xref: /openbmc/linux/arch/x86/kvm/x86.c (revision dd21bfa4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87 
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92 
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94 
95 #define emul_to_vcpu(ctxt) \
96 	((struct kvm_vcpu *)(ctxt)->vcpu)
97 
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108 
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110 
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112 
113 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
114                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
115 
116 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
117 static void process_nmi(struct kvm_vcpu *vcpu);
118 static void process_smi(struct kvm_vcpu *vcpu);
119 static void enter_smm(struct kvm_vcpu *vcpu);
120 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
121 static void store_regs(struct kvm_vcpu *vcpu);
122 static int sync_regs(struct kvm_vcpu *vcpu);
123 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
124 
125 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
126 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
127 
128 struct kvm_x86_ops kvm_x86_ops __read_mostly;
129 EXPORT_SYMBOL_GPL(kvm_x86_ops);
130 
131 #define KVM_X86_OP(func)					     \
132 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
133 				*(((struct kvm_x86_ops *)0)->func));
134 #define KVM_X86_OP_NULL KVM_X86_OP
135 #include <asm/kvm-x86-ops.h>
136 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
137 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
138 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
139 
140 static bool __read_mostly ignore_msrs = 0;
141 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
142 
143 bool __read_mostly report_ignored_msrs = true;
144 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
145 EXPORT_SYMBOL_GPL(report_ignored_msrs);
146 
147 unsigned int min_timer_period_us = 200;
148 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
149 
150 static bool __read_mostly kvmclock_periodic_sync = true;
151 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
152 
153 bool __read_mostly kvm_has_tsc_control;
154 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
155 u32  __read_mostly kvm_max_guest_tsc_khz;
156 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
157 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
158 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
159 u64  __read_mostly kvm_max_tsc_scaling_ratio;
160 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
161 u64 __read_mostly kvm_default_tsc_scaling_ratio;
162 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
163 bool __read_mostly kvm_has_bus_lock_exit;
164 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
165 
166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
167 static u32 __read_mostly tsc_tolerance_ppm = 250;
168 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
169 
170 /*
171  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
172  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
173  * advancement entirely.  Any other value is used as-is and disables adaptive
174  * tuning, i.e. allows privileged userspace to set an exact advancement time.
175  */
176 static int __read_mostly lapic_timer_advance_ns = -1;
177 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
178 
179 static bool __read_mostly vector_hashing = true;
180 module_param(vector_hashing, bool, S_IRUGO);
181 
182 bool __read_mostly enable_vmware_backdoor = false;
183 module_param(enable_vmware_backdoor, bool, S_IRUGO);
184 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
185 
186 static bool __read_mostly force_emulation_prefix = false;
187 module_param(force_emulation_prefix, bool, S_IRUGO);
188 
189 int __read_mostly pi_inject_timer = -1;
190 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
191 
192 /* Enable/disable PMU virtualization */
193 bool __read_mostly enable_pmu = true;
194 EXPORT_SYMBOL_GPL(enable_pmu);
195 module_param(enable_pmu, bool, 0444);
196 
197 /*
198  * Restoring the host value for MSRs that are only consumed when running in
199  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
200  * returns to userspace, i.e. the kernel can run with the guest's value.
201  */
202 #define KVM_MAX_NR_USER_RETURN_MSRS 16
203 
204 struct kvm_user_return_msrs {
205 	struct user_return_notifier urn;
206 	bool registered;
207 	struct kvm_user_return_msr_values {
208 		u64 host;
209 		u64 curr;
210 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
211 };
212 
213 u32 __read_mostly kvm_nr_uret_msrs;
214 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
215 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
216 static struct kvm_user_return_msrs __percpu *user_return_msrs;
217 
218 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
219 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
220 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
221 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
222 
223 u64 __read_mostly host_efer;
224 EXPORT_SYMBOL_GPL(host_efer);
225 
226 bool __read_mostly allow_smaller_maxphyaddr = 0;
227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
228 
229 bool __read_mostly enable_apicv = true;
230 EXPORT_SYMBOL_GPL(enable_apicv);
231 
232 u64 __read_mostly host_xss;
233 EXPORT_SYMBOL_GPL(host_xss);
234 u64 __read_mostly supported_xss;
235 EXPORT_SYMBOL_GPL(supported_xss);
236 
237 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
238 	KVM_GENERIC_VM_STATS(),
239 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
240 	STATS_DESC_COUNTER(VM, mmu_pte_write),
241 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
242 	STATS_DESC_COUNTER(VM, mmu_flooded),
243 	STATS_DESC_COUNTER(VM, mmu_recycled),
244 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
245 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
246 	STATS_DESC_ICOUNTER(VM, pages_4k),
247 	STATS_DESC_ICOUNTER(VM, pages_2m),
248 	STATS_DESC_ICOUNTER(VM, pages_1g),
249 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
250 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
251 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
252 };
253 
254 const struct kvm_stats_header kvm_vm_stats_header = {
255 	.name_size = KVM_STATS_NAME_SIZE,
256 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
257 	.id_offset = sizeof(struct kvm_stats_header),
258 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
259 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
260 		       sizeof(kvm_vm_stats_desc),
261 };
262 
263 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
264 	KVM_GENERIC_VCPU_STATS(),
265 	STATS_DESC_COUNTER(VCPU, pf_fixed),
266 	STATS_DESC_COUNTER(VCPU, pf_guest),
267 	STATS_DESC_COUNTER(VCPU, tlb_flush),
268 	STATS_DESC_COUNTER(VCPU, invlpg),
269 	STATS_DESC_COUNTER(VCPU, exits),
270 	STATS_DESC_COUNTER(VCPU, io_exits),
271 	STATS_DESC_COUNTER(VCPU, mmio_exits),
272 	STATS_DESC_COUNTER(VCPU, signal_exits),
273 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
274 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
275 	STATS_DESC_COUNTER(VCPU, l1d_flush),
276 	STATS_DESC_COUNTER(VCPU, halt_exits),
277 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
278 	STATS_DESC_COUNTER(VCPU, irq_exits),
279 	STATS_DESC_COUNTER(VCPU, host_state_reload),
280 	STATS_DESC_COUNTER(VCPU, fpu_reload),
281 	STATS_DESC_COUNTER(VCPU, insn_emulation),
282 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
283 	STATS_DESC_COUNTER(VCPU, hypercalls),
284 	STATS_DESC_COUNTER(VCPU, irq_injections),
285 	STATS_DESC_COUNTER(VCPU, nmi_injections),
286 	STATS_DESC_COUNTER(VCPU, req_event),
287 	STATS_DESC_COUNTER(VCPU, nested_run),
288 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
289 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
290 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
291 };
292 
293 const struct kvm_stats_header kvm_vcpu_stats_header = {
294 	.name_size = KVM_STATS_NAME_SIZE,
295 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
296 	.id_offset = sizeof(struct kvm_stats_header),
297 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
298 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
299 		       sizeof(kvm_vcpu_stats_desc),
300 };
301 
302 u64 __read_mostly host_xcr0;
303 u64 __read_mostly supported_xcr0;
304 EXPORT_SYMBOL_GPL(supported_xcr0);
305 
306 static struct kmem_cache *x86_emulator_cache;
307 
308 /*
309  * When called, it means the previous get/set msr reached an invalid msr.
310  * Return true if we want to ignore/silent this failed msr access.
311  */
312 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
313 {
314 	const char *op = write ? "wrmsr" : "rdmsr";
315 
316 	if (ignore_msrs) {
317 		if (report_ignored_msrs)
318 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
319 				      op, msr, data);
320 		/* Mask the error */
321 		return true;
322 	} else {
323 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
324 				      op, msr, data);
325 		return false;
326 	}
327 }
328 
329 static struct kmem_cache *kvm_alloc_emulator_cache(void)
330 {
331 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
332 	unsigned int size = sizeof(struct x86_emulate_ctxt);
333 
334 	return kmem_cache_create_usercopy("x86_emulator", size,
335 					  __alignof__(struct x86_emulate_ctxt),
336 					  SLAB_ACCOUNT, useroffset,
337 					  size - useroffset, NULL);
338 }
339 
340 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
341 
342 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
343 {
344 	int i;
345 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
346 		vcpu->arch.apf.gfns[i] = ~0;
347 }
348 
349 static void kvm_on_user_return(struct user_return_notifier *urn)
350 {
351 	unsigned slot;
352 	struct kvm_user_return_msrs *msrs
353 		= container_of(urn, struct kvm_user_return_msrs, urn);
354 	struct kvm_user_return_msr_values *values;
355 	unsigned long flags;
356 
357 	/*
358 	 * Disabling irqs at this point since the following code could be
359 	 * interrupted and executed through kvm_arch_hardware_disable()
360 	 */
361 	local_irq_save(flags);
362 	if (msrs->registered) {
363 		msrs->registered = false;
364 		user_return_notifier_unregister(urn);
365 	}
366 	local_irq_restore(flags);
367 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
368 		values = &msrs->values[slot];
369 		if (values->host != values->curr) {
370 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
371 			values->curr = values->host;
372 		}
373 	}
374 }
375 
376 static int kvm_probe_user_return_msr(u32 msr)
377 {
378 	u64 val;
379 	int ret;
380 
381 	preempt_disable();
382 	ret = rdmsrl_safe(msr, &val);
383 	if (ret)
384 		goto out;
385 	ret = wrmsrl_safe(msr, val);
386 out:
387 	preempt_enable();
388 	return ret;
389 }
390 
391 int kvm_add_user_return_msr(u32 msr)
392 {
393 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
394 
395 	if (kvm_probe_user_return_msr(msr))
396 		return -1;
397 
398 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
399 	return kvm_nr_uret_msrs++;
400 }
401 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
402 
403 int kvm_find_user_return_msr(u32 msr)
404 {
405 	int i;
406 
407 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
408 		if (kvm_uret_msrs_list[i] == msr)
409 			return i;
410 	}
411 	return -1;
412 }
413 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
414 
415 static void kvm_user_return_msr_cpu_online(void)
416 {
417 	unsigned int cpu = smp_processor_id();
418 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
419 	u64 value;
420 	int i;
421 
422 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
423 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
424 		msrs->values[i].host = value;
425 		msrs->values[i].curr = value;
426 	}
427 }
428 
429 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
430 {
431 	unsigned int cpu = smp_processor_id();
432 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
433 	int err;
434 
435 	value = (value & mask) | (msrs->values[slot].host & ~mask);
436 	if (value == msrs->values[slot].curr)
437 		return 0;
438 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
439 	if (err)
440 		return 1;
441 
442 	msrs->values[slot].curr = value;
443 	if (!msrs->registered) {
444 		msrs->urn.on_user_return = kvm_on_user_return;
445 		user_return_notifier_register(&msrs->urn);
446 		msrs->registered = true;
447 	}
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
451 
452 static void drop_user_return_notifiers(void)
453 {
454 	unsigned int cpu = smp_processor_id();
455 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
456 
457 	if (msrs->registered)
458 		kvm_on_user_return(&msrs->urn);
459 }
460 
461 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
462 {
463 	return vcpu->arch.apic_base;
464 }
465 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
466 
467 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
468 {
469 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
470 }
471 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
472 
473 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
474 {
475 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
476 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
477 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
478 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
479 
480 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
481 		return 1;
482 	if (!msr_info->host_initiated) {
483 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
484 			return 1;
485 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
486 			return 1;
487 	}
488 
489 	kvm_lapic_set_base(vcpu, msr_info->data);
490 	kvm_recalculate_apic_map(vcpu->kvm);
491 	return 0;
492 }
493 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
494 
495 /*
496  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
497  *
498  * Hardware virtualization extension instructions may fault if a reboot turns
499  * off virtualization while processes are running.  Usually after catching the
500  * fault we just panic; during reboot instead the instruction is ignored.
501  */
502 noinstr void kvm_spurious_fault(void)
503 {
504 	/* Fault while not rebooting.  We want the trace. */
505 	BUG_ON(!kvm_rebooting);
506 }
507 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
508 
509 #define EXCPT_BENIGN		0
510 #define EXCPT_CONTRIBUTORY	1
511 #define EXCPT_PF		2
512 
513 static int exception_class(int vector)
514 {
515 	switch (vector) {
516 	case PF_VECTOR:
517 		return EXCPT_PF;
518 	case DE_VECTOR:
519 	case TS_VECTOR:
520 	case NP_VECTOR:
521 	case SS_VECTOR:
522 	case GP_VECTOR:
523 		return EXCPT_CONTRIBUTORY;
524 	default:
525 		break;
526 	}
527 	return EXCPT_BENIGN;
528 }
529 
530 #define EXCPT_FAULT		0
531 #define EXCPT_TRAP		1
532 #define EXCPT_ABORT		2
533 #define EXCPT_INTERRUPT		3
534 
535 static int exception_type(int vector)
536 {
537 	unsigned int mask;
538 
539 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
540 		return EXCPT_INTERRUPT;
541 
542 	mask = 1 << vector;
543 
544 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
545 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
546 		return EXCPT_TRAP;
547 
548 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
549 		return EXCPT_ABORT;
550 
551 	/* Reserved exceptions will result in fault */
552 	return EXCPT_FAULT;
553 }
554 
555 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
556 {
557 	unsigned nr = vcpu->arch.exception.nr;
558 	bool has_payload = vcpu->arch.exception.has_payload;
559 	unsigned long payload = vcpu->arch.exception.payload;
560 
561 	if (!has_payload)
562 		return;
563 
564 	switch (nr) {
565 	case DB_VECTOR:
566 		/*
567 		 * "Certain debug exceptions may clear bit 0-3.  The
568 		 * remaining contents of the DR6 register are never
569 		 * cleared by the processor".
570 		 */
571 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
572 		/*
573 		 * In order to reflect the #DB exception payload in guest
574 		 * dr6, three components need to be considered: active low
575 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
576 		 * DR6_BS and DR6_BT)
577 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
578 		 * In the target guest dr6:
579 		 * FIXED_1 bits should always be set.
580 		 * Active low bits should be cleared if 1-setting in payload.
581 		 * Active high bits should be set if 1-setting in payload.
582 		 *
583 		 * Note, the payload is compatible with the pending debug
584 		 * exceptions/exit qualification under VMX, that active_low bits
585 		 * are active high in payload.
586 		 * So they need to be flipped for DR6.
587 		 */
588 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
589 		vcpu->arch.dr6 |= payload;
590 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
591 
592 		/*
593 		 * The #DB payload is defined as compatible with the 'pending
594 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
595 		 * defined in the 'pending debug exceptions' field (enabled
596 		 * breakpoint), it is reserved and must be zero in DR6.
597 		 */
598 		vcpu->arch.dr6 &= ~BIT(12);
599 		break;
600 	case PF_VECTOR:
601 		vcpu->arch.cr2 = payload;
602 		break;
603 	}
604 
605 	vcpu->arch.exception.has_payload = false;
606 	vcpu->arch.exception.payload = 0;
607 }
608 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
609 
610 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
611 		unsigned nr, bool has_error, u32 error_code,
612 	        bool has_payload, unsigned long payload, bool reinject)
613 {
614 	u32 prev_nr;
615 	int class1, class2;
616 
617 	kvm_make_request(KVM_REQ_EVENT, vcpu);
618 
619 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
620 	queue:
621 		if (reinject) {
622 			/*
623 			 * On vmentry, vcpu->arch.exception.pending is only
624 			 * true if an event injection was blocked by
625 			 * nested_run_pending.  In that case, however,
626 			 * vcpu_enter_guest requests an immediate exit,
627 			 * and the guest shouldn't proceed far enough to
628 			 * need reinjection.
629 			 */
630 			WARN_ON_ONCE(vcpu->arch.exception.pending);
631 			vcpu->arch.exception.injected = true;
632 			if (WARN_ON_ONCE(has_payload)) {
633 				/*
634 				 * A reinjected event has already
635 				 * delivered its payload.
636 				 */
637 				has_payload = false;
638 				payload = 0;
639 			}
640 		} else {
641 			vcpu->arch.exception.pending = true;
642 			vcpu->arch.exception.injected = false;
643 		}
644 		vcpu->arch.exception.has_error_code = has_error;
645 		vcpu->arch.exception.nr = nr;
646 		vcpu->arch.exception.error_code = error_code;
647 		vcpu->arch.exception.has_payload = has_payload;
648 		vcpu->arch.exception.payload = payload;
649 		if (!is_guest_mode(vcpu))
650 			kvm_deliver_exception_payload(vcpu);
651 		return;
652 	}
653 
654 	/* to check exception */
655 	prev_nr = vcpu->arch.exception.nr;
656 	if (prev_nr == DF_VECTOR) {
657 		/* triple fault -> shutdown */
658 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
659 		return;
660 	}
661 	class1 = exception_class(prev_nr);
662 	class2 = exception_class(nr);
663 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
664 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
665 		/*
666 		 * Generate double fault per SDM Table 5-5.  Set
667 		 * exception.pending = true so that the double fault
668 		 * can trigger a nested vmexit.
669 		 */
670 		vcpu->arch.exception.pending = true;
671 		vcpu->arch.exception.injected = false;
672 		vcpu->arch.exception.has_error_code = true;
673 		vcpu->arch.exception.nr = DF_VECTOR;
674 		vcpu->arch.exception.error_code = 0;
675 		vcpu->arch.exception.has_payload = false;
676 		vcpu->arch.exception.payload = 0;
677 	} else
678 		/* replace previous exception with a new one in a hope
679 		   that instruction re-execution will regenerate lost
680 		   exception */
681 		goto queue;
682 }
683 
684 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
685 {
686 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
687 }
688 EXPORT_SYMBOL_GPL(kvm_queue_exception);
689 
690 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
691 {
692 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
693 }
694 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
695 
696 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
697 			   unsigned long payload)
698 {
699 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
700 }
701 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
702 
703 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
704 				    u32 error_code, unsigned long payload)
705 {
706 	kvm_multiple_exception(vcpu, nr, true, error_code,
707 			       true, payload, false);
708 }
709 
710 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
711 {
712 	if (err)
713 		kvm_inject_gp(vcpu, 0);
714 	else
715 		return kvm_skip_emulated_instruction(vcpu);
716 
717 	return 1;
718 }
719 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
720 
721 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
722 {
723 	if (err) {
724 		kvm_inject_gp(vcpu, 0);
725 		return 1;
726 	}
727 
728 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
729 				       EMULTYPE_COMPLETE_USER_EXIT);
730 }
731 
732 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
733 {
734 	++vcpu->stat.pf_guest;
735 	vcpu->arch.exception.nested_apf =
736 		is_guest_mode(vcpu) && fault->async_page_fault;
737 	if (vcpu->arch.exception.nested_apf) {
738 		vcpu->arch.apf.nested_apf_token = fault->address;
739 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
740 	} else {
741 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
742 					fault->address);
743 	}
744 }
745 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
746 
747 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
748 				    struct x86_exception *fault)
749 {
750 	struct kvm_mmu *fault_mmu;
751 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
752 
753 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
754 					       vcpu->arch.walk_mmu;
755 
756 	/*
757 	 * Invalidate the TLB entry for the faulting address, if it exists,
758 	 * else the access will fault indefinitely (and to emulate hardware).
759 	 */
760 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
761 	    !(fault->error_code & PFERR_RSVD_MASK))
762 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
763 				       fault_mmu->root_hpa);
764 
765 	fault_mmu->inject_page_fault(vcpu, fault);
766 	return fault->nested_page_fault;
767 }
768 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
769 
770 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
771 {
772 	atomic_inc(&vcpu->arch.nmi_queued);
773 	kvm_make_request(KVM_REQ_NMI, vcpu);
774 }
775 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
776 
777 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
778 {
779 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
780 }
781 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
782 
783 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
784 {
785 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
786 }
787 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
788 
789 /*
790  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
791  * a #GP and return false.
792  */
793 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
794 {
795 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
796 		return true;
797 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
798 	return false;
799 }
800 EXPORT_SYMBOL_GPL(kvm_require_cpl);
801 
802 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
803 {
804 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
805 		return true;
806 
807 	kvm_queue_exception(vcpu, UD_VECTOR);
808 	return false;
809 }
810 EXPORT_SYMBOL_GPL(kvm_require_dr);
811 
812 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
813 {
814 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
815 }
816 
817 /*
818  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
819  */
820 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
821 {
822 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
823 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
824 	gpa_t real_gpa;
825 	int i;
826 	int ret;
827 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
828 
829 	/*
830 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
831 	 * to an L1 GPA.
832 	 */
833 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
834 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
835 	if (real_gpa == UNMAPPED_GVA)
836 		return 0;
837 
838 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
839 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
840 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
841 	if (ret < 0)
842 		return 0;
843 
844 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
845 		if ((pdpte[i] & PT_PRESENT_MASK) &&
846 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
847 			return 0;
848 		}
849 	}
850 
851 	/*
852 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
853 	 * Shadow page roots need to be reconstructed instead.
854 	 */
855 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
856 		kvm_mmu_free_roots(vcpu, mmu, KVM_MMU_ROOT_CURRENT);
857 
858 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
859 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
860 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
861 	vcpu->arch.pdptrs_from_userspace = false;
862 
863 	return 1;
864 }
865 EXPORT_SYMBOL_GPL(load_pdptrs);
866 
867 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
868 {
869 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
870 		kvm_clear_async_pf_completion_queue(vcpu);
871 		kvm_async_pf_hash_reset(vcpu);
872 	}
873 
874 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
875 		kvm_mmu_reset_context(vcpu);
876 
877 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
878 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
879 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
880 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
881 }
882 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
883 
884 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
885 {
886 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
887 
888 	cr0 |= X86_CR0_ET;
889 
890 #ifdef CONFIG_X86_64
891 	if (cr0 & 0xffffffff00000000UL)
892 		return 1;
893 #endif
894 
895 	cr0 &= ~CR0_RESERVED_BITS;
896 
897 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
898 		return 1;
899 
900 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
901 		return 1;
902 
903 #ifdef CONFIG_X86_64
904 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
905 	    (cr0 & X86_CR0_PG)) {
906 		int cs_db, cs_l;
907 
908 		if (!is_pae(vcpu))
909 			return 1;
910 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
911 		if (cs_l)
912 			return 1;
913 	}
914 #endif
915 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
916 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
917 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
918 		return 1;
919 
920 	if (!(cr0 & X86_CR0_PG) &&
921 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
922 		return 1;
923 
924 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
925 
926 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
927 
928 	return 0;
929 }
930 EXPORT_SYMBOL_GPL(kvm_set_cr0);
931 
932 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
933 {
934 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
935 }
936 EXPORT_SYMBOL_GPL(kvm_lmsw);
937 
938 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
939 {
940 	if (vcpu->arch.guest_state_protected)
941 		return;
942 
943 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
944 
945 		if (vcpu->arch.xcr0 != host_xcr0)
946 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
947 
948 		if (vcpu->arch.xsaves_enabled &&
949 		    vcpu->arch.ia32_xss != host_xss)
950 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
951 	}
952 
953 	if (static_cpu_has(X86_FEATURE_PKU) &&
954 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
955 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
956 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
957 		write_pkru(vcpu->arch.pkru);
958 }
959 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
960 
961 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
962 {
963 	if (vcpu->arch.guest_state_protected)
964 		return;
965 
966 	if (static_cpu_has(X86_FEATURE_PKU) &&
967 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
968 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
969 		vcpu->arch.pkru = rdpkru();
970 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
971 			write_pkru(vcpu->arch.host_pkru);
972 	}
973 
974 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
975 
976 		if (vcpu->arch.xcr0 != host_xcr0)
977 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
978 
979 		if (vcpu->arch.xsaves_enabled &&
980 		    vcpu->arch.ia32_xss != host_xss)
981 			wrmsrl(MSR_IA32_XSS, host_xss);
982 	}
983 
984 }
985 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
986 
987 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
988 {
989 	return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
990 }
991 
992 #ifdef CONFIG_X86_64
993 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
994 {
995 	return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
996 }
997 #endif
998 
999 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1000 {
1001 	u64 xcr0 = xcr;
1002 	u64 old_xcr0 = vcpu->arch.xcr0;
1003 	u64 valid_bits;
1004 
1005 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1006 	if (index != XCR_XFEATURE_ENABLED_MASK)
1007 		return 1;
1008 	if (!(xcr0 & XFEATURE_MASK_FP))
1009 		return 1;
1010 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1011 		return 1;
1012 
1013 	/*
1014 	 * Do not allow the guest to set bits that we do not support
1015 	 * saving.  However, xcr0 bit 0 is always set, even if the
1016 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1017 	 */
1018 	valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1019 	if (xcr0 & ~valid_bits)
1020 		return 1;
1021 
1022 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1023 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1024 		return 1;
1025 
1026 	if (xcr0 & XFEATURE_MASK_AVX512) {
1027 		if (!(xcr0 & XFEATURE_MASK_YMM))
1028 			return 1;
1029 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1030 			return 1;
1031 	}
1032 
1033 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1034 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1035 		return 1;
1036 
1037 	vcpu->arch.xcr0 = xcr0;
1038 
1039 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1040 		kvm_update_cpuid_runtime(vcpu);
1041 	return 0;
1042 }
1043 
1044 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1045 {
1046 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1047 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1048 		kvm_inject_gp(vcpu, 0);
1049 		return 1;
1050 	}
1051 
1052 	return kvm_skip_emulated_instruction(vcpu);
1053 }
1054 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1055 
1056 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1057 {
1058 	if (cr4 & cr4_reserved_bits)
1059 		return false;
1060 
1061 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1062 		return false;
1063 
1064 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1065 }
1066 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1067 
1068 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1069 {
1070 	/*
1071 	 * If any role bit is changed, the MMU needs to be reset.
1072 	 *
1073 	 * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed.
1074 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1075 	 * according to the SDM; however, stale prev_roots could be reused
1076 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1077 	 * free them all.  KVM_REQ_MMU_RELOAD is fit for the both cases; it
1078 	 * is slow, but changing CR4.PCIDE is a rare case.
1079 	 *
1080 	 * If CR4.PGE is changed, the guest TLB must be flushed.
1081 	 *
1082 	 * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and
1083 	 * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence
1084 	 * the usage of "else if".
1085 	 */
1086 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1087 		kvm_mmu_reset_context(vcpu);
1088 	else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE)
1089 		kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
1090 	else if ((cr4 ^ old_cr4) & X86_CR4_PGE)
1091 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1094 
1095 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1096 {
1097 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1098 
1099 	if (!kvm_is_valid_cr4(vcpu, cr4))
1100 		return 1;
1101 
1102 	if (is_long_mode(vcpu)) {
1103 		if (!(cr4 & X86_CR4_PAE))
1104 			return 1;
1105 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1106 			return 1;
1107 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1108 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1109 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1110 		return 1;
1111 
1112 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1113 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1114 			return 1;
1115 
1116 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1117 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1118 			return 1;
1119 	}
1120 
1121 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1122 
1123 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1124 
1125 	return 0;
1126 }
1127 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1128 
1129 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1130 {
1131 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1132 	unsigned long roots_to_free = 0;
1133 	int i;
1134 
1135 	/*
1136 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1137 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1138 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1139 	 * the invalidation, but the guest's TLB entries need to be flushed as
1140 	 * the CPU may have cached entries in its TLB for the target PCID.
1141 	 */
1142 	if (unlikely(tdp_enabled)) {
1143 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1144 		return;
1145 	}
1146 
1147 	/*
1148 	 * If neither the current CR3 nor any of the prev_roots use the given
1149 	 * PCID, then nothing needs to be done here because a resync will
1150 	 * happen anyway before switching to any other CR3.
1151 	 */
1152 	if (kvm_get_active_pcid(vcpu) == pcid) {
1153 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1154 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1155 	}
1156 
1157 	/*
1158 	 * If PCID is disabled, there is no need to free prev_roots even if the
1159 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1160 	 * with PCIDE=0.
1161 	 */
1162 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1163 		return;
1164 
1165 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1166 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1167 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1168 
1169 	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1170 }
1171 
1172 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1173 {
1174 	bool skip_tlb_flush = false;
1175 	unsigned long pcid = 0;
1176 #ifdef CONFIG_X86_64
1177 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1178 
1179 	if (pcid_enabled) {
1180 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1181 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1182 		pcid = cr3 & X86_CR3_PCID_MASK;
1183 	}
1184 #endif
1185 
1186 	/* PDPTRs are always reloaded for PAE paging. */
1187 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1188 		goto handle_tlb_flush;
1189 
1190 	/*
1191 	 * Do not condition the GPA check on long mode, this helper is used to
1192 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1193 	 * the current vCPU mode is accurate.
1194 	 */
1195 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1196 		return 1;
1197 
1198 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1199 		return 1;
1200 
1201 	if (cr3 != kvm_read_cr3(vcpu))
1202 		kvm_mmu_new_pgd(vcpu, cr3);
1203 
1204 	vcpu->arch.cr3 = cr3;
1205 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1206 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1207 
1208 handle_tlb_flush:
1209 	/*
1210 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1211 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1212 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1213 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1214 	 * i.e. only PCID=0 can be relevant.
1215 	 */
1216 	if (!skip_tlb_flush)
1217 		kvm_invalidate_pcid(vcpu, pcid);
1218 
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1222 
1223 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1224 {
1225 	if (cr8 & CR8_RESERVED_BITS)
1226 		return 1;
1227 	if (lapic_in_kernel(vcpu))
1228 		kvm_lapic_set_tpr(vcpu, cr8);
1229 	else
1230 		vcpu->arch.cr8 = cr8;
1231 	return 0;
1232 }
1233 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1234 
1235 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1236 {
1237 	if (lapic_in_kernel(vcpu))
1238 		return kvm_lapic_get_cr8(vcpu);
1239 	else
1240 		return vcpu->arch.cr8;
1241 }
1242 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1243 
1244 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1245 {
1246 	int i;
1247 
1248 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1249 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1250 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1251 	}
1252 }
1253 
1254 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1255 {
1256 	unsigned long dr7;
1257 
1258 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1259 		dr7 = vcpu->arch.guest_debug_dr7;
1260 	else
1261 		dr7 = vcpu->arch.dr7;
1262 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1263 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1264 	if (dr7 & DR7_BP_EN_MASK)
1265 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1266 }
1267 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1268 
1269 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1270 {
1271 	u64 fixed = DR6_FIXED_1;
1272 
1273 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1274 		fixed |= DR6_RTM;
1275 
1276 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1277 		fixed |= DR6_BUS_LOCK;
1278 	return fixed;
1279 }
1280 
1281 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1282 {
1283 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1284 
1285 	switch (dr) {
1286 	case 0 ... 3:
1287 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1288 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1289 			vcpu->arch.eff_db[dr] = val;
1290 		break;
1291 	case 4:
1292 	case 6:
1293 		if (!kvm_dr6_valid(val))
1294 			return 1; /* #GP */
1295 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1296 		break;
1297 	case 5:
1298 	default: /* 7 */
1299 		if (!kvm_dr7_valid(val))
1300 			return 1; /* #GP */
1301 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1302 		kvm_update_dr7(vcpu);
1303 		break;
1304 	}
1305 
1306 	return 0;
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_set_dr);
1309 
1310 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1311 {
1312 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1313 
1314 	switch (dr) {
1315 	case 0 ... 3:
1316 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1317 		break;
1318 	case 4:
1319 	case 6:
1320 		*val = vcpu->arch.dr6;
1321 		break;
1322 	case 5:
1323 	default: /* 7 */
1324 		*val = vcpu->arch.dr7;
1325 		break;
1326 	}
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_get_dr);
1329 
1330 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1331 {
1332 	u32 ecx = kvm_rcx_read(vcpu);
1333 	u64 data;
1334 
1335 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1336 		kvm_inject_gp(vcpu, 0);
1337 		return 1;
1338 	}
1339 
1340 	kvm_rax_write(vcpu, (u32)data);
1341 	kvm_rdx_write(vcpu, data >> 32);
1342 	return kvm_skip_emulated_instruction(vcpu);
1343 }
1344 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1345 
1346 /*
1347  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1348  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1349  *
1350  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1351  * extract the supported MSRs from the related const lists.
1352  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1353  * capabilities of the host cpu. This capabilities test skips MSRs that are
1354  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1355  * may depend on host virtualization features rather than host cpu features.
1356  */
1357 
1358 static const u32 msrs_to_save_all[] = {
1359 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1360 	MSR_STAR,
1361 #ifdef CONFIG_X86_64
1362 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1363 #endif
1364 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1365 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1366 	MSR_IA32_SPEC_CTRL,
1367 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1368 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1369 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1370 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1371 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1372 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1373 	MSR_IA32_UMWAIT_CONTROL,
1374 
1375 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1376 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1377 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1378 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1379 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1380 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1381 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1382 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1383 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1384 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1385 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1386 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1387 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1388 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1389 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1390 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1391 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1392 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1393 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1394 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1395 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1396 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1397 
1398 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1399 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1400 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1401 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1402 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1403 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1404 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1405 };
1406 
1407 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1408 static unsigned num_msrs_to_save;
1409 
1410 static const u32 emulated_msrs_all[] = {
1411 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1412 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1413 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1414 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1415 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1416 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1417 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1418 	HV_X64_MSR_RESET,
1419 	HV_X64_MSR_VP_INDEX,
1420 	HV_X64_MSR_VP_RUNTIME,
1421 	HV_X64_MSR_SCONTROL,
1422 	HV_X64_MSR_STIMER0_CONFIG,
1423 	HV_X64_MSR_VP_ASSIST_PAGE,
1424 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1425 	HV_X64_MSR_TSC_EMULATION_STATUS,
1426 	HV_X64_MSR_SYNDBG_OPTIONS,
1427 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1428 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1429 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1430 
1431 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1432 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1433 
1434 	MSR_IA32_TSC_ADJUST,
1435 	MSR_IA32_TSC_DEADLINE,
1436 	MSR_IA32_ARCH_CAPABILITIES,
1437 	MSR_IA32_PERF_CAPABILITIES,
1438 	MSR_IA32_MISC_ENABLE,
1439 	MSR_IA32_MCG_STATUS,
1440 	MSR_IA32_MCG_CTL,
1441 	MSR_IA32_MCG_EXT_CTL,
1442 	MSR_IA32_SMBASE,
1443 	MSR_SMI_COUNT,
1444 	MSR_PLATFORM_INFO,
1445 	MSR_MISC_FEATURES_ENABLES,
1446 	MSR_AMD64_VIRT_SPEC_CTRL,
1447 	MSR_AMD64_TSC_RATIO,
1448 	MSR_IA32_POWER_CTL,
1449 	MSR_IA32_UCODE_REV,
1450 
1451 	/*
1452 	 * The following list leaves out MSRs whose values are determined
1453 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1454 	 * We always support the "true" VMX control MSRs, even if the host
1455 	 * processor does not, so I am putting these registers here rather
1456 	 * than in msrs_to_save_all.
1457 	 */
1458 	MSR_IA32_VMX_BASIC,
1459 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1460 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1461 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1462 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1463 	MSR_IA32_VMX_MISC,
1464 	MSR_IA32_VMX_CR0_FIXED0,
1465 	MSR_IA32_VMX_CR4_FIXED0,
1466 	MSR_IA32_VMX_VMCS_ENUM,
1467 	MSR_IA32_VMX_PROCBASED_CTLS2,
1468 	MSR_IA32_VMX_EPT_VPID_CAP,
1469 	MSR_IA32_VMX_VMFUNC,
1470 
1471 	MSR_K7_HWCR,
1472 	MSR_KVM_POLL_CONTROL,
1473 };
1474 
1475 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1476 static unsigned num_emulated_msrs;
1477 
1478 /*
1479  * List of msr numbers which are used to expose MSR-based features that
1480  * can be used by a hypervisor to validate requested CPU features.
1481  */
1482 static const u32 msr_based_features_all[] = {
1483 	MSR_IA32_VMX_BASIC,
1484 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1485 	MSR_IA32_VMX_PINBASED_CTLS,
1486 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1487 	MSR_IA32_VMX_PROCBASED_CTLS,
1488 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1489 	MSR_IA32_VMX_EXIT_CTLS,
1490 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1491 	MSR_IA32_VMX_ENTRY_CTLS,
1492 	MSR_IA32_VMX_MISC,
1493 	MSR_IA32_VMX_CR0_FIXED0,
1494 	MSR_IA32_VMX_CR0_FIXED1,
1495 	MSR_IA32_VMX_CR4_FIXED0,
1496 	MSR_IA32_VMX_CR4_FIXED1,
1497 	MSR_IA32_VMX_VMCS_ENUM,
1498 	MSR_IA32_VMX_PROCBASED_CTLS2,
1499 	MSR_IA32_VMX_EPT_VPID_CAP,
1500 	MSR_IA32_VMX_VMFUNC,
1501 
1502 	MSR_F10H_DECFG,
1503 	MSR_IA32_UCODE_REV,
1504 	MSR_IA32_ARCH_CAPABILITIES,
1505 	MSR_IA32_PERF_CAPABILITIES,
1506 };
1507 
1508 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1509 static unsigned int num_msr_based_features;
1510 
1511 static u64 kvm_get_arch_capabilities(void)
1512 {
1513 	u64 data = 0;
1514 
1515 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1516 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1517 
1518 	/*
1519 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1520 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1521 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1522 	 * L1 guests, so it need not worry about its own (L2) guests.
1523 	 */
1524 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1525 
1526 	/*
1527 	 * If we're doing cache flushes (either "always" or "cond")
1528 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1529 	 * If an outer hypervisor is doing the cache flush for us
1530 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1531 	 * capability to the guest too, and if EPT is disabled we're not
1532 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1533 	 * require a nested hypervisor to do a flush of its own.
1534 	 */
1535 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1536 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1537 
1538 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1539 		data |= ARCH_CAP_RDCL_NO;
1540 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1541 		data |= ARCH_CAP_SSB_NO;
1542 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1543 		data |= ARCH_CAP_MDS_NO;
1544 
1545 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1546 		/*
1547 		 * If RTM=0 because the kernel has disabled TSX, the host might
1548 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1549 		 * and therefore knows that there cannot be TAA) but keep
1550 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1551 		 * and we want to allow migrating those guests to tsx=off hosts.
1552 		 */
1553 		data &= ~ARCH_CAP_TAA_NO;
1554 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1555 		data |= ARCH_CAP_TAA_NO;
1556 	} else {
1557 		/*
1558 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1559 		 * host so the guest can choose between disabling TSX or
1560 		 * using VERW to clear CPU buffers.
1561 		 */
1562 	}
1563 
1564 	return data;
1565 }
1566 
1567 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1568 {
1569 	switch (msr->index) {
1570 	case MSR_IA32_ARCH_CAPABILITIES:
1571 		msr->data = kvm_get_arch_capabilities();
1572 		break;
1573 	case MSR_IA32_UCODE_REV:
1574 		rdmsrl_safe(msr->index, &msr->data);
1575 		break;
1576 	default:
1577 		return static_call(kvm_x86_get_msr_feature)(msr);
1578 	}
1579 	return 0;
1580 }
1581 
1582 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1583 {
1584 	struct kvm_msr_entry msr;
1585 	int r;
1586 
1587 	msr.index = index;
1588 	r = kvm_get_msr_feature(&msr);
1589 
1590 	if (r == KVM_MSR_RET_INVALID) {
1591 		/* Unconditionally clear the output for simplicity */
1592 		*data = 0;
1593 		if (kvm_msr_ignored_check(index, 0, false))
1594 			r = 0;
1595 	}
1596 
1597 	if (r)
1598 		return r;
1599 
1600 	*data = msr.data;
1601 
1602 	return 0;
1603 }
1604 
1605 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1606 {
1607 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1608 		return false;
1609 
1610 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1611 		return false;
1612 
1613 	if (efer & (EFER_LME | EFER_LMA) &&
1614 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1615 		return false;
1616 
1617 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1618 		return false;
1619 
1620 	return true;
1621 
1622 }
1623 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1624 {
1625 	if (efer & efer_reserved_bits)
1626 		return false;
1627 
1628 	return __kvm_valid_efer(vcpu, efer);
1629 }
1630 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1631 
1632 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1633 {
1634 	u64 old_efer = vcpu->arch.efer;
1635 	u64 efer = msr_info->data;
1636 	int r;
1637 
1638 	if (efer & efer_reserved_bits)
1639 		return 1;
1640 
1641 	if (!msr_info->host_initiated) {
1642 		if (!__kvm_valid_efer(vcpu, efer))
1643 			return 1;
1644 
1645 		if (is_paging(vcpu) &&
1646 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1647 			return 1;
1648 	}
1649 
1650 	efer &= ~EFER_LMA;
1651 	efer |= vcpu->arch.efer & EFER_LMA;
1652 
1653 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1654 	if (r) {
1655 		WARN_ON(r > 0);
1656 		return r;
1657 	}
1658 
1659 	/* Update reserved bits */
1660 	if ((efer ^ old_efer) & EFER_NX)
1661 		kvm_mmu_reset_context(vcpu);
1662 
1663 	return 0;
1664 }
1665 
1666 void kvm_enable_efer_bits(u64 mask)
1667 {
1668        efer_reserved_bits &= ~mask;
1669 }
1670 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1671 
1672 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1673 {
1674 	struct kvm_x86_msr_filter *msr_filter;
1675 	struct msr_bitmap_range *ranges;
1676 	struct kvm *kvm = vcpu->kvm;
1677 	bool allowed;
1678 	int idx;
1679 	u32 i;
1680 
1681 	/* x2APIC MSRs do not support filtering. */
1682 	if (index >= 0x800 && index <= 0x8ff)
1683 		return true;
1684 
1685 	idx = srcu_read_lock(&kvm->srcu);
1686 
1687 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1688 	if (!msr_filter) {
1689 		allowed = true;
1690 		goto out;
1691 	}
1692 
1693 	allowed = msr_filter->default_allow;
1694 	ranges = msr_filter->ranges;
1695 
1696 	for (i = 0; i < msr_filter->count; i++) {
1697 		u32 start = ranges[i].base;
1698 		u32 end = start + ranges[i].nmsrs;
1699 		u32 flags = ranges[i].flags;
1700 		unsigned long *bitmap = ranges[i].bitmap;
1701 
1702 		if ((index >= start) && (index < end) && (flags & type)) {
1703 			allowed = !!test_bit(index - start, bitmap);
1704 			break;
1705 		}
1706 	}
1707 
1708 out:
1709 	srcu_read_unlock(&kvm->srcu, idx);
1710 
1711 	return allowed;
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1714 
1715 /*
1716  * Write @data into the MSR specified by @index.  Select MSR specific fault
1717  * checks are bypassed if @host_initiated is %true.
1718  * Returns 0 on success, non-0 otherwise.
1719  * Assumes vcpu_load() was already called.
1720  */
1721 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1722 			 bool host_initiated)
1723 {
1724 	struct msr_data msr;
1725 
1726 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1727 		return KVM_MSR_RET_FILTERED;
1728 
1729 	switch (index) {
1730 	case MSR_FS_BASE:
1731 	case MSR_GS_BASE:
1732 	case MSR_KERNEL_GS_BASE:
1733 	case MSR_CSTAR:
1734 	case MSR_LSTAR:
1735 		if (is_noncanonical_address(data, vcpu))
1736 			return 1;
1737 		break;
1738 	case MSR_IA32_SYSENTER_EIP:
1739 	case MSR_IA32_SYSENTER_ESP:
1740 		/*
1741 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1742 		 * non-canonical address is written on Intel but not on
1743 		 * AMD (which ignores the top 32-bits, because it does
1744 		 * not implement 64-bit SYSENTER).
1745 		 *
1746 		 * 64-bit code should hence be able to write a non-canonical
1747 		 * value on AMD.  Making the address canonical ensures that
1748 		 * vmentry does not fail on Intel after writing a non-canonical
1749 		 * value, and that something deterministic happens if the guest
1750 		 * invokes 64-bit SYSENTER.
1751 		 */
1752 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1753 		break;
1754 	case MSR_TSC_AUX:
1755 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1756 			return 1;
1757 
1758 		if (!host_initiated &&
1759 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1760 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1761 			return 1;
1762 
1763 		/*
1764 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1765 		 * incomplete and conflicting architectural behavior.  Current
1766 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1767 		 * reserved and always read as zeros.  Enforce Intel's reserved
1768 		 * bits check if and only if the guest CPU is Intel, and clear
1769 		 * the bits in all other cases.  This ensures cross-vendor
1770 		 * migration will provide consistent behavior for the guest.
