1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/intel-iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <linux/sched/stat.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/mem_encrypt.h> 60 #include <linux/entry-kvm.h> 61 #include <linux/suspend.h> 62 63 #include <trace/events/kvm.h> 64 65 #include <asm/debugreg.h> 66 #include <asm/msr.h> 67 #include <asm/desc.h> 68 #include <asm/mce.h> 69 #include <asm/pkru.h> 70 #include <linux/kernel_stat.h> 71 #include <asm/fpu/api.h> 72 #include <asm/fpu/xcr.h> 73 #include <asm/fpu/xstate.h> 74 #include <asm/pvclock.h> 75 #include <asm/div64.h> 76 #include <asm/irq_remapping.h> 77 #include <asm/mshyperv.h> 78 #include <asm/hypervisor.h> 79 #include <asm/tlbflush.h> 80 #include <asm/intel_pt.h> 81 #include <asm/emulate_prefix.h> 82 #include <asm/sgx.h> 83 #include <clocksource/hyperv_timer.h> 84 85 #define CREATE_TRACE_POINTS 86 #include "trace.h" 87 88 #define MAX_IO_MSRS 256 89 #define KVM_MAX_MCE_BANKS 32 90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 92 93 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 94 95 #define emul_to_vcpu(ctxt) \ 96 ((struct kvm_vcpu *)(ctxt)->vcpu) 97 98 /* EFER defaults: 99 * - enable syscall per default because its emulated by KVM 100 * - enable LME and LMA per default on 64 bit KVM 101 */ 102 #ifdef CONFIG_X86_64 103 static 104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 105 #else 106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 107 #endif 108 109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 110 111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 112 113 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 114 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 115 116 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 117 static void process_nmi(struct kvm_vcpu *vcpu); 118 static void process_smi(struct kvm_vcpu *vcpu); 119 static void enter_smm(struct kvm_vcpu *vcpu); 120 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 121 static void store_regs(struct kvm_vcpu *vcpu); 122 static int sync_regs(struct kvm_vcpu *vcpu); 123 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 124 125 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 126 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 127 128 struct kvm_x86_ops kvm_x86_ops __read_mostly; 129 EXPORT_SYMBOL_GPL(kvm_x86_ops); 130 131 #define KVM_X86_OP(func) \ 132 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 133 *(((struct kvm_x86_ops *)0)->func)); 134 #define KVM_X86_OP_NULL KVM_X86_OP 135 #include <asm/kvm-x86-ops.h> 136 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 137 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 138 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current); 139 140 static bool __read_mostly ignore_msrs = 0; 141 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 142 143 bool __read_mostly report_ignored_msrs = true; 144 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 145 EXPORT_SYMBOL_GPL(report_ignored_msrs); 146 147 unsigned int min_timer_period_us = 200; 148 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 149 150 static bool __read_mostly kvmclock_periodic_sync = true; 151 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 152 153 bool __read_mostly kvm_has_tsc_control; 154 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 155 u32 __read_mostly kvm_max_guest_tsc_khz; 156 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 157 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 158 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 159 u64 __read_mostly kvm_max_tsc_scaling_ratio; 160 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 161 u64 __read_mostly kvm_default_tsc_scaling_ratio; 162 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 163 bool __read_mostly kvm_has_bus_lock_exit; 164 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit); 165 166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 167 static u32 __read_mostly tsc_tolerance_ppm = 250; 168 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 169 170 /* 171 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 172 * adaptive tuning starting from default advancement of 1000ns. '0' disables 173 * advancement entirely. Any other value is used as-is and disables adaptive 174 * tuning, i.e. allows privileged userspace to set an exact advancement time. 175 */ 176 static int __read_mostly lapic_timer_advance_ns = -1; 177 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 178 179 static bool __read_mostly vector_hashing = true; 180 module_param(vector_hashing, bool, S_IRUGO); 181 182 bool __read_mostly enable_vmware_backdoor = false; 183 module_param(enable_vmware_backdoor, bool, S_IRUGO); 184 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 185 186 static bool __read_mostly force_emulation_prefix = false; 187 module_param(force_emulation_prefix, bool, S_IRUGO); 188 189 int __read_mostly pi_inject_timer = -1; 190 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 191 192 /* Enable/disable PMU virtualization */ 193 bool __read_mostly enable_pmu = true; 194 EXPORT_SYMBOL_GPL(enable_pmu); 195 module_param(enable_pmu, bool, 0444); 196 197 /* 198 * Restoring the host value for MSRs that are only consumed when running in 199 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 200 * returns to userspace, i.e. the kernel can run with the guest's value. 201 */ 202 #define KVM_MAX_NR_USER_RETURN_MSRS 16 203 204 struct kvm_user_return_msrs { 205 struct user_return_notifier urn; 206 bool registered; 207 struct kvm_user_return_msr_values { 208 u64 host; 209 u64 curr; 210 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 211 }; 212 213 u32 __read_mostly kvm_nr_uret_msrs; 214 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 215 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 216 static struct kvm_user_return_msrs __percpu *user_return_msrs; 217 218 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 219 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 220 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 221 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 222 223 u64 __read_mostly host_efer; 224 EXPORT_SYMBOL_GPL(host_efer); 225 226 bool __read_mostly allow_smaller_maxphyaddr = 0; 227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 228 229 bool __read_mostly enable_apicv = true; 230 EXPORT_SYMBOL_GPL(enable_apicv); 231 232 u64 __read_mostly host_xss; 233 EXPORT_SYMBOL_GPL(host_xss); 234 u64 __read_mostly supported_xss; 235 EXPORT_SYMBOL_GPL(supported_xss); 236 237 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 238 KVM_GENERIC_VM_STATS(), 239 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 240 STATS_DESC_COUNTER(VM, mmu_pte_write), 241 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 242 STATS_DESC_COUNTER(VM, mmu_flooded), 243 STATS_DESC_COUNTER(VM, mmu_recycled), 244 STATS_DESC_COUNTER(VM, mmu_cache_miss), 245 STATS_DESC_ICOUNTER(VM, mmu_unsync), 246 STATS_DESC_ICOUNTER(VM, pages_4k), 247 STATS_DESC_ICOUNTER(VM, pages_2m), 248 STATS_DESC_ICOUNTER(VM, pages_1g), 249 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 250 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 251 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 252 }; 253 254 const struct kvm_stats_header kvm_vm_stats_header = { 255 .name_size = KVM_STATS_NAME_SIZE, 256 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 257 .id_offset = sizeof(struct kvm_stats_header), 258 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 259 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 260 sizeof(kvm_vm_stats_desc), 261 }; 262 263 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 264 KVM_GENERIC_VCPU_STATS(), 265 STATS_DESC_COUNTER(VCPU, pf_fixed), 266 STATS_DESC_COUNTER(VCPU, pf_guest), 267 STATS_DESC_COUNTER(VCPU, tlb_flush), 268 STATS_DESC_COUNTER(VCPU, invlpg), 269 STATS_DESC_COUNTER(VCPU, exits), 270 STATS_DESC_COUNTER(VCPU, io_exits), 271 STATS_DESC_COUNTER(VCPU, mmio_exits), 272 STATS_DESC_COUNTER(VCPU, signal_exits), 273 STATS_DESC_COUNTER(VCPU, irq_window_exits), 274 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 275 STATS_DESC_COUNTER(VCPU, l1d_flush), 276 STATS_DESC_COUNTER(VCPU, halt_exits), 277 STATS_DESC_COUNTER(VCPU, request_irq_exits), 278 STATS_DESC_COUNTER(VCPU, irq_exits), 279 STATS_DESC_COUNTER(VCPU, host_state_reload), 280 STATS_DESC_COUNTER(VCPU, fpu_reload), 281 STATS_DESC_COUNTER(VCPU, insn_emulation), 282 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 283 STATS_DESC_COUNTER(VCPU, hypercalls), 284 STATS_DESC_COUNTER(VCPU, irq_injections), 285 STATS_DESC_COUNTER(VCPU, nmi_injections), 286 STATS_DESC_COUNTER(VCPU, req_event), 287 STATS_DESC_COUNTER(VCPU, nested_run), 288 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 289 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 290 STATS_DESC_ICOUNTER(VCPU, guest_mode) 291 }; 292 293 const struct kvm_stats_header kvm_vcpu_stats_header = { 294 .name_size = KVM_STATS_NAME_SIZE, 295 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 296 .id_offset = sizeof(struct kvm_stats_header), 297 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 298 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 299 sizeof(kvm_vcpu_stats_desc), 300 }; 301 302 u64 __read_mostly host_xcr0; 303 u64 __read_mostly supported_xcr0; 304 EXPORT_SYMBOL_GPL(supported_xcr0); 305 306 static struct kmem_cache *x86_emulator_cache; 307 308 /* 309 * When called, it means the previous get/set msr reached an invalid msr. 310 * Return true if we want to ignore/silent this failed msr access. 311 */ 312 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 313 { 314 const char *op = write ? "wrmsr" : "rdmsr"; 315 316 if (ignore_msrs) { 317 if (report_ignored_msrs) 318 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 319 op, msr, data); 320 /* Mask the error */ 321 return true; 322 } else { 323 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 324 op, msr, data); 325 return false; 326 } 327 } 328 329 static struct kmem_cache *kvm_alloc_emulator_cache(void) 330 { 331 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 332 unsigned int size = sizeof(struct x86_emulate_ctxt); 333 334 return kmem_cache_create_usercopy("x86_emulator", size, 335 __alignof__(struct x86_emulate_ctxt), 336 SLAB_ACCOUNT, useroffset, 337 size - useroffset, NULL); 338 } 339 340 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 341 342 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 343 { 344 int i; 345 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 346 vcpu->arch.apf.gfns[i] = ~0; 347 } 348 349 static void kvm_on_user_return(struct user_return_notifier *urn) 350 { 351 unsigned slot; 352 struct kvm_user_return_msrs *msrs 353 = container_of(urn, struct kvm_user_return_msrs, urn); 354 struct kvm_user_return_msr_values *values; 355 unsigned long flags; 356 357 /* 358 * Disabling irqs at this point since the following code could be 359 * interrupted and executed through kvm_arch_hardware_disable() 360 */ 361 local_irq_save(flags); 362 if (msrs->registered) { 363 msrs->registered = false; 364 user_return_notifier_unregister(urn); 365 } 366 local_irq_restore(flags); 367 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 368 values = &msrs->values[slot]; 369 if (values->host != values->curr) { 370 wrmsrl(kvm_uret_msrs_list[slot], values->host); 371 values->curr = values->host; 372 } 373 } 374 } 375 376 static int kvm_probe_user_return_msr(u32 msr) 377 { 378 u64 val; 379 int ret; 380 381 preempt_disable(); 382 ret = rdmsrl_safe(msr, &val); 383 if (ret) 384 goto out; 385 ret = wrmsrl_safe(msr, val); 386 out: 387 preempt_enable(); 388 return ret; 389 } 390 391 int kvm_add_user_return_msr(u32 msr) 392 { 393 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 394 395 if (kvm_probe_user_return_msr(msr)) 396 return -1; 397 398 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 399 return kvm_nr_uret_msrs++; 400 } 401 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 402 403 int kvm_find_user_return_msr(u32 msr) 404 { 405 int i; 406 407 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 408 if (kvm_uret_msrs_list[i] == msr) 409 return i; 410 } 411 return -1; 412 } 413 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 414 415 static void kvm_user_return_msr_cpu_online(void) 416 { 417 unsigned int cpu = smp_processor_id(); 418 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 419 u64 value; 420 int i; 421 422 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 423 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 424 msrs->values[i].host = value; 425 msrs->values[i].curr = value; 426 } 427 } 428 429 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 430 { 431 unsigned int cpu = smp_processor_id(); 432 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 433 int err; 434 435 value = (value & mask) | (msrs->values[slot].host & ~mask); 436 if (value == msrs->values[slot].curr) 437 return 0; 438 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 439 if (err) 440 return 1; 441 442 msrs->values[slot].curr = value; 443 if (!msrs->registered) { 444 msrs->urn.on_user_return = kvm_on_user_return; 445 user_return_notifier_register(&msrs->urn); 446 msrs->registered = true; 447 } 448 return 0; 449 } 450 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 451 452 static void drop_user_return_notifiers(void) 453 { 454 unsigned int cpu = smp_processor_id(); 455 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 456 457 if (msrs->registered) 458 kvm_on_user_return(&msrs->urn); 459 } 460 461 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 462 { 463 return vcpu->arch.apic_base; 464 } 465 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 466 467 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 468 { 469 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 470 } 471 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 472 473 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 474 { 475 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 476 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 477 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 478 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 479 480 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 481 return 1; 482 if (!msr_info->host_initiated) { 483 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 484 return 1; 485 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 486 return 1; 487 } 488 489 kvm_lapic_set_base(vcpu, msr_info->data); 490 kvm_recalculate_apic_map(vcpu->kvm); 491 return 0; 492 } 493 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 494 495 /* 496 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 497 * 498 * Hardware virtualization extension instructions may fault if a reboot turns 499 * off virtualization while processes are running. Usually after catching the 500 * fault we just panic; during reboot instead the instruction is ignored. 501 */ 502 noinstr void kvm_spurious_fault(void) 503 { 504 /* Fault while not rebooting. We want the trace. */ 505 BUG_ON(!kvm_rebooting); 506 } 507 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 508 509 #define EXCPT_BENIGN 0 510 #define EXCPT_CONTRIBUTORY 1 511 #define EXCPT_PF 2 512 513 static int exception_class(int vector) 514 { 515 switch (vector) { 516 case PF_VECTOR: 517 return EXCPT_PF; 518 case DE_VECTOR: 519 case TS_VECTOR: 520 case NP_VECTOR: 521 case SS_VECTOR: 522 case GP_VECTOR: 523 return EXCPT_CONTRIBUTORY; 524 default: 525 break; 526 } 527 return EXCPT_BENIGN; 528 } 529 530 #define EXCPT_FAULT 0 531 #define EXCPT_TRAP 1 532 #define EXCPT_ABORT 2 533 #define EXCPT_INTERRUPT 3 534 535 static int exception_type(int vector) 536 { 537 unsigned int mask; 538 539 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 540 return EXCPT_INTERRUPT; 541 542 mask = 1 << vector; 543 544 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 545 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 546 return EXCPT_TRAP; 547 548 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 549 return EXCPT_ABORT; 550 551 /* Reserved exceptions will result in fault */ 552 return EXCPT_FAULT; 553 } 554 555 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 556 { 557 unsigned nr = vcpu->arch.exception.nr; 558 bool has_payload = vcpu->arch.exception.has_payload; 559 unsigned long payload = vcpu->arch.exception.payload; 560 561 if (!has_payload) 562 return; 563 564 switch (nr) { 565 case DB_VECTOR: 566 /* 567 * "Certain debug exceptions may clear bit 0-3. The 568 * remaining contents of the DR6 register are never 569 * cleared by the processor". 570 */ 571 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 572 /* 573 * In order to reflect the #DB exception payload in guest 574 * dr6, three components need to be considered: active low 575 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 576 * DR6_BS and DR6_BT) 577 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 578 * In the target guest dr6: 579 * FIXED_1 bits should always be set. 580 * Active low bits should be cleared if 1-setting in payload. 581 * Active high bits should be set if 1-setting in payload. 582 * 583 * Note, the payload is compatible with the pending debug 584 * exceptions/exit qualification under VMX, that active_low bits 585 * are active high in payload. 586 * So they need to be flipped for DR6. 587 */ 588 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 589 vcpu->arch.dr6 |= payload; 590 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW; 591 592 /* 593 * The #DB payload is defined as compatible with the 'pending 594 * debug exceptions' field under VMX, not DR6. While bit 12 is 595 * defined in the 'pending debug exceptions' field (enabled 596 * breakpoint), it is reserved and must be zero in DR6. 597 */ 598 vcpu->arch.dr6 &= ~BIT(12); 599 break; 600 case PF_VECTOR: 601 vcpu->arch.cr2 = payload; 602 break; 603 } 604 605 vcpu->arch.exception.has_payload = false; 606 vcpu->arch.exception.payload = 0; 607 } 608 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 609 610 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 611 unsigned nr, bool has_error, u32 error_code, 612 bool has_payload, unsigned long payload, bool reinject) 613 { 614 u32 prev_nr; 615 int class1, class2; 616 617 kvm_make_request(KVM_REQ_EVENT, vcpu); 618 619 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 620 queue: 621 if (reinject) { 622 /* 623 * On vmentry, vcpu->arch.exception.pending is only 624 * true if an event injection was blocked by 625 * nested_run_pending. In that case, however, 626 * vcpu_enter_guest requests an immediate exit, 627 * and the guest shouldn't proceed far enough to 628 * need reinjection. 629 */ 630 WARN_ON_ONCE(vcpu->arch.exception.pending); 631 vcpu->arch.exception.injected = true; 632 if (WARN_ON_ONCE(has_payload)) { 633 /* 634 * A reinjected event has already 635 * delivered its payload. 636 */ 637 has_payload = false; 638 payload = 0; 639 } 640 } else { 641 vcpu->arch.exception.pending = true; 642 vcpu->arch.exception.injected = false; 643 } 644 vcpu->arch.exception.has_error_code = has_error; 645 vcpu->arch.exception.nr = nr; 646 vcpu->arch.exception.error_code = error_code; 647 vcpu->arch.exception.has_payload = has_payload; 648 vcpu->arch.exception.payload = payload; 649 if (!is_guest_mode(vcpu)) 650 kvm_deliver_exception_payload(vcpu); 651 return; 652 } 653 654 /* to check exception */ 655 prev_nr = vcpu->arch.exception.nr; 656 if (prev_nr == DF_VECTOR) { 657 /* triple fault -> shutdown */ 658 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 659 return; 660 } 661 class1 = exception_class(prev_nr); 662 class2 = exception_class(nr); 663 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 664 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 665 /* 666 * Generate double fault per SDM Table 5-5. Set 667 * exception.pending = true so that the double fault 668 * can trigger a nested vmexit. 669 */ 670 vcpu->arch.exception.pending = true; 671 vcpu->arch.exception.injected = false; 672 vcpu->arch.exception.has_error_code = true; 673 vcpu->arch.exception.nr = DF_VECTOR; 674 vcpu->arch.exception.error_code = 0; 675 vcpu->arch.exception.has_payload = false; 676 vcpu->arch.exception.payload = 0; 677 } else 678 /* replace previous exception with a new one in a hope 679 that instruction re-execution will regenerate lost 680 exception */ 681 goto queue; 682 } 683 684 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 685 { 686 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 687 } 688 EXPORT_SYMBOL_GPL(kvm_queue_exception); 689 690 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 691 { 692 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 693 } 694 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 695 696 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 697 unsigned long payload) 698 { 699 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 700 } 701 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 702 703 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 704 u32 error_code, unsigned long payload) 705 { 706 kvm_multiple_exception(vcpu, nr, true, error_code, 707 true, payload, false); 708 } 709 710 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 711 { 712 if (err) 713 kvm_inject_gp(vcpu, 0); 714 else 715 return kvm_skip_emulated_instruction(vcpu); 716 717 return 1; 718 } 719 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 720 721 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 722 { 723 if (err) { 724 kvm_inject_gp(vcpu, 0); 725 return 1; 726 } 727 728 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 729 EMULTYPE_COMPLETE_USER_EXIT); 730 } 731 732 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 733 { 734 ++vcpu->stat.pf_guest; 735 vcpu->arch.exception.nested_apf = 736 is_guest_mode(vcpu) && fault->async_page_fault; 737 if (vcpu->arch.exception.nested_apf) { 738 vcpu->arch.apf.nested_apf_token = fault->address; 739 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 740 } else { 741 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 742 fault->address); 743 } 744 } 745 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 746 747 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 748 struct x86_exception *fault) 749 { 750 struct kvm_mmu *fault_mmu; 751 WARN_ON_ONCE(fault->vector != PF_VECTOR); 752 753 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 754 vcpu->arch.walk_mmu; 755 756 /* 757 * Invalidate the TLB entry for the faulting address, if it exists, 758 * else the access will fault indefinitely (and to emulate hardware). 759 */ 760 if ((fault->error_code & PFERR_PRESENT_MASK) && 761 !(fault->error_code & PFERR_RSVD_MASK)) 762 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 763 fault_mmu->root_hpa); 764 765 fault_mmu->inject_page_fault(vcpu, fault); 766 return fault->nested_page_fault; 767 } 768 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 769 770 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 771 { 772 atomic_inc(&vcpu->arch.nmi_queued); 773 kvm_make_request(KVM_REQ_NMI, vcpu); 774 } 775 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 776 777 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 778 { 779 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 780 } 781 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 782 783 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 784 { 785 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 786 } 787 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 788 789 /* 790 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 791 * a #GP and return false. 792 */ 793 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 794 { 795 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 796 return true; 797 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 798 return false; 799 } 800 EXPORT_SYMBOL_GPL(kvm_require_cpl); 801 802 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 803 { 804 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 805 return true; 806 807 kvm_queue_exception(vcpu, UD_VECTOR); 808 return false; 809 } 810 EXPORT_SYMBOL_GPL(kvm_require_dr); 811 812 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 813 { 814 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 815 } 816 817 /* 818 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 819 */ 820 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 821 { 822 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 823 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 824 gpa_t real_gpa; 825 int i; 826 int ret; 827 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 828 829 /* 830 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 831 * to an L1 GPA. 832 */ 833 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 834 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 835 if (real_gpa == UNMAPPED_GVA) 836 return 0; 837 838 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 839 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 840 cr3 & GENMASK(11, 5), sizeof(pdpte)); 841 if (ret < 0) 842 return 0; 843 844 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 845 if ((pdpte[i] & PT_PRESENT_MASK) && 846 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 847 return 0; 848 } 849 } 850 851 /* 852 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 853 * Shadow page roots need to be reconstructed instead. 854 */ 855 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 856 kvm_mmu_free_roots(vcpu, mmu, KVM_MMU_ROOT_CURRENT); 857 858 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 859 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 860 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 861 vcpu->arch.pdptrs_from_userspace = false; 862 863 return 1; 864 } 865 EXPORT_SYMBOL_GPL(load_pdptrs); 866 867 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 868 { 869 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 870 kvm_clear_async_pf_completion_queue(vcpu); 871 kvm_async_pf_hash_reset(vcpu); 872 } 873 874 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 875 kvm_mmu_reset_context(vcpu); 876 877 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 878 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 879 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 880 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 881 } 882 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 883 884 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 885 { 886 unsigned long old_cr0 = kvm_read_cr0(vcpu); 887 888 cr0 |= X86_CR0_ET; 889 890 #ifdef CONFIG_X86_64 891 if (cr0 & 0xffffffff00000000UL) 892 return 1; 893 #endif 894 895 cr0 &= ~CR0_RESERVED_BITS; 896 897 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 898 return 1; 899 900 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 901 return 1; 902 903 #ifdef CONFIG_X86_64 904 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 905 (cr0 & X86_CR0_PG)) { 906 int cs_db, cs_l; 907 908 if (!is_pae(vcpu)) 909 return 1; 910 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 911 if (cs_l) 912 return 1; 913 } 914 #endif 915 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 916 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 917 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 918 return 1; 919 920 if (!(cr0 & X86_CR0_PG) && 921 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 922 return 1; 923 924 static_call(kvm_x86_set_cr0)(vcpu, cr0); 925 926 kvm_post_set_cr0(vcpu, old_cr0, cr0); 927 928 return 0; 929 } 930 EXPORT_SYMBOL_GPL(kvm_set_cr0); 931 932 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 933 { 934 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 935 } 936 EXPORT_SYMBOL_GPL(kvm_lmsw); 937 938 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 939 { 940 if (vcpu->arch.guest_state_protected) 941 return; 942 943 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 944 945 if (vcpu->arch.xcr0 != host_xcr0) 946 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 947 948 if (vcpu->arch.xsaves_enabled && 949 vcpu->arch.ia32_xss != host_xss) 950 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 951 } 952 953 if (static_cpu_has(X86_FEATURE_PKU) && 954 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 955 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 956 vcpu->arch.pkru != vcpu->arch.host_pkru) 957 write_pkru(vcpu->arch.pkru); 958 } 959 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 960 961 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 962 { 963 if (vcpu->arch.guest_state_protected) 964 return; 965 966 if (static_cpu_has(X86_FEATURE_PKU) && 967 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 968 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 969 vcpu->arch.pkru = rdpkru(); 970 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 971 write_pkru(vcpu->arch.host_pkru); 972 } 973 974 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 975 976 if (vcpu->arch.xcr0 != host_xcr0) 977 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 978 979 if (vcpu->arch.xsaves_enabled && 980 vcpu->arch.ia32_xss != host_xss) 981 wrmsrl(MSR_IA32_XSS, host_xss); 982 } 983 984 } 985 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 986 987 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu) 988 { 989 return vcpu->arch.guest_fpu.fpstate->user_xfeatures; 990 } 991 992 #ifdef CONFIG_X86_64 993 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 994 { 995 return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC; 996 } 997 #endif 998 999 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1000 { 1001 u64 xcr0 = xcr; 1002 u64 old_xcr0 = vcpu->arch.xcr0; 1003 u64 valid_bits; 1004 1005 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1006 if (index != XCR_XFEATURE_ENABLED_MASK) 1007 return 1; 1008 if (!(xcr0 & XFEATURE_MASK_FP)) 1009 return 1; 1010 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1011 return 1; 1012 1013 /* 1014 * Do not allow the guest to set bits that we do not support 1015 * saving. However, xcr0 bit 0 is always set, even if the 1016 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1017 */ 1018 valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP; 1019 if (xcr0 & ~valid_bits) 1020 return 1; 1021 1022 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1023 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1024 return 1; 1025 1026 if (xcr0 & XFEATURE_MASK_AVX512) { 1027 if (!(xcr0 & XFEATURE_MASK_YMM)) 1028 return 1; 1029 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1030 return 1; 1031 } 1032 1033 if ((xcr0 & XFEATURE_MASK_XTILE) && 1034 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1035 return 1; 1036 1037 vcpu->arch.xcr0 = xcr0; 1038 1039 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1040 kvm_update_cpuid_runtime(vcpu); 1041 return 0; 1042 } 1043 1044 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1045 { 1046 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1047 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1048 kvm_inject_gp(vcpu, 0); 1049 return 1; 1050 } 1051 1052 return kvm_skip_emulated_instruction(vcpu); 1053 } 1054 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1055 1056 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1057 { 1058 if (cr4 & cr4_reserved_bits) 1059 return false; 1060 1061 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1062 return false; 1063 1064 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1065 } 1066 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4); 1067 1068 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1069 { 1070 /* 1071 * If any role bit is changed, the MMU needs to be reset. 1072 * 1073 * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed. 1074 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1075 * according to the SDM; however, stale prev_roots could be reused 1076 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1077 * free them all. KVM_REQ_MMU_RELOAD is fit for the both cases; it 1078 * is slow, but changing CR4.PCIDE is a rare case. 1079 * 1080 * If CR4.PGE is changed, the guest TLB must be flushed. 1081 * 1082 * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and 1083 * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence 1084 * the usage of "else if". 1085 */ 1086 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1087 kvm_mmu_reset_context(vcpu); 1088 else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE) 1089 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu); 1090 else if ((cr4 ^ old_cr4) & X86_CR4_PGE) 1091 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1092 } 1093 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1094 1095 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1096 { 1097 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1098 1099 if (!kvm_is_valid_cr4(vcpu, cr4)) 1100 return 1; 1101 1102 if (is_long_mode(vcpu)) { 1103 if (!(cr4 & X86_CR4_PAE)) 1104 return 1; 1105 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1106 return 1; 1107 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1108 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1109 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1110 return 1; 1111 1112 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1113 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1114 return 1; 1115 1116 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1117 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1118 return 1; 1119 } 1120 1121 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1122 1123 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1124 1125 return 0; 1126 } 1127 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1128 1129 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1130 { 1131 struct kvm_mmu *mmu = vcpu->arch.mmu; 1132 unsigned long roots_to_free = 0; 1133 int i; 1134 1135 /* 1136 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1137 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1138 * also via the emulator. KVM's TDP page tables are not in the scope of 1139 * the invalidation, but the guest's TLB entries need to be flushed as 1140 * the CPU may have cached entries in its TLB for the target PCID. 1141 */ 1142 if (unlikely(tdp_enabled)) { 1143 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1144 return; 1145 } 1146 1147 /* 1148 * If neither the current CR3 nor any of the prev_roots use the given 1149 * PCID, then nothing needs to be done here because a resync will 1150 * happen anyway before switching to any other CR3. 1151 */ 1152 if (kvm_get_active_pcid(vcpu) == pcid) { 1153 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1154 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1155 } 1156 1157 /* 1158 * If PCID is disabled, there is no need to free prev_roots even if the 1159 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1160 * with PCIDE=0. 1161 */ 1162 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1163 return; 1164 1165 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1166 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1167 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1168 1169 kvm_mmu_free_roots(vcpu, mmu, roots_to_free); 1170 } 1171 1172 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1173 { 1174 bool skip_tlb_flush = false; 1175 unsigned long pcid = 0; 1176 #ifdef CONFIG_X86_64 1177 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1178 1179 if (pcid_enabled) { 1180 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1181 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1182 pcid = cr3 & X86_CR3_PCID_MASK; 1183 } 1184 #endif 1185 1186 /* PDPTRs are always reloaded for PAE paging. */ 1187 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1188 goto handle_tlb_flush; 1189 1190 /* 1191 * Do not condition the GPA check on long mode, this helper is used to 1192 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1193 * the current vCPU mode is accurate. 1194 */ 1195 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1196 return 1; 1197 1198 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1199 return 1; 1200 1201 if (cr3 != kvm_read_cr3(vcpu)) 1202 kvm_mmu_new_pgd(vcpu, cr3); 1203 1204 vcpu->arch.cr3 = cr3; 1205 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1206 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1207 1208 handle_tlb_flush: 1209 /* 1210 * A load of CR3 that flushes the TLB flushes only the current PCID, 1211 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1212 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1213 * and it's impossible to use a non-zero PCID when PCID is disabled, 1214 * i.e. only PCID=0 can be relevant. 1215 */ 1216 if (!skip_tlb_flush) 1217 kvm_invalidate_pcid(vcpu, pcid); 1218 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1222 1223 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1224 { 1225 if (cr8 & CR8_RESERVED_BITS) 1226 return 1; 1227 if (lapic_in_kernel(vcpu)) 1228 kvm_lapic_set_tpr(vcpu, cr8); 1229 else 1230 vcpu->arch.cr8 = cr8; 1231 return 0; 1232 } 1233 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1234 1235 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1236 { 1237 if (lapic_in_kernel(vcpu)) 1238 return kvm_lapic_get_cr8(vcpu); 1239 else 1240 return vcpu->arch.cr8; 1241 } 1242 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1243 1244 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1245 { 1246 int i; 1247 1248 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1249 for (i = 0; i < KVM_NR_DB_REGS; i++) 1250 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1251 } 1252 } 1253 1254 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1255 { 1256 unsigned long dr7; 1257 1258 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1259 dr7 = vcpu->arch.guest_debug_dr7; 1260 else 1261 dr7 = vcpu->arch.dr7; 1262 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1263 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1264 if (dr7 & DR7_BP_EN_MASK) 1265 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1266 } 1267 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1268 1269 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1270 { 1271 u64 fixed = DR6_FIXED_1; 1272 1273 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1274 fixed |= DR6_RTM; 1275 1276 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1277 fixed |= DR6_BUS_LOCK; 1278 return fixed; 1279 } 1280 1281 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1282 { 1283 size_t size = ARRAY_SIZE(vcpu->arch.db); 1284 1285 switch (dr) { 1286 case 0 ... 3: 1287 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1288 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1289 vcpu->arch.eff_db[dr] = val; 1290 break; 1291 case 4: 1292 case 6: 1293 if (!kvm_dr6_valid(val)) 1294 return 1; /* #GP */ 1295 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1296 break; 1297 case 5: 1298 default: /* 7 */ 1299 if (!kvm_dr7_valid(val)) 1300 return 1; /* #GP */ 1301 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1302 kvm_update_dr7(vcpu); 1303 break; 1304 } 1305 1306 return 0; 1307 } 1308 EXPORT_SYMBOL_GPL(kvm_set_dr); 1309 1310 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1311 { 1312 size_t size = ARRAY_SIZE(vcpu->arch.db); 1313 1314 switch (dr) { 1315 case 0 ... 3: 1316 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1317 break; 1318 case 4: 1319 case 6: 1320 *val = vcpu->arch.dr6; 1321 break; 1322 case 5: 1323 default: /* 7 */ 1324 *val = vcpu->arch.dr7; 1325 break; 1326 } 1327 } 1328 EXPORT_SYMBOL_GPL(kvm_get_dr); 1329 1330 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1331 { 1332 u32 ecx = kvm_rcx_read(vcpu); 1333 u64 data; 1334 1335 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1336 kvm_inject_gp(vcpu, 0); 1337 return 1; 1338 } 1339 1340 kvm_rax_write(vcpu, (u32)data); 1341 kvm_rdx_write(vcpu, data >> 32); 1342 return kvm_skip_emulated_instruction(vcpu); 1343 } 1344 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1345 1346 /* 1347 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1348 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1349 * 1350 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1351 * extract the supported MSRs from the related const lists. 1352 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1353 * capabilities of the host cpu. This capabilities test skips MSRs that are 1354 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1355 * may depend on host virtualization features rather than host cpu features. 1356 */ 1357 1358 static const u32 msrs_to_save_all[] = { 1359 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1360 MSR_STAR, 1361 #ifdef CONFIG_X86_64 1362 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1363 #endif 1364 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1365 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1366 MSR_IA32_SPEC_CTRL, 1367 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1368 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1369 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1370 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1371 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1372 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1373 MSR_IA32_UMWAIT_CONTROL, 1374 1375 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1376 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1377 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1378 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1379 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1380 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1381 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1382 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1383 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1384 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1385 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1386 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1387 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1388 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1389 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1390 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1391 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1392 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1393 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1394 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1395 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1396 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1397 1398 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1399 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1400 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1401 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1402 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1403 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1404 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1405 }; 1406 1407 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1408 static unsigned num_msrs_to_save; 1409 1410 static const u32 emulated_msrs_all[] = { 1411 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1412 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1413 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1414 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1415 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1416 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1417 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1418 HV_X64_MSR_RESET, 1419 HV_X64_MSR_VP_INDEX, 1420 HV_X64_MSR_VP_RUNTIME, 1421 HV_X64_MSR_SCONTROL, 1422 HV_X64_MSR_STIMER0_CONFIG, 1423 HV_X64_MSR_VP_ASSIST_PAGE, 1424 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1425 HV_X64_MSR_TSC_EMULATION_STATUS, 1426 HV_X64_MSR_SYNDBG_OPTIONS, 1427 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1428 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1429 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1430 1431 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1432 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1433 1434 MSR_IA32_TSC_ADJUST, 1435 MSR_IA32_TSC_DEADLINE, 1436 MSR_IA32_ARCH_CAPABILITIES, 1437 MSR_IA32_PERF_CAPABILITIES, 1438 MSR_IA32_MISC_ENABLE, 1439 MSR_IA32_MCG_STATUS, 1440 MSR_IA32_MCG_CTL, 1441 MSR_IA32_MCG_EXT_CTL, 1442 MSR_IA32_SMBASE, 1443 MSR_SMI_COUNT, 1444 MSR_PLATFORM_INFO, 1445 MSR_MISC_FEATURES_ENABLES, 1446 MSR_AMD64_VIRT_SPEC_CTRL, 1447 MSR_AMD64_TSC_RATIO, 1448 MSR_IA32_POWER_CTL, 1449 MSR_IA32_UCODE_REV, 1450 1451 /* 1452 * The following list leaves out MSRs whose values are determined 1453 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1454 * We always support the "true" VMX control MSRs, even if the host 1455 * processor does not, so I am putting these registers here rather 1456 * than in msrs_to_save_all. 1457 */ 1458 MSR_IA32_VMX_BASIC, 1459 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1460 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1461 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1462 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1463 MSR_IA32_VMX_MISC, 1464 MSR_IA32_VMX_CR0_FIXED0, 1465 MSR_IA32_VMX_CR4_FIXED0, 1466 MSR_IA32_VMX_VMCS_ENUM, 1467 MSR_IA32_VMX_PROCBASED_CTLS2, 1468 MSR_IA32_VMX_EPT_VPID_CAP, 1469 MSR_IA32_VMX_VMFUNC, 1470 1471 MSR_K7_HWCR, 1472 MSR_KVM_POLL_CONTROL, 1473 }; 1474 1475 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1476 static unsigned num_emulated_msrs; 1477 1478 /* 1479 * List of msr numbers which are used to expose MSR-based features that 1480 * can be used by a hypervisor to validate requested CPU features. 1481 */ 1482 static const u32 msr_based_features_all[] = { 1483 MSR_IA32_VMX_BASIC, 1484 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1485 MSR_IA32_VMX_PINBASED_CTLS, 1486 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1487 MSR_IA32_VMX_PROCBASED_CTLS, 1488 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1489 MSR_IA32_VMX_EXIT_CTLS, 1490 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1491 MSR_IA32_VMX_ENTRY_CTLS, 1492 MSR_IA32_VMX_MISC, 1493 MSR_IA32_VMX_CR0_FIXED0, 1494 MSR_IA32_VMX_CR0_FIXED1, 1495 MSR_IA32_VMX_CR4_FIXED0, 1496 MSR_IA32_VMX_CR4_FIXED1, 1497 MSR_IA32_VMX_VMCS_ENUM, 1498 MSR_IA32_VMX_PROCBASED_CTLS2, 1499 MSR_IA32_VMX_EPT_VPID_CAP, 1500 MSR_IA32_VMX_VMFUNC, 1501 1502 MSR_F10H_DECFG, 1503 MSR_IA32_UCODE_REV, 1504 MSR_IA32_ARCH_CAPABILITIES, 1505 MSR_IA32_PERF_CAPABILITIES, 1506 }; 1507 1508 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1509 static unsigned int num_msr_based_features; 1510 1511 static u64 kvm_get_arch_capabilities(void) 1512 { 1513 u64 data = 0; 1514 1515 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1516 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1517 1518 /* 1519 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1520 * the nested hypervisor runs with NX huge pages. If it is not, 1521 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1522 * L1 guests, so it need not worry about its own (L2) guests. 1523 */ 1524 data |= ARCH_CAP_PSCHANGE_MC_NO; 1525 1526 /* 1527 * If we're doing cache flushes (either "always" or "cond") 1528 * we will do one whenever the guest does a vmlaunch/vmresume. 1529 * If an outer hypervisor is doing the cache flush for us 1530 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1531 * capability to the guest too, and if EPT is disabled we're not 1532 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1533 * require a nested hypervisor to do a flush of its own. 1534 */ 1535 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1536 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1537 1538 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1539 data |= ARCH_CAP_RDCL_NO; 1540 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1541 data |= ARCH_CAP_SSB_NO; 1542 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1543 data |= ARCH_CAP_MDS_NO; 1544 1545 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1546 /* 1547 * If RTM=0 because the kernel has disabled TSX, the host might 1548 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1549 * and therefore knows that there cannot be TAA) but keep 1550 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1551 * and we want to allow migrating those guests to tsx=off hosts. 