xref: /openbmc/linux/arch/x86/kvm/x86.c (revision d894fc60)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56 
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 
72 #define emul_to_vcpu(ctxt) \
73 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74 
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85 
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92 
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95 
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98 
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101 
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32  kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106 
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110 
111 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
112 unsigned int lapic_timer_advance_ns = 0;
113 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
114 
115 static bool backwards_tsc_observed = false;
116 
117 #define KVM_NR_SHARED_MSRS 16
118 
119 struct kvm_shared_msrs_global {
120 	int nr;
121 	u32 msrs[KVM_NR_SHARED_MSRS];
122 };
123 
124 struct kvm_shared_msrs {
125 	struct user_return_notifier urn;
126 	bool registered;
127 	struct kvm_shared_msr_values {
128 		u64 host;
129 		u64 curr;
130 	} values[KVM_NR_SHARED_MSRS];
131 };
132 
133 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
134 static struct kvm_shared_msrs __percpu *shared_msrs;
135 
136 struct kvm_stats_debugfs_item debugfs_entries[] = {
137 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
138 	{ "pf_guest", VCPU_STAT(pf_guest) },
139 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
140 	{ "invlpg", VCPU_STAT(invlpg) },
141 	{ "exits", VCPU_STAT(exits) },
142 	{ "io_exits", VCPU_STAT(io_exits) },
143 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
144 	{ "signal_exits", VCPU_STAT(signal_exits) },
145 	{ "irq_window", VCPU_STAT(irq_window_exits) },
146 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
147 	{ "halt_exits", VCPU_STAT(halt_exits) },
148 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
149 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
150 	{ "hypercalls", VCPU_STAT(hypercalls) },
151 	{ "request_irq", VCPU_STAT(request_irq_exits) },
152 	{ "irq_exits", VCPU_STAT(irq_exits) },
153 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
154 	{ "efer_reload", VCPU_STAT(efer_reload) },
155 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
156 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
157 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
158 	{ "irq_injections", VCPU_STAT(irq_injections) },
159 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
160 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
161 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
162 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
163 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
164 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
165 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
166 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
167 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
168 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
169 	{ "largepages", VM_STAT(lpages) },
170 	{ NULL }
171 };
172 
173 u64 __read_mostly host_xcr0;
174 
175 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
176 
177 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
178 {
179 	int i;
180 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
181 		vcpu->arch.apf.gfns[i] = ~0;
182 }
183 
184 static void kvm_on_user_return(struct user_return_notifier *urn)
185 {
186 	unsigned slot;
187 	struct kvm_shared_msrs *locals
188 		= container_of(urn, struct kvm_shared_msrs, urn);
189 	struct kvm_shared_msr_values *values;
190 
191 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
192 		values = &locals->values[slot];
193 		if (values->host != values->curr) {
194 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
195 			values->curr = values->host;
196 		}
197 	}
198 	locals->registered = false;
199 	user_return_notifier_unregister(urn);
200 }
201 
202 static void shared_msr_update(unsigned slot, u32 msr)
203 {
204 	u64 value;
205 	unsigned int cpu = smp_processor_id();
206 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
207 
208 	/* only read, and nobody should modify it at this time,
209 	 * so don't need lock */
210 	if (slot >= shared_msrs_global.nr) {
211 		printk(KERN_ERR "kvm: invalid MSR slot!");
212 		return;
213 	}
214 	rdmsrl_safe(msr, &value);
215 	smsr->values[slot].host = value;
216 	smsr->values[slot].curr = value;
217 }
218 
219 void kvm_define_shared_msr(unsigned slot, u32 msr)
220 {
221 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
222 	if (slot >= shared_msrs_global.nr)
223 		shared_msrs_global.nr = slot + 1;
224 	shared_msrs_global.msrs[slot] = msr;
225 	/* we need ensured the shared_msr_global have been updated */
226 	smp_wmb();
227 }
228 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
229 
230 static void kvm_shared_msr_cpu_online(void)
231 {
232 	unsigned i;
233 
234 	for (i = 0; i < shared_msrs_global.nr; ++i)
235 		shared_msr_update(i, shared_msrs_global.msrs[i]);
236 }
237 
238 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
239 {
240 	unsigned int cpu = smp_processor_id();
241 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242 	int err;
243 
244 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
245 		return 0;
246 	smsr->values[slot].curr = value;
247 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
248 	if (err)
249 		return 1;
250 
251 	if (!smsr->registered) {
252 		smsr->urn.on_user_return = kvm_on_user_return;
253 		user_return_notifier_register(&smsr->urn);
254 		smsr->registered = true;
255 	}
256 	return 0;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
259 
260 static void drop_user_return_notifiers(void)
261 {
262 	unsigned int cpu = smp_processor_id();
263 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
264 
265 	if (smsr->registered)
266 		kvm_on_user_return(&smsr->urn);
267 }
268 
269 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
270 {
271 	return vcpu->arch.apic_base;
272 }
273 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
274 
275 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
276 {
277 	u64 old_state = vcpu->arch.apic_base &
278 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
279 	u64 new_state = msr_info->data &
280 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
282 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
283 
284 	if (!msr_info->host_initiated &&
285 	    ((msr_info->data & reserved_bits) != 0 ||
286 	     new_state == X2APIC_ENABLE ||
287 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
288 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
289 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
290 	      old_state == 0)))
291 		return 1;
292 
293 	kvm_lapic_set_base(vcpu, msr_info->data);
294 	return 0;
295 }
296 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
297 
298 asmlinkage __visible void kvm_spurious_fault(void)
299 {
300 	/* Fault while not rebooting.  We want the trace. */
301 	BUG();
302 }
303 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
304 
305 #define EXCPT_BENIGN		0
306 #define EXCPT_CONTRIBUTORY	1
307 #define EXCPT_PF		2
308 
309 static int exception_class(int vector)
310 {
311 	switch (vector) {
312 	case PF_VECTOR:
313 		return EXCPT_PF;
314 	case DE_VECTOR:
315 	case TS_VECTOR:
316 	case NP_VECTOR:
317 	case SS_VECTOR:
318 	case GP_VECTOR:
319 		return EXCPT_CONTRIBUTORY;
320 	default:
321 		break;
322 	}
323 	return EXCPT_BENIGN;
324 }
325 
326 #define EXCPT_FAULT		0
327 #define EXCPT_TRAP		1
328 #define EXCPT_ABORT		2
329 #define EXCPT_INTERRUPT		3
330 
331 static int exception_type(int vector)
332 {
333 	unsigned int mask;
334 
335 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
336 		return EXCPT_INTERRUPT;
337 
338 	mask = 1 << vector;
339 
340 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
341 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
342 		return EXCPT_TRAP;
343 
344 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
345 		return EXCPT_ABORT;
346 
347 	/* Reserved exceptions will result in fault */
348 	return EXCPT_FAULT;
349 }
350 
351 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
352 		unsigned nr, bool has_error, u32 error_code,
353 		bool reinject)
354 {
355 	u32 prev_nr;
356 	int class1, class2;
357 
358 	kvm_make_request(KVM_REQ_EVENT, vcpu);
359 
360 	if (!vcpu->arch.exception.pending) {
361 	queue:
362 		if (has_error && !is_protmode(vcpu))
363 			has_error = false;
364 		vcpu->arch.exception.pending = true;
365 		vcpu->arch.exception.has_error_code = has_error;
366 		vcpu->arch.exception.nr = nr;
367 		vcpu->arch.exception.error_code = error_code;
368 		vcpu->arch.exception.reinject = reinject;
369 		return;
370 	}
371 
372 	/* to check exception */
373 	prev_nr = vcpu->arch.exception.nr;
374 	if (prev_nr == DF_VECTOR) {
375 		/* triple fault -> shutdown */
376 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
377 		return;
378 	}
379 	class1 = exception_class(prev_nr);
380 	class2 = exception_class(nr);
381 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
382 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
383 		/* generate double fault per SDM Table 5-5 */
384 		vcpu->arch.exception.pending = true;
385 		vcpu->arch.exception.has_error_code = true;
386 		vcpu->arch.exception.nr = DF_VECTOR;
387 		vcpu->arch.exception.error_code = 0;
388 	} else
389 		/* replace previous exception with a new one in a hope
390 		   that instruction re-execution will regenerate lost
391 		   exception */
392 		goto queue;
393 }
394 
395 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
396 {
397 	kvm_multiple_exception(vcpu, nr, false, 0, false);
398 }
399 EXPORT_SYMBOL_GPL(kvm_queue_exception);
400 
401 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
402 {
403 	kvm_multiple_exception(vcpu, nr, false, 0, true);
404 }
405 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
406 
407 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
408 {
409 	if (err)
410 		kvm_inject_gp(vcpu, 0);
411 	else
412 		kvm_x86_ops->skip_emulated_instruction(vcpu);
413 }
414 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
415 
416 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418 	++vcpu->stat.pf_guest;
419 	vcpu->arch.cr2 = fault->address;
420 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
421 }
422 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
423 
424 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
425 {
426 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
427 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
428 	else
429 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
430 
431 	return fault->nested_page_fault;
432 }
433 
434 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
435 {
436 	atomic_inc(&vcpu->arch.nmi_queued);
437 	kvm_make_request(KVM_REQ_NMI, vcpu);
438 }
439 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
440 
441 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
442 {
443 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
444 }
445 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
446 
447 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
448 {
449 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
450 }
451 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
452 
453 /*
454  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
455  * a #GP and return false.
456  */
457 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
458 {
459 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
460 		return true;
461 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
462 	return false;
463 }
464 EXPORT_SYMBOL_GPL(kvm_require_cpl);
465 
466 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
467 {
468 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
469 		return true;
470 
471 	kvm_queue_exception(vcpu, UD_VECTOR);
472 	return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_dr);
475 
476 /*
477  * This function will be used to read from the physical memory of the currently
478  * running guest. The difference to kvm_read_guest_page is that this function
479  * can read from guest physical or from the guest's guest physical memory.
480  */
481 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
482 			    gfn_t ngfn, void *data, int offset, int len,
483 			    u32 access)
484 {
485 	struct x86_exception exception;
486 	gfn_t real_gfn;
487 	gpa_t ngpa;
488 
489 	ngpa     = gfn_to_gpa(ngfn);
490 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
491 	if (real_gfn == UNMAPPED_GVA)
492 		return -EFAULT;
493 
494 	real_gfn = gpa_to_gfn(real_gfn);
495 
496 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
497 }
498 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
499 
500 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
501 			       void *data, int offset, int len, u32 access)
502 {
503 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
504 				       data, offset, len, access);
505 }
506 
507 /*
508  * Load the pae pdptrs.  Return true is they are all valid.
509  */
510 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
511 {
512 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
513 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
514 	int i;
515 	int ret;
516 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
517 
518 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
519 				      offset * sizeof(u64), sizeof(pdpte),
520 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
521 	if (ret < 0) {
522 		ret = 0;
523 		goto out;
524 	}
525 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
526 		if (is_present_gpte(pdpte[i]) &&
527 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
528 			ret = 0;
529 			goto out;
530 		}
531 	}
532 	ret = 1;
533 
534 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
535 	__set_bit(VCPU_EXREG_PDPTR,
536 		  (unsigned long *)&vcpu->arch.regs_avail);
537 	__set_bit(VCPU_EXREG_PDPTR,
538 		  (unsigned long *)&vcpu->arch.regs_dirty);
539 out:
540 
541 	return ret;
542 }
543 EXPORT_SYMBOL_GPL(load_pdptrs);
544 
545 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
546 {
547 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
548 	bool changed = true;
549 	int offset;
550 	gfn_t gfn;
551 	int r;
552 
553 	if (is_long_mode(vcpu) || !is_pae(vcpu))
554 		return false;
555 
556 	if (!test_bit(VCPU_EXREG_PDPTR,
557 		      (unsigned long *)&vcpu->arch.regs_avail))
558 		return true;
559 
560 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
561 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
562 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
563 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
564 	if (r < 0)
565 		goto out;
566 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
567 out:
568 
569 	return changed;
570 }
571 
572 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
573 {
574 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
575 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
576 				    X86_CR0_CD | X86_CR0_NW;
577 
578 	cr0 |= X86_CR0_ET;
579 
580 #ifdef CONFIG_X86_64
581 	if (cr0 & 0xffffffff00000000UL)
582 		return 1;
583 #endif
584 
585 	cr0 &= ~CR0_RESERVED_BITS;
586 
587 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
588 		return 1;
589 
590 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
591 		return 1;
592 
593 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
594 #ifdef CONFIG_X86_64
595 		if ((vcpu->arch.efer & EFER_LME)) {
596 			int cs_db, cs_l;
597 
598 			if (!is_pae(vcpu))
599 				return 1;
600 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
601 			if (cs_l)
602 				return 1;
603 		} else
604 #endif
605 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
606 						 kvm_read_cr3(vcpu)))
607 			return 1;
608 	}
609 
610 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
611 		return 1;
612 
613 	kvm_x86_ops->set_cr0(vcpu, cr0);
614 
615 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
616 		kvm_clear_async_pf_completion_queue(vcpu);
617 		kvm_async_pf_hash_reset(vcpu);
618 	}
619 
620 	if ((cr0 ^ old_cr0) & update_bits)
621 		kvm_mmu_reset_context(vcpu);
622 	return 0;
623 }
624 EXPORT_SYMBOL_GPL(kvm_set_cr0);
625 
626 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
627 {
628 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
629 }
630 EXPORT_SYMBOL_GPL(kvm_lmsw);
631 
632 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
633 {
634 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
635 			!vcpu->guest_xcr0_loaded) {
636 		/* kvm_set_xcr() also depends on this */
637 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
638 		vcpu->guest_xcr0_loaded = 1;
639 	}
640 }
641 
642 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
643 {
644 	if (vcpu->guest_xcr0_loaded) {
645 		if (vcpu->arch.xcr0 != host_xcr0)
646 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
647 		vcpu->guest_xcr0_loaded = 0;
648 	}
649 }
650 
651 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
652 {
653 	u64 xcr0 = xcr;
654 	u64 old_xcr0 = vcpu->arch.xcr0;
655 	u64 valid_bits;
656 
657 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
658 	if (index != XCR_XFEATURE_ENABLED_MASK)
659 		return 1;
660 	if (!(xcr0 & XSTATE_FP))
661 		return 1;
662 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
663 		return 1;
664 
665 	/*
666 	 * Do not allow the guest to set bits that we do not support
667 	 * saving.  However, xcr0 bit 0 is always set, even if the
668 	 * emulated CPU does not support XSAVE (see fx_init).
669 	 */
670 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
671 	if (xcr0 & ~valid_bits)
672 		return 1;
673 
674 	if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
675 		return 1;
676 
677 	if (xcr0 & XSTATE_AVX512) {
678 		if (!(xcr0 & XSTATE_YMM))
679 			return 1;
680 		if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
681 			return 1;
682 	}
683 	kvm_put_guest_xcr0(vcpu);
684 	vcpu->arch.xcr0 = xcr0;
685 
686 	if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
687 		kvm_update_cpuid(vcpu);
688 	return 0;
689 }
690 
691 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
692 {
693 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
694 	    __kvm_set_xcr(vcpu, index, xcr)) {
695 		kvm_inject_gp(vcpu, 0);
696 		return 1;
697 	}
698 	return 0;
699 }
700 EXPORT_SYMBOL_GPL(kvm_set_xcr);
701 
702 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
703 {
704 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
705 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
706 				   X86_CR4_PAE | X86_CR4_SMEP;
707 	if (cr4 & CR4_RESERVED_BITS)
708 		return 1;
709 
710 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
711 		return 1;
712 
713 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
714 		return 1;
715 
716 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
717 		return 1;
718 
719 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
720 		return 1;
721 
722 	if (is_long_mode(vcpu)) {
723 		if (!(cr4 & X86_CR4_PAE))
724 			return 1;
725 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
726 		   && ((cr4 ^ old_cr4) & pdptr_bits)
727 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
728 				   kvm_read_cr3(vcpu)))
729 		return 1;
730 
731 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
732 		if (!guest_cpuid_has_pcid(vcpu))
733 			return 1;
734 
735 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
736 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
737 			return 1;
738 	}
739 
740 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
741 		return 1;
742 
743 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
744 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
745 		kvm_mmu_reset_context(vcpu);
746 
747 	if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
748 		update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
749 
750 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
751 		kvm_update_cpuid(vcpu);
752 
753 	return 0;
754 }
755 EXPORT_SYMBOL_GPL(kvm_set_cr4);
756 
757 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
758 {
759 #ifdef CONFIG_X86_64
760 	cr3 &= ~CR3_PCID_INVD;
761 #endif
762 
763 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
764 		kvm_mmu_sync_roots(vcpu);
765 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
766 		return 0;
767 	}
768 
769 	if (is_long_mode(vcpu)) {
770 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
771 			return 1;
772 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
773 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
774 		return 1;
775 
776 	vcpu->arch.cr3 = cr3;
777 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
778 	kvm_mmu_new_cr3(vcpu);
779 	return 0;
780 }
781 EXPORT_SYMBOL_GPL(kvm_set_cr3);
782 
783 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
784 {
785 	if (cr8 & CR8_RESERVED_BITS)
786 		return 1;
787 	if (irqchip_in_kernel(vcpu->kvm))
788 		kvm_lapic_set_tpr(vcpu, cr8);
789 	else
790 		vcpu->arch.cr8 = cr8;
791 	return 0;
792 }
793 EXPORT_SYMBOL_GPL(kvm_set_cr8);
794 
795 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
796 {
797 	if (irqchip_in_kernel(vcpu->kvm))
798 		return kvm_lapic_get_cr8(vcpu);
799 	else
800 		return vcpu->arch.cr8;
801 }
802 EXPORT_SYMBOL_GPL(kvm_get_cr8);
803 
804 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
805 {
806 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
807 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
808 }
809 
810 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
811 {
812 	unsigned long dr7;
813 
814 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
815 		dr7 = vcpu->arch.guest_debug_dr7;
816 	else
817 		dr7 = vcpu->arch.dr7;
818 	kvm_x86_ops->set_dr7(vcpu, dr7);
819 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
820 	if (dr7 & DR7_BP_EN_MASK)
821 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
822 }
823 
824 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
825 {
826 	u64 fixed = DR6_FIXED_1;
827 
828 	if (!guest_cpuid_has_rtm(vcpu))
829 		fixed |= DR6_RTM;
830 	return fixed;
831 }
832 
833 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
834 {
835 	switch (dr) {
836 	case 0 ... 3:
837 		vcpu->arch.db[dr] = val;
838 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
839 			vcpu->arch.eff_db[dr] = val;
840 		break;
841 	case 4:
842 		/* fall through */
843 	case 6:
844 		if (val & 0xffffffff00000000ULL)
845 			return -1; /* #GP */
846 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
847 		kvm_update_dr6(vcpu);
848 		break;
849 	case 5:
850 		/* fall through */
851 	default: /* 7 */
852 		if (val & 0xffffffff00000000ULL)
853 			return -1; /* #GP */
854 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
855 		kvm_update_dr7(vcpu);
856 		break;
857 	}
858 
859 	return 0;
860 }
861 
862 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
863 {
864 	if (__kvm_set_dr(vcpu, dr, val)) {
865 		kvm_inject_gp(vcpu, 0);
866 		return 1;
867 	}
868 	return 0;
869 }
870 EXPORT_SYMBOL_GPL(kvm_set_dr);
871 
872 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
873 {
874 	switch (dr) {
875 	case 0 ... 3:
876 		*val = vcpu->arch.db[dr];
877 		break;
878 	case 4:
879 		/* fall through */
880 	case 6:
881 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
882 			*val = vcpu->arch.dr6;
883 		else
884 			*val = kvm_x86_ops->get_dr6(vcpu);
885 		break;
886 	case 5:
887 		/* fall through */
888 	default: /* 7 */
889 		*val = vcpu->arch.dr7;
890 		break;
891 	}
892 	return 0;
893 }
894 EXPORT_SYMBOL_GPL(kvm_get_dr);
895 
896 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
897 {
898 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
899 	u64 data;
900 	int err;
901 
902 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
903 	if (err)
904 		return err;
905 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
906 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
907 	return err;
908 }
909 EXPORT_SYMBOL_GPL(kvm_rdpmc);
910 
911 /*
912  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
913  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
914  *
915  * This list is modified at module load time to reflect the
916  * capabilities of the host cpu. This capabilities test skips MSRs that are
917  * kvm-specific. Those are put in the beginning of the list.
918  */
919 
920 #define KVM_SAVE_MSRS_BEGIN	12
921 static u32 msrs_to_save[] = {
922 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
923 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
924 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
925 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
926 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
927 	MSR_KVM_PV_EOI_EN,
928 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
929 	MSR_STAR,
930 #ifdef CONFIG_X86_64
931 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
932 #endif
933 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
934 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
935 };
936 
937 static unsigned num_msrs_to_save;
938 
939 static const u32 emulated_msrs[] = {
940 	MSR_IA32_TSC_ADJUST,
941 	MSR_IA32_TSCDEADLINE,
942 	MSR_IA32_MISC_ENABLE,
943 	MSR_IA32_MCG_STATUS,
944 	MSR_IA32_MCG_CTL,
945 };
946 
947 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
948 {
949 	if (efer & efer_reserved_bits)
950 		return false;
951 
952 	if (efer & EFER_FFXSR) {
953 		struct kvm_cpuid_entry2 *feat;
954 
955 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
956 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
957 			return false;
958 	}
959 
960 	if (efer & EFER_SVME) {
961 		struct kvm_cpuid_entry2 *feat;
962 
963 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
964 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
965 			return false;
966 	}
967 
968 	return true;
969 }
970 EXPORT_SYMBOL_GPL(kvm_valid_efer);
971 
972 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
973 {
974 	u64 old_efer = vcpu->arch.efer;
975 
976 	if (!kvm_valid_efer(vcpu, efer))
977 		return 1;
978 
979 	if (is_paging(vcpu)
980 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
981 		return 1;
982 
983 	efer &= ~EFER_LMA;
984 	efer |= vcpu->arch.efer & EFER_LMA;
985 
986 	kvm_x86_ops->set_efer(vcpu, efer);
987 
988 	/* Update reserved bits */
989 	if ((efer ^ old_efer) & EFER_NX)
990 		kvm_mmu_reset_context(vcpu);
991 
992 	return 0;
993 }
994 
995 void kvm_enable_efer_bits(u64 mask)
996 {
997        efer_reserved_bits &= ~mask;
998 }
999 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1000 
1001 /*
1002  * Writes msr value into into the appropriate "register".
1003  * Returns 0 on success, non-0 otherwise.
1004  * Assumes vcpu_load() was already called.
1005  */
1006 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1007 {
1008 	switch (msr->index) {
1009 	case MSR_FS_BASE:
1010 	case MSR_GS_BASE:
1011 	case MSR_KERNEL_GS_BASE:
1012 	case MSR_CSTAR:
1013 	case MSR_LSTAR:
1014 		if (is_noncanonical_address(msr->data))
1015 			return 1;
1016 		break;
1017 	case MSR_IA32_SYSENTER_EIP:
1018 	case MSR_IA32_SYSENTER_ESP:
1019 		/*
1020 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1021 		 * non-canonical address is written on Intel but not on
1022 		 * AMD (which ignores the top 32-bits, because it does
1023 		 * not implement 64-bit SYSENTER).
1024 		 *
1025 		 * 64-bit code should hence be able to write a non-canonical
1026 		 * value on AMD.  Making the address canonical ensures that
1027 		 * vmentry does not fail on Intel after writing a non-canonical
1028 		 * value, and that something deterministic happens if the guest
1029 		 * invokes 64-bit SYSENTER.
1030 		 */
1031 		msr->data = get_canonical(msr->data);
1032 	}
1033 	return kvm_x86_ops->set_msr(vcpu, msr);
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_set_msr);
1036 
1037 /*
1038  * Adapt set_msr() to msr_io()'s calling convention
1039  */
1040 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1041 {
1042 	struct msr_data msr;
1043 
1044 	msr.data = *data;
1045 	msr.index = index;
1046 	msr.host_initiated = true;
1047 	return kvm_set_msr(vcpu, &msr);
1048 }
1049 
1050 #ifdef CONFIG_X86_64
1051 struct pvclock_gtod_data {
1052 	seqcount_t	seq;
1053 
1054 	struct { /* extract of a clocksource struct */
1055 		int vclock_mode;
1056 		cycle_t	cycle_last;
1057 		cycle_t	mask;
1058 		u32	mult;
1059 		u32	shift;
1060 	} clock;
1061 
1062 	u64		boot_ns;
1063 	u64		nsec_base;
1064 };
1065 
1066 static struct pvclock_gtod_data pvclock_gtod_data;
1067 
1068 static void update_pvclock_gtod(struct timekeeper *tk)
1069 {
1070 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1071 	u64 boot_ns;
1072 
1073 	boot_ns = ktime_to_ns(ktime_add(tk->tkr.base_mono, tk->offs_boot));
1074 
1075 	write_seqcount_begin(&vdata->seq);
1076 
1077 	/* copy pvclock gtod data */
1078 	vdata->clock.vclock_mode	= tk->tkr.clock->archdata.vclock_mode;
1079 	vdata->clock.cycle_last		= tk->tkr.cycle_last;
1080 	vdata->clock.mask		= tk->tkr.mask;
1081 	vdata->clock.mult		= tk->tkr.mult;
1082 	vdata->clock.shift		= tk->tkr.shift;
1083 
1084 	vdata->boot_ns			= boot_ns;
1085 	vdata->nsec_base		= tk->tkr.xtime_nsec;
1086 
1087 	write_seqcount_end(&vdata->seq);
1088 }
1089 #endif
1090 
1091 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1092 {
1093 	/*
1094 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1095 	 * vcpu_enter_guest.  This function is only called from
1096 	 * the physical CPU that is running vcpu.
1097 	 */
1098 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1099 }
1100 
1101 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1102 {
1103 	int version;
1104 	int r;
1105 	struct pvclock_wall_clock wc;
1106 	struct timespec boot;
1107 
1108 	if (!wall_clock)
1109 		return;
1110 
1111 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1112 	if (r)
1113 		return;
1114 
1115 	if (version & 1)
1116 		++version;  /* first time write, random junk */
1117 
1118 	++version;
1119 
1120 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1121 
1122 	/*
1123 	 * The guest calculates current wall clock time by adding
1124 	 * system time (updated by kvm_guest_time_update below) to the
1125 	 * wall clock specified here.  guest system time equals host
1126 	 * system time for us, thus we must fill in host boot time here.
