xref: /openbmc/linux/arch/x86/kvm/x86.c (revision dfc34940)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28 
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
43 #include "trace.h"
44 
45 #include <asm/uaccess.h>
46 #include <asm/msr.h>
47 #include <asm/desc.h>
48 #include <asm/mtrr.h>
49 #include <asm/mce.h>
50 
51 #define MAX_IO_MSRS 256
52 #define CR0_RESERVED_BITS						\
53 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
54 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
55 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
56 #define CR4_RESERVED_BITS						\
57 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
58 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
59 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
60 			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
61 
62 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
63 
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
66 
67 /* EFER defaults:
68  * - enable syscall per default because its emulated by KVM
69  * - enable LME and LMA per default on 64 bit KVM
70  */
71 #ifdef CONFIG_X86_64
72 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
73 #else
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
75 #endif
76 
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
79 
80 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
81 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
82 				    struct kvm_cpuid_entry2 __user *entries);
83 
84 struct kvm_x86_ops *kvm_x86_ops;
85 EXPORT_SYMBOL_GPL(kvm_x86_ops);
86 
87 int ignore_msrs = 0;
88 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
89 
90 struct kvm_stats_debugfs_item debugfs_entries[] = {
91 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
92 	{ "pf_guest", VCPU_STAT(pf_guest) },
93 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
94 	{ "invlpg", VCPU_STAT(invlpg) },
95 	{ "exits", VCPU_STAT(exits) },
96 	{ "io_exits", VCPU_STAT(io_exits) },
97 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
98 	{ "signal_exits", VCPU_STAT(signal_exits) },
99 	{ "irq_window", VCPU_STAT(irq_window_exits) },
100 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
101 	{ "halt_exits", VCPU_STAT(halt_exits) },
102 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
103 	{ "hypercalls", VCPU_STAT(hypercalls) },
104 	{ "request_irq", VCPU_STAT(request_irq_exits) },
105 	{ "irq_exits", VCPU_STAT(irq_exits) },
106 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
107 	{ "efer_reload", VCPU_STAT(efer_reload) },
108 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
109 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
110 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
111 	{ "irq_injections", VCPU_STAT(irq_injections) },
112 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
113 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
114 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
115 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
116 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
117 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
118 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
119 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
120 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
121 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
122 	{ "largepages", VM_STAT(lpages) },
123 	{ NULL }
124 };
125 
126 unsigned long segment_base(u16 selector)
127 {
128 	struct descriptor_table gdt;
129 	struct desc_struct *d;
130 	unsigned long table_base;
131 	unsigned long v;
132 
133 	if (selector == 0)
134 		return 0;
135 
136 	kvm_get_gdt(&gdt);
137 	table_base = gdt.base;
138 
139 	if (selector & 4) {           /* from ldt */
140 		u16 ldt_selector = kvm_read_ldt();
141 
142 		table_base = segment_base(ldt_selector);
143 	}
144 	d = (struct desc_struct *)(table_base + (selector & ~7));
145 	v = get_desc_base(d);
146 #ifdef CONFIG_X86_64
147 	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
148 		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
149 #endif
150 	return v;
151 }
152 EXPORT_SYMBOL_GPL(segment_base);
153 
154 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
155 {
156 	if (irqchip_in_kernel(vcpu->kvm))
157 		return vcpu->arch.apic_base;
158 	else
159 		return vcpu->arch.apic_base;
160 }
161 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
162 
163 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
164 {
165 	/* TODO: reserve bits check */
166 	if (irqchip_in_kernel(vcpu->kvm))
167 		kvm_lapic_set_base(vcpu, data);
168 	else
169 		vcpu->arch.apic_base = data;
170 }
171 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
172 
173 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
174 {
175 	WARN_ON(vcpu->arch.exception.pending);
176 	vcpu->arch.exception.pending = true;
177 	vcpu->arch.exception.has_error_code = false;
178 	vcpu->arch.exception.nr = nr;
179 }
180 EXPORT_SYMBOL_GPL(kvm_queue_exception);
181 
182 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
183 			   u32 error_code)
184 {
185 	++vcpu->stat.pf_guest;
186 
187 	if (vcpu->arch.exception.pending) {
188 		switch(vcpu->arch.exception.nr) {
189 		case DF_VECTOR:
190 			/* triple fault -> shutdown */
191 			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
192 			return;
193 		case PF_VECTOR:
194 			vcpu->arch.exception.nr = DF_VECTOR;
195 			vcpu->arch.exception.error_code = 0;
196 			return;
197 		default:
198 			/* replace previous exception with a new one in a hope
199 			   that instruction re-execution will regenerate lost
200 			   exception */
201 			vcpu->arch.exception.pending = false;
202 			break;
203 		}
204 	}
205 	vcpu->arch.cr2 = addr;
206 	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
207 }
208 
209 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
210 {
211 	vcpu->arch.nmi_pending = 1;
212 }
213 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
214 
215 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
216 {
217 	WARN_ON(vcpu->arch.exception.pending);
218 	vcpu->arch.exception.pending = true;
219 	vcpu->arch.exception.has_error_code = true;
220 	vcpu->arch.exception.nr = nr;
221 	vcpu->arch.exception.error_code = error_code;
222 }
223 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
224 
225 /*
226  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
227  * a #GP and return false.
228  */
229 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
230 {
231 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
232 		return true;
233 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
234 	return false;
235 }
236 EXPORT_SYMBOL_GPL(kvm_require_cpl);
237 
238 /*
239  * Load the pae pdptrs.  Return true is they are all valid.
240  */
241 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
242 {
243 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
244 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
245 	int i;
246 	int ret;
247 	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
248 
249 	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
250 				  offset * sizeof(u64), sizeof(pdpte));
251 	if (ret < 0) {
252 		ret = 0;
253 		goto out;
254 	}
255 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
256 		if (is_present_gpte(pdpte[i]) &&
257 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
258 			ret = 0;
259 			goto out;
260 		}
261 	}
262 	ret = 1;
263 
264 	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
265 	__set_bit(VCPU_EXREG_PDPTR,
266 		  (unsigned long *)&vcpu->arch.regs_avail);
267 	__set_bit(VCPU_EXREG_PDPTR,
268 		  (unsigned long *)&vcpu->arch.regs_dirty);
269 out:
270 
271 	return ret;
272 }
273 EXPORT_SYMBOL_GPL(load_pdptrs);
274 
275 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
276 {
277 	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
278 	bool changed = true;
279 	int r;
280 
281 	if (is_long_mode(vcpu) || !is_pae(vcpu))
282 		return false;
283 
284 	if (!test_bit(VCPU_EXREG_PDPTR,
285 		      (unsigned long *)&vcpu->arch.regs_avail))
286 		return true;
287 
288 	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
289 	if (r < 0)
290 		goto out;
291 	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
292 out:
293 
294 	return changed;
295 }
296 
297 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
298 {
299 	if (cr0 & CR0_RESERVED_BITS) {
300 		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
301 		       cr0, vcpu->arch.cr0);
302 		kvm_inject_gp(vcpu, 0);
303 		return;
304 	}
305 
306 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
307 		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
308 		kvm_inject_gp(vcpu, 0);
309 		return;
310 	}
311 
312 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
313 		printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
314 		       "and a clear PE flag\n");
315 		kvm_inject_gp(vcpu, 0);
316 		return;
317 	}
318 
319 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
320 #ifdef CONFIG_X86_64
321 		if ((vcpu->arch.shadow_efer & EFER_LME)) {
322 			int cs_db, cs_l;
323 
324 			if (!is_pae(vcpu)) {
325 				printk(KERN_DEBUG "set_cr0: #GP, start paging "
326 				       "in long mode while PAE is disabled\n");
327 				kvm_inject_gp(vcpu, 0);
328 				return;
329 			}
330 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
331 			if (cs_l) {
332 				printk(KERN_DEBUG "set_cr0: #GP, start paging "
333 				       "in long mode while CS.L == 1\n");
334 				kvm_inject_gp(vcpu, 0);
335 				return;
336 
337 			}
338 		} else
339 #endif
340 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
341 			printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
342 			       "reserved bits\n");
343 			kvm_inject_gp(vcpu, 0);
344 			return;
345 		}
346 
347 	}
348 
349 	kvm_x86_ops->set_cr0(vcpu, cr0);
350 	vcpu->arch.cr0 = cr0;
351 
352 	kvm_mmu_reset_context(vcpu);
353 	return;
354 }
355 EXPORT_SYMBOL_GPL(kvm_set_cr0);
356 
357 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
358 {
359 	kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
360 }
361 EXPORT_SYMBOL_GPL(kvm_lmsw);
362 
363 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
364 {
365 	unsigned long old_cr4 = vcpu->arch.cr4;
366 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
367 
368 	if (cr4 & CR4_RESERVED_BITS) {
369 		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
370 		kvm_inject_gp(vcpu, 0);
371 		return;
372 	}
373 
374 	if (is_long_mode(vcpu)) {
375 		if (!(cr4 & X86_CR4_PAE)) {
376 			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
377 			       "in long mode\n");
378 			kvm_inject_gp(vcpu, 0);
379 			return;
380 		}
381 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
382 		   && ((cr4 ^ old_cr4) & pdptr_bits)
383 		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
384 		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
385 		kvm_inject_gp(vcpu, 0);
386 		return;
387 	}
388 
389 	if (cr4 & X86_CR4_VMXE) {
390 		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
391 		kvm_inject_gp(vcpu, 0);
392 		return;
393 	}
394 	kvm_x86_ops->set_cr4(vcpu, cr4);
395 	vcpu->arch.cr4 = cr4;
396 	vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
397 	kvm_mmu_reset_context(vcpu);
398 }
399 EXPORT_SYMBOL_GPL(kvm_set_cr4);
400 
401 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
402 {
403 	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
404 		kvm_mmu_sync_roots(vcpu);
405 		kvm_mmu_flush_tlb(vcpu);
406 		return;
407 	}
408 
409 	if (is_long_mode(vcpu)) {
410 		if (cr3 & CR3_L_MODE_RESERVED_BITS) {
411 			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
412 			kvm_inject_gp(vcpu, 0);
413 			return;
414 		}
415 	} else {
416 		if (is_pae(vcpu)) {
417 			if (cr3 & CR3_PAE_RESERVED_BITS) {
418 				printk(KERN_DEBUG
419 				       "set_cr3: #GP, reserved bits\n");
420 				kvm_inject_gp(vcpu, 0);
421 				return;
422 			}
423 			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
424 				printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
425 				       "reserved bits\n");
426 				kvm_inject_gp(vcpu, 0);
427 				return;
428 			}
429 		}
430 		/*
431 		 * We don't check reserved bits in nonpae mode, because
432 		 * this isn't enforced, and VMware depends on this.
433 		 */
434 	}
435 
436 	/*
437 	 * Does the new cr3 value map to physical memory? (Note, we
438 	 * catch an invalid cr3 even in real-mode, because it would
439 	 * cause trouble later on when we turn on paging anyway.)
440 	 *
441 	 * A real CPU would silently accept an invalid cr3 and would
442 	 * attempt to use it - with largely undefined (and often hard
443 	 * to debug) behavior on the guest side.
444 	 */
445 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
446 		kvm_inject_gp(vcpu, 0);
447 	else {
448 		vcpu->arch.cr3 = cr3;
449 		vcpu->arch.mmu.new_cr3(vcpu);
450 	}
451 }
452 EXPORT_SYMBOL_GPL(kvm_set_cr3);
453 
454 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
455 {
456 	if (cr8 & CR8_RESERVED_BITS) {
457 		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
458 		kvm_inject_gp(vcpu, 0);
459 		return;
460 	}
461 	if (irqchip_in_kernel(vcpu->kvm))
462 		kvm_lapic_set_tpr(vcpu, cr8);
463 	else
464 		vcpu->arch.cr8 = cr8;
465 }
466 EXPORT_SYMBOL_GPL(kvm_set_cr8);
467 
468 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
469 {
470 	if (irqchip_in_kernel(vcpu->kvm))
471 		return kvm_lapic_get_cr8(vcpu);
472 	else
473 		return vcpu->arch.cr8;
474 }
475 EXPORT_SYMBOL_GPL(kvm_get_cr8);
476 
477 static inline u32 bit(int bitno)
478 {
479 	return 1 << (bitno & 31);
480 }
481 
482 /*
483  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
484  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
485  *
486  * This list is modified at module load time to reflect the
487  * capabilities of the host cpu.
488  */
489 static u32 msrs_to_save[] = {
490 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
491 	MSR_K6_STAR,
492 #ifdef CONFIG_X86_64
493 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
494 #endif
495 	MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
496 	MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
497 };
498 
499 static unsigned num_msrs_to_save;
500 
501 static u32 emulated_msrs[] = {
502 	MSR_IA32_MISC_ENABLE,
503 };
504 
505 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
506 {
507 	if (efer & efer_reserved_bits) {
508 		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
509 		       efer);
510 		kvm_inject_gp(vcpu, 0);
511 		return;
512 	}
513 
514 	if (is_paging(vcpu)
515 	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
516 		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
517 		kvm_inject_gp(vcpu, 0);
518 		return;
519 	}
520 
521 	if (efer & EFER_FFXSR) {
522 		struct kvm_cpuid_entry2 *feat;
523 
524 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
525 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
526 			printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
527 			kvm_inject_gp(vcpu, 0);
528 			return;
529 		}
530 	}
531 
532 	if (efer & EFER_SVME) {
533 		struct kvm_cpuid_entry2 *feat;
534 
535 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
536 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
537 			printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
538 			kvm_inject_gp(vcpu, 0);
539 			return;
540 		}
541 	}
542 
543 	kvm_x86_ops->set_efer(vcpu, efer);
544 
545 	efer &= ~EFER_LMA;
546 	efer |= vcpu->arch.shadow_efer & EFER_LMA;
547 
548 	vcpu->arch.shadow_efer = efer;
549 
550 	vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
551 	kvm_mmu_reset_context(vcpu);
552 }
553 
554 void kvm_enable_efer_bits(u64 mask)
555 {
556        efer_reserved_bits &= ~mask;
557 }
558 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
559 
560 
561 /*
562  * Writes msr value into into the appropriate "register".
563  * Returns 0 on success, non-0 otherwise.
564  * Assumes vcpu_load() was already called.
565  */
566 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
567 {
568 	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
569 }
570 
571 /*
572  * Adapt set_msr() to msr_io()'s calling convention
573  */
574 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
575 {
576 	return kvm_set_msr(vcpu, index, *data);
577 }
578 
579 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
580 {
581 	static int version;
582 	struct pvclock_wall_clock wc;
583 	struct timespec now, sys, boot;
584 
585 	if (!wall_clock)
586 		return;
587 
588 	version++;
589 
590 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
591 
592 	/*
593 	 * The guest calculates current wall clock time by adding
594 	 * system time (updated by kvm_write_guest_time below) to the
595 	 * wall clock specified here.  guest system time equals host
596 	 * system time for us, thus we must fill in host boot time here.
597 	 */
598 	now = current_kernel_time();
599 	ktime_get_ts(&sys);
600 	boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
601 
602 	wc.sec = boot.tv_sec;
603 	wc.nsec = boot.tv_nsec;
604 	wc.version = version;
605 
606 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
607 
608 	version++;
609 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
610 }
611 
612 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
613 {
614 	uint32_t quotient, remainder;
615 
616 	/* Don't try to replace with do_div(), this one calculates
617 	 * "(dividend << 32) / divisor" */
618 	__asm__ ( "divl %4"
619 		  : "=a" (quotient), "=d" (remainder)
620 		  : "0" (0), "1" (dividend), "r" (divisor) );
621 	return quotient;
622 }
623 
624 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
625 {
626 	uint64_t nsecs = 1000000000LL;
627 	int32_t  shift = 0;
628 	uint64_t tps64;
629 	uint32_t tps32;
630 
631 	tps64 = tsc_khz * 1000LL;
632 	while (tps64 > nsecs*2) {
633 		tps64 >>= 1;
634 		shift--;
635 	}
636 
637 	tps32 = (uint32_t)tps64;
638 	while (tps32 <= (uint32_t)nsecs) {
639 		tps32 <<= 1;
640 		shift++;
641 	}
642 
643 	hv_clock->tsc_shift = shift;
644 	hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
645 
646 	pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
647 		 __func__, tsc_khz, hv_clock->tsc_shift,
648 		 hv_clock->tsc_to_system_mul);
649 }
650 
651 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
652 
653 static void kvm_write_guest_time(struct kvm_vcpu *v)
654 {
655 	struct timespec ts;
656 	unsigned long flags;
657 	struct kvm_vcpu_arch *vcpu = &v->arch;
658 	void *shared_kaddr;
659 	unsigned long this_tsc_khz;
660 
661 	if ((!vcpu->time_page))
662 		return;
663 
664 	this_tsc_khz = get_cpu_var(cpu_tsc_khz);
665 	if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
666 		kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
667 		vcpu->hv_clock_tsc_khz = this_tsc_khz;
668 	}
669 	put_cpu_var(cpu_tsc_khz);
670 
671 	/* Keep irq disabled to prevent changes to the clock */
672 	local_irq_save(flags);
673 	kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
674 	ktime_get_ts(&ts);
675 	local_irq_restore(flags);
676 
677 	/* With all the info we got, fill in the values */
678 
679 	vcpu->hv_clock.system_time = ts.tv_nsec +
680 				     (NSEC_PER_SEC * (u64)ts.tv_sec);
681 	/*
682 	 * The interface expects us to write an even number signaling that the
683 	 * update is finished. Since the guest won't see the intermediate
684 	 * state, we just increase by 2 at the end.