1552 */ 1553 data &= ~ARCH_CAP_TAA_NO; 1554 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1555 data |= ARCH_CAP_TAA_NO; 1556 } else { 1557 /* 1558 * Nothing to do here; we emulate TSX_CTRL if present on the 1559 * host so the guest can choose between disabling TSX or 1560 * using VERW to clear CPU buffers. 1561 */ 1562 } 1563 1564 return data; 1565 } 1566 1567 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1568 { 1569 switch (msr->index) { 1570 case MSR_IA32_ARCH_CAPABILITIES: 1571 msr->data = kvm_get_arch_capabilities(); 1572 break; 1573 case MSR_IA32_UCODE_REV: 1574 rdmsrl_safe(msr->index, &msr->data); 1575 break; 1576 default: 1577 return static_call(kvm_x86_get_msr_feature)(msr); 1578 } 1579 return 0; 1580 } 1581 1582 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1583 { 1584 struct kvm_msr_entry msr; 1585 int r; 1586 1587 msr.index = index; 1588 r = kvm_get_msr_feature(&msr); 1589 1590 if (r == KVM_MSR_RET_INVALID) { 1591 /* Unconditionally clear the output for simplicity */ 1592 *data = 0; 1593 if (kvm_msr_ignored_check(index, 0, false)) 1594 r = 0; 1595 } 1596 1597 if (r) 1598 return r; 1599 1600 *data = msr.data; 1601 1602 return 0; 1603 } 1604 1605 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1606 { 1607 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1608 return false; 1609 1610 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1611 return false; 1612 1613 if (efer & (EFER_LME | EFER_LMA) && 1614 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1615 return false; 1616 1617 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1618 return false; 1619 1620 return true; 1621 1622 } 1623 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1624 { 1625 if (efer & efer_reserved_bits) 1626 return false; 1627 1628 return __kvm_valid_efer(vcpu, efer); 1629 } 1630 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1631 1632 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1633 { 1634 u64 old_efer = vcpu->arch.efer; 1635 u64 efer = msr_info->data; 1636 int r; 1637 1638 if (efer & efer_reserved_bits) 1639 return 1; 1640 1641 if (!msr_info->host_initiated) { 1642 if (!__kvm_valid_efer(vcpu, efer)) 1643 return 1; 1644 1645 if (is_paging(vcpu) && 1646 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1647 return 1; 1648 } 1649 1650 efer &= ~EFER_LMA; 1651 efer |= vcpu->arch.efer & EFER_LMA; 1652 1653 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1654 if (r) { 1655 WARN_ON(r > 0); 1656 return r; 1657 } 1658 1659 /* Update reserved bits */ 1660 if ((efer ^ old_efer) & EFER_NX) 1661 kvm_mmu_reset_context(vcpu); 1662 1663 return 0; 1664 } 1665 1666 void kvm_enable_efer_bits(u64 mask) 1667 { 1668 efer_reserved_bits &= ~mask; 1669 } 1670 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1671 1672 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1673 { 1674 struct kvm_x86_msr_filter *msr_filter; 1675 struct msr_bitmap_range *ranges; 1676 struct kvm *kvm = vcpu->kvm; 1677 bool allowed; 1678 int idx; 1679 u32 i; 1680 1681 /* x2APIC MSRs do not support filtering. */ 1682 if (index >= 0x800 && index <= 0x8ff) 1683 return true; 1684 1685 idx = srcu_read_lock(&kvm->srcu); 1686 1687 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1688 if (!msr_filter) { 1689 allowed = true; 1690 goto out; 1691 } 1692 1693 allowed = msr_filter->default_allow; 1694 ranges = msr_filter->ranges; 1695 1696 for (i = 0; i < msr_filter->count; i++) { 1697 u32 start = ranges[i].base; 1698 u32 end = start + ranges[i].nmsrs; 1699 u32 flags = ranges[i].flags; 1700 unsigned long *bitmap = ranges[i].bitmap; 1701 1702 if ((index >= start) && (index < end) && (flags & type)) { 1703 allowed = !!test_bit(index - start, bitmap); 1704 break; 1705 } 1706 } 1707 1708 out: 1709 srcu_read_unlock(&kvm->srcu, idx); 1710 1711 return allowed; 1712 } 1713 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1714 1715 /* 1716 * Write @data into the MSR specified by @index. Select MSR specific fault 1717 * checks are bypassed if @host_initiated is %true. 1718 * Returns 0 on success, non-0 otherwise. 1719 * Assumes vcpu_load() was already called. 1720 */ 1721 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1722 bool host_initiated) 1723 { 1724 struct msr_data msr; 1725 1726 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1727 return KVM_MSR_RET_FILTERED; 1728 1729 switch (index) { 1730 case MSR_FS_BASE: 1731 case MSR_GS_BASE: 1732 case MSR_KERNEL_GS_BASE: 1733 case MSR_CSTAR: 1734 case MSR_LSTAR: 1735 if (is_noncanonical_address(data, vcpu)) 1736 return 1; 1737 break; 1738 case MSR_IA32_SYSENTER_EIP: 1739 case MSR_IA32_SYSENTER_ESP: 1740 /* 1741 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1742 * non-canonical address is written on Intel but not on 1743 * AMD (which ignores the top 32-bits, because it does 1744 * not implement 64-bit SYSENTER). 1745 * 1746 * 64-bit code should hence be able to write a non-canonical 1747 * value on AMD. Making the address canonical ensures that 1748 * vmentry does not fail on Intel after writing a non-canonical 1749 * value, and that something deterministic happens if the guest 1750 * invokes 64-bit SYSENTER. 1751 */ 1752 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1753 break; 1754 case MSR_TSC_AUX: 1755 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1756 return 1; 1757 1758 if (!host_initiated && 1759 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1760 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1761 return 1; 1762 1763 /* 1764 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1765 * incomplete and conflicting architectural behavior. Current 1766 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1767 * reserved and always read as zeros. Enforce Intel's reserved 1768 * bits check if and only if the guest CPU is Intel, and clear 1769 * the bits in all other cases. This ensures cross-vendor 1770 * migration will provide consistent behavior for the guest. 1771 */ 1772 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1773 return 1; 1774 1775 data = (u32)data; 1776 break; 1777 } 1778 1779 msr.data = data; 1780 msr.index = index; 1781 msr.host_initiated = host_initiated; 1782 1783 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1784 } 1785 1786 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1787 u32 index, u64 data, bool host_initiated) 1788 { 1789 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1790 1791 if (ret == KVM_MSR_RET_INVALID) 1792 if (kvm_msr_ignored_check(index, data, true)) 1793 ret = 0; 1794 1795 return ret; 1796 } 1797 1798 /* 1799 * Read the MSR specified by @index into @data. Select MSR specific fault 1800 * checks are bypassed if @host_initiated is %true. 1801 * Returns 0 on success, non-0 otherwise. 1802 * Assumes vcpu_load() was already called. 1803 */ 1804 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1805 bool host_initiated) 1806 { 1807 struct msr_data msr; 1808 int ret; 1809 1810 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1811 return KVM_MSR_RET_FILTERED; 1812 1813 switch (index) { 1814 case MSR_TSC_AUX: 1815 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1816 return 1; 1817 1818 if (!host_initiated && 1819 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1820 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1821 return 1; 1822 break; 1823 } 1824 1825 msr.index = index; 1826 msr.host_initiated = host_initiated; 1827 1828 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1829 if (!ret) 1830 *data = msr.data; 1831 return ret; 1832 } 1833 1834 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1835 u32 index, u64 *data, bool host_initiated) 1836 { 1837 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1838 1839 if (ret == KVM_MSR_RET_INVALID) { 1840 /* Unconditionally clear *data for simplicity */ 1841 *data = 0; 1842 if (kvm_msr_ignored_check(index, 0, false)) 1843 ret = 0; 1844 } 1845 1846 return ret; 1847 } 1848 1849 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1850 { 1851 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1852 } 1853 EXPORT_SYMBOL_GPL(kvm_get_msr); 1854 1855 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1856 { 1857 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1858 } 1859 EXPORT_SYMBOL_GPL(kvm_set_msr); 1860 1861 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1862 { 1863 if (!vcpu->run->msr.error) { 1864 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1865 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1866 } 1867 } 1868 1869 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1870 { 1871 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1872 } 1873 1874 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1875 { 1876 complete_userspace_rdmsr(vcpu); 1877 return complete_emulated_msr_access(vcpu); 1878 } 1879 1880 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1881 { 1882 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1883 } 1884 1885 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1886 { 1887 complete_userspace_rdmsr(vcpu); 1888 return complete_fast_msr_access(vcpu); 1889 } 1890 1891 static u64 kvm_msr_reason(int r) 1892 { 1893 switch (r) { 1894 case KVM_MSR_RET_INVALID: 1895 return KVM_MSR_EXIT_REASON_UNKNOWN; 1896 case KVM_MSR_RET_FILTERED: 1897 return KVM_MSR_EXIT_REASON_FILTER; 1898 default: 1899 return KVM_MSR_EXIT_REASON_INVAL; 1900 } 1901 } 1902 1903 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1904 u32 exit_reason, u64 data, 1905 int (*completion)(struct kvm_vcpu *vcpu), 1906 int r) 1907 { 1908 u64 msr_reason = kvm_msr_reason(r); 1909 1910 /* Check if the user wanted to know about this MSR fault */ 1911 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1912 return 0; 1913 1914 vcpu->run->exit_reason = exit_reason; 1915 vcpu->run->msr.error = 0; 1916 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1917 vcpu->run->msr.reason = msr_reason; 1918 vcpu->run->msr.index = index; 1919 vcpu->run->msr.data = data; 1920 vcpu->arch.complete_userspace_io = completion; 1921 1922 return 1; 1923 } 1924 1925 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1926 { 1927 u32 ecx = kvm_rcx_read(vcpu); 1928 u64 data; 1929 int r; 1930 1931 r = kvm_get_msr(vcpu, ecx, &data); 1932 1933 if (!r) { 1934 trace_kvm_msr_read(ecx, data); 1935 1936 kvm_rax_write(vcpu, data & -1u); 1937 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1938 } else { 1939 /* MSR read failed? See if we should ask user space */ 1940 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 1941 complete_fast_rdmsr, r)) 1942 return 0; 1943 trace_kvm_msr_read_ex(ecx); 1944 } 1945 1946 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 1947 } 1948 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1949 1950 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1951 { 1952 u32 ecx = kvm_rcx_read(vcpu); 1953 u64 data = kvm_read_edx_eax(vcpu); 1954 int r; 1955 1956 r = kvm_set_msr(vcpu, ecx, data); 1957 1958 if (!r) { 1959 trace_kvm_msr_write(ecx, data); 1960 } else { 1961 /* MSR write failed? See if we should ask user space */ 1962 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 1963 complete_fast_msr_access, r)) 1964 return 0; 1965 /* Signal all other negative errors to userspace */ 1966 if (r < 0) 1967 return r; 1968 trace_kvm_msr_write_ex(ecx, data); 1969 } 1970 1971 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 1972 } 1973 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1974 1975 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 1976 { 1977 return kvm_skip_emulated_instruction(vcpu); 1978 } 1979 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop); 1980 1981 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 1982 { 1983 /* Treat an INVD instruction as a NOP and just skip it. */ 1984 return kvm_emulate_as_nop(vcpu); 1985 } 1986 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 1987 1988 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 1989 { 1990 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n"); 1991 return kvm_emulate_as_nop(vcpu); 1992 } 1993 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 1994 1995 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 1996 { 1997 kvm_queue_exception(vcpu, UD_VECTOR); 1998 return 1; 1999 } 2000 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2001 2002 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2003 { 2004 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n"); 2005 return kvm_emulate_as_nop(vcpu); 2006 } 2007 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2008 2009 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2010 { 2011 xfer_to_guest_mode_prepare(); 2012 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2013 xfer_to_guest_mode_work_pending(); 2014 } 2015 2016 /* 2017 * The fast path for frequent and performance sensitive wrmsr emulation, 2018 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2019 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2020 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2021 * other cases which must be called after interrupts are enabled on the host. 2022 */ 2023 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2024 { 2025 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2026 return 1; 2027 2028 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2029 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2030 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2031 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 2032 2033 data &= ~(1 << 12); 2034 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 2035 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 2036 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 2037 trace_kvm_apic_write(APIC_ICR, (u32)data); 2038 return 0; 2039 } 2040 2041 return 1; 2042 } 2043 2044 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2045 { 2046 if (!kvm_can_use_hv_timer(vcpu)) 2047 return 1; 2048 2049 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2050 return 0; 2051 } 2052 2053 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2054 { 2055 u32 msr = kvm_rcx_read(vcpu); 2056 u64 data; 2057 fastpath_t ret = EXIT_FASTPATH_NONE; 2058 2059 switch (msr) { 2060 case APIC_BASE_MSR + (APIC_ICR >> 4): 2061 data = kvm_read_edx_eax(vcpu); 2062 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2063 kvm_skip_emulated_instruction(vcpu); 2064 ret = EXIT_FASTPATH_EXIT_HANDLED; 2065 } 2066 break; 2067 case MSR_IA32_TSC_DEADLINE: 2068 data = kvm_read_edx_eax(vcpu); 2069 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2070 kvm_skip_emulated_instruction(vcpu); 2071 ret = EXIT_FASTPATH_REENTER_GUEST; 2072 } 2073 break; 2074 default: 2075 break; 2076 } 2077 2078 if (ret != EXIT_FASTPATH_NONE) 2079 trace_kvm_msr_write(msr, data); 2080 2081 return ret; 2082 } 2083 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2084 2085 /* 2086 * Adapt set_msr() to msr_io()'s calling convention 2087 */ 2088 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2089 { 2090 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2091 } 2092 2093 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2094 { 2095 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2096 } 2097 2098 #ifdef CONFIG_X86_64 2099 struct pvclock_clock { 2100 int vclock_mode; 2101 u64 cycle_last; 2102 u64 mask; 2103 u32 mult; 2104 u32 shift; 2105 u64 base_cycles; 2106 u64 offset; 2107 }; 2108 2109 struct pvclock_gtod_data { 2110 seqcount_t seq; 2111 2112 struct pvclock_clock clock; /* extract of a clocksource struct */ 2113 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2114 2115 ktime_t offs_boot; 2116 u64 wall_time_sec; 2117 }; 2118 2119 static struct pvclock_gtod_data pvclock_gtod_data; 2120 2121 static void update_pvclock_gtod(struct timekeeper *tk) 2122 { 2123 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2124 2125 write_seqcount_begin(&vdata->seq); 2126 2127 /* copy pvclock gtod data */ 2128 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2129 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2130 vdata->clock.mask = tk->tkr_mono.mask; 2131 vdata->clock.mult = tk->tkr_mono.mult; 2132 vdata->clock.shift = tk->tkr_mono.shift; 2133 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2134 vdata->clock.offset = tk->tkr_mono.base; 2135 2136 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2137 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2138 vdata->raw_clock.mask = tk->tkr_raw.mask; 2139 vdata->raw_clock.mult = tk->tkr_raw.mult; 2140 vdata->raw_clock.shift = tk->tkr_raw.shift; 2141 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2142 vdata->raw_clock.offset = tk->tkr_raw.base; 2143 2144 vdata->wall_time_sec = tk->xtime_sec; 2145 2146 vdata->offs_boot = tk->offs_boot; 2147 2148 write_seqcount_end(&vdata->seq); 2149 } 2150 2151 static s64 get_kvmclock_base_ns(void) 2152 { 2153 /* Count up from boot time, but with the frequency of the raw clock. */ 2154 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2155 } 2156 #else 2157 static s64 get_kvmclock_base_ns(void) 2158 { 2159 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2160 return ktime_get_boottime_ns(); 2161 } 2162 #endif 2163 2164 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2165 { 2166 int version; 2167 int r; 2168 struct pvclock_wall_clock wc; 2169 u32 wc_sec_hi; 2170 u64 wall_nsec; 2171 2172 if (!wall_clock) 2173 return; 2174 2175 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2176 if (r) 2177 return; 2178 2179 if (version & 1) 2180 ++version; /* first time write, random junk */ 2181 2182 ++version; 2183 2184 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2185 return; 2186 2187 /* 2188 * The guest calculates current wall clock time by adding 2189 * system time (updated by kvm_guest_time_update below) to the 2190 * wall clock specified here. We do the reverse here. 2191 */ 2192 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2193 2194 wc.nsec = do_div(wall_nsec, 1000000000); 2195 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2196 wc.version = version; 2197 2198 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2199 2200 if (sec_hi_ofs) { 2201 wc_sec_hi = wall_nsec >> 32; 2202 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2203 &wc_sec_hi, sizeof(wc_sec_hi)); 2204 } 2205 2206 version++; 2207 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2208 } 2209 2210 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2211 bool old_msr, bool host_initiated) 2212 { 2213 struct kvm_arch *ka = &vcpu->kvm->arch; 2214 2215 if (vcpu->vcpu_id == 0 && !host_initiated) { 2216 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2217 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2218 2219 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2220 } 2221 2222 vcpu->arch.time = system_time; 2223 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2224 2225 /* we verify if the enable bit is set... */ 2226 vcpu->arch.pv_time_enabled = false; 2227 if (!(system_time & 1)) 2228 return; 2229 2230 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 2231 &vcpu->arch.pv_time, system_time & ~1ULL, 2232 sizeof(struct pvclock_vcpu_time_info))) 2233 vcpu->arch.pv_time_enabled = true; 2234 2235 return; 2236 } 2237 2238 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2239 { 2240 do_shl32_div32(dividend, divisor); 2241 return dividend; 2242 } 2243 2244 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2245 s8 *pshift, u32 *pmultiplier) 2246 { 2247 uint64_t scaled64; 2248 int32_t shift = 0; 2249 uint64_t tps64; 2250 uint32_t tps32; 2251 2252 tps64 = base_hz; 2253 scaled64 = scaled_hz; 2254 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2255 tps64 >>= 1; 2256 shift--; 2257 } 2258 2259 tps32 = (uint32_t)tps64; 2260 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2261 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2262 scaled64 >>= 1; 2263 else 2264 tps32 <<= 1; 2265 shift++; 2266 } 2267 2268 *pshift = shift; 2269 *pmultiplier = div_frac(scaled64, tps32); 2270 } 2271 2272 #ifdef CONFIG_X86_64 2273 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2274 #endif 2275 2276 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2277 static unsigned long max_tsc_khz; 2278 2279 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2280 { 2281 u64 v = (u64)khz * (1000000 + ppm); 2282 do_div(v, 1000000); 2283 return v; 2284 } 2285 2286 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2287 2288 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2289 { 2290 u64 ratio; 2291 2292 /* Guest TSC same frequency as host TSC? */ 2293 if (!scale) { 2294 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2295 return 0; 2296 } 2297 2298 /* TSC scaling supported? */ 2299 if (!kvm_has_tsc_control) { 2300 if (user_tsc_khz > tsc_khz) { 2301 vcpu->arch.tsc_catchup = 1; 2302 vcpu->arch.tsc_always_catchup = 1; 2303 return 0; 2304 } else { 2305 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2306 return -1; 2307 } 2308 } 2309 2310 /* TSC scaling required - calculate ratio */ 2311 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 2312 user_tsc_khz, tsc_khz); 2313 2314 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 2315 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2316 user_tsc_khz); 2317 return -1; 2318 } 2319 2320 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2321 return 0; 2322 } 2323 2324 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2325 { 2326 u32 thresh_lo, thresh_hi; 2327 int use_scaling = 0; 2328 2329 /* tsc_khz can be zero if TSC calibration fails */ 2330 if (user_tsc_khz == 0) { 2331 /* set tsc_scaling_ratio to a safe value */ 2332 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2333 return -1; 2334 } 2335 2336 /* Compute a scale to convert nanoseconds in TSC cycles */ 2337 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2338 &vcpu->arch.virtual_tsc_shift, 2339 &vcpu->arch.virtual_tsc_mult); 2340 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2341 2342 /* 2343 * Compute the variation in TSC rate which is acceptable 2344 * within the range of tolerance and decide if the 2345 * rate being applied is within that bounds of the hardware 2346 * rate. If so, no scaling or compensation need be done. 2347 */ 2348 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2349 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2350 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2351 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2352 use_scaling = 1; 2353 } 2354 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2355 } 2356 2357 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2358 { 2359 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2360 vcpu->arch.virtual_tsc_mult, 2361 vcpu->arch.virtual_tsc_shift); 2362 tsc += vcpu->arch.this_tsc_write; 2363 return tsc; 2364 } 2365 2366 #ifdef CONFIG_X86_64 2367 static inline int gtod_is_based_on_tsc(int mode) 2368 { 2369 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2370 } 2371 #endif 2372 2373 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2374 { 2375 #ifdef CONFIG_X86_64 2376 bool vcpus_matched; 2377 struct kvm_arch *ka = &vcpu->kvm->arch; 2378 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2379 2380 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2381 atomic_read(&vcpu->kvm->online_vcpus)); 2382 2383 /* 2384 * Once the masterclock is enabled, always perform request in 2385 * order to update it. 2386 * 2387 * In order to enable masterclock, the host clocksource must be TSC 2388 * and the vcpus need to have matched TSCs. When that happens, 2389 * perform request to enable masterclock. 2390 */ 2391 if (ka->use_master_clock || 2392 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2393 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2394 2395 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2396 atomic_read(&vcpu->kvm->online_vcpus), 2397 ka->use_master_clock, gtod->clock.vclock_mode); 2398 #endif 2399 } 2400 2401 /* 2402 * Multiply tsc by a fixed point number represented by ratio. 2403 * 2404 * The most significant 64-N bits (mult) of ratio represent the 2405 * integral part of the fixed point number; the remaining N bits 2406 * (frac) represent the fractional part, ie. ratio represents a fixed 2407 * point number (mult + frac * 2^(-N)). 2408 * 2409 * N equals to kvm_tsc_scaling_ratio_frac_bits. 2410 */ 2411 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2412 { 2413 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2414 } 2415 2416 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio) 2417 { 2418 u64 _tsc = tsc; 2419 2420 if (ratio != kvm_default_tsc_scaling_ratio) 2421 _tsc = __scale_tsc(ratio, tsc); 2422 2423 return _tsc; 2424 } 2425 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2426 2427 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2428 { 2429 u64 tsc; 2430 2431 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2432 2433 return target_tsc - tsc; 2434 } 2435 2436 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2437 { 2438 return vcpu->arch.l1_tsc_offset + 2439 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2440 } 2441 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2442 2443 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2444 { 2445 u64 nested_offset; 2446 2447 if (l2_multiplier == kvm_default_tsc_scaling_ratio) 2448 nested_offset = l1_offset; 2449 else 2450 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2451 kvm_tsc_scaling_ratio_frac_bits); 2452 2453 nested_offset += l2_offset; 2454 return nested_offset; 2455 } 2456 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2457 2458 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2459 { 2460 if (l2_multiplier != kvm_default_tsc_scaling_ratio) 2461 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2462 kvm_tsc_scaling_ratio_frac_bits); 2463 2464 return l1_multiplier; 2465 } 2466 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2467 2468 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2469 { 2470 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2471 vcpu->arch.l1_tsc_offset, 2472 l1_offset); 2473 2474 vcpu->arch.l1_tsc_offset = l1_offset; 2475 2476 /* 2477 * If we are here because L1 chose not to trap WRMSR to TSC then 2478 * according to the spec this should set L1's TSC (as opposed to 2479 * setting L1's offset for L2). 2480 */ 2481 if (is_guest_mode(vcpu)) 2482 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2483 l1_offset, 2484 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2485 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2486 else 2487 vcpu->arch.tsc_offset = l1_offset; 2488 2489 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2490 } 2491 2492 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2493 { 2494 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2495 2496 /* Userspace is changing the multiplier while L2 is active */ 2497 if (is_guest_mode(vcpu)) 2498 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2499 l1_multiplier, 2500 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2501 else 2502 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2503 2504 if (kvm_has_tsc_control) 2505 static_call(kvm_x86_write_tsc_multiplier)( 2506 vcpu, vcpu->arch.tsc_scaling_ratio); 2507 } 2508 2509 static inline bool kvm_check_tsc_unstable(void) 2510 { 2511 #ifdef CONFIG_X86_64 2512 /* 2513 * TSC is marked unstable when we're running on Hyper-V, 2514 * 'TSC page' clocksource is good. 2515 */ 2516 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2517 return false; 2518 #endif 2519 return check_tsc_unstable(); 2520 } 2521 2522 /* 2523 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2524 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2525 * participates in. 2526 */ 2527 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2528 u64 ns, bool matched) 2529 { 2530 struct kvm *kvm = vcpu->kvm; 2531 2532 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2533 2534 /* 2535 * We also track th most recent recorded KHZ, write and time to 2536 * allow the matching interval to be extended at each write. 2537 */ 2538 kvm->arch.last_tsc_nsec = ns; 2539 kvm->arch.last_tsc_write = tsc; 2540 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2541 kvm->arch.last_tsc_offset = offset; 2542 2543 vcpu->arch.last_guest_tsc = tsc; 2544 2545 kvm_vcpu_write_tsc_offset(vcpu, offset); 2546 2547 if (!matched) { 2548 /* 2549 * We split periods of matched TSC writes into generations. 2550 * For each generation, we track the original measured 2551 * nanosecond time, offset, and write, so if TSCs are in 2552 * sync, we can match exact offset, and if not, we can match 2553 * exact software computation in compute_guest_tsc() 2554 * 2555 * These values are tracked in kvm->arch.cur_xxx variables. 2556 */ 2557 kvm->arch.cur_tsc_generation++; 2558 kvm->arch.cur_tsc_nsec = ns; 2559 kvm->arch.cur_tsc_write = tsc; 2560 kvm->arch.cur_tsc_offset = offset; 2561 kvm->arch.nr_vcpus_matched_tsc = 0; 2562 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2563 kvm->arch.nr_vcpus_matched_tsc++; 2564 } 2565 2566 /* Keep track of which generation this VCPU has synchronized to */ 2567 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2568 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2569 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2570 2571 kvm_track_tsc_matching(vcpu); 2572 } 2573 2574 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2575 { 2576 struct kvm *kvm = vcpu->kvm; 2577 u64 offset, ns, elapsed; 2578 unsigned long flags; 2579 bool matched = false; 2580 bool synchronizing = false; 2581 2582 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2583 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2584 ns = get_kvmclock_base_ns(); 2585 elapsed = ns - kvm->arch.last_tsc_nsec; 2586 2587 if (vcpu->arch.virtual_tsc_khz) { 2588 if (data == 0) { 2589 /* 2590 * detection of vcpu initialization -- need to sync 2591 * with other vCPUs. This particularly helps to keep 2592 * kvm_clock stable after CPU hotplug 2593 */ 2594 synchronizing = true; 2595 } else { 2596 u64 tsc_exp = kvm->arch.last_tsc_write + 2597 nsec_to_cycles(vcpu, elapsed); 2598 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2599 /* 2600 * Special case: TSC write with a small delta (1 second) 2601 * of virtual cycle time against real time is 2602 * interpreted as an attempt to synchronize the CPU. 2603 */ 2604 synchronizing = data < tsc_exp + tsc_hz && 2605 data + tsc_hz > tsc_exp; 2606 } 2607 } 2608 2609 /* 2610 * For a reliable TSC, we can match TSC offsets, and for an unstable 2611 * TSC, we add elapsed time in this computation. We could let the 2612 * compensation code attempt to catch up if we fall behind, but 2613 * it's better to try to match offsets from the beginning. 2614 */ 2615 if (synchronizing && 2616 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2617 if (!kvm_check_tsc_unstable()) { 2618 offset = kvm->arch.cur_tsc_offset; 2619 } else { 2620 u64 delta = nsec_to_cycles(vcpu, elapsed); 2621 data += delta; 2622 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2623 } 2624 matched = true; 2625 } 2626 2627 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2628 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2629 } 2630 2631 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2632 s64 adjustment) 2633 { 2634 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2635 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2636 } 2637 2638 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2639 { 2640 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2641 WARN_ON(adjustment < 0); 2642 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment, 2643 vcpu->arch.l1_tsc_scaling_ratio); 2644 adjust_tsc_offset_guest(vcpu, adjustment); 2645 } 2646 2647 #ifdef CONFIG_X86_64 2648 2649 static u64 read_tsc(void) 2650 { 2651 u64 ret = (u64)rdtsc_ordered(); 2652 u64 last = pvclock_gtod_data.clock.cycle_last; 2653 2654 if (likely(ret >= last)) 2655 return ret; 2656 2657 /* 2658 * GCC likes to generate cmov here, but this branch is extremely 2659 * predictable (it's just a function of time and the likely is 2660 * very likely) and there's a data dependence, so force GCC 2661 * to generate a branch instead. I don't barrier() because 2662 * we don't actually need a barrier, and if this function 2663 * ever gets inlined it will generate worse code. 2664 */ 2665 asm volatile (""); 2666 return last; 2667 } 2668 2669 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2670 int *mode) 2671 { 2672 long v; 2673 u64 tsc_pg_val; 2674 2675 switch (clock->vclock_mode) { 2676 case VDSO_CLOCKMODE_HVCLOCK: 2677 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2678 tsc_timestamp); 2679 if (tsc_pg_val != U64_MAX) { 2680 /* TSC page valid */ 2681 *mode = VDSO_CLOCKMODE_HVCLOCK; 2682 v = (tsc_pg_val - clock->cycle_last) & 2683 clock->mask; 2684 } else { 2685 /* TSC page invalid */ 2686 *mode = VDSO_CLOCKMODE_NONE; 2687 } 2688 break; 2689 case VDSO_CLOCKMODE_TSC: 2690 *mode = VDSO_CLOCKMODE_TSC; 2691 *tsc_timestamp = read_tsc(); 2692 v = (*tsc_timestamp - clock->cycle_last) & 2693 clock->mask; 2694 break; 2695 default: 2696 *mode = VDSO_CLOCKMODE_NONE; 2697 } 2698 2699 if (*mode == VDSO_CLOCKMODE_NONE) 2700 *tsc_timestamp = v = 0; 2701 2702 return v * clock->mult; 2703 } 2704 2705 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2706 { 2707 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2708 unsigned long seq; 2709 int mode; 2710 u64 ns; 2711 2712 do { 2713 seq = read_seqcount_begin(>od->seq); 2714 ns = gtod->raw_clock.base_cycles; 2715 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2716 ns >>= gtod->raw_clock.shift; 2717 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2718 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2719 *t = ns; 2720 2721 return mode; 2722 } 2723 2724 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2725 { 2726 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2727 unsigned long seq; 2728 int mode; 2729 u64 ns; 2730 2731 do { 2732 seq = read_seqcount_begin(>od->seq); 2733 ts->tv_sec = gtod->wall_time_sec; 2734 ns = gtod->clock.base_cycles; 2735 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2736 ns >>= gtod->clock.shift; 2737 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2738 2739 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2740 ts->tv_nsec = ns; 2741 2742 return mode; 2743 } 2744 2745 /* returns true if host is using TSC based clocksource */ 2746 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2747 { 2748 /* checked again under seqlock below */ 2749 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2750 return false; 2751 2752 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2753 tsc_timestamp)); 2754 } 2755 2756 /* returns true if host is using TSC based clocksource */ 2757 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2758 u64 *tsc_timestamp) 2759 { 2760 /* checked again under seqlock below */ 2761 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2762 return false; 2763 2764 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2765 } 2766 #endif 2767 2768 /* 2769 * 2770 * Assuming a stable TSC across physical CPUS, and a stable TSC 2771 * across virtual CPUs, the following condition is possible. 2772 * Each numbered line represents an event visible to both 2773 * CPUs at the next numbered event. 2774 * 2775 * "timespecX" represents host monotonic time. "tscX" represents 2776 * RDTSC value. 2777 * 2778 * VCPU0 on CPU0 | VCPU1 on CPU1 2779 * 2780 * 1. read timespec0,tsc0 2781 * 2. | timespec1 = timespec0 + N 2782 * | tsc1 = tsc0 + M 2783 * 3. transition to guest | transition to guest 2784 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2785 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2786 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2787 * 2788 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2789 * 2790 * - ret0 < ret1 2791 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2792 * ... 2793 * - 0 < N - M => M < N 2794 * 2795 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2796 * always the case (the difference between two distinct xtime instances 2797 * might be smaller then the difference between corresponding TSC reads, 2798 * when updating guest vcpus pvclock areas). 2799 * 2800 * To avoid that problem, do not allow visibility of distinct 2801 * system_timestamp/tsc_timestamp values simultaneously: use a master 2802 * copy of host monotonic time values. Update that master copy 2803 * in lockstep. 2804 * 2805 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2806 * 2807 */ 2808 2809 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2810 { 2811 #ifdef CONFIG_X86_64 2812 struct kvm_arch *ka = &kvm->arch; 2813 int vclock_mode; 2814 bool host_tsc_clocksource, vcpus_matched; 2815 2816 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2817 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2818 atomic_read(&kvm->online_vcpus)); 2819 2820 /* 2821 * If the host uses TSC clock, then passthrough TSC as stable 2822 * to the guest. 2823 */ 2824 host_tsc_clocksource = kvm_get_time_and_clockread( 2825 &ka->master_kernel_ns, 2826 &ka->master_cycle_now); 2827 2828 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2829 && !ka->backwards_tsc_observed 2830 && !ka->boot_vcpu_runs_old_kvmclock; 2831 2832 if (ka->use_master_clock) 2833 atomic_set(&kvm_guest_has_master_clock, 1); 2834 2835 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2836 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2837 vcpus_matched); 2838 #endif 2839 } 2840 2841 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2842 { 2843 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2844 } 2845 2846 static void __kvm_start_pvclock_update(struct kvm *kvm) 2847 { 2848 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2849 write_seqcount_begin(&kvm->arch.pvclock_sc); 2850 } 2851 2852 static void kvm_start_pvclock_update(struct kvm *kvm) 2853 { 2854 kvm_make_mclock_inprogress_request(kvm); 2855 2856 /* no guest entries from this point */ 2857 __kvm_start_pvclock_update(kvm); 2858 } 2859 2860 static void kvm_end_pvclock_update(struct kvm *kvm) 2861 { 2862 struct kvm_arch *ka = &kvm->arch; 2863 struct kvm_vcpu *vcpu; 2864 unsigned long i; 2865 2866 write_seqcount_end(&ka->pvclock_sc); 2867 raw_spin_unlock_irq(&ka->tsc_write_lock); 2868 kvm_for_each_vcpu(i, vcpu, kvm) 2869 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2870 2871 /* guest entries allowed */ 2872 kvm_for_each_vcpu(i, vcpu, kvm) 2873 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2874 } 2875 2876 static void kvm_update_masterclock(struct kvm *kvm) 2877 { 2878 kvm_hv_invalidate_tsc_page(kvm); 2879 kvm_start_pvclock_update(kvm); 2880 pvclock_update_vm_gtod_copy(kvm); 2881 kvm_end_pvclock_update(kvm); 2882 } 2883 2884 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2885 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2886 { 2887 struct kvm_arch *ka = &kvm->arch; 2888 struct pvclock_vcpu_time_info hv_clock; 2889 2890 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2891 get_cpu(); 2892 2893 data->flags = 0; 2894 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) { 2895 #ifdef CONFIG_X86_64 2896 struct timespec64 ts; 2897 2898 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 2899 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 2900 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 2901 } else 2902 #endif 2903 data->host_tsc = rdtsc(); 2904 2905 data->flags |= KVM_CLOCK_TSC_STABLE; 2906 hv_clock.tsc_timestamp = ka->master_cycle_now; 2907 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2908 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2909 &hv_clock.tsc_shift, 2910 &hv_clock.tsc_to_system_mul); 2911 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 2912 } else { 2913 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 2914 } 2915 2916 put_cpu(); 2917 } 2918 2919 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2920 { 2921 struct kvm_arch *ka = &kvm->arch; 2922 unsigned seq; 2923 2924 do { 2925 seq = read_seqcount_begin(&ka->pvclock_sc); 2926 __get_kvmclock(kvm, data); 2927 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 2928 } 2929 2930 u64 get_kvmclock_ns(struct kvm *kvm) 2931 { 2932 struct kvm_clock_data data; 2933 2934 get_kvmclock(kvm, &data); 2935 return data.clock; 2936 } 2937 2938 static void kvm_setup_pvclock_page(struct kvm_vcpu *v, 2939 struct gfn_to_hva_cache *cache, 2940 unsigned int offset) 2941 { 2942 struct kvm_vcpu_arch *vcpu = &v->arch; 2943 struct pvclock_vcpu_time_info guest_hv_clock; 2944 2945 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache, 2946 &guest_hv_clock, offset, sizeof(guest_hv_clock)))) 2947 return; 2948 2949 /* This VCPU is paused, but it's legal for a guest to read another 2950 * VCPU's kvmclock, so we really have to follow the specification where 2951 * it says that version is odd if data is being modified, and even after 2952 * it is consistent. 2953 * 2954 * Version field updates must be kept separate. This is because 2955 * kvm_write_guest_cached might use a "rep movs" instruction, and 2956 * writes within a string instruction are weakly ordered. So there 2957 * are three writes overall. 2958 * 2959 * As a small optimization, only write the version field in the first 2960 * and third write. The vcpu->pv_time cache is still valid, because the 2961 * version field is the first in the struct. 2962 */ 2963 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2964 2965 if (guest_hv_clock.version & 1) 2966 ++guest_hv_clock.version; /* first time write, random junk */ 2967 2968 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2969 kvm_write_guest_offset_cached(v->kvm, cache, 2970 &vcpu->hv_clock, offset, 2971 sizeof(vcpu->hv_clock.version)); 2972 2973 smp_wmb(); 2974 2975 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2976 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2977 2978 if (vcpu->pvclock_set_guest_stopped_request) { 2979 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2980 vcpu->pvclock_set_guest_stopped_request = false; 2981 } 2982 2983 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2984 2985 kvm_write_guest_offset_cached(v->kvm, cache, 2986 &vcpu->hv_clock, offset, 2987 sizeof(vcpu->hv_clock)); 2988 2989 smp_wmb(); 2990 2991 vcpu->hv_clock.version++; 2992 kvm_write_guest_offset_cached(v->kvm, cache, 2993 &vcpu->hv_clock, offset, 2994 sizeof(vcpu->hv_clock.version)); 2995 } 2996 2997 static int kvm_guest_time_update(struct kvm_vcpu *v) 2998 { 2999 unsigned long flags, tgt_tsc_khz; 3000 unsigned seq; 3001 struct kvm_vcpu_arch *vcpu = &v->arch; 3002 struct kvm_arch *ka = &v->kvm->arch; 3003 s64 kernel_ns; 3004 u64 tsc_timestamp, host_tsc; 3005 u8 pvclock_flags; 3006 bool use_master_clock; 3007 3008 kernel_ns = 0; 3009 host_tsc = 0; 3010 3011 /* 3012 * If the host uses TSC clock, then passthrough TSC as stable 3013 * to the guest. 3014 */ 3015 do { 3016 seq = read_seqcount_begin(&ka->pvclock_sc); 3017 use_master_clock = ka->use_master_clock; 3018 if (use_master_clock) { 3019 host_tsc = ka->master_cycle_now; 3020 kernel_ns = ka->master_kernel_ns; 3021 } 3022 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3023 3024 /* Keep irq disabled to prevent changes to the clock */ 3025 local_irq_save(flags); 3026 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 3027 if (unlikely(tgt_tsc_khz == 0)) { 3028 local_irq_restore(flags); 3029 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3030 return 1; 3031 } 3032 if (!use_master_clock) { 3033 host_tsc = rdtsc(); 3034 kernel_ns = get_kvmclock_base_ns(); 3035 } 3036 3037 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3038 3039 /* 3040 * We may have to catch up the TSC to match elapsed wall clock 3041 * time for two reasons, even if kvmclock is used. 3042 * 1) CPU could have been running below the maximum TSC rate 3043 * 2) Broken TSC compensation resets the base at each VCPU 3044 * entry to avoid unknown leaps of TSC even when running 3045 * again on the same CPU. This may cause apparent elapsed 3046 * time to disappear, and the guest to stand still or run 3047 * very slowly. 3048 */ 3049 if (vcpu->tsc_catchup) { 3050 u64 tsc = compute_guest_tsc(v, kernel_ns); 3051 if (tsc > tsc_timestamp) { 3052 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3053 tsc_timestamp = tsc; 3054 } 3055 } 3056 3057 local_irq_restore(flags); 3058 3059 /* With all the info we got, fill in the values */ 3060 3061 if (kvm_has_tsc_control) 3062 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz, 3063 v->arch.l1_tsc_scaling_ratio); 3064 3065 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3066 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3067 &vcpu->hv_clock.tsc_shift, 3068 &vcpu->hv_clock.tsc_to_system_mul); 3069 vcpu->hw_tsc_khz = tgt_tsc_khz; 3070 } 3071 3072 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3073 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3074 vcpu->last_guest_tsc = tsc_timestamp; 3075 3076 /* If the host uses TSC clocksource, then it is stable */ 3077 pvclock_flags = 0; 3078 if (use_master_clock) 3079 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3080 3081 vcpu->hv_clock.flags = pvclock_flags; 3082 3083 if (vcpu->pv_time_enabled) 3084 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0); 3085 if (vcpu->xen.vcpu_info_set) 3086 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache, 3087 offsetof(struct compat_vcpu_info, time)); 3088 if (vcpu->xen.vcpu_time_info_set) 3089 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0); 3090 if (!v->vcpu_idx) 3091 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3092 return 0; 3093 } 3094 3095 /* 3096 * kvmclock updates which are isolated to a given vcpu, such as 3097 * vcpu->cpu migration, should not allow system_timestamp from 3098 * the rest of the vcpus to remain static. Otherwise ntp frequency 3099 * correction applies to one vcpu's system_timestamp but not 3100 * the others. 3101 * 3102 * So in those cases, request a kvmclock update for all vcpus. 3103 * We need to rate-limit these requests though, as they can 3104 * considerably slow guests that have a large number of vcpus. 3105 * The time for a remote vcpu to update its kvmclock is bound 3106 * by the delay we use to rate-limit the updates. 3107 */ 3108 3109 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3110 3111 static void kvmclock_update_fn(struct work_struct *work) 3112 { 3113 unsigned long i; 3114 struct delayed_work *dwork = to_delayed_work(work); 3115 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3116 kvmclock_update_work); 3117 struct kvm *kvm = container_of(ka, struct kvm, arch); 3118 struct kvm_vcpu *vcpu; 3119 3120 kvm_for_each_vcpu(i, vcpu, kvm) { 3121 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3122 kvm_vcpu_kick(vcpu); 3123 } 3124 } 3125 3126 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3127 { 3128 struct kvm *kvm = v->kvm; 3129 3130 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3131 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3132 KVMCLOCK_UPDATE_DELAY); 3133 } 3134 3135 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3136 3137 static void kvmclock_sync_fn(struct work_struct *work) 3138 { 3139 struct delayed_work *dwork = to_delayed_work(work); 3140 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3141 kvmclock_sync_work); 3142 struct kvm *kvm = container_of(ka, struct kvm, arch); 3143 3144 if (!kvmclock_periodic_sync) 3145 return; 3146 3147 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3148 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3149 KVMCLOCK_SYNC_PERIOD); 3150 } 3151 3152 /* 3153 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3154 */ 3155 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3156 { 3157 /* McStatusWrEn enabled? */ 3158 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3159 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3160 3161 return false; 3162 } 3163 3164 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3165 { 3166 u64 mcg_cap = vcpu->arch.mcg_cap; 3167 unsigned bank_num = mcg_cap & 0xff; 3168 u32 msr = msr_info->index; 3169 u64 data = msr_info->data; 3170 3171 switch (msr) { 3172 case MSR_IA32_MCG_STATUS: 3173 vcpu->arch.mcg_status = data; 3174 break; 3175 case MSR_IA32_MCG_CTL: 3176 if (!