xref: /openbmc/linux/arch/x86/kvm/x86.c (revision d4a96be65423296e42091b0b79973b8d446e7798)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 
62 #include <trace/events/kvm.h>
63 
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <linux/kernel_stat.h>
69 #include <asm/fpu/internal.h> /* Ugh! */
70 #include <asm/pvclock.h>
71 #include <asm/div64.h>
72 #include <asm/irq_remapping.h>
73 #include <asm/mshyperv.h>
74 #include <asm/hypervisor.h>
75 #include <asm/tlbflush.h>
76 #include <asm/intel_pt.h>
77 #include <asm/emulate_prefix.h>
78 #include <clocksource/hyperv_timer.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include "trace.h"
82 
83 #define MAX_IO_MSRS 256
84 #define KVM_MAX_MCE_BANKS 32
85 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
86 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
87 
88 #define emul_to_vcpu(ctxt) \
89 	((struct kvm_vcpu *)(ctxt)->vcpu)
90 
91 /* EFER defaults:
92  * - enable syscall per default because its emulated by KVM
93  * - enable LME and LMA per default on 64 bit KVM
94  */
95 #ifdef CONFIG_X86_64
96 static
97 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
98 #else
99 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
100 #endif
101 
102 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
103 
104 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
105                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
106 
107 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
108 static void process_nmi(struct kvm_vcpu *vcpu);
109 static void process_smi(struct kvm_vcpu *vcpu);
110 static void enter_smm(struct kvm_vcpu *vcpu);
111 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
112 static void store_regs(struct kvm_vcpu *vcpu);
113 static int sync_regs(struct kvm_vcpu *vcpu);
114 
115 struct kvm_x86_ops kvm_x86_ops __read_mostly;
116 EXPORT_SYMBOL_GPL(kvm_x86_ops);
117 
118 #define KVM_X86_OP(func)					     \
119 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
120 				*(((struct kvm_x86_ops *)0)->func));
121 #define KVM_X86_OP_NULL KVM_X86_OP
122 #include <asm/kvm-x86-ops.h>
123 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
124 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
125 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
126 
127 static bool __read_mostly ignore_msrs = 0;
128 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
129 
130 bool __read_mostly report_ignored_msrs = true;
131 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
132 EXPORT_SYMBOL_GPL(report_ignored_msrs);
133 
134 unsigned int min_timer_period_us = 200;
135 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
136 
137 static bool __read_mostly kvmclock_periodic_sync = true;
138 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
139 
140 bool __read_mostly kvm_has_tsc_control;
141 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
142 u32  __read_mostly kvm_max_guest_tsc_khz;
143 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
144 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
145 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
146 u64  __read_mostly kvm_max_tsc_scaling_ratio;
147 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
148 u64 __read_mostly kvm_default_tsc_scaling_ratio;
149 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
150 bool __read_mostly kvm_has_bus_lock_exit;
151 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
152 
153 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
154 static u32 __read_mostly tsc_tolerance_ppm = 250;
155 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
156 
157 /*
158  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
159  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
160  * advancement entirely.  Any other value is used as-is and disables adaptive
161  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
162  */
163 static int __read_mostly lapic_timer_advance_ns = -1;
164 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
165 
166 static bool __read_mostly vector_hashing = true;
167 module_param(vector_hashing, bool, S_IRUGO);
168 
169 bool __read_mostly enable_vmware_backdoor = false;
170 module_param(enable_vmware_backdoor, bool, S_IRUGO);
171 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
172 
173 static bool __read_mostly force_emulation_prefix = false;
174 module_param(force_emulation_prefix, bool, S_IRUGO);
175 
176 int __read_mostly pi_inject_timer = -1;
177 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
178 
179 /*
180  * Restoring the host value for MSRs that are only consumed when running in
181  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
182  * returns to userspace, i.e. the kernel can run with the guest's value.
183  */
184 #define KVM_MAX_NR_USER_RETURN_MSRS 16
185 
186 struct kvm_user_return_msrs_global {
187 	int nr;
188 	u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
189 };
190 
191 struct kvm_user_return_msrs {
192 	struct user_return_notifier urn;
193 	bool registered;
194 	struct kvm_user_return_msr_values {
195 		u64 host;
196 		u64 curr;
197 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
198 };
199 
200 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
201 static struct kvm_user_return_msrs __percpu *user_return_msrs;
202 
203 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
204 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
205 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
206 				| XFEATURE_MASK_PKRU)
207 
208 u64 __read_mostly host_efer;
209 EXPORT_SYMBOL_GPL(host_efer);
210 
211 bool __read_mostly allow_smaller_maxphyaddr = 0;
212 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
213 
214 u64 __read_mostly host_xss;
215 EXPORT_SYMBOL_GPL(host_xss);
216 u64 __read_mostly supported_xss;
217 EXPORT_SYMBOL_GPL(supported_xss);
218 
219 struct kvm_stats_debugfs_item debugfs_entries[] = {
220 	VCPU_STAT("pf_fixed", pf_fixed),
221 	VCPU_STAT("pf_guest", pf_guest),
222 	VCPU_STAT("tlb_flush", tlb_flush),
223 	VCPU_STAT("invlpg", invlpg),
224 	VCPU_STAT("exits", exits),
225 	VCPU_STAT("io_exits", io_exits),
226 	VCPU_STAT("mmio_exits", mmio_exits),
227 	VCPU_STAT("signal_exits", signal_exits),
228 	VCPU_STAT("irq_window", irq_window_exits),
229 	VCPU_STAT("nmi_window", nmi_window_exits),
230 	VCPU_STAT("halt_exits", halt_exits),
231 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
232 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
233 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
234 	VCPU_STAT("halt_wakeup", halt_wakeup),
235 	VCPU_STAT("hypercalls", hypercalls),
236 	VCPU_STAT("request_irq", request_irq_exits),
237 	VCPU_STAT("irq_exits", irq_exits),
238 	VCPU_STAT("host_state_reload", host_state_reload),
239 	VCPU_STAT("fpu_reload", fpu_reload),
240 	VCPU_STAT("insn_emulation", insn_emulation),
241 	VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
242 	VCPU_STAT("irq_injections", irq_injections),
243 	VCPU_STAT("nmi_injections", nmi_injections),
244 	VCPU_STAT("req_event", req_event),
245 	VCPU_STAT("l1d_flush", l1d_flush),
246 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
247 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
248 	VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
249 	VM_STAT("mmu_pte_write", mmu_pte_write),
250 	VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
251 	VM_STAT("mmu_flooded", mmu_flooded),
252 	VM_STAT("mmu_recycled", mmu_recycled),
253 	VM_STAT("mmu_cache_miss", mmu_cache_miss),
254 	VM_STAT("mmu_unsync", mmu_unsync),
255 	VM_STAT("remote_tlb_flush", remote_tlb_flush),
256 	VM_STAT("largepages", lpages, .mode = 0444),
257 	VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
258 	VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
259 	{ NULL }
260 };
261 
262 u64 __read_mostly host_xcr0;
263 u64 __read_mostly supported_xcr0;
264 EXPORT_SYMBOL_GPL(supported_xcr0);
265 
266 static struct kmem_cache *x86_fpu_cache;
267 
268 static struct kmem_cache *x86_emulator_cache;
269 
270 /*
271  * When called, it means the previous get/set msr reached an invalid msr.
272  * Return true if we want to ignore/silent this failed msr access.
273  */
274 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
275 				  u64 data, bool write)
276 {
277 	const char *op = write ? "wrmsr" : "rdmsr";
278 
279 	if (ignore_msrs) {
280 		if (report_ignored_msrs)
281 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
282 				      op, msr, data);
283 		/* Mask the error */
284 		return true;
285 	} else {
286 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
287 				      op, msr, data);
288 		return false;
289 	}
290 }
291 
292 static struct kmem_cache *kvm_alloc_emulator_cache(void)
293 {
294 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
295 	unsigned int size = sizeof(struct x86_emulate_ctxt);
296 
297 	return kmem_cache_create_usercopy("x86_emulator", size,
298 					  __alignof__(struct x86_emulate_ctxt),
299 					  SLAB_ACCOUNT, useroffset,
300 					  size - useroffset, NULL);
301 }
302 
303 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
304 
305 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
306 {
307 	int i;
308 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
309 		vcpu->arch.apf.gfns[i] = ~0;
310 }
311 
312 static void kvm_on_user_return(struct user_return_notifier *urn)
313 {
314 	unsigned slot;
315 	struct kvm_user_return_msrs *msrs
316 		= container_of(urn, struct kvm_user_return_msrs, urn);
317 	struct kvm_user_return_msr_values *values;
318 	unsigned long flags;
319 
320 	/*
321 	 * Disabling irqs at this point since the following code could be
322 	 * interrupted and executed through kvm_arch_hardware_disable()
323 	 */
324 	local_irq_save(flags);
325 	if (msrs->registered) {
326 		msrs->registered = false;
327 		user_return_notifier_unregister(urn);
328 	}
329 	local_irq_restore(flags);
330 	for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
331 		values = &msrs->values[slot];
332 		if (values->host != values->curr) {
333 			wrmsrl(user_return_msrs_global.msrs[slot], values->host);
334 			values->curr = values->host;
335 		}
336 	}
337 }
338 
339 void kvm_define_user_return_msr(unsigned slot, u32 msr)
340 {
341 	BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
342 	user_return_msrs_global.msrs[slot] = msr;
343 	if (slot >= user_return_msrs_global.nr)
344 		user_return_msrs_global.nr = slot + 1;
345 }
346 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
347 
348 static void kvm_user_return_msr_cpu_online(void)
349 {
350 	unsigned int cpu = smp_processor_id();
351 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
352 	u64 value;
353 	int i;
354 
355 	for (i = 0; i < user_return_msrs_global.nr; ++i) {
356 		rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
357 		msrs->values[i].host = value;
358 		msrs->values[i].curr = value;
359 	}
360 }
361 
362 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
363 {
364 	unsigned int cpu = smp_processor_id();
365 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
366 	int err;
367 
368 	value = (value & mask) | (msrs->values[slot].host & ~mask);
369 	if (value == msrs->values[slot].curr)
370 		return 0;
371 	err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
372 	if (err)
373 		return 1;
374 
375 	msrs->values[slot].curr = value;
376 	if (!msrs->registered) {
377 		msrs->urn.on_user_return = kvm_on_user_return;
378 		user_return_notifier_register(&msrs->urn);
379 		msrs->registered = true;
380 	}
381 	return 0;
382 }
383 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
384 
385 static void drop_user_return_notifiers(void)
386 {
387 	unsigned int cpu = smp_processor_id();
388 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
389 
390 	if (msrs->registered)
391 		kvm_on_user_return(&msrs->urn);
392 }
393 
394 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
395 {
396 	return vcpu->arch.apic_base;
397 }
398 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
399 
400 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
401 {
402 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
403 }
404 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
405 
406 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
407 {
408 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
409 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
410 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
411 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
412 
413 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
414 		return 1;
415 	if (!msr_info->host_initiated) {
416 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
417 			return 1;
418 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
419 			return 1;
420 	}
421 
422 	kvm_lapic_set_base(vcpu, msr_info->data);
423 	kvm_recalculate_apic_map(vcpu->kvm);
424 	return 0;
425 }
426 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
427 
428 asmlinkage __visible noinstr void kvm_spurious_fault(void)
429 {
430 	/* Fault while not rebooting.  We want the trace. */
431 	BUG_ON(!kvm_rebooting);
432 }
433 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
434 
435 #define EXCPT_BENIGN		0
436 #define EXCPT_CONTRIBUTORY	1
437 #define EXCPT_PF		2
438 
439 static int exception_class(int vector)
440 {
441 	switch (vector) {
442 	case PF_VECTOR:
443 		return EXCPT_PF;
444 	case DE_VECTOR:
445 	case TS_VECTOR:
446 	case NP_VECTOR:
447 	case SS_VECTOR:
448 	case GP_VECTOR:
449 		return EXCPT_CONTRIBUTORY;
450 	default:
451 		break;
452 	}
453 	return EXCPT_BENIGN;
454 }
455 
456 #define EXCPT_FAULT		0
457 #define EXCPT_TRAP		1
458 #define EXCPT_ABORT		2
459 #define EXCPT_INTERRUPT		3
460 
461 static int exception_type(int vector)
462 {
463 	unsigned int mask;
464 
465 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
466 		return EXCPT_INTERRUPT;
467 
468 	mask = 1 << vector;
469 
470 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
471 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
472 		return EXCPT_TRAP;
473 
474 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
475 		return EXCPT_ABORT;
476 
477 	/* Reserved exceptions will result in fault */
478 	return EXCPT_FAULT;
479 }
480 
481 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
482 {
483 	unsigned nr = vcpu->arch.exception.nr;
484 	bool has_payload = vcpu->arch.exception.has_payload;
485 	unsigned long payload = vcpu->arch.exception.payload;
486 
487 	if (!has_payload)
488 		return;
489 
490 	switch (nr) {
491 	case DB_VECTOR:
492 		/*
493 		 * "Certain debug exceptions may clear bit 0-3.  The
494 		 * remaining contents of the DR6 register are never
495 		 * cleared by the processor".