1127 	 */
1128 	getboottime(&boot);
1129 
1130 	if (kvm->arch.kvmclock_offset) {
1131 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1132 		boot = timespec_sub(boot, ts);
1133 	}
1134 	wc.sec = boot.tv_sec;
1135 	wc.nsec = boot.tv_nsec;
1136 	wc.version = version;
1137 
1138 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1139 
1140 	version++;
1141 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1142 }
1143 
1144 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1145 {
1146 	uint32_t quotient, remainder;
1147 
1148 	/* Don't try to replace with do_div(), this one calculates
1149 	 * "(dividend << 32) / divisor" */
1150 	__asm__ ( "divl %4"
1151 		  : "=a" (quotient), "=d" (remainder)
1152 		  : "0" (0), "1" (dividend), "r" (divisor) );
1153 	return quotient;
1154 }
1155 
1156 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1157 			       s8 *pshift, u32 *pmultiplier)
1158 {
1159 	uint64_t scaled64;
1160 	int32_t  shift = 0;
1161 	uint64_t tps64;
1162 	uint32_t tps32;
1163 
1164 	tps64 = base_khz * 1000LL;
1165 	scaled64 = scaled_khz * 1000LL;
1166 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1167 		tps64 >>= 1;
1168 		shift--;
1169 	}
1170 
1171 	tps32 = (uint32_t)tps64;
1172 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1173 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1174 			scaled64 >>= 1;
1175 		else
1176 			tps32 <<= 1;
1177 		shift++;
1178 	}
1179 
1180 	*pshift = shift;
1181 	*pmultiplier = div_frac(scaled64, tps32);
1182 
1183 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1184 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1185 }
1186 
1187 static inline u64 get_kernel_ns(void)
1188 {
1189 	return ktime_get_boot_ns();
1190 }
1191 
1192 #ifdef CONFIG_X86_64
1193 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1194 #endif
1195 
1196 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1197 static unsigned long max_tsc_khz;
1198 
1199 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1200 {
1201 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1202 				   vcpu->arch.virtual_tsc_shift);
1203 }
1204 
1205 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1206 {
1207 	u64 v = (u64)khz * (1000000 + ppm);
1208 	do_div(v, 1000000);
1209 	return v;
1210 }
1211 
1212 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1213 {
1214 	u32 thresh_lo, thresh_hi;
1215 	int use_scaling = 0;
1216 
1217 	/* tsc_khz can be zero if TSC calibration fails */
1218 	if (this_tsc_khz == 0)
1219 		return;
1220 
1221 	/* Compute a scale to convert nanoseconds in TSC cycles */
1222 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1223 			   &vcpu->arch.virtual_tsc_shift,
1224 			   &vcpu->arch.virtual_tsc_mult);
1225 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1226 
1227 	/*
1228 	 * Compute the variation in TSC rate which is acceptable
1229 	 * within the range of tolerance and decide if the
1230 	 * rate being applied is within that bounds of the hardware
1231 	 * rate.  If so, no scaling or compensation need be done.
1232 	 */
1233 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1234 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1235 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1236 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1237 		use_scaling = 1;
1238 	}
1239 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1240 }
1241 
1242 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1243 {
1244 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1245 				      vcpu->arch.virtual_tsc_mult,
1246 				      vcpu->arch.virtual_tsc_shift);
1247 	tsc += vcpu->arch.this_tsc_write;
1248 	return tsc;
1249 }
1250 
1251 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1252 {
1253 #ifdef CONFIG_X86_64
1254 	bool vcpus_matched;
1255 	struct kvm_arch *ka = &vcpu->kvm->arch;
1256 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1257 
1258 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1259 			 atomic_read(&vcpu->kvm->online_vcpus));
1260 
1261 	/*
1262 	 * Once the masterclock is enabled, always perform request in
1263 	 * order to update it.
1264 	 *
1265 	 * In order to enable masterclock, the host clocksource must be TSC
1266 	 * and the vcpus need to have matched TSCs.  When that happens,
1267 	 * perform request to enable masterclock.
1268 	 */
1269 	if (ka->use_master_clock ||
1270 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1271 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1272 
1273 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1274 			    atomic_read(&vcpu->kvm->online_vcpus),
1275 		            ka->use_master_clock, gtod->clock.vclock_mode);
1276 #endif
1277 }
1278 
1279 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1280 {
1281 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1282 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1283 }
1284 
1285 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1286 {
1287 	struct kvm *kvm = vcpu->kvm;
1288 	u64 offset, ns, elapsed;
1289 	unsigned long flags;
1290 	s64 usdiff;
1291 	bool matched;
1292 	bool already_matched;
1293 	u64 data = msr->data;
1294 
1295 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1296 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1297 	ns = get_kernel_ns();
1298 	elapsed = ns - kvm->arch.last_tsc_nsec;
1299 
1300 	if (vcpu->arch.virtual_tsc_khz) {
1301 		int faulted = 0;
1302 
1303 		/* n.b - signed multiplication and division required */
1304 		usdiff = data - kvm->arch.last_tsc_write;
1305 #ifdef CONFIG_X86_64
1306 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1307 #else
1308 		/* do_div() only does unsigned */
1309 		asm("1: idivl %[divisor]\n"
1310 		    "2: xor %%edx, %%edx\n"
1311 		    "   movl $0, %[faulted]\n"
1312 		    "3:\n"
1313 		    ".section .fixup,\"ax\"\n"
1314 		    "4: movl $1, %[faulted]\n"
1315 		    "   jmp  3b\n"
1316 		    ".previous\n"
1317 
1318 		_ASM_EXTABLE(1b, 4b)
1319 
1320 		: "=A"(usdiff), [faulted] "=r" (faulted)
1321 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1322 
1323 #endif
1324 		do_div(elapsed, 1000);
1325 		usdiff -= elapsed;
1326 		if (usdiff < 0)
1327 			usdiff = -usdiff;
1328 
1329 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1330 		if (faulted)
1331 			usdiff = USEC_PER_SEC;
1332 	} else
1333 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1334 
1335 	/*
1336 	 * Special case: TSC write with a small delta (1 second) of virtual
1337 	 * cycle time against real time is interpreted as an attempt to
1338 	 * synchronize the CPU.
1339          *
1340 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1341 	 * TSC, we add elapsed time in this computation.  We could let the
1342 	 * compensation code attempt to catch up if we fall behind, but
1343 	 * it's better to try to match offsets from the beginning.
1344          */
1345 	if (usdiff < USEC_PER_SEC &&
1346 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1347 		if (!check_tsc_unstable()) {
1348 			offset = kvm->arch.cur_tsc_offset;
1349 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1350 		} else {
1351 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1352 			data += delta;
1353 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1354 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1355 		}
1356 		matched = true;
1357 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1358 	} else {
1359 		/*
1360 		 * We split periods of matched TSC writes into generations.
1361 		 * For each generation, we track the original measured
1362 		 * nanosecond time, offset, and write, so if TSCs are in
1363 		 * sync, we can match exact offset, and if not, we can match
1364 		 * exact software computation in compute_guest_tsc()
1365 		 *
1366 		 * These values are tracked in kvm->arch.cur_xxx variables.
1367 		 */
1368 		kvm->arch.cur_tsc_generation++;
1369 		kvm->arch.cur_tsc_nsec = ns;
1370 		kvm->arch.cur_tsc_write = data;
1371 		kvm->arch.cur_tsc_offset = offset;
1372 		matched = false;
1373 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1374 			 kvm->arch.cur_tsc_generation, data);
1375 	}
1376 
1377 	/*
1378 	 * We also track th most recent recorded KHZ, write and time to
1379 	 * allow the matching interval to be extended at each write.
1380 	 */
1381 	kvm->arch.last_tsc_nsec = ns;
1382 	kvm->arch.last_tsc_write = data;
1383 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1384 
1385 	vcpu->arch.last_guest_tsc = data;
1386 
1387 	/* Keep track of which generation this VCPU has synchronized to */
1388 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1389 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1390 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1391 
1392 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1393 		update_ia32_tsc_adjust_msr(vcpu, offset);
1394 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1395 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1396 
1397 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1398 	if (!matched) {
1399 		kvm->arch.nr_vcpus_matched_tsc = 0;
1400 	} else if (!already_matched) {
1401 		kvm->arch.nr_vcpus_matched_tsc++;
1402 	}
1403 
1404 	kvm_track_tsc_matching(vcpu);
1405 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1406 }
1407 
1408 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1409 
1410 #ifdef CONFIG_X86_64
1411 
1412 static cycle_t read_tsc(void)
1413 {
1414 	cycle_t ret;
1415 	u64 last;
1416 
1417 	/*
1418 	 * Empirically, a fence (of type that depends on the CPU)
1419 	 * before rdtsc is enough to ensure that rdtsc is ordered
1420 	 * with respect to loads.  The various CPU manuals are unclear
1421 	 * as to whether rdtsc can be reordered with later loads,
1422 	 * but no one has ever seen it happen.
1423 	 */
1424 	rdtsc_barrier();
1425 	ret = (cycle_t)vget_cycles();
1426 
1427 	last = pvclock_gtod_data.clock.cycle_last;
1428 
1429 	if (likely(ret >= last))
1430 		return ret;
1431 
1432 	/*
1433 	 * GCC likes to generate cmov here, but this branch is extremely
1434 	 * predictable (it's just a funciton of time and the likely is
1435 	 * very likely) and there's a data dependence, so force GCC
1436 	 * to generate a branch instead.  I don't barrier() because
1437 	 * we don't actually need a barrier, and if this function
1438 	 * ever gets inlined it will generate worse code.
1439 	 */
1440 	asm volatile ("");
1441 	return last;
1442 }
1443 
1444 static inline u64 vgettsc(cycle_t *cycle_now)
1445 {
1446 	long v;
1447 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1448 
1449 	*cycle_now = read_tsc();
1450 
1451 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1452 	return v * gtod->clock.mult;
1453 }
1454 
1455 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1456 {
1457 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1458 	unsigned long seq;
1459 	int mode;
1460 	u64 ns;
1461 
1462 	do {
1463 		seq = read_seqcount_begin(&gtod->seq);
1464 		mode = gtod->clock.vclock_mode;
1465 		ns = gtod->nsec_base;
1466 		ns += vgettsc(cycle_now);
1467 		ns >>= gtod->clock.shift;
1468 		ns += gtod->boot_ns;
1469 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1470 	*t = ns;
1471 
1472 	return mode;
1473 }
1474 
1475 /* returns true if host is using tsc clocksource */
1476 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1477 {
1478 	/* checked again under seqlock below */
1479 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1480 		return false;
1481 
1482 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1483 }
1484 #endif
1485 
1486 /*
1487  *
1488  * Assuming a stable TSC across physical CPUS, and a stable TSC
1489  * across virtual CPUs, the following condition is possible.
1490  * Each numbered line represents an event visible to both
1491  * CPUs at the next numbered event.
1492  *
1493  * "timespecX" represents host monotonic time. "tscX" represents
1494  * RDTSC value.
1495  *
1496  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1497  *
1498  * 1.  read timespec0,tsc0
1499  * 2.					| timespec1 = timespec0 + N
1500  * 					| tsc1 = tsc0 + M
1501  * 3. transition to guest		| transition to guest
1502  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1503  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1504  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1505  *
1506  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1507  *
1508  * 	- ret0 < ret1
1509  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1510  *		...
1511  *	- 0 < N - M => M < N
1512  *
1513  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1514  * always the case (the difference between two distinct xtime instances
1515  * might be smaller then the difference between corresponding TSC reads,
1516  * when updating guest vcpus pvclock areas).
1517  *
1518  * To avoid that problem, do not allow visibility of distinct
1519  * system_timestamp/tsc_timestamp values simultaneously: use a master
1520  * copy of host monotonic time values. Update that master copy
1521  * in lockstep.
1522  *
1523  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1524  *
1525  */
1526 
1527 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1528 {
1529 #ifdef CONFIG_X86_64
1530 	struct kvm_arch *ka = &kvm->arch;
1531 	int vclock_mode;
1532 	bool host_tsc_clocksource, vcpus_matched;
1533 
1534 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1535 			atomic_read(&kvm->online_vcpus));
1536 
1537 	/*
1538 	 * If the host uses TSC clock, then passthrough TSC as stable
1539 	 * to the guest.
1540 	 */
1541 	host_tsc_clocksource = kvm_get_time_and_clockread(
1542 					&ka->master_kernel_ns,
1543 					&ka->master_cycle_now);
1544 
1545 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1546 				&& !backwards_tsc_observed
1547 				&& !ka->boot_vcpu_runs_old_kvmclock;
1548 
1549 	if (ka->use_master_clock)
1550 		atomic_set(&kvm_guest_has_master_clock, 1);
1551 
1552 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1553 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1554 					vcpus_matched);
1555 #endif
1556 }
1557 
1558 static void kvm_gen_update_masterclock(struct kvm *kvm)
1559 {
1560 #ifdef CONFIG_X86_64
1561 	int i;
1562 	struct kvm_vcpu *vcpu;
1563 	struct kvm_arch *ka = &kvm->arch;
1564 
1565 	spin_lock(&ka->pvclock_gtod_sync_lock);
1566 	kvm_make_mclock_inprogress_request(kvm);
1567 	/* no guest entries from this point */
1568 	pvclock_update_vm_gtod_copy(kvm);
1569 
1570 	kvm_for_each_vcpu(i, vcpu, kvm)
1571 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1572 
1573 	/* guest entries allowed */
1574 	kvm_for_each_vcpu(i, vcpu, kvm)
1575 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1576 
1577 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1578 #endif
1579 }
1580 
1581 static int kvm_guest_time_update(struct kvm_vcpu *v)
1582 {
1583 	unsigned long flags, this_tsc_khz;
1584 	struct kvm_vcpu_arch *vcpu = &v->arch;
1585 	struct kvm_arch *ka = &v->kvm->arch;
1586 	s64 kernel_ns;
1587 	u64 tsc_timestamp, host_tsc;
1588 	struct pvclock_vcpu_time_info guest_hv_clock;
1589 	u8 pvclock_flags;
1590 	bool use_master_clock;
1591 
1592 	kernel_ns = 0;
1593 	host_tsc = 0;
1594 
1595 	/*
1596 	 * If the host uses TSC clock, then passthrough TSC as stable
1597 	 * to the guest.
1598 	 */
1599 	spin_lock(&ka->pvclock_gtod_sync_lock);
1600 	use_master_clock = ka->use_master_clock;
1601 	if (use_master_clock) {
1602 		host_tsc = ka->master_cycle_now;
1603 		kernel_ns = ka->master_kernel_ns;
1604 	}
1605 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1606 
1607 	/* Keep irq disabled to prevent changes to the clock */
1608 	local_irq_save(flags);
1609 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1610 	if (unlikely(this_tsc_khz == 0)) {
1611 		local_irq_restore(flags);
1612 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1613 		return 1;
1614 	}
1615 	if (!use_master_clock) {
1616 		host_tsc = native_read_tsc();
1617 		kernel_ns = get_kernel_ns();
1618 	}
1619 
1620 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1621 
1622 	/*
1623 	 * We may have to catch up the TSC to match elapsed wall clock
1624 	 * time for two reasons, even if kvmclock is used.
1625 	 *   1) CPU could have been running below the maximum TSC rate
1626 	 *   2) Broken TSC compensation resets the base at each VCPU
1627 	 *      entry to avoid unknown leaps of TSC even when running
1628 	 *      again on the same CPU.  This may cause apparent elapsed
1629 	 *      time to disappear, and the guest to stand still or run
1630 	 *	very slowly.
1631 	 */
1632 	if (vcpu->tsc_catchup) {
1633 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1634 		if (tsc > tsc_timestamp) {
1635 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1636 			tsc_timestamp = tsc;
1637 		}
1638 	}
1639 
1640 	local_irq_restore(flags);
1641 
1642 	if (!vcpu->pv_time_enabled)
1643 		return 0;
1644 
1645 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1646 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1647 				   &vcpu->hv_clock.tsc_shift,
1648 				   &vcpu->hv_clock.tsc_to_system_mul);
1649 		vcpu->hw_tsc_khz = this_tsc_khz;
1650 	}
1651 
1652 	/* With all the info we got, fill in the values */
1653 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1654 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1655 	vcpu->last_guest_tsc = tsc_timestamp;
1656 
1657 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1658 		&guest_hv_clock, sizeof(guest_hv_clock))))
1659 		return 0;
1660 
1661 	/*
1662 	 * The interface expects us to write an even number signaling that the
1663 	 * update is finished. Since the guest won't see the intermediate
1664 	 * state, we just increase by 2 at the end.
1665 	 */
1666 	vcpu->hv_clock.version = guest_hv_clock.version + 2;
1667 
1668 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1669 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1670 
1671 	if (vcpu->pvclock_set_guest_stopped_request) {
1672 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1673 		vcpu->pvclock_set_guest_stopped_request = false;
1674 	}
1675 
1676 	/* If the host uses TSC clocksource, then it is stable */
1677 	if (use_master_clock)
1678 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1679 
1680 	vcpu->hv_clock.flags = pvclock_flags;
1681 
1682 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1683 
1684 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1685 				&vcpu->hv_clock,
1686 				sizeof(vcpu->hv_clock));
1687 	return 0;
1688 }
1689 
1690 /*
1691  * kvmclock updates which are isolated to a given vcpu, such as
1692  * vcpu->cpu migration, should not allow system_timestamp from
1693  * the rest of the vcpus to remain static. Otherwise ntp frequency
1694  * correction applies to one vcpu's system_timestamp but not
1695  * the others.
1696  *
1697  * So in those cases, request a kvmclock update for all vcpus.
1698  * We need to rate-limit these requests though, as they can
1699  * considerably slow guests that have a large number of vcpus.
1700  * The time for a remote vcpu to update its kvmclock is bound
1701  * by the delay we use to rate-limit the updates.
1702  */
1703 
1704 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1705 
1706 static void kvmclock_update_fn(struct work_struct *work)
1707 {
1708 	int i;
1709 	struct delayed_work *dwork = to_delayed_work(work);
1710 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1711 					   kvmclock_update_work);
1712 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1713 	struct kvm_vcpu *vcpu;
1714 
1715 	kvm_for_each_vcpu(i, vcpu, kvm) {
1716 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1717 		kvm_vcpu_kick(vcpu);
1718 	}
1719 }
1720 
1721 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1722 {
1723 	struct kvm *kvm = v->kvm;
1724 
1725 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1726 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1727 					KVMCLOCK_UPDATE_DELAY);
1728 }
1729 
1730 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1731 
1732 static void kvmclock_sync_fn(struct work_struct *work)
1733 {
1734 	struct delayed_work *dwork = to_delayed_work(work);
1735 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1736 					   kvmclock_sync_work);
1737 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1738 
1739 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1740 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1741 					KVMCLOCK_SYNC_PERIOD);
1742 }
1743 
1744 static bool msr_mtrr_valid(unsigned msr)
1745 {
1746 	switch (msr) {
1747 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1748 	case MSR_MTRRfix64K_00000:
1749 	case MSR_MTRRfix16K_80000:
1750 	case MSR_MTRRfix16K_A0000:
1751 	case MSR_MTRRfix4K_C0000:
1752 	case MSR_MTRRfix4K_C8000:
1753 	case MSR_MTRRfix4K_D0000:
1754 	case MSR_MTRRfix4K_D8000:
1755 	case MSR_MTRRfix4K_E0000:
1756 	case MSR_MTRRfix4K_E8000:
1757 	case MSR_MTRRfix4K_F0000:
1758 	case MSR_MTRRfix4K_F8000:
1759 	case MSR_MTRRdefType:
1760 	case MSR_IA32_CR_PAT:
1761 		return true;
1762 	case 0x2f8:
1763 		return true;
1764 	}
1765 	return false;
1766 }
1767 
1768 static bool valid_pat_type(unsigned t)
1769 {
1770 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1771 }
1772 
1773 static bool valid_mtrr_type(unsigned t)
1774 {
1775 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1776 }
1777 
1778 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1779 {
1780 	int i;
1781 	u64 mask;
1782 
1783 	if (!msr_mtrr_valid(msr))
1784 		return false;
1785 
1786 	if (msr == MSR_IA32_CR_PAT) {
1787 		for (i = 0; i < 8; i++)
1788 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1789 				return false;
1790 		return true;
1791 	} else if (msr == MSR_MTRRdefType) {
1792 		if (data & ~0xcff)
1793 			return false;
1794 		return valid_mtrr_type(data & 0xff);
1795 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1796 		for (i = 0; i < 8 ; i++)
1797 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1798 				return false;
1799 		return true;
1800 	}
1801 
1802 	/* variable MTRRs */
1803 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1804 
1805 	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1806 	if ((msr & 1) == 0) {
1807 		/* MTRR base */
1808 		if (!valid_mtrr_type(data & 0xff))
1809 			return false;
1810 		mask |= 0xf00;
1811 	} else
1812 		/* MTRR mask */
1813 		mask |= 0x7ff;
1814 	if (data & mask) {
1815 		kvm_inject_gp(vcpu, 0);
1816 		return false;
1817 	}
1818 
1819 	return true;
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1822 
1823 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1824 {
1825 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1826 
1827 	if (!kvm_mtrr_valid(vcpu, msr, data))
1828 		return 1;
1829 
1830 	if (msr == MSR_MTRRdefType) {
1831 		vcpu->arch.mtrr_state.def_type = data;
1832 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1833 	} else if (msr == MSR_MTRRfix64K_00000)
1834 		p[0] = data;
1835 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1836 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1837 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1838 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1839 	else if (msr == MSR_IA32_CR_PAT)
1840 		vcpu->arch.pat = data;
1841 	else {	/* Variable MTRRs */
1842 		int idx, is_mtrr_mask;
1843 		u64 *pt;
1844 
1845 		idx = (msr - 0x200) / 2;
1846 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1847 		if (!is_mtrr_mask)
1848 			pt =
1849 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1850 		else
1851 			pt =
1852 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1853 		*pt = data;
1854 	}
1855 
1856 	kvm_mmu_reset_context(vcpu);
1857 	return 0;
1858 }
1859 
1860 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1861 {
1862 	u64 mcg_cap = vcpu->arch.mcg_cap;
1863 	unsigned bank_num = mcg_cap & 0xff;
1864 
1865 	switch (msr) {
1866 	case MSR_IA32_MCG_STATUS:
1867 		vcpu->arch.mcg_status = data;
1868 		break;
1869 	case MSR_IA32_MCG_CTL:
1870 		if (!(mcg_cap & MCG_CTL_P))
1871 			return 1;
1872 		if (data != 0 && data != ~(u64)0)
1873 			return -1;
1874 		vcpu->arch.mcg_ctl = data;
1875 		break;
1876 	default:
1877 		if (msr >= MSR_IA32_MC0_CTL &&
1878 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1879 			u32 offset = msr - MSR_IA32_MC0_CTL;
1880 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1881 			 * some Linux kernels though clear bit 10 in bank 4 to
1882 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1883 			 * this to avoid an uncatched #GP in the guest
1884 			 */
1885 			if ((offset & 0x3) == 0 &&
1886 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1887 				return -1;
1888 			vcpu->arch.mce_banks[offset] = data;
1889 			break;
1890 		}
1891 		return 1;
1892 	}
1893 	return 0;
1894 }
1895 
1896 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1897 {
1898 	struct kvm *kvm = vcpu->kvm;
1899 	int lm = is_long_mode(vcpu);
1900 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1901 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1902 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1903 		: kvm->arch.xen_hvm_config.blob_size_32;
1904 	u32 page_num = data & ~PAGE_MASK;
1905 	u64 page_addr = data & PAGE_MASK;
1906 	u8 *page;
1907 	int r;
1908 
1909 	r = -E2BIG;
1910 	if (page_num >= blob_size)
1911 		goto out;
1912 	r = -ENOMEM;
1913 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1914 	if (IS_ERR(page)) {
1915 		r = PTR_ERR(page);
1916 		goto out;
1917 	}
1918 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1919 		goto out_free;
1920 	r = 0;
1921 out_free:
1922 	kfree(page);
1923 out:
1924 	return r;
1925 }
1926 
1927 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1928 {
1929 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1930 }
1931 
1932 static bool kvm_hv_msr_partition_wide(u32 msr)
1933 {
1934 	bool r = false;
1935 	switch (msr) {
1936 	case HV_X64_MSR_GUEST_OS_ID:
1937 	case HV_X64_MSR_HYPERCALL:
1938 	case HV_X64_MSR_REFERENCE_TSC:
1939 	case HV_X64_MSR_TIME_REF_COUNT:
1940 		r = true;
1941 		break;
1942 	}
1943 
1944 	return r;
1945 }
1946 
1947 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1948 {
1949 	struct kvm *kvm = vcpu->kvm;
1950 
1951 	switch (msr) {
1952 	case HV_X64_MSR_GUEST_OS_ID:
1953 		kvm->arch.hv_guest_os_id = data;
1954 		/* setting guest os id to zero disables hypercall page */
1955 		if (!kvm->arch.hv_guest_os_id)
1956 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1957 		break;
1958 	case HV_X64_MSR_HYPERCALL: {
1959 		u64 gfn;
1960 		unsigned long addr;
1961 		u8 instructions[4];
1962 
1963 		/* if guest os id is not set hypercall should remain disabled */
1964 		if (!kvm->arch.hv_guest_os_id)
1965 			break;
1966 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1967 			kvm->arch.hv_hypercall = data;
1968 			break;
1969 		}
1970 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1971 		addr = gfn_to_hva(kvm, gfn);
1972 		if (kvm_is_error_hva(addr))
1973 			return 1;
1974 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1975 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1976 		if (__copy_to_user((void __user *)addr, instructions, 4))
1977 			return 1;
1978 		kvm->arch.hv_hypercall = data;
1979 		mark_page_dirty(kvm, gfn);
1980 		break;
1981 	}
1982 	case HV_X64_MSR_REFERENCE_TSC: {
1983 		u64 gfn;
1984 		HV_REFERENCE_TSC_PAGE tsc_ref;
1985 		memset(&tsc_ref, 0, sizeof(tsc_ref));
1986 		kvm->arch.hv_tsc_page = data;
1987 		if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1988 			break;
1989 		gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1990 		if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1991 			&tsc_ref, sizeof(tsc_ref)))
1992 			return 1;
1993 		mark_page_dirty(kvm, gfn);
1994 		break;
1995 	}
1996 	default:
1997 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1998 			    "data 0x%llx\n", msr, data);
1999 		return 1;
2000 	}
2001 	return 0;
2002 }
2003 
2004 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2005 {
2006 	switch (msr) {
2007 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
2008 		u64 gfn;
2009 		unsigned long addr;
2010 
2011 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2012 			vcpu->arch.hv_vapic = data;
2013 			if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2014 				return 1;
2015 			break;
2016 		}
2017 		gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2018 		addr = gfn_to_hva(vcpu->kvm, gfn);
2019 		if (kvm_is_error_hva(addr))
2020 			return 1;
2021 		if (__clear_user((void __user *)addr, PAGE_SIZE))
2022 			return 1;
2023 		vcpu->arch.hv_vapic = data;
2024 		mark_page_dirty(vcpu->kvm, gfn);
2025 		if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2026 			return 1;
2027 		break;
2028 	}
2029 	case HV_X64_MSR_EOI:
2030 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2031 	case HV_X64_MSR_ICR:
2032 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2033 	case HV_X64_MSR_TPR:
2034 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2035 	default:
2036 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2037 			    "data 0x%llx\n", msr, data);
2038 		return 1;
2039 	}
2040 
2041 	return 0;
2042 }
2043 
2044 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2045 {
2046 	gpa_t gpa = data & ~0x3f;
2047 
2048 	/* Bits 2:5 are reserved, Should be zero */
2049 	if (data & 0x3c)
2050 		return 1;
2051 
2052 	vcpu->arch.apf.msr_val = data;
2053 
2054 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2055 		kvm_clear_async_pf_completion_queue(vcpu);
2056 		kvm_async_pf_hash_reset(vcpu);
2057 		return 0;
2058 	}
2059 
2060 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2061 					sizeof(u32)))
2062 		return 1;
2063 
2064 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2065 	kvm_async_pf_wakeup_all(vcpu);
2066 	return 0;
2067 }
2068 
2069 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2070 {
2071 	vcpu->arch.pv_time_enabled = false;
2072 }
2073 
2074 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2075 {
2076 	u64 delta;
2077 
2078 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2079 		return;
2080 
2081 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2082 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2083 	vcpu->arch.st.accum_steal = delta;
2084 }
2085 
2086 static void record_steal_time(struct kvm_vcpu *vcpu)
2087 {
2088 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2089 		return;
2090 
2091 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2092 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2093 		return;
2094 
2095 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2096 	vcpu->arch.st.steal.version += 2;
2097 	vcpu->arch.st.accum_steal = 0;
2098 
2099 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2100 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2101 }
2102 
2103 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2104 {
2105 	bool pr = false;
2106 	u32 msr = msr_info->index;
2107 	u64 data = msr_info->data;
2108 
2109 	switch (msr) {
2110 	case MSR_AMD64_NB_CFG:
2111 	case MSR_IA32_UCODE_REV:
2112 	case MSR_IA32_UCODE_WRITE:
2113 	case MSR_VM_HSAVE_PA:
2114 	case MSR_AMD64_PATCH_LOADER:
2115 	case MSR_AMD64_BU_CFG2:
2116 		break;
2117 
2118 	case MSR_EFER:
2119 		return set_efer(vcpu, data);
2120 	case MSR_K7_HWCR:
2121 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2122 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2123 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2124 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2125 		if (data != 0) {
2126 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2127 				    data);
2128 			return 1;
2129 		}
2130 		break;
2131 	case MSR_FAM10H_MMIO_CONF_BASE:
2132 		if (data != 0) {
2133 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2134 				    "0x%llx\n", data);
2135 			return 1;
2136 		}
2137 		break;
2138 	case MSR_IA32_DEBUGCTLMSR:
2139 		if (!data) {
2140 			/* We support the non-activated case already */
2141 			break;
2142 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2143 			/* Values other than LBR and BTF are vendor-specific,
2144 			   thus reserved and should throw a #GP */
2145 			return 1;
2146 		}
2147 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2148 			    __func__, data);
2149 		break;
2150 	case 0x200 ... 0x2ff:
2151 		return set_msr_mtrr(vcpu, msr, data);
2152 	case MSR_IA32_APICBASE:
2153 		return kvm_set_apic_base(vcpu, msr_info);
2154 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2155 		return kvm_x2apic_msr_write(vcpu, msr, data);
2156 	case MSR_IA32_TSCDEADLINE:
2157 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2158 		break;
2159 	case MSR_IA32_TSC_ADJUST:
2160 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2161 			if (!msr_info->host_initiated) {
2162 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2163 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2164 			}
2165 			vcpu->arch.ia32_tsc_adjust_msr = data;
2166 		}
2167 		break;
2168 	case MSR_IA32_MISC_ENABLE:
2169 		vcpu->arch.ia32_misc_enable_msr = data;
2170 		break;
2171 	case MSR_KVM_WALL_CLOCK_NEW:
2172 	case MSR_KVM_WALL_CLOCK:
2173 		vcpu->kvm->arch.wall_clock = data;
2174 		kvm_write_wall_clock(vcpu->kvm, data);
2175 		break;
2176 	case MSR_KVM_SYSTEM_TIME_NEW:
2177 	case MSR_KVM_SYSTEM_TIME: {
2178 		u64 gpa_offset;
2179 		struct kvm_arch *ka = &vcpu->kvm->arch;
2180 
2181 		kvmclock_reset(vcpu);
2182 
2183 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2184 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2185 
2186 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2187 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2188 					&vcpu->requests);
2189 
2190 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2191 		}
2192 
2193 		vcpu->arch.time = data;
2194 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2195 
2196 		/* we verify if the enable bit is set... */
2197 		if (!(data & 1))
2198 			break;
2199 
2200 		gpa_offset = data & ~(PAGE_MASK | 1);
2201 
2202 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2203 		     &vcpu->arch.pv_time, data & ~1ULL,
2204 		     sizeof(struct pvclock_vcpu_time_info)))
2205 			vcpu->arch.pv_time_enabled = false;
2206 		else
2207 			vcpu->arch.pv_time_enabled = true;
2208 
2209 		break;
2210 	}
2211 	case MSR_KVM_ASYNC_PF_EN:
2212 		if (kvm_pv_enable_async_pf(vcpu, data))
2213 			return 1;
2214 		break;
2215 	case MSR_KVM_STEAL_TIME:
2216 
2217 		if (unlikely(!sched_info_on()))
2218 			return 1;
2219 
2220 		if (data & KVM_STEAL_RESERVED_MASK)
2221 			return 1;
2222 
2223 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2224 						data & KVM_STEAL_VALID_BITS,
2225 						sizeof(struct kvm_steal_time)))
2226 			return 1;
2227 
2228 		vcpu->arch.st.msr_val = data;
2229 
2230 		if (!(data & KVM_MSR_ENABLED))
2231 			break;
2232 
2233 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2234 
2235 		preempt_disable();
2236 		accumulate_steal_time(vcpu);
2237 		preempt_enable();
2238 
2239 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2240 
2241 		break;
2242 	case MSR_KVM_PV_EOI_EN:
2243 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2244 			return 1;
2245 		break;
2246 
2247 	case MSR_IA32_MCG_CTL:
2248 	case MSR_IA32_MCG_STATUS:
2249 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2250 		return set_msr_mce(vcpu, msr, data);
2251 
2252 	/* Performance counters are not protected by a CPUID bit,
2253 	 * so we should check all of them in the generic path for the sake of
2254 	 * cross vendor migration.
