF_ACK: 3698 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3699 return 1; 3700 if (data & 0x1) { 3701 vcpu->arch.apf.pageready_pending = false; 3702 kvm_check_async_pf_completion(vcpu); 3703 } 3704 break; 3705 case MSR_KVM_STEAL_TIME: 3706 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3707 return 1; 3708 3709 if (unlikely(!sched_info_on())) 3710 return 1; 3711 3712 if (data & KVM_STEAL_RESERVED_MASK) 3713 return 1; 3714 3715 vcpu->arch.st.msr_val = data; 3716 3717 if (!(data & KVM_MSR_ENABLED)) 3718 break; 3719 3720 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3721 3722 break; 3723 case MSR_KVM_PV_EOI_EN: 3724 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3725 return 1; 3726 3727 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3728 return 1; 3729 break; 3730 3731 case MSR_KVM_POLL_CONTROL: 3732 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3733 return 1; 3734 3735 /* only enable bit supported */ 3736 if (data & (-1ULL << 1)) 3737 return 1; 3738 3739 vcpu->arch.msr_kvm_poll_control = data; 3740 break; 3741 3742 case MSR_IA32_MCG_CTL: 3743 case MSR_IA32_MCG_STATUS: 3744 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3745 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3746 return set_msr_mce(vcpu, msr_info); 3747 3748 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3749 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3750 pr = true; 3751 fallthrough; 3752 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3753 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3754 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3755 return kvm_pmu_set_msr(vcpu, msr_info); 3756 3757 if (pr || data != 0) 3758 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3759 "0x%x data 0x%llx\n", msr, data); 3760 break; 3761 case MSR_K7_CLK_CTL: 3762 /* 3763 * Ignore all writes to this no longer documented MSR. 3764 * Writes are only relevant for old K7 processors, 3765 * all pre-dating SVM, but a recommended workaround from 3766 * AMD for these chips. It is possible to specify the 3767 * affected processor models on the command line, hence 3768 * the need to ignore the workaround. 3769 */ 3770 break; 3771 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3772 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3773 case HV_X64_MSR_SYNDBG_OPTIONS: 3774 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3775 case HV_X64_MSR_CRASH_CTL: 3776 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3777 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3778 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3779 case HV_X64_MSR_TSC_EMULATION_STATUS: 3780 return kvm_hv_set_msr_common(vcpu, msr, data, 3781 msr_info->host_initiated); 3782 case MSR_IA32_BBL_CR_CTL3: 3783 /* Drop writes to this legacy MSR -- see rdmsr 3784 * counterpart for further detail. 3785 */ 3786 if (report_ignored_msrs) 3787 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3788 msr, data); 3789 break; 3790 case MSR_AMD64_OSVW_ID_LENGTH: 3791 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3792 return 1; 3793 vcpu->arch.osvw.length = data; 3794 break; 3795 case MSR_AMD64_OSVW_STATUS: 3796 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3797 return 1; 3798 vcpu->arch.osvw.status = data; 3799 break; 3800 case MSR_PLATFORM_INFO: 3801 if (!msr_info->host_initiated || 3802 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3803 cpuid_fault_enabled(vcpu))) 3804 return 1; 3805 vcpu->arch.msr_platform_info = data; 3806 break; 3807 case MSR_MISC_FEATURES_ENABLES: 3808 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3809 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3810 !supports_cpuid_fault(vcpu))) 3811 return 1; 3812 vcpu->arch.msr_misc_features_enables = data; 3813 break; 3814 #ifdef CONFIG_X86_64 3815 case MSR_IA32_XFD: 3816 if (!msr_info->host_initiated && 3817 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3818 return 1; 3819 3820 if (data & ~kvm_guest_supported_xfd(vcpu)) 3821 return 1; 3822 3823 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3824 break; 3825 case MSR_IA32_XFD_ERR: 3826 if (!msr_info->host_initiated && 3827 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3828 return 1; 3829 3830 if (data & ~kvm_guest_supported_xfd(vcpu)) 3831 return 1; 3832 3833 vcpu->arch.guest_fpu.xfd_err = data; 3834 break; 3835 #endif 3836 case MSR_IA32_PEBS_ENABLE: 3837 case MSR_IA32_DS_AREA: 3838 case MSR_PEBS_DATA_CFG: 3839 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3840 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3841 return kvm_pmu_set_msr(vcpu, msr_info); 3842 /* 3843 * Userspace is allowed to write '0' to MSRs that KVM reports 3844 * as to-be-saved, even if an MSRs isn't fully supported. 3845 */ 3846 return !msr_info->host_initiated || data; 3847 default: 3848 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3849 return kvm_pmu_set_msr(vcpu, msr_info); 3850 return KVM_MSR_RET_INVALID; 3851 } 3852 return 0; 3853 } 3854 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3855 3856 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3857 { 3858 u64 data; 3859 u64 mcg_cap = vcpu->arch.mcg_cap; 3860 unsigned bank_num = mcg_cap & 0xff; 3861 u32 offset, last_msr; 3862 3863 switch (msr) { 3864 case MSR_IA32_P5_MC_ADDR: 3865 case MSR_IA32_P5_MC_TYPE: 3866 data = 0; 3867 break; 3868 case MSR_IA32_MCG_CAP: 3869 data = vcpu->arch.mcg_cap; 3870 break; 3871 case MSR_IA32_MCG_CTL: 3872 if (!(mcg_cap & MCG_CTL_P) && !host) 3873 return 1; 3874 data = vcpu->arch.mcg_ctl; 3875 break; 3876 case MSR_IA32_MCG_STATUS: 3877 data = vcpu->arch.mcg_status; 3878 break; 3879 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3880 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3881 if (msr > last_msr) 3882 return 1; 3883 3884 if (!(mcg_cap & MCG_CMCI_P) && !host) 3885 return 1; 3886 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3887 last_msr + 1 - MSR_IA32_MC0_CTL2); 3888 data = vcpu->arch.mci_ctl2_banks[offset]; 3889 break; 3890 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3891 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3892 if (msr > last_msr) 3893 return 1; 3894 3895 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3896 last_msr + 1 - MSR_IA32_MC0_CTL); 3897 data = vcpu->arch.mce_banks[offset]; 3898 break; 3899 default: 3900 return 1; 3901 } 3902 *pdata = data; 3903 return 0; 3904 } 3905 3906 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3907 { 3908 switch (msr_info->index) { 3909 case MSR_IA32_PLATFORM_ID: 3910 case MSR_IA32_EBL_CR_POWERON: 3911 case MSR_IA32_LASTBRANCHFROMIP: 3912 case MSR_IA32_LASTBRANCHTOIP: 3913 case MSR_IA32_LASTINTFROMIP: 3914 case MSR_IA32_LASTINTTOIP: 3915 case MSR_AMD64_SYSCFG: 3916 case MSR_K8_TSEG_ADDR: 3917 case MSR_K8_TSEG_MASK: 3918 case MSR_VM_HSAVE_PA: 3919 case MSR_K8_INT_PENDING_MSG: 3920 case MSR_AMD64_NB_CFG: 3921 case MSR_FAM10H_MMIO_CONF_BASE: 3922 case MSR_AMD64_BU_CFG2: 3923 case MSR_IA32_PERF_CTL: 3924 case MSR_AMD64_DC_CFG: 3925 case MSR_F15H_EX_CFG: 3926 /* 3927 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3928 * limit) MSRs. Just return 0, as we do not want to expose the host 3929 * data here. Do not conditionalize this on CPUID, as KVM does not do 3930 * so for existing CPU-specific MSRs. 3931 */ 3932 case MSR_RAPL_POWER_UNIT: 3933 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3934 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3935 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3936 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3937 msr_info->data = 0; 3938 break; 3939 case MSR_IA32_PEBS_ENABLE: 3940 case MSR_IA32_DS_AREA: 3941 case MSR_PEBS_DATA_CFG: 3942 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3943 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3944 return kvm_pmu_get_msr(vcpu, msr_info); 3945 /* 3946 * Userspace is allowed to read MSRs that KVM reports as 3947 * to-be-saved, even if an MSR isn't fully supported. 3948 */ 3949 if (!msr_info->host_initiated) 3950 return 1; 3951 msr_info->data = 0; 3952 break; 3953 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3954 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3955 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3956 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3957 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3958 return kvm_pmu_get_msr(vcpu, msr_info); 3959 msr_info->data = 0; 3960 break; 3961 case MSR_IA32_UCODE_REV: 3962 msr_info->data = vcpu->arch.microcode_version; 3963 break; 3964 case MSR_IA32_ARCH_CAPABILITIES: 3965 if (!msr_info->host_initiated && 3966 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3967 return 1; 3968 msr_info->data = vcpu->arch.arch_capabilities; 3969 break; 3970 case MSR_IA32_PERF_CAPABILITIES: 3971 if (!msr_info->host_initiated && 3972 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3973 return 1; 3974 msr_info->data = vcpu->arch.perf_capabilities; 3975 break; 3976 case MSR_IA32_POWER_CTL: 3977 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3978 break; 3979 case MSR_IA32_TSC: { 3980 /* 3981 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3982 * even when not intercepted. AMD manual doesn't explicitly 3983 * state this but appears to behave the same. 3984 * 3985 * On userspace reads and writes, however, we unconditionally 3986 * return L1's TSC value to ensure backwards-compatible 3987 * behavior for migration. 3988 */ 3989 u64 offset, ratio; 3990 3991 if (msr_info->host_initiated) { 3992 offset = vcpu->arch.l1_tsc_offset; 3993 ratio = vcpu->arch.l1_tsc_scaling_ratio; 3994 } else { 3995 offset = vcpu->arch.tsc_offset; 3996 ratio = vcpu->arch.tsc_scaling_ratio; 3997 } 3998 3999 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4000 break; 4001 } 4002 case MSR_MTRRcap: 4003 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4004 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4005 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4006 case 0xcd: /* fsb frequency */ 4007 msr_info->data = 3; 4008 break; 4009 /* 4010 * MSR_EBC_FREQUENCY_ID 4011 * Conservative value valid for even the basic CPU models. 4012 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4013 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4014 * and 266MHz for model 3, or 4. Set Core Clock 4015 * Frequency to System Bus Frequency Ratio to 1 (bits 4016 * 31:24) even though these are only valid for CPU 4017 * models > 2, however guests may end up dividing or 4018 * multiplying by zero otherwise. 4019 */ 4020 case MSR_EBC_FREQUENCY_ID: 4021 msr_info->data = 1 << 24; 4022 break; 4023 case MSR_IA32_APICBASE: 4024 msr_info->data = kvm_get_apic_base(vcpu); 4025 break; 4026 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4027 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4028 case MSR_IA32_TSC_DEADLINE: 4029 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4030 break; 4031 case MSR_IA32_TSC_ADJUST: 4032 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4033 break; 4034 case MSR_IA32_MISC_ENABLE: 4035 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4036 break; 4037 case MSR_IA32_SMBASE: 4038 if (!msr_info->host_initiated) 4039 return 1; 4040 msr_info->data = vcpu->arch.smbase; 4041 break; 4042 case MSR_SMI_COUNT: 4043 msr_info->data = vcpu->arch.smi_count; 4044 break; 4045 case MSR_IA32_PERF_STATUS: 4046 /* TSC increment by tick */ 4047 msr_info->data = 1000ULL; 4048 /* CPU multiplier */ 4049 msr_info->data |= (((uint64_t)4ULL) << 40); 4050 break; 4051 case MSR_EFER: 4052 msr_info->data = vcpu->arch.efer; 4053 break; 4054 case MSR_KVM_WALL_CLOCK: 4055 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4056 return 1; 4057 4058 msr_info->data = vcpu->kvm->arch.wall_clock; 4059 break; 4060 case MSR_KVM_WALL_CLOCK_NEW: 4061 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4062 return 1; 4063 4064 msr_info->data = vcpu->kvm->arch.wall_clock; 4065 break; 4066 case MSR_KVM_SYSTEM_TIME: 4067 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4068 return 1; 4069 4070 msr_info->data = vcpu->arch.time; 4071 break; 4072 case MSR_KVM_SYSTEM_TIME_NEW: 4073 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4074 return 1; 4075 4076 msr_info->data = vcpu->arch.time; 4077 break; 4078 case MSR_KVM_ASYNC_PF_EN: 4079 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4080 return 1; 4081 4082 msr_info->data = vcpu->arch.apf.msr_en_val; 4083 break; 4084 case MSR_KVM_ASYNC_PF_INT: 4085 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4086 return 1; 4087 4088 msr_info->data = vcpu->arch.apf.msr_int_val; 4089 break; 4090 case MSR_KVM_ASYNC_PF_ACK: 4091 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4092 return 1; 4093 4094 msr_info->data = 0; 4095 break; 4096 case MSR_KVM_STEAL_TIME: 4097 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4098 return 1; 4099 4100 msr_info->data = vcpu->arch.st.msr_val; 4101 break; 4102 case MSR_KVM_PV_EOI_EN: 4103 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4104 return 1; 4105 4106 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4107 break; 4108 case MSR_KVM_POLL_CONTROL: 4109 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4110 return 1; 4111 4112 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4113 break; 4114 case MSR_IA32_P5_MC_ADDR: 4115 case MSR_IA32_P5_MC_TYPE: 4116 case MSR_IA32_MCG_CAP: 4117 case MSR_IA32_MCG_CTL: 4118 case MSR_IA32_MCG_STATUS: 4119 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4120 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4121 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4122 msr_info->host_initiated); 4123 case MSR_IA32_XSS: 4124 if (!msr_info->host_initiated && 4125 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4126 return 1; 4127 msr_info->data = vcpu->arch.ia32_xss; 4128 break; 4129 case MSR_K7_CLK_CTL: 4130 /* 4131 * Provide expected ramp-up count for K7. All other 4132 * are set to zero, indicating minimum divisors for 4133 * every field. 4134 * 4135 * This prevents guest kernels on AMD host with CPU 4136 * type 6, model 8 and higher from exploding due to 4137 * the rdmsr failing. 4138 */ 4139 msr_info->data = 0x20000000; 4140 break; 4141 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4142 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4143 case HV_X64_MSR_SYNDBG_OPTIONS: 4144 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4145 case HV_X64_MSR_CRASH_CTL: 4146 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4147 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4148 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4149 case HV_X64_MSR_TSC_EMULATION_STATUS: 4150 return kvm_hv_get_msr_common(vcpu, 4151 msr_info->index, &msr_info->data, 4152 msr_info->host_initiated); 4153 case MSR_IA32_BBL_CR_CTL3: 4154 /* This legacy MSR exists but isn't fully documented in current 4155 * silicon. It is however accessed by winxp in very narrow 4156 * scenarios where it sets bit #19, itself documented as 4157 * a "reserved" bit. Best effort attempt to source coherent 4158 * read data here should the balance of the register be 4159 * interpreted by the guest: 4160 * 4161 * L2 cache control register 3: 64GB range, 256KB size, 4162 * enabled, latency 0x1, configured 4163 */ 4164 msr_info->data = 0xbe702111; 4165 break; 4166 case MSR_AMD64_OSVW_ID_LENGTH: 4167 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4168 return 1; 4169 msr_info->data = vcpu->arch.osvw.length; 4170 break; 4171 case MSR_AMD64_OSVW_STATUS: 4172 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4173 return 1; 4174 msr_info->data = vcpu->arch.osvw.status; 4175 break; 4176 case MSR_PLATFORM_INFO: 4177 if (!msr_info->host_initiated && 4178 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4179 return 1; 4180 msr_info->data = vcpu->arch.msr_platform_info; 4181 break; 4182 case MSR_MISC_FEATURES_ENABLES: 4183 msr_info->data = vcpu->arch.msr_misc_features_enables; 4184 break; 4185 case MSR_K7_HWCR: 4186 msr_info->data = vcpu->arch.msr_hwcr; 4187 break; 4188 #ifdef CONFIG_X86_64 4189 case MSR_IA32_XFD: 4190 if (!msr_info->host_initiated && 4191 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4192 return 1; 4193 4194 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4195 break; 4196 case MSR_IA32_XFD_ERR: 4197 if (!msr_info->host_initiated && 4198 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4199 return 1; 4200 4201 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4202 break; 4203 #endif 4204 default: 4205 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4206 return kvm_pmu_get_msr(vcpu, msr_info); 4207 return KVM_MSR_RET_INVALID; 4208 } 4209 return 0; 4210 } 4211 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4212 4213 /* 4214 * Read or write a bunch of msrs. All parameters are kernel addresses. 4215 * 4216 * @return number of msrs set successfully. 4217 */ 4218 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4219 struct kvm_msr_entry *entries, 4220 int (*do_msr)(struct kvm_vcpu *vcpu, 4221 unsigned index, u64 *data)) 4222 { 4223 int i; 4224 4225 for (i = 0; i < msrs->nmsrs; ++i) 4226 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4227 break; 4228 4229 return i; 4230 } 4231 4232 /* 4233 * Read or write a bunch of msrs. Parameters are user addresses. 4234 * 4235 * @return number of msrs set successfully. 4236 */ 4237 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4238 int (*do_msr)(struct kvm_vcpu *vcpu, 4239 unsigned index, u64 *data), 4240 int writeback) 4241 { 4242 struct kvm_msrs msrs; 4243 struct kvm_msr_entry *entries; 4244 int r, n; 4245 unsigned size; 4246 4247 r = -EFAULT; 4248 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4249 goto out; 4250 4251 r = -E2BIG; 4252 if (msrs.nmsrs >= MAX_IO_MSRS) 4253 goto out; 4254 4255 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4256 entries = memdup_user(user_msrs->entries, size); 4257 if (IS_ERR(entries)) { 4258 r = PTR_ERR(entries); 4259 goto out; 4260 } 4261 4262 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4263 if (r < 0) 4264 goto out_free; 4265 4266 r = -EFAULT; 4267 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4268 goto out_free; 4269 4270 r = n; 4271 4272 out_free: 4273 kfree(entries); 4274 out: 4275 return r; 4276 } 4277 4278 static inline bool kvm_can_mwait_in_guest(void) 4279 { 4280 return boot_cpu_has(X86_FEATURE_MWAIT) && 4281 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4282 boot_cpu_has(X86_FEATURE_ARAT); 4283 } 4284 4285 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4286 struct kvm_cpuid2 __user *cpuid_arg) 4287 { 4288 struct kvm_cpuid2 cpuid; 4289 int r; 4290 4291 r = -EFAULT; 4292 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4293 return r; 4294 4295 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4296 if (r) 4297 return r; 4298 4299 r = -EFAULT; 4300 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4301 return r; 4302 4303 return 0; 4304 } 4305 4306 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4307 { 4308 int r = 0; 4309 4310 switch (ext) { 4311 case KVM_CAP_IRQCHIP: 4312 case KVM_CAP_HLT: 4313 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4314 case KVM_CAP_SET_TSS_ADDR: 4315 case KVM_CAP_EXT_CPUID: 4316 case KVM_CAP_EXT_EMUL_CPUID: 4317 case KVM_CAP_CLOCKSOURCE: 4318 case KVM_CAP_PIT: 4319 case KVM_CAP_NOP_IO_DELAY: 4320 case KVM_CAP_MP_STATE: 4321 case KVM_CAP_SYNC_MMU: 4322 case KVM_CAP_USER_NMI: 4323 case KVM_CAP_REINJECT_CONTROL: 4324 case KVM_CAP_IRQ_INJECT_STATUS: 4325 case KVM_CAP_IOEVENTFD: 4326 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4327 case KVM_CAP_PIT2: 4328 case KVM_CAP_PIT_STATE2: 4329 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4330 case KVM_CAP_VCPU_EVENTS: 4331 case KVM_CAP_HYPERV: 4332 case KVM_CAP_HYPERV_VAPIC: 4333 case KVM_CAP_HYPERV_SPIN: 4334 case KVM_CAP_HYPERV_SYNIC: 4335 case KVM_CAP_HYPERV_SYNIC2: 4336 case KVM_CAP_HYPERV_VP_INDEX: 4337 case KVM_CAP_HYPERV_EVENTFD: 4338 case KVM_CAP_HYPERV_TLBFLUSH: 4339 case KVM_CAP_HYPERV_SEND_IPI: 4340 case KVM_CAP_HYPERV_CPUID: 4341 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4342 case KVM_CAP_SYS_HYPERV_CPUID: 4343 case KVM_CAP_PCI_SEGMENT: 4344 case KVM_CAP_DEBUGREGS: 4345 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4346 case KVM_CAP_XSAVE: 4347 case KVM_CAP_ASYNC_PF: 4348 case KVM_CAP_ASYNC_PF_INT: 4349 case KVM_CAP_GET_TSC_KHZ: 4350 case KVM_CAP_KVMCLOCK_CTRL: 4351 case KVM_CAP_READONLY_MEM: 4352 case KVM_CAP_HYPERV_TIME: 4353 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4354 case KVM_CAP_TSC_DEADLINE_TIMER: 4355 case KVM_CAP_DISABLE_QUIRKS: 4356 case KVM_CAP_SET_BOOT_CPU_ID: 4357 case KVM_CAP_SPLIT_IRQCHIP: 4358 case KVM_CAP_IMMEDIATE_EXIT: 4359 case KVM_CAP_PMU_EVENT_FILTER: 4360 case KVM_CAP_GET_MSR_FEATURES: 4361 case KVM_CAP_MSR_PLATFORM_INFO: 4362 case KVM_CAP_EXCEPTION_PAYLOAD: 4363 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4364 case KVM_CAP_SET_GUEST_DEBUG: 4365 case KVM_CAP_LAST_CPU: 4366 case KVM_CAP_X86_USER_SPACE_MSR: 4367 case KVM_CAP_X86_MSR_FILTER: 4368 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4369 #ifdef CONFIG_X86_SGX_KVM 4370 case KVM_CAP_SGX_ATTRIBUTE: 4371 #endif 4372 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4373 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4374 case KVM_CAP_SREGS2: 4375 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4376 case KVM_CAP_VCPU_ATTRIBUTES: 4377 case KVM_CAP_SYS_ATTRIBUTES: 4378 case KVM_CAP_VAPIC: 4379 case KVM_CAP_ENABLE_CAP: 4380 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4381 r = 1; 4382 break; 4383 case KVM_CAP_EXIT_HYPERCALL: 4384 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4385 break; 4386 case KVM_CAP_SET_GUEST_DEBUG2: 4387 return KVM_GUESTDBG_VALID_MASK; 4388 #ifdef CONFIG_KVM_XEN 4389 case KVM_CAP_XEN_HVM: 4390 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4391 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4392 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4393 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4394 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4395 if (sched_info_on()) 4396 r |= KVM_XEN_HVM_CONFIG_RUNSTATE; 4397 break; 4398 #endif 4399 case KVM_CAP_SYNC_REGS: 4400 r = KVM_SYNC_X86_VALID_FIELDS; 4401 break; 4402 case KVM_CAP_ADJUST_CLOCK: 4403 r = KVM_CLOCK_VALID_FLAGS; 4404 break; 4405 case KVM_CAP_X86_DISABLE_EXITS: 4406 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4407 KVM_X86_DISABLE_EXITS_CSTATE; 4408 if(kvm_can_mwait_in_guest()) 4409 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4410 break; 4411 case KVM_CAP_X86_SMM: 4412 /* SMBASE is usually relocated above 1M on modern chipsets, 4413 * and SMM handlers might indeed rely on 4G segment limits, 4414 * so do not report SMM to be available if real mode is 4415 * emulated via vm86 mode. Still, do not go to great lengths 4416 * to avoid userspace's usage of the feature, because it is a 4417 * fringe case that is not enabled except via specific settings 4418 * of the module parameters. 4419 */ 4420 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4421 break; 4422 case KVM_CAP_NR_VCPUS: 4423 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4424 break; 4425 case KVM_CAP_MAX_VCPUS: 4426 r = KVM_MAX_VCPUS; 4427 break; 4428 case KVM_CAP_MAX_VCPU_ID: 4429 r = KVM_MAX_VCPU_IDS; 4430 break; 4431 case KVM_CAP_PV_MMU: /* obsolete */ 4432 r = 0; 4433 break; 4434 case KVM_CAP_MCE: 4435 r = KVM_MAX_MCE_BANKS; 4436 break; 4437 case KVM_CAP_XCRS: 4438 r = boot_cpu_has(X86_FEATURE_XSAVE); 4439 break; 4440 case KVM_CAP_TSC_CONTROL: 4441 case KVM_CAP_VM_TSC_CONTROL: 4442 r = kvm_caps.has_tsc_control; 4443 break; 4444 case KVM_CAP_X2APIC_API: 4445 r = KVM_X2APIC_API_VALID_FLAGS; 4446 break; 4447 case KVM_CAP_NESTED_STATE: 4448 r = kvm_x86_ops.nested_ops->get_state ? 4449 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4450 break; 4451 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4452 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 4453 break; 4454 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4455 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4456 break; 4457 case KVM_CAP_SMALLER_MAXPHYADDR: 4458 r = (int) allow_smaller_maxphyaddr; 4459 break; 4460 case KVM_CAP_STEAL_TIME: 4461 r = sched_info_on(); 4462 break; 4463 case KVM_CAP_X86_BUS_LOCK_EXIT: 4464 if (kvm_caps.has_bus_lock_exit) 4465 r = KVM_BUS_LOCK_DETECTION_OFF | 4466 KVM_BUS_LOCK_DETECTION_EXIT; 4467 else 4468 r = 0; 4469 break; 4470 case KVM_CAP_XSAVE2: { 4471 u64 guest_perm = xstate_get_guest_group_perm(); 4472 4473 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4474 if (r < sizeof(struct kvm_xsave)) 4475 r = sizeof(struct kvm_xsave); 4476 break; 4477 } 4478 case KVM_CAP_PMU_CAPABILITY: 4479 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4480 break; 4481 case KVM_CAP_DISABLE_QUIRKS2: 4482 r = KVM_X86_VALID_QUIRKS; 4483 break; 4484 case KVM_CAP_X86_NOTIFY_VMEXIT: 4485 r = kvm_caps.has_notify_vmexit; 4486 break; 4487 default: 4488 break; 4489 } 4490 return r; 4491 } 4492 4493 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4494 { 4495 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4496 4497 if ((u64)(unsigned long)uaddr != attr->addr) 4498 return ERR_PTR_USR(-EFAULT); 4499 return uaddr; 4500 } 4501 4502 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4503 { 4504 u64 __user *uaddr = kvm_get_attr_addr(attr); 4505 4506 if (attr->group) 4507 return -ENXIO; 4508 4509 if (IS_ERR(uaddr)) 4510 return PTR_ERR(uaddr); 4511 4512 switch (attr->attr) { 4513 case KVM_X86_XCOMP_GUEST_SUPP: 4514 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4515 return -EFAULT; 4516 return 0; 4517 default: 4518 return -ENXIO; 4519 break; 4520 } 4521 } 4522 4523 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4524 { 4525 if (attr->group) 4526 return -ENXIO; 4527 4528 switch (attr->attr) { 4529 case KVM_X86_XCOMP_GUEST_SUPP: 4530 return 0; 4531 default: 4532 return -ENXIO; 4533 } 4534 } 4535 4536 long kvm_arch_dev_ioctl(struct file *filp, 4537 unsigned int ioctl, unsigned long arg) 4538 { 4539 void __user *argp = (void __user *)arg; 4540 long r; 4541 4542 switch (ioctl) { 4543 case KVM_GET_MSR_INDEX_LIST: { 4544 struct kvm_msr_list __user *user_msr_list = argp; 4545 struct kvm_msr_list msr_list; 4546 unsigned n; 4547 4548 r = -EFAULT; 4549 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4550 goto out; 4551 n = msr_list.nmsrs; 4552 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4553 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4554 goto out; 4555 r = -E2BIG; 4556 if (n < msr_list.nmsrs) 4557 goto out; 4558 r = -EFAULT; 4559 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4560 num_msrs_to_save * sizeof(u32))) 4561 goto out; 4562 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4563 &emulated_msrs, 4564 num_emulated_msrs * sizeof(u32))) 4565 goto out; 4566 r = 0; 4567 break; 4568 } 4569 case KVM_GET_SUPPORTED_CPUID: 4570 case KVM_GET_EMULATED_CPUID: { 4571 struct kvm_cpuid2 __user *cpuid_arg = argp; 4572 struct kvm_cpuid2 cpuid; 4573 4574 r = -EFAULT; 4575 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4576 goto out; 4577 4578 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4579 ioctl); 4580 if (r) 4581 goto out; 4582 4583 r = -EFAULT; 4584 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4585 goto out; 4586 r = 0; 4587 break; 4588 } 4589 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4590 r = -EFAULT; 4591 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4592 sizeof(kvm_caps.supported_mce_cap))) 4593 goto out; 4594 r = 0; 4595 break; 4596 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4597 struct kvm_msr_list __user *user_msr_list = argp; 4598 struct kvm_msr_list msr_list; 4599 unsigned int n; 4600 4601 r = -EFAULT; 4602 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4603 goto out; 4604 n = msr_list.nmsrs; 4605 msr_list.nmsrs = num_msr_based_features; 4606 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4607 goto out; 4608 r = -E2BIG; 4609 if (n < msr_list.nmsrs) 4610 goto out; 4611 r = -EFAULT; 4612 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4613 num_msr_based_features * sizeof(u32))) 4614 goto out; 4615 r = 0; 4616 break; 4617 } 4618 case KVM_GET_MSRS: 4619 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4620 break; 4621 case KVM_GET_SUPPORTED_HV_CPUID: 4622 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4623 break; 4624 case KVM_GET_DEVICE_ATTR: { 4625 struct kvm_device_attr attr; 4626 r = -EFAULT; 4627 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4628 break; 4629 r = kvm_x86_dev_get_attr(&attr); 4630 break; 4631 } 4632 case KVM_HAS_DEVICE_ATTR: { 4633 struct kvm_device_attr attr; 4634 r = -EFAULT; 4635 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4636 break; 4637 r = kvm_x86_dev_has_attr(&attr); 4638 break; 4639 } 4640 default: 4641 r = -EINVAL; 4642 break; 4643 } 4644 out: 4645 return r; 4646 } 4647 4648 static void wbinvd_ipi(void *garbage) 4649 { 4650 wbinvd(); 4651 } 4652 4653 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4654 { 4655 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4656 } 4657 4658 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4659 { 4660 /* Address WBINVD may be executed by guest */ 4661 if (need_emulate_wbinvd(vcpu)) { 4662 if (static_call(kvm_x86_has_wbinvd_exit)()) 4663 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4664 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4665 smp_call_function_single(vcpu->cpu, 4666 wbinvd_ipi, NULL, 1); 4667 } 4668 4669 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4670 4671 /* Save host pkru register if supported */ 4672 vcpu->arch.host_pkru = read_pkru(); 4673 4674 /* Apply any externally detected TSC adjustments (due to suspend) */ 4675 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4676 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4677 vcpu->arch.tsc_offset_adjustment = 0; 4678 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4679 } 4680 4681 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4682 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4683 rdtsc() - vcpu->arch.last_host_tsc; 4684 if (tsc_delta < 0) 4685 mark_tsc_unstable("KVM discovered backwards TSC"); 4686 4687 if (kvm_check_tsc_unstable()) { 4688 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4689 vcpu->arch.last_guest_tsc); 4690 kvm_vcpu_write_tsc_offset(vcpu, offset); 4691 vcpu->arch.tsc_catchup = 1; 4692 } 4693 4694 if (kvm_lapic_hv_timer_in_use(vcpu)) 4695 kvm_lapic_restart_hv_timer(vcpu); 4696 4697 /* 4698 * On a host with synchronized TSC, there is no need to update 4699 * kvmclock on vcpu->cpu migration 4700 */ 4701 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4702 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4703 if (vcpu->cpu != cpu) 4704 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4705 vcpu->cpu = cpu; 4706 } 4707 4708 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4709 } 4710 4711 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4712 { 4713 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4714 struct kvm_steal_time __user *st; 4715 struct kvm_memslots *slots; 4716 static const u8 preempted = KVM_VCPU_PREEMPTED; 4717 4718 /* 4719 * The vCPU can be marked preempted if and only if the VM-Exit was on 4720 * an instruction boundary and will not trigger guest emulation of any 4721 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4722 * when this is true, for example allowing the vCPU to be marked 4723 * preempted if and only if the VM-Exit was due to a host interrupt. 4724 */ 4725 if (!vcpu->arch.at_instruction_boundary) { 4726 vcpu->stat.preemption_other++; 4727 return; 4728 } 4729 4730 vcpu->stat.preemption_reported++; 4731 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4732 return; 4733 4734 if (vcpu->arch.st.preempted) 4735 return; 4736 4737 /* This happens on process exit */ 4738 if (unlikely(current->mm != vcpu->kvm->mm)) 4739 return; 4740 4741 slots = kvm_memslots(vcpu->kvm); 4742 4743 if (unlikely(slots->generation != ghc->generation || 4744 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4745 return; 4746 4747 st = (struct kvm_steal_time __user *)ghc->hva; 4748 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4749 4750 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4751 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4752 4753 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4754 } 4755 4756 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4757 { 4758 int idx; 4759 4760 if (vcpu->preempted) { 4761 if (!vcpu->arch.guest_state_protected) 4762 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4763 4764 /* 4765 * Take the srcu lock as memslots will be accessed to check the gfn 4766 * cache generation against the memslots generation. 4767 */ 4768 idx = srcu_read_lock(&vcpu->kvm->srcu); 4769 if (kvm_xen_msr_enabled(vcpu->kvm)) 4770 kvm_xen_runstate_set_preempted(vcpu); 4771 else 4772 kvm_steal_time_set_preempted(vcpu); 4773 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4774 } 4775 4776 static_call(kvm_x86_vcpu_put)(vcpu); 4777 vcpu->arch.last_host_tsc = rdtsc(); 4778 } 4779 4780 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4781 struct kvm_lapic_state *s) 4782 { 4783 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4784 4785 return kvm_apic_get_state(vcpu, s); 4786 } 4787 4788 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4789 struct kvm_lapic_state *s) 4790 { 4791 int r; 4792 4793 r = kvm_apic_set_state(vcpu, s); 4794 if (r) 4795 return r; 4796 update_cr8_intercept(vcpu); 4797 4798 return 0; 4799 } 4800 4801 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4802 { 4803 /* 4804 * We can accept userspace's request for interrupt injection 4805 * as long as we have a place to store the interrupt number. 4806 * The actual injection will happen when the CPU is able to 4807 * deliver the interrupt. 4808 */ 4809 if (kvm_cpu_has_extint(vcpu)) 4810 return false; 4811 4812 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4813 return (!lapic_in_kernel(vcpu) || 4814 kvm_apic_accept_pic_intr(vcpu)); 4815 } 4816 4817 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4818 { 4819 /* 4820 * Do not cause an interrupt window exit if an exception 4821 * is pending or an event needs reinjection; userspace 4822 * might want to inject the interrupt manually using KVM_SET_REGS 4823 * or KVM_SET_SREGS. For that to work, we must be at an 4824 * instruction boundary and with no events half-injected. 4825 */ 4826 return (kvm_arch_interrupt_allowed(vcpu) && 4827 kvm_cpu_accept_dm_intr(vcpu) && 4828 !kvm_event_needs_reinjection(vcpu) && 4829 !vcpu->arch.exception.pending); 4830 } 4831 4832 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4833 struct kvm_interrupt *irq) 4834 { 4835 if (irq->irq >= KVM_NR_INTERRUPTS) 4836 return -EINVAL; 4837 4838 if (!irqchip_in_kernel(vcpu->kvm)) { 4839 kvm_queue_interrupt(vcpu, irq->irq, false); 4840 kvm_make_request(KVM_REQ_EVENT, vcpu); 4841 return 0; 4842 } 4843 4844 /* 4845 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4846 * fail for in-kernel 8259. 