685 	 */
686 	vcpu->hv_clock.version += 2;
687 
688 	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
689 
690 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
691 	       sizeof(vcpu->hv_clock));
692 
693 	kunmap_atomic(shared_kaddr, KM_USER0);
694 
695 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
696 }
697 
698 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
699 {
700 	struct kvm_vcpu_arch *vcpu = &v->arch;
701 
702 	if (!vcpu->time_page)
703 		return 0;
704 	set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
705 	return 1;
706 }
707 
708 static bool msr_mtrr_valid(unsigned msr)
709 {
710 	switch (msr) {
711 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
712 	case MSR_MTRRfix64K_00000:
713 	case MSR_MTRRfix16K_80000:
714 	case MSR_MTRRfix16K_A0000:
715 	case MSR_MTRRfix4K_C0000:
716 	case MSR_MTRRfix4K_C8000:
717 	case MSR_MTRRfix4K_D0000:
718 	case MSR_MTRRfix4K_D8000:
719 	case MSR_MTRRfix4K_E0000:
720 	case MSR_MTRRfix4K_E8000:
721 	case MSR_MTRRfix4K_F0000:
722 	case MSR_MTRRfix4K_F8000:
723 	case MSR_MTRRdefType:
724 	case MSR_IA32_CR_PAT:
725 		return true;
726 	case 0x2f8:
727 		return true;
728 	}
729 	return false;
730 }
731 
732 static bool valid_pat_type(unsigned t)
733 {
734 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
735 }
736 
737 static bool valid_mtrr_type(unsigned t)
738 {
739 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
740 }
741 
742 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
743 {
744 	int i;
745 
746 	if (!msr_mtrr_valid(msr))
747 		return false;
748 
749 	if (msr == MSR_IA32_CR_PAT) {
750 		for (i = 0; i < 8; i++)
751 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
752 				return false;
753 		return true;
754 	} else if (msr == MSR_MTRRdefType) {
755 		if (data & ~0xcff)
756 			return false;
757 		return valid_mtrr_type(data & 0xff);
758 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
759 		for (i = 0; i < 8 ; i++)
760 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
761 				return false;
762 		return true;
763 	}
764 
765 	/* variable MTRRs */
766 	return valid_mtrr_type(data & 0xff);
767 }
768 
769 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
770 {
771 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
772 
773 	if (!mtrr_valid(vcpu, msr, data))
774 		return 1;
775 
776 	if (msr == MSR_MTRRdefType) {
777 		vcpu->arch.mtrr_state.def_type = data;
778 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
779 	} else if (msr == MSR_MTRRfix64K_00000)
780 		p[0] = data;
781 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
782 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
783 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
784 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
785 	else if (msr == MSR_IA32_CR_PAT)
786 		vcpu->arch.pat = data;
787 	else {	/* Variable MTRRs */
788 		int idx, is_mtrr_mask;
789 		u64 *pt;
790 
791 		idx = (msr - 0x200) / 2;
792 		is_mtrr_mask = msr - 0x200 - 2 * idx;
793 		if (!is_mtrr_mask)
794 			pt =
795 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
796 		else
797 			pt =
798 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
799 		*pt = data;
800 	}
801 
802 	kvm_mmu_reset_context(vcpu);
803 	return 0;
804 }
805 
806 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
807 {
808 	u64 mcg_cap = vcpu->arch.mcg_cap;
809 	unsigned bank_num = mcg_cap & 0xff;
810 
811 	switch (msr) {
812 	case MSR_IA32_MCG_STATUS:
813 		vcpu->arch.mcg_status = data;
814 		break;
815 	case MSR_IA32_MCG_CTL:
816 		if (!(mcg_cap & MCG_CTL_P))
817 			return 1;
818 		if (data != 0 && data != ~(u64)0)
819 			return -1;
820 		vcpu->arch.mcg_ctl = data;
821 		break;
822 	default:
823 		if (msr >= MSR_IA32_MC0_CTL &&
824 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
825 			u32 offset = msr - MSR_IA32_MC0_CTL;
826 			/* only 0 or all 1s can be written to IA32_MCi_CTL */
827 			if ((offset & 0x3) == 0 &&
828 			    data != 0 && data != ~(u64)0)
829 				return -1;
830 			vcpu->arch.mce_banks[offset] = data;
831 			break;
832 		}
833 		return 1;
834 	}
835 	return 0;
836 }
837 
838 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
839 {
840 	switch (msr) {
841 	case MSR_EFER:
842 		set_efer(vcpu, data);
843 		break;
844 	case MSR_K7_HWCR:
845 		data &= ~(u64)0x40;	/* ignore flush filter disable */
846 		if (data != 0) {
847 			pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
848 				data);
849 			return 1;
850 		}
851 		break;
852 	case MSR_FAM10H_MMIO_CONF_BASE:
853 		if (data != 0) {
854 			pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
855 				"0x%llx\n", data);
856 			return 1;
857 		}
858 		break;
859 	case MSR_AMD64_NB_CFG:
860 		break;
861 	case MSR_IA32_DEBUGCTLMSR:
862 		if (!data) {
863 			/* We support the non-activated case already */
864 			break;
865 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
866 			/* Values other than LBR and BTF are vendor-specific,
867 			   thus reserved and should throw a #GP */
868 			return 1;
869 		}
870 		pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
871 			__func__, data);
872 		break;
873 	case MSR_IA32_UCODE_REV:
874 	case MSR_IA32_UCODE_WRITE:
875 	case MSR_VM_HSAVE_PA:
876 	case MSR_AMD64_PATCH_LOADER:
877 		break;
878 	case 0x200 ... 0x2ff:
879 		return set_msr_mtrr(vcpu, msr, data);
880 	case MSR_IA32_APICBASE:
881 		kvm_set_apic_base(vcpu, data);
882 		break;
883 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
884 		return kvm_x2apic_msr_write(vcpu, msr, data);
885 	case MSR_IA32_MISC_ENABLE:
886 		vcpu->arch.ia32_misc_enable_msr = data;
887 		break;
888 	case MSR_KVM_WALL_CLOCK:
889 		vcpu->kvm->arch.wall_clock = data;
890 		kvm_write_wall_clock(vcpu->kvm, data);
891 		break;
892 	case MSR_KVM_SYSTEM_TIME: {
893 		if (vcpu->arch.time_page) {
894 			kvm_release_page_dirty(vcpu->arch.time_page);
895 			vcpu->arch.time_page = NULL;
896 		}
897 
898 		vcpu->arch.time = data;
899 
900 		/* we verify if the enable bit is set... */
901 		if (!(data & 1))
902 			break;
903 
904 		/* ...but clean it before doing the actual write */
905 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
906 
907 		vcpu->arch.time_page =
908 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
909 
910 		if (is_error_page(vcpu->arch.time_page)) {
911 			kvm_release_page_clean(vcpu->arch.time_page);
912 			vcpu->arch.time_page = NULL;
913 		}
914 
915 		kvm_request_guest_time_update(vcpu);
916 		break;
917 	}
918 	case MSR_IA32_MCG_CTL:
919 	case MSR_IA32_MCG_STATUS:
920 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
921 		return set_msr_mce(vcpu, msr, data);
922 
923 	/* Performance counters are not protected by a CPUID bit,
924 	 * so we should check all of them in the generic path for the sake of
925 	 * cross vendor migration.
926 	 * Writing a zero into the event select MSRs disables them,
927 	 * which we perfectly emulate ;-). Any other value should be at least
928 	 * reported, some guests depend on them.
929 	 */
930 	case MSR_P6_EVNTSEL0:
931 	case MSR_P6_EVNTSEL1:
932 	case MSR_K7_EVNTSEL0:
933 	case MSR_K7_EVNTSEL1:
934 	case MSR_K7_EVNTSEL2:
935 	case MSR_K7_EVNTSEL3:
936 		if (data != 0)
937 			pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
938 				"0x%x data 0x%llx\n", msr, data);
939 		break;
940 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
941 	 * so we ignore writes to make it happy.
942 	 */
943 	case MSR_P6_PERFCTR0:
944 	case MSR_P6_PERFCTR1:
945 	case MSR_K7_PERFCTR0:
946 	case MSR_K7_PERFCTR1:
947 	case MSR_K7_PERFCTR2:
948 	case MSR_K7_PERFCTR3:
949 		pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
950 			"0x%x data 0x%llx\n", msr, data);
951 		break;
952 	default:
953 		if (!ignore_msrs) {
954 			pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
955 				msr, data);
956 			return 1;
957 		} else {
958 			pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
959 				msr, data);
960 			break;
961 		}
962 	}
963 	return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
966 
967 
968 /*
969  * Reads an msr value (of 'msr_index') into 'pdata'.
970  * Returns 0 on success, non-0 otherwise.
971  * Assumes vcpu_load() was already called.
972  */
973 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
974 {
975 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
976 }
977 
978 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
979 {
980 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
981 
982 	if (!msr_mtrr_valid(msr))
983 		return 1;
984 
985 	if (msr == MSR_MTRRdefType)
986 		*pdata = vcpu->arch.mtrr_state.def_type +
987 			 (vcpu->arch.mtrr_state.enabled << 10);
988 	else if (msr == MSR_MTRRfix64K_00000)
989 		*pdata = p[0];
990 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
991 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
992 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
993 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
994 	else if (msr == MSR_IA32_CR_PAT)
995 		*pdata = vcpu->arch.pat;
996 	else {	/* Variable MTRRs */
997 		int idx, is_mtrr_mask;
998 		u64 *pt;
999 
1000 		idx = (msr - 0x200) / 2;
1001 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1002 		if (!is_mtrr_mask)
1003 			pt =
1004 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1005 		else
1006 			pt =
1007 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1008 		*pdata = *pt;
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1015 {
1016 	u64 data;
1017 	u64 mcg_cap = vcpu->arch.mcg_cap;
1018 	unsigned bank_num = mcg_cap & 0xff;
1019 
1020 	switch (msr) {
1021 	case MSR_IA32_P5_MC_ADDR:
1022 	case MSR_IA32_P5_MC_TYPE:
1023 		data = 0;
1024 		break;
1025 	case MSR_IA32_MCG_CAP:
1026 		data = vcpu->arch.mcg_cap;
1027 		break;
1028 	case MSR_IA32_MCG_CTL:
1029 		if (!(mcg_cap & MCG_CTL_P))
1030 			return 1;
1031 		data = vcpu->arch.mcg_ctl;
1032 		break;
1033 	case MSR_IA32_MCG_STATUS:
1034 		data = vcpu->arch.mcg_status;
1035 		break;
1036 	default:
1037 		if (msr >= MSR_IA32_MC0_CTL &&
1038 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1039 			u32 offset = msr - MSR_IA32_MC0_CTL;
1040 			data = vcpu->arch.mce_banks[offset];
1041 			break;
1042 		}
1043 		return 1;
1044 	}
1045 	*pdata = data;
1046 	return 0;
1047 }
1048 
1049 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1050 {
1051 	u64 data;
1052 
1053 	switch (msr) {
1054 	case MSR_IA32_PLATFORM_ID:
1055 	case MSR_IA32_UCODE_REV:
1056 	case MSR_IA32_EBL_CR_POWERON:
1057 	case MSR_IA32_DEBUGCTLMSR:
1058 	case MSR_IA32_LASTBRANCHFROMIP:
1059 	case MSR_IA32_LASTBRANCHTOIP:
1060 	case MSR_IA32_LASTINTFROMIP:
1061 	case MSR_IA32_LASTINTTOIP:
1062 	case MSR_K8_SYSCFG:
1063 	case MSR_K7_HWCR:
1064 	case MSR_VM_HSAVE_PA:
1065 	case MSR_P6_PERFCTR0:
1066 	case MSR_P6_PERFCTR1:
1067 	case MSR_P6_EVNTSEL0:
1068 	case MSR_P6_EVNTSEL1:
1069 	case MSR_K7_EVNTSEL0:
1070 	case MSR_K7_PERFCTR0:
1071 	case MSR_K8_INT_PENDING_MSG:
1072 	case MSR_AMD64_NB_CFG:
1073 	case MSR_FAM10H_MMIO_CONF_BASE:
1074 		data = 0;
1075 		break;
1076 	case MSR_MTRRcap:
1077 		data = 0x500 | KVM_NR_VAR_MTRR;
1078 		break;
1079 	case 0x200 ... 0x2ff:
1080 		return get_msr_mtrr(vcpu, msr, pdata);
1081 	case 0xcd: /* fsb frequency */
1082 		data = 3;
1083 		break;
1084 	case MSR_IA32_APICBASE:
1085 		data = kvm_get_apic_base(vcpu);
1086 		break;
1087 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1088 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
1089 		break;
1090 	case MSR_IA32_MISC_ENABLE:
1091 		data = vcpu->arch.ia32_misc_enable_msr;
1092 		break;
1093 	case MSR_IA32_PERF_STATUS:
1094 		/* TSC increment by tick */
1095 		data = 1000ULL;
1096 		/* CPU multiplier */
1097 		data |= (((uint64_t)4ULL) << 40);
1098 		break;
1099 	case MSR_EFER:
1100 		data = vcpu->arch.shadow_efer;
1101 		break;
1102 	case MSR_KVM_WALL_CLOCK:
1103 		data = vcpu->kvm->arch.wall_clock;
1104 		break;
1105 	case MSR_KVM_SYSTEM_TIME:
1106 		data = vcpu->arch.time;
1107 		break;
1108 	case MSR_IA32_P5_MC_ADDR:
1109 	case MSR_IA32_P5_MC_TYPE:
1110 	case MSR_IA32_MCG_CAP:
1111 	case MSR_IA32_MCG_CTL:
1112 	case MSR_IA32_MCG_STATUS:
1113 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1114 		return get_msr_mce(vcpu, msr, pdata);
1115 	default:
1116 		if (!ignore_msrs) {
1117 			pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1118 			return 1;
1119 		} else {
1120 			pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1121 			data = 0;
1122 		}
1123 		break;
1124 	}
1125 	*pdata = data;
1126 	return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1129 
1130 /*
1131  * Read or write a bunch of msrs. All parameters are kernel addresses.
1132  *
1133  * @return number of msrs set successfully.
1134  */
1135 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1136 		    struct kvm_msr_entry *entries,
1137 		    int (*do_msr)(struct kvm_vcpu *vcpu,
1138 				  unsigned index, u64 *data))
1139 {
1140 	int i;
1141 
1142 	vcpu_load(vcpu);
1143 
1144 	down_read(&vcpu->kvm->slots_lock);
1145 	for (i = 0; i < msrs->nmsrs; ++i)
1146 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
1147 			break;
1148 	up_read(&vcpu->kvm->slots_lock);
1149 
1150 	vcpu_put(vcpu);
1151 
1152 	return i;
1153 }
1154 
1155 /*
1156  * Read or write a bunch of msrs. Parameters are user addresses.
1157  *
1158  * @return number of msrs set successfully.