2255 	 * Writing a zero into the event select MSRs disables them,
2256 	 * which we perfectly emulate ;-). Any other value should be at least
2257 	 * reported, some guests depend on them.
2258 	 */
2259 	case MSR_K7_EVNTSEL0:
2260 	case MSR_K7_EVNTSEL1:
2261 	case MSR_K7_EVNTSEL2:
2262 	case MSR_K7_EVNTSEL3:
2263 		if (data != 0)
2264 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2265 				    "0x%x data 0x%llx\n", msr, data);
2266 		break;
2267 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2268 	 * so we ignore writes to make it happy.
2269 	 */
2270 	case MSR_K7_PERFCTR0:
2271 	case MSR_K7_PERFCTR1:
2272 	case MSR_K7_PERFCTR2:
2273 	case MSR_K7_PERFCTR3:
2274 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2275 			    "0x%x data 0x%llx\n", msr, data);
2276 		break;
2277 	case MSR_P6_PERFCTR0:
2278 	case MSR_P6_PERFCTR1:
2279 		pr = true;
2280 	case MSR_P6_EVNTSEL0:
2281 	case MSR_P6_EVNTSEL1:
2282 		if (kvm_pmu_msr(vcpu, msr))
2283 			return kvm_pmu_set_msr(vcpu, msr_info);
2284 
2285 		if (pr || data != 0)
2286 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2287 				    "0x%x data 0x%llx\n", msr, data);
2288 		break;
2289 	case MSR_K7_CLK_CTL:
2290 		/*
2291 		 * Ignore all writes to this no longer documented MSR.
2292 		 * Writes are only relevant for old K7 processors,
2293 		 * all pre-dating SVM, but a recommended workaround from
2294 		 * AMD for these chips. It is possible to specify the
2295 		 * affected processor models on the command line, hence
2296 		 * the need to ignore the workaround.
2297 		 */
2298 		break;
2299 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2300 		if (kvm_hv_msr_partition_wide(msr)) {
2301 			int r;
2302 			mutex_lock(&vcpu->kvm->lock);
2303 			r = set_msr_hyperv_pw(vcpu, msr, data);
2304 			mutex_unlock(&vcpu->kvm->lock);
2305 			return r;
2306 		} else
2307 			return set_msr_hyperv(vcpu, msr, data);
2308 		break;
2309 	case MSR_IA32_BBL_CR_CTL3:
2310 		/* Drop writes to this legacy MSR -- see rdmsr
2311 		 * counterpart for further detail.
2312 		 */
2313 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2314 		break;
2315 	case MSR_AMD64_OSVW_ID_LENGTH:
2316 		if (!guest_cpuid_has_osvw(vcpu))
2317 			return 1;
2318 		vcpu->arch.osvw.length = data;
2319 		break;
2320 	case MSR_AMD64_OSVW_STATUS:
2321 		if (!guest_cpuid_has_osvw(vcpu))
2322 			return 1;
2323 		vcpu->arch.osvw.status = data;
2324 		break;
2325 	default:
2326 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2327 			return xen_hvm_config(vcpu, data);
2328 		if (kvm_pmu_msr(vcpu, msr))
2329 			return kvm_pmu_set_msr(vcpu, msr_info);
2330 		if (!ignore_msrs) {
2331 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2332 				    msr, data);
2333 			return 1;
2334 		} else {
2335 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2336 				    msr, data);
2337 			break;
2338 		}
2339 	}
2340 	return 0;
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2343 
2344 
2345 /*
2346  * Reads an msr value (of 'msr_index') into 'pdata'.
2347  * Returns 0 on success, non-0 otherwise.
2348  * Assumes vcpu_load() was already called.
2349  */
2350 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2351 {
2352 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2353 }
2354 EXPORT_SYMBOL_GPL(kvm_get_msr);
2355 
2356 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2357 {
2358 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2359 
2360 	if (!msr_mtrr_valid(msr))
2361 		return 1;
2362 
2363 	if (msr == MSR_MTRRdefType)
2364 		*pdata = vcpu->arch.mtrr_state.def_type +
2365 			 (vcpu->arch.mtrr_state.enabled << 10);
2366 	else if (msr == MSR_MTRRfix64K_00000)
2367 		*pdata = p[0];
2368 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2369 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2370 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2371 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2372 	else if (msr == MSR_IA32_CR_PAT)
2373 		*pdata = vcpu->arch.pat;
2374 	else {	/* Variable MTRRs */
2375 		int idx, is_mtrr_mask;
2376 		u64 *pt;
2377 
2378 		idx = (msr - 0x200) / 2;
2379 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2380 		if (!is_mtrr_mask)
2381 			pt =
2382 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2383 		else
2384 			pt =
2385 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2386 		*pdata = *pt;
2387 	}
2388 
2389 	return 0;
2390 }
2391 
2392 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2393 {
2394 	u64 data;
2395 	u64 mcg_cap = vcpu->arch.mcg_cap;
2396 	unsigned bank_num = mcg_cap & 0xff;
2397 
2398 	switch (msr) {
2399 	case MSR_IA32_P5_MC_ADDR:
2400 	case MSR_IA32_P5_MC_TYPE:
2401 		data = 0;
2402 		break;
2403 	case MSR_IA32_MCG_CAP:
2404 		data = vcpu->arch.mcg_cap;
2405 		break;
2406 	case MSR_IA32_MCG_CTL:
2407 		if (!(mcg_cap & MCG_CTL_P))
2408 			return 1;
2409 		data = vcpu->arch.mcg_ctl;
2410 		break;
2411 	case MSR_IA32_MCG_STATUS:
2412 		data = vcpu->arch.mcg_status;
2413 		break;
2414 	default:
2415 		if (msr >= MSR_IA32_MC0_CTL &&
2416 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2417 			u32 offset = msr - MSR_IA32_MC0_CTL;
2418 			data = vcpu->arch.mce_banks[offset];
2419 			break;
2420 		}
2421 		return 1;
2422 	}
2423 	*pdata = data;
2424 	return 0;
2425 }
2426 
2427 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2428 {
2429 	u64 data = 0;
2430 	struct kvm *kvm = vcpu->kvm;
2431 
2432 	switch (msr) {
2433 	case HV_X64_MSR_GUEST_OS_ID:
2434 		data = kvm->arch.hv_guest_os_id;
2435 		break;
2436 	case HV_X64_MSR_HYPERCALL:
2437 		data = kvm->arch.hv_hypercall;
2438 		break;
2439 	case HV_X64_MSR_TIME_REF_COUNT: {
2440 		data =
2441 		     div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2442 		break;
2443 	}
2444 	case HV_X64_MSR_REFERENCE_TSC:
2445 		data = kvm->arch.hv_tsc_page;
2446 		break;
2447 	default:
2448 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2449 		return 1;
2450 	}
2451 
2452 	*pdata = data;
2453 	return 0;
2454 }
2455 
2456 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2457 {
2458 	u64 data = 0;
2459 
2460 	switch (msr) {
2461 	case HV_X64_MSR_VP_INDEX: {
2462 		int r;
2463 		struct kvm_vcpu *v;
2464 		kvm_for_each_vcpu(r, v, vcpu->kvm) {
2465 			if (v == vcpu) {
2466 				data = r;
2467 				break;
2468 			}
2469 		}
2470 		break;
2471 	}
2472 	case HV_X64_MSR_EOI:
2473 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2474 	case HV_X64_MSR_ICR:
2475 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2476 	case HV_X64_MSR_TPR:
2477 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2478 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2479 		data = vcpu->arch.hv_vapic;
2480 		break;
2481 	default:
2482 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2483 		return 1;
2484 	}
2485 	*pdata = data;
2486 	return 0;
2487 }
2488 
2489 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2490 {
2491 	u64 data;
2492 
2493 	switch (msr) {
2494 	case MSR_IA32_PLATFORM_ID:
2495 	case MSR_IA32_EBL_CR_POWERON:
2496 	case MSR_IA32_DEBUGCTLMSR:
2497 	case MSR_IA32_LASTBRANCHFROMIP:
2498 	case MSR_IA32_LASTBRANCHTOIP:
2499 	case MSR_IA32_LASTINTFROMIP:
2500 	case MSR_IA32_LASTINTTOIP:
2501 	case MSR_K8_SYSCFG:
2502 	case MSR_K7_HWCR:
2503 	case MSR_VM_HSAVE_PA:
2504 	case MSR_K7_EVNTSEL0:
2505 	case MSR_K7_EVNTSEL1:
2506 	case MSR_K7_EVNTSEL2:
2507 	case MSR_K7_EVNTSEL3:
2508 	case MSR_K7_PERFCTR0:
2509 	case MSR_K7_PERFCTR1:
2510 	case MSR_K7_PERFCTR2:
2511 	case MSR_K7_PERFCTR3:
2512 	case MSR_K8_INT_PENDING_MSG:
2513 	case MSR_AMD64_NB_CFG:
2514 	case MSR_FAM10H_MMIO_CONF_BASE:
2515 	case MSR_AMD64_BU_CFG2:
2516 		data = 0;
2517 		break;
2518 	case MSR_P6_PERFCTR0:
2519 	case MSR_P6_PERFCTR1:
2520 	case MSR_P6_EVNTSEL0:
2521 	case MSR_P6_EVNTSEL1:
2522 		if (kvm_pmu_msr(vcpu, msr))
2523 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2524 		data = 0;
2525 		break;
2526 	case MSR_IA32_UCODE_REV:
2527 		data = 0x100000000ULL;
2528 		break;
2529 	case MSR_MTRRcap:
2530 		data = 0x500 | KVM_NR_VAR_MTRR;
2531 		break;
2532 	case 0x200 ... 0x2ff:
2533 		return get_msr_mtrr(vcpu, msr, pdata);
2534 	case 0xcd: /* fsb frequency */
2535 		data = 3;
2536 		break;
2537 		/*
2538 		 * MSR_EBC_FREQUENCY_ID
2539 		 * Conservative value valid for even the basic CPU models.
2540 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2541 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2542 		 * and 266MHz for model 3, or 4. Set Core Clock
2543 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2544 		 * 31:24) even though these are only valid for CPU
2545 		 * models > 2, however guests may end up dividing or
2546 		 * multiplying by zero otherwise.
2547 		 */
2548 	case MSR_EBC_FREQUENCY_ID:
2549 		data = 1 << 24;
2550 		break;
2551 	case MSR_IA32_APICBASE:
2552 		data = kvm_get_apic_base(vcpu);
2553 		break;
2554 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2555 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2556 		break;
2557 	case MSR_IA32_TSCDEADLINE:
2558 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2559 		break;
2560 	case MSR_IA32_TSC_ADJUST:
2561 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2562 		break;
2563 	case MSR_IA32_MISC_ENABLE:
2564 		data = vcpu->arch.ia32_misc_enable_msr;
2565 		break;
2566 	case MSR_IA32_PERF_STATUS:
2567 		/* TSC increment by tick */
2568 		data = 1000ULL;
2569 		/* CPU multiplier */
2570 		data |= (((uint64_t)4ULL) << 40);
2571 		break;
2572 	case MSR_EFER:
2573 		data = vcpu->arch.efer;
2574 		break;
2575 	case MSR_KVM_WALL_CLOCK:
2576 	case MSR_KVM_WALL_CLOCK_NEW:
2577 		data = vcpu->kvm->arch.wall_clock;
2578 		break;
2579 	case MSR_KVM_SYSTEM_TIME:
2580 	case MSR_KVM_SYSTEM_TIME_NEW:
2581 		data = vcpu->arch.time;
2582 		break;
2583 	case MSR_KVM_ASYNC_PF_EN:
2584 		data = vcpu->arch.apf.msr_val;
2585 		break;
2586 	case MSR_KVM_STEAL_TIME:
2587 		data = vcpu->arch.st.msr_val;
2588 		break;
2589 	case MSR_KVM_PV_EOI_EN:
2590 		data = vcpu->arch.pv_eoi.msr_val;
2591 		break;
2592 	case MSR_IA32_P5_MC_ADDR:
2593 	case MSR_IA32_P5_MC_TYPE:
2594 	case MSR_IA32_MCG_CAP:
2595 	case MSR_IA32_MCG_CTL:
2596 	case MSR_IA32_MCG_STATUS:
2597 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2598 		return get_msr_mce(vcpu, msr, pdata);
2599 	case MSR_K7_CLK_CTL:
2600 		/*
2601 		 * Provide expected ramp-up count for K7. All other
2602 		 * are set to zero, indicating minimum divisors for
2603 		 * every field.
2604 		 *
2605 		 * This prevents guest kernels on AMD host with CPU
2606 		 * type 6, model 8 and higher from exploding due to
2607 		 * the rdmsr failing.
2608 		 */
2609 		data = 0x20000000;
2610 		break;
2611 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2612 		if (kvm_hv_msr_partition_wide(msr)) {
2613 			int r;
2614 			mutex_lock(&vcpu->kvm->lock);
2615 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2616 			mutex_unlock(&vcpu->kvm->lock);
2617 			return r;
2618 		} else
2619 			return get_msr_hyperv(vcpu, msr, pdata);
2620 		break;
2621 	case MSR_IA32_BBL_CR_CTL3:
2622 		/* This legacy MSR exists but isn't fully documented in current
2623 		 * silicon.  It is however accessed by winxp in very narrow
2624 		 * scenarios where it sets bit #19, itself documented as
2625 		 * a "reserved" bit.  Best effort attempt to source coherent
2626 		 * read data here should the balance of the register be
2627 		 * interpreted by the guest:
2628 		 *
2629 		 * L2 cache control register 3: 64GB range, 256KB size,
2630 		 * enabled, latency 0x1, configured
2631 		 */
2632 		data = 0xbe702111;
2633 		break;
2634 	case MSR_AMD64_OSVW_ID_LENGTH:
2635 		if (!guest_cpuid_has_osvw(vcpu))
2636 			return 1;
2637 		data = vcpu->arch.osvw.length;
2638 		break;
2639 	case MSR_AMD64_OSVW_STATUS:
2640 		if (!guest_cpuid_has_osvw(vcpu))
2641 			return 1;
2642 		data = vcpu->arch.osvw.status;
2643 		break;
2644 	default:
2645 		if (kvm_pmu_msr(vcpu, msr))
2646 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2647 		if (!ignore_msrs) {
2648 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2649 			return 1;
2650 		} else {
2651 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2652 			data = 0;
2653 		}
2654 		break;
2655 	}
2656 	*pdata = data;
2657 	return 0;
2658 }
2659 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2660 
2661 /*
2662  * Read or write a bunch of msrs. All parameters are kernel addresses.
2663  *
2664  * @return number of msrs set successfully.
2665  */
2666 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2667 		    struct kvm_msr_entry *entries,
2668 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2669 				  unsigned index, u64 *data))
2670 {
2671 	int i, idx;
2672 
2673 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2674 	for (i = 0; i < msrs->nmsrs; ++i)
2675 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2676 			break;
2677 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2678 
2679 	return i;
2680 }
2681 
2682 /*
2683  * Read or write a bunch of msrs. Parameters are user addresses.
2684  *
2685  * @return number of msrs set successfully.
2686  */
2687 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2688 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2689 				unsigned index, u64 *data),
2690 		  int writeback)
2691 {
2692 	struct kvm_msrs msrs;
2693 	struct kvm_msr_entry *entries;
2694 	int r, n;
2695 	unsigned size;
2696 
2697 	r = -EFAULT;
2698 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2699 		goto out;
2700 
2701 	r = -E2BIG;
2702 	if (msrs.nmsrs >= MAX_IO_MSRS)
2703 		goto out;
2704 
2705 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2706 	entries = memdup_user(user_msrs->entries, size);
2707 	if (IS_ERR(entries)) {
2708 		r = PTR_ERR(entries);
2709 		goto out;
2710 	}
2711 
2712 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2713 	if (r < 0)
2714 		goto out_free;
2715 
2716 	r = -EFAULT;
2717 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2718 		goto out_free;
2719 
2720 	r = n;
2721 
2722 out_free:
2723 	kfree(entries);
2724 out:
2725 	return r;
2726 }
2727 
2728 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2729 {
2730 	int r;
2731 
2732 	switch (ext) {
2733 	case KVM_CAP_IRQCHIP:
2734 	case KVM_CAP_HLT:
2735 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2736 	case KVM_CAP_SET_TSS_ADDR:
2737 	case KVM_CAP_EXT_CPUID:
2738 	case KVM_CAP_EXT_EMUL_CPUID:
2739 	case KVM_CAP_CLOCKSOURCE:
2740 	case KVM_CAP_PIT:
2741 	case KVM_CAP_NOP_IO_DELAY:
2742 	case KVM_CAP_MP_STATE:
2743 	case KVM_CAP_SYNC_MMU:
2744 	case KVM_CAP_USER_NMI:
2745 	case KVM_CAP_REINJECT_CONTROL:
2746 	case KVM_CAP_IRQ_INJECT_STATUS:
2747 	case KVM_CAP_IRQFD:
2748 	case KVM_CAP_IOEVENTFD:
2749 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2750 	case KVM_CAP_PIT2:
2751 	case KVM_CAP_PIT_STATE2:
2752 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2753 	case KVM_CAP_XEN_HVM:
2754 	case KVM_CAP_ADJUST_CLOCK:
2755 	case KVM_CAP_VCPU_EVENTS:
2756 	case KVM_CAP_HYPERV:
2757 	case KVM_CAP_HYPERV_VAPIC:
2758 	case KVM_CAP_HYPERV_SPIN:
2759 	case KVM_CAP_PCI_SEGMENT:
2760 	case KVM_CAP_DEBUGREGS:
2761 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2762 	case KVM_CAP_XSAVE:
2763 	case KVM_CAP_ASYNC_PF:
2764 	case KVM_CAP_GET_TSC_KHZ:
2765 	case KVM_CAP_KVMCLOCK_CTRL:
2766 	case KVM_CAP_READONLY_MEM:
2767 	case KVM_CAP_HYPERV_TIME:
2768 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2769 	case KVM_CAP_TSC_DEADLINE_TIMER:
2770 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2771 	case KVM_CAP_ASSIGN_DEV_IRQ:
2772 	case KVM_CAP_PCI_2_3:
2773 #endif
2774 		r = 1;
2775 		break;
2776 	case KVM_CAP_COALESCED_MMIO:
2777 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2778 		break;
2779 	case KVM_CAP_VAPIC:
2780 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2781 		break;
2782 	case KVM_CAP_NR_VCPUS:
2783 		r = KVM_SOFT_MAX_VCPUS;
2784 		break;
2785 	case KVM_CAP_MAX_VCPUS:
2786 		r = KVM_MAX_VCPUS;
2787 		break;
2788 	case KVM_CAP_NR_MEMSLOTS:
2789 		r = KVM_USER_MEM_SLOTS;
2790 		break;
2791 	case KVM_CAP_PV_MMU:	/* obsolete */
2792 		r = 0;
2793 		break;
2794 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2795 	case KVM_CAP_IOMMU:
2796 		r = iommu_present(&pci_bus_type);
2797 		break;
2798 #endif
2799 	case KVM_CAP_MCE:
2800 		r = KVM_MAX_MCE_BANKS;
2801 		break;
2802 	case KVM_CAP_XCRS:
2803 		r = cpu_has_xsave;
2804 		break;
2805 	case KVM_CAP_TSC_CONTROL:
2806 		r = kvm_has_tsc_control;
2807 		break;
2808 	default:
2809 		r = 0;
2810 		break;
2811 	}
2812 	return r;
2813 
2814 }
2815 
2816 long kvm_arch_dev_ioctl(struct file *filp,
2817 			unsigned int ioctl, unsigned long arg)
2818 {
2819 	void __user *argp = (void __user *)arg;
2820 	long r;
2821 
2822 	switch (ioctl) {
2823 	case KVM_GET_MSR_INDEX_LIST: {
2824 		struct kvm_msr_list __user *user_msr_list = argp;
2825 		struct kvm_msr_list msr_list;
2826 		unsigned n;
2827 
2828 		r = -EFAULT;
2829 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2830 			goto out;
2831 		n = msr_list.nmsrs;
2832 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2833 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2834 			goto out;
2835 		r = -E2BIG;
2836 		if (n < msr_list.nmsrs)
2837 			goto out;
2838 		r = -EFAULT;
2839 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2840 				 num_msrs_to_save * sizeof(u32)))
2841 			goto out;
2842 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2843 				 &emulated_msrs,
2844 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2845 			goto out;
2846 		r = 0;
2847 		break;
2848 	}
2849 	case KVM_GET_SUPPORTED_CPUID:
2850 	case KVM_GET_EMULATED_CPUID: {
2851 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2852 		struct kvm_cpuid2 cpuid;
2853 
2854 		r = -EFAULT;
2855 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2856 			goto out;
2857 
2858 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2859 					    ioctl);
2860 		if (r)
2861 			goto out;
2862 
2863 		r = -EFAULT;
2864 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2865 			goto out;
2866 		r = 0;
2867 		break;
2868 	}
2869 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2870 		u64 mce_cap;
2871 
2872 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2873 		r = -EFAULT;
2874 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2875 			goto out;
2876 		r = 0;
2877 		break;
2878 	}
2879 	default:
2880 		r = -EINVAL;
2881 	}
2882 out:
2883 	return r;
2884 }
2885 
2886 static void wbinvd_ipi(void *garbage)
2887 {
2888 	wbinvd();
2889 }
2890 
2891 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2892 {
2893 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2894 }
2895 
2896 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2897 {
2898 	/* Address WBINVD may be executed by guest */
2899 	if (need_emulate_wbinvd(vcpu)) {
2900 		if (kvm_x86_ops->has_wbinvd_exit())
2901 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2902 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2903 			smp_call_function_single(vcpu->cpu,
2904 					wbinvd_ipi, NULL, 1);
2905 	}
2906 
2907 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2908 
2909 	/* Apply any externally detected TSC adjustments (due to suspend) */
2910 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2911 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2912 		vcpu->arch.tsc_offset_adjustment = 0;
2913 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2914 	}
2915 
2916 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2917 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2918 				native_read_tsc() - vcpu->arch.last_host_tsc;
2919 		if (tsc_delta < 0)
2920 			mark_tsc_unstable("KVM discovered backwards TSC");
2921 		if (check_tsc_unstable()) {
2922 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2923 						vcpu->arch.last_guest_tsc);
2924 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2925 			vcpu->arch.tsc_catchup = 1;
2926 		}
2927 		/*
2928 		 * On a host with synchronized TSC, there is no need to update
2929 		 * kvmclock on vcpu->cpu migration
2930 		 */
2931 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2932 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2933 		if (vcpu->cpu != cpu)
2934 			kvm_migrate_timers(vcpu);
2935 		vcpu->cpu = cpu;
2936 	}
2937 
2938 	accumulate_steal_time(vcpu);
2939 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2940 }
2941 
2942 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2943 {
2944 	kvm_x86_ops->vcpu_put(vcpu);
2945 	kvm_put_guest_fpu(vcpu);
2946 	vcpu->arch.last_host_tsc = native_read_tsc();
2947 }
2948 
2949 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2950 				    struct kvm_lapic_state *s)
2951 {
2952 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2953 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2954 
2955 	return 0;
2956 }
2957 
2958 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2959 				    struct kvm_lapic_state *s)
2960 {
2961 	kvm_apic_post_state_restore(vcpu, s);
2962 	update_cr8_intercept(vcpu);
2963 
2964 	return 0;
2965 }
2966 
2967 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2968 				    struct kvm_interrupt *irq)
2969 {
2970 	if (irq->irq >= KVM_NR_INTERRUPTS)
2971 		return -EINVAL;
2972 	if (irqchip_in_kernel(vcpu->kvm))
2973 		return -ENXIO;
2974 
2975 	kvm_queue_interrupt(vcpu, irq->irq, false);
2976 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2977 
2978 	return 0;
2979 }
2980 
2981 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2982 {
2983 	kvm_inject_nmi(vcpu);
2984 
2985 	return 0;
2986 }
2987 
2988 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2989 					   struct kvm_tpr_access_ctl *tac)
2990 {
2991 	if (tac->flags)
2992 		return -EINVAL;
2993 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2994 	return 0;
2995 }
2996 
2997 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2998 					u64 mcg_cap)
2999 {
3000 	int r;
3001 	unsigned bank_num = mcg_cap & 0xff, bank;
3002 
3003 	r = -EINVAL;
3004 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3005 		goto out;
3006 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3007 		goto out;
3008 	r = 0;
3009 	vcpu->arch.mcg_cap = mcg_cap;
3010 	/* Init IA32_MCG_CTL to all 1s */
3011 	if (mcg_cap & MCG_CTL_P)
3012 		vcpu->arch.mcg_ctl = ~(u64)0;
3013 	/* Init IA32_MCi_CTL to all 1s */
3014 	for (bank = 0; bank < bank_num; bank++)
3015 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3016 out:
3017 	return r;
3018 }
3019 
3020 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3021 				      struct kvm_x86_mce *mce)
3022 {
3023 	u64 mcg_cap = vcpu->arch.mcg_cap;
3024 	unsigned bank_num = mcg_cap & 0xff;
3025 	u64 *banks = vcpu->arch.mce_banks;
3026 
3027 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3028 		return -EINVAL;
3029 	/*
3030 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3031 	 * reporting is disabled
3032 	 */
3033 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3034 	    vcpu->arch.mcg_ctl != ~(u64)0)
3035 		return 0;
3036 	banks += 4 * mce->bank;
3037 	/*
3038 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3039 	 * reporting is disabled for the bank
3040 	 */
3041 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3042 		return 0;
3043 	if (mce->status & MCI_STATUS_UC) {
3044 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3045 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3046 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3047 			return 0;
3048 		}
3049 		if (banks[1] & MCI_STATUS_VAL)
3050 			mce->status |= MCI_STATUS_OVER;
3051 		banks[2] = mce->addr;
3052 		banks[3] = mce->misc;
3053 		vcpu->arch.mcg_status = mce->mcg_status;
3054 		banks[1] = mce->status;
3055 		kvm_queue_exception(vcpu, MC_VECTOR);
3056 	} else if (!(banks[1] & MCI_STATUS_VAL)
3057 		   || !(banks[1] & MCI_STATUS_UC)) {
3058 		if (banks[1] & MCI_STATUS_VAL)
3059 			mce->status |= MCI_STATUS_OVER;
3060 		banks[2] = mce->addr;
3061 		banks[3] = mce->misc;
3062 		banks[1] = mce->status;
3063 	} else
3064 		banks[1] |= MCI_STATUS_OVER;
3065 	return 0;
3066 }
3067 
3068 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3069 					       struct kvm_vcpu_events *events)
3070 {
3071 	process_nmi(vcpu);
3072 	events->exception.injected =
3073 		vcpu->arch.exception.pending &&
3074 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3075 	events->exception.nr = vcpu->arch.exception.nr;
3076 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3077 	events->exception.pad = 0;
3078 	events->exception.error_code = vcpu->arch.exception.error_code;
3079 
3080 	events->interrupt.injected =
3081 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3082 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3083 	events->interrupt.soft = 0;
3084 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3085 
3086 	events->nmi.injected = vcpu->arch.nmi_injected;
3087 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3088 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3089 	events->nmi.pad = 0;
3090 
3091 	events->sipi_vector = 0; /* never valid when reporting to user space */
3092 
3093 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3094 			 | KVM_VCPUEVENT_VALID_SHADOW);
3095 	memset(&events->reserved, 0, sizeof(events->reserved));
3096 }
3097 
3098 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3099 					      struct kvm_vcpu_events *events)
3100 {
3101 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3102 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3103 			      | KVM_VCPUEVENT_VALID_SHADOW))
3104 		return -EINVAL;
3105 
3106 	process_nmi(vcpu);
3107 	vcpu->arch.exception.pending = events->exception.injected;
3108 	vcpu->arch.exception.nr = events->exception.nr;
3109 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3110 	vcpu->arch.exception.error_code = events->exception.error_code;
3111 
3112 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3113 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3114 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3115 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3116 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3117 						  events->interrupt.shadow);
3118 
3119 	vcpu->arch.nmi_injected = events->nmi.injected;
3120 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3121 		vcpu->arch.nmi_pending = events->nmi.pending;
3122 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3123 
3124 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3125 	    kvm_vcpu_has_lapic(vcpu))
3126 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3127 
3128 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3129 
3130 	return 0;
3131 }
3132 
3133 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3134 					     struct kvm_debugregs *dbgregs)
3135 {
3136 	unsigned long val;
3137 
3138 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3139 	kvm_get_dr(vcpu, 6, &val);
3140 	dbgregs->dr6 = val;
3141 	dbgregs->dr7 = vcpu->arch.dr7;
3142 	dbgregs->flags = 0;
3143 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3144 }
3145 
3146 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3147 					    struct kvm_debugregs *dbgregs)
3148 {
3149 	if (dbgregs->flags)
3150 		return -EINVAL;
3151 
3152 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3153 	vcpu->arch.dr6 = dbgregs->dr6;
3154 	kvm_update_dr6(vcpu);
3155 	vcpu->arch.dr7 = dbgregs->dr7;
3156 	kvm_update_dr7(vcpu);
3157 
3158 	return 0;
3159 }
3160 
3161 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3162 
3163 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3164 {
3165 	struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3166 	u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3167 	u64 valid;
3168 
3169 	/*
3170 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3171 	 * leaves 0 and 1 in the loop below.