1771 		 */
1772 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1773 			return 1;
1774 
1775 		data = (u32)data;
1776 		break;
1777 	}
1778 
1779 	msr.data = data;
1780 	msr.index = index;
1781 	msr.host_initiated = host_initiated;
1782 
1783 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1784 }
1785 
1786 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1787 				     u32 index, u64 data, bool host_initiated)
1788 {
1789 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1790 
1791 	if (ret == KVM_MSR_RET_INVALID)
1792 		if (kvm_msr_ignored_check(index, data, true))
1793 			ret = 0;
1794 
1795 	return ret;
1796 }
1797 
1798 /*
1799  * Read the MSR specified by @index into @data.  Select MSR specific fault
1800  * checks are bypassed if @host_initiated is %true.
1801  * Returns 0 on success, non-0 otherwise.
1802  * Assumes vcpu_load() was already called.
1803  */
1804 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1805 		  bool host_initiated)
1806 {
1807 	struct msr_data msr;
1808 	int ret;
1809 
1810 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1811 		return KVM_MSR_RET_FILTERED;
1812 
1813 	switch (index) {
1814 	case MSR_TSC_AUX:
1815 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1816 			return 1;
1817 
1818 		if (!host_initiated &&
1819 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1820 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1821 			return 1;
1822 		break;
1823 	}
1824 
1825 	msr.index = index;
1826 	msr.host_initiated = host_initiated;
1827 
1828 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1829 	if (!ret)
1830 		*data = msr.data;
1831 	return ret;
1832 }
1833 
1834 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1835 				     u32 index, u64 *data, bool host_initiated)
1836 {
1837 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1838 
1839 	if (ret == KVM_MSR_RET_INVALID) {
1840 		/* Unconditionally clear *data for simplicity */
1841 		*data = 0;
1842 		if (kvm_msr_ignored_check(index, 0, false))
1843 			ret = 0;
1844 	}
1845 
1846 	return ret;
1847 }
1848 
1849 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1850 {
1851 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1852 }
1853 EXPORT_SYMBOL_GPL(kvm_get_msr);
1854 
1855 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1856 {
1857 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1858 }
1859 EXPORT_SYMBOL_GPL(kvm_set_msr);
1860 
1861 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1862 {
1863 	if (!vcpu->run->msr.error) {
1864 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1865 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1866 	}
1867 }
1868 
1869 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1870 {
1871 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1872 }
1873 
1874 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1875 {
1876 	complete_userspace_rdmsr(vcpu);
1877 	return complete_emulated_msr_access(vcpu);
1878 }
1879 
1880 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1881 {
1882 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1883 }
1884 
1885 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1886 {
1887 	complete_userspace_rdmsr(vcpu);
1888 	return complete_fast_msr_access(vcpu);
1889 }
1890 
1891 static u64 kvm_msr_reason(int r)
1892 {
1893 	switch (r) {
1894 	case KVM_MSR_RET_INVALID:
1895 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1896 	case KVM_MSR_RET_FILTERED:
1897 		return KVM_MSR_EXIT_REASON_FILTER;
1898 	default:
1899 		return KVM_MSR_EXIT_REASON_INVAL;
1900 	}
1901 }
1902 
1903 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1904 			      u32 exit_reason, u64 data,
1905 			      int (*completion)(struct kvm_vcpu *vcpu),
1906 			      int r)
1907 {
1908 	u64 msr_reason = kvm_msr_reason(r);
1909 
1910 	/* Check if the user wanted to know about this MSR fault */
1911 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1912 		return 0;
1913 
1914 	vcpu->run->exit_reason = exit_reason;
1915 	vcpu->run->msr.error = 0;
1916 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1917 	vcpu->run->msr.reason = msr_reason;
1918 	vcpu->run->msr.index = index;
1919 	vcpu->run->msr.data = data;
1920 	vcpu->arch.complete_userspace_io = completion;
1921 
1922 	return 1;
1923 }
1924 
1925 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1926 {
1927 	u32 ecx = kvm_rcx_read(vcpu);
1928 	u64 data;
1929 	int r;
1930 
1931 	r = kvm_get_msr(vcpu, ecx, &data);
1932 
1933 	if (!r) {
1934 		trace_kvm_msr_read(ecx, data);
1935 
1936 		kvm_rax_write(vcpu, data & -1u);
1937 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1938 	} else {
1939 		/* MSR read failed? See if we should ask user space */
1940 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1941 				       complete_fast_rdmsr, r))
1942 			return 0;
1943 		trace_kvm_msr_read_ex(ecx);
1944 	}
1945 
1946 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1947 }
1948 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1949 
1950 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1951 {
1952 	u32 ecx = kvm_rcx_read(vcpu);
1953 	u64 data = kvm_read_edx_eax(vcpu);
1954 	int r;
1955 
1956 	r = kvm_set_msr(vcpu, ecx, data);
1957 
1958 	if (!r) {
1959 		trace_kvm_msr_write(ecx, data);
1960 	} else {
1961 		/* MSR write failed? See if we should ask user space */
1962 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1963 				       complete_fast_msr_access, r))
1964 			return 0;
1965 		/* Signal all other negative errors to userspace */
1966 		if (r < 0)
1967 			return r;
1968 		trace_kvm_msr_write_ex(ecx, data);
1969 	}
1970 
1971 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1972 }
1973 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1974 
1975 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1976 {
1977 	return kvm_skip_emulated_instruction(vcpu);
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1980 
1981 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1982 {
1983 	/* Treat an INVD instruction as a NOP and just skip it. */
1984 	return kvm_emulate_as_nop(vcpu);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1987 
1988 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1989 {
1990 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1991 	return kvm_emulate_as_nop(vcpu);
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1994 
1995 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1996 {
1997 	kvm_queue_exception(vcpu, UD_VECTOR);
1998 	return 1;
1999 }
2000 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2001 
2002 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2003 {
2004 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2005 	return kvm_emulate_as_nop(vcpu);
2006 }
2007 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2008 
2009 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2010 {
2011 	xfer_to_guest_mode_prepare();
2012 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2013 		xfer_to_guest_mode_work_pending();
2014 }
2015 
2016 /*
2017  * The fast path for frequent and performance sensitive wrmsr emulation,
2018  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2019  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2020  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2021  * other cases which must be called after interrupts are enabled on the host.
2022  */
2023 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2024 {
2025 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2026 		return 1;
2027 
2028 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2029 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2030 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2031 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
2032 
2033 		data &= ~(1 << 12);
2034 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
2035 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
2036 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
2037 		trace_kvm_apic_write(APIC_ICR, (u32)data);
2038 		return 0;
2039 	}
2040 
2041 	return 1;
2042 }
2043 
2044 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2045 {
2046 	if (!kvm_can_use_hv_timer(vcpu))
2047 		return 1;
2048 
2049 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2050 	return 0;
2051 }
2052 
2053 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2054 {
2055 	u32 msr = kvm_rcx_read(vcpu);
2056 	u64 data;
2057 	fastpath_t ret = EXIT_FASTPATH_NONE;
2058 
2059 	switch (msr) {
2060 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2061 		data = kvm_read_edx_eax(vcpu);
2062 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2063 			kvm_skip_emulated_instruction(vcpu);
2064 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2065 		}
2066 		break;
2067 	case MSR_IA32_TSC_DEADLINE:
2068 		data = kvm_read_edx_eax(vcpu);
2069 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2070 			kvm_skip_emulated_instruction(vcpu);
2071 			ret = EXIT_FASTPATH_REENTER_GUEST;
2072 		}
2073 		break;
2074 	default:
2075 		break;
2076 	}
2077 
2078 	if (ret != EXIT_FASTPATH_NONE)
2079 		trace_kvm_msr_write(msr, data);
2080 
2081 	return ret;
2082 }
2083 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2084 
2085 /*
2086  * Adapt set_msr() to msr_io()'s calling convention
2087  */
2088 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2089 {
2090 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2091 }
2092 
2093 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2094 {
2095 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2096 }
2097 
2098 #ifdef CONFIG_X86_64
2099 struct pvclock_clock {
2100 	int vclock_mode;
2101 	u64 cycle_last;
2102 	u64 mask;
2103 	u32 mult;
2104 	u32 shift;
2105 	u64 base_cycles;
2106 	u64 offset;
2107 };
2108 
2109 struct pvclock_gtod_data {
2110 	seqcount_t	seq;
2111 
2112 	struct pvclock_clock clock; /* extract of a clocksource struct */
2113 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2114 
2115 	ktime_t		offs_boot;
2116 	u64		wall_time_sec;
2117 };
2118 
2119 static struct pvclock_gtod_data pvclock_gtod_data;
2120 
2121 static void update_pvclock_gtod(struct timekeeper *tk)
2122 {
2123 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2124 
2125 	write_seqcount_begin(&vdata->seq);
2126 
2127 	/* copy pvclock gtod data */
2128 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2129 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2130 	vdata->clock.mask		= tk->tkr_mono.mask;
2131 	vdata->clock.mult		= tk->tkr_mono.mult;
2132 	vdata->clock.shift		= tk->tkr_mono.shift;
2133 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2134 	vdata->clock.offset		= tk->tkr_mono.base;
2135 
2136 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2137 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2138 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2139 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2140 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2141 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2142 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2143 
2144 	vdata->wall_time_sec            = tk->xtime_sec;
2145 
2146 	vdata->offs_boot		= tk->offs_boot;
2147 
2148 	write_seqcount_end(&vdata->seq);
2149 }
2150 
2151 static s64 get_kvmclock_base_ns(void)
2152 {
2153 	/* Count up from boot time, but with the frequency of the raw clock.  */
2154 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2155 }
2156 #else
2157 static s64 get_kvmclock_base_ns(void)
2158 {
2159 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2160 	return ktime_get_boottime_ns();
2161 }
2162 #endif
2163 
2164 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2165 {
2166 	int version;
2167 	int r;
2168 	struct pvclock_wall_clock wc;
2169 	u32 wc_sec_hi;
2170 	u64 wall_nsec;
2171 
2172 	if (!wall_clock)
2173 		return;
2174 
2175 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2176 	if (r)
2177 		return;
2178 
2179 	if (version & 1)
2180 		++version;  /* first time write, random junk */
2181 
2182 	++version;
2183 
2184 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2185 		return;
2186 
2187 	/*
2188 	 * The guest calculates current wall clock time by adding
2189 	 * system time (updated by kvm_guest_time_update below) to the
2190 	 * wall clock specified here.  We do the reverse here.
2191 	 */
2192 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2193 
2194 	wc.nsec = do_div(wall_nsec, 1000000000);
2195 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2196 	wc.version = version;
2197 
2198 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2199 
2200 	if (sec_hi_ofs) {
2201 		wc_sec_hi = wall_nsec >> 32;
2202 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2203 				&wc_sec_hi, sizeof(wc_sec_hi));
2204 	}
2205 
2206 	version++;
2207 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2208 }
2209 
2210 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2211 				  bool old_msr, bool host_initiated)
2212 {
2213 	struct kvm_arch *ka = &vcpu->kvm->arch;
2214 
2215 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2216 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2217 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2218 
2219 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2220 	}
2221 
2222 	vcpu->arch.time = system_time;
2223 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2224 
2225 	/* we verify if the enable bit is set... */
2226 	vcpu->arch.pv_time_enabled = false;
2227 	if (!(system_time & 1))
2228 		return;
2229 
2230 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2231 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2232 				       sizeof(struct pvclock_vcpu_time_info)))
2233 		vcpu->arch.pv_time_enabled = true;
2234 
2235 	return;
2236 }
2237 
2238 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2239 {
2240 	do_shl32_div32(dividend, divisor);
2241 	return dividend;
2242 }
2243 
2244 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2245 			       s8 *pshift, u32 *pmultiplier)
2246 {
2247 	uint64_t scaled64;
2248 	int32_t  shift = 0;
2249 	uint64_t tps64;
2250 	uint32_t tps32;
2251 
2252 	tps64 = base_hz;
2253 	scaled64 = scaled_hz;
2254 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2255 		tps64 >>= 1;
2256 		shift--;
2257 	}
2258 
2259 	tps32 = (uint32_t)tps64;
2260 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2261 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2262 			scaled64 >>= 1;
2263 		else
2264 			tps32 <<= 1;
2265 		shift++;
2266 	}
2267 
2268 	*pshift = shift;
2269 	*pmultiplier = div_frac(scaled64, tps32);
2270 }
2271 
2272 #ifdef CONFIG_X86_64
2273 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2274 #endif
2275 
2276 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2277 static unsigned long max_tsc_khz;
2278 
2279 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2280 {
2281 	u64 v = (u64)khz * (1000000 + ppm);
2282 	do_div(v, 1000000);
2283 	return v;
2284 }
2285 
2286 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2287 
2288 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2289 {
2290 	u64 ratio;
2291 
2292 	/* Guest TSC same frequency as host TSC? */
2293 	if (!scale) {
2294 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2295 		return 0;
2296 	}
2297 
2298 	/* TSC scaling supported? */
2299 	if (!kvm_has_tsc_control) {
2300 		if (user_tsc_khz > tsc_khz) {
2301 			vcpu->arch.tsc_catchup = 1;
2302 			vcpu->arch.tsc_always_catchup = 1;
2303 			return 0;
2304 		} else {
2305 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2306 			return -1;
2307 		}
2308 	}
2309 
2310 	/* TSC scaling required  - calculate ratio */
2311 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2312 				user_tsc_khz, tsc_khz);
2313 
2314 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2315 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2316 			            user_tsc_khz);
2317 		return -1;
2318 	}
2319 
2320 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2321 	return 0;
2322 }
2323 
2324 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2325 {
2326 	u32 thresh_lo, thresh_hi;
2327 	int use_scaling = 0;
2328 
2329 	/* tsc_khz can be zero if TSC calibration fails */
2330 	if (user_tsc_khz == 0) {
2331 		/* set tsc_scaling_ratio to a safe value */
2332 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2333 		return -1;
2334 	}
2335 
2336 	/* Compute a scale to convert nanoseconds in TSC cycles */
2337 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2338 			   &vcpu->arch.virtual_tsc_shift,
2339 			   &vcpu->arch.virtual_tsc_mult);
2340 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2341 
2342 	/*
2343 	 * Compute the variation in TSC rate which is acceptable
2344 	 * within the range of tolerance and decide if the
2345 	 * rate being applied is within that bounds of the hardware
2346 	 * rate.  If so, no scaling or compensation need be done.
2347 	 */
2348 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2349 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2350 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2351 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2352 		use_scaling = 1;
2353 	}
2354 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2355 }
2356 
2357 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2358 {
2359 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2360 				      vcpu->arch.virtual_tsc_mult,
2361 				      vcpu->arch.virtual_tsc_shift);
2362 	tsc += vcpu->arch.this_tsc_write;
2363 	return tsc;
2364 }
2365 
2366 #ifdef CONFIG_X86_64
2367 static inline int gtod_is_based_on_tsc(int mode)
2368 {
2369 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2370 }
2371 #endif
2372 
2373 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2374 {
2375 #ifdef CONFIG_X86_64
2376 	bool vcpus_matched;
2377 	struct kvm_arch *ka = &vcpu->kvm->arch;
2378 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2379 
2380 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2381 			 atomic_read(&vcpu->kvm->online_vcpus));
2382 
2383 	/*
2384 	 * Once the masterclock is enabled, always perform request in
2385 	 * order to update it.
2386 	 *
2387 	 * In order to enable masterclock, the host clocksource must be TSC
2388 	 * and the vcpus need to have matched TSCs.  When that happens,
2389 	 * perform request to enable masterclock.
2390 	 */
2391 	if (ka->use_master_clock ||
2392 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2393 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2394 
2395 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2396 			    atomic_read(&vcpu->kvm->online_vcpus),
2397 		            ka->use_master_clock, gtod->clock.vclock_mode);
2398 #endif
2399 }
2400 
2401 /*
2402  * Multiply tsc by a fixed point number represented by ratio.
2403  *
2404  * The most significant 64-N bits (mult) of ratio represent the
2405  * integral part of the fixed point number; the remaining N bits
2406  * (frac) represent the fractional part, ie. ratio represents a fixed
2407  * point number (mult + frac * 2^(-N)).
2408  *
2409  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2410  */
2411 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2412 {
2413 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2414 }
2415 
2416 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2417 {
2418 	u64 _tsc = tsc;
2419 
2420 	if (ratio != kvm_default_tsc_scaling_ratio)
2421 		_tsc = __scale_tsc(ratio, tsc);
2422 
2423 	return _tsc;
2424 }
2425 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2426 
2427 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2428 {
2429 	u64 tsc;
2430 
2431 	tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2432 
2433 	return target_tsc - tsc;
2434 }
2435 
2436 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2437 {
2438 	return vcpu->arch.l1_tsc_offset +
2439 		kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2440 }
2441 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2442 
2443 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2444 {
2445 	u64 nested_offset;
2446 
2447 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2448 		nested_offset = l1_offset;
2449 	else
2450 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2451 						kvm_tsc_scaling_ratio_frac_bits);
2452 
2453 	nested_offset += l2_offset;
2454 	return nested_offset;
2455 }
2456 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2457 
2458 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2459 {
2460 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2461 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2462 				       kvm_tsc_scaling_ratio_frac_bits);
2463 
2464 	return l1_multiplier;
2465 }
2466 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2467 
2468 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2469 {
2470 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2471 				   vcpu->arch.l1_tsc_offset,
2472 				   l1_offset);
2473 
2474 	vcpu->arch.l1_tsc_offset = l1_offset;
2475 
2476 	/*
2477 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2478 	 * according to the spec this should set L1's TSC (as opposed to
2479 	 * setting L1's offset for L2).
2480 	 */
2481 	if (is_guest_mode(vcpu))
2482 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2483 			l1_offset,
2484 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2485 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2486 	else
2487 		vcpu->arch.tsc_offset = l1_offset;
2488 
2489 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2490 }
2491 
2492 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2493 {
2494 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2495 
2496 	/* Userspace is changing the multiplier while L2 is active */
2497 	if (is_guest_mode(vcpu))
2498 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2499 			l1_multiplier,
2500 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2501 	else
2502 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2503 
2504 	if (kvm_has_tsc_control)
2505 		static_call(kvm_x86_write_tsc_multiplier)(
2506 			vcpu, vcpu->arch.tsc_scaling_ratio);
2507 }
2508 
2509 static inline bool kvm_check_tsc_unstable(void)
2510 {
2511 #ifdef CONFIG_X86_64
2512 	/*
2513 	 * TSC is marked unstable when we're running on Hyper-V,
2514 	 * 'TSC page' clocksource is good.
2515 	 */
2516 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2517 		return false;
2518 #endif
2519 	return check_tsc_unstable();
2520 }
2521 
2522 /*
2523  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2524  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2525  * participates in.
2526  */
2527 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2528 				  u64 ns, bool matched)
2529 {
2530 	struct kvm *kvm = vcpu->kvm;
2531 
2532 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2533 
2534 	/*
2535 	 * We also track th most recent recorded KHZ, write and time to
2536 	 * allow the matching interval to be extended at each write.
2537 	 */
2538 	kvm->arch.last_tsc_nsec = ns;
2539 	kvm->arch.last_tsc_write = tsc;
2540 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2541 	kvm->arch.last_tsc_offset = offset;
2542 
2543 	vcpu->arch.last_guest_tsc = tsc;
2544 
2545 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2546 
2547 	if (!matched) {
2548 		/*
2549 		 * We split periods of matched TSC writes into generations.
2550 		 * For each generation, we track the original measured
2551 		 * nanosecond time, offset, and write, so if TSCs are in
2552 		 * sync, we can match exact offset, and if not, we can match
2553 		 * exact software computation in compute_guest_tsc()
2554 		 *
2555 		 * These values are tracked in kvm->arch.cur_xxx variables.
2556 		 */
2557 		kvm->arch.cur_tsc_generation++;
2558 		kvm->arch.cur_tsc_nsec = ns;
2559 		kvm->arch.cur_tsc_write = tsc;
2560 		kvm->arch.cur_tsc_offset = offset;
2561 		kvm->arch.nr_vcpus_matched_tsc = 0;
2562 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2563 		kvm->arch.nr_vcpus_matched_tsc++;
2564 	}
2565 
2566 	/* Keep track of which generation this VCPU has synchronized to */
2567 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2568 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2569 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2570 
2571 	kvm_track_tsc_matching(vcpu);
2572 }
2573 
2574 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2575 {
2576 	struct kvm *kvm = vcpu->kvm;
2577 	u64 offset, ns, elapsed;
2578 	unsigned long flags;
2579 	bool matched = false;
2580 	bool synchronizing = false;
2581 
2582 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2583 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2584 	ns = get_kvmclock_base_ns();
2585 	elapsed = ns - kvm->arch.last_tsc_nsec;
2586 
2587 	if (vcpu->arch.virtual_tsc_khz) {
2588 		if (data == 0) {
2589 			/*
2590 			 * detection of vcpu initialization -- need to sync
2591 			 * with other vCPUs. This particularly helps to keep
2592 			 * kvm_clock stable after CPU hotplug
2593 			 */
2594 			synchronizing = true;
2595 		} else {
2596 			u64 tsc_exp = kvm->arch.last_tsc_write +
2597 						nsec_to_cycles(vcpu, elapsed);
2598 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2599 			/*
2600 			 * Special case: TSC write with a small delta (1 second)
2601 			 * of virtual cycle time against real time is
2602 			 * interpreted as an attempt to synchronize the CPU.
2603 			 */
2604 			synchronizing = data < tsc_exp + tsc_hz &&
2605 					data + tsc_hz > tsc_exp;
2606 		}
2607 	}
2608 
2609 	/*
2610 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2611 	 * TSC, we add elapsed time in this computation.  We could let the
2612 	 * compensation code attempt to catch up if we fall behind, but
2613 	 * it's better to try to match offsets from the beginning.
2614          */
2615 	if (synchronizing &&
2616 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2617 		if (!kvm_check_tsc_unstable()) {
2618 			offset = kvm->arch.cur_tsc_offset;
2619 		} else {
2620 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2621 			data += delta;
2622 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2623 		}
2624 		matched = true;
2625 	}
2626 
2627 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2628 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2629 }
2630 
2631 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2632 					   s64 adjustment)
2633 {
2634 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2635 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2636 }
2637 
2638 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2639 {
2640 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2641 		WARN_ON(adjustment < 0);
2642 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2643 				   vcpu->arch.l1_tsc_scaling_ratio);
2644 	adjust_tsc_offset_guest(vcpu, adjustment);
2645 }
2646 
2647 #ifdef CONFIG_X86_64
2648 
2649 static u64 read_tsc(void)
2650 {
2651 	u64 ret = (u64)rdtsc_ordered();
2652 	u64 last = pvclock_gtod_data.clock.cycle_last;
2653 
2654 	if (likely(ret >= last))
2655 		return ret;
2656 
2657 	/*
2658 	 * GCC likes to generate cmov here, but this branch is extremely
2659 	 * predictable (it's just a function of time and the likely is
2660 	 * very likely) and there's a data dependence, so force GCC
2661 	 * to generate a branch instead.  I don't barrier() because
2662 	 * we don't actually need a barrier, and if this function
2663 	 * ever gets inlined it will generate worse code.
2664 	 */
2665 	asm volatile ("");
2666 	return last;
2667 }
2668 
2669 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2670 			  int *mode)
2671 {
2672 	long v;
2673 	u64 tsc_pg_val;
2674 
2675 	switch (clock->vclock_mode) {
2676 	case VDSO_CLOCKMODE_HVCLOCK:
2677 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2678 						  tsc_timestamp);
2679 		if (tsc_pg_val != U64_MAX) {
2680 			/* TSC page valid */
2681 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2682 			v = (tsc_pg_val - clock->cycle_last) &
2683 				clock->mask;
2684 		} else {
2685 			/* TSC page invalid */
2686 			*mode = VDSO_CLOCKMODE_NONE;
2687 		}
2688 		break;
2689 	case VDSO_CLOCKMODE_TSC:
2690 		*mode = VDSO_CLOCKMODE_TSC;
2691 		*tsc_timestamp = read_tsc();
2692 		v = (*tsc_timestamp - clock->cycle_last) &
2693 			clock->mask;
2694 		break;
2695 	default:
2696 		*mode = VDSO_CLOCKMODE_NONE;
2697 	}
2698 
2699 	if (*mode == VDSO_CLOCKMODE_NONE)
2700 		*tsc_timestamp = v = 0;
2701 
2702 	return v * clock->mult;
2703 }
2704 
2705 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2706 {
2707 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2708 	unsigned long seq;
2709 	int mode;
2710 	u64 ns;
2711 
2712 	do {
2713 		seq = read_seqcount_begin(&gtod->seq);
2714 		ns = gtod->raw_clock.base_cycles;
2715 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2716 		ns >>= gtod->raw_clock.shift;
2717 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2718 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2719 	*t = ns;
2720 
2721 	return mode;
2722 }
2723 
2724 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2725 {
2726 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2727 	unsigned long seq;
2728 	int mode;
2729 	u64 ns;
2730 
2731 	do {
2732 		seq = read_seqcount_begin(&gtod->seq);
2733 		ts->tv_sec = gtod->wall_time_sec;
2734 		ns = gtod->clock.base_cycles;
2735 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2736 		ns >>= gtod->clock.shift;
2737 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2738 
2739 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2740 	ts->tv_nsec = ns;
2741 
2742 	return mode;
2743 }
2744 
2745 /* returns true if host is using TSC based clocksource */
2746 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2747 {
2748 	/* checked again under seqlock below */
2749 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2750 		return false;
2751 
2752 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2753 						      tsc_timestamp));
2754 }
2755 
2756 /* returns true if host is using TSC based clocksource */
2757 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2758 					   u64 *tsc_timestamp)
2759 {
2760 	/* checked again under seqlock below */
2761 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2762 		return false;
2763 
2764 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2765 }
2766 #endif
2767 
2768 /*
2769  *
2770  * Assuming a stable TSC across physical CPUS, and a stable TSC
2771  * across virtual CPUs, the following condition is possible.
2772  * Each numbered line represents an event visible to both
2773  * CPUs at the next numbered event.
2774  *
2775  * "timespecX" represents host monotonic time. "tscX" represents
2776  * RDTSC value.
2777  *
2778  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2779  *
2780  * 1.  read timespec0,tsc0
2781  * 2.					| timespec1 = timespec0 + N
2782  * 					| tsc1 = tsc0 + M
2783  * 3. transition to guest		| transition to guest
2784  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2785  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2786  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2787  *
2788  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2789  *
2790  * 	- ret0 < ret1
2791  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2792  *		...
2793  *	- 0 < N - M => M < N
2794  *
2795  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2796  * always the case (the difference between two distinct xtime instances
2797  * might be smaller then the difference between corresponding TSC reads,
2798  * when updating guest vcpus pvclock areas).
2799  *
2800  * To avoid that problem, do not allow visibility of distinct
2801  * system_timestamp/tsc_timestamp values simultaneously: use a master
2802  * copy of host monotonic time values. Update that master copy
2803  * in lockstep.
2804  *
2805  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2806  *
2807  */
2808 
2809 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2810 {
2811 #ifdef CONFIG_X86_64
2812 	struct kvm_arch *ka = &kvm->arch;
2813 	int vclock_mode;
2814 	bool host_tsc_clocksource, vcpus_matched;
2815 
2816 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2817 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2818 			atomic_read(&kvm->online_vcpus));
2819 
2820 	/*
2821 	 * If the host uses TSC clock, then passthrough TSC as stable
2822 	 * to the guest.
2823 	 */
2824 	host_tsc_clocksource = kvm_get_time_and_clockread(
2825 					&ka->master_kernel_ns,
2826 					&ka->master_cycle_now);
2827 
2828 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2829 				&& !ka->backwards_tsc_observed
2830 				&& !ka->boot_vcpu_runs_old_kvmclock;
2831 
2832 	if (ka->use_master_clock)
2833 		atomic_set(&kvm_guest_has_master_clock, 1);
2834 
2835 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2836 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2837 					vcpus_matched);
2838 #endif
2839 }
2840 
2841 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2842 {
2843 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2844 }
2845 
2846 static void __kvm_start_pvclock_update(struct kvm *kvm)
2847 {
2848 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2849 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2850 }
2851 
2852 static void kvm_start_pvclock_update(struct kvm *kvm)
2853 {
2854 	kvm_make_mclock_inprogress_request(kvm);
2855 
2856 	/* no guest entries from this point */
2857 	__kvm_start_pvclock_update(kvm);
2858 }
2859 
2860 static void kvm_end_pvclock_update(struct kvm *kvm)
2861 {
2862 	struct kvm_arch *ka = &kvm->arch;
2863 	struct kvm_vcpu *vcpu;
2864 	unsigned long i;
2865 
2866 	write_seqcount_end(&ka->pvclock_sc);
2867 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2868 	kvm_for_each_vcpu(i, vcpu, kvm)
2869 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2870 
2871 	/* guest entries allowed */
2872 	kvm_for_each_vcpu(i, vcpu, kvm)
2873 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2874 }
2875 
2876 static void kvm_update_masterclock(struct kvm *kvm)
2877 {
2878 	kvm_hv_invalidate_tsc_page(kvm);
2879 	kvm_start_pvclock_update(kvm);
2880 	pvclock_update_vm_gtod_copy(kvm);
2881 	kvm_end_pvclock_update(kvm);
2882 }
2883 
2884 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2885 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2886 {
2887 	struct kvm_arch *ka = &kvm->arch;
2888 	struct pvclock_vcpu_time_info hv_clock;
2889 
2890 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2891 	get_cpu();
2892 
2893 	data->flags = 0;
2894 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2895 #ifdef CONFIG_X86_64
2896 		struct timespec64 ts;
2897 
2898 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2899 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2900 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2901 		} else
2902 #endif
2903 		data->host_tsc = rdtsc();
2904 
2905 		data->flags |= KVM_CLOCK_TSC_STABLE;
2906 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2907 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2908 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2909 				   &hv_clock.tsc_shift,
2910 				   &hv_clock.tsc_to_system_mul);
2911 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2912 	} else {
2913 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2914 	}
2915 
2916 	put_cpu();
2917 }
2918 
2919 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2920 {
2921 	struct kvm_arch *ka = &kvm->arch;
2922 	unsigned seq;
2923 
2924 	do {
2925 		seq = read_seqcount_begin(&ka->pvclock_sc);
2926 		__get_kvmclock(kvm, data);
2927 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
2928 }
2929 
2930 u64 get_kvmclock_ns(struct kvm *kvm)
2931 {
2932 	struct kvm_clock_data data;
2933 
2934 	get_kvmclock(kvm, &data);
2935 	return data.clock;
2936 }
2937 
2938 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2939 				   struct gfn_to_hva_cache *cache,
2940 				   unsigned int offset)
2941 {
2942 	struct kvm_vcpu_arch *vcpu = &v->arch;
2943 	struct pvclock_vcpu_time_info guest_hv_clock;
2944 
2945 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2946 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2947 		return;
2948 
2949 	/* This VCPU is paused, but it's legal for a guest to read another
2950 	 * VCPU's kvmclock, so we really have to follow the specification where
2951 	 * it says that version is odd if data is being modified, and even after
2952 	 * it is consistent.
2953 	 *
2954 	 * Version field updates must be kept separate.  This is because
2955 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2956 	 * writes within a string instruction are weakly ordered.  So there
2957 	 * are three writes overall.
2958 	 *
2959 	 * As a small optimization, only write the version field in the first
2960 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2961 	 * version field is the first in the struct.
2962 	 */
2963 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2964 
2965 	if (guest_hv_clock.version & 1)
2966 		++guest_hv_clock.version;  /* first time write, random junk */
2967 
2968 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2969 	kvm_write_guest_offset_cached(v->kvm, cache,
2970 				      &vcpu->hv_clock, offset,
2971 				      sizeof(vcpu->hv_clock.version));
2972 
2973 	smp_wmb();
2974 
2975 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2976 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2977 
2978 	if (vcpu->pvclock_set_guest_stopped_request) {
2979 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2980 		vcpu->pvclock_set_guest_stopped_request = false;
2981 	}
2982 
2983 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2984 
2985 	kvm_write_guest_offset_cached(v->kvm, cache,
2986 				      &vcpu->hv_clock, offset,
2987 				      sizeof(vcpu->hv_clock));
2988 
2989 	smp_wmb();
2990 
2991 	vcpu->hv_clock.version++;
2992 	kvm_write_guest_offset_cached(v->kvm, cache,
2993 				     &vcpu->hv_clock, offset,
2994 				     sizeof(vcpu->hv_clock.version));
2995 }
2996 
2997 static int kvm_guest_time_update(struct kvm_vcpu *v)
2998 {
2999 	unsigned long flags, tgt_tsc_khz;
3000 	unsigned seq;
3001 	struct kvm_vcpu_arch *vcpu = &v->arch;
3002 	struct kvm_arch *ka = &v->kvm->arch;
3003 	s64 kernel_ns;
3004 	u64 tsc_timestamp, host_tsc;
3005 	u8 pvclock_flags;
3006 	bool use_master_clock;
3007 
3008 	kernel_ns = 0;
3009 	host_tsc = 0;
3010 
3011 	/*
3012 	 * If the host uses TSC clock, then passthrough TSC as stable
3013 	 * to the guest.
3014 	 */
3015 	do {
3016 		seq = read_seqcount_begin(&ka->pvclock_sc);
3017 		use_master_clock = ka->use_master_clock;
3018 		if (use_master_clock) {
3019 			host_tsc = ka->master_cycle_now;
3020 			kernel_ns = ka->master_kernel_ns;
3021 		}
3022 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3023 
3024 	/* Keep irq disabled to prevent changes to the clock */
3025 	local_irq_save(flags);
3026 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3027 	if (unlikely(tgt_tsc_khz == 0)) {
3028 		local_irq_restore(flags);
3029 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3030 		return 1;
3031 	}
3032 	if (!use_master_clock) {
3033 		host_tsc = rdtsc();
3034 		kernel_ns = get_kvmclock_base_ns();
3035 	}
3036 
3037 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3038 
3039 	/*
3040 	 * We may have to catch up the TSC to match elapsed wall clock
3041 	 * time for two reasons, even if kvmclock is used.
3042 	 *   1) CPU could have been running below the maximum TSC rate
3043 	 *   2) Broken TSC compensation resets the base at each VCPU
3044 	 *      entry to avoid unknown leaps of TSC even when running
3045 	 *      again on the same CPU.  This may cause apparent elapsed
3046 	 *      time to disappear, and the guest to stand still or run
3047 	 *	very slowly.
3048 	 */
3049 	if (vcpu->tsc_catchup) {
3050 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3051 		if (tsc > tsc_timestamp) {
3052 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3053 			tsc_timestamp = tsc;
3054 		}
3055 	}
3056 
3057 	local_irq_restore(flags);
3058 
3059 	/* With all the info we got, fill in the values */
3060 
3061 	if (kvm_has_tsc_control)
3062 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
3063 					    v->arch.l1_tsc_scaling_ratio);
3064 
3065 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3066 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3067 				   &vcpu->hv_clock.tsc_shift,
3068 				   &vcpu->hv_clock.tsc_to_system_mul);
3069 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3070 	}
3071 
3072 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3073 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3074 	vcpu->last_guest_tsc = tsc_timestamp;
3075 
3076 	/* If the host uses TSC clocksource, then it is stable */
3077 	pvclock_flags = 0;
3078 	if (use_master_clock)
3079 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3080 
3081 	vcpu->hv_clock.flags = pvclock_flags;
3082 
3083 	if (vcpu->pv_time_enabled)
3084 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3085 	if (vcpu->xen.vcpu_info_set)
3086 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3087 				       offsetof(struct compat_vcpu_info, time));
3088 	if (vcpu->xen.vcpu_time_info_set)
3089 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3090 	if (!v->vcpu_idx)
3091 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3092 	return 0;
3093 }
3094 
3095 /*
3096  * kvmclock updates which are isolated to a given vcpu, such as
3097  * vcpu->cpu migration, should not allow system_timestamp from
3098  * the rest of the vcpus to remain static. Otherwise ntp frequency
3099  * correction applies to one vcpu's system_timestamp but not
3100  * the others.
3101  *
3102  * So in those cases, request a kvmclock update for all vcpus.
3103  * We need to rate-limit these requests though, as they can
3104  * considerably slow guests that have a large number of vcpus.
3105  * The time for a remote vcpu to update its kvmclock is bound
3106  * by the delay we use to rate-limit the updates.
3107  */
3108 
3109 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3110 
3111 static void kvmclock_update_fn(struct work_struct *work)
3112 {
3113 	unsigned long i;
3114 	struct delayed_work *dwork = to_delayed_work(work);
3115 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3116 					   kvmclock_update_work);
3117 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3118 	struct kvm_vcpu *vcpu;
3119 
3120 	kvm_for_each_vcpu(i, vcpu, kvm) {
3121 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3122 		kvm_vcpu_kick(vcpu);
3123 	}
3124 }
3125 
3126 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3127 {
3128 	struct kvm *kvm = v->kvm;
3129 
3130 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3131 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3132 					KVMCLOCK_UPDATE_DELAY);
3133 }
3134 
3135 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3136 
3137 static void kvmclock_sync_fn(struct work_struct *work)
3138 {
3139 	struct delayed_work *dwork = to_delayed_work(work);
3140 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3141 					   kvmclock_sync_work);
3142 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3143 
3144 	if (!kvmclock_periodic_sync)
3145 		return;
3146 
3147 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3148 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3149 					KVMCLOCK_SYNC_PERIOD);
3150 }
3151 
3152 /*
3153  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3154  */
3155 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3156 {
3157 	/* McStatusWrEn enabled? */
3158 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3159 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3160 
3161 	return false;
3162 }
3163 
3164 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3165 {
3166 	u64 mcg_cap = vcpu->arch.mcg_cap;
3167 	unsigned bank_num = mcg_cap & 0xff;
3168 	u32 msr = msr_info->index;
3169 	u64 data = msr_info->data;
3170 
3171 	switch (msr) {
3172 	case MSR_IA32_MCG_STATUS:
3173 		vcpu->arch.mcg_status = data;
3174 		break;
3175 	case MSR_IA32_MCG_CTL:
3176 		if (!(mcg_cap & MCG_CTL_P) &&
3177 		    (data || !msr_info->host_initiated))
3178 			return 1;
3179 		if (data != 0 && data != ~(u64)0)
3180 			return 1;
3181 		vcpu->arch.mcg_ctl = data;
3182 		break;
3183 	default:
3184 		if (msr >= MSR_IA32_MC0_CTL &&
3185 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3186 			u32 offset = array_index_nospec(
3187 				msr - MSR_IA32_MC0_CTL,
3188 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3189 
3190 			/* only 0 or all 1s can be written to IA32_MCi_CTL
3191 			 * some Linux kernels though clear bit 10 in bank 4 to
3192 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3193 			 * this to avoid an uncatched #GP in the guest
3194 			 */
3195 			if ((offset & 0x3) == 0 &&
3196 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
3197 				return -1;
3198 
3199 			/* MCi_STATUS */
3200 			if (!msr_info->host_initiated &&
3201 			    (offset & 0x3) == 1 && data != 0) {
3202 				if (!can_set_mci_status(vcpu))
3203 					return -1;
3204 			}
3205 
3206 			vcpu->arch.mce_banks[offset] = data;
3207 			break;
3208 		}
3209 		return 1;
3210 	}
3211 	return 0;
3212 }
3213 
3214 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3215 {
3216 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3217 
3218 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3219 }
3220 
3221 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3222 {
3223 	gpa_t gpa = data & ~0x3f;
3224 
3225 	/* Bits 4:5 are reserved, Should be zero */
3226 	if (data & 0x30)
3227 		return 1;
3228 
3229 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3230 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3231 		return 1;
3232 
3233 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3234 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3235 		return 1;
3236 
3237 	if (!lapic_in_kernel(vcpu))
3238 		return data ? 1 : 0;
3239 
3240 	vcpu->arch.apf.msr_en_val = data;
3241 
3242 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3243 		kvm_clear_async_pf_completion_queue(vcpu);
3244 		kvm_async_pf_hash_reset(vcpu);
3245 		return 0;
3246 	}
3247 
3248 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3249 					sizeof(u64)))
3250 		return 1;
3251 
3252 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3253 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3254 
3255 	kvm_async_pf_wakeup_all(vcpu);
3256 
3257 	return 0;
3258 }
3259 
3260 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3261 {
3262 	/* Bits 8-63 are reserved */
3263 	if (data >> 8)
3264 		return 1;
3265 
3266 	if (!lapic_in_kernel(vcpu))
3267 		return 1;
3268 
3269 	vcpu->arch.apf.msr_int_val = data;
3270 
3271 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3272 
3273 	return 0;
3274 }
3275 
3276 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3277 {
3278 	vcpu->arch.pv_time_enabled = false;
3279 	vcpu->arch.time = 0;
3280 }
3281 
3282 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3283 {
3284 	++vcpu->stat.tlb_flush;
3285 	static_call(kvm_x86_tlb_flush_all)(vcpu);
3286 }
3287 
3288 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3289 {
3290 	++vcpu->stat.tlb_flush;
3291 
3292 	if (!tdp_enabled) {
3293 		/*
3294 		 * A TLB flush on behalf of the guest is equivalent to
3295 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3296 		 * a forced sync of the shadow page tables.  Ensure all the
3297 		 * roots are synced and the guest TLB in hardware is clean.
3298 		 */
3299 		kvm_mmu_sync_roots(vcpu);
3300 		kvm_mmu_sync_prev_roots(vcpu);
3301 	}
3302 
3303 	static_call(kvm_x86_tlb_flush_guest)(vcpu);
3304 }
3305 
3306 
3307 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3308 {
3309 	++vcpu->stat.tlb_flush;
3310 	static_call(kvm_x86_tlb_flush_current)(vcpu);
3311 }
3312 
3313 /*
3314  * Service "local" TLB flush requests, which are specific to the current MMU
3315  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3316  * TLB flushes that are targeted at an MMU context also need to be serviced
3317  * prior before nested VM-Enter/VM-Exit.
3318  */
3319 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3320 {
3321 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3322 		kvm_vcpu_flush_tlb_current(vcpu);
3323 
3324 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3325 		kvm_vcpu_flush_tlb_guest(vcpu);
3326 }
3327 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3328 
3329 static void record_steal_time(struct kvm_vcpu *vcpu)
3330 {
3331 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3332 	struct kvm_steal_time __user *st;
3333 	struct kvm_memslots *slots;
3334 	u64 steal;
3335 	u32 version;
3336 
3337 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3338 		kvm_xen_runstate_set_running(vcpu);
3339 		return;
3340 	}
3341 
3342 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3343 		return;
3344 
3345 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3346 		return;
3347 
3348 	slots = kvm_memslots(vcpu->kvm);
3349 
3350 	if (unlikely(slots->generation != ghc->generation ||
3351 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3352 		gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3353 
3354 		/* We rely on the fact that it fits in a single page. */
3355 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3356 
3357 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3358 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3359 			return;
3360 	}
3361 
3362 	st = (struct kvm_steal_time __user *)ghc->hva;
3363 	/*
3364 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3365 	 * expensive IPIs.
