1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/intel-iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <linux/sched/stat.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/mem_encrypt.h> 60 #include <linux/entry-kvm.h> 61 #include <linux/suspend.h> 62 63 #include <trace/events/kvm.h> 64 65 #include <asm/debugreg.h> 66 #include <asm/msr.h> 67 #include <asm/desc.h> 68 #include <asm/mce.h> 69 #include <asm/pkru.h> 70 #include <linux/kernel_stat.h> 71 #include <asm/fpu/api.h> 72 #include <asm/fpu/xcr.h> 73 #include <asm/fpu/xstate.h> 74 #include <asm/pvclock.h> 75 #include <asm/div64.h> 76 #include <asm/irq_remapping.h> 77 #include <asm/mshyperv.h> 78 #include <asm/hypervisor.h> 79 #include <asm/tlbflush.h> 80 #include <asm/intel_pt.h> 81 #include <asm/emulate_prefix.h> 82 #include <asm/sgx.h> 83 #include <clocksource/hyperv_timer.h> 84 85 #define CREATE_TRACE_POINTS 86 #include "trace.h" 87 88 #define MAX_IO_MSRS 256 89 #define KVM_MAX_MCE_BANKS 32 90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 92 93 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 94 95 #define emul_to_vcpu(ctxt) \ 96 ((struct kvm_vcpu *)(ctxt)->vcpu) 97 98 /* EFER defaults: 99 * - enable syscall per default because its emulated by KVM 100 * - enable LME and LMA per default on 64 bit KVM 101 */ 102 #ifdef CONFIG_X86_64 103 static 104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 105 #else 106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 107 #endif 108 109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 110 111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 112 113 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 114 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 115 116 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 117 static void process_nmi(struct kvm_vcpu *vcpu); 118 static void process_smi(struct kvm_vcpu *vcpu); 119 static void enter_smm(struct kvm_vcpu *vcpu); 120 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 121 static void store_regs(struct kvm_vcpu *vcpu); 122 static int sync_regs(struct kvm_vcpu *vcpu); 123 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 124 125 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 126 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 127 128 struct kvm_x86_ops kvm_x86_ops __read_mostly; 129 EXPORT_SYMBOL_GPL(kvm_x86_ops); 130 131 #define KVM_X86_OP(func) \ 132 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 133 *(((struct kvm_x86_ops *)0)->func)); 134 #define KVM_X86_OP_NULL KVM_X86_OP 135 #include <asm/kvm-x86-ops.h> 136 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 137 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 138 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current); 139 140 static bool __read_mostly ignore_msrs = 0; 141 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 142 143 bool __read_mostly report_ignored_msrs = true; 144 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 145 EXPORT_SYMBOL_GPL(report_ignored_msrs); 146 147 unsigned int min_timer_period_us = 200; 148 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 149 150 static bool __read_mostly kvmclock_periodic_sync = true; 151 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 152 153 bool __read_mostly kvm_has_tsc_control; 154 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 155 u32 __read_mostly kvm_max_guest_tsc_khz; 156 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 157 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 158 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 159 u64 __read_mostly kvm_max_tsc_scaling_ratio; 160 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 161 u64 __read_mostly kvm_default_tsc_scaling_ratio; 162 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 163 bool __read_mostly kvm_has_bus_lock_exit; 164 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit); 165 166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 167 static u32 __read_mostly tsc_tolerance_ppm = 250; 168 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 169 170 /* 171 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 172 * adaptive tuning starting from default advancement of 1000ns. '0' disables 173 * advancement entirely. Any other value is used as-is and disables adaptive 174 * tuning, i.e. allows privileged userspace to set an exact advancement time. 175 */ 176 static int __read_mostly lapic_timer_advance_ns = -1; 177 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 178 179 static bool __read_mostly vector_hashing = true; 180 module_param(vector_hashing, bool, S_IRUGO); 181 182 bool __read_mostly enable_vmware_backdoor = false; 183 module_param(enable_vmware_backdoor, bool, S_IRUGO); 184 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 185 186 static bool __read_mostly force_emulation_prefix = false; 187 module_param(force_emulation_prefix, bool, S_IRUGO); 188 189 int __read_mostly pi_inject_timer = -1; 190 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 191 192 /* Enable/disable PMU virtualization */ 193 bool __read_mostly enable_pmu = true; 194 EXPORT_SYMBOL_GPL(enable_pmu); 195 module_param(enable_pmu, bool, 0444); 196 197 /* 198 * Restoring the host value for MSRs that are only consumed when running in 199 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 200 * returns to userspace, i.e. the kernel can run with the guest's value. 201 */ 202 #define KVM_MAX_NR_USER_RETURN_MSRS 16 203 204 struct kvm_user_return_msrs { 205 struct user_return_notifier urn; 206 bool registered; 207 struct kvm_user_return_msr_values { 208 u64 host; 209 u64 curr; 210 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 211 }; 212 213 u32 __read_mostly kvm_nr_uret_msrs; 214 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 215 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 216 static struct kvm_user_return_msrs __percpu *user_return_msrs; 217 218 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 219 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 220 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 221 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 222 223 u64 __read_mostly host_efer; 224 EXPORT_SYMBOL_GPL(host_efer); 225 226 bool __read_mostly allow_smaller_maxphyaddr = 0; 227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 228 229 bool __read_mostly enable_apicv = true; 230 EXPORT_SYMBOL_GPL(enable_apicv); 231 232 u64 __read_mostly host_xss; 233 EXPORT_SYMBOL_GPL(host_xss); 234 u64 __read_mostly supported_xss; 235 EXPORT_SYMBOL_GPL(supported_xss); 236 237 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 238 KVM_GENERIC_VM_STATS(), 239 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 240 STATS_DESC_COUNTER(VM, mmu_pte_write), 241 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 242 STATS_DESC_COUNTER(VM, mmu_flooded), 243 STATS_DESC_COUNTER(VM, mmu_recycled), 244 STATS_DESC_COUNTER(VM, mmu_cache_miss), 245 STATS_DESC_ICOUNTER(VM, mmu_unsync), 246 STATS_DESC_ICOUNTER(VM, pages_4k), 247 STATS_DESC_ICOUNTER(VM, pages_2m), 248 STATS_DESC_ICOUNTER(VM, pages_1g), 249 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 250 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 251 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 252 }; 253 254 const struct kvm_stats_header kvm_vm_stats_header = { 255 .name_size = KVM_STATS_NAME_SIZE, 256 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 257 .id_offset = sizeof(struct kvm_stats_header), 258 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 259 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 260 sizeof(kvm_vm_stats_desc), 261 }; 262 263 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 264 KVM_GENERIC_VCPU_STATS(), 265 STATS_DESC_COUNTER(VCPU, pf_fixed), 266 STATS_DESC_COUNTER(VCPU, pf_guest), 267 STATS_DESC_COUNTER(VCPU, tlb_flush), 268 STATS_DESC_COUNTER(VCPU, invlpg), 269 STATS_DESC_COUNTER(VCPU, exits), 270 STATS_DESC_COUNTER(VCPU, io_exits), 271 STATS_DESC_COUNTER(VCPU, mmio_exits), 272 STATS_DESC_COUNTER(VCPU, signal_exits), 273 STATS_DESC_COUNTER(VCPU, irq_window_exits), 274 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 275 STATS_DESC_COUNTER(VCPU, l1d_flush), 276 STATS_DESC_COUNTER(VCPU, halt_exits), 277 STATS_DESC_COUNTER(VCPU, request_irq_exits), 278 STATS_DESC_COUNTER(VCPU, irq_exits), 279 STATS_DESC_COUNTER(VCPU, host_state_reload), 280 STATS_DESC_COUNTER(VCPU, fpu_reload), 281 STATS_DESC_COUNTER(VCPU, insn_emulation), 282 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 283 STATS_DESC_COUNTER(VCPU, hypercalls), 284 STATS_DESC_COUNTER(VCPU, irq_injections), 285 STATS_DESC_COUNTER(VCPU, nmi_injections), 286 STATS_DESC_COUNTER(VCPU, req_event), 287 STATS_DESC_COUNTER(VCPU, nested_run), 288 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 289 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 290 STATS_DESC_ICOUNTER(VCPU, guest_mode) 291 }; 292 293 const struct kvm_stats_header kvm_vcpu_stats_header = { 294 .name_size = KVM_STATS_NAME_SIZE, 295 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 296 .id_offset = sizeof(struct kvm_stats_header), 297 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 298 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 299 sizeof(kvm_vcpu_stats_desc), 300 }; 301 302 u64 __read_mostly host_xcr0; 303 u64 __read_mostly supported_xcr0; 304 EXPORT_SYMBOL_GPL(supported_xcr0); 305 306 static struct kmem_cache *x86_emulator_cache; 307 308 /* 309 * When called, it means the previous get/set msr reached an invalid msr. 310 * Return true if we want to ignore/silent this failed msr access. 311 */ 312 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 313 { 314 const char *op = write ? "wrmsr" : "rdmsr"; 315 316 if (ignore_msrs) { 317 if (report_ignored_msrs) 318 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 319 op, msr, data); 320 /* Mask the error */ 321 return true; 322 } else { 323 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 324 op, msr, data); 325 return false; 326 } 327 } 328 329 static struct kmem_cache *kvm_alloc_emulator_cache(void) 330 { 331 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 332 unsigned int size = sizeof(struct x86_emulate_ctxt); 333 334 return kmem_cache_create_usercopy("x86_emulator", size, 335 __alignof__(struct x86_emulate_ctxt), 336 SLAB_ACCOUNT, useroffset, 337 size - useroffset, NULL); 338 } 339 340 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 341 342 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 343 { 344 int i; 345 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 346 vcpu->arch.apf.gfns[i] = ~0; 347 } 348 349 static void kvm_on_user_return(struct user_return_notifier *urn) 350 { 351 unsigned slot; 352 struct kvm_user_return_msrs *msrs 353 = container_of(urn, struct kvm_user_return_msrs, urn); 354 struct kvm_user_return_msr_values *values; 355 unsigned long flags; 356 357 /* 358 * Disabling irqs at this point since the following code could be 359 * interrupted and executed through kvm_arch_hardware_disable() 360 */ 361 local_irq_save(flags); 362 if (msrs->registered) { 363 msrs->registered = false; 364 user_return_notifier_unregister(urn); 365 } 366 local_irq_restore(flags); 367 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 368 values = &msrs->values[slot]; 369 if (values->host != values->curr) { 370 wrmsrl(kvm_uret_msrs_list[slot], values->host); 371 values->curr = values->host; 372 } 373 } 374 } 375 376 static int kvm_probe_user_return_msr(u32 msr) 377 { 378 u64 val; 379 int ret; 380 381 preempt_disable(); 382 ret = rdmsrl_safe(msr, &val); 383 if (ret) 384 goto out; 385 ret = wrmsrl_safe(msr, val); 386 out: 387 preempt_enable(); 388 return ret; 389 } 390 391 int kvm_add_user_return_msr(u32 msr) 392 { 393 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 394 395 if (kvm_probe_user_return_msr(msr)) 396 return -1; 397 398 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 399 return kvm_nr_uret_msrs++; 400 } 401 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 402 403 int kvm_find_user_return_msr(u32 msr) 404 { 405 int i; 406 407 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 408 if (kvm_uret_msrs_list[i] == msr) 409 return i; 410 } 411 return -1; 412 } 413 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 414 415 static void kvm_user_return_msr_cpu_online(void) 416 { 417 unsigned int cpu = smp_processor_id(); 418 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 419 u64 value; 420 int i; 421 422 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 423 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 424 msrs->values[i].host = value; 425 msrs->values[i].curr = value; 426 } 427 } 428 429 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 430 { 431 unsigned int cpu = smp_processor_id(); 432 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 433 int err; 434 435 value = (value & mask) | (msrs->values[slot].host & ~mask); 436 if (value == msrs->values[slot].curr) 437 return 0; 438 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 439 if (err) 440 return 1; 441 442 msrs->values[slot].curr = value; 443 if (!msrs->registered) { 444 msrs->urn.on_user_return = kvm_on_user_return; 445 user_return_notifier_register(&msrs->urn); 446 msrs->registered = true; 447 } 448 return 0; 449 } 450 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 451 452 static void drop_user_return_notifiers(void) 453 { 454 unsigned int cpu = smp_processor_id(); 455 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 456 457 if (msrs->registered) 458 kvm_on_user_return(&msrs->urn); 459 } 460 461 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 462 { 463 return vcpu->arch.apic_base; 464 } 465 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 466 467 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 468 { 469 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 470 } 471 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 472 473 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 474 { 475 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 476 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 477 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 478 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 479 480 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 481 return 1; 482 if (!msr_info->host_initiated) { 483 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 484 return 1; 485 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 486 return 1; 487 } 488 489 kvm_lapic_set_base(vcpu, msr_info->data); 490 kvm_recalculate_apic_map(vcpu->kvm); 491 return 0; 492 } 493 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 494 495 /* 496 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 497 * 498 * Hardware virtualization extension instructions may fault if a reboot turns 499 * off virtualization while processes are running. Usually after catching the 500 * fault we just panic; during reboot instead the instruction is ignored. 501 */ 502 noinstr void kvm_spurious_fault(void) 503 { 504 /* Fault while not rebooting. We want the trace. */ 505 BUG_ON(!kvm_rebooting); 506 } 507 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 508 509 #define EXCPT_BENIGN 0 510 #define EXCPT_CONTRIBUTORY 1 511 #define EXCPT_PF 2 512 513 static int exception_class(int vector) 514 { 515 switch (vector) { 516 case PF_VECTOR: 517 return EXCPT_PF; 518 case DE_VECTOR: 519 case TS_VECTOR: 520 case NP_VECTOR: 521 case SS_VECTOR: 522 case GP_VECTOR: 523 return EXCPT_CONTRIBUTORY; 524 default: 525 break; 526 } 527 return EXCPT_BENIGN; 528 } 529 530 #define EXCPT_FAULT 0 531 #define EXCPT_TRAP 1 532 #define EXCPT_ABORT 2 533 #define EXCPT_INTERRUPT 3 534 535 static int exception_type(int vector) 536 { 537 unsigned int mask; 538 539 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 540 return EXCPT_INTERRUPT; 541 542 mask = 1 << vector; 543 544 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 545 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 546 return EXCPT_TRAP; 547 548 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 549 return EXCPT_ABORT; 550 551 /* Reserved exceptions will result in fault */ 552 return EXCPT_FAULT; 553 } 554 555 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 556 { 557 unsigned nr = vcpu->arch.exception.nr; 558 bool has_payload = vcpu->arch.exception.has_payload; 559 unsigned long payload = vcpu->arch.exception.payload; 560 561 if (!has_payload) 562 return; 563 564 switch (nr) { 565 case DB_VECTOR: 566 /* 567 * "Certain debug exceptions may clear bit 0-3. The 568 * remaining contents of the DR6 register are never 569 * cleared by the processor". 570 */ 571 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 572 /* 573 * In order to reflect the #DB exception payload in guest 574 * dr6, three components need to be considered: active low 575 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 576 * DR6_BS and DR6_BT) 577 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 578 * In the target guest dr6: 579 * FIXED_1 bits should always be set. 580 * Active low bits should be cleared if 1-setting in payload. 581 * Active high bits should be set if 1-setting in payload. 582 * 583 * Note, the payload is compatible with the pending debug 584 * exceptions/exit qualification under VMX, that active_low bits 585 * are active high in payload. 586 * So they need to be flipped for DR6. 587 */ 588 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 589 vcpu->arch.dr6 |= payload; 590 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW; 591 592 /* 593 * The #DB payload is defined as compatible with the 'pending 594 * debug exceptions' field under VMX, not DR6. While bit 12 is 595 * defined in the 'pending debug exceptions' field (enabled 596 * breakpoint), it is reserved and must be zero in DR6. 597 */ 598 vcpu->arch.dr6 &= ~BIT(12); 599 break; 600 case PF_VECTOR: 601 vcpu->arch.cr2 = payload; 602 break; 603 } 604 605 vcpu->arch.exception.has_payload = false; 606 vcpu->arch.exception.payload = 0; 607 } 608 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 609 610 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 611 unsigned nr, bool has_error, u32 error_code, 612 bool has_payload, unsigned long payload, bool reinject) 613 { 614 u32 prev_nr; 615 int class1, class2; 616 617 kvm_make_request(KVM_REQ_EVENT, vcpu); 618 619 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 620 queue: 621 if (reinject) { 622 /* 623 * On vmentry, vcpu->arch.exception.pending is only 624 * true if an event injection was blocked by 625 * nested_run_pending. In that case, however, 626 * vcpu_enter_guest requests an immediate exit, 627 * and the guest shouldn't proceed far enough to 628 * need reinjection. 629 */ 630 WARN_ON_ONCE(vcpu->arch.exception.pending); 631 vcpu->arch.exception.injected = true; 632 if (WARN_ON_ONCE(has_payload)) { 633 /* 634 * A reinjected event has already 635 * delivered its payload. 636 */ 637 has_payload = false; 638 payload = 0; 639 } 640 } else { 641 vcpu->arch.exception.pending = true; 642 vcpu->arch.exception.injected = false; 643 } 644 vcpu->arch.exception.has_error_code = has_error; 645 vcpu->arch.exception.nr = nr; 646 vcpu->arch.exception.error_code = error_code; 647 vcpu->arch.exception.has_payload = has_payload; 648 vcpu->arch.exception.payload = payload; 649 if (!is_guest_mode(vcpu)) 650 kvm_deliver_exception_payload(vcpu); 651 return; 652 } 653 654 /* to check exception */ 655 prev_nr = vcpu->arch.exception.nr; 656 if (prev_nr == DF_VECTOR) { 657 /* triple fault -> shutdown */ 658 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 659 return; 660 } 661 class1 = exception_class(prev_nr); 662 class2 = exception_class(nr); 663 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 664 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 665 /* 666 * Generate double fault per SDM Table 5-5. Set 667 * exception.pending = true so that the double fault 668 * can trigger a nested vmexit. 669 */ 670 vcpu->arch.exception.pending = true; 671 vcpu->arch.exception.injected = false; 672 vcpu->arch.exception.has_error_code = true; 673 vcpu->arch.exception.nr = DF_VECTOR; 674 vcpu->arch.exception.error_code = 0; 675 vcpu->arch.exception.has_payload = false; 676 vcpu->arch.exception.payload = 0; 677 } else 678 /* replace previous exception with a new one in a hope 679 that instruction re-execution will regenerate lost 680 exception */ 681 goto queue; 682 } 683 684 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 685 { 686 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 687 } 688 EXPORT_SYMBOL_GPL(kvm_queue_exception); 689 690 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 691 { 692 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 693 } 694 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 695 696 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 697 unsigned long payload) 698 { 699 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 700 } 701 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 702 703 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 704 u32 error_code, unsigned long payload) 705 { 706 kvm_multiple_exception(vcpu, nr, true, error_code, 707 true, payload, false); 708 } 709 710 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 711 { 712 if (err) 713 kvm_inject_gp(vcpu, 0); 714 else 715 return kvm_skip_emulated_instruction(vcpu); 716 717 return 1; 718 } 719 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 720 721 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 722 { 723 if (err) { 724 kvm_inject_gp(vcpu, 0); 725 return 1; 726 } 727 728 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 729 EMULTYPE_COMPLETE_USER_EXIT); 730 } 731 732 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 733 { 734 ++vcpu->stat.pf_guest; 735 vcpu->arch.exception.nested_apf = 736 is_guest_mode(vcpu) && fault->async_page_fault; 737 if (vcpu->arch.exception.nested_apf) { 738 vcpu->arch.apf.nested_apf_token = fault->address; 739 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 740 } else { 741 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 742 fault->address); 743 } 744 } 745 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 746 747 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 748 struct x86_exception *fault) 749 { 750 struct kvm_mmu *fault_mmu; 751 WARN_ON_ONCE(fault->vector != PF_VECTOR); 752 753 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 754 vcpu->arch.walk_mmu; 755 756 /* 757 * Invalidate the TLB entry for the faulting address, if it exists, 758 * else the access will fault indefinitely (and to emulate hardware). 759 */ 760 if ((fault->error_code & PFERR_PRESENT_MASK) && 761 !(fault->error_code & PFERR_RSVD_MASK)) 762 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 763 fault_mmu->root_hpa); 764 765 fault_mmu->inject_page_fault(vcpu, fault); 766 return fault->nested_page_fault; 767 } 768 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 769 770 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 771 { 772 atomic_inc(&vcpu->arch.nmi_queued); 773 kvm_make_request(KVM_REQ_NMI, vcpu); 774 } 775 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 776 777 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 778 { 779 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 780 } 781 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 782 783 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 784 { 785 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 786 } 787 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 788 789 /* 790 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 791 * a #GP and return false. 792 */ 793 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 794 { 795 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 796 return true; 797 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 798 return false; 799 } 800 EXPORT_SYMBOL_GPL(kvm_require_cpl); 801 802 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 803 { 804 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 805 return true; 806 807 kvm_queue_exception(vcpu, UD_VECTOR); 808 return false; 809 } 810 EXPORT_SYMBOL_GPL(kvm_require_dr); 811 812 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 813 { 814 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 815 } 816 817 /* 818 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 819 */ 820 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 821 { 822 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 823 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 824 gpa_t real_gpa; 825 int i; 826 int ret; 827 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 828 829 /* 830 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 831 * to an L1 GPA. 832 */ 833 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 834 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 835 if (real_gpa == UNMAPPED_GVA) 836 return 0; 837 838 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 839 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 840 cr3 & GENMASK(11, 5), sizeof(pdpte)); 841 if (ret < 0) 842 return 0; 843 844 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 845 if ((pdpte[i] & PT_PRESENT_MASK) && 846 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 847 return 0; 848 } 849 } 850 851 /* 852 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 853 * Shadow page roots need to be reconstructed instead. 854 */ 855 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 856 kvm_mmu_free_roots(vcpu, mmu, KVM_MMU_ROOT_CURRENT); 857 858 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 859 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 860 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 861 vcpu->arch.pdptrs_from_userspace = false; 862 863 return 1; 864 } 865 EXPORT_SYMBOL_GPL(load_pdptrs); 866 867 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 868 { 869 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 870 kvm_clear_async_pf_completion_queue(vcpu); 871 kvm_async_pf_hash_reset(vcpu); 872 } 873 874 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 875 kvm_mmu_reset_context(vcpu); 876 877 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 878 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 879 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 880 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 881 } 882 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 883 884 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 885 { 886 unsigned long old_cr0 = kvm_read_cr0(vcpu); 887 888 cr0 |= X86_CR0_ET; 889 890 #ifdef CONFIG_X86_64 891 if (cr0 & 0xffffffff00000000UL) 892 return 1; 893 #endif 894 895 cr0 &= ~CR0_RESERVED_BITS; 896 897 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 898 return 1; 899 900 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 901 return 1; 902 903 #ifdef CONFIG_X86_64 904 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 905 (cr0 & X86_CR0_PG)) { 906 int cs_db, cs_l; 907 908 if (!is_pae(vcpu)) 909 return 1; 910 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 911 if (cs_l) 912 return 1; 913 } 914 #endif 915 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 916 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 917 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 918 return 1; 919 920 if (!(cr0 & X86_CR0_PG) && 921 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 922 return 1; 923 924 static_call(kvm_x86_set_cr0)(vcpu, cr0); 925 926 kvm_post_set_cr0(vcpu, old_cr0, cr0); 927 928 return 0; 929 } 930 EXPORT_SYMBOL_GPL(kvm_set_cr0); 931 932 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 933 { 934 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 935 } 936 EXPORT_SYMBOL_GPL(kvm_lmsw); 937 938 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 939 { 940 if (vcpu->arch.guest_state_protected) 941 return; 942 943 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 944 945 if (vcpu->arch.xcr0 != host_xcr0) 946 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 947 948 if (vcpu->arch.xsaves_enabled && 949 vcpu->arch.ia32_xss != host_xss) 950 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 951 } 952 953 if (static_cpu_has(X86_FEATURE_PKU) && 954 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 955 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 956 vcpu->arch.pkru != vcpu->arch.host_pkru) 957 write_pkru(vcpu->arch.pkru); 958 } 959 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 960 961 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 962 { 963 if (vcpu->arch.guest_state_protected) 964 return; 965 966 if (static_cpu_has(X86_FEATURE_PKU) && 967 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 968 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 969 vcpu->arch.pkru = rdpkru(); 970 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 971 write_pkru(vcpu->arch.host_pkru); 972 } 973 974 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 975 976 if (vcpu->arch.xcr0 != host_xcr0) 977 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 978 979 if (vcpu->arch.xsaves_enabled && 980 vcpu->arch.ia32_xss != host_xss) 981 wrmsrl(MSR_IA32_XSS, host_xss); 982 } 983 984 } 985 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 986 987 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 988 { 989 u64 xcr0 = xcr; 990 u64 old_xcr0 = vcpu->arch.xcr0; 991 u64 valid_bits; 992 993 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 994 if (index != XCR_XFEATURE_ENABLED_MASK) 995 return 1; 996 if (!(xcr0 & XFEATURE_MASK_FP)) 997 return 1; 998 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 999 return 1; 1000 1001 /* 1002 * Do not allow the guest to set bits that we do not support 1003 * saving. However, xcr0 bit 0 is always set, even if the 1004 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1005 */ 1006 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1007 if (xcr0 & ~valid_bits) 1008 return 1; 1009 1010 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1011 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1012 return 1; 1013 1014 if (xcr0 & XFEATURE_MASK_AVX512) { 1015 if (!(xcr0 & XFEATURE_MASK_YMM)) 1016 return 1; 1017 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1018 return 1; 1019 } 1020 1021 if ((xcr0 & XFEATURE_MASK_XTILE) && 1022 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1023 return 1; 1024 1025 vcpu->arch.xcr0 = xcr0; 1026 1027 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1028 kvm_update_cpuid_runtime(vcpu); 1029 return 0; 1030 } 1031 1032 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1033 { 1034 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1035 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1036 kvm_inject_gp(vcpu, 0); 1037 return 1; 1038 } 1039 1040 return kvm_skip_emulated_instruction(vcpu); 1041 } 1042 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1043 1044 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1045 { 1046 if (cr4 & cr4_reserved_bits) 1047 return false; 1048 1049 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1050 return false; 1051 1052 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1053 } 1054 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4); 1055 1056 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1057 { 1058 /* 1059 * If any role bit is changed, the MMU needs to be reset. 1060 * 1061 * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed. 1062 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1063 * according to the SDM; however, stale prev_roots could be reused 1064 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1065 * free them all. KVM_REQ_MMU_RELOAD is fit for the both cases; it 1066 * is slow, but changing CR4.PCIDE is a rare case. 1067 * 1068 * If CR4.PGE is changed, the guest TLB must be flushed. 1069 * 1070 * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and 1071 * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence 1072 * the usage of "else if". 1073 */ 1074 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1075 kvm_mmu_reset_context(vcpu); 1076 else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE) 1077 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu); 1078 else if ((cr4 ^ old_cr4) & X86_CR4_PGE) 1079 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1080 } 1081 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1082 1083 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1084 { 1085 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1086 1087 if (!kvm_is_valid_cr4(vcpu, cr4)) 1088 return 1; 1089 1090 if (is_long_mode(vcpu)) { 1091 if (!(cr4 & X86_CR4_PAE)) 1092 return 1; 1093 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1094 return 1; 1095 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1096 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1097 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1098 return 1; 1099 1100 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1101 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1102 return 1; 1103 1104 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1105 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1106 return 1; 1107 } 1108 1109 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1110 1111 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1112 1113 return 0; 1114 } 1115 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1116 1117 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1118 { 1119 struct kvm_mmu *mmu = vcpu->arch.mmu; 1120 unsigned long roots_to_free = 0; 1121 int i; 1122 1123 /* 1124 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1125 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1126 * also via the emulator. KVM's TDP page tables are not in the scope of 1127 * the invalidation, but the guest's TLB entries need to be flushed as 1128 * the CPU may have cached entries in its TLB for the target PCID. 1129 */ 1130 if (unlikely(tdp_enabled)) { 1131 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1132 return; 1133 } 1134 1135 /* 1136 * If neither the current CR3 nor any of the prev_roots use the given 1137 * PCID, then nothing needs to be done here because a resync will 1138 * happen anyway before switching to any other CR3. 1139 */ 1140 if (kvm_get_active_pcid(vcpu) == pcid) { 1141 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1142 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1143 } 1144 1145 /* 1146 * If PCID is disabled, there is no need to free prev_roots even if the 1147 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1148 * with PCIDE=0. 1149 */ 1150 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1151 return; 1152 1153 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1154 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1155 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1156 1157 kvm_mmu_free_roots(vcpu, mmu, roots_to_free); 1158 } 1159 1160 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1161 { 1162 bool skip_tlb_flush = false; 1163 unsigned long pcid = 0; 1164 #ifdef CONFIG_X86_64 1165 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1166 1167 if (pcid_enabled) { 1168 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1169 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1170 pcid = cr3 & X86_CR3_PCID_MASK; 1171 } 1172 #endif 1173 1174 /* PDPTRs are always reloaded for PAE paging. */ 1175 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1176 goto handle_tlb_flush; 1177 1178 /* 1179 * Do not condition the GPA check on long mode, this helper is used to 1180 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1181 * the current vCPU mode is accurate. 1182 */ 1183 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1184 return 1; 1185 1186 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1187 return 1; 1188 1189 if (cr3 != kvm_read_cr3(vcpu)) 1190 kvm_mmu_new_pgd(vcpu, cr3); 1191 1192 vcpu->arch.cr3 = cr3; 1193 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1194 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1195 1196 handle_tlb_flush: 1197 /* 1198 * A load of CR3 that flushes the TLB flushes only the current PCID, 1199 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1200 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1201 * and it's impossible to use a non-zero PCID when PCID is disabled, 1202 * i.e. only PCID=0 can be relevant. 1203 */ 1204 if (!skip_tlb_flush) 1205 kvm_invalidate_pcid(vcpu, pcid); 1206 1207 return 0; 1208 } 1209 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1210 1211 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1212 { 1213 if (cr8 & CR8_RESERVED_BITS) 1214 return 1; 1215 if (lapic_in_kernel(vcpu)) 1216 kvm_lapic_set_tpr(vcpu, cr8); 1217 else 1218 vcpu->arch.cr8 = cr8; 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1222 1223 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1224 { 1225 if (lapic_in_kernel(vcpu)) 1226 return kvm_lapic_get_cr8(vcpu); 1227 else 1228 return vcpu->arch.cr8; 1229 } 1230 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1231 1232 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1233 { 1234 int i; 1235 1236 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1237 for (i = 0; i < KVM_NR_DB_REGS; i++) 1238 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1239 } 1240 } 1241 1242 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1243 { 1244 unsigned long dr7; 1245 1246 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1247 dr7 = vcpu->arch.guest_debug_dr7; 1248 else 1249 dr7 = vcpu->arch.dr7; 1250 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1251 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1252 if (dr7 & DR7_BP_EN_MASK) 1253 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1254 } 1255 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1256 1257 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1258 { 1259 u64 fixed = DR6_FIXED_1; 1260 1261 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1262 fixed |= DR6_RTM; 1263 1264 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1265 fixed |= DR6_BUS_LOCK; 1266 return fixed; 1267 } 1268 1269 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1270 { 1271 size_t size = ARRAY_SIZE(vcpu->arch.db); 1272 1273 switch (dr) { 1274 case 0 ... 3: 1275 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1276 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1277 vcpu->arch.eff_db[dr] = val; 1278 break; 1279 case 4: 1280 case 6: 1281 if (!kvm_dr6_valid(val)) 1282 return 1; /* #GP */ 1283 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1284 break; 1285 case 5: 1286 default: /* 7 */ 1287 if (!kvm_dr7_valid(val)) 1288 return 1; /* #GP */ 1289 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1290 kvm_update_dr7(vcpu); 1291 break; 1292 } 1293 1294 return 0; 1295 } 1296 EXPORT_SYMBOL_GPL(kvm_set_dr); 1297 1298 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1299 { 1300 size_t size = ARRAY_SIZE(vcpu->arch.db); 1301 1302 switch (dr) { 1303 case 0 ... 3: 1304 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1305 break; 1306 case 4: 1307 case 6: 1308 *val = vcpu->arch.dr6; 1309 break; 1310 case 5: 1311 default: /* 7 */ 1312 *val = vcpu->arch.dr7; 1313 break; 1314 } 1315 } 1316 EXPORT_SYMBOL_GPL(kvm_get_dr); 1317 1318 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1319 { 1320 u32 ecx = kvm_rcx_read(vcpu); 1321 u64 data; 1322 1323 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1324 kvm_inject_gp(vcpu, 0); 1325 return 1; 1326 } 1327 1328 kvm_rax_write(vcpu, (u32)data); 1329 kvm_rdx_write(vcpu, data >> 32); 1330 return kvm_skip_emulated_instruction(vcpu); 1331 } 1332 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1333 1334 /* 1335 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1336 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1337 * 1338 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1339 * extract the supported MSRs from the related const lists. 1340 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1341 * capabilities of the host cpu. This capabilities test skips MSRs that are 1342 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1343 * may depend on host virtualization features rather than host cpu features. 1344 */ 1345 1346 static const u32 msrs_to_save_all[] = { 1347 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1348 MSR_STAR, 1349 #ifdef CONFIG_X86_64 1350 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1351 #endif 1352 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1353 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1354 MSR_IA32_SPEC_CTRL, 1355 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1356 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1357 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1358 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1359 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1360 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1361 MSR_IA32_UMWAIT_CONTROL, 1362 1363 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1364 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1365 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1366 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1367 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1368 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1369 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1370 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1371 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1372 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1373 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1374 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1375 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1376 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1377 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1378 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1379 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1380 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1381 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1382 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1383 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1384 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1385 1386 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1387 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1388 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1389 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1390 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1391 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1392 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1393 }; 1394 1395 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1396 static unsigned num_msrs_to_save; 1397 1398 static const u32 emulated_msrs_all[] = { 1399 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1400 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1401 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1402 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1403 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1404 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1405 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1406 HV_X64_MSR_RESET, 1407 HV_X64_MSR_VP_INDEX, 1408 HV_X64_MSR_VP_RUNTIME, 1409 HV_X64_MSR_SCONTROL, 1410 HV_X64_MSR_STIMER0_CONFIG, 1411 HV_X64_MSR_VP_ASSIST_PAGE, 1412 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1413 HV_X64_MSR_TSC_EMULATION_STATUS, 1414 HV_X64_MSR_SYNDBG_OPTIONS, 1415 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1416 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1417 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1418 1419 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1420 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1421 1422 MSR_IA32_TSC_ADJUST, 1423 MSR_IA32_TSC_DEADLINE, 1424 MSR_IA32_ARCH_CAPABILITIES, 1425 MSR_IA32_PERF_CAPABILITIES, 1426 MSR_IA32_MISC_ENABLE, 1427 MSR_IA32_MCG_STATUS, 1428 MSR_IA32_MCG_CTL, 1429 MSR_IA32_MCG_EXT_CTL, 1430 MSR_IA32_SMBASE, 1431 MSR_SMI_COUNT, 1432 MSR_PLATFORM_INFO, 1433 MSR_MISC_FEATURES_ENABLES, 1434 MSR_AMD64_VIRT_SPEC_CTRL, 1435 MSR_AMD64_TSC_RATIO, 1436 MSR_IA32_POWER_CTL, 1437 MSR_IA32_UCODE_REV, 1438 1439 /* 1440 * The following list leaves out MSRs whose values are determined 1441 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1442 * We always support the "true" VMX control MSRs, even if the host 1443 * processor does not, so I am putting these registers here rather 1444 * than in msrs_to_save_all. 1445 */ 1446 MSR_IA32_VMX_BASIC, 1447 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1448 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1449 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1450 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1451 MSR_IA32_VMX_MISC, 1452 MSR_IA32_VMX_CR0_FIXED0, 1453 MSR_IA32_VMX_CR4_FIXED0, 1454 MSR_IA32_VMX_VMCS_ENUM, 1455 MSR_IA32_VMX_PROCBASED_CTLS2, 1456 MSR_IA32_VMX_EPT_VPID_CAP, 1457 MSR_IA32_VMX_VMFUNC, 1458 1459 MSR_K7_HWCR, 1460 MSR_KVM_POLL_CONTROL, 1461 }; 1462 1463 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1464 static unsigned num_emulated_msrs; 1465 1466 /* 1467 * List of msr numbers which are used to expose MSR-based features that 1468 * can be used by a hypervisor to validate requested CPU features. 1469 */ 1470 static const u32 msr_based_features_all[] = { 1471 MSR_IA32_VMX_BASIC, 1472 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1473 MSR_IA32_VMX_PINBASED_CTLS, 1474 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1475 MSR_IA32_VMX_PROCBASED_CTLS, 1476 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1477 MSR_IA32_VMX_EXIT_CTLS, 1478 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1479 MSR_IA32_VMX_ENTRY_CTLS, 1480 MSR_IA32_VMX_MISC, 1481 MSR_IA32_VMX_CR0_FIXED0, 1482 MSR_IA32_VMX_CR0_FIXED1, 1483 MSR_IA32_VMX_CR4_FIXED0, 1484 MSR_IA32_VMX_CR4_FIXED1, 1485 MSR_IA32_VMX_VMCS_ENUM, 1486 MSR_IA32_VMX_PROCBASED_CTLS2, 1487 MSR_IA32_VMX_EPT_VPID_CAP, 1488 MSR_IA32_VMX_VMFUNC, 1489 1490 MSR_F10H_DECFG, 1491 MSR_IA32_UCODE_REV, 1492 MSR_IA32_ARCH_CAPABILITIES, 1493 MSR_IA32_PERF_CAPABILITIES, 1494 }; 1495 1496 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1497 static unsigned int num_msr_based_features; 1498 1499 static u64 kvm_get_arch_capabilities(void) 1500 { 1501 u64 data = 0; 1502 1503 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1504 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1505 1506 /* 1507 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1508 * the nested hypervisor runs with NX huge pages. If it is not, 1509 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1510 * L1 guests, so it need not worry about its own (L2) guests. 1511 */ 1512 data |= ARCH_CAP_PSCHANGE_MC_NO; 1513 1514 /* 1515 * If we're doing cache flushes (either "always" or "cond") 1516 * we will do one whenever the guest does a vmlaunch/vmresume. 1517 * If an outer hypervisor is doing the cache flush for us 1518 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1519 * capability to the guest too, and if EPT is disabled we're not 1520 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1521 * require a nested hypervisor to do a flush of its own. 1522 */ 1523 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1524 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1525 1526 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1527 data |= ARCH_CAP_RDCL_NO; 1528 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1529 data |= ARCH_CAP_SSB_NO; 1530 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1531 data |= ARCH_CAP_MDS_NO; 1532 1533 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1534 /* 1535 * If RTM=0 because the kernel has disabled TSX, the host might 1536 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1537 * and therefore knows that there cannot be TAA) but keep 1538 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1539 * and we want to allow migrating those guests to tsx=off hosts. 