4847 */ 4848 if (pic_in_kernel(vcpu->kvm)) 4849 return -ENXIO; 4850 4851 if (vcpu->arch.pending_external_vector != -1) 4852 return -EEXIST; 4853 4854 vcpu->arch.pending_external_vector = irq->irq; 4855 kvm_make_request(KVM_REQ_EVENT, vcpu); 4856 return 0; 4857 } 4858 4859 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4860 { 4861 kvm_inject_nmi(vcpu); 4862 4863 return 0; 4864 } 4865 4866 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4867 { 4868 kvm_make_request(KVM_REQ_SMI, vcpu); 4869 4870 return 0; 4871 } 4872 4873 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4874 struct kvm_tpr_access_ctl *tac) 4875 { 4876 if (tac->flags) 4877 return -EINVAL; 4878 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4879 return 0; 4880 } 4881 4882 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4883 u64 mcg_cap) 4884 { 4885 int r; 4886 unsigned bank_num = mcg_cap & 0xff, bank; 4887 4888 r = -EINVAL; 4889 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4890 goto out; 4891 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4892 goto out; 4893 r = 0; 4894 vcpu->arch.mcg_cap = mcg_cap; 4895 /* Init IA32_MCG_CTL to all 1s */ 4896 if (mcg_cap & MCG_CTL_P) 4897 vcpu->arch.mcg_ctl = ~(u64)0; 4898 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4899 for (bank = 0; bank < bank_num; bank++) { 4900 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4901 if (mcg_cap & MCG_CMCI_P) 4902 vcpu->arch.mci_ctl2_banks[bank] = 0; 4903 } 4904 4905 kvm_apic_after_set_mcg_cap(vcpu); 4906 4907 static_call(kvm_x86_setup_mce)(vcpu); 4908 out: 4909 return r; 4910 } 4911 4912 /* 4913 * Validate this is an UCNA (uncorrectable no action) error by checking the 4914 * MCG_STATUS and MCi_STATUS registers: 4915 * - none of the bits for Machine Check Exceptions are set 4916 * - both the VAL (valid) and UC (uncorrectable) bits are set 4917 * MCI_STATUS_PCC - Processor Context Corrupted 4918 * MCI_STATUS_S - Signaled as a Machine Check Exception 4919 * MCI_STATUS_AR - Software recoverable Action Required 4920 */ 4921 static bool is_ucna(struct kvm_x86_mce *mce) 4922 { 4923 return !mce->mcg_status && 4924 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4925 (mce->status & MCI_STATUS_VAL) && 4926 (mce->status & MCI_STATUS_UC); 4927 } 4928 4929 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4930 { 4931 u64 mcg_cap = vcpu->arch.mcg_cap; 4932 4933 banks[1] = mce->status; 4934 banks[2] = mce->addr; 4935 banks[3] = mce->misc; 4936 vcpu->arch.mcg_status = mce->mcg_status; 4937 4938 if (!(mcg_cap & MCG_CMCI_P) || 4939 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4940 return 0; 4941 4942 if (lapic_in_kernel(vcpu)) 4943 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4944 4945 return 0; 4946 } 4947 4948 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4949 struct kvm_x86_mce *mce) 4950 { 4951 u64 mcg_cap = vcpu->arch.mcg_cap; 4952 unsigned bank_num = mcg_cap & 0xff; 4953 u64 *banks = vcpu->arch.mce_banks; 4954 4955 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4956 return -EINVAL; 4957 4958 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 4959 4960 if (is_ucna(mce)) 4961 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 4962 4963 /* 4964 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4965 * reporting is disabled 4966 */ 4967 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4968 vcpu->arch.mcg_ctl != ~(u64)0) 4969 return 0; 4970 /* 4971 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4972 * reporting is disabled for the bank 4973 */ 4974 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4975 return 0; 4976 if (mce->status & MCI_STATUS_UC) { 4977 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4978 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4979 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4980 return 0; 4981 } 4982 if (banks[1] & MCI_STATUS_VAL) 4983 mce->status |= MCI_STATUS_OVER; 4984 banks[2] = mce->addr; 4985 banks[3] = mce->misc; 4986 vcpu->arch.mcg_status = mce->mcg_status; 4987 banks[1] = mce->status; 4988 kvm_queue_exception(vcpu, MC_VECTOR); 4989 } else if (!(banks[1] & MCI_STATUS_VAL) 4990 || !(banks[1] & MCI_STATUS_UC)) { 4991 if (banks[1] & MCI_STATUS_VAL) 4992 mce->status |= MCI_STATUS_OVER; 4993 banks[2] = mce->addr; 4994 banks[3] = mce->misc; 4995 banks[1] = mce->status; 4996 } else 4997 banks[1] |= MCI_STATUS_OVER; 4998 return 0; 4999 } 5000 5001 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5002 struct kvm_vcpu_events *events) 5003 { 5004 process_nmi(vcpu); 5005 5006 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5007 process_smi(vcpu); 5008 5009 /* 5010 * In guest mode, payload delivery should be deferred, 5011 * so that the L1 hypervisor can intercept #PF before 5012 * CR2 is modified (or intercept #DB before DR6 is 5013 * modified under nVMX). Unless the per-VM capability, 5014 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 5015 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 5016 * opportunistically defer the exception payload, deliver it if the 5017 * capability hasn't been requested before processing a 5018 * KVM_GET_VCPU_EVENTS. 5019 */ 5020 if (!vcpu->kvm->arch.exception_payload_enabled && 5021 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 5022 kvm_deliver_exception_payload(vcpu); 5023 5024 /* 5025 * The API doesn't provide the instruction length for software 5026 * exceptions, so don't report them. As long as the guest RIP 5027 * isn't advanced, we should expect to encounter the exception 5028 * again. 5029 */ 5030 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 5031 events->exception.injected = 0; 5032 events->exception.pending = 0; 5033 } else { 5034 events->exception.injected = vcpu->arch.exception.injected; 5035 events->exception.pending = vcpu->arch.exception.pending; 5036 /* 5037 * For ABI compatibility, deliberately conflate 5038 * pending and injected exceptions when 5039 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5040 */ 5041 if (!vcpu->kvm->arch.exception_payload_enabled) 5042 events->exception.injected |= 5043 vcpu->arch.exception.pending; 5044 } 5045 events->exception.nr = vcpu->arch.exception.nr; 5046 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 5047 events->exception.error_code = vcpu->arch.exception.error_code; 5048 events->exception_has_payload = vcpu->arch.exception.has_payload; 5049 events->exception_payload = vcpu->arch.exception.payload; 5050 5051 events->interrupt.injected = 5052 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5053 events->interrupt.nr = vcpu->arch.interrupt.nr; 5054 events->interrupt.soft = 0; 5055 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5056 5057 events->nmi.injected = vcpu->arch.nmi_injected; 5058 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5059 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5060 events->nmi.pad = 0; 5061 5062 events->sipi_vector = 0; /* never valid when reporting to user space */ 5063 5064 events->smi.smm = is_smm(vcpu); 5065 events->smi.pending = vcpu->arch.smi_pending; 5066 events->smi.smm_inside_nmi = 5067 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5068 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5069 5070 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5071 | KVM_VCPUEVENT_VALID_SHADOW 5072 | KVM_VCPUEVENT_VALID_SMM); 5073 if (vcpu->kvm->arch.exception_payload_enabled) 5074 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5075 if (vcpu->kvm->arch.triple_fault_event) { 5076 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5077 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5078 } 5079 5080 memset(&events->reserved, 0, sizeof(events->reserved)); 5081 } 5082 5083 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm); 5084 5085 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5086 struct kvm_vcpu_events *events) 5087 { 5088 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5089 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5090 | KVM_VCPUEVENT_VALID_SHADOW 5091 | KVM_VCPUEVENT_VALID_SMM 5092 | KVM_VCPUEVENT_VALID_PAYLOAD 5093 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5094 return -EINVAL; 5095 5096 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5097 if (!vcpu->kvm->arch.exception_payload_enabled) 5098 return -EINVAL; 5099 if (events->exception.pending) 5100 events->exception.injected = 0; 5101 else 5102 events->exception_has_payload = 0; 5103 } else { 5104 events->exception.pending = 0; 5105 events->exception_has_payload = 0; 5106 } 5107 5108 if ((events->exception.injected || events->exception.pending) && 5109 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5110 return -EINVAL; 5111 5112 /* INITs are latched while in SMM */ 5113 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5114 (events->smi.smm || events->smi.pending) && 5115 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5116 return -EINVAL; 5117 5118 process_nmi(vcpu); 5119 vcpu->arch.exception.injected = events->exception.injected; 5120 vcpu->arch.exception.pending = events->exception.pending; 5121 vcpu->arch.exception.nr = events->exception.nr; 5122 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5123 vcpu->arch.exception.error_code = events->exception.error_code; 5124 vcpu->arch.exception.has_payload = events->exception_has_payload; 5125 vcpu->arch.exception.payload = events->exception_payload; 5126 5127 vcpu->arch.interrupt.injected = events->interrupt.injected; 5128 vcpu->arch.interrupt.nr = events->interrupt.nr; 5129 vcpu->arch.interrupt.soft = events->interrupt.soft; 5130 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5131 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5132 events->interrupt.shadow); 5133 5134 vcpu->arch.nmi_injected = events->nmi.injected; 5135 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5136 vcpu->arch.nmi_pending = events->nmi.pending; 5137 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5138 5139 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5140 lapic_in_kernel(vcpu)) 5141 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5142 5143 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5144 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5145 kvm_x86_ops.nested_ops->leave_nested(vcpu); 5146 kvm_smm_changed(vcpu, events->smi.smm); 5147 } 5148 5149 vcpu->arch.smi_pending = events->smi.pending; 5150 5151 if (events->smi.smm) { 5152 if (events->smi.smm_inside_nmi) 5153 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5154 else 5155 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5156 } 5157 5158 if (lapic_in_kernel(vcpu)) { 5159 if (events->smi.latched_init) 5160 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5161 else 5162 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5163 } 5164 } 5165 5166 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5167 if (!vcpu->kvm->arch.triple_fault_event) 5168 return -EINVAL; 5169 if (events->triple_fault.pending) 5170 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5171 else 5172 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5173 } 5174 5175 kvm_make_request(KVM_REQ_EVENT, vcpu); 5176 5177 return 0; 5178 } 5179 5180 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5181 struct kvm_debugregs *dbgregs) 5182 { 5183 unsigned long val; 5184 5185 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5186 kvm_get_dr(vcpu, 6, &val); 5187 dbgregs->dr6 = val; 5188 dbgregs->dr7 = vcpu->arch.dr7; 5189 dbgregs->flags = 0; 5190 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5191 } 5192 5193 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5194 struct kvm_debugregs *dbgregs) 5195 { 5196 if (dbgregs->flags) 5197 return -EINVAL; 5198 5199 if (!kvm_dr6_valid(dbgregs->dr6)) 5200 return -EINVAL; 5201 if (!kvm_dr7_valid(dbgregs->dr7)) 5202 return -EINVAL; 5203 5204 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5205 kvm_update_dr0123(vcpu); 5206 vcpu->arch.dr6 = dbgregs->dr6; 5207 vcpu->arch.dr7 = dbgregs->dr7; 5208 kvm_update_dr7(vcpu); 5209 5210 return 0; 5211 } 5212 5213 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5214 struct kvm_xsave *guest_xsave) 5215 { 5216 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5217 return; 5218 5219 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5220 guest_xsave->region, 5221 sizeof(guest_xsave->region), 5222 vcpu->arch.pkru); 5223 } 5224 5225 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5226 u8 *state, unsigned int size) 5227 { 5228 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5229 return; 5230 5231 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5232 state, size, vcpu->arch.pkru); 5233 } 5234 5235 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5236 struct kvm_xsave *guest_xsave) 5237 { 5238 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5239 return 0; 5240 5241 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5242 guest_xsave->region, 5243 kvm_caps.supported_xcr0, 5244 &vcpu->arch.pkru); 5245 } 5246 5247 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5248 struct kvm_xcrs *guest_xcrs) 5249 { 5250 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5251 guest_xcrs->nr_xcrs = 0; 5252 return; 5253 } 5254 5255 guest_xcrs->nr_xcrs = 1; 5256 guest_xcrs->flags = 0; 5257 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5258 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5259 } 5260 5261 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5262 struct kvm_xcrs *guest_xcrs) 5263 { 5264 int i, r = 0; 5265 5266 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5267 return -EINVAL; 5268 5269 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5270 return -EINVAL; 5271 5272 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5273 /* Only support XCR0 currently */ 5274 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5275 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5276 guest_xcrs->xcrs[i].value); 5277 break; 5278 } 5279 if (r) 5280 r = -EINVAL; 5281 return r; 5282 } 5283 5284 /* 5285 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5286 * stopped by the hypervisor. This function will be called from the host only. 5287 * EINVAL is returned when the host attempts to set the flag for a guest that 5288 * does not support pv clocks. 5289 */ 5290 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5291 { 5292 if (!vcpu->arch.pv_time.active) 5293 return -EINVAL; 5294 vcpu->arch.pvclock_set_guest_stopped_request = true; 5295 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5296 return 0; 5297 } 5298 5299 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5300 struct kvm_device_attr *attr) 5301 { 5302 int r; 5303 5304 switch (attr->attr) { 5305 case KVM_VCPU_TSC_OFFSET: 5306 r = 0; 5307 break; 5308 default: 5309 r = -ENXIO; 5310 } 5311 5312 return r; 5313 } 5314 5315 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5316 struct kvm_device_attr *attr) 5317 { 5318 u64 __user *uaddr = kvm_get_attr_addr(attr); 5319 int r; 5320 5321 if (IS_ERR(uaddr)) 5322 return PTR_ERR(uaddr); 5323 5324 switch (attr->attr) { 5325 case KVM_VCPU_TSC_OFFSET: 5326 r = -EFAULT; 5327 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5328 break; 5329 r = 0; 5330 break; 5331 default: 5332 r = -ENXIO; 5333 } 5334 5335 return r; 5336 } 5337 5338 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5339 struct kvm_device_attr *attr) 5340 { 5341 u64 __user *uaddr = kvm_get_attr_addr(attr); 5342 struct kvm *kvm = vcpu->kvm; 5343 int r; 5344 5345 if (IS_ERR(uaddr)) 5346 return PTR_ERR(uaddr); 5347 5348 switch (attr->attr) { 5349 case KVM_VCPU_TSC_OFFSET: { 5350 u64 offset, tsc, ns; 5351 unsigned long flags; 5352 bool matched; 5353 5354 r = -EFAULT; 5355 if (get_user(offset, uaddr)) 5356 break; 5357 5358 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5359 5360 matched = (vcpu->arch.virtual_tsc_khz && 5361 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5362 kvm->arch.last_tsc_offset == offset); 5363 5364 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5365 ns = get_kvmclock_base_ns(); 5366 5367 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5368 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5369 5370 r = 0; 5371 break; 5372 } 5373 default: 5374 r = -ENXIO; 5375 } 5376 5377 return r; 5378 } 5379 5380 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5381 unsigned int ioctl, 5382 void __user *argp) 5383 { 5384 struct kvm_device_attr attr; 5385 int r; 5386 5387 if (copy_from_user(&attr, argp, sizeof(attr))) 5388 return -EFAULT; 5389 5390 if (attr.group != KVM_VCPU_TSC_CTRL) 5391 return -ENXIO; 5392 5393 switch (ioctl) { 5394 case KVM_HAS_DEVICE_ATTR: 5395 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5396 break; 5397 case KVM_GET_DEVICE_ATTR: 5398 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5399 break; 5400 case KVM_SET_DEVICE_ATTR: 5401 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5402 break; 5403 } 5404 5405 return r; 5406 } 5407 5408 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5409 struct kvm_enable_cap *cap) 5410 { 5411 int r; 5412 uint16_t vmcs_version; 5413 void __user *user_ptr; 5414 5415 if (cap->flags) 5416 return -EINVAL; 5417 5418 switch (cap->cap) { 5419 case KVM_CAP_HYPERV_SYNIC2: 5420 if (cap->args[0]) 5421 return -EINVAL; 5422 fallthrough; 5423 5424 case KVM_CAP_HYPERV_SYNIC: 5425 if (!irqchip_in_kernel(vcpu->kvm)) 5426 return -EINVAL; 5427 return kvm_hv_activate_synic(vcpu, cap->cap == 5428 KVM_CAP_HYPERV_SYNIC2); 5429 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5430 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5431 return -ENOTTY; 5432 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5433 if (!r) { 5434 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5435 if (copy_to_user(user_ptr, &vmcs_version, 5436 sizeof(vmcs_version))) 5437 r = -EFAULT; 5438 } 5439 return r; 5440 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5441 if (!kvm_x86_ops.enable_direct_tlbflush) 5442 return -ENOTTY; 5443 5444 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu); 5445 5446 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5447 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5448 5449 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5450 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5451 if (vcpu->arch.pv_cpuid.enforce) 5452 kvm_update_pv_runtime(vcpu); 5453 5454 return 0; 5455 default: 5456 return -EINVAL; 5457 } 5458 } 5459 5460 long kvm_arch_vcpu_ioctl(struct file *filp, 5461 unsigned int ioctl, unsigned long arg) 5462 { 5463 struct kvm_vcpu *vcpu = filp->private_data; 5464 void __user *argp = (void __user *)arg; 5465 int r; 5466 union { 5467 struct kvm_sregs2 *sregs2; 5468 struct kvm_lapic_state *lapic; 5469 struct kvm_xsave *xsave; 5470 struct kvm_xcrs *xcrs; 5471 void *buffer; 5472 } u; 5473 5474 vcpu_load(vcpu); 5475 5476 u.buffer = NULL; 5477 switch (ioctl) { 5478 case KVM_GET_LAPIC: { 5479 r = -EINVAL; 5480 if (!lapic_in_kernel(vcpu)) 5481 goto out; 5482 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5483 GFP_KERNEL_ACCOUNT); 5484 5485 r = -ENOMEM; 5486 if (!u.lapic) 5487 goto out; 5488 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5489 if (r) 5490 goto out; 5491 r = -EFAULT; 5492 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5493 goto out; 5494 r = 0; 5495 break; 5496 } 5497 case KVM_SET_LAPIC: { 5498 r = -EINVAL; 5499 if (!lapic_in_kernel(vcpu)) 5500 goto out; 5501 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5502 if (IS_ERR(u.lapic)) { 5503 r = PTR_ERR(u.lapic); 5504 goto out_nofree; 5505 } 5506 5507 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5508 break; 5509 } 5510 case KVM_INTERRUPT: { 5511 struct kvm_interrupt irq; 5512 5513 r = -EFAULT; 5514 if (copy_from_user(&irq, argp, sizeof(irq))) 5515 goto out; 5516 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5517 break; 5518 } 5519 case KVM_NMI: { 5520 r = kvm_vcpu_ioctl_nmi(vcpu); 5521 break; 5522 } 5523 case KVM_SMI: { 5524 r = kvm_vcpu_ioctl_smi(vcpu); 5525 break; 5526 } 5527 case KVM_SET_CPUID: { 5528 struct kvm_cpuid __user *cpuid_arg = argp; 5529 struct kvm_cpuid cpuid; 5530 5531 r = -EFAULT; 5532 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5533 goto out; 5534 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5535 break; 5536 } 5537 case KVM_SET_CPUID2: { 5538 struct kvm_cpuid2 __user *cpuid_arg = argp; 5539 struct kvm_cpuid2 cpuid; 5540 5541 r = -EFAULT; 5542 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5543 goto out; 5544 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5545 cpuid_arg->entries); 5546 break; 5547 } 5548 case KVM_GET_CPUID2: { 5549 struct kvm_cpuid2 __user *cpuid_arg = argp; 5550 struct kvm_cpuid2 cpuid; 5551 5552 r = -EFAULT; 5553 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5554 goto out; 5555 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5556 cpuid_arg->entries); 5557 if (r) 5558 goto out; 5559 r = -EFAULT; 5560 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5561 goto out; 5562 r = 0; 5563 break; 5564 } 5565 case KVM_GET_MSRS: { 5566 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5567 r = msr_io(vcpu, argp, do_get_msr, 1); 5568 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5569 break; 5570 } 5571 case KVM_SET_MSRS: { 5572 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5573 r = msr_io(vcpu, argp, do_set_msr, 0); 5574 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5575 break; 5576 } 5577 case KVM_TPR_ACCESS_REPORTING: { 5578 struct kvm_tpr_access_ctl tac; 5579 5580 r = -EFAULT; 5581 if (copy_from_user(&tac, argp, sizeof(tac))) 5582 goto out; 5583 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5584 if (r) 5585 goto out; 5586 r = -EFAULT; 5587 if (copy_to_user(argp, &tac, sizeof(tac))) 5588 goto out; 5589 r = 0; 5590 break; 5591 }; 5592 case KVM_SET_VAPIC_ADDR: { 5593 struct kvm_vapic_addr va; 5594 int idx; 5595 5596 r = -EINVAL; 5597 if (!lapic_in_kernel(vcpu)) 5598 goto out; 5599 r = -EFAULT; 5600 if (copy_from_user(&va, argp, sizeof(va))) 5601 goto out; 5602 idx = srcu_read_lock(&vcpu->kvm->srcu); 5603 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5604 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5605 break; 5606 } 5607 case KVM_X86_SETUP_MCE: { 5608 u64 mcg_cap; 5609 5610 r = -EFAULT; 5611 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5612 goto out; 5613 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5614 break; 5615 } 5616 case KVM_X86_SET_MCE: { 5617 struct kvm_x86_mce mce; 5618 5619 r = -EFAULT; 5620 if (copy_from_user(&mce, argp, sizeof(mce))) 5621 goto out; 5622 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5623 break; 5624 } 5625 case KVM_GET_VCPU_EVENTS: { 5626 struct kvm_vcpu_events events; 5627 5628 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5629 5630 r = -EFAULT; 5631 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5632 break; 5633 r = 0; 5634 break; 5635 } 5636 case KVM_SET_VCPU_EVENTS: { 5637 struct kvm_vcpu_events events; 5638 5639 r = -EFAULT; 5640 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5641 break; 5642 5643 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5644 break; 5645 } 5646 case KVM_GET_DEBUGREGS: { 5647 struct kvm_debugregs dbgregs; 5648 5649 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5650 5651 r = -EFAULT; 5652 if (copy_to_user(argp, &dbgregs, 5653 sizeof(struct kvm_debugregs))) 5654 break; 5655 r = 0; 5656 break; 5657 } 5658 case KVM_SET_DEBUGREGS: { 5659 struct kvm_debugregs dbgregs; 5660 5661 r = -EFAULT; 5662 if (copy_from_user(&dbgregs, argp, 5663 sizeof(struct kvm_debugregs))) 5664 break; 5665 5666 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5667 break; 5668 } 5669 case KVM_GET_XSAVE: { 5670 r = -EINVAL; 5671 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5672 break; 5673 5674 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5675 r = -ENOMEM; 5676 if (!u.xsave) 5677 break; 5678 5679 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5680 5681 r = -EFAULT; 5682 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5683 break; 5684 r = 0; 5685 break; 5686 } 5687 case KVM_SET_XSAVE: { 5688 int size = vcpu->arch.guest_fpu.uabi_size; 5689 5690 u.xsave = memdup_user(argp, size); 5691 if (IS_ERR(u.xsave)) { 5692 r = PTR_ERR(u.xsave); 5693 goto out_nofree; 5694 } 5695 5696 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5697 break; 5698 } 5699 5700 case KVM_GET_XSAVE2: { 5701 int size = vcpu->arch.guest_fpu.uabi_size; 5702 5703 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5704 r = -ENOMEM; 5705 if (!u.xsave) 5706 break; 5707 5708 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5709 5710 r = -EFAULT; 5711 if (copy_to_user(argp, u.xsave, size)) 5712 break; 5713 5714 r = 0; 5715 break; 5716 } 5717 5718 case KVM_GET_XCRS: { 5719 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5720 r = -ENOMEM; 5721 if (!u.xcrs) 5722 break; 5723 5724 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5725 5726 r = -EFAULT; 5727 if (copy_to_user(argp, u.xcrs, 5728 sizeof(struct kvm_xcrs))) 5729 break; 5730 r = 0; 5731 break; 5732 } 5733 case KVM_SET_XCRS: { 5734 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5735 if (IS_ERR(u.xcrs)) { 5736 r = PTR_ERR(u.xcrs); 5737 goto out_nofree; 5738 } 5739 5740 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5741 break; 5742 } 5743 case KVM_SET_TSC_KHZ: { 5744 u32 user_tsc_khz; 5745 5746 r = -EINVAL; 5747 user_tsc_khz = (u32)arg; 5748 5749 if (kvm_caps.has_tsc_control && 5750 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5751 goto out; 5752 5753 if (user_tsc_khz == 0) 5754 user_tsc_khz = tsc_khz; 5755 5756 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5757 r = 0; 5758 5759 goto out; 5760 } 5761 case KVM_GET_TSC_KHZ: { 5762 r = vcpu->arch.virtual_tsc_khz; 5763 goto out; 5764 } 5765 case KVM_KVMCLOCK_CTRL: { 5766 r = kvm_set_guest_paused(vcpu); 5767 goto out; 5768 } 5769 case KVM_ENABLE_CAP: { 5770 struct kvm_enable_cap cap; 5771 5772 r = -EFAULT; 5773 if (copy_from_user(&cap, argp, sizeof(cap))) 5774 goto out; 5775 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5776 break; 5777 } 5778 case KVM_GET_NESTED_STATE: { 5779 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5780 u32 user_data_size; 5781 5782 r = -EINVAL; 5783 if (!kvm_x86_ops.nested_ops->get_state) 5784 break; 5785 5786 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5787 r = -EFAULT; 5788 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5789 break; 5790 5791 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5792 user_data_size); 5793 if (r < 0) 5794 break; 5795 5796 if (r > user_data_size) { 5797 if (put_user(r, &user_kvm_nested_state->size)) 5798 r = -EFAULT; 5799 else 5800 r = -E2BIG; 5801 break; 5802 } 5803 5804 r = 0; 5805 break; 5806 } 5807 case KVM_SET_NESTED_STATE: { 5808 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5809 struct kvm_nested_state kvm_state; 5810 int idx; 5811 5812 r = -EINVAL; 5813 if (!kvm_x86_ops.nested_ops->set_state) 5814 break; 5815 5816 r = -EFAULT; 5817 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5818 break; 5819 5820 r = -EINVAL; 5821 if (kvm_state.size < sizeof(kvm_state)) 5822 break; 5823 5824 if (kvm_state.flags & 5825 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5826 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5827 | KVM_STATE_NESTED_GIF_SET)) 5828 break; 5829 5830 /* nested_run_pending implies guest_mode. */ 5831 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5832 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5833 break; 5834 5835 idx = srcu_read_lock(&vcpu->kvm->srcu); 5836 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5837 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5838 break; 5839 } 5840 case KVM_GET_SUPPORTED_HV_CPUID: 5841 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5842 break; 5843 #ifdef CONFIG_KVM_XEN 5844 case KVM_XEN_VCPU_GET_ATTR: { 5845 struct kvm_xen_vcpu_attr xva; 5846 5847 r = -EFAULT; 5848 if (copy_from_user(&xva, argp, sizeof(xva))) 5849 goto out; 5850 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5851 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5852 r = -EFAULT; 5853 break; 5854 } 5855 case KVM_XEN_VCPU_SET_ATTR: { 5856 struct kvm_xen_vcpu_attr xva; 5857 5858 r = -EFAULT; 5859 if (copy_from_user(&xva, argp, sizeof(xva))) 5860 goto out; 5861 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5862 break; 5863 } 5864 #endif 5865 case KVM_GET_SREGS2: { 5866 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5867 r = -ENOMEM; 5868 if (!u.sregs2) 5869 goto out; 5870 __get_sregs2(vcpu, u.sregs2); 5871 r = -EFAULT; 5872 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5873 goto out; 5874 r = 0; 5875 break; 5876 } 5877 case KVM_SET_SREGS2: { 5878 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5879 if (IS_ERR(u.sregs2)) { 5880 r = PTR_ERR(u.sregs2); 5881 u.sregs2 = NULL; 5882 goto out; 5883 } 5884 r = __set_sregs2(vcpu, u.sregs2); 5885 break; 5886 } 5887 case KVM_HAS_DEVICE_ATTR: 5888 case KVM_GET_DEVICE_ATTR: 5889 case KVM_SET_DEVICE_ATTR: 5890 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5891 break; 5892 default: 5893 r = -EINVAL; 5894 } 5895 out: 5896 kfree(u.buffer); 5897 out_nofree: 5898 vcpu_put(vcpu); 5899 return r; 5900 } 5901 5902 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5903 { 5904 return VM_FAULT_SIGBUS; 5905 } 5906 5907 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5908 { 5909 int ret; 5910 5911 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5912 return -EINVAL; 5913 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5914 return ret; 5915 } 5916 5917 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5918 u64 ident_addr) 5919 { 5920 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5921 } 5922 5923 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5924 unsigned long kvm_nr_mmu_pages) 5925 { 5926 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5927 return -EINVAL; 5928 5929 mutex_lock(&kvm->slots_lock); 5930 5931 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5932 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5933 5934 mutex_unlock(&kvm->slots_lock); 5935 return 0; 5936 } 5937 5938 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5939 { 5940 return kvm->arch.n_max_mmu_pages; 5941 } 5942 5943 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5944 { 5945 struct kvm_pic *pic = kvm->arch.vpic; 5946 int r; 5947 5948 r = 0; 5949 switch (chip->chip_id) { 5950 case KVM_IRQCHIP_PIC_MASTER: 5951 memcpy(&chip->chip.pic, &pic->pics[0], 5952 sizeof(struct kvm_pic_state)); 5953 break; 5954 case KVM_IRQCHIP_PIC_SLAVE: 5955 memcpy(&chip->chip.pic, &pic->pics[1], 5956 sizeof(struct kvm_pic_state)); 5957 break; 5958 case KVM_IRQCHIP_IOAPIC: 5959 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5960 break; 5961 default: 5962 r = -EINVAL; 5963 break; 5964 } 5965 return r; 5966 } 5967 5968 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5969 { 5970 struct kvm_pic *pic = kvm->arch.vpic; 5971 int r; 5972 5973 r = 0; 5974 switch (chip->chip_id) { 5975 case KVM_IRQCHIP_PIC_MASTER: 5976 spin_lock(&pic->lock); 5977 memcpy(&pic->pics[0], &chip->chip.pic, 5978 sizeof(struct kvm_pic_state)); 5979 spin_unlock(&pic->lock); 5980 break; 5981 case KVM_IRQCHIP_PIC_SLAVE: 5982 spin_lock(&pic->lock); 5983 memcpy(&pic->pics[1], &chip->chip.pic, 5984 sizeof(struct kvm_pic_state)); 5985 spin_unlock(&pic->lock); 5986 break; 5987 case KVM_IRQCHIP_IOAPIC: 5988 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5989 break; 5990 default: 5991 r = -EINVAL; 5992 break; 5993 } 5994 kvm_pic_update_irq(pic); 5995 return r; 5996 } 5997 5998 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5999 { 6000 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6001 6002 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6003 6004 mutex_lock(&kps->lock); 6005 memcpy(ps, &kps->channels, sizeof(*ps)); 6006 mutex_unlock(&kps->lock); 6007 return 0; 6008 } 6009 6010 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6011 { 6012 int i; 6013 struct kvm_pit *pit = kvm->arch.vpit; 6014 6015 mutex_lock(&pit->pit_state.lock); 6016 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6017 for (i = 0; i < 3; i++) 6018 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6019 mutex_unlock(&pit->pit_state.lock); 6020 return 0; 6021 } 6022 6023 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6024 { 6025 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6026 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6027 sizeof(ps->channels)); 6028 ps->flags = kvm->arch.vpit->pit_state.flags; 6029 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6030 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6031 return 0; 6032 } 6033 6034 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6035 { 6036 int start = 0; 6037 int i; 6038 u32 prev_legacy, cur_legacy; 6039 struct kvm_pit *pit = kvm->arch.vpit; 6040 6041 mutex_lock(&pit->pit_state.lock); 6042 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6043 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6044 if (!prev_legacy && cur_legacy) 6045 start = 1; 6046 memcpy(&pit->pit_state.channels, &ps->channels, 6047 sizeof(pit->pit_state.channels)); 6048 pit->pit_state.flags = ps->flags; 6049 for (i = 0; i < 3; i++) 6050 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6051 start && i == 0); 6052 mutex_unlock(&pit->pit_state.lock); 6053 return 0; 6054 } 6055 6056 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6057 struct kvm_reinject_control *control) 6058 { 6059 struct kvm_pit *pit = kvm->arch.vpit; 6060 6061 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6062 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6063 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6064 */ 6065 mutex_lock(&pit->pit_state.lock); 6066 kvm_pit_set_reinject(pit, control->pit_reinject); 6067 mutex_unlock(&pit->pit_state.lock); 6068 6069 return 0; 6070 } 6071 6072 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6073 { 6074 6075 /* 6076 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6077 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6078 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6079 * VM-Exit. 6080 */ 6081 struct kvm_vcpu *vcpu; 6082 unsigned long i; 6083 6084 kvm_for_each_vcpu(i, vcpu, kvm) 6085 kvm_vcpu_kick(vcpu); 6086 } 6087 6088 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6089 bool line_status) 6090 { 6091 if (!irqchip_in_kernel(kvm)) 6092 return -ENXIO; 6093 6094 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6095 irq_event->irq, irq_event->level, 6096 line_status); 6097 return 0; 6098 } 6099 6100 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6101 struct kvm_enable_cap *cap) 6102 { 6103 int r; 6104 6105 if (cap->flags) 6106 return -EINVAL; 6107 6108 switch (cap->cap) { 6109 case KVM_CAP_DISABLE_QUIRKS2: 6110 r = -EINVAL; 6111 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6112 break; 6113 fallthrough; 6114 case KVM_CAP_DISABLE_QUIRKS: 6115 kvm->arch.disabled_quirks = cap->args[0]; 6116 r = 0; 6117 break; 6118 case KVM_CAP_SPLIT_IRQCHIP: { 6119 mutex_lock(&kvm->lock); 6120 r = -EINVAL; 6121 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6122 goto split_irqchip_unlock; 6123 r = -EEXIST; 6124 if (irqchip_in_kernel(kvm)) 6125 goto split_irqchip_unlock; 6126 if (kvm->created_vcpus) 6127 goto split_irqchip_unlock; 6128 r = kvm_setup_empty_irq_routing(kvm); 6129 if (r) 6130 goto split_irqchip_unlock; 6131 /* Pairs with irqchip_in_kernel. */ 6132 smp_wmb(); 6133 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6134 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6135 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6136 r = 0; 6137 split_irqchip_unlock: 6138 mutex_unlock(&kvm->lock); 6139 break; 6140 } 6141 case KVM_CAP_X2APIC_API: 6142 r = -EINVAL; 6143 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6144 break; 6145 6146 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6147 kvm->arch.x2apic_format = true; 6148 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6149 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6150 6151 r = 0; 6152 break; 6153 case KVM_CAP_X86_DISABLE_EXITS: 6154 r = -EINVAL; 6155 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6156 break; 6157 6158 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6159 kvm_can_mwait_in_guest()) 6160 kvm->arch.mwait_in_guest = true; 6161 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6162 kvm->arch.hlt_in_guest = true; 6163 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6164 kvm->arch.pause_in_guest = true; 6165 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6166 kvm->arch.cstate_in_guest = true; 6167 r = 0; 6168 break; 6169 case KVM_CAP_MSR_PLATFORM_INFO: 6170 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6171 r = 0; 6172 break; 6173 case KVM_CAP_EXCEPTION_PAYLOAD: 6174 kvm->arch.exception_payload_enabled = cap->args[0]; 6175 r = 0; 6176 break; 6177 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6178 kvm->arch.triple_fault_event = cap->args[0]; 6179 r = 0; 6180 break; 6181 case KVM_CAP_X86_USER_SPACE_MSR: 6182 r = -EINVAL; 6183 if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL | 6184 KVM_MSR_EXIT_REASON_UNKNOWN | 6185 KVM_MSR_EXIT_REASON_FILTER)) 6186 break; 6187 kvm->arch.user_space_msr_mask = cap->args[0]; 6188 r = 0; 6189 break; 6190 case KVM_CAP_X86_BUS_LOCK_EXIT: 6191 r = -EINVAL; 6192 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6193 break; 6194 6195 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6196 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6197 break; 6198 6199 if (kvm_caps.has_bus_lock_exit && 6200 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6201 kvm->arch.bus_lock_detection_enabled = true; 6202 r = 0; 6203 break; 6204 #ifdef CONFIG_X86_SGX_KVM 6205 case KVM_CAP_SGX_ATTRIBUTE: { 6206 unsigned long allowed_attributes = 0; 6207 6208 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6209 if (r) 6210 break; 6211 6212 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6213 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6214 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6215 kvm->arch.sgx_provisioning_allowed = true; 6216 else 6217 r = -EINVAL; 6218 break; 6219 } 6220 #endif 6221 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6222 r = -EINVAL; 6223 if (!kvm_x86_ops.vm_copy_enc_context_from) 6224 break; 6225 6226 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6227 break; 6228 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6229 r = -EINVAL; 6230 if (!kvm_x86_ops.vm_move_enc_context_from) 6231 break; 6232 6233 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6234 break; 6235 case KVM_CAP_EXIT_HYPERCALL: 6236 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6237 r = -EINVAL; 6238 break; 6239 } 6240 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6241 r = 0; 6242 break; 6243 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6244 r = -EINVAL; 6245 if (cap->args[0] & ~1) 6246 break; 6247 kvm->arch.exit_on_emulation_error = cap->args[0]; 6248 r = 0; 6249 break; 6250 case KVM_CAP_PMU_CAPABILITY: 6251 r = -EINVAL; 6252 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6253 break; 6254 6255 mutex_lock(&kvm->lock); 6256 if (!kvm->created_vcpus) { 6257 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6258 r = 0; 6259 } 6260 mutex_unlock(&kvm->lock); 6261 break; 6262 case KVM_CAP_MAX_VCPU_ID: 6263 r = -EINVAL; 6264 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6265 break; 6266 6267 mutex_lock(&kvm->lock); 6268 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6269 r = 0; 6270 } else if (!kvm->arch.max_vcpu_ids) { 6271 kvm->arch.max_vcpu_ids = cap->args[0]; 6272 r = 0; 6273 } 6274 mutex_unlock(&kvm->lock); 6275 break; 6276 case KVM_CAP_X86_NOTIFY_VMEXIT: 6277 r = -EINVAL; 6278 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6279 break; 6280 if (!kvm_caps.has_notify_vmexit) 6281 break; 6282 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6283 break; 6284 mutex_lock(&kvm->lock); 6285 if (!kvm->created_vcpus) { 6286 kvm->arch.notify_window = cap->args[0] >> 32; 6287 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6288 r = 0; 6289 } 6290 mutex_unlock(&kvm->lock); 6291 break; 6292 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6293 r = -EINVAL; 6294 6295 /* 6296 * Since the risk of disabling NX hugepages is a guest crashing 6297 * the system, ensure the userspace process has permission to 6298 * reboot the system. 