3172 	 */
3173 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3174 
3175 	/* Set XSTATE_BV */
3176 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3177 
3178 	/*
3179 	 * Copy each region from the possibly compacted offset to the
3180 	 * non-compacted offset.
3181 	 */
3182 	valid = xstate_bv & ~XSTATE_FPSSE;
3183 	while (valid) {
3184 		u64 feature = valid & -valid;
3185 		int index = fls64(feature) - 1;
3186 		void *src = get_xsave_addr(xsave, feature);
3187 
3188 		if (src) {
3189 			u32 size, offset, ecx, edx;
3190 			cpuid_count(XSTATE_CPUID, index,
3191 				    &size, &offset, &ecx, &edx);
3192 			memcpy(dest + offset, src, size);
3193 		}
3194 
3195 		valid -= feature;
3196 	}
3197 }
3198 
3199 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3200 {
3201 	struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3202 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3203 	u64 valid;
3204 
3205 	/*
3206 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3207 	 * leaves 0 and 1 in the loop below.
3208 	 */
3209 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3210 
3211 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3212 	xsave->xsave_hdr.xstate_bv = xstate_bv;
3213 	if (cpu_has_xsaves)
3214 		xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3215 
3216 	/*
3217 	 * Copy each region from the non-compacted offset to the
3218 	 * possibly compacted offset.
3219 	 */
3220 	valid = xstate_bv & ~XSTATE_FPSSE;
3221 	while (valid) {
3222 		u64 feature = valid & -valid;
3223 		int index = fls64(feature) - 1;
3224 		void *dest = get_xsave_addr(xsave, feature);
3225 
3226 		if (dest) {
3227 			u32 size, offset, ecx, edx;
3228 			cpuid_count(XSTATE_CPUID, index,
3229 				    &size, &offset, &ecx, &edx);
3230 			memcpy(dest, src + offset, size);
3231 		} else
3232 			WARN_ON_ONCE(1);
3233 
3234 		valid -= feature;
3235 	}
3236 }
3237 
3238 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3239 					 struct kvm_xsave *guest_xsave)
3240 {
3241 	if (cpu_has_xsave) {
3242 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3243 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3244 	} else {
3245 		memcpy(guest_xsave->region,
3246 			&vcpu->arch.guest_fpu.state->fxsave,
3247 			sizeof(struct i387_fxsave_struct));
3248 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3249 			XSTATE_FPSSE;
3250 	}
3251 }
3252 
3253 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3254 					struct kvm_xsave *guest_xsave)
3255 {
3256 	u64 xstate_bv =
3257 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3258 
3259 	if (cpu_has_xsave) {
3260 		/*
3261 		 * Here we allow setting states that are not present in
3262 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3263 		 * with old userspace.
3264 		 */
3265 		if (xstate_bv & ~kvm_supported_xcr0())
3266 			return -EINVAL;
3267 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3268 	} else {
3269 		if (xstate_bv & ~XSTATE_FPSSE)
3270 			return -EINVAL;
3271 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3272 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
3273 	}
3274 	return 0;
3275 }
3276 
3277 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3278 					struct kvm_xcrs *guest_xcrs)
3279 {
3280 	if (!cpu_has_xsave) {
3281 		guest_xcrs->nr_xcrs = 0;
3282 		return;
3283 	}
3284 
3285 	guest_xcrs->nr_xcrs = 1;
3286 	guest_xcrs->flags = 0;
3287 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3288 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3289 }
3290 
3291 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3292 				       struct kvm_xcrs *guest_xcrs)
3293 {
3294 	int i, r = 0;
3295 
3296 	if (!cpu_has_xsave)
3297 		return -EINVAL;
3298 
3299 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3300 		return -EINVAL;
3301 
3302 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3303 		/* Only support XCR0 currently */
3304 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3305 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3306 				guest_xcrs->xcrs[i].value);
3307 			break;
3308 		}
3309 	if (r)
3310 		r = -EINVAL;
3311 	return r;
3312 }
3313 
3314 /*
3315  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3316  * stopped by the hypervisor.  This function will be called from the host only.
3317  * EINVAL is returned when the host attempts to set the flag for a guest that
3318  * does not support pv clocks.
3319  */
3320 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3321 {
3322 	if (!vcpu->arch.pv_time_enabled)
3323 		return -EINVAL;
3324 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3325 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3326 	return 0;
3327 }
3328 
3329 long kvm_arch_vcpu_ioctl(struct file *filp,
3330 			 unsigned int ioctl, unsigned long arg)
3331 {
3332 	struct kvm_vcpu *vcpu = filp->private_data;
3333 	void __user *argp = (void __user *)arg;
3334 	int r;
3335 	union {
3336 		struct kvm_lapic_state *lapic;
3337 		struct kvm_xsave *xsave;
3338 		struct kvm_xcrs *xcrs;
3339 		void *buffer;
3340 	} u;
3341 
3342 	u.buffer = NULL;
3343 	switch (ioctl) {
3344 	case KVM_GET_LAPIC: {
3345 		r = -EINVAL;
3346 		if (!vcpu->arch.apic)
3347 			goto out;
3348 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3349 
3350 		r = -ENOMEM;
3351 		if (!u.lapic)
3352 			goto out;
3353 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3354 		if (r)
3355 			goto out;
3356 		r = -EFAULT;
3357 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3358 			goto out;
3359 		r = 0;
3360 		break;
3361 	}
3362 	case KVM_SET_LAPIC: {
3363 		r = -EINVAL;
3364 		if (!vcpu->arch.apic)
3365 			goto out;
3366 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3367 		if (IS_ERR(u.lapic))
3368 			return PTR_ERR(u.lapic);
3369 
3370 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3371 		break;
3372 	}
3373 	case KVM_INTERRUPT: {
3374 		struct kvm_interrupt irq;
3375 
3376 		r = -EFAULT;
3377 		if (copy_from_user(&irq, argp, sizeof irq))
3378 			goto out;
3379 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3380 		break;
3381 	}
3382 	case KVM_NMI: {
3383 		r = kvm_vcpu_ioctl_nmi(vcpu);
3384 		break;
3385 	}
3386 	case KVM_SET_CPUID: {
3387 		struct kvm_cpuid __user *cpuid_arg = argp;
3388 		struct kvm_cpuid cpuid;
3389 
3390 		r = -EFAULT;
3391 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3392 			goto out;
3393 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3394 		break;
3395 	}
3396 	case KVM_SET_CPUID2: {
3397 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3398 		struct kvm_cpuid2 cpuid;
3399 
3400 		r = -EFAULT;
3401 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3402 			goto out;
3403 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3404 					      cpuid_arg->entries);
3405 		break;
3406 	}
3407 	case KVM_GET_CPUID2: {
3408 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3409 		struct kvm_cpuid2 cpuid;
3410 
3411 		r = -EFAULT;
3412 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3413 			goto out;
3414 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3415 					      cpuid_arg->entries);
3416 		if (r)
3417 			goto out;
3418 		r = -EFAULT;
3419 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3420 			goto out;
3421 		r = 0;
3422 		break;
3423 	}
3424 	case KVM_GET_MSRS:
3425 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3426 		break;
3427 	case KVM_SET_MSRS:
3428 		r = msr_io(vcpu, argp, do_set_msr, 0);
3429 		break;
3430 	case KVM_TPR_ACCESS_REPORTING: {
3431 		struct kvm_tpr_access_ctl tac;
3432 
3433 		r = -EFAULT;
3434 		if (copy_from_user(&tac, argp, sizeof tac))
3435 			goto out;
3436 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3437 		if (r)
3438 			goto out;
3439 		r = -EFAULT;
3440 		if (copy_to_user(argp, &tac, sizeof tac))
3441 			goto out;
3442 		r = 0;
3443 		break;
3444 	};
3445 	case KVM_SET_VAPIC_ADDR: {
3446 		struct kvm_vapic_addr va;
3447 
3448 		r = -EINVAL;
3449 		if (!irqchip_in_kernel(vcpu->kvm))
3450 			goto out;
3451 		r = -EFAULT;
3452 		if (copy_from_user(&va, argp, sizeof va))
3453 			goto out;
3454 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3455 		break;
3456 	}
3457 	case KVM_X86_SETUP_MCE: {
3458 		u64 mcg_cap;
3459 
3460 		r = -EFAULT;
3461 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3462 			goto out;
3463 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3464 		break;
3465 	}
3466 	case KVM_X86_SET_MCE: {
3467 		struct kvm_x86_mce mce;
3468 
3469 		r = -EFAULT;
3470 		if (copy_from_user(&mce, argp, sizeof mce))
3471 			goto out;
3472 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3473 		break;
3474 	}
3475 	case KVM_GET_VCPU_EVENTS: {
3476 		struct kvm_vcpu_events events;
3477 
3478 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3479 
3480 		r = -EFAULT;
3481 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3482 			break;
3483 		r = 0;
3484 		break;
3485 	}
3486 	case KVM_SET_VCPU_EVENTS: {
3487 		struct kvm_vcpu_events events;
3488 
3489 		r = -EFAULT;
3490 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3491 			break;
3492 
3493 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3494 		break;
3495 	}
3496 	case KVM_GET_DEBUGREGS: {
3497 		struct kvm_debugregs dbgregs;
3498 
3499 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3500 
3501 		r = -EFAULT;
3502 		if (copy_to_user(argp, &dbgregs,
3503 				 sizeof(struct kvm_debugregs)))
3504 			break;
3505 		r = 0;
3506 		break;
3507 	}
3508 	case KVM_SET_DEBUGREGS: {
3509 		struct kvm_debugregs dbgregs;
3510 
3511 		r = -EFAULT;
3512 		if (copy_from_user(&dbgregs, argp,
3513 				   sizeof(struct kvm_debugregs)))
3514 			break;
3515 
3516 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3517 		break;
3518 	}
3519 	case KVM_GET_XSAVE: {
3520 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3521 		r = -ENOMEM;
3522 		if (!u.xsave)
3523 			break;
3524 
3525 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3526 
3527 		r = -EFAULT;
3528 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3529 			break;
3530 		r = 0;
3531 		break;
3532 	}
3533 	case KVM_SET_XSAVE: {
3534 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3535 		if (IS_ERR(u.xsave))
3536 			return PTR_ERR(u.xsave);
3537 
3538 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3539 		break;
3540 	}
3541 	case KVM_GET_XCRS: {
3542 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3543 		r = -ENOMEM;
3544 		if (!u.xcrs)
3545 			break;
3546 
3547 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3548 
3549 		r = -EFAULT;
3550 		if (copy_to_user(argp, u.xcrs,
3551 				 sizeof(struct kvm_xcrs)))
3552 			break;
3553 		r = 0;
3554 		break;
3555 	}
3556 	case KVM_SET_XCRS: {
3557 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3558 		if (IS_ERR(u.xcrs))
3559 			return PTR_ERR(u.xcrs);
3560 
3561 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3562 		break;
3563 	}
3564 	case KVM_SET_TSC_KHZ: {
3565 		u32 user_tsc_khz;
3566 
3567 		r = -EINVAL;
3568 		user_tsc_khz = (u32)arg;
3569 
3570 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3571 			goto out;
3572 
3573 		if (user_tsc_khz == 0)
3574 			user_tsc_khz = tsc_khz;
3575 
3576 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3577 
3578 		r = 0;
3579 		goto out;
3580 	}
3581 	case KVM_GET_TSC_KHZ: {
3582 		r = vcpu->arch.virtual_tsc_khz;
3583 		goto out;
3584 	}
3585 	case KVM_KVMCLOCK_CTRL: {
3586 		r = kvm_set_guest_paused(vcpu);
3587 		goto out;
3588 	}
3589 	default:
3590 		r = -EINVAL;
3591 	}
3592 out:
3593 	kfree(u.buffer);
3594 	return r;
3595 }
3596 
3597 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3598 {
3599 	return VM_FAULT_SIGBUS;
3600 }
3601 
3602 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3603 {
3604 	int ret;
3605 
3606 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3607 		return -EINVAL;
3608 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3609 	return ret;
3610 }
3611 
3612 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3613 					      u64 ident_addr)
3614 {
3615 	kvm->arch.ept_identity_map_addr = ident_addr;
3616 	return 0;
3617 }
3618 
3619 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3620 					  u32 kvm_nr_mmu_pages)
3621 {
3622 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3623 		return -EINVAL;
3624 
3625 	mutex_lock(&kvm->slots_lock);
3626 
3627 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3628 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3629 
3630 	mutex_unlock(&kvm->slots_lock);
3631 	return 0;
3632 }
3633 
3634 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3635 {
3636 	return kvm->arch.n_max_mmu_pages;
3637 }
3638 
3639 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3640 {
3641 	int r;
3642 
3643 	r = 0;
3644 	switch (chip->chip_id) {
3645 	case KVM_IRQCHIP_PIC_MASTER:
3646 		memcpy(&chip->chip.pic,
3647 			&pic_irqchip(kvm)->pics[0],
3648 			sizeof(struct kvm_pic_state));
3649 		break;
3650 	case KVM_IRQCHIP_PIC_SLAVE:
3651 		memcpy(&chip->chip.pic,
3652 			&pic_irqchip(kvm)->pics[1],
3653 			sizeof(struct kvm_pic_state));
3654 		break;
3655 	case KVM_IRQCHIP_IOAPIC:
3656 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3657 		break;
3658 	default:
3659 		r = -EINVAL;
3660 		break;
3661 	}
3662 	return r;
3663 }
3664 
3665 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3666 {
3667 	int r;
3668 
3669 	r = 0;
3670 	switch (chip->chip_id) {
3671 	case KVM_IRQCHIP_PIC_MASTER:
3672 		spin_lock(&pic_irqchip(kvm)->lock);
3673 		memcpy(&pic_irqchip(kvm)->pics[0],
3674 			&chip->chip.pic,
3675 			sizeof(struct kvm_pic_state));
3676 		spin_unlock(&pic_irqchip(kvm)->lock);
3677 		break;
3678 	case KVM_IRQCHIP_PIC_SLAVE:
3679 		spin_lock(&pic_irqchip(kvm)->lock);
3680 		memcpy(&pic_irqchip(kvm)->pics[1],
3681 			&chip->chip.pic,
3682 			sizeof(struct kvm_pic_state));
3683 		spin_unlock(&pic_irqchip(kvm)->lock);
3684 		break;
3685 	case KVM_IRQCHIP_IOAPIC:
3686 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3687 		break;
3688 	default:
3689 		r = -EINVAL;
3690 		break;
3691 	}
3692 	kvm_pic_update_irq(pic_irqchip(kvm));
3693 	return r;
3694 }
3695 
3696 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3697 {
3698 	int r = 0;
3699 
3700 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3701 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3702 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3703 	return r;
3704 }
3705 
3706 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3707 {
3708 	int r = 0;
3709 
3710 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3711 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3712 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3713 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3714 	return r;
3715 }
3716 
3717 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3718 {
3719 	int r = 0;
3720 
3721 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3722 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3723 		sizeof(ps->channels));
3724 	ps->flags = kvm->arch.vpit->pit_state.flags;
3725 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3726 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3727 	return r;
3728 }
3729 
3730 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3731 {
3732 	int r = 0, start = 0;
3733 	u32 prev_legacy, cur_legacy;
3734 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3735 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3736 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3737 	if (!prev_legacy && cur_legacy)
3738 		start = 1;
3739 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3740 	       sizeof(kvm->arch.vpit->pit_state.channels));
3741 	kvm->arch.vpit->pit_state.flags = ps->flags;
3742 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3743 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3744 	return r;
3745 }
3746 
3747 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3748 				 struct kvm_reinject_control *control)
3749 {
3750 	if (!kvm->arch.vpit)
3751 		return -ENXIO;
3752 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3753 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3754 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3755 	return 0;
3756 }
3757 
3758 /**
3759  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3760  * @kvm: kvm instance
3761  * @log: slot id and address to which we copy the log
3762  *
3763  * Steps 1-4 below provide general overview of dirty page logging. See
3764  * kvm_get_dirty_log_protect() function description for additional details.
3765  *
3766  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3767  * always flush the TLB (step 4) even if previous step failed  and the dirty
3768  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3769  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3770  * writes will be marked dirty for next log read.
3771  *
3772  *   1. Take a snapshot of the bit and clear it if needed.
3773  *   2. Write protect the corresponding page.
3774  *   3. Copy the snapshot to the userspace.
3775  *   4. Flush TLB's if needed.
3776  */
3777 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3778 {
3779 	bool is_dirty = false;
3780 	int r;
3781 
3782 	mutex_lock(&kvm->slots_lock);
3783 
3784 	/*
3785 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3786 	 */
3787 	if (kvm_x86_ops->flush_log_dirty)
3788 		kvm_x86_ops->flush_log_dirty(kvm);
3789 
3790 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3791 
3792 	/*
3793 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3794 	 * kvm_mmu_slot_remove_write_access().
3795 	 */
3796 	lockdep_assert_held(&kvm->slots_lock);
3797 	if (is_dirty)
3798 		kvm_flush_remote_tlbs(kvm);
3799 
3800 	mutex_unlock(&kvm->slots_lock);
3801 	return r;
3802 }
3803 
3804 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3805 			bool line_status)
3806 {
3807 	if (!irqchip_in_kernel(kvm))
3808 		return -ENXIO;
3809 
3810 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3811 					irq_event->irq, irq_event->level,
3812 					line_status);
3813 	return 0;
3814 }
3815 
3816 long kvm_arch_vm_ioctl(struct file *filp,
3817 		       unsigned int ioctl, unsigned long arg)
3818 {
3819 	struct kvm *kvm = filp->private_data;
3820 	void __user *argp = (void __user *)arg;
3821 	int r = -ENOTTY;
3822 	/*
3823 	 * This union makes it completely explicit to gcc-3.x
3824 	 * that these two variables' stack usage should be
3825 	 * combined, not added together.