496 		 */
497 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
498 		/*
499 		 * In order to reflect the #DB exception payload in guest
500 		 * dr6, three components need to be considered: active low
501 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
502 		 * DR6_BS and DR6_BT)
503 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
504 		 * In the target guest dr6:
505 		 * FIXED_1 bits should always be set.
506 		 * Active low bits should be cleared if 1-setting in payload.
507 		 * Active high bits should be set if 1-setting in payload.
508 		 *
509 		 * Note, the payload is compatible with the pending debug
510 		 * exceptions/exit qualification under VMX, that active_low bits
511 		 * are active high in payload.
512 		 * So they need to be flipped for DR6.
513 		 */
514 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
515 		vcpu->arch.dr6 |= payload;
516 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
517 
518 		/*
519 		 * The #DB payload is defined as compatible with the 'pending
520 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
521 		 * defined in the 'pending debug exceptions' field (enabled
522 		 * breakpoint), it is reserved and must be zero in DR6.
523 		 */
524 		vcpu->arch.dr6 &= ~BIT(12);
525 		break;
526 	case PF_VECTOR:
527 		vcpu->arch.cr2 = payload;
528 		break;
529 	}
530 
531 	vcpu->arch.exception.has_payload = false;
532 	vcpu->arch.exception.payload = 0;
533 }
534 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
535 
536 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
537 		unsigned nr, bool has_error, u32 error_code,
538 	        bool has_payload, unsigned long payload, bool reinject)
539 {
540 	u32 prev_nr;
541 	int class1, class2;
542 
543 	kvm_make_request(KVM_REQ_EVENT, vcpu);
544 
545 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
546 	queue:
547 		if (has_error && !is_protmode(vcpu))
548 			has_error = false;
549 		if (reinject) {
550 			/*
551 			 * On vmentry, vcpu->arch.exception.pending is only
552 			 * true if an event injection was blocked by
553 			 * nested_run_pending.  In that case, however,
554 			 * vcpu_enter_guest requests an immediate exit,
555 			 * and the guest shouldn't proceed far enough to
556 			 * need reinjection.
557 			 */
558 			WARN_ON_ONCE(vcpu->arch.exception.pending);
559 			vcpu->arch.exception.injected = true;
560 			if (WARN_ON_ONCE(has_payload)) {
561 				/*
562 				 * A reinjected event has already
563 				 * delivered its payload.
564 				 */
565 				has_payload = false;
566 				payload = 0;
567 			}
568 		} else {
569 			vcpu->arch.exception.pending = true;
570 			vcpu->arch.exception.injected = false;
571 		}
572 		vcpu->arch.exception.has_error_code = has_error;
573 		vcpu->arch.exception.nr = nr;
574 		vcpu->arch.exception.error_code = error_code;
575 		vcpu->arch.exception.has_payload = has_payload;
576 		vcpu->arch.exception.payload = payload;
577 		if (!is_guest_mode(vcpu))
578 			kvm_deliver_exception_payload(vcpu);
579 		return;
580 	}
581 
582 	/* to check exception */
583 	prev_nr = vcpu->arch.exception.nr;
584 	if (prev_nr == DF_VECTOR) {
585 		/* triple fault -> shutdown */
586 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
587 		return;
588 	}
589 	class1 = exception_class(prev_nr);
590 	class2 = exception_class(nr);
591 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
592 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
593 		/*
594 		 * Generate double fault per SDM Table 5-5.  Set
595 		 * exception.pending = true so that the double fault
596 		 * can trigger a nested vmexit.
597 		 */
598 		vcpu->arch.exception.pending = true;
599 		vcpu->arch.exception.injected = false;
600 		vcpu->arch.exception.has_error_code = true;
601 		vcpu->arch.exception.nr = DF_VECTOR;
602 		vcpu->arch.exception.error_code = 0;
603 		vcpu->arch.exception.has_payload = false;
604 		vcpu->arch.exception.payload = 0;
605 	} else
606 		/* replace previous exception with a new one in a hope
607 		   that instruction re-execution will regenerate lost
608 		   exception */
609 		goto queue;
610 }
611 
612 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
613 {
614 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
615 }
616 EXPORT_SYMBOL_GPL(kvm_queue_exception);
617 
618 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
619 {
620 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
621 }
622 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
623 
624 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
625 			   unsigned long payload)
626 {
627 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
628 }
629 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
630 
631 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
632 				    u32 error_code, unsigned long payload)
633 {
634 	kvm_multiple_exception(vcpu, nr, true, error_code,
635 			       true, payload, false);
636 }
637 
638 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
639 {
640 	if (err)
641 		kvm_inject_gp(vcpu, 0);
642 	else
643 		return kvm_skip_emulated_instruction(vcpu);
644 
645 	return 1;
646 }
647 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
648 
649 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
650 {
651 	++vcpu->stat.pf_guest;
652 	vcpu->arch.exception.nested_apf =
653 		is_guest_mode(vcpu) && fault->async_page_fault;
654 	if (vcpu->arch.exception.nested_apf) {
655 		vcpu->arch.apf.nested_apf_token = fault->address;
656 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
657 	} else {
658 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
659 					fault->address);
660 	}
661 }
662 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
663 
664 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
665 				    struct x86_exception *fault)
666 {
667 	struct kvm_mmu *fault_mmu;
668 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
669 
670 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
671 					       vcpu->arch.walk_mmu;
672 
673 	/*
674 	 * Invalidate the TLB entry for the faulting address, if it exists,
675 	 * else the access will fault indefinitely (and to emulate hardware).
676 	 */
677 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
678 	    !(fault->error_code & PFERR_RSVD_MASK))
679 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
680 				       fault_mmu->root_hpa);
681 
682 	fault_mmu->inject_page_fault(vcpu, fault);
683 	return fault->nested_page_fault;
684 }
685 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
686 
687 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
688 {
689 	atomic_inc(&vcpu->arch.nmi_queued);
690 	kvm_make_request(KVM_REQ_NMI, vcpu);
691 }
692 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
693 
694 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
695 {
696 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
697 }
698 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
699 
700 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
701 {
702 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
703 }
704 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
705 
706 /*
707  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
708  * a #GP and return false.
709  */
710 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
711 {
712 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
713 		return true;
714 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
715 	return false;
716 }
717 EXPORT_SYMBOL_GPL(kvm_require_cpl);
718 
719 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
720 {
721 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
722 		return true;
723 
724 	kvm_queue_exception(vcpu, UD_VECTOR);
725 	return false;
726 }
727 EXPORT_SYMBOL_GPL(kvm_require_dr);
728 
729 /*
730  * This function will be used to read from the physical memory of the currently
731  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
732  * can read from guest physical or from the guest's guest physical memory.
733  */
734 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
735 			    gfn_t ngfn, void *data, int offset, int len,
736 			    u32 access)
737 {
738 	struct x86_exception exception;
739 	gfn_t real_gfn;
740 	gpa_t ngpa;
741 
742 	ngpa     = gfn_to_gpa(ngfn);
743 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
744 	if (real_gfn == UNMAPPED_GVA)
745 		return -EFAULT;
746 
747 	real_gfn = gpa_to_gfn(real_gfn);
748 
749 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
750 }
751 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
752 
753 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
754 			       void *data, int offset, int len, u32 access)
755 {
756 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
757 				       data, offset, len, access);
758 }
759 
760 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
761 {
762 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
763 }
764 
765 /*
766  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
767  */
768 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
769 {
770 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
771 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
772 	int i;
773 	int ret;
774 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
775 
776 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
777 				      offset * sizeof(u64), sizeof(pdpte),
778 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
779 	if (ret < 0) {
780 		ret = 0;
781 		goto out;
782 	}
783 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
784 		if ((pdpte[i] & PT_PRESENT_MASK) &&
785 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
786 			ret = 0;
787 			goto out;
788 		}
789 	}
790 	ret = 1;
791 
792 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
793 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
794 
795 out:
796 
797 	return ret;
798 }
799 EXPORT_SYMBOL_GPL(load_pdptrs);
800 
801 bool pdptrs_changed(struct kvm_vcpu *vcpu)
802 {
803 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
804 	int offset;
805 	gfn_t gfn;
806 	int r;
807 
808 	if (!is_pae_paging(vcpu))
809 		return false;
810 
811 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
812 		return true;
813 
814 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
815 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
816 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
817 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
818 	if (r < 0)
819 		return true;
820 
821 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
822 }
823 EXPORT_SYMBOL_GPL(pdptrs_changed);
824 
825 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
826 {
827 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
828 
829 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
830 		kvm_clear_async_pf_completion_queue(vcpu);
831 		kvm_async_pf_hash_reset(vcpu);
832 	}
833 
834 	if ((cr0 ^ old_cr0) & update_bits)
835 		kvm_mmu_reset_context(vcpu);
836 
837 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
838 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
839 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
840 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
841 }
842 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
843 
844 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
845 {
846 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
847 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
848 
849 	cr0 |= X86_CR0_ET;
850 
851 #ifdef CONFIG_X86_64
852 	if (cr0 & 0xffffffff00000000UL)
853 		return 1;
854 #endif
855 
856 	cr0 &= ~CR0_RESERVED_BITS;
857 
858 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
859 		return 1;
860 
861 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
862 		return 1;
863 
864 #ifdef CONFIG_X86_64
865 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
866 	    (cr0 & X86_CR0_PG)) {
867 		int cs_db, cs_l;
868 
869 		if (!is_pae(vcpu))
870 			return 1;
871 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
872 		if (cs_l)
873 			return 1;
874 	}
875 #endif
876 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
877 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
878 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
879 		return 1;
880 
881 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
882 		return 1;
883 
884 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
885 
886 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
887 
888 	return 0;
889 }
890 EXPORT_SYMBOL_GPL(kvm_set_cr0);
891 
892 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
893 {
894 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
895 }
896 EXPORT_SYMBOL_GPL(kvm_lmsw);
897 
898 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
899 {
900 	if (vcpu->arch.guest_state_protected)
901 		return;
902 
903 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
904 
905 		if (vcpu->arch.xcr0 != host_xcr0)
906 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
907 
908 		if (vcpu->arch.xsaves_enabled &&
909 		    vcpu->arch.ia32_xss != host_xss)
910 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
911 	}
912 
913 	if (static_cpu_has(X86_FEATURE_PKU) &&
914 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
915 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
916 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
917 		__write_pkru(vcpu->arch.pkru);
918 }
919 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
920 
921 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
922 {
923 	if (vcpu->arch.guest_state_protected)
924 		return;
925 
926 	if (static_cpu_has(X86_FEATURE_PKU) &&
927 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
928 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
929 		vcpu->arch.pkru = rdpkru();
930 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
931 			__write_pkru(vcpu->arch.host_pkru);
932 	}
933 
934 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
935 
936 		if (vcpu->arch.xcr0 != host_xcr0)
937 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
938 
939 		if (vcpu->arch.xsaves_enabled &&
940 		    vcpu->arch.ia32_xss != host_xss)
941 			wrmsrl(MSR_IA32_XSS, host_xss);
942 	}
943 
944 }
945 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
946 
947 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
948 {
949 	u64 xcr0 = xcr;
950 	u64 old_xcr0 = vcpu->arch.xcr0;
951 	u64 valid_bits;
952 
953 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
954 	if (index != XCR_XFEATURE_ENABLED_MASK)
955 		return 1;
956 	if (!(xcr0 & XFEATURE_MASK_FP))
957 		return 1;
958 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
959 		return 1;
960 
961 	/*
962 	 * Do not allow the guest to set bits that we do not support
963 	 * saving.  However, xcr0 bit 0 is always set, even if the
964 	 * emulated CPU does not support XSAVE (see fx_init).