6299 * 6300 * Note that unlike the reboot() syscall, the process must have 6301 * this capability in the root namespace because exposing 6302 * /dev/kvm into a container does not limit the scope of the 6303 * iTLB multihit bug to that container. In other words, 6304 * this must use capable(), not ns_capable(). 6305 */ 6306 if (!capable(CAP_SYS_BOOT)) { 6307 r = -EPERM; 6308 break; 6309 } 6310 6311 if (cap->args[0]) 6312 break; 6313 6314 mutex_lock(&kvm->lock); 6315 if (!kvm->created_vcpus) { 6316 kvm->arch.disable_nx_huge_pages = true; 6317 r = 0; 6318 } 6319 mutex_unlock(&kvm->lock); 6320 break; 6321 default: 6322 r = -EINVAL; 6323 break; 6324 } 6325 return r; 6326 } 6327 6328 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6329 { 6330 struct kvm_x86_msr_filter *msr_filter; 6331 6332 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6333 if (!msr_filter) 6334 return NULL; 6335 6336 msr_filter->default_allow = default_allow; 6337 return msr_filter; 6338 } 6339 6340 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6341 { 6342 u32 i; 6343 6344 if (!msr_filter) 6345 return; 6346 6347 for (i = 0; i < msr_filter->count; i++) 6348 kfree(msr_filter->ranges[i].bitmap); 6349 6350 kfree(msr_filter); 6351 } 6352 6353 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6354 struct kvm_msr_filter_range *user_range) 6355 { 6356 unsigned long *bitmap = NULL; 6357 size_t bitmap_size; 6358 6359 if (!user_range->nmsrs) 6360 return 0; 6361 6362 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) 6363 return -EINVAL; 6364 6365 if (!user_range->flags) 6366 return -EINVAL; 6367 6368 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6369 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6370 return -EINVAL; 6371 6372 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6373 if (IS_ERR(bitmap)) 6374 return PTR_ERR(bitmap); 6375 6376 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6377 .flags = user_range->flags, 6378 .base = user_range->base, 6379 .nmsrs = user_range->nmsrs, 6380 .bitmap = bitmap, 6381 }; 6382 6383 msr_filter->count++; 6384 return 0; 6385 } 6386 6387 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 6388 { 6389 struct kvm_msr_filter __user *user_msr_filter = argp; 6390 struct kvm_x86_msr_filter *new_filter, *old_filter; 6391 struct kvm_msr_filter filter; 6392 bool default_allow; 6393 bool empty = true; 6394 int r = 0; 6395 u32 i; 6396 6397 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6398 return -EFAULT; 6399 6400 if (filter.flags & ~KVM_MSR_FILTER_DEFAULT_DENY) 6401 return -EINVAL; 6402 6403 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 6404 empty &= !filter.ranges[i].nmsrs; 6405 6406 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 6407 if (empty && !default_allow) 6408 return -EINVAL; 6409 6410 new_filter = kvm_alloc_msr_filter(default_allow); 6411 if (!new_filter) 6412 return -ENOMEM; 6413 6414 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6415 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]); 6416 if (r) { 6417 kvm_free_msr_filter(new_filter); 6418 return r; 6419 } 6420 } 6421 6422 mutex_lock(&kvm->lock); 6423 6424 /* The per-VM filter is protected by kvm->lock... */ 6425 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6426 6427 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6428 synchronize_srcu(&kvm->srcu); 6429 6430 kvm_free_msr_filter(old_filter); 6431 6432 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6433 mutex_unlock(&kvm->lock); 6434 6435 return 0; 6436 } 6437 6438 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6439 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6440 { 6441 struct kvm_vcpu *vcpu; 6442 unsigned long i; 6443 int ret = 0; 6444 6445 mutex_lock(&kvm->lock); 6446 kvm_for_each_vcpu(i, vcpu, kvm) { 6447 if (!vcpu->arch.pv_time.active) 6448 continue; 6449 6450 ret = kvm_set_guest_paused(vcpu); 6451 if (ret) { 6452 kvm_err("Failed to pause guest VCPU%d: %d\n", 6453 vcpu->vcpu_id, ret); 6454 break; 6455 } 6456 } 6457 mutex_unlock(&kvm->lock); 6458 6459 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6460 } 6461 6462 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6463 { 6464 switch (state) { 6465 case PM_HIBERNATION_PREPARE: 6466 case PM_SUSPEND_PREPARE: 6467 return kvm_arch_suspend_notifier(kvm); 6468 } 6469 6470 return NOTIFY_DONE; 6471 } 6472 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6473 6474 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6475 { 6476 struct kvm_clock_data data = { 0 }; 6477 6478 get_kvmclock(kvm, &data); 6479 if (copy_to_user(argp, &data, sizeof(data))) 6480 return -EFAULT; 6481 6482 return 0; 6483 } 6484 6485 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6486 { 6487 struct kvm_arch *ka = &kvm->arch; 6488 struct kvm_clock_data data; 6489 u64 now_raw_ns; 6490 6491 if (copy_from_user(&data, argp, sizeof(data))) 6492 return -EFAULT; 6493 6494 /* 6495 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6496 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6497 */ 6498 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6499 return -EINVAL; 6500 6501 kvm_hv_request_tsc_page_update(kvm); 6502 kvm_start_pvclock_update(kvm); 6503 pvclock_update_vm_gtod_copy(kvm); 6504 6505 /* 6506 * This pairs with kvm_guest_time_update(): when masterclock is 6507 * in use, we use master_kernel_ns + kvmclock_offset to set 6508 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6509 * is slightly ahead) here we risk going negative on unsigned 6510 * 'system_time' when 'data.clock' is very small. 6511 */ 6512 if (data.flags & KVM_CLOCK_REALTIME) { 6513 u64 now_real_ns = ktime_get_real_ns(); 6514 6515 /* 6516 * Avoid stepping the kvmclock backwards. 6517 */ 6518 if (now_real_ns > data.realtime) 6519 data.clock += now_real_ns - data.realtime; 6520 } 6521 6522 if (ka->use_master_clock) 6523 now_raw_ns = ka->master_kernel_ns; 6524 else 6525 now_raw_ns = get_kvmclock_base_ns(); 6526 ka->kvmclock_offset = data.clock - now_raw_ns; 6527 kvm_end_pvclock_update(kvm); 6528 return 0; 6529 } 6530 6531 long kvm_arch_vm_ioctl(struct file *filp, 6532 unsigned int ioctl, unsigned long arg) 6533 { 6534 struct kvm *kvm = filp->private_data; 6535 void __user *argp = (void __user *)arg; 6536 int r = -ENOTTY; 6537 /* 6538 * This union makes it completely explicit to gcc-3.x 6539 * that these two variables' stack usage should be 6540 * combined, not added together. 6541 */ 6542 union { 6543 struct kvm_pit_state ps; 6544 struct kvm_pit_state2 ps2; 6545 struct kvm_pit_config pit_config; 6546 } u; 6547 6548 switch (ioctl) { 6549 case KVM_SET_TSS_ADDR: 6550 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6551 break; 6552 case KVM_SET_IDENTITY_MAP_ADDR: { 6553 u64 ident_addr; 6554 6555 mutex_lock(&kvm->lock); 6556 r = -EINVAL; 6557 if (kvm->created_vcpus) 6558 goto set_identity_unlock; 6559 r = -EFAULT; 6560 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6561 goto set_identity_unlock; 6562 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6563 set_identity_unlock: 6564 mutex_unlock(&kvm->lock); 6565 break; 6566 } 6567 case KVM_SET_NR_MMU_PAGES: 6568 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6569 break; 6570 case KVM_GET_NR_MMU_PAGES: 6571 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6572 break; 6573 case KVM_CREATE_IRQCHIP: { 6574 mutex_lock(&kvm->lock); 6575 6576 r = -EEXIST; 6577 if (irqchip_in_kernel(kvm)) 6578 goto create_irqchip_unlock; 6579 6580 r = -EINVAL; 6581 if (kvm->created_vcpus) 6582 goto create_irqchip_unlock; 6583 6584 r = kvm_pic_init(kvm); 6585 if (r) 6586 goto create_irqchip_unlock; 6587 6588 r = kvm_ioapic_init(kvm); 6589 if (r) { 6590 kvm_pic_destroy(kvm); 6591 goto create_irqchip_unlock; 6592 } 6593 6594 r = kvm_setup_default_irq_routing(kvm); 6595 if (r) { 6596 kvm_ioapic_destroy(kvm); 6597 kvm_pic_destroy(kvm); 6598 goto create_irqchip_unlock; 6599 } 6600 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6601 smp_wmb(); 6602 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6603 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6604 create_irqchip_unlock: 6605 mutex_unlock(&kvm->lock); 6606 break; 6607 } 6608 case KVM_CREATE_PIT: 6609 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6610 goto create_pit; 6611 case KVM_CREATE_PIT2: 6612 r = -EFAULT; 6613 if (copy_from_user(&u.pit_config, argp, 6614 sizeof(struct kvm_pit_config))) 6615 goto out; 6616 create_pit: 6617 mutex_lock(&kvm->lock); 6618 r = -EEXIST; 6619 if (kvm->arch.vpit) 6620 goto create_pit_unlock; 6621 r = -ENOMEM; 6622 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6623 if (kvm->arch.vpit) 6624 r = 0; 6625 create_pit_unlock: 6626 mutex_unlock(&kvm->lock); 6627 break; 6628 case KVM_GET_IRQCHIP: { 6629 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6630 struct kvm_irqchip *chip; 6631 6632 chip = memdup_user(argp, sizeof(*chip)); 6633 if (IS_ERR(chip)) { 6634 r = PTR_ERR(chip); 6635 goto out; 6636 } 6637 6638 r = -ENXIO; 6639 if (!irqchip_kernel(kvm)) 6640 goto get_irqchip_out; 6641 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6642 if (r) 6643 goto get_irqchip_out; 6644 r = -EFAULT; 6645 if (copy_to_user(argp, chip, sizeof(*chip))) 6646 goto get_irqchip_out; 6647 r = 0; 6648 get_irqchip_out: 6649 kfree(chip); 6650 break; 6651 } 6652 case KVM_SET_IRQCHIP: { 6653 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6654 struct kvm_irqchip *chip; 6655 6656 chip = memdup_user(argp, sizeof(*chip)); 6657 if (IS_ERR(chip)) { 6658 r = PTR_ERR(chip); 6659 goto out; 6660 } 6661 6662 r = -ENXIO; 6663 if (!irqchip_kernel(kvm)) 6664 goto set_irqchip_out; 6665 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6666 set_irqchip_out: 6667 kfree(chip); 6668 break; 6669 } 6670 case KVM_GET_PIT: { 6671 r = -EFAULT; 6672 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6673 goto out; 6674 r = -ENXIO; 6675 if (!kvm->arch.vpit) 6676 goto out; 6677 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6678 if (r) 6679 goto out; 6680 r = -EFAULT; 6681 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6682 goto out; 6683 r = 0; 6684 break; 6685 } 6686 case KVM_SET_PIT: { 6687 r = -EFAULT; 6688 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6689 goto out; 6690 mutex_lock(&kvm->lock); 6691 r = -ENXIO; 6692 if (!kvm->arch.vpit) 6693 goto set_pit_out; 6694 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6695 set_pit_out: 6696 mutex_unlock(&kvm->lock); 6697 break; 6698 } 6699 case KVM_GET_PIT2: { 6700 r = -ENXIO; 6701 if (!kvm->arch.vpit) 6702 goto out; 6703 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6704 if (r) 6705 goto out; 6706 r = -EFAULT; 6707 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6708 goto out; 6709 r = 0; 6710 break; 6711 } 6712 case KVM_SET_PIT2: { 6713 r = -EFAULT; 6714 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6715 goto out; 6716 mutex_lock(&kvm->lock); 6717 r = -ENXIO; 6718 if (!kvm->arch.vpit) 6719 goto set_pit2_out; 6720 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6721 set_pit2_out: 6722 mutex_unlock(&kvm->lock); 6723 break; 6724 } 6725 case KVM_REINJECT_CONTROL: { 6726 struct kvm_reinject_control control; 6727 r = -EFAULT; 6728 if (copy_from_user(&control, argp, sizeof(control))) 6729 goto out; 6730 r = -ENXIO; 6731 if (!kvm->arch.vpit) 6732 goto out; 6733 r = kvm_vm_ioctl_reinject(kvm, &control); 6734 break; 6735 } 6736 case KVM_SET_BOOT_CPU_ID: 6737 r = 0; 6738 mutex_lock(&kvm->lock); 6739 if (kvm->created_vcpus) 6740 r = -EBUSY; 6741 else 6742 kvm->arch.bsp_vcpu_id = arg; 6743 mutex_unlock(&kvm->lock); 6744 break; 6745 #ifdef CONFIG_KVM_XEN 6746 case KVM_XEN_HVM_CONFIG: { 6747 struct kvm_xen_hvm_config xhc; 6748 r = -EFAULT; 6749 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6750 goto out; 6751 r = kvm_xen_hvm_config(kvm, &xhc); 6752 break; 6753 } 6754 case KVM_XEN_HVM_GET_ATTR: { 6755 struct kvm_xen_hvm_attr xha; 6756 6757 r = -EFAULT; 6758 if (copy_from_user(&xha, argp, sizeof(xha))) 6759 goto out; 6760 r = kvm_xen_hvm_get_attr(kvm, &xha); 6761 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6762 r = -EFAULT; 6763 break; 6764 } 6765 case KVM_XEN_HVM_SET_ATTR: { 6766 struct kvm_xen_hvm_attr xha; 6767 6768 r = -EFAULT; 6769 if (copy_from_user(&xha, argp, sizeof(xha))) 6770 goto out; 6771 r = kvm_xen_hvm_set_attr(kvm, &xha); 6772 break; 6773 } 6774 case KVM_XEN_HVM_EVTCHN_SEND: { 6775 struct kvm_irq_routing_xen_evtchn uxe; 6776 6777 r = -EFAULT; 6778 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6779 goto out; 6780 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6781 break; 6782 } 6783 #endif 6784 case KVM_SET_CLOCK: 6785 r = kvm_vm_ioctl_set_clock(kvm, argp); 6786 break; 6787 case KVM_GET_CLOCK: 6788 r = kvm_vm_ioctl_get_clock(kvm, argp); 6789 break; 6790 case KVM_SET_TSC_KHZ: { 6791 u32 user_tsc_khz; 6792 6793 r = -EINVAL; 6794 user_tsc_khz = (u32)arg; 6795 6796 if (kvm_caps.has_tsc_control && 6797 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6798 goto out; 6799 6800 if (user_tsc_khz == 0) 6801 user_tsc_khz = tsc_khz; 6802 6803 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6804 r = 0; 6805 6806 goto out; 6807 } 6808 case KVM_GET_TSC_KHZ: { 6809 r = READ_ONCE(kvm->arch.default_tsc_khz); 6810 goto out; 6811 } 6812 case KVM_MEMORY_ENCRYPT_OP: { 6813 r = -ENOTTY; 6814 if (!kvm_x86_ops.mem_enc_ioctl) 6815 goto out; 6816 6817 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6818 break; 6819 } 6820 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6821 struct kvm_enc_region region; 6822 6823 r = -EFAULT; 6824 if (copy_from_user(®ion, argp, sizeof(region))) 6825 goto out; 6826 6827 r = -ENOTTY; 6828 if (!kvm_x86_ops.mem_enc_register_region) 6829 goto out; 6830 6831 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6832 break; 6833 } 6834 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6835 struct kvm_enc_region region; 6836 6837 r = -EFAULT; 6838 if (copy_from_user(®ion, argp, sizeof(region))) 6839 goto out; 6840 6841 r = -ENOTTY; 6842 if (!kvm_x86_ops.mem_enc_unregister_region) 6843 goto out; 6844 6845 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6846 break; 6847 } 6848 case KVM_HYPERV_EVENTFD: { 6849 struct kvm_hyperv_eventfd hvevfd; 6850 6851 r = -EFAULT; 6852 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6853 goto out; 6854 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6855 break; 6856 } 6857 case KVM_SET_PMU_EVENT_FILTER: 6858 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6859 break; 6860 case KVM_X86_SET_MSR_FILTER: 6861 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 6862 break; 6863 default: 6864 r = -ENOTTY; 6865 } 6866 out: 6867 return r; 6868 } 6869 6870 static void kvm_init_msr_list(void) 6871 { 6872 u32 dummy[2]; 6873 unsigned i; 6874 6875 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 6876 "Please update the fixed PMCs in msrs_to_saved_all[]"); 6877 6878 num_msrs_to_save = 0; 6879 num_emulated_msrs = 0; 6880 num_msr_based_features = 0; 6881 6882 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 6883 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 6884 continue; 6885 6886 /* 6887 * Even MSRs that are valid in the host may not be exposed 6888 * to the guests in some cases. 6889 */ 6890 switch (msrs_to_save_all[i]) { 6891 case MSR_IA32_BNDCFGS: 6892 if (!kvm_mpx_supported()) 6893 continue; 6894 break; 6895 case MSR_TSC_AUX: 6896 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 6897 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 6898 continue; 6899 break; 6900 case MSR_IA32_UMWAIT_CONTROL: 6901 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 6902 continue; 6903 break; 6904 case MSR_IA32_RTIT_CTL: 6905 case MSR_IA32_RTIT_STATUS: 6906 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 6907 continue; 6908 break; 6909 case MSR_IA32_RTIT_CR3_MATCH: 6910 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6911 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 6912 continue; 6913 break; 6914 case MSR_IA32_RTIT_OUTPUT_BASE: 6915 case MSR_IA32_RTIT_OUTPUT_MASK: 6916 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6917 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 6918 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 6919 continue; 6920 break; 6921 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 6922 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6923 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 6924 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 6925 continue; 6926 break; 6927 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 6928 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 6929 min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 6930 continue; 6931 break; 6932 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 6933 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 6934 min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 6935 continue; 6936 break; 6937 case MSR_IA32_XFD: 6938 case MSR_IA32_XFD_ERR: 6939 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 6940 continue; 6941 break; 6942 default: 6943 break; 6944 } 6945 6946 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 6947 } 6948 6949 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 6950 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 6951 continue; 6952 6953 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 6954 } 6955 6956 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 6957 struct kvm_msr_entry msr; 6958 6959 msr.index = msr_based_features_all[i]; 6960 if (kvm_get_msr_feature(&msr)) 6961 continue; 6962 6963 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 6964 } 6965 } 6966 6967 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 6968 const void *v) 6969 { 6970 int handled = 0; 6971 int n; 6972 6973 do { 6974 n = min(len, 8); 6975 if (!(lapic_in_kernel(vcpu) && 6976 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 6977 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 6978 break; 6979 handled += n; 6980 addr += n; 6981 len -= n; 6982 v += n; 6983 } while (len); 6984 6985 return handled; 6986 } 6987 6988 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 6989 { 6990 int handled = 0; 6991 int n; 6992 6993 do { 6994 n = min(len, 8); 6995 if (!(lapic_in_kernel(vcpu) && 6996 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 6997 addr, n, v)) 6998 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 6999 break; 7000 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7001 handled += n; 7002 addr += n; 7003 len -= n; 7004 v += n; 7005 } while (len); 7006 7007 return handled; 7008 } 7009 7010 static void kvm_set_segment(struct kvm_vcpu *vcpu, 7011 struct kvm_segment *var, int seg) 7012 { 7013 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7014 } 7015 7016 void kvm_get_segment(struct kvm_vcpu *vcpu, 7017 struct kvm_segment *var, int seg) 7018 { 7019 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7020 } 7021 7022 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7023 struct x86_exception *exception) 7024 { 7025 struct kvm_mmu *mmu = vcpu->arch.mmu; 7026 gpa_t t_gpa; 7027 7028 BUG_ON(!mmu_is_nested(vcpu)); 7029 7030 /* NPT walks are always user-walks */ 7031 access |= PFERR_USER_MASK; 7032 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7033 7034 return t_gpa; 7035 } 7036 7037 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7038 struct x86_exception *exception) 7039 { 7040 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7041 7042 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7043 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7044 } 7045 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7046 7047 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 7048 struct x86_exception *exception) 7049 { 7050 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7051 7052 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7053 access |= PFERR_FETCH_MASK; 7054 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7055 } 7056 7057 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7058 struct x86_exception *exception) 7059 { 7060 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7061 7062 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7063 access |= PFERR_WRITE_MASK; 7064 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7065 } 7066 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7067 7068 /* uses this to access any guest's mapped memory without checking CPL */ 7069 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7070 struct x86_exception *exception) 7071 { 7072 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7073 7074 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7075 } 7076 7077 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7078 struct kvm_vcpu *vcpu, u64 access, 7079 struct x86_exception *exception) 7080 { 7081 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7082 void *data = val; 7083 int r = X86EMUL_CONTINUE; 7084 7085 while (bytes) { 7086 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7087 unsigned offset = addr & (PAGE_SIZE-1); 7088 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7089 int ret; 7090 7091 if (gpa == INVALID_GPA) 7092 return X86EMUL_PROPAGATE_FAULT; 7093 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7094 offset, toread); 7095 if (ret < 0) { 7096 r = X86EMUL_IO_NEEDED; 7097 goto out; 7098 } 7099 7100 bytes -= toread; 7101 data += toread; 7102 addr += toread; 7103 } 7104 out: 7105 return r; 7106 } 7107 7108 /* used for instruction fetching */ 7109 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7110 gva_t addr, void *val, unsigned int bytes, 7111 struct x86_exception *exception) 7112 { 7113 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7114 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7115 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7116 unsigned offset; 7117 int ret; 7118 7119 /* Inline kvm_read_guest_virt_helper for speed. */ 7120 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7121 exception); 7122 if (unlikely(gpa == INVALID_GPA)) 7123 return X86EMUL_PROPAGATE_FAULT; 7124 7125 offset = addr & (PAGE_SIZE-1); 7126 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7127 bytes = (unsigned)PAGE_SIZE - offset; 7128 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7129 offset, bytes); 7130 if (unlikely(ret < 0)) 7131 return X86EMUL_IO_NEEDED; 7132 7133 return X86EMUL_CONTINUE; 7134 } 7135 7136 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7137 gva_t addr, void *val, unsigned int bytes, 7138 struct x86_exception *exception) 7139 { 7140 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7141 7142 /* 7143 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7144 * is returned, but our callers are not ready for that and they blindly 7145 * call kvm_inject_page_fault. Ensure that they at least do not leak 7146 * uninitialized kernel stack memory into cr2 and error code. 7147 */ 7148 memset(exception, 0, sizeof(*exception)); 7149 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7150 exception); 7151 } 7152 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7153 7154 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7155 gva_t addr, void *val, unsigned int bytes, 7156 struct x86_exception *exception, bool system) 7157 { 7158 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7159 u64 access = 0; 7160 7161 if (system) 7162 access |= PFERR_IMPLICIT_ACCESS; 7163 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7164 access |= PFERR_USER_MASK; 7165 7166 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7167 } 7168 7169 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 7170 unsigned long addr, void *val, unsigned int bytes) 7171 { 7172 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7173 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 7174 7175 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 7176 } 7177 7178 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7179 struct kvm_vcpu *vcpu, u64 access, 7180 struct x86_exception *exception) 7181 { 7182 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7183 void *data = val; 7184 int r = X86EMUL_CONTINUE; 7185 7186 while (bytes) { 7187 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7188 unsigned offset = addr & (PAGE_SIZE-1); 7189 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7190 int ret; 7191 7192 if (gpa == INVALID_GPA) 7193 return X86EMUL_PROPAGATE_FAULT; 7194 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7195 if (ret < 0) { 7196 r = X86EMUL_IO_NEEDED; 7197 goto out; 7198 } 7199 7200 bytes -= towrite; 7201 data += towrite; 7202 addr += towrite; 7203 } 7204 out: 7205 return r; 7206 } 7207 7208 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7209 unsigned int bytes, struct x86_exception *exception, 7210 bool system) 7211 { 7212 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7213 u64 access = PFERR_WRITE_MASK; 7214 7215 if (system) 7216 access |= PFERR_IMPLICIT_ACCESS; 7217 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7218 access |= PFERR_USER_MASK; 7219 7220 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7221 access, exception); 7222 } 7223 7224 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7225 unsigned int bytes, struct x86_exception *exception) 7226 { 7227 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7228 vcpu->arch.l1tf_flush_l1d = true; 7229 7230 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7231 PFERR_WRITE_MASK, exception); 7232 } 7233 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7234 7235 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7236 void *insn, int insn_len) 7237 { 7238 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7239 insn, insn_len); 7240 } 7241 7242 int handle_ud(struct kvm_vcpu *vcpu) 7243 { 7244 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7245 int emul_type = EMULTYPE_TRAP_UD; 7246 char sig[5]; /* ud2; .ascii "kvm" */ 7247 struct x86_exception e; 7248 7249 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7250 return 1; 7251 7252 if (force_emulation_prefix && 7253 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7254 sig, sizeof(sig), &e) == 0 && 7255 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7256 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7257 emul_type = EMULTYPE_TRAP_UD_FORCED; 7258 } 7259 7260 return kvm_emulate_instruction(vcpu, emul_type); 7261 } 7262 EXPORT_SYMBOL_GPL(handle_ud); 7263 7264 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7265 gpa_t gpa, bool write) 7266 { 7267 /* For APIC access vmexit */ 7268 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7269 return 1; 7270 7271 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7272 trace_vcpu_match_mmio(gva, gpa, write, true); 7273 return 1; 7274 } 7275 7276 return 0; 7277 } 7278 7279 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7280 gpa_t *gpa, struct x86_exception *exception, 7281 bool write) 7282 { 7283 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7284 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7285 | (write ? PFERR_WRITE_MASK : 0); 7286 7287 /* 7288 * currently PKRU is only applied to ept enabled guest so 7289 * there is no pkey in EPT page table for L1 guest or EPT 7290 * shadow page table for L2 guest. 7291 */ 7292 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7293 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7294 vcpu->arch.mmio_access, 0, access))) { 7295 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7296 (gva & (PAGE_SIZE - 1)); 7297 trace_vcpu_match_mmio(gva, *gpa, write, false); 7298 return 1; 7299 } 7300 7301 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7302 7303 if (*gpa == INVALID_GPA) 7304 return -1; 7305 7306 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7307 } 7308 7309 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7310 const void *val, int bytes) 7311 { 7312 int ret; 7313 7314 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7315 if (ret < 0) 7316 return 0; 7317 kvm_page_track_write(vcpu, gpa, val, bytes); 7318 return 1; 7319 } 7320 7321 struct read_write_emulator_ops { 7322 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7323 int bytes); 7324 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7325 void *val, int bytes); 7326 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7327 int bytes, void *val); 7328 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7329 void *val, int bytes); 7330 bool write; 7331 }; 7332 7333 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7334 { 7335 if (vcpu->mmio_read_completed) { 7336 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7337 vcpu->mmio_fragments[0].gpa, val); 7338 vcpu->mmio_read_completed = 0; 7339 return 1; 7340 } 7341 7342 return 0; 7343 } 7344 7345 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7346 void *val, int bytes) 7347 { 7348 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7349 } 7350 7351 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7352 void *val, int bytes) 7353 { 7354 return emulator_write_phys(vcpu, gpa, val, bytes); 7355 } 7356 7357 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7358 { 7359 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7360 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7361 } 7362 7363 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7364 void *val, int bytes) 7365 { 7366 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7367 return X86EMUL_IO_NEEDED; 7368 } 7369 7370 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7371 void *val, int bytes) 7372 { 7373 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7374 7375 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7376 return X86EMUL_CONTINUE; 7377 } 7378 7379 static const struct read_write_emulator_ops read_emultor = { 7380 .read_write_prepare = read_prepare, 7381 .read_write_emulate = read_emulate, 7382 .read_write_mmio = vcpu_mmio_read, 7383 .read_write_exit_mmio = read_exit_mmio, 7384 }; 7385 7386 static const struct read_write_emulator_ops write_emultor = { 7387 .read_write_emulate = write_emulate, 7388 .read_write_mmio = write_mmio, 7389 .read_write_exit_mmio = write_exit_mmio, 7390 .write = true, 7391 }; 7392 7393 static int emulator_read_write_onepage(unsigned long addr, void *val, 7394 unsigned int bytes, 7395 struct x86_exception *exception, 7396 struct kvm_vcpu *vcpu, 7397 const struct read_write_emulator_ops *ops) 7398 { 7399 gpa_t gpa; 7400 int handled, ret; 7401 bool write = ops->write; 7402 struct kvm_mmio_fragment *frag; 7403 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7404 7405 /* 7406 * If the exit was due to a NPF we may already have a GPA. 7407 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7408 * Note, this cannot be used on string operations since string 7409 * operation using rep will only have the initial GPA from the NPF 7410 * occurred. 7411 */ 7412 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7413 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7414 gpa = ctxt->gpa_val; 7415 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7416 } else { 7417 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7418 if (ret < 0) 7419 return X86EMUL_PROPAGATE_FAULT; 7420 } 7421 7422 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7423 return X86EMUL_CONTINUE; 7424 7425 /* 7426 * Is this MMIO handled locally? 