1540 */ 1541 data &= ~ARCH_CAP_TAA_NO; 1542 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1543 data |= ARCH_CAP_TAA_NO; 1544 } else { 1545 /* 1546 * Nothing to do here; we emulate TSX_CTRL if present on the 1547 * host so the guest can choose between disabling TSX or 1548 * using VERW to clear CPU buffers. 1549 */ 1550 } 1551 1552 return data; 1553 } 1554 1555 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1556 { 1557 switch (msr->index) { 1558 case MSR_IA32_ARCH_CAPABILITIES: 1559 msr->data = kvm_get_arch_capabilities(); 1560 break; 1561 case MSR_IA32_UCODE_REV: 1562 rdmsrl_safe(msr->index, &msr->data); 1563 break; 1564 default: 1565 return static_call(kvm_x86_get_msr_feature)(msr); 1566 } 1567 return 0; 1568 } 1569 1570 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1571 { 1572 struct kvm_msr_entry msr; 1573 int r; 1574 1575 msr.index = index; 1576 r = kvm_get_msr_feature(&msr); 1577 1578 if (r == KVM_MSR_RET_INVALID) { 1579 /* Unconditionally clear the output for simplicity */ 1580 *data = 0; 1581 if (kvm_msr_ignored_check(index, 0, false)) 1582 r = 0; 1583 } 1584 1585 if (r) 1586 return r; 1587 1588 *data = msr.data; 1589 1590 return 0; 1591 } 1592 1593 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1594 { 1595 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1596 return false; 1597 1598 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1599 return false; 1600 1601 if (efer & (EFER_LME | EFER_LMA) && 1602 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1603 return false; 1604 1605 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1606 return false; 1607 1608 return true; 1609 1610 } 1611 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1612 { 1613 if (efer & efer_reserved_bits) 1614 return false; 1615 1616 return __kvm_valid_efer(vcpu, efer); 1617 } 1618 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1619 1620 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1621 { 1622 u64 old_efer = vcpu->arch.efer; 1623 u64 efer = msr_info->data; 1624 int r; 1625 1626 if (efer & efer_reserved_bits) 1627 return 1; 1628 1629 if (!msr_info->host_initiated) { 1630 if (!__kvm_valid_efer(vcpu, efer)) 1631 return 1; 1632 1633 if (is_paging(vcpu) && 1634 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1635 return 1; 1636 } 1637 1638 efer &= ~EFER_LMA; 1639 efer |= vcpu->arch.efer & EFER_LMA; 1640 1641 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1642 if (r) { 1643 WARN_ON(r > 0); 1644 return r; 1645 } 1646 1647 /* Update reserved bits */ 1648 if ((efer ^ old_efer) & EFER_NX) 1649 kvm_mmu_reset_context(vcpu); 1650 1651 return 0; 1652 } 1653 1654 void kvm_enable_efer_bits(u64 mask) 1655 { 1656 efer_reserved_bits &= ~mask; 1657 } 1658 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1659 1660 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1661 { 1662 struct kvm_x86_msr_filter *msr_filter; 1663 struct msr_bitmap_range *ranges; 1664 struct kvm *kvm = vcpu->kvm; 1665 bool allowed; 1666 int idx; 1667 u32 i; 1668 1669 /* x2APIC MSRs do not support filtering. */ 1670 if (index >= 0x800 && index <= 0x8ff) 1671 return true; 1672 1673 idx = srcu_read_lock(&kvm->srcu); 1674 1675 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1676 if (!msr_filter) { 1677 allowed = true; 1678 goto out; 1679 } 1680 1681 allowed = msr_filter->default_allow; 1682 ranges = msr_filter->ranges; 1683 1684 for (i = 0; i < msr_filter->count; i++) { 1685 u32 start = ranges[i].base; 1686 u32 end = start + ranges[i].nmsrs; 1687 u32 flags = ranges[i].flags; 1688 unsigned long *bitmap = ranges[i].bitmap; 1689 1690 if ((index >= start) && (index < end) && (flags & type)) { 1691 allowed = !!test_bit(index - start, bitmap); 1692 break; 1693 } 1694 } 1695 1696 out: 1697 srcu_read_unlock(&kvm->srcu, idx); 1698 1699 return allowed; 1700 } 1701 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1702 1703 /* 1704 * Write @data into the MSR specified by @index. Select MSR specific fault 1705 * checks are bypassed if @host_initiated is %true. 1706 * Returns 0 on success, non-0 otherwise. 1707 * Assumes vcpu_load() was already called. 1708 */ 1709 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1710 bool host_initiated) 1711 { 1712 struct msr_data msr; 1713 1714 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1715 return KVM_MSR_RET_FILTERED; 1716 1717 switch (index) { 1718 case MSR_FS_BASE: 1719 case MSR_GS_BASE: 1720 case MSR_KERNEL_GS_BASE: 1721 case MSR_CSTAR: 1722 case MSR_LSTAR: 1723 if (is_noncanonical_address(data, vcpu)) 1724 return 1; 1725 break; 1726 case MSR_IA32_SYSENTER_EIP: 1727 case MSR_IA32_SYSENTER_ESP: 1728 /* 1729 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1730 * non-canonical address is written on Intel but not on 1731 * AMD (which ignores the top 32-bits, because it does 1732 * not implement 64-bit SYSENTER). 1733 * 1734 * 64-bit code should hence be able to write a non-canonical 1735 * value on AMD. Making the address canonical ensures that 1736 * vmentry does not fail on Intel after writing a non-canonical 1737 * value, and that something deterministic happens if the guest 1738 * invokes 64-bit SYSENTER. 1739 */ 1740 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1741 break; 1742 case MSR_TSC_AUX: 1743 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1744 return 1; 1745 1746 if (!host_initiated && 1747 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1748 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1749 return 1; 1750 1751 /* 1752 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1753 * incomplete and conflicting architectural behavior. Current 1754 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1755 * reserved and always read as zeros. Enforce Intel's reserved 1756 * bits check if and only if the guest CPU is Intel, and clear 1757 * the bits in all other cases. This ensures cross-vendor 1758 * migration will provide consistent behavior for the guest. 1759 */ 1760 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1761 return 1; 1762 1763 data = (u32)data; 1764 break; 1765 } 1766 1767 msr.data = data; 1768 msr.index = index; 1769 msr.host_initiated = host_initiated; 1770 1771 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1772 } 1773 1774 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1775 u32 index, u64 data, bool host_initiated) 1776 { 1777 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1778 1779 if (ret == KVM_MSR_RET_INVALID) 1780 if (kvm_msr_ignored_check(index, data, true)) 1781 ret = 0; 1782 1783 return ret; 1784 } 1785 1786 /* 1787 * Read the MSR specified by @index into @data. Select MSR specific fault 1788 * checks are bypassed if @host_initiated is %true. 1789 * Returns 0 on success, non-0 otherwise. 1790 * Assumes vcpu_load() was already called. 1791 */ 1792 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1793 bool host_initiated) 1794 { 1795 struct msr_data msr; 1796 int ret; 1797 1798 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1799 return KVM_MSR_RET_FILTERED; 1800 1801 switch (index) { 1802 case MSR_TSC_AUX: 1803 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1804 return 1; 1805 1806 if (!host_initiated && 1807 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1808 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1809 return 1; 1810 break; 1811 } 1812 1813 msr.index = index; 1814 msr.host_initiated = host_initiated; 1815 1816 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1817 if (!ret) 1818 *data = msr.data; 1819 return ret; 1820 } 1821 1822 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1823 u32 index, u64 *data, bool host_initiated) 1824 { 1825 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1826 1827 if (ret == KVM_MSR_RET_INVALID) { 1828 /* Unconditionally clear *data for simplicity */ 1829 *data = 0; 1830 if (kvm_msr_ignored_check(index, 0, false)) 1831 ret = 0; 1832 } 1833 1834 return ret; 1835 } 1836 1837 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1838 { 1839 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1840 } 1841 EXPORT_SYMBOL_GPL(kvm_get_msr); 1842 1843 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1844 { 1845 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1846 } 1847 EXPORT_SYMBOL_GPL(kvm_set_msr); 1848 1849 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1850 { 1851 if (!vcpu->run->msr.error) { 1852 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1853 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1854 } 1855 } 1856 1857 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1858 { 1859 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1860 } 1861 1862 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1863 { 1864 complete_userspace_rdmsr(vcpu); 1865 return complete_emulated_msr_access(vcpu); 1866 } 1867 1868 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1869 { 1870 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1871 } 1872 1873 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1874 { 1875 complete_userspace_rdmsr(vcpu); 1876 return complete_fast_msr_access(vcpu); 1877 } 1878 1879 static u64 kvm_msr_reason(int r) 1880 { 1881 switch (r) { 1882 case KVM_MSR_RET_INVALID: 1883 return KVM_MSR_EXIT_REASON_UNKNOWN; 1884 case KVM_MSR_RET_FILTERED: 1885 return KVM_MSR_EXIT_REASON_FILTER; 1886 default: 1887 return KVM_MSR_EXIT_REASON_INVAL; 1888 } 1889 } 1890 1891 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1892 u32 exit_reason, u64 data, 1893 int (*completion)(struct kvm_vcpu *vcpu), 1894 int r) 1895 { 1896 u64 msr_reason = kvm_msr_reason(r); 1897 1898 /* Check if the user wanted to know about this MSR fault */ 1899 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1900 return 0; 1901 1902 vcpu->run->exit_reason = exit_reason; 1903 vcpu->run->msr.error = 0; 1904 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1905 vcpu->run->msr.reason = msr_reason; 1906 vcpu->run->msr.index = index; 1907 vcpu->run->msr.data = data; 1908 vcpu->arch.complete_userspace_io = completion; 1909 1910 return 1; 1911 } 1912 1913 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1914 { 1915 u32 ecx = kvm_rcx_read(vcpu); 1916 u64 data; 1917 int r; 1918 1919 r = kvm_get_msr(vcpu, ecx, &data); 1920 1921 if (!r) { 1922 trace_kvm_msr_read(ecx, data); 1923 1924 kvm_rax_write(vcpu, data & -1u); 1925 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1926 } else { 1927 /* MSR read failed? See if we should ask user space */ 1928 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 1929 complete_fast_rdmsr, r)) 1930 return 0; 1931 trace_kvm_msr_read_ex(ecx); 1932 } 1933 1934 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 1935 } 1936 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1937 1938 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1939 { 1940 u32 ecx = kvm_rcx_read(vcpu); 1941 u64 data = kvm_read_edx_eax(vcpu); 1942 int r; 1943 1944 r = kvm_set_msr(vcpu, ecx, data); 1945 1946 if (!r) { 1947 trace_kvm_msr_write(ecx, data); 1948 } else { 1949 /* MSR write failed? See if we should ask user space */ 1950 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 1951 complete_fast_msr_access, r)) 1952 return 0; 1953 /* Signal all other negative errors to userspace */ 1954 if (r < 0) 1955 return r; 1956 trace_kvm_msr_write_ex(ecx, data); 1957 } 1958 1959 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 1960 } 1961 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1962 1963 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 1964 { 1965 return kvm_skip_emulated_instruction(vcpu); 1966 } 1967 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop); 1968 1969 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 1970 { 1971 /* Treat an INVD instruction as a NOP and just skip it. */ 1972 return kvm_emulate_as_nop(vcpu); 1973 } 1974 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 1975 1976 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 1977 { 1978 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n"); 1979 return kvm_emulate_as_nop(vcpu); 1980 } 1981 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 1982 1983 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 1984 { 1985 kvm_queue_exception(vcpu, UD_VECTOR); 1986 return 1; 1987 } 1988 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 1989 1990 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 1991 { 1992 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n"); 1993 return kvm_emulate_as_nop(vcpu); 1994 } 1995 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 1996 1997 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 1998 { 1999 xfer_to_guest_mode_prepare(); 2000 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2001 xfer_to_guest_mode_work_pending(); 2002 } 2003 2004 /* 2005 * The fast path for frequent and performance sensitive wrmsr emulation, 2006 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2007 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2008 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2009 * other cases which must be called after interrupts are enabled on the host. 2010 */ 2011 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2012 { 2013 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2014 return 1; 2015 2016 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2017 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2018 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2019 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 2020 2021 data &= ~(1 << 12); 2022 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 2023 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 2024 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 2025 trace_kvm_apic_write(APIC_ICR, (u32)data); 2026 return 0; 2027 } 2028 2029 return 1; 2030 } 2031 2032 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2033 { 2034 if (!kvm_can_use_hv_timer(vcpu)) 2035 return 1; 2036 2037 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2038 return 0; 2039 } 2040 2041 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2042 { 2043 u32 msr = kvm_rcx_read(vcpu); 2044 u64 data; 2045 fastpath_t ret = EXIT_FASTPATH_NONE; 2046 2047 switch (msr) { 2048 case APIC_BASE_MSR + (APIC_ICR >> 4): 2049 data = kvm_read_edx_eax(vcpu); 2050 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2051 kvm_skip_emulated_instruction(vcpu); 2052 ret = EXIT_FASTPATH_EXIT_HANDLED; 2053 } 2054 break; 2055 case MSR_IA32_TSC_DEADLINE: 2056 data = kvm_read_edx_eax(vcpu); 2057 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2058 kvm_skip_emulated_instruction(vcpu); 2059 ret = EXIT_FASTPATH_REENTER_GUEST; 2060 } 2061 break; 2062 default: 2063 break; 2064 } 2065 2066 if (ret != EXIT_FASTPATH_NONE) 2067 trace_kvm_msr_write(msr, data); 2068 2069 return ret; 2070 } 2071 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2072 2073 /* 2074 * Adapt set_msr() to msr_io()'s calling convention 2075 */ 2076 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2077 { 2078 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2079 } 2080 2081 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2082 { 2083 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2084 } 2085 2086 #ifdef CONFIG_X86_64 2087 struct pvclock_clock { 2088 int vclock_mode; 2089 u64 cycle_last; 2090 u64 mask; 2091 u32 mult; 2092 u32 shift; 2093 u64 base_cycles; 2094 u64 offset; 2095 }; 2096 2097 struct pvclock_gtod_data { 2098 seqcount_t seq; 2099 2100 struct pvclock_clock clock; /* extract of a clocksource struct */ 2101 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2102 2103 ktime_t offs_boot; 2104 u64 wall_time_sec; 2105 }; 2106 2107 static struct pvclock_gtod_data pvclock_gtod_data; 2108 2109 static void update_pvclock_gtod(struct timekeeper *tk) 2110 { 2111 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2112 2113 write_seqcount_begin(&vdata->seq); 2114 2115 /* copy pvclock gtod data */ 2116 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2117 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2118 vdata->clock.mask = tk->tkr_mono.mask; 2119 vdata->clock.mult = tk->tkr_mono.mult; 2120 vdata->clock.shift = tk->tkr_mono.shift; 2121 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2122 vdata->clock.offset = tk->tkr_mono.base; 2123 2124 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2125 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2126 vdata->raw_clock.mask = tk->tkr_raw.mask; 2127 vdata->raw_clock.mult = tk->tkr_raw.mult; 2128 vdata->raw_clock.shift = tk->tkr_raw.shift; 2129 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2130 vdata->raw_clock.offset = tk->tkr_raw.base; 2131 2132 vdata->wall_time_sec = tk->xtime_sec; 2133 2134 vdata->offs_boot = tk->offs_boot; 2135 2136 write_seqcount_end(&vdata->seq); 2137 } 2138 2139 static s64 get_kvmclock_base_ns(void) 2140 { 2141 /* Count up from boot time, but with the frequency of the raw clock. */ 2142 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2143 } 2144 #else 2145 static s64 get_kvmclock_base_ns(void) 2146 { 2147 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2148 return ktime_get_boottime_ns(); 2149 } 2150 #endif 2151 2152 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2153 { 2154 int version; 2155 int r; 2156 struct pvclock_wall_clock wc; 2157 u32 wc_sec_hi; 2158 u64 wall_nsec; 2159 2160 if (!wall_clock) 2161 return; 2162 2163 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2164 if (r) 2165 return; 2166 2167 if (version & 1) 2168 ++version; /* first time write, random junk */ 2169 2170 ++version; 2171 2172 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2173 return; 2174 2175 /* 2176 * The guest calculates current wall clock time by adding 2177 * system time (updated by kvm_guest_time_update below) to the 2178 * wall clock specified here. We do the reverse here. 2179 */ 2180 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2181 2182 wc.nsec = do_div(wall_nsec, 1000000000); 2183 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2184 wc.version = version; 2185 2186 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2187 2188 if (sec_hi_ofs) { 2189 wc_sec_hi = wall_nsec >> 32; 2190 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2191 &wc_sec_hi, sizeof(wc_sec_hi)); 2192 } 2193 2194 version++; 2195 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2196 } 2197 2198 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2199 bool old_msr, bool host_initiated) 2200 { 2201 struct kvm_arch *ka = &vcpu->kvm->arch; 2202 2203 if (vcpu->vcpu_id == 0 && !host_initiated) { 2204 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2205 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2206 2207 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2208 } 2209 2210 vcpu->arch.time = system_time; 2211 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2212 2213 /* we verify if the enable bit is set... */ 2214 vcpu->arch.pv_time_enabled = false; 2215 if (!(system_time & 1)) 2216 return; 2217 2218 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 2219 &vcpu->arch.pv_time, system_time & ~1ULL, 2220 sizeof(struct pvclock_vcpu_time_info))) 2221 vcpu->arch.pv_time_enabled = true; 2222 2223 return; 2224 } 2225 2226 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2227 { 2228 do_shl32_div32(dividend, divisor); 2229 return dividend; 2230 } 2231 2232 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2233 s8 *pshift, u32 *pmultiplier) 2234 { 2235 uint64_t scaled64; 2236 int32_t shift = 0; 2237 uint64_t tps64; 2238 uint32_t tps32; 2239 2240 tps64 = base_hz; 2241 scaled64 = scaled_hz; 2242 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2243 tps64 >>= 1; 2244 shift--; 2245 } 2246 2247 tps32 = (uint32_t)tps64; 2248 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2249 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2250 scaled64 >>= 1; 2251 else 2252 tps32 <<= 1; 2253 shift++; 2254 } 2255 2256 *pshift = shift; 2257 *pmultiplier = div_frac(scaled64, tps32); 2258 } 2259 2260 #ifdef CONFIG_X86_64 2261 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2262 #endif 2263 2264 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2265 static unsigned long max_tsc_khz; 2266 2267 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2268 { 2269 u64 v = (u64)khz * (1000000 + ppm); 2270 do_div(v, 1000000); 2271 return v; 2272 } 2273 2274 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2275 2276 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2277 { 2278 u64 ratio; 2279 2280 /* Guest TSC same frequency as host TSC? */ 2281 if (!scale) { 2282 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2283 return 0; 2284 } 2285 2286 /* TSC scaling supported? */ 2287 if (!kvm_has_tsc_control) { 2288 if (user_tsc_khz > tsc_khz) { 2289 vcpu->arch.tsc_catchup = 1; 2290 vcpu->arch.tsc_always_catchup = 1; 2291 return 0; 2292 } else { 2293 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2294 return -1; 2295 } 2296 } 2297 2298 /* TSC scaling required - calculate ratio */ 2299 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 2300 user_tsc_khz, tsc_khz); 2301 2302 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 2303 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2304 user_tsc_khz); 2305 return -1; 2306 } 2307 2308 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2309 return 0; 2310 } 2311 2312 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2313 { 2314 u32 thresh_lo, thresh_hi; 2315 int use_scaling = 0; 2316 2317 /* tsc_khz can be zero if TSC calibration fails */ 2318 if (user_tsc_khz == 0) { 2319 /* set tsc_scaling_ratio to a safe value */ 2320 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2321 return -1; 2322 } 2323 2324 /* Compute a scale to convert nanoseconds in TSC cycles */ 2325 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2326 &vcpu->arch.virtual_tsc_shift, 2327 &vcpu->arch.virtual_tsc_mult); 2328 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2329 2330 /* 2331 * Compute the variation in TSC rate which is acceptable 2332 * within the range of tolerance and decide if the 2333 * rate being applied is within that bounds of the hardware 2334 * rate. If so, no scaling or compensation need be done. 2335 */ 2336 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2337 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2338 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2339 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2340 use_scaling = 1; 2341 } 2342 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2343 } 2344 2345 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2346 { 2347 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2348 vcpu->arch.virtual_tsc_mult, 2349 vcpu->arch.virtual_tsc_shift); 2350 tsc += vcpu->arch.this_tsc_write; 2351 return tsc; 2352 } 2353 2354 static inline int gtod_is_based_on_tsc(int mode) 2355 { 2356 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2357 } 2358 2359 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2360 { 2361 #ifdef CONFIG_X86_64 2362 bool vcpus_matched; 2363 struct kvm_arch *ka = &vcpu->kvm->arch; 2364 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2365 2366 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2367 atomic_read(&vcpu->kvm->online_vcpus)); 2368 2369 /* 2370 * Once the masterclock is enabled, always perform request in 2371 * order to update it. 2372 * 2373 * In order to enable masterclock, the host clocksource must be TSC 2374 * and the vcpus need to have matched TSCs. When that happens, 2375 * perform request to enable masterclock. 2376 */ 2377 if (ka->use_master_clock || 2378 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2379 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2380 2381 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2382 atomic_read(&vcpu->kvm->online_vcpus), 2383 ka->use_master_clock, gtod->clock.vclock_mode); 2384 #endif 2385 } 2386 2387 /* 2388 * Multiply tsc by a fixed point number represented by ratio. 2389 * 2390 * The most significant 64-N bits (mult) of ratio represent the 2391 * integral part of the fixed point number; the remaining N bits 2392 * (frac) represent the fractional part, ie. ratio represents a fixed 2393 * point number (mult + frac * 2^(-N)). 2394 * 2395 * N equals to kvm_tsc_scaling_ratio_frac_bits. 2396 */ 2397 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2398 { 2399 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2400 } 2401 2402 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio) 2403 { 2404 u64 _tsc = tsc; 2405 2406 if (ratio != kvm_default_tsc_scaling_ratio) 2407 _tsc = __scale_tsc(ratio, tsc); 2408 2409 return _tsc; 2410 } 2411 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2412 2413 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2414 { 2415 u64 tsc; 2416 2417 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2418 2419 return target_tsc - tsc; 2420 } 2421 2422 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2423 { 2424 return vcpu->arch.l1_tsc_offset + 2425 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2426 } 2427 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2428 2429 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2430 { 2431 u64 nested_offset; 2432 2433 if (l2_multiplier == kvm_default_tsc_scaling_ratio) 2434 nested_offset = l1_offset; 2435 else 2436 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2437 kvm_tsc_scaling_ratio_frac_bits); 2438 2439 nested_offset += l2_offset; 2440 return nested_offset; 2441 } 2442 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2443 2444 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2445 { 2446 if (l2_multiplier != kvm_default_tsc_scaling_ratio) 2447 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2448 kvm_tsc_scaling_ratio_frac_bits); 2449 2450 return l1_multiplier; 2451 } 2452 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2453 2454 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2455 { 2456 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2457 vcpu->arch.l1_tsc_offset, 2458 l1_offset); 2459 2460 vcpu->arch.l1_tsc_offset = l1_offset; 2461 2462 /* 2463 * If we are here because L1 chose not to trap WRMSR to TSC then 2464 * according to the spec this should set L1's TSC (as opposed to 2465 * setting L1's offset for L2). 2466 */ 2467 if (is_guest_mode(vcpu)) 2468 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2469 l1_offset, 2470 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2471 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2472 else 2473 vcpu->arch.tsc_offset = l1_offset; 2474 2475 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2476 } 2477 2478 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2479 { 2480 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2481 2482 /* Userspace is changing the multiplier while L2 is active */ 2483 if (is_guest_mode(vcpu)) 2484 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2485 l1_multiplier, 2486 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2487 else 2488 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2489 2490 if (kvm_has_tsc_control) 2491 static_call(kvm_x86_write_tsc_multiplier)( 2492 vcpu, vcpu->arch.tsc_scaling_ratio); 2493 } 2494 2495 static inline bool kvm_check_tsc_unstable(void) 2496 { 2497 #ifdef CONFIG_X86_64 2498 /* 2499 * TSC is marked unstable when we're running on Hyper-V, 2500 * 'TSC page' clocksource is good. 2501 */ 2502 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2503 return false; 2504 #endif 2505 return check_tsc_unstable(); 2506 } 2507 2508 /* 2509 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2510 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2511 * participates in. 2512 */ 2513 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2514 u64 ns, bool matched) 2515 { 2516 struct kvm *kvm = vcpu->kvm; 2517 2518 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2519 2520 /* 2521 * We also track th most recent recorded KHZ, write and time to 2522 * allow the matching interval to be extended at each write. 2523 */ 2524 kvm->arch.last_tsc_nsec = ns; 2525 kvm->arch.last_tsc_write = tsc; 2526 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2527 kvm->arch.last_tsc_offset = offset; 2528 2529 vcpu->arch.last_guest_tsc = tsc; 2530 2531 kvm_vcpu_write_tsc_offset(vcpu, offset); 2532 2533 if (!matched) { 2534 /* 2535 * We split periods of matched TSC writes into generations. 2536 * For each generation, we track the original measured 2537 * nanosecond time, offset, and write, so if TSCs are in 2538 * sync, we can match exact offset, and if not, we can match 2539 * exact software computation in compute_guest_tsc() 2540 * 2541 * These values are tracked in kvm->arch.cur_xxx variables. 2542 */ 2543 kvm->arch.cur_tsc_generation++; 2544 kvm->arch.cur_tsc_nsec = ns; 2545 kvm->arch.cur_tsc_write = tsc; 2546 kvm->arch.cur_tsc_offset = offset; 2547 kvm->arch.nr_vcpus_matched_tsc = 0; 2548 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2549 kvm->arch.nr_vcpus_matched_tsc++; 2550 } 2551 2552 /* Keep track of which generation this VCPU has synchronized to */ 2553 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2554 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2555 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2556 2557 kvm_track_tsc_matching(vcpu); 2558 } 2559 2560 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2561 { 2562 struct kvm *kvm = vcpu->kvm; 2563 u64 offset, ns, elapsed; 2564 unsigned long flags; 2565 bool matched = false; 2566 bool synchronizing = false; 2567 2568 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2569 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2570 ns = get_kvmclock_base_ns(); 2571 elapsed = ns - kvm->arch.last_tsc_nsec; 2572 2573 if (vcpu->arch.virtual_tsc_khz) { 2574 if (data == 0) { 2575 /* 2576 * detection of vcpu initialization -- need to sync 2577 * with other vCPUs. This particularly helps to keep 2578 * kvm_clock stable after CPU hotplug 2579 */ 2580 synchronizing = true; 2581 } else { 2582 u64 tsc_exp = kvm->arch.last_tsc_write + 2583 nsec_to_cycles(vcpu, elapsed); 2584 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2585 /* 2586 * Special case: TSC write with a small delta (1 second) 2587 * of virtual cycle time against real time is 2588 * interpreted as an attempt to synchronize the CPU. 2589 */ 2590 synchronizing = data < tsc_exp + tsc_hz && 2591 data + tsc_hz > tsc_exp; 2592 } 2593 } 2594 2595 /* 2596 * For a reliable TSC, we can match TSC offsets, and for an unstable 2597 * TSC, we add elapsed time in this computation. We could let the 2598 * compensation code attempt to catch up if we fall behind, but 2599 * it's better to try to match offsets from the beginning. 2600 */ 2601 if (synchronizing && 2602 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2603 if (!kvm_check_tsc_unstable()) { 2604 offset = kvm->arch.cur_tsc_offset; 2605 } else { 2606 u64 delta = nsec_to_cycles(vcpu, elapsed); 2607 data += delta; 2608 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2609 } 2610 matched = true; 2611 } 2612 2613 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2614 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2615 } 2616 2617 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2618 s64 adjustment) 2619 { 2620 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2621 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2622 } 2623 2624 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2625 { 2626 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2627 WARN_ON(adjustment < 0); 2628 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment, 2629 vcpu->arch.l1_tsc_scaling_ratio); 2630 adjust_tsc_offset_guest(vcpu, adjustment); 2631 } 2632 2633 #ifdef CONFIG_X86_64 2634 2635 static u64 read_tsc(void) 2636 { 2637 u64 ret = (u64)rdtsc_ordered(); 2638 u64 last = pvclock_gtod_data.clock.cycle_last; 2639 2640 if (likely(ret >= last)) 2641 return ret; 2642 2643 /* 2644 * GCC likes to generate cmov here, but this branch is extremely 2645 * predictable (it's just a function of time and the likely is 2646 * very likely) and there's a data dependence, so force GCC 2647 * to generate a branch instead. I don't barrier() because 2648 * we don't actually need a barrier, and if this function 2649 * ever gets inlined it will generate worse code. 2650 */ 2651 asm volatile (""); 2652 return last; 2653 } 2654 2655 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2656 int *mode) 2657 { 2658 long v; 2659 u64 tsc_pg_val; 2660 2661 switch (clock->vclock_mode) { 2662 case VDSO_CLOCKMODE_HVCLOCK: 2663 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2664 tsc_timestamp); 2665 if (tsc_pg_val != U64_MAX) { 2666 /* TSC page valid */ 2667 *mode = VDSO_CLOCKMODE_HVCLOCK; 2668 v = (tsc_pg_val - clock->cycle_last) & 2669 clock->mask; 2670 } else { 2671 /* TSC page invalid */ 2672 *mode = VDSO_CLOCKMODE_NONE; 2673 } 2674 break; 2675 case VDSO_CLOCKMODE_TSC: 2676 *mode = VDSO_CLOCKMODE_TSC; 2677 *tsc_timestamp = read_tsc(); 2678 v = (*tsc_timestamp - clock->cycle_last) & 2679 clock->mask; 2680 break; 2681 default: 2682 *mode = VDSO_CLOCKMODE_NONE; 2683 } 2684 2685 if (*mode == VDSO_CLOCKMODE_NONE) 2686 *tsc_timestamp = v = 0; 2687 2688 return v * clock->mult; 2689 } 2690 2691 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2692 { 2693 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2694 unsigned long seq; 2695 int mode; 2696 u64 ns; 2697 2698 do { 2699 seq = read_seqcount_begin(>od->seq); 2700 ns = gtod->raw_clock.base_cycles; 2701 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2702 ns >>= gtod->raw_clock.shift; 2703 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2704 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2705 *t = ns; 2706 2707 return mode; 2708 } 2709 2710 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2711 { 2712 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2713 unsigned long seq; 2714 int mode; 2715 u64 ns; 2716 2717 do { 2718 seq = read_seqcount_begin(>od->seq); 2719 ts->tv_sec = gtod->wall_time_sec; 2720 ns = gtod->clock.base_cycles; 2721 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2722 ns >>= gtod->clock.shift; 2723 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2724 2725 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2726 ts->tv_nsec = ns; 2727 2728 return mode; 2729 } 2730 2731 /* returns true if host is using TSC based clocksource */ 2732 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2733 { 2734 /* checked again under seqlock below */ 2735 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2736 return false; 2737 2738 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2739 tsc_timestamp)); 2740 } 2741 2742 /* returns true if host is using TSC based clocksource */ 2743 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2744 u64 *tsc_timestamp) 2745 { 2746 /* checked again under seqlock below */ 2747 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2748 return false; 2749 2750 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2751 } 2752 #endif 2753 2754 /* 2755 * 2756 * Assuming a stable TSC across physical CPUS, and a stable TSC 2757 * across virtual CPUs, the following condition is possible. 2758 * Each numbered line represents an event visible to both 2759 * CPUs at the next numbered event. 2760 * 2761 * "timespecX" represents host monotonic time. "tscX" represents 2762 * RDTSC value. 2763 * 2764 * VCPU0 on CPU0 | VCPU1 on CPU1 2765 * 2766 * 1. read timespec0,tsc0 2767 * 2. | timespec1 = timespec0 + N 2768 * | tsc1 = tsc0 + M 2769 * 3. transition to guest | transition to guest 2770 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2771 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2772 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2773 * 2774 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2775 * 2776 * - ret0 < ret1 2777 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2778 * ... 2779 * - 0 < N - M => M < N 2780 * 2781 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2782 * always the case (the difference between two distinct xtime instances 2783 * might be smaller then the difference between corresponding TSC reads, 2784 * when updating guest vcpus pvclock areas). 2785 * 2786 * To avoid that problem, do not allow visibility of distinct 2787 * system_timestamp/tsc_timestamp values simultaneously: use a master 2788 * copy of host monotonic time values. Update that master copy 2789 * in lockstep. 2790 * 2791 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2792 * 2793 */ 2794 2795 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2796 { 2797 #ifdef CONFIG_X86_64 2798 struct kvm_arch *ka = &kvm->arch; 2799 int vclock_mode; 2800 bool host_tsc_clocksource, vcpus_matched; 2801 2802 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2803 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2804 atomic_read(&kvm->online_vcpus)); 2805 2806 /* 2807 * If the host uses TSC clock, then passthrough TSC as stable 2808 * to the guest. 2809 */ 2810 host_tsc_clocksource = kvm_get_time_and_clockread( 2811 &ka->master_kernel_ns, 2812 &ka->master_cycle_now); 2813 2814 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2815 && !ka->backwards_tsc_observed 2816 && !ka->boot_vcpu_runs_old_kvmclock; 2817 2818 if (ka->use_master_clock) 2819 atomic_set(&kvm_guest_has_master_clock, 1); 2820 2821 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2822 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2823 vcpus_matched); 2824 #endif 2825 } 2826 2827 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2828 { 2829 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2830 } 2831 2832 static void __kvm_start_pvclock_update(struct kvm *kvm) 2833 { 2834 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2835 write_seqcount_begin(&kvm->arch.pvclock_sc); 2836 } 2837 2838 static void kvm_start_pvclock_update(struct kvm *kvm) 2839 { 2840 kvm_make_mclock_inprogress_request(kvm); 2841 2842 /* no guest entries from this point */ 2843 __kvm_start_pvclock_update(kvm); 2844 } 2845 2846 static void kvm_end_pvclock_update(struct kvm *kvm) 2847 { 2848 struct kvm_arch *ka = &kvm->arch; 2849 struct kvm_vcpu *vcpu; 2850 unsigned long i; 2851 2852 write_seqcount_end(&ka->pvclock_sc); 2853 raw_spin_unlock_irq(&ka->tsc_write_lock); 2854 kvm_for_each_vcpu(i, vcpu, kvm) 2855 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2856 2857 /* guest entries allowed */ 2858 kvm_for_each_vcpu(i, vcpu, kvm) 2859 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2860 } 2861 2862 static void kvm_update_masterclock(struct kvm *kvm) 2863 { 2864 kvm_hv_invalidate_tsc_page(kvm); 2865 kvm_start_pvclock_update(kvm); 2866 pvclock_update_vm_gtod_copy(kvm); 2867 kvm_end_pvclock_update(kvm); 2868 } 2869 2870 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2871 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2872 { 2873 struct kvm_arch *ka = &kvm->arch; 2874 struct pvclock_vcpu_time_info hv_clock; 2875 2876 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2877 get_cpu(); 2878 2879 data->flags = 0; 2880 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) { 2881 #ifdef CONFIG_X86_64 2882 struct timespec64 ts; 2883 2884 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 2885 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 2886 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 2887 } else 2888 #endif 2889 data->host_tsc = rdtsc(); 2890 2891 data->flags |= KVM_CLOCK_TSC_STABLE; 2892 hv_clock.tsc_timestamp = ka->master_cycle_now; 2893 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2894 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2895 &hv_clock.tsc_shift, 2896 &hv_clock.tsc_to_system_mul); 2897 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 2898 } else { 2899 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 2900 } 2901 2902 put_cpu(); 2903 } 2904 2905 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2906 { 2907 struct kvm_arch *ka = &kvm->arch; 2908 unsigned seq; 2909 2910 do { 2911 seq = read_seqcount_begin(&ka->pvclock_sc); 2912 __get_kvmclock(kvm, data); 2913 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 2914 } 2915 2916 u64 get_kvmclock_ns(struct kvm *kvm) 2917 { 2918 struct kvm_clock_data data; 2919 2920 get_kvmclock(kvm, &data); 2921 return data.clock; 2922 } 2923 2924 static void kvm_setup_pvclock_page(struct kvm_vcpu *v, 2925 struct gfn_to_hva_cache *cache, 2926 unsigned int offset) 2927 { 2928 struct kvm_vcpu_arch *vcpu = &v->arch; 2929 struct pvclock_vcpu_time_info guest_hv_clock; 2930 2931 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache, 2932 &guest_hv_clock, offset, sizeof(guest_hv_clock)))) 2933 return; 2934 2935 /* This VCPU is paused, but it's legal for a guest to read another 2936 * VCPU's kvmclock, so we really have to follow the specification where 2937 * it says that version is odd if data is being modified, and even after 2938 * it is consistent. 2939 * 2940 * Version field updates must be kept separate. This is because 2941 * kvm_write_guest_cached might use a "rep movs" instruction, and 2942 * writes within a string instruction are weakly ordered. So there 2943 * are three writes overall. 2944 * 2945 * As a small optimization, only write the version field in the first 2946 * and third write. The vcpu->pv_time cache is still valid, because the 2947 * version field is the first in the struct. 2948 */ 2949 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2950 2951 if (guest_hv_clock.version & 1) 2952 ++guest_hv_clock.version; /* first time write, random junk */ 2953 2954 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2955 kvm_write_guest_offset_cached(v->kvm, cache, 2956 &vcpu->hv_clock, offset, 2957 sizeof(vcpu->hv_clock.version)); 2958 2959 smp_wmb(); 2960 2961 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2962 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2963 2964 if (vcpu->pvclock_set_guest_stopped_request) { 2965 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2966 vcpu->pvclock_set_guest_stopped_request = false; 2967 } 2968 2969 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2970 2971 kvm_write_guest_offset_cached(v->kvm, cache, 2972 &vcpu->hv_clock, offset, 2973 sizeof(vcpu->hv_clock)); 2974 2975 smp_wmb(); 2976 2977 vcpu->hv_clock.version++; 2978 kvm_write_guest_offset_cached(v->kvm, cache, 2979 &vcpu->hv_clock, offset, 2980 sizeof(vcpu->hv_clock.version)); 2981 } 2982 2983 static int kvm_guest_time_update(struct kvm_vcpu *v) 2984 { 2985 unsigned long flags, tgt_tsc_khz; 2986 unsigned seq; 2987 struct kvm_vcpu_arch *vcpu = &v->arch; 2988 struct kvm_arch *ka = &v->kvm->arch; 2989 s64 kernel_ns; 2990 u64 tsc_timestamp, host_tsc; 2991 u8 pvclock_flags; 2992 bool use_master_clock; 2993 2994 kernel_ns = 0; 2995 host_tsc = 0; 2996 2997 /* 2998 * If the host uses TSC clock, then passthrough TSC as stable 2999 * to the guest. 3000 */ 3001 do { 3002 seq = read_seqcount_begin(&ka->pvclock_sc); 3003 use_master_clock = ka->use_master_clock; 3004 if (use_master_clock) { 3005 host_tsc = ka->master_cycle_now; 3006 kernel_ns = ka->master_kernel_ns; 3007 } 3008 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3009 3010 /* Keep irq disabled to prevent changes to the clock */ 3011 local_irq_save(flags); 3012 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 3013 if (unlikely(tgt_tsc_khz == 0)) { 3014 local_irq_restore(flags); 3015 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3016 return 1; 3017 } 3018 if (!use_master_clock) { 3019 host_tsc = rdtsc(); 3020 kernel_ns = get_kvmclock_base_ns(); 3021 } 3022 3023 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3024 3025 /* 3026 * We may have to catch up the TSC to match elapsed wall clock 3027 * time for two reasons, even if kvmclock is used. 3028 * 1) CPU could have been running below the maximum TSC rate 3029 * 2) Broken TSC compensation resets the base at each VCPU 3030 * entry to avoid unknown leaps of TSC even when running 3031 * again on the same CPU. This may cause apparent elapsed 3032 * time to disappear, and the guest to stand still or run 3033 * very slowly. 3034 */ 3035 if (vcpu->tsc_catchup) { 3036 u64 tsc = compute_guest_tsc(v, kernel_ns); 3037 if (tsc > tsc_timestamp) { 3038 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3039 tsc_timestamp = tsc; 3040 } 3041 } 3042 3043 local_irq_restore(flags); 3044 3045 /* With all the info we got, fill in the values */ 3046 3047 if (kvm_has_tsc_control) 3048 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz, 3049 v->arch.l1_tsc_scaling_ratio); 3050 3051 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3052 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3053 &vcpu->hv_clock.tsc_shift, 3054 &vcpu->hv_clock.tsc_to_system_mul); 3055 vcpu->hw_tsc_khz = tgt_tsc_khz; 3056 } 3057 3058 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3059 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3060 vcpu->last_guest_tsc = tsc_timestamp; 3061 3062 /* If the host uses TSC clocksource, then it is stable */ 3063 pvclock_flags = 0; 3064 if (use_master_clock) 3065 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3066 3067 vcpu->hv_clock.flags = pvclock_flags; 3068 3069 if (vcpu->pv_time_enabled) 3070 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0); 3071 if (vcpu->xen.vcpu_info_set) 3072 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache, 3073 offsetof(struct compat_vcpu_info, time)); 3074 if (vcpu->xen.vcpu_time_info_set) 3075 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0); 3076 if (!v->vcpu_idx) 3077 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3078 return 0; 3079 } 3080 3081 /* 3082 * kvmclock updates which are isolated to a given vcpu, such as 3083 * vcpu->cpu migration, should not allow system_timestamp from 3084 * the rest of the vcpus to remain static. Otherwise ntp frequency 3085 * correction applies to one vcpu's system_timestamp but not 3086 * the others. 3087 * 3088 * So in those cases, request a kvmclock update for all vcpus. 3089 * We need to rate-limit these requests though, as they can 3090 * considerably slow guests that have a large number of vcpus. 3091 * The time for a remote vcpu to update its kvmclock is bound 3092 * by the delay we use to rate-limit the updates. 3093 */ 3094 3095 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3096 3097 static void kvmclock_update_fn(struct work_struct *work) 3098 { 3099 unsigned long i; 3100 struct delayed_work *dwork = to_delayed_work(work); 3101 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3102 kvmclock_update_work); 3103 struct kvm *kvm = container_of(ka, struct kvm, arch); 3104 struct kvm_vcpu *vcpu; 3105 3106 kvm_for_each_vcpu(i, vcpu, kvm) { 3107 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3108 kvm_vcpu_kick(vcpu); 3109 } 3110 } 3111 3112 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3113 { 3114 struct kvm *kvm = v->kvm; 3115 3116 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3117 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3118 KVMCLOCK_UPDATE_DELAY); 3119 } 3120 3121 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3122 3123 static void kvmclock_sync_fn(struct work_struct *work) 3124 { 3125 struct delayed_work *dwork = to_delayed_work(work); 3126 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3127 kvmclock_sync_work); 3128 struct kvm *kvm = container_of(ka, struct kvm, arch); 3129 3130 if (!kvmclock_periodic_sync) 3131 return; 3132 3133 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3134 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3135 KVMCLOCK_SYNC_PERIOD); 3136 } 3137 3138 /* 3139 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3140 */ 3141 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3142 { 3143 /* McStatusWrEn enabled? */ 3144 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3145 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3146 3147 return false; 3148 } 3149 3150 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3151 { 3152 u64 mcg_cap = vcpu->arch.mcg_cap; 3153 unsigned bank_num = mcg_cap & 0xff; 3154 u32 msr = msr_info->index; 3155 u64 data = msr_info->data; 3156 3157 switch (msr) { 3158 case MSR_IA32_MCG_STATUS: 3159 vcpu->arch.mcg_status = data; 3160 break; 3161 case MSR_IA32_MCG_CTL: 3162 if (!