965 	 */
966 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
967 	if (xcr0 & ~valid_bits)
968 		return 1;
969 
970 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
971 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
972 		return 1;
973 
974 	if (xcr0 & XFEATURE_MASK_AVX512) {
975 		if (!(xcr0 & XFEATURE_MASK_YMM))
976 			return 1;
977 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
978 			return 1;
979 	}
980 	vcpu->arch.xcr0 = xcr0;
981 
982 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
983 		kvm_update_cpuid_runtime(vcpu);
984 	return 0;
985 }
986 
987 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
988 {
989 	if (static_call(kvm_x86_get_cpl)(vcpu) == 0)
990 		return __kvm_set_xcr(vcpu, index, xcr);
991 
992 	return 1;
993 }
994 EXPORT_SYMBOL_GPL(kvm_set_xcr);
995 
996 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
997 {
998 	if (cr4 & cr4_reserved_bits)
999 		return false;
1000 
1001 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1002 		return false;
1003 
1004 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1007 
1008 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1009 {
1010 	unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1011 				      X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
1012 
1013 	if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1014 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1015 		kvm_mmu_reset_context(vcpu);
1016 }
1017 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1018 
1019 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1020 {
1021 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1022 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1023 				   X86_CR4_SMEP;
1024 
1025 	if (!kvm_is_valid_cr4(vcpu, cr4))
1026 		return 1;
1027 
1028 	if (is_long_mode(vcpu)) {
1029 		if (!(cr4 & X86_CR4_PAE))
1030 			return 1;
1031 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1032 			return 1;
1033 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1034 		   && ((cr4 ^ old_cr4) & pdptr_bits)
1035 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1036 				   kvm_read_cr3(vcpu)))
1037 		return 1;
1038 
1039 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1040 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1041 			return 1;
1042 
1043 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1044 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1045 			return 1;
1046 	}
1047 
1048 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1049 
1050 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1051 
1052 	return 0;
1053 }
1054 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1055 
1056 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1057 {
1058 	bool skip_tlb_flush = false;
1059 #ifdef CONFIG_X86_64
1060 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1061 
1062 	if (pcid_enabled) {
1063 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1064 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1065 	}
1066 #endif
1067 
1068 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1069 		if (!skip_tlb_flush) {
1070 			kvm_mmu_sync_roots(vcpu);
1071 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1072 		}
1073 		return 0;
1074 	}
1075 
1076 	if (is_long_mode(vcpu) && kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1077 		return 1;
1078 	else if (is_pae_paging(vcpu) &&
1079 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1080 		return 1;
1081 
1082 	kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1083 	vcpu->arch.cr3 = cr3;
1084 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1085 
1086 	return 0;
1087 }
1088 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1089 
1090 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1091 {
1092 	if (cr8 & CR8_RESERVED_BITS)
1093 		return 1;
1094 	if (lapic_in_kernel(vcpu))
1095 		kvm_lapic_set_tpr(vcpu, cr8);
1096 	else
1097 		vcpu->arch.cr8 = cr8;
1098 	return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1101 
1102 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1103 {
1104 	if (lapic_in_kernel(vcpu))
1105 		return kvm_lapic_get_cr8(vcpu);
1106 	else
1107 		return vcpu->arch.cr8;
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1110 
1111 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1112 {
1113 	int i;
1114 
1115 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1116 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1117 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1118 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1119 	}
1120 }
1121 
1122 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1123 {
1124 	unsigned long dr7;
1125 
1126 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1127 		dr7 = vcpu->arch.guest_debug_dr7;
1128 	else
1129 		dr7 = vcpu->arch.dr7;
1130 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1131 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1132 	if (dr7 & DR7_BP_EN_MASK)
1133 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1134 }
1135 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1136 
1137 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1138 {
1139 	u64 fixed = DR6_FIXED_1;
1140 
1141 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1142 		fixed |= DR6_RTM;
1143 	return fixed;
1144 }
1145 
1146 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1147 {
1148 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1149 
1150 	switch (dr) {
1151 	case 0 ... 3:
1152 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1153 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1154 			vcpu->arch.eff_db[dr] = val;
1155 		break;
1156 	case 4:
1157 	case 6:
1158 		if (!kvm_dr6_valid(val))
1159 			return 1; /* #GP */
1160 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1161 		break;
1162 	case 5:
1163 	default: /* 7 */
1164 		if (!kvm_dr7_valid(val))
1165 			return 1; /* #GP */
1166 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1167 		kvm_update_dr7(vcpu);
1168 		break;
1169 	}
1170 
1171 	return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(kvm_set_dr);
1174 
1175 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1176 {
1177 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1178 
1179 	switch (dr) {
1180 	case 0 ... 3:
1181 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1182 		break;
1183 	case 4:
1184 	case 6:
1185 		*val = vcpu->arch.dr6;
1186 		break;
1187 	case 5:
1188 	default: /* 7 */
1189 		*val = vcpu->arch.dr7;
1190 		break;
1191 	}
1192 }
1193 EXPORT_SYMBOL_GPL(kvm_get_dr);
1194 
1195 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1196 {
1197 	u32 ecx = kvm_rcx_read(vcpu);
1198 	u64 data;
1199 	int err;
1200 
1201 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1202 	if (err)
1203 		return err;
1204 	kvm_rax_write(vcpu, (u32)data);
1205 	kvm_rdx_write(vcpu, data >> 32);
1206 	return err;
1207 }
1208 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1209 
1210 /*
1211  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1212  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1213  *
1214  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1215  * extract the supported MSRs from the related const lists.
1216  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1217  * capabilities of the host cpu. This capabilities test skips MSRs that are
1218  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1219  * may depend on host virtualization features rather than host cpu features.
1220  */
1221 
1222 static const u32 msrs_to_save_all[] = {
1223 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1224 	MSR_STAR,
1225 #ifdef CONFIG_X86_64
1226 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1227 #endif
1228 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1229 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1230 	MSR_IA32_SPEC_CTRL,
1231 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1232 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1233 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1234 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1235 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1236 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1237 	MSR_IA32_UMWAIT_CONTROL,
1238 
1239 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1240 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1241 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1242 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1243 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1244 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1245 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1246 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1247 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1248 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1249 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1250 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1251 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1252 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1253 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1254 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1255 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1256 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1257 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1258 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1259 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1260 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1261 };
1262 
1263 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1264 static unsigned num_msrs_to_save;
1265 
1266 static const u32 emulated_msrs_all[] = {
1267 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1268 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1269 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1270 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1271 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1272 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1273 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1274 	HV_X64_MSR_RESET,
1275 	HV_X64_MSR_VP_INDEX,
1276 	HV_X64_MSR_VP_RUNTIME,
1277 	HV_X64_MSR_SCONTROL,
1278 	HV_X64_MSR_STIMER0_CONFIG,
1279 	HV_X64_MSR_VP_ASSIST_PAGE,
1280 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1281 	HV_X64_MSR_TSC_EMULATION_STATUS,
1282 	HV_X64_MSR_SYNDBG_OPTIONS,
1283 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1284 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1285 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1286 
1287 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1288 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1289 
1290 	MSR_IA32_TSC_ADJUST,
1291 	MSR_IA32_TSCDEADLINE,
1292 	MSR_IA32_ARCH_CAPABILITIES,
1293 	MSR_IA32_PERF_CAPABILITIES,
1294 	MSR_IA32_MISC_ENABLE,
1295 	MSR_IA32_MCG_STATUS,
1296 	MSR_IA32_MCG_CTL,
1297 	MSR_IA32_MCG_EXT_CTL,
1298 	MSR_IA32_SMBASE,
1299 	MSR_SMI_COUNT,
1300 	MSR_PLATFORM_INFO,
1301 	MSR_MISC_FEATURES_ENABLES,
1302 	MSR_AMD64_VIRT_SPEC_CTRL,
1303 	MSR_IA32_POWER_CTL,
1304 	MSR_IA32_UCODE_REV,
1305 
1306 	/*
1307 	 * The following list leaves out MSRs whose values are determined
1308 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1309 	 * We always support the "true" VMX control MSRs, even if the host
1310 	 * processor does not, so I am putting these registers here rather
1311 	 * than in msrs_to_save_all.
1312 	 */
1313 	MSR_IA32_VMX_BASIC,
1314 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1315 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1316 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1317 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1318 	MSR_IA32_VMX_MISC,
1319 	MSR_IA32_VMX_CR0_FIXED0,
1320 	MSR_IA32_VMX_CR4_FIXED0,
1321 	MSR_IA32_VMX_VMCS_ENUM,
1322 	MSR_IA32_VMX_PROCBASED_CTLS2,
1323 	MSR_IA32_VMX_EPT_VPID_CAP,
1324 	MSR_IA32_VMX_VMFUNC,
1325 
1326 	MSR_K7_HWCR,
1327 	MSR_KVM_POLL_CONTROL,
1328 };
1329 
1330 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1331 static unsigned num_emulated_msrs;
1332 
1333 /*
1334  * List of msr numbers which are used to expose MSR-based features that
1335  * can be used by a hypervisor to validate requested CPU features.
1336  */
1337 static const u32 msr_based_features_all[] = {
1338 	MSR_IA32_VMX_BASIC,
1339 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1340 	MSR_IA32_VMX_PINBASED_CTLS,
1341 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1342 	MSR_IA32_VMX_PROCBASED_CTLS,
1343 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1344 	MSR_IA32_VMX_EXIT_CTLS,
1345 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1346 	MSR_IA32_VMX_ENTRY_CTLS,
1347 	MSR_IA32_VMX_MISC,
1348 	MSR_IA32_VMX_CR0_FIXED0,
1349 	MSR_IA32_VMX_CR0_FIXED1,
1350 	MSR_IA32_VMX_CR4_FIXED0,
1351 	MSR_IA32_VMX_CR4_FIXED1,
1352 	MSR_IA32_VMX_VMCS_ENUM,
1353 	MSR_IA32_VMX_PROCBASED_CTLS2,
1354 	MSR_IA32_VMX_EPT_VPID_CAP,
1355 	MSR_IA32_VMX_VMFUNC,
1356 
1357 	MSR_F10H_DECFG,
1358 	MSR_IA32_UCODE_REV,
1359 	MSR_IA32_ARCH_CAPABILITIES,
1360 	MSR_IA32_PERF_CAPABILITIES,
1361 };
1362 
1363 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1364 static unsigned int num_msr_based_features;
1365 
1366 static u64 kvm_get_arch_capabilities(void)
1367 {
1368 	u64 data = 0;
1369 
1370 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1371 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1372 
1373 	/*
1374 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1375 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1376 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1377 	 * L1 guests, so it need not worry about its own (L2) guests.
1378 	 */
1379 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1380 
1381 	/*
1382 	 * If we're doing cache flushes (either "always" or "cond")
1383 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1384 	 * If an outer hypervisor is doing the cache flush for us
1385 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1386 	 * capability to the guest too, and if EPT is disabled we're not
1387 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1388 	 * require a nested hypervisor to do a flush of its own.
1389 	 */
1390 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1391 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1392 
1393 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1394 		data |= ARCH_CAP_RDCL_NO;
1395 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1396 		data |= ARCH_CAP_SSB_NO;
1397 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1398 		data |= ARCH_CAP_MDS_NO;
1399 
1400 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1401 		/*
1402 		 * If RTM=0 because the kernel has disabled TSX, the host might
1403 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1404 		 * and therefore knows that there cannot be TAA) but keep
1405 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1406 		 * and we want to allow migrating those guests to tsx=off hosts.
1407 		 */
1408 		data &= ~ARCH_CAP_TAA_NO;
1409 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1410 		data |= ARCH_CAP_TAA_NO;
1411 	} else {
1412 		/*
1413 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1414 		 * host so the guest can choose between disabling TSX or
1415 		 * using VERW to clear CPU buffers.
1416 		 */
1417 	}
1418 
1419 	return data;
1420 }
1421 
1422 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1423 {
1424 	switch (msr->index) {
1425 	case MSR_IA32_ARCH_CAPABILITIES:
1426 		msr->data = kvm_get_arch_capabilities();
1427 		break;
1428 	case MSR_IA32_UCODE_REV:
1429 		rdmsrl_safe(msr->index, &msr->data);
1430 		break;
1431 	default:
1432 		return static_call(kvm_x86_get_msr_feature)(msr);
1433 	}
1434 	return 0;
1435 }
1436 
1437 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1438 {
1439 	struct kvm_msr_entry msr;
1440 	int r;
1441 
1442 	msr.index = index;
1443 	r = kvm_get_msr_feature(&msr);
1444 
1445 	if (r == KVM_MSR_RET_INVALID) {
1446 		/* Unconditionally clear the output for simplicity */
1447 		*data = 0;
1448 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1449 			r = 0;
1450 	}
1451 
1452 	if (r)
1453 		return r;
1454 
1455 	*data = msr.data;
1456 
1457 	return 0;
1458 }
1459 
1460 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1461 {
1462 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1463 		return false;
1464 
1465 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1466 		return false;
1467 
1468 	if (efer & (EFER_LME | EFER_LMA) &&
1469 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1470 		return false;
1471 
1472 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1473 		return false;
1474 
1475 	return true;
1476 
1477 }
1478 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1479 {
1480 	if (efer & efer_reserved_bits)
1481 		return false;
1482 
1483 	return __kvm_valid_efer(vcpu, efer);
1484 }
1485 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1486 
1487 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1488 {
1489 	u64 old_efer = vcpu->arch.efer;
1490 	u64 efer = msr_info->data;
1491 	int r;
1492 
1493 	if (efer & efer_reserved_bits)
1494 		return 1;
1495 
1496 	if (!msr_info->host_initiated) {
1497 		if (!__kvm_valid_efer(vcpu, efer))
1498 			return 1;
1499 
1500 		if (is_paging(vcpu) &&
1501 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1502 			return 1;
1503 	}
1504 
1505 	efer &= ~EFER_LMA;
1506 	efer |= vcpu->arch.efer & EFER_LMA;
1507 
1508 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1509 	if (r) {
1510 		WARN_ON(r > 0);
1511 		return r;
1512 	}
1513 
1514 	/* Update reserved bits */
1515 	if ((efer ^ old_efer) & EFER_NX)
1516 		kvm_mmu_reset_context(vcpu);
1517 
1518 	return 0;
1519 }
1520 
1521 void kvm_enable_efer_bits(u64 mask)
1522 {
1523        efer_reserved_bits &= ~mask;
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1526 
1527 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1528 {
1529 	struct kvm *kvm = vcpu->kvm;
1530 	struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1531 	u32 count = kvm->arch.msr_filter.count;
1532 	u32 i;
1533 	bool r = kvm->arch.msr_filter.default_allow;
1534 	int idx;
1535 
1536 	/* MSR filtering not set up or x2APIC enabled, allow everything */
1537 	if (!count || (index >= 0x800 && index <= 0x8ff))
1538 		return true;
1539 
1540 	/* Prevent collision with set_msr_filter */
1541 	idx = srcu_read_lock(&kvm->srcu);
1542 
1543 	for (i = 0; i < count; i++) {
1544 		u32 start = ranges[i].base;
1545 		u32 end = start + ranges[i].nmsrs;
1546 		u32 flags = ranges[i].flags;
1547 		unsigned long *bitmap = ranges[i].bitmap;
1548 
1549 		if ((index >= start) && (index < end) && (flags & type)) {
1550 			r = !!test_bit(index - start, bitmap);
1551 			break;
1552 		}
1553 	}
1554 
1555 	srcu_read_unlock(&kvm->srcu, idx);
1556 
1557 	return r;
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1560 
1561 /*
1562  * Write @data into the MSR specified by @index.  Select MSR specific fault
1563  * checks are bypassed if @host_initiated is %true.