(mcg_cap & MCG_CTL_P) && 3177 (data || !msr_info->host_initiated)) 3178 return 1; 3179 if (data != 0 && data != ~(u64)0) 3180 return 1; 3181 vcpu->arch.mcg_ctl = data; 3182 break; 3183 default: 3184 if (msr >= MSR_IA32_MC0_CTL && 3185 msr < MSR_IA32_MCx_CTL(bank_num)) { 3186 u32 offset = array_index_nospec( 3187 msr - MSR_IA32_MC0_CTL, 3188 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3189 3190 /* only 0 or all 1s can be written to IA32_MCi_CTL 3191 * some Linux kernels though clear bit 10 in bank 4 to 3192 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 3193 * this to avoid an uncatched #GP in the guest 3194 */ 3195 if ((offset & 0x3) == 0 && 3196 data != 0 && (data | (1 << 10)) != ~(u64)0) 3197 return -1; 3198 3199 /* MCi_STATUS */ 3200 if (!msr_info->host_initiated && 3201 (offset & 0x3) == 1 && data != 0) { 3202 if (!can_set_mci_status(vcpu)) 3203 return -1; 3204 } 3205 3206 vcpu->arch.mce_banks[offset] = data; 3207 break; 3208 } 3209 return 1; 3210 } 3211 return 0; 3212 } 3213 3214 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3215 { 3216 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3217 3218 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3219 } 3220 3221 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3222 { 3223 gpa_t gpa = data & ~0x3f; 3224 3225 /* Bits 4:5 are reserved, Should be zero */ 3226 if (data & 0x30) 3227 return 1; 3228 3229 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3230 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3231 return 1; 3232 3233 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3234 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3235 return 1; 3236 3237 if (!lapic_in_kernel(vcpu)) 3238 return data ? 1 : 0; 3239 3240 vcpu->arch.apf.msr_en_val = data; 3241 3242 if (!kvm_pv_async_pf_enabled(vcpu)) { 3243 kvm_clear_async_pf_completion_queue(vcpu); 3244 kvm_async_pf_hash_reset(vcpu); 3245 return 0; 3246 } 3247 3248 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3249 sizeof(u64))) 3250 return 1; 3251 3252 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3253 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3254 3255 kvm_async_pf_wakeup_all(vcpu); 3256 3257 return 0; 3258 } 3259 3260 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3261 { 3262 /* Bits 8-63 are reserved */ 3263 if (data >> 8) 3264 return 1; 3265 3266 if (!lapic_in_kernel(vcpu)) 3267 return 1; 3268 3269 vcpu->arch.apf.msr_int_val = data; 3270 3271 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3272 3273 return 0; 3274 } 3275 3276 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3277 { 3278 vcpu->arch.pv_time_enabled = false; 3279 vcpu->arch.time = 0; 3280 } 3281 3282 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3283 { 3284 ++vcpu->stat.tlb_flush; 3285 static_call(kvm_x86_tlb_flush_all)(vcpu); 3286 } 3287 3288 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3289 { 3290 ++vcpu->stat.tlb_flush; 3291 3292 if (!tdp_enabled) { 3293 /* 3294 * A TLB flush on behalf of the guest is equivalent to 3295 * INVPCID(all), toggling CR4.PGE, etc., which requires 3296 * a forced sync of the shadow page tables. Ensure all the 3297 * roots are synced and the guest TLB in hardware is clean. 3298 */ 3299 kvm_mmu_sync_roots(vcpu); 3300 kvm_mmu_sync_prev_roots(vcpu); 3301 } 3302 3303 static_call(kvm_x86_tlb_flush_guest)(vcpu); 3304 } 3305 3306 3307 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3308 { 3309 ++vcpu->stat.tlb_flush; 3310 static_call(kvm_x86_tlb_flush_current)(vcpu); 3311 } 3312 3313 /* 3314 * Service "local" TLB flush requests, which are specific to the current MMU 3315 * context. In addition to the generic event handling in vcpu_enter_guest(), 3316 * TLB flushes that are targeted at an MMU context also need to be serviced 3317 * prior before nested VM-Enter/VM-Exit. 3318 */ 3319 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3320 { 3321 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3322 kvm_vcpu_flush_tlb_current(vcpu); 3323 3324 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3325 kvm_vcpu_flush_tlb_guest(vcpu); 3326 } 3327 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3328 3329 static void record_steal_time(struct kvm_vcpu *vcpu) 3330 { 3331 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3332 struct kvm_steal_time __user *st; 3333 struct kvm_memslots *slots; 3334 u64 steal; 3335 u32 version; 3336 3337 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3338 kvm_xen_runstate_set_running(vcpu); 3339 return; 3340 } 3341 3342 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3343 return; 3344 3345 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3346 return; 3347 3348 slots = kvm_memslots(vcpu->kvm); 3349 3350 if (unlikely(slots->generation != ghc->generation || 3351 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3352 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3353 3354 /* We rely on the fact that it fits in a single page. */ 3355 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3356 3357 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) || 3358 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3359 return; 3360 } 3361 3362 st = (struct kvm_steal_time __user *)ghc->hva; 3363 /* 3364 * Doing a TLB flush here, on the guest's behalf, can avoid 3365 * expensive IPIs. 3366 */ 3367 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3368 u8 st_preempted = 0; 3369 int err = -EFAULT; 3370 3371 if (!user_access_begin(st, sizeof(*st))) 3372 return; 3373 3374 asm volatile("1: xchgb %0, %2\n" 3375 "xor %1, %1\n" 3376 "2:\n" 3377 _ASM_EXTABLE_UA(1b, 2b) 3378 : "+q" (st_preempted), 3379 "+&r" (err), 3380 "+m" (st->preempted)); 3381 if (err) 3382 goto out; 3383 3384 user_access_end(); 3385 3386 vcpu->arch.st.preempted = 0; 3387 3388 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3389 st_preempted & KVM_VCPU_FLUSH_TLB); 3390 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3391 kvm_vcpu_flush_tlb_guest(vcpu); 3392 3393 if (!user_access_begin(st, sizeof(*st))) 3394 goto dirty; 3395 } else { 3396 if (!user_access_begin(st, sizeof(*st))) 3397 return; 3398 3399 unsafe_put_user(0, &st->preempted, out); 3400 vcpu->arch.st.preempted = 0; 3401 } 3402 3403 unsafe_get_user(version, &st->version, out); 3404 if (version & 1) 3405 version += 1; /* first time write, random junk */ 3406 3407 version += 1; 3408 unsafe_put_user(version, &st->version, out); 3409 3410 smp_wmb(); 3411 3412 unsafe_get_user(steal, &st->steal, out); 3413 steal += current->sched_info.run_delay - 3414 vcpu->arch.st.last_steal; 3415 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3416 unsafe_put_user(steal, &st->steal, out); 3417 3418 version += 1; 3419 unsafe_put_user(version, &st->version, out); 3420 3421 out: 3422 user_access_end(); 3423 dirty: 3424 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3425 } 3426 3427 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3428 { 3429 bool pr = false; 3430 u32 msr = msr_info->index; 3431 u64 data = msr_info->data; 3432 3433 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3434 return kvm_xen_write_hypercall_page(vcpu, data); 3435 3436 switch (msr) { 3437 case MSR_AMD64_NB_CFG: 3438 case MSR_IA32_UCODE_WRITE: 3439 case MSR_VM_HSAVE_PA: 3440 case MSR_AMD64_PATCH_LOADER: 3441 case MSR_AMD64_BU_CFG2: 3442 case MSR_AMD64_DC_CFG: 3443 case MSR_F15H_EX_CFG: 3444 break; 3445 3446 case MSR_IA32_UCODE_REV: 3447 if (msr_info->host_initiated) 3448 vcpu->arch.microcode_version = data; 3449 break; 3450 case MSR_IA32_ARCH_CAPABILITIES: 3451 if (!msr_info->host_initiated) 3452 return 1; 3453 vcpu->arch.arch_capabilities = data; 3454 break; 3455 case MSR_IA32_PERF_CAPABILITIES: { 3456 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3457 3458 if (!msr_info->host_initiated) 3459 return 1; 3460 if (kvm_get_msr_feature(&msr_ent)) 3461 return 1; 3462 if (data & ~msr_ent.data) 3463 return 1; 3464 3465 vcpu->arch.perf_capabilities = data; 3466 3467 return 0; 3468 } 3469 case MSR_EFER: 3470 return set_efer(vcpu, msr_info); 3471 case MSR_K7_HWCR: 3472 data &= ~(u64)0x40; /* ignore flush filter disable */ 3473 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3474 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3475 3476 /* Handle McStatusWrEn */ 3477 if (data == BIT_ULL(18)) { 3478 vcpu->arch.msr_hwcr = data; 3479 } else if (data != 0) { 3480 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3481 data); 3482 return 1; 3483 } 3484 break; 3485 case MSR_FAM10H_MMIO_CONF_BASE: 3486 if (data != 0) { 3487 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3488 "0x%llx\n", data); 3489 return 1; 3490 } 3491 break; 3492 case 0x200 ... 0x2ff: 3493 return kvm_mtrr_set_msr(vcpu, msr, data); 3494 case MSR_IA32_APICBASE: 3495 return kvm_set_apic_base(vcpu, msr_info); 3496 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3497 return kvm_x2apic_msr_write(vcpu, msr, data); 3498 case MSR_IA32_TSC_DEADLINE: 3499 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3500 break; 3501 case MSR_IA32_TSC_ADJUST: 3502 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3503 if (!msr_info->host_initiated) { 3504 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3505 adjust_tsc_offset_guest(vcpu, adj); 3506 /* Before back to guest, tsc_timestamp must be adjusted 3507 * as well, otherwise guest's percpu pvclock time could jump. 3508 */ 3509 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3510 } 3511 vcpu->arch.ia32_tsc_adjust_msr = data; 3512 } 3513 break; 3514 case MSR_IA32_MISC_ENABLE: 3515 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3516 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3517 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3518 return 1; 3519 vcpu->arch.ia32_misc_enable_msr = data; 3520 kvm_update_cpuid_runtime(vcpu); 3521 } else { 3522 vcpu->arch.ia32_misc_enable_msr = data; 3523 } 3524 break; 3525 case MSR_IA32_SMBASE: 3526 if (!msr_info->host_initiated) 3527 return 1; 3528 vcpu->arch.smbase = data; 3529 break; 3530 case MSR_IA32_POWER_CTL: 3531 vcpu->arch.msr_ia32_power_ctl = data; 3532 break; 3533 case MSR_IA32_TSC: 3534 if (msr_info->host_initiated) { 3535 kvm_synchronize_tsc(vcpu, data); 3536 } else { 3537 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3538 adjust_tsc_offset_guest(vcpu, adj); 3539 vcpu->arch.ia32_tsc_adjust_msr += adj; 3540 } 3541 break; 3542 case MSR_IA32_XSS: 3543 if (!msr_info->host_initiated && 3544 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3545 return 1; 3546 /* 3547 * KVM supports exposing PT to the guest, but does not support 3548 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3549 * XSAVES/XRSTORS to save/restore PT MSRs. 3550 */ 3551 if (data & ~supported_xss) 3552 return 1; 3553 vcpu->arch.ia32_xss = data; 3554 kvm_update_cpuid_runtime(vcpu); 3555 break; 3556 case MSR_SMI_COUNT: 3557 if (!msr_info->host_initiated) 3558 return 1; 3559 vcpu->arch.smi_count = data; 3560 break; 3561 case MSR_KVM_WALL_CLOCK_NEW: 3562 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3563 return 1; 3564 3565 vcpu->kvm->arch.wall_clock = data; 3566 kvm_write_wall_clock(vcpu->kvm, data, 0); 3567 break; 3568 case MSR_KVM_WALL_CLOCK: 3569 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3570 return 1; 3571 3572 vcpu->kvm->arch.wall_clock = data; 3573 kvm_write_wall_clock(vcpu->kvm, data, 0); 3574 break; 3575 case MSR_KVM_SYSTEM_TIME_NEW: 3576 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3577 return 1; 3578 3579 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3580 break; 3581 case MSR_KVM_SYSTEM_TIME: 3582 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3583 return 1; 3584 3585 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3586 break; 3587 case MSR_KVM_ASYNC_PF_EN: 3588 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3589 return 1; 3590 3591 if (kvm_pv_enable_async_pf(vcpu, data)) 3592 return 1; 3593 break; 3594 case MSR_KVM_ASYNC_PF_INT: 3595 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3596 return 1; 3597 3598 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3599 return 1; 3600 break; 3601 case MSR_KVM_ASYNC_PF_ACK: 3602 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3603 return 1; 3604 if (data & 0x1) { 3605 vcpu->arch.apf.pageready_pending = false; 3606 kvm_check_async_pf_completion(vcpu); 3607 } 3608 break; 3609 case MSR_KVM_STEAL_TIME: 3610 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3611 return 1; 3612 3613 if (unlikely(!sched_info_on())) 3614 return 1; 3615 3616 if (data & KVM_STEAL_RESERVED_MASK) 3617 return 1; 3618 3619 vcpu->arch.st.msr_val = data; 3620 3621 if (!(data & KVM_MSR_ENABLED)) 3622 break; 3623 3624 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3625 3626 break; 3627 case MSR_KVM_PV_EOI_EN: 3628 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3629 return 1; 3630 3631 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3632 return 1; 3633 break; 3634 3635 case MSR_KVM_POLL_CONTROL: 3636 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3637 return 1; 3638 3639 /* only enable bit supported */ 3640 if (data & (-1ULL << 1)) 3641 return 1; 3642 3643 vcpu->arch.msr_kvm_poll_control = data; 3644 break; 3645 3646 case MSR_IA32_MCG_CTL: 3647 case MSR_IA32_MCG_STATUS: 3648 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3649 return set_msr_mce(vcpu, msr_info); 3650 3651 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3652 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3653 pr = true; 3654 fallthrough; 3655 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3656 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3657 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3658 return kvm_pmu_set_msr(vcpu, msr_info); 3659 3660 if (pr || data != 0) 3661 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3662 "0x%x data 0x%llx\n", msr, data); 3663 break; 3664 case MSR_K7_CLK_CTL: 3665 /* 3666 * Ignore all writes to this no longer documented MSR. 3667 * Writes are only relevant for old K7 processors, 3668 * all pre-dating SVM, but a recommended workaround from 3669 * AMD for these chips. It is possible to specify the 3670 * affected processor models on the command line, hence 3671 * the need to ignore the workaround. 3672 */ 3673 break; 3674 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3675 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3676 case HV_X64_MSR_SYNDBG_OPTIONS: 3677 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3678 case HV_X64_MSR_CRASH_CTL: 3679 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3680 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3681 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3682 case HV_X64_MSR_TSC_EMULATION_STATUS: 3683 return kvm_hv_set_msr_common(vcpu, msr, data, 3684 msr_info->host_initiated); 3685 case MSR_IA32_BBL_CR_CTL3: 3686 /* Drop writes to this legacy MSR -- see rdmsr 3687 * counterpart for further detail. 3688 */ 3689 if (report_ignored_msrs) 3690 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3691 msr, data); 3692 break; 3693 case MSR_AMD64_OSVW_ID_LENGTH: 3694 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3695 return 1; 3696 vcpu->arch.osvw.length = data; 3697 break; 3698 case MSR_AMD64_OSVW_STATUS: 3699 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3700 return 1; 3701 vcpu->arch.osvw.status = data; 3702 break; 3703 case MSR_PLATFORM_INFO: 3704 if (!msr_info->host_initiated || 3705 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3706 cpuid_fault_enabled(vcpu))) 3707 return 1; 3708 vcpu->arch.msr_platform_info = data; 3709 break; 3710 case MSR_MISC_FEATURES_ENABLES: 3711 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3712 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3713 !supports_cpuid_fault(vcpu))) 3714 return 1; 3715 vcpu->arch.msr_misc_features_enables = data; 3716 break; 3717 #ifdef CONFIG_X86_64 3718 case MSR_IA32_XFD: 3719 if (!msr_info->host_initiated && 3720 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3721 return 1; 3722 3723 if (data & ~kvm_guest_supported_xfd(vcpu)) 3724 return 1; 3725 3726 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3727 break; 3728 case MSR_IA32_XFD_ERR: 3729 if (!msr_info->host_initiated && 3730 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3731 return 1; 3732 3733 if (data & ~kvm_guest_supported_xfd(vcpu)) 3734 return 1; 3735 3736 vcpu->arch.guest_fpu.xfd_err = data; 3737 break; 3738 #endif 3739 default: 3740 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3741 return kvm_pmu_set_msr(vcpu, msr_info); 3742 return KVM_MSR_RET_INVALID; 3743 } 3744 return 0; 3745 } 3746 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3747 3748 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3749 { 3750 u64 data; 3751 u64 mcg_cap = vcpu->arch.mcg_cap; 3752 unsigned bank_num = mcg_cap & 0xff; 3753 3754 switch (msr) { 3755 case MSR_IA32_P5_MC_ADDR: 3756 case MSR_IA32_P5_MC_TYPE: 3757 data = 0; 3758 break; 3759 case MSR_IA32_MCG_CAP: 3760 data = vcpu->arch.mcg_cap; 3761 break; 3762 case MSR_IA32_MCG_CTL: 3763 if (!(mcg_cap & MCG_CTL_P) && !host) 3764 return 1; 3765 data = vcpu->arch.mcg_ctl; 3766 break; 3767 case MSR_IA32_MCG_STATUS: 3768 data = vcpu->arch.mcg_status; 3769 break; 3770 default: 3771 if (msr >= MSR_IA32_MC0_CTL && 3772 msr < MSR_IA32_MCx_CTL(bank_num)) { 3773 u32 offset = array_index_nospec( 3774 msr - MSR_IA32_MC0_CTL, 3775 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3776 3777 data = vcpu->arch.mce_banks[offset]; 3778 break; 3779 } 3780 return 1; 3781 } 3782 *pdata = data; 3783 return 0; 3784 } 3785 3786 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3787 { 3788 switch (msr_info->index) { 3789 case MSR_IA32_PLATFORM_ID: 3790 case MSR_IA32_EBL_CR_POWERON: 3791 case MSR_IA32_LASTBRANCHFROMIP: 3792 case MSR_IA32_LASTBRANCHTOIP: 3793 case MSR_IA32_LASTINTFROMIP: 3794 case MSR_IA32_LASTINTTOIP: 3795 case MSR_AMD64_SYSCFG: 3796 case MSR_K8_TSEG_ADDR: 3797 case MSR_K8_TSEG_MASK: 3798 case MSR_VM_HSAVE_PA: 3799 case MSR_K8_INT_PENDING_MSG: 3800 case MSR_AMD64_NB_CFG: 3801 case MSR_FAM10H_MMIO_CONF_BASE: 3802 case MSR_AMD64_BU_CFG2: 3803 case MSR_IA32_PERF_CTL: 3804 case MSR_AMD64_DC_CFG: 3805 case MSR_F15H_EX_CFG: 3806 /* 3807 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3808 * limit) MSRs. Just return 0, as we do not want to expose the host 3809 * data here. Do not conditionalize this on CPUID, as KVM does not do 3810 * so for existing CPU-specific MSRs. 3811 */ 3812 case MSR_RAPL_POWER_UNIT: 3813 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3814 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3815 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3816 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3817 msr_info->data = 0; 3818 break; 3819 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3820 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3821 return kvm_pmu_get_msr(vcpu, msr_info); 3822 if (!msr_info->host_initiated) 3823 return 1; 3824 msr_info->data = 0; 3825 break; 3826 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3827 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3828 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3829 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3830 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3831 return kvm_pmu_get_msr(vcpu, msr_info); 3832 msr_info->data = 0; 3833 break; 3834 case MSR_IA32_UCODE_REV: 3835 msr_info->data = vcpu->arch.microcode_version; 3836 break; 3837 case MSR_IA32_ARCH_CAPABILITIES: 3838 if (!msr_info->host_initiated && 3839 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3840 return 1; 3841 msr_info->data = vcpu->arch.arch_capabilities; 3842 break; 3843 case MSR_IA32_PERF_CAPABILITIES: 3844 if (!msr_info->host_initiated && 3845 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3846 return 1; 3847 msr_info->data = vcpu->arch.perf_capabilities; 3848 break; 3849 case MSR_IA32_POWER_CTL: 3850 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3851 break; 3852 case MSR_IA32_TSC: { 3853 /* 3854 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3855 * even when not intercepted. AMD manual doesn't explicitly 3856 * state this but appears to behave the same. 3857 * 3858 * On userspace reads and writes, however, we unconditionally 3859 * return L1's TSC value to ensure backwards-compatible 3860 * behavior for migration. 3861 */ 3862 u64 offset, ratio; 3863 3864 if (msr_info->host_initiated) { 3865 offset = vcpu->arch.l1_tsc_offset; 3866 ratio = vcpu->arch.l1_tsc_scaling_ratio; 3867 } else { 3868 offset = vcpu->arch.tsc_offset; 3869 ratio = vcpu->arch.tsc_scaling_ratio; 3870 } 3871 3872 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset; 3873 break; 3874 } 3875 case MSR_MTRRcap: 3876 case 0x200 ... 0x2ff: 3877 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3878 case 0xcd: /* fsb frequency */ 3879 msr_info->data = 3; 3880 break; 3881 /* 3882 * MSR_EBC_FREQUENCY_ID 3883 * Conservative value valid for even the basic CPU models. 3884 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3885 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3886 * and 266MHz for model 3, or 4. Set Core Clock 3887 * Frequency to System Bus Frequency Ratio to 1 (bits 3888 * 31:24) even though these are only valid for CPU 3889 * models > 2, however guests may end up dividing or 3890 * multiplying by zero otherwise. 3891 */ 3892 case MSR_EBC_FREQUENCY_ID: 3893 msr_info->data = 1 << 24; 3894 break; 3895 case MSR_IA32_APICBASE: 3896 msr_info->data = kvm_get_apic_base(vcpu); 3897 break; 3898 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3899 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3900 case MSR_IA32_TSC_DEADLINE: 3901 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3902 break; 3903 case MSR_IA32_TSC_ADJUST: 3904 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3905 break; 3906 case MSR_IA32_MISC_ENABLE: 3907 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3908 break; 3909 case MSR_IA32_SMBASE: 3910 if (!msr_info->host_initiated) 3911 return 1; 3912 msr_info->data = vcpu->arch.smbase; 3913 break; 3914 case MSR_SMI_COUNT: 3915 msr_info->data = vcpu->arch.smi_count; 3916 break; 3917 case MSR_IA32_PERF_STATUS: 3918 /* TSC increment by tick */ 3919 msr_info->data = 1000ULL; 3920 /* CPU multiplier */ 3921 msr_info->data |= (((uint64_t)4ULL) << 40); 3922 break; 3923 case MSR_EFER: 3924 msr_info->data = vcpu->arch.efer; 3925 break; 3926 case MSR_KVM_WALL_CLOCK: 3927 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3928 return 1; 3929 3930 msr_info->data = vcpu->kvm->arch.wall_clock; 3931 break; 3932 case MSR_KVM_WALL_CLOCK_NEW: 3933 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3934 return 1; 3935 3936 msr_info->data = vcpu->kvm->arch.wall_clock; 3937 break; 3938 case MSR_KVM_SYSTEM_TIME: 3939 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3940 return 1; 3941 3942 msr_info->data = vcpu->arch.time; 3943 break; 3944 case MSR_KVM_SYSTEM_TIME_NEW: 3945 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3946 return 1; 3947 3948 msr_info->data = vcpu->arch.time; 3949 break; 3950 case MSR_KVM_ASYNC_PF_EN: 3951 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3952 return 1; 3953 3954 msr_info->data = vcpu->arch.apf.msr_en_val; 3955 break; 3956 case MSR_KVM_ASYNC_PF_INT: 3957 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3958 return 1; 3959 3960 msr_info->data = vcpu->arch.apf.msr_int_val; 3961 break; 3962 case MSR_KVM_ASYNC_PF_ACK: 3963 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3964 return 1; 3965 3966 msr_info->data = 0; 3967 break; 3968 case MSR_KVM_STEAL_TIME: 3969 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3970 return 1; 3971 3972 msr_info->data = vcpu->arch.st.msr_val; 3973 break; 3974 case MSR_KVM_PV_EOI_EN: 3975 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3976 return 1; 3977 3978 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3979 break; 3980 case MSR_KVM_POLL_CONTROL: 3981 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3982 return 1; 3983 3984 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3985 break; 3986 case MSR_IA32_P5_MC_ADDR: 3987 case MSR_IA32_P5_MC_TYPE: 3988 case MSR_IA32_MCG_CAP: 3989 case MSR_IA32_MCG_CTL: 3990 case MSR_IA32_MCG_STATUS: 3991 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3992 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3993 msr_info->host_initiated); 3994 case MSR_IA32_XSS: 3995 if (!msr_info->host_initiated && 3996 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3997 return 1; 3998 msr_info->data = vcpu->arch.ia32_xss; 3999 break; 4000 case MSR_K7_CLK_CTL: 4001 /* 4002 * Provide expected ramp-up count for K7. All other 4003 * are set to zero, indicating minimum divisors for 4004 * every field. 4005 * 4006 * This prevents guest kernels on AMD host with CPU 4007 * type 6, model 8 and higher from exploding due to 4008 * the rdmsr failing. 4009 */ 4010 msr_info->data = 0x20000000; 4011 break; 4012 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4013 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4014 case HV_X64_MSR_SYNDBG_OPTIONS: 4015 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4016 case HV_X64_MSR_CRASH_CTL: 4017 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4018 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4019 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4020 case HV_X64_MSR_TSC_EMULATION_STATUS: 4021 return kvm_hv_get_msr_common(vcpu, 4022 msr_info->index, &msr_info->data, 4023 msr_info->host_initiated); 4024 case MSR_IA32_BBL_CR_CTL3: 4025 /* This legacy MSR exists but isn't fully documented in current 4026 * silicon. It is however accessed by winxp in very narrow 4027 * scenarios where it sets bit #19, itself documented as 4028 * a "reserved" bit. Best effort attempt to source coherent 4029 * read data here should the balance of the register be 4030 * interpreted by the guest: 4031 * 4032 * L2 cache control register 3: 64GB range, 256KB size, 4033 * enabled, latency 0x1, configured 4034 */ 4035 msr_info->data = 0xbe702111; 4036 break; 4037 case MSR_AMD64_OSVW_ID_LENGTH: 4038 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4039 return 1; 4040 msr_info->data = vcpu->arch.osvw.length; 4041 break; 4042 case MSR_AMD64_OSVW_STATUS: 4043 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4044 return 1; 4045 msr_info->data = vcpu->arch.osvw.status; 4046 break; 4047 case MSR_PLATFORM_INFO: 4048 if (!msr_info->host_initiated && 4049 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4050 return 1; 4051 msr_info->data = vcpu->arch.msr_platform_info; 4052 break; 4053 case MSR_MISC_FEATURES_ENABLES: 4054 msr_info->data = vcpu->arch.msr_misc_features_enables; 4055 break; 4056 case MSR_K7_HWCR: 4057 msr_info->data = vcpu->arch.msr_hwcr; 4058 break; 4059 #ifdef CONFIG_X86_64 4060 case MSR_IA32_XFD: 4061 if (!msr_info->host_initiated && 4062 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4063 return 1; 4064 4065 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4066 break; 4067 case MSR_IA32_XFD_ERR: 4068 if (!msr_info->host_initiated && 4069 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4070 return 1; 4071 4072 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4073 break; 4074 #endif 4075 default: 4076 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4077 return kvm_pmu_get_msr(vcpu, msr_info); 4078 return KVM_MSR_RET_INVALID; 4079 } 4080 return 0; 4081 } 4082 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4083 4084 /* 4085 * Read or write a bunch of msrs. All parameters are kernel addresses. 4086 * 4087 * @return number of msrs set successfully. 4088 */ 4089 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4090 struct kvm_msr_entry *entries, 4091 int (*do_msr)(struct kvm_vcpu *vcpu, 4092 unsigned index, u64 *data)) 4093 { 4094 int i; 4095 4096 for (i = 0; i < msrs->nmsrs; ++i) 4097 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4098 break; 4099 4100 return i; 4101 } 4102 4103 /* 4104 * Read or write a bunch of msrs. Parameters are user addresses. 4105 * 4106 * @return number of msrs set successfully. 4107 */ 4108 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4109 int (*do_msr)(struct kvm_vcpu *vcpu, 4110 unsigned index, u64 *data), 4111 int writeback) 4112 { 4113 struct kvm_msrs msrs; 4114 struct kvm_msr_entry *entries; 4115 int r, n; 4116 unsigned size; 4117 4118 r = -EFAULT; 4119 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4120 goto out; 4121 4122 r = -E2BIG; 4123 if (msrs.nmsrs >= MAX_IO_MSRS) 4124 goto out; 4125 4126 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4127 entries = memdup_user(user_msrs->entries, size); 4128 if (IS_ERR(entries)) { 4129 r = PTR_ERR(entries); 4130 goto out; 4131 } 4132 4133 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4134 if (r < 0) 4135 goto out_free; 4136 4137 r = -EFAULT; 4138 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4139 goto out_free; 4140 4141 r = n; 4142 4143 out_free: 4144 kfree(entries); 4145 out: 4146 return r; 4147 } 4148 4149 static inline bool kvm_can_mwait_in_guest(void) 4150 { 4151 return boot_cpu_has(X86_FEATURE_MWAIT) && 4152 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4153 boot_cpu_has(X86_FEATURE_ARAT); 4154 } 4155 4156 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4157 struct kvm_cpuid2 __user *cpuid_arg) 4158 { 4159 struct kvm_cpuid2 cpuid; 4160 int r; 4161 4162 r = -EFAULT; 4163 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4164 return r; 4165 4166 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4167 if (r) 4168 return r; 4169 4170 r = -EFAULT; 4171 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4172 return r; 4173 4174 return 0; 4175 } 4176 4177 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4178 { 4179 int r = 0; 4180 4181 switch (ext) { 4182 case KVM_CAP_IRQCHIP: 4183 case KVM_CAP_HLT: 4184 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4185 case KVM_CAP_SET_TSS_ADDR: 4186 case KVM_CAP_EXT_CPUID: 4187 case KVM_CAP_EXT_EMUL_CPUID: 4188 case KVM_CAP_CLOCKSOURCE: 4189 case KVM_CAP_PIT: 4190 case KVM_CAP_NOP_IO_DELAY: 4191 case KVM_CAP_MP_STATE: 4192 case KVM_CAP_SYNC_MMU: 4193 case KVM_CAP_USER_NMI: 4194 case KVM_CAP_REINJECT_CONTROL: 4195 case KVM_CAP_IRQ_INJECT_STATUS: 4196 case KVM_CAP_IOEVENTFD: 4197 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4198 case KVM_CAP_PIT2: 4199 case KVM_CAP_PIT_STATE2: 4200 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4201 case KVM_CAP_VCPU_EVENTS: 4202 case KVM_CAP_HYPERV: 4203 case KVM_CAP_HYPERV_VAPIC: 4204 case KVM_CAP_HYPERV_SPIN: 4205 case KVM_CAP_HYPERV_SYNIC: 4206 case KVM_CAP_HYPERV_SYNIC2: 4207 case KVM_CAP_HYPERV_VP_INDEX: 4208 case KVM_CAP_HYPERV_EVENTFD: 4209 case KVM_CAP_HYPERV_TLBFLUSH: 4210 case KVM_CAP_HYPERV_SEND_IPI: 4211 case KVM_CAP_HYPERV_CPUID: 4212 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4213 case KVM_CAP_SYS_HYPERV_CPUID: 4214 case KVM_CAP_PCI_SEGMENT: 4215 case KVM_CAP_DEBUGREGS: 4216 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4217 case KVM_CAP_XSAVE: 4218 case KVM_CAP_ASYNC_PF: 4219 case KVM_CAP_ASYNC_PF_INT: 4220 case KVM_CAP_GET_TSC_KHZ: 4221 case KVM_CAP_KVMCLOCK_CTRL: 4222 case KVM_CAP_READONLY_MEM: 4223 case KVM_CAP_HYPERV_TIME: 4224 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4225 case KVM_CAP_TSC_DEADLINE_TIMER: 4226 case KVM_CAP_DISABLE_QUIRKS: 4227 case KVM_CAP_SET_BOOT_CPU_ID: 4228 case KVM_CAP_SPLIT_IRQCHIP: 4229 case KVM_CAP_IMMEDIATE_EXIT: 4230 case KVM_CAP_PMU_EVENT_FILTER: 4231 case KVM_CAP_GET_MSR_FEATURES: 4232 case KVM_CAP_MSR_PLATFORM_INFO: 4233 case KVM_CAP_EXCEPTION_PAYLOAD: 4234 case KVM_CAP_SET_GUEST_DEBUG: 4235 case KVM_CAP_LAST_CPU: 4236 case KVM_CAP_X86_USER_SPACE_MSR: 4237 case KVM_CAP_X86_MSR_FILTER: 4238 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4239 #ifdef CONFIG_X86_SGX_KVM 4240 case KVM_CAP_SGX_ATTRIBUTE: 4241 #endif 4242 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4243 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4244 case KVM_CAP_SREGS2: 4245 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4246 case KVM_CAP_VCPU_ATTRIBUTES: 4247 case KVM_CAP_SYS_ATTRIBUTES: 4248 case KVM_CAP_ENABLE_CAP: 4249 r = 1; 4250 break; 4251 case KVM_CAP_EXIT_HYPERCALL: 4252 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4253 break; 4254 case KVM_CAP_SET_GUEST_DEBUG2: 4255 return KVM_GUESTDBG_VALID_MASK; 4256 #ifdef CONFIG_KVM_XEN 4257 case KVM_CAP_XEN_HVM: 4258 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4259 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4260 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4261 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL; 4262 if (sched_info_on()) 4263 r |= KVM_XEN_HVM_CONFIG_RUNSTATE; 4264 break; 4265 #endif 4266 case KVM_CAP_SYNC_REGS: 4267 r = KVM_SYNC_X86_VALID_FIELDS; 4268 break; 4269 case KVM_CAP_ADJUST_CLOCK: 4270 r = KVM_CLOCK_VALID_FLAGS; 4271 break; 4272 case KVM_CAP_X86_DISABLE_EXITS: 4273 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4274 KVM_X86_DISABLE_EXITS_CSTATE; 4275 if(kvm_can_mwait_in_guest()) 4276 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4277 break; 4278 case KVM_CAP_X86_SMM: 4279 /* SMBASE is usually relocated above 1M on modern chipsets, 4280 * and SMM handlers might indeed rely on 4G segment limits, 4281 * so do not report SMM to be available if real mode is 4282 * emulated via vm86 mode. Still, do not go to great lengths 4283 * to avoid userspace's usage of the feature, because it is a 4284 * fringe case that is not enabled except via specific settings 4285 * of the module parameters. 4286 */ 4287 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4288 break; 4289 case KVM_CAP_VAPIC: 4290 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)(); 4291 break; 4292 case KVM_CAP_NR_VCPUS: 4293 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4294 break; 4295 case KVM_CAP_MAX_VCPUS: 4296 r = KVM_MAX_VCPUS; 4297 break; 4298 case KVM_CAP_MAX_VCPU_ID: 4299 r = KVM_MAX_VCPU_IDS; 4300 break; 4301 case KVM_CAP_PV_MMU: /* obsolete */ 4302 r = 0; 4303 break; 4304 case KVM_CAP_MCE: 4305 r = KVM_MAX_MCE_BANKS; 4306 break; 4307 case KVM_CAP_XCRS: 4308 r = boot_cpu_has(X86_FEATURE_XSAVE); 4309 break; 4310 case KVM_CAP_TSC_CONTROL: 4311 r = kvm_has_tsc_control; 4312 break; 4313 case KVM_CAP_X2APIC_API: 4314 r = KVM_X2APIC_API_VALID_FLAGS; 4315 break; 4316 case KVM_CAP_NESTED_STATE: 4317 r = kvm_x86_ops.nested_ops->get_state ? 4318 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4319 break; 4320 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4321 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 4322 break; 4323 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4324 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4325 break; 4326 case KVM_CAP_SMALLER_MAXPHYADDR: 4327 r = (int) allow_smaller_maxphyaddr; 4328 break; 4329 case KVM_CAP_STEAL_TIME: 4330 r = sched_info_on(); 4331 break; 4332 case KVM_CAP_X86_BUS_LOCK_EXIT: 4333 if (kvm_has_bus_lock_exit) 4334 r = KVM_BUS_LOCK_DETECTION_OFF | 4335 KVM_BUS_LOCK_DETECTION_EXIT; 4336 else 4337 r = 0; 4338 break; 4339 case KVM_CAP_XSAVE2: { 4340 u64 guest_perm = xstate_get_guest_group_perm(); 4341 4342 r = xstate_required_size(supported_xcr0 & guest_perm, false); 4343 if (r < sizeof(struct kvm_xsave)) 4344 r = sizeof(struct kvm_xsave); 4345 break; 4346 } 4347 default: 4348 break; 4349 } 4350 return r; 4351 } 4352 4353 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4354 { 4355 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4356 4357 if ((u64)(unsigned long)uaddr != attr->addr) 4358 return ERR_PTR_USR(-EFAULT); 4359 return uaddr; 4360 } 4361 4362 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4363 { 4364 u64 __user *uaddr = kvm_get_attr_addr(attr); 4365 4366 if (attr->group) 4367 return -ENXIO; 4368 4369 if (IS_ERR(uaddr)) 4370 return PTR_ERR(uaddr); 4371 4372 switch (attr->attr) { 4373 case KVM_X86_XCOMP_GUEST_SUPP: 4374 if (put_user(supported_xcr0, uaddr)) 4375 return -EFAULT; 4376 return 0; 4377 default: 4378 return -ENXIO; 4379 break; 4380 } 4381 } 4382 4383 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4384 { 4385 if (attr->group) 4386 return -ENXIO; 4387 4388 switch (attr->attr) { 4389 case KVM_X86_XCOMP_GUEST_SUPP: 4390 return 0; 4391 default: 4392 return -ENXIO; 4393 } 4394 } 4395 4396 long kvm_arch_dev_ioctl(struct file *filp, 4397 unsigned int ioctl, unsigned long arg) 4398 { 4399 void __user *argp = (void __user *)arg; 4400 long r; 4401 4402 switch (ioctl) { 4403 case KVM_GET_MSR_INDEX_LIST: { 4404 struct kvm_msr_list __user *user_msr_list = argp; 4405 struct kvm_msr_list msr_list; 4406 unsigned n; 4407 4408 r = -EFAULT; 4409 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4410 goto out; 4411 n = msr_list.nmsrs; 4412 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4413 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4414 goto out; 4415 r = -E2BIG; 4416 if (n < msr_list.nmsrs) 4417 goto out; 4418 r = -EFAULT; 4419 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4420 num_msrs_to_save * sizeof(u32))) 4421 goto out; 4422 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4423 &emulated_msrs, 4424 num_emulated_msrs * sizeof(u32))) 4425 goto out; 4426 r = 0; 4427 break; 4428 } 4429 case KVM_GET_SUPPORTED_CPUID: 4430 case KVM_GET_EMULATED_CPUID: { 4431 struct kvm_cpuid2 __user *cpuid_arg = argp; 4432 struct kvm_cpuid2 cpuid; 4433 4434 r = -EFAULT; 4435 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4436 goto out; 4437 4438 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4439 ioctl); 4440 if (r) 4441 goto out; 4442 4443 r = -EFAULT; 4444 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4445 goto out; 4446 r = 0; 4447 break; 4448 } 4449 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4450 r = -EFAULT; 4451 if (copy_to_user(argp, &kvm_mce_cap_supported, 4452 sizeof(kvm_mce_cap_supported))) 4453 goto out; 4454 r = 0; 4455 break; 4456 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4457 struct kvm_msr_list __user *user_msr_list = argp; 4458 struct kvm_msr_list msr_list; 4459 unsigned int n; 4460 4461 r = -EFAULT; 4462 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4463 goto out; 4464 n = msr_list.nmsrs; 4465 msr_list.nmsrs = num_msr_based_features; 4466 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4467 goto out; 4468 r = -E2BIG; 4469 if (n < msr_list.nmsrs) 4470 goto out; 4471 r = -EFAULT; 4472 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4473 num_msr_based_features * sizeof(u32))) 4474 goto out; 4475 r = 0; 4476 break; 4477 } 4478 case KVM_GET_MSRS: 4479 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4480 break; 4481 case KVM_GET_SUPPORTED_HV_CPUID: 4482 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4483 break; 4484 case KVM_GET_DEVICE_ATTR: { 4485 struct kvm_device_attr attr; 4486 r = -EFAULT; 4487 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4488 break; 4489 r = kvm_x86_dev_get_attr(&attr); 4490 break; 4491 } 4492 case KVM_HAS_DEVICE_ATTR: { 4493 struct kvm_device_attr attr; 4494 r = -EFAULT; 4495 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4496 break; 4497 r = kvm_x86_dev_has_attr(&attr); 4498 break; 4499 } 4500 default: 4501 r = -EINVAL; 4502 break; 4503 } 4504 out: 4505 return r; 4506 } 4507 4508 static void wbinvd_ipi(void *garbage) 4509 { 4510 wbinvd(); 4511 } 4512 4513 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4514 { 4515 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4516 } 4517 4518 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4519 { 4520 /* Address WBINVD may be executed by guest */ 4521 if (need_emulate_wbinvd(vcpu)) { 4522 if (static_call(kvm_x86_has_wbinvd_exit)()) 4523 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4524 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4525 smp_call_function_single(vcpu->cpu, 4526 wbinvd_ipi, NULL, 1); 4527 } 4528 4529 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4530 4531 /* Save host pkru register if supported */ 4532 vcpu->arch.host_pkru = read_pkru(); 4533 4534 /* Apply any externally detected TSC adjustments (due to suspend) */ 4535 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4536 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4537 vcpu->arch.tsc_offset_adjustment = 0; 4538 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4539 } 4540 4541 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4542 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4543 rdtsc() - vcpu->arch.last_host_tsc; 4544 if (tsc_delta < 0) 4545 mark_tsc_unstable("KVM discovered backwards TSC"); 4546 4547 if (kvm_check_tsc_unstable()) { 4548 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4549 vcpu->arch.last_guest_tsc); 4550 kvm_vcpu_write_tsc_offset(vcpu, offset); 4551 vcpu->arch.tsc_catchup = 1; 4552 } 4553 4554 if (kvm_lapic_hv_timer_in_use(vcpu)) 4555 kvm_lapic_restart_hv_timer(vcpu); 4556 4557 /* 4558 * On a host with synchronized TSC, there is no need to update 4559 * kvmclock on vcpu->cpu migration 4560 */ 4561 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4562 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4563 if (vcpu->cpu != cpu) 4564 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4565 vcpu->cpu = cpu; 4566 } 4567 4568 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4569 } 4570 4571 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4572 { 4573 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4574 struct kvm_steal_time __user *st; 4575 struct kvm_memslots *slots; 4576 static const u8 preempted = KVM_VCPU_PREEMPTED; 4577 4578 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4579 return; 4580 4581 if (vcpu->arch.st.preempted) 4582 return; 4583 4584 /* This happens on process exit */ 4585 if (unlikely(current->mm != vcpu->kvm->mm)) 4586 return; 4587 4588 slots = kvm_memslots(vcpu->kvm); 4589 4590 if (unlikely(slots->generation != ghc->generation || 4591 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4592 return; 4593 4594 st = (struct kvm_steal_time __user *)ghc->hva; 4595 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4596 4597 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4598 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4599 4600 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4601 } 4602 4603 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4604 { 4605 int idx; 4606 4607 if (vcpu->preempted && !vcpu->arch.guest_state_protected) 4608 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4609 4610 /* 4611 * Take the srcu lock as memslots will be accessed to check the gfn 4612 * cache generation against the memslots generation. 4613 */ 4614 idx = srcu_read_lock(&vcpu->kvm->srcu); 4615 if (kvm_xen_msr_enabled(vcpu->kvm)) 4616 kvm_xen_runstate_set_preempted(vcpu); 4617 else 4618 kvm_steal_time_set_preempted(vcpu); 4619 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4620 4621 static_call(kvm_x86_vcpu_put)(vcpu); 4622 vcpu->arch.last_host_tsc = rdtsc(); 4623 } 4624 4625 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4626 struct kvm_lapic_state *s) 4627 { 4628 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4629 4630 return kvm_apic_get_state(vcpu, s); 4631 } 4632 4633 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4634 struct kvm_lapic_state *s) 4635 { 4636 int r; 4637 4638 r = kvm_apic_set_state(vcpu, s); 4639 if (r) 4640 return r; 4641 update_cr8_intercept(vcpu); 4642 4643 return 0; 4644 } 4645 4646 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4647 { 4648 /* 4649 * We can accept userspace's request for interrupt injection 4650 * as long as we have a place to store the interrupt number. 4651 * The actual injection will happen when the CPU is able to 4652 * deliver the interrupt. 4653 */ 4654 if (kvm_cpu_has_extint(vcpu)) 4655 return false; 4656 4657 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4658 return (!lapic_in_kernel(vcpu) || 4659 kvm_apic_accept_pic_intr(vcpu)); 4660 } 4661 4662 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4663 { 4664 /* 4665 * Do not cause an interrupt window exit if an exception 4666 * is pending or an event needs reinjection; userspace 4667 * might want to inject the interrupt manually using KVM_SET_REGS 4668 * or KVM_SET_SREGS. For that to work, we must be at an 4669 * instruction boundary and with no events half-injected. 4670 */ 4671 return (kvm_arch_interrupt_allowed(vcpu) && 4672 kvm_cpu_accept_dm_intr(vcpu) && 4673 !kvm_event_needs_reinjection(vcpu) && 4674 !vcpu->arch.exception.pending); 4675 } 4676 4677 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4678 struct kvm_interrupt *irq) 4679 { 4680 if (irq->irq >= KVM_NR_INTERRUPTS) 4681 return -EINVAL; 4682 4683 if (!irqchip_in_kernel(vcpu->kvm)) { 4684 kvm_queue_interrupt(vcpu, irq->irq, false); 4685 kvm_make_request(KVM_REQ_EVENT, vcpu); 4686 return 0; 4687 } 4688 4689 /* 4690 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4691 * fail for in-kernel 8259. 4692 */ 4693 if (pic_in_kernel(vcpu->kvm)) 4694 return -ENXIO; 4695 4696 if (vcpu->arch.pending_external_vector != -1) 4697 return -EEXIST; 4698 4699 vcpu->arch.pending_external_vector = irq->irq; 4700 kvm_make_request(KVM_REQ_EVENT, vcpu); 4701 return 0; 4702 } 4703 4704 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4705 { 4706 kvm_inject_nmi(vcpu); 4707 4708 return 0; 4709 } 4710 4711 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4712 { 4713 kvm_make_request(KVM_REQ_SMI, vcpu); 4714 4715 return 0; 4716 } 4717 4718 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4719 struct kvm_tpr_access_ctl *tac) 4720 { 4721 if (tac->flags) 4722 return -EINVAL; 4723 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4724 return 0; 4725 } 4726 4727 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4728 u64 mcg_cap) 4729 { 4730 int r; 4731 unsigned bank_num = mcg_cap & 0xff, bank; 4732 4733 r = -EINVAL; 4734 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4735 goto out; 4736 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 4737 goto out; 4738 r = 0; 4739 vcpu->arch.mcg_cap = mcg_cap; 4740 /* Init IA32_MCG_CTL to all 1s */ 4741 if (mcg_cap & MCG_CTL_P) 4742 vcpu->arch.mcg_ctl = ~(u64)0; 4743 /* Init IA32_MCi_CTL to all 1s */ 4744 for (bank = 0; bank < bank_num; bank++) 4745 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4746 4747 static_call(kvm_x86_setup_mce)(vcpu); 4748 out: 4749 return r; 4750 } 4751 4752 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4753 struct kvm_x86_mce *mce) 4754 { 4755 u64 mcg_cap = vcpu->arch.mcg_cap; 4756 unsigned bank_num = mcg_cap & 0xff; 4757 u64 *banks = vcpu->arch.mce_banks; 4758 4759 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4760 return -EINVAL; 4761 /* 4762 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4763 * reporting is disabled 4764 */ 4765 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4766 vcpu->arch.mcg_ctl != ~(u64)0) 4767 return 0; 4768 banks += 4 * mce->bank; 4769 /* 4770 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4771 * reporting is disabled for the bank 4772 */ 4773 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4774 return 0; 4775 if (mce->status & MCI_STATUS_UC) { 4776 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4777 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4778 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4779 return 0; 4780 } 4781 if (banks[1] & MCI_STATUS_VAL) 4782 mce->status |= MCI_STATUS_OVER; 4783 banks[2] = mce->addr; 4784 banks[3] = mce->misc; 4785 vcpu->arch.mcg_status = mce->mcg_status; 4786 banks[1] = mce->status; 4787 kvm_queue_exception(vcpu, MC_VECTOR); 4788 } else if (!