(mcg_cap & MCG_CTL_P) && 3163 (data || !msr_info->host_initiated)) 3164 return 1; 3165 if (data != 0 && data != ~(u64)0) 3166 return 1; 3167 vcpu->arch.mcg_ctl = data; 3168 break; 3169 default: 3170 if (msr >= MSR_IA32_MC0_CTL && 3171 msr < MSR_IA32_MCx_CTL(bank_num)) { 3172 u32 offset = array_index_nospec( 3173 msr - MSR_IA32_MC0_CTL, 3174 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3175 3176 /* only 0 or all 1s can be written to IA32_MCi_CTL 3177 * some Linux kernels though clear bit 10 in bank 4 to 3178 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 3179 * this to avoid an uncatched #GP in the guest 3180 */ 3181 if ((offset & 0x3) == 0 && 3182 data != 0 && (data | (1 << 10)) != ~(u64)0) 3183 return -1; 3184 3185 /* MCi_STATUS */ 3186 if (!msr_info->host_initiated && 3187 (offset & 0x3) == 1 && data != 0) { 3188 if (!can_set_mci_status(vcpu)) 3189 return -1; 3190 } 3191 3192 vcpu->arch.mce_banks[offset] = data; 3193 break; 3194 } 3195 return 1; 3196 } 3197 return 0; 3198 } 3199 3200 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3201 { 3202 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3203 3204 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3205 } 3206 3207 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3208 { 3209 gpa_t gpa = data & ~0x3f; 3210 3211 /* Bits 4:5 are reserved, Should be zero */ 3212 if (data & 0x30) 3213 return 1; 3214 3215 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3216 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3217 return 1; 3218 3219 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3220 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3221 return 1; 3222 3223 if (!lapic_in_kernel(vcpu)) 3224 return data ? 1 : 0; 3225 3226 vcpu->arch.apf.msr_en_val = data; 3227 3228 if (!kvm_pv_async_pf_enabled(vcpu)) { 3229 kvm_clear_async_pf_completion_queue(vcpu); 3230 kvm_async_pf_hash_reset(vcpu); 3231 return 0; 3232 } 3233 3234 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3235 sizeof(u64))) 3236 return 1; 3237 3238 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3239 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3240 3241 kvm_async_pf_wakeup_all(vcpu); 3242 3243 return 0; 3244 } 3245 3246 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3247 { 3248 /* Bits 8-63 are reserved */ 3249 if (data >> 8) 3250 return 1; 3251 3252 if (!lapic_in_kernel(vcpu)) 3253 return 1; 3254 3255 vcpu->arch.apf.msr_int_val = data; 3256 3257 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3258 3259 return 0; 3260 } 3261 3262 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3263 { 3264 vcpu->arch.pv_time_enabled = false; 3265 vcpu->arch.time = 0; 3266 } 3267 3268 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3269 { 3270 ++vcpu->stat.tlb_flush; 3271 static_call(kvm_x86_tlb_flush_all)(vcpu); 3272 } 3273 3274 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3275 { 3276 ++vcpu->stat.tlb_flush; 3277 3278 if (!tdp_enabled) { 3279 /* 3280 * A TLB flush on behalf of the guest is equivalent to 3281 * INVPCID(all), toggling CR4.PGE, etc., which requires 3282 * a forced sync of the shadow page tables. Ensure all the 3283 * roots are synced and the guest TLB in hardware is clean. 3284 */ 3285 kvm_mmu_sync_roots(vcpu); 3286 kvm_mmu_sync_prev_roots(vcpu); 3287 } 3288 3289 static_call(kvm_x86_tlb_flush_guest)(vcpu); 3290 } 3291 3292 3293 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3294 { 3295 ++vcpu->stat.tlb_flush; 3296 static_call(kvm_x86_tlb_flush_current)(vcpu); 3297 } 3298 3299 /* 3300 * Service "local" TLB flush requests, which are specific to the current MMU 3301 * context. In addition to the generic event handling in vcpu_enter_guest(), 3302 * TLB flushes that are targeted at an MMU context also need to be serviced 3303 * prior before nested VM-Enter/VM-Exit. 3304 */ 3305 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3306 { 3307 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3308 kvm_vcpu_flush_tlb_current(vcpu); 3309 3310 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3311 kvm_vcpu_flush_tlb_guest(vcpu); 3312 } 3313 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3314 3315 static void record_steal_time(struct kvm_vcpu *vcpu) 3316 { 3317 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3318 struct kvm_steal_time __user *st; 3319 struct kvm_memslots *slots; 3320 u64 steal; 3321 u32 version; 3322 3323 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3324 kvm_xen_runstate_set_running(vcpu); 3325 return; 3326 } 3327 3328 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3329 return; 3330 3331 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3332 return; 3333 3334 slots = kvm_memslots(vcpu->kvm); 3335 3336 if (unlikely(slots->generation != ghc->generation || 3337 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3338 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3339 3340 /* We rely on the fact that it fits in a single page. */ 3341 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3342 3343 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) || 3344 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3345 return; 3346 } 3347 3348 st = (struct kvm_steal_time __user *)ghc->hva; 3349 /* 3350 * Doing a TLB flush here, on the guest's behalf, can avoid 3351 * expensive IPIs. 3352 */ 3353 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3354 u8 st_preempted = 0; 3355 int err = -EFAULT; 3356 3357 if (!user_access_begin(st, sizeof(*st))) 3358 return; 3359 3360 asm volatile("1: xchgb %0, %2\n" 3361 "xor %1, %1\n" 3362 "2:\n" 3363 _ASM_EXTABLE_UA(1b, 2b) 3364 : "+q" (st_preempted), 3365 "+&r" (err), 3366 "+m" (st->preempted)); 3367 if (err) 3368 goto out; 3369 3370 user_access_end(); 3371 3372 vcpu->arch.st.preempted = 0; 3373 3374 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3375 st_preempted & KVM_VCPU_FLUSH_TLB); 3376 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3377 kvm_vcpu_flush_tlb_guest(vcpu); 3378 3379 if (!user_access_begin(st, sizeof(*st))) 3380 goto dirty; 3381 } else { 3382 if (!user_access_begin(st, sizeof(*st))) 3383 return; 3384 3385 unsafe_put_user(0, &st->preempted, out); 3386 vcpu->arch.st.preempted = 0; 3387 } 3388 3389 unsafe_get_user(version, &st->version, out); 3390 if (version & 1) 3391 version += 1; /* first time write, random junk */ 3392 3393 version += 1; 3394 unsafe_put_user(version, &st->version, out); 3395 3396 smp_wmb(); 3397 3398 unsafe_get_user(steal, &st->steal, out); 3399 steal += current->sched_info.run_delay - 3400 vcpu->arch.st.last_steal; 3401 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3402 unsafe_put_user(steal, &st->steal, out); 3403 3404 version += 1; 3405 unsafe_put_user(version, &st->version, out); 3406 3407 out: 3408 user_access_end(); 3409 dirty: 3410 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3411 } 3412 3413 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3414 { 3415 bool pr = false; 3416 u32 msr = msr_info->index; 3417 u64 data = msr_info->data; 3418 3419 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3420 return kvm_xen_write_hypercall_page(vcpu, data); 3421 3422 switch (msr) { 3423 case MSR_AMD64_NB_CFG: 3424 case MSR_IA32_UCODE_WRITE: 3425 case MSR_VM_HSAVE_PA: 3426 case MSR_AMD64_PATCH_LOADER: 3427 case MSR_AMD64_BU_CFG2: 3428 case MSR_AMD64_DC_CFG: 3429 case MSR_F15H_EX_CFG: 3430 break; 3431 3432 case MSR_IA32_UCODE_REV: 3433 if (msr_info->host_initiated) 3434 vcpu->arch.microcode_version = data; 3435 break; 3436 case MSR_IA32_ARCH_CAPABILITIES: 3437 if (!msr_info->host_initiated) 3438 return 1; 3439 vcpu->arch.arch_capabilities = data; 3440 break; 3441 case MSR_IA32_PERF_CAPABILITIES: { 3442 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3443 3444 if (!msr_info->host_initiated) 3445 return 1; 3446 if (kvm_get_msr_feature(&msr_ent)) 3447 return 1; 3448 if (data & ~msr_ent.data) 3449 return 1; 3450 3451 vcpu->arch.perf_capabilities = data; 3452 3453 return 0; 3454 } 3455 case MSR_EFER: 3456 return set_efer(vcpu, msr_info); 3457 case MSR_K7_HWCR: 3458 data &= ~(u64)0x40; /* ignore flush filter disable */ 3459 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3460 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3461 3462 /* Handle McStatusWrEn */ 3463 if (data == BIT_ULL(18)) { 3464 vcpu->arch.msr_hwcr = data; 3465 } else if (data != 0) { 3466 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3467 data); 3468 return 1; 3469 } 3470 break; 3471 case MSR_FAM10H_MMIO_CONF_BASE: 3472 if (data != 0) { 3473 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3474 "0x%llx\n", data); 3475 return 1; 3476 } 3477 break; 3478 case 0x200 ... 0x2ff: 3479 return kvm_mtrr_set_msr(vcpu, msr, data); 3480 case MSR_IA32_APICBASE: 3481 return kvm_set_apic_base(vcpu, msr_info); 3482 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3483 return kvm_x2apic_msr_write(vcpu, msr, data); 3484 case MSR_IA32_TSC_DEADLINE: 3485 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3486 break; 3487 case MSR_IA32_TSC_ADJUST: 3488 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3489 if (!msr_info->host_initiated) { 3490 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3491 adjust_tsc_offset_guest(vcpu, adj); 3492 /* Before back to guest, tsc_timestamp must be adjusted 3493 * as well, otherwise guest's percpu pvclock time could jump. 3494 */ 3495 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3496 } 3497 vcpu->arch.ia32_tsc_adjust_msr = data; 3498 } 3499 break; 3500 case MSR_IA32_MISC_ENABLE: 3501 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3502 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3503 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3504 return 1; 3505 vcpu->arch.ia32_misc_enable_msr = data; 3506 kvm_update_cpuid_runtime(vcpu); 3507 } else { 3508 vcpu->arch.ia32_misc_enable_msr = data; 3509 } 3510 break; 3511 case MSR_IA32_SMBASE: 3512 if (!msr_info->host_initiated) 3513 return 1; 3514 vcpu->arch.smbase = data; 3515 break; 3516 case MSR_IA32_POWER_CTL: 3517 vcpu->arch.msr_ia32_power_ctl = data; 3518 break; 3519 case MSR_IA32_TSC: 3520 if (msr_info->host_initiated) { 3521 kvm_synchronize_tsc(vcpu, data); 3522 } else { 3523 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3524 adjust_tsc_offset_guest(vcpu, adj); 3525 vcpu->arch.ia32_tsc_adjust_msr += adj; 3526 } 3527 break; 3528 case MSR_IA32_XSS: 3529 if (!msr_info->host_initiated && 3530 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3531 return 1; 3532 /* 3533 * KVM supports exposing PT to the guest, but does not support 3534 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3535 * XSAVES/XRSTORS to save/restore PT MSRs. 3536 */ 3537 if (data & ~supported_xss) 3538 return 1; 3539 vcpu->arch.ia32_xss = data; 3540 kvm_update_cpuid_runtime(vcpu); 3541 break; 3542 case MSR_SMI_COUNT: 3543 if (!msr_info->host_initiated) 3544 return 1; 3545 vcpu->arch.smi_count = data; 3546 break; 3547 case MSR_KVM_WALL_CLOCK_NEW: 3548 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3549 return 1; 3550 3551 vcpu->kvm->arch.wall_clock = data; 3552 kvm_write_wall_clock(vcpu->kvm, data, 0); 3553 break; 3554 case MSR_KVM_WALL_CLOCK: 3555 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3556 return 1; 3557 3558 vcpu->kvm->arch.wall_clock = data; 3559 kvm_write_wall_clock(vcpu->kvm, data, 0); 3560 break; 3561 case MSR_KVM_SYSTEM_TIME_NEW: 3562 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3563 return 1; 3564 3565 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3566 break; 3567 case MSR_KVM_SYSTEM_TIME: 3568 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3569 return 1; 3570 3571 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3572 break; 3573 case MSR_KVM_ASYNC_PF_EN: 3574 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3575 return 1; 3576 3577 if (kvm_pv_enable_async_pf(vcpu, data)) 3578 return 1; 3579 break; 3580 case MSR_KVM_ASYNC_PF_INT: 3581 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3582 return 1; 3583 3584 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3585 return 1; 3586 break; 3587 case MSR_KVM_ASYNC_PF_ACK: 3588 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3589 return 1; 3590 if (data & 0x1) { 3591 vcpu->arch.apf.pageready_pending = false; 3592 kvm_check_async_pf_completion(vcpu); 3593 } 3594 break; 3595 case MSR_KVM_STEAL_TIME: 3596 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3597 return 1; 3598 3599 if (unlikely(!sched_info_on())) 3600 return 1; 3601 3602 if (data & KVM_STEAL_RESERVED_MASK) 3603 return 1; 3604 3605 vcpu->arch.st.msr_val = data; 3606 3607 if (!(data & KVM_MSR_ENABLED)) 3608 break; 3609 3610 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3611 3612 break; 3613 case MSR_KVM_PV_EOI_EN: 3614 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3615 return 1; 3616 3617 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3618 return 1; 3619 break; 3620 3621 case MSR_KVM_POLL_CONTROL: 3622 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3623 return 1; 3624 3625 /* only enable bit supported */ 3626 if (data & (-1ULL << 1)) 3627 return 1; 3628 3629 vcpu->arch.msr_kvm_poll_control = data; 3630 break; 3631 3632 case MSR_IA32_MCG_CTL: 3633 case MSR_IA32_MCG_STATUS: 3634 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3635 return set_msr_mce(vcpu, msr_info); 3636 3637 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3638 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3639 pr = true; 3640 fallthrough; 3641 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3642 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3643 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3644 return kvm_pmu_set_msr(vcpu, msr_info); 3645 3646 if (pr || data != 0) 3647 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3648 "0x%x data 0x%llx\n", msr, data); 3649 break; 3650 case MSR_K7_CLK_CTL: 3651 /* 3652 * Ignore all writes to this no longer documented MSR. 3653 * Writes are only relevant for old K7 processors, 3654 * all pre-dating SVM, but a recommended workaround from 3655 * AMD for these chips. It is possible to specify the 3656 * affected processor models on the command line, hence 3657 * the need to ignore the workaround. 3658 */ 3659 break; 3660 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3661 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3662 case HV_X64_MSR_SYNDBG_OPTIONS: 3663 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3664 case HV_X64_MSR_CRASH_CTL: 3665 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3666 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3667 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3668 case HV_X64_MSR_TSC_EMULATION_STATUS: 3669 return kvm_hv_set_msr_common(vcpu, msr, data, 3670 msr_info->host_initiated); 3671 case MSR_IA32_BBL_CR_CTL3: 3672 /* Drop writes to this legacy MSR -- see rdmsr 3673 * counterpart for further detail. 3674 */ 3675 if (report_ignored_msrs) 3676 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3677 msr, data); 3678 break; 3679 case MSR_AMD64_OSVW_ID_LENGTH: 3680 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3681 return 1; 3682 vcpu->arch.osvw.length = data; 3683 break; 3684 case MSR_AMD64_OSVW_STATUS: 3685 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3686 return 1; 3687 vcpu->arch.osvw.status = data; 3688 break; 3689 case MSR_PLATFORM_INFO: 3690 if (!msr_info->host_initiated || 3691 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3692 cpuid_fault_enabled(vcpu))) 3693 return 1; 3694 vcpu->arch.msr_platform_info = data; 3695 break; 3696 case MSR_MISC_FEATURES_ENABLES: 3697 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3698 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3699 !supports_cpuid_fault(vcpu))) 3700 return 1; 3701 vcpu->arch.msr_misc_features_enables = data; 3702 break; 3703 #ifdef CONFIG_X86_64 3704 case MSR_IA32_XFD: 3705 if (!msr_info->host_initiated && 3706 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3707 return 1; 3708 3709 if (data & ~(XFEATURE_MASK_USER_DYNAMIC & 3710 vcpu->arch.guest_supported_xcr0)) 3711 return 1; 3712 3713 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3714 break; 3715 case MSR_IA32_XFD_ERR: 3716 if (!msr_info->host_initiated && 3717 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3718 return 1; 3719 3720 if (data & ~(XFEATURE_MASK_USER_DYNAMIC & 3721 vcpu->arch.guest_supported_xcr0)) 3722 return 1; 3723 3724 vcpu->arch.guest_fpu.xfd_err = data; 3725 break; 3726 #endif 3727 default: 3728 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3729 return kvm_pmu_set_msr(vcpu, msr_info); 3730 return KVM_MSR_RET_INVALID; 3731 } 3732 return 0; 3733 } 3734 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3735 3736 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3737 { 3738 u64 data; 3739 u64 mcg_cap = vcpu->arch.mcg_cap; 3740 unsigned bank_num = mcg_cap & 0xff; 3741 3742 switch (msr) { 3743 case MSR_IA32_P5_MC_ADDR: 3744 case MSR_IA32_P5_MC_TYPE: 3745 data = 0; 3746 break; 3747 case MSR_IA32_MCG_CAP: 3748 data = vcpu->arch.mcg_cap; 3749 break; 3750 case MSR_IA32_MCG_CTL: 3751 if (!(mcg_cap & MCG_CTL_P) && !host) 3752 return 1; 3753 data = vcpu->arch.mcg_ctl; 3754 break; 3755 case MSR_IA32_MCG_STATUS: 3756 data = vcpu->arch.mcg_status; 3757 break; 3758 default: 3759 if (msr >= MSR_IA32_MC0_CTL && 3760 msr < MSR_IA32_MCx_CTL(bank_num)) { 3761 u32 offset = array_index_nospec( 3762 msr - MSR_IA32_MC0_CTL, 3763 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3764 3765 data = vcpu->arch.mce_banks[offset]; 3766 break; 3767 } 3768 return 1; 3769 } 3770 *pdata = data; 3771 return 0; 3772 } 3773 3774 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3775 { 3776 switch (msr_info->index) { 3777 case MSR_IA32_PLATFORM_ID: 3778 case MSR_IA32_EBL_CR_POWERON: 3779 case MSR_IA32_LASTBRANCHFROMIP: 3780 case MSR_IA32_LASTBRANCHTOIP: 3781 case MSR_IA32_LASTINTFROMIP: 3782 case MSR_IA32_LASTINTTOIP: 3783 case MSR_AMD64_SYSCFG: 3784 case MSR_K8_TSEG_ADDR: 3785 case MSR_K8_TSEG_MASK: 3786 case MSR_VM_HSAVE_PA: 3787 case MSR_K8_INT_PENDING_MSG: 3788 case MSR_AMD64_NB_CFG: 3789 case MSR_FAM10H_MMIO_CONF_BASE: 3790 case MSR_AMD64_BU_CFG2: 3791 case MSR_IA32_PERF_CTL: 3792 case MSR_AMD64_DC_CFG: 3793 case MSR_F15H_EX_CFG: 3794 /* 3795 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3796 * limit) MSRs. Just return 0, as we do not want to expose the host 3797 * data here. Do not conditionalize this on CPUID, as KVM does not do 3798 * so for existing CPU-specific MSRs. 3799 */ 3800 case MSR_RAPL_POWER_UNIT: 3801 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3802 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3803 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3804 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3805 msr_info->data = 0; 3806 break; 3807 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3808 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3809 return kvm_pmu_get_msr(vcpu, msr_info); 3810 if (!msr_info->host_initiated) 3811 return 1; 3812 msr_info->data = 0; 3813 break; 3814 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3815 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3816 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3817 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3818 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3819 return kvm_pmu_get_msr(vcpu, msr_info); 3820 msr_info->data = 0; 3821 break; 3822 case MSR_IA32_UCODE_REV: 3823 msr_info->data = vcpu->arch.microcode_version; 3824 break; 3825 case MSR_IA32_ARCH_CAPABILITIES: 3826 if (!msr_info->host_initiated && 3827 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3828 return 1; 3829 msr_info->data = vcpu->arch.arch_capabilities; 3830 break; 3831 case MSR_IA32_PERF_CAPABILITIES: 3832 if (!msr_info->host_initiated && 3833 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3834 return 1; 3835 msr_info->data = vcpu->arch.perf_capabilities; 3836 break; 3837 case MSR_IA32_POWER_CTL: 3838 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3839 break; 3840 case MSR_IA32_TSC: { 3841 /* 3842 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3843 * even when not intercepted. AMD manual doesn't explicitly 3844 * state this but appears to behave the same. 3845 * 3846 * On userspace reads and writes, however, we unconditionally 3847 * return L1's TSC value to ensure backwards-compatible 3848 * behavior for migration. 3849 */ 3850 u64 offset, ratio; 3851 3852 if (msr_info->host_initiated) { 3853 offset = vcpu->arch.l1_tsc_offset; 3854 ratio = vcpu->arch.l1_tsc_scaling_ratio; 3855 } else { 3856 offset = vcpu->arch.tsc_offset; 3857 ratio = vcpu->arch.tsc_scaling_ratio; 3858 } 3859 3860 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset; 3861 break; 3862 } 3863 case MSR_MTRRcap: 3864 case 0x200 ... 0x2ff: 3865 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3866 case 0xcd: /* fsb frequency */ 3867 msr_info->data = 3; 3868 break; 3869 /* 3870 * MSR_EBC_FREQUENCY_ID 3871 * Conservative value valid for even the basic CPU models. 3872 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3873 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3874 * and 266MHz for model 3, or 4. Set Core Clock 3875 * Frequency to System Bus Frequency Ratio to 1 (bits 3876 * 31:24) even though these are only valid for CPU 3877 * models > 2, however guests may end up dividing or 3878 * multiplying by zero otherwise. 3879 */ 3880 case MSR_EBC_FREQUENCY_ID: 3881 msr_info->data = 1 << 24; 3882 break; 3883 case MSR_IA32_APICBASE: 3884 msr_info->data = kvm_get_apic_base(vcpu); 3885 break; 3886 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3887 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3888 case MSR_IA32_TSC_DEADLINE: 3889 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3890 break; 3891 case MSR_IA32_TSC_ADJUST: 3892 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3893 break; 3894 case MSR_IA32_MISC_ENABLE: 3895 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3896 break; 3897 case MSR_IA32_SMBASE: 3898 if (!msr_info->host_initiated) 3899 return 1; 3900 msr_info->data = vcpu->arch.smbase; 3901 break; 3902 case MSR_SMI_COUNT: 3903 msr_info->data = vcpu->arch.smi_count; 3904 break; 3905 case MSR_IA32_PERF_STATUS: 3906 /* TSC increment by tick */ 3907 msr_info->data = 1000ULL; 3908 /* CPU multiplier */ 3909 msr_info->data |= (((uint64_t)4ULL) << 40); 3910 break; 3911 case MSR_EFER: 3912 msr_info->data = vcpu->arch.efer; 3913 break; 3914 case MSR_KVM_WALL_CLOCK: 3915 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3916 return 1; 3917 3918 msr_info->data = vcpu->kvm->arch.wall_clock; 3919 break; 3920 case MSR_KVM_WALL_CLOCK_NEW: 3921 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3922 return 1; 3923 3924 msr_info->data = vcpu->kvm->arch.wall_clock; 3925 break; 3926 case MSR_KVM_SYSTEM_TIME: 3927 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3928 return 1; 3929 3930 msr_info->data = vcpu->arch.time; 3931 break; 3932 case MSR_KVM_SYSTEM_TIME_NEW: 3933 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3934 return 1; 3935 3936 msr_info->data = vcpu->arch.time; 3937 break; 3938 case MSR_KVM_ASYNC_PF_EN: 3939 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3940 return 1; 3941 3942 msr_info->data = vcpu->arch.apf.msr_en_val; 3943 break; 3944 case MSR_KVM_ASYNC_PF_INT: 3945 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3946 return 1; 3947 3948 msr_info->data = vcpu->arch.apf.msr_int_val; 3949 break; 3950 case MSR_KVM_ASYNC_PF_ACK: 3951 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3952 return 1; 3953 3954 msr_info->data = 0; 3955 break; 3956 case MSR_KVM_STEAL_TIME: 3957 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3958 return 1; 3959 3960 msr_info->data = vcpu->arch.st.msr_val; 3961 break; 3962 case MSR_KVM_PV_EOI_EN: 3963 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3964 return 1; 3965 3966 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3967 break; 3968 case MSR_KVM_POLL_CONTROL: 3969 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3970 return 1; 3971 3972 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3973 break; 3974 case MSR_IA32_P5_MC_ADDR: 3975 case MSR_IA32_P5_MC_TYPE: 3976 case MSR_IA32_MCG_CAP: 3977 case MSR_IA32_MCG_CTL: 3978 case MSR_IA32_MCG_STATUS: 3979 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3980 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3981 msr_info->host_initiated); 3982 case MSR_IA32_XSS: 3983 if (!msr_info->host_initiated && 3984 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3985 return 1; 3986 msr_info->data = vcpu->arch.ia32_xss; 3987 break; 3988 case MSR_K7_CLK_CTL: 3989 /* 3990 * Provide expected ramp-up count for K7. All other 3991 * are set to zero, indicating minimum divisors for 3992 * every field. 3993 * 3994 * This prevents guest kernels on AMD host with CPU 3995 * type 6, model 8 and higher from exploding due to 3996 * the rdmsr failing. 3997 */ 3998 msr_info->data = 0x20000000; 3999 break; 4000 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4001 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4002 case HV_X64_MSR_SYNDBG_OPTIONS: 4003 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4004 case HV_X64_MSR_CRASH_CTL: 4005 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4006 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4007 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4008 case HV_X64_MSR_TSC_EMULATION_STATUS: 4009 return kvm_hv_get_msr_common(vcpu, 4010 msr_info->index, &msr_info->data, 4011 msr_info->host_initiated); 4012 case MSR_IA32_BBL_CR_CTL3: 4013 /* This legacy MSR exists but isn't fully documented in current 4014 * silicon. It is however accessed by winxp in very narrow 4015 * scenarios where it sets bit #19, itself documented as 4016 * a "reserved" bit. Best effort attempt to source coherent 4017 * read data here should the balance of the register be 4018 * interpreted by the guest: 4019 * 4020 * L2 cache control register 3: 64GB range, 256KB size, 4021 * enabled, latency 0x1, configured 4022 */ 4023 msr_info->data = 0xbe702111; 4024 break; 4025 case MSR_AMD64_OSVW_ID_LENGTH: 4026 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4027 return 1; 4028 msr_info->data = vcpu->arch.osvw.length; 4029 break; 4030 case MSR_AMD64_OSVW_STATUS: 4031 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4032 return 1; 4033 msr_info->data = vcpu->arch.osvw.status; 4034 break; 4035 case MSR_PLATFORM_INFO: 4036 if (!msr_info->host_initiated && 4037 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4038 return 1; 4039 msr_info->data = vcpu->arch.msr_platform_info; 4040 break; 4041 case MSR_MISC_FEATURES_ENABLES: 4042 msr_info->data = vcpu->arch.msr_misc_features_enables; 4043 break; 4044 case MSR_K7_HWCR: 4045 msr_info->data = vcpu->arch.msr_hwcr; 4046 break; 4047 #ifdef CONFIG_X86_64 4048 case MSR_IA32_XFD: 4049 if (!msr_info->host_initiated && 4050 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4051 return 1; 4052 4053 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4054 break; 4055 case MSR_IA32_XFD_ERR: 4056 if (!msr_info->host_initiated && 4057 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4058 return 1; 4059 4060 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4061 break; 4062 #endif 4063 default: 4064 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4065 return kvm_pmu_get_msr(vcpu, msr_info); 4066 return KVM_MSR_RET_INVALID; 4067 } 4068 return 0; 4069 } 4070 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4071 4072 /* 4073 * Read or write a bunch of msrs. All parameters are kernel addresses. 4074 * 4075 * @return number of msrs set successfully. 4076 */ 4077 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4078 struct kvm_msr_entry *entries, 4079 int (*do_msr)(struct kvm_vcpu *vcpu, 4080 unsigned index, u64 *data)) 4081 { 4082 int i; 4083 4084 for (i = 0; i < msrs->nmsrs; ++i) 4085 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4086 break; 4087 4088 return i; 4089 } 4090 4091 /* 4092 * Read or write a bunch of msrs. Parameters are user addresses. 4093 * 4094 * @return number of msrs set successfully. 4095 */ 4096 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4097 int (*do_msr)(struct kvm_vcpu *vcpu, 4098 unsigned index, u64 *data), 4099 int writeback) 4100 { 4101 struct kvm_msrs msrs; 4102 struct kvm_msr_entry *entries; 4103 int r, n; 4104 unsigned size; 4105 4106 r = -EFAULT; 4107 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4108 goto out; 4109 4110 r = -E2BIG; 4111 if (msrs.nmsrs >= MAX_IO_MSRS) 4112 goto out; 4113 4114 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4115 entries = memdup_user(user_msrs->entries, size); 4116 if (IS_ERR(entries)) { 4117 r = PTR_ERR(entries); 4118 goto out; 4119 } 4120 4121 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4122 if (r < 0) 4123 goto out_free; 4124 4125 r = -EFAULT; 4126 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4127 goto out_free; 4128 4129 r = n; 4130 4131 out_free: 4132 kfree(entries); 4133 out: 4134 return r; 4135 } 4136 4137 static inline bool kvm_can_mwait_in_guest(void) 4138 { 4139 return boot_cpu_has(X86_FEATURE_MWAIT) && 4140 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4141 boot_cpu_has(X86_FEATURE_ARAT); 4142 } 4143 4144 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4145 struct kvm_cpuid2 __user *cpuid_arg) 4146 { 4147 struct kvm_cpuid2 cpuid; 4148 int r; 4149 4150 r = -EFAULT; 4151 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4152 return r; 4153 4154 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4155 if (r) 4156 return r; 4157 4158 r = -EFAULT; 4159 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4160 return r; 4161 4162 return 0; 4163 } 4164 4165 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4166 { 4167 int r = 0; 4168 4169 switch (ext) { 4170 case KVM_CAP_IRQCHIP: 4171 case KVM_CAP_HLT: 4172 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4173 case KVM_CAP_SET_TSS_ADDR: 4174 case KVM_CAP_EXT_CPUID: 4175 case KVM_CAP_EXT_EMUL_CPUID: 4176 case KVM_CAP_CLOCKSOURCE: 4177 case KVM_CAP_PIT: 4178 case KVM_CAP_NOP_IO_DELAY: 4179 case KVM_CAP_MP_STATE: 4180 case KVM_CAP_SYNC_MMU: 4181 case KVM_CAP_USER_NMI: 4182 case KVM_CAP_REINJECT_CONTROL: 4183 case KVM_CAP_IRQ_INJECT_STATUS: 4184 case KVM_CAP_IOEVENTFD: 4185 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4186 case KVM_CAP_PIT2: 4187 case KVM_CAP_PIT_STATE2: 4188 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4189 case KVM_CAP_VCPU_EVENTS: 4190 case KVM_CAP_HYPERV: 4191 case KVM_CAP_HYPERV_VAPIC: 4192 case KVM_CAP_HYPERV_SPIN: 4193 case KVM_CAP_HYPERV_SYNIC: 4194 case KVM_CAP_HYPERV_SYNIC2: 4195 case KVM_CAP_HYPERV_VP_INDEX: 4196 case KVM_CAP_HYPERV_EVENTFD: 4197 case KVM_CAP_HYPERV_TLBFLUSH: 4198 case KVM_CAP_HYPERV_SEND_IPI: 4199 case KVM_CAP_HYPERV_CPUID: 4200 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4201 case KVM_CAP_SYS_HYPERV_CPUID: 4202 case KVM_CAP_PCI_SEGMENT: 4203 case KVM_CAP_DEBUGREGS: 4204 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4205 case KVM_CAP_XSAVE: 4206 case KVM_CAP_ASYNC_PF: 4207 case KVM_CAP_ASYNC_PF_INT: 4208 case KVM_CAP_GET_TSC_KHZ: 4209 case KVM_CAP_KVMCLOCK_CTRL: 4210 case KVM_CAP_READONLY_MEM: 4211 case KVM_CAP_HYPERV_TIME: 4212 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4213 case KVM_CAP_TSC_DEADLINE_TIMER: 4214 case KVM_CAP_DISABLE_QUIRKS: 4215 case KVM_CAP_SET_BOOT_CPU_ID: 4216 case KVM_CAP_SPLIT_IRQCHIP: 4217 case KVM_CAP_IMMEDIATE_EXIT: 4218 case KVM_CAP_PMU_EVENT_FILTER: 4219 case KVM_CAP_GET_MSR_FEATURES: 4220 case KVM_CAP_MSR_PLATFORM_INFO: 4221 case KVM_CAP_EXCEPTION_PAYLOAD: 4222 case KVM_CAP_SET_GUEST_DEBUG: 4223 case KVM_CAP_LAST_CPU: 4224 case KVM_CAP_X86_USER_SPACE_MSR: 4225 case KVM_CAP_X86_MSR_FILTER: 4226 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4227 #ifdef CONFIG_X86_SGX_KVM 4228 case KVM_CAP_SGX_ATTRIBUTE: 4229 #endif 4230 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4231 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4232 case KVM_CAP_SREGS2: 4233 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4234 case KVM_CAP_VCPU_ATTRIBUTES: 4235 case KVM_CAP_SYS_ATTRIBUTES: 4236 r = 1; 4237 break; 4238 case KVM_CAP_EXIT_HYPERCALL: 4239 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4240 break; 4241 case KVM_CAP_SET_GUEST_DEBUG2: 4242 return KVM_GUESTDBG_VALID_MASK; 4243 #ifdef CONFIG_KVM_XEN 4244 case KVM_CAP_XEN_HVM: 4245 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4246 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4247 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4248 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL; 4249 if (sched_info_on()) 4250 r |= KVM_XEN_HVM_CONFIG_RUNSTATE; 4251 break; 4252 #endif 4253 case KVM_CAP_SYNC_REGS: 4254 r = KVM_SYNC_X86_VALID_FIELDS; 4255 break; 4256 case KVM_CAP_ADJUST_CLOCK: 4257 r = KVM_CLOCK_VALID_FLAGS; 4258 break; 4259 case KVM_CAP_X86_DISABLE_EXITS: 4260 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4261 KVM_X86_DISABLE_EXITS_CSTATE; 4262 if(kvm_can_mwait_in_guest()) 4263 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4264 break; 4265 case KVM_CAP_X86_SMM: 4266 /* SMBASE is usually relocated above 1M on modern chipsets, 4267 * and SMM handlers might indeed rely on 4G segment limits, 4268 * so do not report SMM to be available if real mode is 4269 * emulated via vm86 mode. Still, do not go to great lengths 4270 * to avoid userspace's usage of the feature, because it is a 4271 * fringe case that is not enabled except via specific settings 4272 * of the module parameters. 4273 */ 4274 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4275 break; 4276 case KVM_CAP_VAPIC: 4277 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)(); 4278 break; 4279 case KVM_CAP_NR_VCPUS: 4280 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4281 break; 4282 case KVM_CAP_MAX_VCPUS: 4283 r = KVM_MAX_VCPUS; 4284 break; 4285 case KVM_CAP_MAX_VCPU_ID: 4286 r = KVM_MAX_VCPU_IDS; 4287 break; 4288 case KVM_CAP_PV_MMU: /* obsolete */ 4289 r = 0; 4290 break; 4291 case KVM_CAP_MCE: 4292 r = KVM_MAX_MCE_BANKS; 4293 break; 4294 case KVM_CAP_XCRS: 4295 r = boot_cpu_has(X86_FEATURE_XSAVE); 4296 break; 4297 case KVM_CAP_TSC_CONTROL: 4298 r = kvm_has_tsc_control; 4299 break; 4300 case KVM_CAP_X2APIC_API: 4301 r = KVM_X2APIC_API_VALID_FLAGS; 4302 break; 4303 case KVM_CAP_NESTED_STATE: 4304 r = kvm_x86_ops.nested_ops->get_state ? 4305 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4306 break; 4307 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4308 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 4309 break; 4310 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4311 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4312 break; 4313 case KVM_CAP_SMALLER_MAXPHYADDR: 4314 r = (int) allow_smaller_maxphyaddr; 4315 break; 4316 case KVM_CAP_STEAL_TIME: 4317 r = sched_info_on(); 4318 break; 4319 case KVM_CAP_X86_BUS_LOCK_EXIT: 4320 if (kvm_has_bus_lock_exit) 4321 r = KVM_BUS_LOCK_DETECTION_OFF | 4322 KVM_BUS_LOCK_DETECTION_EXIT; 4323 else 4324 r = 0; 4325 break; 4326 case KVM_CAP_XSAVE2: { 4327 u64 guest_perm = xstate_get_guest_group_perm(); 4328 4329 r = xstate_required_size(supported_xcr0 & guest_perm, false); 4330 if (r < sizeof(struct kvm_xsave)) 4331 r = sizeof(struct kvm_xsave); 4332 break; 4333 } 4334 default: 4335 break; 4336 } 4337 return r; 4338 } 4339 4340 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4341 { 4342 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4343 4344 if ((u64)(unsigned long)uaddr != attr->addr) 4345 return ERR_PTR_USR(-EFAULT); 4346 return uaddr; 4347 } 4348 4349 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4350 { 4351 u64 __user *uaddr = kvm_get_attr_addr(attr); 4352 4353 if (attr->group) 4354 return -ENXIO; 4355 4356 if (IS_ERR(uaddr)) 4357 return PTR_ERR(uaddr); 4358 4359 switch (attr->attr) { 4360 case KVM_X86_XCOMP_GUEST_SUPP: 4361 if (put_user(supported_xcr0, uaddr)) 4362 return -EFAULT; 4363 return 0; 4364 default: 4365 return -ENXIO; 4366 break; 4367 } 4368 } 4369 4370 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4371 { 4372 if (attr->group) 4373 return -ENXIO; 4374 4375 switch (attr->attr) { 4376 case KVM_X86_XCOMP_GUEST_SUPP: 4377 return 0; 4378 default: 4379 return -ENXIO; 4380 } 4381 } 4382 4383 long kvm_arch_dev_ioctl(struct file *filp, 4384 unsigned int ioctl, unsigned long arg) 4385 { 4386 void __user *argp = (void __user *)arg; 4387 long r; 4388 4389 switch (ioctl) { 4390 case KVM_GET_MSR_INDEX_LIST: { 4391 struct kvm_msr_list __user *user_msr_list = argp; 4392 struct kvm_msr_list msr_list; 4393 unsigned n; 4394 4395 r = -EFAULT; 4396 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4397 goto out; 4398 n = msr_list.nmsrs; 4399 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4400 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4401 goto out; 4402 r = -E2BIG; 4403 if (n < msr_list.nmsrs) 4404 goto out; 4405 r = -EFAULT; 4406 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4407 num_msrs_to_save * sizeof(u32))) 4408 goto out; 4409 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4410 &emulated_msrs, 4411 num_emulated_msrs * sizeof(u32))) 4412 goto out; 4413 r = 0; 4414 break; 4415 } 4416 case KVM_GET_SUPPORTED_CPUID: 4417 case KVM_GET_EMULATED_CPUID: { 4418 struct kvm_cpuid2 __user *cpuid_arg = argp; 4419 struct kvm_cpuid2 cpuid; 4420 4421 r = -EFAULT; 4422 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4423 goto out; 4424 4425 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4426 ioctl); 4427 if (r) 4428 goto out; 4429 4430 r = -EFAULT; 4431 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4432 goto out; 4433 r = 0; 4434 break; 4435 } 4436 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4437 r = -EFAULT; 4438 if (copy_to_user(argp, &kvm_mce_cap_supported, 4439 sizeof(kvm_mce_cap_supported))) 4440 goto out; 4441 r = 0; 4442 break; 4443 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4444 struct kvm_msr_list __user *user_msr_list = argp; 4445 struct kvm_msr_list msr_list; 4446 unsigned int n; 4447 4448 r = -EFAULT; 4449 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4450 goto out; 4451 n = msr_list.nmsrs; 4452 msr_list.nmsrs = num_msr_based_features; 4453 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4454 goto out; 4455 r = -E2BIG; 4456 if (n < msr_list.nmsrs) 4457 goto out; 4458 r = -EFAULT; 4459 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4460 num_msr_based_features * sizeof(u32))) 4461 goto out; 4462 r = 0; 4463 break; 4464 } 4465 case KVM_GET_MSRS: 4466 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4467 break; 4468 case KVM_GET_SUPPORTED_HV_CPUID: 4469 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4470 break; 4471 case KVM_GET_DEVICE_ATTR: { 4472 struct kvm_device_attr attr; 4473 r = -EFAULT; 4474 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4475 break; 4476 r = kvm_x86_dev_get_attr(&attr); 4477 break; 4478 } 4479 case KVM_HAS_DEVICE_ATTR: { 4480 struct kvm_device_attr attr; 4481 r = -EFAULT; 4482 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4483 break; 4484 r = kvm_x86_dev_has_attr(&attr); 4485 break; 4486 } 4487 default: 4488 r = -EINVAL; 4489 break; 4490 } 4491 out: 4492 return r; 4493 } 4494 4495 static void wbinvd_ipi(void *garbage) 4496 { 4497 wbinvd(); 4498 } 4499 4500 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4501 { 4502 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4503 } 4504 4505 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4506 { 4507 /* Address WBINVD may be executed by guest */ 4508 if (need_emulate_wbinvd(vcpu)) { 4509 if (static_call(kvm_x86_has_wbinvd_exit)()) 4510 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4511 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4512 smp_call_function_single(vcpu->cpu, 4513 wbinvd_ipi, NULL, 1); 4514 } 4515 4516 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4517 4518 /* Save host pkru register if supported */ 4519 vcpu->arch.host_pkru = read_pkru(); 4520 4521 /* Apply any externally detected TSC adjustments (due to suspend) */ 4522 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4523 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4524 vcpu->arch.tsc_offset_adjustment = 0; 4525 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4526 } 4527 4528 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4529 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4530 rdtsc() - vcpu->arch.last_host_tsc; 4531 if (tsc_delta < 0) 4532 mark_tsc_unstable("KVM discovered backwards TSC"); 4533 4534 if (kvm_check_tsc_unstable()) { 4535 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4536 vcpu->arch.last_guest_tsc); 4537 kvm_vcpu_write_tsc_offset(vcpu, offset); 4538 vcpu->arch.tsc_catchup = 1; 4539 } 4540 4541 if (kvm_lapic_hv_timer_in_use(vcpu)) 4542 kvm_lapic_restart_hv_timer(vcpu); 4543 4544 /* 4545 * On a host with synchronized TSC, there is no need to update 4546 * kvmclock on vcpu->cpu migration 4547 */ 4548 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4549 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4550 if (vcpu->cpu != cpu) 4551 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4552 vcpu->cpu = cpu; 4553 } 4554 4555 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4556 } 4557 4558 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4559 { 4560 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4561 struct kvm_steal_time __user *st; 4562 struct kvm_memslots *slots; 4563 static const u8 preempted = KVM_VCPU_PREEMPTED; 4564 4565 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4566 return; 4567 4568 if (vcpu->arch.st.preempted) 4569 return; 4570 4571 /* This happens on process exit */ 4572 if (unlikely(current->mm != vcpu->kvm->mm)) 4573 return; 4574 4575 slots = kvm_memslots(vcpu->kvm); 4576 4577 if (unlikely(slots->generation != ghc->generation || 4578 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4579 return; 4580 4581 st = (struct kvm_steal_time __user *)ghc->hva; 4582 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4583 4584 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4585 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4586 4587 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4588 } 4589 4590 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4591 { 4592 int idx; 4593 4594 if (vcpu->preempted && !vcpu->arch.guest_state_protected) 4595 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4596 4597 /* 4598 * Take the srcu lock as memslots will be accessed to check the gfn 4599 * cache generation against the memslots generation. 4600 */ 4601 idx = srcu_read_lock(&vcpu->kvm->srcu); 4602 if (kvm_xen_msr_enabled(vcpu->kvm)) 4603 kvm_xen_runstate_set_preempted(vcpu); 4604 else 4605 kvm_steal_time_set_preempted(vcpu); 4606 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4607 4608 static_call(kvm_x86_vcpu_put)(vcpu); 4609 vcpu->arch.last_host_tsc = rdtsc(); 4610 } 4611 4612 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4613 struct kvm_lapic_state *s) 4614 { 4615 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4616 4617 return kvm_apic_get_state(vcpu, s); 4618 } 4619 4620 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4621 struct kvm_lapic_state *s) 4622 { 4623 int r; 4624 4625 r = kvm_apic_set_state(vcpu, s); 4626 if (r) 4627 return r; 4628 update_cr8_intercept(vcpu); 4629 4630 return 0; 4631 } 4632 4633 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4634 { 4635 /* 4636 * We can accept userspace's request for interrupt injection 4637 * as long as we have a place to store the interrupt number. 4638 * The actual injection will happen when the CPU is able to 4639 * deliver the interrupt. 4640 */ 4641 if (kvm_cpu_has_extint(vcpu)) 4642 return false; 4643 4644 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4645 return (!lapic_in_kernel(vcpu) || 4646 kvm_apic_accept_pic_intr(vcpu)); 4647 } 4648 4649 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4650 { 4651 /* 4652 * Do not cause an interrupt window exit if an exception 4653 * is pending or an event needs reinjection; userspace 4654 * might want to inject the interrupt manually using KVM_SET_REGS 4655 * or KVM_SET_SREGS. For that to work, we must be at an 4656 * instruction boundary and with no events half-injected. 4657 */ 4658 return (kvm_arch_interrupt_allowed(vcpu) && 4659 kvm_cpu_accept_dm_intr(vcpu) && 4660 !kvm_event_needs_reinjection(vcpu) && 4661 !vcpu->arch.exception.pending); 4662 } 4663 4664 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4665 struct kvm_interrupt *irq) 4666 { 4667 if (irq->irq >= KVM_NR_INTERRUPTS) 4668 return -EINVAL; 4669 4670 if (!irqchip_in_kernel(vcpu->kvm)) { 4671 kvm_queue_interrupt(vcpu, irq->irq, false); 4672 kvm_make_request(KVM_REQ_EVENT, vcpu); 4673 return 0; 4674 } 4675 4676 /* 4677 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4678 * fail for in-kernel 8259. 4679 */ 4680 if (pic_in_kernel(vcpu->kvm)) 4681 return -ENXIO; 4682 4683 if (vcpu->arch.pending_external_vector != -1) 4684 return -EEXIST; 4685 4686 vcpu->arch.pending_external_vector = irq->irq; 4687 kvm_make_request(KVM_REQ_EVENT, vcpu); 4688 return 0; 4689 } 4690 4691 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4692 { 4693 kvm_inject_nmi(vcpu); 4694 4695 return 0; 4696 } 4697 4698 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4699 { 4700 kvm_make_request(KVM_REQ_SMI, vcpu); 4701 4702 return 0; 4703 } 4704 4705 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4706 struct kvm_tpr_access_ctl *tac) 4707 { 4708 if (tac->flags) 4709 return -EINVAL; 4710 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4711 return 0; 4712 } 4713 4714 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4715 u64 mcg_cap) 4716 { 4717 int r; 4718 unsigned bank_num = mcg_cap & 0xff, bank; 4719 4720 r = -EINVAL; 4721 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4722 goto out; 4723 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 4724 goto out; 4725 r = 0; 4726 vcpu->arch.mcg_cap = mcg_cap; 4727 /* Init IA32_MCG_CTL to all 1s */ 4728 if (mcg_cap & MCG_CTL_P) 4729 vcpu->arch.mcg_ctl = ~(u64)0; 4730 /* Init IA32_MCi_CTL to all 1s */ 4731 for (bank = 0; bank < bank_num; bank++) 4732 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4733 4734 static_call(kvm_x86_setup_mce)(vcpu); 4735 out: 4736 return r; 4737 } 4738 4739 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4740 struct kvm_x86_mce *mce) 4741 { 4742 u64 mcg_cap = vcpu->arch.mcg_cap; 4743 unsigned bank_num = mcg_cap & 0xff; 4744 u64 *banks = vcpu->arch.mce_banks; 4745 4746 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4747 return -EINVAL; 4748 /* 4749 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4750 * reporting is disabled 4751 */ 4752 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4753 vcpu->arch.mcg_ctl != ~(u64)0) 4754 return 0; 4755 banks += 4 * mce->bank; 4756 /* 4757 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4758 * reporting is disabled for the bank 4759 */ 4760 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4761 return 0; 4762 if (mce->status & MCI_STATUS_UC) { 4763 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4764 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4765 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4766 return 0; 4767 } 4768 if (banks[1] & MCI_STATUS_VAL) 4769 mce->status |= MCI_STATUS_OVER; 4770 banks[2] = mce->addr; 4771 banks[3] = mce->misc; 4772 vcpu->arch.mcg_status = mce->mcg_status; 4773 banks[1] = mce->status; 4774 kvm_queue_exception(vcpu, MC_VECTOR); 4775 } else if (!