1159  */
1160 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1161 		  int (*do_msr)(struct kvm_vcpu *vcpu,
1162 				unsigned index, u64 *data),
1163 		  int writeback)
1164 {
1165 	struct kvm_msrs msrs;
1166 	struct kvm_msr_entry *entries;
1167 	int r, n;
1168 	unsigned size;
1169 
1170 	r = -EFAULT;
1171 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1172 		goto out;
1173 
1174 	r = -E2BIG;
1175 	if (msrs.nmsrs >= MAX_IO_MSRS)
1176 		goto out;
1177 
1178 	r = -ENOMEM;
1179 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1180 	entries = vmalloc(size);
1181 	if (!entries)
1182 		goto out;
1183 
1184 	r = -EFAULT;
1185 	if (copy_from_user(entries, user_msrs->entries, size))
1186 		goto out_free;
1187 
1188 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1189 	if (r < 0)
1190 		goto out_free;
1191 
1192 	r = -EFAULT;
1193 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
1194 		goto out_free;
1195 
1196 	r = n;
1197 
1198 out_free:
1199 	vfree(entries);
1200 out:
1201 	return r;
1202 }
1203 
1204 int kvm_dev_ioctl_check_extension(long ext)
1205 {
1206 	int r;
1207 
1208 	switch (ext) {
1209 	case KVM_CAP_IRQCHIP:
1210 	case KVM_CAP_HLT:
1211 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1212 	case KVM_CAP_SET_TSS_ADDR:
1213 	case KVM_CAP_EXT_CPUID:
1214 	case KVM_CAP_CLOCKSOURCE:
1215 	case KVM_CAP_PIT:
1216 	case KVM_CAP_NOP_IO_DELAY:
1217 	case KVM_CAP_MP_STATE:
1218 	case KVM_CAP_SYNC_MMU:
1219 	case KVM_CAP_REINJECT_CONTROL:
1220 	case KVM_CAP_IRQ_INJECT_STATUS:
1221 	case KVM_CAP_ASSIGN_DEV_IRQ:
1222 	case KVM_CAP_IRQFD:
1223 	case KVM_CAP_IOEVENTFD:
1224 	case KVM_CAP_PIT2:
1225 	case KVM_CAP_PIT_STATE2:
1226 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1227 		r = 1;
1228 		break;
1229 	case KVM_CAP_COALESCED_MMIO:
1230 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1231 		break;
1232 	case KVM_CAP_VAPIC:
1233 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1234 		break;
1235 	case KVM_CAP_NR_VCPUS:
1236 		r = KVM_MAX_VCPUS;
1237 		break;
1238 	case KVM_CAP_NR_MEMSLOTS:
1239 		r = KVM_MEMORY_SLOTS;
1240 		break;
1241 	case KVM_CAP_PV_MMU:
1242 		r = !tdp_enabled;
1243 		break;
1244 	case KVM_CAP_IOMMU:
1245 		r = iommu_found();
1246 		break;
1247 	case KVM_CAP_MCE:
1248 		r = KVM_MAX_MCE_BANKS;
1249 		break;
1250 	default:
1251 		r = 0;
1252 		break;
1253 	}
1254 	return r;
1255 
1256 }
1257 
1258 long kvm_arch_dev_ioctl(struct file *filp,
1259 			unsigned int ioctl, unsigned long arg)
1260 {
1261 	void __user *argp = (void __user *)arg;
1262 	long r;
1263 
1264 	switch (ioctl) {
1265 	case KVM_GET_MSR_INDEX_LIST: {
1266 		struct kvm_msr_list __user *user_msr_list = argp;
1267 		struct kvm_msr_list msr_list;
1268 		unsigned n;
1269 
1270 		r = -EFAULT;
1271 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1272 			goto out;
1273 		n = msr_list.nmsrs;
1274 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1275 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1276 			goto out;
1277 		r = -E2BIG;
1278 		if (n < msr_list.nmsrs)
1279 			goto out;
1280 		r = -EFAULT;
1281 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1282 				 num_msrs_to_save * sizeof(u32)))
1283 			goto out;
1284 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1285 				 &emulated_msrs,
1286 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1287 			goto out;
1288 		r = 0;
1289 		break;
1290 	}
1291 	case KVM_GET_SUPPORTED_CPUID: {
1292 		struct kvm_cpuid2 __user *cpuid_arg = argp;
1293 		struct kvm_cpuid2 cpuid;
1294 
1295 		r = -EFAULT;
1296 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1297 			goto out;
1298 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1299 						      cpuid_arg->entries);
1300 		if (r)
1301 			goto out;
1302 
1303 		r = -EFAULT;
1304 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1305 			goto out;
1306 		r = 0;
1307 		break;
1308 	}
1309 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1310 		u64 mce_cap;
1311 
1312 		mce_cap = KVM_MCE_CAP_SUPPORTED;
1313 		r = -EFAULT;
1314 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1315 			goto out;
1316 		r = 0;
1317 		break;
1318 	}
1319 	default:
1320 		r = -EINVAL;
1321 	}
1322 out:
1323 	return r;
1324 }
1325 
1326 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1327 {
1328 	kvm_x86_ops->vcpu_load(vcpu, cpu);
1329 	kvm_request_guest_time_update(vcpu);
1330 }
1331 
1332 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1333 {
1334 	kvm_x86_ops->vcpu_put(vcpu);
1335 	kvm_put_guest_fpu(vcpu);
1336 }
1337 
1338 static int is_efer_nx(void)
1339 {
1340 	unsigned long long efer = 0;
1341 
1342 	rdmsrl_safe(MSR_EFER, &efer);
1343 	return efer & EFER_NX;
1344 }
1345 
1346 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1347 {
1348 	int i;
1349 	struct kvm_cpuid_entry2 *e, *entry;
1350 
1351 	entry = NULL;
1352 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1353 		e = &vcpu->arch.cpuid_entries[i];
1354 		if (e->function == 0x80000001) {
1355 			entry = e;
1356 			break;
1357 		}
1358 	}
1359 	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1360 		entry->edx &= ~(1 << 20);
1361 		printk(KERN_INFO "kvm: guest NX capability removed\n");
1362 	}
1363 }
1364 
1365 /* when an old userspace process fills a new kernel module */
1366 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1367 				    struct kvm_cpuid *cpuid,
1368 				    struct kvm_cpuid_entry __user *entries)
1369 {
1370 	int r, i;
1371 	struct kvm_cpuid_entry *cpuid_entries;
1372 
1373 	r = -E2BIG;
1374 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1375 		goto out;
1376 	r = -ENOMEM;
1377 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1378 	if (!cpuid_entries)
1379 		goto out;
1380 	r = -EFAULT;
1381 	if (copy_from_user(cpuid_entries, entries,
1382 			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1383 		goto out_free;
1384 	for (i = 0; i < cpuid->nent; i++) {
1385 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1386 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1387 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1388 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1389 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1390 		vcpu->arch.cpuid_entries[i].index = 0;
1391 		vcpu->arch.cpuid_entries[i].flags = 0;
1392 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
1393 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
1394 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
1395 	}
1396 	vcpu->arch.cpuid_nent = cpuid->nent;
1397 	cpuid_fix_nx_cap(vcpu);
1398 	r = 0;
1399 	kvm_apic_set_version(vcpu);
1400 
1401 out_free:
1402 	vfree(cpuid_entries);
1403 out:
1404 	return r;
1405 }
1406 
1407 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1408 				     struct kvm_cpuid2 *cpuid,
1409 				     struct kvm_cpuid_entry2 __user *entries)
1410 {
1411 	int r;
1412 
1413 	r = -E2BIG;
1414 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1415 		goto out;
1416 	r = -EFAULT;
1417 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1418 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1419 		goto out;
1420 	vcpu->arch.cpuid_nent = cpuid->nent;
1421 	kvm_apic_set_version(vcpu);
1422 	return 0;
1423 
1424 out:
1425 	return r;
1426 }
1427 
1428 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1429 				     struct kvm_cpuid2 *cpuid,
1430 				     struct kvm_cpuid_entry2 __user *entries)
1431 {
1432 	int r;
1433 
1434 	r = -E2BIG;
1435 	if (cpuid->nent < vcpu->arch.cpuid_nent)
1436 		goto out;
1437 	r = -EFAULT;
1438 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1439 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1440 		goto out;
1441 	return 0;
1442 
1443 out:
1444 	cpuid->nent = vcpu->arch.cpuid_nent;
1445 	return r;
1446 }
1447 
1448 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1449 			   u32 index)
1450 {
1451 	entry->function = function;
1452 	entry->index = index;
1453 	cpuid_count(entry->function, entry->index,
1454 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1455 	entry->flags = 0;
1456 }
1457 
1458 #define F(x) bit(X86_FEATURE_##x)
1459 
1460 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1461 			 u32 index, int *nent, int maxnent)
1462 {
1463 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1464 	unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
1465 #ifdef CONFIG_X86_64
1466 	unsigned f_lm = F(LM);
1467 #else
1468 	unsigned f_lm = 0;
1469 #endif
1470 
1471 	/* cpuid 1.edx */
1472 	const u32 kvm_supported_word0_x86_features =
1473 		F(FPU) | F(VME) | F(DE) | F(PSE) |
1474 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1475 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1476 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1477 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1478 		0 /* Reserved, DS, ACPI */ | F(MMX) |
1479 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1480 		0 /* HTT, TM, Reserved, PBE */;
1481 	/* cpuid 0x80000001.edx */
1482 	const u32 kvm_supported_word1_x86_features =
1483 		F(FPU) | F(VME) | F(DE) | F(PSE) |
1484 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1485 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1486 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1487 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
1488 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1489 		F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
1490 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1491 	/* cpuid 1.ecx */
1492 	const u32 kvm_supported_word4_x86_features =
1493 		F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1494 		0 /* DS-CPL, VMX, SMX, EST */ |
1495 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1496 		0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1497 		0 /* Reserved, DCA */ | F(XMM4_1) |
1498 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1499 		0 /* Reserved, XSAVE, OSXSAVE */;
1500 	/* cpuid 0x80000001.ecx */
1501 	const u32 kvm_supported_word6_x86_features =
1502 		F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1503 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1504 		F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1505 		0 /* SKINIT */ | 0 /* WDT */;
1506 
1507 	/* all calls to cpuid_count() should be made on the same cpu */
1508 	get_cpu();
1509 	do_cpuid_1_ent(entry, function, index);
1510 	++*nent;
1511 
1512 	switch (function) {
1513 	case 0:
1514 		entry->eax = min(entry->eax, (u32)0xb);
1515 		break;
1516 	case 1:
1517 		entry->edx &= kvm_supported_word0_x86_features;
1518 		entry->ecx &= kvm_supported_word4_x86_features;
1519 		/* we support x2apic emulation even if host does not support
1520 		 * it since we emulate x2apic in software */
1521 		entry->ecx |= F(X2APIC);
1522 		break;
1523 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
1524 	 * may return different values. This forces us to get_cpu() before
1525 	 * issuing the first command, and also to emulate this annoying behavior
1526 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1527 	case 2: {
1528 		int t, times = entry->eax & 0xff;
1529 
1530 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1531 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1532 		for (t = 1; t < times && *nent < maxnent; ++t) {
1533 			do_cpuid_1_ent(&entry[t], function, 0);
1534 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1535 			++*nent;
1536 		}
1537 		break;
1538 	}
1539 	/* function 4 and 0xb have additional index. */
1540 	case 4: {
1541 		int i, cache_type;
1542 
1543 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1544 		/* read more entries until cache_type is zero */
1545 		for (i = 1; *nent < maxnent; ++i) {
1546 			cache_type = entry[i - 1].eax & 0x1f;
1547 			if (!cache_type)
1548 				break;
1549 			do_cpuid_1_ent(&entry[i], function, i);
1550 			entry[i].flags |=
1551 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1552 			++*nent;
1553 		}
1554 		break;
1555 	}
1556 	case 0xb: {
1557 		int i, level_type;
1558 
1559 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1560 		/* read more entries until level_type is zero */
1561 		for (i = 1; *nent < maxnent; ++i) {
1562 			level_type = entry[i - 1].ecx & 0xff00;
1563 			if (!level_type)
1564 				break;
1565 			do_cpuid_1_ent(&entry[i], function, i);
1566 			entry[i].flags |=
1567 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1568 			++*nent;
1569 		}
1570 		break;
1571 	}
1572 	case 0x80000000:
1573 		entry->eax = min(entry->eax, 0x8000001a);
1574 		break;
1575 	case 0x80000001:
1576 		entry->edx &= kvm_supported_word1_x86_features;
1577 		entry->ecx &= kvm_supported_word6_x86_features;
1578 		break;
1579 	}
1580 	put_cpu();
1581 }
1582 
1583 #undef F
1584 
1585 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1586 				     struct kvm_cpuid_entry2 __user *entries)
1587 {
1588 	struct kvm_cpuid_entry2 *cpuid_entries;
1589 	int limit, nent = 0, r = -E2BIG;
1590 	u32 func;
1591 
1592 	if (cpuid->nent < 1)
1593 		goto out;
1594 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1595 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1596 	r = -ENOMEM;
1597 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1598 	if (!cpuid_entries)
1599 		goto out;
1600 
1601 	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1602 	limit = cpuid_entries[0].eax;
1603 	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1604 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
1605 			     &nent, cpuid->nent);
1606 	r = -E2BIG;
1607 	if (nent >= cpuid->nent)
1608 		goto out_free;
1609 
1610 	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1611 	limit = cpuid_entries[nent - 1].eax;
1612 	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1613 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
1614 			     &nent, cpuid->nent);
1615 	r = -E2BIG;
1616 	if (nent >= cpuid->nent)
1617 		goto out_free;
1618 
1619 	r = -EFAULT;
1620 	if (copy_to_user(entries, cpuid_entries,
1621 			 nent * sizeof(struct kvm_cpuid_entry2)))
1622 		goto out_free;
1623 	cpuid->nent = nent;
1624 	r = 0;
1625 
1626 out_free:
1627 	vfree(cpuid_entries);
1628 out:
1629 	return r;
1630 }
1631 
1632 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1633 				    struct kvm_lapic_state *s)
1634 {
1635 	vcpu_load(vcpu);
1636 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1637 	vcpu_put(vcpu);
1638 
1639 	return 0;
1640 }
1641 
1642 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1643 				    struct kvm_lapic_state *s)
1644 {
1645 	vcpu_load(vcpu);
1646 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1647 	kvm_apic_post_state_restore(vcpu);
1648 	update_cr8_intercept(vcpu);
1649 	vcpu_put(vcpu);
1650 
1651 	return 0;
1652 }
1653 
1654 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1655 				    struct kvm_interrupt *irq)
1656 {
1657 	if (irq->irq < 0 || irq->irq >= 256)
1658 		return -EINVAL;
1659 	if (irqchip_in_kernel(vcpu->kvm))
1660 		return -ENXIO;
1661 	vcpu_load(vcpu);
1662 
1663 	kvm_queue_interrupt(vcpu, irq->irq, false);
1664 
1665 	vcpu_put(vcpu);
1666 
1667 	return 0;
1668 }
1669 
1670 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1671 {
1672 	vcpu_load(vcpu);
1673 	kvm_inject_nmi(vcpu);
1674 	vcpu_put(vcpu);
1675 
1676 	return 0;
1677 }
1678 
1679 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1680 					   struct kvm_tpr_access_ctl *tac)
1681 {
1682 	if (tac->flags)
1683 		return -EINVAL;
1684 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
1685 	return 0;
1686 }
1687 
1688 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1689 					u64 mcg_cap)
1690 {
1691 	int r;
1692 	unsigned bank_num = mcg_cap & 0xff, bank;
1693 
1694 	r = -EINVAL;
1695 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
1696 		goto out;
1697 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1698 		goto out;
1699 	r = 0;
1700 	vcpu->arch.mcg_cap = mcg_cap;
1701 	/* Init IA32_MCG_CTL to all 1s */
1702 	if (mcg_cap & MCG_CTL_P)
1703 		vcpu->arch.mcg_ctl = ~(u64)0;
1704 	/* Init IA32_MCi_CTL to all 1s */
1705 	for (bank = 0; bank < bank_num; bank++)
1706 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1707 out:
1708 	return r;
1709 }
1710 
1711 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1712 				      struct kvm_x86_mce *mce)
1713 {
1714 	u64 mcg_cap = vcpu->arch.mcg_cap;
1715 	unsigned bank_num = mcg_cap & 0xff;
1716 	u64 *banks = vcpu->arch.mce_banks;
1717 
1718 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1719 		return -EINVAL;
1720 	/*
1721 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1722 	 * reporting is disabled
1723 	 */
1724 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1725 	    vcpu->arch.mcg_ctl != ~(u64)0)
1726 		return 0;
1727 	banks += 4 * mce->bank;
1728 	/*
1729 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1730 	 * reporting is disabled for the bank
1731 	 */
1732 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1733 		return 0;
1734 	if (mce->status & MCI_STATUS_UC) {
1735 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1736 		    !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1737 			printk(KERN_DEBUG "kvm: set_mce: "
1738 			       "injects mce exception while "
1739 			       "previous one is in progress!\n");
1740 			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1741 			return 0;
1742 		}
1743 		if (banks[1] & MCI_STATUS_VAL)
1744 			mce->status |= MCI_STATUS_OVER;
1745 		banks[2] = mce->addr;
1746 		banks[3] = mce->misc;
1747 		vcpu->arch.mcg_status = mce->mcg_status;
1748 		banks[1] = mce->status;
1749 		kvm_queue_exception(vcpu, MC_VECTOR);
1750 	} else if (!(banks[1] & MCI_STATUS_VAL)
1751 		   || !(banks[1] & MCI_STATUS_UC)) {
1752 		if (banks[1] & MCI_STATUS_VAL)
1753 			mce->status |= MCI_STATUS_OVER;
1754 		banks[2] = mce->addr;
1755 		banks[3] = mce->misc;
1756 		banks[1] = mce->status;
1757 	} else
1758 		banks[1] |= MCI_STATUS_OVER;
1759 	return 0;
1760 }
1761 
1762 long kvm_arch_vcpu_ioctl(struct file *filp,
1763 			 unsigned int ioctl, unsigned long arg)
1764 {
1765 	struct kvm_vcpu *vcpu = filp->private_data;
1766 	void __user *argp = (void __user *)arg;
1767 	int r;
1768 	struct kvm_lapic_state *lapic = NULL;
1769 
1770 	switch (ioctl) {
1771 	case KVM_GET_LAPIC: {
1772 		lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1773 
1774 		r = -ENOMEM;
1775 		if (!lapic)
1776 			goto out;
1777 		r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1778 		if (r)
1779 			goto out;
1780 		r = -EFAULT;
1781 		if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1782 			goto out;
1783 		r = 0;
1784 		break;
1785 	}
1786 	case KVM_SET_LAPIC: {
1787 		lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1788 		r = -ENOMEM;
1789 		if (!lapic)
1790 			goto out;
1791 		r = -EFAULT;
1792 		if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1793 			goto out;
1794 		r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1795 		if (r)
1796 			goto out;
1797 		r = 0;
1798 		break;
1799 	}
1800 	case KVM_INTERRUPT: {
1801 		struct kvm_interrupt irq;
1802 
1803 		r = -EFAULT;
1804 		if (copy_from_user(&irq, argp, sizeof irq))
1805 			goto out;
1806 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1807 		if (r)
1808 			goto out;
1809 		r = 0;
1810 		break;
1811 	}
1812 	case KVM_NMI: {
1813 		r = kvm_vcpu_ioctl_nmi(vcpu);
1814 		if (r)
1815 			goto out;
1816 		r = 0;
1817 		break;
1818 	}
1819 	case KVM_SET_CPUID: {
1820 		struct kvm_cpuid __user *cpuid_arg = argp;
1821 		struct kvm_cpuid cpuid;
1822 
1823 		r = -EFAULT;
1824 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1825 			goto out;
1826 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1827 		if (r)
1828 			goto out;
1829 		break;
1830 	}
1831 	case KVM_SET_CPUID2: {
1832 		struct kvm_cpuid2 __user *cpuid_arg = argp;
1833 		struct kvm_cpuid2 cpuid;
1834 
1835 		r = -EFAULT;
1836 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1837 			goto out;
1838 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1839 					      cpuid_arg->entries);
1840 		if (r)
1841 			goto out;
1842 		break;
1843 	}
1844 	case KVM_GET_CPUID2: {
1845 		struct kvm_cpuid2 __user *cpuid_arg = argp;
1846 		struct kvm_cpuid2 cpuid;
1847 
1848 		r = -EFAULT;
1849 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1850 			goto out;
1851 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1852 					      cpuid_arg->entries);
1853 		if (r)
1854 			goto out;
1855 		r = -EFAULT;
1856 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1857 			goto out;
1858 		r = 0;
1859 		break;
1860 	}
1861 	case KVM_GET_MSRS:
1862 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
1863 		break;
1864 	case KVM_SET_MSRS:
1865 		r = msr_io(vcpu, argp, do_set_msr, 0);
1866 		break;
1867 	case KVM_TPR_ACCESS_REPORTING: {
1868 		struct kvm_tpr_access_ctl tac;
1869 
1870 		r = -EFAULT;
1871 		if (copy_from_user(&tac, argp, sizeof tac))
1872 			goto out;
1873 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1874 		if (r)
1875 			goto out;
1876 		r = -EFAULT;
1877 		if (copy_to_user(argp, &tac, sizeof tac))
1878 			goto out;
1879 		r = 0;
1880 		break;
1881 	};
1882 	case KVM_SET_VAPIC_ADDR: {
1883 		struct kvm_vapic_addr va;
1884 
1885 		r = -EINVAL;
1886 		if (!irqchip_in_kernel(vcpu->kvm))
1887 			goto out;
1888 		r = -EFAULT;
1889 		if (copy_from_user(&va, argp, sizeof va))
1890 			goto out;
1891 		r = 0;
1892 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1893 		break;
1894 	}
1895 	case KVM_X86_SETUP_MCE: {
1896 		u64 mcg_cap;
1897 
1898 		r = -EFAULT;
1899 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1900 			goto out;
1901 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1902 		break;
1903 	}
1904 	case KVM_X86_SET_MCE: {
1905 		struct kvm_x86_mce mce;
1906 
1907 		r = -EFAULT;
1908 		if (copy_from_user(&mce, argp, sizeof mce))
1909 			goto out;
1910 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1911 		break;
1912 	}
1913 	default:
1914 		r = -EINVAL;
1915 	}
1916 out:
1917 	kfree(lapic);
1918 	return r;
1919 }
1920 
1921 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1922 {
1923 	int ret;
1924 
1925 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
1926 		return -1;
1927 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1928 	return ret;
1929 }
1930 
1931 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
1932 					      u64 ident_addr)
1933 {
1934 	kvm->arch.ept_identity_map_addr = ident_addr;
1935 	return 0;
1936 }
1937 
1938 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1939 					  u32 kvm_nr_mmu_pages)
1940 {
1941 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1942 		return -EINVAL;
1943 
1944 	down_write(&kvm->slots_lock);
1945 	spin_lock(&kvm->mmu_lock);
1946 
1947 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1948 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1949 
1950 	spin_unlock(&kvm->mmu_lock);
1951 	up_write(&kvm->slots_lock);
1952 	return 0;
1953 }
1954 
1955 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1956 {
1957 	return kvm->arch.n_alloc_mmu_pages;
1958 }
1959 
1960 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1961 {
1962 	int i;
1963 	struct kvm_mem_alias *alias;
1964 
1965 	for (i = 0; i < kvm->arch.naliases; ++i) {
1966 		alias = &kvm->arch.aliases[i];
1967 		if (gfn >= alias->base_gfn
1968 		    && gfn < alias->base_gfn + alias->npages)
1969 			return alias->target_gfn + gfn - alias->base_gfn;
1970 	}
1971 	return gfn;
1972 }
1973 
1974 /*
1975  * Set a new alias region.  Aliases map a portion of physical memory into
1976  * another portion.  This is useful for memory windows, for example the PC
1977  * VGA region.