(banks[1] & MCI_STATUS_VAL) 4789 || !(banks[1] & MCI_STATUS_UC)) { 4790 if (banks[1] & MCI_STATUS_VAL) 4791 mce->status |= MCI_STATUS_OVER; 4792 banks[2] = mce->addr; 4793 banks[3] = mce->misc; 4794 banks[1] = mce->status; 4795 } else 4796 banks[1] |= MCI_STATUS_OVER; 4797 return 0; 4798 } 4799 4800 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 4801 struct kvm_vcpu_events *events) 4802 { 4803 process_nmi(vcpu); 4804 4805 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 4806 process_smi(vcpu); 4807 4808 /* 4809 * In guest mode, payload delivery should be deferred, 4810 * so that the L1 hypervisor can intercept #PF before 4811 * CR2 is modified (or intercept #DB before DR6 is 4812 * modified under nVMX). Unless the per-VM capability, 4813 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 4814 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 4815 * opportunistically defer the exception payload, deliver it if the 4816 * capability hasn't been requested before processing a 4817 * KVM_GET_VCPU_EVENTS. 4818 */ 4819 if (!vcpu->kvm->arch.exception_payload_enabled && 4820 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 4821 kvm_deliver_exception_payload(vcpu); 4822 4823 /* 4824 * The API doesn't provide the instruction length for software 4825 * exceptions, so don't report them. As long as the guest RIP 4826 * isn't advanced, we should expect to encounter the exception 4827 * again. 4828 */ 4829 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 4830 events->exception.injected = 0; 4831 events->exception.pending = 0; 4832 } else { 4833 events->exception.injected = vcpu->arch.exception.injected; 4834 events->exception.pending = vcpu->arch.exception.pending; 4835 /* 4836 * For ABI compatibility, deliberately conflate 4837 * pending and injected exceptions when 4838 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4839 */ 4840 if (!vcpu->kvm->arch.exception_payload_enabled) 4841 events->exception.injected |= 4842 vcpu->arch.exception.pending; 4843 } 4844 events->exception.nr = vcpu->arch.exception.nr; 4845 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4846 events->exception.error_code = vcpu->arch.exception.error_code; 4847 events->exception_has_payload = vcpu->arch.exception.has_payload; 4848 events->exception_payload = vcpu->arch.exception.payload; 4849 4850 events->interrupt.injected = 4851 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4852 events->interrupt.nr = vcpu->arch.interrupt.nr; 4853 events->interrupt.soft = 0; 4854 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 4855 4856 events->nmi.injected = vcpu->arch.nmi_injected; 4857 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4858 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 4859 events->nmi.pad = 0; 4860 4861 events->sipi_vector = 0; /* never valid when reporting to user space */ 4862 4863 events->smi.smm = is_smm(vcpu); 4864 events->smi.pending = vcpu->arch.smi_pending; 4865 events->smi.smm_inside_nmi = 4866 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4867 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4868 4869 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4870 | KVM_VCPUEVENT_VALID_SHADOW 4871 | KVM_VCPUEVENT_VALID_SMM); 4872 if (vcpu->kvm->arch.exception_payload_enabled) 4873 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4874 4875 memset(&events->reserved, 0, sizeof(events->reserved)); 4876 } 4877 4878 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm); 4879 4880 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4881 struct kvm_vcpu_events *events) 4882 { 4883 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4884 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4885 | KVM_VCPUEVENT_VALID_SHADOW 4886 | KVM_VCPUEVENT_VALID_SMM 4887 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4888 return -EINVAL; 4889 4890 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4891 if (!vcpu->kvm->arch.exception_payload_enabled) 4892 return -EINVAL; 4893 if (events->exception.pending) 4894 events->exception.injected = 0; 4895 else 4896 events->exception_has_payload = 0; 4897 } else { 4898 events->exception.pending = 0; 4899 events->exception_has_payload = 0; 4900 } 4901 4902 if ((events->exception.injected || events->exception.pending) && 4903 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4904 return -EINVAL; 4905 4906 /* INITs are latched while in SMM */ 4907 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4908 (events->smi.smm || events->smi.pending) && 4909 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4910 return -EINVAL; 4911 4912 process_nmi(vcpu); 4913 vcpu->arch.exception.injected = events->exception.injected; 4914 vcpu->arch.exception.pending = events->exception.pending; 4915 vcpu->arch.exception.nr = events->exception.nr; 4916 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4917 vcpu->arch.exception.error_code = events->exception.error_code; 4918 vcpu->arch.exception.has_payload = events->exception_has_payload; 4919 vcpu->arch.exception.payload = events->exception_payload; 4920 4921 vcpu->arch.interrupt.injected = events->interrupt.injected; 4922 vcpu->arch.interrupt.nr = events->interrupt.nr; 4923 vcpu->arch.interrupt.soft = events->interrupt.soft; 4924 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4925 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 4926 events->interrupt.shadow); 4927 4928 vcpu->arch.nmi_injected = events->nmi.injected; 4929 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4930 vcpu->arch.nmi_pending = events->nmi.pending; 4931 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 4932 4933 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4934 lapic_in_kernel(vcpu)) 4935 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4936 4937 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4938 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4939 kvm_x86_ops.nested_ops->leave_nested(vcpu); 4940 kvm_smm_changed(vcpu, events->smi.smm); 4941 } 4942 4943 vcpu->arch.smi_pending = events->smi.pending; 4944 4945 if (events->smi.smm) { 4946 if (events->smi.smm_inside_nmi) 4947 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4948 else 4949 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4950 } 4951 4952 if (lapic_in_kernel(vcpu)) { 4953 if (events->smi.latched_init) 4954 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4955 else 4956 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4957 } 4958 } 4959 4960 kvm_make_request(KVM_REQ_EVENT, vcpu); 4961 4962 return 0; 4963 } 4964 4965 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4966 struct kvm_debugregs *dbgregs) 4967 { 4968 unsigned long val; 4969 4970 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 4971 kvm_get_dr(vcpu, 6, &val); 4972 dbgregs->dr6 = val; 4973 dbgregs->dr7 = vcpu->arch.dr7; 4974 dbgregs->flags = 0; 4975 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 4976 } 4977 4978 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4979 struct kvm_debugregs *dbgregs) 4980 { 4981 if (dbgregs->flags) 4982 return -EINVAL; 4983 4984 if (!kvm_dr6_valid(dbgregs->dr6)) 4985 return -EINVAL; 4986 if (!kvm_dr7_valid(dbgregs->dr7)) 4987 return -EINVAL; 4988 4989 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4990 kvm_update_dr0123(vcpu); 4991 vcpu->arch.dr6 = dbgregs->dr6; 4992 vcpu->arch.dr7 = dbgregs->dr7; 4993 kvm_update_dr7(vcpu); 4994 4995 return 0; 4996 } 4997 4998 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4999 struct kvm_xsave *guest_xsave) 5000 { 5001 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5002 return; 5003 5004 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5005 guest_xsave->region, 5006 sizeof(guest_xsave->region), 5007 vcpu->arch.pkru); 5008 } 5009 5010 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5011 u8 *state, unsigned int size) 5012 { 5013 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5014 return; 5015 5016 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5017 state, size, vcpu->arch.pkru); 5018 } 5019 5020 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5021 struct kvm_xsave *guest_xsave) 5022 { 5023 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5024 return 0; 5025 5026 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5027 guest_xsave->region, 5028 supported_xcr0, &vcpu->arch.pkru); 5029 } 5030 5031 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5032 struct kvm_xcrs *guest_xcrs) 5033 { 5034 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5035 guest_xcrs->nr_xcrs = 0; 5036 return; 5037 } 5038 5039 guest_xcrs->nr_xcrs = 1; 5040 guest_xcrs->flags = 0; 5041 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5042 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5043 } 5044 5045 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5046 struct kvm_xcrs *guest_xcrs) 5047 { 5048 int i, r = 0; 5049 5050 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5051 return -EINVAL; 5052 5053 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5054 return -EINVAL; 5055 5056 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5057 /* Only support XCR0 currently */ 5058 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5059 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5060 guest_xcrs->xcrs[i].value); 5061 break; 5062 } 5063 if (r) 5064 r = -EINVAL; 5065 return r; 5066 } 5067 5068 /* 5069 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5070 * stopped by the hypervisor. This function will be called from the host only. 5071 * EINVAL is returned when the host attempts to set the flag for a guest that 5072 * does not support pv clocks. 5073 */ 5074 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5075 { 5076 if (!vcpu->arch.pv_time_enabled) 5077 return -EINVAL; 5078 vcpu->arch.pvclock_set_guest_stopped_request = true; 5079 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5080 return 0; 5081 } 5082 5083 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5084 struct kvm_device_attr *attr) 5085 { 5086 int r; 5087 5088 switch (attr->attr) { 5089 case KVM_VCPU_TSC_OFFSET: 5090 r = 0; 5091 break; 5092 default: 5093 r = -ENXIO; 5094 } 5095 5096 return r; 5097 } 5098 5099 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5100 struct kvm_device_attr *attr) 5101 { 5102 u64 __user *uaddr = kvm_get_attr_addr(attr); 5103 int r; 5104 5105 if (IS_ERR(uaddr)) 5106 return PTR_ERR(uaddr); 5107 5108 switch (attr->attr) { 5109 case KVM_VCPU_TSC_OFFSET: 5110 r = -EFAULT; 5111 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5112 break; 5113 r = 0; 5114 break; 5115 default: 5116 r = -ENXIO; 5117 } 5118 5119 return r; 5120 } 5121 5122 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5123 struct kvm_device_attr *attr) 5124 { 5125 u64 __user *uaddr = kvm_get_attr_addr(attr); 5126 struct kvm *kvm = vcpu->kvm; 5127 int r; 5128 5129 if (IS_ERR(uaddr)) 5130 return PTR_ERR(uaddr); 5131 5132 switch (attr->attr) { 5133 case KVM_VCPU_TSC_OFFSET: { 5134 u64 offset, tsc, ns; 5135 unsigned long flags; 5136 bool matched; 5137 5138 r = -EFAULT; 5139 if (get_user(offset, uaddr)) 5140 break; 5141 5142 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5143 5144 matched = (vcpu->arch.virtual_tsc_khz && 5145 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5146 kvm->arch.last_tsc_offset == offset); 5147 5148 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5149 ns = get_kvmclock_base_ns(); 5150 5151 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5152 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5153 5154 r = 0; 5155 break; 5156 } 5157 default: 5158 r = -ENXIO; 5159 } 5160 5161 return r; 5162 } 5163 5164 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5165 unsigned int ioctl, 5166 void __user *argp) 5167 { 5168 struct kvm_device_attr attr; 5169 int r; 5170 5171 if (copy_from_user(&attr, argp, sizeof(attr))) 5172 return -EFAULT; 5173 5174 if (attr.group != KVM_VCPU_TSC_CTRL) 5175 return -ENXIO; 5176 5177 switch (ioctl) { 5178 case KVM_HAS_DEVICE_ATTR: 5179 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5180 break; 5181 case KVM_GET_DEVICE_ATTR: 5182 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5183 break; 5184 case KVM_SET_DEVICE_ATTR: 5185 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5186 break; 5187 } 5188 5189 return r; 5190 } 5191 5192 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5193 struct kvm_enable_cap *cap) 5194 { 5195 int r; 5196 uint16_t vmcs_version; 5197 void __user *user_ptr; 5198 5199 if (cap->flags) 5200 return -EINVAL; 5201 5202 switch (cap->cap) { 5203 case KVM_CAP_HYPERV_SYNIC2: 5204 if (cap->args[0]) 5205 return -EINVAL; 5206 fallthrough; 5207 5208 case KVM_CAP_HYPERV_SYNIC: 5209 if (!irqchip_in_kernel(vcpu->kvm)) 5210 return -EINVAL; 5211 return kvm_hv_activate_synic(vcpu, cap->cap == 5212 KVM_CAP_HYPERV_SYNIC2); 5213 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5214 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5215 return -ENOTTY; 5216 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5217 if (!r) { 5218 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5219 if (copy_to_user(user_ptr, &vmcs_version, 5220 sizeof(vmcs_version))) 5221 r = -EFAULT; 5222 } 5223 return r; 5224 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5225 if (!kvm_x86_ops.enable_direct_tlbflush) 5226 return -ENOTTY; 5227 5228 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu); 5229 5230 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5231 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5232 5233 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5234 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5235 if (vcpu->arch.pv_cpuid.enforce) 5236 kvm_update_pv_runtime(vcpu); 5237 5238 return 0; 5239 default: 5240 return -EINVAL; 5241 } 5242 } 5243 5244 long kvm_arch_vcpu_ioctl(struct file *filp, 5245 unsigned int ioctl, unsigned long arg) 5246 { 5247 struct kvm_vcpu *vcpu = filp->private_data; 5248 void __user *argp = (void __user *)arg; 5249 int r; 5250 union { 5251 struct kvm_sregs2 *sregs2; 5252 struct kvm_lapic_state *lapic; 5253 struct kvm_xsave *xsave; 5254 struct kvm_xcrs *xcrs; 5255 void *buffer; 5256 } u; 5257 5258 vcpu_load(vcpu); 5259 5260 u.buffer = NULL; 5261 switch (ioctl) { 5262 case KVM_GET_LAPIC: { 5263 r = -EINVAL; 5264 if (!lapic_in_kernel(vcpu)) 5265 goto out; 5266 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5267 GFP_KERNEL_ACCOUNT); 5268 5269 r = -ENOMEM; 5270 if (!u.lapic) 5271 goto out; 5272 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5273 if (r) 5274 goto out; 5275 r = -EFAULT; 5276 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5277 goto out; 5278 r = 0; 5279 break; 5280 } 5281 case KVM_SET_LAPIC: { 5282 r = -EINVAL; 5283 if (!lapic_in_kernel(vcpu)) 5284 goto out; 5285 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5286 if (IS_ERR(u.lapic)) { 5287 r = PTR_ERR(u.lapic); 5288 goto out_nofree; 5289 } 5290 5291 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5292 break; 5293 } 5294 case KVM_INTERRUPT: { 5295 struct kvm_interrupt irq; 5296 5297 r = -EFAULT; 5298 if (copy_from_user(&irq, argp, sizeof(irq))) 5299 goto out; 5300 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5301 break; 5302 } 5303 case KVM_NMI: { 5304 r = kvm_vcpu_ioctl_nmi(vcpu); 5305 break; 5306 } 5307 case KVM_SMI: { 5308 r = kvm_vcpu_ioctl_smi(vcpu); 5309 break; 5310 } 5311 case KVM_SET_CPUID: { 5312 struct kvm_cpuid __user *cpuid_arg = argp; 5313 struct kvm_cpuid cpuid; 5314 5315 r = -EFAULT; 5316 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5317 goto out; 5318 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5319 break; 5320 } 5321 case KVM_SET_CPUID2: { 5322 struct kvm_cpuid2 __user *cpuid_arg = argp; 5323 struct kvm_cpuid2 cpuid; 5324 5325 r = -EFAULT; 5326 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5327 goto out; 5328 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5329 cpuid_arg->entries); 5330 break; 5331 } 5332 case KVM_GET_CPUID2: { 5333 struct kvm_cpuid2 __user *cpuid_arg = argp; 5334 struct kvm_cpuid2 cpuid; 5335 5336 r = -EFAULT; 5337 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5338 goto out; 5339 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5340 cpuid_arg->entries); 5341 if (r) 5342 goto out; 5343 r = -EFAULT; 5344 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5345 goto out; 5346 r = 0; 5347 break; 5348 } 5349 case KVM_GET_MSRS: { 5350 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5351 r = msr_io(vcpu, argp, do_get_msr, 1); 5352 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5353 break; 5354 } 5355 case KVM_SET_MSRS: { 5356 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5357 r = msr_io(vcpu, argp, do_set_msr, 0); 5358 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5359 break; 5360 } 5361 case KVM_TPR_ACCESS_REPORTING: { 5362 struct kvm_tpr_access_ctl tac; 5363 5364 r = -EFAULT; 5365 if (copy_from_user(&tac, argp, sizeof(tac))) 5366 goto out; 5367 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5368 if (r) 5369 goto out; 5370 r = -EFAULT; 5371 if (copy_to_user(argp, &tac, sizeof(tac))) 5372 goto out; 5373 r = 0; 5374 break; 5375 }; 5376 case KVM_SET_VAPIC_ADDR: { 5377 struct kvm_vapic_addr va; 5378 int idx; 5379 5380 r = -EINVAL; 5381 if (!lapic_in_kernel(vcpu)) 5382 goto out; 5383 r = -EFAULT; 5384 if (copy_from_user(&va, argp, sizeof(va))) 5385 goto out; 5386 idx = srcu_read_lock(&vcpu->kvm->srcu); 5387 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5388 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5389 break; 5390 } 5391 case KVM_X86_SETUP_MCE: { 5392 u64 mcg_cap; 5393 5394 r = -EFAULT; 5395 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5396 goto out; 5397 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5398 break; 5399 } 5400 case KVM_X86_SET_MCE: { 5401 struct kvm_x86_mce mce; 5402 5403 r = -EFAULT; 5404 if (copy_from_user(&mce, argp, sizeof(mce))) 5405 goto out; 5406 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5407 break; 5408 } 5409 case KVM_GET_VCPU_EVENTS: { 5410 struct kvm_vcpu_events events; 5411 5412 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5413 5414 r = -EFAULT; 5415 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5416 break; 5417 r = 0; 5418 break; 5419 } 5420 case KVM_SET_VCPU_EVENTS: { 5421 struct kvm_vcpu_events events; 5422 5423 r = -EFAULT; 5424 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5425 break; 5426 5427 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5428 break; 5429 } 5430 case KVM_GET_DEBUGREGS: { 5431 struct kvm_debugregs dbgregs; 5432 5433 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5434 5435 r = -EFAULT; 5436 if (copy_to_user(argp, &dbgregs, 5437 sizeof(struct kvm_debugregs))) 5438 break; 5439 r = 0; 5440 break; 5441 } 5442 case KVM_SET_DEBUGREGS: { 5443 struct kvm_debugregs dbgregs; 5444 5445 r = -EFAULT; 5446 if (copy_from_user(&dbgregs, argp, 5447 sizeof(struct kvm_debugregs))) 5448 break; 5449 5450 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5451 break; 5452 } 5453 case KVM_GET_XSAVE: { 5454 r = -EINVAL; 5455 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5456 break; 5457 5458 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5459 r = -ENOMEM; 5460 if (!u.xsave) 5461 break; 5462 5463 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5464 5465 r = -EFAULT; 5466 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5467 break; 5468 r = 0; 5469 break; 5470 } 5471 case KVM_SET_XSAVE: { 5472 int size = vcpu->arch.guest_fpu.uabi_size; 5473 5474 u.xsave = memdup_user(argp, size); 5475 if (IS_ERR(u.xsave)) { 5476 r = PTR_ERR(u.xsave); 5477 goto out_nofree; 5478 } 5479 5480 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5481 break; 5482 } 5483 5484 case KVM_GET_XSAVE2: { 5485 int size = vcpu->arch.guest_fpu.uabi_size; 5486 5487 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5488 r = -ENOMEM; 5489 if (!u.xsave) 5490 break; 5491 5492 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5493 5494 r = -EFAULT; 5495 if (copy_to_user(argp, u.xsave, size)) 5496 break; 5497 5498 r = 0; 5499 break; 5500 } 5501 5502 case KVM_GET_XCRS: { 5503 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5504 r = -ENOMEM; 5505 if (!u.xcrs) 5506 break; 5507 5508 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5509 5510 r = -EFAULT; 5511 if (copy_to_user(argp, u.xcrs, 5512 sizeof(struct kvm_xcrs))) 5513 break; 5514 r = 0; 5515 break; 5516 } 5517 case KVM_SET_XCRS: { 5518 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5519 if (IS_ERR(u.xcrs)) { 5520 r = PTR_ERR(u.xcrs); 5521 goto out_nofree; 5522 } 5523 5524 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5525 break; 5526 } 5527 case KVM_SET_TSC_KHZ: { 5528 u32 user_tsc_khz; 5529 5530 r = -EINVAL; 5531 user_tsc_khz = (u32)arg; 5532 5533 if (kvm_has_tsc_control && 5534 user_tsc_khz >= kvm_max_guest_tsc_khz) 5535 goto out; 5536 5537 if (user_tsc_khz == 0) 5538 user_tsc_khz = tsc_khz; 5539 5540 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5541 r = 0; 5542 5543 goto out; 5544 } 5545 case KVM_GET_TSC_KHZ: { 5546 r = vcpu->arch.virtual_tsc_khz; 5547 goto out; 5548 } 5549 case KVM_KVMCLOCK_CTRL: { 5550 r = kvm_set_guest_paused(vcpu); 5551 goto out; 5552 } 5553 case KVM_ENABLE_CAP: { 5554 struct kvm_enable_cap cap; 5555 5556 r = -EFAULT; 5557 if (copy_from_user(&cap, argp, sizeof(cap))) 5558 goto out; 5559 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5560 break; 5561 } 5562 case KVM_GET_NESTED_STATE: { 5563 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5564 u32 user_data_size; 5565 5566 r = -EINVAL; 5567 if (!kvm_x86_ops.nested_ops->get_state) 5568 break; 5569 5570 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5571 r = -EFAULT; 5572 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5573 break; 5574 5575 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5576 user_data_size); 5577 if (r < 0) 5578 break; 5579 5580 if (r > user_data_size) { 5581 if (put_user(r, &user_kvm_nested_state->size)) 5582 r = -EFAULT; 5583 else 5584 r = -E2BIG; 5585 break; 5586 } 5587 5588 r = 0; 5589 break; 5590 } 5591 case KVM_SET_NESTED_STATE: { 5592 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5593 struct kvm_nested_state kvm_state; 5594 int idx; 5595 5596 r = -EINVAL; 5597 if (!kvm_x86_ops.nested_ops->set_state) 5598 break; 5599 5600 r = -EFAULT; 5601 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5602 break; 5603 5604 r = -EINVAL; 5605 if (kvm_state.size < sizeof(kvm_state)) 5606 break; 5607 5608 if (kvm_state.flags & 5609 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5610 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5611 | KVM_STATE_NESTED_GIF_SET)) 5612 break; 5613 5614 /* nested_run_pending implies guest_mode. */ 5615 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5616 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5617 break; 5618 5619 idx = srcu_read_lock(&vcpu->kvm->srcu); 5620 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5621 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5622 break; 5623 } 5624 case KVM_GET_SUPPORTED_HV_CPUID: 5625 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5626 break; 5627 #ifdef CONFIG_KVM_XEN 5628 case KVM_XEN_VCPU_GET_ATTR: { 5629 struct kvm_xen_vcpu_attr xva; 5630 5631 r = -EFAULT; 5632 if (copy_from_user(&xva, argp, sizeof(xva))) 5633 goto out; 5634 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5635 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5636 r = -EFAULT; 5637 break; 5638 } 5639 case KVM_XEN_VCPU_SET_ATTR: { 5640 struct kvm_xen_vcpu_attr xva; 5641 5642 r = -EFAULT; 5643 if (copy_from_user(&xva, argp, sizeof(xva))) 5644 goto out; 5645 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5646 break; 5647 } 5648 #endif 5649 case KVM_GET_SREGS2: { 5650 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5651 r = -ENOMEM; 5652 if (!u.sregs2) 5653 goto out; 5654 __get_sregs2(vcpu, u.sregs2); 5655 r = -EFAULT; 5656 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5657 goto out; 5658 r = 0; 5659 break; 5660 } 5661 case KVM_SET_SREGS2: { 5662 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5663 if (IS_ERR(u.sregs2)) { 5664 r = PTR_ERR(u.sregs2); 5665 u.sregs2 = NULL; 5666 goto out; 5667 } 5668 r = __set_sregs2(vcpu, u.sregs2); 5669 break; 5670 } 5671 case KVM_HAS_DEVICE_ATTR: 5672 case KVM_GET_DEVICE_ATTR: 5673 case KVM_SET_DEVICE_ATTR: 5674 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5675 break; 5676 default: 5677 r = -EINVAL; 5678 } 5679 out: 5680 kfree(u.buffer); 5681 out_nofree: 5682 vcpu_put(vcpu); 5683 return r; 5684 } 5685 5686 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5687 { 5688 return VM_FAULT_SIGBUS; 5689 } 5690 5691 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5692 { 5693 int ret; 5694 5695 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5696 return -EINVAL; 5697 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5698 return ret; 5699 } 5700 5701 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5702 u64 ident_addr) 5703 { 5704 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5705 } 5706 5707 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5708 unsigned long kvm_nr_mmu_pages) 5709 { 5710 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5711 return -EINVAL; 5712 5713 mutex_lock(&kvm->slots_lock); 5714 5715 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5716 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5717 5718 mutex_unlock(&kvm->slots_lock); 5719 return 0; 5720 } 5721 5722 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5723 { 5724 return kvm->arch.n_max_mmu_pages; 5725 } 5726 5727 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5728 { 5729 struct kvm_pic *pic = kvm->arch.vpic; 5730 int r; 5731 5732 r = 0; 5733 switch (chip->chip_id) { 5734 case KVM_IRQCHIP_PIC_MASTER: 5735 memcpy(&chip->chip.pic, &pic->pics[0], 5736 sizeof(struct kvm_pic_state)); 5737 break; 5738 case KVM_IRQCHIP_PIC_SLAVE: 5739 memcpy(&chip->chip.pic, &pic->pics[1], 5740 sizeof(struct kvm_pic_state)); 5741 break; 5742 case KVM_IRQCHIP_IOAPIC: 5743 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5744 break; 5745 default: 5746 r = -EINVAL; 5747 break; 5748 } 5749 return r; 5750 } 5751 5752 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5753 { 5754 struct kvm_pic *pic = kvm->arch.vpic; 5755 int r; 5756 5757 r = 0; 5758 switch (chip->chip_id) { 5759 case KVM_IRQCHIP_PIC_MASTER: 5760 spin_lock(&pic->lock); 5761 memcpy(&pic->pics[0], &chip->chip.pic, 5762 sizeof(struct kvm_pic_state)); 5763 spin_unlock(&pic->lock); 5764 break; 5765 case KVM_IRQCHIP_PIC_SLAVE: 5766 spin_lock(&pic->lock); 5767 memcpy(&pic->pics[1], &chip->chip.pic, 5768 sizeof(struct kvm_pic_state)); 5769 spin_unlock(&pic->lock); 5770 break; 5771 case KVM_IRQCHIP_IOAPIC: 5772 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5773 break; 5774 default: 5775 r = -EINVAL; 5776 break; 5777 } 5778 kvm_pic_update_irq(pic); 5779 return r; 5780 } 5781 5782 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5783 { 5784 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 5785 5786 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 5787 5788 mutex_lock(&kps->lock); 5789 memcpy(ps, &kps->channels, sizeof(*ps)); 5790 mutex_unlock(&kps->lock); 5791 return 0; 5792 } 5793 5794 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5795 { 5796 int i; 5797 struct kvm_pit *pit = kvm->arch.vpit; 5798 5799 mutex_lock(&pit->pit_state.lock); 5800 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 5801 for (i = 0; i < 3; i++) 5802 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 5803 mutex_unlock(&pit->pit_state.lock); 5804 return 0; 5805 } 5806 5807 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5808 { 5809 mutex_lock(&kvm->arch.vpit->pit_state.lock); 5810 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 5811 sizeof(ps->channels)); 5812 ps->flags = kvm->arch.vpit->pit_state.flags; 5813 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 5814 memset(&ps->reserved, 0, sizeof(ps->reserved)); 5815 return 0; 5816 } 5817 5818 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5819 { 5820 int start = 0; 5821 int i; 5822 u32 prev_legacy, cur_legacy; 5823 struct kvm_pit *pit = kvm->arch.vpit; 5824 5825 mutex_lock(&pit->pit_state.lock); 5826 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 5827 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 5828 if (!prev_legacy && cur_legacy) 5829 start = 1; 5830 memcpy(&pit->pit_state.channels, &ps->channels, 5831 sizeof(pit->pit_state.channels)); 5832 pit->pit_state.flags = ps->flags; 5833 for (i = 0; i < 3; i++) 5834 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 5835 start && i == 0); 5836 mutex_unlock(&pit->pit_state.lock); 5837 return 0; 5838 } 5839 5840 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 5841 struct kvm_reinject_control *control) 5842 { 5843 struct kvm_pit *pit = kvm->arch.vpit; 5844 5845 /* pit->pit_state.lock was overloaded to prevent userspace from getting 5846 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 5847 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 5848 */ 5849 mutex_lock(&pit->pit_state.lock); 5850 kvm_pit_set_reinject(pit, control->pit_reinject); 5851 mutex_unlock(&pit->pit_state.lock); 5852 5853 return 0; 5854 } 5855 5856 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 5857 { 5858 5859 /* 5860 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 5861 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 5862 * on all VM-Exits, thus we only need to kick running vCPUs to force a 5863 * VM-Exit. 5864 */ 5865 struct kvm_vcpu *vcpu; 5866 unsigned long i; 5867 5868 kvm_for_each_vcpu(i, vcpu, kvm) 5869 kvm_vcpu_kick(vcpu); 5870 } 5871 5872 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 5873 bool line_status) 5874 { 5875 if (!irqchip_in_kernel(kvm)) 5876 return -ENXIO; 5877 5878 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 5879 irq_event->irq, irq_event->level, 5880 line_status); 5881 return 0; 5882 } 5883 5884 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5885 struct kvm_enable_cap *cap) 5886 { 5887 int r; 5888 5889 if (cap->flags) 5890 return -EINVAL; 5891 5892 switch (cap->cap) { 5893 case KVM_CAP_DISABLE_QUIRKS: 5894 kvm->arch.disabled_quirks = cap->args[0]; 5895 r = 0; 5896 break; 5897 case KVM_CAP_SPLIT_IRQCHIP: { 5898 mutex_lock(&kvm->lock); 5899 r = -EINVAL; 5900 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 5901 goto split_irqchip_unlock; 5902 r = -EEXIST; 5903 if (irqchip_in_kernel(kvm)) 5904 goto split_irqchip_unlock; 5905 if (kvm->created_vcpus) 5906 goto split_irqchip_unlock; 5907 r = kvm_setup_empty_irq_routing(kvm); 5908 if (r) 5909 goto split_irqchip_unlock; 5910 /* Pairs with irqchip_in_kernel. */ 5911 smp_wmb(); 5912 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 5913 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 5914 kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT); 5915 r = 0; 5916 split_irqchip_unlock: 5917 mutex_unlock(&kvm->lock); 5918 break; 5919 } 5920 case KVM_CAP_X2APIC_API: 5921 r = -EINVAL; 5922 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 5923 break; 5924 5925 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 5926 kvm->arch.x2apic_format = true; 5927 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 5928 kvm->arch.x2apic_broadcast_quirk_disabled = true; 5929 5930 r = 0; 5931 break; 5932 case KVM_CAP_X86_DISABLE_EXITS: 5933 r = -EINVAL; 5934 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 5935 break; 5936 5937 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 5938 kvm_can_mwait_in_guest()) 5939 kvm->arch.mwait_in_guest = true; 5940 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 5941 kvm->arch.hlt_in_guest = true; 5942 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 5943 kvm->arch.pause_in_guest = true; 5944 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 5945 kvm->arch.cstate_in_guest = true; 5946 r = 0; 5947 break; 5948 case KVM_CAP_MSR_PLATFORM_INFO: 5949 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 5950 r = 0; 5951 break; 5952 case KVM_CAP_EXCEPTION_PAYLOAD: 5953 kvm->arch.exception_payload_enabled = cap->args[0]; 5954 r = 0; 5955 break; 5956 case KVM_CAP_X86_USER_SPACE_MSR: 5957 kvm->arch.user_space_msr_mask = cap->args[0]; 5958 r = 0; 5959 break; 5960 case KVM_CAP_X86_BUS_LOCK_EXIT: 5961 r = -EINVAL; 5962 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 5963 break; 5964 5965 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 5966 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 5967 break; 5968 5969 if (kvm_has_bus_lock_exit && 5970 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 5971 kvm->arch.bus_lock_detection_enabled = true; 5972 r = 0; 5973 break; 5974 #ifdef CONFIG_X86_SGX_KVM 5975 case KVM_CAP_SGX_ATTRIBUTE: { 5976 unsigned long allowed_attributes = 0; 5977 5978 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 5979 if (r) 5980 break; 5981 5982 /* KVM only supports the PROVISIONKEY privileged attribute. */ 5983 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 5984 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 5985 kvm->arch.sgx_provisioning_allowed = true; 5986 else 5987 r = -EINVAL; 5988 break; 5989 } 5990 #endif 5991 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 5992 r = -EINVAL; 5993 if (kvm_x86_ops.vm_copy_enc_context_from) 5994 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]); 5995 return r; 5996 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 5997 r = -EINVAL; 5998 if (kvm_x86_ops.vm_move_enc_context_from) 5999 r = kvm_x86_ops.vm_move_enc_context_from( 6000 kvm, cap->args[0]); 6001 return r; 6002 case KVM_CAP_EXIT_HYPERCALL: 6003 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6004 r = -EINVAL; 6005 break; 6006 } 6007 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6008 r = 0; 6009 break; 6010 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6011 r = -EINVAL; 6012 if (cap->args[0] & ~1) 6013 break; 6014 kvm->arch.exit_on_emulation_error = cap->args[0]; 6015 r = 0; 6016 break; 6017 default: 6018 r = -EINVAL; 6019 break; 6020 } 6021 return r; 6022 } 6023 6024 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6025 { 6026 struct kvm_x86_msr_filter *msr_filter; 6027 6028 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6029 if (!msr_filter) 6030 return NULL; 6031 6032 msr_filter->default_allow = default_allow; 6033 return msr_filter; 6034 } 6035 6036 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6037 { 6038 u32 i; 6039 6040 if (!msr_filter) 6041 return; 6042 6043 for (i = 0; i < msr_filter->count; i++) 6044 kfree(msr_filter->ranges[i].bitmap); 6045 6046 kfree(msr_filter); 6047 } 6048 6049 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6050 struct kvm_msr_filter_range *user_range) 6051 { 6052 unsigned long *bitmap = NULL; 6053 size_t bitmap_size; 6054 6055 if (!user_range->nmsrs) 6056 return 0; 6057 6058 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) 6059 return -EINVAL; 6060 6061 if (!user_range->flags) 6062 return -EINVAL; 6063 6064 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6065 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6066 return -EINVAL; 6067 6068 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6069 if (IS_ERR(bitmap)) 6070 return PTR_ERR(bitmap); 6071 6072 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6073 .flags = user_range->flags, 6074 .base = user_range->base, 6075 .nmsrs = user_range->nmsrs, 6076 .bitmap = bitmap, 6077 }; 6078 6079 msr_filter->count++; 6080 return 0; 6081 } 6082 6083 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 6084 { 6085 struct kvm_msr_filter __user *user_msr_filter = argp; 6086 struct kvm_x86_msr_filter *new_filter, *old_filter; 6087 struct kvm_msr_filter filter; 6088 bool default_allow; 6089 bool empty = true; 6090 int r = 0; 6091 u32 i; 6092 6093 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6094 return -EFAULT; 6095 6096 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 6097 empty &= !filter.ranges[i].nmsrs; 6098 6099 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 6100 if (empty && !default_allow) 6101 return -EINVAL; 6102 6103 new_filter = kvm_alloc_msr_filter(default_allow); 6104 if (!new_filter) 6105 return -ENOMEM; 6106 6107 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6108 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]); 6109 if (r) { 6110 kvm_free_msr_filter(new_filter); 6111 return r; 6112 } 6113 } 6114 6115 mutex_lock(&kvm->lock); 6116 6117 /* The per-VM filter is protected by kvm->lock... */ 6118 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6119 6120 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6121 synchronize_srcu(&kvm->srcu); 6122 6123 kvm_free_msr_filter(old_filter); 6124 6125 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6126 mutex_unlock(&kvm->lock); 6127 6128 return 0; 6129 } 6130 6131 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6132 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6133 { 6134 struct kvm_vcpu *vcpu; 6135 unsigned long i; 6136 int ret = 0; 6137 6138 mutex_lock(&kvm->lock); 6139 kvm_for_each_vcpu(i, vcpu, kvm) { 6140 if (!vcpu->arch.pv_time_enabled) 6141 continue; 6142 6143 ret = kvm_set_guest_paused(vcpu); 6144 if (ret) { 6145 kvm_err("Failed to pause guest VCPU%d: %d\n", 6146 vcpu->vcpu_id, ret); 6147 break; 6148 } 6149 } 6150 mutex_unlock(&kvm->lock); 6151 6152 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6153 } 6154 6155 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6156 { 6157 switch (state) { 6158 case PM_HIBERNATION_PREPARE: 6159 case PM_SUSPEND_PREPARE: 6160 return kvm_arch_suspend_notifier(kvm); 6161 } 6162 6163 return NOTIFY_DONE; 6164 } 6165 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6166 6167 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6168 { 6169 struct kvm_clock_data data = { 0 }; 6170 6171 get_kvmclock(kvm, &data); 6172 if (copy_to_user(argp, &data, sizeof(data))) 6173 return -EFAULT; 6174 6175 return 0; 6176 } 6177 6178 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6179 { 6180 struct kvm_arch *ka = &kvm->arch; 6181 struct kvm_clock_data data; 6182 u64 now_raw_ns; 6183 6184 if (copy_from_user(&data, argp, sizeof(data))) 6185 return -EFAULT; 6186 6187 /* 6188 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6189 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6190 */ 6191 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6192 return -EINVAL; 6193 6194 kvm_hv_invalidate_tsc_page(kvm); 6195 kvm_start_pvclock_update(kvm); 6196 pvclock_update_vm_gtod_copy(kvm); 6197 6198 /* 6199 * This pairs with kvm_guest_time_update(): when masterclock is 6200 * in use, we use master_kernel_ns + kvmclock_offset to set 6201 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6202 * is slightly ahead) here we risk going negative on unsigned 6203 * 'system_time' when 'data.clock' is very small. 6204 */ 6205 if (data.flags & KVM_CLOCK_REALTIME) { 6206 u64 now_real_ns = ktime_get_real_ns(); 6207 6208 /* 6209 * Avoid stepping the kvmclock backwards. 6210 */ 6211 if (now_real_ns > data.realtime) 6212 data.clock += now_real_ns - data.realtime; 6213 } 6214 6215 if (ka->use_master_clock) 6216 now_raw_ns = ka->master_kernel_ns; 6217 else 6218 now_raw_ns = get_kvmclock_base_ns(); 6219 ka->kvmclock_offset = data.clock - now_raw_ns; 6220 kvm_end_pvclock_update(kvm); 6221 return 0; 6222 } 6223 6224 long kvm_arch_vm_ioctl(struct file *filp, 6225 unsigned int ioctl, unsigned long arg) 6226 { 6227 struct kvm *kvm = filp->private_data; 6228 void __user *argp = (void __user *)arg; 6229 int r = -ENOTTY; 6230 /* 6231 * This union makes it completely explicit to gcc-3.x 6232 * that these two variables' stack usage should be 6233 * combined, not added together. 6234 */ 6235 union { 6236 struct kvm_pit_state ps; 6237 struct kvm_pit_state2 ps2; 6238 struct kvm_pit_config pit_config; 6239 } u; 6240 6241 switch (ioctl) { 6242 case KVM_SET_TSS_ADDR: 6243 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6244 break; 6245 case KVM_SET_IDENTITY_MAP_ADDR: { 6246 u64 ident_addr; 6247 6248 mutex_lock(&kvm->lock); 6249 r = -EINVAL; 6250 if (kvm->created_vcpus) 6251 goto set_identity_unlock; 6252 r = -EFAULT; 6253 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6254 goto set_identity_unlock; 6255 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6256 set_identity_unlock: 6257 mutex_unlock(&kvm->lock); 6258 break; 6259 } 6260 case KVM_SET_NR_MMU_PAGES: 6261 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6262 break; 6263 case KVM_GET_NR_MMU_PAGES: 6264 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6265 break; 6266 case KVM_CREATE_IRQCHIP: { 6267 mutex_lock(&kvm->lock); 6268 6269 r = -EEXIST; 6270 if (irqchip_in_kernel(kvm)) 6271 goto create_irqchip_unlock; 6272 6273 r = -EINVAL; 6274 if (kvm->created_vcpus) 6275 goto create_irqchip_unlock; 6276 6277 r = kvm_pic_init(kvm); 6278 if (r) 6279 goto create_irqchip_unlock; 6280 6281 r = kvm_ioapic_init(kvm); 6282 if (r) { 6283 kvm_pic_destroy(kvm); 6284 goto create_irqchip_unlock; 6285 } 6286 6287 r = kvm_setup_default_irq_routing(kvm); 6288 if (r) { 6289 kvm_ioapic_destroy(kvm); 6290 kvm_pic_destroy(kvm); 6291 goto create_irqchip_unlock; 6292 } 6293 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6294 smp_wmb(); 6295 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6296 kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT); 6297 create_irqchip_unlock: 6298 mutex_unlock(&kvm->lock); 6299 break; 6300 } 6301 case KVM_CREATE_PIT: 6302 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6303 goto create_pit; 6304 case KVM_CREATE_PIT2: 6305 r = -EFAULT; 6306 if (copy_from_user(&u.pit_config, argp, 6307 sizeof(struct kvm_pit_config))) 6308 goto out; 6309 create_pit: 6310 mutex_lock(&kvm->lock); 6311 r = -EEXIST; 6312 if (kvm->arch.vpit) 6313 goto create_pit_unlock; 6314 r = -ENOMEM; 6315 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6316 if (kvm->arch.vpit) 6317 r = 0; 6318 create_pit_unlock: 6319 mutex_unlock(&kvm->lock); 6320 break; 6321 case KVM_GET_IRQCHIP: { 6322 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6323 struct kvm_irqchip *chip; 6324 6325 chip = memdup_user(argp, sizeof(*chip)); 6326 if (IS_ERR(chip)) { 6327 r = PTR_ERR(chip); 6328 goto out; 6329 } 6330 6331 r = -ENXIO; 6332 if (!irqchip_kernel(kvm)) 6333 goto get_irqchip_out; 6334 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6335 if (r) 6336 goto get_irqchip_out; 6337 r = -EFAULT; 6338 if (copy_to_user(argp, chip, sizeof(*chip))) 6339 goto get_irqchip_out; 6340 r = 0; 6341 get_irqchip_out: 6342 kfree(chip); 6343 break; 6344 } 6345 case KVM_SET_IRQCHIP: { 6346 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6347 struct kvm_irqchip *chip; 6348 6349 chip = memdup_user(argp, sizeof(*chip)); 6350 if (IS_ERR(chip)) { 6351 r = PTR_ERR(chip); 6352 goto out; 6353 } 6354 6355 r = -ENXIO; 6356 if (!irqchip_kernel(kvm)) 6357 goto set_irqchip_out; 6358 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6359 set_irqchip_out: 6360 kfree(chip); 6361 break; 6362 } 6363 case KVM_GET_PIT: { 6364 r = -EFAULT; 6365 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6366 goto out; 6367 r = -ENXIO; 6368 if (!kvm->arch.vpit) 6369 goto out; 6370 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6371 if (r) 6372 goto out; 6373 r = -EFAULT; 6374 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6375 goto out; 6376 r = 0; 6377 break; 6378 } 6379 case KVM_SET_PIT: { 6380 r = -EFAULT; 6381 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6382 goto out; 6383 mutex_lock(&kvm->lock); 6384 r = -ENXIO; 6385 if (!kvm->arch.vpit) 6386 goto set_pit_out; 6387 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6388 set_pit_out: 6389 mutex_unlock(&kvm->lock); 6390 break; 6391 } 6392 case KVM_GET_PIT2: { 6393 r = -ENXIO; 6394 if (!kvm->arch.vpit) 6395 goto out; 6396 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6397 if (r) 6398 goto out; 6399 r = -EFAULT; 6400 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6401 goto out; 6402 r = 0; 6403 break; 6404 } 6405 case KVM_SET_PIT2: { 6406 r = -EFAULT; 6407 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6408 goto out; 6409 mutex_lock(&kvm->lock); 6410 r = -ENXIO; 6411 if (!kvm->arch.vpit) 6412 goto set_pit2_out; 6413 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6414 set_pit2_out: 6415 mutex_unlock(&kvm->lock); 6416 break; 6417 } 6418 case KVM_REINJECT_CONTROL: { 6419 struct kvm_reinject_control control; 6420 r = -EFAULT; 6421 if (copy_from_user(&control, argp, sizeof(control))) 6422 goto out; 6423 r = -ENXIO; 6424 if (!kvm->arch.vpit) 6425 goto out; 6426 r = kvm_vm_ioctl_reinject(kvm, &control); 6427 break; 6428 } 6429 case KVM_SET_BOOT_CPU_ID: 6430 r = 0; 6431 mutex_lock(&kvm->lock); 6432 if (kvm->created_vcpus) 6433 r = -EBUSY; 6434 else 6435 kvm->arch.bsp_vcpu_id = arg; 6436 mutex_unlock(&kvm->lock); 6437 break; 6438 #ifdef CONFIG_KVM_XEN 6439 case KVM_XEN_HVM_CONFIG: { 6440 struct kvm_xen_hvm_config xhc; 6441 r = -EFAULT; 6442 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6443 goto out; 6444 r = kvm_xen_hvm_config(kvm, &xhc); 6445 break; 6446 } 6447 case KVM_XEN_HVM_GET_ATTR: { 6448 struct kvm_xen_hvm_attr xha; 6449 6450 r = -EFAULT; 6451 if (copy_from_user(&xha, argp, sizeof(xha))) 6452 goto out; 6453 r = kvm_xen_hvm_get_attr(kvm, &xha); 6454 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6455 r = -EFAULT; 6456 break; 6457 } 6458 case KVM_XEN_HVM_SET_ATTR: { 6459 struct kvm_xen_hvm_attr xha; 6460 6461 r = -EFAULT; 6462 if (copy_from_user(&xha, argp, sizeof(xha))) 6463 goto out; 6464 r = kvm_xen_hvm_set_attr(kvm, &xha); 6465 break; 6466 } 6467 #endif 6468 case KVM_SET_CLOCK: 6469 r = kvm_vm_ioctl_set_clock(kvm, argp); 6470 break; 6471 case KVM_GET_CLOCK: 6472 r = kvm_vm_ioctl_get_clock(kvm, argp); 6473 break; 6474 case KVM_MEMORY_ENCRYPT_OP: { 6475 r = -ENOTTY; 6476 if (kvm_x86_ops.mem_enc_op) 6477 r = static_call(kvm_x86_mem_enc_op)(kvm, argp); 6478 break; 6479 } 6480 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6481 struct kvm_enc_region region; 6482 6483 r = -EFAULT; 6484 if (copy_from_user(®ion, argp, sizeof(region))) 6485 goto out; 6486 6487 r = -ENOTTY; 6488 if (kvm_x86_ops.mem_enc_reg_region) 6489 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, ®ion); 6490 break; 6491 } 6492 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6493 struct kvm_enc_region region; 6494 6495 r = -EFAULT; 6496 if (copy_from_user(®ion, argp, sizeof(region))) 6497 goto out; 6498 6499 r = -ENOTTY; 6500 if (kvm_x86_ops.mem_enc_unreg_region) 6501 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, ®ion); 6502 break; 6503 } 6504 case KVM_HYPERV_EVENTFD: { 6505 struct kvm_hyperv_eventfd hvevfd; 6506 6507 r = -EFAULT; 6508 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6509 goto out; 6510 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6511 break; 6512 } 6513 case KVM_SET_PMU_EVENT_FILTER: 6514 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6515 break; 6516 case KVM_X86_SET_MSR_FILTER: 6517 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 6518 break; 6519 default: 6520 r = -ENOTTY; 6521 } 6522 out: 6523 return r; 6524 } 6525 6526 static void kvm_init_msr_list(void) 6527 { 6528 struct x86_pmu_capability x86_pmu; 6529 u32 dummy[2]; 6530 unsigned i; 6531 6532 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 6533 "Please update the fixed PMCs in msrs_to_saved_all[]"); 6534 6535 perf_get_x86_pmu_capability(&x86_pmu); 6536 6537 num_msrs_to_save = 0; 6538 num_emulated_msrs = 0; 6539 num_msr_based_features = 0; 6540 6541 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 6542 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 6543 continue; 6544 6545 /* 6546 * Even MSRs that are valid in the host may not be exposed 6547 * to the guests in some cases. 