1564  * Returns 0 on success, non-0 otherwise.
1565  * Assumes vcpu_load() was already called.
1566  */
1567 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1568 			 bool host_initiated)
1569 {
1570 	struct msr_data msr;
1571 
1572 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1573 		return KVM_MSR_RET_FILTERED;
1574 
1575 	switch (index) {
1576 	case MSR_FS_BASE:
1577 	case MSR_GS_BASE:
1578 	case MSR_KERNEL_GS_BASE:
1579 	case MSR_CSTAR:
1580 	case MSR_LSTAR:
1581 		if (is_noncanonical_address(data, vcpu))
1582 			return 1;
1583 		break;
1584 	case MSR_IA32_SYSENTER_EIP:
1585 	case MSR_IA32_SYSENTER_ESP:
1586 		/*
1587 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1588 		 * non-canonical address is written on Intel but not on
1589 		 * AMD (which ignores the top 32-bits, because it does
1590 		 * not implement 64-bit SYSENTER).
1591 		 *
1592 		 * 64-bit code should hence be able to write a non-canonical
1593 		 * value on AMD.  Making the address canonical ensures that
1594 		 * vmentry does not fail on Intel after writing a non-canonical
1595 		 * value, and that something deterministic happens if the guest
1596 		 * invokes 64-bit SYSENTER.
1597 		 */
1598 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1599 	}
1600 
1601 	msr.data = data;
1602 	msr.index = index;
1603 	msr.host_initiated = host_initiated;
1604 
1605 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1606 }
1607 
1608 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1609 				     u32 index, u64 data, bool host_initiated)
1610 {
1611 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1612 
1613 	if (ret == KVM_MSR_RET_INVALID)
1614 		if (kvm_msr_ignored_check(vcpu, index, data, true))
1615 			ret = 0;
1616 
1617 	return ret;
1618 }
1619 
1620 /*
1621  * Read the MSR specified by @index into @data.  Select MSR specific fault
1622  * checks are bypassed if @host_initiated is %true.
1623  * Returns 0 on success, non-0 otherwise.
1624  * Assumes vcpu_load() was already called.
1625  */
1626 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1627 		  bool host_initiated)
1628 {
1629 	struct msr_data msr;
1630 	int ret;
1631 
1632 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1633 		return KVM_MSR_RET_FILTERED;
1634 
1635 	msr.index = index;
1636 	msr.host_initiated = host_initiated;
1637 
1638 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1639 	if (!ret)
1640 		*data = msr.data;
1641 	return ret;
1642 }
1643 
1644 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1645 				     u32 index, u64 *data, bool host_initiated)
1646 {
1647 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1648 
1649 	if (ret == KVM_MSR_RET_INVALID) {
1650 		/* Unconditionally clear *data for simplicity */
1651 		*data = 0;
1652 		if (kvm_msr_ignored_check(vcpu, index, 0, false))
1653 			ret = 0;
1654 	}
1655 
1656 	return ret;
1657 }
1658 
1659 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1660 {
1661 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_get_msr);
1664 
1665 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1666 {
1667 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_set_msr);
1670 
1671 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1672 {
1673 	int err = vcpu->run->msr.error;
1674 	if (!err) {
1675 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1676 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1677 	}
1678 
1679 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1680 }
1681 
1682 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1683 {
1684 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1685 }
1686 
1687 static u64 kvm_msr_reason(int r)
1688 {
1689 	switch (r) {
1690 	case KVM_MSR_RET_INVALID:
1691 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1692 	case KVM_MSR_RET_FILTERED:
1693 		return KVM_MSR_EXIT_REASON_FILTER;
1694 	default:
1695 		return KVM_MSR_EXIT_REASON_INVAL;
1696 	}
1697 }
1698 
1699 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1700 			      u32 exit_reason, u64 data,
1701 			      int (*completion)(struct kvm_vcpu *vcpu),
1702 			      int r)
1703 {
1704 	u64 msr_reason = kvm_msr_reason(r);
1705 
1706 	/* Check if the user wanted to know about this MSR fault */
1707 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1708 		return 0;
1709 
1710 	vcpu->run->exit_reason = exit_reason;
1711 	vcpu->run->msr.error = 0;
1712 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1713 	vcpu->run->msr.reason = msr_reason;
1714 	vcpu->run->msr.index = index;
1715 	vcpu->run->msr.data = data;
1716 	vcpu->arch.complete_userspace_io = completion;
1717 
1718 	return 1;
1719 }
1720 
1721 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1722 {
1723 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1724 				   complete_emulated_rdmsr, r);
1725 }
1726 
1727 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1728 {
1729 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1730 				   complete_emulated_wrmsr, r);
1731 }
1732 
1733 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1734 {
1735 	u32 ecx = kvm_rcx_read(vcpu);
1736 	u64 data;
1737 	int r;
1738 
1739 	r = kvm_get_msr(vcpu, ecx, &data);
1740 
1741 	/* MSR read failed? See if we should ask user space */
1742 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1743 		/* Bounce to user space */
1744 		return 0;
1745 	}
1746 
1747 	if (!r) {
1748 		trace_kvm_msr_read(ecx, data);
1749 
1750 		kvm_rax_write(vcpu, data & -1u);
1751 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1752 	} else {
1753 		trace_kvm_msr_read_ex(ecx);
1754 	}
1755 
1756 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1757 }
1758 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1759 
1760 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1761 {
1762 	u32 ecx = kvm_rcx_read(vcpu);
1763 	u64 data = kvm_read_edx_eax(vcpu);
1764 	int r;
1765 
1766 	r = kvm_set_msr(vcpu, ecx, data);
1767 
1768 	/* MSR write failed? See if we should ask user space */
1769 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1770 		/* Bounce to user space */
1771 		return 0;
1772 
1773 	/* Signal all other negative errors to userspace */
1774 	if (r < 0)
1775 		return r;
1776 
1777 	if (!r)
1778 		trace_kvm_msr_write(ecx, data);
1779 	else
1780 		trace_kvm_msr_write_ex(ecx, data);
1781 
1782 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1785 
1786 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1787 {
1788 	xfer_to_guest_mode_prepare();
1789 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1790 		xfer_to_guest_mode_work_pending();
1791 }
1792 
1793 /*
1794  * The fast path for frequent and performance sensitive wrmsr emulation,
1795  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1796  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1797  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1798  * other cases which must be called after interrupts are enabled on the host.
1799  */
1800 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1801 {
1802 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1803 		return 1;
1804 
1805 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1806 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1807 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1808 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1809 
1810 		data &= ~(1 << 12);
1811 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1812 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1813 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1814 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1815 		return 0;
1816 	}
1817 
1818 	return 1;
1819 }
1820 
1821 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1822 {
1823 	if (!kvm_can_use_hv_timer(vcpu))
1824 		return 1;
1825 
1826 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
1827 	return 0;
1828 }
1829 
1830 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1831 {
1832 	u32 msr = kvm_rcx_read(vcpu);
1833 	u64 data;
1834 	fastpath_t ret = EXIT_FASTPATH_NONE;
1835 
1836 	switch (msr) {
1837 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1838 		data = kvm_read_edx_eax(vcpu);
1839 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1840 			kvm_skip_emulated_instruction(vcpu);
1841 			ret = EXIT_FASTPATH_EXIT_HANDLED;
1842 		}
1843 		break;
1844 	case MSR_IA32_TSCDEADLINE:
1845 		data = kvm_read_edx_eax(vcpu);
1846 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1847 			kvm_skip_emulated_instruction(vcpu);
1848 			ret = EXIT_FASTPATH_REENTER_GUEST;
1849 		}
1850 		break;
1851 	default:
1852 		break;
1853 	}
1854 
1855 	if (ret != EXIT_FASTPATH_NONE)
1856 		trace_kvm_msr_write(msr, data);
1857 
1858 	return ret;
1859 }
1860 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1861 
1862 /*
1863  * Adapt set_msr() to msr_io()'s calling convention
1864  */
1865 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1866 {
1867 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
1868 }
1869 
1870 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1871 {
1872 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1873 }
1874 
1875 #ifdef CONFIG_X86_64
1876 struct pvclock_clock {
1877 	int vclock_mode;
1878 	u64 cycle_last;
1879 	u64 mask;
1880 	u32 mult;
1881 	u32 shift;
1882 	u64 base_cycles;
1883 	u64 offset;
1884 };
1885 
1886 struct pvclock_gtod_data {
1887 	seqcount_t	seq;
1888 
1889 	struct pvclock_clock clock; /* extract of a clocksource struct */
1890 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1891 
1892 	ktime_t		offs_boot;
1893 	u64		wall_time_sec;
1894 };
1895 
1896 static struct pvclock_gtod_data pvclock_gtod_data;
1897 
1898 static void update_pvclock_gtod(struct timekeeper *tk)
1899 {
1900 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1901 
1902 	write_seqcount_begin(&vdata->seq);
1903 
1904 	/* copy pvclock gtod data */
1905 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1906 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1907 	vdata->clock.mask		= tk->tkr_mono.mask;
1908 	vdata->clock.mult		= tk->tkr_mono.mult;
1909 	vdata->clock.shift		= tk->tkr_mono.shift;
1910 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1911 	vdata->clock.offset		= tk->tkr_mono.base;
1912 
1913 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1914 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1915 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1916 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1917 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1918 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1919 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1920 
1921 	vdata->wall_time_sec            = tk->xtime_sec;
1922 
1923 	vdata->offs_boot		= tk->offs_boot;
1924 
1925 	write_seqcount_end(&vdata->seq);
1926 }
1927 
1928 static s64 get_kvmclock_base_ns(void)
1929 {
1930 	/* Count up from boot time, but with the frequency of the raw clock.  */
1931 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1932 }
1933 #else
1934 static s64 get_kvmclock_base_ns(void)
1935 {
1936 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1937 	return ktime_get_boottime_ns();
1938 }
1939 #endif
1940 
1941 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
1942 {
1943 	int version;
1944 	int r;
1945 	struct pvclock_wall_clock wc;
1946 	u32 wc_sec_hi;
1947 	u64 wall_nsec;
1948 
1949 	if (!wall_clock)
1950 		return;
1951 
1952 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1953 	if (r)
1954 		return;
1955 
1956 	if (version & 1)
1957 		++version;  /* first time write, random junk */
1958 
1959 	++version;
1960 
1961 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1962 		return;
1963 
1964 	/*
1965 	 * The guest calculates current wall clock time by adding
1966 	 * system time (updated by kvm_guest_time_update below) to the
1967 	 * wall clock specified here.  We do the reverse here.