(banks[1] & MCI_STATUS_VAL) 4776 || !(banks[1] & MCI_STATUS_UC)) { 4777 if (banks[1] & MCI_STATUS_VAL) 4778 mce->status |= MCI_STATUS_OVER; 4779 banks[2] = mce->addr; 4780 banks[3] = mce->misc; 4781 banks[1] = mce->status; 4782 } else 4783 banks[1] |= MCI_STATUS_OVER; 4784 return 0; 4785 } 4786 4787 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 4788 struct kvm_vcpu_events *events) 4789 { 4790 process_nmi(vcpu); 4791 4792 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 4793 process_smi(vcpu); 4794 4795 /* 4796 * In guest mode, payload delivery should be deferred, 4797 * so that the L1 hypervisor can intercept #PF before 4798 * CR2 is modified (or intercept #DB before DR6 is 4799 * modified under nVMX). Unless the per-VM capability, 4800 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 4801 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 4802 * opportunistically defer the exception payload, deliver it if the 4803 * capability hasn't been requested before processing a 4804 * KVM_GET_VCPU_EVENTS. 4805 */ 4806 if (!vcpu->kvm->arch.exception_payload_enabled && 4807 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 4808 kvm_deliver_exception_payload(vcpu); 4809 4810 /* 4811 * The API doesn't provide the instruction length for software 4812 * exceptions, so don't report them. As long as the guest RIP 4813 * isn't advanced, we should expect to encounter the exception 4814 * again. 4815 */ 4816 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 4817 events->exception.injected = 0; 4818 events->exception.pending = 0; 4819 } else { 4820 events->exception.injected = vcpu->arch.exception.injected; 4821 events->exception.pending = vcpu->arch.exception.pending; 4822 /* 4823 * For ABI compatibility, deliberately conflate 4824 * pending and injected exceptions when 4825 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4826 */ 4827 if (!vcpu->kvm->arch.exception_payload_enabled) 4828 events->exception.injected |= 4829 vcpu->arch.exception.pending; 4830 } 4831 events->exception.nr = vcpu->arch.exception.nr; 4832 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4833 events->exception.error_code = vcpu->arch.exception.error_code; 4834 events->exception_has_payload = vcpu->arch.exception.has_payload; 4835 events->exception_payload = vcpu->arch.exception.payload; 4836 4837 events->interrupt.injected = 4838 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4839 events->interrupt.nr = vcpu->arch.interrupt.nr; 4840 events->interrupt.soft = 0; 4841 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 4842 4843 events->nmi.injected = vcpu->arch.nmi_injected; 4844 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4845 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 4846 events->nmi.pad = 0; 4847 4848 events->sipi_vector = 0; /* never valid when reporting to user space */ 4849 4850 events->smi.smm = is_smm(vcpu); 4851 events->smi.pending = vcpu->arch.smi_pending; 4852 events->smi.smm_inside_nmi = 4853 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4854 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4855 4856 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4857 | KVM_VCPUEVENT_VALID_SHADOW 4858 | KVM_VCPUEVENT_VALID_SMM); 4859 if (vcpu->kvm->arch.exception_payload_enabled) 4860 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4861 4862 memset(&events->reserved, 0, sizeof(events->reserved)); 4863 } 4864 4865 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm); 4866 4867 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4868 struct kvm_vcpu_events *events) 4869 { 4870 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4871 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4872 | KVM_VCPUEVENT_VALID_SHADOW 4873 | KVM_VCPUEVENT_VALID_SMM 4874 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4875 return -EINVAL; 4876 4877 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4878 if (!vcpu->kvm->arch.exception_payload_enabled) 4879 return -EINVAL; 4880 if (events->exception.pending) 4881 events->exception.injected = 0; 4882 else 4883 events->exception_has_payload = 0; 4884 } else { 4885 events->exception.pending = 0; 4886 events->exception_has_payload = 0; 4887 } 4888 4889 if ((events->exception.injected || events->exception.pending) && 4890 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4891 return -EINVAL; 4892 4893 /* INITs are latched while in SMM */ 4894 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4895 (events->smi.smm || events->smi.pending) && 4896 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4897 return -EINVAL; 4898 4899 process_nmi(vcpu); 4900 vcpu->arch.exception.injected = events->exception.injected; 4901 vcpu->arch.exception.pending = events->exception.pending; 4902 vcpu->arch.exception.nr = events->exception.nr; 4903 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4904 vcpu->arch.exception.error_code = events->exception.error_code; 4905 vcpu->arch.exception.has_payload = events->exception_has_payload; 4906 vcpu->arch.exception.payload = events->exception_payload; 4907 4908 vcpu->arch.interrupt.injected = events->interrupt.injected; 4909 vcpu->arch.interrupt.nr = events->interrupt.nr; 4910 vcpu->arch.interrupt.soft = events->interrupt.soft; 4911 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4912 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 4913 events->interrupt.shadow); 4914 4915 vcpu->arch.nmi_injected = events->nmi.injected; 4916 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4917 vcpu->arch.nmi_pending = events->nmi.pending; 4918 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 4919 4920 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4921 lapic_in_kernel(vcpu)) 4922 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4923 4924 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4925 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4926 kvm_x86_ops.nested_ops->leave_nested(vcpu); 4927 kvm_smm_changed(vcpu, events->smi.smm); 4928 } 4929 4930 vcpu->arch.smi_pending = events->smi.pending; 4931 4932 if (events->smi.smm) { 4933 if (events->smi.smm_inside_nmi) 4934 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4935 else 4936 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4937 } 4938 4939 if (lapic_in_kernel(vcpu)) { 4940 if (events->smi.latched_init) 4941 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4942 else 4943 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4944 } 4945 } 4946 4947 kvm_make_request(KVM_REQ_EVENT, vcpu); 4948 4949 return 0; 4950 } 4951 4952 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4953 struct kvm_debugregs *dbgregs) 4954 { 4955 unsigned long val; 4956 4957 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 4958 kvm_get_dr(vcpu, 6, &val); 4959 dbgregs->dr6 = val; 4960 dbgregs->dr7 = vcpu->arch.dr7; 4961 dbgregs->flags = 0; 4962 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 4963 } 4964 4965 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4966 struct kvm_debugregs *dbgregs) 4967 { 4968 if (dbgregs->flags) 4969 return -EINVAL; 4970 4971 if (!kvm_dr6_valid(dbgregs->dr6)) 4972 return -EINVAL; 4973 if (!kvm_dr7_valid(dbgregs->dr7)) 4974 return -EINVAL; 4975 4976 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4977 kvm_update_dr0123(vcpu); 4978 vcpu->arch.dr6 = dbgregs->dr6; 4979 vcpu->arch.dr7 = dbgregs->dr7; 4980 kvm_update_dr7(vcpu); 4981 4982 return 0; 4983 } 4984 4985 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4986 struct kvm_xsave *guest_xsave) 4987 { 4988 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 4989 return; 4990 4991 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 4992 guest_xsave->region, 4993 sizeof(guest_xsave->region), 4994 vcpu->arch.pkru); 4995 } 4996 4997 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 4998 u8 *state, unsigned int size) 4999 { 5000 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5001 return; 5002 5003 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5004 state, size, vcpu->arch.pkru); 5005 } 5006 5007 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5008 struct kvm_xsave *guest_xsave) 5009 { 5010 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5011 return 0; 5012 5013 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5014 guest_xsave->region, 5015 supported_xcr0, &vcpu->arch.pkru); 5016 } 5017 5018 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5019 struct kvm_xcrs *guest_xcrs) 5020 { 5021 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5022 guest_xcrs->nr_xcrs = 0; 5023 return; 5024 } 5025 5026 guest_xcrs->nr_xcrs = 1; 5027 guest_xcrs->flags = 0; 5028 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5029 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5030 } 5031 5032 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5033 struct kvm_xcrs *guest_xcrs) 5034 { 5035 int i, r = 0; 5036 5037 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5038 return -EINVAL; 5039 5040 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5041 return -EINVAL; 5042 5043 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5044 /* Only support XCR0 currently */ 5045 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5046 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5047 guest_xcrs->xcrs[i].value); 5048 break; 5049 } 5050 if (r) 5051 r = -EINVAL; 5052 return r; 5053 } 5054 5055 /* 5056 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5057 * stopped by the hypervisor. This function will be called from the host only. 5058 * EINVAL is returned when the host attempts to set the flag for a guest that 5059 * does not support pv clocks. 5060 */ 5061 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5062 { 5063 if (!vcpu->arch.pv_time_enabled) 5064 return -EINVAL; 5065 vcpu->arch.pvclock_set_guest_stopped_request = true; 5066 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5067 return 0; 5068 } 5069 5070 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5071 struct kvm_device_attr *attr) 5072 { 5073 int r; 5074 5075 switch (attr->attr) { 5076 case KVM_VCPU_TSC_OFFSET: 5077 r = 0; 5078 break; 5079 default: 5080 r = -ENXIO; 5081 } 5082 5083 return r; 5084 } 5085 5086 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5087 struct kvm_device_attr *attr) 5088 { 5089 u64 __user *uaddr = kvm_get_attr_addr(attr); 5090 int r; 5091 5092 if (IS_ERR(uaddr)) 5093 return PTR_ERR(uaddr); 5094 5095 switch (attr->attr) { 5096 case KVM_VCPU_TSC_OFFSET: 5097 r = -EFAULT; 5098 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5099 break; 5100 r = 0; 5101 break; 5102 default: 5103 r = -ENXIO; 5104 } 5105 5106 return r; 5107 } 5108 5109 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5110 struct kvm_device_attr *attr) 5111 { 5112 u64 __user *uaddr = kvm_get_attr_addr(attr); 5113 struct kvm *kvm = vcpu->kvm; 5114 int r; 5115 5116 if (IS_ERR(uaddr)) 5117 return PTR_ERR(uaddr); 5118 5119 switch (attr->attr) { 5120 case KVM_VCPU_TSC_OFFSET: { 5121 u64 offset, tsc, ns; 5122 unsigned long flags; 5123 bool matched; 5124 5125 r = -EFAULT; 5126 if (get_user(offset, uaddr)) 5127 break; 5128 5129 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5130 5131 matched = (vcpu->arch.virtual_tsc_khz && 5132 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5133 kvm->arch.last_tsc_offset == offset); 5134 5135 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5136 ns = get_kvmclock_base_ns(); 5137 5138 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5139 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5140 5141 r = 0; 5142 break; 5143 } 5144 default: 5145 r = -ENXIO; 5146 } 5147 5148 return r; 5149 } 5150 5151 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5152 unsigned int ioctl, 5153 void __user *argp) 5154 { 5155 struct kvm_device_attr attr; 5156 int r; 5157 5158 if (copy_from_user(&attr, argp, sizeof(attr))) 5159 return -EFAULT; 5160 5161 if (attr.group != KVM_VCPU_TSC_CTRL) 5162 return -ENXIO; 5163 5164 switch (ioctl) { 5165 case KVM_HAS_DEVICE_ATTR: 5166 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5167 break; 5168 case KVM_GET_DEVICE_ATTR: 5169 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5170 break; 5171 case KVM_SET_DEVICE_ATTR: 5172 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5173 break; 5174 } 5175 5176 return r; 5177 } 5178 5179 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5180 struct kvm_enable_cap *cap) 5181 { 5182 int r; 5183 uint16_t vmcs_version; 5184 void __user *user_ptr; 5185 5186 if (cap->flags) 5187 return -EINVAL; 5188 5189 switch (cap->cap) { 5190 case KVM_CAP_HYPERV_SYNIC2: 5191 if (cap->args[0]) 5192 return -EINVAL; 5193 fallthrough; 5194 5195 case KVM_CAP_HYPERV_SYNIC: 5196 if (!irqchip_in_kernel(vcpu->kvm)) 5197 return -EINVAL; 5198 return kvm_hv_activate_synic(vcpu, cap->cap == 5199 KVM_CAP_HYPERV_SYNIC2); 5200 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5201 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5202 return -ENOTTY; 5203 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5204 if (!r) { 5205 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5206 if (copy_to_user(user_ptr, &vmcs_version, 5207 sizeof(vmcs_version))) 5208 r = -EFAULT; 5209 } 5210 return r; 5211 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5212 if (!kvm_x86_ops.enable_direct_tlbflush) 5213 return -ENOTTY; 5214 5215 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu); 5216 5217 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5218 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5219 5220 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5221 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5222 if (vcpu->arch.pv_cpuid.enforce) 5223 kvm_update_pv_runtime(vcpu); 5224 5225 return 0; 5226 default: 5227 return -EINVAL; 5228 } 5229 } 5230 5231 long kvm_arch_vcpu_ioctl(struct file *filp, 5232 unsigned int ioctl, unsigned long arg) 5233 { 5234 struct kvm_vcpu *vcpu = filp->private_data; 5235 void __user *argp = (void __user *)arg; 5236 int r; 5237 union { 5238 struct kvm_sregs2 *sregs2; 5239 struct kvm_lapic_state *lapic; 5240 struct kvm_xsave *xsave; 5241 struct kvm_xcrs *xcrs; 5242 void *buffer; 5243 } u; 5244 5245 vcpu_load(vcpu); 5246 5247 u.buffer = NULL; 5248 switch (ioctl) { 5249 case KVM_GET_LAPIC: { 5250 r = -EINVAL; 5251 if (!lapic_in_kernel(vcpu)) 5252 goto out; 5253 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5254 GFP_KERNEL_ACCOUNT); 5255 5256 r = -ENOMEM; 5257 if (!u.lapic) 5258 goto out; 5259 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5260 if (r) 5261 goto out; 5262 r = -EFAULT; 5263 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5264 goto out; 5265 r = 0; 5266 break; 5267 } 5268 case KVM_SET_LAPIC: { 5269 r = -EINVAL; 5270 if (!lapic_in_kernel(vcpu)) 5271 goto out; 5272 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5273 if (IS_ERR(u.lapic)) { 5274 r = PTR_ERR(u.lapic); 5275 goto out_nofree; 5276 } 5277 5278 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5279 break; 5280 } 5281 case KVM_INTERRUPT: { 5282 struct kvm_interrupt irq; 5283 5284 r = -EFAULT; 5285 if (copy_from_user(&irq, argp, sizeof(irq))) 5286 goto out; 5287 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5288 break; 5289 } 5290 case KVM_NMI: { 5291 r = kvm_vcpu_ioctl_nmi(vcpu); 5292 break; 5293 } 5294 case KVM_SMI: { 5295 r = kvm_vcpu_ioctl_smi(vcpu); 5296 break; 5297 } 5298 case KVM_SET_CPUID: { 5299 struct kvm_cpuid __user *cpuid_arg = argp; 5300 struct kvm_cpuid cpuid; 5301 5302 r = -EFAULT; 5303 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5304 goto out; 5305 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5306 break; 5307 } 5308 case KVM_SET_CPUID2: { 5309 struct kvm_cpuid2 __user *cpuid_arg = argp; 5310 struct kvm_cpuid2 cpuid; 5311 5312 r = -EFAULT; 5313 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5314 goto out; 5315 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5316 cpuid_arg->entries); 5317 break; 5318 } 5319 case KVM_GET_CPUID2: { 5320 struct kvm_cpuid2 __user *cpuid_arg = argp; 5321 struct kvm_cpuid2 cpuid; 5322 5323 r = -EFAULT; 5324 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5325 goto out; 5326 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5327 cpuid_arg->entries); 5328 if (r) 5329 goto out; 5330 r = -EFAULT; 5331 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5332 goto out; 5333 r = 0; 5334 break; 5335 } 5336 case KVM_GET_MSRS: { 5337 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5338 r = msr_io(vcpu, argp, do_get_msr, 1); 5339 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5340 break; 5341 } 5342 case KVM_SET_MSRS: { 5343 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5344 r = msr_io(vcpu, argp, do_set_msr, 0); 5345 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5346 break; 5347 } 5348 case KVM_TPR_ACCESS_REPORTING: { 5349 struct kvm_tpr_access_ctl tac; 5350 5351 r = -EFAULT; 5352 if (copy_from_user(&tac, argp, sizeof(tac))) 5353 goto out; 5354 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5355 if (r) 5356 goto out; 5357 r = -EFAULT; 5358 if (copy_to_user(argp, &tac, sizeof(tac))) 5359 goto out; 5360 r = 0; 5361 break; 5362 }; 5363 case KVM_SET_VAPIC_ADDR: { 5364 struct kvm_vapic_addr va; 5365 int idx; 5366 5367 r = -EINVAL; 5368 if (!lapic_in_kernel(vcpu)) 5369 goto out; 5370 r = -EFAULT; 5371 if (copy_from_user(&va, argp, sizeof(va))) 5372 goto out; 5373 idx = srcu_read_lock(&vcpu->kvm->srcu); 5374 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5375 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5376 break; 5377 } 5378 case KVM_X86_SETUP_MCE: { 5379 u64 mcg_cap; 5380 5381 r = -EFAULT; 5382 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5383 goto out; 5384 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5385 break; 5386 } 5387 case KVM_X86_SET_MCE: { 5388 struct kvm_x86_mce mce; 5389 5390 r = -EFAULT; 5391 if (copy_from_user(&mce, argp, sizeof(mce))) 5392 goto out; 5393 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5394 break; 5395 } 5396 case KVM_GET_VCPU_EVENTS: { 5397 struct kvm_vcpu_events events; 5398 5399 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5400 5401 r = -EFAULT; 5402 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5403 break; 5404 r = 0; 5405 break; 5406 } 5407 case KVM_SET_VCPU_EVENTS: { 5408 struct kvm_vcpu_events events; 5409 5410 r = -EFAULT; 5411 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5412 break; 5413 5414 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5415 break; 5416 } 5417 case KVM_GET_DEBUGREGS: { 5418 struct kvm_debugregs dbgregs; 5419 5420 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5421 5422 r = -EFAULT; 5423 if (copy_to_user(argp, &dbgregs, 5424 sizeof(struct kvm_debugregs))) 5425 break; 5426 r = 0; 5427 break; 5428 } 5429 case KVM_SET_DEBUGREGS: { 5430 struct kvm_debugregs dbgregs; 5431 5432 r = -EFAULT; 5433 if (copy_from_user(&dbgregs, argp, 5434 sizeof(struct kvm_debugregs))) 5435 break; 5436 5437 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5438 break; 5439 } 5440 case KVM_GET_XSAVE: { 5441 r = -EINVAL; 5442 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5443 break; 5444 5445 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5446 r = -ENOMEM; 5447 if (!u.xsave) 5448 break; 5449 5450 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5451 5452 r = -EFAULT; 5453 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5454 break; 5455 r = 0; 5456 break; 5457 } 5458 case KVM_SET_XSAVE: { 5459 int size = vcpu->arch.guest_fpu.uabi_size; 5460 5461 u.xsave = memdup_user(argp, size); 5462 if (IS_ERR(u.xsave)) { 5463 r = PTR_ERR(u.xsave); 5464 goto out_nofree; 5465 } 5466 5467 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5468 break; 5469 } 5470 5471 case KVM_GET_XSAVE2: { 5472 int size = vcpu->arch.guest_fpu.uabi_size; 5473 5474 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5475 r = -ENOMEM; 5476 if (!u.xsave) 5477 break; 5478 5479 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5480 5481 r = -EFAULT; 5482 if (copy_to_user(argp, u.xsave, size)) 5483 break; 5484 5485 r = 0; 5486 break; 5487 } 5488 5489 case KVM_GET_XCRS: { 5490 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5491 r = -ENOMEM; 5492 if (!u.xcrs) 5493 break; 5494 5495 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5496 5497 r = -EFAULT; 5498 if (copy_to_user(argp, u.xcrs, 5499 sizeof(struct kvm_xcrs))) 5500 break; 5501 r = 0; 5502 break; 5503 } 5504 case KVM_SET_XCRS: { 5505 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5506 if (IS_ERR(u.xcrs)) { 5507 r = PTR_ERR(u.xcrs); 5508 goto out_nofree; 5509 } 5510 5511 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5512 break; 5513 } 5514 case KVM_SET_TSC_KHZ: { 5515 u32 user_tsc_khz; 5516 5517 r = -EINVAL; 5518 user_tsc_khz = (u32)arg; 5519 5520 if (kvm_has_tsc_control && 5521 user_tsc_khz >= kvm_max_guest_tsc_khz) 5522 goto out; 5523 5524 if (user_tsc_khz == 0) 5525 user_tsc_khz = tsc_khz; 5526 5527 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5528 r = 0; 5529 5530 goto out; 5531 } 5532 case KVM_GET_TSC_KHZ: { 5533 r = vcpu->arch.virtual_tsc_khz; 5534 goto out; 5535 } 5536 case KVM_KVMCLOCK_CTRL: { 5537 r = kvm_set_guest_paused(vcpu); 5538 goto out; 5539 } 5540 case KVM_ENABLE_CAP: { 5541 struct kvm_enable_cap cap; 5542 5543 r = -EFAULT; 5544 if (copy_from_user(&cap, argp, sizeof(cap))) 5545 goto out; 5546 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5547 break; 5548 } 5549 case KVM_GET_NESTED_STATE: { 5550 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5551 u32 user_data_size; 5552 5553 r = -EINVAL; 5554 if (!kvm_x86_ops.nested_ops->get_state) 5555 break; 5556 5557 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5558 r = -EFAULT; 5559 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5560 break; 5561 5562 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5563 user_data_size); 5564 if (r < 0) 5565 break; 5566 5567 if (r > user_data_size) { 5568 if (put_user(r, &user_kvm_nested_state->size)) 5569 r = -EFAULT; 5570 else 5571 r = -E2BIG; 5572 break; 5573 } 5574 5575 r = 0; 5576 break; 5577 } 5578 case KVM_SET_NESTED_STATE: { 5579 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5580 struct kvm_nested_state kvm_state; 5581 int idx; 5582 5583 r = -EINVAL; 5584 if (!kvm_x86_ops.nested_ops->set_state) 5585 break; 5586 5587 r = -EFAULT; 5588 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5589 break; 5590 5591 r = -EINVAL; 5592 if (kvm_state.size < sizeof(kvm_state)) 5593 break; 5594 5595 if (kvm_state.flags & 5596 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5597 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5598 | KVM_STATE_NESTED_GIF_SET)) 5599 break; 5600 5601 /* nested_run_pending implies guest_mode. */ 5602 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5603 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5604 break; 5605 5606 idx = srcu_read_lock(&vcpu->kvm->srcu); 5607 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5608 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5609 break; 5610 } 5611 case KVM_GET_SUPPORTED_HV_CPUID: 5612 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5613 break; 5614 #ifdef CONFIG_KVM_XEN 5615 case KVM_XEN_VCPU_GET_ATTR: { 5616 struct kvm_xen_vcpu_attr xva; 5617 5618 r = -EFAULT; 5619 if (copy_from_user(&xva, argp, sizeof(xva))) 5620 goto out; 5621 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5622 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5623 r = -EFAULT; 5624 break; 5625 } 5626 case KVM_XEN_VCPU_SET_ATTR: { 5627 struct kvm_xen_vcpu_attr xva; 5628 5629 r = -EFAULT; 5630 if (copy_from_user(&xva, argp, sizeof(xva))) 5631 goto out; 5632 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5633 break; 5634 } 5635 #endif 5636 case KVM_GET_SREGS2: { 5637 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5638 r = -ENOMEM; 5639 if (!u.sregs2) 5640 goto out; 5641 __get_sregs2(vcpu, u.sregs2); 5642 r = -EFAULT; 5643 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5644 goto out; 5645 r = 0; 5646 break; 5647 } 5648 case KVM_SET_SREGS2: { 5649 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5650 if (IS_ERR(u.sregs2)) { 5651 r = PTR_ERR(u.sregs2); 5652 u.sregs2 = NULL; 5653 goto out; 5654 } 5655 r = __set_sregs2(vcpu, u.sregs2); 5656 break; 5657 } 5658 case KVM_HAS_DEVICE_ATTR: 5659 case KVM_GET_DEVICE_ATTR: 5660 case KVM_SET_DEVICE_ATTR: 5661 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5662 break; 5663 default: 5664 r = -EINVAL; 5665 } 5666 out: 5667 kfree(u.buffer); 5668 out_nofree: 5669 vcpu_put(vcpu); 5670 return r; 5671 } 5672 5673 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5674 { 5675 return VM_FAULT_SIGBUS; 5676 } 5677 5678 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5679 { 5680 int ret; 5681 5682 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5683 return -EINVAL; 5684 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5685 return ret; 5686 } 5687 5688 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5689 u64 ident_addr) 5690 { 5691 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5692 } 5693 5694 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5695 unsigned long kvm_nr_mmu_pages) 5696 { 5697 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5698 return -EINVAL; 5699 5700 mutex_lock(&kvm->slots_lock); 5701 5702 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5703 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5704 5705 mutex_unlock(&kvm->slots_lock); 5706 return 0; 5707 } 5708 5709 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5710 { 5711 return kvm->arch.n_max_mmu_pages; 5712 } 5713 5714 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5715 { 5716 struct kvm_pic *pic = kvm->arch.vpic; 5717 int r; 5718 5719 r = 0; 5720 switch (chip->chip_id) { 5721 case KVM_IRQCHIP_PIC_MASTER: 5722 memcpy(&chip->chip.pic, &pic->pics[0], 5723 sizeof(struct kvm_pic_state)); 5724 break; 5725 case KVM_IRQCHIP_PIC_SLAVE: 5726 memcpy(&chip->chip.pic, &pic->pics[1], 5727 sizeof(struct kvm_pic_state)); 5728 break; 5729 case KVM_IRQCHIP_IOAPIC: 5730 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5731 break; 5732 default: 5733 r = -EINVAL; 5734 break; 5735 } 5736 return r; 5737 } 5738 5739 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5740 { 5741 struct kvm_pic *pic = kvm->arch.vpic; 5742 int r; 5743 5744 r = 0; 5745 switch (chip->chip_id) { 5746 case KVM_IRQCHIP_PIC_MASTER: 5747 spin_lock(&pic->lock); 5748 memcpy(&pic->pics[0], &chip->chip.pic, 5749 sizeof(struct kvm_pic_state)); 5750 spin_unlock(&pic->lock); 5751 break; 5752 case KVM_IRQCHIP_PIC_SLAVE: 5753 spin_lock(&pic->lock); 5754 memcpy(&pic->pics[1], &chip->chip.pic, 5755 sizeof(struct kvm_pic_state)); 5756 spin_unlock(&pic->lock); 5757 break; 5758 case KVM_IRQCHIP_IOAPIC: 5759 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5760 break; 5761 default: 5762 r = -EINVAL; 5763 break; 5764 } 5765 kvm_pic_update_irq(pic); 5766 return r; 5767 } 5768 5769 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5770 { 5771 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 5772 5773 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 5774 5775 mutex_lock(&kps->lock); 5776 memcpy(ps, &kps->channels, sizeof(*ps)); 5777 mutex_unlock(&kps->lock); 5778 return 0; 5779 } 5780 5781 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5782 { 5783 int i; 5784 struct kvm_pit *pit = kvm->arch.vpit; 5785 5786 mutex_lock(&pit->pit_state.lock); 5787 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 5788 for (i = 0; i < 3; i++) 5789 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 5790 mutex_unlock(&pit->pit_state.lock); 5791 return 0; 5792 } 5793 5794 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5795 { 5796 mutex_lock(&kvm->arch.vpit->pit_state.lock); 5797 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 5798 sizeof(ps->channels)); 5799 ps->flags = kvm->arch.vpit->pit_state.flags; 5800 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 5801 memset(&ps->reserved, 0, sizeof(ps->reserved)); 5802 return 0; 5803 } 5804 5805 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5806 { 5807 int start = 0; 5808 int i; 5809 u32 prev_legacy, cur_legacy; 5810 struct kvm_pit *pit = kvm->arch.vpit; 5811 5812 mutex_lock(&pit->pit_state.lock); 5813 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 5814 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 5815 if (!prev_legacy && cur_legacy) 5816 start = 1; 5817 memcpy(&pit->pit_state.channels, &ps->channels, 5818 sizeof(pit->pit_state.channels)); 5819 pit->pit_state.flags = ps->flags; 5820 for (i = 0; i < 3; i++) 5821 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 5822 start && i == 0); 5823 mutex_unlock(&pit->pit_state.lock); 5824 return 0; 5825 } 5826 5827 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 5828 struct kvm_reinject_control *control) 5829 { 5830 struct kvm_pit *pit = kvm->arch.vpit; 5831 5832 /* pit->pit_state.lock was overloaded to prevent userspace from getting 5833 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 5834 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 5835 */ 5836 mutex_lock(&pit->pit_state.lock); 5837 kvm_pit_set_reinject(pit, control->pit_reinject); 5838 mutex_unlock(&pit->pit_state.lock); 5839 5840 return 0; 5841 } 5842 5843 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 5844 { 5845 5846 /* 5847 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 5848 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 5849 * on all VM-Exits, thus we only need to kick running vCPUs to force a 5850 * VM-Exit. 5851 */ 5852 struct kvm_vcpu *vcpu; 5853 unsigned long i; 5854 5855 kvm_for_each_vcpu(i, vcpu, kvm) 5856 kvm_vcpu_kick(vcpu); 5857 } 5858 5859 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 5860 bool line_status) 5861 { 5862 if (!irqchip_in_kernel(kvm)) 5863 return -ENXIO; 5864 5865 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 5866 irq_event->irq, irq_event->level, 5867 line_status); 5868 return 0; 5869 } 5870 5871 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5872 struct kvm_enable_cap *cap) 5873 { 5874 int r; 5875 5876 if (cap->flags) 5877 return -EINVAL; 5878 5879 switch (cap->cap) { 5880 case KVM_CAP_DISABLE_QUIRKS: 5881 kvm->arch.disabled_quirks = cap->args[0]; 5882 r = 0; 5883 break; 5884 case KVM_CAP_SPLIT_IRQCHIP: { 5885 mutex_lock(&kvm->lock); 5886 r = -EINVAL; 5887 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 5888 goto split_irqchip_unlock; 5889 r = -EEXIST; 5890 if (irqchip_in_kernel(kvm)) 5891 goto split_irqchip_unlock; 5892 if (kvm->created_vcpus) 5893 goto split_irqchip_unlock; 5894 r = kvm_setup_empty_irq_routing(kvm); 5895 if (r) 5896 goto split_irqchip_unlock; 5897 /* Pairs with irqchip_in_kernel. */ 5898 smp_wmb(); 5899 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 5900 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 5901 kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT); 5902 r = 0; 5903 split_irqchip_unlock: 5904 mutex_unlock(&kvm->lock); 5905 break; 5906 } 5907 case KVM_CAP_X2APIC_API: 5908 r = -EINVAL; 5909 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 5910 break; 5911 5912 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 5913 kvm->arch.x2apic_format = true; 5914 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 5915 kvm->arch.x2apic_broadcast_quirk_disabled = true; 5916 5917 r = 0; 5918 break; 5919 case KVM_CAP_X86_DISABLE_EXITS: 5920 r = -EINVAL; 5921 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 5922 break; 5923 5924 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 5925 kvm_can_mwait_in_guest()) 5926 kvm->arch.mwait_in_guest = true; 5927 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 5928 kvm->arch.hlt_in_guest = true; 5929 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 5930 kvm->arch.pause_in_guest = true; 5931 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 5932 kvm->arch.cstate_in_guest = true; 5933 r = 0; 5934 break; 5935 case KVM_CAP_MSR_PLATFORM_INFO: 5936 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 5937 r = 0; 5938 break; 5939 case KVM_CAP_EXCEPTION_PAYLOAD: 5940 kvm->arch.exception_payload_enabled = cap->args[0]; 5941 r = 0; 5942 break; 5943 case KVM_CAP_X86_USER_SPACE_MSR: 5944 kvm->arch.user_space_msr_mask = cap->args[0]; 5945 r = 0; 5946 break; 5947 case KVM_CAP_X86_BUS_LOCK_EXIT: 5948 r = -EINVAL; 5949 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 5950 break; 5951 5952 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 5953 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 5954 break; 5955 5956 if (kvm_has_bus_lock_exit && 5957 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 5958 kvm->arch.bus_lock_detection_enabled = true; 5959 r = 0; 5960 break; 5961 #ifdef CONFIG_X86_SGX_KVM 5962 case KVM_CAP_SGX_ATTRIBUTE: { 5963 unsigned long allowed_attributes = 0; 5964 5965 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 5966 if (r) 5967 break; 5968 5969 /* KVM only supports the PROVISIONKEY privileged attribute. */ 5970 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 5971 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 5972 kvm->arch.sgx_provisioning_allowed = true; 5973 else 5974 r = -EINVAL; 5975 break; 5976 } 5977 #endif 5978 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 5979 r = -EINVAL; 5980 if (kvm_x86_ops.vm_copy_enc_context_from) 5981 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]); 5982 return r; 5983 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 5984 r = -EINVAL; 5985 if (kvm_x86_ops.vm_move_enc_context_from) 5986 r = kvm_x86_ops.vm_move_enc_context_from( 5987 kvm, cap->args[0]); 5988 return r; 5989 case KVM_CAP_EXIT_HYPERCALL: 5990 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 5991 r = -EINVAL; 5992 break; 5993 } 5994 kvm->arch.hypercall_exit_enabled = cap->args[0]; 5995 r = 0; 5996 break; 5997 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 5998 r = -EINVAL; 5999 if (cap->args[0] & ~1) 6000 break; 6001 kvm->arch.exit_on_emulation_error = cap->args[0]; 6002 r = 0; 6003 break; 6004 default: 6005 r = -EINVAL; 6006 break; 6007 } 6008 return r; 6009 } 6010 6011 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6012 { 6013 struct kvm_x86_msr_filter *msr_filter; 6014 6015 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6016 if (!msr_filter) 6017 return NULL; 6018 6019 msr_filter->default_allow = default_allow; 6020 return msr_filter; 6021 } 6022 6023 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6024 { 6025 u32 i; 6026 6027 if (!msr_filter) 6028 return; 6029 6030 for (i = 0; i < msr_filter->count; i++) 6031 kfree(msr_filter->ranges[i].bitmap); 6032 6033 kfree(msr_filter); 6034 } 6035 6036 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6037 struct kvm_msr_filter_range *user_range) 6038 { 6039 unsigned long *bitmap = NULL; 6040 size_t bitmap_size; 6041 6042 if (!user_range->nmsrs) 6043 return 0; 6044 6045 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) 6046 return -EINVAL; 6047 6048 if (!user_range->flags) 6049 return -EINVAL; 6050 6051 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6052 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6053 return -EINVAL; 6054 6055 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6056 if (IS_ERR(bitmap)) 6057 return PTR_ERR(bitmap); 6058 6059 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6060 .flags = user_range->flags, 6061 .base = user_range->base, 6062 .nmsrs = user_range->nmsrs, 6063 .bitmap = bitmap, 6064 }; 6065 6066 msr_filter->count++; 6067 return 0; 6068 } 6069 6070 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 6071 { 6072 struct kvm_msr_filter __user *user_msr_filter = argp; 6073 struct kvm_x86_msr_filter *new_filter, *old_filter; 6074 struct kvm_msr_filter filter; 6075 bool default_allow; 6076 bool empty = true; 6077 int r = 0; 6078 u32 i; 6079 6080 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6081 return -EFAULT; 6082 6083 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 6084 empty &= !filter.ranges[i].nmsrs; 6085 6086 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 6087 if (empty && !default_allow) 6088 return -EINVAL; 6089 6090 new_filter = kvm_alloc_msr_filter(default_allow); 6091 if (!new_filter) 6092 return -ENOMEM; 6093 6094 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6095 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]); 6096 if (r) { 6097 kvm_free_msr_filter(new_filter); 6098 return r; 6099 } 6100 } 6101 6102 mutex_lock(&kvm->lock); 6103 6104 /* The per-VM filter is protected by kvm->lock... */ 6105 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6106 6107 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6108 synchronize_srcu(&kvm->srcu); 6109 6110 kvm_free_msr_filter(old_filter); 6111 6112 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6113 mutex_unlock(&kvm->lock); 6114 6115 return 0; 6116 } 6117 6118 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6119 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6120 { 6121 struct kvm_vcpu *vcpu; 6122 unsigned long i; 6123 int ret = 0; 6124 6125 mutex_lock(&kvm->lock); 6126 kvm_for_each_vcpu(i, vcpu, kvm) { 6127 if (!vcpu->arch.pv_time_enabled) 6128 continue; 6129 6130 ret = kvm_set_guest_paused(vcpu); 6131 if (ret) { 6132 kvm_err("Failed to pause guest VCPU%d: %d\n", 6133 vcpu->vcpu_id, ret); 6134 break; 6135 } 6136 } 6137 mutex_unlock(&kvm->lock); 6138 6139 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6140 } 6141 6142 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6143 { 6144 switch (state) { 6145 case PM_HIBERNATION_PREPARE: 6146 case PM_SUSPEND_PREPARE: 6147 return kvm_arch_suspend_notifier(kvm); 6148 } 6149 6150 return NOTIFY_DONE; 6151 } 6152 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6153 6154 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6155 { 6156 struct kvm_clock_data data = { 0 }; 6157 6158 get_kvmclock(kvm, &data); 6159 if (copy_to_user(argp, &data, sizeof(data))) 6160 return -EFAULT; 6161 6162 return 0; 6163 } 6164 6165 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6166 { 6167 struct kvm_arch *ka = &kvm->arch; 6168 struct kvm_clock_data data; 6169 u64 now_raw_ns; 6170 6171 if (copy_from_user(&data, argp, sizeof(data))) 6172 return -EFAULT; 6173 6174 /* 6175 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6176 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6177 */ 6178 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6179 return -EINVAL; 6180 6181 kvm_hv_invalidate_tsc_page(kvm); 6182 kvm_start_pvclock_update(kvm); 6183 pvclock_update_vm_gtod_copy(kvm); 6184 6185 /* 6186 * This pairs with kvm_guest_time_update(): when masterclock is 6187 * in use, we use master_kernel_ns + kvmclock_offset to set 6188 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6189 * is slightly ahead) here we risk going negative on unsigned 6190 * 'system_time' when 'data.clock' is very small. 6191 */ 6192 if (data.flags & KVM_CLOCK_REALTIME) { 6193 u64 now_real_ns = ktime_get_real_ns(); 6194 6195 /* 6196 * Avoid stepping the kvmclock backwards. 6197 */ 6198 if (now_real_ns > data.realtime) 6199 data.clock += now_real_ns - data.realtime; 6200 } 6201 6202 if (ka->use_master_clock) 6203 now_raw_ns = ka->master_kernel_ns; 6204 else 6205 now_raw_ns = get_kvmclock_base_ns(); 6206 ka->kvmclock_offset = data.clock - now_raw_ns; 6207 kvm_end_pvclock_update(kvm); 6208 return 0; 6209 } 6210 6211 long kvm_arch_vm_ioctl(struct file *filp, 6212 unsigned int ioctl, unsigned long arg) 6213 { 6214 struct kvm *kvm = filp->private_data; 6215 void __user *argp = (void __user *)arg; 6216 int r = -ENOTTY; 6217 /* 6218 * This union makes it completely explicit to gcc-3.x 6219 * that these two variables' stack usage should be 6220 * combined, not added together. 6221 */ 6222 union { 6223 struct kvm_pit_state ps; 6224 struct kvm_pit_state2 ps2; 6225 struct kvm_pit_config pit_config; 6226 } u; 6227 6228 switch (ioctl) { 6229 case KVM_SET_TSS_ADDR: 6230 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6231 break; 6232 case KVM_SET_IDENTITY_MAP_ADDR: { 6233 u64 ident_addr; 6234 6235 mutex_lock(&kvm->lock); 6236 r = -EINVAL; 6237 if (kvm->created_vcpus) 6238 goto set_identity_unlock; 6239 r = -EFAULT; 6240 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6241 goto set_identity_unlock; 6242 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6243 set_identity_unlock: 6244 mutex_unlock(&kvm->lock); 6245 break; 6246 } 6247 case KVM_SET_NR_MMU_PAGES: 6248 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6249 break; 6250 case KVM_GET_NR_MMU_PAGES: 6251 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6252 break; 6253 case KVM_CREATE_IRQCHIP: { 6254 mutex_lock(&kvm->lock); 6255 6256 r = -EEXIST; 6257 if (irqchip_in_kernel(kvm)) 6258 goto create_irqchip_unlock; 6259 6260 r = -EINVAL; 6261 if (kvm->created_vcpus) 6262 goto create_irqchip_unlock; 6263 6264 r = kvm_pic_init(kvm); 6265 if (r) 6266 goto create_irqchip_unlock; 6267 6268 r = kvm_ioapic_init(kvm); 6269 if (r) { 6270 kvm_pic_destroy(kvm); 6271 goto create_irqchip_unlock; 6272 } 6273 6274 r = kvm_setup_default_irq_routing(kvm); 6275 if (r) { 6276 kvm_ioapic_destroy(kvm); 6277 kvm_pic_destroy(kvm); 6278 goto create_irqchip_unlock; 6279 } 6280 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6281 smp_wmb(); 6282 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6283 kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT); 6284 create_irqchip_unlock: 6285 mutex_unlock(&kvm->lock); 6286 break; 6287 } 6288 case KVM_CREATE_PIT: 6289 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6290 goto create_pit; 6291 case KVM_CREATE_PIT2: 6292 r = -EFAULT; 6293 if (copy_from_user(&u.pit_config, argp, 6294 sizeof(struct kvm_pit_config))) 6295 goto out; 6296 create_pit: 6297 mutex_lock(&kvm->lock); 6298 r = -EEXIST; 6299 if (kvm->arch.vpit) 6300 goto create_pit_unlock; 6301 r = -ENOMEM; 6302 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6303 if (kvm->arch.vpit) 6304 r = 0; 6305 create_pit_unlock: 6306 mutex_unlock(&kvm->lock); 6307 break; 6308 case KVM_GET_IRQCHIP: { 6309 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6310 struct kvm_irqchip *chip; 6311 6312 chip = memdup_user(argp, sizeof(*chip)); 6313 if (IS_ERR(chip)) { 6314 r = PTR_ERR(chip); 6315 goto out; 6316 } 6317 6318 r = -ENXIO; 6319 if (!irqchip_kernel(kvm)) 6320 goto get_irqchip_out; 6321 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6322 if (r) 6323 goto get_irqchip_out; 6324 r = -EFAULT; 6325 if (copy_to_user(argp, chip, sizeof(*chip))) 6326 goto get_irqchip_out; 6327 r = 0; 6328 get_irqchip_out: 6329 kfree(chip); 6330 break; 6331 } 6332 case KVM_SET_IRQCHIP: { 6333 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6334 struct kvm_irqchip *chip; 6335 6336 chip = memdup_user(argp, sizeof(*chip)); 6337 if (IS_ERR(chip)) { 6338 r = PTR_ERR(chip); 6339 goto out; 6340 } 6341 6342 r = -ENXIO; 6343 if (!irqchip_kernel(kvm)) 6344 goto set_irqchip_out; 6345 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6346 set_irqchip_out: 6347 kfree(chip); 6348 break; 6349 } 6350 case KVM_GET_PIT: { 6351 r = -EFAULT; 6352 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6353 goto out; 6354 r = -ENXIO; 6355 if (!kvm->arch.vpit) 6356 goto out; 6357 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6358 if (r) 6359 goto out; 6360 r = -EFAULT; 6361 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6362 goto out; 6363 r = 0; 6364 break; 6365 } 6366 case KVM_SET_PIT: { 6367 r = -EFAULT; 6368 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6369 goto out; 6370 mutex_lock(&kvm->lock); 6371 r = -ENXIO; 6372 if (!kvm->arch.vpit) 6373 goto set_pit_out; 6374 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6375 set_pit_out: 6376 mutex_unlock(&kvm->lock); 6377 break; 6378 } 6379 case KVM_GET_PIT2: { 6380 r = -ENXIO; 6381 if (!kvm->arch.vpit) 6382 goto out; 6383 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6384 if (r) 6385 goto out; 6386 r = -EFAULT; 6387 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6388 goto out; 6389 r = 0; 6390 break; 6391 } 6392 case KVM_SET_PIT2: { 6393 r = -EFAULT; 6394 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6395 goto out; 6396 mutex_lock(&kvm->lock); 6397 r = -ENXIO; 6398 if (!kvm->arch.vpit) 6399 goto set_pit2_out; 6400 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6401 set_pit2_out: 6402 mutex_unlock(&kvm->lock); 6403 break; 6404 } 6405 case KVM_REINJECT_CONTROL: { 6406 struct kvm_reinject_control control; 6407 r = -EFAULT; 6408 if (copy_from_user(&control, argp, sizeof(control))) 6409 goto out; 6410 r = -ENXIO; 6411 if (!kvm->arch.vpit) 6412 goto out; 6413 r = kvm_vm_ioctl_reinject(kvm, &control); 6414 break; 6415 } 6416 case KVM_SET_BOOT_CPU_ID: 6417 r = 0; 6418 mutex_lock(&kvm->lock); 6419 if (kvm->created_vcpus) 6420 r = -EBUSY; 6421 else 6422 kvm->arch.bsp_vcpu_id = arg; 6423 mutex_unlock(&kvm->lock); 6424 break; 6425 #ifdef CONFIG_KVM_XEN 6426 case KVM_XEN_HVM_CONFIG: { 6427 struct kvm_xen_hvm_config xhc; 6428 r = -EFAULT; 6429 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6430 goto out; 6431 r = kvm_xen_hvm_config(kvm, &xhc); 6432 break; 6433 } 6434 case KVM_XEN_HVM_GET_ATTR: { 6435 struct kvm_xen_hvm_attr xha; 6436 6437 r = -EFAULT; 6438 if (copy_from_user(&xha, argp, sizeof(xha))) 6439 goto out; 6440 r = kvm_xen_hvm_get_attr(kvm, &xha); 6441 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6442 r = -EFAULT; 6443 break; 6444 } 6445 case KVM_XEN_HVM_SET_ATTR: { 6446 struct kvm_xen_hvm_attr xha; 6447 6448 r = -EFAULT; 6449 if (copy_from_user(&xha, argp, sizeof(xha))) 6450 goto out; 6451 r = kvm_xen_hvm_set_attr(kvm, &xha); 6452 break; 6453 } 6454 #endif 6455 case KVM_SET_CLOCK: 6456 r = kvm_vm_ioctl_set_clock(kvm, argp); 6457 break; 6458 case KVM_GET_CLOCK: 6459 r = kvm_vm_ioctl_get_clock(kvm, argp); 6460 break; 6461 case KVM_MEMORY_ENCRYPT_OP: { 6462 r = -ENOTTY; 6463 if (kvm_x86_ops.mem_enc_op) 6464 r = static_call(kvm_x86_mem_enc_op)(kvm, argp); 6465 break; 6466 } 6467 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6468 struct kvm_enc_region region; 6469 6470 r = -EFAULT; 6471 if (copy_from_user(®ion, argp, sizeof(region))) 6472 goto out; 6473 6474 r = -ENOTTY; 6475 if (kvm_x86_ops.mem_enc_reg_region) 6476 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, ®ion); 6477 break; 6478 } 6479 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6480 struct kvm_enc_region region; 6481 6482 r = -EFAULT; 6483 if (copy_from_user(®ion, argp, sizeof(region))) 6484 goto out; 6485 6486 r = -ENOTTY; 6487 if (kvm_x86_ops.mem_enc_unreg_region) 6488 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, ®ion); 6489 break; 6490 } 6491 case KVM_HYPERV_EVENTFD: { 6492 struct kvm_hyperv_eventfd hvevfd; 6493 6494 r = -EFAULT; 6495 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6496 goto out; 6497 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6498 break; 6499 } 6500 case KVM_SET_PMU_EVENT_FILTER: 6501 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6502 break; 6503 case KVM_X86_SET_MSR_FILTER: 6504 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 6505 break; 6506 default: 6507 r = -ENOTTY; 6508 } 6509 out: 6510 return r; 6511 } 6512 6513 static void kvm_init_msr_list(void) 6514 { 6515 struct x86_pmu_capability x86_pmu; 6516 u32 dummy[2]; 6517 unsigned i; 6518 6519 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 6520 "Please update the fixed PMCs in msrs_to_saved_all[]"); 6521 6522 perf_get_x86_pmu_capability(&x86_pmu); 6523 6524 num_msrs_to_save = 0; 6525 num_emulated_msrs = 0; 6526 num_msr_based_features = 0; 6527 6528 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 6529 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 6530 continue; 6531 6532 /* 6533 * Even MSRs that are valid in the host may not be exposed 6534 * to the guests in some cases. 