3366 	 */
3367 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3368 		u8 st_preempted = 0;
3369 		int err = -EFAULT;
3370 
3371 		if (!user_access_begin(st, sizeof(*st)))
3372 			return;
3373 
3374 		asm volatile("1: xchgb %0, %2\n"
3375 			     "xor %1, %1\n"
3376 			     "2:\n"
3377 			     _ASM_EXTABLE_UA(1b, 2b)
3378 			     : "+q" (st_preempted),
3379 			       "+&r" (err),
3380 			       "+m" (st->preempted));
3381 		if (err)
3382 			goto out;
3383 
3384 		user_access_end();
3385 
3386 		vcpu->arch.st.preempted = 0;
3387 
3388 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3389 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3390 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3391 			kvm_vcpu_flush_tlb_guest(vcpu);
3392 
3393 		if (!user_access_begin(st, sizeof(*st)))
3394 			goto dirty;
3395 	} else {
3396 		if (!user_access_begin(st, sizeof(*st)))
3397 			return;
3398 
3399 		unsafe_put_user(0, &st->preempted, out);
3400 		vcpu->arch.st.preempted = 0;
3401 	}
3402 
3403 	unsafe_get_user(version, &st->version, out);
3404 	if (version & 1)
3405 		version += 1;  /* first time write, random junk */
3406 
3407 	version += 1;
3408 	unsafe_put_user(version, &st->version, out);
3409 
3410 	smp_wmb();
3411 
3412 	unsafe_get_user(steal, &st->steal, out);
3413 	steal += current->sched_info.run_delay -
3414 		vcpu->arch.st.last_steal;
3415 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3416 	unsafe_put_user(steal, &st->steal, out);
3417 
3418 	version += 1;
3419 	unsafe_put_user(version, &st->version, out);
3420 
3421  out:
3422 	user_access_end();
3423  dirty:
3424 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3425 }
3426 
3427 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3428 {
3429 	bool pr = false;
3430 	u32 msr = msr_info->index;
3431 	u64 data = msr_info->data;
3432 
3433 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3434 		return kvm_xen_write_hypercall_page(vcpu, data);
3435 
3436 	switch (msr) {
3437 	case MSR_AMD64_NB_CFG:
3438 	case MSR_IA32_UCODE_WRITE:
3439 	case MSR_VM_HSAVE_PA:
3440 	case MSR_AMD64_PATCH_LOADER:
3441 	case MSR_AMD64_BU_CFG2:
3442 	case MSR_AMD64_DC_CFG:
3443 	case MSR_F15H_EX_CFG:
3444 		break;
3445 
3446 	case MSR_IA32_UCODE_REV:
3447 		if (msr_info->host_initiated)
3448 			vcpu->arch.microcode_version = data;
3449 		break;
3450 	case MSR_IA32_ARCH_CAPABILITIES:
3451 		if (!msr_info->host_initiated)
3452 			return 1;
3453 		vcpu->arch.arch_capabilities = data;
3454 		break;
3455 	case MSR_IA32_PERF_CAPABILITIES: {
3456 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3457 
3458 		if (!msr_info->host_initiated)
3459 			return 1;
3460 		if (kvm_get_msr_feature(&msr_ent))
3461 			return 1;
3462 		if (data & ~msr_ent.data)
3463 			return 1;
3464 
3465 		vcpu->arch.perf_capabilities = data;
3466 
3467 		return 0;
3468 		}
3469 	case MSR_EFER:
3470 		return set_efer(vcpu, msr_info);
3471 	case MSR_K7_HWCR:
3472 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3473 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3474 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3475 
3476 		/* Handle McStatusWrEn */
3477 		if (data == BIT_ULL(18)) {
3478 			vcpu->arch.msr_hwcr = data;
3479 		} else if (data != 0) {
3480 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3481 				    data);
3482 			return 1;
3483 		}
3484 		break;
3485 	case MSR_FAM10H_MMIO_CONF_BASE:
3486 		if (data != 0) {
3487 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3488 				    "0x%llx\n", data);
3489 			return 1;
3490 		}
3491 		break;
3492 	case 0x200 ... 0x2ff:
3493 		return kvm_mtrr_set_msr(vcpu, msr, data);
3494 	case MSR_IA32_APICBASE:
3495 		return kvm_set_apic_base(vcpu, msr_info);
3496 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3497 		return kvm_x2apic_msr_write(vcpu, msr, data);
3498 	case MSR_IA32_TSC_DEADLINE:
3499 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3500 		break;
3501 	case MSR_IA32_TSC_ADJUST:
3502 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3503 			if (!msr_info->host_initiated) {
3504 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3505 				adjust_tsc_offset_guest(vcpu, adj);
3506 				/* Before back to guest, tsc_timestamp must be adjusted
3507 				 * as well, otherwise guest's percpu pvclock time could jump.
3508 				 */
3509 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3510 			}
3511 			vcpu->arch.ia32_tsc_adjust_msr = data;
3512 		}
3513 		break;
3514 	case MSR_IA32_MISC_ENABLE:
3515 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3516 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3517 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3518 				return 1;
3519 			vcpu->arch.ia32_misc_enable_msr = data;
3520 			kvm_update_cpuid_runtime(vcpu);
3521 		} else {
3522 			vcpu->arch.ia32_misc_enable_msr = data;
3523 		}
3524 		break;
3525 	case MSR_IA32_SMBASE:
3526 		if (!msr_info->host_initiated)
3527 			return 1;
3528 		vcpu->arch.smbase = data;
3529 		break;
3530 	case MSR_IA32_POWER_CTL:
3531 		vcpu->arch.msr_ia32_power_ctl = data;
3532 		break;
3533 	case MSR_IA32_TSC:
3534 		if (msr_info->host_initiated) {
3535 			kvm_synchronize_tsc(vcpu, data);
3536 		} else {
3537 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3538 			adjust_tsc_offset_guest(vcpu, adj);
3539 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3540 		}
3541 		break;
3542 	case MSR_IA32_XSS:
3543 		if (!msr_info->host_initiated &&
3544 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3545 			return 1;
3546 		/*
3547 		 * KVM supports exposing PT to the guest, but does not support
3548 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3549 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3550 		 */
3551 		if (data & ~supported_xss)
3552 			return 1;
3553 		vcpu->arch.ia32_xss = data;
3554 		kvm_update_cpuid_runtime(vcpu);
3555 		break;
3556 	case MSR_SMI_COUNT:
3557 		if (!msr_info->host_initiated)
3558 			return 1;
3559 		vcpu->arch.smi_count = data;
3560 		break;
3561 	case MSR_KVM_WALL_CLOCK_NEW:
3562 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3563 			return 1;
3564 
3565 		vcpu->kvm->arch.wall_clock = data;
3566 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3567 		break;
3568 	case MSR_KVM_WALL_CLOCK:
3569 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3570 			return 1;
3571 
3572 		vcpu->kvm->arch.wall_clock = data;
3573 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3574 		break;
3575 	case MSR_KVM_SYSTEM_TIME_NEW:
3576 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3577 			return 1;
3578 
3579 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3580 		break;
3581 	case MSR_KVM_SYSTEM_TIME:
3582 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3583 			return 1;
3584 
3585 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3586 		break;
3587 	case MSR_KVM_ASYNC_PF_EN:
3588 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3589 			return 1;
3590 
3591 		if (kvm_pv_enable_async_pf(vcpu, data))
3592 			return 1;
3593 		break;
3594 	case MSR_KVM_ASYNC_PF_INT:
3595 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3596 			return 1;
3597 
3598 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3599 			return 1;
3600 		break;
3601 	case MSR_KVM_ASYNC_PF_ACK:
3602 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3603 			return 1;
3604 		if (data & 0x1) {
3605 			vcpu->arch.apf.pageready_pending = false;
3606 			kvm_check_async_pf_completion(vcpu);
3607 		}
3608 		break;
3609 	case MSR_KVM_STEAL_TIME:
3610 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3611 			return 1;
3612 
3613 		if (unlikely(!sched_info_on()))
3614 			return 1;
3615 
3616 		if (data & KVM_STEAL_RESERVED_MASK)
3617 			return 1;
3618 
3619 		vcpu->arch.st.msr_val = data;
3620 
3621 		if (!(data & KVM_MSR_ENABLED))
3622 			break;
3623 
3624 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3625 
3626 		break;
3627 	case MSR_KVM_PV_EOI_EN:
3628 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3629 			return 1;
3630 
3631 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3632 			return 1;
3633 		break;
3634 
3635 	case MSR_KVM_POLL_CONTROL:
3636 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3637 			return 1;
3638 
3639 		/* only enable bit supported */
3640 		if (data & (-1ULL << 1))
3641 			return 1;
3642 
3643 		vcpu->arch.msr_kvm_poll_control = data;
3644 		break;
3645 
3646 	case MSR_IA32_MCG_CTL:
3647 	case MSR_IA32_MCG_STATUS:
3648 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3649 		return set_msr_mce(vcpu, msr_info);
3650 
3651 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3652 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3653 		pr = true;
3654 		fallthrough;
3655 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3656 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3657 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3658 			return kvm_pmu_set_msr(vcpu, msr_info);
3659 
3660 		if (pr || data != 0)
3661 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3662 				    "0x%x data 0x%llx\n", msr, data);
3663 		break;
3664 	case MSR_K7_CLK_CTL:
3665 		/*
3666 		 * Ignore all writes to this no longer documented MSR.
3667 		 * Writes are only relevant for old K7 processors,
3668 		 * all pre-dating SVM, but a recommended workaround from
3669 		 * AMD for these chips. It is possible to specify the
3670 		 * affected processor models on the command line, hence
3671 		 * the need to ignore the workaround.
3672 		 */
3673 		break;
3674 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3675 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3676 	case HV_X64_MSR_SYNDBG_OPTIONS:
3677 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3678 	case HV_X64_MSR_CRASH_CTL:
3679 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3680 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3681 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3682 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3683 		return kvm_hv_set_msr_common(vcpu, msr, data,
3684 					     msr_info->host_initiated);
3685 	case MSR_IA32_BBL_CR_CTL3:
3686 		/* Drop writes to this legacy MSR -- see rdmsr
3687 		 * counterpart for further detail.
3688 		 */
3689 		if (report_ignored_msrs)
3690 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3691 				msr, data);
3692 		break;
3693 	case MSR_AMD64_OSVW_ID_LENGTH:
3694 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3695 			return 1;
3696 		vcpu->arch.osvw.length = data;
3697 		break;
3698 	case MSR_AMD64_OSVW_STATUS:
3699 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3700 			return 1;
3701 		vcpu->arch.osvw.status = data;
3702 		break;
3703 	case MSR_PLATFORM_INFO:
3704 		if (!msr_info->host_initiated ||
3705 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3706 		     cpuid_fault_enabled(vcpu)))
3707 			return 1;
3708 		vcpu->arch.msr_platform_info = data;
3709 		break;
3710 	case MSR_MISC_FEATURES_ENABLES:
3711 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3712 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3713 		     !supports_cpuid_fault(vcpu)))
3714 			return 1;
3715 		vcpu->arch.msr_misc_features_enables = data;
3716 		break;
3717 #ifdef CONFIG_X86_64
3718 	case MSR_IA32_XFD:
3719 		if (!msr_info->host_initiated &&
3720 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3721 			return 1;
3722 
3723 		if (data & ~kvm_guest_supported_xfd(vcpu))
3724 			return 1;
3725 
3726 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3727 		break;
3728 	case MSR_IA32_XFD_ERR:
3729 		if (!msr_info->host_initiated &&
3730 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3731 			return 1;
3732 
3733 		if (data & ~kvm_guest_supported_xfd(vcpu))
3734 			return 1;
3735 
3736 		vcpu->arch.guest_fpu.xfd_err = data;
3737 		break;
3738 #endif
3739 	default:
3740 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3741 			return kvm_pmu_set_msr(vcpu, msr_info);
3742 		return KVM_MSR_RET_INVALID;
3743 	}
3744 	return 0;
3745 }
3746 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3747 
3748 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3749 {
3750 	u64 data;
3751 	u64 mcg_cap = vcpu->arch.mcg_cap;
3752 	unsigned bank_num = mcg_cap & 0xff;
3753 
3754 	switch (msr) {
3755 	case MSR_IA32_P5_MC_ADDR:
3756 	case MSR_IA32_P5_MC_TYPE:
3757 		data = 0;
3758 		break;
3759 	case MSR_IA32_MCG_CAP:
3760 		data = vcpu->arch.mcg_cap;
3761 		break;
3762 	case MSR_IA32_MCG_CTL:
3763 		if (!(mcg_cap & MCG_CTL_P) && !host)
3764 			return 1;
3765 		data = vcpu->arch.mcg_ctl;
3766 		break;
3767 	case MSR_IA32_MCG_STATUS:
3768 		data = vcpu->arch.mcg_status;
3769 		break;
3770 	default:
3771 		if (msr >= MSR_IA32_MC0_CTL &&
3772 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3773 			u32 offset = array_index_nospec(
3774 				msr - MSR_IA32_MC0_CTL,
3775 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3776 
3777 			data = vcpu->arch.mce_banks[offset];
3778 			break;
3779 		}
3780 		return 1;
3781 	}
3782 	*pdata = data;
3783 	return 0;
3784 }
3785 
3786 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3787 {
3788 	switch (msr_info->index) {
3789 	case MSR_IA32_PLATFORM_ID:
3790 	case MSR_IA32_EBL_CR_POWERON:
3791 	case MSR_IA32_LASTBRANCHFROMIP:
3792 	case MSR_IA32_LASTBRANCHTOIP:
3793 	case MSR_IA32_LASTINTFROMIP:
3794 	case MSR_IA32_LASTINTTOIP:
3795 	case MSR_AMD64_SYSCFG:
3796 	case MSR_K8_TSEG_ADDR:
3797 	case MSR_K8_TSEG_MASK:
3798 	case MSR_VM_HSAVE_PA:
3799 	case MSR_K8_INT_PENDING_MSG:
3800 	case MSR_AMD64_NB_CFG:
3801 	case MSR_FAM10H_MMIO_CONF_BASE:
3802 	case MSR_AMD64_BU_CFG2:
3803 	case MSR_IA32_PERF_CTL:
3804 	case MSR_AMD64_DC_CFG:
3805 	case MSR_F15H_EX_CFG:
3806 	/*
3807 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3808 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3809 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3810 	 * so for existing CPU-specific MSRs.
3811 	 */
3812 	case MSR_RAPL_POWER_UNIT:
3813 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3814 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3815 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3816 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3817 		msr_info->data = 0;
3818 		break;
3819 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3820 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3821 			return kvm_pmu_get_msr(vcpu, msr_info);
3822 		if (!msr_info->host_initiated)
3823 			return 1;
3824 		msr_info->data = 0;
3825 		break;
3826 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3827 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3828 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3829 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3830 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3831 			return kvm_pmu_get_msr(vcpu, msr_info);
3832 		msr_info->data = 0;
3833 		break;
3834 	case MSR_IA32_UCODE_REV:
3835 		msr_info->data = vcpu->arch.microcode_version;
3836 		break;
3837 	case MSR_IA32_ARCH_CAPABILITIES:
3838 		if (!msr_info->host_initiated &&
3839 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3840 			return 1;
3841 		msr_info->data = vcpu->arch.arch_capabilities;
3842 		break;
3843 	case MSR_IA32_PERF_CAPABILITIES:
3844 		if (!msr_info->host_initiated &&
3845 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3846 			return 1;
3847 		msr_info->data = vcpu->arch.perf_capabilities;
3848 		break;
3849 	case MSR_IA32_POWER_CTL:
3850 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3851 		break;
3852 	case MSR_IA32_TSC: {
3853 		/*
3854 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3855 		 * even when not intercepted. AMD manual doesn't explicitly
3856 		 * state this but appears to behave the same.
3857 		 *
3858 		 * On userspace reads and writes, however, we unconditionally
3859 		 * return L1's TSC value to ensure backwards-compatible
3860 		 * behavior for migration.
3861 		 */
3862 		u64 offset, ratio;
3863 
3864 		if (msr_info->host_initiated) {
3865 			offset = vcpu->arch.l1_tsc_offset;
3866 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3867 		} else {
3868 			offset = vcpu->arch.tsc_offset;
3869 			ratio = vcpu->arch.tsc_scaling_ratio;
3870 		}
3871 
3872 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3873 		break;
3874 	}
3875 	case MSR_MTRRcap:
3876 	case 0x200 ... 0x2ff:
3877 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3878 	case 0xcd: /* fsb frequency */
3879 		msr_info->data = 3;
3880 		break;
3881 		/*
3882 		 * MSR_EBC_FREQUENCY_ID
3883 		 * Conservative value valid for even the basic CPU models.
3884 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3885 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3886 		 * and 266MHz for model 3, or 4. Set Core Clock
3887 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3888 		 * 31:24) even though these are only valid for CPU
3889 		 * models > 2, however guests may end up dividing or
3890 		 * multiplying by zero otherwise.
3891 		 */
3892 	case MSR_EBC_FREQUENCY_ID:
3893 		msr_info->data = 1 << 24;
3894 		break;
3895 	case MSR_IA32_APICBASE:
3896 		msr_info->data = kvm_get_apic_base(vcpu);
3897 		break;
3898 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3899 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3900 	case MSR_IA32_TSC_DEADLINE:
3901 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3902 		break;
3903 	case MSR_IA32_TSC_ADJUST:
3904 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3905 		break;
3906 	case MSR_IA32_MISC_ENABLE:
3907 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3908 		break;
3909 	case MSR_IA32_SMBASE:
3910 		if (!msr_info->host_initiated)
3911 			return 1;
3912 		msr_info->data = vcpu->arch.smbase;
3913 		break;
3914 	case MSR_SMI_COUNT:
3915 		msr_info->data = vcpu->arch.smi_count;
3916 		break;
3917 	case MSR_IA32_PERF_STATUS:
3918 		/* TSC increment by tick */
3919 		msr_info->data = 1000ULL;
3920 		/* CPU multiplier */
3921 		msr_info->data |= (((uint64_t)4ULL) << 40);
3922 		break;
3923 	case MSR_EFER:
3924 		msr_info->data = vcpu->arch.efer;
3925 		break;
3926 	case MSR_KVM_WALL_CLOCK:
3927 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3928 			return 1;
3929 
3930 		msr_info->data = vcpu->kvm->arch.wall_clock;
3931 		break;
3932 	case MSR_KVM_WALL_CLOCK_NEW:
3933 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3934 			return 1;
3935 
3936 		msr_info->data = vcpu->kvm->arch.wall_clock;
3937 		break;
3938 	case MSR_KVM_SYSTEM_TIME:
3939 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3940 			return 1;
3941 
3942 		msr_info->data = vcpu->arch.time;
3943 		break;
3944 	case MSR_KVM_SYSTEM_TIME_NEW:
3945 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3946 			return 1;
3947 
3948 		msr_info->data = vcpu->arch.time;
3949 		break;
3950 	case MSR_KVM_ASYNC_PF_EN:
3951 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3952 			return 1;
3953 
3954 		msr_info->data = vcpu->arch.apf.msr_en_val;
3955 		break;
3956 	case MSR_KVM_ASYNC_PF_INT:
3957 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3958 			return 1;
3959 
3960 		msr_info->data = vcpu->arch.apf.msr_int_val;
3961 		break;
3962 	case MSR_KVM_ASYNC_PF_ACK:
3963 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3964 			return 1;
3965 
3966 		msr_info->data = 0;
3967 		break;
3968 	case MSR_KVM_STEAL_TIME:
3969 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3970 			return 1;
3971 
3972 		msr_info->data = vcpu->arch.st.msr_val;
3973 		break;
3974 	case MSR_KVM_PV_EOI_EN:
3975 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3976 			return 1;
3977 
3978 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3979 		break;
3980 	case MSR_KVM_POLL_CONTROL:
3981 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3982 			return 1;
3983 
3984 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3985 		break;
3986 	case MSR_IA32_P5_MC_ADDR:
3987 	case MSR_IA32_P5_MC_TYPE:
3988 	case MSR_IA32_MCG_CAP:
3989 	case MSR_IA32_MCG_CTL:
3990 	case MSR_IA32_MCG_STATUS:
3991 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3992 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3993 				   msr_info->host_initiated);
3994 	case MSR_IA32_XSS:
3995 		if (!msr_info->host_initiated &&
3996 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3997 			return 1;
3998 		msr_info->data = vcpu->arch.ia32_xss;
3999 		break;
4000 	case MSR_K7_CLK_CTL:
4001 		/*
4002 		 * Provide expected ramp-up count for K7. All other
4003 		 * are set to zero, indicating minimum divisors for
4004 		 * every field.
4005 		 *
4006 		 * This prevents guest kernels on AMD host with CPU
4007 		 * type 6, model 8 and higher from exploding due to
4008 		 * the rdmsr failing.
4009 		 */
4010 		msr_info->data = 0x20000000;
4011 		break;
4012 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4013 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4014 	case HV_X64_MSR_SYNDBG_OPTIONS:
4015 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4016 	case HV_X64_MSR_CRASH_CTL:
4017 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4018 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4019 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4020 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4021 		return kvm_hv_get_msr_common(vcpu,
4022 					     msr_info->index, &msr_info->data,
4023 					     msr_info->host_initiated);
4024 	case MSR_IA32_BBL_CR_CTL3:
4025 		/* This legacy MSR exists but isn't fully documented in current
4026 		 * silicon.  It is however accessed by winxp in very narrow
4027 		 * scenarios where it sets bit #19, itself documented as
4028 		 * a "reserved" bit.  Best effort attempt to source coherent
4029 		 * read data here should the balance of the register be
4030 		 * interpreted by the guest:
4031 		 *
4032 		 * L2 cache control register 3: 64GB range, 256KB size,
4033 		 * enabled, latency 0x1, configured
4034 		 */
4035 		msr_info->data = 0xbe702111;
4036 		break;
4037 	case MSR_AMD64_OSVW_ID_LENGTH:
4038 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4039 			return 1;
4040 		msr_info->data = vcpu->arch.osvw.length;
4041 		break;
4042 	case MSR_AMD64_OSVW_STATUS:
4043 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4044 			return 1;
4045 		msr_info->data = vcpu->arch.osvw.status;
4046 		break;
4047 	case MSR_PLATFORM_INFO:
4048 		if (!msr_info->host_initiated &&
4049 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4050 			return 1;
4051 		msr_info->data = vcpu->arch.msr_platform_info;
4052 		break;
4053 	case MSR_MISC_FEATURES_ENABLES:
4054 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4055 		break;
4056 	case MSR_K7_HWCR:
4057 		msr_info->data = vcpu->arch.msr_hwcr;
4058 		break;
4059 #ifdef CONFIG_X86_64
4060 	case MSR_IA32_XFD:
4061 		if (!msr_info->host_initiated &&
4062 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4063 			return 1;
4064 
4065 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4066 		break;
4067 	case MSR_IA32_XFD_ERR:
4068 		if (!msr_info->host_initiated &&
4069 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4070 			return 1;
4071 
4072 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4073 		break;
4074 #endif
4075 	default:
4076 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4077 			return kvm_pmu_get_msr(vcpu, msr_info);
4078 		return KVM_MSR_RET_INVALID;
4079 	}
4080 	return 0;
4081 }
4082 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4083 
4084 /*
4085  * Read or write a bunch of msrs. All parameters are kernel addresses.
4086  *
4087  * @return number of msrs set successfully.
4088  */
4089 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4090 		    struct kvm_msr_entry *entries,
4091 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4092 				  unsigned index, u64 *data))
4093 {
4094 	int i;
4095 
4096 	for (i = 0; i < msrs->nmsrs; ++i)
4097 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4098 			break;
4099 
4100 	return i;
4101 }
4102 
4103 /*
4104  * Read or write a bunch of msrs. Parameters are user addresses.
4105  *
4106  * @return number of msrs set successfully.
4107  */
4108 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4109 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4110 				unsigned index, u64 *data),
4111 		  int writeback)
4112 {
4113 	struct kvm_msrs msrs;
4114 	struct kvm_msr_entry *entries;
4115 	int r, n;
4116 	unsigned size;
4117 
4118 	r = -EFAULT;
4119 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4120 		goto out;
4121 
4122 	r = -E2BIG;
4123 	if (msrs.nmsrs >= MAX_IO_MSRS)
4124 		goto out;
4125 
4126 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4127 	entries = memdup_user(user_msrs->entries, size);
4128 	if (IS_ERR(entries)) {
4129 		r = PTR_ERR(entries);
4130 		goto out;
4131 	}
4132 
4133 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4134 	if (r < 0)
4135 		goto out_free;
4136 
4137 	r = -EFAULT;
4138 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4139 		goto out_free;
4140 
4141 	r = n;
4142 
4143 out_free:
4144 	kfree(entries);
4145 out:
4146 	return r;
4147 }
4148 
4149 static inline bool kvm_can_mwait_in_guest(void)
4150 {
4151 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4152 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4153 		boot_cpu_has(X86_FEATURE_ARAT);
4154 }
4155 
4156 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4157 					    struct kvm_cpuid2 __user *cpuid_arg)
4158 {
4159 	struct kvm_cpuid2 cpuid;
4160 	int r;
4161 
4162 	r = -EFAULT;
4163 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4164 		return r;
4165 
4166 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4167 	if (r)
4168 		return r;
4169 
4170 	r = -EFAULT;
4171 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4172 		return r;
4173 
4174 	return 0;
4175 }
4176 
4177 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4178 {
4179 	int r = 0;
4180 
4181 	switch (ext) {
4182 	case KVM_CAP_IRQCHIP:
4183 	case KVM_CAP_HLT:
4184 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4185 	case KVM_CAP_SET_TSS_ADDR:
4186 	case KVM_CAP_EXT_CPUID:
4187 	case KVM_CAP_EXT_EMUL_CPUID:
4188 	case KVM_CAP_CLOCKSOURCE:
4189 	case KVM_CAP_PIT:
4190 	case KVM_CAP_NOP_IO_DELAY:
4191 	case KVM_CAP_MP_STATE:
4192 	case KVM_CAP_SYNC_MMU:
4193 	case KVM_CAP_USER_NMI:
4194 	case KVM_CAP_REINJECT_CONTROL:
4195 	case KVM_CAP_IRQ_INJECT_STATUS:
4196 	case KVM_CAP_IOEVENTFD:
4197 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4198 	case KVM_CAP_PIT2:
4199 	case KVM_CAP_PIT_STATE2:
4200 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4201 	case KVM_CAP_VCPU_EVENTS:
4202 	case KVM_CAP_HYPERV:
4203 	case KVM_CAP_HYPERV_VAPIC:
4204 	case KVM_CAP_HYPERV_SPIN:
4205 	case KVM_CAP_HYPERV_SYNIC:
4206 	case KVM_CAP_HYPERV_SYNIC2:
4207 	case KVM_CAP_HYPERV_VP_INDEX:
4208 	case KVM_CAP_HYPERV_EVENTFD:
4209 	case KVM_CAP_HYPERV_TLBFLUSH:
4210 	case KVM_CAP_HYPERV_SEND_IPI:
4211 	case KVM_CAP_HYPERV_CPUID:
4212 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4213 	case KVM_CAP_SYS_HYPERV_CPUID:
4214 	case KVM_CAP_PCI_SEGMENT:
4215 	case KVM_CAP_DEBUGREGS:
4216 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4217 	case KVM_CAP_XSAVE:
4218 	case KVM_CAP_ASYNC_PF:
4219 	case KVM_CAP_ASYNC_PF_INT:
4220 	case KVM_CAP_GET_TSC_KHZ:
4221 	case KVM_CAP_KVMCLOCK_CTRL:
4222 	case KVM_CAP_READONLY_MEM:
4223 	case KVM_CAP_HYPERV_TIME:
4224 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4225 	case KVM_CAP_TSC_DEADLINE_TIMER:
4226 	case KVM_CAP_DISABLE_QUIRKS:
4227 	case KVM_CAP_SET_BOOT_CPU_ID:
4228  	case KVM_CAP_SPLIT_IRQCHIP:
4229 	case KVM_CAP_IMMEDIATE_EXIT:
4230 	case KVM_CAP_PMU_EVENT_FILTER:
4231 	case KVM_CAP_GET_MSR_FEATURES:
4232 	case KVM_CAP_MSR_PLATFORM_INFO:
4233 	case KVM_CAP_EXCEPTION_PAYLOAD:
4234 	case KVM_CAP_SET_GUEST_DEBUG:
4235 	case KVM_CAP_LAST_CPU:
4236 	case KVM_CAP_X86_USER_SPACE_MSR:
4237 	case KVM_CAP_X86_MSR_FILTER:
4238 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4239 #ifdef CONFIG_X86_SGX_KVM
4240 	case KVM_CAP_SGX_ATTRIBUTE:
4241 #endif
4242 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4243 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4244 	case KVM_CAP_SREGS2:
4245 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4246 	case KVM_CAP_VCPU_ATTRIBUTES:
4247 	case KVM_CAP_SYS_ATTRIBUTES:
4248 	case KVM_CAP_ENABLE_CAP:
4249 		r = 1;
4250 		break;
4251 	case KVM_CAP_EXIT_HYPERCALL:
4252 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4253 		break;
4254 	case KVM_CAP_SET_GUEST_DEBUG2:
4255 		return KVM_GUESTDBG_VALID_MASK;
4256 #ifdef CONFIG_KVM_XEN
4257 	case KVM_CAP_XEN_HVM:
4258 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4259 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4260 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4261 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4262 		if (sched_info_on())
4263 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4264 		break;
4265 #endif
4266 	case KVM_CAP_SYNC_REGS:
4267 		r = KVM_SYNC_X86_VALID_FIELDS;
4268 		break;
4269 	case KVM_CAP_ADJUST_CLOCK:
4270 		r = KVM_CLOCK_VALID_FLAGS;
4271 		break;
4272 	case KVM_CAP_X86_DISABLE_EXITS:
4273 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4274 		      KVM_X86_DISABLE_EXITS_CSTATE;
4275 		if(kvm_can_mwait_in_guest())
4276 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4277 		break;
4278 	case KVM_CAP_X86_SMM:
4279 		/* SMBASE is usually relocated above 1M on modern chipsets,
4280 		 * and SMM handlers might indeed rely on 4G segment limits,
4281 		 * so do not report SMM to be available if real mode is
4282 		 * emulated via vm86 mode.  Still, do not go to great lengths
4283 		 * to avoid userspace's usage of the feature, because it is a
4284 		 * fringe case that is not enabled except via specific settings
4285 		 * of the module parameters.
4286 		 */
4287 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4288 		break;
4289 	case KVM_CAP_VAPIC:
4290 		r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4291 		break;
4292 	case KVM_CAP_NR_VCPUS:
4293 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4294 		break;
4295 	case KVM_CAP_MAX_VCPUS:
4296 		r = KVM_MAX_VCPUS;
4297 		break;
4298 	case KVM_CAP_MAX_VCPU_ID:
4299 		r = KVM_MAX_VCPU_IDS;
4300 		break;
4301 	case KVM_CAP_PV_MMU:	/* obsolete */
4302 		r = 0;
4303 		break;
4304 	case KVM_CAP_MCE:
4305 		r = KVM_MAX_MCE_BANKS;
4306 		break;
4307 	case KVM_CAP_XCRS:
4308 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4309 		break;
4310 	case KVM_CAP_TSC_CONTROL:
4311 		r = kvm_has_tsc_control;
4312 		break;
4313 	case KVM_CAP_X2APIC_API:
4314 		r = KVM_X2APIC_API_VALID_FLAGS;
4315 		break;
4316 	case KVM_CAP_NESTED_STATE:
4317 		r = kvm_x86_ops.nested_ops->get_state ?
4318 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4319 		break;
4320 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4321 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4322 		break;
4323 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4324 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4325 		break;
4326 	case KVM_CAP_SMALLER_MAXPHYADDR:
4327 		r = (int) allow_smaller_maxphyaddr;
4328 		break;
4329 	case KVM_CAP_STEAL_TIME:
4330 		r = sched_info_on();
4331 		break;
4332 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4333 		if (kvm_has_bus_lock_exit)
4334 			r = KVM_BUS_LOCK_DETECTION_OFF |
4335 			    KVM_BUS_LOCK_DETECTION_EXIT;
4336 		else
4337 			r = 0;
4338 		break;
4339 	case KVM_CAP_XSAVE2: {
4340 		u64 guest_perm = xstate_get_guest_group_perm();
4341 
4342 		r = xstate_required_size(supported_xcr0 & guest_perm, false);
4343 		if (r < sizeof(struct kvm_xsave))
4344 			r = sizeof(struct kvm_xsave);
4345 		break;
4346 	}
4347 	default:
4348 		break;
4349 	}
4350 	return r;
4351 }
4352 
4353 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4354 {
4355 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4356 
4357 	if ((u64)(unsigned long)uaddr != attr->addr)
4358 		return ERR_PTR_USR(-EFAULT);
4359 	return uaddr;
4360 }
4361 
4362 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4363 {
4364 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4365 
4366 	if (attr->group)
4367 		return -ENXIO;
4368 
4369 	if (IS_ERR(uaddr))
4370 		return PTR_ERR(uaddr);
4371 
4372 	switch (attr->attr) {
4373 	case KVM_X86_XCOMP_GUEST_SUPP:
4374 		if (put_user(supported_xcr0, uaddr))
4375 			return -EFAULT;
4376 		return 0;
4377 	default:
4378 		return -ENXIO;
4379 		break;
4380 	}
4381 }
4382 
4383 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4384 {
4385 	if (attr->group)
4386 		return -ENXIO;
4387 
4388 	switch (attr->attr) {
4389 	case KVM_X86_XCOMP_GUEST_SUPP:
4390 		return 0;
4391 	default:
4392 		return -ENXIO;
4393 	}
4394 }
4395 
4396 long kvm_arch_dev_ioctl(struct file *filp,
4397 			unsigned int ioctl, unsigned long arg)
4398 {
4399 	void __user *argp = (void __user *)arg;
4400 	long r;
4401 
4402 	switch (ioctl) {
4403 	case KVM_GET_MSR_INDEX_LIST: {
4404 		struct kvm_msr_list __user *user_msr_list = argp;
4405 		struct kvm_msr_list msr_list;
4406 		unsigned n;
4407 
4408 		r = -EFAULT;
4409 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4410 			goto out;
4411 		n = msr_list.nmsrs;
4412 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4413 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4414 			goto out;
4415 		r = -E2BIG;
4416 		if (n < msr_list.nmsrs)
4417 			goto out;
4418 		r = -EFAULT;
4419 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4420 				 num_msrs_to_save * sizeof(u32)))
4421 			goto out;
4422 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4423 				 &emulated_msrs,
4424 				 num_emulated_msrs * sizeof(u32)))
4425 			goto out;
4426 		r = 0;
4427 		break;
4428 	}
4429 	case KVM_GET_SUPPORTED_CPUID:
4430 	case KVM_GET_EMULATED_CPUID: {
4431 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4432 		struct kvm_cpuid2 cpuid;
4433 
4434 		r = -EFAULT;
4435 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4436 			goto out;
4437 
4438 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4439 					    ioctl);
4440 		if (r)
4441 			goto out;
4442 
4443 		r = -EFAULT;
4444 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4445 			goto out;
4446 		r = 0;
4447 		break;
4448 	}
4449 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4450 		r = -EFAULT;
4451 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4452 				 sizeof(kvm_mce_cap_supported)))
4453 			goto out;
4454 		r = 0;
4455 		break;
4456 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4457 		struct kvm_msr_list __user *user_msr_list = argp;
4458 		struct kvm_msr_list msr_list;
4459 		unsigned int n;
4460 
4461 		r = -EFAULT;
4462 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4463 			goto out;
4464 		n = msr_list.nmsrs;
4465 		msr_list.nmsrs = num_msr_based_features;
4466 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4467 			goto out;
4468 		r = -E2BIG;
4469 		if (n < msr_list.nmsrs)
4470 			goto out;
4471 		r = -EFAULT;
4472 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4473 				 num_msr_based_features * sizeof(u32)))
4474 			goto out;
4475 		r = 0;
4476 		break;
4477 	}
4478 	case KVM_GET_MSRS:
4479 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4480 		break;
4481 	case KVM_GET_SUPPORTED_HV_CPUID:
4482 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4483 		break;
4484 	case KVM_GET_DEVICE_ATTR: {
4485 		struct kvm_device_attr attr;
4486 		r = -EFAULT;
4487 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4488 			break;
4489 		r = kvm_x86_dev_get_attr(&attr);
4490 		break;
4491 	}
4492 	case KVM_HAS_DEVICE_ATTR: {
4493 		struct kvm_device_attr attr;
4494 		r = -EFAULT;
4495 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4496 			break;
4497 		r = kvm_x86_dev_has_attr(&attr);
4498 		break;
4499 	}
4500 	default:
4501 		r = -EINVAL;
4502 		break;
4503 	}
4504 out:
4505 	return r;
4506 }
4507 
4508 static void wbinvd_ipi(void *garbage)
4509 {
4510 	wbinvd();
4511 }
4512 
4513 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4514 {
4515 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4516 }
4517 
4518 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4519 {
4520 	/* Address WBINVD may be executed by guest */
4521 	if (need_emulate_wbinvd(vcpu)) {
4522 		if (static_call(kvm_x86_has_wbinvd_exit)())
4523 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4524 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4525 			smp_call_function_single(vcpu->cpu,
4526 					wbinvd_ipi, NULL, 1);
4527 	}
4528 
4529 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4530 
4531 	/* Save host pkru register if supported */
4532 	vcpu->arch.host_pkru = read_pkru();
4533 
4534 	/* Apply any externally detected TSC adjustments (due to suspend) */
4535 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4536 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4537 		vcpu->arch.tsc_offset_adjustment = 0;
4538 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4539 	}
4540 
4541 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4542 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4543 				rdtsc() - vcpu->arch.last_host_tsc;
4544 		if (tsc_delta < 0)
4545 			mark_tsc_unstable("KVM discovered backwards TSC");
4546 
4547 		if (kvm_check_tsc_unstable()) {
4548 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4549 						vcpu->arch.last_guest_tsc);
4550 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4551 			vcpu->arch.tsc_catchup = 1;
4552 		}
4553 
4554 		if (kvm_lapic_hv_timer_in_use(vcpu))
4555 			kvm_lapic_restart_hv_timer(vcpu);
4556 
4557 		/*
4558 		 * On a host with synchronized TSC, there is no need to update
4559 		 * kvmclock on vcpu->cpu migration
4560 		 */
4561 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4562 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4563 		if (vcpu->cpu != cpu)
4564 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4565 		vcpu->cpu = cpu;
4566 	}
4567 
4568 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4569 }
4570 
4571 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4572 {
4573 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4574 	struct kvm_steal_time __user *st;
4575 	struct kvm_memslots *slots;
4576 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4577 
4578 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4579 		return;
4580 
4581 	if (vcpu->arch.st.preempted)
4582 		return;
4583 
4584 	/* This happens on process exit */
4585 	if (unlikely(current->mm != vcpu->kvm->mm))
4586 		return;
4587 
4588 	slots = kvm_memslots(vcpu->kvm);
4589 
4590 	if (unlikely(slots->generation != ghc->generation ||
4591 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4592 		return;
4593 
4594 	st = (struct kvm_steal_time __user *)ghc->hva;
4595 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4596 
4597 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4598 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4599 
4600 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4601 }
4602 
4603 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4604 {
4605 	int idx;
4606 
4607 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4608 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4609 
4610 	/*
4611 	 * Take the srcu lock as memslots will be accessed to check the gfn
4612 	 * cache generation against the memslots generation.
4613 	 */
4614 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4615 	if (kvm_xen_msr_enabled(vcpu->kvm))
4616 		kvm_xen_runstate_set_preempted(vcpu);
4617 	else
4618 		kvm_steal_time_set_preempted(vcpu);
4619 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4620 
4621 	static_call(kvm_x86_vcpu_put)(vcpu);
4622 	vcpu->arch.last_host_tsc = rdtsc();
4623 }
4624 
4625 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4626 				    struct kvm_lapic_state *s)
4627 {
4628 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4629 
4630 	return kvm_apic_get_state(vcpu, s);
4631 }
4632 
4633 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4634 				    struct kvm_lapic_state *s)
4635 {
4636 	int r;
4637 
4638 	r = kvm_apic_set_state(vcpu, s);
4639 	if (r)
4640 		return r;
4641 	update_cr8_intercept(vcpu);
4642 
4643 	return 0;
4644 }
4645 
4646 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4647 {
4648 	/*
4649 	 * We can accept userspace's request for interrupt injection
4650 	 * as long as we have a place to store the interrupt number.
4651 	 * The actual injection will happen when the CPU is able to
4652 	 * deliver the interrupt.
4653 	 */
4654 	if (kvm_cpu_has_extint(vcpu))
4655 		return false;
4656 
4657 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4658 	return (!lapic_in_kernel(vcpu) ||
4659 		kvm_apic_accept_pic_intr(vcpu));
4660 }
4661 
4662 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4663 {
4664 	/*
4665 	 * Do not cause an interrupt window exit if an exception
4666 	 * is pending or an event needs reinjection; userspace
4667 	 * might want to inject the interrupt manually using KVM_SET_REGS
4668 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4669 	 * instruction boundary and with no events half-injected.
4670 	 */
4671 	return (kvm_arch_interrupt_allowed(vcpu) &&
4672 		kvm_cpu_accept_dm_intr(vcpu) &&
4673 		!kvm_event_needs_reinjection(vcpu) &&
4674 		!vcpu->arch.exception.pending);
4675 }
4676 
4677 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4678 				    struct kvm_interrupt *irq)
4679 {
4680 	if (irq->irq >= KVM_NR_INTERRUPTS)
4681 		return -EINVAL;
4682 
4683 	if (!irqchip_in_kernel(vcpu->kvm)) {
4684 		kvm_queue_interrupt(vcpu, irq->irq, false);
4685 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4686 		return 0;
4687 	}
4688 
4689 	/*
4690 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4691 	 * fail for in-kernel 8259.
4692 	 */
4693 	if (pic_in_kernel(vcpu->kvm))
4694 		return -ENXIO;
4695 
4696 	if (vcpu->arch.pending_external_vector != -1)
4697 		return -EEXIST;
4698 
4699 	vcpu->arch.pending_external_vector = irq->irq;
4700 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4701 	return 0;
4702 }
4703 
4704 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4705 {
4706 	kvm_inject_nmi(vcpu);
4707 
4708 	return 0;
4709 }
4710 
4711 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4712 {
4713 	kvm_make_request(KVM_REQ_SMI, vcpu);
4714 
4715 	return 0;
4716 }
4717 
4718 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4719 					   struct kvm_tpr_access_ctl *tac)
4720 {
4721 	if (tac->flags)
4722 		return -EINVAL;
4723 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4724 	return 0;
4725 }
4726 
4727 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4728 					u64 mcg_cap)
4729 {
4730 	int r;
4731 	unsigned bank_num = mcg_cap & 0xff, bank;
4732 
4733 	r = -EINVAL;
4734 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4735 		goto out;
4736 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4737 		goto out;
4738 	r = 0;
4739 	vcpu->arch.mcg_cap = mcg_cap;
4740 	/* Init IA32_MCG_CTL to all 1s */
4741 	if (mcg_cap & MCG_CTL_P)
4742 		vcpu->arch.mcg_ctl = ~(u64)0;
4743 	/* Init IA32_MCi_CTL to all 1s */
4744 	for (bank = 0; bank < bank_num; bank++)
4745 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4746 
4747 	static_call(kvm_x86_setup_mce)(vcpu);
4748 out:
4749 	return r;
4750 }
4751 
4752 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4753 				      struct kvm_x86_mce *mce)
4754 {
4755 	u64 mcg_cap = vcpu->arch.mcg_cap;
4756 	unsigned bank_num = mcg_cap & 0xff;
4757 	u64 *banks = vcpu->arch.mce_banks;
4758 
4759 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4760 		return -EINVAL;
4761 	/*
4762 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4763 	 * reporting is disabled
4764 	 */
4765 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4766 	    vcpu->arch.mcg_ctl != ~(u64)0)
4767 		return 0;
4768 	banks += 4 * mce->bank;
4769 	/*
4770 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4771 	 * reporting is disabled for the bank
4772 	 */
4773 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4774 		return 0;
4775 	if (mce->status & MCI_STATUS_UC) {
4776 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4777 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4778 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4779 			return 0;
4780 		}
4781 		if (banks[1] & MCI_STATUS_VAL)
4782 			mce->status |= MCI_STATUS_OVER;
4783 		banks[2] = mce->addr;
4784 		banks[3] = mce->misc;
4785 		vcpu->arch.mcg_status = mce->mcg_status;
4786 		banks[1] = mce->status;
4787 		kvm_queue_exception(vcpu, MC_VECTOR);
4788 	} else if (!(banks[1] & MCI_STATUS_VAL)
4789 		   || !(banks[1] & MCI_STATUS_UC)) {
4790 		if (banks[1] & MCI_STATUS_VAL)
4791 			mce->status |= MCI_STATUS_OVER;
4792 		banks[2] = mce->addr;
4793 		banks[3] = mce->misc;
4794 		banks[1] = mce->status;
4795 	} else
4796 		banks[1] |= MCI_STATUS_OVER;
4797 	return 0;
4798 }
4799 
4800 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4801 					       struct kvm_vcpu_events *events)
4802 {
4803 	process_nmi(vcpu);
4804 
4805 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4806 		process_smi(vcpu);
4807 
4808 	/*
4809 	 * In guest mode, payload delivery should be deferred,
4810 	 * so that the L1 hypervisor can intercept #PF before
4811 	 * CR2 is modified (or intercept #DB before DR6 is
4812 	 * modified under nVMX). Unless the per-VM capability,
4813 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4814 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4815 	 * opportunistically defer the exception payload, deliver it if the
4816 	 * capability hasn't been requested before processing a
4817 	 * KVM_GET_VCPU_EVENTS.