1968 	 */
1969 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1970 
1971 	wc.nsec = do_div(wall_nsec, 1000000000);
1972 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1973 	wc.version = version;
1974 
1975 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1976 
1977 	if (sec_hi_ofs) {
1978 		wc_sec_hi = wall_nsec >> 32;
1979 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
1980 				&wc_sec_hi, sizeof(wc_sec_hi));
1981 	}
1982 
1983 	version++;
1984 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1985 }
1986 
1987 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1988 				  bool old_msr, bool host_initiated)
1989 {
1990 	struct kvm_arch *ka = &vcpu->kvm->arch;
1991 
1992 	if (vcpu->vcpu_id == 0 && !host_initiated) {
1993 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
1994 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1995 
1996 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
1997 	}
1998 
1999 	vcpu->arch.time = system_time;
2000 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2001 
2002 	/* we verify if the enable bit is set... */
2003 	vcpu->arch.pv_time_enabled = false;
2004 	if (!(system_time & 1))
2005 		return;
2006 
2007 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2008 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2009 				       sizeof(struct pvclock_vcpu_time_info)))
2010 		vcpu->arch.pv_time_enabled = true;
2011 
2012 	return;
2013 }
2014 
2015 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2016 {
2017 	do_shl32_div32(dividend, divisor);
2018 	return dividend;
2019 }
2020 
2021 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2022 			       s8 *pshift, u32 *pmultiplier)
2023 {
2024 	uint64_t scaled64;
2025 	int32_t  shift = 0;
2026 	uint64_t tps64;
2027 	uint32_t tps32;
2028 
2029 	tps64 = base_hz;
2030 	scaled64 = scaled_hz;
2031 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2032 		tps64 >>= 1;
2033 		shift--;
2034 	}
2035 
2036 	tps32 = (uint32_t)tps64;
2037 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2038 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2039 			scaled64 >>= 1;
2040 		else
2041 			tps32 <<= 1;
2042 		shift++;
2043 	}
2044 
2045 	*pshift = shift;
2046 	*pmultiplier = div_frac(scaled64, tps32);
2047 }
2048 
2049 #ifdef CONFIG_X86_64
2050 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2051 #endif
2052 
2053 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2054 static unsigned long max_tsc_khz;
2055 
2056 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2057 {
2058 	u64 v = (u64)khz * (1000000 + ppm);
2059 	do_div(v, 1000000);
2060 	return v;
2061 }
2062 
2063 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2064 {
2065 	u64 ratio;
2066 
2067 	/* Guest TSC same frequency as host TSC? */
2068 	if (!scale) {
2069 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2070 		return 0;
2071 	}
2072 
2073 	/* TSC scaling supported? */
2074 	if (!kvm_has_tsc_control) {
2075 		if (user_tsc_khz > tsc_khz) {
2076 			vcpu->arch.tsc_catchup = 1;
2077 			vcpu->arch.tsc_always_catchup = 1;
2078 			return 0;
2079 		} else {
2080 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2081 			return -1;
2082 		}
2083 	}
2084 
2085 	/* TSC scaling required  - calculate ratio */
2086 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2087 				user_tsc_khz, tsc_khz);
2088 
2089 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2090 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2091 			            user_tsc_khz);
2092 		return -1;
2093 	}
2094 
2095 	vcpu->arch.tsc_scaling_ratio = ratio;
2096 	return 0;
2097 }
2098 
2099 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2100 {
2101 	u32 thresh_lo, thresh_hi;
2102 	int use_scaling = 0;
2103 
2104 	/* tsc_khz can be zero if TSC calibration fails */
2105 	if (user_tsc_khz == 0) {
2106 		/* set tsc_scaling_ratio to a safe value */
2107 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2108 		return -1;
2109 	}
2110 
2111 	/* Compute a scale to convert nanoseconds in TSC cycles */
2112 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2113 			   &vcpu->arch.virtual_tsc_shift,
2114 			   &vcpu->arch.virtual_tsc_mult);
2115 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2116 
2117 	/*
2118 	 * Compute the variation in TSC rate which is acceptable
2119 	 * within the range of tolerance and decide if the
2120 	 * rate being applied is within that bounds of the hardware
2121 	 * rate.  If so, no scaling or compensation need be done.
2122 	 */
2123 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2124 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2125 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2126 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2127 		use_scaling = 1;
2128 	}
2129 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2130 }
2131 
2132 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2133 {
2134 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2135 				      vcpu->arch.virtual_tsc_mult,
2136 				      vcpu->arch.virtual_tsc_shift);
2137 	tsc += vcpu->arch.this_tsc_write;
2138 	return tsc;
2139 }
2140 
2141 static inline int gtod_is_based_on_tsc(int mode)
2142 {
2143 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2144 }
2145 
2146 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2147 {
2148 #ifdef CONFIG_X86_64
2149 	bool vcpus_matched;
2150 	struct kvm_arch *ka = &vcpu->kvm->arch;
2151 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2152 
2153 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2154 			 atomic_read(&vcpu->kvm->online_vcpus));
2155 
2156 	/*
2157 	 * Once the masterclock is enabled, always perform request in
2158 	 * order to update it.
2159 	 *
2160 	 * In order to enable masterclock, the host clocksource must be TSC
2161 	 * and the vcpus need to have matched TSCs.  When that happens,
2162 	 * perform request to enable masterclock.
2163 	 */
2164 	if (ka->use_master_clock ||
2165 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2166 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2167 
2168 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2169 			    atomic_read(&vcpu->kvm->online_vcpus),
2170 		            ka->use_master_clock, gtod->clock.vclock_mode);
2171 #endif
2172 }
2173 
2174 /*
2175  * Multiply tsc by a fixed point number represented by ratio.
2176  *
2177  * The most significant 64-N bits (mult) of ratio represent the
2178  * integral part of the fixed point number; the remaining N bits
2179  * (frac) represent the fractional part, ie. ratio represents a fixed
2180  * point number (mult + frac * 2^(-N)).
2181  *
2182  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2183  */
2184 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2185 {
2186 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2187 }
2188 
2189 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2190 {
2191 	u64 _tsc = tsc;
2192 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
2193 
2194 	if (ratio != kvm_default_tsc_scaling_ratio)
2195 		_tsc = __scale_tsc(ratio, tsc);
2196 
2197 	return _tsc;
2198 }
2199 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2200 
2201 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2202 {
2203 	u64 tsc;
2204 
2205 	tsc = kvm_scale_tsc(vcpu, rdtsc());
2206 
2207 	return target_tsc - tsc;
2208 }
2209 
2210 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2211 {
2212 	return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2213 }
2214 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2215 
2216 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2217 {
2218 	vcpu->arch.l1_tsc_offset = offset;
2219 	vcpu->arch.tsc_offset = static_call(kvm_x86_write_l1_tsc_offset)(vcpu, offset);
2220 }
2221 
2222 static inline bool kvm_check_tsc_unstable(void)
2223 {
2224 #ifdef CONFIG_X86_64
2225 	/*
2226 	 * TSC is marked unstable when we're running on Hyper-V,
2227 	 * 'TSC page' clocksource is good.
2228 	 */
2229 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2230 		return false;
2231 #endif
2232 	return check_tsc_unstable();
2233 }
2234 
2235 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2236 {
2237 	struct kvm *kvm = vcpu->kvm;
2238 	u64 offset, ns, elapsed;
2239 	unsigned long flags;
2240 	bool matched;
2241 	bool already_matched;
2242 	bool synchronizing = false;
2243 
2244 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2245 	offset = kvm_compute_tsc_offset(vcpu, data);
2246 	ns = get_kvmclock_base_ns();
2247 	elapsed = ns - kvm->arch.last_tsc_nsec;
2248 
2249 	if (vcpu->arch.virtual_tsc_khz) {
2250 		if (data == 0) {
2251 			/*
2252 			 * detection of vcpu initialization -- need to sync
2253 			 * with other vCPUs. This particularly helps to keep
2254 			 * kvm_clock stable after CPU hotplug
2255 			 */
2256 			synchronizing = true;
2257 		} else {
2258 			u64 tsc_exp = kvm->arch.last_tsc_write +
2259 						nsec_to_cycles(vcpu, elapsed);
2260 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2261 			/*
2262 			 * Special case: TSC write with a small delta (1 second)
2263 			 * of virtual cycle time against real time is
2264 			 * interpreted as an attempt to synchronize the CPU.
2265 			 */
2266 			synchronizing = data < tsc_exp + tsc_hz &&
2267 					data + tsc_hz > tsc_exp;
2268 		}
2269 	}
2270 
2271 	/*
2272 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2273 	 * TSC, we add elapsed time in this computation.  We could let the
2274 	 * compensation code attempt to catch up if we fall behind, but
2275 	 * it's better to try to match offsets from the beginning.
2276          */
2277 	if (synchronizing &&
2278 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2279 		if (!kvm_check_tsc_unstable()) {
2280 			offset = kvm->arch.cur_tsc_offset;
2281 		} else {
2282 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2283 			data += delta;
2284 			offset = kvm_compute_tsc_offset(vcpu, data);
2285 		}
2286 		matched = true;
2287 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2288 	} else {
2289 		/*
2290 		 * We split periods of matched TSC writes into generations.
2291 		 * For each generation, we track the original measured
2292 		 * nanosecond time, offset, and write, so if TSCs are in
2293 		 * sync, we can match exact offset, and if not, we can match
2294 		 * exact software computation in compute_guest_tsc()
2295 		 *
2296 		 * These values are tracked in kvm->arch.cur_xxx variables.
2297 		 */
2298 		kvm->arch.cur_tsc_generation++;
2299 		kvm->arch.cur_tsc_nsec = ns;
2300 		kvm->arch.cur_tsc_write = data;
2301 		kvm->arch.cur_tsc_offset = offset;
2302 		matched = false;
2303 	}
2304 
2305 	/*
2306 	 * We also track th most recent recorded KHZ, write and time to
2307 	 * allow the matching interval to be extended at each write.
2308 	 */
2309 	kvm->arch.last_tsc_nsec = ns;
2310 	kvm->arch.last_tsc_write = data;
2311 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2312 
2313 	vcpu->arch.last_guest_tsc = data;
2314 
2315 	/* Keep track of which generation this VCPU has synchronized to */
2316 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2317 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2318 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2319 
2320 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2321 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2322 
2323 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2324 	if (!matched) {
2325 		kvm->arch.nr_vcpus_matched_tsc = 0;
2326 	} else if (!already_matched) {
2327 		kvm->arch.nr_vcpus_matched_tsc++;
2328 	}
2329 
2330 	kvm_track_tsc_matching(vcpu);
2331 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2332 }
2333 
2334 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2335 					   s64 adjustment)
2336 {
2337 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2338 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2339 }
2340 
2341 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2342 {
2343 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2344 		WARN_ON(adjustment < 0);
2345 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2346 	adjust_tsc_offset_guest(vcpu, adjustment);
2347 }
2348 
2349 #ifdef CONFIG_X86_64
2350 
2351 static u64 read_tsc(void)
2352 {
2353 	u64 ret = (u64)rdtsc_ordered();
2354 	u64 last = pvclock_gtod_data.clock.cycle_last;
2355 
2356 	if (likely(ret >= last))
2357 		return ret;
2358 
2359 	/*
2360 	 * GCC likes to generate cmov here, but this branch is extremely
2361 	 * predictable (it's just a function of time and the likely is
2362 	 * very likely) and there's a data dependence, so force GCC
2363 	 * to generate a branch instead.  I don't barrier() because
2364 	 * we don't actually need a barrier, and if this function
2365 	 * ever gets inlined it will generate worse code.
2366 	 */
2367 	asm volatile ("");
2368 	return last;
2369 }
2370 
2371 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2372 			  int *mode)
2373 {
2374 	long v;
2375 	u64 tsc_pg_val;
2376 
2377 	switch (clock->vclock_mode) {
2378 	case VDSO_CLOCKMODE_HVCLOCK:
2379 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2380 						  tsc_timestamp);
2381 		if (tsc_pg_val != U64_MAX) {
2382 			/* TSC page valid */
2383 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2384 			v = (tsc_pg_val - clock->cycle_last) &
2385 				clock->mask;
2386 		} else {
2387 			/* TSC page invalid */
2388 			*mode = VDSO_CLOCKMODE_NONE;
2389 		}
2390 		break;
2391 	case VDSO_CLOCKMODE_TSC:
2392 		*mode = VDSO_CLOCKMODE_TSC;
2393 		*tsc_timestamp = read_tsc();
2394 		v = (*tsc_timestamp - clock->cycle_last) &
2395 			clock->mask;
2396 		break;
2397 	default:
2398 		*mode = VDSO_CLOCKMODE_NONE;
2399 	}
2400 
2401 	if (*mode == VDSO_CLOCKMODE_NONE)
2402 		*tsc_timestamp = v = 0;
2403 
2404 	return v * clock->mult;
2405 }
2406 
2407 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2408 {
2409 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2410 	unsigned long seq;
2411 	int mode;
2412 	u64 ns;
2413 
2414 	do {
2415 		seq = read_seqcount_begin(&gtod->seq);
2416 		ns = gtod->raw_clock.base_cycles;
2417 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2418 		ns >>= gtod->raw_clock.shift;
2419 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2420 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2421 	*t = ns;
2422 
2423 	return mode;
2424 }
2425 
2426 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2427 {
2428 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2429 	unsigned long seq;
2430 	int mode;
2431 	u64 ns;
2432 
2433 	do {
2434 		seq = read_seqcount_begin(&gtod->seq);
2435 		ts->tv_sec = gtod->wall_time_sec;
2436 		ns = gtod->clock.base_cycles;
2437 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2438 		ns >>= gtod->clock.shift;
2439 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2440 
2441 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2442 	ts->tv_nsec = ns;
2443 
2444 	return mode;
2445 }
2446 
2447 /* returns true if host is using TSC based clocksource */
2448 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2449 {
2450 	/* checked again under seqlock below */
2451 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2452 		return false;
2453 
2454 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2455 						      tsc_timestamp));
2456 }
2457 
2458 /* returns true if host is using TSC based clocksource */
2459 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2460 					   u64 *tsc_timestamp)
2461 {
2462 	/* checked again under seqlock below */
2463 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2464 		return false;
2465 
2466 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2467 }
2468 #endif
2469 
2470 /*
2471  *
2472  * Assuming a stable TSC across physical CPUS, and a stable TSC
2473  * across virtual CPUs, the following condition is possible.