3826 	 */
3827 	union {
3828 		struct kvm_pit_state ps;
3829 		struct kvm_pit_state2 ps2;
3830 		struct kvm_pit_config pit_config;
3831 	} u;
3832 
3833 	switch (ioctl) {
3834 	case KVM_SET_TSS_ADDR:
3835 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3836 		break;
3837 	case KVM_SET_IDENTITY_MAP_ADDR: {
3838 		u64 ident_addr;
3839 
3840 		r = -EFAULT;
3841 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3842 			goto out;
3843 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3844 		break;
3845 	}
3846 	case KVM_SET_NR_MMU_PAGES:
3847 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3848 		break;
3849 	case KVM_GET_NR_MMU_PAGES:
3850 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3851 		break;
3852 	case KVM_CREATE_IRQCHIP: {
3853 		struct kvm_pic *vpic;
3854 
3855 		mutex_lock(&kvm->lock);
3856 		r = -EEXIST;
3857 		if (kvm->arch.vpic)
3858 			goto create_irqchip_unlock;
3859 		r = -EINVAL;
3860 		if (atomic_read(&kvm->online_vcpus))
3861 			goto create_irqchip_unlock;
3862 		r = -ENOMEM;
3863 		vpic = kvm_create_pic(kvm);
3864 		if (vpic) {
3865 			r = kvm_ioapic_init(kvm);
3866 			if (r) {
3867 				mutex_lock(&kvm->slots_lock);
3868 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3869 							  &vpic->dev_master);
3870 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3871 							  &vpic->dev_slave);
3872 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3873 							  &vpic->dev_eclr);
3874 				mutex_unlock(&kvm->slots_lock);
3875 				kfree(vpic);
3876 				goto create_irqchip_unlock;
3877 			}
3878 		} else
3879 			goto create_irqchip_unlock;
3880 		smp_wmb();
3881 		kvm->arch.vpic = vpic;
3882 		smp_wmb();
3883 		r = kvm_setup_default_irq_routing(kvm);
3884 		if (r) {
3885 			mutex_lock(&kvm->slots_lock);
3886 			mutex_lock(&kvm->irq_lock);
3887 			kvm_ioapic_destroy(kvm);
3888 			kvm_destroy_pic(kvm);
3889 			mutex_unlock(&kvm->irq_lock);
3890 			mutex_unlock(&kvm->slots_lock);
3891 		}
3892 	create_irqchip_unlock:
3893 		mutex_unlock(&kvm->lock);
3894 		break;
3895 	}
3896 	case KVM_CREATE_PIT:
3897 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3898 		goto create_pit;
3899 	case KVM_CREATE_PIT2:
3900 		r = -EFAULT;
3901 		if (copy_from_user(&u.pit_config, argp,
3902 				   sizeof(struct kvm_pit_config)))
3903 			goto out;
3904 	create_pit:
3905 		mutex_lock(&kvm->slots_lock);
3906 		r = -EEXIST;
3907 		if (kvm->arch.vpit)
3908 			goto create_pit_unlock;
3909 		r = -ENOMEM;
3910 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3911 		if (kvm->arch.vpit)
3912 			r = 0;
3913 	create_pit_unlock:
3914 		mutex_unlock(&kvm->slots_lock);
3915 		break;
3916 	case KVM_GET_IRQCHIP: {
3917 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3918 		struct kvm_irqchip *chip;
3919 
3920 		chip = memdup_user(argp, sizeof(*chip));
3921 		if (IS_ERR(chip)) {
3922 			r = PTR_ERR(chip);
3923 			goto out;
3924 		}
3925 
3926 		r = -ENXIO;
3927 		if (!irqchip_in_kernel(kvm))
3928 			goto get_irqchip_out;
3929 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3930 		if (r)
3931 			goto get_irqchip_out;
3932 		r = -EFAULT;
3933 		if (copy_to_user(argp, chip, sizeof *chip))
3934 			goto get_irqchip_out;
3935 		r = 0;
3936 	get_irqchip_out:
3937 		kfree(chip);
3938 		break;
3939 	}
3940 	case KVM_SET_IRQCHIP: {
3941 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3942 		struct kvm_irqchip *chip;
3943 
3944 		chip = memdup_user(argp, sizeof(*chip));
3945 		if (IS_ERR(chip)) {
3946 			r = PTR_ERR(chip);
3947 			goto out;
3948 		}
3949 
3950 		r = -ENXIO;
3951 		if (!irqchip_in_kernel(kvm))
3952 			goto set_irqchip_out;
3953 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3954 		if (r)
3955 			goto set_irqchip_out;
3956 		r = 0;
3957 	set_irqchip_out:
3958 		kfree(chip);
3959 		break;
3960 	}
3961 	case KVM_GET_PIT: {
3962 		r = -EFAULT;
3963 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3964 			goto out;
3965 		r = -ENXIO;
3966 		if (!kvm->arch.vpit)
3967 			goto out;
3968 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3969 		if (r)
3970 			goto out;
3971 		r = -EFAULT;
3972 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3973 			goto out;
3974 		r = 0;
3975 		break;
3976 	}
3977 	case KVM_SET_PIT: {
3978 		r = -EFAULT;
3979 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3980 			goto out;
3981 		r = -ENXIO;
3982 		if (!kvm->arch.vpit)
3983 			goto out;
3984 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3985 		break;
3986 	}
3987 	case KVM_GET_PIT2: {
3988 		r = -ENXIO;
3989 		if (!kvm->arch.vpit)
3990 			goto out;
3991 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3992 		if (r)
3993 			goto out;
3994 		r = -EFAULT;
3995 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3996 			goto out;
3997 		r = 0;
3998 		break;
3999 	}
4000 	case KVM_SET_PIT2: {
4001 		r = -EFAULT;
4002 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4003 			goto out;
4004 		r = -ENXIO;
4005 		if (!kvm->arch.vpit)
4006 			goto out;
4007 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4008 		break;
4009 	}
4010 	case KVM_REINJECT_CONTROL: {
4011 		struct kvm_reinject_control control;
4012 		r =  -EFAULT;
4013 		if (copy_from_user(&control, argp, sizeof(control)))
4014 			goto out;
4015 		r = kvm_vm_ioctl_reinject(kvm, &control);
4016 		break;
4017 	}
4018 	case KVM_XEN_HVM_CONFIG: {
4019 		r = -EFAULT;
4020 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4021 				   sizeof(struct kvm_xen_hvm_config)))
4022 			goto out;
4023 		r = -EINVAL;
4024 		if (kvm->arch.xen_hvm_config.flags)
4025 			goto out;
4026 		r = 0;
4027 		break;
4028 	}
4029 	case KVM_SET_CLOCK: {
4030 		struct kvm_clock_data user_ns;
4031 		u64 now_ns;
4032 		s64 delta;
4033 
4034 		r = -EFAULT;
4035 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4036 			goto out;
4037 
4038 		r = -EINVAL;
4039 		if (user_ns.flags)
4040 			goto out;
4041 
4042 		r = 0;
4043 		local_irq_disable();
4044 		now_ns = get_kernel_ns();
4045 		delta = user_ns.clock - now_ns;
4046 		local_irq_enable();
4047 		kvm->arch.kvmclock_offset = delta;
4048 		kvm_gen_update_masterclock(kvm);
4049 		break;
4050 	}
4051 	case KVM_GET_CLOCK: {
4052 		struct kvm_clock_data user_ns;
4053 		u64 now_ns;
4054 
4055 		local_irq_disable();
4056 		now_ns = get_kernel_ns();
4057 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4058 		local_irq_enable();
4059 		user_ns.flags = 0;
4060 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4061 
4062 		r = -EFAULT;
4063 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4064 			goto out;
4065 		r = 0;
4066 		break;
4067 	}
4068 
4069 	default:
4070 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4071 	}
4072 out:
4073 	return r;
4074 }
4075 
4076 static void kvm_init_msr_list(void)
4077 {
4078 	u32 dummy[2];
4079 	unsigned i, j;
4080 
4081 	/* skip the first msrs in the list. KVM-specific */
4082 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4083 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4084 			continue;
4085 
4086 		/*
4087 		 * Even MSRs that are valid in the host may not be exposed
4088 		 * to the guests in some cases.  We could work around this
4089 		 * in VMX with the generic MSR save/load machinery, but it
4090 		 * is not really worthwhile since it will really only
4091 		 * happen with nested virtualization.
4092 		 */
4093 		switch (msrs_to_save[i]) {
4094 		case MSR_IA32_BNDCFGS:
4095 			if (!kvm_x86_ops->mpx_supported())
4096 				continue;
4097 			break;
4098 		default:
4099 			break;
4100 		}
4101 
4102 		if (j < i)
4103 			msrs_to_save[j] = msrs_to_save[i];
4104 		j++;
4105 	}
4106 	num_msrs_to_save = j;
4107 }
4108 
4109 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4110 			   const void *v)
4111 {
4112 	int handled = 0;
4113 	int n;
4114 
4115 	do {
4116 		n = min(len, 8);
4117 		if (!(vcpu->arch.apic &&
4118 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
4119 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4120 			break;
4121 		handled += n;
4122 		addr += n;
4123 		len -= n;
4124 		v += n;
4125 	} while (len);
4126 
4127 	return handled;
4128 }
4129 
4130 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4131 {
4132 	int handled = 0;
4133 	int n;
4134 
4135 	do {
4136 		n = min(len, 8);
4137 		if (!(vcpu->arch.apic &&
4138 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
4139 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4140 			break;
4141 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4142 		handled += n;
4143 		addr += n;
4144 		len -= n;
4145 		v += n;
4146 	} while (len);
4147 
4148 	return handled;
4149 }
4150 
4151 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4152 			struct kvm_segment *var, int seg)
4153 {
4154 	kvm_x86_ops->set_segment(vcpu, var, seg);
4155 }
4156 
4157 void kvm_get_segment(struct kvm_vcpu *vcpu,
4158 		     struct kvm_segment *var, int seg)
4159 {
4160 	kvm_x86_ops->get_segment(vcpu, var, seg);
4161 }
4162 
4163 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4164 			   struct x86_exception *exception)
4165 {
4166 	gpa_t t_gpa;
4167 
4168 	BUG_ON(!mmu_is_nested(vcpu));
4169 
4170 	/* NPT walks are always user-walks */
4171 	access |= PFERR_USER_MASK;
4172 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4173 
4174 	return t_gpa;
4175 }
4176 
4177 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4178 			      struct x86_exception *exception)
4179 {
4180 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4181 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4182 }
4183 
4184  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4185 				struct x86_exception *exception)
4186 {
4187 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4188 	access |= PFERR_FETCH_MASK;
4189 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4190 }
4191 
4192 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4193 			       struct x86_exception *exception)
4194 {
4195 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4196 	access |= PFERR_WRITE_MASK;
4197 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4198 }
4199 
4200 /* uses this to access any guest's mapped memory without checking CPL */
4201 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4202 				struct x86_exception *exception)
4203 {
4204 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4205 }
4206 
4207 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4208 				      struct kvm_vcpu *vcpu, u32 access,
4209 				      struct x86_exception *exception)
4210 {
4211 	void *data = val;
4212 	int r = X86EMUL_CONTINUE;
4213 
4214 	while (bytes) {
4215 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4216 							    exception);
4217 		unsigned offset = addr & (PAGE_SIZE-1);
4218 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4219 		int ret;
4220 
4221 		if (gpa == UNMAPPED_GVA)
4222 			return X86EMUL_PROPAGATE_FAULT;
4223 		ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4224 					  offset, toread);
4225 		if (ret < 0) {
4226 			r = X86EMUL_IO_NEEDED;
4227 			goto out;
4228 		}
4229 
4230 		bytes -= toread;
4231 		data += toread;
4232 		addr += toread;
4233 	}
4234 out:
4235 	return r;
4236 }
4237 
4238 /* used for instruction fetching */
4239 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4240 				gva_t addr, void *val, unsigned int bytes,
4241 				struct x86_exception *exception)
4242 {
4243 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4244 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4245 	unsigned offset;
4246 	int ret;
4247 
4248 	/* Inline kvm_read_guest_virt_helper for speed.  */
4249 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4250 						    exception);
4251 	if (unlikely(gpa == UNMAPPED_GVA))
4252 		return X86EMUL_PROPAGATE_FAULT;
4253 
4254 	offset = addr & (PAGE_SIZE-1);
4255 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4256 		bytes = (unsigned)PAGE_SIZE - offset;
4257 	ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4258 				  offset, bytes);
4259 	if (unlikely(ret < 0))
4260 		return X86EMUL_IO_NEEDED;
4261 
4262 	return X86EMUL_CONTINUE;
4263 }
4264 
4265 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4266 			       gva_t addr, void *val, unsigned int bytes,
4267 			       struct x86_exception *exception)
4268 {
4269 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4270 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4271 
4272 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4273 					  exception);
4274 }
4275 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4276 
4277 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4278 				      gva_t addr, void *val, unsigned int bytes,
4279 				      struct x86_exception *exception)
4280 {
4281 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4282 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4283 }
4284 
4285 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4286 				       gva_t addr, void *val,
4287 				       unsigned int bytes,
4288 				       struct x86_exception *exception)
4289 {
4290 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4291 	void *data = val;
4292 	int r = X86EMUL_CONTINUE;
4293 
4294 	while (bytes) {
4295 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4296 							     PFERR_WRITE_MASK,
4297 							     exception);
4298 		unsigned offset = addr & (PAGE_SIZE-1);
4299 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4300 		int ret;
4301 
4302 		if (gpa == UNMAPPED_GVA)
4303 			return X86EMUL_PROPAGATE_FAULT;
4304 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4305 		if (ret < 0) {
4306 			r = X86EMUL_IO_NEEDED;
4307 			goto out;
4308 		}
4309 
4310 		bytes -= towrite;
4311 		data += towrite;
4312 		addr += towrite;
4313 	}
4314 out:
4315 	return r;
4316 }
4317 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4318 
4319 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4320 				gpa_t *gpa, struct x86_exception *exception,
4321 				bool write)
4322 {
4323 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4324 		| (write ? PFERR_WRITE_MASK : 0);
4325 
4326 	if (vcpu_match_mmio_gva(vcpu, gva)
4327 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4328 				 vcpu->arch.access, access)) {
4329 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4330 					(gva & (PAGE_SIZE - 1));
4331 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4332 		return 1;
4333 	}
4334 
4335 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4336 
4337 	if (*gpa == UNMAPPED_GVA)
4338 		return -1;
4339 
4340 	/* For APIC access vmexit */
4341 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4342 		return 1;
4343 
4344 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4345 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4346 		return 1;
4347 	}
4348 
4349 	return 0;
4350 }
4351 
4352 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4353 			const void *val, int bytes)
4354 {
4355 	int ret;
4356 
4357 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4358 	if (ret < 0)
4359 		return 0;
4360 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4361 	return 1;
4362 }
4363 
4364 struct read_write_emulator_ops {
4365 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4366 				  int bytes);
4367 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4368 				  void *val, int bytes);
4369 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4370 			       int bytes, void *val);
4371 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4372 				    void *val, int bytes);
4373 	bool write;
4374 };
4375 
4376 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4377 {
4378 	if (vcpu->mmio_read_completed) {
4379 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4380 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4381 		vcpu->mmio_read_completed = 0;
4382 		return 1;
4383 	}
4384 
4385 	return 0;
4386 }
4387 
4388 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4389 			void *val, int bytes)
4390 {
4391 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4392 }
4393 
4394 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4395 			 void *val, int bytes)
4396 {
4397 	return emulator_write_phys(vcpu, gpa, val, bytes);
4398 }
4399 
4400 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4401 {
4402 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4403 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4404 }
4405 
4406 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4407 			  void *val, int bytes)
4408 {
4409 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4410 	return X86EMUL_IO_NEEDED;
4411 }
4412 
4413 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4414 			   void *val, int bytes)
4415 {
4416 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4417 
4418 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4419 	return X86EMUL_CONTINUE;
4420 }
4421 
4422 static const struct read_write_emulator_ops read_emultor = {
4423 	.read_write_prepare = read_prepare,
4424 	.read_write_emulate = read_emulate,
4425 	.read_write_mmio = vcpu_mmio_read,
4426 	.read_write_exit_mmio = read_exit_mmio,
4427 };
4428 
4429 static const struct read_write_emulator_ops write_emultor = {
4430 	.read_write_emulate = write_emulate,
4431 	.read_write_mmio = write_mmio,
4432 	.read_write_exit_mmio = write_exit_mmio,
4433 	.write = true,
4434 };
4435 
4436 static int emulator_read_write_onepage(unsigned long addr, void *val,
4437 				       unsigned int bytes,
4438 				       struct x86_exception *exception,
4439 				       struct kvm_vcpu *vcpu,
4440 				       const struct read_write_emulator_ops *ops)
4441 {
4442 	gpa_t gpa;
4443 	int handled, ret;
4444 	bool write = ops->write;
4445 	struct kvm_mmio_fragment *frag;
4446 
4447 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4448 
4449 	if (ret < 0)
4450 		return X86EMUL_PROPAGATE_FAULT;
4451 
4452 	/* For APIC access vmexit */
4453 	if (ret)
4454 		goto mmio;
4455 
4456 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4457 		return X86EMUL_CONTINUE;
4458 
4459 mmio:
4460 	/*
4461 	 * Is this MMIO handled locally?
4462 	 */
4463 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4464 	if (handled == bytes)
4465 		return X86EMUL_CONTINUE;
4466 
4467 	gpa += handled;
4468 	bytes -= handled;
4469 	val += handled;
4470 
4471 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4472 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4473 	frag->gpa = gpa;
4474 	frag->data = val;
4475 	frag->len = bytes;
4476 	return X86EMUL_CONTINUE;
4477 }
4478 
4479 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4480 			void *val, unsigned int bytes,
4481 			struct x86_exception *exception,
4482 			const struct read_write_emulator_ops *ops)
4483 {
4484 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4485 	gpa_t gpa;
4486 	int rc;
4487 
4488 	if (ops->read_write_prepare &&
4489 		  ops->read_write_prepare(vcpu, val, bytes))
4490 		return X86EMUL_CONTINUE;
4491 
4492 	vcpu->mmio_nr_fragments = 0;
4493 
4494 	/* Crossing a page boundary? */
4495 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4496 		int now;
4497 
4498 		now = -addr & ~PAGE_MASK;
4499 		rc = emulator_read_write_onepage(addr, val, now, exception,
4500 						 vcpu, ops);
4501 
4502 		if (rc != X86EMUL_CONTINUE)
4503 			return rc;
4504 		addr += now;
4505 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4506 			addr = (u32)addr;
4507 		val += now;
4508 		bytes -= now;
4509 	}
4510 
4511 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4512 					 vcpu, ops);
4513 	if (rc != X86EMUL_CONTINUE)
4514 		return rc;
4515 
4516 	if (!vcpu->mmio_nr_fragments)
4517 		return rc;
4518 
4519 	gpa = vcpu->mmio_fragments[0].gpa;
4520 
4521 	vcpu->mmio_needed = 1;
4522 	vcpu->mmio_cur_fragment = 0;
4523 
4524 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4525 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4526 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4527 	vcpu->run->mmio.phys_addr = gpa;
4528 
4529 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4530 }
4531 
4532 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4533 				  unsigned long addr,
4534 				  void *val,
4535 				  unsigned int bytes,
4536 				  struct x86_exception *exception)
4537 {
4538 	return emulator_read_write(ctxt, addr, val, bytes,
4539 				   exception, &read_emultor);
4540 }
4541 
4542 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4543 			    unsigned long addr,
4544 			    const void *val,
4545 			    unsigned int bytes,
4546 			    struct x86_exception *exception)
4547 {
4548 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4549 				   exception, &write_emultor);
4550 }
4551 
4552 #define CMPXCHG_TYPE(t, ptr, old, new) \
4553 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4554 
4555 #ifdef CONFIG_X86_64
4556 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4557 #else
4558 #  define CMPXCHG64(ptr, old, new) \
4559 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4560 #endif
4561 
4562 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4563 				     unsigned long addr,
4564 				     const void *old,
4565 				     const void *new,
4566 				     unsigned int bytes,
4567 				     struct x86_exception *exception)
4568 {
4569 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4570 	gpa_t gpa;
4571 	struct page *page;
4572 	char *kaddr;
4573 	bool exchanged;
4574 
4575 	/* guests cmpxchg8b have to be emulated atomically */
4576 	if (bytes > 8 || (bytes & (bytes - 1)))
4577 		goto emul_write;
4578 
4579 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4580 
4581 	if (gpa == UNMAPPED_GVA ||
4582 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4583 		goto emul_write;
4584 
4585 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4586 		goto emul_write;
4587 
4588 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4589 	if (is_error_page(page))
4590 		goto emul_write;
4591 
4592 	kaddr = kmap_atomic(page);
4593 	kaddr += offset_in_page(gpa);
4594 	switch (bytes) {
4595 	case 1:
4596 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4597 		break;
4598 	case 2:
4599 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4600 		break;
4601 	case 4:
4602 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4603 		break;
4604 	case 8:
4605 		exchanged = CMPXCHG64(kaddr, old, new);
4606 		break;
4607 	default:
4608 		BUG();
4609 	}
4610 	kunmap_atomic(kaddr);
4611 	kvm_release_page_dirty(page);
4612 
4613 	if (!exchanged)
4614 		return X86EMUL_CMPXCHG_FAILED;
4615 
4616 	mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4617 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4618 
4619 	return X86EMUL_CONTINUE;
4620 
4621 emul_write:
4622 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4623 
4624 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4625 }
4626 
4627 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4628 {
4629 	/* TODO: String I/O for in kernel device */
4630 	int r;
4631 
4632 	if (vcpu->arch.pio.in)
4633 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4634 				    vcpu->arch.pio.size, pd);
4635 	else
4636 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4637 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4638 				     pd);
4639 	return r;
4640 }
4641 
4642 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4643 			       unsigned short port, void *val,
4644 			       unsigned int count, bool in)
4645 {
4646 	vcpu->arch.pio.port = port;
4647 	vcpu->arch.pio.in = in;
4648 	vcpu->arch.pio.count  = count;
4649 	vcpu->arch.pio.size = size;
4650 
4651 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4652 		vcpu->arch.pio.count = 0;
4653 		return 1;
4654 	}
4655 
4656 	vcpu->run->exit_reason = KVM_EXIT_IO;
4657 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4658 	vcpu->run->io.size = size;
4659 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4660 	vcpu->run->io.count = count;
4661 	vcpu->run->io.port = port;
4662 
4663 	return 0;
4664 }
4665 
4666 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4667 				    int size, unsigned short port, void *val,
4668 				    unsigned int count)
4669 {
4670 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4671 	int ret;
4672 
4673 	if (vcpu->arch.pio.count)
4674 		goto data_avail;
4675 
4676 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4677 	if (ret) {
4678 data_avail:
4679 		memcpy(val, vcpu->arch.pio_data, size * count);
4680 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4681 		vcpu->arch.pio.count = 0;
4682 		return 1;
4683 	}
4684 
4685 	return 0;
4686 }
4687 
4688 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4689 				     int size, unsigned short port,
4690 				     const void *val, unsigned int count)
4691 {
4692 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4693 
4694 	memcpy(vcpu->arch.pio_data, val, size * count);
4695 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4696 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4697 }
4698 
4699 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4700 {
4701 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4702 }
4703 
4704 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4705 {
4706 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4707 }
4708 
4709 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4710 {
4711 	if (!need_emulate_wbinvd(vcpu))
4712 		return X86EMUL_CONTINUE;
4713 
4714 	if (kvm_x86_ops->has_wbinvd_exit()) {
4715 		int cpu = get_cpu();
4716 
4717 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4718 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4719 				wbinvd_ipi, NULL, 1);
4720 		put_cpu();
4721 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4722 	} else
4723 		wbinvd();
4724 	return X86EMUL_CONTINUE;
4725 }
4726 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4727 
4728 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4729 {
4730 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4731 }
4732 
4733 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4734 {
4735 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4736 }
4737 
4738 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4739 {
4740 
4741 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4742 }
4743 
4744 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4745 {
4746 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4747 }
4748 
4749 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4750 {
4751 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4752 	unsigned long value;
4753 
4754 	switch (cr) {
4755 	case 0:
4756 		value = kvm_read_cr0(vcpu);
4757 		break;
4758 	case 2:
4759 		value = vcpu->arch.cr2;
4760 		break;
4761 	case 3:
4762 		value = kvm_read_cr3(vcpu);
4763 		break;
4764 	case 4:
4765 		value = kvm_read_cr4(vcpu);
4766 		break;
4767 	case 8:
4768 		value = kvm_get_cr8(vcpu);
4769 		break;
4770 	default:
4771 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4772 		return 0;
4773 	}
4774 
4775 	return value;
4776 }
4777 
4778 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4779 {
4780 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4781 	int res = 0;
4782 
4783 	switch (cr) {
4784 	case 0:
4785 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4786 		break;
4787 	case 2:
4788 		vcpu->arch.cr2 = val;
4789 		break;
4790 	case 3:
4791 		res = kvm_set_cr3(vcpu, val);
4792 		break;
4793 	case 4:
4794 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4795 		break;
4796 	case 8:
4797 		res = kvm_set_cr8(vcpu, val);
4798 		break;
4799 	default:
4800 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4801 		res = -1;
4802 	}
4803 
4804 	return res;
4805 }
4806 
4807 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4808 {
4809 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4810 }
4811 
4812 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4813 {
4814 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4815 }
4816 
4817 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4818 {
4819 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4820 }
4821 
4822 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4823 {
4824 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4825 }
4826 
4827 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4828 {
4829 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4830 }
4831 
4832 static unsigned long emulator_get_cached_segment_base(
4833 	struct x86_emulate_ctxt *ctxt, int seg)
4834 {
4835 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4836 }
4837 
4838 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4839 				 struct desc_struct *desc, u32 *base3,
4840 				 int seg)
4841 {
4842 	struct kvm_segment var;
4843 
4844 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4845 	*selector = var.selector;
4846 
4847 	if (var.unusable) {
4848 		memset(desc, 0, sizeof(*desc));
4849 		return false;
4850 	}
4851 
4852 	if (var.g)
4853 		var.limit >>= 12;
4854 	set_desc_limit(desc, var.limit);
4855 	set_desc_base(desc, (unsigned long)var.base);
4856 #ifdef CONFIG_X86_64
4857 	if (base3)
4858 		*base3 = var.base >> 32;
4859 #endif
4860 	desc->type = var.type;
4861 	desc->s = var.s;
4862 	desc->dpl = var.dpl;
4863 	desc->p = var.present;
4864 	desc->avl = var.avl;
4865 	desc->l = var.l;
4866 	desc->d = var.db;
4867 	desc->g = var.g;
4868 
4869 	return true;
4870 }
4871 
4872 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4873 				 struct desc_struct *desc, u32 base3,
4874 				 int seg)
4875 {
4876 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4877 	struct kvm_segment var;
4878 
4879 	var.selector = selector;
4880 	var.base = get_desc_base(desc);
4881 #ifdef CONFIG_X86_64
4882 	var.base |= ((u64)base3) << 32;
4883 #endif
4884 	var.limit = get_desc_limit(desc);
4885 	if (desc->g)
4886 		var.limit = (var.limit << 12) | 0xfff;
4887 	var.type = desc->type;
4888 	var.dpl = desc->dpl;
4889 	var.db = desc->d;
4890 	var.s = desc->s;
4891 	var.l = desc->l;
4892 	var.g = desc->g;
4893 	var.avl = desc->avl;
4894 	var.present = desc->p;
4895 	var.unusable = !var.present;
4896 	var.padding = 0;
4897 
4898 	kvm_set_segment(vcpu, &var, seg);
4899 	return;
4900 }
4901 
4902 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4903 			    u32 msr_index, u64 *pdata)
4904 {
4905 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4906 }
4907 
4908 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4909 			    u32 msr_index, u64 data)
4910 {
4911 	struct msr_data msr;
4912 
4913 	msr.data = data;
4914 	msr.index = msr_index;
4915 	msr.host_initiated = false;
4916 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4917 }
4918 
4919 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4920 			      u32 pmc)
4921 {
4922 	return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4923 }
4924 
4925 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4926 			     u32 pmc, u64 *pdata)
4927 {
4928 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4929 }
4930 
4931 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4932 {
4933 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4934 }
4935 
4936 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4937 {
4938 	preempt_disable();
4939 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4940 	/*
4941 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4942 	 * so it may be clear at this point.