4818 	 */
4819 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4820 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4821 		kvm_deliver_exception_payload(vcpu);
4822 
4823 	/*
4824 	 * The API doesn't provide the instruction length for software
4825 	 * exceptions, so don't report them. As long as the guest RIP
4826 	 * isn't advanced, we should expect to encounter the exception
4827 	 * again.
4828 	 */
4829 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4830 		events->exception.injected = 0;
4831 		events->exception.pending = 0;
4832 	} else {
4833 		events->exception.injected = vcpu->arch.exception.injected;
4834 		events->exception.pending = vcpu->arch.exception.pending;
4835 		/*
4836 		 * For ABI compatibility, deliberately conflate
4837 		 * pending and injected exceptions when
4838 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4839 		 */
4840 		if (!vcpu->kvm->arch.exception_payload_enabled)
4841 			events->exception.injected |=
4842 				vcpu->arch.exception.pending;
4843 	}
4844 	events->exception.nr = vcpu->arch.exception.nr;
4845 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4846 	events->exception.error_code = vcpu->arch.exception.error_code;
4847 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4848 	events->exception_payload = vcpu->arch.exception.payload;
4849 
4850 	events->interrupt.injected =
4851 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4852 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4853 	events->interrupt.soft = 0;
4854 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4855 
4856 	events->nmi.injected = vcpu->arch.nmi_injected;
4857 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4858 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4859 	events->nmi.pad = 0;
4860 
4861 	events->sipi_vector = 0; /* never valid when reporting to user space */
4862 
4863 	events->smi.smm = is_smm(vcpu);
4864 	events->smi.pending = vcpu->arch.smi_pending;
4865 	events->smi.smm_inside_nmi =
4866 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4867 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4868 
4869 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4870 			 | KVM_VCPUEVENT_VALID_SHADOW
4871 			 | KVM_VCPUEVENT_VALID_SMM);
4872 	if (vcpu->kvm->arch.exception_payload_enabled)
4873 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4874 
4875 	memset(&events->reserved, 0, sizeof(events->reserved));
4876 }
4877 
4878 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4879 
4880 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4881 					      struct kvm_vcpu_events *events)
4882 {
4883 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4884 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4885 			      | KVM_VCPUEVENT_VALID_SHADOW
4886 			      | KVM_VCPUEVENT_VALID_SMM
4887 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4888 		return -EINVAL;
4889 
4890 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4891 		if (!vcpu->kvm->arch.exception_payload_enabled)
4892 			return -EINVAL;
4893 		if (events->exception.pending)
4894 			events->exception.injected = 0;
4895 		else
4896 			events->exception_has_payload = 0;
4897 	} else {
4898 		events->exception.pending = 0;
4899 		events->exception_has_payload = 0;
4900 	}
4901 
4902 	if ((events->exception.injected || events->exception.pending) &&
4903 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4904 		return -EINVAL;
4905 
4906 	/* INITs are latched while in SMM */
4907 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4908 	    (events->smi.smm || events->smi.pending) &&
4909 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4910 		return -EINVAL;
4911 
4912 	process_nmi(vcpu);
4913 	vcpu->arch.exception.injected = events->exception.injected;
4914 	vcpu->arch.exception.pending = events->exception.pending;
4915 	vcpu->arch.exception.nr = events->exception.nr;
4916 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4917 	vcpu->arch.exception.error_code = events->exception.error_code;
4918 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4919 	vcpu->arch.exception.payload = events->exception_payload;
4920 
4921 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4922 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4923 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4924 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4925 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4926 						events->interrupt.shadow);
4927 
4928 	vcpu->arch.nmi_injected = events->nmi.injected;
4929 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4930 		vcpu->arch.nmi_pending = events->nmi.pending;
4931 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4932 
4933 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4934 	    lapic_in_kernel(vcpu))
4935 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4936 
4937 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4938 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4939 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
4940 			kvm_smm_changed(vcpu, events->smi.smm);
4941 		}
4942 
4943 		vcpu->arch.smi_pending = events->smi.pending;
4944 
4945 		if (events->smi.smm) {
4946 			if (events->smi.smm_inside_nmi)
4947 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4948 			else
4949 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4950 		}
4951 
4952 		if (lapic_in_kernel(vcpu)) {
4953 			if (events->smi.latched_init)
4954 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4955 			else
4956 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4957 		}
4958 	}
4959 
4960 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4961 
4962 	return 0;
4963 }
4964 
4965 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4966 					     struct kvm_debugregs *dbgregs)
4967 {
4968 	unsigned long val;
4969 
4970 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4971 	kvm_get_dr(vcpu, 6, &val);
4972 	dbgregs->dr6 = val;
4973 	dbgregs->dr7 = vcpu->arch.dr7;
4974 	dbgregs->flags = 0;
4975 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4976 }
4977 
4978 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4979 					    struct kvm_debugregs *dbgregs)
4980 {
4981 	if (dbgregs->flags)
4982 		return -EINVAL;
4983 
4984 	if (!kvm_dr6_valid(dbgregs->dr6))
4985 		return -EINVAL;
4986 	if (!kvm_dr7_valid(dbgregs->dr7))
4987 		return -EINVAL;
4988 
4989 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4990 	kvm_update_dr0123(vcpu);
4991 	vcpu->arch.dr6 = dbgregs->dr6;
4992 	vcpu->arch.dr7 = dbgregs->dr7;
4993 	kvm_update_dr7(vcpu);
4994 
4995 	return 0;
4996 }
4997 
4998 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4999 					 struct kvm_xsave *guest_xsave)
5000 {
5001 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5002 		return;
5003 
5004 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5005 				       guest_xsave->region,
5006 				       sizeof(guest_xsave->region),
5007 				       vcpu->arch.pkru);
5008 }
5009 
5010 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5011 					  u8 *state, unsigned int size)
5012 {
5013 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5014 		return;
5015 
5016 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5017 				       state, size, vcpu->arch.pkru);
5018 }
5019 
5020 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5021 					struct kvm_xsave *guest_xsave)
5022 {
5023 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5024 		return 0;
5025 
5026 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5027 					      guest_xsave->region,
5028 					      supported_xcr0, &vcpu->arch.pkru);
5029 }
5030 
5031 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5032 					struct kvm_xcrs *guest_xcrs)
5033 {
5034 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5035 		guest_xcrs->nr_xcrs = 0;
5036 		return;
5037 	}
5038 
5039 	guest_xcrs->nr_xcrs = 1;
5040 	guest_xcrs->flags = 0;
5041 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5042 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5043 }
5044 
5045 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5046 				       struct kvm_xcrs *guest_xcrs)
5047 {
5048 	int i, r = 0;
5049 
5050 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5051 		return -EINVAL;
5052 
5053 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5054 		return -EINVAL;
5055 
5056 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5057 		/* Only support XCR0 currently */
5058 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5059 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5060 				guest_xcrs->xcrs[i].value);
5061 			break;
5062 		}
5063 	if (r)
5064 		r = -EINVAL;
5065 	return r;
5066 }
5067 
5068 /*
5069  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5070  * stopped by the hypervisor.  This function will be called from the host only.
5071  * EINVAL is returned when the host attempts to set the flag for a guest that
5072  * does not support pv clocks.
5073  */
5074 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5075 {
5076 	if (!vcpu->arch.pv_time_enabled)
5077 		return -EINVAL;
5078 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5079 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5080 	return 0;
5081 }
5082 
5083 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5084 				 struct kvm_device_attr *attr)
5085 {
5086 	int r;
5087 
5088 	switch (attr->attr) {
5089 	case KVM_VCPU_TSC_OFFSET:
5090 		r = 0;
5091 		break;
5092 	default:
5093 		r = -ENXIO;
5094 	}
5095 
5096 	return r;
5097 }
5098 
5099 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5100 				 struct kvm_device_attr *attr)
5101 {
5102 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5103 	int r;
5104 
5105 	if (IS_ERR(uaddr))
5106 		return PTR_ERR(uaddr);
5107 
5108 	switch (attr->attr) {
5109 	case KVM_VCPU_TSC_OFFSET:
5110 		r = -EFAULT;
5111 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5112 			break;
5113 		r = 0;
5114 		break;
5115 	default:
5116 		r = -ENXIO;
5117 	}
5118 
5119 	return r;
5120 }
5121 
5122 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5123 				 struct kvm_device_attr *attr)
5124 {
5125 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5126 	struct kvm *kvm = vcpu->kvm;
5127 	int r;
5128 
5129 	if (IS_ERR(uaddr))
5130 		return PTR_ERR(uaddr);
5131 
5132 	switch (attr->attr) {
5133 	case KVM_VCPU_TSC_OFFSET: {
5134 		u64 offset, tsc, ns;
5135 		unsigned long flags;
5136 		bool matched;
5137 
5138 		r = -EFAULT;
5139 		if (get_user(offset, uaddr))
5140 			break;
5141 
5142 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5143 
5144 		matched = (vcpu->arch.virtual_tsc_khz &&
5145 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5146 			   kvm->arch.last_tsc_offset == offset);
5147 
5148 		tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5149 		ns = get_kvmclock_base_ns();
5150 
5151 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5152 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5153 
5154 		r = 0;
5155 		break;
5156 	}
5157 	default:
5158 		r = -ENXIO;
5159 	}
5160 
5161 	return r;
5162 }
5163 
5164 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5165 				      unsigned int ioctl,
5166 				      void __user *argp)
5167 {
5168 	struct kvm_device_attr attr;
5169 	int r;
5170 
5171 	if (copy_from_user(&attr, argp, sizeof(attr)))
5172 		return -EFAULT;
5173 
5174 	if (attr.group != KVM_VCPU_TSC_CTRL)
5175 		return -ENXIO;
5176 
5177 	switch (ioctl) {
5178 	case KVM_HAS_DEVICE_ATTR:
5179 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5180 		break;
5181 	case KVM_GET_DEVICE_ATTR:
5182 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5183 		break;
5184 	case KVM_SET_DEVICE_ATTR:
5185 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5186 		break;
5187 	}
5188 
5189 	return r;
5190 }
5191 
5192 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5193 				     struct kvm_enable_cap *cap)
5194 {
5195 	int r;
5196 	uint16_t vmcs_version;
5197 	void __user *user_ptr;
5198 
5199 	if (cap->flags)
5200 		return -EINVAL;
5201 
5202 	switch (cap->cap) {
5203 	case KVM_CAP_HYPERV_SYNIC2:
5204 		if (cap->args[0])
5205 			return -EINVAL;
5206 		fallthrough;
5207 
5208 	case KVM_CAP_HYPERV_SYNIC:
5209 		if (!irqchip_in_kernel(vcpu->kvm))
5210 			return -EINVAL;
5211 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5212 					     KVM_CAP_HYPERV_SYNIC2);
5213 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5214 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5215 			return -ENOTTY;
5216 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5217 		if (!r) {
5218 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5219 			if (copy_to_user(user_ptr, &vmcs_version,
5220 					 sizeof(vmcs_version)))
5221 				r = -EFAULT;
5222 		}
5223 		return r;
5224 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5225 		if (!kvm_x86_ops.enable_direct_tlbflush)
5226 			return -ENOTTY;
5227 
5228 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5229 
5230 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5231 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5232 
5233 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5234 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5235 		if (vcpu->arch.pv_cpuid.enforce)
5236 			kvm_update_pv_runtime(vcpu);
5237 
5238 		return 0;
5239 	default:
5240 		return -EINVAL;
5241 	}
5242 }
5243 
5244 long kvm_arch_vcpu_ioctl(struct file *filp,
5245 			 unsigned int ioctl, unsigned long arg)
5246 {
5247 	struct kvm_vcpu *vcpu = filp->private_data;
5248 	void __user *argp = (void __user *)arg;
5249 	int r;
5250 	union {
5251 		struct kvm_sregs2 *sregs2;
5252 		struct kvm_lapic_state *lapic;
5253 		struct kvm_xsave *xsave;
5254 		struct kvm_xcrs *xcrs;
5255 		void *buffer;
5256 	} u;
5257 
5258 	vcpu_load(vcpu);
5259 
5260 	u.buffer = NULL;
5261 	switch (ioctl) {
5262 	case KVM_GET_LAPIC: {
5263 		r = -EINVAL;
5264 		if (!lapic_in_kernel(vcpu))
5265 			goto out;
5266 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5267 				GFP_KERNEL_ACCOUNT);
5268 
5269 		r = -ENOMEM;
5270 		if (!u.lapic)
5271 			goto out;
5272 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5273 		if (r)
5274 			goto out;
5275 		r = -EFAULT;
5276 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5277 			goto out;
5278 		r = 0;
5279 		break;
5280 	}
5281 	case KVM_SET_LAPIC: {
5282 		r = -EINVAL;
5283 		if (!lapic_in_kernel(vcpu))
5284 			goto out;
5285 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5286 		if (IS_ERR(u.lapic)) {
5287 			r = PTR_ERR(u.lapic);
5288 			goto out_nofree;
5289 		}
5290 
5291 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5292 		break;
5293 	}
5294 	case KVM_INTERRUPT: {
5295 		struct kvm_interrupt irq;
5296 
5297 		r = -EFAULT;
5298 		if (copy_from_user(&irq, argp, sizeof(irq)))
5299 			goto out;
5300 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5301 		break;
5302 	}
5303 	case KVM_NMI: {
5304 		r = kvm_vcpu_ioctl_nmi(vcpu);
5305 		break;
5306 	}
5307 	case KVM_SMI: {
5308 		r = kvm_vcpu_ioctl_smi(vcpu);
5309 		break;
5310 	}
5311 	case KVM_SET_CPUID: {
5312 		struct kvm_cpuid __user *cpuid_arg = argp;
5313 		struct kvm_cpuid cpuid;
5314 
5315 		r = -EFAULT;
5316 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5317 			goto out;
5318 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5319 		break;
5320 	}
5321 	case KVM_SET_CPUID2: {
5322 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5323 		struct kvm_cpuid2 cpuid;
5324 
5325 		r = -EFAULT;
5326 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5327 			goto out;
5328 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5329 					      cpuid_arg->entries);
5330 		break;
5331 	}
5332 	case KVM_GET_CPUID2: {
5333 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5334 		struct kvm_cpuid2 cpuid;
5335 
5336 		r = -EFAULT;
5337 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5338 			goto out;
5339 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5340 					      cpuid_arg->entries);
5341 		if (r)
5342 			goto out;
5343 		r = -EFAULT;
5344 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5345 			goto out;
5346 		r = 0;
5347 		break;
5348 	}
5349 	case KVM_GET_MSRS: {
5350 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5351 		r = msr_io(vcpu, argp, do_get_msr, 1);
5352 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5353 		break;
5354 	}
5355 	case KVM_SET_MSRS: {
5356 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5357 		r = msr_io(vcpu, argp, do_set_msr, 0);
5358 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5359 		break;
5360 	}
5361 	case KVM_TPR_ACCESS_REPORTING: {
5362 		struct kvm_tpr_access_ctl tac;
5363 
5364 		r = -EFAULT;
5365 		if (copy_from_user(&tac, argp, sizeof(tac)))
5366 			goto out;
5367 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5368 		if (r)
5369 			goto out;
5370 		r = -EFAULT;
5371 		if (copy_to_user(argp, &tac, sizeof(tac)))
5372 			goto out;
5373 		r = 0;
5374 		break;
5375 	};
5376 	case KVM_SET_VAPIC_ADDR: {
5377 		struct kvm_vapic_addr va;
5378 		int idx;
5379 
5380 		r = -EINVAL;
5381 		if (!lapic_in_kernel(vcpu))
5382 			goto out;
5383 		r = -EFAULT;
5384 		if (copy_from_user(&va, argp, sizeof(va)))
5385 			goto out;
5386 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5387 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5388 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5389 		break;
5390 	}
5391 	case KVM_X86_SETUP_MCE: {
5392 		u64 mcg_cap;
5393 
5394 		r = -EFAULT;
5395 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5396 			goto out;
5397 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5398 		break;
5399 	}
5400 	case KVM_X86_SET_MCE: {
5401 		struct kvm_x86_mce mce;
5402 
5403 		r = -EFAULT;
5404 		if (copy_from_user(&mce, argp, sizeof(mce)))
5405 			goto out;
5406 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5407 		break;
5408 	}
5409 	case KVM_GET_VCPU_EVENTS: {
5410 		struct kvm_vcpu_events events;
5411 
5412 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5413 
5414 		r = -EFAULT;
5415 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5416 			break;
5417 		r = 0;
5418 		break;
5419 	}
5420 	case KVM_SET_VCPU_EVENTS: {
5421 		struct kvm_vcpu_events events;
5422 
5423 		r = -EFAULT;
5424 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5425 			break;
5426 
5427 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5428 		break;
5429 	}
5430 	case KVM_GET_DEBUGREGS: {
5431 		struct kvm_debugregs dbgregs;
5432 
5433 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5434 
5435 		r = -EFAULT;
5436 		if (copy_to_user(argp, &dbgregs,
5437 				 sizeof(struct kvm_debugregs)))
5438 			break;
5439 		r = 0;
5440 		break;
5441 	}
5442 	case KVM_SET_DEBUGREGS: {
5443 		struct kvm_debugregs dbgregs;
5444 
5445 		r = -EFAULT;
5446 		if (copy_from_user(&dbgregs, argp,
5447 				   sizeof(struct kvm_debugregs)))
5448 			break;
5449 
5450 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5451 		break;
5452 	}
5453 	case KVM_GET_XSAVE: {
5454 		r = -EINVAL;
5455 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5456 			break;
5457 
5458 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5459 		r = -ENOMEM;
5460 		if (!u.xsave)
5461 			break;
5462 
5463 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5464 
5465 		r = -EFAULT;
5466 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5467 			break;
5468 		r = 0;
5469 		break;
5470 	}
5471 	case KVM_SET_XSAVE: {
5472 		int size = vcpu->arch.guest_fpu.uabi_size;
5473 
5474 		u.xsave = memdup_user(argp, size);
5475 		if (IS_ERR(u.xsave)) {
5476 			r = PTR_ERR(u.xsave);
5477 			goto out_nofree;
5478 		}
5479 
5480 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5481 		break;
5482 	}
5483 
5484 	case KVM_GET_XSAVE2: {
5485 		int size = vcpu->arch.guest_fpu.uabi_size;
5486 
5487 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5488 		r = -ENOMEM;
5489 		if (!u.xsave)
5490 			break;
5491 
5492 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5493 
5494 		r = -EFAULT;
5495 		if (copy_to_user(argp, u.xsave, size))
5496 			break;
5497 
5498 		r = 0;
5499 		break;
5500 	}
5501 
5502 	case KVM_GET_XCRS: {
5503 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5504 		r = -ENOMEM;
5505 		if (!u.xcrs)
5506 			break;
5507 
5508 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5509 
5510 		r = -EFAULT;
5511 		if (copy_to_user(argp, u.xcrs,
5512 				 sizeof(struct kvm_xcrs)))
5513 			break;
5514 		r = 0;
5515 		break;
5516 	}
5517 	case KVM_SET_XCRS: {
5518 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5519 		if (IS_ERR(u.xcrs)) {
5520 			r = PTR_ERR(u.xcrs);
5521 			goto out_nofree;
5522 		}
5523 
5524 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5525 		break;
5526 	}
5527 	case KVM_SET_TSC_KHZ: {
5528 		u32 user_tsc_khz;
5529 
5530 		r = -EINVAL;
5531 		user_tsc_khz = (u32)arg;
5532 
5533 		if (kvm_has_tsc_control &&
5534 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5535 			goto out;
5536 
5537 		if (user_tsc_khz == 0)
5538 			user_tsc_khz = tsc_khz;
5539 
5540 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5541 			r = 0;
5542 
5543 		goto out;
5544 	}
5545 	case KVM_GET_TSC_KHZ: {
5546 		r = vcpu->arch.virtual_tsc_khz;
5547 		goto out;
5548 	}
5549 	case KVM_KVMCLOCK_CTRL: {
5550 		r = kvm_set_guest_paused(vcpu);
5551 		goto out;
5552 	}
5553 	case KVM_ENABLE_CAP: {
5554 		struct kvm_enable_cap cap;
5555 
5556 		r = -EFAULT;
5557 		if (copy_from_user(&cap, argp, sizeof(cap)))
5558 			goto out;
5559 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5560 		break;
5561 	}
5562 	case KVM_GET_NESTED_STATE: {
5563 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5564 		u32 user_data_size;
5565 
5566 		r = -EINVAL;
5567 		if (!kvm_x86_ops.nested_ops->get_state)
5568 			break;
5569 
5570 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5571 		r = -EFAULT;
5572 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5573 			break;
5574 
5575 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5576 						     user_data_size);
5577 		if (r < 0)
5578 			break;
5579 
5580 		if (r > user_data_size) {
5581 			if (put_user(r, &user_kvm_nested_state->size))
5582 				r = -EFAULT;
5583 			else
5584 				r = -E2BIG;
5585 			break;
5586 		}
5587 
5588 		r = 0;
5589 		break;
5590 	}
5591 	case KVM_SET_NESTED_STATE: {
5592 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5593 		struct kvm_nested_state kvm_state;
5594 		int idx;
5595 
5596 		r = -EINVAL;
5597 		if (!kvm_x86_ops.nested_ops->set_state)
5598 			break;
5599 
5600 		r = -EFAULT;
5601 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5602 			break;
5603 
5604 		r = -EINVAL;
5605 		if (kvm_state.size < sizeof(kvm_state))
5606 			break;
5607 
5608 		if (kvm_state.flags &
5609 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5610 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5611 		      | KVM_STATE_NESTED_GIF_SET))
5612 			break;
5613 
5614 		/* nested_run_pending implies guest_mode.  */
5615 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5616 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5617 			break;
5618 
5619 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5620 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5621 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5622 		break;
5623 	}
5624 	case KVM_GET_SUPPORTED_HV_CPUID:
5625 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5626 		break;
5627 #ifdef CONFIG_KVM_XEN
5628 	case KVM_XEN_VCPU_GET_ATTR: {
5629 		struct kvm_xen_vcpu_attr xva;
5630 
5631 		r = -EFAULT;
5632 		if (copy_from_user(&xva, argp, sizeof(xva)))
5633 			goto out;
5634 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5635 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5636 			r = -EFAULT;
5637 		break;
5638 	}
5639 	case KVM_XEN_VCPU_SET_ATTR: {
5640 		struct kvm_xen_vcpu_attr xva;
5641 
5642 		r = -EFAULT;
5643 		if (copy_from_user(&xva, argp, sizeof(xva)))
5644 			goto out;
5645 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5646 		break;
5647 	}
5648 #endif
5649 	case KVM_GET_SREGS2: {
5650 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5651 		r = -ENOMEM;
5652 		if (!u.sregs2)
5653 			goto out;
5654 		__get_sregs2(vcpu, u.sregs2);
5655 		r = -EFAULT;
5656 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5657 			goto out;
5658 		r = 0;
5659 		break;
5660 	}
5661 	case KVM_SET_SREGS2: {
5662 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5663 		if (IS_ERR(u.sregs2)) {
5664 			r = PTR_ERR(u.sregs2);
5665 			u.sregs2 = NULL;
5666 			goto out;
5667 		}
5668 		r = __set_sregs2(vcpu, u.sregs2);
5669 		break;
5670 	}
5671 	case KVM_HAS_DEVICE_ATTR:
5672 	case KVM_GET_DEVICE_ATTR:
5673 	case KVM_SET_DEVICE_ATTR:
5674 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5675 		break;
5676 	default:
5677 		r = -EINVAL;
5678 	}
5679 out:
5680 	kfree(u.buffer);
5681 out_nofree:
5682 	vcpu_put(vcpu);
5683 	return r;
5684 }
5685 
5686 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5687 {
5688 	return VM_FAULT_SIGBUS;
5689 }
5690 
5691 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5692 {
5693 	int ret;
5694 
5695 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5696 		return -EINVAL;
5697 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5698 	return ret;
5699 }
5700 
5701 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5702 					      u64 ident_addr)
5703 {
5704 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5705 }
5706 
5707 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5708 					 unsigned long kvm_nr_mmu_pages)
5709 {
5710 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5711 		return -EINVAL;
5712 
5713 	mutex_lock(&kvm->slots_lock);
5714 
5715 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5716 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5717 
5718 	mutex_unlock(&kvm->slots_lock);
5719 	return 0;
5720 }
5721 
5722 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5723 {
5724 	return kvm->arch.n_max_mmu_pages;
5725 }
5726 
5727 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5728 {
5729 	struct kvm_pic *pic = kvm->arch.vpic;
5730 	int r;
5731 
5732 	r = 0;
5733 	switch (chip->chip_id) {
5734 	case KVM_IRQCHIP_PIC_MASTER:
5735 		memcpy(&chip->chip.pic, &pic->pics[0],
5736 			sizeof(struct kvm_pic_state));
5737 		break;
5738 	case KVM_IRQCHIP_PIC_SLAVE:
5739 		memcpy(&chip->chip.pic, &pic->pics[1],
5740 			sizeof(struct kvm_pic_state));
5741 		break;
5742 	case KVM_IRQCHIP_IOAPIC:
5743 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5744 		break;
5745 	default:
5746 		r = -EINVAL;
5747 		break;
5748 	}
5749 	return r;
5750 }
5751 
5752 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5753 {
5754 	struct kvm_pic *pic = kvm->arch.vpic;
5755 	int r;
5756 
5757 	r = 0;
5758 	switch (chip->chip_id) {
5759 	case KVM_IRQCHIP_PIC_MASTER:
5760 		spin_lock(&pic->lock);
5761 		memcpy(&pic->pics[0], &chip->chip.pic,
5762 			sizeof(struct kvm_pic_state));
5763 		spin_unlock(&pic->lock);
5764 		break;
5765 	case KVM_IRQCHIP_PIC_SLAVE:
5766 		spin_lock(&pic->lock);
5767 		memcpy(&pic->pics[1], &chip->chip.pic,
5768 			sizeof(struct kvm_pic_state));
5769 		spin_unlock(&pic->lock);
5770 		break;
5771 	case KVM_IRQCHIP_IOAPIC:
5772 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5773 		break;
5774 	default:
5775 		r = -EINVAL;
5776 		break;
5777 	}
5778 	kvm_pic_update_irq(pic);
5779 	return r;
5780 }
5781 
5782 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5783 {
5784 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5785 
5786 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5787 
5788 	mutex_lock(&kps->lock);
5789 	memcpy(ps, &kps->channels, sizeof(*ps));
5790 	mutex_unlock(&kps->lock);
5791 	return 0;
5792 }
5793 
5794 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5795 {
5796 	int i;
5797 	struct kvm_pit *pit = kvm->arch.vpit;
5798 
5799 	mutex_lock(&pit->pit_state.lock);
5800 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5801 	for (i = 0; i < 3; i++)
5802 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5803 	mutex_unlock(&pit->pit_state.lock);
5804 	return 0;
5805 }
5806 
5807 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5808 {
5809 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5810 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5811 		sizeof(ps->channels));
5812 	ps->flags = kvm->arch.vpit->pit_state.flags;
5813 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5814 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5815 	return 0;
5816 }
5817 
5818 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5819 {
5820 	int start = 0;
5821 	int i;
5822 	u32 prev_legacy, cur_legacy;
5823 	struct kvm_pit *pit = kvm->arch.vpit;
5824 
5825 	mutex_lock(&pit->pit_state.lock);
5826 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5827 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5828 	if (!prev_legacy && cur_legacy)
5829 		start = 1;
5830 	memcpy(&pit->pit_state.channels, &ps->channels,
5831 	       sizeof(pit->pit_state.channels));
5832 	pit->pit_state.flags = ps->flags;
5833 	for (i = 0; i < 3; i++)
5834 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5835 				   start && i == 0);
5836 	mutex_unlock(&pit->pit_state.lock);
5837 	return 0;
5838 }
5839 
5840 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5841 				 struct kvm_reinject_control *control)
5842 {
5843 	struct kvm_pit *pit = kvm->arch.vpit;
5844 
5845 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5846 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5847 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5848 	 */
5849 	mutex_lock(&pit->pit_state.lock);
5850 	kvm_pit_set_reinject(pit, control->pit_reinject);
5851 	mutex_unlock(&pit->pit_state.lock);
5852 
5853 	return 0;
5854 }
5855 
5856 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5857 {
5858 
5859 	/*
5860 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5861 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5862 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5863 	 * VM-Exit.
5864 	 */
5865 	struct kvm_vcpu *vcpu;
5866 	unsigned long i;
5867 
5868 	kvm_for_each_vcpu(i, vcpu, kvm)
5869 		kvm_vcpu_kick(vcpu);
5870 }
5871 
5872 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5873 			bool line_status)
5874 {
5875 	if (!irqchip_in_kernel(kvm))
5876 		return -ENXIO;
5877 
5878 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5879 					irq_event->irq, irq_event->level,
5880 					line_status);
5881 	return 0;
5882 }
5883 
5884 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5885 			    struct kvm_enable_cap *cap)
5886 {
5887 	int r;
5888 
5889 	if (cap->flags)
5890 		return -EINVAL;
5891 
5892 	switch (cap->cap) {
5893 	case KVM_CAP_DISABLE_QUIRKS:
5894 		kvm->arch.disabled_quirks = cap->args[0];
5895 		r = 0;
5896 		break;
5897 	case KVM_CAP_SPLIT_IRQCHIP: {
5898 		mutex_lock(&kvm->lock);
5899 		r = -EINVAL;
5900 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5901 			goto split_irqchip_unlock;
5902 		r = -EEXIST;
5903 		if (irqchip_in_kernel(kvm))
5904 			goto split_irqchip_unlock;
5905 		if (kvm->created_vcpus)
5906 			goto split_irqchip_unlock;
5907 		r = kvm_setup_empty_irq_routing(kvm);
5908 		if (r)
5909 			goto split_irqchip_unlock;
5910 		/* Pairs with irqchip_in_kernel. */
5911 		smp_wmb();
5912 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5913 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5914 		kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
5915 		r = 0;
5916 split_irqchip_unlock:
5917 		mutex_unlock(&kvm->lock);
5918 		break;
5919 	}
5920 	case KVM_CAP_X2APIC_API:
5921 		r = -EINVAL;
5922 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5923 			break;
5924 
5925 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5926 			kvm->arch.x2apic_format = true;
5927 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5928 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5929 
5930 		r = 0;
5931 		break;
5932 	case KVM_CAP_X86_DISABLE_EXITS:
5933 		r = -EINVAL;
5934 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5935 			break;
5936 
5937 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5938 			kvm_can_mwait_in_guest())
5939 			kvm->arch.mwait_in_guest = true;
5940 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5941 			kvm->arch.hlt_in_guest = true;
5942 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5943 			kvm->arch.pause_in_guest = true;
5944 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5945 			kvm->arch.cstate_in_guest = true;
5946 		r = 0;
5947 		break;
5948 	case KVM_CAP_MSR_PLATFORM_INFO:
5949 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5950 		r = 0;
5951 		break;
5952 	case KVM_CAP_EXCEPTION_PAYLOAD:
5953 		kvm->arch.exception_payload_enabled = cap->args[0];
5954 		r = 0;
5955 		break;
5956 	case KVM_CAP_X86_USER_SPACE_MSR:
5957 		kvm->arch.user_space_msr_mask = cap->args[0];
5958 		r = 0;
5959 		break;
5960 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5961 		r = -EINVAL;
5962 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5963 			break;
5964 
5965 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5966 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5967 			break;
5968 
5969 		if (kvm_has_bus_lock_exit &&
5970 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5971 			kvm->arch.bus_lock_detection_enabled = true;
5972 		r = 0;
5973 		break;
5974 #ifdef CONFIG_X86_SGX_KVM
5975 	case KVM_CAP_SGX_ATTRIBUTE: {
5976 		unsigned long allowed_attributes = 0;
5977 
5978 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5979 		if (r)
5980 			break;
5981 
5982 		/* KVM only supports the PROVISIONKEY privileged attribute. */
5983 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5984 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5985 			kvm->arch.sgx_provisioning_allowed = true;
5986 		else
5987 			r = -EINVAL;
5988 		break;
5989 	}
5990 #endif
5991 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5992 		r = -EINVAL;
5993 		if (kvm_x86_ops.vm_copy_enc_context_from)
5994 			r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5995 		return r;
5996 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
5997 		r = -EINVAL;
5998 		if (kvm_x86_ops.vm_move_enc_context_from)
5999 			r = kvm_x86_ops.vm_move_enc_context_from(
6000 				kvm, cap->args[0]);
6001 		return r;
6002 	case KVM_CAP_EXIT_HYPERCALL:
6003 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6004 			r = -EINVAL;
6005 			break;
6006 		}
6007 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6008 		r = 0;
6009 		break;
6010 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6011 		r = -EINVAL;
6012 		if (cap->args[0] & ~1)
6013 			break;
6014 		kvm->arch.exit_on_emulation_error = cap->args[0];
6015 		r = 0;
6016 		break;
6017 	default:
6018 		r = -EINVAL;
6019 		break;
6020 	}
6021 	return r;
6022 }
6023 
6024 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6025 {
6026 	struct kvm_x86_msr_filter *msr_filter;
6027 
6028 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6029 	if (!msr_filter)
6030 		return NULL;
6031 
6032 	msr_filter->default_allow = default_allow;
6033 	return msr_filter;
6034 }
6035 
6036 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6037 {
6038 	u32 i;
6039 
6040 	if (!msr_filter)
6041 		return;
6042 
6043 	for (i = 0; i < msr_filter->count; i++)
6044 		kfree(msr_filter->ranges[i].bitmap);
6045 
6046 	kfree(msr_filter);
6047 }
6048 
6049 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6050 			      struct kvm_msr_filter_range *user_range)
6051 {
6052 	unsigned long *bitmap = NULL;
6053 	size_t bitmap_size;
6054 
6055 	if (!user_range->nmsrs)
6056 		return 0;
6057 
6058 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6059 		return -EINVAL;
6060 
6061 	if (!user_range->flags)
6062 		return -EINVAL;
6063 
6064 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6065 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6066 		return -EINVAL;
6067 
6068 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6069 	if (IS_ERR(bitmap))
6070 		return PTR_ERR(bitmap);
6071 
6072 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6073 		.flags = user_range->flags,
6074 		.base = user_range->base,
6075 		.nmsrs = user_range->nmsrs,
6076 		.bitmap = bitmap,
6077 	};
6078 
6079 	msr_filter->count++;
6080 	return 0;
6081 }
6082 
6083 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6084 {
6085 	struct kvm_msr_filter __user *user_msr_filter = argp;
6086 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6087 	struct kvm_msr_filter filter;
6088 	bool default_allow;
6089 	bool empty = true;
6090 	int r = 0;
6091 	u32 i;
6092 
6093 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6094 		return -EFAULT;
6095 
6096 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6097 		empty &= !filter.ranges[i].nmsrs;
6098 
6099 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6100 	if (empty && !default_allow)
6101 		return -EINVAL;
6102 
6103 	new_filter = kvm_alloc_msr_filter(default_allow);
6104 	if (!new_filter)
6105 		return -ENOMEM;
6106 
6107 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6108 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6109 		if (r) {
6110 			kvm_free_msr_filter(new_filter);
6111 			return r;
6112 		}
6113 	}
6114 
6115 	mutex_lock(&kvm->lock);
6116 
6117 	/* The per-VM filter is protected by kvm->lock... */
6118 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6119 
6120 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6121 	synchronize_srcu(&kvm->srcu);
6122 
6123 	kvm_free_msr_filter(old_filter);
6124 
6125 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6126 	mutex_unlock(&kvm->lock);
6127 
6128 	return 0;
6129 }
6130 
6131 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6132 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6133 {
6134 	struct kvm_vcpu *vcpu;
6135 	unsigned long i;
6136 	int ret = 0;
6137 
6138 	mutex_lock(&kvm->lock);
6139 	kvm_for_each_vcpu(i, vcpu, kvm) {
6140 		if (!vcpu->arch.pv_time_enabled)
6141 			continue;
6142 
6143 		ret = kvm_set_guest_paused(vcpu);
6144 		if (ret) {
6145 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6146 				vcpu->vcpu_id, ret);
6147 			break;
6148 		}
6149 	}
6150 	mutex_unlock(&kvm->lock);
6151 
6152 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6153 }
6154 
6155 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6156 {
6157 	switch (state) {
6158 	case PM_HIBERNATION_PREPARE:
6159 	case PM_SUSPEND_PREPARE:
6160 		return kvm_arch_suspend_notifier(kvm);
6161 	}
6162 
6163 	return NOTIFY_DONE;
6164 }
6165 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6166 
6167 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6168 {
6169 	struct kvm_clock_data data = { 0 };
6170 
6171 	get_kvmclock(kvm, &data);
6172 	if (copy_to_user(argp, &data, sizeof(data)))
6173 		return -EFAULT;
6174 
6175 	return 0;
6176 }
6177 
6178 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6179 {
6180 	struct kvm_arch *ka = &kvm->arch;
6181 	struct kvm_clock_data data;
6182 	u64 now_raw_ns;
6183 
6184 	if (copy_from_user(&data, argp, sizeof(data)))
6185 		return -EFAULT;
6186 
6187 	/*
6188 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6189 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6190 	 */
6191 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6192 		return -EINVAL;
6193 
6194 	kvm_hv_invalidate_tsc_page(kvm);
6195 	kvm_start_pvclock_update(kvm);
6196 	pvclock_update_vm_gtod_copy(kvm);
6197 
6198 	/*
6199 	 * This pairs with kvm_guest_time_update(): when masterclock is
6200 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6201 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6202 	 * is slightly ahead) here we risk going negative on unsigned
6203 	 * 'system_time' when 'data.clock' is very small.
6204 	 */
6205 	if (data.flags & KVM_CLOCK_REALTIME) {
6206 		u64 now_real_ns = ktime_get_real_ns();
6207 
6208 		/*
6209 		 * Avoid stepping the kvmclock backwards.
6210 		 */
6211 		if (now_real_ns > data.realtime)
6212 			data.clock += now_real_ns - data.realtime;
6213 	}
6214 
6215 	if (ka->use_master_clock)
6216 		now_raw_ns = ka->master_kernel_ns;
6217 	else
6218 		now_raw_ns = get_kvmclock_base_ns();
6219 	ka->kvmclock_offset = data.clock - now_raw_ns;
6220 	kvm_end_pvclock_update(kvm);
6221 	return 0;
6222 }
6223 
6224 long kvm_arch_vm_ioctl(struct file *filp,
6225 		       unsigned int ioctl, unsigned long arg)
6226 {
6227 	struct kvm *kvm = filp->private_data;
6228 	void __user *argp = (void __user *)arg;
6229 	int r = -ENOTTY;
6230 	/*
6231 	 * This union makes it completely explicit to gcc-3.x
6232 	 * that these two variables' stack usage should be
6233 	 * combined, not added together.
6234 	 */
6235 	union {
6236 		struct kvm_pit_state ps;
6237 		struct kvm_pit_state2 ps2;
6238 		struct kvm_pit_config pit_config;
6239 	} u;
6240 
6241 	switch (ioctl) {
6242 	case KVM_SET_TSS_ADDR:
6243 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6244 		break;
6245 	case KVM_SET_IDENTITY_MAP_ADDR: {
6246 		u64 ident_addr;
6247 
6248 		mutex_lock(&kvm->lock);
6249 		r = -EINVAL;
6250 		if (kvm->created_vcpus)
6251 			goto set_identity_unlock;
6252 		r = -EFAULT;
6253 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6254 			goto set_identity_unlock;
6255 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6256 set_identity_unlock:
6257 		mutex_unlock(&kvm->lock);
6258 		break;
6259 	}
6260 	case KVM_SET_NR_MMU_PAGES:
6261 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6262 		break;
6263 	case KVM_GET_NR_MMU_PAGES:
6264 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6265 		break;
6266 	case KVM_CREATE_IRQCHIP: {
6267 		mutex_lock(&kvm->lock);
6268 
6269 		r = -EEXIST;
6270 		if (irqchip_in_kernel(kvm))
6271 			goto create_irqchip_unlock;
6272 
6273 		r = -EINVAL;
6274 		if (kvm->created_vcpus)
6275 			goto create_irqchip_unlock;
6276 
6277 		r = kvm_pic_init(kvm);
6278 		if (r)
6279 			goto create_irqchip_unlock;
6280 
6281 		r = kvm_ioapic_init(kvm);
6282 		if (r) {
6283 			kvm_pic_destroy(kvm);
6284 			goto create_irqchip_unlock;
6285 		}
6286 
6287 		r = kvm_setup_default_irq_routing(kvm);
6288 		if (r) {
6289 			kvm_ioapic_destroy(kvm);
6290 			kvm_pic_destroy(kvm);
6291 			goto create_irqchip_unlock;
6292 		}
6293 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6294 		smp_wmb();
6295 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6296 		kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
6297 	create_irqchip_unlock:
6298 		mutex_unlock(&kvm->lock);
6299 		break;
6300 	}
6301 	case KVM_CREATE_PIT:
6302 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6303 		goto create_pit;
6304 	case KVM_CREATE_PIT2:
6305 		r = -EFAULT;
6306 		if (copy_from_user(&u.pit_config, argp,
6307 				   sizeof(struct kvm_pit_config)))
6308 			goto out;
6309 	create_pit:
6310 		mutex_lock(&kvm->lock);
6311 		r = -EEXIST;
6312 		if (kvm->arch.vpit)
6313 			goto create_pit_unlock;
6314 		r = -ENOMEM;
6315 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6316 		if (kvm->arch.vpit)
6317 			r = 0;
6318 	create_pit_unlock:
6319 		mutex_unlock(&kvm->lock);
6320 		break;
6321 	case KVM_GET_IRQCHIP: {
6322 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6323 		struct kvm_irqchip *chip;
6324 
6325 		chip = memdup_user(argp, sizeof(*chip));
6326 		if (IS_ERR(chip)) {
6327 			r = PTR_ERR(chip);
6328 			goto out;
6329 		}
6330 
6331 		r = -ENXIO;
6332 		if (!irqchip_kernel(kvm))
6333 			goto get_irqchip_out;
6334 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6335 		if (r)
6336 			goto get_irqchip_out;
6337 		r = -EFAULT;
6338 		if (copy_to_user(argp, chip, sizeof(*chip)))
6339 			goto get_irqchip_out;
6340 		r = 0;
6341 	get_irqchip_out:
6342 		kfree(chip);
6343 		break;
6344 	}
6345 	case KVM_SET_IRQCHIP: {
6346 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6347 		struct kvm_irqchip *chip;
6348 
6349 		chip = memdup_user(argp, sizeof(*chip));
6350 		if (IS_ERR(chip)) {
6351 			r = PTR_ERR(chip);
6352 			goto out;
6353 		}
6354 
6355 		r = -ENXIO;
6356 		if (!irqchip_kernel(kvm))
6357 			goto set_irqchip_out;
6358 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6359 	set_irqchip_out:
6360 		kfree(chip);
6361 		break;
6362 	}
6363 	case KVM_GET_PIT: {
6364 		r = -EFAULT;
6365 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6366 			goto out;
6367 		r = -ENXIO;
6368 		if (!kvm->arch.vpit)
6369 			goto out;
6370 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6371 		if (r)
6372 			goto out;
6373 		r = -EFAULT;
6374 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6375 			goto out;
6376 		r = 0;
6377 		break;
6378 	}
6379 	case KVM_SET_PIT: {
6380 		r = -EFAULT;
6381 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6382 			goto out;
6383 		mutex_lock(&kvm->lock);
6384 		r = -ENXIO;
6385 		if (!kvm->arch.vpit)
6386 			goto set_pit_out;
6387 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6388 set_pit_out:
6389 		mutex_unlock(&kvm->lock);
6390 		break;
6391 	}
6392 	case KVM_GET_PIT2: {
6393 		r = -ENXIO;
6394 		if (!kvm->arch.vpit)
6395 			goto out;
6396 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6397 		if (r)
6398 			goto out;
6399 		r = -EFAULT;
6400 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6401 			goto out;
6402 		r = 0;
6403 		break;
6404 	}
6405 	case KVM_SET_PIT2: {
6406 		r = -EFAULT;
6407 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6408 			goto out;
6409 		mutex_lock(&kvm->lock);
6410 		r = -ENXIO;
6411 		if (!kvm->arch.vpit)
6412 			goto set_pit2_out;
6413 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6414 set_pit2_out:
6415 		mutex_unlock(&kvm->lock);
6416 		break;
6417 	}
6418 	case KVM_REINJECT_CONTROL: {
6419 		struct kvm_reinject_control control;
6420 		r =  -EFAULT;
6421 		if (copy_from_user(&control, argp, sizeof(control)))
6422 			goto out;
6423 		r = -ENXIO;
6424 		if (!kvm->arch.vpit)
6425 			goto out;
6426 		r = kvm_vm_ioctl_reinject(kvm, &control);
6427 		break;
6428 	}
6429 	case KVM_SET_BOOT_CPU_ID:
6430 		r = 0;
6431 		mutex_lock(&kvm->lock);
6432 		if (kvm->created_vcpus)
6433 			r = -EBUSY;
6434 		else
6435 			kvm->arch.bsp_vcpu_id = arg;
6436 		mutex_unlock(&kvm->lock);
6437 		break;
6438 #ifdef CONFIG_KVM_XEN
6439 	case KVM_XEN_HVM_CONFIG: {
6440 		struct kvm_xen_hvm_config xhc;
6441 		r = -EFAULT;
6442 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6443 			goto out;
6444 		r = kvm_xen_hvm_config(kvm, &xhc);
6445 		break;
6446 	}
6447 	case KVM_XEN_HVM_GET_ATTR: {
6448 		struct kvm_xen_hvm_attr xha;
6449 
6450 		r = -EFAULT;
6451 		if (copy_from_user(&xha, argp, sizeof(xha)))
6452 			goto out;
6453 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6454 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6455 			r = -EFAULT;
6456 		break;
6457 	}
6458 	case KVM_XEN_HVM_SET_ATTR: {
6459 		struct kvm_xen_hvm_attr xha;
6460 
6461 		r = -EFAULT;
6462 		if (copy_from_user(&xha, argp, sizeof(xha)))
6463 			goto out;
6464 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6465 		break;
6466 	}
6467 #endif
6468 	case KVM_SET_CLOCK:
6469 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6470 		break;
6471 	case KVM_GET_CLOCK:
6472 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6473 		break;
6474 	case KVM_MEMORY_ENCRYPT_OP: {
6475 		r = -ENOTTY;
6476 		if (kvm_x86_ops.mem_enc_op)
6477 			r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6478 		break;
6479 	}
6480 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6481 		struct kvm_enc_region region;
6482 
6483 		r = -EFAULT;
6484 		if (copy_from_user(&region, argp, sizeof(region)))
6485 			goto out;
6486 
6487 		r = -ENOTTY;
6488 		if (kvm_x86_ops.mem_enc_reg_region)
6489 			r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6490 		break;
6491 	}
6492 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6493 		struct kvm_enc_region region;
6494 
6495 		r = -EFAULT;
6496 		if (copy_from_user(&region, argp, sizeof(region)))
6497 			goto out;
6498 
6499 		r = -ENOTTY;
6500 		if (kvm_x86_ops.mem_enc_unreg_region)
6501 			r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6502 		break;
6503 	}
6504 	case KVM_HYPERV_EVENTFD: {
6505 		struct kvm_hyperv_eventfd hvevfd;
6506 
6507 		r = -EFAULT;
6508 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6509 			goto out;
6510 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6511 		break;
6512 	}
6513 	case KVM_SET_PMU_EVENT_FILTER:
6514 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6515 		break;
6516 	case KVM_X86_SET_MSR_FILTER:
6517 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6518 		break;
6519 	default:
6520 		r = -ENOTTY;
6521 	}
6522 out:
6523 	return r;
6524 }
6525 
6526 static void kvm_init_msr_list(void)
6527 {
6528 	struct x86_pmu_capability x86_pmu;
6529 	u32 dummy[2];
6530 	unsigned i;
6531 
6532 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6533 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6534 
6535 	perf_get_x86_pmu_capability(&x86_pmu);
6536 
6537 	num_msrs_to_save = 0;
6538 	num_emulated_msrs = 0;
6539 	num_msr_based_features = 0;
6540 
6541 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6542 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6543 			continue;
6544 
6545 		/*
6546 		 * Even MSRs that are valid in the host may not be exposed
6547 		 * to the guests in some cases.