6548 */ 6549 switch (msrs_to_save_all[i]) { 6550 case MSR_IA32_BNDCFGS: 6551 if (!kvm_mpx_supported()) 6552 continue; 6553 break; 6554 case MSR_TSC_AUX: 6555 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 6556 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 6557 continue; 6558 break; 6559 case MSR_IA32_UMWAIT_CONTROL: 6560 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 6561 continue; 6562 break; 6563 case MSR_IA32_RTIT_CTL: 6564 case MSR_IA32_RTIT_STATUS: 6565 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 6566 continue; 6567 break; 6568 case MSR_IA32_RTIT_CR3_MATCH: 6569 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6570 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 6571 continue; 6572 break; 6573 case MSR_IA32_RTIT_OUTPUT_BASE: 6574 case MSR_IA32_RTIT_OUTPUT_MASK: 6575 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6576 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 6577 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 6578 continue; 6579 break; 6580 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 6581 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6582 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 6583 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 6584 continue; 6585 break; 6586 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 6587 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 6588 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6589 continue; 6590 break; 6591 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 6592 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 6593 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6594 continue; 6595 break; 6596 case MSR_IA32_XFD: 6597 case MSR_IA32_XFD_ERR: 6598 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 6599 continue; 6600 break; 6601 default: 6602 break; 6603 } 6604 6605 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 6606 } 6607 6608 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 6609 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 6610 continue; 6611 6612 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 6613 } 6614 6615 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 6616 struct kvm_msr_entry msr; 6617 6618 msr.index = msr_based_features_all[i]; 6619 if (kvm_get_msr_feature(&msr)) 6620 continue; 6621 6622 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 6623 } 6624 } 6625 6626 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 6627 const void *v) 6628 { 6629 int handled = 0; 6630 int n; 6631 6632 do { 6633 n = min(len, 8); 6634 if (!(lapic_in_kernel(vcpu) && 6635 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 6636 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 6637 break; 6638 handled += n; 6639 addr += n; 6640 len -= n; 6641 v += n; 6642 } while (len); 6643 6644 return handled; 6645 } 6646 6647 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 6648 { 6649 int handled = 0; 6650 int n; 6651 6652 do { 6653 n = min(len, 8); 6654 if (!(lapic_in_kernel(vcpu) && 6655 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 6656 addr, n, v)) 6657 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 6658 break; 6659 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 6660 handled += n; 6661 addr += n; 6662 len -= n; 6663 v += n; 6664 } while (len); 6665 6666 return handled; 6667 } 6668 6669 static void kvm_set_segment(struct kvm_vcpu *vcpu, 6670 struct kvm_segment *var, int seg) 6671 { 6672 static_call(kvm_x86_set_segment)(vcpu, var, seg); 6673 } 6674 6675 void kvm_get_segment(struct kvm_vcpu *vcpu, 6676 struct kvm_segment *var, int seg) 6677 { 6678 static_call(kvm_x86_get_segment)(vcpu, var, seg); 6679 } 6680 6681 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 6682 struct x86_exception *exception) 6683 { 6684 struct kvm_mmu *mmu = vcpu->arch.mmu; 6685 gpa_t t_gpa; 6686 6687 BUG_ON(!mmu_is_nested(vcpu)); 6688 6689 /* NPT walks are always user-walks */ 6690 access |= PFERR_USER_MASK; 6691 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 6692 6693 return t_gpa; 6694 } 6695 6696 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 6697 struct x86_exception *exception) 6698 { 6699 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6700 6701 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6702 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6703 } 6704 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 6705 6706 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 6707 struct x86_exception *exception) 6708 { 6709 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6710 6711 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6712 access |= PFERR_FETCH_MASK; 6713 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6714 } 6715 6716 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 6717 struct x86_exception *exception) 6718 { 6719 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6720 6721 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6722 access |= PFERR_WRITE_MASK; 6723 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6724 } 6725 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 6726 6727 /* uses this to access any guest's mapped memory without checking CPL */ 6728 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 6729 struct x86_exception *exception) 6730 { 6731 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6732 6733 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 6734 } 6735 6736 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6737 struct kvm_vcpu *vcpu, u32 access, 6738 struct x86_exception *exception) 6739 { 6740 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6741 void *data = val; 6742 int r = X86EMUL_CONTINUE; 6743 6744 while (bytes) { 6745 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 6746 unsigned offset = addr & (PAGE_SIZE-1); 6747 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 6748 int ret; 6749 6750 if (gpa == UNMAPPED_GVA) 6751 return X86EMUL_PROPAGATE_FAULT; 6752 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 6753 offset, toread); 6754 if (ret < 0) { 6755 r = X86EMUL_IO_NEEDED; 6756 goto out; 6757 } 6758 6759 bytes -= toread; 6760 data += toread; 6761 addr += toread; 6762 } 6763 out: 6764 return r; 6765 } 6766 6767 /* used for instruction fetching */ 6768 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 6769 gva_t addr, void *val, unsigned int bytes, 6770 struct x86_exception *exception) 6771 { 6772 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6773 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6774 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6775 unsigned offset; 6776 int ret; 6777 6778 /* Inline kvm_read_guest_virt_helper for speed. */ 6779 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 6780 exception); 6781 if (unlikely(gpa == UNMAPPED_GVA)) 6782 return X86EMUL_PROPAGATE_FAULT; 6783 6784 offset = addr & (PAGE_SIZE-1); 6785 if (WARN_ON(offset + bytes > PAGE_SIZE)) 6786 bytes = (unsigned)PAGE_SIZE - offset; 6787 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 6788 offset, bytes); 6789 if (unlikely(ret < 0)) 6790 return X86EMUL_IO_NEEDED; 6791 6792 return X86EMUL_CONTINUE; 6793 } 6794 6795 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 6796 gva_t addr, void *val, unsigned int bytes, 6797 struct x86_exception *exception) 6798 { 6799 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6800 6801 /* 6802 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 6803 * is returned, but our callers are not ready for that and they blindly 6804 * call kvm_inject_page_fault. Ensure that they at least do not leak 6805 * uninitialized kernel stack memory into cr2 and error code. 6806 */ 6807 memset(exception, 0, sizeof(*exception)); 6808 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 6809 exception); 6810 } 6811 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 6812 6813 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 6814 gva_t addr, void *val, unsigned int bytes, 6815 struct x86_exception *exception, bool system) 6816 { 6817 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6818 u32 access = 0; 6819 6820 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3) 6821 access |= PFERR_USER_MASK; 6822 6823 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 6824 } 6825 6826 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 6827 unsigned long addr, void *val, unsigned int bytes) 6828 { 6829 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6830 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 6831 6832 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 6833 } 6834 6835 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6836 struct kvm_vcpu *vcpu, u32 access, 6837 struct x86_exception *exception) 6838 { 6839 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6840 void *data = val; 6841 int r = X86EMUL_CONTINUE; 6842 6843 while (bytes) { 6844 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 6845 unsigned offset = addr & (PAGE_SIZE-1); 6846 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 6847 int ret; 6848 6849 if (gpa == UNMAPPED_GVA) 6850 return X86EMUL_PROPAGATE_FAULT; 6851 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 6852 if (ret < 0) { 6853 r = X86EMUL_IO_NEEDED; 6854 goto out; 6855 } 6856 6857 bytes -= towrite; 6858 data += towrite; 6859 addr += towrite; 6860 } 6861 out: 6862 return r; 6863 } 6864 6865 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 6866 unsigned int bytes, struct x86_exception *exception, 6867 bool system) 6868 { 6869 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6870 u32 access = PFERR_WRITE_MASK; 6871 6872 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3) 6873 access |= PFERR_USER_MASK; 6874 6875 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6876 access, exception); 6877 } 6878 6879 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 6880 unsigned int bytes, struct x86_exception *exception) 6881 { 6882 /* kvm_write_guest_virt_system can pull in tons of pages. */ 6883 vcpu->arch.l1tf_flush_l1d = true; 6884 6885 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6886 PFERR_WRITE_MASK, exception); 6887 } 6888 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 6889 6890 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 6891 void *insn, int insn_len) 6892 { 6893 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 6894 insn, insn_len); 6895 } 6896 6897 int handle_ud(struct kvm_vcpu *vcpu) 6898 { 6899 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 6900 int emul_type = EMULTYPE_TRAP_UD; 6901 char sig[5]; /* ud2; .ascii "kvm" */ 6902 struct x86_exception e; 6903 6904 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 6905 return 1; 6906 6907 if (force_emulation_prefix && 6908 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 6909 sig, sizeof(sig), &e) == 0 && 6910 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 6911 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 6912 emul_type = EMULTYPE_TRAP_UD_FORCED; 6913 } 6914 6915 return kvm_emulate_instruction(vcpu, emul_type); 6916 } 6917 EXPORT_SYMBOL_GPL(handle_ud); 6918 6919 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6920 gpa_t gpa, bool write) 6921 { 6922 /* For APIC access vmexit */ 6923 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6924 return 1; 6925 6926 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 6927 trace_vcpu_match_mmio(gva, gpa, write, true); 6928 return 1; 6929 } 6930 6931 return 0; 6932 } 6933 6934 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6935 gpa_t *gpa, struct x86_exception *exception, 6936 bool write) 6937 { 6938 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6939 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 6940 | (write ? PFERR_WRITE_MASK : 0); 6941 6942 /* 6943 * currently PKRU is only applied to ept enabled guest so 6944 * there is no pkey in EPT page table for L1 guest or EPT 6945 * shadow page table for L2 guest. 6946 */ 6947 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 6948 !permission_fault(vcpu, vcpu->arch.walk_mmu, 6949 vcpu->arch.mmio_access, 0, access))) { 6950 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 6951 (gva & (PAGE_SIZE - 1)); 6952 trace_vcpu_match_mmio(gva, *gpa, write, false); 6953 return 1; 6954 } 6955 6956 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6957 6958 if (*gpa == UNMAPPED_GVA) 6959 return -1; 6960 6961 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 6962 } 6963 6964 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 6965 const void *val, int bytes) 6966 { 6967 int ret; 6968 6969 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 6970 if (ret < 0) 6971 return 0; 6972 kvm_page_track_write(vcpu, gpa, val, bytes); 6973 return 1; 6974 } 6975 6976 struct read_write_emulator_ops { 6977 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 6978 int bytes); 6979 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 6980 void *val, int bytes); 6981 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6982 int bytes, void *val); 6983 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6984 void *val, int bytes); 6985 bool write; 6986 }; 6987 6988 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 6989 { 6990 if (vcpu->mmio_read_completed) { 6991 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 6992 vcpu->mmio_fragments[0].gpa, val); 6993 vcpu->mmio_read_completed = 0; 6994 return 1; 6995 } 6996 6997 return 0; 6998 } 6999 7000 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7001 void *val, int bytes) 7002 { 7003 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7004 } 7005 7006 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7007 void *val, int bytes) 7008 { 7009 return emulator_write_phys(vcpu, gpa, val, bytes); 7010 } 7011 7012 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7013 { 7014 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7015 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7016 } 7017 7018 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7019 void *val, int bytes) 7020 { 7021 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7022 return X86EMUL_IO_NEEDED; 7023 } 7024 7025 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7026 void *val, int bytes) 7027 { 7028 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7029 7030 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7031 return X86EMUL_CONTINUE; 7032 } 7033 7034 static const struct read_write_emulator_ops read_emultor = { 7035 .read_write_prepare = read_prepare, 7036 .read_write_emulate = read_emulate, 7037 .read_write_mmio = vcpu_mmio_read, 7038 .read_write_exit_mmio = read_exit_mmio, 7039 }; 7040 7041 static const struct read_write_emulator_ops write_emultor = { 7042 .read_write_emulate = write_emulate, 7043 .read_write_mmio = write_mmio, 7044 .read_write_exit_mmio = write_exit_mmio, 7045 .write = true, 7046 }; 7047 7048 static int emulator_read_write_onepage(unsigned long addr, void *val, 7049 unsigned int bytes, 7050 struct x86_exception *exception, 7051 struct kvm_vcpu *vcpu, 7052 const struct read_write_emulator_ops *ops) 7053 { 7054 gpa_t gpa; 7055 int handled, ret; 7056 bool write = ops->write; 7057 struct kvm_mmio_fragment *frag; 7058 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7059 7060 /* 7061 * If the exit was due to a NPF we may already have a GPA. 7062 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7063 * Note, this cannot be used on string operations since string 7064 * operation using rep will only have the initial GPA from the NPF 7065 * occurred. 7066 */ 7067 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7068 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7069 gpa = ctxt->gpa_val; 7070 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7071 } else { 7072 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7073 if (ret < 0) 7074 return X86EMUL_PROPAGATE_FAULT; 7075 } 7076 7077 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7078 return X86EMUL_CONTINUE; 7079 7080 /* 7081 * Is this MMIO handled locally? 7082 */ 7083 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7084 if (handled == bytes) 7085 return X86EMUL_CONTINUE; 7086 7087 gpa += handled; 7088 bytes -= handled; 7089 val += handled; 7090 7091 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7092 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7093 frag->gpa = gpa; 7094 frag->data = val; 7095 frag->len = bytes; 7096 return X86EMUL_CONTINUE; 7097 } 7098 7099 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7100 unsigned long addr, 7101 void *val, unsigned int bytes, 7102 struct x86_exception *exception, 7103 const struct read_write_emulator_ops *ops) 7104 { 7105 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7106 gpa_t gpa; 7107 int rc; 7108 7109 if (ops->read_write_prepare && 7110 ops->read_write_prepare(vcpu, val, bytes)) 7111 return X86EMUL_CONTINUE; 7112 7113 vcpu->mmio_nr_fragments = 0; 7114 7115 /* Crossing a page boundary? */ 7116 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7117 int now; 7118 7119 now = -addr & ~PAGE_MASK; 7120 rc = emulator_read_write_onepage(addr, val, now, exception, 7121 vcpu, ops); 7122 7123 if (rc != X86EMUL_CONTINUE) 7124 return rc; 7125 addr += now; 7126 if (ctxt->mode != X86EMUL_MODE_PROT64) 7127 addr = (u32)addr; 7128 val += now; 7129 bytes -= now; 7130 } 7131 7132 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7133 vcpu, ops); 7134 if (rc != X86EMUL_CONTINUE) 7135 return rc; 7136 7137 if (!vcpu->mmio_nr_fragments) 7138 return rc; 7139 7140 gpa = vcpu->mmio_fragments[0].gpa; 7141 7142 vcpu->mmio_needed = 1; 7143 vcpu->mmio_cur_fragment = 0; 7144 7145 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7146 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7147 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7148 vcpu->run->mmio.phys_addr = gpa; 7149 7150 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7151 } 7152 7153 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7154 unsigned long addr, 7155 void *val, 7156 unsigned int bytes, 7157 struct x86_exception *exception) 7158 { 7159 return emulator_read_write(ctxt, addr, val, bytes, 7160 exception, &read_emultor); 7161 } 7162 7163 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7164 unsigned long addr, 7165 const void *val, 7166 unsigned int bytes, 7167 struct x86_exception *exception) 7168 { 7169 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7170 exception, &write_emultor); 7171 } 7172 7173 #define CMPXCHG_TYPE(t, ptr, old, new) \ 7174 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 7175 7176 #ifdef CONFIG_X86_64 7177 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 7178 #else 7179 # define CMPXCHG64(ptr, old, new) \ 7180 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 7181 #endif 7182 7183 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7184 unsigned long addr, 7185 const void *old, 7186 const void *new, 7187 unsigned int bytes, 7188 struct x86_exception *exception) 7189 { 7190 struct kvm_host_map map; 7191 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7192 u64 page_line_mask; 7193 gpa_t gpa; 7194 char *kaddr; 7195 bool exchanged; 7196 7197 /* guests cmpxchg8b have to be emulated atomically */ 7198 if (bytes > 8 || (bytes & (bytes - 1))) 7199 goto emul_write; 7200 7201 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7202 7203 if (gpa == UNMAPPED_GVA || 7204 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7205 goto emul_write; 7206 7207 /* 7208 * Emulate the atomic as a straight write to avoid #AC if SLD is 7209 * enabled in the host and the access splits a cache line. 7210 */ 7211 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7212 page_line_mask = ~(cache_line_size() - 1); 7213 else 7214 page_line_mask = PAGE_MASK; 7215 7216 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7217 goto emul_write; 7218 7219 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 7220 goto emul_write; 7221 7222 kaddr = map.hva + offset_in_page(gpa); 7223 7224 switch (bytes) { 7225 case 1: 7226 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 7227 break; 7228 case 2: 7229 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 7230 break; 7231 case 4: 7232 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 7233 break; 7234 case 8: 7235 exchanged = CMPXCHG64(kaddr, old, new); 7236 break; 7237 default: 7238 BUG(); 7239 } 7240 7241 kvm_vcpu_unmap(vcpu, &map, true); 7242 7243 if (!exchanged) 7244 return X86EMUL_CMPXCHG_FAILED; 7245 7246 kvm_page_track_write(vcpu, gpa, new, bytes); 7247 7248 return X86EMUL_CONTINUE; 7249 7250 emul_write: 7251 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7252 7253 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7254 } 7255 7256 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 7257 { 7258 int r = 0, i; 7259 7260 for (i = 0; i < vcpu->arch.pio.count; i++) { 7261 if (vcpu->arch.pio.in) 7262 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 7263 vcpu->arch.pio.size, pd); 7264 else 7265 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 7266 vcpu->arch.pio.port, vcpu->arch.pio.size, 7267 pd); 7268 if (r) 7269 break; 7270 pd += vcpu->arch.pio.size; 7271 } 7272 return r; 7273 } 7274 7275 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7276 unsigned short port, 7277 unsigned int count, bool in) 7278 { 7279 vcpu->arch.pio.port = port; 7280 vcpu->arch.pio.in = in; 7281 vcpu->arch.pio.count = count; 7282 vcpu->arch.pio.size = size; 7283 7284 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) 7285 return 1; 7286 7287 vcpu->run->exit_reason = KVM_EXIT_IO; 7288 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7289 vcpu->run->io.size = size; 7290 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7291 vcpu->run->io.count = count; 7292 vcpu->run->io.port = port; 7293 7294 return 0; 7295 } 7296 7297 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7298 unsigned short port, unsigned int count) 7299 { 7300 WARN_ON(vcpu->arch.pio.count); 7301 memset(vcpu->arch.pio_data, 0, size * count); 7302 return emulator_pio_in_out(vcpu, size, port, count, true); 7303 } 7304 7305 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7306 { 7307 int size = vcpu->arch.pio.size; 7308 unsigned count = vcpu->arch.pio.count; 7309 memcpy(val, vcpu->arch.pio_data, size * count); 7310 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7311 vcpu->arch.pio.count = 0; 7312 } 7313 7314 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7315 unsigned short port, void *val, unsigned int count) 7316 { 7317 if (vcpu->arch.pio.count) { 7318 /* 7319 * Complete a previous iteration that required userspace I/O. 7320 * Note, @count isn't guaranteed to match pio.count as userspace 7321 * can modify ECX before rerunning the vCPU. Ignore any such 7322 * shenanigans as KVM doesn't support modifying the rep count, 7323 * and the emulator ensures @count doesn't overflow the buffer. 7324 */ 7325 } else { 7326 int r = __emulator_pio_in(vcpu, size, port, count); 7327 if (!r) 7328 return r; 7329 7330 /* Results already available, fall through. */ 7331 } 7332 7333 complete_emulator_pio_in(vcpu, val); 7334 return 1; 7335 } 7336 7337 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7338 int size, unsigned short port, void *val, 7339 unsigned int count) 7340 { 7341 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 7342 7343 } 7344 7345 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7346 unsigned short port, const void *val, 7347 unsigned int count) 7348 { 7349 int ret; 7350 7351 memcpy(vcpu->arch.pio_data, val, size * count); 7352 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 7353 ret = emulator_pio_in_out(vcpu, size, port, count, false); 7354 if (ret) 7355 vcpu->arch.pio.count = 0; 7356 7357 return ret; 7358 } 7359 7360 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7361 int size, unsigned short port, 7362 const void *val, unsigned int count) 7363 { 7364 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7365 } 7366 7367 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7368 { 7369 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7370 } 7371 7372 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7373 { 7374 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7375 } 7376 7377 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7378 { 7379 if (!need_emulate_wbinvd(vcpu)) 7380 return X86EMUL_CONTINUE; 7381 7382 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7383 int cpu = get_cpu(); 7384 7385 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7386 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7387 wbinvd_ipi, NULL, 1); 7388 put_cpu(); 7389 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7390 } else 7391 wbinvd(); 7392 return X86EMUL_CONTINUE; 7393 } 7394 7395 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7396 { 7397 kvm_emulate_wbinvd_noskip(vcpu); 7398 return kvm_skip_emulated_instruction(vcpu); 7399 } 7400 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7401 7402 7403 7404 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7405 { 7406 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7407 } 7408 7409 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7410 unsigned long *dest) 7411 { 7412 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7413 } 7414 7415 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7416 unsigned long value) 7417 { 7418 7419 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7420 } 7421 7422 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7423 { 7424 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7425 } 7426 7427 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7428 { 7429 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7430 unsigned long value; 7431 7432 switch (cr) { 7433 case 0: 7434 value = kvm_read_cr0(vcpu); 7435 break; 7436 case 2: 7437 value = vcpu->arch.cr2; 7438 break; 7439 case 3: 7440 value = kvm_read_cr3(vcpu); 7441 break; 7442 case 4: 7443 value = kvm_read_cr4(vcpu); 7444 break; 7445 case 8: 7446 value = kvm_get_cr8(vcpu); 7447 break; 7448 default: 7449 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7450 return 0; 7451 } 7452 7453 return value; 7454 } 7455 7456 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7457 { 7458 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7459 int res = 0; 7460 7461 switch (cr) { 7462 case 0: 7463 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7464 break; 7465 case 2: 7466 vcpu->arch.cr2 = val; 7467 break; 7468 case 3: 7469 res = kvm_set_cr3(vcpu, val); 7470 break; 7471 case 4: 7472 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7473 break; 7474 case 8: 7475 res = kvm_set_cr8(vcpu, val); 7476 break; 7477 default: 7478 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7479 res = -1; 7480 } 7481 7482 return res; 7483 } 7484 7485 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7486 { 7487 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7488 } 7489 7490 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7491 { 7492 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7493 } 7494 7495 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7496 { 7497 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7498 } 7499 7500 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7501 { 7502 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7503 } 7504 7505 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7506 { 7507 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7508 } 7509 7510 static unsigned long emulator_get_cached_segment_base( 7511 struct x86_emulate_ctxt *ctxt, int seg) 7512 { 7513 return get_segment_base(emul_to_vcpu(ctxt), seg); 7514 } 7515 7516 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7517 struct desc_struct *desc, u32 *base3, 7518 int seg) 7519 { 7520 struct kvm_segment var; 7521 7522 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7523 *selector = var.selector; 7524 7525 if (var.unusable) { 7526 memset(desc, 0, sizeof(*desc)); 7527 if (base3) 7528 *base3 = 0; 7529 return false; 7530 } 7531 7532 if (var.g) 7533 var.limit >>= 12; 7534 set_desc_limit(desc, var.limit); 7535 set_desc_base(desc, (unsigned long)var.base); 7536 #ifdef CONFIG_X86_64 7537 if (base3) 7538 *base3 = var.base >> 32; 7539 #endif 7540 desc->type = var.type; 7541 desc->s = var.s; 7542 desc->dpl = var.dpl; 7543 desc->p = var.present; 7544 desc->avl = var.avl; 7545 desc->l = var.l; 7546 desc->d = var.db; 7547 desc->g = var.g; 7548 7549 return true; 7550 } 7551 7552 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 7553 struct desc_struct *desc, u32 base3, 7554 int seg) 7555 { 7556 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7557 struct kvm_segment var; 7558 7559 var.selector = selector; 7560 var.base = get_desc_base(desc); 7561 #ifdef CONFIG_X86_64 7562 var.base |= ((u64)base3) << 32; 7563 #endif 7564 var.limit = get_desc_limit(desc); 7565 if (desc->g) 7566 var.limit = (var.limit << 12) | 0xfff; 7567 var.type = desc->type; 7568 var.dpl = desc->dpl; 7569 var.db = desc->d; 7570 var.s = desc->s; 7571 var.l = desc->l; 7572 var.g = desc->g; 7573 var.avl = desc->avl; 7574 var.present = desc->p; 7575 var.unusable = !var.present; 7576 var.padding = 0; 7577 7578 kvm_set_segment(vcpu, &var, seg); 7579 return; 7580 } 7581 7582 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 7583 u32 msr_index, u64 *pdata) 7584 { 7585 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7586 int r; 7587 7588 r = kvm_get_msr(vcpu, msr_index, pdata); 7589 7590 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 7591 complete_emulated_rdmsr, r)) { 7592 /* Bounce to user space */ 7593 return X86EMUL_IO_NEEDED; 7594 } 7595 7596 return r; 7597 } 7598 7599 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 7600 u32 msr_index, u64 data) 7601 { 7602 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7603 int r; 7604 7605 r = kvm_set_msr(vcpu, msr_index, data); 7606 7607 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 7608 complete_emulated_msr_access, r)) { 7609 /* Bounce to user space */ 7610 return X86EMUL_IO_NEEDED; 7611 } 7612 7613 return r; 7614 } 7615 7616 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 7617 { 7618 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7619 7620 return vcpu->arch.smbase; 7621 } 7622 7623 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 7624 { 7625 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7626 7627 vcpu->arch.smbase = smbase; 7628 } 7629 7630 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 7631 u32 pmc) 7632 { 7633 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 7634 return 0; 7635 return -EINVAL; 7636 } 7637 7638 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 7639 u32 pmc, u64 *pdata) 7640 { 7641 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 7642 } 7643 7644 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 7645 { 7646 emul_to_vcpu(ctxt)->arch.halt_request = 1; 7647 } 7648 7649 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 7650 struct x86_instruction_info *info, 7651 enum x86_intercept_stage stage) 7652 { 7653 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 7654 &ctxt->exception); 7655 } 7656 7657 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 7658 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 7659 bool exact_only) 7660 { 7661 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 7662 } 7663 7664 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 7665 { 7666 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 7667 } 7668 7669 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 7670 { 7671 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 7672 } 7673 7674 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 7675 { 7676 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 7677 } 7678 7679 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 7680 { 7681 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 7682 } 7683 7684 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 7685 { 7686 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 7687 } 7688 7689 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 7690 { 7691 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 7692 } 7693 7694 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 7695 { 7696 return emul_to_vcpu(ctxt)->arch.hflags; 7697 } 7698 7699 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt) 7700 { 7701 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7702 7703 kvm_smm_changed(vcpu, false); 7704 } 7705 7706 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt, 7707 const char *smstate) 7708 { 7709 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate); 7710 } 7711 7712 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 7713 { 7714 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 7715 } 7716 7717 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 7718 { 7719 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 7720 } 7721 7722 static const struct x86_emulate_ops emulate_ops = { 7723 .read_gpr = emulator_read_gpr, 7724 .write_gpr = emulator_write_gpr, 7725 .read_std = emulator_read_std, 7726 .write_std = emulator_write_std, 7727 .read_phys = kvm_read_guest_phys_system, 7728 .fetch = kvm_fetch_guest_virt, 7729 .read_emulated = emulator_read_emulated, 7730 .write_emulated = emulator_write_emulated, 7731 .cmpxchg_emulated = emulator_cmpxchg_emulated, 7732 .invlpg = emulator_invlpg, 7733 .pio_in_emulated = emulator_pio_in_emulated, 7734 .pio_out_emulated = emulator_pio_out_emulated, 7735 .get_segment = emulator_get_segment, 7736 .set_segment = emulator_set_segment, 7737 .get_cached_segment_base = emulator_get_cached_segment_base, 7738 .get_gdt = emulator_get_gdt, 7739 .get_idt = emulator_get_idt, 7740 .set_gdt = emulator_set_gdt, 7741 .set_idt = emulator_set_idt, 7742 .get_cr = emulator_get_cr, 7743 .set_cr = emulator_set_cr, 7744 .cpl = emulator_get_cpl, 7745 .get_dr = emulator_get_dr, 7746 .set_dr = emulator_set_dr, 7747 .get_smbase = emulator_get_smbase, 7748 .set_smbase = emulator_set_smbase, 7749 .set_msr = emulator_set_msr, 7750 .get_msr = emulator_get_msr, 7751 .check_pmc = emulator_check_pmc, 7752 .read_pmc = emulator_read_pmc, 7753 .halt = emulator_halt, 7754 .wbinvd = emulator_wbinvd, 7755 .fix_hypercall = emulator_fix_hypercall, 7756 .intercept = emulator_intercept, 7757 .get_cpuid = emulator_get_cpuid, 7758 .guest_has_long_mode = emulator_guest_has_long_mode, 7759 .guest_has_movbe = emulator_guest_has_movbe, 7760 .guest_has_fxsr = emulator_guest_has_fxsr, 7761 .set_nmi_mask = emulator_set_nmi_mask, 7762 .get_hflags = emulator_get_hflags, 7763 .exiting_smm = emulator_exiting_smm, 7764 .leave_smm = emulator_leave_smm, 7765 .triple_fault = emulator_triple_fault, 7766 .set_xcr = emulator_set_xcr, 7767 }; 7768 7769 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 7770 { 7771 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 7772 /* 7773 * an sti; sti; sequence only disable interrupts for the first 7774 * instruction. So, if the last instruction, be it emulated or 7775 * not, left the system with the INT_STI flag enabled, it 7776 * means that the last instruction is an sti. We should not 7777 * leave the flag on in this case. The same goes for mov ss 7778 */ 7779 if (int_shadow & mask) 7780 mask = 0; 7781 if (unlikely(int_shadow || mask)) { 7782 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 7783 if (!mask) 7784 kvm_make_request(KVM_REQ_EVENT, vcpu); 7785 } 7786 } 7787 7788 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 7789 { 7790 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7791 if (ctxt->exception.vector == PF_VECTOR) 7792 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 7793 7794 if (ctxt->exception.error_code_valid) 7795 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 7796 ctxt->exception.error_code); 7797 else 7798 kvm_queue_exception(vcpu, ctxt->exception.vector); 7799 return false; 7800 } 7801 7802 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 7803 { 7804 struct x86_emulate_ctxt *ctxt; 7805 7806 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 7807 if (!ctxt) { 7808 pr_err("kvm: failed to allocate vcpu's emulator\n"); 7809 return NULL; 7810 } 7811 7812 ctxt->vcpu = vcpu; 7813 ctxt->ops = &emulate_ops; 7814 vcpu->arch.emulate_ctxt = ctxt; 7815 7816 return ctxt; 7817 } 7818 7819 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 7820 { 7821 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7822 int cs_db, cs_l; 7823 7824 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 7825 7826 ctxt->gpa_available = false; 7827 ctxt->eflags = kvm_get_rflags(vcpu); 7828 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 7829 7830 ctxt->eip = kvm_rip_read(vcpu); 7831 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 7832 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 7833 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 7834 cs_db ? X86EMUL_MODE_PROT32 : 7835 X86EMUL_MODE_PROT16; 7836 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 7837 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 7838 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 7839 7840 ctxt->interruptibility = 0; 7841 ctxt->have_exception = false; 7842 ctxt->exception.vector = -1; 7843 ctxt->perm_ok = false; 7844 7845 init_decode_cache(ctxt); 7846 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7847 } 7848 7849 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 7850 { 7851 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7852 int ret; 7853 7854 init_emulate_ctxt(vcpu); 7855 7856 ctxt->op_bytes = 2; 7857 ctxt->ad_bytes = 2; 7858 ctxt->_eip = ctxt->eip + inc_eip; 7859 ret = emulate_int_real(ctxt, irq); 7860 7861 if (ret != X86EMUL_CONTINUE) { 7862 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 7863 } else { 7864 ctxt->eip = ctxt->_eip; 7865 kvm_rip_write(vcpu, ctxt->eip); 7866 kvm_set_rflags(vcpu, ctxt->eflags); 7867 } 7868 } 7869 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 7870 7871 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 7872 u8 ndata, u8 *insn_bytes, u8 insn_size) 7873 { 7874 struct kvm_run *run = vcpu->run; 7875 u64 info[5]; 7876 u8 info_start; 7877 7878 /* 7879 * Zero the whole array used to retrieve the exit info, as casting to 7880 * u32 for select entries will leave some chunks uninitialized. 7881 */ 7882 memset(&info, 0, sizeof(info)); 7883 7884 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 7885 &info[2], (u32 *)&info[3], 7886 (u32 *)&info[4]); 7887 7888 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7889 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 7890 7891 /* 7892 * There's currently space for 13 entries, but 5 are used for the exit 7893 * reason and info. Restrict to 4 to reduce the maintenance burden 7894 * when expanding kvm_run.emulation_failure in the future. 7895 */ 7896 if (WARN_ON_ONCE(ndata > 4)) 7897 ndata = 4; 7898 7899 /* Always include the flags as a 'data' entry. */ 7900 info_start = 1; 7901 run->emulation_failure.flags = 0; 7902 7903 if (insn_size) { 7904 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 7905 sizeof(run->emulation_failure.insn_bytes) != 16)); 7906 info_start += 2; 7907 run->emulation_failure.flags |= 7908 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 7909 run->emulation_failure.insn_size = insn_size; 7910 memset(run->emulation_failure.insn_bytes, 0x90, 7911 sizeof(run->emulation_failure.insn_bytes)); 7912 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 7913 } 7914 7915 memcpy(&run->internal.data[info_start], info, sizeof(info)); 7916 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 7917 ndata * sizeof(data[0])); 7918 7919 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 7920 } 7921 7922 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 7923 { 7924 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7925 7926 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 7927 ctxt->fetch.end - ctxt->fetch.data); 7928 } 7929 7930 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 7931 u8 ndata) 7932 { 7933 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 7934 } 7935 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 7936 7937 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 7938 { 7939 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 7940 } 7941 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 7942 7943 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 7944 { 7945 struct kvm *kvm = vcpu->kvm; 7946 7947 ++vcpu->stat.insn_emulation_fail; 7948 trace_kvm_emulate_insn_failed(vcpu); 7949 7950 if (emulation_type & EMULTYPE_VMWARE_GP) { 7951 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 7952 return 1; 7953 } 7954 7955 if (kvm->arch.exit_on_emulation_error || 7956 (emulation_type & EMULTYPE_SKIP)) { 7957 prepare_emulation_ctxt_failure_exit(vcpu); 7958 return 0; 7959 } 7960 7961 kvm_queue_exception(vcpu, UD_VECTOR); 7962 7963 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 7964 prepare_emulation_ctxt_failure_exit(vcpu); 7965 return 0; 7966 } 7967 7968 return 1; 7969 } 7970 7971 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7972 bool write_fault_to_shadow_pgtable, 7973 int emulation_type) 7974 { 7975 gpa_t gpa = cr2_or_gpa; 7976 kvm_pfn_t pfn; 7977 7978 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7979 return false; 7980 7981 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7982 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7983 return false; 7984 7985 if (!vcpu->arch.mmu->direct_map) { 7986 /* 7987 * Write permission should be allowed since only 7988 * write access need to be emulated. 7989 */ 7990 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7991 7992 /* 7993 * If the mapping is invalid in guest, let cpu retry 7994 * it to generate fault. 7995 */ 7996 if (gpa == UNMAPPED_GVA) 7997 return true; 7998 } 7999 8000 /* 8001 * Do not retry the unhandleable instruction if it faults on the 8002 * readonly host memory, otherwise it will goto a infinite loop: 8003 * retry instruction -> write #PF -> emulation fail -> retry 8004 * instruction -> ... 8005 */ 8006 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8007 8008 /* 8009 * If the instruction failed on the error pfn, it can not be fixed, 8010 * report the error to userspace. 8011 */ 8012 if (is_error_noslot_pfn(pfn)) 8013 return false; 8014 8015 kvm_release_pfn_clean(pfn); 8016 8017 /* The instructions are well-emulated on direct mmu. */ 8018 if (vcpu->arch.mmu->direct_map) { 8019 unsigned int indirect_shadow_pages; 8020 8021 write_lock(&vcpu->kvm->mmu_lock); 8022 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8023 write_unlock(&vcpu->kvm->mmu_lock); 8024 8025 if (indirect_shadow_pages) 8026 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8027 8028 return true; 8029 } 8030 8031 /* 8032 * if emulation was due to access to shadowed page table 8033 * and it failed try to unshadow page and re-enter the 8034 * guest to let CPU execute the instruction. 8035 */ 8036 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8037 8038 /* 8039 * If the access faults on its page table, it can not 8040 * be fixed by unprotecting shadow page and it should 8041 * be reported to userspace. 8042 */ 8043 return !write_fault_to_shadow_pgtable; 8044 } 8045 8046 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8047 gpa_t cr2_or_gpa, int emulation_type) 8048 { 8049 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8050 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8051 8052 last_retry_eip = vcpu->arch.last_retry_eip; 8053 last_retry_addr = vcpu->arch.last_retry_addr; 8054 8055 /* 8056 * If the emulation is caused by #PF and it is non-page_table 8057 * writing instruction, it means the VM-EXIT is caused by shadow 8058 * page protected, we can zap the shadow page and retry this 8059 * instruction directly. 8060 * 8061 * Note: if the guest uses a non-page-table modifying instruction 8062 * on the PDE that points to the instruction, then we will unmap 8063 * the instruction and go to an infinite loop. So, we cache the 8064 * last retried eip and the last fault address, if we meet the eip 8065 * and the address again, we can break out of the potential infinite 8066 * loop. 8067 */ 8068 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8069 8070 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8071 return false; 8072 8073 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8074 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8075 return false; 8076 8077 if (x86_page_table_writing_insn(ctxt)) 8078 return false; 8079 8080 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8081 return false; 8082 8083 vcpu->arch.last_retry_eip = ctxt->eip; 8084 vcpu->arch.last_retry_addr = cr2_or_gpa; 8085 8086 if (!vcpu->arch.mmu->direct_map) 8087 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8088 8089 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8090 8091 return true; 8092 } 8093 8094 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8095 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8096 8097 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm) 8098 { 8099 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm); 8100 8101 if (entering_smm) { 8102 vcpu->arch.hflags |= HF_SMM_MASK; 8103 } else { 8104 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK); 8105 8106 /* Process a latched INIT or SMI, if any. */ 8107 kvm_make_request(KVM_REQ_EVENT, vcpu); 8108 8109 /* 8110 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band, 8111 * on SMM exit we still need to reload them from 8112 * guest memory 8113 */ 8114 vcpu->arch.pdptrs_from_userspace = false; 8115 } 8116 8117 kvm_mmu_reset_context(vcpu); 8118 } 8119 8120 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8121 unsigned long *db) 8122 { 8123 u32 dr6 = 0; 8124 int i; 8125 u32 enable, rwlen; 8126 8127 enable = dr7; 8128 rwlen = dr7 >> 16; 8129 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8130 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8131 dr6 |= (1 << i); 8132 return dr6; 8133 } 8134 8135 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8136 { 8137 struct kvm_run *kvm_run = vcpu->run; 8138 8139 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8140 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8141 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8142 kvm_run->debug.arch.exception = DB_VECTOR; 8143 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8144 return 0; 8145 } 8146 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8147 return 1; 8148 } 8149 8150 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8151 { 8152 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8153 int r; 8154 8155 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8156 if (unlikely(!r)) 8157 return 0; 8158 8159 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8160 8161 /* 8162 * rflags is the old, "raw" value of the flags. The new value has 8163 * not been saved yet. 8164 * 8165 * This is correct even for TF set by the guest, because "the 8166 * processor will not generate this exception after the instruction 8167 * that sets the TF flag". 