7427 */ 7428 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7429 if (handled == bytes) 7430 return X86EMUL_CONTINUE; 7431 7432 gpa += handled; 7433 bytes -= handled; 7434 val += handled; 7435 7436 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7437 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7438 frag->gpa = gpa; 7439 frag->data = val; 7440 frag->len = bytes; 7441 return X86EMUL_CONTINUE; 7442 } 7443 7444 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7445 unsigned long addr, 7446 void *val, unsigned int bytes, 7447 struct x86_exception *exception, 7448 const struct read_write_emulator_ops *ops) 7449 { 7450 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7451 gpa_t gpa; 7452 int rc; 7453 7454 if (ops->read_write_prepare && 7455 ops->read_write_prepare(vcpu, val, bytes)) 7456 return X86EMUL_CONTINUE; 7457 7458 vcpu->mmio_nr_fragments = 0; 7459 7460 /* Crossing a page boundary? */ 7461 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7462 int now; 7463 7464 now = -addr & ~PAGE_MASK; 7465 rc = emulator_read_write_onepage(addr, val, now, exception, 7466 vcpu, ops); 7467 7468 if (rc != X86EMUL_CONTINUE) 7469 return rc; 7470 addr += now; 7471 if (ctxt->mode != X86EMUL_MODE_PROT64) 7472 addr = (u32)addr; 7473 val += now; 7474 bytes -= now; 7475 } 7476 7477 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7478 vcpu, ops); 7479 if (rc != X86EMUL_CONTINUE) 7480 return rc; 7481 7482 if (!vcpu->mmio_nr_fragments) 7483 return rc; 7484 7485 gpa = vcpu->mmio_fragments[0].gpa; 7486 7487 vcpu->mmio_needed = 1; 7488 vcpu->mmio_cur_fragment = 0; 7489 7490 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7491 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7492 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7493 vcpu->run->mmio.phys_addr = gpa; 7494 7495 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7496 } 7497 7498 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7499 unsigned long addr, 7500 void *val, 7501 unsigned int bytes, 7502 struct x86_exception *exception) 7503 { 7504 return emulator_read_write(ctxt, addr, val, bytes, 7505 exception, &read_emultor); 7506 } 7507 7508 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7509 unsigned long addr, 7510 const void *val, 7511 unsigned int bytes, 7512 struct x86_exception *exception) 7513 { 7514 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7515 exception, &write_emultor); 7516 } 7517 7518 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7519 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7520 7521 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7522 unsigned long addr, 7523 const void *old, 7524 const void *new, 7525 unsigned int bytes, 7526 struct x86_exception *exception) 7527 { 7528 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7529 u64 page_line_mask; 7530 unsigned long hva; 7531 gpa_t gpa; 7532 int r; 7533 7534 /* guests cmpxchg8b have to be emulated atomically */ 7535 if (bytes > 8 || (bytes & (bytes - 1))) 7536 goto emul_write; 7537 7538 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7539 7540 if (gpa == INVALID_GPA || 7541 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7542 goto emul_write; 7543 7544 /* 7545 * Emulate the atomic as a straight write to avoid #AC if SLD is 7546 * enabled in the host and the access splits a cache line. 7547 */ 7548 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7549 page_line_mask = ~(cache_line_size() - 1); 7550 else 7551 page_line_mask = PAGE_MASK; 7552 7553 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7554 goto emul_write; 7555 7556 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7557 if (kvm_is_error_hva(hva)) 7558 goto emul_write; 7559 7560 hva += offset_in_page(gpa); 7561 7562 switch (bytes) { 7563 case 1: 7564 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7565 break; 7566 case 2: 7567 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7568 break; 7569 case 4: 7570 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7571 break; 7572 case 8: 7573 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7574 break; 7575 default: 7576 BUG(); 7577 } 7578 7579 if (r < 0) 7580 return X86EMUL_UNHANDLEABLE; 7581 if (r) 7582 return X86EMUL_CMPXCHG_FAILED; 7583 7584 kvm_page_track_write(vcpu, gpa, new, bytes); 7585 7586 return X86EMUL_CONTINUE; 7587 7588 emul_write: 7589 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7590 7591 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7592 } 7593 7594 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7595 unsigned short port, void *data, 7596 unsigned int count, bool in) 7597 { 7598 unsigned i; 7599 int r; 7600 7601 WARN_ON_ONCE(vcpu->arch.pio.count); 7602 for (i = 0; i < count; i++) { 7603 if (in) 7604 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7605 else 7606 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7607 7608 if (r) { 7609 if (i == 0) 7610 goto userspace_io; 7611 7612 /* 7613 * Userspace must have unregistered the device while PIO 7614 * was running. Drop writes / read as 0. 7615 */ 7616 if (in) 7617 memset(data, 0, size * (count - i)); 7618 break; 7619 } 7620 7621 data += size; 7622 } 7623 return 1; 7624 7625 userspace_io: 7626 vcpu->arch.pio.port = port; 7627 vcpu->arch.pio.in = in; 7628 vcpu->arch.pio.count = count; 7629 vcpu->arch.pio.size = size; 7630 7631 if (in) 7632 memset(vcpu->arch.pio_data, 0, size * count); 7633 else 7634 memcpy(vcpu->arch.pio_data, data, size * count); 7635 7636 vcpu->run->exit_reason = KVM_EXIT_IO; 7637 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7638 vcpu->run->io.size = size; 7639 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7640 vcpu->run->io.count = count; 7641 vcpu->run->io.port = port; 7642 return 0; 7643 } 7644 7645 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7646 unsigned short port, void *val, unsigned int count) 7647 { 7648 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7649 if (r) 7650 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7651 7652 return r; 7653 } 7654 7655 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7656 { 7657 int size = vcpu->arch.pio.size; 7658 unsigned int count = vcpu->arch.pio.count; 7659 memcpy(val, vcpu->arch.pio_data, size * count); 7660 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7661 vcpu->arch.pio.count = 0; 7662 } 7663 7664 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7665 int size, unsigned short port, void *val, 7666 unsigned int count) 7667 { 7668 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7669 if (vcpu->arch.pio.count) { 7670 /* 7671 * Complete a previous iteration that required userspace I/O. 7672 * Note, @count isn't guaranteed to match pio.count as userspace 7673 * can modify ECX before rerunning the vCPU. Ignore any such 7674 * shenanigans as KVM doesn't support modifying the rep count, 7675 * and the emulator ensures @count doesn't overflow the buffer. 7676 */ 7677 complete_emulator_pio_in(vcpu, val); 7678 return 1; 7679 } 7680 7681 return emulator_pio_in(vcpu, size, port, val, count); 7682 } 7683 7684 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7685 unsigned short port, const void *val, 7686 unsigned int count) 7687 { 7688 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7689 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7690 } 7691 7692 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7693 int size, unsigned short port, 7694 const void *val, unsigned int count) 7695 { 7696 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7697 } 7698 7699 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7700 { 7701 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7702 } 7703 7704 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7705 { 7706 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7707 } 7708 7709 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7710 { 7711 if (!need_emulate_wbinvd(vcpu)) 7712 return X86EMUL_CONTINUE; 7713 7714 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7715 int cpu = get_cpu(); 7716 7717 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7718 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7719 wbinvd_ipi, NULL, 1); 7720 put_cpu(); 7721 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7722 } else 7723 wbinvd(); 7724 return X86EMUL_CONTINUE; 7725 } 7726 7727 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7728 { 7729 kvm_emulate_wbinvd_noskip(vcpu); 7730 return kvm_skip_emulated_instruction(vcpu); 7731 } 7732 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7733 7734 7735 7736 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7737 { 7738 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7739 } 7740 7741 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7742 unsigned long *dest) 7743 { 7744 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7745 } 7746 7747 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7748 unsigned long value) 7749 { 7750 7751 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7752 } 7753 7754 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7755 { 7756 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7757 } 7758 7759 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7760 { 7761 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7762 unsigned long value; 7763 7764 switch (cr) { 7765 case 0: 7766 value = kvm_read_cr0(vcpu); 7767 break; 7768 case 2: 7769 value = vcpu->arch.cr2; 7770 break; 7771 case 3: 7772 value = kvm_read_cr3(vcpu); 7773 break; 7774 case 4: 7775 value = kvm_read_cr4(vcpu); 7776 break; 7777 case 8: 7778 value = kvm_get_cr8(vcpu); 7779 break; 7780 default: 7781 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7782 return 0; 7783 } 7784 7785 return value; 7786 } 7787 7788 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7789 { 7790 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7791 int res = 0; 7792 7793 switch (cr) { 7794 case 0: 7795 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7796 break; 7797 case 2: 7798 vcpu->arch.cr2 = val; 7799 break; 7800 case 3: 7801 res = kvm_set_cr3(vcpu, val); 7802 break; 7803 case 4: 7804 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7805 break; 7806 case 8: 7807 res = kvm_set_cr8(vcpu, val); 7808 break; 7809 default: 7810 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7811 res = -1; 7812 } 7813 7814 return res; 7815 } 7816 7817 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7818 { 7819 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7820 } 7821 7822 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7823 { 7824 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7825 } 7826 7827 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7828 { 7829 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7830 } 7831 7832 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7833 { 7834 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7835 } 7836 7837 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7838 { 7839 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7840 } 7841 7842 static unsigned long emulator_get_cached_segment_base( 7843 struct x86_emulate_ctxt *ctxt, int seg) 7844 { 7845 return get_segment_base(emul_to_vcpu(ctxt), seg); 7846 } 7847 7848 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7849 struct desc_struct *desc, u32 *base3, 7850 int seg) 7851 { 7852 struct kvm_segment var; 7853 7854 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7855 *selector = var.selector; 7856 7857 if (var.unusable) { 7858 memset(desc, 0, sizeof(*desc)); 7859 if (base3) 7860 *base3 = 0; 7861 return false; 7862 } 7863 7864 if (var.g) 7865 var.limit >>= 12; 7866 set_desc_limit(desc, var.limit); 7867 set_desc_base(desc, (unsigned long)var.base); 7868 #ifdef CONFIG_X86_64 7869 if (base3) 7870 *base3 = var.base >> 32; 7871 #endif 7872 desc->type = var.type; 7873 desc->s = var.s; 7874 desc->dpl = var.dpl; 7875 desc->p = var.present; 7876 desc->avl = var.avl; 7877 desc->l = var.l; 7878 desc->d = var.db; 7879 desc->g = var.g; 7880 7881 return true; 7882 } 7883 7884 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 7885 struct desc_struct *desc, u32 base3, 7886 int seg) 7887 { 7888 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7889 struct kvm_segment var; 7890 7891 var.selector = selector; 7892 var.base = get_desc_base(desc); 7893 #ifdef CONFIG_X86_64 7894 var.base |= ((u64)base3) << 32; 7895 #endif 7896 var.limit = get_desc_limit(desc); 7897 if (desc->g) 7898 var.limit = (var.limit << 12) | 0xfff; 7899 var.type = desc->type; 7900 var.dpl = desc->dpl; 7901 var.db = desc->d; 7902 var.s = desc->s; 7903 var.l = desc->l; 7904 var.g = desc->g; 7905 var.avl = desc->avl; 7906 var.present = desc->p; 7907 var.unusable = !var.present; 7908 var.padding = 0; 7909 7910 kvm_set_segment(vcpu, &var, seg); 7911 return; 7912 } 7913 7914 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7915 u32 msr_index, u64 *pdata) 7916 { 7917 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7918 int r; 7919 7920 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 7921 7922 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 7923 complete_emulated_rdmsr, r)) { 7924 /* Bounce to user space */ 7925 return X86EMUL_IO_NEEDED; 7926 } 7927 7928 return r; 7929 } 7930 7931 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7932 u32 msr_index, u64 data) 7933 { 7934 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7935 int r; 7936 7937 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 7938 7939 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 7940 complete_emulated_msr_access, r)) { 7941 /* Bounce to user space */ 7942 return X86EMUL_IO_NEEDED; 7943 } 7944 7945 return r; 7946 } 7947 7948 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 7949 u32 msr_index, u64 *pdata) 7950 { 7951 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 7952 } 7953 7954 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 7955 u32 msr_index, u64 data) 7956 { 7957 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 7958 } 7959 7960 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 7961 { 7962 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7963 7964 return vcpu->arch.smbase; 7965 } 7966 7967 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 7968 { 7969 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7970 7971 vcpu->arch.smbase = smbase; 7972 } 7973 7974 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 7975 u32 pmc) 7976 { 7977 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 7978 return 0; 7979 return -EINVAL; 7980 } 7981 7982 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 7983 u32 pmc, u64 *pdata) 7984 { 7985 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 7986 } 7987 7988 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 7989 { 7990 emul_to_vcpu(ctxt)->arch.halt_request = 1; 7991 } 7992 7993 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 7994 struct x86_instruction_info *info, 7995 enum x86_intercept_stage stage) 7996 { 7997 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 7998 &ctxt->exception); 7999 } 8000 8001 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8002 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8003 bool exact_only) 8004 { 8005 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8006 } 8007 8008 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8009 { 8010 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8011 } 8012 8013 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8014 { 8015 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8016 } 8017 8018 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8019 { 8020 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8021 } 8022 8023 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8024 { 8025 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8026 } 8027 8028 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8029 { 8030 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8031 } 8032 8033 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8034 { 8035 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8036 } 8037 8038 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8039 { 8040 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8041 } 8042 8043 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8044 { 8045 return emul_to_vcpu(ctxt)->arch.hflags; 8046 } 8047 8048 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt) 8049 { 8050 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8051 8052 kvm_smm_changed(vcpu, false); 8053 } 8054 8055 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt, 8056 const char *smstate) 8057 { 8058 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate); 8059 } 8060 8061 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8062 { 8063 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8064 } 8065 8066 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8067 { 8068 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8069 } 8070 8071 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8072 { 8073 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8074 8075 if (!kvm->vm_bugged) 8076 kvm_vm_bugged(kvm); 8077 } 8078 8079 static const struct x86_emulate_ops emulate_ops = { 8080 .vm_bugged = emulator_vm_bugged, 8081 .read_gpr = emulator_read_gpr, 8082 .write_gpr = emulator_write_gpr, 8083 .read_std = emulator_read_std, 8084 .write_std = emulator_write_std, 8085 .read_phys = kvm_read_guest_phys_system, 8086 .fetch = kvm_fetch_guest_virt, 8087 .read_emulated = emulator_read_emulated, 8088 .write_emulated = emulator_write_emulated, 8089 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8090 .invlpg = emulator_invlpg, 8091 .pio_in_emulated = emulator_pio_in_emulated, 8092 .pio_out_emulated = emulator_pio_out_emulated, 8093 .get_segment = emulator_get_segment, 8094 .set_segment = emulator_set_segment, 8095 .get_cached_segment_base = emulator_get_cached_segment_base, 8096 .get_gdt = emulator_get_gdt, 8097 .get_idt = emulator_get_idt, 8098 .set_gdt = emulator_set_gdt, 8099 .set_idt = emulator_set_idt, 8100 .get_cr = emulator_get_cr, 8101 .set_cr = emulator_set_cr, 8102 .cpl = emulator_get_cpl, 8103 .get_dr = emulator_get_dr, 8104 .set_dr = emulator_set_dr, 8105 .get_smbase = emulator_get_smbase, 8106 .set_smbase = emulator_set_smbase, 8107 .set_msr_with_filter = emulator_set_msr_with_filter, 8108 .get_msr_with_filter = emulator_get_msr_with_filter, 8109 .set_msr = emulator_set_msr, 8110 .get_msr = emulator_get_msr, 8111 .check_pmc = emulator_check_pmc, 8112 .read_pmc = emulator_read_pmc, 8113 .halt = emulator_halt, 8114 .wbinvd = emulator_wbinvd, 8115 .fix_hypercall = emulator_fix_hypercall, 8116 .intercept = emulator_intercept, 8117 .get_cpuid = emulator_get_cpuid, 8118 .guest_has_long_mode = emulator_guest_has_long_mode, 8119 .guest_has_movbe = emulator_guest_has_movbe, 8120 .guest_has_fxsr = emulator_guest_has_fxsr, 8121 .guest_has_rdpid = emulator_guest_has_rdpid, 8122 .set_nmi_mask = emulator_set_nmi_mask, 8123 .get_hflags = emulator_get_hflags, 8124 .exiting_smm = emulator_exiting_smm, 8125 .leave_smm = emulator_leave_smm, 8126 .triple_fault = emulator_triple_fault, 8127 .set_xcr = emulator_set_xcr, 8128 }; 8129 8130 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8131 { 8132 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8133 /* 8134 * an sti; sti; sequence only disable interrupts for the first 8135 * instruction. So, if the last instruction, be it emulated or 8136 * not, left the system with the INT_STI flag enabled, it 8137 * means that the last instruction is an sti. We should not 8138 * leave the flag on in this case. The same goes for mov ss 8139 */ 8140 if (int_shadow & mask) 8141 mask = 0; 8142 if (unlikely(int_shadow || mask)) { 8143 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8144 if (!mask) 8145 kvm_make_request(KVM_REQ_EVENT, vcpu); 8146 } 8147 } 8148 8149 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 8150 { 8151 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8152 if (ctxt->exception.vector == PF_VECTOR) 8153 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8154 8155 if (ctxt->exception.error_code_valid) 8156 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8157 ctxt->exception.error_code); 8158 else 8159 kvm_queue_exception(vcpu, ctxt->exception.vector); 8160 return false; 8161 } 8162 8163 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8164 { 8165 struct x86_emulate_ctxt *ctxt; 8166 8167 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8168 if (!ctxt) { 8169 pr_err("kvm: failed to allocate vcpu's emulator\n"); 8170 return NULL; 8171 } 8172 8173 ctxt->vcpu = vcpu; 8174 ctxt->ops = &emulate_ops; 8175 vcpu->arch.emulate_ctxt = ctxt; 8176 8177 return ctxt; 8178 } 8179 8180 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8181 { 8182 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8183 int cs_db, cs_l; 8184 8185 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8186 8187 ctxt->gpa_available = false; 8188 ctxt->eflags = kvm_get_rflags(vcpu); 8189 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8190 8191 ctxt->eip = kvm_rip_read(vcpu); 8192 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8193 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8194 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8195 cs_db ? X86EMUL_MODE_PROT32 : 8196 X86EMUL_MODE_PROT16; 8197 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8198 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 8199 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 8200 8201 ctxt->interruptibility = 0; 8202 ctxt->have_exception = false; 8203 ctxt->exception.vector = -1; 8204 ctxt->perm_ok = false; 8205 8206 init_decode_cache(ctxt); 8207 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8208 } 8209 8210 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8211 { 8212 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8213 int ret; 8214 8215 init_emulate_ctxt(vcpu); 8216 8217 ctxt->op_bytes = 2; 8218 ctxt->ad_bytes = 2; 8219 ctxt->_eip = ctxt->eip + inc_eip; 8220 ret = emulate_int_real(ctxt, irq); 8221 8222 if (ret != X86EMUL_CONTINUE) { 8223 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8224 } else { 8225 ctxt->eip = ctxt->_eip; 8226 kvm_rip_write(vcpu, ctxt->eip); 8227 kvm_set_rflags(vcpu, ctxt->eflags); 8228 } 8229 } 8230 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8231 8232 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8233 u8 ndata, u8 *insn_bytes, u8 insn_size) 8234 { 8235 struct kvm_run *run = vcpu->run; 8236 u64 info[5]; 8237 u8 info_start; 8238 8239 /* 8240 * Zero the whole array used to retrieve the exit info, as casting to 8241 * u32 for select entries will leave some chunks uninitialized. 8242 */ 8243 memset(&info, 0, sizeof(info)); 8244 8245 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8246 &info[2], (u32 *)&info[3], 8247 (u32 *)&info[4]); 8248 8249 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8250 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8251 8252 /* 8253 * There's currently space for 13 entries, but 5 are used for the exit 8254 * reason and info. Restrict to 4 to reduce the maintenance burden 8255 * when expanding kvm_run.emulation_failure in the future. 8256 */ 8257 if (WARN_ON_ONCE(ndata > 4)) 8258 ndata = 4; 8259 8260 /* Always include the flags as a 'data' entry. */ 8261 info_start = 1; 8262 run->emulation_failure.flags = 0; 8263 8264 if (insn_size) { 8265 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8266 sizeof(run->emulation_failure.insn_bytes) != 16)); 8267 info_start += 2; 8268 run->emulation_failure.flags |= 8269 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8270 run->emulation_failure.insn_size = insn_size; 8271 memset(run->emulation_failure.insn_bytes, 0x90, 8272 sizeof(run->emulation_failure.insn_bytes)); 8273 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8274 } 8275 8276 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8277 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8278 ndata * sizeof(data[0])); 8279 8280 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8281 } 8282 8283 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8284 { 8285 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8286 8287 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8288 ctxt->fetch.end - ctxt->fetch.data); 8289 } 8290 8291 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8292 u8 ndata) 8293 { 8294 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8295 } 8296 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8297 8298 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8299 { 8300 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8301 } 8302 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8303 8304 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8305 { 8306 struct kvm *kvm = vcpu->kvm; 8307 8308 ++vcpu->stat.insn_emulation_fail; 8309 trace_kvm_emulate_insn_failed(vcpu); 8310 8311 if (emulation_type & EMULTYPE_VMWARE_GP) { 8312 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8313 return 1; 8314 } 8315 8316 if (kvm->arch.exit_on_emulation_error || 8317 (emulation_type & EMULTYPE_SKIP)) { 8318 prepare_emulation_ctxt_failure_exit(vcpu); 8319 return 0; 8320 } 8321 8322 kvm_queue_exception(vcpu, UD_VECTOR); 8323 8324 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8325 prepare_emulation_ctxt_failure_exit(vcpu); 8326 return 0; 8327 } 8328 8329 return 1; 8330 } 8331 8332 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8333 bool write_fault_to_shadow_pgtable, 8334 int emulation_type) 8335 { 8336 gpa_t gpa = cr2_or_gpa; 8337 kvm_pfn_t pfn; 8338 8339 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8340 return false; 8341 8342 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8343 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8344 return false; 8345 8346 if (!vcpu->arch.mmu->root_role.direct) { 8347 /* 8348 * Write permission should be allowed since only 8349 * write access need to be emulated. 8350 */ 8351 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8352 8353 /* 8354 * If the mapping is invalid in guest, let cpu retry 8355 * it to generate fault. 8356 */ 8357 if (gpa == INVALID_GPA) 8358 return true; 8359 } 8360 8361 /* 8362 * Do not retry the unhandleable instruction if it faults on the 8363 * readonly host memory, otherwise it will goto a infinite loop: 8364 * retry instruction -> write #PF -> emulation fail -> retry 8365 * instruction -> ... 8366 */ 8367 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8368 8369 /* 8370 * If the instruction failed on the error pfn, it can not be fixed, 8371 * report the error to userspace. 8372 */ 8373 if (is_error_noslot_pfn(pfn)) 8374 return false; 8375 8376 kvm_release_pfn_clean(pfn); 8377 8378 /* The instructions are well-emulated on direct mmu. */ 8379 if (vcpu->arch.mmu->root_role.direct) { 8380 unsigned int indirect_shadow_pages; 8381 8382 write_lock(&vcpu->kvm->mmu_lock); 8383 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8384 write_unlock(&vcpu->kvm->mmu_lock); 8385 8386 if (indirect_shadow_pages) 8387 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8388 8389 return true; 8390 } 8391 8392 /* 8393 * if emulation was due to access to shadowed page table 8394 * and it failed try to unshadow page and re-enter the 8395 * guest to let CPU execute the instruction. 8396 */ 8397 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8398 8399 /* 8400 * If the access faults on its page table, it can not 8401 * be fixed by unprotecting shadow page and it should 8402 * be reported to userspace. 8403 */ 8404 return !write_fault_to_shadow_pgtable; 8405 } 8406 8407 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8408 gpa_t cr2_or_gpa, int emulation_type) 8409 { 8410 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8411 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8412 8413 last_retry_eip = vcpu->arch.last_retry_eip; 8414 last_retry_addr = vcpu->arch.last_retry_addr; 8415 8416 /* 8417 * If the emulation is caused by #PF and it is non-page_table 8418 * writing instruction, it means the VM-EXIT is caused by shadow 8419 * page protected, we can zap the shadow page and retry this 8420 * instruction directly. 8421 * 8422 * Note: if the guest uses a non-page-table modifying instruction 8423 * on the PDE that points to the instruction, then we will unmap 8424 * the instruction and go to an infinite loop. So, we cache the 8425 * last retried eip and the last fault address, if we meet the eip 8426 * and the address again, we can break out of the potential infinite 8427 * loop. 8428 */ 8429 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8430 8431 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8432 return false; 8433 8434 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8435 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8436 return false; 8437 8438 if (x86_page_table_writing_insn(ctxt)) 8439 return false; 8440 8441 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8442 return false; 8443 8444 vcpu->arch.last_retry_eip = ctxt->eip; 8445 vcpu->arch.last_retry_addr = cr2_or_gpa; 8446 8447 if (!vcpu->arch.mmu->root_role.direct) 8448 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8449 8450 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8451 8452 return true; 8453 } 8454 8455 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8456 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8457 8458 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm) 8459 { 8460 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm); 8461 8462 if (entering_smm) { 8463 vcpu->arch.hflags |= HF_SMM_MASK; 8464 } else { 8465 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK); 8466 8467 /* Process a latched INIT or SMI, if any. */ 8468 kvm_make_request(KVM_REQ_EVENT, vcpu); 8469 8470 /* 8471 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band, 8472 * on SMM exit we still need to reload them from 8473 * guest memory 8474 */ 8475 vcpu->arch.pdptrs_from_userspace = false; 8476 } 8477 8478 kvm_mmu_reset_context(vcpu); 8479 } 8480 8481 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8482 unsigned long *db) 8483 { 8484 u32 dr6 = 0; 8485 int i; 8486 u32 enable, rwlen; 8487 8488 enable = dr7; 8489 rwlen = dr7 >> 16; 8490 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8491 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8492 dr6 |= (1 << i); 8493 return dr6; 8494 } 8495 8496 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8497 { 8498 struct kvm_run *kvm_run = vcpu->run; 8499 8500 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8501 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8502 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8503 kvm_run->debug.arch.exception = DB_VECTOR; 8504 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8505 return 0; 8506 } 8507 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8508 return 1; 8509 } 8510 8511 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8512 { 8513 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8514 int r; 8515 8516 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8517 if (unlikely(!r)) 8518 return 0; 8519 8520 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8521 8522 /* 8523 * rflags is the old, "raw" value of the flags. The new value has 8524 * not been saved yet. 8525 * 8526 * This is correct even for TF set by the guest, because "the 8527 * processor will not generate this exception after the instruction 8528 * that sets the TF flag". 8529 */ 8530 if (unlikely(rflags & X86_EFLAGS_TF)) 8531 r = kvm_vcpu_do_singlestep(vcpu); 8532 return r; 8533 } 8534 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8535 8536 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r) 8537 { 8538 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8539 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8540 struct kvm_run *kvm_run = vcpu->run; 8541 unsigned long eip = kvm_get_linear_rip(vcpu); 8542 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8543 vcpu->arch.guest_debug_dr7, 8544 vcpu->arch.eff_db); 8545 8546 if (dr6 != 0) { 8547 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8548 kvm_run->debug.arch.pc = eip; 8549 kvm_run->debug.arch.exception = DB_VECTOR; 8550 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8551 *r = 0; 8552 return true; 8553 } 8554 } 8555 8556 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8557 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 8558 unsigned long eip = kvm_get_linear_rip(vcpu); 8559 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8560 vcpu->arch.dr7, 8561 vcpu->arch.db); 8562 8563 if (dr6 != 0) { 8564 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8565 *r = 1; 8566 return true; 8567 } 8568 } 8569 8570 return false; 8571 } 8572 8573 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8574 { 8575 switch (ctxt->opcode_len) { 8576 case 1: 8577 switch (ctxt->b) { 8578 case 0xe4: /* IN */ 8579 case 0xe5: 8580 case 0xec: 8581 case 0xed: 8582 case 0xe6: /* OUT */ 8583 case 0xe7: 8584 case 0xee: 8585 case 0xef: 8586 case 0x6c: /* INS */ 8587 case 0x6d: 8588 case 0x6e: /* OUTS */ 8589 case 0x6f: 8590 return true; 8591 } 8592 break; 8593 case 2: 8594 switch (ctxt->b) { 8595 case 0x33: /* RDPMC */ 8596 return true; 8597 } 8598 break; 8599 } 8600 8601 return false; 8602 } 8603 8604 /* 8605 * Decode an instruction for emulation. The caller is responsible for handling 8606 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8607 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8608 * code breakpoints have higher priority and thus have already been done by 8609 * hardware. 8610 * 8611 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8612 * response to a machine check. 8613 */ 8614 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8615 void *insn, int insn_len) 8616 { 8617 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8618 int r; 8619 8620 init_emulate_ctxt(vcpu); 8621 8622 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8623 8624 trace_kvm_emulate_insn_start(vcpu); 8625 ++vcpu->stat.insn_emulation; 8626 8627 return r; 8628 } 8629 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8630 8631 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8632 int emulation_type, void *insn, int insn_len) 8633 { 8634 int r; 8635 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8636 bool writeback = true; 8637 bool write_fault_to_spt; 8638 8639 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8640 return 1; 8641 8642 vcpu->arch.l1tf_flush_l1d = true; 8643 8644 /* 8645 * Clear write_fault_to_shadow_pgtable here to ensure it is 8646 * never reused. 8647 */ 8648 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8649 vcpu->arch.write_fault_to_shadow_pgtable = false; 8650 8651 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8652 kvm_clear_exception_queue(vcpu); 8653 8654 /* 8655 * Return immediately if RIP hits a code breakpoint, such #DBs 8656 * are fault-like and are higher priority than any faults on 8657 * the code fetch itself. 8658 */ 8659 if (!(emulation_type & EMULTYPE_SKIP) && 8660 kvm_vcpu_check_code_breakpoint(vcpu, &r)) 8661 return r; 8662 8663 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8664 insn, insn_len); 8665 if (r != EMULATION_OK) { 8666 if ((emulation_type & EMULTYPE_TRAP_UD) || 8667 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8668 kvm_queue_exception(vcpu, UD_VECTOR); 8669 return 1; 8670 } 8671 if (reexecute_instruction(vcpu, cr2_or_gpa, 8672 write_fault_to_spt, 8673 emulation_type)) 8674 return 1; 8675 if (ctxt->have_exception) { 8676 /* 8677 * #UD should result in just EMULATION_FAILED, and trap-like 8678 * exception should not be encountered during decode. 