6548 		 */
6549 		switch (msrs_to_save_all[i]) {
6550 		case MSR_IA32_BNDCFGS:
6551 			if (!kvm_mpx_supported())
6552 				continue;
6553 			break;
6554 		case MSR_TSC_AUX:
6555 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6556 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6557 				continue;
6558 			break;
6559 		case MSR_IA32_UMWAIT_CONTROL:
6560 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6561 				continue;
6562 			break;
6563 		case MSR_IA32_RTIT_CTL:
6564 		case MSR_IA32_RTIT_STATUS:
6565 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6566 				continue;
6567 			break;
6568 		case MSR_IA32_RTIT_CR3_MATCH:
6569 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6570 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6571 				continue;
6572 			break;
6573 		case MSR_IA32_RTIT_OUTPUT_BASE:
6574 		case MSR_IA32_RTIT_OUTPUT_MASK:
6575 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6576 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6577 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6578 				continue;
6579 			break;
6580 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6581 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6582 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6583 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6584 				continue;
6585 			break;
6586 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6587 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6588 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6589 				continue;
6590 			break;
6591 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6592 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6593 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6594 				continue;
6595 			break;
6596 		case MSR_IA32_XFD:
6597 		case MSR_IA32_XFD_ERR:
6598 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6599 				continue;
6600 			break;
6601 		default:
6602 			break;
6603 		}
6604 
6605 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6606 	}
6607 
6608 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6609 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6610 			continue;
6611 
6612 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6613 	}
6614 
6615 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6616 		struct kvm_msr_entry msr;
6617 
6618 		msr.index = msr_based_features_all[i];
6619 		if (kvm_get_msr_feature(&msr))
6620 			continue;
6621 
6622 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6623 	}
6624 }
6625 
6626 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6627 			   const void *v)
6628 {
6629 	int handled = 0;
6630 	int n;
6631 
6632 	do {
6633 		n = min(len, 8);
6634 		if (!(lapic_in_kernel(vcpu) &&
6635 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6636 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6637 			break;
6638 		handled += n;
6639 		addr += n;
6640 		len -= n;
6641 		v += n;
6642 	} while (len);
6643 
6644 	return handled;
6645 }
6646 
6647 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6648 {
6649 	int handled = 0;
6650 	int n;
6651 
6652 	do {
6653 		n = min(len, 8);
6654 		if (!(lapic_in_kernel(vcpu) &&
6655 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6656 					 addr, n, v))
6657 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6658 			break;
6659 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6660 		handled += n;
6661 		addr += n;
6662 		len -= n;
6663 		v += n;
6664 	} while (len);
6665 
6666 	return handled;
6667 }
6668 
6669 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6670 			struct kvm_segment *var, int seg)
6671 {
6672 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6673 }
6674 
6675 void kvm_get_segment(struct kvm_vcpu *vcpu,
6676 		     struct kvm_segment *var, int seg)
6677 {
6678 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6679 }
6680 
6681 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6682 			   struct x86_exception *exception)
6683 {
6684 	struct kvm_mmu *mmu = vcpu->arch.mmu;
6685 	gpa_t t_gpa;
6686 
6687 	BUG_ON(!mmu_is_nested(vcpu));
6688 
6689 	/* NPT walks are always user-walks */
6690 	access |= PFERR_USER_MASK;
6691 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6692 
6693 	return t_gpa;
6694 }
6695 
6696 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6697 			      struct x86_exception *exception)
6698 {
6699 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6700 
6701 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6702 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6703 }
6704 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6705 
6706  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6707 				struct x86_exception *exception)
6708 {
6709 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6710 
6711 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6712 	access |= PFERR_FETCH_MASK;
6713 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6714 }
6715 
6716 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6717 			       struct x86_exception *exception)
6718 {
6719 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6720 
6721 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6722 	access |= PFERR_WRITE_MASK;
6723 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6724 }
6725 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6726 
6727 /* uses this to access any guest's mapped memory without checking CPL */
6728 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6729 				struct x86_exception *exception)
6730 {
6731 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6732 
6733 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6734 }
6735 
6736 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6737 				      struct kvm_vcpu *vcpu, u32 access,
6738 				      struct x86_exception *exception)
6739 {
6740 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6741 	void *data = val;
6742 	int r = X86EMUL_CONTINUE;
6743 
6744 	while (bytes) {
6745 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6746 		unsigned offset = addr & (PAGE_SIZE-1);
6747 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6748 		int ret;
6749 
6750 		if (gpa == UNMAPPED_GVA)
6751 			return X86EMUL_PROPAGATE_FAULT;
6752 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6753 					       offset, toread);
6754 		if (ret < 0) {
6755 			r = X86EMUL_IO_NEEDED;
6756 			goto out;
6757 		}
6758 
6759 		bytes -= toread;
6760 		data += toread;
6761 		addr += toread;
6762 	}
6763 out:
6764 	return r;
6765 }
6766 
6767 /* used for instruction fetching */
6768 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6769 				gva_t addr, void *val, unsigned int bytes,
6770 				struct x86_exception *exception)
6771 {
6772 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6773 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6774 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6775 	unsigned offset;
6776 	int ret;
6777 
6778 	/* Inline kvm_read_guest_virt_helper for speed.  */
6779 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6780 				    exception);
6781 	if (unlikely(gpa == UNMAPPED_GVA))
6782 		return X86EMUL_PROPAGATE_FAULT;
6783 
6784 	offset = addr & (PAGE_SIZE-1);
6785 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6786 		bytes = (unsigned)PAGE_SIZE - offset;
6787 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6788 				       offset, bytes);
6789 	if (unlikely(ret < 0))
6790 		return X86EMUL_IO_NEEDED;
6791 
6792 	return X86EMUL_CONTINUE;
6793 }
6794 
6795 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6796 			       gva_t addr, void *val, unsigned int bytes,
6797 			       struct x86_exception *exception)
6798 {
6799 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6800 
6801 	/*
6802 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6803 	 * is returned, but our callers are not ready for that and they blindly
6804 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6805 	 * uninitialized kernel stack memory into cr2 and error code.
6806 	 */
6807 	memset(exception, 0, sizeof(*exception));
6808 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6809 					  exception);
6810 }
6811 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6812 
6813 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6814 			     gva_t addr, void *val, unsigned int bytes,
6815 			     struct x86_exception *exception, bool system)
6816 {
6817 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6818 	u32 access = 0;
6819 
6820 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6821 		access |= PFERR_USER_MASK;
6822 
6823 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6824 }
6825 
6826 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6827 		unsigned long addr, void *val, unsigned int bytes)
6828 {
6829 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6830 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6831 
6832 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6833 }
6834 
6835 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6836 				      struct kvm_vcpu *vcpu, u32 access,
6837 				      struct x86_exception *exception)
6838 {
6839 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6840 	void *data = val;
6841 	int r = X86EMUL_CONTINUE;
6842 
6843 	while (bytes) {
6844 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6845 		unsigned offset = addr & (PAGE_SIZE-1);
6846 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6847 		int ret;
6848 
6849 		if (gpa == UNMAPPED_GVA)
6850 			return X86EMUL_PROPAGATE_FAULT;
6851 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6852 		if (ret < 0) {
6853 			r = X86EMUL_IO_NEEDED;
6854 			goto out;
6855 		}
6856 
6857 		bytes -= towrite;
6858 		data += towrite;
6859 		addr += towrite;
6860 	}
6861 out:
6862 	return r;
6863 }
6864 
6865 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6866 			      unsigned int bytes, struct x86_exception *exception,
6867 			      bool system)
6868 {
6869 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6870 	u32 access = PFERR_WRITE_MASK;
6871 
6872 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6873 		access |= PFERR_USER_MASK;
6874 
6875 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6876 					   access, exception);
6877 }
6878 
6879 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6880 				unsigned int bytes, struct x86_exception *exception)
6881 {
6882 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6883 	vcpu->arch.l1tf_flush_l1d = true;
6884 
6885 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6886 					   PFERR_WRITE_MASK, exception);
6887 }
6888 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6889 
6890 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
6891 				void *insn, int insn_len)
6892 {
6893 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
6894 							    insn, insn_len);
6895 }
6896 
6897 int handle_ud(struct kvm_vcpu *vcpu)
6898 {
6899 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6900 	int emul_type = EMULTYPE_TRAP_UD;
6901 	char sig[5]; /* ud2; .ascii "kvm" */
6902 	struct x86_exception e;
6903 
6904 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
6905 		return 1;
6906 
6907 	if (force_emulation_prefix &&
6908 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6909 				sig, sizeof(sig), &e) == 0 &&
6910 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6911 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6912 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6913 	}
6914 
6915 	return kvm_emulate_instruction(vcpu, emul_type);
6916 }
6917 EXPORT_SYMBOL_GPL(handle_ud);
6918 
6919 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6920 			    gpa_t gpa, bool write)
6921 {
6922 	/* For APIC access vmexit */
6923 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6924 		return 1;
6925 
6926 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6927 		trace_vcpu_match_mmio(gva, gpa, write, true);
6928 		return 1;
6929 	}
6930 
6931 	return 0;
6932 }
6933 
6934 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6935 				gpa_t *gpa, struct x86_exception *exception,
6936 				bool write)
6937 {
6938 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6939 	u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6940 		| (write ? PFERR_WRITE_MASK : 0);
6941 
6942 	/*
6943 	 * currently PKRU is only applied to ept enabled guest so
6944 	 * there is no pkey in EPT page table for L1 guest or EPT
6945 	 * shadow page table for L2 guest.
6946 	 */
6947 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6948 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
6949 			      vcpu->arch.mmio_access, 0, access))) {
6950 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6951 					(gva & (PAGE_SIZE - 1));
6952 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6953 		return 1;
6954 	}
6955 
6956 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6957 
6958 	if (*gpa == UNMAPPED_GVA)
6959 		return -1;
6960 
6961 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6962 }
6963 
6964 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6965 			const void *val, int bytes)
6966 {
6967 	int ret;
6968 
6969 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6970 	if (ret < 0)
6971 		return 0;
6972 	kvm_page_track_write(vcpu, gpa, val, bytes);
6973 	return 1;
6974 }
6975 
6976 struct read_write_emulator_ops {
6977 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6978 				  int bytes);
6979 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6980 				  void *val, int bytes);
6981 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6982 			       int bytes, void *val);
6983 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6984 				    void *val, int bytes);
6985 	bool write;
6986 };
6987 
6988 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6989 {
6990 	if (vcpu->mmio_read_completed) {
6991 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6992 			       vcpu->mmio_fragments[0].gpa, val);
6993 		vcpu->mmio_read_completed = 0;
6994 		return 1;
6995 	}
6996 
6997 	return 0;
6998 }
6999 
7000 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7001 			void *val, int bytes)
7002 {
7003 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7004 }
7005 
7006 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7007 			 void *val, int bytes)
7008 {
7009 	return emulator_write_phys(vcpu, gpa, val, bytes);
7010 }
7011 
7012 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7013 {
7014 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7015 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7016 }
7017 
7018 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7019 			  void *val, int bytes)
7020 {
7021 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7022 	return X86EMUL_IO_NEEDED;
7023 }
7024 
7025 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7026 			   void *val, int bytes)
7027 {
7028 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7029 
7030 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7031 	return X86EMUL_CONTINUE;
7032 }
7033 
7034 static const struct read_write_emulator_ops read_emultor = {
7035 	.read_write_prepare = read_prepare,
7036 	.read_write_emulate = read_emulate,
7037 	.read_write_mmio = vcpu_mmio_read,
7038 	.read_write_exit_mmio = read_exit_mmio,
7039 };
7040 
7041 static const struct read_write_emulator_ops write_emultor = {
7042 	.read_write_emulate = write_emulate,
7043 	.read_write_mmio = write_mmio,
7044 	.read_write_exit_mmio = write_exit_mmio,
7045 	.write = true,
7046 };
7047 
7048 static int emulator_read_write_onepage(unsigned long addr, void *val,
7049 				       unsigned int bytes,
7050 				       struct x86_exception *exception,
7051 				       struct kvm_vcpu *vcpu,
7052 				       const struct read_write_emulator_ops *ops)
7053 {
7054 	gpa_t gpa;
7055 	int handled, ret;
7056 	bool write = ops->write;
7057 	struct kvm_mmio_fragment *frag;
7058 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7059 
7060 	/*
7061 	 * If the exit was due to a NPF we may already have a GPA.
7062 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7063 	 * Note, this cannot be used on string operations since string
7064 	 * operation using rep will only have the initial GPA from the NPF
7065 	 * occurred.
7066 	 */
7067 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7068 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7069 		gpa = ctxt->gpa_val;
7070 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7071 	} else {
7072 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7073 		if (ret < 0)
7074 			return X86EMUL_PROPAGATE_FAULT;
7075 	}
7076 
7077 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7078 		return X86EMUL_CONTINUE;
7079 
7080 	/*
7081 	 * Is this MMIO handled locally?
7082 	 */
7083 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7084 	if (handled == bytes)
7085 		return X86EMUL_CONTINUE;
7086 
7087 	gpa += handled;
7088 	bytes -= handled;
7089 	val += handled;
7090 
7091 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7092 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7093 	frag->gpa = gpa;
7094 	frag->data = val;
7095 	frag->len = bytes;
7096 	return X86EMUL_CONTINUE;
7097 }
7098 
7099 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7100 			unsigned long addr,
7101 			void *val, unsigned int bytes,
7102 			struct x86_exception *exception,
7103 			const struct read_write_emulator_ops *ops)
7104 {
7105 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7106 	gpa_t gpa;
7107 	int rc;
7108 
7109 	if (ops->read_write_prepare &&
7110 		  ops->read_write_prepare(vcpu, val, bytes))
7111 		return X86EMUL_CONTINUE;
7112 
7113 	vcpu->mmio_nr_fragments = 0;
7114 
7115 	/* Crossing a page boundary? */
7116 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7117 		int now;
7118 
7119 		now = -addr & ~PAGE_MASK;
7120 		rc = emulator_read_write_onepage(addr, val, now, exception,
7121 						 vcpu, ops);
7122 
7123 		if (rc != X86EMUL_CONTINUE)
7124 			return rc;
7125 		addr += now;
7126 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7127 			addr = (u32)addr;
7128 		val += now;
7129 		bytes -= now;
7130 	}
7131 
7132 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7133 					 vcpu, ops);
7134 	if (rc != X86EMUL_CONTINUE)
7135 		return rc;
7136 
7137 	if (!vcpu->mmio_nr_fragments)
7138 		return rc;
7139 
7140 	gpa = vcpu->mmio_fragments[0].gpa;
7141 
7142 	vcpu->mmio_needed = 1;
7143 	vcpu->mmio_cur_fragment = 0;
7144 
7145 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7146 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7147 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7148 	vcpu->run->mmio.phys_addr = gpa;
7149 
7150 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7151 }
7152 
7153 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7154 				  unsigned long addr,
7155 				  void *val,
7156 				  unsigned int bytes,
7157 				  struct x86_exception *exception)
7158 {
7159 	return emulator_read_write(ctxt, addr, val, bytes,
7160 				   exception, &read_emultor);
7161 }
7162 
7163 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7164 			    unsigned long addr,
7165 			    const void *val,
7166 			    unsigned int bytes,
7167 			    struct x86_exception *exception)
7168 {
7169 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7170 				   exception, &write_emultor);
7171 }
7172 
7173 #define CMPXCHG_TYPE(t, ptr, old, new) \
7174 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7175 
7176 #ifdef CONFIG_X86_64
7177 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7178 #else
7179 #  define CMPXCHG64(ptr, old, new) \
7180 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7181 #endif
7182 
7183 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7184 				     unsigned long addr,
7185 				     const void *old,
7186 				     const void *new,
7187 				     unsigned int bytes,
7188 				     struct x86_exception *exception)
7189 {
7190 	struct kvm_host_map map;
7191 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7192 	u64 page_line_mask;
7193 	gpa_t gpa;
7194 	char *kaddr;
7195 	bool exchanged;
7196 
7197 	/* guests cmpxchg8b have to be emulated atomically */
7198 	if (bytes > 8 || (bytes & (bytes - 1)))
7199 		goto emul_write;
7200 
7201 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7202 
7203 	if (gpa == UNMAPPED_GVA ||
7204 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7205 		goto emul_write;
7206 
7207 	/*
7208 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7209 	 * enabled in the host and the access splits a cache line.
7210 	 */
7211 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7212 		page_line_mask = ~(cache_line_size() - 1);
7213 	else
7214 		page_line_mask = PAGE_MASK;
7215 
7216 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7217 		goto emul_write;
7218 
7219 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7220 		goto emul_write;
7221 
7222 	kaddr = map.hva + offset_in_page(gpa);
7223 
7224 	switch (bytes) {
7225 	case 1:
7226 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7227 		break;
7228 	case 2:
7229 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7230 		break;
7231 	case 4:
7232 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7233 		break;
7234 	case 8:
7235 		exchanged = CMPXCHG64(kaddr, old, new);
7236 		break;
7237 	default:
7238 		BUG();
7239 	}
7240 
7241 	kvm_vcpu_unmap(vcpu, &map, true);
7242 
7243 	if (!exchanged)
7244 		return X86EMUL_CMPXCHG_FAILED;
7245 
7246 	kvm_page_track_write(vcpu, gpa, new, bytes);
7247 
7248 	return X86EMUL_CONTINUE;
7249 
7250 emul_write:
7251 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7252 
7253 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7254 }
7255 
7256 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7257 {
7258 	int r = 0, i;
7259 
7260 	for (i = 0; i < vcpu->arch.pio.count; i++) {
7261 		if (vcpu->arch.pio.in)
7262 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7263 					    vcpu->arch.pio.size, pd);
7264 		else
7265 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7266 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
7267 					     pd);
7268 		if (r)
7269 			break;
7270 		pd += vcpu->arch.pio.size;
7271 	}
7272 	return r;
7273 }
7274 
7275 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7276 			       unsigned short port,
7277 			       unsigned int count, bool in)
7278 {
7279 	vcpu->arch.pio.port = port;
7280 	vcpu->arch.pio.in = in;
7281 	vcpu->arch.pio.count  = count;
7282 	vcpu->arch.pio.size = size;
7283 
7284 	if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7285 		return 1;
7286 
7287 	vcpu->run->exit_reason = KVM_EXIT_IO;
7288 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7289 	vcpu->run->io.size = size;
7290 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7291 	vcpu->run->io.count = count;
7292 	vcpu->run->io.port = port;
7293 
7294 	return 0;
7295 }
7296 
7297 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7298 			     unsigned short port, unsigned int count)
7299 {
7300 	WARN_ON(vcpu->arch.pio.count);
7301 	memset(vcpu->arch.pio_data, 0, size * count);
7302 	return emulator_pio_in_out(vcpu, size, port, count, true);
7303 }
7304 
7305 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7306 {
7307 	int size = vcpu->arch.pio.size;
7308 	unsigned count = vcpu->arch.pio.count;
7309 	memcpy(val, vcpu->arch.pio_data, size * count);
7310 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7311 	vcpu->arch.pio.count = 0;
7312 }
7313 
7314 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7315 			   unsigned short port, void *val, unsigned int count)
7316 {
7317 	if (vcpu->arch.pio.count) {
7318 		/*
7319 		 * Complete a previous iteration that required userspace I/O.
7320 		 * Note, @count isn't guaranteed to match pio.count as userspace
7321 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7322 		 * shenanigans as KVM doesn't support modifying the rep count,
7323 		 * and the emulator ensures @count doesn't overflow the buffer.
7324 		 */
7325 	} else {
7326 		int r = __emulator_pio_in(vcpu, size, port, count);
7327 		if (!r)
7328 			return r;
7329 
7330 		/* Results already available, fall through.  */
7331 	}
7332 
7333 	complete_emulator_pio_in(vcpu, val);
7334 	return 1;
7335 }
7336 
7337 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7338 				    int size, unsigned short port, void *val,
7339 				    unsigned int count)
7340 {
7341 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7342 
7343 }
7344 
7345 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7346 			    unsigned short port, const void *val,
7347 			    unsigned int count)
7348 {
7349 	int ret;
7350 
7351 	memcpy(vcpu->arch.pio_data, val, size * count);
7352 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7353 	ret = emulator_pio_in_out(vcpu, size, port, count, false);
7354 	if (ret)
7355                 vcpu->arch.pio.count = 0;
7356 
7357         return ret;
7358 }
7359 
7360 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7361 				     int size, unsigned short port,
7362 				     const void *val, unsigned int count)
7363 {
7364 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7365 }
7366 
7367 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7368 {
7369 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7370 }
7371 
7372 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7373 {
7374 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7375 }
7376 
7377 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7378 {
7379 	if (!need_emulate_wbinvd(vcpu))
7380 		return X86EMUL_CONTINUE;
7381 
7382 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7383 		int cpu = get_cpu();
7384 
7385 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7386 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7387 				wbinvd_ipi, NULL, 1);
7388 		put_cpu();
7389 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7390 	} else
7391 		wbinvd();
7392 	return X86EMUL_CONTINUE;
7393 }
7394 
7395 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7396 {
7397 	kvm_emulate_wbinvd_noskip(vcpu);
7398 	return kvm_skip_emulated_instruction(vcpu);
7399 }
7400 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7401 
7402 
7403 
7404 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7405 {
7406 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7407 }
7408 
7409 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7410 			    unsigned long *dest)
7411 {
7412 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7413 }
7414 
7415 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7416 			   unsigned long value)
7417 {
7418 
7419 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7420 }
7421 
7422 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7423 {
7424 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7425 }
7426 
7427 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7428 {
7429 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7430 	unsigned long value;
7431 
7432 	switch (cr) {
7433 	case 0:
7434 		value = kvm_read_cr0(vcpu);
7435 		break;
7436 	case 2:
7437 		value = vcpu->arch.cr2;
7438 		break;
7439 	case 3:
7440 		value = kvm_read_cr3(vcpu);
7441 		break;
7442 	case 4:
7443 		value = kvm_read_cr4(vcpu);
7444 		break;
7445 	case 8:
7446 		value = kvm_get_cr8(vcpu);
7447 		break;
7448 	default:
7449 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7450 		return 0;
7451 	}
7452 
7453 	return value;
7454 }
7455 
7456 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7457 {
7458 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7459 	int res = 0;
7460 
7461 	switch (cr) {
7462 	case 0:
7463 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7464 		break;
7465 	case 2:
7466 		vcpu->arch.cr2 = val;
7467 		break;
7468 	case 3:
7469 		res = kvm_set_cr3(vcpu, val);
7470 		break;
7471 	case 4:
7472 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7473 		break;
7474 	case 8:
7475 		res = kvm_set_cr8(vcpu, val);
7476 		break;
7477 	default:
7478 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7479 		res = -1;
7480 	}
7481 
7482 	return res;
7483 }
7484 
7485 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7486 {
7487 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7488 }
7489 
7490 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7491 {
7492 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7493 }
7494 
7495 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7496 {
7497 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7498 }
7499 
7500 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7501 {
7502 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7503 }
7504 
7505 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7506 {
7507 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7508 }
7509 
7510 static unsigned long emulator_get_cached_segment_base(
7511 	struct x86_emulate_ctxt *ctxt, int seg)
7512 {
7513 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7514 }
7515 
7516 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7517 				 struct desc_struct *desc, u32 *base3,
7518 				 int seg)
7519 {
7520 	struct kvm_segment var;
7521 
7522 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7523 	*selector = var.selector;
7524 
7525 	if (var.unusable) {
7526 		memset(desc, 0, sizeof(*desc));
7527 		if (base3)
7528 			*base3 = 0;
7529 		return false;
7530 	}
7531 
7532 	if (var.g)
7533 		var.limit >>= 12;
7534 	set_desc_limit(desc, var.limit);
7535 	set_desc_base(desc, (unsigned long)var.base);
7536 #ifdef CONFIG_X86_64
7537 	if (base3)
7538 		*base3 = var.base >> 32;
7539 #endif
7540 	desc->type = var.type;
7541 	desc->s = var.s;
7542 	desc->dpl = var.dpl;
7543 	desc->p = var.present;
7544 	desc->avl = var.avl;
7545 	desc->l = var.l;
7546 	desc->d = var.db;
7547 	desc->g = var.g;
7548 
7549 	return true;
7550 }
7551 
7552 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7553 				 struct desc_struct *desc, u32 base3,
7554 				 int seg)
7555 {
7556 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7557 	struct kvm_segment var;
7558 
7559 	var.selector = selector;
7560 	var.base = get_desc_base(desc);
7561 #ifdef CONFIG_X86_64
7562 	var.base |= ((u64)base3) << 32;
7563 #endif
7564 	var.limit = get_desc_limit(desc);
7565 	if (desc->g)
7566 		var.limit = (var.limit << 12) | 0xfff;
7567 	var.type = desc->type;
7568 	var.dpl = desc->dpl;
7569 	var.db = desc->d;
7570 	var.s = desc->s;
7571 	var.l = desc->l;
7572 	var.g = desc->g;
7573 	var.avl = desc->avl;
7574 	var.present = desc->p;
7575 	var.unusable = !var.present;
7576 	var.padding = 0;
7577 
7578 	kvm_set_segment(vcpu, &var, seg);
7579 	return;
7580 }
7581 
7582 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7583 			    u32 msr_index, u64 *pdata)
7584 {
7585 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7586 	int r;
7587 
7588 	r = kvm_get_msr(vcpu, msr_index, pdata);
7589 
7590 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7591 				    complete_emulated_rdmsr, r)) {
7592 		/* Bounce to user space */
7593 		return X86EMUL_IO_NEEDED;
7594 	}
7595 
7596 	return r;
7597 }
7598 
7599 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7600 			    u32 msr_index, u64 data)
7601 {
7602 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7603 	int r;
7604 
7605 	r = kvm_set_msr(vcpu, msr_index, data);
7606 
7607 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7608 				    complete_emulated_msr_access, r)) {
7609 		/* Bounce to user space */
7610 		return X86EMUL_IO_NEEDED;
7611 	}
7612 
7613 	return r;
7614 }
7615 
7616 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7617 {
7618 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7619 
7620 	return vcpu->arch.smbase;
7621 }
7622 
7623 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7624 {
7625 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7626 
7627 	vcpu->arch.smbase = smbase;
7628 }
7629 
7630 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7631 			      u32 pmc)
7632 {
7633 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7634 		return 0;
7635 	return -EINVAL;
7636 }
7637 
7638 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7639 			     u32 pmc, u64 *pdata)
7640 {
7641 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7642 }
7643 
7644 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7645 {
7646 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7647 }
7648 
7649 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7650 			      struct x86_instruction_info *info,
7651 			      enum x86_intercept_stage stage)
7652 {
7653 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7654 					    &ctxt->exception);
7655 }
7656 
7657 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7658 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7659 			      bool exact_only)
7660 {
7661 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7662 }
7663 
7664 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7665 {
7666 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7667 }
7668 
7669 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7670 {
7671 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7672 }
7673 
7674 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7675 {
7676 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7677 }
7678 
7679 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7680 {
7681 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7682 }
7683 
7684 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7685 {
7686 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7687 }
7688 
7689 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7690 {
7691 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7692 }
7693 
7694 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7695 {
7696 	return emul_to_vcpu(ctxt)->arch.hflags;
7697 }
7698 
7699 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7700 {
7701 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7702 
7703 	kvm_smm_changed(vcpu, false);
7704 }
7705 
7706 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7707 				  const char *smstate)
7708 {
7709 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7710 }
7711 
7712 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7713 {
7714 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7715 }
7716 
7717 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7718 {
7719 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7720 }
7721 
7722 static const struct x86_emulate_ops emulate_ops = {
7723 	.read_gpr            = emulator_read_gpr,
7724 	.write_gpr           = emulator_write_gpr,
7725 	.read_std            = emulator_read_std,
7726 	.write_std           = emulator_write_std,
7727 	.read_phys           = kvm_read_guest_phys_system,
7728 	.fetch               = kvm_fetch_guest_virt,
7729 	.read_emulated       = emulator_read_emulated,
7730 	.write_emulated      = emulator_write_emulated,
7731 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7732 	.invlpg              = emulator_invlpg,
7733 	.pio_in_emulated     = emulator_pio_in_emulated,
7734 	.pio_out_emulated    = emulator_pio_out_emulated,
7735 	.get_segment         = emulator_get_segment,
7736 	.set_segment         = emulator_set_segment,
7737 	.get_cached_segment_base = emulator_get_cached_segment_base,
7738 	.get_gdt             = emulator_get_gdt,
7739 	.get_idt	     = emulator_get_idt,
7740 	.set_gdt             = emulator_set_gdt,
7741 	.set_idt	     = emulator_set_idt,
7742 	.get_cr              = emulator_get_cr,
7743 	.set_cr              = emulator_set_cr,
7744 	.cpl                 = emulator_get_cpl,
7745 	.get_dr              = emulator_get_dr,
7746 	.set_dr              = emulator_set_dr,
7747 	.get_smbase          = emulator_get_smbase,
7748 	.set_smbase          = emulator_set_smbase,
7749 	.set_msr             = emulator_set_msr,
7750 	.get_msr             = emulator_get_msr,
7751 	.check_pmc	     = emulator_check_pmc,
7752 	.read_pmc            = emulator_read_pmc,
7753 	.halt                = emulator_halt,
7754 	.wbinvd              = emulator_wbinvd,
7755 	.fix_hypercall       = emulator_fix_hypercall,
7756 	.intercept           = emulator_intercept,
7757 	.get_cpuid           = emulator_get_cpuid,
7758 	.guest_has_long_mode = emulator_guest_has_long_mode,
7759 	.guest_has_movbe     = emulator_guest_has_movbe,
7760 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7761 	.set_nmi_mask        = emulator_set_nmi_mask,
7762 	.get_hflags          = emulator_get_hflags,
7763 	.exiting_smm         = emulator_exiting_smm,
7764 	.leave_smm           = emulator_leave_smm,
7765 	.triple_fault        = emulator_triple_fault,
7766 	.set_xcr             = emulator_set_xcr,
7767 };
7768 
7769 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7770 {
7771 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7772 	/*
7773 	 * an sti; sti; sequence only disable interrupts for the first
7774 	 * instruction. So, if the last instruction, be it emulated or
7775 	 * not, left the system with the INT_STI flag enabled, it
7776 	 * means that the last instruction is an sti. We should not
7777 	 * leave the flag on in this case. The same goes for mov ss
7778 	 */
7779 	if (int_shadow & mask)
7780 		mask = 0;
7781 	if (unlikely(int_shadow || mask)) {
7782 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7783 		if (!mask)
7784 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7785 	}
7786 }
7787 
7788 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7789 {
7790 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7791 	if (ctxt->exception.vector == PF_VECTOR)
7792 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7793 
7794 	if (ctxt->exception.error_code_valid)
7795 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7796 				      ctxt->exception.error_code);
7797 	else
7798 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7799 	return false;
7800 }
7801 
7802 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7803 {
7804 	struct x86_emulate_ctxt *ctxt;
7805 
7806 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7807 	if (!ctxt) {
7808 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7809 		return NULL;
7810 	}
7811 
7812 	ctxt->vcpu = vcpu;
7813 	ctxt->ops = &emulate_ops;
7814 	vcpu->arch.emulate_ctxt = ctxt;
7815 
7816 	return ctxt;
7817 }
7818 
7819 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7820 {
7821 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7822 	int cs_db, cs_l;
7823 
7824 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7825 
7826 	ctxt->gpa_available = false;
7827 	ctxt->eflags = kvm_get_rflags(vcpu);
7828 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7829 
7830 	ctxt->eip = kvm_rip_read(vcpu);
7831 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7832 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7833 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7834 		     cs_db				? X86EMUL_MODE_PROT32 :
7835 							  X86EMUL_MODE_PROT16;
7836 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7837 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7838 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7839 
7840 	ctxt->interruptibility = 0;
7841 	ctxt->have_exception = false;
7842 	ctxt->exception.vector = -1;
7843 	ctxt->perm_ok = false;
7844 
7845 	init_decode_cache(ctxt);
7846 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7847 }
7848 
7849 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7850 {
7851 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7852 	int ret;
7853 
7854 	init_emulate_ctxt(vcpu);
7855 
7856 	ctxt->op_bytes = 2;
7857 	ctxt->ad_bytes = 2;
7858 	ctxt->_eip = ctxt->eip + inc_eip;
7859 	ret = emulate_int_real(ctxt, irq);
7860 
7861 	if (ret != X86EMUL_CONTINUE) {
7862 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7863 	} else {
7864 		ctxt->eip = ctxt->_eip;
7865 		kvm_rip_write(vcpu, ctxt->eip);
7866 		kvm_set_rflags(vcpu, ctxt->eflags);
7867 	}
7868 }
7869 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7870 
7871 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7872 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
7873 {
7874 	struct kvm_run *run = vcpu->run;
7875 	u64 info[5];
7876 	u8 info_start;
7877 
7878 	/*
7879 	 * Zero the whole array used to retrieve the exit info, as casting to
7880 	 * u32 for select entries will leave some chunks uninitialized.
7881 	 */
7882 	memset(&info, 0, sizeof(info));
7883 
7884 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7885 					   &info[2], (u32 *)&info[3],
7886 					   (u32 *)&info[4]);
7887 
7888 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7889 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7890 
7891 	/*
7892 	 * There's currently space for 13 entries, but 5 are used for the exit
7893 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
7894 	 * when expanding kvm_run.emulation_failure in the future.
7895 	 */
7896 	if (WARN_ON_ONCE(ndata > 4))
7897 		ndata = 4;
7898 
7899 	/* Always include the flags as a 'data' entry. */
7900 	info_start = 1;
7901 	run->emulation_failure.flags = 0;
7902 
7903 	if (insn_size) {
7904 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7905 			      sizeof(run->emulation_failure.insn_bytes) != 16));
7906 		info_start += 2;
7907 		run->emulation_failure.flags |=
7908 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7909 		run->emulation_failure.insn_size = insn_size;
7910 		memset(run->emulation_failure.insn_bytes, 0x90,
7911 		       sizeof(run->emulation_failure.insn_bytes));
7912 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7913 	}
7914 
7915 	memcpy(&run->internal.data[info_start], info, sizeof(info));
7916 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7917 	       ndata * sizeof(data[0]));
7918 
7919 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7920 }
7921 
7922 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7923 {
7924 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7925 
7926 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7927 				       ctxt->fetch.end - ctxt->fetch.data);
7928 }
7929 
7930 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7931 					  u8 ndata)
7932 {
7933 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7934 }
7935 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7936 
7937 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7938 {
7939 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7940 }
7941 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7942 
7943 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7944 {
7945 	struct kvm *kvm = vcpu->kvm;
7946 
7947 	++vcpu->stat.insn_emulation_fail;
7948 	trace_kvm_emulate_insn_failed(vcpu);
7949 
7950 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7951 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7952 		return 1;
7953 	}
7954 
7955 	if (kvm->arch.exit_on_emulation_error ||
7956 	    (emulation_type & EMULTYPE_SKIP)) {
7957 		prepare_emulation_ctxt_failure_exit(vcpu);
7958 		return 0;
7959 	}
7960 
7961 	kvm_queue_exception(vcpu, UD_VECTOR);
7962 
7963 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7964 		prepare_emulation_ctxt_failure_exit(vcpu);
7965 		return 0;
7966 	}
7967 
7968 	return 1;
7969 }
7970 
7971 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7972 				  bool write_fault_to_shadow_pgtable,
7973 				  int emulation_type)
7974 {
7975 	gpa_t gpa = cr2_or_gpa;
7976 	kvm_pfn_t pfn;
7977 
7978 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7979 		return false;
7980 
7981 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7982 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7983 		return false;
7984 
7985 	if (!vcpu->arch.mmu->direct_map) {
7986 		/*
7987 		 * Write permission should be allowed since only
7988 		 * write access need to be emulated.
7989 		 */
7990 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7991 
7992 		/*
7993 		 * If the mapping is invalid in guest, let cpu retry
7994 		 * it to generate fault.
7995 		 */
7996 		if (gpa == UNMAPPED_GVA)
7997 			return true;
7998 	}
7999 
8000 	/*
8001 	 * Do not retry the unhandleable instruction if it faults on the
8002 	 * readonly host memory, otherwise it will goto a infinite loop:
8003 	 * retry instruction -> write #PF -> emulation fail -> retry
8004 	 * instruction -> ...
8005 	 */
8006 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8007 
8008 	/*
8009 	 * If the instruction failed on the error pfn, it can not be fixed,
8010 	 * report the error to userspace.
8011 	 */
8012 	if (is_error_noslot_pfn(pfn))
8013 		return false;
8014 
8015 	kvm_release_pfn_clean(pfn);
8016 
8017 	/* The instructions are well-emulated on direct mmu. */
8018 	if (vcpu->arch.mmu->direct_map) {
8019 		unsigned int indirect_shadow_pages;
8020 
8021 		write_lock(&vcpu->kvm->mmu_lock);
8022 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8023 		write_unlock(&vcpu->kvm->mmu_lock);
8024 
8025 		if (indirect_shadow_pages)
8026 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8027 
8028 		return true;
8029 	}
8030 
8031 	/*
8032 	 * if emulation was due to access to shadowed page table
8033 	 * and it failed try to unshadow page and re-enter the
8034 	 * guest to let CPU execute the instruction.
8035 	 */
8036 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8037 
8038 	/*
8039 	 * If the access faults on its page table, it can not
8040 	 * be fixed by unprotecting shadow page and it should
8041 	 * be reported to userspace.
8042 	 */
8043 	return !write_fault_to_shadow_pgtable;
8044 }
8045 
8046 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8047 			      gpa_t cr2_or_gpa,  int emulation_type)
8048 {
8049 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8050 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8051 
8052 	last_retry_eip = vcpu->arch.last_retry_eip;
8053 	last_retry_addr = vcpu->arch.last_retry_addr;
8054 
8055 	/*
8056 	 * If the emulation is caused by #PF and it is non-page_table
8057 	 * writing instruction, it means the VM-EXIT is caused by shadow
8058 	 * page protected, we can zap the shadow page and retry this
8059 	 * instruction directly.
8060 	 *
8061 	 * Note: if the guest uses a non-page-table modifying instruction
8062 	 * on the PDE that points to the instruction, then we will unmap
8063 	 * the instruction and go to an infinite loop. So, we cache the
8064 	 * last retried eip and the last fault address, if we meet the eip
8065 	 * and the address again, we can break out of the potential infinite
8066 	 * loop.
8067 	 */
8068 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8069 
8070 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8071 		return false;
8072 
8073 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8074 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8075 		return false;
8076 
8077 	if (x86_page_table_writing_insn(ctxt))
8078 		return false;
8079 
8080 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8081 		return false;
8082 
8083 	vcpu->arch.last_retry_eip = ctxt->eip;
8084 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8085 
8086 	if (!vcpu->arch.mmu->direct_map)
8087 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8088 
8089 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8090 
8091 	return true;
8092 }
8093 
8094 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8095 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8096 
8097 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8098 {
8099 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8100 
8101 	if (entering_smm) {
8102 		vcpu->arch.hflags |= HF_SMM_MASK;
8103 	} else {
8104 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8105 
8106 		/* Process a latched INIT or SMI, if any.  */
8107 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8108 
8109 		/*
8110 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8111 		 * on SMM exit we still need to reload them from
8112 		 * guest memory
8113 		 */
8114 		vcpu->arch.pdptrs_from_userspace = false;
8115 	}
8116 
8117 	kvm_mmu_reset_context(vcpu);
8118 }
8119 
8120 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8121 				unsigned long *db)
8122 {
8123 	u32 dr6 = 0;
8124 	int i;
8125 	u32 enable, rwlen;
8126 
8127 	enable = dr7;
8128 	rwlen = dr7 >> 16;
8129 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8130 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8131 			dr6 |= (1 << i);
8132 	return dr6;
8133 }
8134 
8135 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8136 {
8137 	struct kvm_run *kvm_run = vcpu->run;
8138 
8139 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8140 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8141 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8142 		kvm_run->debug.arch.exception = DB_VECTOR;
8143 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8144 		return 0;
8145 	}
8146 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8147 	return 1;
8148 }
8149 
8150 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8151 {
8152 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8153 	int r;
8154 
8155 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8156 	if (unlikely(!r))
8157 		return 0;
8158 
8159 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8160 
8161 	/*
8162 	 * rflags is the old, "raw" value of the flags.  The new value has
8163 	 * not been saved yet.