8168 */ 8169 if (unlikely(rflags & X86_EFLAGS_TF)) 8170 r = kvm_vcpu_do_singlestep(vcpu); 8171 return r; 8172 } 8173 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8174 8175 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 8176 { 8177 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8178 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8179 struct kvm_run *kvm_run = vcpu->run; 8180 unsigned long eip = kvm_get_linear_rip(vcpu); 8181 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8182 vcpu->arch.guest_debug_dr7, 8183 vcpu->arch.eff_db); 8184 8185 if (dr6 != 0) { 8186 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8187 kvm_run->debug.arch.pc = eip; 8188 kvm_run->debug.arch.exception = DB_VECTOR; 8189 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8190 *r = 0; 8191 return true; 8192 } 8193 } 8194 8195 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8196 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 8197 unsigned long eip = kvm_get_linear_rip(vcpu); 8198 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8199 vcpu->arch.dr7, 8200 vcpu->arch.db); 8201 8202 if (dr6 != 0) { 8203 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8204 *r = 1; 8205 return true; 8206 } 8207 } 8208 8209 return false; 8210 } 8211 8212 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8213 { 8214 switch (ctxt->opcode_len) { 8215 case 1: 8216 switch (ctxt->b) { 8217 case 0xe4: /* IN */ 8218 case 0xe5: 8219 case 0xec: 8220 case 0xed: 8221 case 0xe6: /* OUT */ 8222 case 0xe7: 8223 case 0xee: 8224 case 0xef: 8225 case 0x6c: /* INS */ 8226 case 0x6d: 8227 case 0x6e: /* OUTS */ 8228 case 0x6f: 8229 return true; 8230 } 8231 break; 8232 case 2: 8233 switch (ctxt->b) { 8234 case 0x33: /* RDPMC */ 8235 return true; 8236 } 8237 break; 8238 } 8239 8240 return false; 8241 } 8242 8243 /* 8244 * Decode to be emulated instruction. Return EMULATION_OK if success. 8245 */ 8246 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8247 void *insn, int insn_len) 8248 { 8249 int r = EMULATION_OK; 8250 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8251 8252 init_emulate_ctxt(vcpu); 8253 8254 /* 8255 * We will reenter on the same instruction since we do not set 8256 * complete_userspace_io. This does not handle watchpoints yet, 8257 * those would be handled in the emulate_ops. 8258 */ 8259 if (!(emulation_type & EMULTYPE_SKIP) && 8260 kvm_vcpu_check_breakpoint(vcpu, &r)) 8261 return r; 8262 8263 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8264 8265 trace_kvm_emulate_insn_start(vcpu); 8266 ++vcpu->stat.insn_emulation; 8267 8268 return r; 8269 } 8270 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8271 8272 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8273 int emulation_type, void *insn, int insn_len) 8274 { 8275 int r; 8276 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8277 bool writeback = true; 8278 bool write_fault_to_spt; 8279 8280 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8281 return 1; 8282 8283 vcpu->arch.l1tf_flush_l1d = true; 8284 8285 /* 8286 * Clear write_fault_to_shadow_pgtable here to ensure it is 8287 * never reused. 8288 */ 8289 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8290 vcpu->arch.write_fault_to_shadow_pgtable = false; 8291 8292 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8293 kvm_clear_exception_queue(vcpu); 8294 8295 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8296 insn, insn_len); 8297 if (r != EMULATION_OK) { 8298 if ((emulation_type & EMULTYPE_TRAP_UD) || 8299 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8300 kvm_queue_exception(vcpu, UD_VECTOR); 8301 return 1; 8302 } 8303 if (reexecute_instruction(vcpu, cr2_or_gpa, 8304 write_fault_to_spt, 8305 emulation_type)) 8306 return 1; 8307 if (ctxt->have_exception) { 8308 /* 8309 * #UD should result in just EMULATION_FAILED, and trap-like 8310 * exception should not be encountered during decode. 8311 */ 8312 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8313 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8314 inject_emulated_exception(vcpu); 8315 return 1; 8316 } 8317 return handle_emulation_failure(vcpu, emulation_type); 8318 } 8319 } 8320 8321 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8322 !is_vmware_backdoor_opcode(ctxt)) { 8323 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8324 return 1; 8325 } 8326 8327 /* 8328 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8329 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8330 * The caller is responsible for updating interruptibility state and 8331 * injecting single-step #DBs. 8332 */ 8333 if (emulation_type & EMULTYPE_SKIP) { 8334 if (ctxt->mode != X86EMUL_MODE_PROT64) 8335 ctxt->eip = (u32)ctxt->_eip; 8336 else 8337 ctxt->eip = ctxt->_eip; 8338 8339 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8340 r = 1; 8341 goto writeback; 8342 } 8343 8344 kvm_rip_write(vcpu, ctxt->eip); 8345 if (ctxt->eflags & X86_EFLAGS_RF) 8346 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8347 return 1; 8348 } 8349 8350 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8351 return 1; 8352 8353 /* this is needed for vmware backdoor interface to work since it 8354 changes registers values during IO operation */ 8355 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8356 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8357 emulator_invalidate_register_cache(ctxt); 8358 } 8359 8360 restart: 8361 if (emulation_type & EMULTYPE_PF) { 8362 /* Save the faulting GPA (cr2) in the address field */ 8363 ctxt->exception.address = cr2_or_gpa; 8364 8365 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8366 if (vcpu->arch.mmu->direct_map) { 8367 ctxt->gpa_available = true; 8368 ctxt->gpa_val = cr2_or_gpa; 8369 } 8370 } else { 8371 /* Sanitize the address out of an abundance of paranoia. */ 8372 ctxt->exception.address = 0; 8373 } 8374 8375 r = x86_emulate_insn(ctxt); 8376 8377 if (r == EMULATION_INTERCEPTED) 8378 return 1; 8379 8380 if (r == EMULATION_FAILED) { 8381 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8382 emulation_type)) 8383 return 1; 8384 8385 return handle_emulation_failure(vcpu, emulation_type); 8386 } 8387 8388 if (ctxt->have_exception) { 8389 r = 1; 8390 if (inject_emulated_exception(vcpu)) 8391 return r; 8392 } else if (vcpu->arch.pio.count) { 8393 if (!vcpu->arch.pio.in) { 8394 /* FIXME: return into emulator if single-stepping. */ 8395 vcpu->arch.pio.count = 0; 8396 } else { 8397 writeback = false; 8398 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8399 } 8400 r = 0; 8401 } else if (vcpu->mmio_needed) { 8402 ++vcpu->stat.mmio_exits; 8403 8404 if (!vcpu->mmio_is_write) 8405 writeback = false; 8406 r = 0; 8407 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8408 } else if (vcpu->arch.complete_userspace_io) { 8409 writeback = false; 8410 r = 0; 8411 } else if (r == EMULATION_RESTART) 8412 goto restart; 8413 else 8414 r = 1; 8415 8416 writeback: 8417 if (writeback) { 8418 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8419 toggle_interruptibility(vcpu, ctxt->interruptibility); 8420 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8421 if (!ctxt->have_exception || 8422 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8423 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8424 if (ctxt->is_branch) 8425 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8426 kvm_rip_write(vcpu, ctxt->eip); 8427 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8428 r = kvm_vcpu_do_singlestep(vcpu); 8429 if (kvm_x86_ops.update_emulated_instruction) 8430 static_call(kvm_x86_update_emulated_instruction)(vcpu); 8431 __kvm_set_rflags(vcpu, ctxt->eflags); 8432 } 8433 8434 /* 8435 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8436 * do nothing, and it will be requested again as soon as 8437 * the shadow expires. But we still need to check here, 8438 * because POPF has no interrupt shadow. 8439 */ 8440 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8441 kvm_make_request(KVM_REQ_EVENT, vcpu); 8442 } else 8443 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8444 8445 return r; 8446 } 8447 8448 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8449 { 8450 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8451 } 8452 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8453 8454 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8455 void *insn, int insn_len) 8456 { 8457 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8458 } 8459 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8460 8461 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8462 { 8463 vcpu->arch.pio.count = 0; 8464 return 1; 8465 } 8466 8467 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8468 { 8469 vcpu->arch.pio.count = 0; 8470 8471 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8472 return 1; 8473 8474 return kvm_skip_emulated_instruction(vcpu); 8475 } 8476 8477 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8478 unsigned short port) 8479 { 8480 unsigned long val = kvm_rax_read(vcpu); 8481 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8482 8483 if (ret) 8484 return ret; 8485 8486 /* 8487 * Workaround userspace that relies on old KVM behavior of %rip being 8488 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8489 */ 8490 if (port == 0x7e && 8491 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8492 vcpu->arch.complete_userspace_io = 8493 complete_fast_pio_out_port_0x7e; 8494 kvm_skip_emulated_instruction(vcpu); 8495 } else { 8496 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8497 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8498 } 8499 return 0; 8500 } 8501 8502 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8503 { 8504 unsigned long val; 8505 8506 /* We should only ever be called with arch.pio.count equal to 1 */ 8507 BUG_ON(vcpu->arch.pio.count != 1); 8508 8509 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8510 vcpu->arch.pio.count = 0; 8511 return 1; 8512 } 8513 8514 /* For size less than 4 we merge, else we zero extend */ 8515 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8516 8517 /* 8518 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 8519 * the copy and tracing 8520 */ 8521 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 8522 kvm_rax_write(vcpu, val); 8523 8524 return kvm_skip_emulated_instruction(vcpu); 8525 } 8526 8527 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 8528 unsigned short port) 8529 { 8530 unsigned long val; 8531 int ret; 8532 8533 /* For size less than 4 we merge, else we zero extend */ 8534 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 8535 8536 ret = emulator_pio_in(vcpu, size, port, &val, 1); 8537 if (ret) { 8538 kvm_rax_write(vcpu, val); 8539 return ret; 8540 } 8541 8542 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8543 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 8544 8545 return 0; 8546 } 8547 8548 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 8549 { 8550 int ret; 8551 8552 if (in) 8553 ret = kvm_fast_pio_in(vcpu, size, port); 8554 else 8555 ret = kvm_fast_pio_out(vcpu, size, port); 8556 return ret && kvm_skip_emulated_instruction(vcpu); 8557 } 8558 EXPORT_SYMBOL_GPL(kvm_fast_pio); 8559 8560 static int kvmclock_cpu_down_prep(unsigned int cpu) 8561 { 8562 __this_cpu_write(cpu_tsc_khz, 0); 8563 return 0; 8564 } 8565 8566 static void tsc_khz_changed(void *data) 8567 { 8568 struct cpufreq_freqs *freq = data; 8569 unsigned long khz = 0; 8570 8571 if (data) 8572 khz = freq->new; 8573 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8574 khz = cpufreq_quick_get(raw_smp_processor_id()); 8575 if (!khz) 8576 khz = tsc_khz; 8577 __this_cpu_write(cpu_tsc_khz, khz); 8578 } 8579 8580 #ifdef CONFIG_X86_64 8581 static void kvm_hyperv_tsc_notifier(void) 8582 { 8583 struct kvm *kvm; 8584 int cpu; 8585 8586 mutex_lock(&kvm_lock); 8587 list_for_each_entry(kvm, &vm_list, vm_list) 8588 kvm_make_mclock_inprogress_request(kvm); 8589 8590 /* no guest entries from this point */ 8591 hyperv_stop_tsc_emulation(); 8592 8593 /* TSC frequency always matches when on Hyper-V */ 8594 for_each_present_cpu(cpu) 8595 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 8596 kvm_max_guest_tsc_khz = tsc_khz; 8597 8598 list_for_each_entry(kvm, &vm_list, vm_list) { 8599 __kvm_start_pvclock_update(kvm); 8600 pvclock_update_vm_gtod_copy(kvm); 8601 kvm_end_pvclock_update(kvm); 8602 } 8603 8604 mutex_unlock(&kvm_lock); 8605 } 8606 #endif 8607 8608 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 8609 { 8610 struct kvm *kvm; 8611 struct kvm_vcpu *vcpu; 8612 int send_ipi = 0; 8613 unsigned long i; 8614 8615 /* 8616 * We allow guests to temporarily run on slowing clocks, 8617 * provided we notify them after, or to run on accelerating 8618 * clocks, provided we notify them before. Thus time never 8619 * goes backwards. 8620 * 8621 * However, we have a problem. We can't atomically update 8622 * the frequency of a given CPU from this function; it is 8623 * merely a notifier, which can be called from any CPU. 8624 * Changing the TSC frequency at arbitrary points in time 8625 * requires a recomputation of local variables related to 8626 * the TSC for each VCPU. We must flag these local variables 8627 * to be updated and be sure the update takes place with the 8628 * new frequency before any guests proceed. 8629 * 8630 * Unfortunately, the combination of hotplug CPU and frequency 8631 * change creates an intractable locking scenario; the order 8632 * of when these callouts happen is undefined with respect to 8633 * CPU hotplug, and they can race with each other. As such, 8634 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 8635 * undefined; you can actually have a CPU frequency change take 8636 * place in between the computation of X and the setting of the 8637 * variable. To protect against this problem, all updates of 8638 * the per_cpu tsc_khz variable are done in an interrupt 8639 * protected IPI, and all callers wishing to update the value 8640 * must wait for a synchronous IPI to complete (which is trivial 8641 * if the caller is on the CPU already). This establishes the 8642 * necessary total order on variable updates. 8643 * 8644 * Note that because a guest time update may take place 8645 * anytime after the setting of the VCPU's request bit, the 8646 * correct TSC value must be set before the request. However, 8647 * to ensure the update actually makes it to any guest which 8648 * starts running in hardware virtualization between the set 8649 * and the acquisition of the spinlock, we must also ping the 8650 * CPU after setting the request bit. 8651 * 8652 */ 8653 8654 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8655 8656 mutex_lock(&kvm_lock); 8657 list_for_each_entry(kvm, &vm_list, vm_list) { 8658 kvm_for_each_vcpu(i, vcpu, kvm) { 8659 if (vcpu->cpu != cpu) 8660 continue; 8661 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8662 if (vcpu->cpu != raw_smp_processor_id()) 8663 send_ipi = 1; 8664 } 8665 } 8666 mutex_unlock(&kvm_lock); 8667 8668 if (freq->old < freq->new && send_ipi) { 8669 /* 8670 * We upscale the frequency. Must make the guest 8671 * doesn't see old kvmclock values while running with 8672 * the new frequency, otherwise we risk the guest sees 8673 * time go backwards. 8674 * 8675 * In case we update the frequency for another cpu 8676 * (which might be in guest context) send an interrupt 8677 * to kick the cpu out of guest context. Next time 8678 * guest context is entered kvmclock will be updated, 8679 * so the guest will not see stale values. 8680 */ 8681 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8682 } 8683 } 8684 8685 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 8686 void *data) 8687 { 8688 struct cpufreq_freqs *freq = data; 8689 int cpu; 8690 8691 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 8692 return 0; 8693 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 8694 return 0; 8695 8696 for_each_cpu(cpu, freq->policy->cpus) 8697 __kvmclock_cpufreq_notifier(freq, cpu); 8698 8699 return 0; 8700 } 8701 8702 static struct notifier_block kvmclock_cpufreq_notifier_block = { 8703 .notifier_call = kvmclock_cpufreq_notifier 8704 }; 8705 8706 static int kvmclock_cpu_online(unsigned int cpu) 8707 { 8708 tsc_khz_changed(NULL); 8709 return 0; 8710 } 8711 8712 static void kvm_timer_init(void) 8713 { 8714 max_tsc_khz = tsc_khz; 8715 8716 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 8717 #ifdef CONFIG_CPU_FREQ 8718 struct cpufreq_policy *policy; 8719 int cpu; 8720 8721 cpu = get_cpu(); 8722 policy = cpufreq_cpu_get(cpu); 8723 if (policy) { 8724 if (policy->cpuinfo.max_freq) 8725 max_tsc_khz = policy->cpuinfo.max_freq; 8726 cpufreq_cpu_put(policy); 8727 } 8728 put_cpu(); 8729 #endif 8730 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 8731 CPUFREQ_TRANSITION_NOTIFIER); 8732 } 8733 8734 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 8735 kvmclock_cpu_online, kvmclock_cpu_down_prep); 8736 } 8737 8738 #ifdef CONFIG_X86_64 8739 static void pvclock_gtod_update_fn(struct work_struct *work) 8740 { 8741 struct kvm *kvm; 8742 struct kvm_vcpu *vcpu; 8743 unsigned long i; 8744 8745 mutex_lock(&kvm_lock); 8746 list_for_each_entry(kvm, &vm_list, vm_list) 8747 kvm_for_each_vcpu(i, vcpu, kvm) 8748 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 8749 atomic_set(&kvm_guest_has_master_clock, 0); 8750 mutex_unlock(&kvm_lock); 8751 } 8752 8753 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 8754 8755 /* 8756 * Indirection to move queue_work() out of the tk_core.seq write held 8757 * region to prevent possible deadlocks against time accessors which 8758 * are invoked with work related locks held. 8759 */ 8760 static void pvclock_irq_work_fn(struct irq_work *w) 8761 { 8762 queue_work(system_long_wq, &pvclock_gtod_work); 8763 } 8764 8765 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 8766 8767 /* 8768 * Notification about pvclock gtod data update. 8769 */ 8770 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 8771 void *priv) 8772 { 8773 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 8774 struct timekeeper *tk = priv; 8775 8776 update_pvclock_gtod(tk); 8777 8778 /* 8779 * Disable master clock if host does not trust, or does not use, 8780 * TSC based clocksource. Delegate queue_work() to irq_work as 8781 * this is invoked with tk_core.seq write held. 8782 */ 8783 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 8784 atomic_read(&kvm_guest_has_master_clock) != 0) 8785 irq_work_queue(&pvclock_irq_work); 8786 return 0; 8787 } 8788 8789 static struct notifier_block pvclock_gtod_notifier = { 8790 .notifier_call = pvclock_gtod_notify, 8791 }; 8792 #endif 8793 8794 int kvm_arch_init(void *opaque) 8795 { 8796 struct kvm_x86_init_ops *ops = opaque; 8797 int r; 8798 8799 if (kvm_x86_ops.hardware_enable) { 8800 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 8801 r = -EEXIST; 8802 goto out; 8803 } 8804 8805 if (!ops->cpu_has_kvm_support()) { 8806 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 8807 ops->runtime_ops->name); 8808 r = -EOPNOTSUPP; 8809 goto out; 8810 } 8811 if (ops->disabled_by_bios()) { 8812 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 8813 ops->runtime_ops->name); 8814 r = -EOPNOTSUPP; 8815 goto out; 8816 } 8817 8818 /* 8819 * KVM explicitly assumes that the guest has an FPU and 8820 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 8821 * vCPU's FPU state as a fxregs_state struct. 8822 */ 8823 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 8824 printk(KERN_ERR "kvm: inadequate fpu\n"); 8825 r = -EOPNOTSUPP; 8826 goto out; 8827 } 8828 8829 r = -ENOMEM; 8830 8831 x86_emulator_cache = kvm_alloc_emulator_cache(); 8832 if (!x86_emulator_cache) { 8833 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 8834 goto out; 8835 } 8836 8837 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 8838 if (!user_return_msrs) { 8839 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 8840 goto out_free_x86_emulator_cache; 8841 } 8842 kvm_nr_uret_msrs = 0; 8843 8844 r = kvm_mmu_module_init(); 8845 if (r) 8846 goto out_free_percpu; 8847 8848 kvm_timer_init(); 8849 8850 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 8851 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 8852 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 8853 } 8854 8855 if (pi_inject_timer == -1) 8856 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 8857 #ifdef CONFIG_X86_64 8858 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 8859 8860 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8861 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 8862 #endif 8863 8864 return 0; 8865 8866 out_free_percpu: 8867 free_percpu(user_return_msrs); 8868 out_free_x86_emulator_cache: 8869 kmem_cache_destroy(x86_emulator_cache); 8870 out: 8871 return r; 8872 } 8873 8874 void kvm_arch_exit(void) 8875 { 8876 #ifdef CONFIG_X86_64 8877 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8878 clear_hv_tscchange_cb(); 8879 #endif 8880 kvm_lapic_exit(); 8881 8882 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8883 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 8884 CPUFREQ_TRANSITION_NOTIFIER); 8885 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 8886 #ifdef CONFIG_X86_64 8887 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 8888 irq_work_sync(&pvclock_irq_work); 8889 cancel_work_sync(&pvclock_gtod_work); 8890 #endif 8891 kvm_x86_ops.hardware_enable = NULL; 8892 kvm_mmu_module_exit(); 8893 free_percpu(user_return_msrs); 8894 kmem_cache_destroy(x86_emulator_cache); 8895 #ifdef CONFIG_KVM_XEN 8896 static_key_deferred_flush(&kvm_xen_enabled); 8897 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 8898 #endif 8899 } 8900 8901 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 8902 { 8903 /* 8904 * The vCPU has halted, e.g. executed HLT. Update the run state if the 8905 * local APIC is in-kernel, the run loop will detect the non-runnable 8906 * state and halt the vCPU. Exit to userspace if the local APIC is 8907 * managed by userspace, in which case userspace is responsible for 8908 * handling wake events. 8909 */ 8910 ++vcpu->stat.halt_exits; 8911 if (lapic_in_kernel(vcpu)) { 8912 vcpu->arch.mp_state = state; 8913 return 1; 8914 } else { 8915 vcpu->run->exit_reason = reason; 8916 return 0; 8917 } 8918 } 8919 8920 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 8921 { 8922 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 8923 } 8924 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 8925 8926 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 8927 { 8928 int ret = kvm_skip_emulated_instruction(vcpu); 8929 /* 8930 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 8931 * KVM_EXIT_DEBUG here. 8932 */ 8933 return kvm_emulate_halt_noskip(vcpu) && ret; 8934 } 8935 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 8936 8937 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 8938 { 8939 int ret = kvm_skip_emulated_instruction(vcpu); 8940 8941 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 8942 KVM_EXIT_AP_RESET_HOLD) && ret; 8943 } 8944 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 8945 8946 #ifdef CONFIG_X86_64 8947 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 8948 unsigned long clock_type) 8949 { 8950 struct kvm_clock_pairing clock_pairing; 8951 struct timespec64 ts; 8952 u64 cycle; 8953 int ret; 8954 8955 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 8956 return -KVM_EOPNOTSUPP; 8957 8958 /* 8959 * When tsc is in permanent catchup mode guests won't be able to use 8960 * pvclock_read_retry loop to get consistent view of pvclock 8961 */ 8962 if (vcpu->arch.tsc_always_catchup) 8963 return -KVM_EOPNOTSUPP; 8964 8965 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 8966 return -KVM_EOPNOTSUPP; 8967 8968 clock_pairing.sec = ts.tv_sec; 8969 clock_pairing.nsec = ts.tv_nsec; 8970 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 8971 clock_pairing.flags = 0; 8972 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 8973 8974 ret = 0; 8975 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 8976 sizeof(struct kvm_clock_pairing))) 8977 ret = -KVM_EFAULT; 8978 8979 return ret; 8980 } 8981 #endif 8982 8983 /* 8984 * kvm_pv_kick_cpu_op: Kick a vcpu. 8985 * 8986 * @apicid - apicid of vcpu to be kicked. 8987 */ 8988 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 8989 { 8990 struct kvm_lapic_irq lapic_irq; 8991 8992 lapic_irq.shorthand = APIC_DEST_NOSHORT; 8993 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 8994 lapic_irq.level = 0; 8995 lapic_irq.dest_id = apicid; 8996 lapic_irq.msi_redir_hint = false; 8997 8998 lapic_irq.delivery_mode = APIC_DM_REMRD; 8999 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9000 } 9001 9002 bool kvm_apicv_activated(struct kvm *kvm) 9003 { 9004 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9005 } 9006 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9007 9008 static void kvm_apicv_init(struct kvm *kvm) 9009 { 9010 init_rwsem(&kvm->arch.apicv_update_lock); 9011 9012 set_bit(APICV_INHIBIT_REASON_ABSENT, 9013 &kvm->arch.apicv_inhibit_reasons); 9014 if (!enable_apicv) 9015 set_bit(APICV_INHIBIT_REASON_DISABLE, 9016 &kvm->arch.apicv_inhibit_reasons); 9017 } 9018 9019 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9020 { 9021 struct kvm_vcpu *target = NULL; 9022 struct kvm_apic_map *map; 9023 9024 vcpu->stat.directed_yield_attempted++; 9025 9026 if (single_task_running()) 9027 goto no_yield; 9028 9029 rcu_read_lock(); 9030 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9031 9032 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9033 target = map->phys_map[dest_id]->vcpu; 9034 9035 rcu_read_unlock(); 9036 9037 if (!target || !READ_ONCE(target->ready)) 9038 goto no_yield; 9039 9040 /* Ignore requests to yield to self */ 9041 if (vcpu == target) 9042 goto no_yield; 9043 9044 if (kvm_vcpu_yield_to(target) <= 0) 9045 goto no_yield; 9046 9047 vcpu->stat.directed_yield_successful++; 9048 9049 no_yield: 9050 return; 9051 } 9052 9053 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9054 { 9055 u64 ret = vcpu->run->hypercall.ret; 9056 9057 if (!is_64_bit_mode(vcpu)) 9058 ret = (u32)ret; 9059 kvm_rax_write(vcpu, ret); 9060 ++vcpu->stat.hypercalls; 9061 return kvm_skip_emulated_instruction(vcpu); 9062 } 9063 9064 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9065 { 9066 unsigned long nr, a0, a1, a2, a3, ret; 9067 int op_64_bit; 9068 9069 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9070 return kvm_xen_hypercall(vcpu); 9071 9072 if (kvm_hv_hypercall_enabled(vcpu)) 9073 return kvm_hv_hypercall(vcpu); 9074 9075 nr = kvm_rax_read(vcpu); 9076 a0 = kvm_rbx_read(vcpu); 9077 a1 = kvm_rcx_read(vcpu); 9078 a2 = kvm_rdx_read(vcpu); 9079 a3 = kvm_rsi_read(vcpu); 9080 9081 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9082 9083 op_64_bit = is_64_bit_hypercall(vcpu); 9084 if (!op_64_bit) { 9085 nr &= 0xFFFFFFFF; 9086 a0 &= 0xFFFFFFFF; 9087 a1 &= 0xFFFFFFFF; 9088 a2 &= 0xFFFFFFFF; 9089 a3 &= 0xFFFFFFFF; 9090 } 9091 9092 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9093 ret = -KVM_EPERM; 9094 goto out; 9095 } 9096 9097 ret = -KVM_ENOSYS; 9098 9099 switch (nr) { 9100 case KVM_HC_VAPIC_POLL_IRQ: 9101 ret = 0; 9102 break; 9103 case KVM_HC_KICK_CPU: 9104 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9105 break; 9106 9107 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 9108 kvm_sched_yield(vcpu, a1); 9109 ret = 0; 9110 break; 9111 #ifdef CONFIG_X86_64 9112 case KVM_HC_CLOCK_PAIRING: 9113 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9114 break; 9115 #endif 9116 case KVM_HC_SEND_IPI: 9117 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9118 break; 9119 9120 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9121 break; 9122 case KVM_HC_SCHED_YIELD: 9123 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9124 break; 9125 9126 kvm_sched_yield(vcpu, a0); 9127 ret = 0; 9128 break; 9129 case KVM_HC_MAP_GPA_RANGE: { 9130 u64 gpa = a0, npages = a1, attrs = a2; 9131 9132 ret = -KVM_ENOSYS; 9133 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9134 break; 9135 9136 if (!PAGE_ALIGNED(gpa) || !npages || 9137 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9138 ret = -KVM_EINVAL; 9139 break; 9140 } 9141 9142 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9143 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9144 vcpu->run->hypercall.args[0] = gpa; 9145 vcpu->run->hypercall.args[1] = npages; 9146 vcpu->run->hypercall.args[2] = attrs; 9147 vcpu->run->hypercall.longmode = op_64_bit; 9148 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9149 return 0; 9150 } 9151 default: 9152 ret = -KVM_ENOSYS; 9153 break; 9154 } 9155 out: 9156 if (!op_64_bit) 9157 ret = (u32)ret; 9158 kvm_rax_write(vcpu, ret); 9159 9160 ++vcpu->stat.hypercalls; 9161 return kvm_skip_emulated_instruction(vcpu); 9162 } 9163 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9164 9165 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9166 { 9167 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9168 char instruction[3]; 9169 unsigned long rip = kvm_rip_read(vcpu); 9170 9171 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9172 9173 return emulator_write_emulated(ctxt, rip, instruction, 3, 9174 &ctxt->exception); 9175 } 9176 9177 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9178 { 9179 return vcpu->run->request_interrupt_window && 9180 likely(!pic_in_kernel(vcpu->kvm)); 9181 } 9182 9183 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9184 { 9185 struct kvm_run *kvm_run = vcpu->run; 9186 9187 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9188 kvm_run->cr8 = kvm_get_cr8(vcpu); 9189 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9190 9191 /* 9192 * The call to kvm_ready_for_interrupt_injection() may end up in 9193 * kvm_xen_has_interrupt() which may require the srcu lock to be 9194 * held, to protect against changes in the vcpu_info address. 9195 */ 9196 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9197 kvm_run->ready_for_interrupt_injection = 9198 pic_in_kernel(vcpu->kvm) || 9199 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9200 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 9201 9202 if (is_smm(vcpu)) 9203 kvm_run->flags |= KVM_RUN_X86_SMM; 9204 } 9205 9206 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9207 { 9208 int max_irr, tpr; 9209 9210 if (!kvm_x86_ops.update_cr8_intercept) 9211 return; 9212 9213 if (!lapic_in_kernel(vcpu)) 9214 return; 9215 9216 if (vcpu->arch.apicv_active) 9217 return; 9218 9219 if (!vcpu->arch.apic->vapic_addr) 9220 max_irr = kvm_lapic_find_highest_irr(vcpu); 9221 else 9222 max_irr = -1; 9223 9224 if (max_irr != -1) 9225 max_irr >>= 4; 9226 9227 tpr = kvm_lapic_get_cr8(vcpu); 9228 9229 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9230 } 9231 9232 9233 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9234 { 9235 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9236 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9237 return 1; 9238 } 9239 9240 return kvm_x86_ops.nested_ops->check_events(vcpu); 9241 } 9242 9243 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9244 { 9245 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9246 vcpu->arch.exception.error_code = false; 9247 static_call(kvm_x86_queue_exception)(vcpu); 9248 } 9249 9250 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 9251 { 9252 int r; 9253 bool can_inject = true; 9254 9255 /* try to reinject previous events if any */ 9256 9257 if (vcpu->arch.exception.injected) { 9258 kvm_inject_exception(vcpu); 9259 can_inject = false; 9260 } 9261 /* 9262 * Do not inject an NMI or interrupt if there is a pending 9263 * exception. Exceptions and interrupts are recognized at 9264 * instruction boundaries, i.e. the start of an instruction. 9265 * Trap-like exceptions, e.g. #DB, have higher priority than 9266 * NMIs and interrupts, i.e. traps are recognized before an 9267 * NMI/interrupt that's pending on the same instruction. 9268 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 9269 * priority, but are only generated (pended) during instruction 9270 * execution, i.e. a pending fault-like exception means the 9271 * fault occurred on the *previous* instruction and must be 9272 * serviced prior to recognizing any new events in order to 9273 * fully complete the previous instruction. 9274 */ 9275 else if (!vcpu->arch.exception.pending) { 9276 if (vcpu->arch.nmi_injected) { 9277 static_call(kvm_x86_set_nmi)(vcpu); 9278 can_inject = false; 9279 } else if (vcpu->arch.interrupt.injected) { 9280 static_call(kvm_x86_set_irq)(vcpu); 9281 can_inject = false; 9282 } 9283 } 9284 9285 WARN_ON_ONCE(vcpu->arch.exception.injected && 9286 vcpu->arch.exception.pending); 9287 9288 /* 9289 * Call check_nested_events() even if we reinjected a previous event 9290 * in order for caller to determine if it should require immediate-exit 9291 * from L2 to L1 due to pending L1 events which require exit 9292 * from L2 to L1. 9293 */ 9294 if (is_guest_mode(vcpu)) { 9295 r = kvm_check_nested_events(vcpu); 9296 if (r < 0) 9297 goto out; 9298 } 9299 9300 /* try to inject new event if pending */ 9301 if (vcpu->arch.exception.pending) { 9302 trace_kvm_inj_exception(vcpu->arch.exception.nr, 9303 vcpu->arch.exception.has_error_code, 9304 vcpu->arch.exception.error_code); 9305 9306 vcpu->arch.exception.pending = false; 9307 vcpu->arch.exception.injected = true; 9308 9309 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 9310 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9311 X86_EFLAGS_RF); 9312 9313 if (vcpu->arch.exception.nr == DB_VECTOR) { 9314 kvm_deliver_exception_payload(vcpu); 9315 if (vcpu->arch.dr7 & DR7_GD) { 9316 vcpu->arch.dr7 &= ~DR7_GD; 9317 kvm_update_dr7(vcpu); 9318 } 9319 } 9320 9321 kvm_inject_exception(vcpu); 9322 can_inject = false; 9323 } 9324 9325 /* Don't inject interrupts if the user asked to avoid doing so */ 9326 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9327 return 0; 9328 9329 /* 9330 * Finally, inject interrupt events. If an event cannot be injected 9331 * due to architectural conditions (e.g. IF=0) a window-open exit 9332 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9333 * and can architecturally be injected, but we cannot do it right now: 9334 * an interrupt could have arrived just now and we have to inject it 9335 * as a vmexit, or there could already an event in the queue, which is 9336 * indicated by can_inject. In that case we request an immediate exit 9337 * in order to make progress and get back here for another iteration. 9338 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9339 */ 9340 if (vcpu->arch.smi_pending) { 9341 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9342 if (r < 0) 9343 goto out; 9344 if (r) { 9345 vcpu->arch.smi_pending = false; 9346 ++vcpu->arch.smi_count; 9347 enter_smm(vcpu); 9348 can_inject = false; 9349 } else 9350 static_call(kvm_x86_enable_smi_window)(vcpu); 9351 } 9352 9353 if (vcpu->arch.nmi_pending) { 9354 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9355 if (r < 0) 9356 goto out; 9357 if (r) { 9358 --vcpu->arch.nmi_pending; 9359 vcpu->arch.nmi_injected = true; 9360 static_call(kvm_x86_set_nmi)(vcpu); 9361 can_inject = false; 9362 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9363 } 9364 if (vcpu->arch.nmi_pending) 9365 static_call(kvm_x86_enable_nmi_window)(vcpu); 9366 } 9367 9368 if (kvm_cpu_has_injectable_intr(vcpu)) { 9369 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9370 if (r < 0) 9371 goto out; 9372 if (r) { 9373 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 9374 static_call(kvm_x86_set_irq)(vcpu); 9375 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 9376 } 9377 if (kvm_cpu_has_injectable_intr(vcpu)) 9378 static_call(kvm_x86_enable_irq_window)(vcpu); 9379 } 9380 9381 if (is_guest_mode(vcpu) && 9382 kvm_x86_ops.nested_ops->hv_timer_pending && 9383 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 9384 *req_immediate_exit = true; 9385 9386 WARN_ON(vcpu->arch.exception.pending); 9387 return 0; 9388 9389 out: 9390 if (r == -EBUSY) { 9391 *req_immediate_exit = true; 9392 r = 0; 9393 } 9394 return r; 9395 } 9396 9397 static void process_nmi(struct kvm_vcpu *vcpu) 9398 { 9399 unsigned limit = 2; 9400 9401 /* 9402 * x86 is limited to one NMI running, and one NMI pending after it. 9403 * If an NMI is already in progress, limit further NMIs to just one. 9404 * Otherwise, allow two (and we'll inject the first one immediately). 9405 */ 9406 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 9407 limit = 1; 9408 9409 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 9410 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 9411 kvm_make_request(KVM_REQ_EVENT, vcpu); 9412 } 9413 9414 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 9415 { 9416 u32 flags = 0; 9417 flags |= seg->g << 23; 9418 flags |= seg->db << 22; 9419 flags |= seg->l << 21; 9420 flags |= seg->avl << 20; 9421 flags |= seg->present << 15; 9422 flags |= seg->dpl << 13; 9423 flags |= seg->s << 12; 9424 flags |= seg->type << 8; 9425 return flags; 9426 } 9427 9428 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 9429 { 9430 struct kvm_segment seg; 9431 int offset; 9432 9433 kvm_get_segment(vcpu, &seg, n); 9434 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 9435 9436 if (n < 3) 9437 offset = 0x7f84 + n * 12; 9438 else 9439 offset = 0x7f2c + (n - 3) * 12; 9440 9441 put_smstate(u32, buf, offset + 8, seg.base); 9442 put_smstate(u32, buf, offset + 4, seg.limit); 9443 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 9444 } 9445 9446 #ifdef CONFIG_X86_64 9447 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 9448 { 9449 struct kvm_segment seg; 9450 int offset; 9451 u16 flags; 9452 9453 kvm_get_segment(vcpu, &seg, n); 9454 offset = 0x7e00 + n * 16; 9455 9456 flags = enter_smm_get_segment_flags(&seg) >> 8; 9457 put_smstate(u16, buf, offset, seg.selector); 9458 put_smstate(u16, buf, offset + 2, flags); 9459 put_smstate(u32, buf, offset + 4, seg.limit); 9460 put_smstate(u64, buf, offset + 8, seg.base); 9461 } 9462 #endif 9463 9464 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 9465 { 9466 struct desc_ptr dt; 9467 struct kvm_segment seg; 9468 unsigned long val; 9469 int i; 9470 9471 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 9472 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 9473 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 9474 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 9475 9476 for (i = 0; i < 8; i++) 9477 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i)); 9478 9479 kvm_get_dr(vcpu, 6, &val); 9480 put_smstate(u32, buf, 0x7fcc, (u32)val); 9481 kvm_get_dr(vcpu, 7, &val); 9482 put_smstate(u32, buf, 0x7fc8, (u32)val); 9483 9484 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9485 put_smstate(u32, buf, 0x7fc4, seg.selector); 9486 put_smstate(u32, buf, 0x7f64, seg.base); 9487 put_smstate(u32, buf, 0x7f60, seg.limit); 9488 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 9489 9490 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9491 put_smstate(u32, buf, 0x7fc0, seg.selector); 9492 put_smstate(u32, buf, 0x7f80, seg.base); 9493 put_smstate(u32, buf, 0x7f7c, seg.limit); 9494 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 9495 9496 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9497 put_smstate(u32, buf, 0x7f74, dt.address); 9498 put_smstate(u32, buf, 0x7f70, dt.size); 9499 9500 static_call(kvm_x86_get_idt)(vcpu, &dt); 9501 put_smstate(u32, buf, 0x7f58, dt.address); 9502 put_smstate(u32, buf, 0x7f54, dt.size); 9503 9504 for (i = 0; i < 6; i++) 9505 enter_smm_save_seg_32(vcpu, buf, i); 9506 9507 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 9508 9509 /* revision id */ 9510 put_smstate(u32, buf, 0x7efc, 0x00020000); 9511 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 9512 } 9513 9514 #ifdef CONFIG_X86_64 9515 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 9516 { 9517 struct desc_ptr dt; 9518 struct kvm_segment seg; 9519 unsigned long val; 9520 int i; 9521 9522 for (i = 0; i < 16; i++) 9523 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i)); 9524 9525 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 9526 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 9527 9528 kvm_get_dr(vcpu, 6, &val); 9529 put_smstate(u64, buf, 0x7f68, val); 9530 kvm_get_dr(vcpu, 7, &val); 9531 put_smstate(u64, buf, 0x7f60, val); 9532 9533 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 9534 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 9535 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 9536 9537 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 9538 9539 /* revision id */ 9540 put_smstate(u32, buf, 0x7efc, 0x00020064); 9541 9542 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 9543 9544 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9545 put_smstate(u16, buf, 0x7e90, seg.selector); 9546 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 9547 put_smstate(u32, buf, 0x7e94, seg.limit); 9548 put_smstate(u64, buf, 0x7e98, seg.base); 9549 9550 static_call(kvm_x86_get_idt)(vcpu, &dt); 9551 put_smstate(u32, buf, 0x7e84, dt.size); 9552 put_smstate(u64, buf, 0x7e88, dt.address); 9553 9554 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9555 put_smstate(u16, buf, 0x7e70, seg.selector); 9556 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 9557 put_smstate(u32, buf, 0x7e74, seg.limit); 9558 put_smstate(u64, buf, 0x7e78, seg.base); 9559 9560 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9561 put_smstate(u32, buf, 0x7e64, dt.size); 9562 put_smstate(u64, buf, 0x7e68, dt.address); 9563 9564 for (i = 0; i < 6; i++) 9565 enter_smm_save_seg_64(vcpu, buf, i); 9566 } 9567 #endif 9568 9569 static void enter_smm(struct kvm_vcpu *vcpu) 9570 { 9571 struct kvm_segment cs, ds; 9572 struct desc_ptr dt; 9573 unsigned long cr0; 9574 char buf[512]; 9575 9576 memset(buf, 0, 512); 9577 #ifdef CONFIG_X86_64 9578 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9579 enter_smm_save_state_64(vcpu, buf); 9580 else 9581 #endif 9582 enter_smm_save_state_32(vcpu, buf); 9583 9584 /* 9585 * Give enter_smm() a chance to make ISA-specific changes to the vCPU 9586 * state (e.g. leave guest mode) after we've saved the state into the 9587 * SMM state-save area. 9588 */ 9589 static_call(kvm_x86_enter_smm)(vcpu, buf); 9590 9591 kvm_smm_changed(vcpu, true); 9592 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 9593 9594 if (static_call(kvm_x86_get_nmi_mask)(vcpu)) 9595 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 9596 else 9597 static_call(kvm_x86_set_nmi_mask)(vcpu, true); 9598 9599 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 9600 kvm_rip_write(vcpu, 0x8000); 9601 9602 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 9603 static_call(kvm_x86_set_cr0)(vcpu, cr0); 9604 vcpu->arch.cr0 = cr0; 9605 9606 static_call(kvm_x86_set_cr4)(vcpu, 0); 9607 9608 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 9609 dt.address = dt.size = 0; 9610 static_call(kvm_x86_set_idt)(vcpu, &dt); 9611 9612 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 9613 9614 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 9615 cs.base = vcpu->arch.smbase; 9616 9617 ds.selector = 0; 9618 ds.base = 0; 9619 9620 cs.limit = ds.limit = 0xffffffff; 9621 cs.type = ds.type = 0x3; 9622 cs.dpl = ds.dpl = 0; 9623 cs.db = ds.db = 0; 9624 cs.s = ds.s = 1; 9625 cs.l = ds.l = 0; 9626 cs.g = ds.g = 1; 9627 cs.avl = ds.avl = 0; 9628 cs.present = ds.present = 1; 9629 cs.unusable = ds.unusable = 0; 9630 cs.padding = ds.padding = 0; 9631 9632 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9633 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 9634 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 9635 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 9636 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 9637 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 9638 9639 #ifdef CONFIG_X86_64 9640 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9641 static_call(kvm_x86_set_efer)(vcpu, 0); 9642 #endif 9643 9644 kvm_update_cpuid_runtime(vcpu); 9645 kvm_mmu_reset_context(vcpu); 9646 } 9647 9648 static void process_smi(struct kvm_vcpu *vcpu) 9649 { 9650 vcpu->arch.smi_pending = true; 9651 kvm_make_request(KVM_REQ_EVENT, vcpu); 9652 } 9653 9654 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 9655 unsigned long *vcpu_bitmap) 9656 { 9657 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 9658 } 9659 9660 void kvm_make_scan_ioapic_request(struct kvm *kvm) 9661 { 9662 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 9663 } 9664 9665 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 9666 { 9667 bool activate; 9668 9669 if (!lapic_in_kernel(vcpu)) 9670 return; 9671 9672 down_read(&vcpu->kvm->arch.apicv_update_lock); 9673 9674 activate = kvm_apicv_activated(vcpu->kvm); 9675 if (vcpu->arch.apicv_active == activate) 9676 goto out; 9677 9678 vcpu->arch.apicv_active = activate; 9679 kvm_apic_update_apicv(vcpu); 9680 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 9681 9682 /* 9683 * When APICv gets disabled, we may still have injected interrupts 9684 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 9685 * still active when the interrupt got accepted. Make sure 9686 * inject_pending_event() is called to check for that. 9687 */ 9688 if (!vcpu->arch.apicv_active) 9689 kvm_make_request(KVM_REQ_EVENT, vcpu); 9690 9691 out: 9692 up_read(&vcpu->kvm->arch.apicv_update_lock); 9693 } 9694 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 9695 9696 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 9697 { 9698 unsigned long old, new; 9699 9700 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 9701 9702 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 9703 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit)) 9704 return; 9705 9706 old = new = kvm->arch.apicv_inhibit_reasons; 9707 9708 if (activate) 9709 __clear_bit(bit, &new); 9710 else 9711 __set_bit(bit, &new); 9712 9713 if (!!old != !!new) { 9714 trace_kvm_apicv_update_request(activate, bit); 9715 /* 9716 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 9717 * false positives in the sanity check WARN in svm_vcpu_run(). 9718 * This task will wait for all vCPUs to ack the kick IRQ before 9719 * updating apicv_inhibit_reasons, and all other vCPUs will 9720 * block on acquiring apicv_update_lock so that vCPUs can't 9721 * redo svm_vcpu_run() without seeing the new inhibit state. 9722 * 9723 * Note, holding apicv_update_lock and taking it in the read 9724 * side (handling the request) also prevents other vCPUs from 9725 * servicing the request with a stale apicv_inhibit_reasons. 9726 */ 9727 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 9728 kvm->arch.apicv_inhibit_reasons = new; 9729 if (new) { 9730 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 9731 kvm_zap_gfn_range(kvm, gfn, gfn+1); 9732 } 9733 } else 9734 kvm->arch.apicv_inhibit_reasons = new; 9735 } 9736 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update); 9737 9738 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 9739 { 9740 down_write(&kvm->arch.apicv_update_lock); 9741 __kvm_request_apicv_update(kvm, activate, bit); 9742 up_write(&kvm->arch.apicv_update_lock); 9743 } 9744 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 9745 9746 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 9747 { 9748 if (!kvm_apic_present(vcpu)) 9749 return; 9750 9751 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 9752 9753 if (irqchip_split(vcpu->kvm)) 9754 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 9755 else { 9756 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 9757 if (ioapic_in_kernel(vcpu->kvm)) 9758 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 9759 } 9760 9761 if (is_guest_mode(vcpu)) 9762 vcpu->arch.load_eoi_exitmap_pending = true; 9763 else 9764 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 9765 } 9766 9767 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 9768 { 9769 u64 eoi_exit_bitmap[4]; 9770 9771 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 9772 return; 9773 9774 if (to_hv_vcpu(vcpu)) { 9775 bitmap_or((ulong *)eoi_exit_bitmap, 9776 vcpu->arch.ioapic_handled_vectors, 9777 to_hv_synic(vcpu)->vec_bitmap, 256); 9778 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 9779 return; 9780 } 9781 9782 static_call(kvm_x86_load_eoi_exitmap)( 9783 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 9784 } 9785 9786 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 9787 unsigned long start, unsigned long end) 9788 { 9789 unsigned long apic_address; 9790 9791 /* 9792 * The physical address of apic access page is stored in the VMCS. 9793 * Update it when it becomes invalid. 