6535 */ 6536 switch (msrs_to_save_all[i]) { 6537 case MSR_IA32_BNDCFGS: 6538 if (!kvm_mpx_supported()) 6539 continue; 6540 break; 6541 case MSR_TSC_AUX: 6542 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 6543 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 6544 continue; 6545 break; 6546 case MSR_IA32_UMWAIT_CONTROL: 6547 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 6548 continue; 6549 break; 6550 case MSR_IA32_RTIT_CTL: 6551 case MSR_IA32_RTIT_STATUS: 6552 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 6553 continue; 6554 break; 6555 case MSR_IA32_RTIT_CR3_MATCH: 6556 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6557 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 6558 continue; 6559 break; 6560 case MSR_IA32_RTIT_OUTPUT_BASE: 6561 case MSR_IA32_RTIT_OUTPUT_MASK: 6562 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6563 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 6564 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 6565 continue; 6566 break; 6567 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 6568 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6569 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 6570 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 6571 continue; 6572 break; 6573 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 6574 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 6575 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6576 continue; 6577 break; 6578 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 6579 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 6580 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6581 continue; 6582 break; 6583 case MSR_IA32_XFD: 6584 case MSR_IA32_XFD_ERR: 6585 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 6586 continue; 6587 break; 6588 default: 6589 break; 6590 } 6591 6592 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 6593 } 6594 6595 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 6596 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 6597 continue; 6598 6599 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 6600 } 6601 6602 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 6603 struct kvm_msr_entry msr; 6604 6605 msr.index = msr_based_features_all[i]; 6606 if (kvm_get_msr_feature(&msr)) 6607 continue; 6608 6609 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 6610 } 6611 } 6612 6613 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 6614 const void *v) 6615 { 6616 int handled = 0; 6617 int n; 6618 6619 do { 6620 n = min(len, 8); 6621 if (!(lapic_in_kernel(vcpu) && 6622 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 6623 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 6624 break; 6625 handled += n; 6626 addr += n; 6627 len -= n; 6628 v += n; 6629 } while (len); 6630 6631 return handled; 6632 } 6633 6634 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 6635 { 6636 int handled = 0; 6637 int n; 6638 6639 do { 6640 n = min(len, 8); 6641 if (!(lapic_in_kernel(vcpu) && 6642 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 6643 addr, n, v)) 6644 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 6645 break; 6646 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 6647 handled += n; 6648 addr += n; 6649 len -= n; 6650 v += n; 6651 } while (len); 6652 6653 return handled; 6654 } 6655 6656 static void kvm_set_segment(struct kvm_vcpu *vcpu, 6657 struct kvm_segment *var, int seg) 6658 { 6659 static_call(kvm_x86_set_segment)(vcpu, var, seg); 6660 } 6661 6662 void kvm_get_segment(struct kvm_vcpu *vcpu, 6663 struct kvm_segment *var, int seg) 6664 { 6665 static_call(kvm_x86_get_segment)(vcpu, var, seg); 6666 } 6667 6668 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 6669 struct x86_exception *exception) 6670 { 6671 struct kvm_mmu *mmu = vcpu->arch.mmu; 6672 gpa_t t_gpa; 6673 6674 BUG_ON(!mmu_is_nested(vcpu)); 6675 6676 /* NPT walks are always user-walks */ 6677 access |= PFERR_USER_MASK; 6678 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 6679 6680 return t_gpa; 6681 } 6682 6683 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 6684 struct x86_exception *exception) 6685 { 6686 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6687 6688 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6689 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6690 } 6691 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 6692 6693 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 6694 struct x86_exception *exception) 6695 { 6696 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6697 6698 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6699 access |= PFERR_FETCH_MASK; 6700 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6701 } 6702 6703 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 6704 struct x86_exception *exception) 6705 { 6706 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6707 6708 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6709 access |= PFERR_WRITE_MASK; 6710 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6711 } 6712 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 6713 6714 /* uses this to access any guest's mapped memory without checking CPL */ 6715 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 6716 struct x86_exception *exception) 6717 { 6718 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6719 6720 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 6721 } 6722 6723 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6724 struct kvm_vcpu *vcpu, u32 access, 6725 struct x86_exception *exception) 6726 { 6727 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6728 void *data = val; 6729 int r = X86EMUL_CONTINUE; 6730 6731 while (bytes) { 6732 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 6733 unsigned offset = addr & (PAGE_SIZE-1); 6734 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 6735 int ret; 6736 6737 if (gpa == UNMAPPED_GVA) 6738 return X86EMUL_PROPAGATE_FAULT; 6739 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 6740 offset, toread); 6741 if (ret < 0) { 6742 r = X86EMUL_IO_NEEDED; 6743 goto out; 6744 } 6745 6746 bytes -= toread; 6747 data += toread; 6748 addr += toread; 6749 } 6750 out: 6751 return r; 6752 } 6753 6754 /* used for instruction fetching */ 6755 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 6756 gva_t addr, void *val, unsigned int bytes, 6757 struct x86_exception *exception) 6758 { 6759 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6760 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6761 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6762 unsigned offset; 6763 int ret; 6764 6765 /* Inline kvm_read_guest_virt_helper for speed. */ 6766 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 6767 exception); 6768 if (unlikely(gpa == UNMAPPED_GVA)) 6769 return X86EMUL_PROPAGATE_FAULT; 6770 6771 offset = addr & (PAGE_SIZE-1); 6772 if (WARN_ON(offset + bytes > PAGE_SIZE)) 6773 bytes = (unsigned)PAGE_SIZE - offset; 6774 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 6775 offset, bytes); 6776 if (unlikely(ret < 0)) 6777 return X86EMUL_IO_NEEDED; 6778 6779 return X86EMUL_CONTINUE; 6780 } 6781 6782 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 6783 gva_t addr, void *val, unsigned int bytes, 6784 struct x86_exception *exception) 6785 { 6786 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6787 6788 /* 6789 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 6790 * is returned, but our callers are not ready for that and they blindly 6791 * call kvm_inject_page_fault. Ensure that they at least do not leak 6792 * uninitialized kernel stack memory into cr2 and error code. 6793 */ 6794 memset(exception, 0, sizeof(*exception)); 6795 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 6796 exception); 6797 } 6798 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 6799 6800 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 6801 gva_t addr, void *val, unsigned int bytes, 6802 struct x86_exception *exception, bool system) 6803 { 6804 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6805 u32 access = 0; 6806 6807 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3) 6808 access |= PFERR_USER_MASK; 6809 6810 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 6811 } 6812 6813 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 6814 unsigned long addr, void *val, unsigned int bytes) 6815 { 6816 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6817 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 6818 6819 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 6820 } 6821 6822 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6823 struct kvm_vcpu *vcpu, u32 access, 6824 struct x86_exception *exception) 6825 { 6826 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6827 void *data = val; 6828 int r = X86EMUL_CONTINUE; 6829 6830 while (bytes) { 6831 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 6832 unsigned offset = addr & (PAGE_SIZE-1); 6833 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 6834 int ret; 6835 6836 if (gpa == UNMAPPED_GVA) 6837 return X86EMUL_PROPAGATE_FAULT; 6838 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 6839 if (ret < 0) { 6840 r = X86EMUL_IO_NEEDED; 6841 goto out; 6842 } 6843 6844 bytes -= towrite; 6845 data += towrite; 6846 addr += towrite; 6847 } 6848 out: 6849 return r; 6850 } 6851 6852 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 6853 unsigned int bytes, struct x86_exception *exception, 6854 bool system) 6855 { 6856 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6857 u32 access = PFERR_WRITE_MASK; 6858 6859 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3) 6860 access |= PFERR_USER_MASK; 6861 6862 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6863 access, exception); 6864 } 6865 6866 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 6867 unsigned int bytes, struct x86_exception *exception) 6868 { 6869 /* kvm_write_guest_virt_system can pull in tons of pages. */ 6870 vcpu->arch.l1tf_flush_l1d = true; 6871 6872 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6873 PFERR_WRITE_MASK, exception); 6874 } 6875 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 6876 6877 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 6878 void *insn, int insn_len) 6879 { 6880 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 6881 insn, insn_len); 6882 } 6883 6884 int handle_ud(struct kvm_vcpu *vcpu) 6885 { 6886 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 6887 int emul_type = EMULTYPE_TRAP_UD; 6888 char sig[5]; /* ud2; .ascii "kvm" */ 6889 struct x86_exception e; 6890 6891 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 6892 return 1; 6893 6894 if (force_emulation_prefix && 6895 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 6896 sig, sizeof(sig), &e) == 0 && 6897 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 6898 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 6899 emul_type = EMULTYPE_TRAP_UD_FORCED; 6900 } 6901 6902 return kvm_emulate_instruction(vcpu, emul_type); 6903 } 6904 EXPORT_SYMBOL_GPL(handle_ud); 6905 6906 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6907 gpa_t gpa, bool write) 6908 { 6909 /* For APIC access vmexit */ 6910 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6911 return 1; 6912 6913 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 6914 trace_vcpu_match_mmio(gva, gpa, write, true); 6915 return 1; 6916 } 6917 6918 return 0; 6919 } 6920 6921 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6922 gpa_t *gpa, struct x86_exception *exception, 6923 bool write) 6924 { 6925 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6926 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 6927 | (write ? PFERR_WRITE_MASK : 0); 6928 6929 /* 6930 * currently PKRU is only applied to ept enabled guest so 6931 * there is no pkey in EPT page table for L1 guest or EPT 6932 * shadow page table for L2 guest. 6933 */ 6934 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 6935 !permission_fault(vcpu, vcpu->arch.walk_mmu, 6936 vcpu->arch.mmio_access, 0, access))) { 6937 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 6938 (gva & (PAGE_SIZE - 1)); 6939 trace_vcpu_match_mmio(gva, *gpa, write, false); 6940 return 1; 6941 } 6942 6943 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6944 6945 if (*gpa == UNMAPPED_GVA) 6946 return -1; 6947 6948 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 6949 } 6950 6951 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 6952 const void *val, int bytes) 6953 { 6954 int ret; 6955 6956 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 6957 if (ret < 0) 6958 return 0; 6959 kvm_page_track_write(vcpu, gpa, val, bytes); 6960 return 1; 6961 } 6962 6963 struct read_write_emulator_ops { 6964 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 6965 int bytes); 6966 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 6967 void *val, int bytes); 6968 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6969 int bytes, void *val); 6970 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6971 void *val, int bytes); 6972 bool write; 6973 }; 6974 6975 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 6976 { 6977 if (vcpu->mmio_read_completed) { 6978 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 6979 vcpu->mmio_fragments[0].gpa, val); 6980 vcpu->mmio_read_completed = 0; 6981 return 1; 6982 } 6983 6984 return 0; 6985 } 6986 6987 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6988 void *val, int bytes) 6989 { 6990 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 6991 } 6992 6993 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6994 void *val, int bytes) 6995 { 6996 return emulator_write_phys(vcpu, gpa, val, bytes); 6997 } 6998 6999 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7000 { 7001 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7002 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7003 } 7004 7005 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7006 void *val, int bytes) 7007 { 7008 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7009 return X86EMUL_IO_NEEDED; 7010 } 7011 7012 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7013 void *val, int bytes) 7014 { 7015 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7016 7017 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7018 return X86EMUL_CONTINUE; 7019 } 7020 7021 static const struct read_write_emulator_ops read_emultor = { 7022 .read_write_prepare = read_prepare, 7023 .read_write_emulate = read_emulate, 7024 .read_write_mmio = vcpu_mmio_read, 7025 .read_write_exit_mmio = read_exit_mmio, 7026 }; 7027 7028 static const struct read_write_emulator_ops write_emultor = { 7029 .read_write_emulate = write_emulate, 7030 .read_write_mmio = write_mmio, 7031 .read_write_exit_mmio = write_exit_mmio, 7032 .write = true, 7033 }; 7034 7035 static int emulator_read_write_onepage(unsigned long addr, void *val, 7036 unsigned int bytes, 7037 struct x86_exception *exception, 7038 struct kvm_vcpu *vcpu, 7039 const struct read_write_emulator_ops *ops) 7040 { 7041 gpa_t gpa; 7042 int handled, ret; 7043 bool write = ops->write; 7044 struct kvm_mmio_fragment *frag; 7045 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7046 7047 /* 7048 * If the exit was due to a NPF we may already have a GPA. 7049 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7050 * Note, this cannot be used on string operations since string 7051 * operation using rep will only have the initial GPA from the NPF 7052 * occurred. 7053 */ 7054 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7055 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7056 gpa = ctxt->gpa_val; 7057 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7058 } else { 7059 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7060 if (ret < 0) 7061 return X86EMUL_PROPAGATE_FAULT; 7062 } 7063 7064 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7065 return X86EMUL_CONTINUE; 7066 7067 /* 7068 * Is this MMIO handled locally? 7069 */ 7070 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7071 if (handled == bytes) 7072 return X86EMUL_CONTINUE; 7073 7074 gpa += handled; 7075 bytes -= handled; 7076 val += handled; 7077 7078 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7079 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7080 frag->gpa = gpa; 7081 frag->data = val; 7082 frag->len = bytes; 7083 return X86EMUL_CONTINUE; 7084 } 7085 7086 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7087 unsigned long addr, 7088 void *val, unsigned int bytes, 7089 struct x86_exception *exception, 7090 const struct read_write_emulator_ops *ops) 7091 { 7092 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7093 gpa_t gpa; 7094 int rc; 7095 7096 if (ops->read_write_prepare && 7097 ops->read_write_prepare(vcpu, val, bytes)) 7098 return X86EMUL_CONTINUE; 7099 7100 vcpu->mmio_nr_fragments = 0; 7101 7102 /* Crossing a page boundary? */ 7103 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7104 int now; 7105 7106 now = -addr & ~PAGE_MASK; 7107 rc = emulator_read_write_onepage(addr, val, now, exception, 7108 vcpu, ops); 7109 7110 if (rc != X86EMUL_CONTINUE) 7111 return rc; 7112 addr += now; 7113 if (ctxt->mode != X86EMUL_MODE_PROT64) 7114 addr = (u32)addr; 7115 val += now; 7116 bytes -= now; 7117 } 7118 7119 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7120 vcpu, ops); 7121 if (rc != X86EMUL_CONTINUE) 7122 return rc; 7123 7124 if (!vcpu->mmio_nr_fragments) 7125 return rc; 7126 7127 gpa = vcpu->mmio_fragments[0].gpa; 7128 7129 vcpu->mmio_needed = 1; 7130 vcpu->mmio_cur_fragment = 0; 7131 7132 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7133 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7134 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7135 vcpu->run->mmio.phys_addr = gpa; 7136 7137 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7138 } 7139 7140 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7141 unsigned long addr, 7142 void *val, 7143 unsigned int bytes, 7144 struct x86_exception *exception) 7145 { 7146 return emulator_read_write(ctxt, addr, val, bytes, 7147 exception, &read_emultor); 7148 } 7149 7150 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7151 unsigned long addr, 7152 const void *val, 7153 unsigned int bytes, 7154 struct x86_exception *exception) 7155 { 7156 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7157 exception, &write_emultor); 7158 } 7159 7160 #define CMPXCHG_TYPE(t, ptr, old, new) \ 7161 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 7162 7163 #ifdef CONFIG_X86_64 7164 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 7165 #else 7166 # define CMPXCHG64(ptr, old, new) \ 7167 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 7168 #endif 7169 7170 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7171 unsigned long addr, 7172 const void *old, 7173 const void *new, 7174 unsigned int bytes, 7175 struct x86_exception *exception) 7176 { 7177 struct kvm_host_map map; 7178 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7179 u64 page_line_mask; 7180 gpa_t gpa; 7181 char *kaddr; 7182 bool exchanged; 7183 7184 /* guests cmpxchg8b have to be emulated atomically */ 7185 if (bytes > 8 || (bytes & (bytes - 1))) 7186 goto emul_write; 7187 7188 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7189 7190 if (gpa == UNMAPPED_GVA || 7191 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7192 goto emul_write; 7193 7194 /* 7195 * Emulate the atomic as a straight write to avoid #AC if SLD is 7196 * enabled in the host and the access splits a cache line. 7197 */ 7198 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7199 page_line_mask = ~(cache_line_size() - 1); 7200 else 7201 page_line_mask = PAGE_MASK; 7202 7203 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7204 goto emul_write; 7205 7206 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 7207 goto emul_write; 7208 7209 kaddr = map.hva + offset_in_page(gpa); 7210 7211 switch (bytes) { 7212 case 1: 7213 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 7214 break; 7215 case 2: 7216 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 7217 break; 7218 case 4: 7219 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 7220 break; 7221 case 8: 7222 exchanged = CMPXCHG64(kaddr, old, new); 7223 break; 7224 default: 7225 BUG(); 7226 } 7227 7228 kvm_vcpu_unmap(vcpu, &map, true); 7229 7230 if (!exchanged) 7231 return X86EMUL_CMPXCHG_FAILED; 7232 7233 kvm_page_track_write(vcpu, gpa, new, bytes); 7234 7235 return X86EMUL_CONTINUE; 7236 7237 emul_write: 7238 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7239 7240 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7241 } 7242 7243 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 7244 { 7245 int r = 0, i; 7246 7247 for (i = 0; i < vcpu->arch.pio.count; i++) { 7248 if (vcpu->arch.pio.in) 7249 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 7250 vcpu->arch.pio.size, pd); 7251 else 7252 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 7253 vcpu->arch.pio.port, vcpu->arch.pio.size, 7254 pd); 7255 if (r) 7256 break; 7257 pd += vcpu->arch.pio.size; 7258 } 7259 return r; 7260 } 7261 7262 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7263 unsigned short port, 7264 unsigned int count, bool in) 7265 { 7266 vcpu->arch.pio.port = port; 7267 vcpu->arch.pio.in = in; 7268 vcpu->arch.pio.count = count; 7269 vcpu->arch.pio.size = size; 7270 7271 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) 7272 return 1; 7273 7274 vcpu->run->exit_reason = KVM_EXIT_IO; 7275 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7276 vcpu->run->io.size = size; 7277 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7278 vcpu->run->io.count = count; 7279 vcpu->run->io.port = port; 7280 7281 return 0; 7282 } 7283 7284 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7285 unsigned short port, unsigned int count) 7286 { 7287 WARN_ON(vcpu->arch.pio.count); 7288 memset(vcpu->arch.pio_data, 0, size * count); 7289 return emulator_pio_in_out(vcpu, size, port, count, true); 7290 } 7291 7292 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7293 { 7294 int size = vcpu->arch.pio.size; 7295 unsigned count = vcpu->arch.pio.count; 7296 memcpy(val, vcpu->arch.pio_data, size * count); 7297 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7298 vcpu->arch.pio.count = 0; 7299 } 7300 7301 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7302 unsigned short port, void *val, unsigned int count) 7303 { 7304 if (vcpu->arch.pio.count) { 7305 /* 7306 * Complete a previous iteration that required userspace I/O. 7307 * Note, @count isn't guaranteed to match pio.count as userspace 7308 * can modify ECX before rerunning the vCPU. Ignore any such 7309 * shenanigans as KVM doesn't support modifying the rep count, 7310 * and the emulator ensures @count doesn't overflow the buffer. 7311 */ 7312 } else { 7313 int r = __emulator_pio_in(vcpu, size, port, count); 7314 if (!r) 7315 return r; 7316 7317 /* Results already available, fall through. */ 7318 } 7319 7320 complete_emulator_pio_in(vcpu, val); 7321 return 1; 7322 } 7323 7324 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7325 int size, unsigned short port, void *val, 7326 unsigned int count) 7327 { 7328 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 7329 7330 } 7331 7332 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7333 unsigned short port, const void *val, 7334 unsigned int count) 7335 { 7336 int ret; 7337 7338 memcpy(vcpu->arch.pio_data, val, size * count); 7339 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 7340 ret = emulator_pio_in_out(vcpu, size, port, count, false); 7341 if (ret) 7342 vcpu->arch.pio.count = 0; 7343 7344 return ret; 7345 } 7346 7347 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7348 int size, unsigned short port, 7349 const void *val, unsigned int count) 7350 { 7351 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7352 } 7353 7354 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7355 { 7356 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7357 } 7358 7359 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7360 { 7361 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7362 } 7363 7364 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7365 { 7366 if (!need_emulate_wbinvd(vcpu)) 7367 return X86EMUL_CONTINUE; 7368 7369 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7370 int cpu = get_cpu(); 7371 7372 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7373 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7374 wbinvd_ipi, NULL, 1); 7375 put_cpu(); 7376 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7377 } else 7378 wbinvd(); 7379 return X86EMUL_CONTINUE; 7380 } 7381 7382 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7383 { 7384 kvm_emulate_wbinvd_noskip(vcpu); 7385 return kvm_skip_emulated_instruction(vcpu); 7386 } 7387 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7388 7389 7390 7391 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7392 { 7393 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7394 } 7395 7396 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7397 unsigned long *dest) 7398 { 7399 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7400 } 7401 7402 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7403 unsigned long value) 7404 { 7405 7406 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7407 } 7408 7409 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7410 { 7411 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7412 } 7413 7414 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7415 { 7416 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7417 unsigned long value; 7418 7419 switch (cr) { 7420 case 0: 7421 value = kvm_read_cr0(vcpu); 7422 break; 7423 case 2: 7424 value = vcpu->arch.cr2; 7425 break; 7426 case 3: 7427 value = kvm_read_cr3(vcpu); 7428 break; 7429 case 4: 7430 value = kvm_read_cr4(vcpu); 7431 break; 7432 case 8: 7433 value = kvm_get_cr8(vcpu); 7434 break; 7435 default: 7436 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7437 return 0; 7438 } 7439 7440 return value; 7441 } 7442 7443 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7444 { 7445 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7446 int res = 0; 7447 7448 switch (cr) { 7449 case 0: 7450 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7451 break; 7452 case 2: 7453 vcpu->arch.cr2 = val; 7454 break; 7455 case 3: 7456 res = kvm_set_cr3(vcpu, val); 7457 break; 7458 case 4: 7459 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7460 break; 7461 case 8: 7462 res = kvm_set_cr8(vcpu, val); 7463 break; 7464 default: 7465 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7466 res = -1; 7467 } 7468 7469 return res; 7470 } 7471 7472 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7473 { 7474 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7475 } 7476 7477 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7478 { 7479 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7480 } 7481 7482 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7483 { 7484 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7485 } 7486 7487 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7488 { 7489 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7490 } 7491 7492 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7493 { 7494 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7495 } 7496 7497 static unsigned long emulator_get_cached_segment_base( 7498 struct x86_emulate_ctxt *ctxt, int seg) 7499 { 7500 return get_segment_base(emul_to_vcpu(ctxt), seg); 7501 } 7502 7503 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7504 struct desc_struct *desc, u32 *base3, 7505 int seg) 7506 { 7507 struct kvm_segment var; 7508 7509 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7510 *selector = var.selector; 7511 7512 if (var.unusable) { 7513 memset(desc, 0, sizeof(*desc)); 7514 if (base3) 7515 *base3 = 0; 7516 return false; 7517 } 7518 7519 if (var.g) 7520 var.limit >>= 12; 7521 set_desc_limit(desc, var.limit); 7522 set_desc_base(desc, (unsigned long)var.base); 7523 #ifdef CONFIG_X86_64 7524 if (base3) 7525 *base3 = var.base >> 32; 7526 #endif 7527 desc->type = var.type; 7528 desc->s = var.s; 7529 desc->dpl = var.dpl; 7530 desc->p = var.present; 7531 desc->avl = var.avl; 7532 desc->l = var.l; 7533 desc->d = var.db; 7534 desc->g = var.g; 7535 7536 return true; 7537 } 7538 7539 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 7540 struct desc_struct *desc, u32 base3, 7541 int seg) 7542 { 7543 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7544 struct kvm_segment var; 7545 7546 var.selector = selector; 7547 var.base = get_desc_base(desc); 7548 #ifdef CONFIG_X86_64 7549 var.base |= ((u64)base3) << 32; 7550 #endif 7551 var.limit = get_desc_limit(desc); 7552 if (desc->g) 7553 var.limit = (var.limit << 12) | 0xfff; 7554 var.type = desc->type; 7555 var.dpl = desc->dpl; 7556 var.db = desc->d; 7557 var.s = desc->s; 7558 var.l = desc->l; 7559 var.g = desc->g; 7560 var.avl = desc->avl; 7561 var.present = desc->p; 7562 var.unusable = !var.present; 7563 var.padding = 0; 7564 7565 kvm_set_segment(vcpu, &var, seg); 7566 return; 7567 } 7568 7569 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 7570 u32 msr_index, u64 *pdata) 7571 { 7572 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7573 int r; 7574 7575 r = kvm_get_msr(vcpu, msr_index, pdata); 7576 7577 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 7578 complete_emulated_rdmsr, r)) { 7579 /* Bounce to user space */ 7580 return X86EMUL_IO_NEEDED; 7581 } 7582 7583 return r; 7584 } 7585 7586 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 7587 u32 msr_index, u64 data) 7588 { 7589 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7590 int r; 7591 7592 r = kvm_set_msr(vcpu, msr_index, data); 7593 7594 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 7595 complete_emulated_msr_access, r)) { 7596 /* Bounce to user space */ 7597 return X86EMUL_IO_NEEDED; 7598 } 7599 7600 return r; 7601 } 7602 7603 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 7604 { 7605 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7606 7607 return vcpu->arch.smbase; 7608 } 7609 7610 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 7611 { 7612 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7613 7614 vcpu->arch.smbase = smbase; 7615 } 7616 7617 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 7618 u32 pmc) 7619 { 7620 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 7621 return 0; 7622 return -EINVAL; 7623 } 7624 7625 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 7626 u32 pmc, u64 *pdata) 7627 { 7628 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 7629 } 7630 7631 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 7632 { 7633 emul_to_vcpu(ctxt)->arch.halt_request = 1; 7634 } 7635 7636 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 7637 struct x86_instruction_info *info, 7638 enum x86_intercept_stage stage) 7639 { 7640 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 7641 &ctxt->exception); 7642 } 7643 7644 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 7645 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 7646 bool exact_only) 7647 { 7648 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 7649 } 7650 7651 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 7652 { 7653 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 7654 } 7655 7656 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 7657 { 7658 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 7659 } 7660 7661 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 7662 { 7663 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 7664 } 7665 7666 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 7667 { 7668 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 7669 } 7670 7671 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 7672 { 7673 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 7674 } 7675 7676 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 7677 { 7678 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 7679 } 7680 7681 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 7682 { 7683 return emul_to_vcpu(ctxt)->arch.hflags; 7684 } 7685 7686 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt) 7687 { 7688 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7689 7690 kvm_smm_changed(vcpu, false); 7691 } 7692 7693 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt, 7694 const char *smstate) 7695 { 7696 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate); 7697 } 7698 7699 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 7700 { 7701 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 7702 } 7703 7704 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 7705 { 7706 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 7707 } 7708 7709 static const struct x86_emulate_ops emulate_ops = { 7710 .read_gpr = emulator_read_gpr, 7711 .write_gpr = emulator_write_gpr, 7712 .read_std = emulator_read_std, 7713 .write_std = emulator_write_std, 7714 .read_phys = kvm_read_guest_phys_system, 7715 .fetch = kvm_fetch_guest_virt, 7716 .read_emulated = emulator_read_emulated, 7717 .write_emulated = emulator_write_emulated, 7718 .cmpxchg_emulated = emulator_cmpxchg_emulated, 7719 .invlpg = emulator_invlpg, 7720 .pio_in_emulated = emulator_pio_in_emulated, 7721 .pio_out_emulated = emulator_pio_out_emulated, 7722 .get_segment = emulator_get_segment, 7723 .set_segment = emulator_set_segment, 7724 .get_cached_segment_base = emulator_get_cached_segment_base, 7725 .get_gdt = emulator_get_gdt, 7726 .get_idt = emulator_get_idt, 7727 .set_gdt = emulator_set_gdt, 7728 .set_idt = emulator_set_idt, 7729 .get_cr = emulator_get_cr, 7730 .set_cr = emulator_set_cr, 7731 .cpl = emulator_get_cpl, 7732 .get_dr = emulator_get_dr, 7733 .set_dr = emulator_set_dr, 7734 .get_smbase = emulator_get_smbase, 7735 .set_smbase = emulator_set_smbase, 7736 .set_msr = emulator_set_msr, 7737 .get_msr = emulator_get_msr, 7738 .check_pmc = emulator_check_pmc, 7739 .read_pmc = emulator_read_pmc, 7740 .halt = emulator_halt, 7741 .wbinvd = emulator_wbinvd, 7742 .fix_hypercall = emulator_fix_hypercall, 7743 .intercept = emulator_intercept, 7744 .get_cpuid = emulator_get_cpuid, 7745 .guest_has_long_mode = emulator_guest_has_long_mode, 7746 .guest_has_movbe = emulator_guest_has_movbe, 7747 .guest_has_fxsr = emulator_guest_has_fxsr, 7748 .set_nmi_mask = emulator_set_nmi_mask, 7749 .get_hflags = emulator_get_hflags, 7750 .exiting_smm = emulator_exiting_smm, 7751 .leave_smm = emulator_leave_smm, 7752 .triple_fault = emulator_triple_fault, 7753 .set_xcr = emulator_set_xcr, 7754 }; 7755 7756 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 7757 { 7758 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 7759 /* 7760 * an sti; sti; sequence only disable interrupts for the first 7761 * instruction. So, if the last instruction, be it emulated or 7762 * not, left the system with the INT_STI flag enabled, it 7763 * means that the last instruction is an sti. We should not 7764 * leave the flag on in this case. The same goes for mov ss 7765 */ 7766 if (int_shadow & mask) 7767 mask = 0; 7768 if (unlikely(int_shadow || mask)) { 7769 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 7770 if (!mask) 7771 kvm_make_request(KVM_REQ_EVENT, vcpu); 7772 } 7773 } 7774 7775 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 7776 { 7777 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7778 if (ctxt->exception.vector == PF_VECTOR) 7779 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 7780 7781 if (ctxt->exception.error_code_valid) 7782 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 7783 ctxt->exception.error_code); 7784 else 7785 kvm_queue_exception(vcpu, ctxt->exception.vector); 7786 return false; 7787 } 7788 7789 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 7790 { 7791 struct x86_emulate_ctxt *ctxt; 7792 7793 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 7794 if (!ctxt) { 7795 pr_err("kvm: failed to allocate vcpu's emulator\n"); 7796 return NULL; 7797 } 7798 7799 ctxt->vcpu = vcpu; 7800 ctxt->ops = &emulate_ops; 7801 vcpu->arch.emulate_ctxt = ctxt; 7802 7803 return ctxt; 7804 } 7805 7806 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 7807 { 7808 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7809 int cs_db, cs_l; 7810 7811 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 7812 7813 ctxt->gpa_available = false; 7814 ctxt->eflags = kvm_get_rflags(vcpu); 7815 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 7816 7817 ctxt->eip = kvm_rip_read(vcpu); 7818 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 7819 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 7820 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 7821 cs_db ? X86EMUL_MODE_PROT32 : 7822 X86EMUL_MODE_PROT16; 7823 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 7824 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 7825 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 7826 7827 ctxt->interruptibility = 0; 7828 ctxt->have_exception = false; 7829 ctxt->exception.vector = -1; 7830 ctxt->perm_ok = false; 7831 7832 init_decode_cache(ctxt); 7833 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7834 } 7835 7836 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 7837 { 7838 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7839 int ret; 7840 7841 init_emulate_ctxt(vcpu); 7842 7843 ctxt->op_bytes = 2; 7844 ctxt->ad_bytes = 2; 7845 ctxt->_eip = ctxt->eip + inc_eip; 7846 ret = emulate_int_real(ctxt, irq); 7847 7848 if (ret != X86EMUL_CONTINUE) { 7849 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 7850 } else { 7851 ctxt->eip = ctxt->_eip; 7852 kvm_rip_write(vcpu, ctxt->eip); 7853 kvm_set_rflags(vcpu, ctxt->eflags); 7854 } 7855 } 7856 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 7857 7858 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 7859 u8 ndata, u8 *insn_bytes, u8 insn_size) 7860 { 7861 struct kvm_run *run = vcpu->run; 7862 u64 info[5]; 7863 u8 info_start; 7864 7865 /* 7866 * Zero the whole array used to retrieve the exit info, as casting to 7867 * u32 for select entries will leave some chunks uninitialized. 7868 */ 7869 memset(&info, 0, sizeof(info)); 7870 7871 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 7872 &info[2], (u32 *)&info[3], 7873 (u32 *)&info[4]); 7874 7875 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7876 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 7877 7878 /* 7879 * There's currently space for 13 entries, but 5 are used for the exit 7880 * reason and info. Restrict to 4 to reduce the maintenance burden 7881 * when expanding kvm_run.emulation_failure in the future. 7882 */ 7883 if (WARN_ON_ONCE(ndata > 4)) 7884 ndata = 4; 7885 7886 /* Always include the flags as a 'data' entry. */ 7887 info_start = 1; 7888 run->emulation_failure.flags = 0; 7889 7890 if (insn_size) { 7891 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 7892 sizeof(run->emulation_failure.insn_bytes) != 16)); 7893 info_start += 2; 7894 run->emulation_failure.flags |= 7895 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 7896 run->emulation_failure.insn_size = insn_size; 7897 memset(run->emulation_failure.insn_bytes, 0x90, 7898 sizeof(run->emulation_failure.insn_bytes)); 7899 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 7900 } 7901 7902 memcpy(&run->internal.data[info_start], info, sizeof(info)); 7903 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 7904 ndata * sizeof(data[0])); 7905 7906 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 7907 } 7908 7909 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 7910 { 7911 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7912 7913 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 7914 ctxt->fetch.end - ctxt->fetch.data); 7915 } 7916 7917 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 7918 u8 ndata) 7919 { 7920 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 7921 } 7922 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 7923 7924 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 7925 { 7926 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 7927 } 7928 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 7929 7930 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 7931 { 7932 struct kvm *kvm = vcpu->kvm; 7933 7934 ++vcpu->stat.insn_emulation_fail; 7935 trace_kvm_emulate_insn_failed(vcpu); 7936 7937 if (emulation_type & EMULTYPE_VMWARE_GP) { 7938 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 7939 return 1; 7940 } 7941 7942 if (kvm->arch.exit_on_emulation_error || 7943 (emulation_type & EMULTYPE_SKIP)) { 7944 prepare_emulation_ctxt_failure_exit(vcpu); 7945 return 0; 7946 } 7947 7948 kvm_queue_exception(vcpu, UD_VECTOR); 7949 7950 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 7951 prepare_emulation_ctxt_failure_exit(vcpu); 7952 return 0; 7953 } 7954 7955 return 1; 7956 } 7957 7958 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7959 bool write_fault_to_shadow_pgtable, 7960 int emulation_type) 7961 { 7962 gpa_t gpa = cr2_or_gpa; 7963 kvm_pfn_t pfn; 7964 7965 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7966 return false; 7967 7968 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7969 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7970 return false; 7971 7972 if (!vcpu->arch.mmu->direct_map) { 7973 /* 7974 * Write permission should be allowed since only 7975 * write access need to be emulated. 7976 */ 7977 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7978 7979 /* 7980 * If the mapping is invalid in guest, let cpu retry 7981 * it to generate fault. 7982 */ 7983 if (gpa == UNMAPPED_GVA) 7984 return true; 7985 } 7986 7987 /* 7988 * Do not retry the unhandleable instruction if it faults on the 7989 * readonly host memory, otherwise it will goto a infinite loop: 7990 * retry instruction -> write #PF -> emulation fail -> retry 7991 * instruction -> ... 7992 */ 7993 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 7994 7995 /* 7996 * If the instruction failed on the error pfn, it can not be fixed, 7997 * report the error to userspace. 7998 */ 7999 if (is_error_noslot_pfn(pfn)) 8000 return false; 8001 8002 kvm_release_pfn_clean(pfn); 8003 8004 /* The instructions are well-emulated on direct mmu. */ 8005 if (vcpu->arch.mmu->direct_map) { 8006 unsigned int indirect_shadow_pages; 8007 8008 write_lock(&vcpu->kvm->mmu_lock); 8009 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8010 write_unlock(&vcpu->kvm->mmu_lock); 8011 8012 if (indirect_shadow_pages) 8013 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8014 8015 return true; 8016 } 8017 8018 /* 8019 * if emulation was due to access to shadowed page table 8020 * and it failed try to unshadow page and re-enter the 8021 * guest to let CPU execute the instruction. 8022 */ 8023 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8024 8025 /* 8026 * If the access faults on its page table, it can not 8027 * be fixed by unprotecting shadow page and it should 8028 * be reported to userspace. 8029 */ 8030 return !write_fault_to_shadow_pgtable; 8031 } 8032 8033 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8034 gpa_t cr2_or_gpa, int emulation_type) 8035 { 8036 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8037 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8038 8039 last_retry_eip = vcpu->arch.last_retry_eip; 8040 last_retry_addr = vcpu->arch.last_retry_addr; 8041 8042 /* 8043 * If the emulation is caused by #PF and it is non-page_table 8044 * writing instruction, it means the VM-EXIT is caused by shadow 8045 * page protected, we can zap the shadow page and retry this 8046 * instruction directly. 8047 * 8048 * Note: if the guest uses a non-page-table modifying instruction 8049 * on the PDE that points to the instruction, then we will unmap 8050 * the instruction and go to an infinite loop. So, we cache the 8051 * last retried eip and the last fault address, if we meet the eip 8052 * and the address again, we can break out of the potential infinite 8053 * loop. 8054 */ 8055 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8056 8057 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8058 return false; 8059 8060 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8061 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8062 return false; 8063 8064 if (x86_page_table_writing_insn(ctxt)) 8065 return false; 8066 8067 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8068 return false; 8069 8070 vcpu->arch.last_retry_eip = ctxt->eip; 8071 vcpu->arch.last_retry_addr = cr2_or_gpa; 8072 8073 if (!vcpu->arch.mmu->direct_map) 8074 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8075 8076 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8077 8078 return true; 8079 } 8080 8081 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8082 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8083 8084 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm) 8085 { 8086 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm); 8087 8088 if (entering_smm) { 8089 vcpu->arch.hflags |= HF_SMM_MASK; 8090 } else { 8091 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK); 8092 8093 /* Process a latched INIT or SMI, if any. */ 8094 kvm_make_request(KVM_REQ_EVENT, vcpu); 8095 8096 /* 8097 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band, 8098 * on SMM exit we still need to reload them from 8099 * guest memory 8100 */ 8101 vcpu->arch.pdptrs_from_userspace = false; 8102 } 8103 8104 kvm_mmu_reset_context(vcpu); 8105 } 8106 8107 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8108 unsigned long *db) 8109 { 8110 u32 dr6 = 0; 8111 int i; 8112 u32 enable, rwlen; 8113 8114 enable = dr7; 8115 rwlen = dr7 >> 16; 8116 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8117 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8118 dr6 |= (1 << i); 8119 return dr6; 8120 } 8121 8122 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8123 { 8124 struct kvm_run *kvm_run = vcpu->run; 8125 8126 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8127 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8128 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8129 kvm_run->debug.arch.exception = DB_VECTOR; 8130 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8131 return 0; 8132 } 8133 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8134 return 1; 8135 } 8136 8137 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8138 { 8139 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8140 int r; 8141 8142 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8143 if (unlikely(!r)) 8144 return 0; 8145 8146 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8147 8148 /* 8149 * rflags is the old, "raw" value of the flags. The new value has 8150 * not been saved yet. 8151 * 8152 * This is correct even for TF set by the guest, because "the 8153 * processor will not generate this exception after the instruction 8154 * that sets the TF flag". 