8164 	 *
8165 	 * This is correct even for TF set by the guest, because "the
8166 	 * processor will not generate this exception after the instruction
8167 	 * that sets the TF flag".
8168 	 */
8169 	if (unlikely(rflags & X86_EFLAGS_TF))
8170 		r = kvm_vcpu_do_singlestep(vcpu);
8171 	return r;
8172 }
8173 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8174 
8175 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8176 {
8177 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8178 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8179 		struct kvm_run *kvm_run = vcpu->run;
8180 		unsigned long eip = kvm_get_linear_rip(vcpu);
8181 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8182 					   vcpu->arch.guest_debug_dr7,
8183 					   vcpu->arch.eff_db);
8184 
8185 		if (dr6 != 0) {
8186 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8187 			kvm_run->debug.arch.pc = eip;
8188 			kvm_run->debug.arch.exception = DB_VECTOR;
8189 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8190 			*r = 0;
8191 			return true;
8192 		}
8193 	}
8194 
8195 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8196 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8197 		unsigned long eip = kvm_get_linear_rip(vcpu);
8198 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8199 					   vcpu->arch.dr7,
8200 					   vcpu->arch.db);
8201 
8202 		if (dr6 != 0) {
8203 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8204 			*r = 1;
8205 			return true;
8206 		}
8207 	}
8208 
8209 	return false;
8210 }
8211 
8212 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8213 {
8214 	switch (ctxt->opcode_len) {
8215 	case 1:
8216 		switch (ctxt->b) {
8217 		case 0xe4:	/* IN */
8218 		case 0xe5:
8219 		case 0xec:
8220 		case 0xed:
8221 		case 0xe6:	/* OUT */
8222 		case 0xe7:
8223 		case 0xee:
8224 		case 0xef:
8225 		case 0x6c:	/* INS */
8226 		case 0x6d:
8227 		case 0x6e:	/* OUTS */
8228 		case 0x6f:
8229 			return true;
8230 		}
8231 		break;
8232 	case 2:
8233 		switch (ctxt->b) {
8234 		case 0x33:	/* RDPMC */
8235 			return true;
8236 		}
8237 		break;
8238 	}
8239 
8240 	return false;
8241 }
8242 
8243 /*
8244  * Decode to be emulated instruction. Return EMULATION_OK if success.
8245  */
8246 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8247 				    void *insn, int insn_len)
8248 {
8249 	int r = EMULATION_OK;
8250 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8251 
8252 	init_emulate_ctxt(vcpu);
8253 
8254 	/*
8255 	 * We will reenter on the same instruction since we do not set
8256 	 * complete_userspace_io. This does not handle watchpoints yet,
8257 	 * those would be handled in the emulate_ops.
8258 	 */
8259 	if (!(emulation_type & EMULTYPE_SKIP) &&
8260 	    kvm_vcpu_check_breakpoint(vcpu, &r))
8261 		return r;
8262 
8263 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8264 
8265 	trace_kvm_emulate_insn_start(vcpu);
8266 	++vcpu->stat.insn_emulation;
8267 
8268 	return r;
8269 }
8270 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8271 
8272 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8273 			    int emulation_type, void *insn, int insn_len)
8274 {
8275 	int r;
8276 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8277 	bool writeback = true;
8278 	bool write_fault_to_spt;
8279 
8280 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8281 		return 1;
8282 
8283 	vcpu->arch.l1tf_flush_l1d = true;
8284 
8285 	/*
8286 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8287 	 * never reused.
8288 	 */
8289 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8290 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8291 
8292 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8293 		kvm_clear_exception_queue(vcpu);
8294 
8295 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8296 						    insn, insn_len);
8297 		if (r != EMULATION_OK)  {
8298 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8299 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8300 				kvm_queue_exception(vcpu, UD_VECTOR);
8301 				return 1;
8302 			}
8303 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8304 						  write_fault_to_spt,
8305 						  emulation_type))
8306 				return 1;
8307 			if (ctxt->have_exception) {
8308 				/*
8309 				 * #UD should result in just EMULATION_FAILED, and trap-like
8310 				 * exception should not be encountered during decode.
8311 				 */
8312 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8313 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8314 				inject_emulated_exception(vcpu);
8315 				return 1;
8316 			}
8317 			return handle_emulation_failure(vcpu, emulation_type);
8318 		}
8319 	}
8320 
8321 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8322 	    !is_vmware_backdoor_opcode(ctxt)) {
8323 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8324 		return 1;
8325 	}
8326 
8327 	/*
8328 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8329 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8330 	 * The caller is responsible for updating interruptibility state and
8331 	 * injecting single-step #DBs.
8332 	 */
8333 	if (emulation_type & EMULTYPE_SKIP) {
8334 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8335 			ctxt->eip = (u32)ctxt->_eip;
8336 		else
8337 			ctxt->eip = ctxt->_eip;
8338 
8339 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8340 			r = 1;
8341 			goto writeback;
8342 		}
8343 
8344 		kvm_rip_write(vcpu, ctxt->eip);
8345 		if (ctxt->eflags & X86_EFLAGS_RF)
8346 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8347 		return 1;
8348 	}
8349 
8350 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8351 		return 1;
8352 
8353 	/* this is needed for vmware backdoor interface to work since it
8354 	   changes registers values  during IO operation */
8355 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8356 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8357 		emulator_invalidate_register_cache(ctxt);
8358 	}
8359 
8360 restart:
8361 	if (emulation_type & EMULTYPE_PF) {
8362 		/* Save the faulting GPA (cr2) in the address field */
8363 		ctxt->exception.address = cr2_or_gpa;
8364 
8365 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8366 		if (vcpu->arch.mmu->direct_map) {
8367 			ctxt->gpa_available = true;
8368 			ctxt->gpa_val = cr2_or_gpa;
8369 		}
8370 	} else {
8371 		/* Sanitize the address out of an abundance of paranoia. */
8372 		ctxt->exception.address = 0;
8373 	}
8374 
8375 	r = x86_emulate_insn(ctxt);
8376 
8377 	if (r == EMULATION_INTERCEPTED)
8378 		return 1;
8379 
8380 	if (r == EMULATION_FAILED) {
8381 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8382 					emulation_type))
8383 			return 1;
8384 
8385 		return handle_emulation_failure(vcpu, emulation_type);
8386 	}
8387 
8388 	if (ctxt->have_exception) {
8389 		r = 1;
8390 		if (inject_emulated_exception(vcpu))
8391 			return r;
8392 	} else if (vcpu->arch.pio.count) {
8393 		if (!vcpu->arch.pio.in) {
8394 			/* FIXME: return into emulator if single-stepping.  */
8395 			vcpu->arch.pio.count = 0;
8396 		} else {
8397 			writeback = false;
8398 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8399 		}
8400 		r = 0;
8401 	} else if (vcpu->mmio_needed) {
8402 		++vcpu->stat.mmio_exits;
8403 
8404 		if (!vcpu->mmio_is_write)
8405 			writeback = false;
8406 		r = 0;
8407 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8408 	} else if (vcpu->arch.complete_userspace_io) {
8409 		writeback = false;
8410 		r = 0;
8411 	} else if (r == EMULATION_RESTART)
8412 		goto restart;
8413 	else
8414 		r = 1;
8415 
8416 writeback:
8417 	if (writeback) {
8418 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8419 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8420 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8421 		if (!ctxt->have_exception ||
8422 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8423 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8424 			if (ctxt->is_branch)
8425 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8426 			kvm_rip_write(vcpu, ctxt->eip);
8427 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8428 				r = kvm_vcpu_do_singlestep(vcpu);
8429 			if (kvm_x86_ops.update_emulated_instruction)
8430 				static_call(kvm_x86_update_emulated_instruction)(vcpu);
8431 			__kvm_set_rflags(vcpu, ctxt->eflags);
8432 		}
8433 
8434 		/*
8435 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8436 		 * do nothing, and it will be requested again as soon as
8437 		 * the shadow expires.  But we still need to check here,
8438 		 * because POPF has no interrupt shadow.
8439 		 */
8440 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8441 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8442 	} else
8443 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8444 
8445 	return r;
8446 }
8447 
8448 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8449 {
8450 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8451 }
8452 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8453 
8454 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8455 					void *insn, int insn_len)
8456 {
8457 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8458 }
8459 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8460 
8461 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8462 {
8463 	vcpu->arch.pio.count = 0;
8464 	return 1;
8465 }
8466 
8467 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8468 {
8469 	vcpu->arch.pio.count = 0;
8470 
8471 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8472 		return 1;
8473 
8474 	return kvm_skip_emulated_instruction(vcpu);
8475 }
8476 
8477 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8478 			    unsigned short port)
8479 {
8480 	unsigned long val = kvm_rax_read(vcpu);
8481 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8482 
8483 	if (ret)
8484 		return ret;
8485 
8486 	/*
8487 	 * Workaround userspace that relies on old KVM behavior of %rip being
8488 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8489 	 */
8490 	if (port == 0x7e &&
8491 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8492 		vcpu->arch.complete_userspace_io =
8493 			complete_fast_pio_out_port_0x7e;
8494 		kvm_skip_emulated_instruction(vcpu);
8495 	} else {
8496 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8497 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8498 	}
8499 	return 0;
8500 }
8501 
8502 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8503 {
8504 	unsigned long val;
8505 
8506 	/* We should only ever be called with arch.pio.count equal to 1 */
8507 	BUG_ON(vcpu->arch.pio.count != 1);
8508 
8509 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8510 		vcpu->arch.pio.count = 0;
8511 		return 1;
8512 	}
8513 
8514 	/* For size less than 4 we merge, else we zero extend */
8515 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8516 
8517 	/*
8518 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8519 	 * the copy and tracing
8520 	 */
8521 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8522 	kvm_rax_write(vcpu, val);
8523 
8524 	return kvm_skip_emulated_instruction(vcpu);
8525 }
8526 
8527 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8528 			   unsigned short port)
8529 {
8530 	unsigned long val;
8531 	int ret;
8532 
8533 	/* For size less than 4 we merge, else we zero extend */
8534 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8535 
8536 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8537 	if (ret) {
8538 		kvm_rax_write(vcpu, val);
8539 		return ret;
8540 	}
8541 
8542 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8543 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8544 
8545 	return 0;
8546 }
8547 
8548 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8549 {
8550 	int ret;
8551 
8552 	if (in)
8553 		ret = kvm_fast_pio_in(vcpu, size, port);
8554 	else
8555 		ret = kvm_fast_pio_out(vcpu, size, port);
8556 	return ret && kvm_skip_emulated_instruction(vcpu);
8557 }
8558 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8559 
8560 static int kvmclock_cpu_down_prep(unsigned int cpu)
8561 {
8562 	__this_cpu_write(cpu_tsc_khz, 0);
8563 	return 0;
8564 }
8565 
8566 static void tsc_khz_changed(void *data)
8567 {
8568 	struct cpufreq_freqs *freq = data;
8569 	unsigned long khz = 0;
8570 
8571 	if (data)
8572 		khz = freq->new;
8573 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8574 		khz = cpufreq_quick_get(raw_smp_processor_id());
8575 	if (!khz)
8576 		khz = tsc_khz;
8577 	__this_cpu_write(cpu_tsc_khz, khz);
8578 }
8579 
8580 #ifdef CONFIG_X86_64
8581 static void kvm_hyperv_tsc_notifier(void)
8582 {
8583 	struct kvm *kvm;
8584 	int cpu;
8585 
8586 	mutex_lock(&kvm_lock);
8587 	list_for_each_entry(kvm, &vm_list, vm_list)
8588 		kvm_make_mclock_inprogress_request(kvm);
8589 
8590 	/* no guest entries from this point */
8591 	hyperv_stop_tsc_emulation();
8592 
8593 	/* TSC frequency always matches when on Hyper-V */
8594 	for_each_present_cpu(cpu)
8595 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8596 	kvm_max_guest_tsc_khz = tsc_khz;
8597 
8598 	list_for_each_entry(kvm, &vm_list, vm_list) {
8599 		__kvm_start_pvclock_update(kvm);
8600 		pvclock_update_vm_gtod_copy(kvm);
8601 		kvm_end_pvclock_update(kvm);
8602 	}
8603 
8604 	mutex_unlock(&kvm_lock);
8605 }
8606 #endif
8607 
8608 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8609 {
8610 	struct kvm *kvm;
8611 	struct kvm_vcpu *vcpu;
8612 	int send_ipi = 0;
8613 	unsigned long i;
8614 
8615 	/*
8616 	 * We allow guests to temporarily run on slowing clocks,
8617 	 * provided we notify them after, or to run on accelerating
8618 	 * clocks, provided we notify them before.  Thus time never
8619 	 * goes backwards.
8620 	 *
8621 	 * However, we have a problem.  We can't atomically update
8622 	 * the frequency of a given CPU from this function; it is
8623 	 * merely a notifier, which can be called from any CPU.
8624 	 * Changing the TSC frequency at arbitrary points in time
8625 	 * requires a recomputation of local variables related to
8626 	 * the TSC for each VCPU.  We must flag these local variables
8627 	 * to be updated and be sure the update takes place with the
8628 	 * new frequency before any guests proceed.
8629 	 *
8630 	 * Unfortunately, the combination of hotplug CPU and frequency
8631 	 * change creates an intractable locking scenario; the order
8632 	 * of when these callouts happen is undefined with respect to
8633 	 * CPU hotplug, and they can race with each other.  As such,
8634 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8635 	 * undefined; you can actually have a CPU frequency change take
8636 	 * place in between the computation of X and the setting of the
8637 	 * variable.  To protect against this problem, all updates of
8638 	 * the per_cpu tsc_khz variable are done in an interrupt
8639 	 * protected IPI, and all callers wishing to update the value
8640 	 * must wait for a synchronous IPI to complete (which is trivial
8641 	 * if the caller is on the CPU already).  This establishes the
8642 	 * necessary total order on variable updates.
8643 	 *
8644 	 * Note that because a guest time update may take place
8645 	 * anytime after the setting of the VCPU's request bit, the
8646 	 * correct TSC value must be set before the request.  However,
8647 	 * to ensure the update actually makes it to any guest which
8648 	 * starts running in hardware virtualization between the set
8649 	 * and the acquisition of the spinlock, we must also ping the
8650 	 * CPU after setting the request bit.
8651 	 *
8652 	 */
8653 
8654 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8655 
8656 	mutex_lock(&kvm_lock);
8657 	list_for_each_entry(kvm, &vm_list, vm_list) {
8658 		kvm_for_each_vcpu(i, vcpu, kvm) {
8659 			if (vcpu->cpu != cpu)
8660 				continue;
8661 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8662 			if (vcpu->cpu != raw_smp_processor_id())
8663 				send_ipi = 1;
8664 		}
8665 	}
8666 	mutex_unlock(&kvm_lock);
8667 
8668 	if (freq->old < freq->new && send_ipi) {
8669 		/*
8670 		 * We upscale the frequency.  Must make the guest
8671 		 * doesn't see old kvmclock values while running with
8672 		 * the new frequency, otherwise we risk the guest sees
8673 		 * time go backwards.
8674 		 *
8675 		 * In case we update the frequency for another cpu
8676 		 * (which might be in guest context) send an interrupt
8677 		 * to kick the cpu out of guest context.  Next time
8678 		 * guest context is entered kvmclock will be updated,
8679 		 * so the guest will not see stale values.
8680 		 */
8681 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8682 	}
8683 }
8684 
8685 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8686 				     void *data)
8687 {
8688 	struct cpufreq_freqs *freq = data;
8689 	int cpu;
8690 
8691 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8692 		return 0;
8693 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8694 		return 0;
8695 
8696 	for_each_cpu(cpu, freq->policy->cpus)
8697 		__kvmclock_cpufreq_notifier(freq, cpu);
8698 
8699 	return 0;
8700 }
8701 
8702 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8703 	.notifier_call  = kvmclock_cpufreq_notifier
8704 };
8705 
8706 static int kvmclock_cpu_online(unsigned int cpu)
8707 {
8708 	tsc_khz_changed(NULL);
8709 	return 0;
8710 }
8711 
8712 static void kvm_timer_init(void)
8713 {
8714 	max_tsc_khz = tsc_khz;
8715 
8716 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8717 #ifdef CONFIG_CPU_FREQ
8718 		struct cpufreq_policy *policy;
8719 		int cpu;
8720 
8721 		cpu = get_cpu();
8722 		policy = cpufreq_cpu_get(cpu);
8723 		if (policy) {
8724 			if (policy->cpuinfo.max_freq)
8725 				max_tsc_khz = policy->cpuinfo.max_freq;
8726 			cpufreq_cpu_put(policy);
8727 		}
8728 		put_cpu();
8729 #endif
8730 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8731 					  CPUFREQ_TRANSITION_NOTIFIER);
8732 	}
8733 
8734 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8735 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8736 }
8737 
8738 #ifdef CONFIG_X86_64
8739 static void pvclock_gtod_update_fn(struct work_struct *work)
8740 {
8741 	struct kvm *kvm;
8742 	struct kvm_vcpu *vcpu;
8743 	unsigned long i;
8744 
8745 	mutex_lock(&kvm_lock);
8746 	list_for_each_entry(kvm, &vm_list, vm_list)
8747 		kvm_for_each_vcpu(i, vcpu, kvm)
8748 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8749 	atomic_set(&kvm_guest_has_master_clock, 0);
8750 	mutex_unlock(&kvm_lock);
8751 }
8752 
8753 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8754 
8755 /*
8756  * Indirection to move queue_work() out of the tk_core.seq write held
8757  * region to prevent possible deadlocks against time accessors which
8758  * are invoked with work related locks held.
8759  */
8760 static void pvclock_irq_work_fn(struct irq_work *w)
8761 {
8762 	queue_work(system_long_wq, &pvclock_gtod_work);
8763 }
8764 
8765 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8766 
8767 /*
8768  * Notification about pvclock gtod data update.
8769  */
8770 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8771 			       void *priv)
8772 {
8773 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8774 	struct timekeeper *tk = priv;
8775 
8776 	update_pvclock_gtod(tk);
8777 
8778 	/*
8779 	 * Disable master clock if host does not trust, or does not use,
8780 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8781 	 * this is invoked with tk_core.seq write held.
8782 	 */
8783 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8784 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8785 		irq_work_queue(&pvclock_irq_work);
8786 	return 0;
8787 }
8788 
8789 static struct notifier_block pvclock_gtod_notifier = {
8790 	.notifier_call = pvclock_gtod_notify,
8791 };
8792 #endif
8793 
8794 int kvm_arch_init(void *opaque)
8795 {
8796 	struct kvm_x86_init_ops *ops = opaque;
8797 	int r;
8798 
8799 	if (kvm_x86_ops.hardware_enable) {
8800 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8801 		r = -EEXIST;
8802 		goto out;
8803 	}
8804 
8805 	if (!ops->cpu_has_kvm_support()) {
8806 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8807 				   ops->runtime_ops->name);
8808 		r = -EOPNOTSUPP;
8809 		goto out;
8810 	}
8811 	if (ops->disabled_by_bios()) {
8812 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8813 				   ops->runtime_ops->name);
8814 		r = -EOPNOTSUPP;
8815 		goto out;
8816 	}
8817 
8818 	/*
8819 	 * KVM explicitly assumes that the guest has an FPU and
8820 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8821 	 * vCPU's FPU state as a fxregs_state struct.
8822 	 */
8823 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8824 		printk(KERN_ERR "kvm: inadequate fpu\n");
8825 		r = -EOPNOTSUPP;
8826 		goto out;
8827 	}
8828 
8829 	r = -ENOMEM;
8830 
8831 	x86_emulator_cache = kvm_alloc_emulator_cache();
8832 	if (!x86_emulator_cache) {
8833 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8834 		goto out;
8835 	}
8836 
8837 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8838 	if (!user_return_msrs) {
8839 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8840 		goto out_free_x86_emulator_cache;
8841 	}
8842 	kvm_nr_uret_msrs = 0;
8843 
8844 	r = kvm_mmu_module_init();
8845 	if (r)
8846 		goto out_free_percpu;
8847 
8848 	kvm_timer_init();
8849 
8850 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8851 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8852 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8853 	}
8854 
8855 	if (pi_inject_timer == -1)
8856 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8857 #ifdef CONFIG_X86_64
8858 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8859 
8860 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8861 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8862 #endif
8863 
8864 	return 0;
8865 
8866 out_free_percpu:
8867 	free_percpu(user_return_msrs);
8868 out_free_x86_emulator_cache:
8869 	kmem_cache_destroy(x86_emulator_cache);
8870 out:
8871 	return r;
8872 }
8873 
8874 void kvm_arch_exit(void)
8875 {
8876 #ifdef CONFIG_X86_64
8877 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8878 		clear_hv_tscchange_cb();
8879 #endif
8880 	kvm_lapic_exit();
8881 
8882 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8883 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8884 					    CPUFREQ_TRANSITION_NOTIFIER);
8885 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8886 #ifdef CONFIG_X86_64
8887 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8888 	irq_work_sync(&pvclock_irq_work);
8889 	cancel_work_sync(&pvclock_gtod_work);
8890 #endif
8891 	kvm_x86_ops.hardware_enable = NULL;
8892 	kvm_mmu_module_exit();
8893 	free_percpu(user_return_msrs);
8894 	kmem_cache_destroy(x86_emulator_cache);
8895 #ifdef CONFIG_KVM_XEN
8896 	static_key_deferred_flush(&kvm_xen_enabled);
8897 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8898 #endif
8899 }
8900 
8901 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8902 {
8903 	/*
8904 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
8905 	 * local APIC is in-kernel, the run loop will detect the non-runnable
8906 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
8907 	 * managed by userspace, in which case userspace is responsible for
8908 	 * handling wake events.
8909 	 */
8910 	++vcpu->stat.halt_exits;
8911 	if (lapic_in_kernel(vcpu)) {
8912 		vcpu->arch.mp_state = state;
8913 		return 1;
8914 	} else {
8915 		vcpu->run->exit_reason = reason;
8916 		return 0;
8917 	}
8918 }
8919 
8920 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
8921 {
8922 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8923 }
8924 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
8925 
8926 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8927 {
8928 	int ret = kvm_skip_emulated_instruction(vcpu);
8929 	/*
8930 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8931 	 * KVM_EXIT_DEBUG here.
8932 	 */
8933 	return kvm_emulate_halt_noskip(vcpu) && ret;
8934 }
8935 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8936 
8937 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8938 {
8939 	int ret = kvm_skip_emulated_instruction(vcpu);
8940 
8941 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
8942 					KVM_EXIT_AP_RESET_HOLD) && ret;
8943 }
8944 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8945 
8946 #ifdef CONFIG_X86_64
8947 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8948 			        unsigned long clock_type)
8949 {
8950 	struct kvm_clock_pairing clock_pairing;
8951 	struct timespec64 ts;
8952 	u64 cycle;
8953 	int ret;
8954 
8955 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8956 		return -KVM_EOPNOTSUPP;
8957 
8958 	/*
8959 	 * When tsc is in permanent catchup mode guests won't be able to use
8960 	 * pvclock_read_retry loop to get consistent view of pvclock
8961 	 */
8962 	if (vcpu->arch.tsc_always_catchup)
8963 		return -KVM_EOPNOTSUPP;
8964 
8965 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8966 		return -KVM_EOPNOTSUPP;
8967 
8968 	clock_pairing.sec = ts.tv_sec;
8969 	clock_pairing.nsec = ts.tv_nsec;
8970 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8971 	clock_pairing.flags = 0;
8972 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8973 
8974 	ret = 0;
8975 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8976 			    sizeof(struct kvm_clock_pairing)))
8977 		ret = -KVM_EFAULT;
8978 
8979 	return ret;
8980 }
8981 #endif
8982 
8983 /*
8984  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8985  *
8986  * @apicid - apicid of vcpu to be kicked.
8987  */
8988 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8989 {
8990 	struct kvm_lapic_irq lapic_irq;
8991 
8992 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
8993 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8994 	lapic_irq.level = 0;
8995 	lapic_irq.dest_id = apicid;
8996 	lapic_irq.msi_redir_hint = false;
8997 
8998 	lapic_irq.delivery_mode = APIC_DM_REMRD;
8999 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9000 }
9001 
9002 bool kvm_apicv_activated(struct kvm *kvm)
9003 {
9004 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9005 }
9006 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9007 
9008 static void kvm_apicv_init(struct kvm *kvm)
9009 {
9010 	init_rwsem(&kvm->arch.apicv_update_lock);
9011 
9012 	set_bit(APICV_INHIBIT_REASON_ABSENT,
9013 		&kvm->arch.apicv_inhibit_reasons);
9014 	if (!enable_apicv)
9015 		set_bit(APICV_INHIBIT_REASON_DISABLE,
9016 			&kvm->arch.apicv_inhibit_reasons);
9017 }
9018 
9019 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9020 {
9021 	struct kvm_vcpu *target = NULL;
9022 	struct kvm_apic_map *map;
9023 
9024 	vcpu->stat.directed_yield_attempted++;
9025 
9026 	if (single_task_running())
9027 		goto no_yield;
9028 
9029 	rcu_read_lock();
9030 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9031 
9032 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9033 		target = map->phys_map[dest_id]->vcpu;
9034 
9035 	rcu_read_unlock();
9036 
9037 	if (!target || !READ_ONCE(target->ready))
9038 		goto no_yield;
9039 
9040 	/* Ignore requests to yield to self */
9041 	if (vcpu == target)
9042 		goto no_yield;
9043 
9044 	if (kvm_vcpu_yield_to(target) <= 0)
9045 		goto no_yield;
9046 
9047 	vcpu->stat.directed_yield_successful++;
9048 
9049 no_yield:
9050 	return;
9051 }
9052 
9053 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9054 {
9055 	u64 ret = vcpu->run->hypercall.ret;
9056 
9057 	if (!is_64_bit_mode(vcpu))
9058 		ret = (u32)ret;
9059 	kvm_rax_write(vcpu, ret);
9060 	++vcpu->stat.hypercalls;
9061 	return kvm_skip_emulated_instruction(vcpu);
9062 }
9063 
9064 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9065 {
9066 	unsigned long nr, a0, a1, a2, a3, ret;
9067 	int op_64_bit;
9068 
9069 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9070 		return kvm_xen_hypercall(vcpu);
9071 
9072 	if (kvm_hv_hypercall_enabled(vcpu))
9073 		return kvm_hv_hypercall(vcpu);
9074 
9075 	nr = kvm_rax_read(vcpu);
9076 	a0 = kvm_rbx_read(vcpu);
9077 	a1 = kvm_rcx_read(vcpu);
9078 	a2 = kvm_rdx_read(vcpu);
9079 	a3 = kvm_rsi_read(vcpu);
9080 
9081 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9082 
9083 	op_64_bit = is_64_bit_hypercall(vcpu);
9084 	if (!op_64_bit) {
9085 		nr &= 0xFFFFFFFF;
9086 		a0 &= 0xFFFFFFFF;
9087 		a1 &= 0xFFFFFFFF;
9088 		a2 &= 0xFFFFFFFF;
9089 		a3 &= 0xFFFFFFFF;
9090 	}
9091 
9092 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9093 		ret = -KVM_EPERM;
9094 		goto out;
9095 	}
9096 
9097 	ret = -KVM_ENOSYS;
9098 
9099 	switch (nr) {
9100 	case KVM_HC_VAPIC_POLL_IRQ:
9101 		ret = 0;
9102 		break;
9103 	case KVM_HC_KICK_CPU:
9104 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9105 			break;
9106 
9107 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
9108 		kvm_sched_yield(vcpu, a1);
9109 		ret = 0;
9110 		break;
9111 #ifdef CONFIG_X86_64
9112 	case KVM_HC_CLOCK_PAIRING:
9113 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9114 		break;
9115 #endif
9116 	case KVM_HC_SEND_IPI:
9117 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9118 			break;
9119 
9120 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9121 		break;
9122 	case KVM_HC_SCHED_YIELD:
9123 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9124 			break;
9125 
9126 		kvm_sched_yield(vcpu, a0);
9127 		ret = 0;
9128 		break;
9129 	case KVM_HC_MAP_GPA_RANGE: {
9130 		u64 gpa = a0, npages = a1, attrs = a2;
9131 
9132 		ret = -KVM_ENOSYS;
9133 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9134 			break;
9135 
9136 		if (!PAGE_ALIGNED(gpa) || !npages ||
9137 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9138 			ret = -KVM_EINVAL;
9139 			break;
9140 		}
9141 
9142 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9143 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9144 		vcpu->run->hypercall.args[0]  = gpa;
9145 		vcpu->run->hypercall.args[1]  = npages;
9146 		vcpu->run->hypercall.args[2]  = attrs;
9147 		vcpu->run->hypercall.longmode = op_64_bit;
9148 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9149 		return 0;
9150 	}
9151 	default:
9152 		ret = -KVM_ENOSYS;
9153 		break;
9154 	}
9155 out:
9156 	if (!op_64_bit)
9157 		ret = (u32)ret;
9158 	kvm_rax_write(vcpu, ret);
9159 
9160 	++vcpu->stat.hypercalls;
9161 	return kvm_skip_emulated_instruction(vcpu);
9162 }
9163 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9164 
9165 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9166 {
9167 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9168 	char instruction[3];
9169 	unsigned long rip = kvm_rip_read(vcpu);
9170 
9171 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9172 
9173 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9174 		&ctxt->exception);
9175 }
9176 
9177 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9178 {
9179 	return vcpu->run->request_interrupt_window &&
9180 		likely(!pic_in_kernel(vcpu->kvm));
9181 }
9182 
9183 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9184 {
9185 	struct kvm_run *kvm_run = vcpu->run;
9186 
9187 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9188 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9189 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9190 
9191 	/*
9192 	 * The call to kvm_ready_for_interrupt_injection() may end up in
9193 	 * kvm_xen_has_interrupt() which may require the srcu lock to be
9194 	 * held, to protect against changes in the vcpu_info address.
9195 	 */
9196 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9197 	kvm_run->ready_for_interrupt_injection =
9198 		pic_in_kernel(vcpu->kvm) ||
9199 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9200 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9201 
9202 	if (is_smm(vcpu))
9203 		kvm_run->flags |= KVM_RUN_X86_SMM;
9204 }
9205 
9206 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9207 {
9208 	int max_irr, tpr;
9209 
9210 	if (!kvm_x86_ops.update_cr8_intercept)
9211 		return;
9212 
9213 	if (!lapic_in_kernel(vcpu))
9214 		return;
9215 
9216 	if (vcpu->arch.apicv_active)
9217 		return;
9218 
9219 	if (!vcpu->arch.apic->vapic_addr)
9220 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9221 	else
9222 		max_irr = -1;
9223 
9224 	if (max_irr != -1)
9225 		max_irr >>= 4;
9226 
9227 	tpr = kvm_lapic_get_cr8(vcpu);
9228 
9229 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9230 }
9231 
9232 
9233 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9234 {
9235 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9236 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9237 		return 1;
9238 	}
9239 
9240 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9241 }
9242 
9243 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9244 {
9245 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9246 		vcpu->arch.exception.error_code = false;
9247 	static_call(kvm_x86_queue_exception)(vcpu);
9248 }
9249 
9250 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9251 {
9252 	int r;
9253 	bool can_inject = true;
9254 
9255 	/* try to reinject previous events if any */
9256 
9257 	if (vcpu->arch.exception.injected) {
9258 		kvm_inject_exception(vcpu);
9259 		can_inject = false;
9260 	}
9261 	/*
9262 	 * Do not inject an NMI or interrupt if there is a pending
9263 	 * exception.  Exceptions and interrupts are recognized at
9264 	 * instruction boundaries, i.e. the start of an instruction.
9265 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9266 	 * NMIs and interrupts, i.e. traps are recognized before an
9267 	 * NMI/interrupt that's pending on the same instruction.
9268 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9269 	 * priority, but are only generated (pended) during instruction
9270 	 * execution, i.e. a pending fault-like exception means the
9271 	 * fault occurred on the *previous* instruction and must be
9272 	 * serviced prior to recognizing any new events in order to
9273 	 * fully complete the previous instruction.
9274 	 */
9275 	else if (!vcpu->arch.exception.pending) {
9276 		if (vcpu->arch.nmi_injected) {
9277 			static_call(kvm_x86_set_nmi)(vcpu);
9278 			can_inject = false;
9279 		} else if (vcpu->arch.interrupt.injected) {
9280 			static_call(kvm_x86_set_irq)(vcpu);
9281 			can_inject = false;
9282 		}
9283 	}
9284 
9285 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9286 		     vcpu->arch.exception.pending);
9287 
9288 	/*
9289 	 * Call check_nested_events() even if we reinjected a previous event
9290 	 * in order for caller to determine if it should require immediate-exit
9291 	 * from L2 to L1 due to pending L1 events which require exit
9292 	 * from L2 to L1.
9293 	 */
9294 	if (is_guest_mode(vcpu)) {
9295 		r = kvm_check_nested_events(vcpu);
9296 		if (r < 0)
9297 			goto out;
9298 	}
9299 
9300 	/* try to inject new event if pending */
9301 	if (vcpu->arch.exception.pending) {
9302 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
9303 					vcpu->arch.exception.has_error_code,
9304 					vcpu->arch.exception.error_code);
9305 
9306 		vcpu->arch.exception.pending = false;
9307 		vcpu->arch.exception.injected = true;
9308 
9309 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9310 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9311 					     X86_EFLAGS_RF);
9312 
9313 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9314 			kvm_deliver_exception_payload(vcpu);
9315 			if (vcpu->arch.dr7 & DR7_GD) {
9316 				vcpu->arch.dr7 &= ~DR7_GD;
9317 				kvm_update_dr7(vcpu);
9318 			}
9319 		}
9320 
9321 		kvm_inject_exception(vcpu);
9322 		can_inject = false;
9323 	}
9324 
9325 	/* Don't inject interrupts if the user asked to avoid doing so */
9326 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9327 		return 0;
9328 
9329 	/*
9330 	 * Finally, inject interrupt events.  If an event cannot be injected
9331 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9332 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9333 	 * and can architecturally be injected, but we cannot do it right now:
9334 	 * an interrupt could have arrived just now and we have to inject it
9335 	 * as a vmexit, or there could already an event in the queue, which is
9336 	 * indicated by can_inject.  In that case we request an immediate exit
9337 	 * in order to make progress and get back here for another iteration.
9338 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9339 	 */
9340 	if (vcpu->arch.smi_pending) {
9341 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9342 		if (r < 0)
9343 			goto out;
9344 		if (r) {
9345 			vcpu->arch.smi_pending = false;
9346 			++vcpu->arch.smi_count;
9347 			enter_smm(vcpu);
9348 			can_inject = false;
9349 		} else
9350 			static_call(kvm_x86_enable_smi_window)(vcpu);
9351 	}
9352 
9353 	if (vcpu->arch.nmi_pending) {
9354 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9355 		if (r < 0)
9356 			goto out;
9357 		if (r) {
9358 			--vcpu->arch.nmi_pending;
9359 			vcpu->arch.nmi_injected = true;
9360 			static_call(kvm_x86_set_nmi)(vcpu);
9361 			can_inject = false;
9362 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9363 		}
9364 		if (vcpu->arch.nmi_pending)
9365 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9366 	}
9367 
9368 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9369 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9370 		if (r < 0)
9371 			goto out;
9372 		if (r) {
9373 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9374 			static_call(kvm_x86_set_irq)(vcpu);
9375 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9376 		}
9377 		if (kvm_cpu_has_injectable_intr(vcpu))
9378 			static_call(kvm_x86_enable_irq_window)(vcpu);
9379 	}
9380 
9381 	if (is_guest_mode(vcpu) &&
9382 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9383 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9384 		*req_immediate_exit = true;
9385 
9386 	WARN_ON(vcpu->arch.exception.pending);
9387 	return 0;
9388 
9389 out:
9390 	if (r == -EBUSY) {
9391 		*req_immediate_exit = true;
9392 		r = 0;
9393 	}
9394 	return r;
9395 }
9396 
9397 static void process_nmi(struct kvm_vcpu *vcpu)
9398 {
9399 	unsigned limit = 2;
9400 
9401 	/*
9402 	 * x86 is limited to one NMI running, and one NMI pending after it.
9403 	 * If an NMI is already in progress, limit further NMIs to just one.
9404 	 * Otherwise, allow two (and we'll inject the first one immediately).
9405 	 */
9406 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9407 		limit = 1;
9408 
9409 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9410 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9411 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9412 }
9413 
9414 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9415 {
9416 	u32 flags = 0;
9417 	flags |= seg->g       << 23;
9418 	flags |= seg->db      << 22;
9419 	flags |= seg->l       << 21;
9420 	flags |= seg->avl     << 20;
9421 	flags |= seg->present << 15;
9422 	flags |= seg->dpl     << 13;
9423 	flags |= seg->s       << 12;
9424 	flags |= seg->type    << 8;
9425 	return flags;
9426 }
9427 
9428 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9429 {
9430 	struct kvm_segment seg;
9431 	int offset;
9432 
9433 	kvm_get_segment(vcpu, &seg, n);
9434 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9435 
9436 	if (n < 3)
9437 		offset = 0x7f84 + n * 12;
9438 	else
9439 		offset = 0x7f2c + (n - 3) * 12;
9440 
9441 	put_smstate(u32, buf, offset + 8, seg.base);
9442 	put_smstate(u32, buf, offset + 4, seg.limit);
9443 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9444 }
9445 
9446 #ifdef CONFIG_X86_64
9447 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9448 {
9449 	struct kvm_segment seg;
9450 	int offset;
9451 	u16 flags;
9452 
9453 	kvm_get_segment(vcpu, &seg, n);
9454 	offset = 0x7e00 + n * 16;
9455 
9456 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9457 	put_smstate(u16, buf, offset, seg.selector);
9458 	put_smstate(u16, buf, offset + 2, flags);
9459 	put_smstate(u32, buf, offset + 4, seg.limit);
9460 	put_smstate(u64, buf, offset + 8, seg.base);
9461 }
9462 #endif
9463 
9464 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9465 {
9466 	struct desc_ptr dt;
9467 	struct kvm_segment seg;
9468 	unsigned long val;
9469 	int i;
9470 
9471 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9472 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9473 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9474 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9475 
9476 	for (i = 0; i < 8; i++)
9477 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9478 
9479 	kvm_get_dr(vcpu, 6, &val);
9480 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9481 	kvm_get_dr(vcpu, 7, &val);
9482 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9483 
9484 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9485 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9486 	put_smstate(u32, buf, 0x7f64, seg.base);
9487 	put_smstate(u32, buf, 0x7f60, seg.limit);
9488 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9489 
9490 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9491 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9492 	put_smstate(u32, buf, 0x7f80, seg.base);
9493 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9494 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9495 
9496 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9497 	put_smstate(u32, buf, 0x7f74, dt.address);
9498 	put_smstate(u32, buf, 0x7f70, dt.size);
9499 
9500 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9501 	put_smstate(u32, buf, 0x7f58, dt.address);
9502 	put_smstate(u32, buf, 0x7f54, dt.size);
9503 
9504 	for (i = 0; i < 6; i++)
9505 		enter_smm_save_seg_32(vcpu, buf, i);
9506 
9507 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9508 
9509 	/* revision id */
9510 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9511 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9512 }
9513 
9514 #ifdef CONFIG_X86_64
9515 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9516 {
9517 	struct desc_ptr dt;
9518 	struct kvm_segment seg;
9519 	unsigned long val;
9520 	int i;
9521 
9522 	for (i = 0; i < 16; i++)
9523 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9524 
9525 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9526 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9527 
9528 	kvm_get_dr(vcpu, 6, &val);
9529 	put_smstate(u64, buf, 0x7f68, val);
9530 	kvm_get_dr(vcpu, 7, &val);
9531 	put_smstate(u64, buf, 0x7f60, val);
9532 
9533 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9534 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9535 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9536 
9537 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9538 
9539 	/* revision id */
9540 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9541 
9542 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9543 
9544 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9545 	put_smstate(u16, buf, 0x7e90, seg.selector);
9546 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9547 	put_smstate(u32, buf, 0x7e94, seg.limit);
9548 	put_smstate(u64, buf, 0x7e98, seg.base);
9549 
9550 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9551 	put_smstate(u32, buf, 0x7e84, dt.size);
9552 	put_smstate(u64, buf, 0x7e88, dt.address);
9553 
9554 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9555 	put_smstate(u16, buf, 0x7e70, seg.selector);
9556 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9557 	put_smstate(u32, buf, 0x7e74, seg.limit);
9558 	put_smstate(u64, buf, 0x7e78, seg.base);
9559 
9560 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9561 	put_smstate(u32, buf, 0x7e64, dt.size);
9562 	put_smstate(u64, buf, 0x7e68, dt.address);
9563 
9564 	for (i = 0; i < 6; i++)
9565 		enter_smm_save_seg_64(vcpu, buf, i);
9566 }
9567 #endif
9568 
9569 static void enter_smm(struct kvm_vcpu *vcpu)
9570 {
9571 	struct kvm_segment cs, ds;
9572 	struct desc_ptr dt;
9573 	unsigned long cr0;
9574 	char buf[512];
9575 
9576 	memset(buf, 0, 512);
9577 #ifdef CONFIG_X86_64
9578 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9579 		enter_smm_save_state_64(vcpu, buf);
9580 	else
9581 #endif
9582 		enter_smm_save_state_32(vcpu, buf);
9583 
9584 	/*
9585 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9586 	 * state (e.g. leave guest mode) after we've saved the state into the
9587 	 * SMM state-save area.
9588 	 */
9589 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9590 
9591 	kvm_smm_changed(vcpu, true);
9592 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9593 
9594 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9595 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9596 	else
9597 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9598 
9599 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9600 	kvm_rip_write(vcpu, 0x8000);
9601 
9602 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9603 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9604 	vcpu->arch.cr0 = cr0;
9605 
9606 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9607 
9608 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9609 	dt.address = dt.size = 0;
9610 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9611 
9612 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9613 
9614 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9615 	cs.base = vcpu->arch.smbase;
9616 
9617 	ds.selector = 0;
9618 	ds.base = 0;
9619 
9620 	cs.limit    = ds.limit = 0xffffffff;
9621 	cs.type     = ds.type = 0x3;
9622 	cs.dpl      = ds.dpl = 0;
9623 	cs.db       = ds.db = 0;
9624 	cs.s        = ds.s = 1;
9625 	cs.l        = ds.l = 0;
9626 	cs.g        = ds.g = 1;
9627 	cs.avl      = ds.avl = 0;
9628 	cs.present  = ds.present = 1;
9629 	cs.unusable = ds.unusable = 0;
9630 	cs.padding  = ds.padding = 0;
9631 
9632 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9633 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9634 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9635 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9636 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9637 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9638 
9639 #ifdef CONFIG_X86_64
9640 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9641 		static_call(kvm_x86_set_efer)(vcpu, 0);
9642 #endif
9643 
9644 	kvm_update_cpuid_runtime(vcpu);
9645 	kvm_mmu_reset_context(vcpu);
9646 }
9647 
9648 static void process_smi(struct kvm_vcpu *vcpu)
9649 {
9650 	vcpu->arch.smi_pending = true;
9651 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9652 }
9653 
9654 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9655 				       unsigned long *vcpu_bitmap)
9656 {
9657 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9658 }
9659 
9660 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9661 {
9662 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9663 }
9664 
9665 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9666 {
9667 	bool activate;
9668 
9669 	if (!lapic_in_kernel(vcpu))
9670 		return;
9671 
9672 	down_read(&vcpu->kvm->arch.apicv_update_lock);
9673 
9674 	activate = kvm_apicv_activated(vcpu->kvm);
9675 	if (vcpu->arch.apicv_active == activate)
9676 		goto out;
9677 
9678 	vcpu->arch.apicv_active = activate;
9679 	kvm_apic_update_apicv(vcpu);
9680 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9681 
9682 	/*
9683 	 * When APICv gets disabled, we may still have injected interrupts
9684 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9685 	 * still active when the interrupt got accepted. Make sure
9686 	 * inject_pending_event() is called to check for that.