8679 */ 8680 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8681 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8682 inject_emulated_exception(vcpu); 8683 return 1; 8684 } 8685 return handle_emulation_failure(vcpu, emulation_type); 8686 } 8687 } 8688 8689 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8690 !is_vmware_backdoor_opcode(ctxt)) { 8691 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8692 return 1; 8693 } 8694 8695 /* 8696 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8697 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8698 * The caller is responsible for updating interruptibility state and 8699 * injecting single-step #DBs. 8700 */ 8701 if (emulation_type & EMULTYPE_SKIP) { 8702 if (ctxt->mode != X86EMUL_MODE_PROT64) 8703 ctxt->eip = (u32)ctxt->_eip; 8704 else 8705 ctxt->eip = ctxt->_eip; 8706 8707 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8708 r = 1; 8709 goto writeback; 8710 } 8711 8712 kvm_rip_write(vcpu, ctxt->eip); 8713 if (ctxt->eflags & X86_EFLAGS_RF) 8714 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8715 return 1; 8716 } 8717 8718 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8719 return 1; 8720 8721 /* this is needed for vmware backdoor interface to work since it 8722 changes registers values during IO operation */ 8723 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8724 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8725 emulator_invalidate_register_cache(ctxt); 8726 } 8727 8728 restart: 8729 if (emulation_type & EMULTYPE_PF) { 8730 /* Save the faulting GPA (cr2) in the address field */ 8731 ctxt->exception.address = cr2_or_gpa; 8732 8733 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8734 if (vcpu->arch.mmu->root_role.direct) { 8735 ctxt->gpa_available = true; 8736 ctxt->gpa_val = cr2_or_gpa; 8737 } 8738 } else { 8739 /* Sanitize the address out of an abundance of paranoia. */ 8740 ctxt->exception.address = 0; 8741 } 8742 8743 r = x86_emulate_insn(ctxt); 8744 8745 if (r == EMULATION_INTERCEPTED) 8746 return 1; 8747 8748 if (r == EMULATION_FAILED) { 8749 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8750 emulation_type)) 8751 return 1; 8752 8753 return handle_emulation_failure(vcpu, emulation_type); 8754 } 8755 8756 if (ctxt->have_exception) { 8757 r = 1; 8758 if (inject_emulated_exception(vcpu)) 8759 return r; 8760 } else if (vcpu->arch.pio.count) { 8761 if (!vcpu->arch.pio.in) { 8762 /* FIXME: return into emulator if single-stepping. */ 8763 vcpu->arch.pio.count = 0; 8764 } else { 8765 writeback = false; 8766 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8767 } 8768 r = 0; 8769 } else if (vcpu->mmio_needed) { 8770 ++vcpu->stat.mmio_exits; 8771 8772 if (!vcpu->mmio_is_write) 8773 writeback = false; 8774 r = 0; 8775 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8776 } else if (vcpu->arch.complete_userspace_io) { 8777 writeback = false; 8778 r = 0; 8779 } else if (r == EMULATION_RESTART) 8780 goto restart; 8781 else 8782 r = 1; 8783 8784 writeback: 8785 if (writeback) { 8786 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8787 toggle_interruptibility(vcpu, ctxt->interruptibility); 8788 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8789 if (!ctxt->have_exception || 8790 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8791 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8792 if (ctxt->is_branch) 8793 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8794 kvm_rip_write(vcpu, ctxt->eip); 8795 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8796 r = kvm_vcpu_do_singlestep(vcpu); 8797 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8798 __kvm_set_rflags(vcpu, ctxt->eflags); 8799 } 8800 8801 /* 8802 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8803 * do nothing, and it will be requested again as soon as 8804 * the shadow expires. But we still need to check here, 8805 * because POPF has no interrupt shadow. 8806 */ 8807 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8808 kvm_make_request(KVM_REQ_EVENT, vcpu); 8809 } else 8810 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8811 8812 return r; 8813 } 8814 8815 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8816 { 8817 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8818 } 8819 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8820 8821 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8822 void *insn, int insn_len) 8823 { 8824 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8825 } 8826 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8827 8828 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8829 { 8830 vcpu->arch.pio.count = 0; 8831 return 1; 8832 } 8833 8834 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8835 { 8836 vcpu->arch.pio.count = 0; 8837 8838 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8839 return 1; 8840 8841 return kvm_skip_emulated_instruction(vcpu); 8842 } 8843 8844 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8845 unsigned short port) 8846 { 8847 unsigned long val = kvm_rax_read(vcpu); 8848 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8849 8850 if (ret) 8851 return ret; 8852 8853 /* 8854 * Workaround userspace that relies on old KVM behavior of %rip being 8855 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8856 */ 8857 if (port == 0x7e && 8858 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8859 vcpu->arch.complete_userspace_io = 8860 complete_fast_pio_out_port_0x7e; 8861 kvm_skip_emulated_instruction(vcpu); 8862 } else { 8863 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8864 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8865 } 8866 return 0; 8867 } 8868 8869 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8870 { 8871 unsigned long val; 8872 8873 /* We should only ever be called with arch.pio.count equal to 1 */ 8874 BUG_ON(vcpu->arch.pio.count != 1); 8875 8876 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8877 vcpu->arch.pio.count = 0; 8878 return 1; 8879 } 8880 8881 /* For size less than 4 we merge, else we zero extend */ 8882 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8883 8884 complete_emulator_pio_in(vcpu, &val); 8885 kvm_rax_write(vcpu, val); 8886 8887 return kvm_skip_emulated_instruction(vcpu); 8888 } 8889 8890 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 8891 unsigned short port) 8892 { 8893 unsigned long val; 8894 int ret; 8895 8896 /* For size less than 4 we merge, else we zero extend */ 8897 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 8898 8899 ret = emulator_pio_in(vcpu, size, port, &val, 1); 8900 if (ret) { 8901 kvm_rax_write(vcpu, val); 8902 return ret; 8903 } 8904 8905 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8906 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 8907 8908 return 0; 8909 } 8910 8911 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 8912 { 8913 int ret; 8914 8915 if (in) 8916 ret = kvm_fast_pio_in(vcpu, size, port); 8917 else 8918 ret = kvm_fast_pio_out(vcpu, size, port); 8919 return ret && kvm_skip_emulated_instruction(vcpu); 8920 } 8921 EXPORT_SYMBOL_GPL(kvm_fast_pio); 8922 8923 static int kvmclock_cpu_down_prep(unsigned int cpu) 8924 { 8925 __this_cpu_write(cpu_tsc_khz, 0); 8926 return 0; 8927 } 8928 8929 static void tsc_khz_changed(void *data) 8930 { 8931 struct cpufreq_freqs *freq = data; 8932 unsigned long khz = 0; 8933 8934 if (data) 8935 khz = freq->new; 8936 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8937 khz = cpufreq_quick_get(raw_smp_processor_id()); 8938 if (!khz) 8939 khz = tsc_khz; 8940 __this_cpu_write(cpu_tsc_khz, khz); 8941 } 8942 8943 #ifdef CONFIG_X86_64 8944 static void kvm_hyperv_tsc_notifier(void) 8945 { 8946 struct kvm *kvm; 8947 int cpu; 8948 8949 mutex_lock(&kvm_lock); 8950 list_for_each_entry(kvm, &vm_list, vm_list) 8951 kvm_make_mclock_inprogress_request(kvm); 8952 8953 /* no guest entries from this point */ 8954 hyperv_stop_tsc_emulation(); 8955 8956 /* TSC frequency always matches when on Hyper-V */ 8957 for_each_present_cpu(cpu) 8958 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 8959 kvm_caps.max_guest_tsc_khz = tsc_khz; 8960 8961 list_for_each_entry(kvm, &vm_list, vm_list) { 8962 __kvm_start_pvclock_update(kvm); 8963 pvclock_update_vm_gtod_copy(kvm); 8964 kvm_end_pvclock_update(kvm); 8965 } 8966 8967 mutex_unlock(&kvm_lock); 8968 } 8969 #endif 8970 8971 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 8972 { 8973 struct kvm *kvm; 8974 struct kvm_vcpu *vcpu; 8975 int send_ipi = 0; 8976 unsigned long i; 8977 8978 /* 8979 * We allow guests to temporarily run on slowing clocks, 8980 * provided we notify them after, or to run on accelerating 8981 * clocks, provided we notify them before. Thus time never 8982 * goes backwards. 8983 * 8984 * However, we have a problem. We can't atomically update 8985 * the frequency of a given CPU from this function; it is 8986 * merely a notifier, which can be called from any CPU. 8987 * Changing the TSC frequency at arbitrary points in time 8988 * requires a recomputation of local variables related to 8989 * the TSC for each VCPU. We must flag these local variables 8990 * to be updated and be sure the update takes place with the 8991 * new frequency before any guests proceed. 8992 * 8993 * Unfortunately, the combination of hotplug CPU and frequency 8994 * change creates an intractable locking scenario; the order 8995 * of when these callouts happen is undefined with respect to 8996 * CPU hotplug, and they can race with each other. As such, 8997 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 8998 * undefined; you can actually have a CPU frequency change take 8999 * place in between the computation of X and the setting of the 9000 * variable. To protect against this problem, all updates of 9001 * the per_cpu tsc_khz variable are done in an interrupt 9002 * protected IPI, and all callers wishing to update the value 9003 * must wait for a synchronous IPI to complete (which is trivial 9004 * if the caller is on the CPU already). This establishes the 9005 * necessary total order on variable updates. 9006 * 9007 * Note that because a guest time update may take place 9008 * anytime after the setting of the VCPU's request bit, the 9009 * correct TSC value must be set before the request. However, 9010 * to ensure the update actually makes it to any guest which 9011 * starts running in hardware virtualization between the set 9012 * and the acquisition of the spinlock, we must also ping the 9013 * CPU after setting the request bit. 9014 * 9015 */ 9016 9017 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9018 9019 mutex_lock(&kvm_lock); 9020 list_for_each_entry(kvm, &vm_list, vm_list) { 9021 kvm_for_each_vcpu(i, vcpu, kvm) { 9022 if (vcpu->cpu != cpu) 9023 continue; 9024 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9025 if (vcpu->cpu != raw_smp_processor_id()) 9026 send_ipi = 1; 9027 } 9028 } 9029 mutex_unlock(&kvm_lock); 9030 9031 if (freq->old < freq->new && send_ipi) { 9032 /* 9033 * We upscale the frequency. Must make the guest 9034 * doesn't see old kvmclock values while running with 9035 * the new frequency, otherwise we risk the guest sees 9036 * time go backwards. 9037 * 9038 * In case we update the frequency for another cpu 9039 * (which might be in guest context) send an interrupt 9040 * to kick the cpu out of guest context. Next time 9041 * guest context is entered kvmclock will be updated, 9042 * so the guest will not see stale values. 9043 */ 9044 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9045 } 9046 } 9047 9048 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9049 void *data) 9050 { 9051 struct cpufreq_freqs *freq = data; 9052 int cpu; 9053 9054 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9055 return 0; 9056 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9057 return 0; 9058 9059 for_each_cpu(cpu, freq->policy->cpus) 9060 __kvmclock_cpufreq_notifier(freq, cpu); 9061 9062 return 0; 9063 } 9064 9065 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9066 .notifier_call = kvmclock_cpufreq_notifier 9067 }; 9068 9069 static int kvmclock_cpu_online(unsigned int cpu) 9070 { 9071 tsc_khz_changed(NULL); 9072 return 0; 9073 } 9074 9075 static void kvm_timer_init(void) 9076 { 9077 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9078 max_tsc_khz = tsc_khz; 9079 9080 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9081 struct cpufreq_policy *policy; 9082 int cpu; 9083 9084 cpu = get_cpu(); 9085 policy = cpufreq_cpu_get(cpu); 9086 if (policy) { 9087 if (policy->cpuinfo.max_freq) 9088 max_tsc_khz = policy->cpuinfo.max_freq; 9089 cpufreq_cpu_put(policy); 9090 } 9091 put_cpu(); 9092 } 9093 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9094 CPUFREQ_TRANSITION_NOTIFIER); 9095 } 9096 9097 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9098 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9099 } 9100 9101 #ifdef CONFIG_X86_64 9102 static void pvclock_gtod_update_fn(struct work_struct *work) 9103 { 9104 struct kvm *kvm; 9105 struct kvm_vcpu *vcpu; 9106 unsigned long i; 9107 9108 mutex_lock(&kvm_lock); 9109 list_for_each_entry(kvm, &vm_list, vm_list) 9110 kvm_for_each_vcpu(i, vcpu, kvm) 9111 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9112 atomic_set(&kvm_guest_has_master_clock, 0); 9113 mutex_unlock(&kvm_lock); 9114 } 9115 9116 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9117 9118 /* 9119 * Indirection to move queue_work() out of the tk_core.seq write held 9120 * region to prevent possible deadlocks against time accessors which 9121 * are invoked with work related locks held. 9122 */ 9123 static void pvclock_irq_work_fn(struct irq_work *w) 9124 { 9125 queue_work(system_long_wq, &pvclock_gtod_work); 9126 } 9127 9128 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9129 9130 /* 9131 * Notification about pvclock gtod data update. 9132 */ 9133 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9134 void *priv) 9135 { 9136 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9137 struct timekeeper *tk = priv; 9138 9139 update_pvclock_gtod(tk); 9140 9141 /* 9142 * Disable master clock if host does not trust, or does not use, 9143 * TSC based clocksource. Delegate queue_work() to irq_work as 9144 * this is invoked with tk_core.seq write held. 9145 */ 9146 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9147 atomic_read(&kvm_guest_has_master_clock) != 0) 9148 irq_work_queue(&pvclock_irq_work); 9149 return 0; 9150 } 9151 9152 static struct notifier_block pvclock_gtod_notifier = { 9153 .notifier_call = pvclock_gtod_notify, 9154 }; 9155 #endif 9156 9157 int kvm_arch_init(void *opaque) 9158 { 9159 struct kvm_x86_init_ops *ops = opaque; 9160 u64 host_pat; 9161 int r; 9162 9163 if (kvm_x86_ops.hardware_enable) { 9164 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 9165 return -EEXIST; 9166 } 9167 9168 if (!ops->cpu_has_kvm_support()) { 9169 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 9170 ops->runtime_ops->name); 9171 return -EOPNOTSUPP; 9172 } 9173 if (ops->disabled_by_bios()) { 9174 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 9175 ops->runtime_ops->name); 9176 return -EOPNOTSUPP; 9177 } 9178 9179 /* 9180 * KVM explicitly assumes that the guest has an FPU and 9181 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9182 * vCPU's FPU state as a fxregs_state struct. 9183 */ 9184 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9185 printk(KERN_ERR "kvm: inadequate fpu\n"); 9186 return -EOPNOTSUPP; 9187 } 9188 9189 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9190 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9191 return -EOPNOTSUPP; 9192 } 9193 9194 /* 9195 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9196 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9197 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9198 * with an exception. PAT[0] is set to WB on RESET and also by the 9199 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9200 */ 9201 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9202 (host_pat & GENMASK(2, 0)) != 6) { 9203 pr_err("kvm: host PAT[0] is not WB\n"); 9204 return -EIO; 9205 } 9206 9207 x86_emulator_cache = kvm_alloc_emulator_cache(); 9208 if (!x86_emulator_cache) { 9209 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 9210 return -ENOMEM; 9211 } 9212 9213 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9214 if (!user_return_msrs) { 9215 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 9216 r = -ENOMEM; 9217 goto out_free_x86_emulator_cache; 9218 } 9219 kvm_nr_uret_msrs = 0; 9220 9221 r = kvm_mmu_vendor_module_init(); 9222 if (r) 9223 goto out_free_percpu; 9224 9225 kvm_timer_init(); 9226 9227 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9228 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9229 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9230 } 9231 9232 if (pi_inject_timer == -1) 9233 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9234 #ifdef CONFIG_X86_64 9235 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9236 9237 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9238 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9239 #endif 9240 9241 return 0; 9242 9243 out_free_percpu: 9244 free_percpu(user_return_msrs); 9245 out_free_x86_emulator_cache: 9246 kmem_cache_destroy(x86_emulator_cache); 9247 return r; 9248 } 9249 9250 void kvm_arch_exit(void) 9251 { 9252 #ifdef CONFIG_X86_64 9253 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9254 clear_hv_tscchange_cb(); 9255 #endif 9256 kvm_lapic_exit(); 9257 9258 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 9259 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9260 CPUFREQ_TRANSITION_NOTIFIER); 9261 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9262 #ifdef CONFIG_X86_64 9263 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9264 irq_work_sync(&pvclock_irq_work); 9265 cancel_work_sync(&pvclock_gtod_work); 9266 #endif 9267 kvm_x86_ops.hardware_enable = NULL; 9268 kvm_mmu_vendor_module_exit(); 9269 free_percpu(user_return_msrs); 9270 kmem_cache_destroy(x86_emulator_cache); 9271 #ifdef CONFIG_KVM_XEN 9272 static_key_deferred_flush(&kvm_xen_enabled); 9273 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9274 #endif 9275 } 9276 9277 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9278 { 9279 /* 9280 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9281 * local APIC is in-kernel, the run loop will detect the non-runnable 9282 * state and halt the vCPU. Exit to userspace if the local APIC is 9283 * managed by userspace, in which case userspace is responsible for 9284 * handling wake events. 9285 */ 9286 ++vcpu->stat.halt_exits; 9287 if (lapic_in_kernel(vcpu)) { 9288 vcpu->arch.mp_state = state; 9289 return 1; 9290 } else { 9291 vcpu->run->exit_reason = reason; 9292 return 0; 9293 } 9294 } 9295 9296 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9297 { 9298 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9299 } 9300 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9301 9302 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9303 { 9304 int ret = kvm_skip_emulated_instruction(vcpu); 9305 /* 9306 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9307 * KVM_EXIT_DEBUG here. 9308 */ 9309 return kvm_emulate_halt_noskip(vcpu) && ret; 9310 } 9311 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9312 9313 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9314 { 9315 int ret = kvm_skip_emulated_instruction(vcpu); 9316 9317 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9318 KVM_EXIT_AP_RESET_HOLD) && ret; 9319 } 9320 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9321 9322 #ifdef CONFIG_X86_64 9323 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9324 unsigned long clock_type) 9325 { 9326 struct kvm_clock_pairing clock_pairing; 9327 struct timespec64 ts; 9328 u64 cycle; 9329 int ret; 9330 9331 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9332 return -KVM_EOPNOTSUPP; 9333 9334 /* 9335 * When tsc is in permanent catchup mode guests won't be able to use 9336 * pvclock_read_retry loop to get consistent view of pvclock 9337 */ 9338 if (vcpu->arch.tsc_always_catchup) 9339 return -KVM_EOPNOTSUPP; 9340 9341 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9342 return -KVM_EOPNOTSUPP; 9343 9344 clock_pairing.sec = ts.tv_sec; 9345 clock_pairing.nsec = ts.tv_nsec; 9346 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9347 clock_pairing.flags = 0; 9348 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9349 9350 ret = 0; 9351 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9352 sizeof(struct kvm_clock_pairing))) 9353 ret = -KVM_EFAULT; 9354 9355 return ret; 9356 } 9357 #endif 9358 9359 /* 9360 * kvm_pv_kick_cpu_op: Kick a vcpu. 9361 * 9362 * @apicid - apicid of vcpu to be kicked. 9363 */ 9364 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9365 { 9366 /* 9367 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9368 * common code, e.g. for tracing. Defer initialization to the compiler. 9369 */ 9370 struct kvm_lapic_irq lapic_irq = { 9371 .delivery_mode = APIC_DM_REMRD, 9372 .dest_mode = APIC_DEST_PHYSICAL, 9373 .shorthand = APIC_DEST_NOSHORT, 9374 .dest_id = apicid, 9375 }; 9376 9377 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9378 } 9379 9380 bool kvm_apicv_activated(struct kvm *kvm) 9381 { 9382 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9383 } 9384 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9385 9386 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9387 { 9388 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9389 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9390 9391 return (vm_reasons | vcpu_reasons) == 0; 9392 } 9393 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9394 9395 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9396 enum kvm_apicv_inhibit reason, bool set) 9397 { 9398 if (set) 9399 __set_bit(reason, inhibits); 9400 else 9401 __clear_bit(reason, inhibits); 9402 9403 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9404 } 9405 9406 static void kvm_apicv_init(struct kvm *kvm) 9407 { 9408 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9409 9410 init_rwsem(&kvm->arch.apicv_update_lock); 9411 9412 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9413 9414 if (!enable_apicv) 9415 set_or_clear_apicv_inhibit(inhibits, 9416 APICV_INHIBIT_REASON_DISABLE, true); 9417 } 9418 9419 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9420 { 9421 struct kvm_vcpu *target = NULL; 9422 struct kvm_apic_map *map; 9423 9424 vcpu->stat.directed_yield_attempted++; 9425 9426 if (single_task_running()) 9427 goto no_yield; 9428 9429 rcu_read_lock(); 9430 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9431 9432 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9433 target = map->phys_map[dest_id]->vcpu; 9434 9435 rcu_read_unlock(); 9436 9437 if (!target || !READ_ONCE(target->ready)) 9438 goto no_yield; 9439 9440 /* Ignore requests to yield to self */ 9441 if (vcpu == target) 9442 goto no_yield; 9443 9444 if (kvm_vcpu_yield_to(target) <= 0) 9445 goto no_yield; 9446 9447 vcpu->stat.directed_yield_successful++; 9448 9449 no_yield: 9450 return; 9451 } 9452 9453 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9454 { 9455 u64 ret = vcpu->run->hypercall.ret; 9456 9457 if (!is_64_bit_mode(vcpu)) 9458 ret = (u32)ret; 9459 kvm_rax_write(vcpu, ret); 9460 ++vcpu->stat.hypercalls; 9461 return kvm_skip_emulated_instruction(vcpu); 9462 } 9463 9464 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9465 { 9466 unsigned long nr, a0, a1, a2, a3, ret; 9467 int op_64_bit; 9468 9469 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9470 return kvm_xen_hypercall(vcpu); 9471 9472 if (kvm_hv_hypercall_enabled(vcpu)) 9473 return kvm_hv_hypercall(vcpu); 9474 9475 nr = kvm_rax_read(vcpu); 9476 a0 = kvm_rbx_read(vcpu); 9477 a1 = kvm_rcx_read(vcpu); 9478 a2 = kvm_rdx_read(vcpu); 9479 a3 = kvm_rsi_read(vcpu); 9480 9481 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9482 9483 op_64_bit = is_64_bit_hypercall(vcpu); 9484 if (!op_64_bit) { 9485 nr &= 0xFFFFFFFF; 9486 a0 &= 0xFFFFFFFF; 9487 a1 &= 0xFFFFFFFF; 9488 a2 &= 0xFFFFFFFF; 9489 a3 &= 0xFFFFFFFF; 9490 } 9491 9492 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9493 ret = -KVM_EPERM; 9494 goto out; 9495 } 9496 9497 ret = -KVM_ENOSYS; 9498 9499 switch (nr) { 9500 case KVM_HC_VAPIC_POLL_IRQ: 9501 ret = 0; 9502 break; 9503 case KVM_HC_KICK_CPU: 9504 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9505 break; 9506 9507 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9508 kvm_sched_yield(vcpu, a1); 9509 ret = 0; 9510 break; 9511 #ifdef CONFIG_X86_64 9512 case KVM_HC_CLOCK_PAIRING: 9513 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9514 break; 9515 #endif 9516 case KVM_HC_SEND_IPI: 9517 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9518 break; 9519 9520 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9521 break; 9522 case KVM_HC_SCHED_YIELD: 9523 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9524 break; 9525 9526 kvm_sched_yield(vcpu, a0); 9527 ret = 0; 9528 break; 9529 case KVM_HC_MAP_GPA_RANGE: { 9530 u64 gpa = a0, npages = a1, attrs = a2; 9531 9532 ret = -KVM_ENOSYS; 9533 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9534 break; 9535 9536 if (!PAGE_ALIGNED(gpa) || !npages || 9537 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9538 ret = -KVM_EINVAL; 9539 break; 9540 } 9541 9542 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9543 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9544 vcpu->run->hypercall.args[0] = gpa; 9545 vcpu->run->hypercall.args[1] = npages; 9546 vcpu->run->hypercall.args[2] = attrs; 9547 vcpu->run->hypercall.longmode = op_64_bit; 9548 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9549 return 0; 9550 } 9551 default: 9552 ret = -KVM_ENOSYS; 9553 break; 9554 } 9555 out: 9556 if (!op_64_bit) 9557 ret = (u32)ret; 9558 kvm_rax_write(vcpu, ret); 9559 9560 ++vcpu->stat.hypercalls; 9561 return kvm_skip_emulated_instruction(vcpu); 9562 } 9563 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9564 9565 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9566 { 9567 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9568 char instruction[3]; 9569 unsigned long rip = kvm_rip_read(vcpu); 9570 9571 /* 9572 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9573 * the pieces. 9574 */ 9575 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9576 ctxt->exception.error_code_valid = false; 9577 ctxt->exception.vector = UD_VECTOR; 9578 ctxt->have_exception = true; 9579 return X86EMUL_PROPAGATE_FAULT; 9580 } 9581 9582 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9583 9584 return emulator_write_emulated(ctxt, rip, instruction, 3, 9585 &ctxt->exception); 9586 } 9587 9588 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9589 { 9590 return vcpu->run->request_interrupt_window && 9591 likely(!pic_in_kernel(vcpu->kvm)); 9592 } 9593 9594 /* Called within kvm->srcu read side. */ 9595 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9596 { 9597 struct kvm_run *kvm_run = vcpu->run; 9598 9599 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9600 kvm_run->cr8 = kvm_get_cr8(vcpu); 9601 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9602 9603 kvm_run->ready_for_interrupt_injection = 9604 pic_in_kernel(vcpu->kvm) || 9605 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9606 9607 if (is_smm(vcpu)) 9608 kvm_run->flags |= KVM_RUN_X86_SMM; 9609 } 9610 9611 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9612 { 9613 int max_irr, tpr; 9614 9615 if (!kvm_x86_ops.update_cr8_intercept) 9616 return; 9617 9618 if (!lapic_in_kernel(vcpu)) 9619 return; 9620 9621 if (vcpu->arch.apic->apicv_active) 9622 return; 9623 9624 if (!vcpu->arch.apic->vapic_addr) 9625 max_irr = kvm_lapic_find_highest_irr(vcpu); 9626 else 9627 max_irr = -1; 9628 9629 if (max_irr != -1) 9630 max_irr >>= 4; 9631 9632 tpr = kvm_lapic_get_cr8(vcpu); 9633 9634 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9635 } 9636 9637 9638 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9639 { 9640 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9641 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9642 return 1; 9643 } 9644 9645 return kvm_x86_ops.nested_ops->check_events(vcpu); 9646 } 9647 9648 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9649 { 9650 trace_kvm_inj_exception(vcpu->arch.exception.nr, 9651 vcpu->arch.exception.has_error_code, 9652 vcpu->arch.exception.error_code, 9653 vcpu->arch.exception.injected); 9654 9655 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9656 vcpu->arch.exception.error_code = false; 9657 static_call(kvm_x86_queue_exception)(vcpu); 9658 } 9659 9660 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 9661 { 9662 int r; 9663 bool can_inject = true; 9664 9665 /* try to reinject previous events if any */ 9666 9667 if (vcpu->arch.exception.injected) { 9668 kvm_inject_exception(vcpu); 9669 can_inject = false; 9670 } 9671 /* 9672 * Do not inject an NMI or interrupt if there is a pending 9673 * exception. Exceptions and interrupts are recognized at 9674 * instruction boundaries, i.e. the start of an instruction. 9675 * Trap-like exceptions, e.g. #DB, have higher priority than 9676 * NMIs and interrupts, i.e. traps are recognized before an 9677 * NMI/interrupt that's pending on the same instruction. 9678 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 9679 * priority, but are only generated (pended) during instruction 9680 * execution, i.e. a pending fault-like exception means the 9681 * fault occurred on the *previous* instruction and must be 9682 * serviced prior to recognizing any new events in order to 9683 * fully complete the previous instruction. 9684 */ 9685 else if (!vcpu->arch.exception.pending) { 9686 if (vcpu->arch.nmi_injected) { 9687 static_call(kvm_x86_inject_nmi)(vcpu); 9688 can_inject = false; 9689 } else if (vcpu->arch.interrupt.injected) { 9690 static_call(kvm_x86_inject_irq)(vcpu, true); 9691 can_inject = false; 9692 } 9693 } 9694 9695 WARN_ON_ONCE(vcpu->arch.exception.injected && 9696 vcpu->arch.exception.pending); 9697 9698 /* 9699 * Call check_nested_events() even if we reinjected a previous event 9700 * in order for caller to determine if it should require immediate-exit 9701 * from L2 to L1 due to pending L1 events which require exit 9702 * from L2 to L1. 9703 */ 9704 if (is_guest_mode(vcpu)) { 9705 r = kvm_check_nested_events(vcpu); 9706 if (r < 0) 9707 goto out; 9708 } 9709 9710 /* try to inject new event if pending */ 9711 if (vcpu->arch.exception.pending) { 9712 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 9713 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9714 X86_EFLAGS_RF); 9715 9716 if (vcpu->arch.exception.nr == DB_VECTOR) { 9717 kvm_deliver_exception_payload(vcpu); 9718 if (vcpu->arch.dr7 & DR7_GD) { 9719 vcpu->arch.dr7 &= ~DR7_GD; 9720 kvm_update_dr7(vcpu); 9721 } 9722 } 9723 9724 kvm_inject_exception(vcpu); 9725 9726 vcpu->arch.exception.pending = false; 9727 vcpu->arch.exception.injected = true; 9728 9729 can_inject = false; 9730 } 9731 9732 /* Don't inject interrupts if the user asked to avoid doing so */ 9733 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9734 return 0; 9735 9736 /* 9737 * Finally, inject interrupt events. If an event cannot be injected 9738 * due to architectural conditions (e.g. IF=0) a window-open exit 9739 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9740 * and can architecturally be injected, but we cannot do it right now: 9741 * an interrupt could have arrived just now and we have to inject it 9742 * as a vmexit, or there could already an event in the queue, which is 9743 * indicated by can_inject. In that case we request an immediate exit 9744 * in order to make progress and get back here for another iteration. 9745 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9746 */ 9747 if (vcpu->arch.smi_pending) { 9748 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9749 if (r < 0) 9750 goto out; 9751 if (r) { 9752 vcpu->arch.smi_pending = false; 9753 ++vcpu->arch.smi_count; 9754 enter_smm(vcpu); 9755 can_inject = false; 9756 } else 9757 static_call(kvm_x86_enable_smi_window)(vcpu); 9758 } 9759 9760 if (vcpu->arch.nmi_pending) { 9761 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9762 if (r < 0) 9763 goto out; 9764 if (r) { 9765 --vcpu->arch.nmi_pending; 9766 vcpu->arch.nmi_injected = true; 9767 static_call(kvm_x86_inject_nmi)(vcpu); 9768 can_inject = false; 9769 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9770 } 9771 if (vcpu->arch.nmi_pending) 9772 static_call(kvm_x86_enable_nmi_window)(vcpu); 9773 } 9774 9775 if (kvm_cpu_has_injectable_intr(vcpu)) { 9776 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9777 if (r < 0) 9778 goto out; 9779 if (r) { 9780 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 9781 static_call(kvm_x86_inject_irq)(vcpu, false); 9782 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 9783 } 9784 if (kvm_cpu_has_injectable_intr(vcpu)) 9785 static_call(kvm_x86_enable_irq_window)(vcpu); 9786 } 9787 9788 if (is_guest_mode(vcpu) && 9789 kvm_x86_ops.nested_ops->hv_timer_pending && 9790 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 9791 *req_immediate_exit = true; 9792 9793 WARN_ON(vcpu->arch.exception.pending); 9794 return 0; 9795 9796 out: 9797 if (r == -EBUSY) { 9798 *req_immediate_exit = true; 9799 r = 0; 9800 } 9801 return r; 9802 } 9803 9804 static void process_nmi(struct kvm_vcpu *vcpu) 9805 { 9806 unsigned limit = 2; 9807 9808 /* 9809 * x86 is limited to one NMI running, and one NMI pending after it. 9810 * If an NMI is already in progress, limit further NMIs to just one. 9811 * Otherwise, allow two (and we'll inject the first one immediately). 