1978  */
1979 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1980 					 struct kvm_memory_alias *alias)
1981 {
1982 	int r, n;
1983 	struct kvm_mem_alias *p;
1984 
1985 	r = -EINVAL;
1986 	/* General sanity checks */
1987 	if (alias->memory_size & (PAGE_SIZE - 1))
1988 		goto out;
1989 	if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1990 		goto out;
1991 	if (alias->slot >= KVM_ALIAS_SLOTS)
1992 		goto out;
1993 	if (alias->guest_phys_addr + alias->memory_size
1994 	    < alias->guest_phys_addr)
1995 		goto out;
1996 	if (alias->target_phys_addr + alias->memory_size
1997 	    < alias->target_phys_addr)
1998 		goto out;
1999 
2000 	down_write(&kvm->slots_lock);
2001 	spin_lock(&kvm->mmu_lock);
2002 
2003 	p = &kvm->arch.aliases[alias->slot];
2004 	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2005 	p->npages = alias->memory_size >> PAGE_SHIFT;
2006 	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2007 
2008 	for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2009 		if (kvm->arch.aliases[n - 1].npages)
2010 			break;
2011 	kvm->arch.naliases = n;
2012 
2013 	spin_unlock(&kvm->mmu_lock);
2014 	kvm_mmu_zap_all(kvm);
2015 
2016 	up_write(&kvm->slots_lock);
2017 
2018 	return 0;
2019 
2020 out:
2021 	return r;
2022 }
2023 
2024 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2025 {
2026 	int r;
2027 
2028 	r = 0;
2029 	switch (chip->chip_id) {
2030 	case KVM_IRQCHIP_PIC_MASTER:
2031 		memcpy(&chip->chip.pic,
2032 			&pic_irqchip(kvm)->pics[0],
2033 			sizeof(struct kvm_pic_state));
2034 		break;
2035 	case KVM_IRQCHIP_PIC_SLAVE:
2036 		memcpy(&chip->chip.pic,
2037 			&pic_irqchip(kvm)->pics[1],
2038 			sizeof(struct kvm_pic_state));
2039 		break;
2040 	case KVM_IRQCHIP_IOAPIC:
2041 		memcpy(&chip->chip.ioapic,
2042 			ioapic_irqchip(kvm),
2043 			sizeof(struct kvm_ioapic_state));
2044 		break;
2045 	default:
2046 		r = -EINVAL;
2047 		break;
2048 	}
2049 	return r;
2050 }
2051 
2052 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2053 {
2054 	int r;
2055 
2056 	r = 0;
2057 	switch (chip->chip_id) {
2058 	case KVM_IRQCHIP_PIC_MASTER:
2059 		spin_lock(&pic_irqchip(kvm)->lock);
2060 		memcpy(&pic_irqchip(kvm)->pics[0],
2061 			&chip->chip.pic,
2062 			sizeof(struct kvm_pic_state));
2063 		spin_unlock(&pic_irqchip(kvm)->lock);
2064 		break;
2065 	case KVM_IRQCHIP_PIC_SLAVE:
2066 		spin_lock(&pic_irqchip(kvm)->lock);
2067 		memcpy(&pic_irqchip(kvm)->pics[1],
2068 			&chip->chip.pic,
2069 			sizeof(struct kvm_pic_state));
2070 		spin_unlock(&pic_irqchip(kvm)->lock);
2071 		break;
2072 	case KVM_IRQCHIP_IOAPIC:
2073 		mutex_lock(&kvm->irq_lock);
2074 		memcpy(ioapic_irqchip(kvm),
2075 			&chip->chip.ioapic,
2076 			sizeof(struct kvm_ioapic_state));
2077 		mutex_unlock(&kvm->irq_lock);
2078 		break;
2079 	default:
2080 		r = -EINVAL;
2081 		break;
2082 	}
2083 	kvm_pic_update_irq(pic_irqchip(kvm));
2084 	return r;
2085 }
2086 
2087 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2088 {
2089 	int r = 0;
2090 
2091 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2092 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2093 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2094 	return r;
2095 }
2096 
2097 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2098 {
2099 	int r = 0;
2100 
2101 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2102 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2103 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2104 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2105 	return r;
2106 }
2107 
2108 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2109 {
2110 	int r = 0;
2111 
2112 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2113 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2114 		sizeof(ps->channels));
2115 	ps->flags = kvm->arch.vpit->pit_state.flags;
2116 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2117 	return r;
2118 }
2119 
2120 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2121 {
2122 	int r = 0, start = 0;
2123 	u32 prev_legacy, cur_legacy;
2124 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2125 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2126 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2127 	if (!prev_legacy && cur_legacy)
2128 		start = 1;
2129 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2130 	       sizeof(kvm->arch.vpit->pit_state.channels));
2131 	kvm->arch.vpit->pit_state.flags = ps->flags;
2132 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2133 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2134 	return r;
2135 }
2136 
2137 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2138 				 struct kvm_reinject_control *control)
2139 {
2140 	if (!kvm->arch.vpit)
2141 		return -ENXIO;
2142 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2143 	kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2144 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2145 	return 0;
2146 }
2147 
2148 /*
2149  * Get (and clear) the dirty memory log for a memory slot.
2150  */
2151 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2152 				      struct kvm_dirty_log *log)
2153 {
2154 	int r;
2155 	int n;
2156 	struct kvm_memory_slot *memslot;
2157 	int is_dirty = 0;
2158 
2159 	down_write(&kvm->slots_lock);
2160 
2161 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
2162 	if (r)
2163 		goto out;
2164 
2165 	/* If nothing is dirty, don't bother messing with page tables. */
2166 	if (is_dirty) {
2167 		spin_lock(&kvm->mmu_lock);
2168 		kvm_mmu_slot_remove_write_access(kvm, log->slot);
2169 		spin_unlock(&kvm->mmu_lock);
2170 		memslot = &kvm->memslots[log->slot];
2171 		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2172 		memset(memslot->dirty_bitmap, 0, n);
2173 	}
2174 	r = 0;
2175 out:
2176 	up_write(&kvm->slots_lock);
2177 	return r;
2178 }
2179 
2180 long kvm_arch_vm_ioctl(struct file *filp,
2181 		       unsigned int ioctl, unsigned long arg)
2182 {
2183 	struct kvm *kvm = filp->private_data;
2184 	void __user *argp = (void __user *)arg;
2185 	int r = -EINVAL;
2186 	/*
2187 	 * This union makes it completely explicit to gcc-3.x
2188 	 * that these two variables' stack usage should be
2189 	 * combined, not added together.
2190 	 */
2191 	union {
2192 		struct kvm_pit_state ps;
2193 		struct kvm_pit_state2 ps2;
2194 		struct kvm_memory_alias alias;
2195 		struct kvm_pit_config pit_config;
2196 	} u;
2197 
2198 	switch (ioctl) {
2199 	case KVM_SET_TSS_ADDR:
2200 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2201 		if (r < 0)
2202 			goto out;
2203 		break;
2204 	case KVM_SET_IDENTITY_MAP_ADDR: {
2205 		u64 ident_addr;
2206 
2207 		r = -EFAULT;
2208 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2209 			goto out;
2210 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2211 		if (r < 0)
2212 			goto out;
2213 		break;
2214 	}
2215 	case KVM_SET_MEMORY_REGION: {
2216 		struct kvm_memory_region kvm_mem;
2217 		struct kvm_userspace_memory_region kvm_userspace_mem;
2218 
2219 		r = -EFAULT;
2220 		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2221 			goto out;
2222 		kvm_userspace_mem.slot = kvm_mem.slot;
2223 		kvm_userspace_mem.flags = kvm_mem.flags;
2224 		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2225 		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2226 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2227 		if (r)
2228 			goto out;
2229 		break;
2230 	}
2231 	case KVM_SET_NR_MMU_PAGES:
2232 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2233 		if (r)
2234 			goto out;
2235 		break;
2236 	case KVM_GET_NR_MMU_PAGES:
2237 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2238 		break;
2239 	case KVM_SET_MEMORY_ALIAS:
2240 		r = -EFAULT;
2241 		if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2242 			goto out;
2243 		r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2244 		if (r)
2245 			goto out;
2246 		break;
2247 	case KVM_CREATE_IRQCHIP:
2248 		r = -ENOMEM;
2249 		kvm->arch.vpic = kvm_create_pic(kvm);
2250 		if (kvm->arch.vpic) {
2251 			r = kvm_ioapic_init(kvm);
2252 			if (r) {
2253 				kfree(kvm->arch.vpic);
2254 				kvm->arch.vpic = NULL;
2255 				goto out;
2256 			}
2257 		} else
2258 			goto out;
2259 		r = kvm_setup_default_irq_routing(kvm);
2260 		if (r) {
2261 			kfree(kvm->arch.vpic);
2262 			kfree(kvm->arch.vioapic);
2263 			goto out;
2264 		}
2265 		break;
2266 	case KVM_CREATE_PIT:
2267 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2268 		goto create_pit;
2269 	case KVM_CREATE_PIT2:
2270 		r = -EFAULT;
2271 		if (copy_from_user(&u.pit_config, argp,
2272 				   sizeof(struct kvm_pit_config)))
2273 			goto out;
2274 	create_pit:
2275 		down_write(&kvm->slots_lock);
2276 		r = -EEXIST;
2277 		if (kvm->arch.vpit)
2278 			goto create_pit_unlock;
2279 		r = -ENOMEM;
2280 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2281 		if (kvm->arch.vpit)
2282 			r = 0;
2283 	create_pit_unlock:
2284 		up_write(&kvm->slots_lock);
2285 		break;
2286 	case KVM_IRQ_LINE_STATUS:
2287 	case KVM_IRQ_LINE: {
2288 		struct kvm_irq_level irq_event;
2289 
2290 		r = -EFAULT;
2291 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2292 			goto out;
2293 		if (irqchip_in_kernel(kvm)) {
2294 			__s32 status;
2295 			mutex_lock(&kvm->irq_lock);
2296 			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2297 					irq_event.irq, irq_event.level);
2298 			mutex_unlock(&kvm->irq_lock);
2299 			if (ioctl == KVM_IRQ_LINE_STATUS) {
2300 				irq_event.status = status;
2301 				if (copy_to_user(argp, &irq_event,
2302 							sizeof irq_event))
2303 					goto out;
2304 			}
2305 			r = 0;
2306 		}
2307 		break;
2308 	}
2309 	case KVM_GET_IRQCHIP: {
2310 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2311 		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2312 
2313 		r = -ENOMEM;
2314 		if (!chip)
2315 			goto out;
2316 		r = -EFAULT;
2317 		if (copy_from_user(chip, argp, sizeof *chip))
2318 			goto get_irqchip_out;
2319 		r = -ENXIO;
2320 		if (!irqchip_in_kernel(kvm))
2321 			goto get_irqchip_out;
2322 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2323 		if (r)
2324 			goto get_irqchip_out;
2325 		r = -EFAULT;
2326 		if (copy_to_user(argp, chip, sizeof *chip))
2327 			goto get_irqchip_out;
2328 		r = 0;
2329 	get_irqchip_out:
2330 		kfree(chip);
2331 		if (r)
2332 			goto out;
2333 		break;
2334 	}
2335 	case KVM_SET_IRQCHIP: {
2336 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2337 		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2338 
2339 		r = -ENOMEM;
2340 		if (!chip)
2341 			goto out;
2342 		r = -EFAULT;
2343 		if (copy_from_user(chip, argp, sizeof *chip))
2344 			goto set_irqchip_out;
2345 		r = -ENXIO;
2346 		if (!irqchip_in_kernel(kvm))
2347 			goto set_irqchip_out;
2348 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2349 		if (r)
2350 			goto set_irqchip_out;
2351 		r = 0;
2352 	set_irqchip_out:
2353 		kfree(chip);
2354 		if (r)
2355 			goto out;
2356 		break;
2357 	}
2358 	case KVM_GET_PIT: {
2359 		r = -EFAULT;
2360 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2361 			goto out;
2362 		r = -ENXIO;
2363 		if (!kvm->arch.vpit)
2364 			goto out;
2365 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2366 		if (r)
2367 			goto out;
2368 		r = -EFAULT;
2369 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2370 			goto out;
2371 		r = 0;
2372 		break;
2373 	}
2374 	case KVM_SET_PIT: {
2375 		r = -EFAULT;
2376 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
2377 			goto out;
2378 		r = -ENXIO;
2379 		if (!kvm->arch.vpit)
2380 			goto out;
2381 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2382 		if (r)
2383 			goto out;
2384 		r = 0;
2385 		break;
2386 	}
2387 	case KVM_GET_PIT2: {
2388 		r = -ENXIO;
2389 		if (!kvm->arch.vpit)
2390 			goto out;
2391 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2392 		if (r)
2393 			goto out;
2394 		r = -EFAULT;
2395 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2396 			goto out;
2397 		r = 0;
2398 		break;
2399 	}
2400 	case KVM_SET_PIT2: {
2401 		r = -EFAULT;
2402 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2403 			goto out;
2404 		r = -ENXIO;
2405 		if (!kvm->arch.vpit)
2406 			goto out;
2407 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2408 		if (r)
2409 			goto out;
2410 		r = 0;
2411 		break;
2412 	}
2413 	case KVM_REINJECT_CONTROL: {
2414 		struct kvm_reinject_control control;
2415 		r =  -EFAULT;
2416 		if (copy_from_user(&control, argp, sizeof(control)))
2417 			goto out;
2418 		r = kvm_vm_ioctl_reinject(kvm, &control);
2419 		if (r)
2420 			goto out;
2421 		r = 0;
2422 		break;
2423 	}
2424 	default:
2425 		;
2426 	}
2427 out:
2428 	return r;
2429 }
2430 
2431 static void kvm_init_msr_list(void)
2432 {
2433 	u32 dummy[2];
2434 	unsigned i, j;
2435 
2436 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2437 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2438 			continue;
2439 		if (j < i)
2440 			msrs_to_save[j] = msrs_to_save[i];
2441 		j++;
2442 	}
2443 	num_msrs_to_save = j;
2444 }
2445 
2446 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2447 			   const void *v)
2448 {
2449 	if (vcpu->arch.apic &&
2450 	    !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2451 		return 0;
2452 
2453 	return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2454 }
2455 
2456 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2457 {
2458 	if (vcpu->arch.apic &&
2459 	    !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2460 		return 0;
2461 
2462 	return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2463 }
2464 
2465 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2466 			       struct kvm_vcpu *vcpu)
2467 {
2468 	void *data = val;
2469 	int r = X86EMUL_CONTINUE;
2470 
2471 	while (bytes) {
2472 		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2473 		unsigned offset = addr & (PAGE_SIZE-1);
2474 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2475 		int ret;
2476 
2477 		if (gpa == UNMAPPED_GVA) {
2478 			r = X86EMUL_PROPAGATE_FAULT;
2479 			goto out;
2480 		}
2481 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2482 		if (ret < 0) {
2483 			r = X86EMUL_UNHANDLEABLE;
2484 			goto out;
2485 		}
2486 
2487 		bytes -= toread;
2488 		data += toread;
2489 		addr += toread;
2490 	}
2491 out:
2492 	return r;
2493 }
2494 
2495 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2496 				struct kvm_vcpu *vcpu)
2497 {
2498 	void *data = val;
2499 	int r = X86EMUL_CONTINUE;
2500 
2501 	while (bytes) {
2502 		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2503 		unsigned offset = addr & (PAGE_SIZE-1);
2504 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2505 		int ret;
2506 
2507 		if (gpa == UNMAPPED_GVA) {
2508 			r = X86EMUL_PROPAGATE_FAULT;
2509 			goto out;
2510 		}
2511 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2512 		if (ret < 0) {
2513 			r = X86EMUL_UNHANDLEABLE;
2514 			goto out;
2515 		}
2516 
2517 		bytes -= towrite;
2518 		data += towrite;
2519 		addr += towrite;
2520 	}
2521 out:
2522 	return r;
2523 }
2524 
2525 
2526 static int emulator_read_emulated(unsigned long addr,
2527 				  void *val,
2528 				  unsigned int bytes,
2529 				  struct kvm_vcpu *vcpu)
2530 {
2531 	gpa_t                 gpa;
2532 
2533 	if (vcpu->mmio_read_completed) {
2534 		memcpy(val, vcpu->mmio_data, bytes);
2535 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2536 			       vcpu->mmio_phys_addr, *(u64 *)val);
2537 		vcpu->mmio_read_completed = 0;
2538 		return X86EMUL_CONTINUE;
2539 	}
2540 
2541 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2542 
2543 	/* For APIC access vmexit */
2544 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2545 		goto mmio;
2546 
2547 	if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2548 				== X86EMUL_CONTINUE)
2549 		return X86EMUL_CONTINUE;
2550 	if (gpa == UNMAPPED_GVA)
2551 		return X86EMUL_PROPAGATE_FAULT;
2552 
2553 mmio:
2554 	/*
2555 	 * Is this MMIO handled locally?