2474  * Each numbered line represents an event visible to both
2475  * CPUs at the next numbered event.
2476  *
2477  * "timespecX" represents host monotonic time. "tscX" represents
2478  * RDTSC value.
2479  *
2480  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2481  *
2482  * 1.  read timespec0,tsc0
2483  * 2.					| timespec1 = timespec0 + N
2484  * 					| tsc1 = tsc0 + M
2485  * 3. transition to guest		| transition to guest
2486  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2487  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2488  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2489  *
2490  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2491  *
2492  * 	- ret0 < ret1
2493  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2494  *		...
2495  *	- 0 < N - M => M < N
2496  *
2497  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2498  * always the case (the difference between two distinct xtime instances
2499  * might be smaller then the difference between corresponding TSC reads,
2500  * when updating guest vcpus pvclock areas).
2501  *
2502  * To avoid that problem, do not allow visibility of distinct
2503  * system_timestamp/tsc_timestamp values simultaneously: use a master
2504  * copy of host monotonic time values. Update that master copy
2505  * in lockstep.
2506  *
2507  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2508  *
2509  */
2510 
2511 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2512 {
2513 #ifdef CONFIG_X86_64
2514 	struct kvm_arch *ka = &kvm->arch;
2515 	int vclock_mode;
2516 	bool host_tsc_clocksource, vcpus_matched;
2517 
2518 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2519 			atomic_read(&kvm->online_vcpus));
2520 
2521 	/*
2522 	 * If the host uses TSC clock, then passthrough TSC as stable
2523 	 * to the guest.
2524 	 */
2525 	host_tsc_clocksource = kvm_get_time_and_clockread(
2526 					&ka->master_kernel_ns,
2527 					&ka->master_cycle_now);
2528 
2529 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2530 				&& !ka->backwards_tsc_observed
2531 				&& !ka->boot_vcpu_runs_old_kvmclock;
2532 
2533 	if (ka->use_master_clock)
2534 		atomic_set(&kvm_guest_has_master_clock, 1);
2535 
2536 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2537 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2538 					vcpus_matched);
2539 #endif
2540 }
2541 
2542 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2543 {
2544 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2545 }
2546 
2547 static void kvm_gen_update_masterclock(struct kvm *kvm)
2548 {
2549 #ifdef CONFIG_X86_64
2550 	int i;
2551 	struct kvm_vcpu *vcpu;
2552 	struct kvm_arch *ka = &kvm->arch;
2553 
2554 	spin_lock(&ka->pvclock_gtod_sync_lock);
2555 	kvm_make_mclock_inprogress_request(kvm);
2556 	/* no guest entries from this point */
2557 	pvclock_update_vm_gtod_copy(kvm);
2558 
2559 	kvm_for_each_vcpu(i, vcpu, kvm)
2560 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2561 
2562 	/* guest entries allowed */
2563 	kvm_for_each_vcpu(i, vcpu, kvm)
2564 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2565 
2566 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2567 #endif
2568 }
2569 
2570 u64 get_kvmclock_ns(struct kvm *kvm)
2571 {
2572 	struct kvm_arch *ka = &kvm->arch;
2573 	struct pvclock_vcpu_time_info hv_clock;
2574 	u64 ret;
2575 
2576 	spin_lock(&ka->pvclock_gtod_sync_lock);
2577 	if (!ka->use_master_clock) {
2578 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2579 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2580 	}
2581 
2582 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2583 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2584 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2585 
2586 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2587 	get_cpu();
2588 
2589 	if (__this_cpu_read(cpu_tsc_khz)) {
2590 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2591 				   &hv_clock.tsc_shift,
2592 				   &hv_clock.tsc_to_system_mul);
2593 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2594 	} else
2595 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2596 
2597 	put_cpu();
2598 
2599 	return ret;
2600 }
2601 
2602 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2603 				   struct gfn_to_hva_cache *cache,
2604 				   unsigned int offset)
2605 {
2606 	struct kvm_vcpu_arch *vcpu = &v->arch;
2607 	struct pvclock_vcpu_time_info guest_hv_clock;
2608 
2609 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2610 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2611 		return;
2612 
2613 	/* This VCPU is paused, but it's legal for a guest to read another
2614 	 * VCPU's kvmclock, so we really have to follow the specification where
2615 	 * it says that version is odd if data is being modified, and even after
2616 	 * it is consistent.
2617 	 *
2618 	 * Version field updates must be kept separate.  This is because
2619 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2620 	 * writes within a string instruction are weakly ordered.  So there
2621 	 * are three writes overall.
2622 	 *
2623 	 * As a small optimization, only write the version field in the first
2624 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2625 	 * version field is the first in the struct.
2626 	 */
2627 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2628 
2629 	if (guest_hv_clock.version & 1)
2630 		++guest_hv_clock.version;  /* first time write, random junk */
2631 
2632 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2633 	kvm_write_guest_offset_cached(v->kvm, cache,
2634 				      &vcpu->hv_clock, offset,
2635 				      sizeof(vcpu->hv_clock.version));
2636 
2637 	smp_wmb();
2638 
2639 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2640 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2641 
2642 	if (vcpu->pvclock_set_guest_stopped_request) {
2643 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2644 		vcpu->pvclock_set_guest_stopped_request = false;
2645 	}
2646 
2647 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2648 
2649 	kvm_write_guest_offset_cached(v->kvm, cache,
2650 				      &vcpu->hv_clock, offset,
2651 				      sizeof(vcpu->hv_clock));
2652 
2653 	smp_wmb();
2654 
2655 	vcpu->hv_clock.version++;
2656 	kvm_write_guest_offset_cached(v->kvm, cache,
2657 				     &vcpu->hv_clock, offset,
2658 				     sizeof(vcpu->hv_clock.version));
2659 }
2660 
2661 static int kvm_guest_time_update(struct kvm_vcpu *v)
2662 {
2663 	unsigned long flags, tgt_tsc_khz;
2664 	struct kvm_vcpu_arch *vcpu = &v->arch;
2665 	struct kvm_arch *ka = &v->kvm->arch;
2666 	s64 kernel_ns;
2667 	u64 tsc_timestamp, host_tsc;
2668 	u8 pvclock_flags;
2669 	bool use_master_clock;
2670 
2671 	kernel_ns = 0;
2672 	host_tsc = 0;
2673 
2674 	/*
2675 	 * If the host uses TSC clock, then passthrough TSC as stable
2676 	 * to the guest.
2677 	 */
2678 	spin_lock(&ka->pvclock_gtod_sync_lock);
2679 	use_master_clock = ka->use_master_clock;
2680 	if (use_master_clock) {
2681 		host_tsc = ka->master_cycle_now;
2682 		kernel_ns = ka->master_kernel_ns;
2683 	}
2684 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2685 
2686 	/* Keep irq disabled to prevent changes to the clock */
2687 	local_irq_save(flags);
2688 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2689 	if (unlikely(tgt_tsc_khz == 0)) {
2690 		local_irq_restore(flags);
2691 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2692 		return 1;
2693 	}
2694 	if (!use_master_clock) {
2695 		host_tsc = rdtsc();
2696 		kernel_ns = get_kvmclock_base_ns();
2697 	}
2698 
2699 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2700 
2701 	/*
2702 	 * We may have to catch up the TSC to match elapsed wall clock
2703 	 * time for two reasons, even if kvmclock is used.
2704 	 *   1) CPU could have been running below the maximum TSC rate
2705 	 *   2) Broken TSC compensation resets the base at each VCPU
2706 	 *      entry to avoid unknown leaps of TSC even when running
2707 	 *      again on the same CPU.  This may cause apparent elapsed
2708 	 *      time to disappear, and the guest to stand still or run
2709 	 *	very slowly.
2710 	 */
2711 	if (vcpu->tsc_catchup) {
2712 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2713 		if (tsc > tsc_timestamp) {
2714 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2715 			tsc_timestamp = tsc;
2716 		}
2717 	}
2718 
2719 	local_irq_restore(flags);
2720 
2721 	/* With all the info we got, fill in the values */
2722 
2723 	if (kvm_has_tsc_control)
2724 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2725 
2726 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2727 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2728 				   &vcpu->hv_clock.tsc_shift,
2729 				   &vcpu->hv_clock.tsc_to_system_mul);
2730 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2731 	}
2732 
2733 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2734 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2735 	vcpu->last_guest_tsc = tsc_timestamp;
2736 
2737 	/* If the host uses TSC clocksource, then it is stable */
2738 	pvclock_flags = 0;
2739 	if (use_master_clock)
2740 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2741 
2742 	vcpu->hv_clock.flags = pvclock_flags;
2743 
2744 	if (vcpu->pv_time_enabled)
2745 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2746 	if (vcpu->xen.vcpu_info_set)
2747 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2748 				       offsetof(struct compat_vcpu_info, time));
2749 	if (vcpu->xen.vcpu_time_info_set)
2750 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2751 	if (v == kvm_get_vcpu(v->kvm, 0))
2752 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2753 	return 0;
2754 }
2755 
2756 /*
2757  * kvmclock updates which are isolated to a given vcpu, such as
2758  * vcpu->cpu migration, should not allow system_timestamp from
2759  * the rest of the vcpus to remain static. Otherwise ntp frequency
2760  * correction applies to one vcpu's system_timestamp but not
2761  * the others.
2762  *
2763  * So in those cases, request a kvmclock update for all vcpus.
2764  * We need to rate-limit these requests though, as they can
2765  * considerably slow guests that have a large number of vcpus.
2766  * The time for a remote vcpu to update its kvmclock is bound
2767  * by the delay we use to rate-limit the updates.
2768  */
2769 
2770 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2771 
2772 static void kvmclock_update_fn(struct work_struct *work)
2773 {
2774 	int i;
2775 	struct delayed_work *dwork = to_delayed_work(work);
2776 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2777 					   kvmclock_update_work);
2778 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2779 	struct kvm_vcpu *vcpu;
2780 
2781 	kvm_for_each_vcpu(i, vcpu, kvm) {
2782 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2783 		kvm_vcpu_kick(vcpu);
2784 	}
2785 }
2786 
2787 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2788 {
2789 	struct kvm *kvm = v->kvm;
2790 
2791 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2792 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2793 					KVMCLOCK_UPDATE_DELAY);
2794 }
2795 
2796 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2797 
2798 static void kvmclock_sync_fn(struct work_struct *work)
2799 {
2800 	struct delayed_work *dwork = to_delayed_work(work);
2801 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2802 					   kvmclock_sync_work);
2803 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2804 
2805 	if (!kvmclock_periodic_sync)
2806 		return;
2807 
2808 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2809 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2810 					KVMCLOCK_SYNC_PERIOD);
2811 }
2812 
2813 /*
2814  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2815  */
2816 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2817 {
2818 	/* McStatusWrEn enabled? */
2819 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2820 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2821 
2822 	return false;
2823 }
2824 
2825 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2826 {
2827 	u64 mcg_cap = vcpu->arch.mcg_cap;
2828 	unsigned bank_num = mcg_cap & 0xff;
2829 	u32 msr = msr_info->index;
2830 	u64 data = msr_info->data;
2831 
2832 	switch (msr) {
2833 	case MSR_IA32_MCG_STATUS:
2834 		vcpu->arch.mcg_status = data;
2835 		break;
2836 	case MSR_IA32_MCG_CTL:
2837 		if (!(mcg_cap & MCG_CTL_P) &&
2838 		    (data || !msr_info->host_initiated))
2839 			return 1;
2840 		if (data != 0 && data != ~(u64)0)
2841 			return 1;
2842 		vcpu->arch.mcg_ctl = data;
2843 		break;
2844 	default:
2845 		if (msr >= MSR_IA32_MC0_CTL &&
2846 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2847 			u32 offset = array_index_nospec(
2848 				msr - MSR_IA32_MC0_CTL,
2849 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2850 
2851 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2852 			 * some Linux kernels though clear bit 10 in bank 4 to
2853 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2854 			 * this to avoid an uncatched #GP in the guest
2855 			 */
2856 			if ((offset & 0x3) == 0 &&
2857 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2858 				return -1;
2859 
2860 			/* MCi_STATUS */
2861 			if (!msr_info->host_initiated &&
2862 			    (offset & 0x3) == 1 && data != 0) {
2863 				if (!can_set_mci_status(vcpu))
2864 					return -1;
2865 			}
2866 
2867 			vcpu->arch.mce_banks[offset] = data;
2868 			break;
2869 		}
2870 		return 1;
2871 	}
2872 	return 0;
2873 }
2874 
2875 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2876 {
2877 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2878 
2879 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
2880 }
2881 
2882 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2883 {
2884 	gpa_t gpa = data & ~0x3f;
2885 
2886 	/* Bits 4:5 are reserved, Should be zero */
2887 	if (data & 0x30)
2888 		return 1;
2889 
2890 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2891 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2892 		return 1;
2893 
2894 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2895 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2896 		return 1;
2897 
2898 	if (!lapic_in_kernel(vcpu))
2899 		return data ? 1 : 0;
2900 
2901 	vcpu->arch.apf.msr_en_val = data;
2902 
2903 	if (!kvm_pv_async_pf_enabled(vcpu)) {
2904 		kvm_clear_async_pf_completion_queue(vcpu);
2905 		kvm_async_pf_hash_reset(vcpu);
2906 		return 0;
2907 	}
2908 
2909 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2910 					sizeof(u64)))
2911 		return 1;
2912 
2913 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2914 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2915 
2916 	kvm_async_pf_wakeup_all(vcpu);
2917 
2918 	return 0;
2919 }
2920 
2921 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2922 {
2923 	/* Bits 8-63 are reserved */
2924 	if (data >> 8)
2925 		return 1;
2926 
2927 	if (!lapic_in_kernel(vcpu))
2928 		return 1;
2929 
2930 	vcpu->arch.apf.msr_int_val = data;
2931 
2932 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2933 
2934 	return 0;
2935 }
2936 
2937 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2938 {
2939 	vcpu->arch.pv_time_enabled = false;
2940 	vcpu->arch.time = 0;
2941 }
2942 
2943 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
2944 {
2945 	++vcpu->stat.tlb_flush;
2946 	static_call(kvm_x86_tlb_flush_all)(vcpu);
2947 }
2948 
2949 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2950 {
2951 	++vcpu->stat.tlb_flush;
2952 	static_call(kvm_x86_tlb_flush_guest)(vcpu);
2953 }
2954 
2955 static void record_steal_time(struct kvm_vcpu *vcpu)
2956 {
2957 	struct kvm_host_map map;
2958 	struct kvm_steal_time *st;
2959 
2960 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
2961 		kvm_xen_runstate_set_running(vcpu);
2962 		return;
2963 	}
2964 
2965 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2966 		return;
2967 
2968 	/* -EAGAIN is returned in atomic context so we can just return. */
2969 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2970 			&map, &vcpu->arch.st.cache, false))
2971 		return;
2972 
2973 	st = map.hva +
2974 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2975 
2976 	/*
2977 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2978 	 * expensive IPIs.