9812 */ 9813 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 9814 limit = 1; 9815 9816 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 9817 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 9818 kvm_make_request(KVM_REQ_EVENT, vcpu); 9819 } 9820 9821 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 9822 { 9823 u32 flags = 0; 9824 flags |= seg->g << 23; 9825 flags |= seg->db << 22; 9826 flags |= seg->l << 21; 9827 flags |= seg->avl << 20; 9828 flags |= seg->present << 15; 9829 flags |= seg->dpl << 13; 9830 flags |= seg->s << 12; 9831 flags |= seg->type << 8; 9832 return flags; 9833 } 9834 9835 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 9836 { 9837 struct kvm_segment seg; 9838 int offset; 9839 9840 kvm_get_segment(vcpu, &seg, n); 9841 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 9842 9843 if (n < 3) 9844 offset = 0x7f84 + n * 12; 9845 else 9846 offset = 0x7f2c + (n - 3) * 12; 9847 9848 put_smstate(u32, buf, offset + 8, seg.base); 9849 put_smstate(u32, buf, offset + 4, seg.limit); 9850 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 9851 } 9852 9853 #ifdef CONFIG_X86_64 9854 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 9855 { 9856 struct kvm_segment seg; 9857 int offset; 9858 u16 flags; 9859 9860 kvm_get_segment(vcpu, &seg, n); 9861 offset = 0x7e00 + n * 16; 9862 9863 flags = enter_smm_get_segment_flags(&seg) >> 8; 9864 put_smstate(u16, buf, offset, seg.selector); 9865 put_smstate(u16, buf, offset + 2, flags); 9866 put_smstate(u32, buf, offset + 4, seg.limit); 9867 put_smstate(u64, buf, offset + 8, seg.base); 9868 } 9869 #endif 9870 9871 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 9872 { 9873 struct desc_ptr dt; 9874 struct kvm_segment seg; 9875 unsigned long val; 9876 int i; 9877 9878 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 9879 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 9880 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 9881 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 9882 9883 for (i = 0; i < 8; i++) 9884 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i)); 9885 9886 kvm_get_dr(vcpu, 6, &val); 9887 put_smstate(u32, buf, 0x7fcc, (u32)val); 9888 kvm_get_dr(vcpu, 7, &val); 9889 put_smstate(u32, buf, 0x7fc8, (u32)val); 9890 9891 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9892 put_smstate(u32, buf, 0x7fc4, seg.selector); 9893 put_smstate(u32, buf, 0x7f64, seg.base); 9894 put_smstate(u32, buf, 0x7f60, seg.limit); 9895 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 9896 9897 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9898 put_smstate(u32, buf, 0x7fc0, seg.selector); 9899 put_smstate(u32, buf, 0x7f80, seg.base); 9900 put_smstate(u32, buf, 0x7f7c, seg.limit); 9901 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 9902 9903 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9904 put_smstate(u32, buf, 0x7f74, dt.address); 9905 put_smstate(u32, buf, 0x7f70, dt.size); 9906 9907 static_call(kvm_x86_get_idt)(vcpu, &dt); 9908 put_smstate(u32, buf, 0x7f58, dt.address); 9909 put_smstate(u32, buf, 0x7f54, dt.size); 9910 9911 for (i = 0; i < 6; i++) 9912 enter_smm_save_seg_32(vcpu, buf, i); 9913 9914 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 9915 9916 /* revision id */ 9917 put_smstate(u32, buf, 0x7efc, 0x00020000); 9918 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 9919 } 9920 9921 #ifdef CONFIG_X86_64 9922 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 9923 { 9924 struct desc_ptr dt; 9925 struct kvm_segment seg; 9926 unsigned long val; 9927 int i; 9928 9929 for (i = 0; i < 16; i++) 9930 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i)); 9931 9932 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 9933 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 9934 9935 kvm_get_dr(vcpu, 6, &val); 9936 put_smstate(u64, buf, 0x7f68, val); 9937 kvm_get_dr(vcpu, 7, &val); 9938 put_smstate(u64, buf, 0x7f60, val); 9939 9940 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 9941 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 9942 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 9943 9944 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 9945 9946 /* revision id */ 9947 put_smstate(u32, buf, 0x7efc, 0x00020064); 9948 9949 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 9950 9951 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9952 put_smstate(u16, buf, 0x7e90, seg.selector); 9953 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 9954 put_smstate(u32, buf, 0x7e94, seg.limit); 9955 put_smstate(u64, buf, 0x7e98, seg.base); 9956 9957 static_call(kvm_x86_get_idt)(vcpu, &dt); 9958 put_smstate(u32, buf, 0x7e84, dt.size); 9959 put_smstate(u64, buf, 0x7e88, dt.address); 9960 9961 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9962 put_smstate(u16, buf, 0x7e70, seg.selector); 9963 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 9964 put_smstate(u32, buf, 0x7e74, seg.limit); 9965 put_smstate(u64, buf, 0x7e78, seg.base); 9966 9967 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9968 put_smstate(u32, buf, 0x7e64, dt.size); 9969 put_smstate(u64, buf, 0x7e68, dt.address); 9970 9971 for (i = 0; i < 6; i++) 9972 enter_smm_save_seg_64(vcpu, buf, i); 9973 } 9974 #endif 9975 9976 static void enter_smm(struct kvm_vcpu *vcpu) 9977 { 9978 struct kvm_segment cs, ds; 9979 struct desc_ptr dt; 9980 unsigned long cr0; 9981 char buf[512]; 9982 9983 memset(buf, 0, 512); 9984 #ifdef CONFIG_X86_64 9985 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9986 enter_smm_save_state_64(vcpu, buf); 9987 else 9988 #endif 9989 enter_smm_save_state_32(vcpu, buf); 9990 9991 /* 9992 * Give enter_smm() a chance to make ISA-specific changes to the vCPU 9993 * state (e.g. leave guest mode) after we've saved the state into the 9994 * SMM state-save area. 9995 */ 9996 static_call(kvm_x86_enter_smm)(vcpu, buf); 9997 9998 kvm_smm_changed(vcpu, true); 9999 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 10000 10001 if (static_call(kvm_x86_get_nmi_mask)(vcpu)) 10002 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 10003 else 10004 static_call(kvm_x86_set_nmi_mask)(vcpu, true); 10005 10006 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 10007 kvm_rip_write(vcpu, 0x8000); 10008 10009 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 10010 static_call(kvm_x86_set_cr0)(vcpu, cr0); 10011 vcpu->arch.cr0 = cr0; 10012 10013 static_call(kvm_x86_set_cr4)(vcpu, 0); 10014 10015 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 10016 dt.address = dt.size = 0; 10017 static_call(kvm_x86_set_idt)(vcpu, &dt); 10018 10019 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 10020 10021 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 10022 cs.base = vcpu->arch.smbase; 10023 10024 ds.selector = 0; 10025 ds.base = 0; 10026 10027 cs.limit = ds.limit = 0xffffffff; 10028 cs.type = ds.type = 0x3; 10029 cs.dpl = ds.dpl = 0; 10030 cs.db = ds.db = 0; 10031 cs.s = ds.s = 1; 10032 cs.l = ds.l = 0; 10033 cs.g = ds.g = 1; 10034 cs.avl = ds.avl = 0; 10035 cs.present = ds.present = 1; 10036 cs.unusable = ds.unusable = 0; 10037 cs.padding = ds.padding = 0; 10038 10039 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 10040 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 10041 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 10042 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 10043 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 10044 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 10045 10046 #ifdef CONFIG_X86_64 10047 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 10048 static_call(kvm_x86_set_efer)(vcpu, 0); 10049 #endif 10050 10051 kvm_update_cpuid_runtime(vcpu); 10052 kvm_mmu_reset_context(vcpu); 10053 } 10054 10055 static void process_smi(struct kvm_vcpu *vcpu) 10056 { 10057 vcpu->arch.smi_pending = true; 10058 kvm_make_request(KVM_REQ_EVENT, vcpu); 10059 } 10060 10061 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10062 unsigned long *vcpu_bitmap) 10063 { 10064 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10065 } 10066 10067 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10068 { 10069 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10070 } 10071 10072 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10073 { 10074 struct kvm_lapic *apic = vcpu->arch.apic; 10075 bool activate; 10076 10077 if (!lapic_in_kernel(vcpu)) 10078 return; 10079 10080 down_read(&vcpu->kvm->arch.apicv_update_lock); 10081 preempt_disable(); 10082 10083 /* Do not activate APICV when APIC is disabled */ 10084 activate = kvm_vcpu_apicv_activated(vcpu) && 10085 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10086 10087 if (apic->apicv_active == activate) 10088 goto out; 10089 10090 apic->apicv_active = activate; 10091 kvm_apic_update_apicv(vcpu); 10092 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10093 10094 /* 10095 * When APICv gets disabled, we may still have injected interrupts 10096 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10097 * still active when the interrupt got accepted. Make sure 10098 * inject_pending_event() is called to check for that. 10099 */ 10100 if (!apic->apicv_active) 10101 kvm_make_request(KVM_REQ_EVENT, vcpu); 10102 10103 out: 10104 preempt_enable(); 10105 up_read(&vcpu->kvm->arch.apicv_update_lock); 10106 } 10107 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 10108 10109 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10110 enum kvm_apicv_inhibit reason, bool set) 10111 { 10112 unsigned long old, new; 10113 10114 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10115 10116 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason)) 10117 return; 10118 10119 old = new = kvm->arch.apicv_inhibit_reasons; 10120 10121 set_or_clear_apicv_inhibit(&new, reason, set); 10122 10123 if (!!old != !!new) { 10124 /* 10125 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10126 * false positives in the sanity check WARN in svm_vcpu_run(). 10127 * This task will wait for all vCPUs to ack the kick IRQ before 10128 * updating apicv_inhibit_reasons, and all other vCPUs will 10129 * block on acquiring apicv_update_lock so that vCPUs can't 10130 * redo svm_vcpu_run() without seeing the new inhibit state. 10131 * 10132 * Note, holding apicv_update_lock and taking it in the read 10133 * side (handling the request) also prevents other vCPUs from 10134 * servicing the request with a stale apicv_inhibit_reasons. 10135 */ 10136 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10137 kvm->arch.apicv_inhibit_reasons = new; 10138 if (new) { 10139 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10140 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10141 } 10142 } else { 10143 kvm->arch.apicv_inhibit_reasons = new; 10144 } 10145 } 10146 10147 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10148 enum kvm_apicv_inhibit reason, bool set) 10149 { 10150 if (!enable_apicv) 10151 return; 10152 10153 down_write(&kvm->arch.apicv_update_lock); 10154 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10155 up_write(&kvm->arch.apicv_update_lock); 10156 } 10157 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10158 10159 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10160 { 10161 if (!kvm_apic_present(vcpu)) 10162 return; 10163 10164 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10165 10166 if (irqchip_split(vcpu->kvm)) 10167 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10168 else { 10169 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10170 if (ioapic_in_kernel(vcpu->kvm)) 10171 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10172 } 10173 10174 if (is_guest_mode(vcpu)) 10175 vcpu->arch.load_eoi_exitmap_pending = true; 10176 else 10177 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10178 } 10179 10180 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10181 { 10182 u64 eoi_exit_bitmap[4]; 10183 10184 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10185 return; 10186 10187 if (to_hv_vcpu(vcpu)) { 10188 bitmap_or((ulong *)eoi_exit_bitmap, 10189 vcpu->arch.ioapic_handled_vectors, 10190 to_hv_synic(vcpu)->vec_bitmap, 256); 10191 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10192 return; 10193 } 10194 10195 static_call_cond(kvm_x86_load_eoi_exitmap)( 10196 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10197 } 10198 10199 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10200 unsigned long start, unsigned long end) 10201 { 10202 unsigned long apic_address; 10203 10204 /* 10205 * The physical address of apic access page is stored in the VMCS. 10206 * Update it when it becomes invalid. 10207 */ 10208 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10209 if (start <= apic_address && apic_address < end) 10210 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10211 } 10212 10213 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10214 { 10215 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10216 } 10217 10218 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10219 { 10220 if (!lapic_in_kernel(vcpu)) 10221 return; 10222 10223 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10224 } 10225 10226 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10227 { 10228 smp_send_reschedule(vcpu->cpu); 10229 } 10230 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10231 10232 /* 10233 * Called within kvm->srcu read side. 10234 * Returns 1 to let vcpu_run() continue the guest execution loop without 10235 * exiting to the userspace. Otherwise, the value will be returned to the 10236 * userspace. 10237 */ 10238 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10239 { 10240 int r; 10241 bool req_int_win = 10242 dm_request_for_irq_injection(vcpu) && 10243 kvm_cpu_accept_dm_intr(vcpu); 10244 fastpath_t exit_fastpath; 10245 10246 bool req_immediate_exit = false; 10247 10248 /* Forbid vmenter if vcpu dirty ring is soft-full */ 10249 if (unlikely(vcpu->kvm->dirty_ring_size && 10250 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 10251 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 10252 trace_kvm_dirty_ring_exit(vcpu); 10253 r = 0; 10254 goto out; 10255 } 10256 10257 if (kvm_request_pending(vcpu)) { 10258 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10259 r = -EIO; 10260 goto out; 10261 } 10262 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10263 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10264 r = 0; 10265 goto out; 10266 } 10267 } 10268 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10269 kvm_mmu_free_obsolete_roots(vcpu); 10270 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10271 __kvm_migrate_timers(vcpu); 10272 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10273 kvm_update_masterclock(vcpu->kvm); 10274 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10275 kvm_gen_kvmclock_update(vcpu); 10276 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10277 r = kvm_guest_time_update(vcpu); 10278 if (unlikely(r)) 10279 goto out; 10280 } 10281 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10282 kvm_mmu_sync_roots(vcpu); 10283 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10284 kvm_mmu_load_pgd(vcpu); 10285 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 10286 kvm_vcpu_flush_tlb_all(vcpu); 10287 10288 /* Flushing all ASIDs flushes the current ASID... */ 10289 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 10290 } 10291 kvm_service_local_tlb_flush_requests(vcpu); 10292 10293 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10294 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10295 r = 0; 10296 goto out; 10297 } 10298 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10299 if (is_guest_mode(vcpu)) { 10300 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10301 } else { 10302 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10303 vcpu->mmio_needed = 0; 10304 r = 0; 10305 goto out; 10306 } 10307 } 10308 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10309 /* Page is swapped out. Do synthetic halt */ 10310 vcpu->arch.apf.halted = true; 10311 r = 1; 10312 goto out; 10313 } 10314 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10315 record_steal_time(vcpu); 10316 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10317 process_smi(vcpu); 10318 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10319 process_nmi(vcpu); 10320 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10321 kvm_pmu_handle_event(vcpu); 10322 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10323 kvm_pmu_deliver_pmi(vcpu); 10324 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10325 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10326 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10327 vcpu->arch.ioapic_handled_vectors)) { 10328 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10329 vcpu->run->eoi.vector = 10330 vcpu->arch.pending_ioapic_eoi; 10331 r = 0; 10332 goto out; 10333 } 10334 } 10335 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10336 vcpu_scan_ioapic(vcpu); 10337 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10338 vcpu_load_eoi_exitmap(vcpu); 10339 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10340 kvm_vcpu_reload_apic_access_page(vcpu); 10341 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10342 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10343 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10344 vcpu->run->system_event.ndata = 0; 10345 r = 0; 10346 goto out; 10347 } 10348 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10349 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10350 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10351 vcpu->run->system_event.ndata = 0; 10352 r = 0; 10353 goto out; 10354 } 10355 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10356 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10357 10358 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10359 vcpu->run->hyperv = hv_vcpu->exit; 10360 r = 0; 10361 goto out; 10362 } 10363 10364 /* 10365 * KVM_REQ_HV_STIMER has to be processed after 10366 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10367 * depend on the guest clock being up-to-date 10368 */ 10369 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10370 kvm_hv_process_stimers(vcpu); 10371 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10372 kvm_vcpu_update_apicv(vcpu); 10373 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10374 kvm_check_async_pf_completion(vcpu); 10375 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10376 static_call(kvm_x86_msr_filter_changed)(vcpu); 10377 10378 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10379 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10380 } 10381 10382 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10383 kvm_xen_has_interrupt(vcpu)) { 10384 ++vcpu->stat.req_event; 10385 r = kvm_apic_accept_events(vcpu); 10386 if (r < 0) { 10387 r = 0; 10388 goto out; 10389 } 10390 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10391 r = 1; 10392 goto out; 10393 } 10394 10395 r = inject_pending_event(vcpu, &req_immediate_exit); 10396 if (r < 0) { 10397 r = 0; 10398 goto out; 10399 } 10400 if (req_int_win) 10401 static_call(kvm_x86_enable_irq_window)(vcpu); 10402 10403 if (kvm_lapic_enabled(vcpu)) { 10404 update_cr8_intercept(vcpu); 10405 kvm_lapic_sync_to_vapic(vcpu); 10406 } 10407 } 10408 10409 r = kvm_mmu_reload(vcpu); 10410 if (unlikely(r)) { 10411 goto cancel_injection; 10412 } 10413 10414 preempt_disable(); 10415 10416 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10417 10418 /* 10419 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10420 * IPI are then delayed after guest entry, which ensures that they 10421 * result in virtual interrupt delivery. 10422 */ 10423 local_irq_disable(); 10424 10425 /* Store vcpu->apicv_active before vcpu->mode. */ 10426 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10427 10428 kvm_vcpu_srcu_read_unlock(vcpu); 10429 10430 /* 10431 * 1) We should set ->mode before checking ->requests. Please see 10432 * the comment in kvm_vcpu_exiting_guest_mode(). 10433 * 10434 * 2) For APICv, we should set ->mode before checking PID.ON. This 10435 * pairs with the memory barrier implicit in pi_test_and_set_on 10436 * (see vmx_deliver_posted_interrupt). 10437 * 10438 * 3) This also orders the write to mode from any reads to the page 10439 * tables done while the VCPU is running. Please see the comment 10440 * in kvm_flush_remote_tlbs. 10441 */ 10442 smp_mb__after_srcu_read_unlock(); 10443 10444 /* 10445 * Process pending posted interrupts to handle the case where the 10446 * notification IRQ arrived in the host, or was never sent (because the 10447 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10448 * status, KVM doesn't update assigned devices when APICv is inhibited, 10449 * i.e. they can post interrupts even if APICv is temporarily disabled. 10450 */ 10451 if (kvm_lapic_enabled(vcpu)) 10452 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10453 10454 if (kvm_vcpu_exit_request(vcpu)) { 10455 vcpu->mode = OUTSIDE_GUEST_MODE; 10456 smp_wmb(); 10457 local_irq_enable(); 10458 preempt_enable(); 10459 kvm_vcpu_srcu_read_lock(vcpu); 10460 r = 1; 10461 goto cancel_injection; 10462 } 10463 10464 if (req_immediate_exit) { 10465 kvm_make_request(KVM_REQ_EVENT, vcpu); 10466 static_call(kvm_x86_request_immediate_exit)(vcpu); 10467 } 10468 10469 fpregs_assert_state_consistent(); 10470 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10471 switch_fpu_return(); 10472 10473 if (vcpu->arch.guest_fpu.xfd_err) 10474 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10475 10476 if (unlikely(vcpu->arch.switch_db_regs)) { 10477 set_debugreg(0, 7); 10478 set_debugreg(vcpu->arch.eff_db[0], 0); 10479 set_debugreg(vcpu->arch.eff_db[1], 1); 10480 set_debugreg(vcpu->arch.eff_db[2], 2); 10481 set_debugreg(vcpu->arch.eff_db[3], 3); 10482 } else if (unlikely(hw_breakpoint_active())) { 10483 set_debugreg(0, 7); 10484 } 10485 10486 guest_timing_enter_irqoff(); 10487 10488 for (;;) { 10489 /* 10490 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10491 * update must kick and wait for all vCPUs before toggling the 10492 * per-VM state, and responsing vCPUs must wait for the update 10493 * to complete before servicing KVM_REQ_APICV_UPDATE. 10494 */ 10495 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10496 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10497 10498 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10499 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10500 break; 10501 10502 if (kvm_lapic_enabled(vcpu)) 10503 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10504 10505 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10506 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10507 break; 10508 } 10509 } 10510 10511 /* 10512 * Do this here before restoring debug registers on the host. And 10513 * since we do this before handling the vmexit, a DR access vmexit 10514 * can (a) read the correct value of the debug registers, (b) set 10515 * KVM_DEBUGREG_WONT_EXIT again. 10516 */ 10517 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10518 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10519 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10520 kvm_update_dr0123(vcpu); 10521 kvm_update_dr7(vcpu); 10522 } 10523 10524 /* 10525 * If the guest has used debug registers, at least dr7 10526 * will be disabled while returning to the host. 10527 * If we don't have active breakpoints in the host, we don't 10528 * care about the messed up debug address registers. But if 10529 * we have some of them active, restore the old state. 10530 */ 10531 if (hw_breakpoint_active()) 10532 hw_breakpoint_restore(); 10533 10534 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10535 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10536 10537 vcpu->mode = OUTSIDE_GUEST_MODE; 10538 smp_wmb(); 10539 10540 /* 10541 * Sync xfd before calling handle_exit_irqoff() which may 10542 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10543 * in #NM irqoff handler). 10544 */ 10545 if (vcpu->arch.xfd_no_write_intercept) 10546 fpu_sync_guest_vmexit_xfd_state(); 10547 10548 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10549 10550 if (vcpu->arch.guest_fpu.xfd_err) 10551 wrmsrl(MSR_IA32_XFD_ERR, 0); 10552 10553 /* 10554 * Consume any pending interrupts, including the possible source of 10555 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10556 * An instruction is required after local_irq_enable() to fully unblock 10557 * interrupts on processors that implement an interrupt shadow, the 10558 * stat.exits increment will do nicely. 10559 */ 10560 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10561 local_irq_enable(); 10562 ++vcpu->stat.exits; 10563 local_irq_disable(); 10564 kvm_after_interrupt(vcpu); 10565 10566 /* 10567 * Wait until after servicing IRQs to account guest time so that any 10568 * ticks that occurred while running the guest are properly accounted 10569 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10570 * of accounting via context tracking, but the loss of accuracy is 10571 * acceptable for all known use cases. 10572 */ 10573 guest_timing_exit_irqoff(); 10574 10575 local_irq_enable(); 10576 preempt_enable(); 10577 10578 kvm_vcpu_srcu_read_lock(vcpu); 10579 10580 /* 10581 * Profile KVM exit RIPs: 10582 */ 10583 if (unlikely(prof_on == KVM_PROFILING)) { 10584 unsigned long rip = kvm_rip_read(vcpu); 10585 profile_hit(KVM_PROFILING, (void *)rip); 10586 } 10587 10588 if (unlikely(vcpu->arch.tsc_always_catchup)) 10589 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10590 10591 if (vcpu->arch.apic_attention) 10592 kvm_lapic_sync_from_vapic(vcpu); 10593 10594 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10595 return r; 10596 10597 cancel_injection: 10598 if (req_immediate_exit) 10599 kvm_make_request(KVM_REQ_EVENT, vcpu); 10600 static_call(kvm_x86_cancel_injection)(vcpu); 10601 if (unlikely(vcpu->arch.apic_attention)) 10602 kvm_lapic_sync_from_vapic(vcpu); 10603 out: 10604 return r; 10605 } 10606 10607 /* Called within kvm->srcu read side. */ 10608 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10609 { 10610 bool hv_timer; 10611 10612 if (!kvm_arch_vcpu_runnable(vcpu)) { 10613 /* 10614 * Switch to the software timer before halt-polling/blocking as 10615 * the guest's timer may be a break event for the vCPU, and the 10616 * hypervisor timer runs only when the CPU is in guest mode. 10617 * Switch before halt-polling so that KVM recognizes an expired 10618 * timer before blocking. 10619 */ 10620 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10621 if (hv_timer) 10622 kvm_lapic_switch_to_sw_timer(vcpu); 10623 10624 kvm_vcpu_srcu_read_unlock(vcpu); 10625 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10626 kvm_vcpu_halt(vcpu); 10627 else 10628 kvm_vcpu_block(vcpu); 10629 kvm_vcpu_srcu_read_lock(vcpu); 10630 10631 if (hv_timer) 10632 kvm_lapic_switch_to_hv_timer(vcpu); 10633 10634 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 10635 return 1; 10636 } 10637 10638 if (kvm_apic_accept_events(vcpu) < 0) 10639 return 0; 10640 switch(vcpu->arch.mp_state) { 10641 case KVM_MP_STATE_HALTED: 10642 case KVM_MP_STATE_AP_RESET_HOLD: 10643 vcpu->arch.pv.pv_unhalted = false; 10644 vcpu->arch.mp_state = 10645 KVM_MP_STATE_RUNNABLE; 10646 fallthrough; 10647 case KVM_MP_STATE_RUNNABLE: 10648 vcpu->arch.apf.halted = false; 10649 break; 10650 case KVM_MP_STATE_INIT_RECEIVED: 10651 break; 10652 default: 10653 return -EINTR; 10654 } 10655 return 1; 10656 } 10657 10658 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10659 { 10660 if (is_guest_mode(vcpu)) 10661 kvm_check_nested_events(vcpu); 10662 10663 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10664 !vcpu->arch.apf.halted); 10665 } 10666 10667 /* Called within kvm->srcu read side. */ 10668 static int vcpu_run(struct kvm_vcpu *vcpu) 10669 { 10670 int r; 10671 10672 vcpu->arch.l1tf_flush_l1d = true; 10673 10674 for (;;) { 10675 /* 10676 * If another guest vCPU requests a PV TLB flush in the middle 10677 * of instruction emulation, the rest of the emulation could 10678 * use a stale page translation. Assume that any code after 10679 * this point can start executing an instruction. 10680 */ 10681 vcpu->arch.at_instruction_boundary = false; 10682 if (kvm_vcpu_running(vcpu)) { 10683 r = vcpu_enter_guest(vcpu); 10684 } else { 10685 r = vcpu_block(vcpu); 10686 } 10687 10688 if (r <= 0) 10689 break; 10690 10691 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10692 if (kvm_xen_has_pending_events(vcpu)) 10693 kvm_xen_inject_pending_events(vcpu); 10694 10695 if (kvm_cpu_has_pending_timer(vcpu)) 10696 kvm_inject_pending_timer_irqs(vcpu); 10697 10698 if (dm_request_for_irq_injection(vcpu) && 10699 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10700 r = 0; 10701 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10702 ++vcpu->stat.request_irq_exits; 10703 break; 10704 } 10705 10706 if (__xfer_to_guest_mode_work_pending()) { 10707 kvm_vcpu_srcu_read_unlock(vcpu); 10708 r = xfer_to_guest_mode_handle_work(vcpu); 10709 kvm_vcpu_srcu_read_lock(vcpu); 10710 if (r) 10711 return r; 10712 } 10713 } 10714 10715 return r; 10716 } 10717 10718 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10719 { 10720 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10721 } 10722 10723 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10724 { 10725 BUG_ON(!vcpu->arch.pio.count); 10726 10727 return complete_emulated_io(vcpu); 10728 } 10729 10730 /* 10731 * Implements the following, as a state machine: 10732 * 10733 * read: 10734 * for each fragment 10735 * for each mmio piece in the fragment 10736 * write gpa, len 10737 * exit 10738 * copy data 10739 * execute insn 10740 * 10741 * write: 10742 * for each fragment 10743 * for each mmio piece in the fragment 10744 * write gpa, len 10745 * copy data 10746 * exit 10747 */ 10748 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10749 { 10750 struct kvm_run *run = vcpu->run; 10751 struct kvm_mmio_fragment *frag; 10752 unsigned len; 10753 10754 BUG_ON(!vcpu->mmio_needed); 10755 10756 /* Complete previous fragment */ 10757 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10758 len = min(8u, frag->len); 10759 if (!vcpu->mmio_is_write) 10760 memcpy(frag->data, run->mmio.data, len); 10761 10762 if (frag->len <= 8) { 10763 /* Switch to the next fragment. */ 10764 frag++; 10765 vcpu->mmio_cur_fragment++; 10766 } else { 10767 /* Go forward to the next mmio piece. */ 10768 frag->data += len; 10769 frag->gpa += len; 10770 frag->len -= len; 10771 } 10772 10773 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10774 vcpu->mmio_needed = 0; 10775 10776 /* FIXME: return into emulator if single-stepping. */ 10777 if (vcpu->mmio_is_write) 10778 return 1; 10779 vcpu->mmio_read_completed = 1; 10780 return complete_emulated_io(vcpu); 10781 } 10782 10783 run->exit_reason = KVM_EXIT_MMIO; 10784 run->mmio.phys_addr = frag->gpa; 10785 if (vcpu->mmio_is_write) 10786 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10787 run->mmio.len = min(8u, frag->len); 10788 run->mmio.is_write = vcpu->mmio_is_write; 10789 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10790 return 0; 10791 } 10792 10793 /* Swap (qemu) user FPU context for the guest FPU context. */ 10794 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10795 { 10796 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10797 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10798 trace_kvm_fpu(1); 10799 } 10800 10801 /* When vcpu_run ends, restore user space FPU context. */ 10802 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10803 { 10804 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10805 ++vcpu->stat.fpu_reload; 10806 trace_kvm_fpu(0); 10807 } 10808 10809 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10810 { 10811 struct kvm_run *kvm_run = vcpu->run; 10812 int r; 10813 10814 vcpu_load(vcpu); 10815 kvm_sigset_activate(vcpu); 10816 kvm_run->flags = 0; 10817 kvm_load_guest_fpu(vcpu); 10818 10819 kvm_vcpu_srcu_read_lock(vcpu); 10820 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10821 if (kvm_run->immediate_exit) { 10822 r = -EINTR; 10823 goto out; 10824 } 10825 /* 10826 * It should be impossible for the hypervisor timer to be in 10827 * use before KVM has ever run the vCPU. 10828 */ 10829 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10830 10831 kvm_vcpu_srcu_read_unlock(vcpu); 10832 kvm_vcpu_block(vcpu); 10833 kvm_vcpu_srcu_read_lock(vcpu); 10834 10835 if (kvm_apic_accept_events(vcpu) < 0) { 10836 r = 0; 10837 goto out; 10838 } 10839 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 10840 r = -EAGAIN; 10841 if (signal_pending(current)) { 10842 r = -EINTR; 10843 kvm_run->exit_reason = KVM_EXIT_INTR; 10844 ++vcpu->stat.signal_exits; 10845 } 10846 goto out; 10847 } 10848 10849 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10850 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10851 r = -EINVAL; 10852 goto out; 10853 } 10854 10855 if (kvm_run->kvm_dirty_regs) { 10856 r = sync_regs(vcpu); 10857 if (r != 0) 10858 goto out; 10859 } 10860 10861 /* re-sync apic's tpr */ 10862 if (!lapic_in_kernel(vcpu)) { 10863 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10864 r = -EINVAL; 10865 goto out; 10866 } 10867 } 10868 10869 if (unlikely(vcpu->arch.complete_userspace_io)) { 10870 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 10871 vcpu->arch.complete_userspace_io = NULL; 10872 r = cui(vcpu); 10873 if (r <= 0) 10874 goto out; 10875 } else { 10876 WARN_ON_ONCE(vcpu->arch.pio.count); 10877 WARN_ON_ONCE(vcpu->mmio_needed); 10878 } 10879 10880 if (kvm_run->immediate_exit) { 10881 r = -EINTR; 10882 goto out; 10883 } 10884 10885 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 10886 if (r <= 0) 10887 goto out; 10888 10889 r = vcpu_run(vcpu); 10890 10891 out: 10892 kvm_put_guest_fpu(vcpu); 10893 if (kvm_run->kvm_valid_regs) 10894 store_regs(vcpu); 10895 post_kvm_run_save(vcpu); 10896 kvm_vcpu_srcu_read_unlock(vcpu); 10897 10898 kvm_sigset_deactivate(vcpu); 10899 vcpu_put(vcpu); 10900 return r; 10901 } 10902 10903 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10904 { 10905 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10906 /* 10907 * We are here if userspace calls get_regs() in the middle of 10908 * instruction emulation. Registers state needs to be copied 10909 * back from emulation context to vcpu. Userspace shouldn't do 10910 * that usually, but some bad designed PV devices (vmware 10911 * backdoor interface) need this to work 10912 */ 10913 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10914 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10915 } 10916 regs->rax = kvm_rax_read(vcpu); 10917 regs->rbx = kvm_rbx_read(vcpu); 10918 regs->rcx = kvm_rcx_read(vcpu); 10919 regs->rdx = kvm_rdx_read(vcpu); 10920 regs->rsi = kvm_rsi_read(vcpu); 10921 regs->rdi = kvm_rdi_read(vcpu); 10922 regs->rsp = kvm_rsp_read(vcpu); 10923 regs->rbp = kvm_rbp_read(vcpu); 10924 #ifdef CONFIG_X86_64 10925 regs->r8 = kvm_r8_read(vcpu); 10926 regs->r9 = kvm_r9_read(vcpu); 10927 regs->r10 = kvm_r10_read(vcpu); 10928 regs->r11 = kvm_r11_read(vcpu); 10929 regs->r12 = kvm_r12_read(vcpu); 10930 regs->r13 = kvm_r13_read(vcpu); 10931 regs->r14 = kvm_r14_read(vcpu); 10932 regs->r15 = kvm_r15_read(vcpu); 10933 #endif 10934 10935 regs->rip = kvm_rip_read(vcpu); 10936 regs->rflags = kvm_get_rflags(vcpu); 10937 } 10938 10939 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10940 { 10941 vcpu_load(vcpu); 10942 __get_regs(vcpu, regs); 10943 vcpu_put(vcpu); 10944 return 0; 10945 } 10946 10947 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10948 { 10949 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10950 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10951 10952 kvm_rax_write(vcpu, regs->rax); 10953 kvm_rbx_write(vcpu, regs->rbx); 10954 kvm_rcx_write(vcpu, regs->rcx); 10955 kvm_rdx_write(vcpu, regs->rdx); 10956 kvm_rsi_write(vcpu, regs->rsi); 10957 kvm_rdi_write(vcpu, regs->rdi); 10958 kvm_rsp_write(vcpu, regs->rsp); 10959 kvm_rbp_write(vcpu, regs->rbp); 10960 #ifdef CONFIG_X86_64 10961 kvm_r8_write(vcpu, regs->r8); 10962 kvm_r9_write(vcpu, regs->r9); 10963 kvm_r10_write(vcpu, regs->r10); 10964 kvm_r11_write(vcpu, regs->r11); 10965 kvm_r12_write(vcpu, regs->r12); 10966 kvm_r13_write(vcpu, regs->r13); 10967 kvm_r14_write(vcpu, regs->r14); 10968 kvm_r15_write(vcpu, regs->r15); 10969 #endif 10970 10971 kvm_rip_write(vcpu, regs->rip); 10972 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 10973 10974 vcpu->arch.exception.pending = false; 10975 10976 kvm_make_request(KVM_REQ_EVENT, vcpu); 10977 } 10978 10979 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10980 { 10981 vcpu_load(vcpu); 10982 __set_regs(vcpu, regs); 10983 vcpu_put(vcpu); 10984 return 0; 10985 } 10986 10987 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10988 { 10989 struct desc_ptr dt; 10990 10991 if (vcpu->arch.guest_state_protected) 10992 goto skip_protected_regs; 10993 10994 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10995 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10996 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10997 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10998 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10999 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11000 11001 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11002 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11003 11004 static_call(kvm_x86_get_idt)(vcpu, &dt); 11005 sregs->idt.limit = dt.size; 11006 sregs->idt.base = dt.address; 11007 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11008 sregs->gdt.limit = dt.size; 11009 sregs->gdt.base = dt.address; 11010 11011 sregs->cr2 = vcpu->arch.cr2; 11012 sregs->cr3 = kvm_read_cr3(vcpu); 11013 11014 skip_protected_regs: 11015 sregs->cr0 = kvm_read_cr0(vcpu); 11016 sregs->cr4 = kvm_read_cr4(vcpu); 11017 sregs->cr8 = kvm_get_cr8(vcpu); 11018 sregs->efer = vcpu->arch.efer; 11019 sregs->apic_base = kvm_get_apic_base(vcpu); 11020 } 11021 11022 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11023 { 11024 __get_sregs_common(vcpu, sregs); 11025 11026 if (vcpu->arch.guest_state_protected) 11027 return; 11028 11029 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11030 set_bit(vcpu->arch.interrupt.nr, 11031 (unsigned long *)sregs->interrupt_bitmap); 11032 } 11033 11034 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11035 { 11036 int i; 11037 11038 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11039 11040 if (vcpu->arch.guest_state_protected) 11041 return; 11042 11043 if (is_pae_paging(vcpu)) { 11044 for (i = 0 ; i < 4 ; i++) 11045 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11046 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11047 } 11048 } 11049 11050 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11051 struct kvm_sregs *sregs) 11052 { 11053 vcpu_load(vcpu); 11054 __get_sregs(vcpu, sregs); 11055 vcpu_put(vcpu); 11056 return 0; 11057 } 11058 11059 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11060 struct kvm_mp_state *mp_state) 11061 { 11062 int r; 11063 11064 vcpu_load(vcpu); 11065 if (kvm_mpx_supported()) 11066 kvm_load_guest_fpu(vcpu); 11067 11068 r = kvm_apic_accept_events(vcpu); 11069 if (r < 0) 11070 goto out; 11071 r = 0; 11072 11073 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11074 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11075 vcpu->arch.pv.pv_unhalted) 11076 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11077 else 11078 mp_state->mp_state = vcpu->arch.mp_state; 11079 11080 out: 11081 if (kvm_mpx_supported()) 11082 kvm_put_guest_fpu(vcpu); 11083 vcpu_put(vcpu); 11084 return r; 11085 } 11086 11087 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11088 struct kvm_mp_state *mp_state) 11089 { 11090 int ret = -EINVAL; 11091 11092 vcpu_load(vcpu); 11093 11094 if (!lapic_in_kernel(vcpu) && 11095 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 11096 goto out; 11097 11098 /* 11099 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 11100 * INIT state; latched init should be reported using 11101 * KVM_SET_VCPU_EVENTS, so reject it here. 11102 */ 11103 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 11104 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11105 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11106 goto out; 11107 11108 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11109 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11110 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11111 } else 11112 vcpu->arch.mp_state = mp_state->mp_state; 11113 kvm_make_request(KVM_REQ_EVENT, vcpu); 11114 11115 ret = 0; 11116 out: 11117 vcpu_put(vcpu); 11118 return ret; 11119 } 11120 11121 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11122 int reason, bool has_error_code, u32 error_code) 11123 { 11124 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11125 int ret; 11126 11127 init_emulate_ctxt(vcpu); 11128 11129 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11130 has_error_code, error_code); 11131 if (ret) { 11132 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11133 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11134 vcpu->run->internal.ndata = 0; 11135 return 0; 11136 } 11137 11138 kvm_rip_write(vcpu, ctxt->eip); 11139 kvm_set_rflags(vcpu, ctxt->eflags); 11140 return 1; 11141 } 11142 EXPORT_SYMBOL_GPL(kvm_task_switch); 11143 11144 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11145 { 11146 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11147 /* 11148 * When EFER.LME and CR0.PG are set, the processor is in 11149 * 64-bit mode (though maybe in a 32-bit code segment). 