4943 	 */
4944 	clts();
4945 }
4946 
4947 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4948 {
4949 	preempt_enable();
4950 }
4951 
4952 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4953 			      struct x86_instruction_info *info,
4954 			      enum x86_intercept_stage stage)
4955 {
4956 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4957 }
4958 
4959 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4960 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4961 {
4962 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4963 }
4964 
4965 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4966 {
4967 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4968 }
4969 
4970 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4971 {
4972 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4973 }
4974 
4975 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4976 {
4977 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4978 }
4979 
4980 static const struct x86_emulate_ops emulate_ops = {
4981 	.read_gpr            = emulator_read_gpr,
4982 	.write_gpr           = emulator_write_gpr,
4983 	.read_std            = kvm_read_guest_virt_system,
4984 	.write_std           = kvm_write_guest_virt_system,
4985 	.fetch               = kvm_fetch_guest_virt,
4986 	.read_emulated       = emulator_read_emulated,
4987 	.write_emulated      = emulator_write_emulated,
4988 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4989 	.invlpg              = emulator_invlpg,
4990 	.pio_in_emulated     = emulator_pio_in_emulated,
4991 	.pio_out_emulated    = emulator_pio_out_emulated,
4992 	.get_segment         = emulator_get_segment,
4993 	.set_segment         = emulator_set_segment,
4994 	.get_cached_segment_base = emulator_get_cached_segment_base,
4995 	.get_gdt             = emulator_get_gdt,
4996 	.get_idt	     = emulator_get_idt,
4997 	.set_gdt             = emulator_set_gdt,
4998 	.set_idt	     = emulator_set_idt,
4999 	.get_cr              = emulator_get_cr,
5000 	.set_cr              = emulator_set_cr,
5001 	.cpl                 = emulator_get_cpl,
5002 	.get_dr              = emulator_get_dr,
5003 	.set_dr              = emulator_set_dr,
5004 	.set_msr             = emulator_set_msr,
5005 	.get_msr             = emulator_get_msr,
5006 	.check_pmc	     = emulator_check_pmc,
5007 	.read_pmc            = emulator_read_pmc,
5008 	.halt                = emulator_halt,
5009 	.wbinvd              = emulator_wbinvd,
5010 	.fix_hypercall       = emulator_fix_hypercall,
5011 	.get_fpu             = emulator_get_fpu,
5012 	.put_fpu             = emulator_put_fpu,
5013 	.intercept           = emulator_intercept,
5014 	.get_cpuid           = emulator_get_cpuid,
5015 	.set_nmi_mask        = emulator_set_nmi_mask,
5016 };
5017 
5018 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5019 {
5020 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5021 	/*
5022 	 * an sti; sti; sequence only disable interrupts for the first
5023 	 * instruction. So, if the last instruction, be it emulated or
5024 	 * not, left the system with the INT_STI flag enabled, it
5025 	 * means that the last instruction is an sti. We should not
5026 	 * leave the flag on in this case. The same goes for mov ss
5027 	 */
5028 	if (int_shadow & mask)
5029 		mask = 0;
5030 	if (unlikely(int_shadow || mask)) {
5031 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5032 		if (!mask)
5033 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5034 	}
5035 }
5036 
5037 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5038 {
5039 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5040 	if (ctxt->exception.vector == PF_VECTOR)
5041 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5042 
5043 	if (ctxt->exception.error_code_valid)
5044 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5045 				      ctxt->exception.error_code);
5046 	else
5047 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5048 	return false;
5049 }
5050 
5051 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5052 {
5053 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5054 	int cs_db, cs_l;
5055 
5056 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5057 
5058 	ctxt->eflags = kvm_get_rflags(vcpu);
5059 	ctxt->eip = kvm_rip_read(vcpu);
5060 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5061 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5062 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5063 		     cs_db				? X86EMUL_MODE_PROT32 :
5064 							  X86EMUL_MODE_PROT16;
5065 	ctxt->guest_mode = is_guest_mode(vcpu);
5066 
5067 	init_decode_cache(ctxt);
5068 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5069 }
5070 
5071 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5072 {
5073 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5074 	int ret;
5075 
5076 	init_emulate_ctxt(vcpu);
5077 
5078 	ctxt->op_bytes = 2;
5079 	ctxt->ad_bytes = 2;
5080 	ctxt->_eip = ctxt->eip + inc_eip;
5081 	ret = emulate_int_real(ctxt, irq);
5082 
5083 	if (ret != X86EMUL_CONTINUE)
5084 		return EMULATE_FAIL;
5085 
5086 	ctxt->eip = ctxt->_eip;
5087 	kvm_rip_write(vcpu, ctxt->eip);
5088 	kvm_set_rflags(vcpu, ctxt->eflags);
5089 
5090 	if (irq == NMI_VECTOR)
5091 		vcpu->arch.nmi_pending = 0;
5092 	else
5093 		vcpu->arch.interrupt.pending = false;
5094 
5095 	return EMULATE_DONE;
5096 }
5097 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5098 
5099 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5100 {
5101 	int r = EMULATE_DONE;
5102 
5103 	++vcpu->stat.insn_emulation_fail;
5104 	trace_kvm_emulate_insn_failed(vcpu);
5105 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5106 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5107 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5108 		vcpu->run->internal.ndata = 0;
5109 		r = EMULATE_FAIL;
5110 	}
5111 	kvm_queue_exception(vcpu, UD_VECTOR);
5112 
5113 	return r;
5114 }
5115 
5116 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5117 				  bool write_fault_to_shadow_pgtable,
5118 				  int emulation_type)
5119 {
5120 	gpa_t gpa = cr2;
5121 	pfn_t pfn;
5122 
5123 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5124 		return false;
5125 
5126 	if (!vcpu->arch.mmu.direct_map) {
5127 		/*
5128 		 * Write permission should be allowed since only
5129 		 * write access need to be emulated.
5130 		 */
5131 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5132 
5133 		/*
5134 		 * If the mapping is invalid in guest, let cpu retry
5135 		 * it to generate fault.
5136 		 */
5137 		if (gpa == UNMAPPED_GVA)
5138 			return true;
5139 	}
5140 
5141 	/*
5142 	 * Do not retry the unhandleable instruction if it faults on the
5143 	 * readonly host memory, otherwise it will goto a infinite loop:
5144 	 * retry instruction -> write #PF -> emulation fail -> retry
5145 	 * instruction -> ...
5146 	 */
5147 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5148 
5149 	/*
5150 	 * If the instruction failed on the error pfn, it can not be fixed,
5151 	 * report the error to userspace.
5152 	 */
5153 	if (is_error_noslot_pfn(pfn))
5154 		return false;
5155 
5156 	kvm_release_pfn_clean(pfn);
5157 
5158 	/* The instructions are well-emulated on direct mmu. */
5159 	if (vcpu->arch.mmu.direct_map) {
5160 		unsigned int indirect_shadow_pages;
5161 
5162 		spin_lock(&vcpu->kvm->mmu_lock);
5163 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5164 		spin_unlock(&vcpu->kvm->mmu_lock);
5165 
5166 		if (indirect_shadow_pages)
5167 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5168 
5169 		return true;
5170 	}
5171 
5172 	/*
5173 	 * if emulation was due to access to shadowed page table
5174 	 * and it failed try to unshadow page and re-enter the
5175 	 * guest to let CPU execute the instruction.
5176 	 */
5177 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5178 
5179 	/*
5180 	 * If the access faults on its page table, it can not
5181 	 * be fixed by unprotecting shadow page and it should
5182 	 * be reported to userspace.
5183 	 */
5184 	return !write_fault_to_shadow_pgtable;
5185 }
5186 
5187 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5188 			      unsigned long cr2,  int emulation_type)
5189 {
5190 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5191 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5192 
5193 	last_retry_eip = vcpu->arch.last_retry_eip;
5194 	last_retry_addr = vcpu->arch.last_retry_addr;
5195 
5196 	/*
5197 	 * If the emulation is caused by #PF and it is non-page_table
5198 	 * writing instruction, it means the VM-EXIT is caused by shadow
5199 	 * page protected, we can zap the shadow page and retry this
5200 	 * instruction directly.
5201 	 *
5202 	 * Note: if the guest uses a non-page-table modifying instruction
5203 	 * on the PDE that points to the instruction, then we will unmap
5204 	 * the instruction and go to an infinite loop. So, we cache the
5205 	 * last retried eip and the last fault address, if we meet the eip
5206 	 * and the address again, we can break out of the potential infinite
5207 	 * loop.
5208 	 */
5209 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5210 
5211 	if (!(emulation_type & EMULTYPE_RETRY))
5212 		return false;
5213 
5214 	if (x86_page_table_writing_insn(ctxt))
5215 		return false;
5216 
5217 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5218 		return false;
5219 
5220 	vcpu->arch.last_retry_eip = ctxt->eip;
5221 	vcpu->arch.last_retry_addr = cr2;
5222 
5223 	if (!vcpu->arch.mmu.direct_map)
5224 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5225 
5226 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5227 
5228 	return true;
5229 }
5230 
5231 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5232 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5233 
5234 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5235 				unsigned long *db)
5236 {
5237 	u32 dr6 = 0;
5238 	int i;
5239 	u32 enable, rwlen;
5240 
5241 	enable = dr7;
5242 	rwlen = dr7 >> 16;
5243 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5244 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5245 			dr6 |= (1 << i);
5246 	return dr6;
5247 }
5248 
5249 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5250 {
5251 	struct kvm_run *kvm_run = vcpu->run;
5252 
5253 	/*
5254 	 * rflags is the old, "raw" value of the flags.  The new value has
5255 	 * not been saved yet.
5256 	 *
5257 	 * This is correct even for TF set by the guest, because "the
5258 	 * processor will not generate this exception after the instruction
5259 	 * that sets the TF flag".
5260 	 */
5261 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5262 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5263 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5264 						  DR6_RTM;
5265 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5266 			kvm_run->debug.arch.exception = DB_VECTOR;
5267 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5268 			*r = EMULATE_USER_EXIT;
5269 		} else {
5270 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5271 			/*
5272 			 * "Certain debug exceptions may clear bit 0-3.  The
5273 			 * remaining contents of the DR6 register are never
5274 			 * cleared by the processor".
5275 			 */
5276 			vcpu->arch.dr6 &= ~15;
5277 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5278 			kvm_queue_exception(vcpu, DB_VECTOR);
5279 		}
5280 	}
5281 }
5282 
5283 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5284 {
5285 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5286 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5287 		struct kvm_run *kvm_run = vcpu->run;
5288 		unsigned long eip = kvm_get_linear_rip(vcpu);
5289 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5290 					   vcpu->arch.guest_debug_dr7,
5291 					   vcpu->arch.eff_db);
5292 
5293 		if (dr6 != 0) {
5294 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5295 			kvm_run->debug.arch.pc = eip;
5296 			kvm_run->debug.arch.exception = DB_VECTOR;
5297 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5298 			*r = EMULATE_USER_EXIT;
5299 			return true;
5300 		}
5301 	}
5302 
5303 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5304 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5305 		unsigned long eip = kvm_get_linear_rip(vcpu);
5306 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5307 					   vcpu->arch.dr7,
5308 					   vcpu->arch.db);
5309 
5310 		if (dr6 != 0) {
5311 			vcpu->arch.dr6 &= ~15;
5312 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5313 			kvm_queue_exception(vcpu, DB_VECTOR);
5314 			*r = EMULATE_DONE;
5315 			return true;
5316 		}
5317 	}
5318 
5319 	return false;
5320 }
5321 
5322 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5323 			    unsigned long cr2,
5324 			    int emulation_type,
5325 			    void *insn,
5326 			    int insn_len)
5327 {
5328 	int r;
5329 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5330 	bool writeback = true;
5331 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5332 
5333 	/*
5334 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5335 	 * never reused.
5336 	 */
5337 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5338 	kvm_clear_exception_queue(vcpu);
5339 
5340 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5341 		init_emulate_ctxt(vcpu);
5342 
5343 		/*
5344 		 * We will reenter on the same instruction since
5345 		 * we do not set complete_userspace_io.  This does not
5346 		 * handle watchpoints yet, those would be handled in
5347 		 * the emulate_ops.
5348 		 */
5349 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5350 			return r;
5351 
5352 		ctxt->interruptibility = 0;
5353 		ctxt->have_exception = false;
5354 		ctxt->exception.vector = -1;
5355 		ctxt->perm_ok = false;
5356 
5357 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5358 
5359 		r = x86_decode_insn(ctxt, insn, insn_len);
5360 
5361 		trace_kvm_emulate_insn_start(vcpu);
5362 		++vcpu->stat.insn_emulation;
5363 		if (r != EMULATION_OK)  {
5364 			if (emulation_type & EMULTYPE_TRAP_UD)
5365 				return EMULATE_FAIL;
5366 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5367 						emulation_type))
5368 				return EMULATE_DONE;
5369 			if (emulation_type & EMULTYPE_SKIP)
5370 				return EMULATE_FAIL;
5371 			return handle_emulation_failure(vcpu);
5372 		}
5373 	}
5374 
5375 	if (emulation_type & EMULTYPE_SKIP) {
5376 		kvm_rip_write(vcpu, ctxt->_eip);
5377 		if (ctxt->eflags & X86_EFLAGS_RF)
5378 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5379 		return EMULATE_DONE;
5380 	}
5381 
5382 	if (retry_instruction(ctxt, cr2, emulation_type))
5383 		return EMULATE_DONE;
5384 
5385 	/* this is needed for vmware backdoor interface to work since it
5386 	   changes registers values  during IO operation */
5387 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5388 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5389 		emulator_invalidate_register_cache(ctxt);
5390 	}
5391 
5392 restart:
5393 	r = x86_emulate_insn(ctxt);
5394 
5395 	if (r == EMULATION_INTERCEPTED)
5396 		return EMULATE_DONE;
5397 
5398 	if (r == EMULATION_FAILED) {
5399 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5400 					emulation_type))
5401 			return EMULATE_DONE;
5402 
5403 		return handle_emulation_failure(vcpu);
5404 	}
5405 
5406 	if (ctxt->have_exception) {
5407 		r = EMULATE_DONE;
5408 		if (inject_emulated_exception(vcpu))
5409 			return r;
5410 	} else if (vcpu->arch.pio.count) {
5411 		if (!vcpu->arch.pio.in) {
5412 			/* FIXME: return into emulator if single-stepping.  */
5413 			vcpu->arch.pio.count = 0;
5414 		} else {
5415 			writeback = false;
5416 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5417 		}
5418 		r = EMULATE_USER_EXIT;
5419 	} else if (vcpu->mmio_needed) {
5420 		if (!vcpu->mmio_is_write)
5421 			writeback = false;
5422 		r = EMULATE_USER_EXIT;
5423 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5424 	} else if (r == EMULATION_RESTART)
5425 		goto restart;
5426 	else
5427 		r = EMULATE_DONE;
5428 
5429 	if (writeback) {
5430 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5431 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5432 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5433 		kvm_rip_write(vcpu, ctxt->eip);
5434 		if (r == EMULATE_DONE)
5435 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5436 		if (!ctxt->have_exception ||
5437 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5438 			__kvm_set_rflags(vcpu, ctxt->eflags);
5439 
5440 		/*
5441 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5442 		 * do nothing, and it will be requested again as soon as
5443 		 * the shadow expires.  But we still need to check here,
5444 		 * because POPF has no interrupt shadow.
5445 		 */
5446 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5447 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5448 	} else
5449 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5450 
5451 	return r;
5452 }
5453 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5454 
5455 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5456 {
5457 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5458 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5459 					    size, port, &val, 1);
5460 	/* do not return to emulator after return from userspace */
5461 	vcpu->arch.pio.count = 0;
5462 	return ret;
5463 }
5464 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5465 
5466 static void tsc_bad(void *info)
5467 {
5468 	__this_cpu_write(cpu_tsc_khz, 0);
5469 }
5470 
5471 static void tsc_khz_changed(void *data)
5472 {
5473 	struct cpufreq_freqs *freq = data;
5474 	unsigned long khz = 0;
5475 
5476 	if (data)
5477 		khz = freq->new;
5478 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5479 		khz = cpufreq_quick_get(raw_smp_processor_id());
5480 	if (!khz)
5481 		khz = tsc_khz;
5482 	__this_cpu_write(cpu_tsc_khz, khz);
5483 }
5484 
5485 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5486 				     void *data)
5487 {
5488 	struct cpufreq_freqs *freq = data;
5489 	struct kvm *kvm;
5490 	struct kvm_vcpu *vcpu;
5491 	int i, send_ipi = 0;
5492 
5493 	/*
5494 	 * We allow guests to temporarily run on slowing clocks,
5495 	 * provided we notify them after, or to run on accelerating
5496 	 * clocks, provided we notify them before.  Thus time never
5497 	 * goes backwards.
5498 	 *
5499 	 * However, we have a problem.  We can't atomically update
5500 	 * the frequency of a given CPU from this function; it is
5501 	 * merely a notifier, which can be called from any CPU.
5502 	 * Changing the TSC frequency at arbitrary points in time
5503 	 * requires a recomputation of local variables related to
5504 	 * the TSC for each VCPU.  We must flag these local variables
5505 	 * to be updated and be sure the update takes place with the
5506 	 * new frequency before any guests proceed.
5507 	 *
5508 	 * Unfortunately, the combination of hotplug CPU and frequency
5509 	 * change creates an intractable locking scenario; the order
5510 	 * of when these callouts happen is undefined with respect to
5511 	 * CPU hotplug, and they can race with each other.  As such,
5512 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5513 	 * undefined; you can actually have a CPU frequency change take
5514 	 * place in between the computation of X and the setting of the
5515 	 * variable.  To protect against this problem, all updates of
5516 	 * the per_cpu tsc_khz variable are done in an interrupt
5517 	 * protected IPI, and all callers wishing to update the value
5518 	 * must wait for a synchronous IPI to complete (which is trivial
5519 	 * if the caller is on the CPU already).  This establishes the
5520 	 * necessary total order on variable updates.
5521 	 *
5522 	 * Note that because a guest time update may take place
5523 	 * anytime after the setting of the VCPU's request bit, the
5524 	 * correct TSC value must be set before the request.  However,
5525 	 * to ensure the update actually makes it to any guest which
5526 	 * starts running in hardware virtualization between the set
5527 	 * and the acquisition of the spinlock, we must also ping the
5528 	 * CPU after setting the request bit.
5529 	 *
5530 	 */
5531 
5532 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5533 		return 0;
5534 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5535 		return 0;
5536 
5537 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5538 
5539 	spin_lock(&kvm_lock);
5540 	list_for_each_entry(kvm, &vm_list, vm_list) {
5541 		kvm_for_each_vcpu(i, vcpu, kvm) {
5542 			if (vcpu->cpu != freq->cpu)
5543 				continue;
5544 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5545 			if (vcpu->cpu != smp_processor_id())
5546 				send_ipi = 1;
5547 		}
5548 	}
5549 	spin_unlock(&kvm_lock);
5550 
5551 	if (freq->old < freq->new && send_ipi) {
5552 		/*
5553 		 * We upscale the frequency.  Must make the guest
5554 		 * doesn't see old kvmclock values while running with
5555 		 * the new frequency, otherwise we risk the guest sees
5556 		 * time go backwards.
5557 		 *
5558 		 * In case we update the frequency for another cpu
5559 		 * (which might be in guest context) send an interrupt
5560 		 * to kick the cpu out of guest context.  Next time
5561 		 * guest context is entered kvmclock will be updated,
5562 		 * so the guest will not see stale values.
5563 		 */
5564 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5565 	}
5566 	return 0;
5567 }
5568 
5569 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5570 	.notifier_call  = kvmclock_cpufreq_notifier
5571 };
5572 
5573 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5574 					unsigned long action, void *hcpu)
5575 {
5576 	unsigned int cpu = (unsigned long)hcpu;
5577 
5578 	switch (action) {
5579 		case CPU_ONLINE:
5580 		case CPU_DOWN_FAILED:
5581 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5582 			break;
5583 		case CPU_DOWN_PREPARE:
5584 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5585 			break;
5586 	}
5587 	return NOTIFY_OK;
5588 }
5589 
5590 static struct notifier_block kvmclock_cpu_notifier_block = {
5591 	.notifier_call  = kvmclock_cpu_notifier,
5592 	.priority = -INT_MAX
5593 };
5594 
5595 static void kvm_timer_init(void)
5596 {
5597 	int cpu;
5598 
5599 	max_tsc_khz = tsc_khz;
5600 
5601 	cpu_notifier_register_begin();
5602 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5603 #ifdef CONFIG_CPU_FREQ
5604 		struct cpufreq_policy policy;
5605 		memset(&policy, 0, sizeof(policy));
5606 		cpu = get_cpu();
5607 		cpufreq_get_policy(&policy, cpu);
5608 		if (policy.cpuinfo.max_freq)
5609 			max_tsc_khz = policy.cpuinfo.max_freq;
5610 		put_cpu();
5611 #endif
5612 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5613 					  CPUFREQ_TRANSITION_NOTIFIER);
5614 	}
5615 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5616 	for_each_online_cpu(cpu)
5617 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5618 
5619 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5620 	cpu_notifier_register_done();
5621 
5622 }
5623 
5624 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5625 
5626 int kvm_is_in_guest(void)
5627 {
5628 	return __this_cpu_read(current_vcpu) != NULL;
5629 }
5630 
5631 static int kvm_is_user_mode(void)
5632 {
5633 	int user_mode = 3;
5634 
5635 	if (__this_cpu_read(current_vcpu))
5636 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5637 
5638 	return user_mode != 0;
5639 }
5640 
5641 static unsigned long kvm_get_guest_ip(void)
5642 {
5643 	unsigned long ip = 0;
5644 
5645 	if (__this_cpu_read(current_vcpu))
5646 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5647 
5648 	return ip;
5649 }
5650 
5651 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5652 	.is_in_guest		= kvm_is_in_guest,
5653 	.is_user_mode		= kvm_is_user_mode,
5654 	.get_guest_ip		= kvm_get_guest_ip,
5655 };
5656 
5657 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5658 {
5659 	__this_cpu_write(current_vcpu, vcpu);
5660 }
5661 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5662 
5663 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5664 {
5665 	__this_cpu_write(current_vcpu, NULL);
5666 }
5667 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5668 
5669 static void kvm_set_mmio_spte_mask(void)
5670 {
5671 	u64 mask;
5672 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5673 
5674 	/*
5675 	 * Set the reserved bits and the present bit of an paging-structure
5676 	 * entry to generate page fault with PFER.RSV = 1.
5677 	 */
5678 	 /* Mask the reserved physical address bits. */
5679 	mask = rsvd_bits(maxphyaddr, 51);
5680 
5681 	/* Bit 62 is always reserved for 32bit host. */
5682 	mask |= 0x3ull << 62;
5683 
5684 	/* Set the present bit. */
5685 	mask |= 1ull;
5686 
5687 #ifdef CONFIG_X86_64
5688 	/*
5689 	 * If reserved bit is not supported, clear the present bit to disable
5690 	 * mmio page fault.
5691 	 */
5692 	if (maxphyaddr == 52)
5693 		mask &= ~1ull;
5694 #endif
5695 
5696 	kvm_mmu_set_mmio_spte_mask(mask);
5697 }
5698 
5699 #ifdef CONFIG_X86_64
5700 static void pvclock_gtod_update_fn(struct work_struct *work)
5701 {
5702 	struct kvm *kvm;
5703 
5704 	struct kvm_vcpu *vcpu;
5705 	int i;
5706 
5707 	spin_lock(&kvm_lock);
5708 	list_for_each_entry(kvm, &vm_list, vm_list)
5709 		kvm_for_each_vcpu(i, vcpu, kvm)
5710 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5711 	atomic_set(&kvm_guest_has_master_clock, 0);
5712 	spin_unlock(&kvm_lock);
5713 }
5714 
5715 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5716 
5717 /*
5718  * Notification about pvclock gtod data update.
5719  */
5720 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5721 			       void *priv)
5722 {
5723 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5724 	struct timekeeper *tk = priv;
5725 
5726 	update_pvclock_gtod(tk);
5727 
5728 	/* disable master clock if host does not trust, or does not
5729 	 * use, TSC clocksource
5730 	 */
5731 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5732 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5733 		queue_work(system_long_wq, &pvclock_gtod_work);
5734 
5735 	return 0;
5736 }
5737 
5738 static struct notifier_block pvclock_gtod_notifier = {
5739 	.notifier_call = pvclock_gtod_notify,
5740 };
5741 #endif
5742 
5743 int kvm_arch_init(void *opaque)
5744 {
5745 	int r;
5746 	struct kvm_x86_ops *ops = opaque;
5747 
5748 	if (kvm_x86_ops) {
5749 		printk(KERN_ERR "kvm: already loaded the other module\n");
5750 		r = -EEXIST;
5751 		goto out;
5752 	}
5753 
5754 	if (!ops->cpu_has_kvm_support()) {
5755 		printk(KERN_ERR "kvm: no hardware support\n");
5756 		r = -EOPNOTSUPP;
5757 		goto out;
5758 	}
5759 	if (ops->disabled_by_bios()) {
5760 		printk(KERN_ERR "kvm: disabled by bios\n");
5761 		r = -EOPNOTSUPP;
5762 		goto out;
5763 	}
5764 
5765 	r = -ENOMEM;
5766 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5767 	if (!shared_msrs) {
5768 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5769 		goto out;
5770 	}
5771 
5772 	r = kvm_mmu_module_init();
5773 	if (r)
5774 		goto out_free_percpu;
5775 
5776 	kvm_set_mmio_spte_mask();
5777 
5778 	kvm_x86_ops = ops;
5779 	kvm_init_msr_list();
5780 
5781 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5782 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5783 
5784 	kvm_timer_init();
5785 
5786 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5787 
5788 	if (cpu_has_xsave)
5789 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5790 
5791 	kvm_lapic_init();
5792 #ifdef CONFIG_X86_64
5793 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5794 #endif
5795 
5796 	return 0;
5797 
5798 out_free_percpu:
5799 	free_percpu(shared_msrs);
5800 out:
5801 	return r;
5802 }
5803 
5804 void kvm_arch_exit(void)
5805 {
5806 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5807 
5808 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5809 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5810 					    CPUFREQ_TRANSITION_NOTIFIER);
5811 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5812 #ifdef CONFIG_X86_64
5813 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5814 #endif
5815 	kvm_x86_ops = NULL;
5816 	kvm_mmu_module_exit();
5817 	free_percpu(shared_msrs);
5818 }
5819 
5820 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5821 {
5822 	++vcpu->stat.halt_exits;
5823 	if (irqchip_in_kernel(vcpu->kvm)) {
5824 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5825 		return 1;
5826 	} else {
5827 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5828 		return 0;
5829 	}
5830 }
5831 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5832 
5833 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5834 {
5835 	u64 param, ingpa, outgpa, ret;
5836 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5837 	bool fast, longmode;
5838 
5839 	/*
5840 	 * hypercall generates UD from non zero cpl and real mode
5841 	 * per HYPER-V spec
5842 	 */
5843 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5844 		kvm_queue_exception(vcpu, UD_VECTOR);
5845 		return 0;
5846 	}
5847 
5848 	longmode = is_64_bit_mode(vcpu);
5849 
5850 	if (!longmode) {
5851 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5852 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5853 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5854 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5855 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5856 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5857 	}
5858 #ifdef CONFIG_X86_64
5859 	else {
5860 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5861 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5862 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5863 	}
5864 #endif
5865 
5866 	code = param & 0xffff;
5867 	fast = (param >> 16) & 0x1;
5868 	rep_cnt = (param >> 32) & 0xfff;
5869 	rep_idx = (param >> 48) & 0xfff;
5870 
5871 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5872 
5873 	switch (code) {
5874 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5875 		kvm_vcpu_on_spin(vcpu);
5876 		break;
5877 	default:
5878 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5879 		break;
5880 	}
5881 
5882 	ret = res | (((u64)rep_done & 0xfff) << 32);
5883 	if (longmode) {
5884 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5885 	} else {
5886 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5887 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5888 	}
5889 
5890 	return 1;
5891 }
5892 
5893 /*
5894  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5895  *
5896  * @apicid - apicid of vcpu to be kicked.