8155 */ 8156 if (unlikely(rflags & X86_EFLAGS_TF)) 8157 r = kvm_vcpu_do_singlestep(vcpu); 8158 return r; 8159 } 8160 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8161 8162 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 8163 { 8164 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8165 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8166 struct kvm_run *kvm_run = vcpu->run; 8167 unsigned long eip = kvm_get_linear_rip(vcpu); 8168 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8169 vcpu->arch.guest_debug_dr7, 8170 vcpu->arch.eff_db); 8171 8172 if (dr6 != 0) { 8173 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8174 kvm_run->debug.arch.pc = eip; 8175 kvm_run->debug.arch.exception = DB_VECTOR; 8176 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8177 *r = 0; 8178 return true; 8179 } 8180 } 8181 8182 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8183 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 8184 unsigned long eip = kvm_get_linear_rip(vcpu); 8185 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8186 vcpu->arch.dr7, 8187 vcpu->arch.db); 8188 8189 if (dr6 != 0) { 8190 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8191 *r = 1; 8192 return true; 8193 } 8194 } 8195 8196 return false; 8197 } 8198 8199 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8200 { 8201 switch (ctxt->opcode_len) { 8202 case 1: 8203 switch (ctxt->b) { 8204 case 0xe4: /* IN */ 8205 case 0xe5: 8206 case 0xec: 8207 case 0xed: 8208 case 0xe6: /* OUT */ 8209 case 0xe7: 8210 case 0xee: 8211 case 0xef: 8212 case 0x6c: /* INS */ 8213 case 0x6d: 8214 case 0x6e: /* OUTS */ 8215 case 0x6f: 8216 return true; 8217 } 8218 break; 8219 case 2: 8220 switch (ctxt->b) { 8221 case 0x33: /* RDPMC */ 8222 return true; 8223 } 8224 break; 8225 } 8226 8227 return false; 8228 } 8229 8230 /* 8231 * Decode to be emulated instruction. Return EMULATION_OK if success. 8232 */ 8233 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8234 void *insn, int insn_len) 8235 { 8236 int r = EMULATION_OK; 8237 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8238 8239 init_emulate_ctxt(vcpu); 8240 8241 /* 8242 * We will reenter on the same instruction since we do not set 8243 * complete_userspace_io. This does not handle watchpoints yet, 8244 * those would be handled in the emulate_ops. 8245 */ 8246 if (!(emulation_type & EMULTYPE_SKIP) && 8247 kvm_vcpu_check_breakpoint(vcpu, &r)) 8248 return r; 8249 8250 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8251 8252 trace_kvm_emulate_insn_start(vcpu); 8253 ++vcpu->stat.insn_emulation; 8254 8255 return r; 8256 } 8257 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8258 8259 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8260 int emulation_type, void *insn, int insn_len) 8261 { 8262 int r; 8263 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8264 bool writeback = true; 8265 bool write_fault_to_spt; 8266 8267 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8268 return 1; 8269 8270 vcpu->arch.l1tf_flush_l1d = true; 8271 8272 /* 8273 * Clear write_fault_to_shadow_pgtable here to ensure it is 8274 * never reused. 8275 */ 8276 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8277 vcpu->arch.write_fault_to_shadow_pgtable = false; 8278 8279 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8280 kvm_clear_exception_queue(vcpu); 8281 8282 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8283 insn, insn_len); 8284 if (r != EMULATION_OK) { 8285 if ((emulation_type & EMULTYPE_TRAP_UD) || 8286 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8287 kvm_queue_exception(vcpu, UD_VECTOR); 8288 return 1; 8289 } 8290 if (reexecute_instruction(vcpu, cr2_or_gpa, 8291 write_fault_to_spt, 8292 emulation_type)) 8293 return 1; 8294 if (ctxt->have_exception) { 8295 /* 8296 * #UD should result in just EMULATION_FAILED, and trap-like 8297 * exception should not be encountered during decode. 8298 */ 8299 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8300 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8301 inject_emulated_exception(vcpu); 8302 return 1; 8303 } 8304 return handle_emulation_failure(vcpu, emulation_type); 8305 } 8306 } 8307 8308 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8309 !is_vmware_backdoor_opcode(ctxt)) { 8310 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8311 return 1; 8312 } 8313 8314 /* 8315 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8316 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8317 * The caller is responsible for updating interruptibility state and 8318 * injecting single-step #DBs. 8319 */ 8320 if (emulation_type & EMULTYPE_SKIP) { 8321 if (ctxt->mode != X86EMUL_MODE_PROT64) 8322 ctxt->eip = (u32)ctxt->_eip; 8323 else 8324 ctxt->eip = ctxt->_eip; 8325 8326 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8327 r = 1; 8328 goto writeback; 8329 } 8330 8331 kvm_rip_write(vcpu, ctxt->eip); 8332 if (ctxt->eflags & X86_EFLAGS_RF) 8333 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8334 return 1; 8335 } 8336 8337 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8338 return 1; 8339 8340 /* this is needed for vmware backdoor interface to work since it 8341 changes registers values during IO operation */ 8342 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8343 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8344 emulator_invalidate_register_cache(ctxt); 8345 } 8346 8347 restart: 8348 if (emulation_type & EMULTYPE_PF) { 8349 /* Save the faulting GPA (cr2) in the address field */ 8350 ctxt->exception.address = cr2_or_gpa; 8351 8352 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8353 if (vcpu->arch.mmu->direct_map) { 8354 ctxt->gpa_available = true; 8355 ctxt->gpa_val = cr2_or_gpa; 8356 } 8357 } else { 8358 /* Sanitize the address out of an abundance of paranoia. */ 8359 ctxt->exception.address = 0; 8360 } 8361 8362 r = x86_emulate_insn(ctxt); 8363 8364 if (r == EMULATION_INTERCEPTED) 8365 return 1; 8366 8367 if (r == EMULATION_FAILED) { 8368 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8369 emulation_type)) 8370 return 1; 8371 8372 return handle_emulation_failure(vcpu, emulation_type); 8373 } 8374 8375 if (ctxt->have_exception) { 8376 r = 1; 8377 if (inject_emulated_exception(vcpu)) 8378 return r; 8379 } else if (vcpu->arch.pio.count) { 8380 if (!vcpu->arch.pio.in) { 8381 /* FIXME: return into emulator if single-stepping. */ 8382 vcpu->arch.pio.count = 0; 8383 } else { 8384 writeback = false; 8385 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8386 } 8387 r = 0; 8388 } else if (vcpu->mmio_needed) { 8389 ++vcpu->stat.mmio_exits; 8390 8391 if (!vcpu->mmio_is_write) 8392 writeback = false; 8393 r = 0; 8394 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8395 } else if (vcpu->arch.complete_userspace_io) { 8396 writeback = false; 8397 r = 0; 8398 } else if (r == EMULATION_RESTART) 8399 goto restart; 8400 else 8401 r = 1; 8402 8403 writeback: 8404 if (writeback) { 8405 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8406 toggle_interruptibility(vcpu, ctxt->interruptibility); 8407 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8408 if (!ctxt->have_exception || 8409 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8410 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8411 if (ctxt->is_branch) 8412 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8413 kvm_rip_write(vcpu, ctxt->eip); 8414 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8415 r = kvm_vcpu_do_singlestep(vcpu); 8416 if (kvm_x86_ops.update_emulated_instruction) 8417 static_call(kvm_x86_update_emulated_instruction)(vcpu); 8418 __kvm_set_rflags(vcpu, ctxt->eflags); 8419 } 8420 8421 /* 8422 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8423 * do nothing, and it will be requested again as soon as 8424 * the shadow expires. But we still need to check here, 8425 * because POPF has no interrupt shadow. 8426 */ 8427 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8428 kvm_make_request(KVM_REQ_EVENT, vcpu); 8429 } else 8430 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8431 8432 return r; 8433 } 8434 8435 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8436 { 8437 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8438 } 8439 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8440 8441 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8442 void *insn, int insn_len) 8443 { 8444 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8445 } 8446 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8447 8448 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8449 { 8450 vcpu->arch.pio.count = 0; 8451 return 1; 8452 } 8453 8454 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8455 { 8456 vcpu->arch.pio.count = 0; 8457 8458 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8459 return 1; 8460 8461 return kvm_skip_emulated_instruction(vcpu); 8462 } 8463 8464 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8465 unsigned short port) 8466 { 8467 unsigned long val = kvm_rax_read(vcpu); 8468 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8469 8470 if (ret) 8471 return ret; 8472 8473 /* 8474 * Workaround userspace that relies on old KVM behavior of %rip being 8475 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8476 */ 8477 if (port == 0x7e && 8478 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8479 vcpu->arch.complete_userspace_io = 8480 complete_fast_pio_out_port_0x7e; 8481 kvm_skip_emulated_instruction(vcpu); 8482 } else { 8483 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8484 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8485 } 8486 return 0; 8487 } 8488 8489 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8490 { 8491 unsigned long val; 8492 8493 /* We should only ever be called with arch.pio.count equal to 1 */ 8494 BUG_ON(vcpu->arch.pio.count != 1); 8495 8496 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8497 vcpu->arch.pio.count = 0; 8498 return 1; 8499 } 8500 8501 /* For size less than 4 we merge, else we zero extend */ 8502 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8503 8504 /* 8505 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 8506 * the copy and tracing 8507 */ 8508 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 8509 kvm_rax_write(vcpu, val); 8510 8511 return kvm_skip_emulated_instruction(vcpu); 8512 } 8513 8514 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 8515 unsigned short port) 8516 { 8517 unsigned long val; 8518 int ret; 8519 8520 /* For size less than 4 we merge, else we zero extend */ 8521 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 8522 8523 ret = emulator_pio_in(vcpu, size, port, &val, 1); 8524 if (ret) { 8525 kvm_rax_write(vcpu, val); 8526 return ret; 8527 } 8528 8529 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8530 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 8531 8532 return 0; 8533 } 8534 8535 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 8536 { 8537 int ret; 8538 8539 if (in) 8540 ret = kvm_fast_pio_in(vcpu, size, port); 8541 else 8542 ret = kvm_fast_pio_out(vcpu, size, port); 8543 return ret && kvm_skip_emulated_instruction(vcpu); 8544 } 8545 EXPORT_SYMBOL_GPL(kvm_fast_pio); 8546 8547 static int kvmclock_cpu_down_prep(unsigned int cpu) 8548 { 8549 __this_cpu_write(cpu_tsc_khz, 0); 8550 return 0; 8551 } 8552 8553 static void tsc_khz_changed(void *data) 8554 { 8555 struct cpufreq_freqs *freq = data; 8556 unsigned long khz = 0; 8557 8558 if (data) 8559 khz = freq->new; 8560 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8561 khz = cpufreq_quick_get(raw_smp_processor_id()); 8562 if (!khz) 8563 khz = tsc_khz; 8564 __this_cpu_write(cpu_tsc_khz, khz); 8565 } 8566 8567 #ifdef CONFIG_X86_64 8568 static void kvm_hyperv_tsc_notifier(void) 8569 { 8570 struct kvm *kvm; 8571 int cpu; 8572 8573 mutex_lock(&kvm_lock); 8574 list_for_each_entry(kvm, &vm_list, vm_list) 8575 kvm_make_mclock_inprogress_request(kvm); 8576 8577 /* no guest entries from this point */ 8578 hyperv_stop_tsc_emulation(); 8579 8580 /* TSC frequency always matches when on Hyper-V */ 8581 for_each_present_cpu(cpu) 8582 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 8583 kvm_max_guest_tsc_khz = tsc_khz; 8584 8585 list_for_each_entry(kvm, &vm_list, vm_list) { 8586 __kvm_start_pvclock_update(kvm); 8587 pvclock_update_vm_gtod_copy(kvm); 8588 kvm_end_pvclock_update(kvm); 8589 } 8590 8591 mutex_unlock(&kvm_lock); 8592 } 8593 #endif 8594 8595 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 8596 { 8597 struct kvm *kvm; 8598 struct kvm_vcpu *vcpu; 8599 int send_ipi = 0; 8600 unsigned long i; 8601 8602 /* 8603 * We allow guests to temporarily run on slowing clocks, 8604 * provided we notify them after, or to run on accelerating 8605 * clocks, provided we notify them before. Thus time never 8606 * goes backwards. 8607 * 8608 * However, we have a problem. We can't atomically update 8609 * the frequency of a given CPU from this function; it is 8610 * merely a notifier, which can be called from any CPU. 8611 * Changing the TSC frequency at arbitrary points in time 8612 * requires a recomputation of local variables related to 8613 * the TSC for each VCPU. We must flag these local variables 8614 * to be updated and be sure the update takes place with the 8615 * new frequency before any guests proceed. 8616 * 8617 * Unfortunately, the combination of hotplug CPU and frequency 8618 * change creates an intractable locking scenario; the order 8619 * of when these callouts happen is undefined with respect to 8620 * CPU hotplug, and they can race with each other. As such, 8621 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 8622 * undefined; you can actually have a CPU frequency change take 8623 * place in between the computation of X and the setting of the 8624 * variable. To protect against this problem, all updates of 8625 * the per_cpu tsc_khz variable are done in an interrupt 8626 * protected IPI, and all callers wishing to update the value 8627 * must wait for a synchronous IPI to complete (which is trivial 8628 * if the caller is on the CPU already). This establishes the 8629 * necessary total order on variable updates. 8630 * 8631 * Note that because a guest time update may take place 8632 * anytime after the setting of the VCPU's request bit, the 8633 * correct TSC value must be set before the request. However, 8634 * to ensure the update actually makes it to any guest which 8635 * starts running in hardware virtualization between the set 8636 * and the acquisition of the spinlock, we must also ping the 8637 * CPU after setting the request bit. 8638 * 8639 */ 8640 8641 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8642 8643 mutex_lock(&kvm_lock); 8644 list_for_each_entry(kvm, &vm_list, vm_list) { 8645 kvm_for_each_vcpu(i, vcpu, kvm) { 8646 if (vcpu->cpu != cpu) 8647 continue; 8648 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8649 if (vcpu->cpu != raw_smp_processor_id()) 8650 send_ipi = 1; 8651 } 8652 } 8653 mutex_unlock(&kvm_lock); 8654 8655 if (freq->old < freq->new && send_ipi) { 8656 /* 8657 * We upscale the frequency. Must make the guest 8658 * doesn't see old kvmclock values while running with 8659 * the new frequency, otherwise we risk the guest sees 8660 * time go backwards. 8661 * 8662 * In case we update the frequency for another cpu 8663 * (which might be in guest context) send an interrupt 8664 * to kick the cpu out of guest context. Next time 8665 * guest context is entered kvmclock will be updated, 8666 * so the guest will not see stale values. 8667 */ 8668 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8669 } 8670 } 8671 8672 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 8673 void *data) 8674 { 8675 struct cpufreq_freqs *freq = data; 8676 int cpu; 8677 8678 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 8679 return 0; 8680 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 8681 return 0; 8682 8683 for_each_cpu(cpu, freq->policy->cpus) 8684 __kvmclock_cpufreq_notifier(freq, cpu); 8685 8686 return 0; 8687 } 8688 8689 static struct notifier_block kvmclock_cpufreq_notifier_block = { 8690 .notifier_call = kvmclock_cpufreq_notifier 8691 }; 8692 8693 static int kvmclock_cpu_online(unsigned int cpu) 8694 { 8695 tsc_khz_changed(NULL); 8696 return 0; 8697 } 8698 8699 static void kvm_timer_init(void) 8700 { 8701 max_tsc_khz = tsc_khz; 8702 8703 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 8704 #ifdef CONFIG_CPU_FREQ 8705 struct cpufreq_policy *policy; 8706 int cpu; 8707 8708 cpu = get_cpu(); 8709 policy = cpufreq_cpu_get(cpu); 8710 if (policy) { 8711 if (policy->cpuinfo.max_freq) 8712 max_tsc_khz = policy->cpuinfo.max_freq; 8713 cpufreq_cpu_put(policy); 8714 } 8715 put_cpu(); 8716 #endif 8717 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 8718 CPUFREQ_TRANSITION_NOTIFIER); 8719 } 8720 8721 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 8722 kvmclock_cpu_online, kvmclock_cpu_down_prep); 8723 } 8724 8725 #ifdef CONFIG_X86_64 8726 static void pvclock_gtod_update_fn(struct work_struct *work) 8727 { 8728 struct kvm *kvm; 8729 struct kvm_vcpu *vcpu; 8730 unsigned long i; 8731 8732 mutex_lock(&kvm_lock); 8733 list_for_each_entry(kvm, &vm_list, vm_list) 8734 kvm_for_each_vcpu(i, vcpu, kvm) 8735 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 8736 atomic_set(&kvm_guest_has_master_clock, 0); 8737 mutex_unlock(&kvm_lock); 8738 } 8739 8740 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 8741 8742 /* 8743 * Indirection to move queue_work() out of the tk_core.seq write held 8744 * region to prevent possible deadlocks against time accessors which 8745 * are invoked with work related locks held. 8746 */ 8747 static void pvclock_irq_work_fn(struct irq_work *w) 8748 { 8749 queue_work(system_long_wq, &pvclock_gtod_work); 8750 } 8751 8752 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 8753 8754 /* 8755 * Notification about pvclock gtod data update. 8756 */ 8757 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 8758 void *priv) 8759 { 8760 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 8761 struct timekeeper *tk = priv; 8762 8763 update_pvclock_gtod(tk); 8764 8765 /* 8766 * Disable master clock if host does not trust, or does not use, 8767 * TSC based clocksource. Delegate queue_work() to irq_work as 8768 * this is invoked with tk_core.seq write held. 8769 */ 8770 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 8771 atomic_read(&kvm_guest_has_master_clock) != 0) 8772 irq_work_queue(&pvclock_irq_work); 8773 return 0; 8774 } 8775 8776 static struct notifier_block pvclock_gtod_notifier = { 8777 .notifier_call = pvclock_gtod_notify, 8778 }; 8779 #endif 8780 8781 int kvm_arch_init(void *opaque) 8782 { 8783 struct kvm_x86_init_ops *ops = opaque; 8784 int r; 8785 8786 if (kvm_x86_ops.hardware_enable) { 8787 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 8788 r = -EEXIST; 8789 goto out; 8790 } 8791 8792 if (!ops->cpu_has_kvm_support()) { 8793 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 8794 ops->runtime_ops->name); 8795 r = -EOPNOTSUPP; 8796 goto out; 8797 } 8798 if (ops->disabled_by_bios()) { 8799 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 8800 ops->runtime_ops->name); 8801 r = -EOPNOTSUPP; 8802 goto out; 8803 } 8804 8805 /* 8806 * KVM explicitly assumes that the guest has an FPU and 8807 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 8808 * vCPU's FPU state as a fxregs_state struct. 8809 */ 8810 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 8811 printk(KERN_ERR "kvm: inadequate fpu\n"); 8812 r = -EOPNOTSUPP; 8813 goto out; 8814 } 8815 8816 r = -ENOMEM; 8817 8818 x86_emulator_cache = kvm_alloc_emulator_cache(); 8819 if (!x86_emulator_cache) { 8820 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 8821 goto out; 8822 } 8823 8824 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 8825 if (!user_return_msrs) { 8826 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 8827 goto out_free_x86_emulator_cache; 8828 } 8829 kvm_nr_uret_msrs = 0; 8830 8831 r = kvm_mmu_module_init(); 8832 if (r) 8833 goto out_free_percpu; 8834 8835 kvm_timer_init(); 8836 8837 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 8838 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 8839 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 8840 } 8841 8842 if (pi_inject_timer == -1) 8843 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 8844 #ifdef CONFIG_X86_64 8845 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 8846 8847 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8848 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 8849 #endif 8850 8851 return 0; 8852 8853 out_free_percpu: 8854 free_percpu(user_return_msrs); 8855 out_free_x86_emulator_cache: 8856 kmem_cache_destroy(x86_emulator_cache); 8857 out: 8858 return r; 8859 } 8860 8861 void kvm_arch_exit(void) 8862 { 8863 #ifdef CONFIG_X86_64 8864 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8865 clear_hv_tscchange_cb(); 8866 #endif 8867 kvm_lapic_exit(); 8868 8869 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8870 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 8871 CPUFREQ_TRANSITION_NOTIFIER); 8872 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 8873 #ifdef CONFIG_X86_64 8874 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 8875 irq_work_sync(&pvclock_irq_work); 8876 cancel_work_sync(&pvclock_gtod_work); 8877 #endif 8878 kvm_x86_ops.hardware_enable = NULL; 8879 kvm_mmu_module_exit(); 8880 free_percpu(user_return_msrs); 8881 kmem_cache_destroy(x86_emulator_cache); 8882 #ifdef CONFIG_KVM_XEN 8883 static_key_deferred_flush(&kvm_xen_enabled); 8884 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 8885 #endif 8886 } 8887 8888 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 8889 { 8890 /* 8891 * The vCPU has halted, e.g. executed HLT. Update the run state if the 8892 * local APIC is in-kernel, the run loop will detect the non-runnable 8893 * state and halt the vCPU. Exit to userspace if the local APIC is 8894 * managed by userspace, in which case userspace is responsible for 8895 * handling wake events. 8896 */ 8897 ++vcpu->stat.halt_exits; 8898 if (lapic_in_kernel(vcpu)) { 8899 vcpu->arch.mp_state = state; 8900 return 1; 8901 } else { 8902 vcpu->run->exit_reason = reason; 8903 return 0; 8904 } 8905 } 8906 8907 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 8908 { 8909 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 8910 } 8911 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 8912 8913 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 8914 { 8915 int ret = kvm_skip_emulated_instruction(vcpu); 8916 /* 8917 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 8918 * KVM_EXIT_DEBUG here. 8919 */ 8920 return kvm_emulate_halt_noskip(vcpu) && ret; 8921 } 8922 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 8923 8924 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 8925 { 8926 int ret = kvm_skip_emulated_instruction(vcpu); 8927 8928 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 8929 KVM_EXIT_AP_RESET_HOLD) && ret; 8930 } 8931 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 8932 8933 #ifdef CONFIG_X86_64 8934 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 8935 unsigned long clock_type) 8936 { 8937 struct kvm_clock_pairing clock_pairing; 8938 struct timespec64 ts; 8939 u64 cycle; 8940 int ret; 8941 8942 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 8943 return -KVM_EOPNOTSUPP; 8944 8945 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 8946 return -KVM_EOPNOTSUPP; 8947 8948 clock_pairing.sec = ts.tv_sec; 8949 clock_pairing.nsec = ts.tv_nsec; 8950 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 8951 clock_pairing.flags = 0; 8952 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 8953 8954 ret = 0; 8955 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 8956 sizeof(struct kvm_clock_pairing))) 8957 ret = -KVM_EFAULT; 8958 8959 return ret; 8960 } 8961 #endif 8962 8963 /* 8964 * kvm_pv_kick_cpu_op: Kick a vcpu. 8965 * 8966 * @apicid - apicid of vcpu to be kicked. 8967 */ 8968 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 8969 { 8970 struct kvm_lapic_irq lapic_irq; 8971 8972 lapic_irq.shorthand = APIC_DEST_NOSHORT; 8973 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 8974 lapic_irq.level = 0; 8975 lapic_irq.dest_id = apicid; 8976 lapic_irq.msi_redir_hint = false; 8977 8978 lapic_irq.delivery_mode = APIC_DM_REMRD; 8979 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 8980 } 8981 8982 bool kvm_apicv_activated(struct kvm *kvm) 8983 { 8984 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 8985 } 8986 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 8987 8988 static void kvm_apicv_init(struct kvm *kvm) 8989 { 8990 init_rwsem(&kvm->arch.apicv_update_lock); 8991 8992 set_bit(APICV_INHIBIT_REASON_ABSENT, 8993 &kvm->arch.apicv_inhibit_reasons); 8994 if (!enable_apicv) 8995 set_bit(APICV_INHIBIT_REASON_DISABLE, 8996 &kvm->arch.apicv_inhibit_reasons); 8997 } 8998 8999 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9000 { 9001 struct kvm_vcpu *target = NULL; 9002 struct kvm_apic_map *map; 9003 9004 vcpu->stat.directed_yield_attempted++; 9005 9006 if (single_task_running()) 9007 goto no_yield; 9008 9009 rcu_read_lock(); 9010 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9011 9012 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9013 target = map->phys_map[dest_id]->vcpu; 9014 9015 rcu_read_unlock(); 9016 9017 if (!target || !READ_ONCE(target->ready)) 9018 goto no_yield; 9019 9020 /* Ignore requests to yield to self */ 9021 if (vcpu == target) 9022 goto no_yield; 9023 9024 if (kvm_vcpu_yield_to(target) <= 0) 9025 goto no_yield; 9026 9027 vcpu->stat.directed_yield_successful++; 9028 9029 no_yield: 9030 return; 9031 } 9032 9033 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9034 { 9035 u64 ret = vcpu->run->hypercall.ret; 9036 9037 if (!is_64_bit_mode(vcpu)) 9038 ret = (u32)ret; 9039 kvm_rax_write(vcpu, ret); 9040 ++vcpu->stat.hypercalls; 9041 return kvm_skip_emulated_instruction(vcpu); 9042 } 9043 9044 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9045 { 9046 unsigned long nr, a0, a1, a2, a3, ret; 9047 int op_64_bit; 9048 9049 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9050 return kvm_xen_hypercall(vcpu); 9051 9052 if (kvm_hv_hypercall_enabled(vcpu)) 9053 return kvm_hv_hypercall(vcpu); 9054 9055 nr = kvm_rax_read(vcpu); 9056 a0 = kvm_rbx_read(vcpu); 9057 a1 = kvm_rcx_read(vcpu); 9058 a2 = kvm_rdx_read(vcpu); 9059 a3 = kvm_rsi_read(vcpu); 9060 9061 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9062 9063 op_64_bit = is_64_bit_hypercall(vcpu); 9064 if (!op_64_bit) { 9065 nr &= 0xFFFFFFFF; 9066 a0 &= 0xFFFFFFFF; 9067 a1 &= 0xFFFFFFFF; 9068 a2 &= 0xFFFFFFFF; 9069 a3 &= 0xFFFFFFFF; 9070 } 9071 9072 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9073 ret = -KVM_EPERM; 9074 goto out; 9075 } 9076 9077 ret = -KVM_ENOSYS; 9078 9079 switch (nr) { 9080 case KVM_HC_VAPIC_POLL_IRQ: 9081 ret = 0; 9082 break; 9083 case KVM_HC_KICK_CPU: 9084 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9085 break; 9086 9087 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 9088 kvm_sched_yield(vcpu, a1); 9089 ret = 0; 9090 break; 9091 #ifdef CONFIG_X86_64 9092 case KVM_HC_CLOCK_PAIRING: 9093 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9094 break; 9095 #endif 9096 case KVM_HC_SEND_IPI: 9097 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9098 break; 9099 9100 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9101 break; 9102 case KVM_HC_SCHED_YIELD: 9103 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9104 break; 9105 9106 kvm_sched_yield(vcpu, a0); 9107 ret = 0; 9108 break; 9109 case KVM_HC_MAP_GPA_RANGE: { 9110 u64 gpa = a0, npages = a1, attrs = a2; 9111 9112 ret = -KVM_ENOSYS; 9113 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9114 break; 9115 9116 if (!PAGE_ALIGNED(gpa) || !npages || 9117 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9118 ret = -KVM_EINVAL; 9119 break; 9120 } 9121 9122 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9123 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9124 vcpu->run->hypercall.args[0] = gpa; 9125 vcpu->run->hypercall.args[1] = npages; 9126 vcpu->run->hypercall.args[2] = attrs; 9127 vcpu->run->hypercall.longmode = op_64_bit; 9128 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9129 return 0; 9130 } 9131 default: 9132 ret = -KVM_ENOSYS; 9133 break; 9134 } 9135 out: 9136 if (!op_64_bit) 9137 ret = (u32)ret; 9138 kvm_rax_write(vcpu, ret); 9139 9140 ++vcpu->stat.hypercalls; 9141 return kvm_skip_emulated_instruction(vcpu); 9142 } 9143 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9144 9145 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9146 { 9147 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9148 char instruction[3]; 9149 unsigned long rip = kvm_rip_read(vcpu); 9150 9151 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9152 9153 return emulator_write_emulated(ctxt, rip, instruction, 3, 9154 &ctxt->exception); 9155 } 9156 9157 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9158 { 9159 return vcpu->run->request_interrupt_window && 9160 likely(!pic_in_kernel(vcpu->kvm)); 9161 } 9162 9163 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9164 { 9165 struct kvm_run *kvm_run = vcpu->run; 9166 9167 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9168 kvm_run->cr8 = kvm_get_cr8(vcpu); 9169 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9170 9171 /* 9172 * The call to kvm_ready_for_interrupt_injection() may end up in 9173 * kvm_xen_has_interrupt() which may require the srcu lock to be 9174 * held, to protect against changes in the vcpu_info address. 9175 */ 9176 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9177 kvm_run->ready_for_interrupt_injection = 9178 pic_in_kernel(vcpu->kvm) || 9179 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9180 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 9181 9182 if (is_smm(vcpu)) 9183 kvm_run->flags |= KVM_RUN_X86_SMM; 9184 } 9185 9186 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9187 { 9188 int max_irr, tpr; 9189 9190 if (!kvm_x86_ops.update_cr8_intercept) 9191 return; 9192 9193 if (!lapic_in_kernel(vcpu)) 9194 return; 9195 9196 if (vcpu->arch.apicv_active) 9197 return; 9198 9199 if (!vcpu->arch.apic->vapic_addr) 9200 max_irr = kvm_lapic_find_highest_irr(vcpu); 9201 else 9202 max_irr = -1; 9203 9204 if (max_irr != -1) 9205 max_irr >>= 4; 9206 9207 tpr = kvm_lapic_get_cr8(vcpu); 9208 9209 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9210 } 9211 9212 9213 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9214 { 9215 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9216 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9217 return 1; 9218 } 9219 9220 return kvm_x86_ops.nested_ops->check_events(vcpu); 9221 } 9222 9223 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9224 { 9225 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9226 vcpu->arch.exception.error_code = false; 9227 static_call(kvm_x86_queue_exception)(vcpu); 9228 } 9229 9230 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 9231 { 9232 int r; 9233 bool can_inject = true; 9234 9235 /* try to reinject previous events if any */ 9236 9237 if (vcpu->arch.exception.injected) { 9238 kvm_inject_exception(vcpu); 9239 can_inject = false; 9240 } 9241 /* 9242 * Do not inject an NMI or interrupt if there is a pending 9243 * exception. Exceptions and interrupts are recognized at 9244 * instruction boundaries, i.e. the start of an instruction. 9245 * Trap-like exceptions, e.g. #DB, have higher priority than 9246 * NMIs and interrupts, i.e. traps are recognized before an 9247 * NMI/interrupt that's pending on the same instruction. 9248 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 9249 * priority, but are only generated (pended) during instruction 9250 * execution, i.e. a pending fault-like exception means the 9251 * fault occurred on the *previous* instruction and must be 9252 * serviced prior to recognizing any new events in order to 9253 * fully complete the previous instruction. 9254 */ 9255 else if (!vcpu->arch.exception.pending) { 9256 if (vcpu->arch.nmi_injected) { 9257 static_call(kvm_x86_set_nmi)(vcpu); 9258 can_inject = false; 9259 } else if (vcpu->arch.interrupt.injected) { 9260 static_call(kvm_x86_set_irq)(vcpu); 9261 can_inject = false; 9262 } 9263 } 9264 9265 WARN_ON_ONCE(vcpu->arch.exception.injected && 9266 vcpu->arch.exception.pending); 9267 9268 /* 9269 * Call check_nested_events() even if we reinjected a previous event 9270 * in order for caller to determine if it should require immediate-exit 9271 * from L2 to L1 due to pending L1 events which require exit 9272 * from L2 to L1. 9273 */ 9274 if (is_guest_mode(vcpu)) { 9275 r = kvm_check_nested_events(vcpu); 9276 if (r < 0) 9277 goto out; 9278 } 9279 9280 /* try to inject new event if pending */ 9281 if (vcpu->arch.exception.pending) { 9282 trace_kvm_inj_exception(vcpu->arch.exception.nr, 9283 vcpu->arch.exception.has_error_code, 9284 vcpu->arch.exception.error_code); 9285 9286 vcpu->arch.exception.pending = false; 9287 vcpu->arch.exception.injected = true; 9288 9289 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 9290 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9291 X86_EFLAGS_RF); 9292 9293 if (vcpu->arch.exception.nr == DB_VECTOR) { 9294 kvm_deliver_exception_payload(vcpu); 9295 if (vcpu->arch.dr7 & DR7_GD) { 9296 vcpu->arch.dr7 &= ~DR7_GD; 9297 kvm_update_dr7(vcpu); 9298 } 9299 } 9300 9301 kvm_inject_exception(vcpu); 9302 can_inject = false; 9303 } 9304 9305 /* Don't inject interrupts if the user asked to avoid doing so */ 9306 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9307 return 0; 9308 9309 /* 9310 * Finally, inject interrupt events. If an event cannot be injected 9311 * due to architectural conditions (e.g. IF=0) a window-open exit 9312 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9313 * and can architecturally be injected, but we cannot do it right now: 9314 * an interrupt could have arrived just now and we have to inject it 9315 * as a vmexit, or there could already an event in the queue, which is 9316 * indicated by can_inject. In that case we request an immediate exit 9317 * in order to make progress and get back here for another iteration. 9318 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9319 */ 9320 if (vcpu->arch.smi_pending) { 9321 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9322 if (r < 0) 9323 goto out; 9324 if (r) { 9325 vcpu->arch.smi_pending = false; 9326 ++vcpu->arch.smi_count; 9327 enter_smm(vcpu); 9328 can_inject = false; 9329 } else 9330 static_call(kvm_x86_enable_smi_window)(vcpu); 9331 } 9332 9333 if (vcpu->arch.nmi_pending) { 9334 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9335 if (r < 0) 9336 goto out; 9337 if (r) { 9338 --vcpu->arch.nmi_pending; 9339 vcpu->arch.nmi_injected = true; 9340 static_call(kvm_x86_set_nmi)(vcpu); 9341 can_inject = false; 9342 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9343 } 9344 if (vcpu->arch.nmi_pending) 9345 static_call(kvm_x86_enable_nmi_window)(vcpu); 9346 } 9347 9348 if (kvm_cpu_has_injectable_intr(vcpu)) { 9349 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9350 if (r < 0) 9351 goto out; 9352 if (r) { 9353 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 9354 static_call(kvm_x86_set_irq)(vcpu); 9355 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 9356 } 9357 if (kvm_cpu_has_injectable_intr(vcpu)) 9358 static_call(kvm_x86_enable_irq_window)(vcpu); 9359 } 9360 9361 if (is_guest_mode(vcpu) && 9362 kvm_x86_ops.nested_ops->hv_timer_pending && 9363 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 9364 *req_immediate_exit = true; 9365 9366 WARN_ON(vcpu->arch.exception.pending); 9367 return 0; 9368 9369 out: 9370 if (r == -EBUSY) { 9371 *req_immediate_exit = true; 9372 r = 0; 9373 } 9374 return r; 9375 } 9376 9377 static void process_nmi(struct kvm_vcpu *vcpu) 9378 { 9379 unsigned limit = 2; 9380 9381 /* 9382 * x86 is limited to one NMI running, and one NMI pending after it. 9383 * If an NMI is already in progress, limit further NMIs to just one. 9384 * Otherwise, allow two (and we'll inject the first one immediately). 9385 */ 9386 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 9387 limit = 1; 9388 9389 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 9390 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 9391 kvm_make_request(KVM_REQ_EVENT, vcpu); 9392 } 9393 9394 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 9395 { 9396 u32 flags = 0; 9397 flags |= seg->g << 23; 9398 flags |= seg->db << 22; 9399 flags |= seg->l << 21; 9400 flags |= seg->avl << 20; 9401 flags |= seg->present << 15; 9402 flags |= seg->dpl << 13; 9403 flags |= seg->s << 12; 9404 flags |= seg->type << 8; 9405 return flags; 9406 } 9407 9408 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 9409 { 9410 struct kvm_segment seg; 9411 int offset; 9412 9413 kvm_get_segment(vcpu, &seg, n); 9414 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 9415 9416 if (n < 3) 9417 offset = 0x7f84 + n * 12; 9418 else 9419 offset = 0x7f2c + (n - 3) * 12; 9420 9421 put_smstate(u32, buf, offset + 8, seg.base); 9422 put_smstate(u32, buf, offset + 4, seg.limit); 9423 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 9424 } 9425 9426 #ifdef CONFIG_X86_64 9427 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 9428 { 9429 struct kvm_segment seg; 9430 int offset; 9431 u16 flags; 9432 9433 kvm_get_segment(vcpu, &seg, n); 9434 offset = 0x7e00 + n * 16; 9435 9436 flags = enter_smm_get_segment_flags(&seg) >> 8; 9437 put_smstate(u16, buf, offset, seg.selector); 9438 put_smstate(u16, buf, offset + 2, flags); 9439 put_smstate(u32, buf, offset + 4, seg.limit); 9440 put_smstate(u64, buf, offset + 8, seg.base); 9441 } 9442 #endif 9443 9444 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 9445 { 9446 struct desc_ptr dt; 9447 struct kvm_segment seg; 9448 unsigned long val; 9449 int i; 9450 9451 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 9452 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 9453 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 9454 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 9455 9456 for (i = 0; i < 8; i++) 9457 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i)); 9458 9459 kvm_get_dr(vcpu, 6, &val); 9460 put_smstate(u32, buf, 0x7fcc, (u32)val); 9461 kvm_get_dr(vcpu, 7, &val); 9462 put_smstate(u32, buf, 0x7fc8, (u32)val); 9463 9464 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9465 put_smstate(u32, buf, 0x7fc4, seg.selector); 9466 put_smstate(u32, buf, 0x7f64, seg.base); 9467 put_smstate(u32, buf, 0x7f60, seg.limit); 9468 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 9469 9470 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9471 put_smstate(u32, buf, 0x7fc0, seg.selector); 9472 put_smstate(u32, buf, 0x7f80, seg.base); 9473 put_smstate(u32, buf, 0x7f7c, seg.limit); 9474 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 9475 9476 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9477 put_smstate(u32, buf, 0x7f74, dt.address); 9478 put_smstate(u32, buf, 0x7f70, dt.size); 9479 9480 static_call(kvm_x86_get_idt)(vcpu, &dt); 9481 put_smstate(u32, buf, 0x7f58, dt.address); 9482 put_smstate(u32, buf, 0x7f54, dt.size); 9483 9484 for (i = 0; i < 6; i++) 9485 enter_smm_save_seg_32(vcpu, buf, i); 9486 9487 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 9488 9489 /* revision id */ 9490 put_smstate(u32, buf, 0x7efc, 0x00020000); 9491 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 9492 } 9493 9494 #ifdef CONFIG_X86_64 9495 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 9496 { 9497 struct desc_ptr dt; 9498 struct kvm_segment seg; 9499 unsigned long val; 9500 int i; 9501 9502 for (i = 0; i < 16; i++) 9503 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i)); 9504 9505 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 9506 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 9507 9508 kvm_get_dr(vcpu, 6, &val); 9509 put_smstate(u64, buf, 0x7f68, val); 9510 kvm_get_dr(vcpu, 7, &val); 9511 put_smstate(u64, buf, 0x7f60, val); 9512 9513 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 9514 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 9515 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 9516 9517 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 9518 9519 /* revision id */ 9520 put_smstate(u32, buf, 0x7efc, 0x00020064); 9521 9522 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 9523 9524 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9525 put_smstate(u16, buf, 0x7e90, seg.selector); 9526 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 9527 put_smstate(u32, buf, 0x7e94, seg.limit); 9528 put_smstate(u64, buf, 0x7e98, seg.base); 9529 9530 static_call(kvm_x86_get_idt)(vcpu, &dt); 9531 put_smstate(u32, buf, 0x7e84, dt.size); 9532 put_smstate(u64, buf, 0x7e88, dt.address); 9533 9534 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9535 put_smstate(u16, buf, 0x7e70, seg.selector); 9536 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 9537 put_smstate(u32, buf, 0x7e74, seg.limit); 9538 put_smstate(u64, buf, 0x7e78, seg.base); 9539 9540 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9541 put_smstate(u32, buf, 0x7e64, dt.size); 9542 put_smstate(u64, buf, 0x7e68, dt.address); 9543 9544 for (i = 0; i < 6; i++) 9545 enter_smm_save_seg_64(vcpu, buf, i); 9546 } 9547 #endif 9548 9549 static void enter_smm(struct kvm_vcpu *vcpu) 9550 { 9551 struct kvm_segment cs, ds; 9552 struct desc_ptr dt; 9553 unsigned long cr0; 9554 char buf[512]; 9555 9556 memset(buf, 0, 512); 9557 #ifdef CONFIG_X86_64 9558 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9559 enter_smm_save_state_64(vcpu, buf); 9560 else 9561 #endif 9562 enter_smm_save_state_32(vcpu, buf); 9563 9564 /* 9565 * Give enter_smm() a chance to make ISA-specific changes to the vCPU 9566 * state (e.g. leave guest mode) after we've saved the state into the 9567 * SMM state-save area. 9568 */ 9569 static_call(kvm_x86_enter_smm)(vcpu, buf); 9570 9571 kvm_smm_changed(vcpu, true); 9572 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 9573 9574 if (static_call(kvm_x86_get_nmi_mask)(vcpu)) 9575 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 9576 else 9577 static_call(kvm_x86_set_nmi_mask)(vcpu, true); 9578 9579 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 9580 kvm_rip_write(vcpu, 0x8000); 9581 9582 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 9583 static_call(kvm_x86_set_cr0)(vcpu, cr0); 9584 vcpu->arch.cr0 = cr0; 9585 9586 static_call(kvm_x86_set_cr4)(vcpu, 0); 9587 9588 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 9589 dt.address = dt.size = 0; 9590 static_call(kvm_x86_set_idt)(vcpu, &dt); 9591 9592 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 9593 9594 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 9595 cs.base = vcpu->arch.smbase; 9596 9597 ds.selector = 0; 9598 ds.base = 0; 9599 9600 cs.limit = ds.limit = 0xffffffff; 9601 cs.type = ds.type = 0x3; 9602 cs.dpl = ds.dpl = 0; 9603 cs.db = ds.db = 0; 9604 cs.s = ds.s = 1; 9605 cs.l = ds.l = 0; 9606 cs.g = ds.g = 1; 9607 cs.avl = ds.avl = 0; 9608 cs.present = ds.present = 1; 9609 cs.unusable = ds.unusable = 0; 9610 cs.padding = ds.padding = 0; 9611 9612 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9613 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 9614 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 9615 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 9616 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 9617 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 9618 9619 #ifdef CONFIG_X86_64 9620 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9621 static_call(kvm_x86_set_efer)(vcpu, 0); 9622 #endif 9623 9624 kvm_update_cpuid_runtime(vcpu); 9625 kvm_mmu_reset_context(vcpu); 9626 } 9627 9628 static void process_smi(struct kvm_vcpu *vcpu) 9629 { 9630 vcpu->arch.smi_pending = true; 9631 kvm_make_request(KVM_REQ_EVENT, vcpu); 9632 } 9633 9634 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 9635 unsigned long *vcpu_bitmap) 9636 { 9637 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 9638 } 9639 9640 void kvm_make_scan_ioapic_request(struct kvm *kvm) 9641 { 9642 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 9643 } 9644 9645 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 9646 { 9647 bool activate; 9648 9649 if (!lapic_in_kernel(vcpu)) 9650 return; 9651 9652 down_read(&vcpu->kvm->arch.apicv_update_lock); 9653 9654 activate = kvm_apicv_activated(vcpu->kvm); 9655 if (vcpu->arch.apicv_active == activate) 9656 goto out; 9657 9658 vcpu->arch.apicv_active = activate; 9659 kvm_apic_update_apicv(vcpu); 9660 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 9661 9662 /* 9663 * When APICv gets disabled, we may still have injected interrupts 9664 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 9665 * still active when the interrupt got accepted. Make sure 9666 * inject_pending_event() is called to check for that. 9667 */ 9668 if (!vcpu->arch.apicv_active) 9669 kvm_make_request(KVM_REQ_EVENT, vcpu); 9670 9671 out: 9672 up_read(&vcpu->kvm->arch.apicv_update_lock); 9673 } 9674 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 9675 9676 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 9677 { 9678 unsigned long old, new; 9679 9680 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 9681 9682 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 9683 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit)) 9684 return; 9685 9686 old = new = kvm->arch.apicv_inhibit_reasons; 9687 9688 if (activate) 9689 __clear_bit(bit, &new); 9690 else 9691 __set_bit(bit, &new); 9692 9693 if (!!old != !!new) { 9694 trace_kvm_apicv_update_request(activate, bit); 9695 /* 9696 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 9697 * false positives in the sanity check WARN in svm_vcpu_run(). 9698 * This task will wait for all vCPUs to ack the kick IRQ before 9699 * updating apicv_inhibit_reasons, and all other vCPUs will 9700 * block on acquiring apicv_update_lock so that vCPUs can't 9701 * redo svm_vcpu_run() without seeing the new inhibit state. 9702 * 9703 * Note, holding apicv_update_lock and taking it in the read 9704 * side (handling the request) also prevents other vCPUs from 9705 * servicing the request with a stale apicv_inhibit_reasons. 9706 */ 9707 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 9708 kvm->arch.apicv_inhibit_reasons = new; 9709 if (new) { 9710 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 9711 kvm_zap_gfn_range(kvm, gfn, gfn+1); 9712 } 9713 } else 9714 kvm->arch.apicv_inhibit_reasons = new; 9715 } 9716 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update); 9717 9718 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 9719 { 9720 down_write(&kvm->arch.apicv_update_lock); 9721 __kvm_request_apicv_update(kvm, activate, bit); 9722 up_write(&kvm->arch.apicv_update_lock); 9723 } 9724 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 9725 9726 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 9727 { 9728 if (!kvm_apic_present(vcpu)) 9729 return; 9730 9731 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 9732 9733 if (irqchip_split(vcpu->kvm)) 9734 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 9735 else { 9736 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 9737 if (ioapic_in_kernel(vcpu->kvm)) 9738 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 9739 } 9740 9741 if (is_guest_mode(vcpu)) 9742 vcpu->arch.load_eoi_exitmap_pending = true; 9743 else 9744 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 9745 } 9746 9747 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 9748 { 9749 u64 eoi_exit_bitmap[4]; 9750 9751 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 9752 return; 9753 9754 if (to_hv_vcpu(vcpu)) { 9755 bitmap_or((ulong *)eoi_exit_bitmap, 9756 vcpu->arch.ioapic_handled_vectors, 9757 to_hv_synic(vcpu)->vec_bitmap, 256); 9758 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 9759 return; 9760 } 9761 9762 static_call(kvm_x86_load_eoi_exitmap)( 9763 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 9764 } 9765 9766 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 9767 unsigned long start, unsigned long end) 9768 { 9769 unsigned long apic_address; 9770 9771 /* 9772 * The physical address of apic access page is stored in the VMCS. 9773 * Update it when it becomes invalid. 