2556 	 */
2557 	if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2558 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2559 		return X86EMUL_CONTINUE;
2560 	}
2561 
2562 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2563 
2564 	vcpu->mmio_needed = 1;
2565 	vcpu->mmio_phys_addr = gpa;
2566 	vcpu->mmio_size = bytes;
2567 	vcpu->mmio_is_write = 0;
2568 
2569 	return X86EMUL_UNHANDLEABLE;
2570 }
2571 
2572 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2573 			  const void *val, int bytes)
2574 {
2575 	int ret;
2576 
2577 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2578 	if (ret < 0)
2579 		return 0;
2580 	kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2581 	return 1;
2582 }
2583 
2584 static int emulator_write_emulated_onepage(unsigned long addr,
2585 					   const void *val,
2586 					   unsigned int bytes,
2587 					   struct kvm_vcpu *vcpu)
2588 {
2589 	gpa_t                 gpa;
2590 
2591 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2592 
2593 	if (gpa == UNMAPPED_GVA) {
2594 		kvm_inject_page_fault(vcpu, addr, 2);
2595 		return X86EMUL_PROPAGATE_FAULT;
2596 	}
2597 
2598 	/* For APIC access vmexit */
2599 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2600 		goto mmio;
2601 
2602 	if (emulator_write_phys(vcpu, gpa, val, bytes))
2603 		return X86EMUL_CONTINUE;
2604 
2605 mmio:
2606 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2607 	/*
2608 	 * Is this MMIO handled locally?
2609 	 */
2610 	if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2611 		return X86EMUL_CONTINUE;
2612 
2613 	vcpu->mmio_needed = 1;
2614 	vcpu->mmio_phys_addr = gpa;
2615 	vcpu->mmio_size = bytes;
2616 	vcpu->mmio_is_write = 1;
2617 	memcpy(vcpu->mmio_data, val, bytes);
2618 
2619 	return X86EMUL_CONTINUE;
2620 }
2621 
2622 int emulator_write_emulated(unsigned long addr,
2623 				   const void *val,
2624 				   unsigned int bytes,
2625 				   struct kvm_vcpu *vcpu)
2626 {
2627 	/* Crossing a page boundary? */
2628 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2629 		int rc, now;
2630 
2631 		now = -addr & ~PAGE_MASK;
2632 		rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2633 		if (rc != X86EMUL_CONTINUE)
2634 			return rc;
2635 		addr += now;
2636 		val += now;
2637 		bytes -= now;
2638 	}
2639 	return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2640 }
2641 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2642 
2643 static int emulator_cmpxchg_emulated(unsigned long addr,
2644 				     const void *old,
2645 				     const void *new,
2646 				     unsigned int bytes,
2647 				     struct kvm_vcpu *vcpu)
2648 {
2649 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2650 #ifndef CONFIG_X86_64
2651 	/* guests cmpxchg8b have to be emulated atomically */
2652 	if (bytes == 8) {
2653 		gpa_t gpa;
2654 		struct page *page;
2655 		char *kaddr;
2656 		u64 val;
2657 
2658 		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2659 
2660 		if (gpa == UNMAPPED_GVA ||
2661 		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2662 			goto emul_write;
2663 
2664 		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2665 			goto emul_write;
2666 
2667 		val = *(u64 *)new;
2668 
2669 		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2670 
2671 		kaddr = kmap_atomic(page, KM_USER0);
2672 		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2673 		kunmap_atomic(kaddr, KM_USER0);
2674 		kvm_release_page_dirty(page);
2675 	}
2676 emul_write:
2677 #endif
2678 
2679 	return emulator_write_emulated(addr, new, bytes, vcpu);
2680 }
2681 
2682 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2683 {
2684 	return kvm_x86_ops->get_segment_base(vcpu, seg);
2685 }
2686 
2687 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2688 {
2689 	kvm_mmu_invlpg(vcpu, address);
2690 	return X86EMUL_CONTINUE;
2691 }
2692 
2693 int emulate_clts(struct kvm_vcpu *vcpu)
2694 {
2695 	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2696 	return X86EMUL_CONTINUE;
2697 }
2698 
2699 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2700 {
2701 	struct kvm_vcpu *vcpu = ctxt->vcpu;
2702 
2703 	switch (dr) {
2704 	case 0 ... 3:
2705 		*dest = kvm_x86_ops->get_dr(vcpu, dr);
2706 		return X86EMUL_CONTINUE;
2707 	default:
2708 		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2709 		return X86EMUL_UNHANDLEABLE;
2710 	}
2711 }
2712 
2713 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2714 {
2715 	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2716 	int exception;
2717 
2718 	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2719 	if (exception) {
2720 		/* FIXME: better handling */
2721 		return X86EMUL_UNHANDLEABLE;
2722 	}
2723 	return X86EMUL_CONTINUE;
2724 }
2725 
2726 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2727 {
2728 	u8 opcodes[4];
2729 	unsigned long rip = kvm_rip_read(vcpu);
2730 	unsigned long rip_linear;
2731 
2732 	if (!printk_ratelimit())
2733 		return;
2734 
2735 	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2736 
2737 	kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2738 
2739 	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2740 	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2741 }
2742 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2743 
2744 static struct x86_emulate_ops emulate_ops = {
2745 	.read_std            = kvm_read_guest_virt,
2746 	.read_emulated       = emulator_read_emulated,
2747 	.write_emulated      = emulator_write_emulated,
2748 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
2749 };
2750 
2751 static void cache_all_regs(struct kvm_vcpu *vcpu)
2752 {
2753 	kvm_register_read(vcpu, VCPU_REGS_RAX);
2754 	kvm_register_read(vcpu, VCPU_REGS_RSP);
2755 	kvm_register_read(vcpu, VCPU_REGS_RIP);
2756 	vcpu->arch.regs_dirty = ~0;
2757 }
2758 
2759 int emulate_instruction(struct kvm_vcpu *vcpu,
2760 			struct kvm_run *run,
2761 			unsigned long cr2,
2762 			u16 error_code,
2763 			int emulation_type)
2764 {
2765 	int r, shadow_mask;
2766 	struct decode_cache *c;
2767 
2768 	kvm_clear_exception_queue(vcpu);
2769 	vcpu->arch.mmio_fault_cr2 = cr2;
2770 	/*
2771 	 * TODO: fix emulate.c to use guest_read/write_register
2772 	 * instead of direct ->regs accesses, can save hundred cycles
2773 	 * on Intel for instructions that don't read/change RSP, for
2774 	 * for example.
2775 	 */
2776 	cache_all_regs(vcpu);
2777 
2778 	vcpu->mmio_is_write = 0;
2779 	vcpu->arch.pio.string = 0;
2780 
2781 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2782 		int cs_db, cs_l;
2783 		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2784 
2785 		vcpu->arch.emulate_ctxt.vcpu = vcpu;
2786 		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2787 		vcpu->arch.emulate_ctxt.mode =
2788 			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2789 			? X86EMUL_MODE_REAL : cs_l
2790 			? X86EMUL_MODE_PROT64 :	cs_db
2791 			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2792 
2793 		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2794 
2795 		/* Only allow emulation of specific instructions on #UD
2796 		 * (namely VMMCALL, sysenter, sysexit, syscall)*/
2797 		c = &vcpu->arch.emulate_ctxt.decode;
2798 		if (emulation_type & EMULTYPE_TRAP_UD) {
2799 			if (!c->twobyte)
2800 				return EMULATE_FAIL;
2801 			switch (c->b) {
2802 			case 0x01: /* VMMCALL */
2803 				if (c->modrm_mod != 3 || c->modrm_rm != 1)
2804 					return EMULATE_FAIL;
2805 				break;
2806 			case 0x34: /* sysenter */
2807 			case 0x35: /* sysexit */
2808 				if (c->modrm_mod != 0 || c->modrm_rm != 0)
2809 					return EMULATE_FAIL;
2810 				break;
2811 			case 0x05: /* syscall */
2812 				if (c->modrm_mod != 0 || c->modrm_rm != 0)
2813 					return EMULATE_FAIL;
2814 				break;
2815 			default:
2816 				return EMULATE_FAIL;
2817 			}
2818 
2819 			if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2820 				return EMULATE_FAIL;
2821 		}
2822 
2823 		++vcpu->stat.insn_emulation;
2824 		if (r)  {
2825 			++vcpu->stat.insn_emulation_fail;
2826 			if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2827 				return EMULATE_DONE;
2828 			return EMULATE_FAIL;
2829 		}
2830 	}
2831 
2832 	if (emulation_type & EMULTYPE_SKIP) {
2833 		kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2834 		return EMULATE_DONE;
2835 	}
2836 
2837 	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2838 	shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2839 
2840 	if (r == 0)
2841 		kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2842 
2843 	if (vcpu->arch.pio.string)
2844 		return EMULATE_DO_MMIO;
2845 
2846 	if ((r || vcpu->mmio_is_write) && run) {
2847 		run->exit_reason = KVM_EXIT_MMIO;
2848 		run->mmio.phys_addr = vcpu->mmio_phys_addr;
2849 		memcpy(run->mmio.data, vcpu->mmio_data, 8);
2850 		run->mmio.len = vcpu->mmio_size;
2851 		run->mmio.is_write = vcpu->mmio_is_write;
2852 	}
2853 
2854 	if (r) {
2855 		if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2856 			return EMULATE_DONE;
2857 		if (!vcpu->mmio_needed) {
2858 			kvm_report_emulation_failure(vcpu, "mmio");
2859 			return EMULATE_FAIL;
2860 		}
2861 		return EMULATE_DO_MMIO;
2862 	}
2863 
2864 	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2865 
2866 	if (vcpu->mmio_is_write) {
2867 		vcpu->mmio_needed = 0;
2868 		return EMULATE_DO_MMIO;
2869 	}
2870 
2871 	return EMULATE_DONE;
2872 }
2873 EXPORT_SYMBOL_GPL(emulate_instruction);
2874 
2875 static int pio_copy_data(struct kvm_vcpu *vcpu)
2876 {
2877 	void *p = vcpu->arch.pio_data;
2878 	gva_t q = vcpu->arch.pio.guest_gva;
2879 	unsigned bytes;
2880 	int ret;
2881 
2882 	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2883 	if (vcpu->arch.pio.in)
2884 		ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2885 	else
2886 		ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2887 	return ret;
2888 }
2889 
2890 int complete_pio(struct kvm_vcpu *vcpu)
2891 {
2892 	struct kvm_pio_request *io = &vcpu->arch.pio;
2893 	long delta;
2894 	int r;
2895 	unsigned long val;
2896 
2897 	if (!io->string) {
2898 		if (io->in) {
2899 			val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2900 			memcpy(&val, vcpu->arch.pio_data, io->size);
2901 			kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2902 		}
2903 	} else {
2904 		if (io->in) {
2905 			r = pio_copy_data(vcpu);
2906 			if (r)
2907 				return r;
2908 		}
2909 
2910 		delta = 1;
2911 		if (io->rep) {
2912 			delta *= io->cur_count;
2913 			/*
2914 			 * The size of the register should really depend on
2915 			 * current address size.
2916 			 */
2917 			val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2918 			val -= delta;
2919 			kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2920 		}
2921 		if (io->down)
2922 			delta = -delta;
2923 		delta *= io->size;
2924 		if (io->in) {
2925 			val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2926 			val += delta;
2927 			kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2928 		} else {
2929 			val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2930 			val += delta;
2931 			kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2932 		}
2933 	}
2934 
2935 	io->count -= io->cur_count;
2936 	io->cur_count = 0;
2937 
2938 	return 0;
2939 }
2940 
2941 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
2942 {
2943 	/* TODO: String I/O for in kernel device */
2944 	int r;
2945 
2946 	if (vcpu->arch.pio.in)
2947 		r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2948 				    vcpu->arch.pio.size, pd);
2949 	else
2950 		r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2951 				     vcpu->arch.pio.size, pd);
2952 	return r;
2953 }
2954 
2955 static int pio_string_write(struct kvm_vcpu *vcpu)
2956 {
2957 	struct kvm_pio_request *io = &vcpu->arch.pio;
2958 	void *pd = vcpu->arch.pio_data;
2959 	int i, r = 0;
2960 
2961 	for (i = 0; i < io->cur_count; i++) {
2962 		if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
2963 				     io->port, io->size, pd)) {
2964 			r = -EOPNOTSUPP;
2965 			break;
2966 		}
2967 		pd += io->size;
2968 	}
2969 	return r;
2970 }
2971 
2972 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2973 		  int size, unsigned port)
2974 {
2975 	unsigned long val;
2976 
2977 	vcpu->run->exit_reason = KVM_EXIT_IO;
2978 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2979 	vcpu->run->io.size = vcpu->arch.pio.size = size;
2980 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2981 	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2982 	vcpu->run->io.port = vcpu->arch.pio.port = port;
2983 	vcpu->arch.pio.in = in;
2984 	vcpu->arch.pio.string = 0;
2985 	vcpu->arch.pio.down = 0;
2986 	vcpu->arch.pio.rep = 0;
2987 
2988 	trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2989 		      size, 1);
2990 
2991 	val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2992 	memcpy(vcpu->arch.pio_data, &val, 4);
2993 
2994 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
2995 		complete_pio(vcpu);
2996 		return 1;
2997 	}
2998 	return 0;
2999 }
3000 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3001 
3002 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
3003 		  int size, unsigned long count, int down,
3004 		  gva_t address, int rep, unsigned port)
3005 {
3006 	unsigned now, in_page;
3007 	int ret = 0;
3008 
3009 	vcpu->run->exit_reason = KVM_EXIT_IO;
3010 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3011 	vcpu->run->io.size = vcpu->arch.pio.size = size;
3012 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3013 	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3014 	vcpu->run->io.port = vcpu->arch.pio.port = port;
3015 	vcpu->arch.pio.in = in;
3016 	vcpu->arch.pio.string = 1;
3017 	vcpu->arch.pio.down = down;
3018 	vcpu->arch.pio.rep = rep;
3019 
3020 	trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3021 		      size, count);
3022 
3023 	if (!count) {
3024 		kvm_x86_ops->skip_emulated_instruction(vcpu);
3025 		return 1;
3026 	}
3027 
3028 	if (!down)
3029 		in_page = PAGE_SIZE - offset_in_page(address);
3030 	else
3031 		in_page = offset_in_page(address) + size;
3032 	now = min(count, (unsigned long)in_page / size);
3033 	if (!now)
3034 		now = 1;
3035 	if (down) {
3036 		/*
3037 		 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
3038 		 */
3039 		pr_unimpl(vcpu, "guest string pio down\n");
3040 		kvm_inject_gp(vcpu, 0);
3041 		return 1;
3042 	}
3043 	vcpu->run->io.count = now;
3044 	vcpu->arch.pio.cur_count = now;
3045 
3046 	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3047 		kvm_x86_ops->skip_emulated_instruction(vcpu);
3048 
3049 	vcpu->arch.pio.guest_gva = address;
3050 
3051 	if (!vcpu->arch.pio.in) {
3052 		/* string PIO write */
3053 		ret = pio_copy_data(vcpu);
3054 		if (ret == X86EMUL_PROPAGATE_FAULT) {
3055 			kvm_inject_gp(vcpu, 0);
3056 			return 1;
3057 		}
3058 		if (ret == 0 && !pio_string_write(vcpu)) {
3059 			complete_pio(vcpu);
3060 			if (vcpu->arch.pio.count == 0)
3061 				ret = 1;
3062 		}
3063 	}
3064 	/* no string PIO read support yet */
3065 
3066 	return ret;
3067 }
3068 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3069 
3070 static void bounce_off(void *info)
3071 {
3072 	/* nothing */
3073 }
3074 
3075 static unsigned int  ref_freq;
3076 static unsigned long tsc_khz_ref;
3077 
3078 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3079 				     void *data)
3080 {
3081 	struct cpufreq_freqs *freq = data;
3082 	struct kvm *kvm;
3083 	struct kvm_vcpu *vcpu;
3084 	int i, send_ipi = 0;
3085 
3086 	if (!ref_freq)
3087 		ref_freq = freq->old;
3088 
3089 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3090 		return 0;
3091 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3092 		return 0;
3093 	per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
3094 
3095 	spin_lock(&kvm_lock);
3096 	list_for_each_entry(kvm, &vm_list, vm_list) {
3097 		kvm_for_each_vcpu(i, vcpu, kvm) {
3098 			if (vcpu->cpu != freq->cpu)
3099 				continue;
3100 			if (!kvm_request_guest_time_update(vcpu))
3101 				continue;
3102 			if (vcpu->cpu != smp_processor_id())
3103 				send_ipi++;
3104 		}
3105 	}
3106 	spin_unlock(&kvm_lock);
3107 
3108 	if (freq->old < freq->new && send_ipi) {
3109 		/*
3110 		 * We upscale the frequency.  Must make the guest
3111 		 * doesn't see old kvmclock values while running with
3112 		 * the new frequency, otherwise we risk the guest sees
3113 		 * time go backwards.