5897  */
5898 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5899 {
5900 	struct kvm_lapic_irq lapic_irq;
5901 
5902 	lapic_irq.shorthand = 0;
5903 	lapic_irq.dest_mode = 0;
5904 	lapic_irq.dest_id = apicid;
5905 
5906 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5907 	kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5908 }
5909 
5910 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5911 {
5912 	unsigned long nr, a0, a1, a2, a3, ret;
5913 	int op_64_bit, r = 1;
5914 
5915 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5916 		return kvm_hv_hypercall(vcpu);
5917 
5918 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5919 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5920 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5921 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5922 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5923 
5924 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5925 
5926 	op_64_bit = is_64_bit_mode(vcpu);
5927 	if (!op_64_bit) {
5928 		nr &= 0xFFFFFFFF;
5929 		a0 &= 0xFFFFFFFF;
5930 		a1 &= 0xFFFFFFFF;
5931 		a2 &= 0xFFFFFFFF;
5932 		a3 &= 0xFFFFFFFF;
5933 	}
5934 
5935 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5936 		ret = -KVM_EPERM;
5937 		goto out;
5938 	}
5939 
5940 	switch (nr) {
5941 	case KVM_HC_VAPIC_POLL_IRQ:
5942 		ret = 0;
5943 		break;
5944 	case KVM_HC_KICK_CPU:
5945 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5946 		ret = 0;
5947 		break;
5948 	default:
5949 		ret = -KVM_ENOSYS;
5950 		break;
5951 	}
5952 out:
5953 	if (!op_64_bit)
5954 		ret = (u32)ret;
5955 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5956 	++vcpu->stat.hypercalls;
5957 	return r;
5958 }
5959 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5960 
5961 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5962 {
5963 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5964 	char instruction[3];
5965 	unsigned long rip = kvm_rip_read(vcpu);
5966 
5967 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5968 
5969 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5970 }
5971 
5972 /*
5973  * Check if userspace requested an interrupt window, and that the
5974  * interrupt window is open.
5975  *
5976  * No need to exit to userspace if we already have an interrupt queued.
5977  */
5978 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5979 {
5980 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5981 		vcpu->run->request_interrupt_window &&
5982 		kvm_arch_interrupt_allowed(vcpu));
5983 }
5984 
5985 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5986 {
5987 	struct kvm_run *kvm_run = vcpu->run;
5988 
5989 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5990 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5991 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5992 	if (irqchip_in_kernel(vcpu->kvm))
5993 		kvm_run->ready_for_interrupt_injection = 1;
5994 	else
5995 		kvm_run->ready_for_interrupt_injection =
5996 			kvm_arch_interrupt_allowed(vcpu) &&
5997 			!kvm_cpu_has_interrupt(vcpu) &&
5998 			!kvm_event_needs_reinjection(vcpu);
5999 }
6000 
6001 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6002 {
6003 	int max_irr, tpr;
6004 
6005 	if (!kvm_x86_ops->update_cr8_intercept)
6006 		return;
6007 
6008 	if (!vcpu->arch.apic)
6009 		return;
6010 
6011 	if (!vcpu->arch.apic->vapic_addr)
6012 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6013 	else
6014 		max_irr = -1;
6015 
6016 	if (max_irr != -1)
6017 		max_irr >>= 4;
6018 
6019 	tpr = kvm_lapic_get_cr8(vcpu);
6020 
6021 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6022 }
6023 
6024 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6025 {
6026 	int r;
6027 
6028 	/* try to reinject previous events if any */
6029 	if (vcpu->arch.exception.pending) {
6030 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6031 					vcpu->arch.exception.has_error_code,
6032 					vcpu->arch.exception.error_code);
6033 
6034 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6035 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6036 					     X86_EFLAGS_RF);
6037 
6038 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6039 		    (vcpu->arch.dr7 & DR7_GD)) {
6040 			vcpu->arch.dr7 &= ~DR7_GD;
6041 			kvm_update_dr7(vcpu);
6042 		}
6043 
6044 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6045 					  vcpu->arch.exception.has_error_code,
6046 					  vcpu->arch.exception.error_code,
6047 					  vcpu->arch.exception.reinject);
6048 		return 0;
6049 	}
6050 
6051 	if (vcpu->arch.nmi_injected) {
6052 		kvm_x86_ops->set_nmi(vcpu);
6053 		return 0;
6054 	}
6055 
6056 	if (vcpu->arch.interrupt.pending) {
6057 		kvm_x86_ops->set_irq(vcpu);
6058 		return 0;
6059 	}
6060 
6061 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6062 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6063 		if (r != 0)
6064 			return r;
6065 	}
6066 
6067 	/* try to inject new event if pending */
6068 	if (vcpu->arch.nmi_pending) {
6069 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
6070 			--vcpu->arch.nmi_pending;
6071 			vcpu->arch.nmi_injected = true;
6072 			kvm_x86_ops->set_nmi(vcpu);
6073 		}
6074 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6075 		/*
6076 		 * Because interrupts can be injected asynchronously, we are
6077 		 * calling check_nested_events again here to avoid a race condition.
6078 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6079 		 * proposal and current concerns.  Perhaps we should be setting
6080 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6081 		 */
6082 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6083 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6084 			if (r != 0)
6085 				return r;
6086 		}
6087 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6088 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6089 					    false);
6090 			kvm_x86_ops->set_irq(vcpu);
6091 		}
6092 	}
6093 	return 0;
6094 }
6095 
6096 static void process_nmi(struct kvm_vcpu *vcpu)
6097 {
6098 	unsigned limit = 2;
6099 
6100 	/*
6101 	 * x86 is limited to one NMI running, and one NMI pending after it.
6102 	 * If an NMI is already in progress, limit further NMIs to just one.
6103 	 * Otherwise, allow two (and we'll inject the first one immediately).
6104 	 */
6105 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6106 		limit = 1;
6107 
6108 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6109 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6110 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6111 }
6112 
6113 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6114 {
6115 	u64 eoi_exit_bitmap[4];
6116 	u32 tmr[8];
6117 
6118 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6119 		return;
6120 
6121 	memset(eoi_exit_bitmap, 0, 32);
6122 	memset(tmr, 0, 32);
6123 
6124 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6125 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6126 	kvm_apic_update_tmr(vcpu, tmr);
6127 }
6128 
6129 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6130 {
6131 	++vcpu->stat.tlb_flush;
6132 	kvm_x86_ops->tlb_flush(vcpu);
6133 }
6134 
6135 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6136 {
6137 	struct page *page = NULL;
6138 
6139 	if (!irqchip_in_kernel(vcpu->kvm))
6140 		return;
6141 
6142 	if (!kvm_x86_ops->set_apic_access_page_addr)
6143 		return;
6144 
6145 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6146 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6147 
6148 	/*
6149 	 * Do not pin apic access page in memory, the MMU notifier
6150 	 * will call us again if it is migrated or swapped out.
6151 	 */
6152 	put_page(page);
6153 }
6154 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6155 
6156 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6157 					   unsigned long address)
6158 {
6159 	/*
6160 	 * The physical address of apic access page is stored in the VMCS.
6161 	 * Update it when it becomes invalid.
6162 	 */
6163 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6164 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6165 }
6166 
6167 /*
6168  * Returns 1 to let __vcpu_run() continue the guest execution loop without
6169  * exiting to the userspace.  Otherwise, the value will be returned to the
6170  * userspace.
6171  */
6172 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6173 {
6174 	int r;
6175 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6176 		vcpu->run->request_interrupt_window;
6177 	bool req_immediate_exit = false;
6178 
6179 	if (vcpu->requests) {
6180 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6181 			kvm_mmu_unload(vcpu);
6182 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6183 			__kvm_migrate_timers(vcpu);
6184 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6185 			kvm_gen_update_masterclock(vcpu->kvm);
6186 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6187 			kvm_gen_kvmclock_update(vcpu);
6188 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6189 			r = kvm_guest_time_update(vcpu);
6190 			if (unlikely(r))
6191 				goto out;
6192 		}
6193 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6194 			kvm_mmu_sync_roots(vcpu);
6195 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6196 			kvm_vcpu_flush_tlb(vcpu);
6197 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6198 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6199 			r = 0;
6200 			goto out;
6201 		}
6202 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6203 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6204 			r = 0;
6205 			goto out;
6206 		}
6207 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6208 			vcpu->fpu_active = 0;
6209 			kvm_x86_ops->fpu_deactivate(vcpu);
6210 		}
6211 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6212 			/* Page is swapped out. Do synthetic halt */
6213 			vcpu->arch.apf.halted = true;
6214 			r = 1;
6215 			goto out;
6216 		}
6217 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6218 			record_steal_time(vcpu);
6219 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6220 			process_nmi(vcpu);
6221 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6222 			kvm_handle_pmu_event(vcpu);
6223 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6224 			kvm_deliver_pmi(vcpu);
6225 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6226 			vcpu_scan_ioapic(vcpu);
6227 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6228 			kvm_vcpu_reload_apic_access_page(vcpu);
6229 	}
6230 
6231 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6232 		kvm_apic_accept_events(vcpu);
6233 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6234 			r = 1;
6235 			goto out;
6236 		}
6237 
6238 		if (inject_pending_event(vcpu, req_int_win) != 0)
6239 			req_immediate_exit = true;
6240 		/* enable NMI/IRQ window open exits if needed */
6241 		else if (vcpu->arch.nmi_pending)
6242 			kvm_x86_ops->enable_nmi_window(vcpu);
6243 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6244 			kvm_x86_ops->enable_irq_window(vcpu);
6245 
6246 		if (kvm_lapic_enabled(vcpu)) {
6247 			/*
6248 			 * Update architecture specific hints for APIC
6249 			 * virtual interrupt delivery.
6250 			 */
6251 			if (kvm_x86_ops->hwapic_irr_update)
6252 				kvm_x86_ops->hwapic_irr_update(vcpu,
6253 					kvm_lapic_find_highest_irr(vcpu));
6254 			update_cr8_intercept(vcpu);
6255 			kvm_lapic_sync_to_vapic(vcpu);
6256 		}
6257 	}
6258 
6259 	r = kvm_mmu_reload(vcpu);
6260 	if (unlikely(r)) {
6261 		goto cancel_injection;
6262 	}
6263 
6264 	preempt_disable();
6265 
6266 	kvm_x86_ops->prepare_guest_switch(vcpu);
6267 	if (vcpu->fpu_active)
6268 		kvm_load_guest_fpu(vcpu);
6269 	kvm_load_guest_xcr0(vcpu);
6270 
6271 	vcpu->mode = IN_GUEST_MODE;
6272 
6273 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6274 
6275 	/* We should set ->mode before check ->requests,
6276 	 * see the comment in make_all_cpus_request.
6277 	 */
6278 	smp_mb__after_srcu_read_unlock();
6279 
6280 	local_irq_disable();
6281 
6282 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6283 	    || need_resched() || signal_pending(current)) {
6284 		vcpu->mode = OUTSIDE_GUEST_MODE;
6285 		smp_wmb();
6286 		local_irq_enable();
6287 		preempt_enable();
6288 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6289 		r = 1;
6290 		goto cancel_injection;
6291 	}
6292 
6293 	if (req_immediate_exit)
6294 		smp_send_reschedule(vcpu->cpu);
6295 
6296 	kvm_guest_enter();
6297 
6298 	if (unlikely(vcpu->arch.switch_db_regs)) {
6299 		set_debugreg(0, 7);
6300 		set_debugreg(vcpu->arch.eff_db[0], 0);
6301 		set_debugreg(vcpu->arch.eff_db[1], 1);
6302 		set_debugreg(vcpu->arch.eff_db[2], 2);
6303 		set_debugreg(vcpu->arch.eff_db[3], 3);
6304 		set_debugreg(vcpu->arch.dr6, 6);
6305 	}
6306 
6307 	trace_kvm_entry(vcpu->vcpu_id);
6308 	wait_lapic_expire(vcpu);
6309 	kvm_x86_ops->run(vcpu);
6310 
6311 	/*
6312 	 * Do this here before restoring debug registers on the host.  And
6313 	 * since we do this before handling the vmexit, a DR access vmexit
6314 	 * can (a) read the correct value of the debug registers, (b) set
6315 	 * KVM_DEBUGREG_WONT_EXIT again.
6316 	 */
6317 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6318 		int i;
6319 
6320 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6321 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6322 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6323 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6324 	}
6325 
6326 	/*
6327 	 * If the guest has used debug registers, at least dr7
6328 	 * will be disabled while returning to the host.
6329 	 * If we don't have active breakpoints in the host, we don't
6330 	 * care about the messed up debug address registers. But if
6331 	 * we have some of them active, restore the old state.
6332 	 */
6333 	if (hw_breakpoint_active())
6334 		hw_breakpoint_restore();
6335 
6336 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6337 							   native_read_tsc());
6338 
6339 	vcpu->mode = OUTSIDE_GUEST_MODE;
6340 	smp_wmb();
6341 
6342 	/* Interrupt is enabled by handle_external_intr() */
6343 	kvm_x86_ops->handle_external_intr(vcpu);
6344 
6345 	++vcpu->stat.exits;
6346 
6347 	/*
6348 	 * We must have an instruction between local_irq_enable() and
6349 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6350 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6351 	 * But we need to prevent reordering, hence this barrier():
6352 	 */
6353 	barrier();
6354 
6355 	kvm_guest_exit();
6356 
6357 	preempt_enable();
6358 
6359 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6360 
6361 	/*
6362 	 * Profile KVM exit RIPs:
6363 	 */
6364 	if (unlikely(prof_on == KVM_PROFILING)) {
6365 		unsigned long rip = kvm_rip_read(vcpu);
6366 		profile_hit(KVM_PROFILING, (void *)rip);
6367 	}
6368 
6369 	if (unlikely(vcpu->arch.tsc_always_catchup))
6370 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6371 
6372 	if (vcpu->arch.apic_attention)
6373 		kvm_lapic_sync_from_vapic(vcpu);
6374 
6375 	r = kvm_x86_ops->handle_exit(vcpu);
6376 	return r;
6377 
6378 cancel_injection:
6379 	kvm_x86_ops->cancel_injection(vcpu);
6380 	if (unlikely(vcpu->arch.apic_attention))
6381 		kvm_lapic_sync_from_vapic(vcpu);
6382 out:
6383 	return r;
6384 }
6385 
6386 
6387 static int __vcpu_run(struct kvm_vcpu *vcpu)
6388 {
6389 	int r;
6390 	struct kvm *kvm = vcpu->kvm;
6391 
6392 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6393 
6394 	r = 1;
6395 	while (r > 0) {
6396 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6397 		    !vcpu->arch.apf.halted)
6398 			r = vcpu_enter_guest(vcpu);
6399 		else {
6400 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6401 			kvm_vcpu_block(vcpu);
6402 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6403 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6404 				kvm_apic_accept_events(vcpu);
6405 				switch(vcpu->arch.mp_state) {
6406 				case KVM_MP_STATE_HALTED:
6407 					vcpu->arch.pv.pv_unhalted = false;
6408 					vcpu->arch.mp_state =
6409 						KVM_MP_STATE_RUNNABLE;
6410 				case KVM_MP_STATE_RUNNABLE:
6411 					vcpu->arch.apf.halted = false;
6412 					break;
6413 				case KVM_MP_STATE_INIT_RECEIVED:
6414 					break;
6415 				default:
6416 					r = -EINTR;
6417 					break;
6418 				}
6419 			}
6420 		}
6421 
6422 		if (r <= 0)
6423 			break;
6424 
6425 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6426 		if (kvm_cpu_has_pending_timer(vcpu))
6427 			kvm_inject_pending_timer_irqs(vcpu);
6428 
6429 		if (dm_request_for_irq_injection(vcpu)) {
6430 			r = -EINTR;
6431 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6432 			++vcpu->stat.request_irq_exits;
6433 		}
6434 
6435 		kvm_check_async_pf_completion(vcpu);
6436 
6437 		if (signal_pending(current)) {
6438 			r = -EINTR;
6439 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6440 			++vcpu->stat.signal_exits;
6441 		}
6442 		if (need_resched()) {
6443 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6444 			cond_resched();
6445 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6446 		}
6447 	}
6448 
6449 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6450 
6451 	return r;
6452 }
6453 
6454 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6455 {
6456 	int r;
6457 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6458 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6459 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6460 	if (r != EMULATE_DONE)
6461 		return 0;
6462 	return 1;
6463 }
6464 
6465 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6466 {
6467 	BUG_ON(!vcpu->arch.pio.count);
6468 
6469 	return complete_emulated_io(vcpu);
6470 }
6471 
6472 /*
6473  * Implements the following, as a state machine:
6474  *
6475  * read:
6476  *   for each fragment
6477  *     for each mmio piece in the fragment
6478  *       write gpa, len
6479  *       exit
6480  *       copy data
6481  *   execute insn
6482  *
6483  * write:
6484  *   for each fragment
6485  *     for each mmio piece in the fragment
6486  *       write gpa, len
6487  *       copy data
6488  *       exit
6489  */
6490 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6491 {
6492 	struct kvm_run *run = vcpu->run;
6493 	struct kvm_mmio_fragment *frag;
6494 	unsigned len;
6495 
6496 	BUG_ON(!vcpu->mmio_needed);
6497 
6498 	/* Complete previous fragment */
6499 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6500 	len = min(8u, frag->len);
6501 	if (!vcpu->mmio_is_write)
6502 		memcpy(frag->data, run->mmio.data, len);
6503 
6504 	if (frag->len <= 8) {
6505 		/* Switch to the next fragment. */
6506 		frag++;
6507 		vcpu->mmio_cur_fragment++;
6508 	} else {
6509 		/* Go forward to the next mmio piece. */
6510 		frag->data += len;
6511 		frag->gpa += len;
6512 		frag->len -= len;
6513 	}
6514 
6515 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6516 		vcpu->mmio_needed = 0;
6517 
6518 		/* FIXME: return into emulator if single-stepping.  */
6519 		if (vcpu->mmio_is_write)
6520 			return 1;
6521 		vcpu->mmio_read_completed = 1;
6522 		return complete_emulated_io(vcpu);
6523 	}
6524 
6525 	run->exit_reason = KVM_EXIT_MMIO;
6526 	run->mmio.phys_addr = frag->gpa;
6527 	if (vcpu->mmio_is_write)
6528 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6529 	run->mmio.len = min(8u, frag->len);
6530 	run->mmio.is_write = vcpu->mmio_is_write;
6531 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6532 	return 0;
6533 }
6534 
6535 
6536 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6537 {
6538 	int r;
6539 	sigset_t sigsaved;
6540 
6541 	if (!tsk_used_math(current) && init_fpu(current))
6542 		return -ENOMEM;
6543 
6544 	if (vcpu->sigset_active)
6545 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6546 
6547 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6548 		kvm_vcpu_block(vcpu);
6549 		kvm_apic_accept_events(vcpu);
6550 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6551 		r = -EAGAIN;
6552 		goto out;
6553 	}
6554 
6555 	/* re-sync apic's tpr */
6556 	if (!irqchip_in_kernel(vcpu->kvm)) {
6557 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6558 			r = -EINVAL;
6559 			goto out;
6560 		}
6561 	}
6562 
6563 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6564 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6565 		vcpu->arch.complete_userspace_io = NULL;
6566 		r = cui(vcpu);
6567 		if (r <= 0)
6568 			goto out;
6569 	} else
6570 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6571 
6572 	r = __vcpu_run(vcpu);
6573 
6574 out:
6575 	post_kvm_run_save(vcpu);
6576 	if (vcpu->sigset_active)
6577 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6578 
6579 	return r;
6580 }
6581 
6582 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6583 {
6584 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6585 		/*
6586 		 * We are here if userspace calls get_regs() in the middle of
6587 		 * instruction emulation. Registers state needs to be copied
6588 		 * back from emulation context to vcpu. Userspace shouldn't do
6589 		 * that usually, but some bad designed PV devices (vmware
6590 		 * backdoor interface) need this to work
6591 		 */
6592 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6593 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6594 	}
6595 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6596 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6597 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6598 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6599 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6600 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6601 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6602 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6603 #ifdef CONFIG_X86_64
6604 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6605 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6606 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6607 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6608 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6609 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6610 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6611 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6612 #endif
6613 
6614 	regs->rip = kvm_rip_read(vcpu);
6615 	regs->rflags = kvm_get_rflags(vcpu);
6616 
6617 	return 0;
6618 }
6619 
6620 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6621 {
6622 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6623 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6624 
6625 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6626 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6627 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6628 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6629 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6630 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6631 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6632 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6633 #ifdef CONFIG_X86_64
6634 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6635 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6636 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6637 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6638 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6639 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6640 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6641 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6642 #endif
6643 
6644 	kvm_rip_write(vcpu, regs->rip);
6645 	kvm_set_rflags(vcpu, regs->rflags);
6646 
6647 	vcpu->arch.exception.pending = false;
6648 
6649 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6650 
6651 	return 0;
6652 }
6653 
6654 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6655 {
6656 	struct kvm_segment cs;
6657 
6658 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6659 	*db = cs.db;
6660 	*l = cs.l;
6661 }
6662 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6663 
6664 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6665 				  struct kvm_sregs *sregs)
6666 {
6667 	struct desc_ptr dt;
6668 
6669 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6670 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6671 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6672 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6673 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6674 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6675 
6676 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6677 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6678 
6679 	kvm_x86_ops->get_idt(vcpu, &dt);
6680 	sregs->idt.limit = dt.size;
6681 	sregs->idt.base = dt.address;
6682 	kvm_x86_ops->get_gdt(vcpu, &dt);
6683 	sregs->gdt.limit = dt.size;
6684 	sregs->gdt.base = dt.address;
6685 
6686 	sregs->cr0 = kvm_read_cr0(vcpu);
6687 	sregs->cr2 = vcpu->arch.cr2;
6688 	sregs->cr3 = kvm_read_cr3(vcpu);
6689 	sregs->cr4 = kvm_read_cr4(vcpu);
6690 	sregs->cr8 = kvm_get_cr8(vcpu);
6691 	sregs->efer = vcpu->arch.efer;
6692 	sregs->apic_base = kvm_get_apic_base(vcpu);
6693 
6694 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6695 
6696 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6697 		set_bit(vcpu->arch.interrupt.nr,
6698 			(unsigned long *)sregs->interrupt_bitmap);
6699 
6700 	return 0;
6701 }
6702 
6703 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6704 				    struct kvm_mp_state *mp_state)
6705 {
6706 	kvm_apic_accept_events(vcpu);
6707 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6708 					vcpu->arch.pv.pv_unhalted)
6709 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6710 	else
6711 		mp_state->mp_state = vcpu->arch.mp_state;
6712 
6713 	return 0;
6714 }
6715 
6716 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6717 				    struct kvm_mp_state *mp_state)
6718 {
6719 	if (!kvm_vcpu_has_lapic(vcpu) &&
6720 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6721 		return -EINVAL;
6722 
6723 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6724 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6725 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6726 	} else
6727 		vcpu->arch.mp_state = mp_state->mp_state;
6728 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6729 	return 0;
6730 }
6731 
6732 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6733 		    int reason, bool has_error_code, u32 error_code)
6734 {
6735 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6736 	int ret;
6737 
6738 	init_emulate_ctxt(vcpu);
6739 
6740 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6741 				   has_error_code, error_code);
6742 
6743 	if (ret)
6744 		return EMULATE_FAIL;
6745 
6746 	kvm_rip_write(vcpu, ctxt->eip);
6747 	kvm_set_rflags(vcpu, ctxt->eflags);
6748 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6749 	return EMULATE_DONE;
6750 }
6751 EXPORT_SYMBOL_GPL(kvm_task_switch);
6752 
6753 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6754 				  struct kvm_sregs *sregs)
6755 {
6756 	struct msr_data apic_base_msr;
6757 	int mmu_reset_needed = 0;
6758 	int pending_vec, max_bits, idx;
6759 	struct desc_ptr dt;
6760 
6761 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6762 		return -EINVAL;
6763 
6764 	dt.size = sregs->idt.limit;
6765 	dt.address = sregs->idt.base;
6766 	kvm_x86_ops->set_idt(vcpu, &dt);
6767 	dt.size = sregs->gdt.limit;
6768 	dt.address = sregs->gdt.base;
6769 	kvm_x86_ops->set_gdt(vcpu, &dt);
6770 
6771 	vcpu->arch.cr2 = sregs->cr2;
6772 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6773 	vcpu->arch.cr3 = sregs->cr3;
6774 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6775 
6776 	kvm_set_cr8(vcpu, sregs->cr8);
6777 
6778 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6779 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6780 	apic_base_msr.data = sregs->apic_base;
6781 	apic_base_msr.host_initiated = true;
6782 	kvm_set_apic_base(vcpu, &apic_base_msr);
6783 
6784 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6785 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6786 	vcpu->arch.cr0 = sregs->cr0;
6787 
6788 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6789 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6790 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6791 		kvm_update_cpuid(vcpu);
6792 
6793 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6794 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6795 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6796 		mmu_reset_needed = 1;
6797 	}
6798 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6799 
6800 	if (mmu_reset_needed)
6801 		kvm_mmu_reset_context(vcpu);
6802 
6803 	max_bits = KVM_NR_INTERRUPTS;
6804 	pending_vec = find_first_bit(
6805 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6806 	if (pending_vec < max_bits) {
6807 		kvm_queue_interrupt(vcpu, pending_vec, false);
6808 		pr_debug("Set back pending irq %d\n", pending_vec);
6809 	}
6810 
6811 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6812 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6813 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6814 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6815 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6816 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6817 
6818 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6819 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6820 
6821 	update_cr8_intercept(vcpu);
6822 
6823 	/* Older userspace won't unhalt the vcpu on reset. */
6824 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6825 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6826 	    !is_protmode(vcpu))
6827 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6828 
6829 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6830 
6831 	return 0;
6832 }
6833 
6834 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6835 					struct kvm_guest_debug *dbg)
6836 {
6837 	unsigned long rflags;
6838 	int i, r;
6839 
6840 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6841 		r = -EBUSY;
6842 		if (vcpu->arch.exception.pending)
6843 			goto out;
6844 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6845 			kvm_queue_exception(vcpu, DB_VECTOR);
6846 		else
6847 			kvm_queue_exception(vcpu, BP_VECTOR);
6848 	}
6849 
6850 	/*
6851 	 * Read rflags as long as potentially injected trace flags are still
6852 	 * filtered out.
6853 	 */
6854 	rflags = kvm_get_rflags(vcpu);
6855 
6856 	vcpu->guest_debug = dbg->control;
6857 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6858 		vcpu->guest_debug = 0;
6859 
6860 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6861 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6862 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6863 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6864 	} else {
6865 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6866 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6867 	}
6868 	kvm_update_dr7(vcpu);
6869 
6870 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6871 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6872 			get_segment_base(vcpu, VCPU_SREG_CS);
6873 
6874 	/*
6875 	 * Trigger an rflags update that will inject or remove the trace
6876 	 * flags.
6877 	 */
6878 	kvm_set_rflags(vcpu, rflags);
6879 
6880 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6881 
6882 	r = 0;
6883 
6884 out:
6885 
6886 	return r;
6887 }
6888 
6889 /*
6890  * Translate a guest virtual address to a guest physical address.