9774 */ 9775 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 9776 if (start <= apic_address && apic_address < end) 9777 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 9778 } 9779 9780 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 9781 { 9782 if (!lapic_in_kernel(vcpu)) 9783 return; 9784 9785 if (!kvm_x86_ops.set_apic_access_page_addr) 9786 return; 9787 9788 static_call(kvm_x86_set_apic_access_page_addr)(vcpu); 9789 } 9790 9791 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 9792 { 9793 smp_send_reschedule(vcpu->cpu); 9794 } 9795 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 9796 9797 /* 9798 * Returns 1 to let vcpu_run() continue the guest execution loop without 9799 * exiting to the userspace. Otherwise, the value will be returned to the 9800 * userspace. 9801 */ 9802 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 9803 { 9804 int r; 9805 bool req_int_win = 9806 dm_request_for_irq_injection(vcpu) && 9807 kvm_cpu_accept_dm_intr(vcpu); 9808 fastpath_t exit_fastpath; 9809 9810 bool req_immediate_exit = false; 9811 9812 /* Forbid vmenter if vcpu dirty ring is soft-full */ 9813 if (unlikely(vcpu->kvm->dirty_ring_size && 9814 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 9815 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 9816 trace_kvm_dirty_ring_exit(vcpu); 9817 r = 0; 9818 goto out; 9819 } 9820 9821 if (kvm_request_pending(vcpu)) { 9822 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 9823 r = -EIO; 9824 goto out; 9825 } 9826 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 9827 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 9828 r = 0; 9829 goto out; 9830 } 9831 } 9832 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 9833 kvm_mmu_unload(vcpu); 9834 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 9835 __kvm_migrate_timers(vcpu); 9836 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 9837 kvm_update_masterclock(vcpu->kvm); 9838 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 9839 kvm_gen_kvmclock_update(vcpu); 9840 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 9841 r = kvm_guest_time_update(vcpu); 9842 if (unlikely(r)) 9843 goto out; 9844 } 9845 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 9846 kvm_mmu_sync_roots(vcpu); 9847 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 9848 kvm_mmu_load_pgd(vcpu); 9849 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 9850 kvm_vcpu_flush_tlb_all(vcpu); 9851 9852 /* Flushing all ASIDs flushes the current ASID... */ 9853 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 9854 } 9855 kvm_service_local_tlb_flush_requests(vcpu); 9856 9857 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 9858 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 9859 r = 0; 9860 goto out; 9861 } 9862 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9863 if (is_guest_mode(vcpu)) { 9864 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9865 } else { 9866 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 9867 vcpu->mmio_needed = 0; 9868 r = 0; 9869 goto out; 9870 } 9871 } 9872 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 9873 /* Page is swapped out. Do synthetic halt */ 9874 vcpu->arch.apf.halted = true; 9875 r = 1; 9876 goto out; 9877 } 9878 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 9879 record_steal_time(vcpu); 9880 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 9881 process_smi(vcpu); 9882 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 9883 process_nmi(vcpu); 9884 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 9885 kvm_pmu_handle_event(vcpu); 9886 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 9887 kvm_pmu_deliver_pmi(vcpu); 9888 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 9889 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 9890 if (test_bit(vcpu->arch.pending_ioapic_eoi, 9891 vcpu->arch.ioapic_handled_vectors)) { 9892 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 9893 vcpu->run->eoi.vector = 9894 vcpu->arch.pending_ioapic_eoi; 9895 r = 0; 9896 goto out; 9897 } 9898 } 9899 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 9900 vcpu_scan_ioapic(vcpu); 9901 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 9902 vcpu_load_eoi_exitmap(vcpu); 9903 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 9904 kvm_vcpu_reload_apic_access_page(vcpu); 9905 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 9906 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 9907 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 9908 r = 0; 9909 goto out; 9910 } 9911 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 9912 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 9913 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 9914 r = 0; 9915 goto out; 9916 } 9917 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 9918 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 9919 9920 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 9921 vcpu->run->hyperv = hv_vcpu->exit; 9922 r = 0; 9923 goto out; 9924 } 9925 9926 /* 9927 * KVM_REQ_HV_STIMER has to be processed after 9928 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 9929 * depend on the guest clock being up-to-date 9930 */ 9931 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 9932 kvm_hv_process_stimers(vcpu); 9933 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 9934 kvm_vcpu_update_apicv(vcpu); 9935 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 9936 kvm_check_async_pf_completion(vcpu); 9937 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 9938 static_call(kvm_x86_msr_filter_changed)(vcpu); 9939 9940 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 9941 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 9942 } 9943 9944 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 9945 kvm_xen_has_interrupt(vcpu)) { 9946 ++vcpu->stat.req_event; 9947 r = kvm_apic_accept_events(vcpu); 9948 if (r < 0) { 9949 r = 0; 9950 goto out; 9951 } 9952 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 9953 r = 1; 9954 goto out; 9955 } 9956 9957 r = inject_pending_event(vcpu, &req_immediate_exit); 9958 if (r < 0) { 9959 r = 0; 9960 goto out; 9961 } 9962 if (req_int_win) 9963 static_call(kvm_x86_enable_irq_window)(vcpu); 9964 9965 if (kvm_lapic_enabled(vcpu)) { 9966 update_cr8_intercept(vcpu); 9967 kvm_lapic_sync_to_vapic(vcpu); 9968 } 9969 } 9970 9971 r = kvm_mmu_reload(vcpu); 9972 if (unlikely(r)) { 9973 goto cancel_injection; 9974 } 9975 9976 preempt_disable(); 9977 9978 static_call(kvm_x86_prepare_guest_switch)(vcpu); 9979 9980 /* 9981 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 9982 * IPI are then delayed after guest entry, which ensures that they 9983 * result in virtual interrupt delivery. 9984 */ 9985 local_irq_disable(); 9986 vcpu->mode = IN_GUEST_MODE; 9987 9988 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 9989 9990 /* 9991 * 1) We should set ->mode before checking ->requests. Please see 9992 * the comment in kvm_vcpu_exiting_guest_mode(). 9993 * 9994 * 2) For APICv, we should set ->mode before checking PID.ON. This 9995 * pairs with the memory barrier implicit in pi_test_and_set_on 9996 * (see vmx_deliver_posted_interrupt). 9997 * 9998 * 3) This also orders the write to mode from any reads to the page 9999 * tables done while the VCPU is running. Please see the comment 10000 * in kvm_flush_remote_tlbs. 10001 */ 10002 smp_mb__after_srcu_read_unlock(); 10003 10004 /* 10005 * Process pending posted interrupts to handle the case where the 10006 * notification IRQ arrived in the host, or was never sent (because the 10007 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10008 * status, KVM doesn't update assigned devices when APICv is inhibited, 10009 * i.e. they can post interrupts even if APICv is temporarily disabled. 10010 */ 10011 if (kvm_lapic_enabled(vcpu)) 10012 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10013 10014 if (kvm_vcpu_exit_request(vcpu)) { 10015 vcpu->mode = OUTSIDE_GUEST_MODE; 10016 smp_wmb(); 10017 local_irq_enable(); 10018 preempt_enable(); 10019 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 10020 r = 1; 10021 goto cancel_injection; 10022 } 10023 10024 if (req_immediate_exit) { 10025 kvm_make_request(KVM_REQ_EVENT, vcpu); 10026 static_call(kvm_x86_request_immediate_exit)(vcpu); 10027 } 10028 10029 fpregs_assert_state_consistent(); 10030 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10031 switch_fpu_return(); 10032 10033 if (vcpu->arch.guest_fpu.xfd_err) 10034 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10035 10036 if (unlikely(vcpu->arch.switch_db_regs)) { 10037 set_debugreg(0, 7); 10038 set_debugreg(vcpu->arch.eff_db[0], 0); 10039 set_debugreg(vcpu->arch.eff_db[1], 1); 10040 set_debugreg(vcpu->arch.eff_db[2], 2); 10041 set_debugreg(vcpu->arch.eff_db[3], 3); 10042 } else if (unlikely(hw_breakpoint_active())) { 10043 set_debugreg(0, 7); 10044 } 10045 10046 guest_timing_enter_irqoff(); 10047 10048 for (;;) { 10049 /* 10050 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10051 * update must kick and wait for all vCPUs before toggling the 10052 * per-VM state, and responsing vCPUs must wait for the update 10053 * to complete before servicing KVM_REQ_APICV_UPDATE. 10054 */ 10055 WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu)); 10056 10057 exit_fastpath = static_call(kvm_x86_run)(vcpu); 10058 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10059 break; 10060 10061 if (kvm_lapic_enabled(vcpu)) 10062 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10063 10064 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10065 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10066 break; 10067 } 10068 } 10069 10070 /* 10071 * Do this here before restoring debug registers on the host. And 10072 * since we do this before handling the vmexit, a DR access vmexit 10073 * can (a) read the correct value of the debug registers, (b) set 10074 * KVM_DEBUGREG_WONT_EXIT again. 10075 */ 10076 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10077 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10078 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10079 kvm_update_dr0123(vcpu); 10080 kvm_update_dr7(vcpu); 10081 } 10082 10083 /* 10084 * If the guest has used debug registers, at least dr7 10085 * will be disabled while returning to the host. 10086 * If we don't have active breakpoints in the host, we don't 10087 * care about the messed up debug address registers. But if 10088 * we have some of them active, restore the old state. 10089 */ 10090 if (hw_breakpoint_active()) 10091 hw_breakpoint_restore(); 10092 10093 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10094 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10095 10096 vcpu->mode = OUTSIDE_GUEST_MODE; 10097 smp_wmb(); 10098 10099 /* 10100 * Sync xfd before calling handle_exit_irqoff() which may 10101 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10102 * in #NM irqoff handler). 10103 */ 10104 if (vcpu->arch.xfd_no_write_intercept) 10105 fpu_sync_guest_vmexit_xfd_state(); 10106 10107 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10108 10109 if (vcpu->arch.guest_fpu.xfd_err) 10110 wrmsrl(MSR_IA32_XFD_ERR, 0); 10111 10112 /* 10113 * Consume any pending interrupts, including the possible source of 10114 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10115 * An instruction is required after local_irq_enable() to fully unblock 10116 * interrupts on processors that implement an interrupt shadow, the 10117 * stat.exits increment will do nicely. 10118 */ 10119 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10120 local_irq_enable(); 10121 ++vcpu->stat.exits; 10122 local_irq_disable(); 10123 kvm_after_interrupt(vcpu); 10124 10125 /* 10126 * Wait until after servicing IRQs to account guest time so that any 10127 * ticks that occurred while running the guest are properly accounted 10128 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10129 * of accounting via context tracking, but the loss of accuracy is 10130 * acceptable for all known use cases. 10131 */ 10132 guest_timing_exit_irqoff(); 10133 10134 if (lapic_in_kernel(vcpu)) { 10135 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 10136 if (delta != S64_MIN) { 10137 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 10138 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 10139 } 10140 } 10141 10142 local_irq_enable(); 10143 preempt_enable(); 10144 10145 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 10146 10147 /* 10148 * Profile KVM exit RIPs: 10149 */ 10150 if (unlikely(prof_on == KVM_PROFILING)) { 10151 unsigned long rip = kvm_rip_read(vcpu); 10152 profile_hit(KVM_PROFILING, (void *)rip); 10153 } 10154 10155 if (unlikely(vcpu->arch.tsc_always_catchup)) 10156 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10157 10158 if (vcpu->arch.apic_attention) 10159 kvm_lapic_sync_from_vapic(vcpu); 10160 10161 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10162 return r; 10163 10164 cancel_injection: 10165 if (req_immediate_exit) 10166 kvm_make_request(KVM_REQ_EVENT, vcpu); 10167 static_call(kvm_x86_cancel_injection)(vcpu); 10168 if (unlikely(vcpu->arch.apic_attention)) 10169 kvm_lapic_sync_from_vapic(vcpu); 10170 out: 10171 return r; 10172 } 10173 10174 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 10175 { 10176 bool hv_timer; 10177 10178 if (!kvm_arch_vcpu_runnable(vcpu)) { 10179 /* 10180 * Switch to the software timer before halt-polling/blocking as 10181 * the guest's timer may be a break event for the vCPU, and the 10182 * hypervisor timer runs only when the CPU is in guest mode. 10183 * Switch before halt-polling so that KVM recognizes an expired 10184 * timer before blocking. 10185 */ 10186 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10187 if (hv_timer) 10188 kvm_lapic_switch_to_sw_timer(vcpu); 10189 10190 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 10191 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10192 kvm_vcpu_halt(vcpu); 10193 else 10194 kvm_vcpu_block(vcpu); 10195 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 10196 10197 if (hv_timer) 10198 kvm_lapic_switch_to_hv_timer(vcpu); 10199 10200 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 10201 return 1; 10202 } 10203 10204 if (kvm_apic_accept_events(vcpu) < 0) 10205 return 0; 10206 switch(vcpu->arch.mp_state) { 10207 case KVM_MP_STATE_HALTED: 10208 case KVM_MP_STATE_AP_RESET_HOLD: 10209 vcpu->arch.pv.pv_unhalted = false; 10210 vcpu->arch.mp_state = 10211 KVM_MP_STATE_RUNNABLE; 10212 fallthrough; 10213 case KVM_MP_STATE_RUNNABLE: 10214 vcpu->arch.apf.halted = false; 10215 break; 10216 case KVM_MP_STATE_INIT_RECEIVED: 10217 break; 10218 default: 10219 return -EINTR; 10220 } 10221 return 1; 10222 } 10223 10224 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10225 { 10226 if (is_guest_mode(vcpu)) 10227 kvm_check_nested_events(vcpu); 10228 10229 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10230 !vcpu->arch.apf.halted); 10231 } 10232 10233 static int vcpu_run(struct kvm_vcpu *vcpu) 10234 { 10235 int r; 10236 struct kvm *kvm = vcpu->kvm; 10237 10238 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 10239 vcpu->arch.l1tf_flush_l1d = true; 10240 10241 for (;;) { 10242 if (kvm_vcpu_running(vcpu)) { 10243 r = vcpu_enter_guest(vcpu); 10244 } else { 10245 r = vcpu_block(kvm, vcpu); 10246 } 10247 10248 if (r <= 0) 10249 break; 10250 10251 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10252 if (kvm_cpu_has_pending_timer(vcpu)) 10253 kvm_inject_pending_timer_irqs(vcpu); 10254 10255 if (dm_request_for_irq_injection(vcpu) && 10256 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10257 r = 0; 10258 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10259 ++vcpu->stat.request_irq_exits; 10260 break; 10261 } 10262 10263 if (__xfer_to_guest_mode_work_pending()) { 10264 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 10265 r = xfer_to_guest_mode_handle_work(vcpu); 10266 if (r) 10267 return r; 10268 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 10269 } 10270 } 10271 10272 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 10273 10274 return r; 10275 } 10276 10277 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10278 { 10279 int r; 10280 10281 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 10282 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10283 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 10284 return r; 10285 } 10286 10287 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10288 { 10289 BUG_ON(!vcpu->arch.pio.count); 10290 10291 return complete_emulated_io(vcpu); 10292 } 10293 10294 /* 10295 * Implements the following, as a state machine: 10296 * 10297 * read: 10298 * for each fragment 10299 * for each mmio piece in the fragment 10300 * write gpa, len 10301 * exit 10302 * copy data 10303 * execute insn 10304 * 10305 * write: 10306 * for each fragment 10307 * for each mmio piece in the fragment 10308 * write gpa, len 10309 * copy data 10310 * exit 10311 */ 10312 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10313 { 10314 struct kvm_run *run = vcpu->run; 10315 struct kvm_mmio_fragment *frag; 10316 unsigned len; 10317 10318 BUG_ON(!vcpu->mmio_needed); 10319 10320 /* Complete previous fragment */ 10321 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10322 len = min(8u, frag->len); 10323 if (!vcpu->mmio_is_write) 10324 memcpy(frag->data, run->mmio.data, len); 10325 10326 if (frag->len <= 8) { 10327 /* Switch to the next fragment. */ 10328 frag++; 10329 vcpu->mmio_cur_fragment++; 10330 } else { 10331 /* Go forward to the next mmio piece. */ 10332 frag->data += len; 10333 frag->gpa += len; 10334 frag->len -= len; 10335 } 10336 10337 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10338 vcpu->mmio_needed = 0; 10339 10340 /* FIXME: return into emulator if single-stepping. */ 10341 if (vcpu->mmio_is_write) 10342 return 1; 10343 vcpu->mmio_read_completed = 1; 10344 return complete_emulated_io(vcpu); 10345 } 10346 10347 run->exit_reason = KVM_EXIT_MMIO; 10348 run->mmio.phys_addr = frag->gpa; 10349 if (vcpu->mmio_is_write) 10350 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10351 run->mmio.len = min(8u, frag->len); 10352 run->mmio.is_write = vcpu->mmio_is_write; 10353 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10354 return 0; 10355 } 10356 10357 /* Swap (qemu) user FPU context for the guest FPU context. */ 10358 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10359 { 10360 /* 10361 * Exclude PKRU from restore as restored separately in 10362 * kvm_x86_ops.run(). 10363 */ 10364 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10365 trace_kvm_fpu(1); 10366 } 10367 10368 /* When vcpu_run ends, restore user space FPU context. */ 10369 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10370 { 10371 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10372 ++vcpu->stat.fpu_reload; 10373 trace_kvm_fpu(0); 10374 } 10375 10376 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10377 { 10378 struct kvm_run *kvm_run = vcpu->run; 10379 int r; 10380 10381 vcpu_load(vcpu); 10382 kvm_sigset_activate(vcpu); 10383 kvm_run->flags = 0; 10384 kvm_load_guest_fpu(vcpu); 10385 10386 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10387 if (kvm_run->immediate_exit) { 10388 r = -EINTR; 10389 goto out; 10390 } 10391 /* 10392 * It should be impossible for the hypervisor timer to be in 10393 * use before KVM has ever run the vCPU. 10394 */ 10395 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10396 kvm_vcpu_block(vcpu); 10397 if (kvm_apic_accept_events(vcpu) < 0) { 10398 r = 0; 10399 goto out; 10400 } 10401 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 10402 r = -EAGAIN; 10403 if (signal_pending(current)) { 10404 r = -EINTR; 10405 kvm_run->exit_reason = KVM_EXIT_INTR; 10406 ++vcpu->stat.signal_exits; 10407 } 10408 goto out; 10409 } 10410 10411 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10412 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10413 r = -EINVAL; 10414 goto out; 10415 } 10416 10417 if (kvm_run->kvm_dirty_regs) { 10418 r = sync_regs(vcpu); 10419 if (r != 0) 10420 goto out; 10421 } 10422 10423 /* re-sync apic's tpr */ 10424 if (!lapic_in_kernel(vcpu)) { 10425 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10426 r = -EINVAL; 10427 goto out; 10428 } 10429 } 10430 10431 if (unlikely(vcpu->arch.complete_userspace_io)) { 10432 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 10433 vcpu->arch.complete_userspace_io = NULL; 10434 r = cui(vcpu); 10435 if (r <= 0) 10436 goto out; 10437 } else 10438 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 10439 10440 if (kvm_run->immediate_exit) { 10441 r = -EINTR; 10442 goto out; 10443 } 10444 10445 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 10446 if (r <= 0) 10447 goto out; 10448 10449 r = vcpu_run(vcpu); 10450 10451 out: 10452 kvm_put_guest_fpu(vcpu); 10453 if (kvm_run->kvm_valid_regs) 10454 store_regs(vcpu); 10455 post_kvm_run_save(vcpu); 10456 kvm_sigset_deactivate(vcpu); 10457 10458 vcpu_put(vcpu); 10459 return r; 10460 } 10461 10462 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10463 { 10464 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10465 /* 10466 * We are here if userspace calls get_regs() in the middle of 10467 * instruction emulation. Registers state needs to be copied 10468 * back from emulation context to vcpu. Userspace shouldn't do 10469 * that usually, but some bad designed PV devices (vmware 10470 * backdoor interface) need this to work 10471 */ 10472 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10473 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10474 } 10475 regs->rax = kvm_rax_read(vcpu); 10476 regs->rbx = kvm_rbx_read(vcpu); 10477 regs->rcx = kvm_rcx_read(vcpu); 10478 regs->rdx = kvm_rdx_read(vcpu); 10479 regs->rsi = kvm_rsi_read(vcpu); 10480 regs->rdi = kvm_rdi_read(vcpu); 10481 regs->rsp = kvm_rsp_read(vcpu); 10482 regs->rbp = kvm_rbp_read(vcpu); 10483 #ifdef CONFIG_X86_64 10484 regs->r8 = kvm_r8_read(vcpu); 10485 regs->r9 = kvm_r9_read(vcpu); 10486 regs->r10 = kvm_r10_read(vcpu); 10487 regs->r11 = kvm_r11_read(vcpu); 10488 regs->r12 = kvm_r12_read(vcpu); 10489 regs->r13 = kvm_r13_read(vcpu); 10490 regs->r14 = kvm_r14_read(vcpu); 10491 regs->r15 = kvm_r15_read(vcpu); 10492 #endif 10493 10494 regs->rip = kvm_rip_read(vcpu); 10495 regs->rflags = kvm_get_rflags(vcpu); 10496 } 10497 10498 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10499 { 10500 vcpu_load(vcpu); 10501 __get_regs(vcpu, regs); 10502 vcpu_put(vcpu); 10503 return 0; 10504 } 10505 10506 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10507 { 10508 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10509 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10510 10511 kvm_rax_write(vcpu, regs->rax); 10512 kvm_rbx_write(vcpu, regs->rbx); 10513 kvm_rcx_write(vcpu, regs->rcx); 10514 kvm_rdx_write(vcpu, regs->rdx); 10515 kvm_rsi_write(vcpu, regs->rsi); 10516 kvm_rdi_write(vcpu, regs->rdi); 10517 kvm_rsp_write(vcpu, regs->rsp); 10518 kvm_rbp_write(vcpu, regs->rbp); 10519 #ifdef CONFIG_X86_64 10520 kvm_r8_write(vcpu, regs->r8); 10521 kvm_r9_write(vcpu, regs->r9); 10522 kvm_r10_write(vcpu, regs->r10); 10523 kvm_r11_write(vcpu, regs->r11); 10524 kvm_r12_write(vcpu, regs->r12); 10525 kvm_r13_write(vcpu, regs->r13); 10526 kvm_r14_write(vcpu, regs->r14); 10527 kvm_r15_write(vcpu, regs->r15); 10528 #endif 10529 10530 kvm_rip_write(vcpu, regs->rip); 10531 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 10532 10533 vcpu->arch.exception.pending = false; 10534 10535 kvm_make_request(KVM_REQ_EVENT, vcpu); 10536 } 10537 10538 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10539 { 10540 vcpu_load(vcpu); 10541 __set_regs(vcpu, regs); 10542 vcpu_put(vcpu); 10543 return 0; 10544 } 10545 10546 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 10547 { 10548 struct kvm_segment cs; 10549 10550 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 10551 *db = cs.db; 10552 *l = cs.l; 10553 } 10554 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 10555 10556 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10557 { 10558 struct desc_ptr dt; 10559 10560 if (vcpu->arch.guest_state_protected) 10561 goto skip_protected_regs; 10562 10563 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10564 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10565 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10566 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10567 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10568 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10569 10570 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10571 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10572 10573 static_call(kvm_x86_get_idt)(vcpu, &dt); 10574 sregs->idt.limit = dt.size; 10575 sregs->idt.base = dt.address; 10576 static_call(kvm_x86_get_gdt)(vcpu, &dt); 10577 sregs->gdt.limit = dt.size; 10578 sregs->gdt.base = dt.address; 10579 10580 sregs->cr2 = vcpu->arch.cr2; 10581 sregs->cr3 = kvm_read_cr3(vcpu); 10582 10583 skip_protected_regs: 10584 sregs->cr0 = kvm_read_cr0(vcpu); 10585 sregs->cr4 = kvm_read_cr4(vcpu); 10586 sregs->cr8 = kvm_get_cr8(vcpu); 10587 sregs->efer = vcpu->arch.efer; 10588 sregs->apic_base = kvm_get_apic_base(vcpu); 10589 } 10590 10591 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10592 { 10593 __get_sregs_common(vcpu, sregs); 10594 10595 if (vcpu->arch.guest_state_protected) 10596 return; 10597 10598 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 10599 set_bit(vcpu->arch.interrupt.nr, 10600 (unsigned long *)sregs->interrupt_bitmap); 10601 } 10602 10603 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 10604 { 10605 int i; 10606 10607 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 10608 10609 if (vcpu->arch.guest_state_protected) 10610 return; 10611 10612 if (is_pae_paging(vcpu)) { 10613 for (i = 0 ; i < 4 ; i++) 10614 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 10615 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 10616 } 10617 } 10618 10619 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 10620 struct kvm_sregs *sregs) 10621 { 10622 vcpu_load(vcpu); 10623 __get_sregs(vcpu, sregs); 10624 vcpu_put(vcpu); 10625 return 0; 10626 } 10627 10628 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 10629 struct kvm_mp_state *mp_state) 10630 { 10631 int r; 10632 10633 vcpu_load(vcpu); 10634 if (kvm_mpx_supported()) 10635 kvm_load_guest_fpu(vcpu); 10636 10637 r = kvm_apic_accept_events(vcpu); 10638 if (r < 0) 10639 goto out; 10640 r = 0; 10641 10642 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 10643 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 10644 vcpu->arch.pv.pv_unhalted) 10645 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 10646 else 10647 mp_state->mp_state = vcpu->arch.mp_state; 10648 10649 out: 10650 if (kvm_mpx_supported()) 10651 kvm_put_guest_fpu(vcpu); 10652 vcpu_put(vcpu); 10653 return r; 10654 } 10655 10656 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 10657 struct kvm_mp_state *mp_state) 10658 { 10659 int ret = -EINVAL; 10660 10661 vcpu_load(vcpu); 10662 10663 if (!lapic_in_kernel(vcpu) && 10664 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 10665 goto out; 10666 10667 /* 10668 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 10669 * INIT state; latched init should be reported using 10670 * KVM_SET_VCPU_EVENTS, so reject it here. 10671 */ 10672 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 10673 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 10674 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 10675 goto out; 10676 10677 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 10678 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 10679 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 10680 } else 10681 vcpu->arch.mp_state = mp_state->mp_state; 10682 kvm_make_request(KVM_REQ_EVENT, vcpu); 10683 10684 ret = 0; 10685 out: 10686 vcpu_put(vcpu); 10687 return ret; 10688 } 10689 10690 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 10691 int reason, bool has_error_code, u32 error_code) 10692 { 10693 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 10694 int ret; 10695 10696 init_emulate_ctxt(vcpu); 10697 10698 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 10699 has_error_code, error_code); 10700 if (ret) { 10701 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 10702 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 10703 vcpu->run->internal.ndata = 0; 10704 return 0; 10705 } 10706 10707 kvm_rip_write(vcpu, ctxt->eip); 10708 kvm_set_rflags(vcpu, ctxt->eflags); 10709 return 1; 10710 } 10711 EXPORT_SYMBOL_GPL(kvm_task_switch); 10712 10713 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10714 { 10715 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 10716 /* 10717 * When EFER.LME and CR0.PG are set, the processor is in 10718 * 64-bit mode (though maybe in a 32-bit code segment). 10719 * CR4.PAE and EFER.LMA must be set. 10720 */ 10721 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 10722 return false; 10723 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 10724 return false; 10725 } else { 10726 /* 10727 * Not in 64-bit mode: EFER.LMA is clear and the code 10728 * segment cannot be 64-bit. 10729 */ 10730 if (sregs->efer & EFER_LMA || sregs->cs.l) 10731 return false; 10732 } 10733 10734 return kvm_is_valid_cr4(vcpu, sregs->cr4); 10735 } 10736 10737 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 10738 int *mmu_reset_needed, bool update_pdptrs) 10739 { 10740 struct msr_data apic_base_msr; 10741 int idx; 10742 struct desc_ptr dt; 10743 10744 if (!kvm_is_valid_sregs(vcpu, sregs)) 10745 return -EINVAL; 10746 10747 apic_base_msr.data = sregs->apic_base; 10748 apic_base_msr.host_initiated = true; 10749 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 10750 return -EINVAL; 10751 10752 if (vcpu->arch.guest_state_protected) 10753 return 0; 10754 10755 dt.size = sregs->idt.limit; 10756 dt.address = sregs->idt.base; 10757 static_call(kvm_x86_set_idt)(vcpu, &dt); 10758 dt.size = sregs->gdt.limit; 10759 dt.address = sregs->gdt.base; 10760 static_call(kvm_x86_set_gdt)(vcpu, &dt); 10761 10762 vcpu->arch.cr2 = sregs->cr2; 10763 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 10764 vcpu->arch.cr3 = sregs->cr3; 10765 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 10766 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 10767 10768 kvm_set_cr8(vcpu, sregs->cr8); 10769 10770 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 10771 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 10772 10773 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 10774 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 10775 vcpu->arch.cr0 = sregs->cr0; 10776 10777 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 10778 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 10779 10780 if (update_pdptrs) { 10781 idx = srcu_read_lock(&vcpu->kvm->srcu); 10782 if (is_pae_paging(vcpu)) { 10783 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 10784 *mmu_reset_needed = 1; 10785 } 10786 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10787 } 10788 10789 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10790 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10791 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10792 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10793 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10794 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10795 10796 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10797 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10798 10799 update_cr8_intercept(vcpu); 10800 10801 /* Older userspace won't unhalt the vcpu on reset. */ 10802 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 10803 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 10804 !is_protmode(vcpu)) 10805 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10806 10807 return 0; 10808 } 10809 10810 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10811 { 10812 int pending_vec, max_bits; 10813 int mmu_reset_needed = 0; 10814 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 10815 10816 if (ret) 10817 return ret; 10818 10819 if (mmu_reset_needed) 10820 kvm_mmu_reset_context(vcpu); 10821 10822 max_bits = KVM_NR_INTERRUPTS; 10823 pending_vec = find_first_bit( 10824 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 10825 10826 if (pending_vec < max_bits) { 10827 kvm_queue_interrupt(vcpu, pending_vec, false); 10828 pr_debug("Set back pending irq %d\n", pending_vec); 10829 kvm_make_request(KVM_REQ_EVENT, vcpu); 10830 } 10831 return 0; 10832 } 10833 10834 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 10835 { 10836 int mmu_reset_needed = 0; 10837 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 10838 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 10839 !(sregs2->efer & EFER_LMA); 10840 int i, ret; 10841 10842 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 10843 return -EINVAL; 10844 10845 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 10846 return -EINVAL; 10847 10848 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 10849 &mmu_reset_needed, !valid_pdptrs); 10850 if (ret) 10851 return ret; 10852 10853 if (valid_pdptrs) { 10854 for (i = 0; i < 4 ; i++) 10855 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 10856 10857 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 10858 mmu_reset_needed = 1; 10859 vcpu->arch.pdptrs_from_userspace = true; 10860 } 10861 if (mmu_reset_needed) 10862 kvm_mmu_reset_context(vcpu); 10863 return 0; 10864 } 10865 10866 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 10867 struct kvm_sregs *sregs) 10868 { 10869 int ret; 10870 10871 vcpu_load(vcpu); 10872 ret = __set_sregs(vcpu, sregs); 10873 vcpu_put(vcpu); 10874 return ret; 10875 } 10876 10877 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 10878 { 10879 bool inhibit = false; 10880 struct kvm_vcpu *vcpu; 10881 unsigned long i; 10882 10883 down_write(&kvm->arch.apicv_update_lock); 10884 10885 kvm_for_each_vcpu(i, vcpu, kvm) { 10886 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 10887 inhibit = true; 10888 break; 10889 } 10890 } 10891 __kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ); 10892 up_write(&kvm->arch.apicv_update_lock); 10893 } 10894 10895 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 10896 struct kvm_guest_debug *dbg) 10897 { 10898 unsigned long rflags; 10899 int i, r; 10900 10901 if (vcpu->arch.guest_state_protected) 10902 return -EINVAL; 10903 10904 vcpu_load(vcpu); 10905 10906 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 10907 r = -EBUSY; 10908 if (vcpu->arch.exception.pending) 10909 goto out; 10910 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 10911 kvm_queue_exception(vcpu, DB_VECTOR); 10912 else 10913 kvm_queue_exception(vcpu, BP_VECTOR); 10914 } 10915 10916 /* 10917 * Read rflags as long as potentially injected trace flags are still 10918 * filtered out. 10919 */ 10920 rflags = kvm_get_rflags(vcpu); 10921 10922 vcpu->guest_debug = dbg->control; 10923 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 10924 vcpu->guest_debug = 0; 10925 10926 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 10927 for (i = 0; i < KVM_NR_DB_REGS; ++i) 10928 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 10929 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 10930 } else { 10931 for (i = 0; i < KVM_NR_DB_REGS; i++) 10932 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 10933 } 10934 kvm_update_dr7(vcpu); 10935 10936 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10937 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 10938 10939 /* 10940 * Trigger an rflags update that will inject or remove the trace 10941 * flags. 10942 */ 10943 kvm_set_rflags(vcpu, rflags); 10944 10945 static_call(kvm_x86_update_exception_bitmap)(vcpu); 10946 10947 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 10948 10949 r = 0; 10950 10951 out: 10952 vcpu_put(vcpu); 10953 return r; 10954 } 10955 10956 /* 10957 * Translate a guest virtual address to a guest physical address. 10958 */ 10959 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 10960 struct kvm_translation *tr) 10961 { 10962 unsigned long vaddr = tr->linear_address; 10963 gpa_t gpa; 10964 int idx; 10965 10966 vcpu_load(vcpu); 10967 10968 idx = srcu_read_lock(&vcpu->kvm->srcu); 10969 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 10970 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10971 tr->physical_address = gpa; 10972 tr->valid = gpa != UNMAPPED_GVA; 10973 tr->writeable = 1; 10974 tr->usermode = 0; 10975 10976 vcpu_put(vcpu); 10977 return 0; 10978 } 10979 10980 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 10981 { 10982 struct fxregs_state *fxsave; 10983 10984 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 10985 return 0; 10986 10987 vcpu_load(vcpu); 10988 10989 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 10990 memcpy(fpu->fpr, fxsave->st_space, 128); 10991 fpu->fcw = fxsave->cwd; 10992 fpu->fsw = fxsave->swd; 10993 fpu->ftwx = fxsave->twd; 10994 fpu->last_opcode = fxsave->fop; 10995 fpu->last_ip = fxsave->rip; 10996 fpu->last_dp = fxsave->rdp; 10997 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 10998 10999 vcpu_put(vcpu); 11000 return 0; 11001 } 11002 11003 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11004 { 11005 struct fxregs_state *fxsave; 11006 11007 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11008 return 0; 11009 11010 vcpu_load(vcpu); 11011 11012 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11013 11014 memcpy(fxsave->st_space, fpu->fpr, 128); 11015 fxsave->cwd = fpu->fcw; 11016 fxsave->swd = fpu->fsw; 11017 fxsave->twd = fpu->ftwx; 11018 fxsave->fop = fpu->last_opcode; 11019 fxsave->rip = fpu->last_ip; 11020 fxsave->rdp = fpu->last_dp; 11021 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11022 11023 vcpu_put(vcpu); 11024 return 0; 11025 } 11026 11027 static void store_regs(struct kvm_vcpu *vcpu) 11028 { 11029 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11030 11031 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11032 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11033 11034 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11035 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11036 11037 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11038 kvm_vcpu_ioctl_x86_get_vcpu_events( 11039 vcpu, &vcpu->run->s.regs.events); 11040 } 11041 11042 static int sync_regs(struct kvm_vcpu *vcpu) 11043 { 11044 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11045 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11046 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11047 } 11048 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11049 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11050 return -EINVAL; 11051 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11052 } 11053 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11054 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11055 vcpu, &vcpu->run->s.regs.events)) 11056 return -EINVAL; 11057 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11058 } 11059 11060 return 0; 11061 } 11062 11063 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11064 { 11065 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 11066 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11067 "guest TSC will not be reliable\n"); 11068 11069 return 0; 11070 } 11071 11072 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11073 { 11074 struct page *page; 11075 int r; 11076 11077 vcpu->arch.last_vmentry_cpu = -1; 11078 vcpu->arch.regs_avail = ~0; 11079 vcpu->arch.regs_dirty = ~0; 11080 11081 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11082 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11083 else 11084 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11085 11086 r = kvm_mmu_create(vcpu); 11087 if (r < 0) 11088 return r; 11089 11090 if (irqchip_in_kernel(vcpu->kvm)) { 11091 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11092 if (r < 0) 11093 goto fail_mmu_destroy; 11094 if (kvm_apicv_activated(vcpu->kvm)) 11095 vcpu->arch.apicv_active = true; 11096 } else 11097 static_branch_inc(&kvm_has_noapic_vcpu); 11098 11099 r = -ENOMEM; 11100 11101 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11102 if (!page) 11103 goto fail_free_lapic; 11104 vcpu->arch.pio_data = page_address(page); 11105 11106 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 11107 GFP_KERNEL_ACCOUNT); 11108 if (!vcpu->arch.mce_banks) 11109 goto fail_free_pio_data; 11110 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11111 11112 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11113 GFP_KERNEL_ACCOUNT)) 11114 goto fail_free_mce_banks; 11115 11116 if (!alloc_emulate_ctxt(vcpu)) 11117 goto free_wbinvd_dirty_mask; 11118 11119 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11120 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11121 goto free_emulate_ctxt; 11122 } 11123 11124 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11125 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11126 11127 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11128 11129 kvm_async_pf_hash_reset(vcpu); 11130 kvm_pmu_init(vcpu); 11131 11132 vcpu->arch.pending_external_vector = -1; 11133 vcpu->arch.preempted_in_kernel = false; 11134 11135 #if IS_ENABLED(CONFIG_HYPERV) 11136 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11137 #endif 11138 11139 r = static_call(kvm_x86_vcpu_create)(vcpu); 11140 if (r) 11141 goto free_guest_fpu; 11142 11143 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11144 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11145 kvm_vcpu_mtrr_init(vcpu); 11146 vcpu_load(vcpu); 11147 kvm_set_tsc_khz(vcpu, max_tsc_khz); 11148 kvm_vcpu_reset(vcpu, false); 11149 kvm_init_mmu(vcpu); 11150 vcpu_put(vcpu); 11151 return 0; 11152 11153 free_guest_fpu: 11154 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11155 free_emulate_ctxt: 11156 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11157 free_wbinvd_dirty_mask: 11158 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11159 fail_free_mce_banks: 11160 kfree(vcpu->arch.mce_banks); 11161 fail_free_pio_data: 11162 free_page((unsigned long)vcpu->arch.pio_data); 11163 fail_free_lapic: 11164 kvm_free_lapic(vcpu); 11165 fail_mmu_destroy: 11166 kvm_mmu_destroy(vcpu); 11167 return r; 11168 } 11169 11170 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11171 { 11172 struct kvm *kvm = vcpu->kvm; 11173 11174 if (mutex_lock_killable(&vcpu->mutex)) 11175 return; 11176 vcpu_load(vcpu); 11177 kvm_synchronize_tsc(vcpu, 0); 11178 vcpu_put(vcpu); 11179 11180 /* poll control enabled by default */ 11181 vcpu->arch.msr_kvm_poll_control = 1; 11182 11183 mutex_unlock(&vcpu->mutex); 11184 11185 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11186 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11187 KVMCLOCK_SYNC_PERIOD); 11188 } 11189 11190 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11191 { 11192 int idx; 11193 11194 kvmclock_reset(vcpu); 11195 11196 static_call(kvm_x86_vcpu_free)(vcpu); 11197 11198 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11199 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11200 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11201 11202 kvm_hv_vcpu_uninit(vcpu); 11203 kvm_pmu_destroy(vcpu); 11204 kfree(vcpu->arch.mce_banks); 11205 kvm_free_lapic(vcpu); 11206 idx = srcu_read_lock(&vcpu->kvm->srcu); 11207 kvm_mmu_destroy(vcpu); 11208 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11209 free_page((unsigned long)vcpu->arch.pio_data); 11210 kvfree(vcpu->arch.cpuid_entries); 11211 if (!lapic_in_kernel(vcpu)) 11212 static_branch_dec(&kvm_has_noapic_vcpu); 11213 } 11214 11215 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11216 { 11217 struct kvm_cpuid_entry2 *cpuid_0x1; 11218 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11219 unsigned long new_cr0; 11220 11221 /* 11222 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11223 * to handle side effects. RESET emulation hits those flows and relies 11224 * on emulated/virtualized registers, including those that are loaded 11225 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11226 * to detect improper or missing initialization. 11227 */ 11228 WARN_ON_ONCE(!init_event && 11229 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11230 11231 kvm_lapic_reset(vcpu, init_event); 11232 11233 vcpu->arch.hflags = 0; 11234 11235 vcpu->arch.smi_pending = 0; 11236 vcpu->arch.smi_count = 0; 11237 atomic_set(&vcpu->arch.nmi_queued, 0); 11238 vcpu->arch.nmi_pending = 0; 11239 vcpu->arch.nmi_injected = false; 11240 kvm_clear_interrupt_queue(vcpu); 11241 kvm_clear_exception_queue(vcpu); 11242 11243 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11244 kvm_update_dr0123(vcpu); 11245 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11246 vcpu->arch.dr7 = DR7_FIXED_1; 11247 kvm_update_dr7(vcpu); 11248 11249 vcpu->arch.cr2 = 0; 11250 11251 kvm_make_request(KVM_REQ_EVENT, vcpu); 11252 vcpu->arch.apf.msr_en_val = 0; 11253 vcpu->arch.apf.msr_int_val = 0; 11254 vcpu->arch.st.msr_val = 0; 11255 11256 kvmclock_reset(vcpu); 11257 11258 kvm_clear_async_pf_completion_queue(vcpu); 11259 kvm_async_pf_hash_reset(vcpu); 11260 vcpu->arch.apf.halted = false; 11261 11262 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11263 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11264 11265 /* 11266 * To avoid have the INIT path from kvm_apic_has_events() that be 11267 * called with loaded FPU and does not let userspace fix the state. 11268 */ 11269 if (init_event) 11270 kvm_put_guest_fpu(vcpu); 11271 11272 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11273 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11274 11275 if (init_event) 11276 kvm_load_guest_fpu(vcpu); 11277 } 11278 11279 if (!init_event) { 11280 kvm_pmu_reset(vcpu); 11281 vcpu->arch.smbase = 0x30000; 11282 11283 vcpu->arch.msr_misc_features_enables = 0; 11284 11285 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11286 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11287 } 11288 11289 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11290 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11291 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11292 11293 /* 11294 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11295 * if no CPUID match is found. Note, it's impossible to get a match at 11296 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11297 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11298 * on RESET. But, go through the motions in case that's ever remedied. 11299 */ 11300 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0); 11301 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11302 11303 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11304 11305 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11306 kvm_rip_write(vcpu, 0xfff0); 11307 11308 vcpu->arch.cr3 = 0; 11309 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11310 11311 /* 11312 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11313 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11314 * (or qualify) that with a footnote stating that CD/NW are preserved. 11315 */ 11316 new_cr0 = X86_CR0_ET; 11317 if (init_event) 11318 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11319 else 11320 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11321 11322 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11323 static_call(kvm_x86_set_cr4)(vcpu, 0); 11324 static_call(kvm_x86_set_efer)(vcpu, 0); 11325 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11326 11327 /* 11328 * Reset the MMU context if paging was enabled prior to INIT (which is 11329 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the 11330 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be 11331 * checked because it is unconditionally cleared on INIT and all other 11332 * paging related bits are ignored if paging is disabled, i.e. CR0.WP, 11333 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'. 