3114 		 *
3115 		 * In case we update the frequency for another cpu
3116 		 * (which might be in guest context) send an interrupt
3117 		 * to kick the cpu out of guest context.  Next time
3118 		 * guest context is entered kvmclock will be updated,
3119 		 * so the guest will not see stale values.
3120 		 */
3121 		smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3122 	}
3123 	return 0;
3124 }
3125 
3126 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3127         .notifier_call  = kvmclock_cpufreq_notifier
3128 };
3129 
3130 int kvm_arch_init(void *opaque)
3131 {
3132 	int r, cpu;
3133 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3134 
3135 	if (kvm_x86_ops) {
3136 		printk(KERN_ERR "kvm: already loaded the other module\n");
3137 		r = -EEXIST;
3138 		goto out;
3139 	}
3140 
3141 	if (!ops->cpu_has_kvm_support()) {
3142 		printk(KERN_ERR "kvm: no hardware support\n");
3143 		r = -EOPNOTSUPP;
3144 		goto out;
3145 	}
3146 	if (ops->disabled_by_bios()) {
3147 		printk(KERN_ERR "kvm: disabled by bios\n");
3148 		r = -EOPNOTSUPP;
3149 		goto out;
3150 	}
3151 
3152 	r = kvm_mmu_module_init();
3153 	if (r)
3154 		goto out;
3155 
3156 	kvm_init_msr_list();
3157 
3158 	kvm_x86_ops = ops;
3159 	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3160 	kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3161 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3162 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
3163 
3164 	for_each_possible_cpu(cpu)
3165 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3166 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3167 		tsc_khz_ref = tsc_khz;
3168 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3169 					  CPUFREQ_TRANSITION_NOTIFIER);
3170 	}
3171 
3172 	return 0;
3173 
3174 out:
3175 	return r;
3176 }
3177 
3178 void kvm_arch_exit(void)
3179 {
3180 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3181 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3182 					    CPUFREQ_TRANSITION_NOTIFIER);
3183 	kvm_x86_ops = NULL;
3184 	kvm_mmu_module_exit();
3185 }
3186 
3187 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3188 {
3189 	++vcpu->stat.halt_exits;
3190 	if (irqchip_in_kernel(vcpu->kvm)) {
3191 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3192 		return 1;
3193 	} else {
3194 		vcpu->run->exit_reason = KVM_EXIT_HLT;
3195 		return 0;
3196 	}
3197 }
3198 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3199 
3200 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3201 			   unsigned long a1)
3202 {
3203 	if (is_long_mode(vcpu))
3204 		return a0;
3205 	else
3206 		return a0 | ((gpa_t)a1 << 32);
3207 }
3208 
3209 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3210 {
3211 	unsigned long nr, a0, a1, a2, a3, ret;
3212 	int r = 1;
3213 
3214 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3215 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3216 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3217 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3218 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3219 
3220 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
3221 
3222 	if (!is_long_mode(vcpu)) {
3223 		nr &= 0xFFFFFFFF;
3224 		a0 &= 0xFFFFFFFF;
3225 		a1 &= 0xFFFFFFFF;
3226 		a2 &= 0xFFFFFFFF;
3227 		a3 &= 0xFFFFFFFF;
3228 	}
3229 
3230 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3231 		ret = -KVM_EPERM;
3232 		goto out;
3233 	}
3234 
3235 	switch (nr) {
3236 	case KVM_HC_VAPIC_POLL_IRQ:
3237 		ret = 0;
3238 		break;
3239 	case KVM_HC_MMU_OP:
3240 		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3241 		break;
3242 	default:
3243 		ret = -KVM_ENOSYS;
3244 		break;
3245 	}
3246 out:
3247 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3248 	++vcpu->stat.hypercalls;
3249 	return r;
3250 }
3251 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3252 
3253 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3254 {
3255 	char instruction[3];
3256 	int ret = 0;
3257 	unsigned long rip = kvm_rip_read(vcpu);
3258 
3259 
3260 	/*
3261 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
3262 	 * to ensure that the updated hypercall appears atomically across all
3263 	 * VCPUs.
3264 	 */
3265 	kvm_mmu_zap_all(vcpu->kvm);
3266 
3267 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
3268 	if (emulator_write_emulated(rip, instruction, 3, vcpu)
3269 	    != X86EMUL_CONTINUE)
3270 		ret = -EFAULT;
3271 
3272 	return ret;
3273 }
3274 
3275 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3276 {
3277 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3278 }
3279 
3280 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3281 {
3282 	struct descriptor_table dt = { limit, base };
3283 
3284 	kvm_x86_ops->set_gdt(vcpu, &dt);
3285 }
3286 
3287 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3288 {
3289 	struct descriptor_table dt = { limit, base };
3290 
3291 	kvm_x86_ops->set_idt(vcpu, &dt);
3292 }
3293 
3294 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3295 		   unsigned long *rflags)
3296 {
3297 	kvm_lmsw(vcpu, msw);
3298 	*rflags = kvm_x86_ops->get_rflags(vcpu);
3299 }
3300 
3301 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3302 {
3303 	unsigned long value;
3304 
3305 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3306 	switch (cr) {
3307 	case 0:
3308 		value = vcpu->arch.cr0;
3309 		break;
3310 	case 2:
3311 		value = vcpu->arch.cr2;
3312 		break;
3313 	case 3:
3314 		value = vcpu->arch.cr3;
3315 		break;
3316 	case 4:
3317 		value = vcpu->arch.cr4;
3318 		break;
3319 	case 8:
3320 		value = kvm_get_cr8(vcpu);
3321 		break;
3322 	default:
3323 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3324 		return 0;
3325 	}
3326 
3327 	return value;
3328 }
3329 
3330 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3331 		     unsigned long *rflags)
3332 {
3333 	switch (cr) {
3334 	case 0:
3335 		kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3336 		*rflags = kvm_x86_ops->get_rflags(vcpu);
3337 		break;
3338 	case 2:
3339 		vcpu->arch.cr2 = val;
3340 		break;
3341 	case 3:
3342 		kvm_set_cr3(vcpu, val);
3343 		break;
3344 	case 4:
3345 		kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3346 		break;
3347 	case 8:
3348 		kvm_set_cr8(vcpu, val & 0xfUL);
3349 		break;
3350 	default:
3351 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3352 	}
3353 }
3354 
3355 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3356 {
3357 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3358 	int j, nent = vcpu->arch.cpuid_nent;
3359 
3360 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3361 	/* when no next entry is found, the current entry[i] is reselected */
3362 	for (j = i + 1; ; j = (j + 1) % nent) {
3363 		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3364 		if (ej->function == e->function) {
3365 			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3366 			return j;
3367 		}
3368 	}
3369 	return 0; /* silence gcc, even though control never reaches here */
3370 }
3371 
3372 /* find an entry with matching function, matching index (if needed), and that
3373  * should be read next (if it's stateful) */
3374 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3375 	u32 function, u32 index)
3376 {
3377 	if (e->function != function)
3378 		return 0;
3379 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3380 		return 0;
3381 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3382 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3383 		return 0;
3384 	return 1;
3385 }
3386 
3387 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3388 					      u32 function, u32 index)
3389 {
3390 	int i;
3391 	struct kvm_cpuid_entry2 *best = NULL;
3392 
3393 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3394 		struct kvm_cpuid_entry2 *e;
3395 
3396 		e = &vcpu->arch.cpuid_entries[i];
3397 		if (is_matching_cpuid_entry(e, function, index)) {
3398 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3399 				move_to_next_stateful_cpuid_entry(vcpu, i);
3400 			best = e;
3401 			break;
3402 		}
3403 		/*
3404 		 * Both basic or both extended?
3405 		 */
3406 		if (((e->function ^ function) & 0x80000000) == 0)
3407 			if (!best || e->function > best->function)
3408 				best = e;
3409 	}
3410 	return best;
3411 }
3412 
3413 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3414 {
3415 	struct kvm_cpuid_entry2 *best;
3416 
3417 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3418 	if (best)
3419 		return best->eax & 0xff;
3420 	return 36;
3421 }
3422 
3423 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3424 {
3425 	u32 function, index;
3426 	struct kvm_cpuid_entry2 *best;
3427 
3428 	function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3429 	index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3430 	kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3431 	kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3432 	kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3433 	kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3434 	best = kvm_find_cpuid_entry(vcpu, function, index);
3435 	if (best) {
3436 		kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3437 		kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3438 		kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3439 		kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3440 	}
3441 	kvm_x86_ops->skip_emulated_instruction(vcpu);
3442 	trace_kvm_cpuid(function,
3443 			kvm_register_read(vcpu, VCPU_REGS_RAX),
3444 			kvm_register_read(vcpu, VCPU_REGS_RBX),
3445 			kvm_register_read(vcpu, VCPU_REGS_RCX),
3446 			kvm_register_read(vcpu, VCPU_REGS_RDX));
3447 }
3448 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3449 
3450 /*
3451  * Check if userspace requested an interrupt window, and that the
3452  * interrupt window is open.
3453  *
3454  * No need to exit to userspace if we already have an interrupt queued.
3455  */
3456 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3457 					  struct kvm_run *kvm_run)
3458 {
3459 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3460 		kvm_run->request_interrupt_window &&
3461 		kvm_arch_interrupt_allowed(vcpu));
3462 }
3463 
3464 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3465 			      struct kvm_run *kvm_run)
3466 {
3467 	kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3468 	kvm_run->cr8 = kvm_get_cr8(vcpu);
3469 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
3470 	if (irqchip_in_kernel(vcpu->kvm))
3471 		kvm_run->ready_for_interrupt_injection = 1;
3472 	else
3473 		kvm_run->ready_for_interrupt_injection =
3474 			kvm_arch_interrupt_allowed(vcpu) &&
3475 			!kvm_cpu_has_interrupt(vcpu) &&
3476 			!kvm_event_needs_reinjection(vcpu);
3477 }
3478 
3479 static void vapic_enter(struct kvm_vcpu *vcpu)
3480 {
3481 	struct kvm_lapic *apic = vcpu->arch.apic;
3482 	struct page *page;
3483 
3484 	if (!apic || !apic->vapic_addr)
3485 		return;
3486 
3487 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3488 
3489 	vcpu->arch.apic->vapic_page = page;
3490 }
3491 
3492 static void vapic_exit(struct kvm_vcpu *vcpu)
3493 {
3494 	struct kvm_lapic *apic = vcpu->arch.apic;
3495 
3496 	if (!apic || !apic->vapic_addr)
3497 		return;
3498 
3499 	down_read(&vcpu->kvm->slots_lock);
3500 	kvm_release_page_dirty(apic->vapic_page);
3501 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3502 	up_read(&vcpu->kvm->slots_lock);
3503 }
3504 
3505 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3506 {
3507 	int max_irr, tpr;
3508 
3509 	if (!kvm_x86_ops->update_cr8_intercept)
3510 		return;
3511 
3512 	if (!vcpu->arch.apic)
3513 		return;
3514 
3515 	if (!vcpu->arch.apic->vapic_addr)
3516 		max_irr = kvm_lapic_find_highest_irr(vcpu);
3517 	else
3518 		max_irr = -1;
3519 
3520 	if (max_irr != -1)
3521 		max_irr >>= 4;
3522 
3523 	tpr = kvm_lapic_get_cr8(vcpu);
3524 
3525 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3526 }
3527 
3528 static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3529 {
3530 	/* try to reinject previous events if any */
3531 	if (vcpu->arch.exception.pending) {
3532 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3533 					  vcpu->arch.exception.has_error_code,
3534 					  vcpu->arch.exception.error_code);
3535 		return;
3536 	}
3537 
3538 	if (vcpu->arch.nmi_injected) {
3539 		kvm_x86_ops->set_nmi(vcpu);
3540 		return;
3541 	}
3542 
3543 	if (vcpu->arch.interrupt.pending) {
3544 		kvm_x86_ops->set_irq(vcpu);
3545 		return;
3546 	}
3547 
3548 	/* try to inject new event if pending */
3549 	if (vcpu->arch.nmi_pending) {
3550 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
3551 			vcpu->arch.nmi_pending = false;
3552 			vcpu->arch.nmi_injected = true;
3553 			kvm_x86_ops->set_nmi(vcpu);
3554 		}
3555 	} else if (kvm_cpu_has_interrupt(vcpu)) {
3556 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3557 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3558 					    false);
3559 			kvm_x86_ops->set_irq(vcpu);
3560 		}
3561 	}
3562 }
3563 
3564 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3565 {
3566 	int r;
3567 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3568 		kvm_run->request_interrupt_window;
3569 
3570 	if (vcpu->requests)
3571 		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3572 			kvm_mmu_unload(vcpu);
3573 
3574 	r = kvm_mmu_reload(vcpu);
3575 	if (unlikely(r))
3576 		goto out;
3577 
3578 	if (vcpu->requests) {
3579 		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3580 			__kvm_migrate_timers(vcpu);
3581 		if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3582 			kvm_write_guest_time(vcpu);
3583 		if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3584 			kvm_mmu_sync_roots(vcpu);
3585 		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3586 			kvm_x86_ops->tlb_flush(vcpu);
3587 		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3588 				       &vcpu->requests)) {
3589 			kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3590 			r = 0;
3591 			goto out;
3592 		}
3593 		if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3594 			kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3595 			r = 0;
3596 			goto out;
3597 		}
3598 	}
3599 
3600 	preempt_disable();
3601 
3602 	kvm_x86_ops->prepare_guest_switch(vcpu);
3603 	kvm_load_guest_fpu(vcpu);
3604 
3605 	local_irq_disable();
3606 
3607 	clear_bit(KVM_REQ_KICK, &vcpu->requests);
3608 	smp_mb__after_clear_bit();
3609 
3610 	if (vcpu->requests || need_resched() || signal_pending(current)) {
3611 		set_bit(KVM_REQ_KICK, &vcpu->requests);
3612 		local_irq_enable();
3613 		preempt_enable();
3614 		r = 1;
3615 		goto out;
3616 	}
3617 
3618 	inject_pending_event(vcpu, kvm_run);
3619 
3620 	/* enable NMI/IRQ window open exits if needed */
3621 	if (vcpu->arch.nmi_pending)
3622 		kvm_x86_ops->enable_nmi_window(vcpu);
3623 	else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3624 		kvm_x86_ops->enable_irq_window(vcpu);
3625 
3626 	if (kvm_lapic_enabled(vcpu)) {
3627 		update_cr8_intercept(vcpu);
3628 		kvm_lapic_sync_to_vapic(vcpu);
3629 	}
3630 
3631 	up_read(&vcpu->kvm->slots_lock);
3632 
3633 	kvm_guest_enter();
3634 
3635 	if (unlikely(vcpu->arch.switch_db_regs)) {
3636 		set_debugreg(0, 7);
3637 		set_debugreg(vcpu->arch.eff_db[0], 0);
3638 		set_debugreg(vcpu->arch.eff_db[1], 1);
3639 		set_debugreg(vcpu->arch.eff_db[2], 2);
3640 		set_debugreg(vcpu->arch.eff_db[3], 3);
3641 	}
3642 
3643 	trace_kvm_entry(vcpu->vcpu_id);
3644 	kvm_x86_ops->run(vcpu, kvm_run);
3645 
3646 	if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
3647 		set_debugreg(current->thread.debugreg0, 0);
3648 		set_debugreg(current->thread.debugreg1, 1);
3649 		set_debugreg(current->thread.debugreg2, 2);
3650 		set_debugreg(current->thread.debugreg3, 3);
3651 		set_debugreg(current->thread.debugreg6, 6);
3652 		set_debugreg(current->thread.debugreg7, 7);
3653 	}
3654 
3655 	set_bit(KVM_REQ_KICK, &vcpu->requests);
3656 	local_irq_enable();
3657 
3658 	++vcpu->stat.exits;
3659 
3660 	/*
3661 	 * We must have an instruction between local_irq_enable() and
3662 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3663 	 * the interrupt shadow.  The stat.exits increment will do nicely.