9687 	 */
9688 	if (!vcpu->arch.apicv_active)
9689 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9690 
9691 out:
9692 	up_read(&vcpu->kvm->arch.apicv_update_lock);
9693 }
9694 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9695 
9696 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9697 {
9698 	unsigned long old, new;
9699 
9700 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9701 
9702 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9703 	    !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9704 		return;
9705 
9706 	old = new = kvm->arch.apicv_inhibit_reasons;
9707 
9708 	if (activate)
9709 		__clear_bit(bit, &new);
9710 	else
9711 		__set_bit(bit, &new);
9712 
9713 	if (!!old != !!new) {
9714 		trace_kvm_apicv_update_request(activate, bit);
9715 		/*
9716 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9717 		 * false positives in the sanity check WARN in svm_vcpu_run().
9718 		 * This task will wait for all vCPUs to ack the kick IRQ before
9719 		 * updating apicv_inhibit_reasons, and all other vCPUs will
9720 		 * block on acquiring apicv_update_lock so that vCPUs can't
9721 		 * redo svm_vcpu_run() without seeing the new inhibit state.
9722 		 *
9723 		 * Note, holding apicv_update_lock and taking it in the read
9724 		 * side (handling the request) also prevents other vCPUs from
9725 		 * servicing the request with a stale apicv_inhibit_reasons.
9726 		 */
9727 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9728 		kvm->arch.apicv_inhibit_reasons = new;
9729 		if (new) {
9730 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9731 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
9732 		}
9733 	} else
9734 		kvm->arch.apicv_inhibit_reasons = new;
9735 }
9736 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9737 
9738 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9739 {
9740 	down_write(&kvm->arch.apicv_update_lock);
9741 	__kvm_request_apicv_update(kvm, activate, bit);
9742 	up_write(&kvm->arch.apicv_update_lock);
9743 }
9744 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9745 
9746 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9747 {
9748 	if (!kvm_apic_present(vcpu))
9749 		return;
9750 
9751 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9752 
9753 	if (irqchip_split(vcpu->kvm))
9754 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9755 	else {
9756 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9757 		if (ioapic_in_kernel(vcpu->kvm))
9758 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9759 	}
9760 
9761 	if (is_guest_mode(vcpu))
9762 		vcpu->arch.load_eoi_exitmap_pending = true;
9763 	else
9764 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9765 }
9766 
9767 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9768 {
9769 	u64 eoi_exit_bitmap[4];
9770 
9771 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9772 		return;
9773 
9774 	if (to_hv_vcpu(vcpu)) {
9775 		bitmap_or((ulong *)eoi_exit_bitmap,
9776 			  vcpu->arch.ioapic_handled_vectors,
9777 			  to_hv_synic(vcpu)->vec_bitmap, 256);
9778 		static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9779 		return;
9780 	}
9781 
9782 	static_call(kvm_x86_load_eoi_exitmap)(
9783 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9784 }
9785 
9786 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9787 					    unsigned long start, unsigned long end)
9788 {
9789 	unsigned long apic_address;
9790 
9791 	/*
9792 	 * The physical address of apic access page is stored in the VMCS.
9793 	 * Update it when it becomes invalid.
9794 	 */
9795 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9796 	if (start <= apic_address && apic_address < end)
9797 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9798 }
9799 
9800 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9801 {
9802 	if (!lapic_in_kernel(vcpu))
9803 		return;
9804 
9805 	if (!kvm_x86_ops.set_apic_access_page_addr)
9806 		return;
9807 
9808 	static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9809 }
9810 
9811 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9812 {
9813 	smp_send_reschedule(vcpu->cpu);
9814 }
9815 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9816 
9817 /*
9818  * Returns 1 to let vcpu_run() continue the guest execution loop without
9819  * exiting to the userspace.  Otherwise, the value will be returned to the
9820  * userspace.
9821  */
9822 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9823 {
9824 	int r;
9825 	bool req_int_win =
9826 		dm_request_for_irq_injection(vcpu) &&
9827 		kvm_cpu_accept_dm_intr(vcpu);
9828 	fastpath_t exit_fastpath;
9829 
9830 	bool req_immediate_exit = false;
9831 
9832 	/* Forbid vmenter if vcpu dirty ring is soft-full */
9833 	if (unlikely(vcpu->kvm->dirty_ring_size &&
9834 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9835 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9836 		trace_kvm_dirty_ring_exit(vcpu);
9837 		r = 0;
9838 		goto out;
9839 	}
9840 
9841 	if (kvm_request_pending(vcpu)) {
9842 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9843 			r = -EIO;
9844 			goto out;
9845 		}
9846 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9847 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9848 				r = 0;
9849 				goto out;
9850 			}
9851 		}
9852 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9853 			kvm_mmu_unload(vcpu);
9854 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9855 			__kvm_migrate_timers(vcpu);
9856 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9857 			kvm_update_masterclock(vcpu->kvm);
9858 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9859 			kvm_gen_kvmclock_update(vcpu);
9860 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9861 			r = kvm_guest_time_update(vcpu);
9862 			if (unlikely(r))
9863 				goto out;
9864 		}
9865 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9866 			kvm_mmu_sync_roots(vcpu);
9867 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9868 			kvm_mmu_load_pgd(vcpu);
9869 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9870 			kvm_vcpu_flush_tlb_all(vcpu);
9871 
9872 			/* Flushing all ASIDs flushes the current ASID... */
9873 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9874 		}
9875 		kvm_service_local_tlb_flush_requests(vcpu);
9876 
9877 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9878 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9879 			r = 0;
9880 			goto out;
9881 		}
9882 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9883 			if (is_guest_mode(vcpu)) {
9884 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
9885 			} else {
9886 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9887 				vcpu->mmio_needed = 0;
9888 				r = 0;
9889 				goto out;
9890 			}
9891 		}
9892 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9893 			/* Page is swapped out. Do synthetic halt */
9894 			vcpu->arch.apf.halted = true;
9895 			r = 1;
9896 			goto out;
9897 		}
9898 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9899 			record_steal_time(vcpu);
9900 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9901 			process_smi(vcpu);
9902 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9903 			process_nmi(vcpu);
9904 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9905 			kvm_pmu_handle_event(vcpu);
9906 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9907 			kvm_pmu_deliver_pmi(vcpu);
9908 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9909 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9910 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9911 				     vcpu->arch.ioapic_handled_vectors)) {
9912 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9913 				vcpu->run->eoi.vector =
9914 						vcpu->arch.pending_ioapic_eoi;
9915 				r = 0;
9916 				goto out;
9917 			}
9918 		}
9919 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9920 			vcpu_scan_ioapic(vcpu);
9921 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9922 			vcpu_load_eoi_exitmap(vcpu);
9923 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9924 			kvm_vcpu_reload_apic_access_page(vcpu);
9925 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9926 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9927 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9928 			r = 0;
9929 			goto out;
9930 		}
9931 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9932 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9933 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9934 			r = 0;
9935 			goto out;
9936 		}
9937 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9938 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9939 
9940 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9941 			vcpu->run->hyperv = hv_vcpu->exit;
9942 			r = 0;
9943 			goto out;
9944 		}
9945 
9946 		/*
9947 		 * KVM_REQ_HV_STIMER has to be processed after
9948 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9949 		 * depend on the guest clock being up-to-date
9950 		 */
9951 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9952 			kvm_hv_process_stimers(vcpu);
9953 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9954 			kvm_vcpu_update_apicv(vcpu);
9955 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9956 			kvm_check_async_pf_completion(vcpu);
9957 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9958 			static_call(kvm_x86_msr_filter_changed)(vcpu);
9959 
9960 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9961 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9962 	}
9963 
9964 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9965 	    kvm_xen_has_interrupt(vcpu)) {
9966 		++vcpu->stat.req_event;
9967 		r = kvm_apic_accept_events(vcpu);
9968 		if (r < 0) {
9969 			r = 0;
9970 			goto out;
9971 		}
9972 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9973 			r = 1;
9974 			goto out;
9975 		}
9976 
9977 		r = inject_pending_event(vcpu, &req_immediate_exit);
9978 		if (r < 0) {
9979 			r = 0;
9980 			goto out;
9981 		}
9982 		if (req_int_win)
9983 			static_call(kvm_x86_enable_irq_window)(vcpu);
9984 
9985 		if (kvm_lapic_enabled(vcpu)) {
9986 			update_cr8_intercept(vcpu);
9987 			kvm_lapic_sync_to_vapic(vcpu);
9988 		}
9989 	}
9990 
9991 	r = kvm_mmu_reload(vcpu);
9992 	if (unlikely(r)) {
9993 		goto cancel_injection;
9994 	}
9995 
9996 	preempt_disable();
9997 
9998 	static_call(kvm_x86_prepare_guest_switch)(vcpu);
9999 
10000 	/*
10001 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10002 	 * IPI are then delayed after guest entry, which ensures that they
10003 	 * result in virtual interrupt delivery.
10004 	 */
10005 	local_irq_disable();
10006 
10007 	/* Store vcpu->apicv_active before vcpu->mode.  */
10008 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10009 
10010 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10011 
10012 	/*
10013 	 * 1) We should set ->mode before checking ->requests.  Please see
10014 	 * the comment in kvm_vcpu_exiting_guest_mode().
10015 	 *
10016 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10017 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10018 	 * (see vmx_deliver_posted_interrupt).
10019 	 *
10020 	 * 3) This also orders the write to mode from any reads to the page
10021 	 * tables done while the VCPU is running.  Please see the comment
10022 	 * in kvm_flush_remote_tlbs.
10023 	 */
10024 	smp_mb__after_srcu_read_unlock();
10025 
10026 	/*
10027 	 * Process pending posted interrupts to handle the case where the
10028 	 * notification IRQ arrived in the host, or was never sent (because the
10029 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10030 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10031 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10032 	 */
10033 	if (kvm_lapic_enabled(vcpu))
10034 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10035 
10036 	if (kvm_vcpu_exit_request(vcpu)) {
10037 		vcpu->mode = OUTSIDE_GUEST_MODE;
10038 		smp_wmb();
10039 		local_irq_enable();
10040 		preempt_enable();
10041 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10042 		r = 1;
10043 		goto cancel_injection;
10044 	}
10045 
10046 	if (req_immediate_exit) {
10047 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10048 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10049 	}
10050 
10051 	fpregs_assert_state_consistent();
10052 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10053 		switch_fpu_return();
10054 
10055 	if (vcpu->arch.guest_fpu.xfd_err)
10056 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10057 
10058 	if (unlikely(vcpu->arch.switch_db_regs)) {
10059 		set_debugreg(0, 7);
10060 		set_debugreg(vcpu->arch.eff_db[0], 0);
10061 		set_debugreg(vcpu->arch.eff_db[1], 1);
10062 		set_debugreg(vcpu->arch.eff_db[2], 2);
10063 		set_debugreg(vcpu->arch.eff_db[3], 3);
10064 	} else if (unlikely(hw_breakpoint_active())) {
10065 		set_debugreg(0, 7);
10066 	}
10067 
10068 	guest_timing_enter_irqoff();
10069 
10070 	for (;;) {
10071 		/*
10072 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10073 		 * update must kick and wait for all vCPUs before toggling the
10074 		 * per-VM state, and responsing vCPUs must wait for the update
10075 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10076 		 */
10077 		WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
10078 
10079 		exit_fastpath = static_call(kvm_x86_run)(vcpu);
10080 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10081 			break;
10082 
10083 		if (kvm_lapic_enabled(vcpu))
10084 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10085 
10086 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10087 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10088 			break;
10089 		}
10090 	}
10091 
10092 	/*
10093 	 * Do this here before restoring debug registers on the host.  And
10094 	 * since we do this before handling the vmexit, a DR access vmexit
10095 	 * can (a) read the correct value of the debug registers, (b) set
10096 	 * KVM_DEBUGREG_WONT_EXIT again.
10097 	 */
10098 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10099 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10100 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10101 		kvm_update_dr0123(vcpu);
10102 		kvm_update_dr7(vcpu);
10103 	}
10104 
10105 	/*
10106 	 * If the guest has used debug registers, at least dr7
10107 	 * will be disabled while returning to the host.
10108 	 * If we don't have active breakpoints in the host, we don't
10109 	 * care about the messed up debug address registers. But if
10110 	 * we have some of them active, restore the old state.
10111 	 */
10112 	if (hw_breakpoint_active())
10113 		hw_breakpoint_restore();
10114 
10115 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10116 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10117 
10118 	vcpu->mode = OUTSIDE_GUEST_MODE;
10119 	smp_wmb();
10120 
10121 	/*
10122 	 * Sync xfd before calling handle_exit_irqoff() which may
10123 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10124 	 * in #NM irqoff handler).
10125 	 */
10126 	if (vcpu->arch.xfd_no_write_intercept)
10127 		fpu_sync_guest_vmexit_xfd_state();
10128 
10129 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10130 
10131 	if (vcpu->arch.guest_fpu.xfd_err)
10132 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10133 
10134 	/*
10135 	 * Consume any pending interrupts, including the possible source of
10136 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10137 	 * An instruction is required after local_irq_enable() to fully unblock
10138 	 * interrupts on processors that implement an interrupt shadow, the
10139 	 * stat.exits increment will do nicely.
10140 	 */
10141 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10142 	local_irq_enable();
10143 	++vcpu->stat.exits;
10144 	local_irq_disable();
10145 	kvm_after_interrupt(vcpu);
10146 
10147 	/*
10148 	 * Wait until after servicing IRQs to account guest time so that any
10149 	 * ticks that occurred while running the guest are properly accounted
10150 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10151 	 * of accounting via context tracking, but the loss of accuracy is
10152 	 * acceptable for all known use cases.
10153 	 */
10154 	guest_timing_exit_irqoff();
10155 
10156 	if (lapic_in_kernel(vcpu)) {
10157 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10158 		if (delta != S64_MIN) {
10159 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10160 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10161 		}
10162 	}
10163 
10164 	local_irq_enable();
10165 	preempt_enable();
10166 
10167 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10168 
10169 	/*
10170 	 * Profile KVM exit RIPs:
10171 	 */
10172 	if (unlikely(prof_on == KVM_PROFILING)) {
10173 		unsigned long rip = kvm_rip_read(vcpu);
10174 		profile_hit(KVM_PROFILING, (void *)rip);
10175 	}
10176 
10177 	if (unlikely(vcpu->arch.tsc_always_catchup))
10178 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10179 
10180 	if (vcpu->arch.apic_attention)
10181 		kvm_lapic_sync_from_vapic(vcpu);
10182 
10183 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10184 	return r;
10185 
10186 cancel_injection:
10187 	if (req_immediate_exit)
10188 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10189 	static_call(kvm_x86_cancel_injection)(vcpu);
10190 	if (unlikely(vcpu->arch.apic_attention))
10191 		kvm_lapic_sync_from_vapic(vcpu);
10192 out:
10193 	return r;
10194 }
10195 
10196 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10197 {
10198 	bool hv_timer;
10199 
10200 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10201 		/*
10202 		 * Switch to the software timer before halt-polling/blocking as
10203 		 * the guest's timer may be a break event for the vCPU, and the
10204 		 * hypervisor timer runs only when the CPU is in guest mode.
10205 		 * Switch before halt-polling so that KVM recognizes an expired
10206 		 * timer before blocking.
10207 		 */
10208 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10209 		if (hv_timer)
10210 			kvm_lapic_switch_to_sw_timer(vcpu);
10211 
10212 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10213 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10214 			kvm_vcpu_halt(vcpu);
10215 		else
10216 			kvm_vcpu_block(vcpu);
10217 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10218 
10219 		if (hv_timer)
10220 			kvm_lapic_switch_to_hv_timer(vcpu);
10221 
10222 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10223 			return 1;
10224 	}
10225 
10226 	if (kvm_apic_accept_events(vcpu) < 0)
10227 		return 0;
10228 	switch(vcpu->arch.mp_state) {
10229 	case KVM_MP_STATE_HALTED:
10230 	case KVM_MP_STATE_AP_RESET_HOLD:
10231 		vcpu->arch.pv.pv_unhalted = false;
10232 		vcpu->arch.mp_state =
10233 			KVM_MP_STATE_RUNNABLE;
10234 		fallthrough;
10235 	case KVM_MP_STATE_RUNNABLE:
10236 		vcpu->arch.apf.halted = false;
10237 		break;
10238 	case KVM_MP_STATE_INIT_RECEIVED:
10239 		break;
10240 	default:
10241 		return -EINTR;
10242 	}
10243 	return 1;
10244 }
10245 
10246 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10247 {
10248 	if (is_guest_mode(vcpu))
10249 		kvm_check_nested_events(vcpu);
10250 
10251 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10252 		!vcpu->arch.apf.halted);
10253 }
10254 
10255 static int vcpu_run(struct kvm_vcpu *vcpu)
10256 {
10257 	int r;
10258 	struct kvm *kvm = vcpu->kvm;
10259 
10260 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10261 	vcpu->arch.l1tf_flush_l1d = true;
10262 
10263 	for (;;) {
10264 		if (kvm_vcpu_running(vcpu)) {
10265 			r = vcpu_enter_guest(vcpu);
10266 		} else {
10267 			r = vcpu_block(kvm, vcpu);
10268 		}
10269 
10270 		if (r <= 0)
10271 			break;
10272 
10273 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10274 		if (kvm_cpu_has_pending_timer(vcpu))
10275 			kvm_inject_pending_timer_irqs(vcpu);
10276 
10277 		if (dm_request_for_irq_injection(vcpu) &&
10278 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10279 			r = 0;
10280 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10281 			++vcpu->stat.request_irq_exits;
10282 			break;
10283 		}
10284 
10285 		if (__xfer_to_guest_mode_work_pending()) {
10286 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10287 			r = xfer_to_guest_mode_handle_work(vcpu);
10288 			if (r)
10289 				return r;
10290 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10291 		}
10292 	}
10293 
10294 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10295 
10296 	return r;
10297 }
10298 
10299 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10300 {
10301 	int r;
10302 
10303 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10304 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10305 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10306 	return r;
10307 }
10308 
10309 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10310 {
10311 	BUG_ON(!vcpu->arch.pio.count);
10312 
10313 	return complete_emulated_io(vcpu);
10314 }
10315 
10316 /*
10317  * Implements the following, as a state machine:
10318  *
10319  * read:
10320  *   for each fragment
10321  *     for each mmio piece in the fragment
10322  *       write gpa, len
10323  *       exit
10324  *       copy data
10325  *   execute insn
10326  *
10327  * write:
10328  *   for each fragment
10329  *     for each mmio piece in the fragment
10330  *       write gpa, len
10331  *       copy data
10332  *       exit
10333  */
10334 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10335 {
10336 	struct kvm_run *run = vcpu->run;
10337 	struct kvm_mmio_fragment *frag;
10338 	unsigned len;
10339 
10340 	BUG_ON(!vcpu->mmio_needed);
10341 
10342 	/* Complete previous fragment */
10343 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10344 	len = min(8u, frag->len);
10345 	if (!vcpu->mmio_is_write)
10346 		memcpy(frag->data, run->mmio.data, len);
10347 
10348 	if (frag->len <= 8) {
10349 		/* Switch to the next fragment. */
10350 		frag++;
10351 		vcpu->mmio_cur_fragment++;
10352 	} else {
10353 		/* Go forward to the next mmio piece. */
10354 		frag->data += len;
10355 		frag->gpa += len;
10356 		frag->len -= len;
10357 	}
10358 
10359 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10360 		vcpu->mmio_needed = 0;
10361 
10362 		/* FIXME: return into emulator if single-stepping.  */
10363 		if (vcpu->mmio_is_write)
10364 			return 1;
10365 		vcpu->mmio_read_completed = 1;
10366 		return complete_emulated_io(vcpu);
10367 	}
10368 
10369 	run->exit_reason = KVM_EXIT_MMIO;
10370 	run->mmio.phys_addr = frag->gpa;
10371 	if (vcpu->mmio_is_write)
10372 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10373 	run->mmio.len = min(8u, frag->len);
10374 	run->mmio.is_write = vcpu->mmio_is_write;
10375 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10376 	return 0;
10377 }
10378 
10379 /* Swap (qemu) user FPU context for the guest FPU context. */
10380 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10381 {
10382 	/*
10383 	 * Exclude PKRU from restore as restored separately in
10384 	 * kvm_x86_ops.run().
10385 	 */
10386 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10387 	trace_kvm_fpu(1);
10388 }
10389 
10390 /* When vcpu_run ends, restore user space FPU context. */
10391 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10392 {
10393 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10394 	++vcpu->stat.fpu_reload;
10395 	trace_kvm_fpu(0);
10396 }
10397 
10398 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10399 {
10400 	struct kvm_run *kvm_run = vcpu->run;
10401 	int r;
10402 
10403 	vcpu_load(vcpu);
10404 	kvm_sigset_activate(vcpu);
10405 	kvm_run->flags = 0;
10406 	kvm_load_guest_fpu(vcpu);
10407 
10408 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10409 		if (kvm_run->immediate_exit) {
10410 			r = -EINTR;
10411 			goto out;
10412 		}
10413 		/*
10414 		 * It should be impossible for the hypervisor timer to be in
10415 		 * use before KVM has ever run the vCPU.
10416 		 */
10417 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10418 		kvm_vcpu_block(vcpu);
10419 		if (kvm_apic_accept_events(vcpu) < 0) {
10420 			r = 0;
10421 			goto out;
10422 		}
10423 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10424 		r = -EAGAIN;
10425 		if (signal_pending(current)) {
10426 			r = -EINTR;
10427 			kvm_run->exit_reason = KVM_EXIT_INTR;
10428 			++vcpu->stat.signal_exits;
10429 		}
10430 		goto out;
10431 	}
10432 
10433 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10434 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10435 		r = -EINVAL;
10436 		goto out;
10437 	}
10438 
10439 	if (kvm_run->kvm_dirty_regs) {
10440 		r = sync_regs(vcpu);
10441 		if (r != 0)
10442 			goto out;
10443 	}
10444 
10445 	/* re-sync apic's tpr */
10446 	if (!lapic_in_kernel(vcpu)) {
10447 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10448 			r = -EINVAL;
10449 			goto out;
10450 		}
10451 	}
10452 
10453 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10454 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10455 		vcpu->arch.complete_userspace_io = NULL;
10456 		r = cui(vcpu);
10457 		if (r <= 0)
10458 			goto out;
10459 	} else
10460 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10461 
10462 	if (kvm_run->immediate_exit) {
10463 		r = -EINTR;
10464 		goto out;
10465 	}
10466 
10467 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10468 	if (r <= 0)
10469 		goto out;
10470 
10471 	r = vcpu_run(vcpu);
10472 
10473 out:
10474 	kvm_put_guest_fpu(vcpu);
10475 	if (kvm_run->kvm_valid_regs)
10476 		store_regs(vcpu);
10477 	post_kvm_run_save(vcpu);
10478 	kvm_sigset_deactivate(vcpu);
10479 
10480 	vcpu_put(vcpu);
10481 	return r;
10482 }
10483 
10484 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10485 {
10486 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10487 		/*
10488 		 * We are here if userspace calls get_regs() in the middle of
10489 		 * instruction emulation. Registers state needs to be copied
10490 		 * back from emulation context to vcpu. Userspace shouldn't do
10491 		 * that usually, but some bad designed PV devices (vmware
10492 		 * backdoor interface) need this to work
10493 		 */
10494 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10495 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10496 	}
10497 	regs->rax = kvm_rax_read(vcpu);
10498 	regs->rbx = kvm_rbx_read(vcpu);
10499 	regs->rcx = kvm_rcx_read(vcpu);
10500 	regs->rdx = kvm_rdx_read(vcpu);
10501 	regs->rsi = kvm_rsi_read(vcpu);
10502 	regs->rdi = kvm_rdi_read(vcpu);
10503 	regs->rsp = kvm_rsp_read(vcpu);
10504 	regs->rbp = kvm_rbp_read(vcpu);
10505 #ifdef CONFIG_X86_64
10506 	regs->r8 = kvm_r8_read(vcpu);
10507 	regs->r9 = kvm_r9_read(vcpu);
10508 	regs->r10 = kvm_r10_read(vcpu);
10509 	regs->r11 = kvm_r11_read(vcpu);
10510 	regs->r12 = kvm_r12_read(vcpu);
10511 	regs->r13 = kvm_r13_read(vcpu);
10512 	regs->r14 = kvm_r14_read(vcpu);
10513 	regs->r15 = kvm_r15_read(vcpu);
10514 #endif
10515 
10516 	regs->rip = kvm_rip_read(vcpu);
10517 	regs->rflags = kvm_get_rflags(vcpu);
10518 }
10519 
10520 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10521 {
10522 	vcpu_load(vcpu);
10523 	__get_regs(vcpu, regs);
10524 	vcpu_put(vcpu);
10525 	return 0;
10526 }
10527 
10528 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10529 {
10530 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10531 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10532 
10533 	kvm_rax_write(vcpu, regs->rax);
10534 	kvm_rbx_write(vcpu, regs->rbx);
10535 	kvm_rcx_write(vcpu, regs->rcx);
10536 	kvm_rdx_write(vcpu, regs->rdx);
10537 	kvm_rsi_write(vcpu, regs->rsi);
10538 	kvm_rdi_write(vcpu, regs->rdi);
10539 	kvm_rsp_write(vcpu, regs->rsp);
10540 	kvm_rbp_write(vcpu, regs->rbp);
10541 #ifdef CONFIG_X86_64
10542 	kvm_r8_write(vcpu, regs->r8);
10543 	kvm_r9_write(vcpu, regs->r9);
10544 	kvm_r10_write(vcpu, regs->r10);
10545 	kvm_r11_write(vcpu, regs->r11);
10546 	kvm_r12_write(vcpu, regs->r12);
10547 	kvm_r13_write(vcpu, regs->r13);
10548 	kvm_r14_write(vcpu, regs->r14);
10549 	kvm_r15_write(vcpu, regs->r15);
10550 #endif
10551 
10552 	kvm_rip_write(vcpu, regs->rip);
10553 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10554 
10555 	vcpu->arch.exception.pending = false;
10556 
10557 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10558 }
10559 
10560 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10561 {
10562 	vcpu_load(vcpu);
10563 	__set_regs(vcpu, regs);
10564 	vcpu_put(vcpu);
10565 	return 0;
10566 }
10567 
10568 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10569 {
10570 	struct kvm_segment cs;
10571 
10572 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10573 	*db = cs.db;
10574 	*l = cs.l;
10575 }
10576 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10577 
10578 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10579 {
10580 	struct desc_ptr dt;
10581 
10582 	if (vcpu->arch.guest_state_protected)
10583 		goto skip_protected_regs;
10584 
10585 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10586 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10587 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10588 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10589 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10590 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10591 
10592 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10593 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10594 
10595 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10596 	sregs->idt.limit = dt.size;
10597 	sregs->idt.base = dt.address;
10598 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10599 	sregs->gdt.limit = dt.size;
10600 	sregs->gdt.base = dt.address;
10601 
10602 	sregs->cr2 = vcpu->arch.cr2;
10603 	sregs->cr3 = kvm_read_cr3(vcpu);
10604 
10605 skip_protected_regs:
10606 	sregs->cr0 = kvm_read_cr0(vcpu);
10607 	sregs->cr4 = kvm_read_cr4(vcpu);
10608 	sregs->cr8 = kvm_get_cr8(vcpu);
10609 	sregs->efer = vcpu->arch.efer;
10610 	sregs->apic_base = kvm_get_apic_base(vcpu);
10611 }
10612 
10613 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10614 {
10615 	__get_sregs_common(vcpu, sregs);
10616 
10617 	if (vcpu->arch.guest_state_protected)
10618 		return;
10619 
10620 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10621 		set_bit(vcpu->arch.interrupt.nr,
10622 			(unsigned long *)sregs->interrupt_bitmap);
10623 }
10624 
10625 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10626 {
10627 	int i;
10628 
10629 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10630 
10631 	if (vcpu->arch.guest_state_protected)
10632 		return;
10633 
10634 	if (is_pae_paging(vcpu)) {
10635 		for (i = 0 ; i < 4 ; i++)
10636 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10637 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10638 	}
10639 }
10640 
10641 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10642 				  struct kvm_sregs *sregs)
10643 {
10644 	vcpu_load(vcpu);
10645 	__get_sregs(vcpu, sregs);
10646 	vcpu_put(vcpu);
10647 	return 0;
10648 }
10649 
10650 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10651 				    struct kvm_mp_state *mp_state)
10652 {
10653 	int r;
10654 
10655 	vcpu_load(vcpu);
10656 	if (kvm_mpx_supported())
10657 		kvm_load_guest_fpu(vcpu);
10658 
10659 	r = kvm_apic_accept_events(vcpu);
10660 	if (r < 0)
10661 		goto out;
10662 	r = 0;
10663 
10664 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10665 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10666 	    vcpu->arch.pv.pv_unhalted)
10667 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10668 	else
10669 		mp_state->mp_state = vcpu->arch.mp_state;
10670 
10671 out:
10672 	if (kvm_mpx_supported())
10673 		kvm_put_guest_fpu(vcpu);
10674 	vcpu_put(vcpu);
10675 	return r;
10676 }
10677 
10678 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10679 				    struct kvm_mp_state *mp_state)
10680 {
10681 	int ret = -EINVAL;
10682 
10683 	vcpu_load(vcpu);
10684 
10685 	if (!lapic_in_kernel(vcpu) &&
10686 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10687 		goto out;
10688 
10689 	/*
10690 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10691 	 * INIT state; latched init should be reported using
10692 	 * KVM_SET_VCPU_EVENTS, so reject it here.
10693 	 */
10694 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10695 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10696 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10697 		goto out;
10698 
10699 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10700 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10701 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10702 	} else
10703 		vcpu->arch.mp_state = mp_state->mp_state;
10704 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10705 
10706 	ret = 0;
10707 out:
10708 	vcpu_put(vcpu);
10709 	return ret;
10710 }
10711 
10712 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10713 		    int reason, bool has_error_code, u32 error_code)
10714 {
10715 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10716 	int ret;
10717 
10718 	init_emulate_ctxt(vcpu);
10719 
10720 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10721 				   has_error_code, error_code);
10722 	if (ret) {
10723 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10724 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10725 		vcpu->run->internal.ndata = 0;
10726 		return 0;
10727 	}
10728 
10729 	kvm_rip_write(vcpu, ctxt->eip);
10730 	kvm_set_rflags(vcpu, ctxt->eflags);
10731 	return 1;
10732 }
10733 EXPORT_SYMBOL_GPL(kvm_task_switch);
10734 
10735 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10736 {
10737 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10738 		/*
10739 		 * When EFER.LME and CR0.PG are set, the processor is in
10740 		 * 64-bit mode (though maybe in a 32-bit code segment).
10741 		 * CR4.PAE and EFER.LMA must be set.
10742 		 */
10743 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10744 			return false;
10745 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10746 			return false;
10747 	} else {
10748 		/*
10749 		 * Not in 64-bit mode: EFER.LMA is clear and the code
10750 		 * segment cannot be 64-bit.
10751 		 */
10752 		if (sregs->efer & EFER_LMA || sregs->cs.l)
10753 			return false;
10754 	}
10755 
10756 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
10757 }
10758 
10759 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10760 		int *mmu_reset_needed, bool update_pdptrs)
10761 {
10762 	struct msr_data apic_base_msr;
10763 	int idx;
10764 	struct desc_ptr dt;
10765 
10766 	if (!kvm_is_valid_sregs(vcpu, sregs))
10767 		return -EINVAL;
10768 
10769 	apic_base_msr.data = sregs->apic_base;
10770 	apic_base_msr.host_initiated = true;
10771 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
10772 		return -EINVAL;
10773 
10774 	if (vcpu->arch.guest_state_protected)
10775 		return 0;
10776 
10777 	dt.size = sregs->idt.limit;
10778 	dt.address = sregs->idt.base;
10779 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10780 	dt.size = sregs->gdt.limit;
10781 	dt.address = sregs->gdt.base;
10782 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
10783 
10784 	vcpu->arch.cr2 = sregs->cr2;
10785 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10786 	vcpu->arch.cr3 = sregs->cr3;
10787 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10788 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10789 
10790 	kvm_set_cr8(vcpu, sregs->cr8);
10791 
10792 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10793 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10794 
10795 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10796 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10797 	vcpu->arch.cr0 = sregs->cr0;
10798 
10799 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10800 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10801 
10802 	if (update_pdptrs) {
10803 		idx = srcu_read_lock(&vcpu->kvm->srcu);
10804 		if (is_pae_paging(vcpu)) {
10805 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10806 			*mmu_reset_needed = 1;
10807 		}
10808 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
10809 	}
10810 
10811 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10812 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10813 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10814 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10815 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10816 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10817 
10818 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10819 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10820 
10821 	update_cr8_intercept(vcpu);
10822 
10823 	/* Older userspace won't unhalt the vcpu on reset. */
10824 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10825 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10826 	    !is_protmode(vcpu))
10827 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10828 
10829 	return 0;
10830 }
10831 
10832 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10833 {
10834 	int pending_vec, max_bits;
10835 	int mmu_reset_needed = 0;
10836 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10837 
10838 	if (ret)
10839 		return ret;
10840 
10841 	if (mmu_reset_needed)
10842 		kvm_mmu_reset_context(vcpu);
10843 
10844 	max_bits = KVM_NR_INTERRUPTS;
10845 	pending_vec = find_first_bit(
10846 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
10847 
10848 	if (pending_vec < max_bits) {
10849 		kvm_queue_interrupt(vcpu, pending_vec, false);
10850 		pr_debug("Set back pending irq %d\n", pending_vec);
10851 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10852 	}
10853 	return 0;
10854 }
10855 
10856 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10857 {
10858 	int mmu_reset_needed = 0;
10859 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10860 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10861 		!(sregs2->efer & EFER_LMA);
10862 	int i, ret;
10863 
10864 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10865 		return -EINVAL;
10866 
10867 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10868 		return -EINVAL;
10869 
10870 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10871 				 &mmu_reset_needed, !valid_pdptrs);
10872 	if (ret)
10873 		return ret;
10874 
10875 	if (valid_pdptrs) {
10876 		for (i = 0; i < 4 ; i++)
10877 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10878 
10879 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10880 		mmu_reset_needed = 1;
10881 		vcpu->arch.pdptrs_from_userspace = true;
10882 	}
10883 	if (mmu_reset_needed)
10884 		kvm_mmu_reset_context(vcpu);
10885 	return 0;
10886 }
10887 
10888 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10889 				  struct kvm_sregs *sregs)
10890 {
10891 	int ret;
10892 
10893 	vcpu_load(vcpu);
10894 	ret = __set_sregs(vcpu, sregs);
10895 	vcpu_put(vcpu);
10896 	return ret;
10897 }
10898 
10899 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10900 {
10901 	bool inhibit = false;
10902 	struct kvm_vcpu *vcpu;
10903 	unsigned long i;
10904 
10905 	down_write(&kvm->arch.apicv_update_lock);
10906 
10907 	kvm_for_each_vcpu(i, vcpu, kvm) {
10908 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10909 			inhibit = true;
10910 			break;
10911 		}
10912 	}
10913 	__kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ);
10914 	up_write(&kvm->arch.apicv_update_lock);
10915 }
10916 
10917 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10918 					struct kvm_guest_debug *dbg)
10919 {
10920 	unsigned long rflags;
10921 	int i, r;
10922 
10923 	if (vcpu->arch.guest_state_protected)
10924 		return -EINVAL;
10925 
10926 	vcpu_load(vcpu);
10927 
10928 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10929 		r = -EBUSY;
10930 		if (vcpu->arch.exception.pending)
10931 			goto out;
10932 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10933 			kvm_queue_exception(vcpu, DB_VECTOR);
10934 		else
10935 			kvm_queue_exception(vcpu, BP_VECTOR);
10936 	}
10937 
10938 	/*
10939 	 * Read rflags as long as potentially injected trace flags are still
10940 	 * filtered out.
10941 	 */
10942 	rflags = kvm_get_rflags(vcpu);
10943 
10944 	vcpu->guest_debug = dbg->control;
10945 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10946 		vcpu->guest_debug = 0;
10947 
10948 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10949 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
10950 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10951 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10952 	} else {
10953 		for (i = 0; i < KVM_NR_DB_REGS; i++)
10954 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10955 	}
10956 	kvm_update_dr7(vcpu);
10957 
10958 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10959 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10960 
10961 	/*
10962 	 * Trigger an rflags update that will inject or remove the trace
10963 	 * flags.
10964 	 */
10965 	kvm_set_rflags(vcpu, rflags);
10966 
10967 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
10968 
10969 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
10970 
10971 	r = 0;
10972 
10973 out:
10974 	vcpu_put(vcpu);
10975 	return r;
10976 }
10977 
10978 /*
10979  * Translate a guest virtual address to a guest physical address.
10980  */
10981 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10982 				    struct kvm_translation *tr)
10983 {
10984 	unsigned long vaddr = tr->linear_address;
10985 	gpa_t gpa;
10986 	int idx;
10987 
10988 	vcpu_load(vcpu);
10989 
10990 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10991 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10992 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10993 	tr->physical_address = gpa;
10994 	tr->valid = gpa != UNMAPPED_GVA;
10995 	tr->writeable = 1;
10996 	tr->usermode = 0;
10997 
10998 	vcpu_put(vcpu);
10999 	return 0;
11000 }
11001 
11002 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11003 {
11004 	struct fxregs_state *fxsave;
11005 
11006 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11007 		return 0;
11008 
11009 	vcpu_load(vcpu);
11010 
11011 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11012 	memcpy(fpu->fpr, fxsave->st_space, 128);
11013 	fpu->fcw = fxsave->cwd;
11014 	fpu->fsw = fxsave->swd;
11015 	fpu->ftwx = fxsave->twd;
11016 	fpu->last_opcode = fxsave->fop;
11017 	fpu->last_ip = fxsave->rip;
11018 	fpu->last_dp = fxsave->rdp;
11019 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11020 
11021 	vcpu_put(vcpu);
11022 	return 0;
11023 }
11024 
11025 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11026 {
11027 	struct fxregs_state *fxsave;
11028 
11029 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11030 		return 0;
11031 
11032 	vcpu_load(vcpu);
11033 
11034 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11035 
11036 	memcpy(fxsave->st_space, fpu->fpr, 128);
11037 	fxsave->cwd = fpu->fcw;
11038 	fxsave->swd = fpu->fsw;
11039 	fxsave->twd = fpu->ftwx;
11040 	fxsave->fop = fpu->last_opcode;
11041 	fxsave->rip = fpu->last_ip;
11042 	fxsave->rdp = fpu->last_dp;
11043 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11044 
11045 	vcpu_put(vcpu);
11046 	return 0;
11047 }
11048 
11049 static void store_regs(struct kvm_vcpu *vcpu)
11050 {
11051 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11052 
11053 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11054 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11055 
11056 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11057 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11058 
11059 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11060 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11061 				vcpu, &vcpu->run->s.regs.events);
11062 }
11063 
11064 static int sync_regs(struct kvm_vcpu *vcpu)
11065 {
11066 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11067 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11068 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11069 	}
11070 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11071 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11072 			return -EINVAL;
11073 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11074 	}
11075 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11076 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11077 				vcpu, &vcpu->run->s.regs.events))
11078 			return -EINVAL;
11079 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11080 	}
11081 
11082 	return 0;
11083 }
11084 
11085 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11086 {
11087 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11088 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11089 			     "guest TSC will not be reliable\n");
11090 
11091 	return 0;
11092 }
11093 
11094 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11095 {
11096 	struct page *page;
11097 	int r;
11098 
11099 	vcpu->arch.last_vmentry_cpu = -1;
11100 	vcpu->arch.regs_avail = ~0;
11101 	vcpu->arch.regs_dirty = ~0;
11102 
11103 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11104 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11105 	else
11106 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11107 
11108 	r = kvm_mmu_create(vcpu);
11109 	if (r < 0)
11110 		return r;
11111 
11112 	if (irqchip_in_kernel(vcpu->kvm)) {
11113 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11114 		if (r < 0)
11115 			goto fail_mmu_destroy;
11116 		if (kvm_apicv_activated(vcpu->kvm))
11117 			vcpu->arch.apicv_active = true;
11118 	} else
11119 		static_branch_inc(&kvm_has_noapic_vcpu);
11120 
11121 	r = -ENOMEM;
11122 
11123 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11124 	if (!page)
11125 		goto fail_free_lapic;
11126 	vcpu->arch.pio_data = page_address(page);
11127 
11128 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11129 				       GFP_KERNEL_ACCOUNT);
11130 	if (!vcpu->arch.mce_banks)
11131 		goto fail_free_pio_data;
11132 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11133 
11134 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11135 				GFP_KERNEL_ACCOUNT))
11136 		goto fail_free_mce_banks;
11137 
11138 	if (!alloc_emulate_ctxt(vcpu))
11139 		goto free_wbinvd_dirty_mask;
11140 
11141 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11142 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11143 		goto free_emulate_ctxt;
11144 	}
11145 
11146 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11147 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11148 
11149 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11150 
11151 	kvm_async_pf_hash_reset(vcpu);
11152 	kvm_pmu_init(vcpu);
11153 
11154 	vcpu->arch.pending_external_vector = -1;
11155 	vcpu->arch.preempted_in_kernel = false;
11156 
11157 #if IS_ENABLED(CONFIG_HYPERV)
11158 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11159 #endif
11160 
11161 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11162 	if (r)
11163 		goto free_guest_fpu;
11164 
11165 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11166 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11167 	kvm_vcpu_mtrr_init(vcpu);
11168 	vcpu_load(vcpu);
11169 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
11170 	kvm_vcpu_reset(vcpu, false);
11171 	kvm_init_mmu(vcpu);
11172 	vcpu_put(vcpu);
11173 	return 0;
11174 
11175 free_guest_fpu:
11176 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11177 free_emulate_ctxt:
11178 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11179 free_wbinvd_dirty_mask:
11180 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11181 fail_free_mce_banks:
11182 	kfree(vcpu->arch.mce_banks);
11183 fail_free_pio_data:
11184 	free_page((unsigned long)vcpu->arch.pio_data);
11185 fail_free_lapic:
11186 	kvm_free_lapic(vcpu);
11187 fail_mmu_destroy:
11188 	kvm_mmu_destroy(vcpu);
11189 	return r;
11190 }
11191 
11192 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11193 {
11194 	struct kvm *kvm = vcpu->kvm;
11195 
11196 	if (mutex_lock_killable(&vcpu->mutex))
11197 		return;
11198 	vcpu_load(vcpu);
11199 	kvm_synchronize_tsc(vcpu, 0);
11200 	vcpu_put(vcpu);
11201 
11202 	/* poll control enabled by default */
11203 	vcpu->arch.msr_kvm_poll_control = 1;
11204 
11205 	mutex_unlock(&vcpu->mutex);
11206 
11207 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11208 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11209 						KVMCLOCK_SYNC_PERIOD);
11210 }
11211 
11212 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11213 {
11214 	int idx;
11215 
11216 	kvmclock_reset(vcpu);
11217 
11218 	static_call(kvm_x86_vcpu_free)(vcpu);
11219 
11220 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11221 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11222 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11223 
11224 	kvm_hv_vcpu_uninit(vcpu);
11225 	kvm_pmu_destroy(vcpu);
11226 	kfree(vcpu->arch.mce_banks);
11227 	kvm_free_lapic(vcpu);
11228 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11229 	kvm_mmu_destroy(vcpu);
11230 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11231 	free_page((unsigned long)vcpu->arch.pio_data);
11232 	kvfree(vcpu->arch.cpuid_entries);
11233 	if (!lapic_in_kernel(vcpu))
11234 		static_branch_dec(&kvm_has_noapic_vcpu);
11235 }
11236 
11237 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11238 {
11239 	struct kvm_cpuid_entry2 *cpuid_0x1;
11240 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11241 	unsigned long new_cr0;
11242 
11243 	/*
11244 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11245 	 * to handle side effects.  RESET emulation hits those flows and relies
11246 	 * on emulated/virtualized registers, including those that are loaded
11247 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11248 	 * to detect improper or missing initialization.