9794 */ 9795 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 9796 if (start <= apic_address && apic_address < end) 9797 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 9798 } 9799 9800 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 9801 { 9802 if (!lapic_in_kernel(vcpu)) 9803 return; 9804 9805 if (!kvm_x86_ops.set_apic_access_page_addr) 9806 return; 9807 9808 static_call(kvm_x86_set_apic_access_page_addr)(vcpu); 9809 } 9810 9811 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 9812 { 9813 smp_send_reschedule(vcpu->cpu); 9814 } 9815 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 9816 9817 /* 9818 * Returns 1 to let vcpu_run() continue the guest execution loop without 9819 * exiting to the userspace. Otherwise, the value will be returned to the 9820 * userspace. 9821 */ 9822 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 9823 { 9824 int r; 9825 bool req_int_win = 9826 dm_request_for_irq_injection(vcpu) && 9827 kvm_cpu_accept_dm_intr(vcpu); 9828 fastpath_t exit_fastpath; 9829 9830 bool req_immediate_exit = false; 9831 9832 /* Forbid vmenter if vcpu dirty ring is soft-full */ 9833 if (unlikely(vcpu->kvm->dirty_ring_size && 9834 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 9835 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 9836 trace_kvm_dirty_ring_exit(vcpu); 9837 r = 0; 9838 goto out; 9839 } 9840 9841 if (kvm_request_pending(vcpu)) { 9842 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 9843 r = -EIO; 9844 goto out; 9845 } 9846 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 9847 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 9848 r = 0; 9849 goto out; 9850 } 9851 } 9852 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 9853 kvm_mmu_unload(vcpu); 9854 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 9855 __kvm_migrate_timers(vcpu); 9856 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 9857 kvm_update_masterclock(vcpu->kvm); 9858 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 9859 kvm_gen_kvmclock_update(vcpu); 9860 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 9861 r = kvm_guest_time_update(vcpu); 9862 if (unlikely(r)) 9863 goto out; 9864 } 9865 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 9866 kvm_mmu_sync_roots(vcpu); 9867 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 9868 kvm_mmu_load_pgd(vcpu); 9869 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 9870 kvm_vcpu_flush_tlb_all(vcpu); 9871 9872 /* Flushing all ASIDs flushes the current ASID... */ 9873 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 9874 } 9875 kvm_service_local_tlb_flush_requests(vcpu); 9876 9877 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 9878 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 9879 r = 0; 9880 goto out; 9881 } 9882 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9883 if (is_guest_mode(vcpu)) { 9884 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9885 } else { 9886 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 9887 vcpu->mmio_needed = 0; 9888 r = 0; 9889 goto out; 9890 } 9891 } 9892 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 9893 /* Page is swapped out. Do synthetic halt */ 9894 vcpu->arch.apf.halted = true; 9895 r = 1; 9896 goto out; 9897 } 9898 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 9899 record_steal_time(vcpu); 9900 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 9901 process_smi(vcpu); 9902 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 9903 process_nmi(vcpu); 9904 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 9905 kvm_pmu_handle_event(vcpu); 9906 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 9907 kvm_pmu_deliver_pmi(vcpu); 9908 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 9909 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 9910 if (test_bit(vcpu->arch.pending_ioapic_eoi, 9911 vcpu->arch.ioapic_handled_vectors)) { 9912 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 9913 vcpu->run->eoi.vector = 9914 vcpu->arch.pending_ioapic_eoi; 9915 r = 0; 9916 goto out; 9917 } 9918 } 9919 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 9920 vcpu_scan_ioapic(vcpu); 9921 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 9922 vcpu_load_eoi_exitmap(vcpu); 9923 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 9924 kvm_vcpu_reload_apic_access_page(vcpu); 9925 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 9926 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 9927 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 9928 r = 0; 9929 goto out; 9930 } 9931 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 9932 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 9933 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 9934 r = 0; 9935 goto out; 9936 } 9937 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 9938 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 9939 9940 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 9941 vcpu->run->hyperv = hv_vcpu->exit; 9942 r = 0; 9943 goto out; 9944 } 9945 9946 /* 9947 * KVM_REQ_HV_STIMER has to be processed after 9948 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 9949 * depend on the guest clock being up-to-date 9950 */ 9951 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 9952 kvm_hv_process_stimers(vcpu); 9953 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 9954 kvm_vcpu_update_apicv(vcpu); 9955 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 9956 kvm_check_async_pf_completion(vcpu); 9957 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 9958 static_call(kvm_x86_msr_filter_changed)(vcpu); 9959 9960 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 9961 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 9962 } 9963 9964 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 9965 kvm_xen_has_interrupt(vcpu)) { 9966 ++vcpu->stat.req_event; 9967 r = kvm_apic_accept_events(vcpu); 9968 if (r < 0) { 9969 r = 0; 9970 goto out; 9971 } 9972 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 9973 r = 1; 9974 goto out; 9975 } 9976 9977 r = inject_pending_event(vcpu, &req_immediate_exit); 9978 if (r < 0) { 9979 r = 0; 9980 goto out; 9981 } 9982 if (req_int_win) 9983 static_call(kvm_x86_enable_irq_window)(vcpu); 9984 9985 if (kvm_lapic_enabled(vcpu)) { 9986 update_cr8_intercept(vcpu); 9987 kvm_lapic_sync_to_vapic(vcpu); 9988 } 9989 } 9990 9991 r = kvm_mmu_reload(vcpu); 9992 if (unlikely(r)) { 9993 goto cancel_injection; 9994 } 9995 9996 preempt_disable(); 9997 9998 static_call(kvm_x86_prepare_guest_switch)(vcpu); 9999 10000 /* 10001 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10002 * IPI are then delayed after guest entry, which ensures that they 10003 * result in virtual interrupt delivery. 10004 */ 10005 local_irq_disable(); 10006 10007 /* Store vcpu->apicv_active before vcpu->mode. */ 10008 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10009 10010 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 10011 10012 /* 10013 * 1) We should set ->mode before checking ->requests. Please see 10014 * the comment in kvm_vcpu_exiting_guest_mode(). 10015 * 10016 * 2) For APICv, we should set ->mode before checking PID.ON. This 10017 * pairs with the memory barrier implicit in pi_test_and_set_on 10018 * (see vmx_deliver_posted_interrupt). 10019 * 10020 * 3) This also orders the write to mode from any reads to the page 10021 * tables done while the VCPU is running. Please see the comment 10022 * in kvm_flush_remote_tlbs. 10023 */ 10024 smp_mb__after_srcu_read_unlock(); 10025 10026 /* 10027 * Process pending posted interrupts to handle the case where the 10028 * notification IRQ arrived in the host, or was never sent (because the 10029 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10030 * status, KVM doesn't update assigned devices when APICv is inhibited, 10031 * i.e. they can post interrupts even if APICv is temporarily disabled. 10032 */ 10033 if (kvm_lapic_enabled(vcpu)) 10034 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10035 10036 if (kvm_vcpu_exit_request(vcpu)) { 10037 vcpu->mode = OUTSIDE_GUEST_MODE; 10038 smp_wmb(); 10039 local_irq_enable(); 10040 preempt_enable(); 10041 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 10042 r = 1; 10043 goto cancel_injection; 10044 } 10045 10046 if (req_immediate_exit) { 10047 kvm_make_request(KVM_REQ_EVENT, vcpu); 10048 static_call(kvm_x86_request_immediate_exit)(vcpu); 10049 } 10050 10051 fpregs_assert_state_consistent(); 10052 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10053 switch_fpu_return(); 10054 10055 if (vcpu->arch.guest_fpu.xfd_err) 10056 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10057 10058 if (unlikely(vcpu->arch.switch_db_regs)) { 10059 set_debugreg(0, 7); 10060 set_debugreg(vcpu->arch.eff_db[0], 0); 10061 set_debugreg(vcpu->arch.eff_db[1], 1); 10062 set_debugreg(vcpu->arch.eff_db[2], 2); 10063 set_debugreg(vcpu->arch.eff_db[3], 3); 10064 } else if (unlikely(hw_breakpoint_active())) { 10065 set_debugreg(0, 7); 10066 } 10067 10068 guest_timing_enter_irqoff(); 10069 10070 for (;;) { 10071 /* 10072 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10073 * update must kick and wait for all vCPUs before toggling the 10074 * per-VM state, and responsing vCPUs must wait for the update 10075 * to complete before servicing KVM_REQ_APICV_UPDATE. 10076 */ 10077 WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu)); 10078 10079 exit_fastpath = static_call(kvm_x86_run)(vcpu); 10080 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10081 break; 10082 10083 if (kvm_lapic_enabled(vcpu)) 10084 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10085 10086 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10087 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10088 break; 10089 } 10090 } 10091 10092 /* 10093 * Do this here before restoring debug registers on the host. And 10094 * since we do this before handling the vmexit, a DR access vmexit 10095 * can (a) read the correct value of the debug registers, (b) set 10096 * KVM_DEBUGREG_WONT_EXIT again. 10097 */ 10098 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10099 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10100 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10101 kvm_update_dr0123(vcpu); 10102 kvm_update_dr7(vcpu); 10103 } 10104 10105 /* 10106 * If the guest has used debug registers, at least dr7 10107 * will be disabled while returning to the host. 10108 * If we don't have active breakpoints in the host, we don't 10109 * care about the messed up debug address registers. But if 10110 * we have some of them active, restore the old state. 10111 */ 10112 if (hw_breakpoint_active()) 10113 hw_breakpoint_restore(); 10114 10115 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10116 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10117 10118 vcpu->mode = OUTSIDE_GUEST_MODE; 10119 smp_wmb(); 10120 10121 /* 10122 * Sync xfd before calling handle_exit_irqoff() which may 10123 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10124 * in #NM irqoff handler). 10125 */ 10126 if (vcpu->arch.xfd_no_write_intercept) 10127 fpu_sync_guest_vmexit_xfd_state(); 10128 10129 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10130 10131 if (vcpu->arch.guest_fpu.xfd_err) 10132 wrmsrl(MSR_IA32_XFD_ERR, 0); 10133 10134 /* 10135 * Consume any pending interrupts, including the possible source of 10136 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10137 * An instruction is required after local_irq_enable() to fully unblock 10138 * interrupts on processors that implement an interrupt shadow, the 10139 * stat.exits increment will do nicely. 10140 */ 10141 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10142 local_irq_enable(); 10143 ++vcpu->stat.exits; 10144 local_irq_disable(); 10145 kvm_after_interrupt(vcpu); 10146 10147 /* 10148 * Wait until after servicing IRQs to account guest time so that any 10149 * ticks that occurred while running the guest are properly accounted 10150 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10151 * of accounting via context tracking, but the loss of accuracy is 10152 * acceptable for all known use cases. 10153 */ 10154 guest_timing_exit_irqoff(); 10155 10156 if (lapic_in_kernel(vcpu)) { 10157 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 10158 if (delta != S64_MIN) { 10159 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 10160 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 10161 } 10162 } 10163 10164 local_irq_enable(); 10165 preempt_enable(); 10166 10167 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 10168 10169 /* 10170 * Profile KVM exit RIPs: 10171 */ 10172 if (unlikely(prof_on == KVM_PROFILING)) { 10173 unsigned long rip = kvm_rip_read(vcpu); 10174 profile_hit(KVM_PROFILING, (void *)rip); 10175 } 10176 10177 if (unlikely(vcpu->arch.tsc_always_catchup)) 10178 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10179 10180 if (vcpu->arch.apic_attention) 10181 kvm_lapic_sync_from_vapic(vcpu); 10182 10183 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10184 return r; 10185 10186 cancel_injection: 10187 if (req_immediate_exit) 10188 kvm_make_request(KVM_REQ_EVENT, vcpu); 10189 static_call(kvm_x86_cancel_injection)(vcpu); 10190 if (unlikely(vcpu->arch.apic_attention)) 10191 kvm_lapic_sync_from_vapic(vcpu); 10192 out: 10193 return r; 10194 } 10195 10196 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 10197 { 10198 bool hv_timer; 10199 10200 if (!kvm_arch_vcpu_runnable(vcpu)) { 10201 /* 10202 * Switch to the software timer before halt-polling/blocking as 10203 * the guest's timer may be a break event for the vCPU, and the 10204 * hypervisor timer runs only when the CPU is in guest mode. 10205 * Switch before halt-polling so that KVM recognizes an expired 10206 * timer before blocking. 10207 */ 10208 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10209 if (hv_timer) 10210 kvm_lapic_switch_to_sw_timer(vcpu); 10211 10212 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 10213 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10214 kvm_vcpu_halt(vcpu); 10215 else 10216 kvm_vcpu_block(vcpu); 10217 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 10218 10219 if (hv_timer) 10220 kvm_lapic_switch_to_hv_timer(vcpu); 10221 10222 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 10223 return 1; 10224 } 10225 10226 if (kvm_apic_accept_events(vcpu) < 0) 10227 return 0; 10228 switch(vcpu->arch.mp_state) { 10229 case KVM_MP_STATE_HALTED: 10230 case KVM_MP_STATE_AP_RESET_HOLD: 10231 vcpu->arch.pv.pv_unhalted = false; 10232 vcpu->arch.mp_state = 10233 KVM_MP_STATE_RUNNABLE; 10234 fallthrough; 10235 case KVM_MP_STATE_RUNNABLE: 10236 vcpu->arch.apf.halted = false; 10237 break; 10238 case KVM_MP_STATE_INIT_RECEIVED: 10239 break; 10240 default: 10241 return -EINTR; 10242 } 10243 return 1; 10244 } 10245 10246 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10247 { 10248 if (is_guest_mode(vcpu)) 10249 kvm_check_nested_events(vcpu); 10250 10251 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10252 !vcpu->arch.apf.halted); 10253 } 10254 10255 static int vcpu_run(struct kvm_vcpu *vcpu) 10256 { 10257 int r; 10258 struct kvm *kvm = vcpu->kvm; 10259 10260 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 10261 vcpu->arch.l1tf_flush_l1d = true; 10262 10263 for (;;) { 10264 if (kvm_vcpu_running(vcpu)) { 10265 r = vcpu_enter_guest(vcpu); 10266 } else { 10267 r = vcpu_block(kvm, vcpu); 10268 } 10269 10270 if (r <= 0) 10271 break; 10272 10273 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10274 if (kvm_cpu_has_pending_timer(vcpu)) 10275 kvm_inject_pending_timer_irqs(vcpu); 10276 10277 if (dm_request_for_irq_injection(vcpu) && 10278 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10279 r = 0; 10280 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10281 ++vcpu->stat.request_irq_exits; 10282 break; 10283 } 10284 10285 if (__xfer_to_guest_mode_work_pending()) { 10286 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 10287 r = xfer_to_guest_mode_handle_work(vcpu); 10288 if (r) 10289 return r; 10290 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 10291 } 10292 } 10293 10294 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 10295 10296 return r; 10297 } 10298 10299 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10300 { 10301 int r; 10302 10303 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 10304 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10305 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 10306 return r; 10307 } 10308 10309 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10310 { 10311 BUG_ON(!vcpu->arch.pio.count); 10312 10313 return complete_emulated_io(vcpu); 10314 } 10315 10316 /* 10317 * Implements the following, as a state machine: 10318 * 10319 * read: 10320 * for each fragment 10321 * for each mmio piece in the fragment 10322 * write gpa, len 10323 * exit 10324 * copy data 10325 * execute insn 10326 * 10327 * write: 10328 * for each fragment 10329 * for each mmio piece in the fragment 10330 * write gpa, len 10331 * copy data 10332 * exit 10333 */ 10334 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10335 { 10336 struct kvm_run *run = vcpu->run; 10337 struct kvm_mmio_fragment *frag; 10338 unsigned len; 10339 10340 BUG_ON(!vcpu->mmio_needed); 10341 10342 /* Complete previous fragment */ 10343 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10344 len = min(8u, frag->len); 10345 if (!vcpu->mmio_is_write) 10346 memcpy(frag->data, run->mmio.data, len); 10347 10348 if (frag->len <= 8) { 10349 /* Switch to the next fragment. */ 10350 frag++; 10351 vcpu->mmio_cur_fragment++; 10352 } else { 10353 /* Go forward to the next mmio piece. */ 10354 frag->data += len; 10355 frag->gpa += len; 10356 frag->len -= len; 10357 } 10358 10359 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10360 vcpu->mmio_needed = 0; 10361 10362 /* FIXME: return into emulator if single-stepping. */ 10363 if (vcpu->mmio_is_write) 10364 return 1; 10365 vcpu->mmio_read_completed = 1; 10366 return complete_emulated_io(vcpu); 10367 } 10368 10369 run->exit_reason = KVM_EXIT_MMIO; 10370 run->mmio.phys_addr = frag->gpa; 10371 if (vcpu->mmio_is_write) 10372 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10373 run->mmio.len = min(8u, frag->len); 10374 run->mmio.is_write = vcpu->mmio_is_write; 10375 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10376 return 0; 10377 } 10378 10379 /* Swap (qemu) user FPU context for the guest FPU context. */ 10380 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10381 { 10382 /* 10383 * Exclude PKRU from restore as restored separately in 10384 * kvm_x86_ops.run(). 10385 */ 10386 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10387 trace_kvm_fpu(1); 10388 } 10389 10390 /* When vcpu_run ends, restore user space FPU context. */ 10391 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10392 { 10393 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10394 ++vcpu->stat.fpu_reload; 10395 trace_kvm_fpu(0); 10396 } 10397 10398 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10399 { 10400 struct kvm_run *kvm_run = vcpu->run; 10401 int r; 10402 10403 vcpu_load(vcpu); 10404 kvm_sigset_activate(vcpu); 10405 kvm_run->flags = 0; 10406 kvm_load_guest_fpu(vcpu); 10407 10408 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10409 if (kvm_run->immediate_exit) { 10410 r = -EINTR; 10411 goto out; 10412 } 10413 /* 10414 * It should be impossible for the hypervisor timer to be in 10415 * use before KVM has ever run the vCPU. 10416 */ 10417 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10418 kvm_vcpu_block(vcpu); 10419 if (kvm_apic_accept_events(vcpu) < 0) { 10420 r = 0; 10421 goto out; 10422 } 10423 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 10424 r = -EAGAIN; 10425 if (signal_pending(current)) { 10426 r = -EINTR; 10427 kvm_run->exit_reason = KVM_EXIT_INTR; 10428 ++vcpu->stat.signal_exits; 10429 } 10430 goto out; 10431 } 10432 10433 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10434 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10435 r = -EINVAL; 10436 goto out; 10437 } 10438 10439 if (kvm_run->kvm_dirty_regs) { 10440 r = sync_regs(vcpu); 10441 if (r != 0) 10442 goto out; 10443 } 10444 10445 /* re-sync apic's tpr */ 10446 if (!lapic_in_kernel(vcpu)) { 10447 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10448 r = -EINVAL; 10449 goto out; 10450 } 10451 } 10452 10453 if (unlikely(vcpu->arch.complete_userspace_io)) { 10454 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 10455 vcpu->arch.complete_userspace_io = NULL; 10456 r = cui(vcpu); 10457 if (r <= 0) 10458 goto out; 10459 } else 10460 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 10461 10462 if (kvm_run->immediate_exit) { 10463 r = -EINTR; 10464 goto out; 10465 } 10466 10467 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 10468 if (r <= 0) 10469 goto out; 10470 10471 r = vcpu_run(vcpu); 10472 10473 out: 10474 kvm_put_guest_fpu(vcpu); 10475 if (kvm_run->kvm_valid_regs) 10476 store_regs(vcpu); 10477 post_kvm_run_save(vcpu); 10478 kvm_sigset_deactivate(vcpu); 10479 10480 vcpu_put(vcpu); 10481 return r; 10482 } 10483 10484 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10485 { 10486 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10487 /* 10488 * We are here if userspace calls get_regs() in the middle of 10489 * instruction emulation. Registers state needs to be copied 10490 * back from emulation context to vcpu. Userspace shouldn't do 10491 * that usually, but some bad designed PV devices (vmware 10492 * backdoor interface) need this to work 10493 */ 10494 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10495 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10496 } 10497 regs->rax = kvm_rax_read(vcpu); 10498 regs->rbx = kvm_rbx_read(vcpu); 10499 regs->rcx = kvm_rcx_read(vcpu); 10500 regs->rdx = kvm_rdx_read(vcpu); 10501 regs->rsi = kvm_rsi_read(vcpu); 10502 regs->rdi = kvm_rdi_read(vcpu); 10503 regs->rsp = kvm_rsp_read(vcpu); 10504 regs->rbp = kvm_rbp_read(vcpu); 10505 #ifdef CONFIG_X86_64 10506 regs->r8 = kvm_r8_read(vcpu); 10507 regs->r9 = kvm_r9_read(vcpu); 10508 regs->r10 = kvm_r10_read(vcpu); 10509 regs->r11 = kvm_r11_read(vcpu); 10510 regs->r12 = kvm_r12_read(vcpu); 10511 regs->r13 = kvm_r13_read(vcpu); 10512 regs->r14 = kvm_r14_read(vcpu); 10513 regs->r15 = kvm_r15_read(vcpu); 10514 #endif 10515 10516 regs->rip = kvm_rip_read(vcpu); 10517 regs->rflags = kvm_get_rflags(vcpu); 10518 } 10519 10520 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10521 { 10522 vcpu_load(vcpu); 10523 __get_regs(vcpu, regs); 10524 vcpu_put(vcpu); 10525 return 0; 10526 } 10527 10528 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10529 { 10530 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10531 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10532 10533 kvm_rax_write(vcpu, regs->rax); 10534 kvm_rbx_write(vcpu, regs->rbx); 10535 kvm_rcx_write(vcpu, regs->rcx); 10536 kvm_rdx_write(vcpu, regs->rdx); 10537 kvm_rsi_write(vcpu, regs->rsi); 10538 kvm_rdi_write(vcpu, regs->rdi); 10539 kvm_rsp_write(vcpu, regs->rsp); 10540 kvm_rbp_write(vcpu, regs->rbp); 10541 #ifdef CONFIG_X86_64 10542 kvm_r8_write(vcpu, regs->r8); 10543 kvm_r9_write(vcpu, regs->r9); 10544 kvm_r10_write(vcpu, regs->r10); 10545 kvm_r11_write(vcpu, regs->r11); 10546 kvm_r12_write(vcpu, regs->r12); 10547 kvm_r13_write(vcpu, regs->r13); 10548 kvm_r14_write(vcpu, regs->r14); 10549 kvm_r15_write(vcpu, regs->r15); 10550 #endif 10551 10552 kvm_rip_write(vcpu, regs->rip); 10553 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 10554 10555 vcpu->arch.exception.pending = false; 10556 10557 kvm_make_request(KVM_REQ_EVENT, vcpu); 10558 } 10559 10560 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10561 { 10562 vcpu_load(vcpu); 10563 __set_regs(vcpu, regs); 10564 vcpu_put(vcpu); 10565 return 0; 10566 } 10567 10568 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 10569 { 10570 struct kvm_segment cs; 10571 10572 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 10573 *db = cs.db; 10574 *l = cs.l; 10575 } 10576 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 10577 10578 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10579 { 10580 struct desc_ptr dt; 10581 10582 if (vcpu->arch.guest_state_protected) 10583 goto skip_protected_regs; 10584 10585 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10586 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10587 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10588 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10589 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10590 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10591 10592 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10593 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10594 10595 static_call(kvm_x86_get_idt)(vcpu, &dt); 10596 sregs->idt.limit = dt.size; 10597 sregs->idt.base = dt.address; 10598 static_call(kvm_x86_get_gdt)(vcpu, &dt); 10599 sregs->gdt.limit = dt.size; 10600 sregs->gdt.base = dt.address; 10601 10602 sregs->cr2 = vcpu->arch.cr2; 10603 sregs->cr3 = kvm_read_cr3(vcpu); 10604 10605 skip_protected_regs: 10606 sregs->cr0 = kvm_read_cr0(vcpu); 10607 sregs->cr4 = kvm_read_cr4(vcpu); 10608 sregs->cr8 = kvm_get_cr8(vcpu); 10609 sregs->efer = vcpu->arch.efer; 10610 sregs->apic_base = kvm_get_apic_base(vcpu); 10611 } 10612 10613 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10614 { 10615 __get_sregs_common(vcpu, sregs); 10616 10617 if (vcpu->arch.guest_state_protected) 10618 return; 10619 10620 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 10621 set_bit(vcpu->arch.interrupt.nr, 10622 (unsigned long *)sregs->interrupt_bitmap); 10623 } 10624 10625 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 10626 { 10627 int i; 10628 10629 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 10630 10631 if (vcpu->arch.guest_state_protected) 10632 return; 10633 10634 if (is_pae_paging(vcpu)) { 10635 for (i = 0 ; i < 4 ; i++) 10636 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 10637 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 10638 } 10639 } 10640 10641 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 10642 struct kvm_sregs *sregs) 10643 { 10644 vcpu_load(vcpu); 10645 __get_sregs(vcpu, sregs); 10646 vcpu_put(vcpu); 10647 return 0; 10648 } 10649 10650 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 10651 struct kvm_mp_state *mp_state) 10652 { 10653 int r; 10654 10655 vcpu_load(vcpu); 10656 if (kvm_mpx_supported()) 10657 kvm_load_guest_fpu(vcpu); 10658 10659 r = kvm_apic_accept_events(vcpu); 10660 if (r < 0) 10661 goto out; 10662 r = 0; 10663 10664 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 10665 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 10666 vcpu->arch.pv.pv_unhalted) 10667 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 10668 else 10669 mp_state->mp_state = vcpu->arch.mp_state; 10670 10671 out: 10672 if (kvm_mpx_supported()) 10673 kvm_put_guest_fpu(vcpu); 10674 vcpu_put(vcpu); 10675 return r; 10676 } 10677 10678 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 10679 struct kvm_mp_state *mp_state) 10680 { 10681 int ret = -EINVAL; 10682 10683 vcpu_load(vcpu); 10684 10685 if (!lapic_in_kernel(vcpu) && 10686 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 10687 goto out; 10688 10689 /* 10690 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 10691 * INIT state; latched init should be reported using 10692 * KVM_SET_VCPU_EVENTS, so reject it here. 10693 */ 10694 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 10695 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 10696 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 10697 goto out; 10698 10699 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 10700 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 10701 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 10702 } else 10703 vcpu->arch.mp_state = mp_state->mp_state; 10704 kvm_make_request(KVM_REQ_EVENT, vcpu); 10705 10706 ret = 0; 10707 out: 10708 vcpu_put(vcpu); 10709 return ret; 10710 } 10711 10712 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 10713 int reason, bool has_error_code, u32 error_code) 10714 { 10715 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 10716 int ret; 10717 10718 init_emulate_ctxt(vcpu); 10719 10720 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 10721 has_error_code, error_code); 10722 if (ret) { 10723 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 10724 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 10725 vcpu->run->internal.ndata = 0; 10726 return 0; 10727 } 10728 10729 kvm_rip_write(vcpu, ctxt->eip); 10730 kvm_set_rflags(vcpu, ctxt->eflags); 10731 return 1; 10732 } 10733 EXPORT_SYMBOL_GPL(kvm_task_switch); 10734 10735 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10736 { 10737 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 10738 /* 10739 * When EFER.LME and CR0.PG are set, the processor is in 10740 * 64-bit mode (though maybe in a 32-bit code segment). 10741 * CR4.PAE and EFER.LMA must be set. 10742 */ 10743 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 10744 return false; 10745 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 10746 return false; 10747 } else { 10748 /* 10749 * Not in 64-bit mode: EFER.LMA is clear and the code 10750 * segment cannot be 64-bit. 10751 */ 10752 if (sregs->efer & EFER_LMA || sregs->cs.l) 10753 return false; 10754 } 10755 10756 return kvm_is_valid_cr4(vcpu, sregs->cr4); 10757 } 10758 10759 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 10760 int *mmu_reset_needed, bool update_pdptrs) 10761 { 10762 struct msr_data apic_base_msr; 10763 int idx; 10764 struct desc_ptr dt; 10765 10766 if (!kvm_is_valid_sregs(vcpu, sregs)) 10767 return -EINVAL; 10768 10769 apic_base_msr.data = sregs->apic_base; 10770 apic_base_msr.host_initiated = true; 10771 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 10772 return -EINVAL; 10773 10774 if (vcpu->arch.guest_state_protected) 10775 return 0; 10776 10777 dt.size = sregs->idt.limit; 10778 dt.address = sregs->idt.base; 10779 static_call(kvm_x86_set_idt)(vcpu, &dt); 10780 dt.size = sregs->gdt.limit; 10781 dt.address = sregs->gdt.base; 10782 static_call(kvm_x86_set_gdt)(vcpu, &dt); 10783 10784 vcpu->arch.cr2 = sregs->cr2; 10785 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 10786 vcpu->arch.cr3 = sregs->cr3; 10787 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 10788 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 10789 10790 kvm_set_cr8(vcpu, sregs->cr8); 10791 10792 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 10793 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 10794 10795 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 10796 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 10797 vcpu->arch.cr0 = sregs->cr0; 10798 10799 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 10800 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 10801 10802 if (update_pdptrs) { 10803 idx = srcu_read_lock(&vcpu->kvm->srcu); 10804 if (is_pae_paging(vcpu)) { 10805 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 10806 *mmu_reset_needed = 1; 10807 } 10808 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10809 } 10810 10811 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10812 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10813 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10814 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10815 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10816 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10817 10818 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10819 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10820 10821 update_cr8_intercept(vcpu); 10822 10823 /* Older userspace won't unhalt the vcpu on reset. */ 10824 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 10825 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 10826 !is_protmode(vcpu)) 10827 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10828 10829 return 0; 10830 } 10831 10832 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10833 { 10834 int pending_vec, max_bits; 10835 int mmu_reset_needed = 0; 10836 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 10837 10838 if (ret) 10839 return ret; 10840 10841 if (mmu_reset_needed) 10842 kvm_mmu_reset_context(vcpu); 10843 10844 max_bits = KVM_NR_INTERRUPTS; 10845 pending_vec = find_first_bit( 10846 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 10847 10848 if (pending_vec < max_bits) { 10849 kvm_queue_interrupt(vcpu, pending_vec, false); 10850 pr_debug("Set back pending irq %d\n", pending_vec); 10851 kvm_make_request(KVM_REQ_EVENT, vcpu); 10852 } 10853 return 0; 10854 } 10855 10856 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 10857 { 10858 int mmu_reset_needed = 0; 10859 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 10860 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 10861 !(sregs2->efer & EFER_LMA); 10862 int i, ret; 10863 10864 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 10865 return -EINVAL; 10866 10867 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 10868 return -EINVAL; 10869 10870 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 10871 &mmu_reset_needed, !valid_pdptrs); 10872 if (ret) 10873 return ret; 10874 10875 if (valid_pdptrs) { 10876 for (i = 0; i < 4 ; i++) 10877 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 10878 10879 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 10880 mmu_reset_needed = 1; 10881 vcpu->arch.pdptrs_from_userspace = true; 10882 } 10883 if (mmu_reset_needed) 10884 kvm_mmu_reset_context(vcpu); 10885 return 0; 10886 } 10887 10888 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 10889 struct kvm_sregs *sregs) 10890 { 10891 int ret; 10892 10893 vcpu_load(vcpu); 10894 ret = __set_sregs(vcpu, sregs); 10895 vcpu_put(vcpu); 10896 return ret; 10897 } 10898 10899 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 10900 { 10901 bool inhibit = false; 10902 struct kvm_vcpu *vcpu; 10903 unsigned long i; 10904 10905 down_write(&kvm->arch.apicv_update_lock); 10906 10907 kvm_for_each_vcpu(i, vcpu, kvm) { 10908 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 10909 inhibit = true; 10910 break; 10911 } 10912 } 10913 __kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ); 10914 up_write(&kvm->arch.apicv_update_lock); 10915 } 10916 10917 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 10918 struct kvm_guest_debug *dbg) 10919 { 10920 unsigned long rflags; 10921 int i, r; 10922 10923 if (vcpu->arch.guest_state_protected) 10924 return -EINVAL; 10925 10926 vcpu_load(vcpu); 10927 10928 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 10929 r = -EBUSY; 10930 if (vcpu->arch.exception.pending) 10931 goto out; 10932 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 10933 kvm_queue_exception(vcpu, DB_VECTOR); 10934 else 10935 kvm_queue_exception(vcpu, BP_VECTOR); 10936 } 10937 10938 /* 10939 * Read rflags as long as potentially injected trace flags are still 10940 * filtered out. 10941 */ 10942 rflags = kvm_get_rflags(vcpu); 10943 10944 vcpu->guest_debug = dbg->control; 10945 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 10946 vcpu->guest_debug = 0; 10947 10948 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 10949 for (i = 0; i < KVM_NR_DB_REGS; ++i) 10950 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 10951 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 10952 } else { 10953 for (i = 0; i < KVM_NR_DB_REGS; i++) 10954 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 10955 } 10956 kvm_update_dr7(vcpu); 10957 10958 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10959 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 10960 10961 /* 10962 * Trigger an rflags update that will inject or remove the trace 10963 * flags. 10964 */ 10965 kvm_set_rflags(vcpu, rflags); 10966 10967 static_call(kvm_x86_update_exception_bitmap)(vcpu); 10968 10969 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 10970 10971 r = 0; 10972 10973 out: 10974 vcpu_put(vcpu); 10975 return r; 10976 } 10977 10978 /* 10979 * Translate a guest virtual address to a guest physical address. 10980 */ 10981 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 10982 struct kvm_translation *tr) 10983 { 10984 unsigned long vaddr = tr->linear_address; 10985 gpa_t gpa; 10986 int idx; 10987 10988 vcpu_load(vcpu); 10989 10990 idx = srcu_read_lock(&vcpu->kvm->srcu); 10991 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 10992 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10993 tr->physical_address = gpa; 10994 tr->valid = gpa != UNMAPPED_GVA; 10995 tr->writeable = 1; 10996 tr->usermode = 0; 10997 10998 vcpu_put(vcpu); 10999 return 0; 11000 } 11001 11002 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11003 { 11004 struct fxregs_state *fxsave; 11005 11006 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11007 return 0; 11008 11009 vcpu_load(vcpu); 11010 11011 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11012 memcpy(fpu->fpr, fxsave->st_space, 128); 11013 fpu->fcw = fxsave->cwd; 11014 fpu->fsw = fxsave->swd; 11015 fpu->ftwx = fxsave->twd; 11016 fpu->last_opcode = fxsave->fop; 11017 fpu->last_ip = fxsave->rip; 11018 fpu->last_dp = fxsave->rdp; 11019 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11020 11021 vcpu_put(vcpu); 11022 return 0; 11023 } 11024 11025 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11026 { 11027 struct fxregs_state *fxsave; 11028 11029 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11030 return 0; 11031 11032 vcpu_load(vcpu); 11033 11034 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11035 11036 memcpy(fxsave->st_space, fpu->fpr, 128); 11037 fxsave->cwd = fpu->fcw; 11038 fxsave->swd = fpu->fsw; 11039 fxsave->twd = fpu->ftwx; 11040 fxsave->fop = fpu->last_opcode; 11041 fxsave->rip = fpu->last_ip; 11042 fxsave->rdp = fpu->last_dp; 11043 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11044 11045 vcpu_put(vcpu); 11046 return 0; 11047 } 11048 11049 static void store_regs(struct kvm_vcpu *vcpu) 11050 { 11051 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11052 11053 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11054 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11055 11056 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11057 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11058 11059 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11060 kvm_vcpu_ioctl_x86_get_vcpu_events( 11061 vcpu, &vcpu->run->s.regs.events); 11062 } 11063 11064 static int sync_regs(struct kvm_vcpu *vcpu) 11065 { 11066 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11067 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11068 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11069 } 11070 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11071 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11072 return -EINVAL; 11073 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11074 } 11075 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11076 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11077 vcpu, &vcpu->run->s.regs.events)) 11078 return -EINVAL; 11079 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11080 } 11081 11082 return 0; 11083 } 11084 11085 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11086 { 11087 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 11088 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11089 "guest TSC will not be reliable\n"); 11090 11091 return 0; 11092 } 11093 11094 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11095 { 11096 struct page *page; 11097 int r; 11098 11099 vcpu->arch.last_vmentry_cpu = -1; 11100 vcpu->arch.regs_avail = ~0; 11101 vcpu->arch.regs_dirty = ~0; 11102 11103 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11104 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11105 else 11106 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11107 11108 r = kvm_mmu_create(vcpu); 11109 if (r < 0) 11110 return r; 11111 11112 if (irqchip_in_kernel(vcpu->kvm)) { 11113 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11114 if (r < 0) 11115 goto fail_mmu_destroy; 11116 if (kvm_apicv_activated(vcpu->kvm)) 11117 vcpu->arch.apicv_active = true; 11118 } else 11119 static_branch_inc(&kvm_has_noapic_vcpu); 11120 11121 r = -ENOMEM; 11122 11123 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11124 if (!page) 11125 goto fail_free_lapic; 11126 vcpu->arch.pio_data = page_address(page); 11127 11128 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 11129 GFP_KERNEL_ACCOUNT); 11130 if (!vcpu->arch.mce_banks) 11131 goto fail_free_pio_data; 11132 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11133 11134 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11135 GFP_KERNEL_ACCOUNT)) 11136 goto fail_free_mce_banks; 11137 11138 if (!alloc_emulate_ctxt(vcpu)) 11139 goto free_wbinvd_dirty_mask; 11140 11141 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11142 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11143 goto free_emulate_ctxt; 11144 } 11145 11146 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11147 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11148 11149 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11150 11151 kvm_async_pf_hash_reset(vcpu); 11152 kvm_pmu_init(vcpu); 11153 11154 vcpu->arch.pending_external_vector = -1; 11155 vcpu->arch.preempted_in_kernel = false; 11156 11157 #if IS_ENABLED(CONFIG_HYPERV) 11158 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11159 #endif 11160 11161 r = static_call(kvm_x86_vcpu_create)(vcpu); 11162 if (r) 11163 goto free_guest_fpu; 11164 11165 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11166 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11167 kvm_vcpu_mtrr_init(vcpu); 11168 vcpu_load(vcpu); 11169 kvm_set_tsc_khz(vcpu, max_tsc_khz); 11170 kvm_vcpu_reset(vcpu, false); 11171 kvm_init_mmu(vcpu); 11172 vcpu_put(vcpu); 11173 return 0; 11174 11175 free_guest_fpu: 11176 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11177 free_emulate_ctxt: 11178 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11179 free_wbinvd_dirty_mask: 11180 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11181 fail_free_mce_banks: 11182 kfree(vcpu->arch.mce_banks); 11183 fail_free_pio_data: 11184 free_page((unsigned long)vcpu->arch.pio_data); 11185 fail_free_lapic: 11186 kvm_free_lapic(vcpu); 11187 fail_mmu_destroy: 11188 kvm_mmu_destroy(vcpu); 11189 return r; 11190 } 11191 11192 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11193 { 11194 struct kvm *kvm = vcpu->kvm; 11195 11196 if (mutex_lock_killable(&vcpu->mutex)) 11197 return; 11198 vcpu_load(vcpu); 11199 kvm_synchronize_tsc(vcpu, 0); 11200 vcpu_put(vcpu); 11201 11202 /* poll control enabled by default */ 11203 vcpu->arch.msr_kvm_poll_control = 1; 11204 11205 mutex_unlock(&vcpu->mutex); 11206 11207 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11208 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11209 KVMCLOCK_SYNC_PERIOD); 11210 } 11211 11212 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11213 { 11214 int idx; 11215 11216 kvmclock_reset(vcpu); 11217 11218 static_call(kvm_x86_vcpu_free)(vcpu); 11219 11220 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11221 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11222 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11223 11224 kvm_hv_vcpu_uninit(vcpu); 11225 kvm_pmu_destroy(vcpu); 11226 kfree(vcpu->arch.mce_banks); 11227 kvm_free_lapic(vcpu); 11228 idx = srcu_read_lock(&vcpu->kvm->srcu); 11229 kvm_mmu_destroy(vcpu); 11230 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11231 free_page((unsigned long)vcpu->arch.pio_data); 11232 kvfree(vcpu->arch.cpuid_entries); 11233 if (!lapic_in_kernel(vcpu)) 11234 static_branch_dec(&kvm_has_noapic_vcpu); 11235 } 11236 11237 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11238 { 11239 struct kvm_cpuid_entry2 *cpuid_0x1; 11240 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11241 unsigned long new_cr0; 11242 11243 /* 11244 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11245 * to handle side effects. RESET emulation hits those flows and relies 11246 * on emulated/virtualized registers, including those that are loaded 11247 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11248 * to detect improper or missing initialization. 11249 */ 11250 WARN_ON_ONCE(!init_event && 11251 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11252 11253 kvm_lapic_reset(vcpu, init_event); 11254 11255 vcpu->arch.hflags = 0; 11256 11257 vcpu->arch.smi_pending = 0; 11258 vcpu->arch.smi_count = 0; 11259 atomic_set(&vcpu->arch.nmi_queued, 0); 11260 vcpu->arch.nmi_pending = 0; 11261 vcpu->arch.nmi_injected = false; 11262 kvm_clear_interrupt_queue(vcpu); 11263 kvm_clear_exception_queue(vcpu); 11264 11265 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11266 kvm_update_dr0123(vcpu); 11267 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11268 vcpu->arch.dr7 = DR7_FIXED_1; 11269 kvm_update_dr7(vcpu); 11270 11271 vcpu->arch.cr2 = 0; 11272 11273 kvm_make_request(KVM_REQ_EVENT, vcpu); 11274 vcpu->arch.apf.msr_en_val = 0; 11275 vcpu->arch.apf.msr_int_val = 0; 11276 vcpu->arch.st.msr_val = 0; 11277 11278 kvmclock_reset(vcpu); 11279 11280 kvm_clear_async_pf_completion_queue(vcpu); 11281 kvm_async_pf_hash_reset(vcpu); 11282 vcpu->arch.apf.halted = false; 11283 11284 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11285 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11286 11287 /* 11288 * To avoid have the INIT path from kvm_apic_has_events() that be 11289 * called with loaded FPU and does not let userspace fix the state. 11290 */ 11291 if (init_event) 11292 kvm_put_guest_fpu(vcpu); 11293 11294 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11295 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11296 11297 if (init_event) 11298 kvm_load_guest_fpu(vcpu); 11299 } 11300 11301 if (!init_event) { 11302 kvm_pmu_reset(vcpu); 11303 vcpu->arch.smbase = 0x30000; 11304 11305 vcpu->arch.msr_misc_features_enables = 0; 11306 11307 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11308 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11309 } 11310 11311 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11312 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11313 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11314 11315 /* 11316 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11317 * if no CPUID match is found. Note, it's impossible to get a match at 11318 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11319 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11320 * on RESET. But, go through the motions in case that's ever remedied. 11321 */ 11322 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0); 11323 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11324 11325 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11326 11327 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11328 kvm_rip_write(vcpu, 0xfff0); 11329 11330 vcpu->arch.cr3 = 0; 11331 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11332 11333 /* 11334 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11335 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11336 * (or qualify) that with a footnote stating that CD/NW are preserved. 11337 */ 11338 new_cr0 = X86_CR0_ET; 11339 if (init_event) 11340 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11341 else 11342 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11343 11344 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11345 static_call(kvm_x86_set_cr4)(vcpu, 0); 11346 static_call(kvm_x86_set_efer)(vcpu, 0); 11347 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11348 11349 /* 11350 * Reset the MMU context if paging was enabled prior to INIT (which is 11351 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the 11352 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be 11353 * checked because it is unconditionally cleared on INIT and all other 11354 * paging related bits are ignored if paging is disabled, i.e. CR0.WP, 11355 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'. 