3664 	 * But we need to prevent reordering, hence this barrier():
3665 	 */
3666 	barrier();
3667 
3668 	kvm_guest_exit();
3669 
3670 	preempt_enable();
3671 
3672 	down_read(&vcpu->kvm->slots_lock);
3673 
3674 	/*
3675 	 * Profile KVM exit RIPs:
3676 	 */
3677 	if (unlikely(prof_on == KVM_PROFILING)) {
3678 		unsigned long rip = kvm_rip_read(vcpu);
3679 		profile_hit(KVM_PROFILING, (void *)rip);
3680 	}
3681 
3682 
3683 	kvm_lapic_sync_from_vapic(vcpu);
3684 
3685 	r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3686 out:
3687 	return r;
3688 }
3689 
3690 
3691 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3692 {
3693 	int r;
3694 
3695 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3696 		pr_debug("vcpu %d received sipi with vector # %x\n",
3697 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3698 		kvm_lapic_reset(vcpu);
3699 		r = kvm_arch_vcpu_reset(vcpu);
3700 		if (r)
3701 			return r;
3702 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3703 	}
3704 
3705 	down_read(&vcpu->kvm->slots_lock);
3706 	vapic_enter(vcpu);
3707 
3708 	r = 1;
3709 	while (r > 0) {
3710 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3711 			r = vcpu_enter_guest(vcpu, kvm_run);
3712 		else {
3713 			up_read(&vcpu->kvm->slots_lock);
3714 			kvm_vcpu_block(vcpu);
3715 			down_read(&vcpu->kvm->slots_lock);
3716 			if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3717 			{
3718 				switch(vcpu->arch.mp_state) {
3719 				case KVM_MP_STATE_HALTED:
3720 					vcpu->arch.mp_state =
3721 						KVM_MP_STATE_RUNNABLE;
3722 				case KVM_MP_STATE_RUNNABLE:
3723 					break;
3724 				case KVM_MP_STATE_SIPI_RECEIVED:
3725 				default:
3726 					r = -EINTR;
3727 					break;
3728 				}
3729 			}
3730 		}
3731 
3732 		if (r <= 0)
3733 			break;
3734 
3735 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3736 		if (kvm_cpu_has_pending_timer(vcpu))
3737 			kvm_inject_pending_timer_irqs(vcpu);
3738 
3739 		if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3740 			r = -EINTR;
3741 			kvm_run->exit_reason = KVM_EXIT_INTR;
3742 			++vcpu->stat.request_irq_exits;
3743 		}
3744 		if (signal_pending(current)) {
3745 			r = -EINTR;
3746 			kvm_run->exit_reason = KVM_EXIT_INTR;
3747 			++vcpu->stat.signal_exits;
3748 		}
3749 		if (need_resched()) {
3750 			up_read(&vcpu->kvm->slots_lock);
3751 			kvm_resched(vcpu);
3752 			down_read(&vcpu->kvm->slots_lock);
3753 		}
3754 	}
3755 
3756 	up_read(&vcpu->kvm->slots_lock);
3757 	post_kvm_run_save(vcpu, kvm_run);
3758 
3759 	vapic_exit(vcpu);
3760 
3761 	return r;
3762 }
3763 
3764 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3765 {
3766 	int r;
3767 	sigset_t sigsaved;
3768 
3769 	vcpu_load(vcpu);
3770 
3771 	if (vcpu->sigset_active)
3772 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3773 
3774 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3775 		kvm_vcpu_block(vcpu);
3776 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3777 		r = -EAGAIN;
3778 		goto out;
3779 	}
3780 
3781 	/* re-sync apic's tpr */
3782 	if (!irqchip_in_kernel(vcpu->kvm))
3783 		kvm_set_cr8(vcpu, kvm_run->cr8);
3784 
3785 	if (vcpu->arch.pio.cur_count) {
3786 		r = complete_pio(vcpu);
3787 		if (r)
3788 			goto out;
3789 	}
3790 #if CONFIG_HAS_IOMEM
3791 	if (vcpu->mmio_needed) {
3792 		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3793 		vcpu->mmio_read_completed = 1;
3794 		vcpu->mmio_needed = 0;
3795 
3796 		down_read(&vcpu->kvm->slots_lock);
3797 		r = emulate_instruction(vcpu, kvm_run,
3798 					vcpu->arch.mmio_fault_cr2, 0,
3799 					EMULTYPE_NO_DECODE);
3800 		up_read(&vcpu->kvm->slots_lock);
3801 		if (r == EMULATE_DO_MMIO) {
3802 			/*
3803 			 * Read-modify-write.  Back to userspace.
3804 			 */
3805 			r = 0;
3806 			goto out;
3807 		}
3808 	}
3809 #endif
3810 	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3811 		kvm_register_write(vcpu, VCPU_REGS_RAX,
3812 				     kvm_run->hypercall.ret);
3813 
3814 	r = __vcpu_run(vcpu, kvm_run);
3815 
3816 out:
3817 	if (vcpu->sigset_active)
3818 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3819 
3820 	vcpu_put(vcpu);
3821 	return r;
3822 }
3823 
3824 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3825 {
3826 	vcpu_load(vcpu);
3827 
3828 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3829 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3830 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3831 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3832 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3833 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3834 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3835 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3836 #ifdef CONFIG_X86_64
3837 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3838 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3839 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3840 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3841 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3842 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3843 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3844 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3845 #endif
3846 
3847 	regs->rip = kvm_rip_read(vcpu);
3848 	regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3849 
3850 	/*
3851 	 * Don't leak debug flags in case they were set for guest debugging
3852 	 */
3853 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3854 		regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3855 
3856 	vcpu_put(vcpu);
3857 
3858 	return 0;
3859 }
3860 
3861 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3862 {
3863 	vcpu_load(vcpu);
3864 
3865 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3866 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3867 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3868 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3869 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3870 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3871 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3872 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3873 #ifdef CONFIG_X86_64
3874 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3875 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3876 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3877 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3878 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3879 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3880 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3881 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3882 
3883 #endif
3884 
3885 	kvm_rip_write(vcpu, regs->rip);
3886 	kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3887 
3888 
3889 	vcpu->arch.exception.pending = false;
3890 
3891 	vcpu_put(vcpu);
3892 
3893 	return 0;
3894 }
3895 
3896 void kvm_get_segment(struct kvm_vcpu *vcpu,
3897 		     struct kvm_segment *var, int seg)
3898 {
3899 	kvm_x86_ops->get_segment(vcpu, var, seg);
3900 }
3901 
3902 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3903 {
3904 	struct kvm_segment cs;
3905 
3906 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3907 	*db = cs.db;
3908 	*l = cs.l;
3909 }
3910 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3911 
3912 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3913 				  struct kvm_sregs *sregs)
3914 {
3915 	struct descriptor_table dt;
3916 
3917 	vcpu_load(vcpu);
3918 
3919 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3920 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3921 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3922 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3923 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3924 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3925 
3926 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3927 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3928 
3929 	kvm_x86_ops->get_idt(vcpu, &dt);
3930 	sregs->idt.limit = dt.limit;
3931 	sregs->idt.base = dt.base;
3932 	kvm_x86_ops->get_gdt(vcpu, &dt);
3933 	sregs->gdt.limit = dt.limit;
3934 	sregs->gdt.base = dt.base;
3935 
3936 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3937 	sregs->cr0 = vcpu->arch.cr0;
3938 	sregs->cr2 = vcpu->arch.cr2;
3939 	sregs->cr3 = vcpu->arch.cr3;
3940 	sregs->cr4 = vcpu->arch.cr4;
3941 	sregs->cr8 = kvm_get_cr8(vcpu);
3942 	sregs->efer = vcpu->arch.shadow_efer;
3943 	sregs->apic_base = kvm_get_apic_base(vcpu);
3944 
3945 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3946 
3947 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3948 		set_bit(vcpu->arch.interrupt.nr,
3949 			(unsigned long *)sregs->interrupt_bitmap);
3950 
3951 	vcpu_put(vcpu);
3952 
3953 	return 0;
3954 }
3955 
3956 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3957 				    struct kvm_mp_state *mp_state)
3958 {
3959 	vcpu_load(vcpu);
3960 	mp_state->mp_state = vcpu->arch.mp_state;
3961 	vcpu_put(vcpu);
3962 	return 0;
3963 }
3964 
3965 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3966 				    struct kvm_mp_state *mp_state)
3967 {
3968 	vcpu_load(vcpu);
3969 	vcpu->arch.mp_state = mp_state->mp_state;
3970 	vcpu_put(vcpu);
3971 	return 0;
3972 }
3973 
3974 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3975 			struct kvm_segment *var, int seg)
3976 {
3977 	kvm_x86_ops->set_segment(vcpu, var, seg);
3978 }
3979 
3980 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3981 				   struct kvm_segment *kvm_desct)
3982 {
3983 	kvm_desct->base = get_desc_base(seg_desc);
3984 	kvm_desct->limit = get_desc_limit(seg_desc);
3985 	if (seg_desc->g) {
3986 		kvm_desct->limit <<= 12;
3987 		kvm_desct->limit |= 0xfff;
3988 	}
3989 	kvm_desct->selector = selector;
3990 	kvm_desct->type = seg_desc->type;
3991 	kvm_desct->present = seg_desc->p;
3992 	kvm_desct->dpl = seg_desc->dpl;
3993 	kvm_desct->db = seg_desc->d;
3994 	kvm_desct->s = seg_desc->s;
3995 	kvm_desct->l = seg_desc->l;
3996 	kvm_desct->g = seg_desc->g;
3997 	kvm_desct->avl = seg_desc->avl;
3998 	if (!selector)
3999 		kvm_desct->unusable = 1;
4000 	else
4001 		kvm_desct->unusable = 0;
4002 	kvm_desct->padding = 0;
4003 }
4004 
4005 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4006 					  u16 selector,
4007 					  struct descriptor_table *dtable)
4008 {
4009 	if (selector & 1 << 2) {
4010 		struct kvm_segment kvm_seg;
4011 
4012 		kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4013 
4014 		if (kvm_seg.unusable)
4015 			dtable->limit = 0;
4016 		else
4017 			dtable->limit = kvm_seg.limit;
4018 		dtable->base = kvm_seg.base;
4019 	}
4020 	else
4021 		kvm_x86_ops->get_gdt(vcpu, dtable);
4022 }
4023 
4024 /* allowed just for 8 bytes segments */
4025 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4026 					 struct desc_struct *seg_desc)
4027 {
4028 	struct descriptor_table dtable;
4029 	u16 index = selector >> 3;
4030 
4031 	get_segment_descriptor_dtable(vcpu, selector, &dtable);
4032 
4033 	if (dtable.limit < index * 8 + 7) {
4034 		kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4035 		return 1;
4036 	}
4037 	return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4038 }
4039 
4040 /* allowed just for 8 bytes segments */
4041 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4042 					 struct desc_struct *seg_desc)
4043 {
4044 	struct descriptor_table dtable;
4045 	u16 index = selector >> 3;
4046 
4047 	get_segment_descriptor_dtable(vcpu, selector, &dtable);
4048 
4049 	if (dtable.limit < index * 8 + 7)
4050 		return 1;
4051 	return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4052 }
4053 
4054 static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
4055 			     struct desc_struct *seg_desc)
4056 {
4057 	u32 base_addr = get_desc_base(seg_desc);
4058 
4059 	return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4060 }
4061 
4062 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4063 {
4064 	struct kvm_segment kvm_seg;
4065 
4066 	kvm_get_segment(vcpu, &kvm_seg, seg);
4067 	return kvm_seg.selector;
4068 }
4069 
4070 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4071 						u16 selector,
4072 						struct kvm_segment *kvm_seg)
4073 {
4074 	struct desc_struct seg_desc;
4075 
4076 	if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4077 		return 1;
4078 	seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4079 	return 0;
4080 }
4081 
4082 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4083 {
4084 	struct kvm_segment segvar = {
4085 		.base = selector << 4,
4086 		.limit = 0xffff,
4087 		.selector = selector,
4088 		.type = 3,
4089 		.present = 1,
4090 		.dpl = 3,
4091 		.db = 0,
4092 		.s = 1,
4093 		.l = 0,
4094 		.g = 0,
4095 		.avl = 0,
4096 		.unusable = 0,
4097 	};
4098 	kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4099 	return 0;
4100 }
4101 
4102 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4103 {
4104 	return (seg != VCPU_SREG_LDTR) &&
4105 		(seg != VCPU_SREG_TR) &&
4106 		(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_VM);
4107 }
4108 
4109 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4110 				int type_bits, int seg)
4111 {
4112 	struct kvm_segment kvm_seg;
4113 
4114 	if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
4115 		return kvm_load_realmode_segment(vcpu, selector, seg);
4116 	if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4117 		return 1;
4118 	kvm_seg.type |= type_bits;
4119 
4120 	if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4121 	    seg != VCPU_SREG_LDTR)
4122 		if (!kvm_seg.s)
4123 			kvm_seg.unusable = 1;
4124 
4125 	kvm_set_segment(vcpu, &kvm_seg, seg);
4126 	return 0;
4127 }
4128 
4129 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4130 				struct tss_segment_32 *tss)
4131 {
4132 	tss->cr3 = vcpu->arch.cr3;
4133 	tss->eip = kvm_rip_read(vcpu);
4134 	tss->eflags = kvm_x86_ops->get_rflags(vcpu);
4135 	tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4136 	tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4137 	tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4138 	tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4139 	tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4140 	tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4141 	tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4142 	tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4143 	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4144 	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4145 	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4146 	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4147 	tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4148 	tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4149 	tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4150 }
4151 
4152 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4153 				  struct tss_segment_32 *tss)
4154 {
4155 	kvm_set_cr3(vcpu, tss->cr3);
4156 
4157 	kvm_rip_write(vcpu, tss->eip);
4158 	kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4159 
4160 	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4161 	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4162 	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4163 	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4164 	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4165 	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4166 	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4167 	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4168 
4169 	if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4170 		return 1;
4171 
4172 	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4173 		return 1;
4174 
4175 	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4176 		return 1;
4177 
4178 	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4179 		return 1;
4180 
4181 	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4182 		return 1;
4183 
4184 	if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4185 		return 1;
4186 
4187 	if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4188 		return 1;
4189 	return 0;
4190 }
4191 
4192 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4193 				struct tss_segment_16 *tss)
4194 {
4195 	tss->ip = kvm_rip_read(vcpu);
4196 	tss->flag = kvm_x86_ops->get_rflags(vcpu);
4197 	tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4198 	tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4199 	tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4200 	tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4201 	tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4202 	tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4203 	tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4204 	tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4205 
4206 	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4207 	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4208 	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4209 	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4210 	tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4211 	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4212 }
4213 
4214 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4215 				 struct tss_segment_16 *tss)
4216 {
4217 	kvm_rip_write(vcpu, tss->ip);
4218 	kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4219 	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4220 	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4221 	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4222 	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4223 	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4224 	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4225 	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4226 	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4227 
4228 	if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4229 		return 1;
4230 
4231 	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4232 		return 1;
4233 
4234 	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4235 		return 1;
4236 
4237 	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4238 		return 1;
4239 
4240 	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4241 		return 1;
4242 	return 0;
4243 }
4244 
4245 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4246 			      u16 old_tss_sel, u32 old_tss_base,
4247 			      struct desc_struct *nseg_desc)
4248 {
4249 	struct tss_segment_16 tss_segment_16;
4250 	int ret = 0;
4251 
4252 	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4253 			   sizeof tss_segment_16))
4254 		goto out;
4255 
4256 	save_state_to_tss16(vcpu, &tss_segment_16);
4257 
4258 	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4259 			    sizeof tss_segment_16))
4260 		goto out;
4261 
4262 	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4263 			   &tss_segment_16, sizeof tss_segment_16))
4264 		goto out;
4265 
4266 	if (old_tss_sel != 0xffff) {
4267 		tss_segment_16.prev_task_link = old_tss_sel;
4268 
4269 		if (kvm_write_guest(vcpu->kvm,
4270 				    get_tss_base_addr(vcpu, nseg_desc),
4271 				    &tss_segment_16.prev_task_link,
4272 				    sizeof tss_segment_16.prev_task_link))
4273 			goto out;
4274 	}
4275 
4276 	if (load_state_from_tss16(vcpu, &tss_segment_16))
4277 		goto out;
4278 
4279 	ret = 1;
4280 out:
4281 	return ret;
4282 }
4283 
4284 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4285 		       u16 old_tss_sel, u32 old_tss_base,
4286 		       struct desc_struct *nseg_desc)
4287 {
4288 	struct tss_segment_32 tss_segment_32;
4289 	int ret = 0;
4290 
4291 	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4292 			   sizeof tss_segment_32))
4293 		goto out;
4294 
4295 	save_state_to_tss32(vcpu, &tss_segment_32);
4296 
4297 	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4298 			    sizeof tss_segment_32))
4299 		goto out;
4300 
4301 	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4302 			   &tss_segment_32, sizeof tss_segment_32))
4303 		goto out;
4304 
4305 	if (old_tss_sel != 0xffff) {
4306 		tss_segment_32.prev_task_link = old_tss_sel;
4307 
4308 		if (kvm_write_guest(vcpu->kvm,
4309 				    get_tss_base_addr(vcpu, nseg_desc),
4310 				    &tss_segment_32.prev_task_link,
4311 				    sizeof tss_segment_32.prev_task_link))
4312 			goto out;
4313 	}
4314 
4315 	if (load_state_from_tss32(vcpu, &tss_segment_32))
4316 		goto out;
4317 
4318 	ret = 1;
4319 out:
4320 	return ret;
4321 }
4322 
4323 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4324 {
4325 	struct kvm_segment tr_seg;
4326 	struct desc_struct cseg_desc;
4327 	struct desc_struct nseg_desc;
4328 	int ret = 0;
4329 	u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4330 	u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4331 
4332 	old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4333 
4334 	/* FIXME: Handle errors. Failure to read either TSS or their
4335 	 * descriptors should generate a pagefault.