6891  */
6892 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6893 				    struct kvm_translation *tr)
6894 {
6895 	unsigned long vaddr = tr->linear_address;
6896 	gpa_t gpa;
6897 	int idx;
6898 
6899 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6900 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6901 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6902 	tr->physical_address = gpa;
6903 	tr->valid = gpa != UNMAPPED_GVA;
6904 	tr->writeable = 1;
6905 	tr->usermode = 0;
6906 
6907 	return 0;
6908 }
6909 
6910 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6911 {
6912 	struct i387_fxsave_struct *fxsave =
6913 			&vcpu->arch.guest_fpu.state->fxsave;
6914 
6915 	memcpy(fpu->fpr, fxsave->st_space, 128);
6916 	fpu->fcw = fxsave->cwd;
6917 	fpu->fsw = fxsave->swd;
6918 	fpu->ftwx = fxsave->twd;
6919 	fpu->last_opcode = fxsave->fop;
6920 	fpu->last_ip = fxsave->rip;
6921 	fpu->last_dp = fxsave->rdp;
6922 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6923 
6924 	return 0;
6925 }
6926 
6927 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6928 {
6929 	struct i387_fxsave_struct *fxsave =
6930 			&vcpu->arch.guest_fpu.state->fxsave;
6931 
6932 	memcpy(fxsave->st_space, fpu->fpr, 128);
6933 	fxsave->cwd = fpu->fcw;
6934 	fxsave->swd = fpu->fsw;
6935 	fxsave->twd = fpu->ftwx;
6936 	fxsave->fop = fpu->last_opcode;
6937 	fxsave->rip = fpu->last_ip;
6938 	fxsave->rdp = fpu->last_dp;
6939 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6940 
6941 	return 0;
6942 }
6943 
6944 int fx_init(struct kvm_vcpu *vcpu)
6945 {
6946 	int err;
6947 
6948 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6949 	if (err)
6950 		return err;
6951 
6952 	fpu_finit(&vcpu->arch.guest_fpu);
6953 	if (cpu_has_xsaves)
6954 		vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
6955 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
6956 
6957 	/*
6958 	 * Ensure guest xcr0 is valid for loading
6959 	 */
6960 	vcpu->arch.xcr0 = XSTATE_FP;
6961 
6962 	vcpu->arch.cr0 |= X86_CR0_ET;
6963 
6964 	return 0;
6965 }
6966 EXPORT_SYMBOL_GPL(fx_init);
6967 
6968 static void fx_free(struct kvm_vcpu *vcpu)
6969 {
6970 	fpu_free(&vcpu->arch.guest_fpu);
6971 }
6972 
6973 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6974 {
6975 	if (vcpu->guest_fpu_loaded)
6976 		return;
6977 
6978 	/*
6979 	 * Restore all possible states in the guest,
6980 	 * and assume host would use all available bits.
6981 	 * Guest xcr0 would be loaded later.
6982 	 */
6983 	kvm_put_guest_xcr0(vcpu);
6984 	vcpu->guest_fpu_loaded = 1;
6985 	__kernel_fpu_begin();
6986 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6987 	trace_kvm_fpu(1);
6988 }
6989 
6990 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6991 {
6992 	kvm_put_guest_xcr0(vcpu);
6993 
6994 	if (!vcpu->guest_fpu_loaded)
6995 		return;
6996 
6997 	vcpu->guest_fpu_loaded = 0;
6998 	fpu_save_init(&vcpu->arch.guest_fpu);
6999 	__kernel_fpu_end();
7000 	++vcpu->stat.fpu_reload;
7001 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7002 	trace_kvm_fpu(0);
7003 }
7004 
7005 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7006 {
7007 	kvmclock_reset(vcpu);
7008 
7009 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7010 	fx_free(vcpu);
7011 	kvm_x86_ops->vcpu_free(vcpu);
7012 }
7013 
7014 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7015 						unsigned int id)
7016 {
7017 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7018 		printk_once(KERN_WARNING
7019 		"kvm: SMP vm created on host with unstable TSC; "
7020 		"guest TSC will not be reliable\n");
7021 	return kvm_x86_ops->vcpu_create(kvm, id);
7022 }
7023 
7024 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7025 {
7026 	int r;
7027 
7028 	vcpu->arch.mtrr_state.have_fixed = 1;
7029 	r = vcpu_load(vcpu);
7030 	if (r)
7031 		return r;
7032 	kvm_vcpu_reset(vcpu);
7033 	kvm_mmu_setup(vcpu);
7034 	vcpu_put(vcpu);
7035 
7036 	return r;
7037 }
7038 
7039 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7040 {
7041 	struct msr_data msr;
7042 	struct kvm *kvm = vcpu->kvm;
7043 
7044 	if (vcpu_load(vcpu))
7045 		return;
7046 	msr.data = 0x0;
7047 	msr.index = MSR_IA32_TSC;
7048 	msr.host_initiated = true;
7049 	kvm_write_tsc(vcpu, &msr);
7050 	vcpu_put(vcpu);
7051 
7052 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7053 					KVMCLOCK_SYNC_PERIOD);
7054 }
7055 
7056 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7057 {
7058 	int r;
7059 	vcpu->arch.apf.msr_val = 0;
7060 
7061 	r = vcpu_load(vcpu);
7062 	BUG_ON(r);
7063 	kvm_mmu_unload(vcpu);
7064 	vcpu_put(vcpu);
7065 
7066 	fx_free(vcpu);
7067 	kvm_x86_ops->vcpu_free(vcpu);
7068 }
7069 
7070 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7071 {
7072 	atomic_set(&vcpu->arch.nmi_queued, 0);
7073 	vcpu->arch.nmi_pending = 0;
7074 	vcpu->arch.nmi_injected = false;
7075 	kvm_clear_interrupt_queue(vcpu);
7076 	kvm_clear_exception_queue(vcpu);
7077 
7078 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7079 	vcpu->arch.dr6 = DR6_INIT;
7080 	kvm_update_dr6(vcpu);
7081 	vcpu->arch.dr7 = DR7_FIXED_1;
7082 	kvm_update_dr7(vcpu);
7083 
7084 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7085 	vcpu->arch.apf.msr_val = 0;
7086 	vcpu->arch.st.msr_val = 0;
7087 
7088 	kvmclock_reset(vcpu);
7089 
7090 	kvm_clear_async_pf_completion_queue(vcpu);
7091 	kvm_async_pf_hash_reset(vcpu);
7092 	vcpu->arch.apf.halted = false;
7093 
7094 	kvm_pmu_reset(vcpu);
7095 
7096 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7097 	vcpu->arch.regs_avail = ~0;
7098 	vcpu->arch.regs_dirty = ~0;
7099 
7100 	kvm_x86_ops->vcpu_reset(vcpu);
7101 }
7102 
7103 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7104 {
7105 	struct kvm_segment cs;
7106 
7107 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7108 	cs.selector = vector << 8;
7109 	cs.base = vector << 12;
7110 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7111 	kvm_rip_write(vcpu, 0);
7112 }
7113 
7114 int kvm_arch_hardware_enable(void)
7115 {
7116 	struct kvm *kvm;
7117 	struct kvm_vcpu *vcpu;
7118 	int i;
7119 	int ret;
7120 	u64 local_tsc;
7121 	u64 max_tsc = 0;
7122 	bool stable, backwards_tsc = false;
7123 
7124 	kvm_shared_msr_cpu_online();
7125 	ret = kvm_x86_ops->hardware_enable();
7126 	if (ret != 0)
7127 		return ret;
7128 
7129 	local_tsc = native_read_tsc();
7130 	stable = !check_tsc_unstable();
7131 	list_for_each_entry(kvm, &vm_list, vm_list) {
7132 		kvm_for_each_vcpu(i, vcpu, kvm) {
7133 			if (!stable && vcpu->cpu == smp_processor_id())
7134 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7135 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7136 				backwards_tsc = true;
7137 				if (vcpu->arch.last_host_tsc > max_tsc)
7138 					max_tsc = vcpu->arch.last_host_tsc;
7139 			}
7140 		}
7141 	}
7142 
7143 	/*
7144 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7145 	 * platforms that reset TSC during suspend or hibernate actions, but
7146 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7147 	 * detect that condition here, which happens early in CPU bringup,
7148 	 * before any KVM threads can be running.  Unfortunately, we can't
7149 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7150 	 * enough into CPU bringup that we know how much real time has actually
7151 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7152 	 * variables that haven't been updated yet.
7153 	 *
7154 	 * So we simply find the maximum observed TSC above, then record the
7155 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7156 	 * the adjustment will be applied.  Note that we accumulate
7157 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7158 	 * gets a chance to run again.  In the event that no KVM threads get a
7159 	 * chance to run, we will miss the entire elapsed period, as we'll have
7160 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7161 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7162 	 * uniform across all VCPUs (not to mention the scenario is extremely
7163 	 * unlikely). It is possible that a second hibernate recovery happens
7164 	 * much faster than a first, causing the observed TSC here to be
7165 	 * smaller; this would require additional padding adjustment, which is
7166 	 * why we set last_host_tsc to the local tsc observed here.
7167 	 *
7168 	 * N.B. - this code below runs only on platforms with reliable TSC,
7169 	 * as that is the only way backwards_tsc is set above.  Also note
7170 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7171 	 * have the same delta_cyc adjustment applied if backwards_tsc
7172 	 * is detected.  Note further, this adjustment is only done once,
7173 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7174 	 * called multiple times (one for each physical CPU bringup).
7175 	 *
7176 	 * Platforms with unreliable TSCs don't have to deal with this, they
7177 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7178 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7179 	 * guarantee that they stay in perfect synchronization.
7180 	 */
7181 	if (backwards_tsc) {
7182 		u64 delta_cyc = max_tsc - local_tsc;
7183 		backwards_tsc_observed = true;
7184 		list_for_each_entry(kvm, &vm_list, vm_list) {
7185 			kvm_for_each_vcpu(i, vcpu, kvm) {
7186 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7187 				vcpu->arch.last_host_tsc = local_tsc;
7188 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7189 			}
7190 
7191 			/*
7192 			 * We have to disable TSC offset matching.. if you were
7193 			 * booting a VM while issuing an S4 host suspend....
7194 			 * you may have some problem.  Solving this issue is
7195 			 * left as an exercise to the reader.
7196 			 */
7197 			kvm->arch.last_tsc_nsec = 0;
7198 			kvm->arch.last_tsc_write = 0;
7199 		}
7200 
7201 	}
7202 	return 0;
7203 }
7204 
7205 void kvm_arch_hardware_disable(void)
7206 {
7207 	kvm_x86_ops->hardware_disable();
7208 	drop_user_return_notifiers();
7209 }
7210 
7211 int kvm_arch_hardware_setup(void)
7212 {
7213 	return kvm_x86_ops->hardware_setup();
7214 }
7215 
7216 void kvm_arch_hardware_unsetup(void)
7217 {
7218 	kvm_x86_ops->hardware_unsetup();
7219 }
7220 
7221 void kvm_arch_check_processor_compat(void *rtn)
7222 {
7223 	kvm_x86_ops->check_processor_compatibility(rtn);
7224 }
7225 
7226 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7227 {
7228 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7229 }
7230 
7231 struct static_key kvm_no_apic_vcpu __read_mostly;
7232 
7233 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7234 {
7235 	struct page *page;
7236 	struct kvm *kvm;
7237 	int r;
7238 
7239 	BUG_ON(vcpu->kvm == NULL);
7240 	kvm = vcpu->kvm;
7241 
7242 	vcpu->arch.pv.pv_unhalted = false;
7243 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7244 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7245 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7246 	else
7247 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7248 
7249 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7250 	if (!page) {
7251 		r = -ENOMEM;
7252 		goto fail;
7253 	}
7254 	vcpu->arch.pio_data = page_address(page);
7255 
7256 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7257 
7258 	r = kvm_mmu_create(vcpu);
7259 	if (r < 0)
7260 		goto fail_free_pio_data;
7261 
7262 	if (irqchip_in_kernel(kvm)) {
7263 		r = kvm_create_lapic(vcpu);
7264 		if (r < 0)
7265 			goto fail_mmu_destroy;
7266 	} else
7267 		static_key_slow_inc(&kvm_no_apic_vcpu);
7268 
7269 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7270 				       GFP_KERNEL);
7271 	if (!vcpu->arch.mce_banks) {
7272 		r = -ENOMEM;
7273 		goto fail_free_lapic;
7274 	}
7275 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7276 
7277 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7278 		r = -ENOMEM;
7279 		goto fail_free_mce_banks;
7280 	}
7281 
7282 	r = fx_init(vcpu);
7283 	if (r)
7284 		goto fail_free_wbinvd_dirty_mask;
7285 
7286 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7287 	vcpu->arch.pv_time_enabled = false;
7288 
7289 	vcpu->arch.guest_supported_xcr0 = 0;
7290 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7291 
7292 	kvm_async_pf_hash_reset(vcpu);
7293 	kvm_pmu_init(vcpu);
7294 
7295 	return 0;
7296 fail_free_wbinvd_dirty_mask:
7297 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7298 fail_free_mce_banks:
7299 	kfree(vcpu->arch.mce_banks);
7300 fail_free_lapic:
7301 	kvm_free_lapic(vcpu);
7302 fail_mmu_destroy:
7303 	kvm_mmu_destroy(vcpu);
7304 fail_free_pio_data:
7305 	free_page((unsigned long)vcpu->arch.pio_data);
7306 fail:
7307 	return r;
7308 }
7309 
7310 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7311 {
7312 	int idx;
7313 
7314 	kvm_pmu_destroy(vcpu);
7315 	kfree(vcpu->arch.mce_banks);
7316 	kvm_free_lapic(vcpu);
7317 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7318 	kvm_mmu_destroy(vcpu);
7319 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7320 	free_page((unsigned long)vcpu->arch.pio_data);
7321 	if (!irqchip_in_kernel(vcpu->kvm))
7322 		static_key_slow_dec(&kvm_no_apic_vcpu);
7323 }
7324 
7325 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7326 {
7327 	kvm_x86_ops->sched_in(vcpu, cpu);
7328 }
7329 
7330 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7331 {
7332 	if (type)
7333 		return -EINVAL;
7334 
7335 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7336 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7337 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7338 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7339 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7340 
7341 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7342 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7343 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7344 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7345 		&kvm->arch.irq_sources_bitmap);
7346 
7347 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7348 	mutex_init(&kvm->arch.apic_map_lock);
7349 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7350 
7351 	pvclock_update_vm_gtod_copy(kvm);
7352 
7353 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7354 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7355 
7356 	return 0;
7357 }
7358 
7359 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7360 {
7361 	int r;
7362 	r = vcpu_load(vcpu);
7363 	BUG_ON(r);
7364 	kvm_mmu_unload(vcpu);
7365 	vcpu_put(vcpu);
7366 }
7367 
7368 static void kvm_free_vcpus(struct kvm *kvm)
7369 {
7370 	unsigned int i;
7371 	struct kvm_vcpu *vcpu;
7372 
7373 	/*
7374 	 * Unpin any mmu pages first.
7375 	 */
7376 	kvm_for_each_vcpu(i, vcpu, kvm) {
7377 		kvm_clear_async_pf_completion_queue(vcpu);
7378 		kvm_unload_vcpu_mmu(vcpu);
7379 	}
7380 	kvm_for_each_vcpu(i, vcpu, kvm)
7381 		kvm_arch_vcpu_free(vcpu);
7382 
7383 	mutex_lock(&kvm->lock);
7384 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7385 		kvm->vcpus[i] = NULL;
7386 
7387 	atomic_set(&kvm->online_vcpus, 0);
7388 	mutex_unlock(&kvm->lock);
7389 }
7390 
7391 void kvm_arch_sync_events(struct kvm *kvm)
7392 {
7393 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7394 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7395 	kvm_free_all_assigned_devices(kvm);
7396 	kvm_free_pit(kvm);
7397 }
7398 
7399 void kvm_arch_destroy_vm(struct kvm *kvm)
7400 {
7401 	if (current->mm == kvm->mm) {
7402 		/*
7403 		 * Free memory regions allocated on behalf of userspace,
7404 		 * unless the the memory map has changed due to process exit
7405 		 * or fd copying.
7406 		 */
7407 		struct kvm_userspace_memory_region mem;
7408 		memset(&mem, 0, sizeof(mem));
7409 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7410 		kvm_set_memory_region(kvm, &mem);
7411 
7412 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7413 		kvm_set_memory_region(kvm, &mem);
7414 
7415 		mem.slot = TSS_PRIVATE_MEMSLOT;
7416 		kvm_set_memory_region(kvm, &mem);
7417 	}
7418 	kvm_iommu_unmap_guest(kvm);
7419 	kfree(kvm->arch.vpic);
7420 	kfree(kvm->arch.vioapic);
7421 	kvm_free_vcpus(kvm);
7422 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7423 }
7424 
7425 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7426 			   struct kvm_memory_slot *dont)
7427 {
7428 	int i;
7429 
7430 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7431 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7432 			kvm_kvfree(free->arch.rmap[i]);
7433 			free->arch.rmap[i] = NULL;
7434 		}
7435 		if (i == 0)
7436 			continue;
7437 
7438 		if (!dont || free->arch.lpage_info[i - 1] !=
7439 			     dont->arch.lpage_info[i - 1]) {
7440 			kvm_kvfree(free->arch.lpage_info[i - 1]);
7441 			free->arch.lpage_info[i - 1] = NULL;
7442 		}
7443 	}
7444 }
7445 
7446 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7447 			    unsigned long npages)
7448 {
7449 	int i;
7450 
7451 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7452 		unsigned long ugfn;
7453 		int lpages;
7454 		int level = i + 1;
7455 
7456 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7457 				      slot->base_gfn, level) + 1;
7458 
7459 		slot->arch.rmap[i] =
7460 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7461 		if (!slot->arch.rmap[i])
7462 			goto out_free;
7463 		if (i == 0)
7464 			continue;
7465 
7466 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7467 					sizeof(*slot->arch.lpage_info[i - 1]));
7468 		if (!slot->arch.lpage_info[i - 1])
7469 			goto out_free;
7470 
7471 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7472 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7473 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7474 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7475 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7476 		/*
7477 		 * If the gfn and userspace address are not aligned wrt each
7478 		 * other, or if explicitly asked to, disable large page
7479 		 * support for this slot
7480 		 */
7481 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7482 		    !kvm_largepages_enabled()) {
7483 			unsigned long j;
7484 
7485 			for (j = 0; j < lpages; ++j)
7486 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7487 		}
7488 	}
7489 
7490 	return 0;
7491 
7492 out_free:
7493 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7494 		kvm_kvfree(slot->arch.rmap[i]);
7495 		slot->arch.rmap[i] = NULL;
7496 		if (i == 0)
7497 			continue;
7498 
7499 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
7500 		slot->arch.lpage_info[i - 1] = NULL;
7501 	}
7502 	return -ENOMEM;
7503 }
7504 
7505 void kvm_arch_memslots_updated(struct kvm *kvm)
7506 {
7507 	/*
7508 	 * memslots->generation has been incremented.
7509 	 * mmio generation may have reached its maximum value.
7510 	 */
7511 	kvm_mmu_invalidate_mmio_sptes(kvm);
7512 }
7513 
7514 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7515 				struct kvm_memory_slot *memslot,
7516 				struct kvm_userspace_memory_region *mem,
7517 				enum kvm_mr_change change)
7518 {
7519 	/*
7520 	 * Only private memory slots need to be mapped here since
7521 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7522 	 */
7523 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7524 		unsigned long userspace_addr;
7525 
7526 		/*
7527 		 * MAP_SHARED to prevent internal slot pages from being moved
7528 		 * by fork()/COW.
7529 		 */
7530 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7531 					 PROT_READ | PROT_WRITE,
7532 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7533 
7534 		if (IS_ERR((void *)userspace_addr))
7535 			return PTR_ERR((void *)userspace_addr);
7536 
7537 		memslot->userspace_addr = userspace_addr;
7538 	}
7539 
7540 	return 0;
7541 }
7542 
7543 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7544 				     struct kvm_memory_slot *new)
7545 {
7546 	/* Still write protect RO slot */
7547 	if (new->flags & KVM_MEM_READONLY) {
7548 		kvm_mmu_slot_remove_write_access(kvm, new);
7549 		return;
7550 	}
7551 
7552 	/*
7553 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
7554 	 *
7555 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
7556 	 *
7557 	 *  - KVM_MR_CREATE with dirty logging is disabled
7558 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7559 	 *
7560 	 * The reason is, in case of PML, we need to set D-bit for any slots
7561 	 * with dirty logging disabled in order to eliminate unnecessary GPA
7562 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
7563 	 * guarantees leaving PML enabled during guest's lifetime won't have
7564 	 * any additonal overhead from PML when guest is running with dirty
7565 	 * logging disabled for memory slots.
7566 	 *
7567 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7568 	 * to dirty logging mode.
7569 	 *
7570 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7571 	 *
7572 	 * In case of write protect:
7573 	 *
7574 	 * Write protect all pages for dirty logging.
7575 	 *
7576 	 * All the sptes including the large sptes which point to this
7577 	 * slot are set to readonly. We can not create any new large
7578 	 * spte on this slot until the end of the logging.
7579 	 *
7580 	 * See the comments in fast_page_fault().
7581 	 */
7582 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7583 		if (kvm_x86_ops->slot_enable_log_dirty)
7584 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7585 		else
7586 			kvm_mmu_slot_remove_write_access(kvm, new);
7587 	} else {
7588 		if (kvm_x86_ops->slot_disable_log_dirty)
7589 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7590 	}
7591 }
7592 
7593 void kvm_arch_commit_memory_region(struct kvm *kvm,
7594 				struct kvm_userspace_memory_region *mem,
7595 				const struct kvm_memory_slot *old,
7596 				enum kvm_mr_change change)
7597 {
7598 	struct kvm_memory_slot *new;
7599 	int nr_mmu_pages = 0;
7600 
7601 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7602 		int ret;
7603 
7604 		ret = vm_munmap(old->userspace_addr,
7605 				old->npages * PAGE_SIZE);
7606 		if (ret < 0)
7607 			printk(KERN_WARNING
7608 			       "kvm_vm_ioctl_set_memory_region: "
7609 			       "failed to munmap memory\n");
7610 	}
7611 
7612 	if (!kvm->arch.n_requested_mmu_pages)
7613 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7614 
7615 	if (nr_mmu_pages)
7616 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7617 
7618 	/* It's OK to get 'new' slot here as it has already been installed */
7619 	new = id_to_memslot(kvm->memslots, mem->slot);
7620 
7621 	/*
7622 	 * Set up write protection and/or dirty logging for the new slot.
7623 	 *
7624 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7625 	 * been zapped so no dirty logging staff is needed for old slot. For
7626 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7627 	 * new and it's also covered when dealing with the new slot.
7628 	 */
7629 	if (change != KVM_MR_DELETE)
7630 		kvm_mmu_slot_apply_flags(kvm, new);
7631 }
7632 
7633 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7634 {
7635 	kvm_mmu_invalidate_zap_all_pages(kvm);
7636 }
7637 
7638 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7639 				   struct kvm_memory_slot *slot)
7640 {
7641 	kvm_mmu_invalidate_zap_all_pages(kvm);
7642 }
7643 
7644 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7645 {
7646 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7647 		kvm_x86_ops->check_nested_events(vcpu, false);
7648 
7649 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7650 		!vcpu->arch.apf.halted)
7651 		|| !list_empty_careful(&vcpu->async_pf.done)
7652 		|| kvm_apic_has_events(vcpu)
7653 		|| vcpu->arch.pv.pv_unhalted
7654 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7655 		(kvm_arch_interrupt_allowed(vcpu) &&
7656 		 kvm_cpu_has_interrupt(vcpu));
7657 }
7658 
7659 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7660 {
7661 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7662 }
7663 
7664 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7665 {
7666 	return kvm_x86_ops->interrupt_allowed(vcpu);
7667 }
7668 
7669 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7670 {
7671 	if (is_64_bit_mode(vcpu))
7672 		return kvm_rip_read(vcpu);
7673 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7674 		     kvm_rip_read(vcpu));
7675 }
7676 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7677 
7678 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7679 {
7680 	return kvm_get_linear_rip(vcpu) == linear_rip;
7681 }
7682 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7683 
7684 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7685 {
7686 	unsigned long rflags;
7687 
7688 	rflags = kvm_x86_ops->get_rflags(vcpu);
7689 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7690 		rflags &= ~X86_EFLAGS_TF;
7691 	return rflags;
7692 }
7693 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7694 
7695 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7696 {
7697 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7698 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7699 		rflags |= X86_EFLAGS_TF;
7700 	kvm_x86_ops->set_rflags(vcpu, rflags);
7701 }
7702 
7703 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7704 {
7705 	__kvm_set_rflags(vcpu, rflags);
7706 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7707 }
7708 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7709 
7710 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7711 {
7712 	int r;
7713 
7714 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7715 	      work->wakeup_all)
7716 		return;
7717 
7718 	r = kvm_mmu_reload(vcpu);
7719 	if (unlikely(r))
7720 		return;
7721 
7722 	if (!vcpu->arch.mmu.direct_map &&
7723 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7724 		return;
7725 
7726 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7727 }
7728 
7729 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7730 {
7731 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7732 }
7733 
7734 static inline u32 kvm_async_pf_next_probe(u32 key)
7735 {
7736 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7737 }
7738 
7739 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7740 {
7741 	u32 key = kvm_async_pf_hash_fn(gfn);
7742 
7743 	while (vcpu->arch.apf.gfns[key] != ~0)
7744 		key = kvm_async_pf_next_probe(key);
7745 
7746 	vcpu->arch.apf.gfns[key] = gfn;
7747 }
7748 
7749 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7750 {
7751 	int i;
7752 	u32 key = kvm_async_pf_hash_fn(gfn);
7753 
7754 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7755 		     (vcpu->arch.apf.gfns[key] != gfn &&
7756 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7757 		key = kvm_async_pf_next_probe(key);
7758 
7759 	return key;
7760 }
7761 
7762 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7763 {
7764 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7765 }
7766 
7767 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7768 {
7769 	u32 i, j, k;
7770 
7771 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7772 	while (true) {
7773 		vcpu->arch.apf.gfns[i] = ~0;
7774 		do {
7775 			j = kvm_async_pf_next_probe(j);
7776 			if (vcpu->arch.apf.gfns[j] == ~0)
7777 				return;
7778 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7779 			/*
7780 			 * k lies cyclically in ]i,j]
7781 			 * |    i.k.j |
7782 			 * |....j i.k.| or  |.k..j i...|
7783 			 */
7784 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7785 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7786 		i = j;
7787 	}
7788 }
7789 
7790 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7791 {
7792 
7793 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7794 				      sizeof(val));
7795 }
7796 
7797 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7798 				     struct kvm_async_pf *work)
7799 {
7800 	struct x86_exception fault;
7801 
7802 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7803 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7804 
7805 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7806 	    (vcpu->arch.apf.send_user_only &&
7807 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7808 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7809 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7810 		fault.vector = PF_VECTOR;
7811 		fault.error_code_valid = true;
7812 		fault.error_code = 0;
7813 		fault.nested_page_fault = false;
7814 		fault.address = work->arch.token;
7815 		kvm_inject_page_fault(vcpu, &fault);
7816 	}
7817 }
7818 
7819 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7820 				 struct kvm_async_pf *work)
7821 {
7822 	struct x86_exception fault;
7823 
7824 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7825 	if (work->wakeup_all)
7826 		work->arch.token = ~0; /* broadcast wakeup */
7827 	else
7828 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7829 
7830 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7831 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7832 		fault.vector = PF_VECTOR;
7833 		fault.error_code_valid = true;
7834 		fault.error_code = 0;
7835 		fault.nested_page_fault = false;
7836 		fault.address = work->arch.token;
7837 		kvm_inject_page_fault(vcpu, &fault);
7838 	}
7839 	vcpu->arch.apf.halted = false;
7840 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7841 }
7842 
7843 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7844 {
7845 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7846 		return true;
7847 	else
7848 		return !kvm_event_needs_reinjection(vcpu) &&
7849 			kvm_x86_ops->interrupt_allowed(vcpu);
7850 }
7851 
7852 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7853 {
7854 	atomic_inc(&kvm->arch.noncoherent_dma_count);
7855 }
7856 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7857 
7858 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7859 {
7860 	atomic_dec(&kvm->arch.noncoherent_dma_count);
7861 }
7862 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7863 
7864 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7865 {
7866 	return atomic_read(&kvm->arch.noncoherent_dma_count);
7867 }
7868 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7869 
7870 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7872 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7873 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
7885