11356 */ 11357 if (old_cr0 & X86_CR0_PG) 11358 kvm_mmu_reset_context(vcpu); 11359 11360 /* 11361 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11362 * APM states the TLBs are untouched by INIT, but it also states that 11363 * the TLBs are flushed on "External initialization of the processor." 11364 * Flush the guest TLB regardless of vendor, there is no meaningful 11365 * benefit in relying on the guest to flush the TLB immediately after 11366 * INIT. A spurious TLB flush is benign and likely negligible from a 11367 * performance perspective. 11368 */ 11369 if (init_event) 11370 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11371 } 11372 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11373 11374 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11375 { 11376 struct kvm_segment cs; 11377 11378 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11379 cs.selector = vector << 8; 11380 cs.base = vector << 12; 11381 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11382 kvm_rip_write(vcpu, 0); 11383 } 11384 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11385 11386 int kvm_arch_hardware_enable(void) 11387 { 11388 struct kvm *kvm; 11389 struct kvm_vcpu *vcpu; 11390 unsigned long i; 11391 int ret; 11392 u64 local_tsc; 11393 u64 max_tsc = 0; 11394 bool stable, backwards_tsc = false; 11395 11396 kvm_user_return_msr_cpu_online(); 11397 ret = static_call(kvm_x86_hardware_enable)(); 11398 if (ret != 0) 11399 return ret; 11400 11401 local_tsc = rdtsc(); 11402 stable = !kvm_check_tsc_unstable(); 11403 list_for_each_entry(kvm, &vm_list, vm_list) { 11404 kvm_for_each_vcpu(i, vcpu, kvm) { 11405 if (!stable && vcpu->cpu == smp_processor_id()) 11406 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11407 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 11408 backwards_tsc = true; 11409 if (vcpu->arch.last_host_tsc > max_tsc) 11410 max_tsc = vcpu->arch.last_host_tsc; 11411 } 11412 } 11413 } 11414 11415 /* 11416 * Sometimes, even reliable TSCs go backwards. This happens on 11417 * platforms that reset TSC during suspend or hibernate actions, but 11418 * maintain synchronization. We must compensate. Fortunately, we can 11419 * detect that condition here, which happens early in CPU bringup, 11420 * before any KVM threads can be running. Unfortunately, we can't 11421 * bring the TSCs fully up to date with real time, as we aren't yet far 11422 * enough into CPU bringup that we know how much real time has actually 11423 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 11424 * variables that haven't been updated yet. 11425 * 11426 * So we simply find the maximum observed TSC above, then record the 11427 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 11428 * the adjustment will be applied. Note that we accumulate 11429 * adjustments, in case multiple suspend cycles happen before some VCPU 11430 * gets a chance to run again. In the event that no KVM threads get a 11431 * chance to run, we will miss the entire elapsed period, as we'll have 11432 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 11433 * loose cycle time. This isn't too big a deal, since the loss will be 11434 * uniform across all VCPUs (not to mention the scenario is extremely 11435 * unlikely). It is possible that a second hibernate recovery happens 11436 * much faster than a first, causing the observed TSC here to be 11437 * smaller; this would require additional padding adjustment, which is 11438 * why we set last_host_tsc to the local tsc observed here. 11439 * 11440 * N.B. - this code below runs only on platforms with reliable TSC, 11441 * as that is the only way backwards_tsc is set above. Also note 11442 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 11443 * have the same delta_cyc adjustment applied if backwards_tsc 11444 * is detected. Note further, this adjustment is only done once, 11445 * as we reset last_host_tsc on all VCPUs to stop this from being 11446 * called multiple times (one for each physical CPU bringup). 11447 * 11448 * Platforms with unreliable TSCs don't have to deal with this, they 11449 * will be compensated by the logic in vcpu_load, which sets the TSC to 11450 * catchup mode. This will catchup all VCPUs to real time, but cannot 11451 * guarantee that they stay in perfect synchronization. 11452 */ 11453 if (backwards_tsc) { 11454 u64 delta_cyc = max_tsc - local_tsc; 11455 list_for_each_entry(kvm, &vm_list, vm_list) { 11456 kvm->arch.backwards_tsc_observed = true; 11457 kvm_for_each_vcpu(i, vcpu, kvm) { 11458 vcpu->arch.tsc_offset_adjustment += delta_cyc; 11459 vcpu->arch.last_host_tsc = local_tsc; 11460 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 11461 } 11462 11463 /* 11464 * We have to disable TSC offset matching.. if you were 11465 * booting a VM while issuing an S4 host suspend.... 11466 * you may have some problem. Solving this issue is 11467 * left as an exercise to the reader. 11468 */ 11469 kvm->arch.last_tsc_nsec = 0; 11470 kvm->arch.last_tsc_write = 0; 11471 } 11472 11473 } 11474 return 0; 11475 } 11476 11477 void kvm_arch_hardware_disable(void) 11478 { 11479 static_call(kvm_x86_hardware_disable)(); 11480 drop_user_return_notifiers(); 11481 } 11482 11483 int kvm_arch_hardware_setup(void *opaque) 11484 { 11485 struct kvm_x86_init_ops *ops = opaque; 11486 int r; 11487 11488 rdmsrl_safe(MSR_EFER, &host_efer); 11489 11490 if (boot_cpu_has(X86_FEATURE_XSAVES)) 11491 rdmsrl(MSR_IA32_XSS, host_xss); 11492 11493 r = ops->hardware_setup(); 11494 if (r != 0) 11495 return r; 11496 11497 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 11498 kvm_ops_static_call_update(); 11499 11500 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 11501 11502 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 11503 supported_xss = 0; 11504 11505 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 11506 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 11507 #undef __kvm_cpu_cap_has 11508 11509 if (kvm_has_tsc_control) { 11510 /* 11511 * Make sure the user can only configure tsc_khz values that 11512 * fit into a signed integer. 11513 * A min value is not calculated because it will always 11514 * be 1 on all machines. 11515 */ 11516 u64 max = min(0x7fffffffULL, 11517 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 11518 kvm_max_guest_tsc_khz = max; 11519 11520 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 11521 } 11522 11523 kvm_init_msr_list(); 11524 return 0; 11525 } 11526 11527 void kvm_arch_hardware_unsetup(void) 11528 { 11529 kvm_unregister_perf_callbacks(); 11530 11531 static_call(kvm_x86_hardware_unsetup)(); 11532 } 11533 11534 int kvm_arch_check_processor_compat(void *opaque) 11535 { 11536 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 11537 struct kvm_x86_init_ops *ops = opaque; 11538 11539 WARN_ON(!irqs_disabled()); 11540 11541 if (__cr4_reserved_bits(cpu_has, c) != 11542 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 11543 return -EIO; 11544 11545 return ops->check_processor_compatibility(); 11546 } 11547 11548 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 11549 { 11550 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 11551 } 11552 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 11553 11554 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 11555 { 11556 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 11557 } 11558 11559 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 11560 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 11561 11562 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 11563 { 11564 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 11565 11566 vcpu->arch.l1tf_flush_l1d = true; 11567 if (pmu->version && unlikely(pmu->event_count)) { 11568 pmu->need_cleanup = true; 11569 kvm_make_request(KVM_REQ_PMU, vcpu); 11570 } 11571 static_call(kvm_x86_sched_in)(vcpu, cpu); 11572 } 11573 11574 void kvm_arch_free_vm(struct kvm *kvm) 11575 { 11576 kfree(to_kvm_hv(kvm)->hv_pa_pg); 11577 __kvm_arch_free_vm(kvm); 11578 } 11579 11580 11581 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 11582 { 11583 int ret; 11584 unsigned long flags; 11585 11586 if (type) 11587 return -EINVAL; 11588 11589 ret = kvm_page_track_init(kvm); 11590 if (ret) 11591 return ret; 11592 11593 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 11594 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 11595 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 11596 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 11597 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 11598 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 11599 11600 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 11601 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 11602 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 11603 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 11604 &kvm->arch.irq_sources_bitmap); 11605 11606 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 11607 mutex_init(&kvm->arch.apic_map_lock); 11608 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 11609 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 11610 11611 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 11612 pvclock_update_vm_gtod_copy(kvm); 11613 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 11614 11615 kvm->arch.guest_can_read_msr_platform_info = true; 11616 11617 #if IS_ENABLED(CONFIG_HYPERV) 11618 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 11619 kvm->arch.hv_root_tdp = INVALID_PAGE; 11620 #endif 11621 11622 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 11623 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 11624 11625 kvm_apicv_init(kvm); 11626 kvm_hv_init_vm(kvm); 11627 kvm_mmu_init_vm(kvm); 11628 kvm_xen_init_vm(kvm); 11629 11630 return static_call(kvm_x86_vm_init)(kvm); 11631 } 11632 11633 int kvm_arch_post_init_vm(struct kvm *kvm) 11634 { 11635 return kvm_mmu_post_init_vm(kvm); 11636 } 11637 11638 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 11639 { 11640 vcpu_load(vcpu); 11641 kvm_mmu_unload(vcpu); 11642 vcpu_put(vcpu); 11643 } 11644 11645 static void kvm_free_vcpus(struct kvm *kvm) 11646 { 11647 unsigned long i; 11648 struct kvm_vcpu *vcpu; 11649 11650 /* 11651 * Unpin any mmu pages first. 11652 */ 11653 kvm_for_each_vcpu(i, vcpu, kvm) { 11654 kvm_clear_async_pf_completion_queue(vcpu); 11655 kvm_unload_vcpu_mmu(vcpu); 11656 } 11657 11658 kvm_destroy_vcpus(kvm); 11659 } 11660 11661 void kvm_arch_sync_events(struct kvm *kvm) 11662 { 11663 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 11664 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 11665 kvm_free_pit(kvm); 11666 } 11667 11668 /** 11669 * __x86_set_memory_region: Setup KVM internal memory slot 11670 * 11671 * @kvm: the kvm pointer to the VM. 11672 * @id: the slot ID to setup. 11673 * @gpa: the GPA to install the slot (unused when @size == 0). 11674 * @size: the size of the slot. Set to zero to uninstall a slot. 11675 * 11676 * This function helps to setup a KVM internal memory slot. Specify 11677 * @size > 0 to install a new slot, while @size == 0 to uninstall a 11678 * slot. The return code can be one of the following: 11679 * 11680 * HVA: on success (uninstall will return a bogus HVA) 11681 * -errno: on error 11682 * 11683 * The caller should always use IS_ERR() to check the return value 11684 * before use. Note, the KVM internal memory slots are guaranteed to 11685 * remain valid and unchanged until the VM is destroyed, i.e., the 11686 * GPA->HVA translation will not change. However, the HVA is a user 11687 * address, i.e. its accessibility is not guaranteed, and must be 11688 * accessed via __copy_{to,from}_user(). 11689 */ 11690 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 11691 u32 size) 11692 { 11693 int i, r; 11694 unsigned long hva, old_npages; 11695 struct kvm_memslots *slots = kvm_memslots(kvm); 11696 struct kvm_memory_slot *slot; 11697 11698 /* Called with kvm->slots_lock held. */ 11699 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 11700 return ERR_PTR_USR(-EINVAL); 11701 11702 slot = id_to_memslot(slots, id); 11703 if (size) { 11704 if (slot && slot->npages) 11705 return ERR_PTR_USR(-EEXIST); 11706 11707 /* 11708 * MAP_SHARED to prevent internal slot pages from being moved 11709 * by fork()/COW. 11710 */ 11711 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 11712 MAP_SHARED | MAP_ANONYMOUS, 0); 11713 if (IS_ERR((void *)hva)) 11714 return (void __user *)hva; 11715 } else { 11716 if (!slot || !slot->npages) 11717 return NULL; 11718 11719 old_npages = slot->npages; 11720 hva = slot->userspace_addr; 11721 } 11722 11723 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 11724 struct kvm_userspace_memory_region m; 11725 11726 m.slot = id | (i << 16); 11727 m.flags = 0; 11728 m.guest_phys_addr = gpa; 11729 m.userspace_addr = hva; 11730 m.memory_size = size; 11731 r = __kvm_set_memory_region(kvm, &m); 11732 if (r < 0) 11733 return ERR_PTR_USR(r); 11734 } 11735 11736 if (!size) 11737 vm_munmap(hva, old_npages * PAGE_SIZE); 11738 11739 return (void __user *)hva; 11740 } 11741 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 11742 11743 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 11744 { 11745 kvm_mmu_pre_destroy_vm(kvm); 11746 } 11747 11748 void kvm_arch_destroy_vm(struct kvm *kvm) 11749 { 11750 if (current->mm == kvm->mm) { 11751 /* 11752 * Free memory regions allocated on behalf of userspace, 11753 * unless the the memory map has changed due to process exit 11754 * or fd copying. 11755 */ 11756 mutex_lock(&kvm->slots_lock); 11757 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 11758 0, 0); 11759 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 11760 0, 0); 11761 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 11762 mutex_unlock(&kvm->slots_lock); 11763 } 11764 static_call_cond(kvm_x86_vm_destroy)(kvm); 11765 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 11766 kvm_pic_destroy(kvm); 11767 kvm_ioapic_destroy(kvm); 11768 kvm_free_vcpus(kvm); 11769 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 11770 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 11771 kvm_mmu_uninit_vm(kvm); 11772 kvm_page_track_cleanup(kvm); 11773 kvm_xen_destroy_vm(kvm); 11774 kvm_hv_destroy_vm(kvm); 11775 } 11776 11777 static void memslot_rmap_free(struct kvm_memory_slot *slot) 11778 { 11779 int i; 11780 11781 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 11782 kvfree(slot->arch.rmap[i]); 11783 slot->arch.rmap[i] = NULL; 11784 } 11785 } 11786 11787 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 11788 { 11789 int i; 11790 11791 memslot_rmap_free(slot); 11792 11793 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11794 kvfree(slot->arch.lpage_info[i - 1]); 11795 slot->arch.lpage_info[i - 1] = NULL; 11796 } 11797 11798 kvm_page_track_free_memslot(slot); 11799 } 11800 11801 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 11802 { 11803 const int sz = sizeof(*slot->arch.rmap[0]); 11804 int i; 11805 11806 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 11807 int level = i + 1; 11808 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 11809 11810 if (slot->arch.rmap[i]) 11811 continue; 11812 11813 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 11814 if (!slot->arch.rmap[i]) { 11815 memslot_rmap_free(slot); 11816 return -ENOMEM; 11817 } 11818 } 11819 11820 return 0; 11821 } 11822 11823 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 11824 struct kvm_memory_slot *slot) 11825 { 11826 unsigned long npages = slot->npages; 11827 int i, r; 11828 11829 /* 11830 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 11831 * old arrays will be freed by __kvm_set_memory_region() if installing 11832 * the new memslot is successful. 11833 */ 11834 memset(&slot->arch, 0, sizeof(slot->arch)); 11835 11836 if (kvm_memslots_have_rmaps(kvm)) { 11837 r = memslot_rmap_alloc(slot, npages); 11838 if (r) 11839 return r; 11840 } 11841 11842 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11843 struct kvm_lpage_info *linfo; 11844 unsigned long ugfn; 11845 int lpages; 11846 int level = i + 1; 11847 11848 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 11849 11850 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 11851 if (!linfo) 11852 goto out_free; 11853 11854 slot->arch.lpage_info[i - 1] = linfo; 11855 11856 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 11857 linfo[0].disallow_lpage = 1; 11858 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 11859 linfo[lpages - 1].disallow_lpage = 1; 11860 ugfn = slot->userspace_addr >> PAGE_SHIFT; 11861 /* 11862 * If the gfn and userspace address are not aligned wrt each 11863 * other, disable large page support for this slot. 11864 */ 11865 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 11866 unsigned long j; 11867 11868 for (j = 0; j < lpages; ++j) 11869 linfo[j].disallow_lpage = 1; 11870 } 11871 } 11872 11873 if (kvm_page_track_create_memslot(kvm, slot, npages)) 11874 goto out_free; 11875 11876 return 0; 11877 11878 out_free: 11879 memslot_rmap_free(slot); 11880 11881 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11882 kvfree(slot->arch.lpage_info[i - 1]); 11883 slot->arch.lpage_info[i - 1] = NULL; 11884 } 11885 return -ENOMEM; 11886 } 11887 11888 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 11889 { 11890 struct kvm_vcpu *vcpu; 11891 unsigned long i; 11892 11893 /* 11894 * memslots->generation has been incremented. 11895 * mmio generation may have reached its maximum value. 11896 */ 11897 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 11898 11899 /* Force re-initialization of steal_time cache */ 11900 kvm_for_each_vcpu(i, vcpu, kvm) 11901 kvm_vcpu_kick(vcpu); 11902 } 11903 11904 int kvm_arch_prepare_memory_region(struct kvm *kvm, 11905 const struct kvm_memory_slot *old, 11906 struct kvm_memory_slot *new, 11907 enum kvm_mr_change change) 11908 { 11909 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 11910 return kvm_alloc_memslot_metadata(kvm, new); 11911 11912 if (change == KVM_MR_FLAGS_ONLY) 11913 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 11914 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 11915 return -EIO; 11916 11917 return 0; 11918 } 11919 11920 11921 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 11922 { 11923 struct kvm_arch *ka = &kvm->arch; 11924 11925 if (!kvm_x86_ops.cpu_dirty_log_size) 11926 return; 11927 11928 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 11929 (!enable && --ka->cpu_dirty_logging_count == 0)) 11930 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 11931 11932 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 11933 } 11934 11935 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 11936 struct kvm_memory_slot *old, 11937 const struct kvm_memory_slot *new, 11938 enum kvm_mr_change change) 11939 { 11940 u32 old_flags = old ? old->flags : 0; 11941 u32 new_flags = new ? new->flags : 0; 11942 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 11943 11944 /* 11945 * Update CPU dirty logging if dirty logging is being toggled. This 11946 * applies to all operations. 11947 */ 11948 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 11949 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 11950 11951 /* 11952 * Nothing more to do for RO slots (which can't be dirtied and can't be 11953 * made writable) or CREATE/MOVE/DELETE of a slot. 11954 * 11955 * For a memslot with dirty logging disabled: 11956 * CREATE: No dirty mappings will already exist. 11957 * MOVE/DELETE: The old mappings will already have been cleaned up by 11958 * kvm_arch_flush_shadow_memslot() 11959 * 11960 * For a memslot with dirty logging enabled: 11961 * CREATE: No shadow pages exist, thus nothing to write-protect 11962 * and no dirty bits to clear. 11963 * MOVE/DELETE: The old mappings will already have been cleaned up by 11964 * kvm_arch_flush_shadow_memslot(). 11965 */ 11966 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 11967 return; 11968 11969 /* 11970 * READONLY and non-flags changes were filtered out above, and the only 11971 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 11972 * logging isn't being toggled on or off. 11973 */ 11974 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 11975 return; 11976 11977 if (!log_dirty_pages) { 11978 /* 11979 * Dirty logging tracks sptes in 4k granularity, meaning that 11980 * large sptes have to be split. If live migration succeeds, 11981 * the guest in the source machine will be destroyed and large 11982 * sptes will be created in the destination. However, if the 11983 * guest continues to run in the source machine (for example if 11984 * live migration fails), small sptes will remain around and 11985 * cause bad performance. 11986 * 11987 * Scan sptes if dirty logging has been stopped, dropping those 11988 * which can be collapsed into a single large-page spte. Later 11989 * page faults will create the large-page sptes. 11990 */ 11991 kvm_mmu_zap_collapsible_sptes(kvm, new); 11992 } else { 11993 /* 11994 * Initially-all-set does not require write protecting any page, 11995 * because they're all assumed to be dirty. 11996 */ 11997 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 11998 return; 11999 12000 if (kvm_x86_ops.cpu_dirty_log_size) { 12001 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12002 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12003 } else { 12004 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12005 } 12006 } 12007 } 12008 12009 void kvm_arch_commit_memory_region(struct kvm *kvm, 12010 struct kvm_memory_slot *old, 12011 const struct kvm_memory_slot *new, 12012 enum kvm_mr_change change) 12013 { 12014 if (!kvm->arch.n_requested_mmu_pages && 12015 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12016 unsigned long nr_mmu_pages; 12017 12018 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12019 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12020 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12021 } 12022 12023 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12024 12025 /* Free the arrays associated with the old memslot. */ 12026 if (change == KVM_MR_MOVE) 12027 kvm_arch_free_memslot(kvm, old); 12028 } 12029 12030 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12031 { 12032 kvm_mmu_zap_all(kvm); 12033 } 12034 12035 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12036 struct kvm_memory_slot *slot) 12037 { 12038 kvm_page_track_flush_slot(kvm, slot); 12039 } 12040 12041 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12042 { 12043 return (is_guest_mode(vcpu) && 12044 kvm_x86_ops.guest_apic_has_interrupt && 12045 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12046 } 12047 12048 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12049 { 12050 if (!list_empty_careful(&vcpu->async_pf.done)) 12051 return true; 12052 12053 if (kvm_apic_has_events(vcpu)) 12054 return true; 12055 12056 if (vcpu->arch.pv.pv_unhalted) 12057 return true; 12058 12059 if (vcpu->arch.exception.pending) 12060 return true; 12061 12062 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12063 (vcpu->arch.nmi_pending && 12064 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12065 return true; 12066 12067 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12068 (vcpu->arch.smi_pending && 12069 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12070 return true; 12071 12072 if (kvm_arch_interrupt_allowed(vcpu) && 12073 (kvm_cpu_has_interrupt(vcpu) || 12074 kvm_guest_apic_has_interrupt(vcpu))) 12075 return true; 12076 12077 if (kvm_hv_has_stimer_pending(vcpu)) 12078 return true; 12079 12080 if (is_guest_mode(vcpu) && 12081 kvm_x86_ops.nested_ops->hv_timer_pending && 12082 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 12083 return true; 12084 12085 return false; 12086 } 12087 12088 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12089 { 12090 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12091 } 12092 12093 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12094 { 12095 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12096 return true; 12097 12098 return false; 12099 } 12100 12101 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12102 { 12103 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12104 return true; 12105 12106 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12107 kvm_test_request(KVM_REQ_SMI, vcpu) || 12108 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12109 return true; 12110 12111 return kvm_arch_dy_has_pending_interrupt(vcpu); 12112 } 12113 12114 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12115 { 12116 if (vcpu->arch.guest_state_protected) 12117 return true; 12118 12119 return vcpu->arch.preempted_in_kernel; 12120 } 12121 12122 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12123 { 12124 return kvm_rip_read(vcpu); 12125 } 12126 12127 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12128 { 12129 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12130 } 12131 12132 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12133 { 12134 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12135 } 12136 12137 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12138 { 12139 /* Can't read the RIP when guest state is protected, just return 0 */ 12140 if (vcpu->arch.guest_state_protected) 12141 return 0; 12142 12143 if (is_64_bit_mode(vcpu)) 12144 return kvm_rip_read(vcpu); 12145 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12146 kvm_rip_read(vcpu)); 12147 } 12148 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12149 12150 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12151 { 12152 return kvm_get_linear_rip(vcpu) == linear_rip; 12153 } 12154 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12155 12156 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12157 { 12158 unsigned long rflags; 12159 12160 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12161 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12162 rflags &= ~X86_EFLAGS_TF; 12163 return rflags; 12164 } 12165 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12166 12167 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12168 { 12169 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12170 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12171 rflags |= X86_EFLAGS_TF; 12172 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12173 } 12174 12175 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12176 { 12177 __kvm_set_rflags(vcpu, rflags); 12178 kvm_make_request(KVM_REQ_EVENT, vcpu); 12179 } 12180 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12181 12182 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 12183 { 12184 int r; 12185 12186 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 12187 work->wakeup_all) 12188 return; 12189 12190 r = kvm_mmu_reload(vcpu); 12191 if (unlikely(r)) 12192 return; 12193 12194 if (!vcpu->arch.mmu->direct_map && 12195 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 12196 return; 12197 12198 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 12199 } 12200 12201 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12202 { 12203 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12204 12205 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12206 } 12207 12208 static inline u32 kvm_async_pf_next_probe(u32 key) 12209 { 12210 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12211 } 12212 12213 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12214 { 12215 u32 key = kvm_async_pf_hash_fn(gfn); 12216 12217 while (vcpu->arch.apf.gfns[key] != ~0) 12218 key = kvm_async_pf_next_probe(key); 12219 12220 vcpu->arch.apf.gfns[key] = gfn; 12221 } 12222 12223 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12224 { 12225 int i; 12226 u32 key = kvm_async_pf_hash_fn(gfn); 12227 12228 for (i = 0; i < ASYNC_PF_PER_VCPU && 12229 (vcpu->arch.apf.gfns[key] != gfn && 12230 vcpu->arch.apf.gfns[key] != ~0); i++) 12231 key = kvm_async_pf_next_probe(key); 12232 12233 return key; 12234 } 12235 12236 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12237 { 12238 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12239 } 12240 12241 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12242 { 12243 u32 i, j, k; 12244 12245 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12246 12247 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12248 return; 12249 12250 while (true) { 12251 vcpu->arch.apf.gfns[i] = ~0; 12252 do { 12253 j = kvm_async_pf_next_probe(j); 12254 if (vcpu->arch.apf.gfns[j] == ~0) 12255 return; 12256 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12257 /* 12258 * k lies cyclically in ]i,j] 12259 * | i.k.j | 12260 * |....j i.k.| or |.k..j i...| 12261 */ 12262 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12263 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12264 i = j; 12265 } 12266 } 12267 12268 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12269 { 12270 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12271 12272 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12273 sizeof(reason)); 12274 } 12275 12276 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12277 { 12278 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12279 12280 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12281 &token, offset, sizeof(token)); 12282 } 12283 12284 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12285 { 12286 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12287 u32 val; 12288 12289 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12290 &val, offset, sizeof(val))) 12291 return false; 12292 12293 return !val; 12294 } 12295 12296 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12297 { 12298 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 12299 return false; 12300 12301 if (!kvm_pv_async_pf_enabled(vcpu) || 12302 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0)) 12303 return false; 12304 12305 return true; 12306 } 12307 12308 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12309 { 12310 if (unlikely(!lapic_in_kernel(vcpu) || 12311 kvm_event_needs_reinjection(vcpu) || 12312 vcpu->arch.exception.pending)) 12313 return false; 12314 12315 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12316 return false; 12317 12318 /* 12319 * If interrupts are off we cannot even use an artificial 12320 * halt state. 12321 */ 12322 return kvm_arch_interrupt_allowed(vcpu); 12323 } 12324 12325 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12326 struct kvm_async_pf *work) 12327 { 12328 struct x86_exception fault; 12329 12330 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12331 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12332 12333 if (kvm_can_deliver_async_pf(vcpu) && 12334 !apf_put_user_notpresent(vcpu)) { 12335 fault.vector = PF_VECTOR; 12336 fault.error_code_valid = true; 12337 fault.error_code = 0; 12338 fault.nested_page_fault = false; 12339 fault.address = work->arch.token; 12340 fault.async_page_fault = true; 12341 kvm_inject_page_fault(vcpu, &fault); 12342 return true; 12343 } else { 12344 /* 12345 * It is not possible to deliver a paravirtualized asynchronous 12346 * page fault, but putting the guest in an artificial halt state 12347 * can be beneficial nevertheless: if an interrupt arrives, we 12348 * can deliver it timely and perhaps the guest will schedule 12349 * another process. When the instruction that triggered a page 12350 * fault is retried, hopefully the page will be ready in the host. 12351 */ 12352 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12353 return false; 12354 } 12355 } 12356 12357 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12358 struct kvm_async_pf *work) 12359 { 12360 struct kvm_lapic_irq irq = { 12361 .delivery_mode = APIC_DM_FIXED, 12362 .vector = vcpu->arch.apf.vec 12363 }; 12364 12365 if (work->wakeup_all) 12366 work->arch.token = ~0; /* broadcast wakeup */ 12367 else 12368 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12369 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12370 12371 if ((work->wakeup_all || work->notpresent_injected) && 12372 kvm_pv_async_pf_enabled(vcpu) && 12373 !apf_put_user_ready(vcpu, work->arch.token)) { 12374 vcpu->arch.apf.pageready_pending = true; 12375 kvm_apic_set_irq(vcpu, &irq, NULL); 12376 } 12377 12378 vcpu->arch.apf.halted = false; 12379 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12380 } 12381 12382 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12383 { 12384 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12385 if (!vcpu->arch.apf.pageready_pending) 12386 kvm_vcpu_kick(vcpu); 12387 } 12388 12389 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 12390 { 12391 if (!kvm_pv_async_pf_enabled(vcpu)) 12392 return true; 12393 else 12394 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 12395 } 12396 12397 void kvm_arch_start_assignment(struct kvm *kvm) 12398 { 12399 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 12400 static_call_cond(kvm_x86_start_assignment)(kvm); 12401 } 12402 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 12403 12404 void kvm_arch_end_assignment(struct kvm *kvm) 12405 { 12406 atomic_dec(&kvm->arch.assigned_device_count); 12407 } 12408 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 12409 12410 bool kvm_arch_has_assigned_device(struct kvm *kvm) 12411 { 12412 return atomic_read(&kvm->arch.assigned_device_count); 12413 } 12414 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 12415 12416 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 12417 { 12418 atomic_inc(&kvm->arch.noncoherent_dma_count); 12419 } 12420 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 12421 12422 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 12423 { 12424 atomic_dec(&kvm->arch.noncoherent_dma_count); 12425 } 12426 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 12427 12428 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 12429 { 12430 return atomic_read(&kvm->arch.noncoherent_dma_count); 12431 } 12432 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 12433 12434 bool kvm_arch_has_irq_bypass(void) 12435 { 12436 return true; 12437 } 12438 12439 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 12440 struct irq_bypass_producer *prod) 12441 { 12442 struct kvm_kernel_irqfd *irqfd = 12443 container_of(cons, struct kvm_kernel_irqfd, consumer); 12444 int ret; 12445 12446 irqfd->producer = prod; 12447 kvm_arch_start_assignment(irqfd->kvm); 12448 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, 12449 prod->irq, irqfd->gsi, 1); 12450 12451 if (ret) 12452 kvm_arch_end_assignment(irqfd->kvm); 12453 12454 return ret; 12455 } 12456 12457 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 12458 struct irq_bypass_producer *prod) 12459 { 12460 int ret; 12461 struct kvm_kernel_irqfd *irqfd = 12462 container_of(cons, struct kvm_kernel_irqfd, consumer); 12463 12464 WARN_ON(irqfd->producer != prod); 12465 irqfd->producer = NULL; 12466 12467 /* 12468 * When producer of consumer is unregistered, we change back to 12469 * remapped mode, so we can re-use the current implementation 12470 * when the irq is masked/disabled or the consumer side (KVM 12471 * int this case doesn't want to receive the interrupts. 12472 */ 12473 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 12474 if (ret) 12475 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 12476 " fails: %d\n", irqfd->consumer.token, ret); 12477 12478 kvm_arch_end_assignment(irqfd->kvm); 12479 } 12480 12481 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 12482 uint32_t guest_irq, bool set) 12483 { 12484 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set); 12485 } 12486 12487 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 12488 struct kvm_kernel_irq_routing_entry *new) 12489 { 12490 if (new->type != KVM_IRQ_ROUTING_MSI) 12491 return true; 12492 12493 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 12494 } 12495 12496 bool kvm_vector_hashing_enabled(void) 12497 { 12498 return vector_hashing; 12499 } 12500 12501 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 12502 { 12503 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 12504 } 12505 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 12506 12507 12508 int kvm_spec_ctrl_test_value(u64 value) 12509 { 12510 /* 12511 * test that setting IA32_SPEC_CTRL to given value 12512 * is allowed by the host processor 12513 */ 12514 12515 u64 saved_value; 12516 unsigned long flags; 12517 int ret = 0; 12518 12519 local_irq_save(flags); 12520 12521 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 12522 ret = 1; 12523 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 12524 ret = 1; 12525 else 12526 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 12527 12528 local_irq_restore(flags); 12529 12530 return ret; 12531 } 12532 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 12533 12534 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 12535 { 12536 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 12537 struct x86_exception fault; 12538 u32 access = error_code & 12539 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 12540 12541 if (!(error_code & PFERR_PRESENT_MASK) || 12542 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) { 12543 /* 12544 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 12545 * tables probably do not match the TLB. Just proceed 12546 * with the error code that the processor gave. 12547 */ 12548 fault.vector = PF_VECTOR; 12549 fault.error_code_valid = true; 12550 fault.error_code = error_code; 12551 fault.nested_page_fault = false; 12552 fault.address = gva; 12553 } 12554 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 12555 } 12556 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 12557 12558 /* 12559 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 12560 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 12561 * indicates whether exit to userspace is needed. 12562 */ 12563 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 12564 struct x86_exception *e) 12565 { 12566 if (r == X86EMUL_PROPAGATE_FAULT) { 12567 kvm_inject_emulated_page_fault(vcpu, e); 12568 return 1; 12569 } 12570 12571 /* 12572 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 12573 * while handling a VMX instruction KVM could've handled the request 12574 * correctly by exiting to userspace and performing I/O but there 12575 * doesn't seem to be a real use-case behind such requests, just return 12576 * KVM_EXIT_INTERNAL_ERROR for now. 12577 */ 12578 kvm_prepare_emulation_failure_exit(vcpu); 12579 12580 return 0; 12581 } 12582 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 12583 12584 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 12585 { 12586 bool pcid_enabled; 12587 struct x86_exception e; 12588 struct { 12589 u64 pcid; 12590 u64 gla; 12591 } operand; 12592 int r; 12593 12594 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 12595 if (r != X86EMUL_CONTINUE) 12596 return kvm_handle_memory_failure(vcpu, r, &e); 12597 12598 if (operand.pcid >> 12 != 0) { 12599 kvm_inject_gp(vcpu, 0); 12600 return 1; 12601 } 12602 12603 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 12604 12605 switch (type) { 12606 case INVPCID_TYPE_INDIV_ADDR: 12607 if ((!pcid_enabled && (operand.pcid != 0)) || 12608 is_noncanonical_address(operand.gla, vcpu)) { 12609 kvm_inject_gp(vcpu, 0); 12610 return 1; 12611 } 12612 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 12613 return kvm_skip_emulated_instruction(vcpu); 12614 12615 case INVPCID_TYPE_SINGLE_CTXT: 12616 if (!pcid_enabled && (operand.pcid != 0)) { 12617 kvm_inject_gp(vcpu, 0); 12618 return 1; 12619 } 12620 12621 kvm_invalidate_pcid(vcpu, operand.pcid); 12622 return kvm_skip_emulated_instruction(vcpu); 12623 12624 case INVPCID_TYPE_ALL_NON_GLOBAL: 12625 /* 12626 * Currently, KVM doesn't mark global entries in the shadow 12627 * page tables, so a non-global flush just degenerates to a 12628 * global flush. If needed, we could optimize this later by 12629 * keeping track of global entries in shadow page tables. 12630 */ 12631 12632 fallthrough; 12633 case INVPCID_TYPE_ALL_INCL_GLOBAL: 12634 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12635 return kvm_skip_emulated_instruction(vcpu); 12636 12637 default: 12638 kvm_inject_gp(vcpu, 0); 12639 return 1; 12640 } 12641 } 12642 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 12643 12644 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 12645 { 12646 struct kvm_run *run = vcpu->run; 12647 struct kvm_mmio_fragment *frag; 12648 unsigned int len; 12649 12650 BUG_ON(!vcpu->mmio_needed); 12651 12652 /* Complete previous fragment */ 12653 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 12654 len = min(8u, frag->len); 12655 if (!vcpu->mmio_is_write) 12656 memcpy(frag->data, run->mmio.data, len); 12657 12658 if (frag->len <= 8) { 12659 /* Switch to the next fragment. */ 12660 frag++; 12661 vcpu->mmio_cur_fragment++; 12662 } else { 12663 /* Go forward to the next mmio piece. */ 12664 frag->data += len; 12665 frag->gpa += len; 12666 frag->len -= len; 12667 } 12668 12669 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 12670 vcpu->mmio_needed = 0; 12671 12672 // VMG change, at this point, we're always done 12673 // RIP has already been advanced 12674 return 1; 12675 } 12676 12677 // More MMIO is needed 12678 run->mmio.phys_addr = frag->gpa; 12679 run->mmio.len = min(8u, frag->len); 12680 run->mmio.is_write = vcpu->mmio_is_write; 12681 if (run->mmio.is_write) 12682 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 12683 run->exit_reason = KVM_EXIT_MMIO; 12684 12685 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12686 12687 return 0; 12688 } 12689 12690 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12691 void *data) 12692 { 12693 int handled; 12694 struct kvm_mmio_fragment *frag; 12695 12696 if (!data) 12697 return -EINVAL; 12698 12699 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12700 if (handled == bytes) 12701 return 1; 12702 12703 bytes -= handled; 12704 gpa += handled; 12705 data += handled; 12706 12707 /*TODO: Check if need to increment number of frags */ 12708 frag = vcpu->mmio_fragments; 12709 vcpu->mmio_nr_fragments = 1; 12710 frag->len = bytes; 12711 frag->gpa = gpa; 12712 frag->data = data; 12713 12714 vcpu->mmio_needed = 1; 12715 vcpu->mmio_cur_fragment = 0; 12716 12717 vcpu->run->mmio.phys_addr = gpa; 12718 vcpu->run->mmio.len = min(8u, frag->len); 12719 vcpu->run->mmio.is_write = 1; 12720 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 12721 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12722 12723 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12724 12725 return 0; 12726 } 12727 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 12728 12729 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12730 void *data) 12731 { 12732 int handled; 12733 struct kvm_mmio_fragment *frag; 12734 12735 if (!data) 12736 return -EINVAL; 12737 12738 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12739 if (handled == bytes) 12740 return 1; 12741 12742 bytes -= handled; 12743 gpa += handled; 12744 data += handled; 12745 12746 /*TODO: Check if need to increment number of frags */ 12747 frag = vcpu->mmio_fragments; 12748 vcpu->mmio_nr_fragments = 1; 12749 frag->len = bytes; 12750 frag->gpa = gpa; 12751 frag->data = data; 12752 12753 vcpu->mmio_needed = 1; 12754 vcpu->mmio_cur_fragment = 0; 12755 12756 vcpu->run->mmio.phys_addr = gpa; 12757 vcpu->run->mmio.len = min(8u, frag->len); 12758 vcpu->run->mmio.is_write = 0; 12759 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12760 12761 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12762 12763 return 0; 12764 } 12765 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 12766 12767 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 12768 unsigned int port); 12769 12770 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 12771 { 12772 int size = vcpu->arch.pio.size; 12773 int port = vcpu->arch.pio.port; 12774 12775 vcpu->arch.pio.count = 0; 12776 if (vcpu->arch.sev_pio_count) 12777 return kvm_sev_es_outs(vcpu, size, port); 12778 return 1; 12779 } 12780 12781 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 12782 unsigned int port) 12783 { 12784 for (;;) { 12785 unsigned int count = 12786 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 12787 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 12788 12789 /* memcpy done already by emulator_pio_out. */ 12790 vcpu->arch.sev_pio_count -= count; 12791 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size; 12792 if (!ret) 12793 break; 12794 12795 /* Emulation done by the kernel. */ 12796 if (!vcpu->arch.sev_pio_count) 12797 return 1; 12798 } 12799 12800 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 12801 return 0; 12802 } 12803 12804 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 12805 unsigned int port); 12806 12807 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 12808 { 12809 unsigned count = vcpu->arch.pio.count; 12810 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 12811 vcpu->arch.sev_pio_count -= count; 12812 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size; 12813 } 12814 12815 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 12816 { 12817 int size = vcpu->arch.pio.size; 12818 int port = vcpu->arch.pio.port; 12819 12820 advance_sev_es_emulated_ins(vcpu); 12821 if (vcpu->arch.sev_pio_count) 12822 return kvm_sev_es_ins(vcpu, size, port); 12823 return 1; 12824 } 12825 12826 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 12827 unsigned int port) 12828 { 12829 for (;;) { 12830 unsigned int count = 12831 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 12832 if (!__emulator_pio_in(vcpu, size, port, count)) 12833 break; 12834 12835 /* Emulation done by the kernel. */ 12836 advance_sev_es_emulated_ins(vcpu); 12837 if (!vcpu->arch.sev_pio_count) 12838 return 1; 12839 } 12840 12841 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 12842 return 0; 12843 } 12844 12845 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 12846 unsigned int port, void *data, unsigned int count, 12847 int in) 12848 { 12849 vcpu->arch.sev_pio_data = data; 12850 vcpu->arch.sev_pio_count = count; 12851 return in ? kvm_sev_es_ins(vcpu, size, port) 12852 : kvm_sev_es_outs(vcpu, size, port); 12853 } 12854 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 12855 12856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 12857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 12858 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 12859 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 12860 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 12861 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 12862 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 12863 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 12864 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 12865 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 12866 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 12867 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 12868 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 12869 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 12870 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 12871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 12872 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 12873 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 12874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 12875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 12876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 12877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 12878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 12879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 12880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 12881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 12882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 12883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 12884