4336 	 */
4337 	if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4338 		goto out;
4339 
4340 	if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4341 		goto out;
4342 
4343 	if (reason != TASK_SWITCH_IRET) {
4344 		int cpl;
4345 
4346 		cpl = kvm_x86_ops->get_cpl(vcpu);
4347 		if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4348 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4349 			return 1;
4350 		}
4351 	}
4352 
4353 	if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4354 		kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4355 		return 1;
4356 	}
4357 
4358 	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4359 		cseg_desc.type &= ~(1 << 1); //clear the B flag
4360 		save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4361 	}
4362 
4363 	if (reason == TASK_SWITCH_IRET) {
4364 		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4365 		kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4366 	}
4367 
4368 	/* set back link to prev task only if NT bit is set in eflags
4369 	   note that old_tss_sel is not used afetr this point */
4370 	if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4371 		old_tss_sel = 0xffff;
4372 
4373 	/* set back link to prev task only if NT bit is set in eflags
4374 	   note that old_tss_sel is not used afetr this point */
4375 	if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4376 		old_tss_sel = 0xffff;
4377 
4378 	if (nseg_desc.type & 8)
4379 		ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4380 					 old_tss_base, &nseg_desc);
4381 	else
4382 		ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4383 					 old_tss_base, &nseg_desc);
4384 
4385 	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4386 		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4387 		kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4388 	}
4389 
4390 	if (reason != TASK_SWITCH_IRET) {
4391 		nseg_desc.type |= (1 << 1);
4392 		save_guest_segment_descriptor(vcpu, tss_selector,
4393 					      &nseg_desc);
4394 	}
4395 
4396 	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4397 	seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4398 	tr_seg.type = 11;
4399 	kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4400 out:
4401 	return ret;
4402 }
4403 EXPORT_SYMBOL_GPL(kvm_task_switch);
4404 
4405 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4406 				  struct kvm_sregs *sregs)
4407 {
4408 	int mmu_reset_needed = 0;
4409 	int pending_vec, max_bits;
4410 	struct descriptor_table dt;
4411 
4412 	vcpu_load(vcpu);
4413 
4414 	dt.limit = sregs->idt.limit;
4415 	dt.base = sregs->idt.base;
4416 	kvm_x86_ops->set_idt(vcpu, &dt);
4417 	dt.limit = sregs->gdt.limit;
4418 	dt.base = sregs->gdt.base;
4419 	kvm_x86_ops->set_gdt(vcpu, &dt);
4420 
4421 	vcpu->arch.cr2 = sregs->cr2;
4422 	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4423 	vcpu->arch.cr3 = sregs->cr3;
4424 
4425 	kvm_set_cr8(vcpu, sregs->cr8);
4426 
4427 	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4428 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
4429 	kvm_set_apic_base(vcpu, sregs->apic_base);
4430 
4431 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4432 
4433 	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4434 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4435 	vcpu->arch.cr0 = sregs->cr0;
4436 
4437 	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4438 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4439 	if (!is_long_mode(vcpu) && is_pae(vcpu))
4440 		load_pdptrs(vcpu, vcpu->arch.cr3);
4441 
4442 	if (mmu_reset_needed)
4443 		kvm_mmu_reset_context(vcpu);
4444 
4445 	max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4446 	pending_vec = find_first_bit(
4447 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
4448 	if (pending_vec < max_bits) {
4449 		kvm_queue_interrupt(vcpu, pending_vec, false);
4450 		pr_debug("Set back pending irq %d\n", pending_vec);
4451 		if (irqchip_in_kernel(vcpu->kvm))
4452 			kvm_pic_clear_isr_ack(vcpu->kvm);
4453 	}
4454 
4455 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4456 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4457 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4458 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4459 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4460 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4461 
4462 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4463 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4464 
4465 	update_cr8_intercept(vcpu);
4466 
4467 	/* Older userspace won't unhalt the vcpu on reset. */
4468 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4469 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4470 	    !(vcpu->arch.cr0 & X86_CR0_PE))
4471 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4472 
4473 	vcpu_put(vcpu);
4474 
4475 	return 0;
4476 }
4477 
4478 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4479 					struct kvm_guest_debug *dbg)
4480 {
4481 	int i, r;
4482 
4483 	vcpu_load(vcpu);
4484 
4485 	if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4486 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4487 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
4488 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4489 		vcpu->arch.switch_db_regs =
4490 			(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4491 	} else {
4492 		for (i = 0; i < KVM_NR_DB_REGS; i++)
4493 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4494 		vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4495 	}
4496 
4497 	r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4498 
4499 	if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4500 		kvm_queue_exception(vcpu, DB_VECTOR);
4501 	else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4502 		kvm_queue_exception(vcpu, BP_VECTOR);
4503 
4504 	vcpu_put(vcpu);
4505 
4506 	return r;
4507 }
4508 
4509 /*
4510  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4511  * we have asm/x86/processor.h
4512  */
4513 struct fxsave {
4514 	u16	cwd;
4515 	u16	swd;
4516 	u16	twd;
4517 	u16	fop;
4518 	u64	rip;
4519 	u64	rdp;
4520 	u32	mxcsr;
4521 	u32	mxcsr_mask;
4522 	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
4523 #ifdef CONFIG_X86_64
4524 	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
4525 #else
4526 	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */
4527 #endif
4528 };
4529 
4530 /*
4531  * Translate a guest virtual address to a guest physical address.
4532  */
4533 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4534 				    struct kvm_translation *tr)
4535 {
4536 	unsigned long vaddr = tr->linear_address;
4537 	gpa_t gpa;
4538 
4539 	vcpu_load(vcpu);
4540 	down_read(&vcpu->kvm->slots_lock);
4541 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4542 	up_read(&vcpu->kvm->slots_lock);
4543 	tr->physical_address = gpa;
4544 	tr->valid = gpa != UNMAPPED_GVA;
4545 	tr->writeable = 1;
4546 	tr->usermode = 0;
4547 	vcpu_put(vcpu);
4548 
4549 	return 0;
4550 }
4551 
4552 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4553 {
4554 	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4555 
4556 	vcpu_load(vcpu);
4557 
4558 	memcpy(fpu->fpr, fxsave->st_space, 128);
4559 	fpu->fcw = fxsave->cwd;
4560 	fpu->fsw = fxsave->swd;
4561 	fpu->ftwx = fxsave->twd;
4562 	fpu->last_opcode = fxsave->fop;
4563 	fpu->last_ip = fxsave->rip;
4564 	fpu->last_dp = fxsave->rdp;
4565 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4566 
4567 	vcpu_put(vcpu);
4568 
4569 	return 0;
4570 }
4571 
4572 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4573 {
4574 	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4575 
4576 	vcpu_load(vcpu);
4577 
4578 	memcpy(fxsave->st_space, fpu->fpr, 128);
4579 	fxsave->cwd = fpu->fcw;
4580 	fxsave->swd = fpu->fsw;
4581 	fxsave->twd = fpu->ftwx;
4582 	fxsave->fop = fpu->last_opcode;
4583 	fxsave->rip = fpu->last_ip;
4584 	fxsave->rdp = fpu->last_dp;
4585 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4586 
4587 	vcpu_put(vcpu);
4588 
4589 	return 0;
4590 }
4591 
4592 void fx_init(struct kvm_vcpu *vcpu)
4593 {
4594 	unsigned after_mxcsr_mask;
4595 
4596 	/*
4597 	 * Touch the fpu the first time in non atomic context as if
4598 	 * this is the first fpu instruction the exception handler
4599 	 * will fire before the instruction returns and it'll have to
4600 	 * allocate ram with GFP_KERNEL.
4601 	 */
4602 	if (!used_math())
4603 		kvm_fx_save(&vcpu->arch.host_fx_image);
4604 
4605 	/* Initialize guest FPU by resetting ours and saving into guest's */
4606 	preempt_disable();
4607 	kvm_fx_save(&vcpu->arch.host_fx_image);
4608 	kvm_fx_finit();
4609 	kvm_fx_save(&vcpu->arch.guest_fx_image);
4610 	kvm_fx_restore(&vcpu->arch.host_fx_image);
4611 	preempt_enable();
4612 
4613 	vcpu->arch.cr0 |= X86_CR0_ET;
4614 	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4615 	vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4616 	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4617 	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4618 }
4619 EXPORT_SYMBOL_GPL(fx_init);
4620 
4621 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4622 {
4623 	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4624 		return;
4625 
4626 	vcpu->guest_fpu_loaded = 1;
4627 	kvm_fx_save(&vcpu->arch.host_fx_image);
4628 	kvm_fx_restore(&vcpu->arch.guest_fx_image);
4629 }
4630 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4631 
4632 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4633 {
4634 	if (!vcpu->guest_fpu_loaded)
4635 		return;
4636 
4637 	vcpu->guest_fpu_loaded = 0;
4638 	kvm_fx_save(&vcpu->arch.guest_fx_image);
4639 	kvm_fx_restore(&vcpu->arch.host_fx_image);
4640 	++vcpu->stat.fpu_reload;
4641 }
4642 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4643 
4644 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4645 {
4646 	if (vcpu->arch.time_page) {
4647 		kvm_release_page_dirty(vcpu->arch.time_page);
4648 		vcpu->arch.time_page = NULL;
4649 	}
4650 
4651 	kvm_x86_ops->vcpu_free(vcpu);
4652 }
4653 
4654 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4655 						unsigned int id)
4656 {
4657 	return kvm_x86_ops->vcpu_create(kvm, id);
4658 }
4659 
4660 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4661 {
4662 	int r;
4663 
4664 	/* We do fxsave: this must be aligned. */
4665 	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4666 
4667 	vcpu->arch.mtrr_state.have_fixed = 1;
4668 	vcpu_load(vcpu);
4669 	r = kvm_arch_vcpu_reset(vcpu);
4670 	if (r == 0)
4671 		r = kvm_mmu_setup(vcpu);
4672 	vcpu_put(vcpu);
4673 	if (r < 0)
4674 		goto free_vcpu;
4675 
4676 	return 0;
4677 free_vcpu:
4678 	kvm_x86_ops->vcpu_free(vcpu);
4679 	return r;
4680 }
4681 
4682 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4683 {
4684 	vcpu_load(vcpu);
4685 	kvm_mmu_unload(vcpu);
4686 	vcpu_put(vcpu);
4687 
4688 	kvm_x86_ops->vcpu_free(vcpu);
4689 }
4690 
4691 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4692 {
4693 	vcpu->arch.nmi_pending = false;
4694 	vcpu->arch.nmi_injected = false;
4695 
4696 	vcpu->arch.switch_db_regs = 0;
4697 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4698 	vcpu->arch.dr6 = DR6_FIXED_1;
4699 	vcpu->arch.dr7 = DR7_FIXED_1;
4700 
4701 	return kvm_x86_ops->vcpu_reset(vcpu);
4702 }
4703 
4704 void kvm_arch_hardware_enable(void *garbage)
4705 {
4706 	kvm_x86_ops->hardware_enable(garbage);
4707 }
4708 
4709 void kvm_arch_hardware_disable(void *garbage)
4710 {
4711 	kvm_x86_ops->hardware_disable(garbage);
4712 }
4713 
4714 int kvm_arch_hardware_setup(void)
4715 {
4716 	return kvm_x86_ops->hardware_setup();
4717 }
4718 
4719 void kvm_arch_hardware_unsetup(void)
4720 {
4721 	kvm_x86_ops->hardware_unsetup();
4722 }
4723 
4724 void kvm_arch_check_processor_compat(void *rtn)
4725 {
4726 	kvm_x86_ops->check_processor_compatibility(rtn);
4727 }
4728 
4729 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4730 {
4731 	struct page *page;
4732 	struct kvm *kvm;
4733 	int r;
4734 
4735 	BUG_ON(vcpu->kvm == NULL);
4736 	kvm = vcpu->kvm;
4737 
4738 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4739 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4740 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4741 	else
4742 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4743 
4744 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4745 	if (!page) {
4746 		r = -ENOMEM;
4747 		goto fail;
4748 	}
4749 	vcpu->arch.pio_data = page_address(page);
4750 
4751 	r = kvm_mmu_create(vcpu);
4752 	if (r < 0)
4753 		goto fail_free_pio_data;
4754 
4755 	if (irqchip_in_kernel(kvm)) {
4756 		r = kvm_create_lapic(vcpu);
4757 		if (r < 0)
4758 			goto fail_mmu_destroy;
4759 	}
4760 
4761 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4762 				       GFP_KERNEL);
4763 	if (!vcpu->arch.mce_banks) {
4764 		r = -ENOMEM;
4765 		goto fail_mmu_destroy;
4766 	}
4767 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4768 
4769 	return 0;
4770 
4771 fail_mmu_destroy:
4772 	kvm_mmu_destroy(vcpu);
4773 fail_free_pio_data:
4774 	free_page((unsigned long)vcpu->arch.pio_data);
4775 fail:
4776 	return r;
4777 }
4778 
4779 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4780 {
4781 	kvm_free_lapic(vcpu);
4782 	down_read(&vcpu->kvm->slots_lock);
4783 	kvm_mmu_destroy(vcpu);
4784 	up_read(&vcpu->kvm->slots_lock);
4785 	free_page((unsigned long)vcpu->arch.pio_data);
4786 }
4787 
4788 struct  kvm *kvm_arch_create_vm(void)
4789 {
4790 	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4791 
4792 	if (!kvm)
4793 		return ERR_PTR(-ENOMEM);
4794 
4795 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4796 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4797 
4798 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4799 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4800 
4801 	rdtscll(kvm->arch.vm_init_tsc);
4802 
4803 	return kvm;
4804 }
4805 
4806 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4807 {
4808 	vcpu_load(vcpu);
4809 	kvm_mmu_unload(vcpu);
4810 	vcpu_put(vcpu);
4811 }
4812 
4813 static void kvm_free_vcpus(struct kvm *kvm)
4814 {
4815 	unsigned int i;
4816 	struct kvm_vcpu *vcpu;
4817 
4818 	/*
4819 	 * Unpin any mmu pages first.
4820 	 */
4821 	kvm_for_each_vcpu(i, vcpu, kvm)
4822 		kvm_unload_vcpu_mmu(vcpu);
4823 	kvm_for_each_vcpu(i, vcpu, kvm)
4824 		kvm_arch_vcpu_free(vcpu);
4825 
4826 	mutex_lock(&kvm->lock);
4827 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4828 		kvm->vcpus[i] = NULL;
4829 
4830 	atomic_set(&kvm->online_vcpus, 0);
4831 	mutex_unlock(&kvm->lock);
4832 }
4833 
4834 void kvm_arch_sync_events(struct kvm *kvm)
4835 {
4836 	kvm_free_all_assigned_devices(kvm);
4837 }
4838 
4839 void kvm_arch_destroy_vm(struct kvm *kvm)
4840 {
4841 	kvm_iommu_unmap_guest(kvm);
4842 	kvm_free_pit(kvm);
4843 	kfree(kvm->arch.vpic);
4844 	kfree(kvm->arch.vioapic);
4845 	kvm_free_vcpus(kvm);
4846 	kvm_free_physmem(kvm);
4847 	if (kvm->arch.apic_access_page)
4848 		put_page(kvm->arch.apic_access_page);
4849 	if (kvm->arch.ept_identity_pagetable)
4850 		put_page(kvm->arch.ept_identity_pagetable);
4851 	kfree(kvm);
4852 }
4853 
4854 int kvm_arch_set_memory_region(struct kvm *kvm,
4855 				struct kvm_userspace_memory_region *mem,
4856 				struct kvm_memory_slot old,
4857 				int user_alloc)
4858 {
4859 	int npages = mem->memory_size >> PAGE_SHIFT;
4860 	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4861 
4862 	/*To keep backward compatibility with older userspace,
4863 	 *x86 needs to hanlde !user_alloc case.
4864 	 */
4865 	if (!user_alloc) {
4866 		if (npages && !old.rmap) {
4867 			unsigned long userspace_addr;
4868 
4869 			down_write(&current->mm->mmap_sem);
4870 			userspace_addr = do_mmap(NULL, 0,
4871 						 npages * PAGE_SIZE,
4872 						 PROT_READ | PROT_WRITE,
4873 						 MAP_PRIVATE | MAP_ANONYMOUS,
4874 						 0);
4875 			up_write(&current->mm->mmap_sem);
4876 
4877 			if (IS_ERR((void *)userspace_addr))
4878 				return PTR_ERR((void *)userspace_addr);
4879 
4880 			/* set userspace_addr atomically for kvm_hva_to_rmapp */
4881 			spin_lock(&kvm->mmu_lock);
4882 			memslot->userspace_addr = userspace_addr;
4883 			spin_unlock(&kvm->mmu_lock);
4884 		} else {
4885 			if (!old.user_alloc && old.rmap) {
4886 				int ret;
4887 
4888 				down_write(&current->mm->mmap_sem);
4889 				ret = do_munmap(current->mm, old.userspace_addr,
4890 						old.npages * PAGE_SIZE);
4891 				up_write(&current->mm->mmap_sem);
4892 				if (ret < 0)
4893 					printk(KERN_WARNING
4894 				       "kvm_vm_ioctl_set_memory_region: "
4895 				       "failed to munmap memory\n");
4896 			}
4897 		}
4898 	}
4899 
4900 	spin_lock(&kvm->mmu_lock);
4901 	if (!kvm->arch.n_requested_mmu_pages) {
4902 		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4903 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4904 	}
4905 
4906 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4907 	spin_unlock(&kvm->mmu_lock);
4908 
4909 	return 0;
4910 }
4911 
4912 void kvm_arch_flush_shadow(struct kvm *kvm)
4913 {
4914 	kvm_mmu_zap_all(kvm);
4915 	kvm_reload_remote_mmus(kvm);
4916 }
4917 
4918 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4919 {
4920 	return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4921 		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4922 		|| vcpu->arch.nmi_pending ||
4923 		(kvm_arch_interrupt_allowed(vcpu) &&
4924 		 kvm_cpu_has_interrupt(vcpu));
4925 }
4926 
4927 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4928 {
4929 	int me;
4930 	int cpu = vcpu->cpu;
4931 
4932 	if (waitqueue_active(&vcpu->wq)) {
4933 		wake_up_interruptible(&vcpu->wq);
4934 		++vcpu->stat.halt_wakeup;
4935 	}
4936 
4937 	me = get_cpu();
4938 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4939 		if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4940 			smp_send_reschedule(cpu);
4941 	put_cpu();
4942 }
4943 
4944 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4945 {
4946 	return kvm_x86_ops->interrupt_allowed(vcpu);
4947 }
4948 
4949 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
4950 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
4951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
4952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
4953 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
4954