2979 	 */
2980 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2981 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2982 				       st->preempted & KVM_VCPU_FLUSH_TLB);
2983 		if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2984 			kvm_vcpu_flush_tlb_guest(vcpu);
2985 	}
2986 
2987 	vcpu->arch.st.preempted = 0;
2988 
2989 	if (st->version & 1)
2990 		st->version += 1;  /* first time write, random junk */
2991 
2992 	st->version += 1;
2993 
2994 	smp_wmb();
2995 
2996 	st->steal += current->sched_info.run_delay -
2997 		vcpu->arch.st.last_steal;
2998 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2999 
3000 	smp_wmb();
3001 
3002 	st->version += 1;
3003 
3004 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3005 }
3006 
3007 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3008 {
3009 	bool pr = false;
3010 	u32 msr = msr_info->index;
3011 	u64 data = msr_info->data;
3012 
3013 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3014 		return kvm_xen_write_hypercall_page(vcpu, data);
3015 
3016 	switch (msr) {
3017 	case MSR_AMD64_NB_CFG:
3018 	case MSR_IA32_UCODE_WRITE:
3019 	case MSR_VM_HSAVE_PA:
3020 	case MSR_AMD64_PATCH_LOADER:
3021 	case MSR_AMD64_BU_CFG2:
3022 	case MSR_AMD64_DC_CFG:
3023 	case MSR_F15H_EX_CFG:
3024 		break;
3025 
3026 	case MSR_IA32_UCODE_REV:
3027 		if (msr_info->host_initiated)
3028 			vcpu->arch.microcode_version = data;
3029 		break;
3030 	case MSR_IA32_ARCH_CAPABILITIES:
3031 		if (!msr_info->host_initiated)
3032 			return 1;
3033 		vcpu->arch.arch_capabilities = data;
3034 		break;
3035 	case MSR_IA32_PERF_CAPABILITIES: {
3036 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3037 
3038 		if (!msr_info->host_initiated)
3039 			return 1;
3040 		if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3041 			return 1;
3042 		if (data & ~msr_ent.data)
3043 			return 1;
3044 
3045 		vcpu->arch.perf_capabilities = data;
3046 
3047 		return 0;
3048 		}
3049 	case MSR_EFER:
3050 		return set_efer(vcpu, msr_info);
3051 	case MSR_K7_HWCR:
3052 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3053 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3054 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3055 
3056 		/* Handle McStatusWrEn */
3057 		if (data == BIT_ULL(18)) {
3058 			vcpu->arch.msr_hwcr = data;
3059 		} else if (data != 0) {
3060 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3061 				    data);
3062 			return 1;
3063 		}
3064 		break;
3065 	case MSR_FAM10H_MMIO_CONF_BASE:
3066 		if (data != 0) {
3067 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3068 				    "0x%llx\n", data);
3069 			return 1;
3070 		}
3071 		break;
3072 	case 0x200 ... 0x2ff:
3073 		return kvm_mtrr_set_msr(vcpu, msr, data);
3074 	case MSR_IA32_APICBASE:
3075 		return kvm_set_apic_base(vcpu, msr_info);
3076 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3077 		return kvm_x2apic_msr_write(vcpu, msr, data);
3078 	case MSR_IA32_TSCDEADLINE:
3079 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3080 		break;
3081 	case MSR_IA32_TSC_ADJUST:
3082 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3083 			if (!msr_info->host_initiated) {
3084 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3085 				adjust_tsc_offset_guest(vcpu, adj);
3086 			}
3087 			vcpu->arch.ia32_tsc_adjust_msr = data;
3088 		}
3089 		break;
3090 	case MSR_IA32_MISC_ENABLE:
3091 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3092 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3093 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3094 				return 1;
3095 			vcpu->arch.ia32_misc_enable_msr = data;
3096 			kvm_update_cpuid_runtime(vcpu);
3097 		} else {
3098 			vcpu->arch.ia32_misc_enable_msr = data;
3099 		}
3100 		break;
3101 	case MSR_IA32_SMBASE:
3102 		if (!msr_info->host_initiated)
3103 			return 1;
3104 		vcpu->arch.smbase = data;
3105 		break;
3106 	case MSR_IA32_POWER_CTL:
3107 		vcpu->arch.msr_ia32_power_ctl = data;
3108 		break;
3109 	case MSR_IA32_TSC:
3110 		if (msr_info->host_initiated) {
3111 			kvm_synchronize_tsc(vcpu, data);
3112 		} else {
3113 			u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3114 			adjust_tsc_offset_guest(vcpu, adj);
3115 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3116 		}
3117 		break;
3118 	case MSR_IA32_XSS:
3119 		if (!msr_info->host_initiated &&
3120 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3121 			return 1;
3122 		/*
3123 		 * KVM supports exposing PT to the guest, but does not support
3124 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3125 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3126 		 */
3127 		if (data & ~supported_xss)
3128 			return 1;
3129 		vcpu->arch.ia32_xss = data;
3130 		break;
3131 	case MSR_SMI_COUNT:
3132 		if (!msr_info->host_initiated)
3133 			return 1;
3134 		vcpu->arch.smi_count = data;
3135 		break;
3136 	case MSR_KVM_WALL_CLOCK_NEW:
3137 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3138 			return 1;
3139 
3140 		vcpu->kvm->arch.wall_clock = data;
3141 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3142 		break;
3143 	case MSR_KVM_WALL_CLOCK:
3144 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3145 			return 1;
3146 
3147 		vcpu->kvm->arch.wall_clock = data;
3148 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3149 		break;
3150 	case MSR_KVM_SYSTEM_TIME_NEW:
3151 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3152 			return 1;
3153 
3154 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3155 		break;
3156 	case MSR_KVM_SYSTEM_TIME:
3157 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3158 			return 1;
3159 
3160 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3161 		break;
3162 	case MSR_KVM_ASYNC_PF_EN:
3163 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3164 			return 1;
3165 
3166 		if (kvm_pv_enable_async_pf(vcpu, data))
3167 			return 1;
3168 		break;
3169 	case MSR_KVM_ASYNC_PF_INT:
3170 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3171 			return 1;
3172 
3173 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3174 			return 1;
3175 		break;
3176 	case MSR_KVM_ASYNC_PF_ACK:
3177 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3178 			return 1;
3179 		if (data & 0x1) {
3180 			vcpu->arch.apf.pageready_pending = false;
3181 			kvm_check_async_pf_completion(vcpu);
3182 		}
3183 		break;
3184 	case MSR_KVM_STEAL_TIME:
3185 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3186 			return 1;
3187 
3188 		if (unlikely(!sched_info_on()))
3189 			return 1;
3190 
3191 		if (data & KVM_STEAL_RESERVED_MASK)
3192 			return 1;
3193 
3194 		vcpu->arch.st.msr_val = data;
3195 
3196 		if (!(data & KVM_MSR_ENABLED))
3197 			break;
3198 
3199 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3200 
3201 		break;
3202 	case MSR_KVM_PV_EOI_EN:
3203 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3204 			return 1;
3205 
3206 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3207 			return 1;
3208 		break;
3209 
3210 	case MSR_KVM_POLL_CONTROL:
3211 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3212 			return 1;
3213 
3214 		/* only enable bit supported */
3215 		if (data & (-1ULL << 1))
3216 			return 1;
3217 
3218 		vcpu->arch.msr_kvm_poll_control = data;
3219 		break;
3220 
3221 	case MSR_IA32_MCG_CTL:
3222 	case MSR_IA32_MCG_STATUS:
3223 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3224 		return set_msr_mce(vcpu, msr_info);
3225 
3226 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3227 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3228 		pr = true;
3229 		fallthrough;
3230 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3231 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3232 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3233 			return kvm_pmu_set_msr(vcpu, msr_info);
3234 
3235 		if (pr || data != 0)
3236 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3237 				    "0x%x data 0x%llx\n", msr, data);
3238 		break;
3239 	case MSR_K7_CLK_CTL:
3240 		/*
3241 		 * Ignore all writes to this no longer documented MSR.
3242 		 * Writes are only relevant for old K7 processors,
3243 		 * all pre-dating SVM, but a recommended workaround from
3244 		 * AMD for these chips. It is possible to specify the
3245 		 * affected processor models on the command line, hence
3246 		 * the need to ignore the workaround.
3247 		 */
3248 		break;
3249 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3250 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3251 	case HV_X64_MSR_SYNDBG_OPTIONS:
3252 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3253 	case HV_X64_MSR_CRASH_CTL:
3254 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3255 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3256 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3257 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3258 		return kvm_hv_set_msr_common(vcpu, msr, data,
3259 					     msr_info->host_initiated);
3260 	case MSR_IA32_BBL_CR_CTL3:
3261 		/* Drop writes to this legacy MSR -- see rdmsr
3262 		 * counterpart for further detail.