11150 * CR4.PAE and EFER.LMA must be set. 11151 */ 11152 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11153 return false; 11154 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11155 return false; 11156 } else { 11157 /* 11158 * Not in 64-bit mode: EFER.LMA is clear and the code 11159 * segment cannot be 64-bit. 11160 */ 11161 if (sregs->efer & EFER_LMA || sregs->cs.l) 11162 return false; 11163 } 11164 11165 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11166 } 11167 11168 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11169 int *mmu_reset_needed, bool update_pdptrs) 11170 { 11171 struct msr_data apic_base_msr; 11172 int idx; 11173 struct desc_ptr dt; 11174 11175 if (!kvm_is_valid_sregs(vcpu, sregs)) 11176 return -EINVAL; 11177 11178 apic_base_msr.data = sregs->apic_base; 11179 apic_base_msr.host_initiated = true; 11180 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11181 return -EINVAL; 11182 11183 if (vcpu->arch.guest_state_protected) 11184 return 0; 11185 11186 dt.size = sregs->idt.limit; 11187 dt.address = sregs->idt.base; 11188 static_call(kvm_x86_set_idt)(vcpu, &dt); 11189 dt.size = sregs->gdt.limit; 11190 dt.address = sregs->gdt.base; 11191 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11192 11193 vcpu->arch.cr2 = sregs->cr2; 11194 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11195 vcpu->arch.cr3 = sregs->cr3; 11196 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11197 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11198 11199 kvm_set_cr8(vcpu, sregs->cr8); 11200 11201 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11202 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11203 11204 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11205 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11206 vcpu->arch.cr0 = sregs->cr0; 11207 11208 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11209 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11210 11211 if (update_pdptrs) { 11212 idx = srcu_read_lock(&vcpu->kvm->srcu); 11213 if (is_pae_paging(vcpu)) { 11214 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11215 *mmu_reset_needed = 1; 11216 } 11217 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11218 } 11219 11220 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11221 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11222 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11223 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11224 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11225 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11226 11227 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11228 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11229 11230 update_cr8_intercept(vcpu); 11231 11232 /* Older userspace won't unhalt the vcpu on reset. */ 11233 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11234 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11235 !is_protmode(vcpu)) 11236 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11237 11238 return 0; 11239 } 11240 11241 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11242 { 11243 int pending_vec, max_bits; 11244 int mmu_reset_needed = 0; 11245 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11246 11247 if (ret) 11248 return ret; 11249 11250 if (mmu_reset_needed) 11251 kvm_mmu_reset_context(vcpu); 11252 11253 max_bits = KVM_NR_INTERRUPTS; 11254 pending_vec = find_first_bit( 11255 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11256 11257 if (pending_vec < max_bits) { 11258 kvm_queue_interrupt(vcpu, pending_vec, false); 11259 pr_debug("Set back pending irq %d\n", pending_vec); 11260 kvm_make_request(KVM_REQ_EVENT, vcpu); 11261 } 11262 return 0; 11263 } 11264 11265 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11266 { 11267 int mmu_reset_needed = 0; 11268 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11269 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11270 !(sregs2->efer & EFER_LMA); 11271 int i, ret; 11272 11273 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11274 return -EINVAL; 11275 11276 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11277 return -EINVAL; 11278 11279 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11280 &mmu_reset_needed, !valid_pdptrs); 11281 if (ret) 11282 return ret; 11283 11284 if (valid_pdptrs) { 11285 for (i = 0; i < 4 ; i++) 11286 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11287 11288 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11289 mmu_reset_needed = 1; 11290 vcpu->arch.pdptrs_from_userspace = true; 11291 } 11292 if (mmu_reset_needed) 11293 kvm_mmu_reset_context(vcpu); 11294 return 0; 11295 } 11296 11297 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11298 struct kvm_sregs *sregs) 11299 { 11300 int ret; 11301 11302 vcpu_load(vcpu); 11303 ret = __set_sregs(vcpu, sregs); 11304 vcpu_put(vcpu); 11305 return ret; 11306 } 11307 11308 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11309 { 11310 bool set = false; 11311 struct kvm_vcpu *vcpu; 11312 unsigned long i; 11313 11314 if (!enable_apicv) 11315 return; 11316 11317 down_write(&kvm->arch.apicv_update_lock); 11318 11319 kvm_for_each_vcpu(i, vcpu, kvm) { 11320 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11321 set = true; 11322 break; 11323 } 11324 } 11325 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11326 up_write(&kvm->arch.apicv_update_lock); 11327 } 11328 11329 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11330 struct kvm_guest_debug *dbg) 11331 { 11332 unsigned long rflags; 11333 int i, r; 11334 11335 if (vcpu->arch.guest_state_protected) 11336 return -EINVAL; 11337 11338 vcpu_load(vcpu); 11339 11340 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11341 r = -EBUSY; 11342 if (vcpu->arch.exception.pending) 11343 goto out; 11344 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11345 kvm_queue_exception(vcpu, DB_VECTOR); 11346 else 11347 kvm_queue_exception(vcpu, BP_VECTOR); 11348 } 11349 11350 /* 11351 * Read rflags as long as potentially injected trace flags are still 11352 * filtered out. 11353 */ 11354 rflags = kvm_get_rflags(vcpu); 11355 11356 vcpu->guest_debug = dbg->control; 11357 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11358 vcpu->guest_debug = 0; 11359 11360 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11361 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11362 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11363 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11364 } else { 11365 for (i = 0; i < KVM_NR_DB_REGS; i++) 11366 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11367 } 11368 kvm_update_dr7(vcpu); 11369 11370 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11371 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11372 11373 /* 11374 * Trigger an rflags update that will inject or remove the trace 11375 * flags. 11376 */ 11377 kvm_set_rflags(vcpu, rflags); 11378 11379 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11380 11381 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11382 11383 r = 0; 11384 11385 out: 11386 vcpu_put(vcpu); 11387 return r; 11388 } 11389 11390 /* 11391 * Translate a guest virtual address to a guest physical address. 11392 */ 11393 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11394 struct kvm_translation *tr) 11395 { 11396 unsigned long vaddr = tr->linear_address; 11397 gpa_t gpa; 11398 int idx; 11399 11400 vcpu_load(vcpu); 11401 11402 idx = srcu_read_lock(&vcpu->kvm->srcu); 11403 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11404 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11405 tr->physical_address = gpa; 11406 tr->valid = gpa != INVALID_GPA; 11407 tr->writeable = 1; 11408 tr->usermode = 0; 11409 11410 vcpu_put(vcpu); 11411 return 0; 11412 } 11413 11414 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11415 { 11416 struct fxregs_state *fxsave; 11417 11418 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11419 return 0; 11420 11421 vcpu_load(vcpu); 11422 11423 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11424 memcpy(fpu->fpr, fxsave->st_space, 128); 11425 fpu->fcw = fxsave->cwd; 11426 fpu->fsw = fxsave->swd; 11427 fpu->ftwx = fxsave->twd; 11428 fpu->last_opcode = fxsave->fop; 11429 fpu->last_ip = fxsave->rip; 11430 fpu->last_dp = fxsave->rdp; 11431 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11432 11433 vcpu_put(vcpu); 11434 return 0; 11435 } 11436 11437 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11438 { 11439 struct fxregs_state *fxsave; 11440 11441 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11442 return 0; 11443 11444 vcpu_load(vcpu); 11445 11446 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11447 11448 memcpy(fxsave->st_space, fpu->fpr, 128); 11449 fxsave->cwd = fpu->fcw; 11450 fxsave->swd = fpu->fsw; 11451 fxsave->twd = fpu->ftwx; 11452 fxsave->fop = fpu->last_opcode; 11453 fxsave->rip = fpu->last_ip; 11454 fxsave->rdp = fpu->last_dp; 11455 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11456 11457 vcpu_put(vcpu); 11458 return 0; 11459 } 11460 11461 static void store_regs(struct kvm_vcpu *vcpu) 11462 { 11463 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11464 11465 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11466 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11467 11468 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11469 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11470 11471 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11472 kvm_vcpu_ioctl_x86_get_vcpu_events( 11473 vcpu, &vcpu->run->s.regs.events); 11474 } 11475 11476 static int sync_regs(struct kvm_vcpu *vcpu) 11477 { 11478 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11479 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11480 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11481 } 11482 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11483 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11484 return -EINVAL; 11485 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11486 } 11487 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11488 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11489 vcpu, &vcpu->run->s.regs.events)) 11490 return -EINVAL; 11491 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11492 } 11493 11494 return 0; 11495 } 11496 11497 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11498 { 11499 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11500 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11501 "guest TSC will not be reliable\n"); 11502 11503 if (!kvm->arch.max_vcpu_ids) 11504 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11505 11506 if (id >= kvm->arch.max_vcpu_ids) 11507 return -EINVAL; 11508 11509 return static_call(kvm_x86_vcpu_precreate)(kvm); 11510 } 11511 11512 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11513 { 11514 struct page *page; 11515 int r; 11516 11517 vcpu->arch.last_vmentry_cpu = -1; 11518 vcpu->arch.regs_avail = ~0; 11519 vcpu->arch.regs_dirty = ~0; 11520 11521 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11522 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11523 else 11524 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11525 11526 r = kvm_mmu_create(vcpu); 11527 if (r < 0) 11528 return r; 11529 11530 if (irqchip_in_kernel(vcpu->kvm)) { 11531 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11532 if (r < 0) 11533 goto fail_mmu_destroy; 11534 11535 /* 11536 * Defer evaluating inhibits until the vCPU is first run, as 11537 * this vCPU will not get notified of any changes until this 11538 * vCPU is visible to other vCPUs (marked online and added to 11539 * the set of vCPUs). Opportunistically mark APICv active as 11540 * VMX in particularly is highly unlikely to have inhibits. 11541 * Ignore the current per-VM APICv state so that vCPU creation 11542 * is guaranteed to run with a deterministic value, the request 11543 * will ensure the vCPU gets the correct state before VM-Entry. 11544 */ 11545 if (enable_apicv) { 11546 vcpu->arch.apic->apicv_active = true; 11547 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11548 } 11549 } else 11550 static_branch_inc(&kvm_has_noapic_vcpu); 11551 11552 r = -ENOMEM; 11553 11554 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11555 if (!page) 11556 goto fail_free_lapic; 11557 vcpu->arch.pio_data = page_address(page); 11558 11559 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11560 GFP_KERNEL_ACCOUNT); 11561 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11562 GFP_KERNEL_ACCOUNT); 11563 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11564 goto fail_free_pio_data; 11565 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11566 11567 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11568 GFP_KERNEL_ACCOUNT)) 11569 goto fail_free_mce_banks; 11570 11571 if (!alloc_emulate_ctxt(vcpu)) 11572 goto free_wbinvd_dirty_mask; 11573 11574 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11575 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11576 goto free_emulate_ctxt; 11577 } 11578 11579 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11580 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11581 11582 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11583 11584 kvm_async_pf_hash_reset(vcpu); 11585 kvm_pmu_init(vcpu); 11586 11587 vcpu->arch.pending_external_vector = -1; 11588 vcpu->arch.preempted_in_kernel = false; 11589 11590 #if IS_ENABLED(CONFIG_HYPERV) 11591 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11592 #endif 11593 11594 r = static_call(kvm_x86_vcpu_create)(vcpu); 11595 if (r) 11596 goto free_guest_fpu; 11597 11598 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11599 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11600 kvm_xen_init_vcpu(vcpu); 11601 kvm_vcpu_mtrr_init(vcpu); 11602 vcpu_load(vcpu); 11603 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11604 kvm_vcpu_reset(vcpu, false); 11605 kvm_init_mmu(vcpu); 11606 vcpu_put(vcpu); 11607 return 0; 11608 11609 free_guest_fpu: 11610 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11611 free_emulate_ctxt: 11612 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11613 free_wbinvd_dirty_mask: 11614 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11615 fail_free_mce_banks: 11616 kfree(vcpu->arch.mce_banks); 11617 kfree(vcpu->arch.mci_ctl2_banks); 11618 fail_free_pio_data: 11619 free_page((unsigned long)vcpu->arch.pio_data); 11620 fail_free_lapic: 11621 kvm_free_lapic(vcpu); 11622 fail_mmu_destroy: 11623 kvm_mmu_destroy(vcpu); 11624 return r; 11625 } 11626 11627 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11628 { 11629 struct kvm *kvm = vcpu->kvm; 11630 11631 if (mutex_lock_killable(&vcpu->mutex)) 11632 return; 11633 vcpu_load(vcpu); 11634 kvm_synchronize_tsc(vcpu, 0); 11635 vcpu_put(vcpu); 11636 11637 /* poll control enabled by default */ 11638 vcpu->arch.msr_kvm_poll_control = 1; 11639 11640 mutex_unlock(&vcpu->mutex); 11641 11642 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11643 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11644 KVMCLOCK_SYNC_PERIOD); 11645 } 11646 11647 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11648 { 11649 int idx; 11650 11651 kvmclock_reset(vcpu); 11652 11653 static_call(kvm_x86_vcpu_free)(vcpu); 11654 11655 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11656 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11657 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11658 11659 kvm_xen_destroy_vcpu(vcpu); 11660 kvm_hv_vcpu_uninit(vcpu); 11661 kvm_pmu_destroy(vcpu); 11662 kfree(vcpu->arch.mce_banks); 11663 kfree(vcpu->arch.mci_ctl2_banks); 11664 kvm_free_lapic(vcpu); 11665 idx = srcu_read_lock(&vcpu->kvm->srcu); 11666 kvm_mmu_destroy(vcpu); 11667 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11668 free_page((unsigned long)vcpu->arch.pio_data); 11669 kvfree(vcpu->arch.cpuid_entries); 11670 if (!lapic_in_kernel(vcpu)) 11671 static_branch_dec(&kvm_has_noapic_vcpu); 11672 } 11673 11674 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11675 { 11676 struct kvm_cpuid_entry2 *cpuid_0x1; 11677 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11678 unsigned long new_cr0; 11679 11680 /* 11681 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11682 * to handle side effects. RESET emulation hits those flows and relies 11683 * on emulated/virtualized registers, including those that are loaded 11684 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11685 * to detect improper or missing initialization. 11686 */ 11687 WARN_ON_ONCE(!init_event && 11688 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11689 11690 kvm_lapic_reset(vcpu, init_event); 11691 11692 vcpu->arch.hflags = 0; 11693 11694 vcpu->arch.smi_pending = 0; 11695 vcpu->arch.smi_count = 0; 11696 atomic_set(&vcpu->arch.nmi_queued, 0); 11697 vcpu->arch.nmi_pending = 0; 11698 vcpu->arch.nmi_injected = false; 11699 kvm_clear_interrupt_queue(vcpu); 11700 kvm_clear_exception_queue(vcpu); 11701 11702 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11703 kvm_update_dr0123(vcpu); 11704 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11705 vcpu->arch.dr7 = DR7_FIXED_1; 11706 kvm_update_dr7(vcpu); 11707 11708 vcpu->arch.cr2 = 0; 11709 11710 kvm_make_request(KVM_REQ_EVENT, vcpu); 11711 vcpu->arch.apf.msr_en_val = 0; 11712 vcpu->arch.apf.msr_int_val = 0; 11713 vcpu->arch.st.msr_val = 0; 11714 11715 kvmclock_reset(vcpu); 11716 11717 kvm_clear_async_pf_completion_queue(vcpu); 11718 kvm_async_pf_hash_reset(vcpu); 11719 vcpu->arch.apf.halted = false; 11720 11721 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11722 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11723 11724 /* 11725 * To avoid have the INIT path from kvm_apic_has_events() that be 11726 * called with loaded FPU and does not let userspace fix the state. 11727 */ 11728 if (init_event) 11729 kvm_put_guest_fpu(vcpu); 11730 11731 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11732 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11733 11734 if (init_event) 11735 kvm_load_guest_fpu(vcpu); 11736 } 11737 11738 if (!init_event) { 11739 kvm_pmu_reset(vcpu); 11740 vcpu->arch.smbase = 0x30000; 11741 11742 vcpu->arch.msr_misc_features_enables = 0; 11743 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11744 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11745 11746 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11747 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11748 } 11749 11750 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11751 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11752 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11753 11754 /* 11755 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11756 * if no CPUID match is found. Note, it's impossible to get a match at 11757 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11758 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11759 * on RESET. But, go through the motions in case that's ever remedied. 11760 */ 11761 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11762 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11763 11764 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11765 11766 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11767 kvm_rip_write(vcpu, 0xfff0); 11768 11769 vcpu->arch.cr3 = 0; 11770 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11771 11772 /* 11773 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11774 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11775 * (or qualify) that with a footnote stating that CD/NW are preserved. 11776 */ 11777 new_cr0 = X86_CR0_ET; 11778 if (init_event) 11779 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11780 else 11781 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11782 11783 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11784 static_call(kvm_x86_set_cr4)(vcpu, 0); 11785 static_call(kvm_x86_set_efer)(vcpu, 0); 11786 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11787 11788 /* 11789 * On the standard CR0/CR4/EFER modification paths, there are several 11790 * complex conditions determining whether the MMU has to be reset and/or 11791 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11792 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11793 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11794 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11795 */ 11796 if (old_cr0 & X86_CR0_PG) { 11797 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11798 kvm_mmu_reset_context(vcpu); 11799 } 11800 11801 /* 11802 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11803 * APM states the TLBs are untouched by INIT, but it also states that 11804 * the TLBs are flushed on "External initialization of the processor." 11805 * Flush the guest TLB regardless of vendor, there is no meaningful 11806 * benefit in relying on the guest to flush the TLB immediately after 11807 * INIT. A spurious TLB flush is benign and likely negligible from a 11808 * performance perspective. 11809 */ 11810 if (init_event) 11811 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11812 } 11813 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11814 11815 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11816 { 11817 struct kvm_segment cs; 11818 11819 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11820 cs.selector = vector << 8; 11821 cs.base = vector << 12; 11822 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11823 kvm_rip_write(vcpu, 0); 11824 } 11825 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11826 11827 int kvm_arch_hardware_enable(void) 11828 { 11829 struct kvm *kvm; 11830 struct kvm_vcpu *vcpu; 11831 unsigned long i; 11832 int ret; 11833 u64 local_tsc; 11834 u64 max_tsc = 0; 11835 bool stable, backwards_tsc = false; 11836 11837 kvm_user_return_msr_cpu_online(); 11838 ret = static_call(kvm_x86_hardware_enable)(); 11839 if (ret != 0) 11840 return ret; 11841 11842 local_tsc = rdtsc(); 11843 stable = !kvm_check_tsc_unstable(); 11844 list_for_each_entry(kvm, &vm_list, vm_list) { 11845 kvm_for_each_vcpu(i, vcpu, kvm) { 11846 if (!stable && vcpu->cpu == smp_processor_id()) 11847 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11848 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 11849 backwards_tsc = true; 11850 if (vcpu->arch.last_host_tsc > max_tsc) 11851 max_tsc = vcpu->arch.last_host_tsc; 11852 } 11853 } 11854 } 11855 11856 /* 11857 * Sometimes, even reliable TSCs go backwards. This happens on 11858 * platforms that reset TSC during suspend or hibernate actions, but 11859 * maintain synchronization. We must compensate. Fortunately, we can 11860 * detect that condition here, which happens early in CPU bringup, 11861 * before any KVM threads can be running. Unfortunately, we can't 11862 * bring the TSCs fully up to date with real time, as we aren't yet far 11863 * enough into CPU bringup that we know how much real time has actually 11864 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 11865 * variables that haven't been updated yet. 11866 * 11867 * So we simply find the maximum observed TSC above, then record the 11868 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 11869 * the adjustment will be applied. Note that we accumulate 11870 * adjustments, in case multiple suspend cycles happen before some VCPU 11871 * gets a chance to run again. In the event that no KVM threads get a 11872 * chance to run, we will miss the entire elapsed period, as we'll have 11873 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 11874 * loose cycle time. This isn't too big a deal, since the loss will be 11875 * uniform across all VCPUs (not to mention the scenario is extremely 11876 * unlikely). It is possible that a second hibernate recovery happens 11877 * much faster than a first, causing the observed TSC here to be 11878 * smaller; this would require additional padding adjustment, which is 11879 * why we set last_host_tsc to the local tsc observed here. 11880 * 11881 * N.B. - this code below runs only on platforms with reliable TSC, 11882 * as that is the only way backwards_tsc is set above. Also note 11883 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 11884 * have the same delta_cyc adjustment applied if backwards_tsc 11885 * is detected. Note further, this adjustment is only done once, 11886 * as we reset last_host_tsc on all VCPUs to stop this from being 11887 * called multiple times (one for each physical CPU bringup). 11888 * 11889 * Platforms with unreliable TSCs don't have to deal with this, they 11890 * will be compensated by the logic in vcpu_load, which sets the TSC to 11891 * catchup mode. This will catchup all VCPUs to real time, but cannot 11892 * guarantee that they stay in perfect synchronization. 11893 */ 11894 if (backwards_tsc) { 11895 u64 delta_cyc = max_tsc - local_tsc; 11896 list_for_each_entry(kvm, &vm_list, vm_list) { 11897 kvm->arch.backwards_tsc_observed = true; 11898 kvm_for_each_vcpu(i, vcpu, kvm) { 11899 vcpu->arch.tsc_offset_adjustment += delta_cyc; 11900 vcpu->arch.last_host_tsc = local_tsc; 11901 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 11902 } 11903 11904 /* 11905 * We have to disable TSC offset matching.. if you were 11906 * booting a VM while issuing an S4 host suspend.... 11907 * you may have some problem. Solving this issue is 11908 * left as an exercise to the reader. 11909 */ 11910 kvm->arch.last_tsc_nsec = 0; 11911 kvm->arch.last_tsc_write = 0; 11912 } 11913 11914 } 11915 return 0; 11916 } 11917 11918 void kvm_arch_hardware_disable(void) 11919 { 11920 static_call(kvm_x86_hardware_disable)(); 11921 drop_user_return_notifiers(); 11922 } 11923 11924 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 11925 { 11926 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 11927 11928 #define __KVM_X86_OP(func) \ 11929 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 11930 #define KVM_X86_OP(func) \ 11931 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 11932 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 11933 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 11934 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 11935 (void *)__static_call_return0); 11936 #include <asm/kvm-x86-ops.h> 11937 #undef __KVM_X86_OP 11938 11939 kvm_pmu_ops_update(ops->pmu_ops); 11940 } 11941 11942 int kvm_arch_hardware_setup(void *opaque) 11943 { 11944 struct kvm_x86_init_ops *ops = opaque; 11945 int r; 11946 11947 rdmsrl_safe(MSR_EFER, &host_efer); 11948 11949 if (boot_cpu_has(X86_FEATURE_XSAVES)) 11950 rdmsrl(MSR_IA32_XSS, host_xss); 11951 11952 kvm_init_pmu_capability(); 11953 11954 r = ops->hardware_setup(); 11955 if (r != 0) 11956 return r; 11957 11958 kvm_ops_update(ops); 11959 11960 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 11961 11962 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 11963 kvm_caps.supported_xss = 0; 11964 11965 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 11966 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 11967 #undef __kvm_cpu_cap_has 11968 11969 if (kvm_caps.has_tsc_control) { 11970 /* 11971 * Make sure the user can only configure tsc_khz values that 11972 * fit into a signed integer. 11973 * A min value is not calculated because it will always 11974 * be 1 on all machines. 11975 */ 11976 u64 max = min(0x7fffffffULL, 11977 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 11978 kvm_caps.max_guest_tsc_khz = max; 11979 } 11980 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 11981 kvm_init_msr_list(); 11982 return 0; 11983 } 11984 11985 void kvm_arch_hardware_unsetup(void) 11986 { 11987 kvm_unregister_perf_callbacks(); 11988 11989 static_call(kvm_x86_hardware_unsetup)(); 11990 } 11991 11992 int kvm_arch_check_processor_compat(void *opaque) 11993 { 11994 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 11995 struct kvm_x86_init_ops *ops = opaque; 11996 11997 WARN_ON(!irqs_disabled()); 11998 11999 if (__cr4_reserved_bits(cpu_has, c) != 12000 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 12001 return -EIO; 12002 12003 return ops->check_processor_compatibility(); 12004 } 12005 12006 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12007 { 12008 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12009 } 12010 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 12011 12012 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12013 { 12014 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12015 } 12016 12017 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12018 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12019 12020 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12021 { 12022 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12023 12024 vcpu->arch.l1tf_flush_l1d = true; 12025 if (pmu->version && unlikely(pmu->event_count)) { 12026 pmu->need_cleanup = true; 12027 kvm_make_request(KVM_REQ_PMU, vcpu); 12028 } 12029 static_call(kvm_x86_sched_in)(vcpu, cpu); 12030 } 12031 12032 void kvm_arch_free_vm(struct kvm *kvm) 12033 { 12034 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12035 __kvm_arch_free_vm(kvm); 12036 } 12037 12038 12039 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12040 { 12041 int ret; 12042 unsigned long flags; 12043 12044 if (type) 12045 return -EINVAL; 12046 12047 ret = kvm_page_track_init(kvm); 12048 if (ret) 12049 goto out; 12050 12051 ret = kvm_mmu_init_vm(kvm); 12052 if (ret) 12053 goto out_page_track; 12054 12055 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12056 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12057 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12058 12059 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12060 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12061 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12062 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12063 &kvm->arch.irq_sources_bitmap); 12064 12065 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12066 mutex_init(&kvm->arch.apic_map_lock); 12067 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12068 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12069 12070 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12071 pvclock_update_vm_gtod_copy(kvm); 12072 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12073 12074 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12075 kvm->arch.guest_can_read_msr_platform_info = true; 12076 kvm->arch.enable_pmu = enable_pmu; 12077 12078 #if IS_ENABLED(CONFIG_HYPERV) 12079 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12080 kvm->arch.hv_root_tdp = INVALID_PAGE; 12081 #endif 12082 12083 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12084 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12085 12086 kvm_apicv_init(kvm); 12087 kvm_hv_init_vm(kvm); 12088 kvm_xen_init_vm(kvm); 12089 12090 return static_call(kvm_x86_vm_init)(kvm); 12091 12092 out_page_track: 12093 kvm_page_track_cleanup(kvm); 12094 out: 12095 return ret; 12096 } 12097 12098 int kvm_arch_post_init_vm(struct kvm *kvm) 12099 { 12100 return kvm_mmu_post_init_vm(kvm); 12101 } 12102 12103 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12104 { 12105 vcpu_load(vcpu); 12106 kvm_mmu_unload(vcpu); 12107 vcpu_put(vcpu); 12108 } 12109 12110 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12111 { 12112 unsigned long i; 12113 struct kvm_vcpu *vcpu; 12114 12115 kvm_for_each_vcpu(i, vcpu, kvm) { 12116 kvm_clear_async_pf_completion_queue(vcpu); 12117 kvm_unload_vcpu_mmu(vcpu); 12118 } 12119 } 12120 12121 void kvm_arch_sync_events(struct kvm *kvm) 12122 { 12123 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12124 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12125 kvm_free_pit(kvm); 12126 } 12127 12128 /** 12129 * __x86_set_memory_region: Setup KVM internal memory slot 12130 * 12131 * @kvm: the kvm pointer to the VM. 12132 * @id: the slot ID to setup. 12133 * @gpa: the GPA to install the slot (unused when @size == 0). 12134 * @size: the size of the slot. Set to zero to uninstall a slot. 12135 * 12136 * This function helps to setup a KVM internal memory slot. Specify 12137 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12138 * slot. The return code can be one of the following: 12139 * 12140 * HVA: on success (uninstall will return a bogus HVA) 12141 * -errno: on error 12142 * 12143 * The caller should always use IS_ERR() to check the return value 12144 * before use. Note, the KVM internal memory slots are guaranteed to 12145 * remain valid and unchanged until the VM is destroyed, i.e., the 12146 * GPA->HVA translation will not change. However, the HVA is a user 12147 * address, i.e. its accessibility is not guaranteed, and must be 12148 * accessed via __copy_{to,from}_user(). 12149 */ 12150 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12151 u32 size) 12152 { 12153 int i, r; 12154 unsigned long hva, old_npages; 12155 struct kvm_memslots *slots = kvm_memslots(kvm); 12156 struct kvm_memory_slot *slot; 12157 12158 /* Called with kvm->slots_lock held. */ 12159 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12160 return ERR_PTR_USR(-EINVAL); 12161 12162 slot = id_to_memslot(slots, id); 12163 if (size) { 12164 if (slot && slot->npages) 12165 return ERR_PTR_USR(-EEXIST); 12166 12167 /* 12168 * MAP_SHARED to prevent internal slot pages from being moved 12169 * by fork()/COW. 12170 */ 12171 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12172 MAP_SHARED | MAP_ANONYMOUS, 0); 12173 if (IS_ERR((void *)hva)) 12174 return (void __user *)hva; 12175 } else { 12176 if (!slot || !slot->npages) 12177 return NULL; 12178 12179 old_npages = slot->npages; 12180 hva = slot->userspace_addr; 12181 } 12182 12183 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12184 struct kvm_userspace_memory_region m; 12185 12186 m.slot = id | (i << 16); 12187 m.flags = 0; 12188 m.guest_phys_addr = gpa; 12189 m.userspace_addr = hva; 12190 m.memory_size = size; 12191 r = __kvm_set_memory_region(kvm, &m); 12192 if (r < 0) 12193 return ERR_PTR_USR(r); 12194 } 12195 12196 if (!size) 12197 vm_munmap(hva, old_npages * PAGE_SIZE); 12198 12199 return (void __user *)hva; 12200 } 12201 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12202 12203 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12204 { 12205 kvm_mmu_pre_destroy_vm(kvm); 12206 } 12207 12208 void kvm_arch_destroy_vm(struct kvm *kvm) 12209 { 12210 if (current->mm == kvm->mm) { 12211 /* 12212 * Free memory regions allocated on behalf of userspace, 12213 * unless the memory map has changed due to process exit 12214 * or fd copying. 