11334 */ 11335 if (old_cr0 & X86_CR0_PG) 11336 kvm_mmu_reset_context(vcpu); 11337 11338 /* 11339 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11340 * APM states the TLBs are untouched by INIT, but it also states that 11341 * the TLBs are flushed on "External initialization of the processor." 11342 * Flush the guest TLB regardless of vendor, there is no meaningful 11343 * benefit in relying on the guest to flush the TLB immediately after 11344 * INIT. A spurious TLB flush is benign and likely negligible from a 11345 * performance perspective. 11346 */ 11347 if (init_event) 11348 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11349 } 11350 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11351 11352 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11353 { 11354 struct kvm_segment cs; 11355 11356 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11357 cs.selector = vector << 8; 11358 cs.base = vector << 12; 11359 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11360 kvm_rip_write(vcpu, 0); 11361 } 11362 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11363 11364 int kvm_arch_hardware_enable(void) 11365 { 11366 struct kvm *kvm; 11367 struct kvm_vcpu *vcpu; 11368 unsigned long i; 11369 int ret; 11370 u64 local_tsc; 11371 u64 max_tsc = 0; 11372 bool stable, backwards_tsc = false; 11373 11374 kvm_user_return_msr_cpu_online(); 11375 ret = static_call(kvm_x86_hardware_enable)(); 11376 if (ret != 0) 11377 return ret; 11378 11379 local_tsc = rdtsc(); 11380 stable = !kvm_check_tsc_unstable(); 11381 list_for_each_entry(kvm, &vm_list, vm_list) { 11382 kvm_for_each_vcpu(i, vcpu, kvm) { 11383 if (!stable && vcpu->cpu == smp_processor_id()) 11384 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11385 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 11386 backwards_tsc = true; 11387 if (vcpu->arch.last_host_tsc > max_tsc) 11388 max_tsc = vcpu->arch.last_host_tsc; 11389 } 11390 } 11391 } 11392 11393 /* 11394 * Sometimes, even reliable TSCs go backwards. This happens on 11395 * platforms that reset TSC during suspend or hibernate actions, but 11396 * maintain synchronization. We must compensate. Fortunately, we can 11397 * detect that condition here, which happens early in CPU bringup, 11398 * before any KVM threads can be running. Unfortunately, we can't 11399 * bring the TSCs fully up to date with real time, as we aren't yet far 11400 * enough into CPU bringup that we know how much real time has actually 11401 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 11402 * variables that haven't been updated yet. 11403 * 11404 * So we simply find the maximum observed TSC above, then record the 11405 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 11406 * the adjustment will be applied. Note that we accumulate 11407 * adjustments, in case multiple suspend cycles happen before some VCPU 11408 * gets a chance to run again. In the event that no KVM threads get a 11409 * chance to run, we will miss the entire elapsed period, as we'll have 11410 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 11411 * loose cycle time. This isn't too big a deal, since the loss will be 11412 * uniform across all VCPUs (not to mention the scenario is extremely 11413 * unlikely). It is possible that a second hibernate recovery happens 11414 * much faster than a first, causing the observed TSC here to be 11415 * smaller; this would require additional padding adjustment, which is 11416 * why we set last_host_tsc to the local tsc observed here. 11417 * 11418 * N.B. - this code below runs only on platforms with reliable TSC, 11419 * as that is the only way backwards_tsc is set above. Also note 11420 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 11421 * have the same delta_cyc adjustment applied if backwards_tsc 11422 * is detected. Note further, this adjustment is only done once, 11423 * as we reset last_host_tsc on all VCPUs to stop this from being 11424 * called multiple times (one for each physical CPU bringup). 11425 * 11426 * Platforms with unreliable TSCs don't have to deal with this, they 11427 * will be compensated by the logic in vcpu_load, which sets the TSC to 11428 * catchup mode. This will catchup all VCPUs to real time, but cannot 11429 * guarantee that they stay in perfect synchronization. 11430 */ 11431 if (backwards_tsc) { 11432 u64 delta_cyc = max_tsc - local_tsc; 11433 list_for_each_entry(kvm, &vm_list, vm_list) { 11434 kvm->arch.backwards_tsc_observed = true; 11435 kvm_for_each_vcpu(i, vcpu, kvm) { 11436 vcpu->arch.tsc_offset_adjustment += delta_cyc; 11437 vcpu->arch.last_host_tsc = local_tsc; 11438 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 11439 } 11440 11441 /* 11442 * We have to disable TSC offset matching.. if you were 11443 * booting a VM while issuing an S4 host suspend.... 11444 * you may have some problem. Solving this issue is 11445 * left as an exercise to the reader. 11446 */ 11447 kvm->arch.last_tsc_nsec = 0; 11448 kvm->arch.last_tsc_write = 0; 11449 } 11450 11451 } 11452 return 0; 11453 } 11454 11455 void kvm_arch_hardware_disable(void) 11456 { 11457 static_call(kvm_x86_hardware_disable)(); 11458 drop_user_return_notifiers(); 11459 } 11460 11461 int kvm_arch_hardware_setup(void *opaque) 11462 { 11463 struct kvm_x86_init_ops *ops = opaque; 11464 int r; 11465 11466 rdmsrl_safe(MSR_EFER, &host_efer); 11467 11468 if (boot_cpu_has(X86_FEATURE_XSAVES)) 11469 rdmsrl(MSR_IA32_XSS, host_xss); 11470 11471 r = ops->hardware_setup(); 11472 if (r != 0) 11473 return r; 11474 11475 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 11476 kvm_ops_static_call_update(); 11477 11478 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 11479 11480 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 11481 supported_xss = 0; 11482 11483 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 11484 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 11485 #undef __kvm_cpu_cap_has 11486 11487 if (kvm_has_tsc_control) { 11488 /* 11489 * Make sure the user can only configure tsc_khz values that 11490 * fit into a signed integer. 11491 * A min value is not calculated because it will always 11492 * be 1 on all machines. 11493 */ 11494 u64 max = min(0x7fffffffULL, 11495 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 11496 kvm_max_guest_tsc_khz = max; 11497 11498 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 11499 } 11500 11501 kvm_init_msr_list(); 11502 return 0; 11503 } 11504 11505 void kvm_arch_hardware_unsetup(void) 11506 { 11507 kvm_unregister_perf_callbacks(); 11508 11509 static_call(kvm_x86_hardware_unsetup)(); 11510 } 11511 11512 int kvm_arch_check_processor_compat(void *opaque) 11513 { 11514 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 11515 struct kvm_x86_init_ops *ops = opaque; 11516 11517 WARN_ON(!irqs_disabled()); 11518 11519 if (__cr4_reserved_bits(cpu_has, c) != 11520 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 11521 return -EIO; 11522 11523 return ops->check_processor_compatibility(); 11524 } 11525 11526 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 11527 { 11528 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 11529 } 11530 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 11531 11532 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 11533 { 11534 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 11535 } 11536 11537 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 11538 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 11539 11540 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 11541 { 11542 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 11543 11544 vcpu->arch.l1tf_flush_l1d = true; 11545 if (pmu->version && unlikely(pmu->event_count)) { 11546 pmu->need_cleanup = true; 11547 kvm_make_request(KVM_REQ_PMU, vcpu); 11548 } 11549 static_call(kvm_x86_sched_in)(vcpu, cpu); 11550 } 11551 11552 void kvm_arch_free_vm(struct kvm *kvm) 11553 { 11554 kfree(to_kvm_hv(kvm)->hv_pa_pg); 11555 __kvm_arch_free_vm(kvm); 11556 } 11557 11558 11559 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 11560 { 11561 int ret; 11562 unsigned long flags; 11563 11564 if (type) 11565 return -EINVAL; 11566 11567 ret = kvm_page_track_init(kvm); 11568 if (ret) 11569 return ret; 11570 11571 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 11572 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 11573 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 11574 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 11575 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 11576 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 11577 11578 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 11579 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 11580 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 11581 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 11582 &kvm->arch.irq_sources_bitmap); 11583 11584 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 11585 mutex_init(&kvm->arch.apic_map_lock); 11586 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 11587 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 11588 11589 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 11590 pvclock_update_vm_gtod_copy(kvm); 11591 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 11592 11593 kvm->arch.guest_can_read_msr_platform_info = true; 11594 11595 #if IS_ENABLED(CONFIG_HYPERV) 11596 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 11597 kvm->arch.hv_root_tdp = INVALID_PAGE; 11598 #endif 11599 11600 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 11601 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 11602 11603 kvm_apicv_init(kvm); 11604 kvm_hv_init_vm(kvm); 11605 kvm_mmu_init_vm(kvm); 11606 kvm_xen_init_vm(kvm); 11607 11608 return static_call(kvm_x86_vm_init)(kvm); 11609 } 11610 11611 int kvm_arch_post_init_vm(struct kvm *kvm) 11612 { 11613 return kvm_mmu_post_init_vm(kvm); 11614 } 11615 11616 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 11617 { 11618 vcpu_load(vcpu); 11619 kvm_mmu_unload(vcpu); 11620 vcpu_put(vcpu); 11621 } 11622 11623 static void kvm_free_vcpus(struct kvm *kvm) 11624 { 11625 unsigned long i; 11626 struct kvm_vcpu *vcpu; 11627 11628 /* 11629 * Unpin any mmu pages first. 11630 */ 11631 kvm_for_each_vcpu(i, vcpu, kvm) { 11632 kvm_clear_async_pf_completion_queue(vcpu); 11633 kvm_unload_vcpu_mmu(vcpu); 11634 } 11635 11636 kvm_destroy_vcpus(kvm); 11637 } 11638 11639 void kvm_arch_sync_events(struct kvm *kvm) 11640 { 11641 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 11642 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 11643 kvm_free_pit(kvm); 11644 } 11645 11646 /** 11647 * __x86_set_memory_region: Setup KVM internal memory slot 11648 * 11649 * @kvm: the kvm pointer to the VM. 11650 * @id: the slot ID to setup. 11651 * @gpa: the GPA to install the slot (unused when @size == 0). 11652 * @size: the size of the slot. Set to zero to uninstall a slot. 11653 * 11654 * This function helps to setup a KVM internal memory slot. Specify 11655 * @size > 0 to install a new slot, while @size == 0 to uninstall a 11656 * slot. The return code can be one of the following: 11657 * 11658 * HVA: on success (uninstall will return a bogus HVA) 11659 * -errno: on error 11660 * 11661 * The caller should always use IS_ERR() to check the return value 11662 * before use. Note, the KVM internal memory slots are guaranteed to 11663 * remain valid and unchanged until the VM is destroyed, i.e., the 11664 * GPA->HVA translation will not change. However, the HVA is a user 11665 * address, i.e. its accessibility is not guaranteed, and must be 11666 * accessed via __copy_{to,from}_user(). 11667 */ 11668 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 11669 u32 size) 11670 { 11671 int i, r; 11672 unsigned long hva, old_npages; 11673 struct kvm_memslots *slots = kvm_memslots(kvm); 11674 struct kvm_memory_slot *slot; 11675 11676 /* Called with kvm->slots_lock held. */ 11677 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 11678 return ERR_PTR_USR(-EINVAL); 11679 11680 slot = id_to_memslot(slots, id); 11681 if (size) { 11682 if (slot && slot->npages) 11683 return ERR_PTR_USR(-EEXIST); 11684 11685 /* 11686 * MAP_SHARED to prevent internal slot pages from being moved 11687 * by fork()/COW. 11688 */ 11689 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 11690 MAP_SHARED | MAP_ANONYMOUS, 0); 11691 if (IS_ERR((void *)hva)) 11692 return (void __user *)hva; 11693 } else { 11694 if (!slot || !slot->npages) 11695 return NULL; 11696 11697 old_npages = slot->npages; 11698 hva = slot->userspace_addr; 11699 } 11700 11701 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 11702 struct kvm_userspace_memory_region m; 11703 11704 m.slot = id | (i << 16); 11705 m.flags = 0; 11706 m.guest_phys_addr = gpa; 11707 m.userspace_addr = hva; 11708 m.memory_size = size; 11709 r = __kvm_set_memory_region(kvm, &m); 11710 if (r < 0) 11711 return ERR_PTR_USR(r); 11712 } 11713 11714 if (!size) 11715 vm_munmap(hva, old_npages * PAGE_SIZE); 11716 11717 return (void __user *)hva; 11718 } 11719 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 11720 11721 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 11722 { 11723 kvm_mmu_pre_destroy_vm(kvm); 11724 } 11725 11726 void kvm_arch_destroy_vm(struct kvm *kvm) 11727 { 11728 if (current->mm == kvm->mm) { 11729 /* 11730 * Free memory regions allocated on behalf of userspace, 11731 * unless the the memory map has changed due to process exit 11732 * or fd copying. 11733 */ 11734 mutex_lock(&kvm->slots_lock); 11735 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 11736 0, 0); 11737 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 11738 0, 0); 11739 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 11740 mutex_unlock(&kvm->slots_lock); 11741 } 11742 static_call_cond(kvm_x86_vm_destroy)(kvm); 11743 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 11744 kvm_pic_destroy(kvm); 11745 kvm_ioapic_destroy(kvm); 11746 kvm_free_vcpus(kvm); 11747 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 11748 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 11749 kvm_mmu_uninit_vm(kvm); 11750 kvm_page_track_cleanup(kvm); 11751 kvm_xen_destroy_vm(kvm); 11752 kvm_hv_destroy_vm(kvm); 11753 } 11754 11755 static void memslot_rmap_free(struct kvm_memory_slot *slot) 11756 { 11757 int i; 11758 11759 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 11760 kvfree(slot->arch.rmap[i]); 11761 slot->arch.rmap[i] = NULL; 11762 } 11763 } 11764 11765 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 11766 { 11767 int i; 11768 11769 memslot_rmap_free(slot); 11770 11771 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11772 kvfree(slot->arch.lpage_info[i - 1]); 11773 slot->arch.lpage_info[i - 1] = NULL; 11774 } 11775 11776 kvm_page_track_free_memslot(slot); 11777 } 11778 11779 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 11780 { 11781 const int sz = sizeof(*slot->arch.rmap[0]); 11782 int i; 11783 11784 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 11785 int level = i + 1; 11786 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 11787 11788 if (slot->arch.rmap[i]) 11789 continue; 11790 11791 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 11792 if (!slot->arch.rmap[i]) { 11793 memslot_rmap_free(slot); 11794 return -ENOMEM; 11795 } 11796 } 11797 11798 return 0; 11799 } 11800 11801 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 11802 struct kvm_memory_slot *slot) 11803 { 11804 unsigned long npages = slot->npages; 11805 int i, r; 11806 11807 /* 11808 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 11809 * old arrays will be freed by __kvm_set_memory_region() if installing 11810 * the new memslot is successful. 11811 */ 11812 memset(&slot->arch, 0, sizeof(slot->arch)); 11813 11814 if (kvm_memslots_have_rmaps(kvm)) { 11815 r = memslot_rmap_alloc(slot, npages); 11816 if (r) 11817 return r; 11818 } 11819 11820 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11821 struct kvm_lpage_info *linfo; 11822 unsigned long ugfn; 11823 int lpages; 11824 int level = i + 1; 11825 11826 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 11827 11828 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 11829 if (!linfo) 11830 goto out_free; 11831 11832 slot->arch.lpage_info[i - 1] = linfo; 11833 11834 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 11835 linfo[0].disallow_lpage = 1; 11836 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 11837 linfo[lpages - 1].disallow_lpage = 1; 11838 ugfn = slot->userspace_addr >> PAGE_SHIFT; 11839 /* 11840 * If the gfn and userspace address are not aligned wrt each 11841 * other, disable large page support for this slot. 11842 */ 11843 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 11844 unsigned long j; 11845 11846 for (j = 0; j < lpages; ++j) 11847 linfo[j].disallow_lpage = 1; 11848 } 11849 } 11850 11851 if (kvm_page_track_create_memslot(kvm, slot, npages)) 11852 goto out_free; 11853 11854 return 0; 11855 11856 out_free: 11857 memslot_rmap_free(slot); 11858 11859 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11860 kvfree(slot->arch.lpage_info[i - 1]); 11861 slot->arch.lpage_info[i - 1] = NULL; 11862 } 11863 return -ENOMEM; 11864 } 11865 11866 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 11867 { 11868 struct kvm_vcpu *vcpu; 11869 unsigned long i; 11870 11871 /* 11872 * memslots->generation has been incremented. 11873 * mmio generation may have reached its maximum value. 11874 */ 11875 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 11876 11877 /* Force re-initialization of steal_time cache */ 11878 kvm_for_each_vcpu(i, vcpu, kvm) 11879 kvm_vcpu_kick(vcpu); 11880 } 11881 11882 int kvm_arch_prepare_memory_region(struct kvm *kvm, 11883 const struct kvm_memory_slot *old, 11884 struct kvm_memory_slot *new, 11885 enum kvm_mr_change change) 11886 { 11887 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 11888 return kvm_alloc_memslot_metadata(kvm, new); 11889 11890 if (change == KVM_MR_FLAGS_ONLY) 11891 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 11892 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 11893 return -EIO; 11894 11895 return 0; 11896 } 11897 11898 11899 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 11900 { 11901 struct kvm_arch *ka = &kvm->arch; 11902 11903 if (!kvm_x86_ops.cpu_dirty_log_size) 11904 return; 11905 11906 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 11907 (!enable && --ka->cpu_dirty_logging_count == 0)) 11908 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 11909 11910 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 11911 } 11912 11913 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 11914 struct kvm_memory_slot *old, 11915 const struct kvm_memory_slot *new, 11916 enum kvm_mr_change change) 11917 { 11918 u32 old_flags = old ? old->flags : 0; 11919 u32 new_flags = new ? new->flags : 0; 11920 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 11921 11922 /* 11923 * Update CPU dirty logging if dirty logging is being toggled. This 11924 * applies to all operations. 11925 */ 11926 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 11927 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 11928 11929 /* 11930 * Nothing more to do for RO slots (which can't be dirtied and can't be 11931 * made writable) or CREATE/MOVE/DELETE of a slot. 11932 * 11933 * For a memslot with dirty logging disabled: 11934 * CREATE: No dirty mappings will already exist. 11935 * MOVE/DELETE: The old mappings will already have been cleaned up by 11936 * kvm_arch_flush_shadow_memslot() 11937 * 11938 * For a memslot with dirty logging enabled: 11939 * CREATE: No shadow pages exist, thus nothing to write-protect 11940 * and no dirty bits to clear. 11941 * MOVE/DELETE: The old mappings will already have been cleaned up by 11942 * kvm_arch_flush_shadow_memslot(). 11943 */ 11944 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 11945 return; 11946 11947 /* 11948 * READONLY and non-flags changes were filtered out above, and the only 11949 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 11950 * logging isn't being toggled on or off. 11951 */ 11952 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 11953 return; 11954 11955 if (!log_dirty_pages) { 11956 /* 11957 * Dirty logging tracks sptes in 4k granularity, meaning that 11958 * large sptes have to be split. If live migration succeeds, 11959 * the guest in the source machine will be destroyed and large 11960 * sptes will be created in the destination. However, if the 11961 * guest continues to run in the source machine (for example if 11962 * live migration fails), small sptes will remain around and 11963 * cause bad performance. 11964 * 11965 * Scan sptes if dirty logging has been stopped, dropping those 11966 * which can be collapsed into a single large-page spte. Later 11967 * page faults will create the large-page sptes. 11968 */ 11969 kvm_mmu_zap_collapsible_sptes(kvm, new); 11970 } else { 11971 /* 11972 * Initially-all-set does not require write protecting any page, 11973 * because they're all assumed to be dirty. 11974 */ 11975 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 11976 return; 11977 11978 if (kvm_x86_ops.cpu_dirty_log_size) { 11979 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 11980 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 11981 } else { 11982 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 11983 } 11984 } 11985 } 11986 11987 void kvm_arch_commit_memory_region(struct kvm *kvm, 11988 struct kvm_memory_slot *old, 11989 const struct kvm_memory_slot *new, 11990 enum kvm_mr_change change) 11991 { 11992 if (!kvm->arch.n_requested_mmu_pages && 11993 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 11994 unsigned long nr_mmu_pages; 11995 11996 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 11997 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 11998 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 11999 } 12000 12001 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12002 12003 /* Free the arrays associated with the old memslot. */ 12004 if (change == KVM_MR_MOVE) 12005 kvm_arch_free_memslot(kvm, old); 12006 } 12007 12008 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12009 { 12010 kvm_mmu_zap_all(kvm); 12011 } 12012 12013 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12014 struct kvm_memory_slot *slot) 12015 { 12016 kvm_page_track_flush_slot(kvm, slot); 12017 } 12018 12019 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12020 { 12021 return (is_guest_mode(vcpu) && 12022 kvm_x86_ops.guest_apic_has_interrupt && 12023 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12024 } 12025 12026 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12027 { 12028 if (!list_empty_careful(&vcpu->async_pf.done)) 12029 return true; 12030 12031 if (kvm_apic_has_events(vcpu)) 12032 return true; 12033 12034 if (vcpu->arch.pv.pv_unhalted) 12035 return true; 12036 12037 if (vcpu->arch.exception.pending) 12038 return true; 12039 12040 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12041 (vcpu->arch.nmi_pending && 12042 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12043 return true; 12044 12045 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12046 (vcpu->arch.smi_pending && 12047 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12048 return true; 12049 12050 if (kvm_arch_interrupt_allowed(vcpu) && 12051 (kvm_cpu_has_interrupt(vcpu) || 12052 kvm_guest_apic_has_interrupt(vcpu))) 12053 return true; 12054 12055 if (kvm_hv_has_stimer_pending(vcpu)) 12056 return true; 12057 12058 if (is_guest_mode(vcpu) && 12059 kvm_x86_ops.nested_ops->hv_timer_pending && 12060 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 12061 return true; 12062 12063 return false; 12064 } 12065 12066 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12067 { 12068 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12069 } 12070 12071 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12072 { 12073 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12074 return true; 12075 12076 return false; 12077 } 12078 12079 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12080 { 12081 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12082 return true; 12083 12084 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12085 kvm_test_request(KVM_REQ_SMI, vcpu) || 12086 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12087 return true; 12088 12089 return kvm_arch_dy_has_pending_interrupt(vcpu); 12090 } 12091 12092 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12093 { 12094 if (vcpu->arch.guest_state_protected) 12095 return true; 12096 12097 return vcpu->arch.preempted_in_kernel; 12098 } 12099 12100 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12101 { 12102 return kvm_rip_read(vcpu); 12103 } 12104 12105 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12106 { 12107 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12108 } 12109 12110 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12111 { 12112 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12113 } 12114 12115 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12116 { 12117 /* Can't read the RIP when guest state is protected, just return 0 */ 12118 if (vcpu->arch.guest_state_protected) 12119 return 0; 12120 12121 if (is_64_bit_mode(vcpu)) 12122 return kvm_rip_read(vcpu); 12123 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12124 kvm_rip_read(vcpu)); 12125 } 12126 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12127 12128 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12129 { 12130 return kvm_get_linear_rip(vcpu) == linear_rip; 12131 } 12132 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12133 12134 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12135 { 12136 unsigned long rflags; 12137 12138 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12139 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12140 rflags &= ~X86_EFLAGS_TF; 12141 return rflags; 12142 } 12143 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12144 12145 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12146 { 12147 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12148 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12149 rflags |= X86_EFLAGS_TF; 12150 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12151 } 12152 12153 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12154 { 12155 __kvm_set_rflags(vcpu, rflags); 12156 kvm_make_request(KVM_REQ_EVENT, vcpu); 12157 } 12158 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12159 12160 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 12161 { 12162 int r; 12163 12164 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 12165 work->wakeup_all) 12166 return; 12167 12168 r = kvm_mmu_reload(vcpu); 12169 if (unlikely(r)) 12170 return; 12171 12172 if (!vcpu->arch.mmu->direct_map && 12173 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 12174 return; 12175 12176 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 12177 } 12178 12179 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12180 { 12181 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12182 12183 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12184 } 12185 12186 static inline u32 kvm_async_pf_next_probe(u32 key) 12187 { 12188 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12189 } 12190 12191 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12192 { 12193 u32 key = kvm_async_pf_hash_fn(gfn); 12194 12195 while (vcpu->arch.apf.gfns[key] != ~0) 12196 key = kvm_async_pf_next_probe(key); 12197 12198 vcpu->arch.apf.gfns[key] = gfn; 12199 } 12200 12201 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12202 { 12203 int i; 12204 u32 key = kvm_async_pf_hash_fn(gfn); 12205 12206 for (i = 0; i < ASYNC_PF_PER_VCPU && 12207 (vcpu->arch.apf.gfns[key] != gfn && 12208 vcpu->arch.apf.gfns[key] != ~0); i++) 12209 key = kvm_async_pf_next_probe(key); 12210 12211 return key; 12212 } 12213 12214 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12215 { 12216 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12217 } 12218 12219 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12220 { 12221 u32 i, j, k; 12222 12223 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12224 12225 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12226 return; 12227 12228 while (true) { 12229 vcpu->arch.apf.gfns[i] = ~0; 12230 do { 12231 j = kvm_async_pf_next_probe(j); 12232 if (vcpu->arch.apf.gfns[j] == ~0) 12233 return; 12234 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12235 /* 12236 * k lies cyclically in ]i,j] 12237 * | i.k.j | 12238 * |....j i.k.| or |.k..j i...| 12239 */ 12240 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12241 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12242 i = j; 12243 } 12244 } 12245 12246 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12247 { 12248 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12249 12250 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12251 sizeof(reason)); 12252 } 12253 12254 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12255 { 12256 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12257 12258 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12259 &token, offset, sizeof(token)); 12260 } 12261 12262 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12263 { 12264 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12265 u32 val; 12266 12267 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12268 &val, offset, sizeof(val))) 12269 return false; 12270 12271 return !val; 12272 } 12273 12274 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12275 { 12276 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 12277 return false; 12278 12279 if (!kvm_pv_async_pf_enabled(vcpu) || 12280 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0)) 12281 return false; 12282 12283 return true; 12284 } 12285 12286 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12287 { 12288 if (unlikely(!lapic_in_kernel(vcpu) || 12289 kvm_event_needs_reinjection(vcpu) || 12290 vcpu->arch.exception.pending)) 12291 return false; 12292 12293 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12294 return false; 12295 12296 /* 12297 * If interrupts are off we cannot even use an artificial 12298 * halt state. 12299 */ 12300 return kvm_arch_interrupt_allowed(vcpu); 12301 } 12302 12303 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12304 struct kvm_async_pf *work) 12305 { 12306 struct x86_exception fault; 12307 12308 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12309 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12310 12311 if (kvm_can_deliver_async_pf(vcpu) && 12312 !apf_put_user_notpresent(vcpu)) { 12313 fault.vector = PF_VECTOR; 12314 fault.error_code_valid = true; 12315 fault.error_code = 0; 12316 fault.nested_page_fault = false; 12317 fault.address = work->arch.token; 12318 fault.async_page_fault = true; 12319 kvm_inject_page_fault(vcpu, &fault); 12320 return true; 12321 } else { 12322 /* 12323 * It is not possible to deliver a paravirtualized asynchronous 12324 * page fault, but putting the guest in an artificial halt state 12325 * can be beneficial nevertheless: if an interrupt arrives, we 12326 * can deliver it timely and perhaps the guest will schedule 12327 * another process. When the instruction that triggered a page 12328 * fault is retried, hopefully the page will be ready in the host. 12329 */ 12330 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12331 return false; 12332 } 12333 } 12334 12335 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12336 struct kvm_async_pf *work) 12337 { 12338 struct kvm_lapic_irq irq = { 12339 .delivery_mode = APIC_DM_FIXED, 12340 .vector = vcpu->arch.apf.vec 12341 }; 12342 12343 if (work->wakeup_all) 12344 work->arch.token = ~0; /* broadcast wakeup */ 12345 else 12346 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12347 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12348 12349 if ((work->wakeup_all || work->notpresent_injected) && 12350 kvm_pv_async_pf_enabled(vcpu) && 12351 !apf_put_user_ready(vcpu, work->arch.token)) { 12352 vcpu->arch.apf.pageready_pending = true; 12353 kvm_apic_set_irq(vcpu, &irq, NULL); 12354 } 12355 12356 vcpu->arch.apf.halted = false; 12357 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12358 } 12359 12360 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12361 { 12362 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12363 if (!vcpu->arch.apf.pageready_pending) 12364 kvm_vcpu_kick(vcpu); 12365 } 12366 12367 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 12368 { 12369 if (!kvm_pv_async_pf_enabled(vcpu)) 12370 return true; 12371 else 12372 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 12373 } 12374 12375 void kvm_arch_start_assignment(struct kvm *kvm) 12376 { 12377 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 12378 static_call_cond(kvm_x86_start_assignment)(kvm); 12379 } 12380 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 12381 12382 void kvm_arch_end_assignment(struct kvm *kvm) 12383 { 12384 atomic_dec(&kvm->arch.assigned_device_count); 12385 } 12386 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 12387 12388 bool kvm_arch_has_assigned_device(struct kvm *kvm) 12389 { 12390 return atomic_read(&kvm->arch.assigned_device_count); 12391 } 12392 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 12393 12394 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 12395 { 12396 atomic_inc(&kvm->arch.noncoherent_dma_count); 12397 } 12398 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 12399 12400 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 12401 { 12402 atomic_dec(&kvm->arch.noncoherent_dma_count); 12403 } 12404 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 12405 12406 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 12407 { 12408 return atomic_read(&kvm->arch.noncoherent_dma_count); 12409 } 12410 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 12411 12412 bool kvm_arch_has_irq_bypass(void) 12413 { 12414 return true; 12415 } 12416 12417 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 12418 struct irq_bypass_producer *prod) 12419 { 12420 struct kvm_kernel_irqfd *irqfd = 12421 container_of(cons, struct kvm_kernel_irqfd, consumer); 12422 int ret; 12423 12424 irqfd->producer = prod; 12425 kvm_arch_start_assignment(irqfd->kvm); 12426 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, 12427 prod->irq, irqfd->gsi, 1); 12428 12429 if (ret) 12430 kvm_arch_end_assignment(irqfd->kvm); 12431 12432 return ret; 12433 } 12434 12435 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 12436 struct irq_bypass_producer *prod) 12437 { 12438 int ret; 12439 struct kvm_kernel_irqfd *irqfd = 12440 container_of(cons, struct kvm_kernel_irqfd, consumer); 12441 12442 WARN_ON(irqfd->producer != prod); 12443 irqfd->producer = NULL; 12444 12445 /* 12446 * When producer of consumer is unregistered, we change back to 12447 * remapped mode, so we can re-use the current implementation 12448 * when the irq is masked/disabled or the consumer side (KVM 12449 * int this case doesn't want to receive the interrupts. 12450 */ 12451 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 12452 if (ret) 12453 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 12454 " fails: %d\n", irqfd->consumer.token, ret); 12455 12456 kvm_arch_end_assignment(irqfd->kvm); 12457 } 12458 12459 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 12460 uint32_t guest_irq, bool set) 12461 { 12462 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set); 12463 } 12464 12465 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 12466 struct kvm_kernel_irq_routing_entry *new) 12467 { 12468 if (new->type != KVM_IRQ_ROUTING_MSI) 12469 return true; 12470 12471 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 12472 } 12473 12474 bool kvm_vector_hashing_enabled(void) 12475 { 12476 return vector_hashing; 12477 } 12478 12479 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 12480 { 12481 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 12482 } 12483 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 12484 12485 12486 int kvm_spec_ctrl_test_value(u64 value) 12487 { 12488 /* 12489 * test that setting IA32_SPEC_CTRL to given value 12490 * is allowed by the host processor 12491 */ 12492 12493 u64 saved_value; 12494 unsigned long flags; 12495 int ret = 0; 12496 12497 local_irq_save(flags); 12498 12499 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 12500 ret = 1; 12501 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 12502 ret = 1; 12503 else 12504 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 12505 12506 local_irq_restore(flags); 12507 12508 return ret; 12509 } 12510 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 12511 12512 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 12513 { 12514 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 12515 struct x86_exception fault; 12516 u32 access = error_code & 12517 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 12518 12519 if (!(error_code & PFERR_PRESENT_MASK) || 12520 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) { 12521 /* 12522 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 12523 * tables probably do not match the TLB. Just proceed 12524 * with the error code that the processor gave. 12525 */ 12526 fault.vector = PF_VECTOR; 12527 fault.error_code_valid = true; 12528 fault.error_code = error_code; 12529 fault.nested_page_fault = false; 12530 fault.address = gva; 12531 } 12532 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 12533 } 12534 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 12535 12536 /* 12537 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 12538 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 12539 * indicates whether exit to userspace is needed. 12540 */ 12541 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 12542 struct x86_exception *e) 12543 { 12544 if (r == X86EMUL_PROPAGATE_FAULT) { 12545 kvm_inject_emulated_page_fault(vcpu, e); 12546 return 1; 12547 } 12548 12549 /* 12550 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 12551 * while handling a VMX instruction KVM could've handled the request 12552 * correctly by exiting to userspace and performing I/O but there 12553 * doesn't seem to be a real use-case behind such requests, just return 12554 * KVM_EXIT_INTERNAL_ERROR for now. 12555 */ 12556 kvm_prepare_emulation_failure_exit(vcpu); 12557 12558 return 0; 12559 } 12560 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 12561 12562 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 12563 { 12564 bool pcid_enabled; 12565 struct x86_exception e; 12566 struct { 12567 u64 pcid; 12568 u64 gla; 12569 } operand; 12570 int r; 12571 12572 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 12573 if (r != X86EMUL_CONTINUE) 12574 return kvm_handle_memory_failure(vcpu, r, &e); 12575 12576 if (operand.pcid >> 12 != 0) { 12577 kvm_inject_gp(vcpu, 0); 12578 return 1; 12579 } 12580 12581 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 12582 12583 switch (type) { 12584 case INVPCID_TYPE_INDIV_ADDR: 12585 if ((!pcid_enabled && (operand.pcid != 0)) || 12586 is_noncanonical_address(operand.gla, vcpu)) { 12587 kvm_inject_gp(vcpu, 0); 12588 return 1; 12589 } 12590 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 12591 return kvm_skip_emulated_instruction(vcpu); 12592 12593 case INVPCID_TYPE_SINGLE_CTXT: 12594 if (!pcid_enabled && (operand.pcid != 0)) { 12595 kvm_inject_gp(vcpu, 0); 12596 return 1; 12597 } 12598 12599 kvm_invalidate_pcid(vcpu, operand.pcid); 12600 return kvm_skip_emulated_instruction(vcpu); 12601 12602 case INVPCID_TYPE_ALL_NON_GLOBAL: 12603 /* 12604 * Currently, KVM doesn't mark global entries in the shadow 12605 * page tables, so a non-global flush just degenerates to a 12606 * global flush. If needed, we could optimize this later by 12607 * keeping track of global entries in shadow page tables. 12608 */ 12609 12610 fallthrough; 12611 case INVPCID_TYPE_ALL_INCL_GLOBAL: 12612 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12613 return kvm_skip_emulated_instruction(vcpu); 12614 12615 default: 12616 kvm_inject_gp(vcpu, 0); 12617 return 1; 12618 } 12619 } 12620 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 12621 12622 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 12623 { 12624 struct kvm_run *run = vcpu->run; 12625 struct kvm_mmio_fragment *frag; 12626 unsigned int len; 12627 12628 BUG_ON(!vcpu->mmio_needed); 12629 12630 /* Complete previous fragment */ 12631 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 12632 len = min(8u, frag->len); 12633 if (!vcpu->mmio_is_write) 12634 memcpy(frag->data, run->mmio.data, len); 12635 12636 if (frag->len <= 8) { 12637 /* Switch to the next fragment. */ 12638 frag++; 12639 vcpu->mmio_cur_fragment++; 12640 } else { 12641 /* Go forward to the next mmio piece. */ 12642 frag->data += len; 12643 frag->gpa += len; 12644 frag->len -= len; 12645 } 12646 12647 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 12648 vcpu->mmio_needed = 0; 12649 12650 // VMG change, at this point, we're always done 12651 // RIP has already been advanced 12652 return 1; 12653 } 12654 12655 // More MMIO is needed 12656 run->mmio.phys_addr = frag->gpa; 12657 run->mmio.len = min(8u, frag->len); 12658 run->mmio.is_write = vcpu->mmio_is_write; 12659 if (run->mmio.is_write) 12660 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 12661 run->exit_reason = KVM_EXIT_MMIO; 12662 12663 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12664 12665 return 0; 12666 } 12667 12668 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12669 void *data) 12670 { 12671 int handled; 12672 struct kvm_mmio_fragment *frag; 12673 12674 if (!data) 12675 return -EINVAL; 12676 12677 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12678 if (handled == bytes) 12679 return 1; 12680 12681 bytes -= handled; 12682 gpa += handled; 12683 data += handled; 12684 12685 /*TODO: Check if need to increment number of frags */ 12686 frag = vcpu->mmio_fragments; 12687 vcpu->mmio_nr_fragments = 1; 12688 frag->len = bytes; 12689 frag->gpa = gpa; 12690 frag->data = data; 12691 12692 vcpu->mmio_needed = 1; 12693 vcpu->mmio_cur_fragment = 0; 12694 12695 vcpu->run->mmio.phys_addr = gpa; 12696 vcpu->run->mmio.len = min(8u, frag->len); 12697 vcpu->run->mmio.is_write = 1; 12698 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 12699 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12700 12701 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12702 12703 return 0; 12704 } 12705 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 12706 12707 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12708 void *data) 12709 { 12710 int handled; 12711 struct kvm_mmio_fragment *frag; 12712 12713 if (!data) 12714 return -EINVAL; 12715 12716 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12717 if (handled == bytes) 12718 return 1; 12719 12720 bytes -= handled; 12721 gpa += handled; 12722 data += handled; 12723 12724 /*TODO: Check if need to increment number of frags */ 12725 frag = vcpu->mmio_fragments; 12726 vcpu->mmio_nr_fragments = 1; 12727 frag->len = bytes; 12728 frag->gpa = gpa; 12729 frag->data = data; 12730 12731 vcpu->mmio_needed = 1; 12732 vcpu->mmio_cur_fragment = 0; 12733 12734 vcpu->run->mmio.phys_addr = gpa; 12735 vcpu->run->mmio.len = min(8u, frag->len); 12736 vcpu->run->mmio.is_write = 0; 12737 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12738 12739 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12740 12741 return 0; 12742 } 12743 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 12744 12745 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 12746 unsigned int port); 12747 12748 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 12749 { 12750 int size = vcpu->arch.pio.size; 12751 int port = vcpu->arch.pio.port; 12752 12753 vcpu->arch.pio.count = 0; 12754 if (vcpu->arch.sev_pio_count) 12755 return kvm_sev_es_outs(vcpu, size, port); 12756 return 1; 12757 } 12758 12759 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 12760 unsigned int port) 12761 { 12762 for (;;) { 12763 unsigned int count = 12764 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 12765 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 12766 12767 /* memcpy done already by emulator_pio_out. */ 12768 vcpu->arch.sev_pio_count -= count; 12769 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size; 12770 if (!ret) 12771 break; 12772 12773 /* Emulation done by the kernel. */ 12774 if (!vcpu->arch.sev_pio_count) 12775 return 1; 12776 } 12777 12778 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 12779 return 0; 12780 } 12781 12782 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 12783 unsigned int port); 12784 12785 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 12786 { 12787 unsigned count = vcpu->arch.pio.count; 12788 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 12789 vcpu->arch.sev_pio_count -= count; 12790 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size; 12791 } 12792 12793 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 12794 { 12795 int size = vcpu->arch.pio.size; 12796 int port = vcpu->arch.pio.port; 12797 12798 advance_sev_es_emulated_ins(vcpu); 12799 if (vcpu->arch.sev_pio_count) 12800 return kvm_sev_es_ins(vcpu, size, port); 12801 return 1; 12802 } 12803 12804 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 12805 unsigned int port) 12806 { 12807 for (;;) { 12808 unsigned int count = 12809 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 12810 if (!__emulator_pio_in(vcpu, size, port, count)) 12811 break; 12812 12813 /* Emulation done by the kernel. */ 12814 advance_sev_es_emulated_ins(vcpu); 12815 if (!vcpu->arch.sev_pio_count) 12816 return 1; 12817 } 12818 12819 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 12820 return 0; 12821 } 12822 12823 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 12824 unsigned int port, void *data, unsigned int count, 12825 int in) 12826 { 12827 vcpu->arch.sev_pio_data = data; 12828 vcpu->arch.sev_pio_count = count; 12829 return in ? kvm_sev_es_ins(vcpu, size, port) 12830 : kvm_sev_es_outs(vcpu, size, port); 12831 } 12832 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 12833 12834 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 12835 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 12836 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 12837 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 12838 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 12839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 12840 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 12841 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 12842 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 12843 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 12844 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 12845 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 12846 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 12847 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 12848 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 12849 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 12850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 12851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 12852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 12853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 12854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 12855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 12856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 12857 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 12858 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 12859 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 12860 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 12861 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 12862