11249 	 */
11250 	WARN_ON_ONCE(!init_event &&
11251 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11252 
11253 	kvm_lapic_reset(vcpu, init_event);
11254 
11255 	vcpu->arch.hflags = 0;
11256 
11257 	vcpu->arch.smi_pending = 0;
11258 	vcpu->arch.smi_count = 0;
11259 	atomic_set(&vcpu->arch.nmi_queued, 0);
11260 	vcpu->arch.nmi_pending = 0;
11261 	vcpu->arch.nmi_injected = false;
11262 	kvm_clear_interrupt_queue(vcpu);
11263 	kvm_clear_exception_queue(vcpu);
11264 
11265 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11266 	kvm_update_dr0123(vcpu);
11267 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11268 	vcpu->arch.dr7 = DR7_FIXED_1;
11269 	kvm_update_dr7(vcpu);
11270 
11271 	vcpu->arch.cr2 = 0;
11272 
11273 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11274 	vcpu->arch.apf.msr_en_val = 0;
11275 	vcpu->arch.apf.msr_int_val = 0;
11276 	vcpu->arch.st.msr_val = 0;
11277 
11278 	kvmclock_reset(vcpu);
11279 
11280 	kvm_clear_async_pf_completion_queue(vcpu);
11281 	kvm_async_pf_hash_reset(vcpu);
11282 	vcpu->arch.apf.halted = false;
11283 
11284 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11285 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11286 
11287 		/*
11288 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11289 		 * called with loaded FPU and does not let userspace fix the state.
11290 		 */
11291 		if (init_event)
11292 			kvm_put_guest_fpu(vcpu);
11293 
11294 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11295 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11296 
11297 		if (init_event)
11298 			kvm_load_guest_fpu(vcpu);
11299 	}
11300 
11301 	if (!init_event) {
11302 		kvm_pmu_reset(vcpu);
11303 		vcpu->arch.smbase = 0x30000;
11304 
11305 		vcpu->arch.msr_misc_features_enables = 0;
11306 
11307 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11308 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11309 	}
11310 
11311 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11312 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11313 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11314 
11315 	/*
11316 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11317 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11318 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11319 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11320 	 * on RESET.  But, go through the motions in case that's ever remedied.
11321 	 */
11322 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11323 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11324 
11325 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11326 
11327 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11328 	kvm_rip_write(vcpu, 0xfff0);
11329 
11330 	vcpu->arch.cr3 = 0;
11331 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11332 
11333 	/*
11334 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11335 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11336 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11337 	 */
11338 	new_cr0 = X86_CR0_ET;
11339 	if (init_event)
11340 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11341 	else
11342 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11343 
11344 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11345 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11346 	static_call(kvm_x86_set_efer)(vcpu, 0);
11347 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11348 
11349 	/*
11350 	 * Reset the MMU context if paging was enabled prior to INIT (which is
11351 	 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
11352 	 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11353 	 * checked because it is unconditionally cleared on INIT and all other
11354 	 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11355 	 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11356 	 */
11357 	if (old_cr0 & X86_CR0_PG)
11358 		kvm_mmu_reset_context(vcpu);
11359 
11360 	/*
11361 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11362 	 * APM states the TLBs are untouched by INIT, but it also states that
11363 	 * the TLBs are flushed on "External initialization of the processor."
11364 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11365 	 * benefit in relying on the guest to flush the TLB immediately after
11366 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11367 	 * performance perspective.
11368 	 */
11369 	if (init_event)
11370 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11371 }
11372 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11373 
11374 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11375 {
11376 	struct kvm_segment cs;
11377 
11378 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11379 	cs.selector = vector << 8;
11380 	cs.base = vector << 12;
11381 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11382 	kvm_rip_write(vcpu, 0);
11383 }
11384 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11385 
11386 int kvm_arch_hardware_enable(void)
11387 {
11388 	struct kvm *kvm;
11389 	struct kvm_vcpu *vcpu;
11390 	unsigned long i;
11391 	int ret;
11392 	u64 local_tsc;
11393 	u64 max_tsc = 0;
11394 	bool stable, backwards_tsc = false;
11395 
11396 	kvm_user_return_msr_cpu_online();
11397 	ret = static_call(kvm_x86_hardware_enable)();
11398 	if (ret != 0)
11399 		return ret;
11400 
11401 	local_tsc = rdtsc();
11402 	stable = !kvm_check_tsc_unstable();
11403 	list_for_each_entry(kvm, &vm_list, vm_list) {
11404 		kvm_for_each_vcpu(i, vcpu, kvm) {
11405 			if (!stable && vcpu->cpu == smp_processor_id())
11406 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11407 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11408 				backwards_tsc = true;
11409 				if (vcpu->arch.last_host_tsc > max_tsc)
11410 					max_tsc = vcpu->arch.last_host_tsc;
11411 			}
11412 		}
11413 	}
11414 
11415 	/*
11416 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11417 	 * platforms that reset TSC during suspend or hibernate actions, but
11418 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11419 	 * detect that condition here, which happens early in CPU bringup,
11420 	 * before any KVM threads can be running.  Unfortunately, we can't
11421 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11422 	 * enough into CPU bringup that we know how much real time has actually
11423 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11424 	 * variables that haven't been updated yet.
11425 	 *
11426 	 * So we simply find the maximum observed TSC above, then record the
11427 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11428 	 * the adjustment will be applied.  Note that we accumulate
11429 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11430 	 * gets a chance to run again.  In the event that no KVM threads get a
11431 	 * chance to run, we will miss the entire elapsed period, as we'll have
11432 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11433 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11434 	 * uniform across all VCPUs (not to mention the scenario is extremely
11435 	 * unlikely). It is possible that a second hibernate recovery happens
11436 	 * much faster than a first, causing the observed TSC here to be
11437 	 * smaller; this would require additional padding adjustment, which is
11438 	 * why we set last_host_tsc to the local tsc observed here.
11439 	 *
11440 	 * N.B. - this code below runs only on platforms with reliable TSC,
11441 	 * as that is the only way backwards_tsc is set above.  Also note
11442 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11443 	 * have the same delta_cyc adjustment applied if backwards_tsc
11444 	 * is detected.  Note further, this adjustment is only done once,
11445 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11446 	 * called multiple times (one for each physical CPU bringup).
11447 	 *
11448 	 * Platforms with unreliable TSCs don't have to deal with this, they
11449 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11450 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11451 	 * guarantee that they stay in perfect synchronization.
11452 	 */
11453 	if (backwards_tsc) {
11454 		u64 delta_cyc = max_tsc - local_tsc;
11455 		list_for_each_entry(kvm, &vm_list, vm_list) {
11456 			kvm->arch.backwards_tsc_observed = true;
11457 			kvm_for_each_vcpu(i, vcpu, kvm) {
11458 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11459 				vcpu->arch.last_host_tsc = local_tsc;
11460 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11461 			}
11462 
11463 			/*
11464 			 * We have to disable TSC offset matching.. if you were
11465 			 * booting a VM while issuing an S4 host suspend....
11466 			 * you may have some problem.  Solving this issue is
11467 			 * left as an exercise to the reader.
11468 			 */
11469 			kvm->arch.last_tsc_nsec = 0;
11470 			kvm->arch.last_tsc_write = 0;
11471 		}
11472 
11473 	}
11474 	return 0;
11475 }
11476 
11477 void kvm_arch_hardware_disable(void)
11478 {
11479 	static_call(kvm_x86_hardware_disable)();
11480 	drop_user_return_notifiers();
11481 }
11482 
11483 int kvm_arch_hardware_setup(void *opaque)
11484 {
11485 	struct kvm_x86_init_ops *ops = opaque;
11486 	int r;
11487 
11488 	rdmsrl_safe(MSR_EFER, &host_efer);
11489 
11490 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11491 		rdmsrl(MSR_IA32_XSS, host_xss);
11492 
11493 	r = ops->hardware_setup();
11494 	if (r != 0)
11495 		return r;
11496 
11497 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11498 	kvm_ops_static_call_update();
11499 
11500 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11501 
11502 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11503 		supported_xss = 0;
11504 
11505 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11506 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11507 #undef __kvm_cpu_cap_has
11508 
11509 	if (kvm_has_tsc_control) {
11510 		/*
11511 		 * Make sure the user can only configure tsc_khz values that
11512 		 * fit into a signed integer.
11513 		 * A min value is not calculated because it will always
11514 		 * be 1 on all machines.
11515 		 */
11516 		u64 max = min(0x7fffffffULL,
11517 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11518 		kvm_max_guest_tsc_khz = max;
11519 
11520 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11521 	}
11522 
11523 	kvm_init_msr_list();
11524 	return 0;
11525 }
11526 
11527 void kvm_arch_hardware_unsetup(void)
11528 {
11529 	kvm_unregister_perf_callbacks();
11530 
11531 	static_call(kvm_x86_hardware_unsetup)();
11532 }
11533 
11534 int kvm_arch_check_processor_compat(void *opaque)
11535 {
11536 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11537 	struct kvm_x86_init_ops *ops = opaque;
11538 
11539 	WARN_ON(!irqs_disabled());
11540 
11541 	if (__cr4_reserved_bits(cpu_has, c) !=
11542 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11543 		return -EIO;
11544 
11545 	return ops->check_processor_compatibility();
11546 }
11547 
11548 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11549 {
11550 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11551 }
11552 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11553 
11554 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11555 {
11556 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11557 }
11558 
11559 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11560 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11561 
11562 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11563 {
11564 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11565 
11566 	vcpu->arch.l1tf_flush_l1d = true;
11567 	if (pmu->version && unlikely(pmu->event_count)) {
11568 		pmu->need_cleanup = true;
11569 		kvm_make_request(KVM_REQ_PMU, vcpu);
11570 	}
11571 	static_call(kvm_x86_sched_in)(vcpu, cpu);
11572 }
11573 
11574 void kvm_arch_free_vm(struct kvm *kvm)
11575 {
11576 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
11577 	__kvm_arch_free_vm(kvm);
11578 }
11579 
11580 
11581 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11582 {
11583 	int ret;
11584 	unsigned long flags;
11585 
11586 	if (type)
11587 		return -EINVAL;
11588 
11589 	ret = kvm_page_track_init(kvm);
11590 	if (ret)
11591 		return ret;
11592 
11593 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11594 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11595 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11596 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11597 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11598 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11599 
11600 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11601 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11602 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11603 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11604 		&kvm->arch.irq_sources_bitmap);
11605 
11606 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11607 	mutex_init(&kvm->arch.apic_map_lock);
11608 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11609 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11610 
11611 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11612 	pvclock_update_vm_gtod_copy(kvm);
11613 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11614 
11615 	kvm->arch.guest_can_read_msr_platform_info = true;
11616 
11617 #if IS_ENABLED(CONFIG_HYPERV)
11618 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11619 	kvm->arch.hv_root_tdp = INVALID_PAGE;
11620 #endif
11621 
11622 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11623 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11624 
11625 	kvm_apicv_init(kvm);
11626 	kvm_hv_init_vm(kvm);
11627 	kvm_mmu_init_vm(kvm);
11628 	kvm_xen_init_vm(kvm);
11629 
11630 	return static_call(kvm_x86_vm_init)(kvm);
11631 }
11632 
11633 int kvm_arch_post_init_vm(struct kvm *kvm)
11634 {
11635 	return kvm_mmu_post_init_vm(kvm);
11636 }
11637 
11638 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11639 {
11640 	vcpu_load(vcpu);
11641 	kvm_mmu_unload(vcpu);
11642 	vcpu_put(vcpu);
11643 }
11644 
11645 static void kvm_free_vcpus(struct kvm *kvm)
11646 {
11647 	unsigned long i;
11648 	struct kvm_vcpu *vcpu;
11649 
11650 	/*
11651 	 * Unpin any mmu pages first.
11652 	 */
11653 	kvm_for_each_vcpu(i, vcpu, kvm) {
11654 		kvm_clear_async_pf_completion_queue(vcpu);
11655 		kvm_unload_vcpu_mmu(vcpu);
11656 	}
11657 
11658 	kvm_destroy_vcpus(kvm);
11659 }
11660 
11661 void kvm_arch_sync_events(struct kvm *kvm)
11662 {
11663 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11664 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11665 	kvm_free_pit(kvm);
11666 }
11667 
11668 /**
11669  * __x86_set_memory_region: Setup KVM internal memory slot
11670  *
11671  * @kvm: the kvm pointer to the VM.
11672  * @id: the slot ID to setup.
11673  * @gpa: the GPA to install the slot (unused when @size == 0).
11674  * @size: the size of the slot. Set to zero to uninstall a slot.
11675  *
11676  * This function helps to setup a KVM internal memory slot.  Specify
11677  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11678  * slot.  The return code can be one of the following:
11679  *
11680  *   HVA:           on success (uninstall will return a bogus HVA)
11681  *   -errno:        on error
11682  *
11683  * The caller should always use IS_ERR() to check the return value
11684  * before use.  Note, the KVM internal memory slots are guaranteed to
11685  * remain valid and unchanged until the VM is destroyed, i.e., the
11686  * GPA->HVA translation will not change.  However, the HVA is a user
11687  * address, i.e. its accessibility is not guaranteed, and must be
11688  * accessed via __copy_{to,from}_user().
11689  */
11690 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11691 				      u32 size)
11692 {
11693 	int i, r;
11694 	unsigned long hva, old_npages;
11695 	struct kvm_memslots *slots = kvm_memslots(kvm);
11696 	struct kvm_memory_slot *slot;
11697 
11698 	/* Called with kvm->slots_lock held.  */
11699 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11700 		return ERR_PTR_USR(-EINVAL);
11701 
11702 	slot = id_to_memslot(slots, id);
11703 	if (size) {
11704 		if (slot && slot->npages)
11705 			return ERR_PTR_USR(-EEXIST);
11706 
11707 		/*
11708 		 * MAP_SHARED to prevent internal slot pages from being moved
11709 		 * by fork()/COW.
11710 		 */
11711 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11712 			      MAP_SHARED | MAP_ANONYMOUS, 0);
11713 		if (IS_ERR((void *)hva))
11714 			return (void __user *)hva;
11715 	} else {
11716 		if (!slot || !slot->npages)
11717 			return NULL;
11718 
11719 		old_npages = slot->npages;
11720 		hva = slot->userspace_addr;
11721 	}
11722 
11723 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11724 		struct kvm_userspace_memory_region m;
11725 
11726 		m.slot = id | (i << 16);
11727 		m.flags = 0;
11728 		m.guest_phys_addr = gpa;
11729 		m.userspace_addr = hva;
11730 		m.memory_size = size;
11731 		r = __kvm_set_memory_region(kvm, &m);
11732 		if (r < 0)
11733 			return ERR_PTR_USR(r);
11734 	}
11735 
11736 	if (!size)
11737 		vm_munmap(hva, old_npages * PAGE_SIZE);
11738 
11739 	return (void __user *)hva;
11740 }
11741 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11742 
11743 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11744 {
11745 	kvm_mmu_pre_destroy_vm(kvm);
11746 }
11747 
11748 void kvm_arch_destroy_vm(struct kvm *kvm)
11749 {
11750 	if (current->mm == kvm->mm) {
11751 		/*
11752 		 * Free memory regions allocated on behalf of userspace,
11753 		 * unless the the memory map has changed due to process exit
11754 		 * or fd copying.
11755 		 */
11756 		mutex_lock(&kvm->slots_lock);
11757 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11758 					0, 0);
11759 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11760 					0, 0);
11761 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11762 		mutex_unlock(&kvm->slots_lock);
11763 	}
11764 	static_call_cond(kvm_x86_vm_destroy)(kvm);
11765 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11766 	kvm_pic_destroy(kvm);
11767 	kvm_ioapic_destroy(kvm);
11768 	kvm_free_vcpus(kvm);
11769 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11770 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11771 	kvm_mmu_uninit_vm(kvm);
11772 	kvm_page_track_cleanup(kvm);
11773 	kvm_xen_destroy_vm(kvm);
11774 	kvm_hv_destroy_vm(kvm);
11775 }
11776 
11777 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11778 {
11779 	int i;
11780 
11781 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11782 		kvfree(slot->arch.rmap[i]);
11783 		slot->arch.rmap[i] = NULL;
11784 	}
11785 }
11786 
11787 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11788 {
11789 	int i;
11790 
11791 	memslot_rmap_free(slot);
11792 
11793 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11794 		kvfree(slot->arch.lpage_info[i - 1]);
11795 		slot->arch.lpage_info[i - 1] = NULL;
11796 	}
11797 
11798 	kvm_page_track_free_memslot(slot);
11799 }
11800 
11801 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11802 {
11803 	const int sz = sizeof(*slot->arch.rmap[0]);
11804 	int i;
11805 
11806 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11807 		int level = i + 1;
11808 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11809 
11810 		if (slot->arch.rmap[i])
11811 			continue;
11812 
11813 		slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11814 		if (!slot->arch.rmap[i]) {
11815 			memslot_rmap_free(slot);
11816 			return -ENOMEM;
11817 		}
11818 	}
11819 
11820 	return 0;
11821 }
11822 
11823 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11824 				      struct kvm_memory_slot *slot)
11825 {
11826 	unsigned long npages = slot->npages;
11827 	int i, r;
11828 
11829 	/*
11830 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11831 	 * old arrays will be freed by __kvm_set_memory_region() if installing
11832 	 * the new memslot is successful.
11833 	 */
11834 	memset(&slot->arch, 0, sizeof(slot->arch));
11835 
11836 	if (kvm_memslots_have_rmaps(kvm)) {
11837 		r = memslot_rmap_alloc(slot, npages);
11838 		if (r)
11839 			return r;
11840 	}
11841 
11842 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11843 		struct kvm_lpage_info *linfo;
11844 		unsigned long ugfn;
11845 		int lpages;
11846 		int level = i + 1;
11847 
11848 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11849 
11850 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11851 		if (!linfo)
11852 			goto out_free;
11853 
11854 		slot->arch.lpage_info[i - 1] = linfo;
11855 
11856 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11857 			linfo[0].disallow_lpage = 1;
11858 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11859 			linfo[lpages - 1].disallow_lpage = 1;
11860 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
11861 		/*
11862 		 * If the gfn and userspace address are not aligned wrt each
11863 		 * other, disable large page support for this slot.
11864 		 */
11865 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11866 			unsigned long j;
11867 
11868 			for (j = 0; j < lpages; ++j)
11869 				linfo[j].disallow_lpage = 1;
11870 		}
11871 	}
11872 
11873 	if (kvm_page_track_create_memslot(kvm, slot, npages))
11874 		goto out_free;
11875 
11876 	return 0;
11877 
11878 out_free:
11879 	memslot_rmap_free(slot);
11880 
11881 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11882 		kvfree(slot->arch.lpage_info[i - 1]);
11883 		slot->arch.lpage_info[i - 1] = NULL;
11884 	}
11885 	return -ENOMEM;
11886 }
11887 
11888 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11889 {
11890 	struct kvm_vcpu *vcpu;
11891 	unsigned long i;
11892 
11893 	/*
11894 	 * memslots->generation has been incremented.
11895 	 * mmio generation may have reached its maximum value.
11896 	 */
11897 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11898 
11899 	/* Force re-initialization of steal_time cache */
11900 	kvm_for_each_vcpu(i, vcpu, kvm)
11901 		kvm_vcpu_kick(vcpu);
11902 }
11903 
11904 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11905 				   const struct kvm_memory_slot *old,
11906 				   struct kvm_memory_slot *new,
11907 				   enum kvm_mr_change change)
11908 {
11909 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11910 		return kvm_alloc_memslot_metadata(kvm, new);
11911 
11912 	if (change == KVM_MR_FLAGS_ONLY)
11913 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
11914 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
11915 		return -EIO;
11916 
11917 	return 0;
11918 }
11919 
11920 
11921 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11922 {
11923 	struct kvm_arch *ka = &kvm->arch;
11924 
11925 	if (!kvm_x86_ops.cpu_dirty_log_size)
11926 		return;
11927 
11928 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11929 	    (!enable && --ka->cpu_dirty_logging_count == 0))
11930 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11931 
11932 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11933 }
11934 
11935 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11936 				     struct kvm_memory_slot *old,
11937 				     const struct kvm_memory_slot *new,
11938 				     enum kvm_mr_change change)
11939 {
11940 	u32 old_flags = old ? old->flags : 0;
11941 	u32 new_flags = new ? new->flags : 0;
11942 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
11943 
11944 	/*
11945 	 * Update CPU dirty logging if dirty logging is being toggled.  This
11946 	 * applies to all operations.
11947 	 */
11948 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
11949 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11950 
11951 	/*
11952 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
11953 	 * made writable) or CREATE/MOVE/DELETE of a slot.
11954 	 *
11955 	 * For a memslot with dirty logging disabled:
11956 	 * CREATE:      No dirty mappings will already exist.
11957 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11958 	 *		kvm_arch_flush_shadow_memslot()
11959 	 *
11960 	 * For a memslot with dirty logging enabled:
11961 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
11962 	 *		and no dirty bits to clear.
11963 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11964 	 *		kvm_arch_flush_shadow_memslot().
11965 	 */
11966 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
11967 		return;
11968 
11969 	/*
11970 	 * READONLY and non-flags changes were filtered out above, and the only
11971 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11972 	 * logging isn't being toggled on or off.
11973 	 */
11974 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11975 		return;
11976 
11977 	if (!log_dirty_pages) {
11978 		/*
11979 		 * Dirty logging tracks sptes in 4k granularity, meaning that
11980 		 * large sptes have to be split.  If live migration succeeds,
11981 		 * the guest in the source machine will be destroyed and large
11982 		 * sptes will be created in the destination.  However, if the
11983 		 * guest continues to run in the source machine (for example if
11984 		 * live migration fails), small sptes will remain around and
11985 		 * cause bad performance.
11986 		 *
11987 		 * Scan sptes if dirty logging has been stopped, dropping those
11988 		 * which can be collapsed into a single large-page spte.  Later
11989 		 * page faults will create the large-page sptes.
11990 		 */
11991 		kvm_mmu_zap_collapsible_sptes(kvm, new);
11992 	} else {
11993 		/*
11994 		 * Initially-all-set does not require write protecting any page,
11995 		 * because they're all assumed to be dirty.
11996 		 */
11997 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11998 			return;
11999 
12000 		if (kvm_x86_ops.cpu_dirty_log_size) {
12001 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12002 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12003 		} else {
12004 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12005 		}
12006 	}
12007 }
12008 
12009 void kvm_arch_commit_memory_region(struct kvm *kvm,
12010 				struct kvm_memory_slot *old,
12011 				const struct kvm_memory_slot *new,
12012 				enum kvm_mr_change change)
12013 {
12014 	if (!kvm->arch.n_requested_mmu_pages &&
12015 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12016 		unsigned long nr_mmu_pages;
12017 
12018 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12019 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12020 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12021 	}
12022 
12023 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12024 
12025 	/* Free the arrays associated with the old memslot. */
12026 	if (change == KVM_MR_MOVE)
12027 		kvm_arch_free_memslot(kvm, old);
12028 }
12029 
12030 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12031 {
12032 	kvm_mmu_zap_all(kvm);
12033 }
12034 
12035 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12036 				   struct kvm_memory_slot *slot)
12037 {
12038 	kvm_page_track_flush_slot(kvm, slot);
12039 }
12040 
12041 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12042 {
12043 	return (is_guest_mode(vcpu) &&
12044 			kvm_x86_ops.guest_apic_has_interrupt &&
12045 			static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12046 }
12047 
12048 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12049 {
12050 	if (!list_empty_careful(&vcpu->async_pf.done))
12051 		return true;
12052 
12053 	if (kvm_apic_has_events(vcpu))
12054 		return true;
12055 
12056 	if (vcpu->arch.pv.pv_unhalted)
12057 		return true;
12058 
12059 	if (vcpu->arch.exception.pending)
12060 		return true;
12061 
12062 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12063 	    (vcpu->arch.nmi_pending &&
12064 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12065 		return true;
12066 
12067 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12068 	    (vcpu->arch.smi_pending &&
12069 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12070 		return true;
12071 
12072 	if (kvm_arch_interrupt_allowed(vcpu) &&
12073 	    (kvm_cpu_has_interrupt(vcpu) ||
12074 	    kvm_guest_apic_has_interrupt(vcpu)))
12075 		return true;
12076 
12077 	if (kvm_hv_has_stimer_pending(vcpu))
12078 		return true;
12079 
12080 	if (is_guest_mode(vcpu) &&
12081 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
12082 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12083 		return true;
12084 
12085 	return false;
12086 }
12087 
12088 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12089 {
12090 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12091 }
12092 
12093 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12094 {
12095 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12096 		return true;
12097 
12098 	return false;
12099 }
12100 
12101 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12102 {
12103 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12104 		return true;
12105 
12106 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12107 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12108 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12109 		return true;
12110 
12111 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12112 }
12113 
12114 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12115 {
12116 	if (vcpu->arch.guest_state_protected)
12117 		return true;
12118 
12119 	return vcpu->arch.preempted_in_kernel;
12120 }
12121 
12122 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12123 {
12124 	return kvm_rip_read(vcpu);
12125 }
12126 
12127 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12128 {
12129 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12130 }
12131 
12132 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12133 {
12134 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12135 }
12136 
12137 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12138 {
12139 	/* Can't read the RIP when guest state is protected, just return 0 */
12140 	if (vcpu->arch.guest_state_protected)
12141 		return 0;
12142 
12143 	if (is_64_bit_mode(vcpu))
12144 		return kvm_rip_read(vcpu);
12145 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12146 		     kvm_rip_read(vcpu));
12147 }
12148 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12149 
12150 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12151 {
12152 	return kvm_get_linear_rip(vcpu) == linear_rip;
12153 }
12154 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12155 
12156 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12157 {
12158 	unsigned long rflags;
12159 
12160 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12161 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12162 		rflags &= ~X86_EFLAGS_TF;
12163 	return rflags;
12164 }
12165 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12166 
12167 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12168 {
12169 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12170 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12171 		rflags |= X86_EFLAGS_TF;
12172 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12173 }
12174 
12175 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12176 {
12177 	__kvm_set_rflags(vcpu, rflags);
12178 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12179 }
12180 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12181 
12182 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12183 {
12184 	int r;
12185 
12186 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12187 	      work->wakeup_all)
12188 		return;
12189 
12190 	r = kvm_mmu_reload(vcpu);
12191 	if (unlikely(r))
12192 		return;
12193 
12194 	if (!vcpu->arch.mmu->direct_map &&
12195 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12196 		return;
12197 
12198 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12199 }
12200 
12201 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12202 {
12203 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12204 
12205 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12206 }
12207 
12208 static inline u32 kvm_async_pf_next_probe(u32 key)
12209 {
12210 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12211 }
12212 
12213 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12214 {
12215 	u32 key = kvm_async_pf_hash_fn(gfn);
12216 
12217 	while (vcpu->arch.apf.gfns[key] != ~0)
12218 		key = kvm_async_pf_next_probe(key);
12219 
12220 	vcpu->arch.apf.gfns[key] = gfn;
12221 }
12222 
12223 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12224 {
12225 	int i;
12226 	u32 key = kvm_async_pf_hash_fn(gfn);
12227 
12228 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12229 		     (vcpu->arch.apf.gfns[key] != gfn &&
12230 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12231 		key = kvm_async_pf_next_probe(key);
12232 
12233 	return key;
12234 }
12235 
12236 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12237 {
12238 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12239 }
12240 
12241 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12242 {
12243 	u32 i, j, k;
12244 
12245 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12246 
12247 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12248 		return;
12249 
12250 	while (true) {
12251 		vcpu->arch.apf.gfns[i] = ~0;
12252 		do {
12253 			j = kvm_async_pf_next_probe(j);
12254 			if (vcpu->arch.apf.gfns[j] == ~0)
12255 				return;
12256 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12257 			/*
12258 			 * k lies cyclically in ]i,j]
12259 			 * |    i.k.j |
12260 			 * |....j i.k.| or  |.k..j i...|
12261 			 */
12262 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12263 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12264 		i = j;
12265 	}
12266 }
12267 
12268 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12269 {
12270 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12271 
12272 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12273 				      sizeof(reason));
12274 }
12275 
12276 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12277 {
12278 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12279 
12280 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12281 					     &token, offset, sizeof(token));
12282 }
12283 
12284 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12285 {
12286 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12287 	u32 val;
12288 
12289 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12290 					 &val, offset, sizeof(val)))
12291 		return false;
12292 
12293 	return !val;
12294 }
12295 
12296 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12297 {
12298 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12299 		return false;
12300 
12301 	if (!kvm_pv_async_pf_enabled(vcpu) ||
12302 	    (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12303 		return false;
12304 
12305 	return true;
12306 }
12307 
12308 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12309 {
12310 	if (unlikely(!lapic_in_kernel(vcpu) ||
12311 		     kvm_event_needs_reinjection(vcpu) ||
12312 		     vcpu->arch.exception.pending))
12313 		return false;
12314 
12315 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12316 		return false;
12317 
12318 	/*
12319 	 * If interrupts are off we cannot even use an artificial
12320 	 * halt state.
12321 	 */
12322 	return kvm_arch_interrupt_allowed(vcpu);
12323 }
12324 
12325 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12326 				     struct kvm_async_pf *work)
12327 {
12328 	struct x86_exception fault;
12329 
12330 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12331 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12332 
12333 	if (kvm_can_deliver_async_pf(vcpu) &&
12334 	    !apf_put_user_notpresent(vcpu)) {
12335 		fault.vector = PF_VECTOR;
12336 		fault.error_code_valid = true;
12337 		fault.error_code = 0;
12338 		fault.nested_page_fault = false;
12339 		fault.address = work->arch.token;
12340 		fault.async_page_fault = true;
12341 		kvm_inject_page_fault(vcpu, &fault);
12342 		return true;
12343 	} else {
12344 		/*
12345 		 * It is not possible to deliver a paravirtualized asynchronous
12346 		 * page fault, but putting the guest in an artificial halt state
12347 		 * can be beneficial nevertheless: if an interrupt arrives, we
12348 		 * can deliver it timely and perhaps the guest will schedule
12349 		 * another process.  When the instruction that triggered a page
12350 		 * fault is retried, hopefully the page will be ready in the host.
12351 		 */
12352 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12353 		return false;
12354 	}
12355 }
12356 
12357 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12358 				 struct kvm_async_pf *work)
12359 {
12360 	struct kvm_lapic_irq irq = {
12361 		.delivery_mode = APIC_DM_FIXED,
12362 		.vector = vcpu->arch.apf.vec
12363 	};
12364 
12365 	if (work->wakeup_all)
12366 		work->arch.token = ~0; /* broadcast wakeup */
12367 	else
12368 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12369 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12370 
12371 	if ((work->wakeup_all || work->notpresent_injected) &&
12372 	    kvm_pv_async_pf_enabled(vcpu) &&
12373 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12374 		vcpu->arch.apf.pageready_pending = true;
12375 		kvm_apic_set_irq(vcpu, &irq, NULL);
12376 	}
12377 
12378 	vcpu->arch.apf.halted = false;
12379 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12380 }
12381 
12382 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12383 {
12384 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12385 	if (!vcpu->arch.apf.pageready_pending)
12386 		kvm_vcpu_kick(vcpu);
12387 }
12388 
12389 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12390 {
12391 	if (!kvm_pv_async_pf_enabled(vcpu))
12392 		return true;
12393 	else
12394 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12395 }
12396 
12397 void kvm_arch_start_assignment(struct kvm *kvm)
12398 {
12399 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12400 		static_call_cond(kvm_x86_start_assignment)(kvm);
12401 }
12402 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12403 
12404 void kvm_arch_end_assignment(struct kvm *kvm)
12405 {
12406 	atomic_dec(&kvm->arch.assigned_device_count);
12407 }
12408 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12409 
12410 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12411 {
12412 	return atomic_read(&kvm->arch.assigned_device_count);
12413 }
12414 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12415 
12416 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12417 {
12418 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12419 }
12420 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12421 
12422 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12423 {
12424 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12425 }
12426 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12427 
12428 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12429 {
12430 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12431 }
12432 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12433 
12434 bool kvm_arch_has_irq_bypass(void)
12435 {
12436 	return true;
12437 }
12438 
12439 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12440 				      struct irq_bypass_producer *prod)
12441 {
12442 	struct kvm_kernel_irqfd *irqfd =
12443 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12444 	int ret;
12445 
12446 	irqfd->producer = prod;
12447 	kvm_arch_start_assignment(irqfd->kvm);
12448 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12449 					 prod->irq, irqfd->gsi, 1);
12450 
12451 	if (ret)
12452 		kvm_arch_end_assignment(irqfd->kvm);
12453 
12454 	return ret;
12455 }
12456 
12457 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12458 				      struct irq_bypass_producer *prod)
12459 {
12460 	int ret;
12461 	struct kvm_kernel_irqfd *irqfd =
12462 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12463 
12464 	WARN_ON(irqfd->producer != prod);
12465 	irqfd->producer = NULL;
12466 
12467 	/*
12468 	 * When producer of consumer is unregistered, we change back to
12469 	 * remapped mode, so we can re-use the current implementation
12470 	 * when the irq is masked/disabled or the consumer side (KVM
12471 	 * int this case doesn't want to receive the interrupts.
12472 	*/
12473 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12474 	if (ret)
12475 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12476 		       " fails: %d\n", irqfd->consumer.token, ret);
12477 
12478 	kvm_arch_end_assignment(irqfd->kvm);
12479 }
12480 
12481 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12482 				   uint32_t guest_irq, bool set)
12483 {
12484 	return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12485 }
12486 
12487 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12488 				  struct kvm_kernel_irq_routing_entry *new)
12489 {
12490 	if (new->type != KVM_IRQ_ROUTING_MSI)
12491 		return true;
12492 
12493 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12494 }
12495 
12496 bool kvm_vector_hashing_enabled(void)
12497 {
12498 	return vector_hashing;
12499 }
12500 
12501 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12502 {
12503 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12504 }
12505 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12506 
12507 
12508 int kvm_spec_ctrl_test_value(u64 value)
12509 {
12510 	/*
12511 	 * test that setting IA32_SPEC_CTRL to given value
12512 	 * is allowed by the host processor
12513 	 */
12514 
12515 	u64 saved_value;
12516 	unsigned long flags;
12517 	int ret = 0;
12518 
12519 	local_irq_save(flags);
12520 
12521 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12522 		ret = 1;
12523 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12524 		ret = 1;
12525 	else
12526 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12527 
12528 	local_irq_restore(flags);
12529 
12530 	return ret;
12531 }
12532 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12533 
12534 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12535 {
12536 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12537 	struct x86_exception fault;
12538 	u32 access = error_code &
12539 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12540 
12541 	if (!(error_code & PFERR_PRESENT_MASK) ||
12542 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12543 		/*
12544 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12545 		 * tables probably do not match the TLB.  Just proceed
12546 		 * with the error code that the processor gave.
12547 		 */
12548 		fault.vector = PF_VECTOR;
12549 		fault.error_code_valid = true;
12550 		fault.error_code = error_code;
12551 		fault.nested_page_fault = false;
12552 		fault.address = gva;
12553 	}
12554 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12555 }
12556 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12557 
12558 /*
12559  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12560  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12561  * indicates whether exit to userspace is needed.
12562  */
12563 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12564 			      struct x86_exception *e)
12565 {
12566 	if (r == X86EMUL_PROPAGATE_FAULT) {
12567 		kvm_inject_emulated_page_fault(vcpu, e);
12568 		return 1;
12569 	}
12570 
12571 	/*
12572 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12573 	 * while handling a VMX instruction KVM could've handled the request
12574 	 * correctly by exiting to userspace and performing I/O but there
12575 	 * doesn't seem to be a real use-case behind such requests, just return
12576 	 * KVM_EXIT_INTERNAL_ERROR for now.
12577 	 */
12578 	kvm_prepare_emulation_failure_exit(vcpu);
12579 
12580 	return 0;
12581 }
12582 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12583 
12584 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12585 {
12586 	bool pcid_enabled;
12587 	struct x86_exception e;
12588 	struct {
12589 		u64 pcid;
12590 		u64 gla;
12591 	} operand;
12592 	int r;
12593 
12594 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12595 	if (r != X86EMUL_CONTINUE)
12596 		return kvm_handle_memory_failure(vcpu, r, &e);
12597 
12598 	if (operand.pcid >> 12 != 0) {
12599 		kvm_inject_gp(vcpu, 0);
12600 		return 1;
12601 	}
12602 
12603 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12604 
12605 	switch (type) {
12606 	case INVPCID_TYPE_INDIV_ADDR:
12607 		if ((!pcid_enabled && (operand.pcid != 0)) ||
12608 		    is_noncanonical_address(operand.gla, vcpu)) {
12609 			kvm_inject_gp(vcpu, 0);
12610 			return 1;
12611 		}
12612 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12613 		return kvm_skip_emulated_instruction(vcpu);
12614 
12615 	case INVPCID_TYPE_SINGLE_CTXT:
12616 		if (!pcid_enabled && (operand.pcid != 0)) {
12617 			kvm_inject_gp(vcpu, 0);
12618 			return 1;
12619 		}
12620 
12621 		kvm_invalidate_pcid(vcpu, operand.pcid);
12622 		return kvm_skip_emulated_instruction(vcpu);
12623 
12624 	case INVPCID_TYPE_ALL_NON_GLOBAL:
12625 		/*
12626 		 * Currently, KVM doesn't mark global entries in the shadow
12627 		 * page tables, so a non-global flush just degenerates to a
12628 		 * global flush. If needed, we could optimize this later by
12629 		 * keeping track of global entries in shadow page tables.
12630 		 */
12631 
12632 		fallthrough;
12633 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
12634 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12635 		return kvm_skip_emulated_instruction(vcpu);
12636 
12637 	default:
12638 		kvm_inject_gp(vcpu, 0);
12639 		return 1;
12640 	}
12641 }
12642 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12643 
12644 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12645 {
12646 	struct kvm_run *run = vcpu->run;
12647 	struct kvm_mmio_fragment *frag;
12648 	unsigned int len;
12649 
12650 	BUG_ON(!vcpu->mmio_needed);
12651 
12652 	/* Complete previous fragment */
12653 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12654 	len = min(8u, frag->len);
12655 	if (!vcpu->mmio_is_write)
12656 		memcpy(frag->data, run->mmio.data, len);
12657 
12658 	if (frag->len <= 8) {
12659 		/* Switch to the next fragment. */
12660 		frag++;
12661 		vcpu->mmio_cur_fragment++;
12662 	} else {
12663 		/* Go forward to the next mmio piece. */
12664 		frag->data += len;
12665 		frag->gpa += len;
12666 		frag->len -= len;
12667 	}
12668 
12669 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12670 		vcpu->mmio_needed = 0;
12671 
12672 		// VMG change, at this point, we're always done
12673 		// RIP has already been advanced
12674 		return 1;
12675 	}
12676 
12677 	// More MMIO is needed
12678 	run->mmio.phys_addr = frag->gpa;
12679 	run->mmio.len = min(8u, frag->len);
12680 	run->mmio.is_write = vcpu->mmio_is_write;
12681 	if (run->mmio.is_write)
12682 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12683 	run->exit_reason = KVM_EXIT_MMIO;
12684 
12685 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12686 
12687 	return 0;
12688 }
12689 
12690 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12691 			  void *data)
12692 {
12693 	int handled;
12694 	struct kvm_mmio_fragment *frag;
12695 
12696 	if (!data)
12697 		return -EINVAL;
12698 
12699 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12700 	if (handled == bytes)
12701 		return 1;
12702 
12703 	bytes -= handled;
12704 	gpa += handled;
12705 	data += handled;
12706 
12707 	/*TODO: Check if need to increment number of frags */
12708 	frag = vcpu->mmio_fragments;
12709 	vcpu->mmio_nr_fragments = 1;
12710 	frag->len = bytes;
12711 	frag->gpa = gpa;
12712 	frag->data = data;
12713 
12714 	vcpu->mmio_needed = 1;
12715 	vcpu->mmio_cur_fragment = 0;
12716 
12717 	vcpu->run->mmio.phys_addr = gpa;
12718 	vcpu->run->mmio.len = min(8u, frag->len);
12719 	vcpu->run->mmio.is_write = 1;
12720 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12721 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12722 
12723 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12724 
12725 	return 0;
12726 }
12727 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12728 
12729 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12730 			 void *data)
12731 {
12732 	int handled;
12733 	struct kvm_mmio_fragment *frag;
12734 
12735 	if (!data)
12736 		return -EINVAL;
12737 
12738 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12739 	if (handled == bytes)
12740 		return 1;
12741 
12742 	bytes -= handled;
12743 	gpa += handled;
12744 	data += handled;
12745 
12746 	/*TODO: Check if need to increment number of frags */
12747 	frag = vcpu->mmio_fragments;
12748 	vcpu->mmio_nr_fragments = 1;
12749 	frag->len = bytes;
12750 	frag->gpa = gpa;
12751 	frag->data = data;
12752 
12753 	vcpu->mmio_needed = 1;
12754 	vcpu->mmio_cur_fragment = 0;
12755 
12756 	vcpu->run->mmio.phys_addr = gpa;
12757 	vcpu->run->mmio.len = min(8u, frag->len);
12758 	vcpu->run->mmio.is_write = 0;
12759 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12760 
12761 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12762 
12763 	return 0;
12764 }
12765 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12766 
12767 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12768 			   unsigned int port);
12769 
12770 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12771 {
12772 	int size = vcpu->arch.pio.size;
12773 	int port = vcpu->arch.pio.port;
12774 
12775 	vcpu->arch.pio.count = 0;
12776 	if (vcpu->arch.sev_pio_count)
12777 		return kvm_sev_es_outs(vcpu, size, port);
12778 	return 1;
12779 }
12780 
12781 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12782 			   unsigned int port)
12783 {
12784 	for (;;) {
12785 		unsigned int count =
12786 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12787 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12788 
12789 		/* memcpy done already by emulator_pio_out.  */
12790 		vcpu->arch.sev_pio_count -= count;
12791 		vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12792 		if (!ret)
12793 			break;
12794 
12795 		/* Emulation done by the kernel.  */
12796 		if (!vcpu->arch.sev_pio_count)
12797 			return 1;
12798 	}
12799 
12800 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12801 	return 0;
12802 }
12803 
12804 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12805 			  unsigned int port);
12806 
12807 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12808 {
12809 	unsigned count = vcpu->arch.pio.count;
12810 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12811 	vcpu->arch.sev_pio_count -= count;
12812 	vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12813 }
12814 
12815 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12816 {
12817 	int size = vcpu->arch.pio.size;
12818 	int port = vcpu->arch.pio.port;
12819 
12820 	advance_sev_es_emulated_ins(vcpu);
12821 	if (vcpu->arch.sev_pio_count)
12822 		return kvm_sev_es_ins(vcpu, size, port);
12823 	return 1;
12824 }
12825 
12826 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12827 			  unsigned int port)
12828 {
12829 	for (;;) {
12830 		unsigned int count =
12831 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12832 		if (!__emulator_pio_in(vcpu, size, port, count))
12833 			break;
12834 
12835 		/* Emulation done by the kernel.  */
12836 		advance_sev_es_emulated_ins(vcpu);
12837 		if (!vcpu->arch.sev_pio_count)
12838 			return 1;
12839 	}
12840 
12841 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12842 	return 0;
12843 }
12844 
12845 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12846 			 unsigned int port, void *data,  unsigned int count,
12847 			 int in)
12848 {
12849 	vcpu->arch.sev_pio_data = data;
12850 	vcpu->arch.sev_pio_count = count;
12851 	return in ? kvm_sev_es_ins(vcpu, size, port)
12852 		  : kvm_sev_es_outs(vcpu, size, port);
12853 }
12854 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12855 
12856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12858 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12859 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12860 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12861 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12862 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12863 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12864 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12865 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12866 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12867 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12868 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12869 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12870 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12872 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12873 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
12880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12884