12215 */ 12216 mutex_lock(&kvm->slots_lock); 12217 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12218 0, 0); 12219 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12220 0, 0); 12221 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12222 mutex_unlock(&kvm->slots_lock); 12223 } 12224 kvm_unload_vcpu_mmus(kvm); 12225 static_call_cond(kvm_x86_vm_destroy)(kvm); 12226 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12227 kvm_pic_destroy(kvm); 12228 kvm_ioapic_destroy(kvm); 12229 kvm_destroy_vcpus(kvm); 12230 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12231 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12232 kvm_mmu_uninit_vm(kvm); 12233 kvm_page_track_cleanup(kvm); 12234 kvm_xen_destroy_vm(kvm); 12235 kvm_hv_destroy_vm(kvm); 12236 } 12237 12238 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12239 { 12240 int i; 12241 12242 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12243 kvfree(slot->arch.rmap[i]); 12244 slot->arch.rmap[i] = NULL; 12245 } 12246 } 12247 12248 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12249 { 12250 int i; 12251 12252 memslot_rmap_free(slot); 12253 12254 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12255 kvfree(slot->arch.lpage_info[i - 1]); 12256 slot->arch.lpage_info[i - 1] = NULL; 12257 } 12258 12259 kvm_page_track_free_memslot(slot); 12260 } 12261 12262 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12263 { 12264 const int sz = sizeof(*slot->arch.rmap[0]); 12265 int i; 12266 12267 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12268 int level = i + 1; 12269 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12270 12271 if (slot->arch.rmap[i]) 12272 continue; 12273 12274 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12275 if (!slot->arch.rmap[i]) { 12276 memslot_rmap_free(slot); 12277 return -ENOMEM; 12278 } 12279 } 12280 12281 return 0; 12282 } 12283 12284 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12285 struct kvm_memory_slot *slot) 12286 { 12287 unsigned long npages = slot->npages; 12288 int i, r; 12289 12290 /* 12291 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12292 * old arrays will be freed by __kvm_set_memory_region() if installing 12293 * the new memslot is successful. 12294 */ 12295 memset(&slot->arch, 0, sizeof(slot->arch)); 12296 12297 if (kvm_memslots_have_rmaps(kvm)) { 12298 r = memslot_rmap_alloc(slot, npages); 12299 if (r) 12300 return r; 12301 } 12302 12303 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12304 struct kvm_lpage_info *linfo; 12305 unsigned long ugfn; 12306 int lpages; 12307 int level = i + 1; 12308 12309 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12310 12311 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12312 if (!linfo) 12313 goto out_free; 12314 12315 slot->arch.lpage_info[i - 1] = linfo; 12316 12317 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12318 linfo[0].disallow_lpage = 1; 12319 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12320 linfo[lpages - 1].disallow_lpage = 1; 12321 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12322 /* 12323 * If the gfn and userspace address are not aligned wrt each 12324 * other, disable large page support for this slot. 12325 */ 12326 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12327 unsigned long j; 12328 12329 for (j = 0; j < lpages; ++j) 12330 linfo[j].disallow_lpage = 1; 12331 } 12332 } 12333 12334 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12335 goto out_free; 12336 12337 return 0; 12338 12339 out_free: 12340 memslot_rmap_free(slot); 12341 12342 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12343 kvfree(slot->arch.lpage_info[i - 1]); 12344 slot->arch.lpage_info[i - 1] = NULL; 12345 } 12346 return -ENOMEM; 12347 } 12348 12349 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12350 { 12351 struct kvm_vcpu *vcpu; 12352 unsigned long i; 12353 12354 /* 12355 * memslots->generation has been incremented. 12356 * mmio generation may have reached its maximum value. 12357 */ 12358 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12359 12360 /* Force re-initialization of steal_time cache */ 12361 kvm_for_each_vcpu(i, vcpu, kvm) 12362 kvm_vcpu_kick(vcpu); 12363 } 12364 12365 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12366 const struct kvm_memory_slot *old, 12367 struct kvm_memory_slot *new, 12368 enum kvm_mr_change change) 12369 { 12370 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12371 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12372 return -EINVAL; 12373 12374 return kvm_alloc_memslot_metadata(kvm, new); 12375 } 12376 12377 if (change == KVM_MR_FLAGS_ONLY) 12378 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12379 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12380 return -EIO; 12381 12382 return 0; 12383 } 12384 12385 12386 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12387 { 12388 struct kvm_arch *ka = &kvm->arch; 12389 12390 if (!kvm_x86_ops.cpu_dirty_log_size) 12391 return; 12392 12393 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12394 (!enable && --ka->cpu_dirty_logging_count == 0)) 12395 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12396 12397 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12398 } 12399 12400 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12401 struct kvm_memory_slot *old, 12402 const struct kvm_memory_slot *new, 12403 enum kvm_mr_change change) 12404 { 12405 u32 old_flags = old ? old->flags : 0; 12406 u32 new_flags = new ? new->flags : 0; 12407 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12408 12409 /* 12410 * Update CPU dirty logging if dirty logging is being toggled. This 12411 * applies to all operations. 12412 */ 12413 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12414 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12415 12416 /* 12417 * Nothing more to do for RO slots (which can't be dirtied and can't be 12418 * made writable) or CREATE/MOVE/DELETE of a slot. 12419 * 12420 * For a memslot with dirty logging disabled: 12421 * CREATE: No dirty mappings will already exist. 12422 * MOVE/DELETE: The old mappings will already have been cleaned up by 12423 * kvm_arch_flush_shadow_memslot() 12424 * 12425 * For a memslot with dirty logging enabled: 12426 * CREATE: No shadow pages exist, thus nothing to write-protect 12427 * and no dirty bits to clear. 12428 * MOVE/DELETE: The old mappings will already have been cleaned up by 12429 * kvm_arch_flush_shadow_memslot(). 12430 */ 12431 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12432 return; 12433 12434 /* 12435 * READONLY and non-flags changes were filtered out above, and the only 12436 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12437 * logging isn't being toggled on or off. 12438 */ 12439 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12440 return; 12441 12442 if (!log_dirty_pages) { 12443 /* 12444 * Dirty logging tracks sptes in 4k granularity, meaning that 12445 * large sptes have to be split. If live migration succeeds, 12446 * the guest in the source machine will be destroyed and large 12447 * sptes will be created in the destination. However, if the 12448 * guest continues to run in the source machine (for example if 12449 * live migration fails), small sptes will remain around and 12450 * cause bad performance. 12451 * 12452 * Scan sptes if dirty logging has been stopped, dropping those 12453 * which can be collapsed into a single large-page spte. Later 12454 * page faults will create the large-page sptes. 12455 */ 12456 kvm_mmu_zap_collapsible_sptes(kvm, new); 12457 } else { 12458 /* 12459 * Initially-all-set does not require write protecting any page, 12460 * because they're all assumed to be dirty. 12461 */ 12462 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12463 return; 12464 12465 if (READ_ONCE(eager_page_split)) 12466 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12467 12468 if (kvm_x86_ops.cpu_dirty_log_size) { 12469 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12470 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12471 } else { 12472 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12473 } 12474 } 12475 } 12476 12477 void kvm_arch_commit_memory_region(struct kvm *kvm, 12478 struct kvm_memory_slot *old, 12479 const struct kvm_memory_slot *new, 12480 enum kvm_mr_change change) 12481 { 12482 if (!kvm->arch.n_requested_mmu_pages && 12483 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12484 unsigned long nr_mmu_pages; 12485 12486 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12487 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12488 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12489 } 12490 12491 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12492 12493 /* Free the arrays associated with the old memslot. */ 12494 if (change == KVM_MR_MOVE) 12495 kvm_arch_free_memslot(kvm, old); 12496 } 12497 12498 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12499 { 12500 kvm_mmu_zap_all(kvm); 12501 } 12502 12503 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12504 struct kvm_memory_slot *slot) 12505 { 12506 kvm_page_track_flush_slot(kvm, slot); 12507 } 12508 12509 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12510 { 12511 return (is_guest_mode(vcpu) && 12512 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12513 } 12514 12515 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12516 { 12517 if (!list_empty_careful(&vcpu->async_pf.done)) 12518 return true; 12519 12520 if (kvm_apic_has_events(vcpu)) 12521 return true; 12522 12523 if (vcpu->arch.pv.pv_unhalted) 12524 return true; 12525 12526 if (vcpu->arch.exception.pending) 12527 return true; 12528 12529 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12530 (vcpu->arch.nmi_pending && 12531 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12532 return true; 12533 12534 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12535 (vcpu->arch.smi_pending && 12536 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12537 return true; 12538 12539 if (kvm_arch_interrupt_allowed(vcpu) && 12540 (kvm_cpu_has_interrupt(vcpu) || 12541 kvm_guest_apic_has_interrupt(vcpu))) 12542 return true; 12543 12544 if (kvm_hv_has_stimer_pending(vcpu)) 12545 return true; 12546 12547 if (is_guest_mode(vcpu) && 12548 kvm_x86_ops.nested_ops->hv_timer_pending && 12549 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 12550 return true; 12551 12552 if (kvm_xen_has_pending_events(vcpu)) 12553 return true; 12554 12555 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) 12556 return true; 12557 12558 return false; 12559 } 12560 12561 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12562 { 12563 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12564 } 12565 12566 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12567 { 12568 if (kvm_vcpu_apicv_active(vcpu) && 12569 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12570 return true; 12571 12572 return false; 12573 } 12574 12575 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12576 { 12577 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12578 return true; 12579 12580 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12581 kvm_test_request(KVM_REQ_SMI, vcpu) || 12582 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12583 return true; 12584 12585 return kvm_arch_dy_has_pending_interrupt(vcpu); 12586 } 12587 12588 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12589 { 12590 if (vcpu->arch.guest_state_protected) 12591 return true; 12592 12593 return vcpu->arch.preempted_in_kernel; 12594 } 12595 12596 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12597 { 12598 return kvm_rip_read(vcpu); 12599 } 12600 12601 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12602 { 12603 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12604 } 12605 12606 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12607 { 12608 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12609 } 12610 12611 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12612 { 12613 /* Can't read the RIP when guest state is protected, just return 0 */ 12614 if (vcpu->arch.guest_state_protected) 12615 return 0; 12616 12617 if (is_64_bit_mode(vcpu)) 12618 return kvm_rip_read(vcpu); 12619 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12620 kvm_rip_read(vcpu)); 12621 } 12622 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12623 12624 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12625 { 12626 return kvm_get_linear_rip(vcpu) == linear_rip; 12627 } 12628 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12629 12630 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12631 { 12632 unsigned long rflags; 12633 12634 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12635 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12636 rflags &= ~X86_EFLAGS_TF; 12637 return rflags; 12638 } 12639 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12640 12641 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12642 { 12643 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12644 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12645 rflags |= X86_EFLAGS_TF; 12646 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12647 } 12648 12649 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12650 { 12651 __kvm_set_rflags(vcpu, rflags); 12652 kvm_make_request(KVM_REQ_EVENT, vcpu); 12653 } 12654 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12655 12656 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12657 { 12658 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12659 12660 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12661 } 12662 12663 static inline u32 kvm_async_pf_next_probe(u32 key) 12664 { 12665 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12666 } 12667 12668 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12669 { 12670 u32 key = kvm_async_pf_hash_fn(gfn); 12671 12672 while (vcpu->arch.apf.gfns[key] != ~0) 12673 key = kvm_async_pf_next_probe(key); 12674 12675 vcpu->arch.apf.gfns[key] = gfn; 12676 } 12677 12678 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12679 { 12680 int i; 12681 u32 key = kvm_async_pf_hash_fn(gfn); 12682 12683 for (i = 0; i < ASYNC_PF_PER_VCPU && 12684 (vcpu->arch.apf.gfns[key] != gfn && 12685 vcpu->arch.apf.gfns[key] != ~0); i++) 12686 key = kvm_async_pf_next_probe(key); 12687 12688 return key; 12689 } 12690 12691 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12692 { 12693 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12694 } 12695 12696 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12697 { 12698 u32 i, j, k; 12699 12700 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12701 12702 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12703 return; 12704 12705 while (true) { 12706 vcpu->arch.apf.gfns[i] = ~0; 12707 do { 12708 j = kvm_async_pf_next_probe(j); 12709 if (vcpu->arch.apf.gfns[j] == ~0) 12710 return; 12711 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12712 /* 12713 * k lies cyclically in ]i,j] 12714 * | i.k.j | 12715 * |....j i.k.| or |.k..j i...| 12716 */ 12717 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12718 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12719 i = j; 12720 } 12721 } 12722 12723 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12724 { 12725 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12726 12727 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12728 sizeof(reason)); 12729 } 12730 12731 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12732 { 12733 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12734 12735 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12736 &token, offset, sizeof(token)); 12737 } 12738 12739 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12740 { 12741 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12742 u32 val; 12743 12744 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12745 &val, offset, sizeof(val))) 12746 return false; 12747 12748 return !val; 12749 } 12750 12751 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12752 { 12753 12754 if (!kvm_pv_async_pf_enabled(vcpu)) 12755 return false; 12756 12757 if (vcpu->arch.apf.send_user_only && 12758 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12759 return false; 12760 12761 if (is_guest_mode(vcpu)) { 12762 /* 12763 * L1 needs to opt into the special #PF vmexits that are 12764 * used to deliver async page faults. 12765 */ 12766 return vcpu->arch.apf.delivery_as_pf_vmexit; 12767 } else { 12768 /* 12769 * Play it safe in case the guest temporarily disables paging. 12770 * The real mode IDT in particular is unlikely to have a #PF 12771 * exception setup. 12772 */ 12773 return is_paging(vcpu); 12774 } 12775 } 12776 12777 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12778 { 12779 if (unlikely(!lapic_in_kernel(vcpu) || 12780 kvm_event_needs_reinjection(vcpu) || 12781 vcpu->arch.exception.pending)) 12782 return false; 12783 12784 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12785 return false; 12786 12787 /* 12788 * If interrupts are off we cannot even use an artificial 12789 * halt state. 12790 */ 12791 return kvm_arch_interrupt_allowed(vcpu); 12792 } 12793 12794 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12795 struct kvm_async_pf *work) 12796 { 12797 struct x86_exception fault; 12798 12799 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12800 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12801 12802 if (kvm_can_deliver_async_pf(vcpu) && 12803 !apf_put_user_notpresent(vcpu)) { 12804 fault.vector = PF_VECTOR; 12805 fault.error_code_valid = true; 12806 fault.error_code = 0; 12807 fault.nested_page_fault = false; 12808 fault.address = work->arch.token; 12809 fault.async_page_fault = true; 12810 kvm_inject_page_fault(vcpu, &fault); 12811 return true; 12812 } else { 12813 /* 12814 * It is not possible to deliver a paravirtualized asynchronous 12815 * page fault, but putting the guest in an artificial halt state 12816 * can be beneficial nevertheless: if an interrupt arrives, we 12817 * can deliver it timely and perhaps the guest will schedule 12818 * another process. When the instruction that triggered a page 12819 * fault is retried, hopefully the page will be ready in the host. 12820 */ 12821 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12822 return false; 12823 } 12824 } 12825 12826 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12827 struct kvm_async_pf *work) 12828 { 12829 struct kvm_lapic_irq irq = { 12830 .delivery_mode = APIC_DM_FIXED, 12831 .vector = vcpu->arch.apf.vec 12832 }; 12833 12834 if (work->wakeup_all) 12835 work->arch.token = ~0; /* broadcast wakeup */ 12836 else 12837 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12838 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12839 12840 if ((work->wakeup_all || work->notpresent_injected) && 12841 kvm_pv_async_pf_enabled(vcpu) && 12842 !apf_put_user_ready(vcpu, work->arch.token)) { 12843 vcpu->arch.apf.pageready_pending = true; 12844 kvm_apic_set_irq(vcpu, &irq, NULL); 12845 } 12846 12847 vcpu->arch.apf.halted = false; 12848 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12849 } 12850 12851 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12852 { 12853 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12854 if (!vcpu->arch.apf.pageready_pending) 12855 kvm_vcpu_kick(vcpu); 12856 } 12857 12858 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 12859 { 12860 if (!kvm_pv_async_pf_enabled(vcpu)) 12861 return true; 12862 else 12863 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 12864 } 12865 12866 void kvm_arch_start_assignment(struct kvm *kvm) 12867 { 12868 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 12869 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 12870 } 12871 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 12872 12873 void kvm_arch_end_assignment(struct kvm *kvm) 12874 { 12875 atomic_dec(&kvm->arch.assigned_device_count); 12876 } 12877 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 12878 12879 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 12880 { 12881 return arch_atomic_read(&kvm->arch.assigned_device_count); 12882 } 12883 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 12884 12885 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 12886 { 12887 atomic_inc(&kvm->arch.noncoherent_dma_count); 12888 } 12889 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 12890 12891 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 12892 { 12893 atomic_dec(&kvm->arch.noncoherent_dma_count); 12894 } 12895 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 12896 12897 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 12898 { 12899 return atomic_read(&kvm->arch.noncoherent_dma_count); 12900 } 12901 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 12902 12903 bool kvm_arch_has_irq_bypass(void) 12904 { 12905 return true; 12906 } 12907 12908 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 12909 struct irq_bypass_producer *prod) 12910 { 12911 struct kvm_kernel_irqfd *irqfd = 12912 container_of(cons, struct kvm_kernel_irqfd, consumer); 12913 int ret; 12914 12915 irqfd->producer = prod; 12916 kvm_arch_start_assignment(irqfd->kvm); 12917 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 12918 prod->irq, irqfd->gsi, 1); 12919 12920 if (ret) 12921 kvm_arch_end_assignment(irqfd->kvm); 12922 12923 return ret; 12924 } 12925 12926 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 12927 struct irq_bypass_producer *prod) 12928 { 12929 int ret; 12930 struct kvm_kernel_irqfd *irqfd = 12931 container_of(cons, struct kvm_kernel_irqfd, consumer); 12932 12933 WARN_ON(irqfd->producer != prod); 12934 irqfd->producer = NULL; 12935 12936 /* 12937 * When producer of consumer is unregistered, we change back to 12938 * remapped mode, so we can re-use the current implementation 12939 * when the irq is masked/disabled or the consumer side (KVM 12940 * int this case doesn't want to receive the interrupts. 12941 */ 12942 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 12943 if (ret) 12944 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 12945 " fails: %d\n", irqfd->consumer.token, ret); 12946 12947 kvm_arch_end_assignment(irqfd->kvm); 12948 } 12949 12950 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 12951 uint32_t guest_irq, bool set) 12952 { 12953 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 12954 } 12955 12956 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 12957 struct kvm_kernel_irq_routing_entry *new) 12958 { 12959 if (new->type != KVM_IRQ_ROUTING_MSI) 12960 return true; 12961 12962 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 12963 } 12964 12965 bool kvm_vector_hashing_enabled(void) 12966 { 12967 return vector_hashing; 12968 } 12969 12970 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 12971 { 12972 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 12973 } 12974 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 12975 12976 12977 int kvm_spec_ctrl_test_value(u64 value) 12978 { 12979 /* 12980 * test that setting IA32_SPEC_CTRL to given value 12981 * is allowed by the host processor 12982 */ 12983 12984 u64 saved_value; 12985 unsigned long flags; 12986 int ret = 0; 12987 12988 local_irq_save(flags); 12989 12990 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 12991 ret = 1; 12992 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 12993 ret = 1; 12994 else 12995 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 12996 12997 local_irq_restore(flags); 12998 12999 return ret; 13000 } 13001 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13002 13003 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13004 { 13005 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13006 struct x86_exception fault; 13007 u64 access = error_code & 13008 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13009 13010 if (!(error_code & PFERR_PRESENT_MASK) || 13011 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13012 /* 13013 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13014 * tables probably do not match the TLB. Just proceed 13015 * with the error code that the processor gave. 13016 */ 13017 fault.vector = PF_VECTOR; 13018 fault.error_code_valid = true; 13019 fault.error_code = error_code; 13020 fault.nested_page_fault = false; 13021 fault.address = gva; 13022 } 13023 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13024 } 13025 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13026 13027 /* 13028 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13029 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13030 * indicates whether exit to userspace is needed. 13031 */ 13032 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13033 struct x86_exception *e) 13034 { 13035 if (r == X86EMUL_PROPAGATE_FAULT) { 13036 kvm_inject_emulated_page_fault(vcpu, e); 13037 return 1; 13038 } 13039 13040 /* 13041 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13042 * while handling a VMX instruction KVM could've handled the request 13043 * correctly by exiting to userspace and performing I/O but there 13044 * doesn't seem to be a real use-case behind such requests, just return 13045 * KVM_EXIT_INTERNAL_ERROR for now. 13046 */ 13047 kvm_prepare_emulation_failure_exit(vcpu); 13048 13049 return 0; 13050 } 13051 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13052 13053 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13054 { 13055 bool pcid_enabled; 13056 struct x86_exception e; 13057 struct { 13058 u64 pcid; 13059 u64 gla; 13060 } operand; 13061 int r; 13062 13063 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13064 if (r != X86EMUL_CONTINUE) 13065 return kvm_handle_memory_failure(vcpu, r, &e); 13066 13067 if (operand.pcid >> 12 != 0) { 13068 kvm_inject_gp(vcpu, 0); 13069 return 1; 13070 } 13071 13072 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13073 13074 switch (type) { 13075 case INVPCID_TYPE_INDIV_ADDR: 13076 if ((!pcid_enabled && (operand.pcid != 0)) || 13077 is_noncanonical_address(operand.gla, vcpu)) { 13078 kvm_inject_gp(vcpu, 0); 13079 return 1; 13080 } 13081 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13082 return kvm_skip_emulated_instruction(vcpu); 13083 13084 case INVPCID_TYPE_SINGLE_CTXT: 13085 if (!pcid_enabled && (operand.pcid != 0)) { 13086 kvm_inject_gp(vcpu, 0); 13087 return 1; 13088 } 13089 13090 kvm_invalidate_pcid(vcpu, operand.pcid); 13091 return kvm_skip_emulated_instruction(vcpu); 13092 13093 case INVPCID_TYPE_ALL_NON_GLOBAL: 13094 /* 13095 * Currently, KVM doesn't mark global entries in the shadow 13096 * page tables, so a non-global flush just degenerates to a 13097 * global flush. If needed, we could optimize this later by 13098 * keeping track of global entries in shadow page tables. 13099 */ 13100 13101 fallthrough; 13102 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13103 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13104 return kvm_skip_emulated_instruction(vcpu); 13105 13106 default: 13107 kvm_inject_gp(vcpu, 0); 13108 return 1; 13109 } 13110 } 13111 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13112 13113 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13114 { 13115 struct kvm_run *run = vcpu->run; 13116 struct kvm_mmio_fragment *frag; 13117 unsigned int len; 13118 13119 BUG_ON(!vcpu->mmio_needed); 13120 13121 /* Complete previous fragment */ 13122 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13123 len = min(8u, frag->len); 13124 if (!vcpu->mmio_is_write) 13125 memcpy(frag->data, run->mmio.data, len); 13126 13127 if (frag->len <= 8) { 13128 /* Switch to the next fragment. */ 13129 frag++; 13130 vcpu->mmio_cur_fragment++; 13131 } else { 13132 /* Go forward to the next mmio piece. */ 13133 frag->data += len; 13134 frag->gpa += len; 13135 frag->len -= len; 13136 } 13137 13138 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13139 vcpu->mmio_needed = 0; 13140 13141 // VMG change, at this point, we're always done 13142 // RIP has already been advanced 13143 return 1; 13144 } 13145 13146 // More MMIO is needed 13147 run->mmio.phys_addr = frag->gpa; 13148 run->mmio.len = min(8u, frag->len); 13149 run->mmio.is_write = vcpu->mmio_is_write; 13150 if (run->mmio.is_write) 13151 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13152 run->exit_reason = KVM_EXIT_MMIO; 13153 13154 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13155 13156 return 0; 13157 } 13158 13159 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13160 void *data) 13161 { 13162 int handled; 13163 struct kvm_mmio_fragment *frag; 13164 13165 if (!data) 13166 return -EINVAL; 13167 13168 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13169 if (handled == bytes) 13170 return 1; 13171 13172 bytes -= handled; 13173 gpa += handled; 13174 data += handled; 13175 13176 /*TODO: Check if need to increment number of frags */ 13177 frag = vcpu->mmio_fragments; 13178 vcpu->mmio_nr_fragments = 1; 13179 frag->len = bytes; 13180 frag->gpa = gpa; 13181 frag->data = data; 13182 13183 vcpu->mmio_needed = 1; 13184 vcpu->mmio_cur_fragment = 0; 13185 13186 vcpu->run->mmio.phys_addr = gpa; 13187 vcpu->run->mmio.len = min(8u, frag->len); 13188 vcpu->run->mmio.is_write = 1; 13189 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13190 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13191 13192 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13193 13194 return 0; 13195 } 13196 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13197 13198 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13199 void *data) 13200 { 13201 int handled; 13202 struct kvm_mmio_fragment *frag; 13203 13204 if (!data) 13205 return -EINVAL; 13206 13207 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13208 if (handled == bytes) 13209 return 1; 13210 13211 bytes -= handled; 13212 gpa += handled; 13213 data += handled; 13214 13215 /*TODO: Check if need to increment number of frags */ 13216 frag = vcpu->mmio_fragments; 13217 vcpu->mmio_nr_fragments = 1; 13218 frag->len = bytes; 13219 frag->gpa = gpa; 13220 frag->data = data; 13221 13222 vcpu->mmio_needed = 1; 13223 vcpu->mmio_cur_fragment = 0; 13224 13225 vcpu->run->mmio.phys_addr = gpa; 13226 vcpu->run->mmio.len = min(8u, frag->len); 13227 vcpu->run->mmio.is_write = 0; 13228 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13229 13230 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13231 13232 return 0; 13233 } 13234 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13235 13236 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13237 { 13238 vcpu->arch.sev_pio_count -= count; 13239 vcpu->arch.sev_pio_data += count * size; 13240 } 13241 13242 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13243 unsigned int port); 13244 13245 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13246 { 13247 int size = vcpu->arch.pio.size; 13248 int port = vcpu->arch.pio.port; 13249 13250 vcpu->arch.pio.count = 0; 13251 if (vcpu->arch.sev_pio_count) 13252 return kvm_sev_es_outs(vcpu, size, port); 13253 return 1; 13254 } 13255 13256 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13257 unsigned int port) 13258 { 13259 for (;;) { 13260 unsigned int count = 13261 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13262 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13263 13264 /* memcpy done already by emulator_pio_out. */ 13265 advance_sev_es_emulated_pio(vcpu, count, size); 13266 if (!ret) 13267 break; 13268 13269 /* Emulation done by the kernel. */ 13270 if (!vcpu->arch.sev_pio_count) 13271 return 1; 13272 } 13273 13274 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13275 return 0; 13276 } 13277 13278 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13279 unsigned int port); 13280 13281 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13282 { 13283 unsigned count = vcpu->arch.pio.count; 13284 int size = vcpu->arch.pio.size; 13285 int port = vcpu->arch.pio.port; 13286 13287 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13288 advance_sev_es_emulated_pio(vcpu, count, size); 13289 if (vcpu->arch.sev_pio_count) 13290 return kvm_sev_es_ins(vcpu, size, port); 13291 return 1; 13292 } 13293 13294 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13295 unsigned int port) 13296 { 13297 for (;;) { 13298 unsigned int count = 13299 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13300 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13301 break; 13302 13303 /* Emulation done by the kernel. */ 13304 advance_sev_es_emulated_pio(vcpu, count, size); 13305 if (!vcpu->arch.sev_pio_count) 13306 return 1; 13307 } 13308 13309 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13310 return 0; 13311 } 13312 13313 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13314 unsigned int port, void *data, unsigned int count, 13315 int in) 13316 { 13317 vcpu->arch.sev_pio_data = data; 13318 vcpu->arch.sev_pio_count = count; 13319 return in ? kvm_sev_es_ins(vcpu, size, port) 13320 : kvm_sev_es_outs(vcpu, size, port); 13321 } 13322 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13323 13324 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13325 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13326 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13327 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13328 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13329 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13330 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13331 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 13332 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13333 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13334 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13335 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13336 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13337 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13338 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13339 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13340 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13341 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13342 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13343 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13344 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13345 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13346 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13347 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13348 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13349 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13350 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13351 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13352 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13353 13354 static int __init kvm_x86_init(void) 13355 { 13356 kvm_mmu_x86_module_init(); 13357 return 0; 13358 } 13359 module_init(kvm_x86_init); 13360 13361 static void __exit kvm_x86_exit(void) 13362 { 13363 /* 13364 * If module_init() is implemented, module_exit() must also be 13365 * implemented to allow module unload. 13366 */ 13367 } 13368 module_exit(kvm_x86_exit); 13369