3263 		 */
3264 		if (report_ignored_msrs)
3265 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3266 				msr, data);
3267 		break;
3268 	case MSR_AMD64_OSVW_ID_LENGTH:
3269 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3270 			return 1;
3271 		vcpu->arch.osvw.length = data;
3272 		break;
3273 	case MSR_AMD64_OSVW_STATUS:
3274 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3275 			return 1;
3276 		vcpu->arch.osvw.status = data;
3277 		break;
3278 	case MSR_PLATFORM_INFO:
3279 		if (!msr_info->host_initiated ||
3280 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3281 		     cpuid_fault_enabled(vcpu)))
3282 			return 1;
3283 		vcpu->arch.msr_platform_info = data;
3284 		break;
3285 	case MSR_MISC_FEATURES_ENABLES:
3286 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3287 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3288 		     !supports_cpuid_fault(vcpu)))
3289 			return 1;
3290 		vcpu->arch.msr_misc_features_enables = data;
3291 		break;
3292 	default:
3293 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3294 			return kvm_pmu_set_msr(vcpu, msr_info);
3295 		return KVM_MSR_RET_INVALID;
3296 	}
3297 	return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3300 
3301 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3302 {
3303 	u64 data;
3304 	u64 mcg_cap = vcpu->arch.mcg_cap;
3305 	unsigned bank_num = mcg_cap & 0xff;
3306 
3307 	switch (msr) {
3308 	case MSR_IA32_P5_MC_ADDR:
3309 	case MSR_IA32_P5_MC_TYPE:
3310 		data = 0;
3311 		break;
3312 	case MSR_IA32_MCG_CAP:
3313 		data = vcpu->arch.mcg_cap;
3314 		break;
3315 	case MSR_IA32_MCG_CTL:
3316 		if (!(mcg_cap & MCG_CTL_P) && !host)
3317 			return 1;
3318 		data = vcpu->arch.mcg_ctl;
3319 		break;
3320 	case MSR_IA32_MCG_STATUS:
3321 		data = vcpu->arch.mcg_status;
3322 		break;
3323 	default:
3324 		if (msr >= MSR_IA32_MC0_CTL &&
3325 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3326 			u32 offset = array_index_nospec(
3327 				msr - MSR_IA32_MC0_CTL,
3328 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3329 
3330 			data = vcpu->arch.mce_banks[offset];
3331 			break;
3332 		}
3333 		return 1;
3334 	}
3335 	*pdata = data;
3336 	return 0;
3337 }
3338 
3339 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3340 {
3341 	switch (msr_info->index) {
3342 	case MSR_IA32_PLATFORM_ID:
3343 	case MSR_IA32_EBL_CR_POWERON:
3344 	case MSR_IA32_LASTBRANCHFROMIP:
3345 	case MSR_IA32_LASTBRANCHTOIP:
3346 	case MSR_IA32_LASTINTFROMIP:
3347 	case MSR_IA32_LASTINTTOIP:
3348 	case MSR_K8_SYSCFG:
3349 	case MSR_K8_TSEG_ADDR:
3350 	case MSR_K8_TSEG_MASK:
3351 	case MSR_VM_HSAVE_PA:
3352 	case MSR_K8_INT_PENDING_MSG:
3353 	case MSR_AMD64_NB_CFG:
3354 	case MSR_FAM10H_MMIO_CONF_BASE:
3355 	case MSR_AMD64_BU_CFG2:
3356 	case MSR_IA32_PERF_CTL:
3357 	case MSR_AMD64_DC_CFG:
3358 	case MSR_F15H_EX_CFG:
3359 	/*
3360 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3361 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3362 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3363 	 * so for existing CPU-specific MSRs.
3364 	 */
3365 	case MSR_RAPL_POWER_UNIT:
3366 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3367 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3368 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3369 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3370 		msr_info->data = 0;
3371 		break;
3372 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3373 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3374 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3375 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3376 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3377 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3378 			return kvm_pmu_get_msr(vcpu, msr_info);
3379 		msr_info->data = 0;
3380 		break;
3381 	case MSR_IA32_UCODE_REV:
3382 		msr_info->data = vcpu->arch.microcode_version;
3383 		break;
3384 	case MSR_IA32_ARCH_CAPABILITIES:
3385 		if (!msr_info->host_initiated &&
3386 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3387 			return 1;
3388 		msr_info->data = vcpu->arch.arch_capabilities;
3389 		break;
3390 	case MSR_IA32_PERF_CAPABILITIES:
3391 		if (!msr_info->host_initiated &&
3392 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3393 			return 1;
3394 		msr_info->data = vcpu->arch.perf_capabilities;
3395 		break;
3396 	case MSR_IA32_POWER_CTL:
3397 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3398 		break;
3399 	case MSR_IA32_TSC: {
3400 		/*
3401 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3402 		 * even when not intercepted. AMD manual doesn't explicitly
3403 		 * state this but appears to behave the same.
3404 		 *
3405 		 * On userspace reads and writes, however, we unconditionally
3406 		 * return L1's TSC value to ensure backwards-compatible
3407 		 * behavior for migration.
3408 		 */
3409 		u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3410 							    vcpu->arch.tsc_offset;
3411 
3412 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3413 		break;
3414 	}
3415 	case MSR_MTRRcap:
3416 	case 0x200 ... 0x2ff:
3417 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3418 	case 0xcd: /* fsb frequency */
3419 		msr_info->data = 3;
3420 		break;
3421 		/*
3422 		 * MSR_EBC_FREQUENCY_ID
3423 		 * Conservative value valid for even the basic CPU models.
3424 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3425 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3426 		 * and 266MHz for model 3, or 4. Set Core Clock
3427 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3428 		 * 31:24) even though these are only valid for CPU
3429 		 * models > 2, however guests may end up dividing or
3430 		 * multiplying by zero otherwise.
3431 		 */
3432 	case MSR_EBC_FREQUENCY_ID:
3433 		msr_info->data = 1 << 24;
3434 		break;
3435 	case MSR_IA32_APICBASE:
3436 		msr_info->data = kvm_get_apic_base(vcpu);
3437 		break;
3438 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3439 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3440 	case MSR_IA32_TSCDEADLINE:
3441 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3442 		break;
3443 	case MSR_IA32_TSC_ADJUST:
3444 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3445 		break;
3446 	case MSR_IA32_MISC_ENABLE:
3447 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3448 		break;
3449 	case MSR_IA32_SMBASE:
3450 		if (!msr_info->host_initiated)
3451 			return 1;
3452 		msr_info->data = vcpu->arch.smbase;
3453 		break;
3454 	case MSR_SMI_COUNT:
3455 		msr_info->data = vcpu->arch.smi_count;
3456 		break;
3457 	case MSR_IA32_PERF_STATUS:
3458 		/* TSC increment by tick */
3459 		msr_info->data = 1000ULL;
3460 		/* CPU multiplier */
3461 		msr_info->data |= (((uint64_t)4ULL) << 40);
3462 		break;
3463 	case MSR_EFER:
3464 		msr_info->data = vcpu->arch.efer;
3465 		break;
3466 	case MSR_KVM_WALL_CLOCK:
3467 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3468 			return 1;
3469 
3470 		msr_info->data = vcpu->kvm->arch.wall_clock;
3471 		break;
3472 	case MSR_KVM_WALL_CLOCK_NEW:
3473 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3474 			return 1;
3475 
3476 		msr_info->data = vcpu->kvm->arch.wall_clock;
3477 		break;
3478 	case MSR_KVM_SYSTEM_TIME:
3479 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3480 			return 1;
3481 
3482 		msr_info->data = vcpu->arch.time;
3483 		break;
3484 	case MSR_KVM_SYSTEM_TIME_NEW:
3485 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3486 			return 1;
3487 
3488 		msr_info->data = vcpu->arch.time;
3489 		break;
3490 	case MSR_KVM_ASYNC_PF_EN:
3491 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3492 			return 1;
3493 
3494 		msr_info->data = vcpu->arch.apf.msr_en_val;
3495 		break;
3496 	case MSR_KVM_ASYNC_PF_INT:
3497 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3498 			return 1;
3499 
3500 		msr_info->data = vcpu->arch.apf.msr_int_val;
3501 		break;
3502 	case MSR_KVM_ASYNC_PF_ACK:
3503 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3504 			return 1;
3505 
3506 		msr_info->data = 0;
3507 		break;
3508 	case MSR_KVM_STEAL_TIME:
3509 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3510 			return 1;
3511 
3512 		msr_info->data = vcpu->arch.st.msr_val;
3513 		break;
3514 	case MSR_KVM_PV_EOI_EN:
3515 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3516 			return 1;
3517 
3518 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3519 		break;
3520 	case MSR_KVM_POLL_CONTROL:
3521 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3522 			return 1;
3523 
3524 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3525 		break;
3526 	case MSR_IA32_P5_MC_ADDR:
3527 	case MSR_IA32_P5_MC_TYPE:
3528 	case MSR_IA32_MCG_CAP:
3529 	case MSR_IA32_MCG_CTL:
3530 	case MSR_IA32_MCG_STATUS:
3531 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3532 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3533 				   msr_info->host_initiated);
3534 	case MSR_IA32_XSS:
3535 		if (!msr_info->host_initiated &&
3536 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3537 			return 1;
3538 		msr_info->data = vcpu->arch.ia32_xss;
3539 		break;
3540 	case MSR_K7_CLK_CTL:
3541 		/*
3542 		 * Provide expected ramp-up count for K7. All other
3543 		 * are set to zero, indicating minimum divisors for
3544 		 * every field.
3545 		 *
3546 		 * This prevents guest kernels on AMD host with CPU
3547 		 * type 6, model 8 and higher from exploding due to
3548 		 * the rdmsr failing.
3549 		 */
3550 		msr_info->data = 0x20000000;
3551 		break;
3552 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3553 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3554 	case HV_X64_MSR_SYNDBG_OPTIONS:
3555 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3556 	case HV_X64_MSR_CRASH_CTL:
3557 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3558 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3559 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3560 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3561 		return kvm_hv_get_msr_common(vcpu,
3562 					     msr_info->index, &msr_info->data,
3563 					     msr_info->host_initiated);
3564 	case MSR_IA32_BBL_CR_CTL3:
3565 		/* This legacy MSR exists but isn't fully documented in current
3566 		 * silicon.  It is however accessed by winxp in very narrow
3567 		 * scenarios where it sets bit #19, itself documented as
3568 		 * a "reserved" bit.  Best effort attempt to source coherent
3569 		 * read data here should the balance of the register be
3570 		 * interpreted by the guest:
3571 		 *
3572 		 * L2 cache control register 3: 64GB range, 256KB size,
3573 		 * enabled, latency 0x1, configured
3574 		 */
3575 		msr_info->data = 0xbe702111;
3576 		break;
3577 	case MSR_AMD64_OSVW_ID_LENGTH:
3578 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3579 			return 1;
3580 		msr_info->data = vcpu->arch.osvw.length;
3581 		break;
3582 	case MSR_AMD64_OSVW_STATUS:
3583 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3584 			return 1;
3585 		msr_info->data = vcpu->arch.osvw.status;
3586 		break;
3587 	case MSR_PLATFORM_INFO:
3588 		if (!msr_info->host_initiated &&
3589 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3590 			return 1;
3591 		msr_info->data = vcpu->arch.msr_platform_info;
3592 		break;
3593 	case MSR_MISC_FEATURES_ENABLES:
3594 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3595 		break;
3596 	case MSR_K7_HWCR:
3597 		msr_info->data = vcpu->arch.msr_hwcr;
3598 		break;
3599 	default:
3600 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3601 			return kvm_pmu_get_msr(vcpu, msr_info);
3602 		return KVM_MSR_RET_INVALID;
3603 	}
3604 	return 0;
3605 }
3606 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3607 
3608 /*
3609  * Read or write a bunch of msrs. All parameters are kernel addresses.
3610  *
3611  * @return number of msrs set successfully.
3612  */
3613 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3614 		    struct kvm_msr_entry *entries,
3615 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3616 				  unsigned index, u64 *data))
3617 {
3618 	int i;
3619 
3620 	for (i = 0; i < msrs->nmsrs; ++i)
3621 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3622 			break;
3623 
3624 	return i;
3625 }
3626 
3627 /*
3628  * Read or write a bunch of msrs. Parameters are user addresses.
3629  *
3630  * @return number of msrs set successfully.
3631  */
3632 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3633 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3634 				unsigned index, u64 *data),
3635 		  int writeback)
3636 {
3637 	struct kvm_msrs msrs;
3638 	struct kvm_msr_entry *entries;
3639 	int r, n;
3640 	unsigned size;
3641 
3642 	r = -EFAULT;
3643 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3644 		goto out;
3645 
3646 	r = -E2BIG;
3647 	if (msrs.nmsrs >= MAX_IO_MSRS)
3648 		goto out;
3649 
3650 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3651 	entries = memdup_user(user_msrs->entries, size);
3652 	if (IS_ERR(entries)) {
3653 		r = PTR_ERR(entries);
3654 		goto out;
3655 	}
3656 
3657 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3658 	if (r < 0)
3659 		goto out_free;
3660 
3661 	r = -EFAULT;
3662 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3663 		goto out_free;
3664 
3665 	r = n;
3666 
3667 out_free:
3668 	kfree(entries);
3669 out:
3670 	return r;
3671 }
3672 
3673 static inline bool kvm_can_mwait_in_guest(void)
3674 {
3675 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3676 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3677 		boot_cpu_has(X86_FEATURE_ARAT);
3678 }
3679 
3680 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3681 					    struct kvm_cpuid2 __user *cpuid_arg)
3682 {
3683 	struct kvm_cpuid2 cpuid;
3684 	int r;
3685 
3686 	r = -EFAULT;
3687 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3688 		return r;
3689 
3690 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3691 	if (r)
3692 		return r;
3693 
3694 	r = -EFAULT;
3695 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3696 		return r;
3697 
3698 	return 0;
3699 }
3700 
3701 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3702 {
3703 	int r = 0;
3704 
3705 	switch (ext) {
3706 	case KVM_CAP_IRQCHIP:
3707 	case KVM_CAP_HLT:
3708 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3709 	case KVM_CAP_SET_TSS_ADDR:
3710 	case KVM_CAP_EXT_CPUID:
3711 	case KVM_CAP_EXT_EMUL_CPUID:
3712 	case KVM_CAP_CLOCKSOURCE:
3713 	case KVM_CAP_PIT:
3714 	case KVM_CAP_NOP_IO_DELAY:
3715 	case KVM_CAP_MP_STATE:
3716 	case KVM_CAP_SYNC_MMU:
3717 	case KVM_CAP_USER_NMI:
3718 	case KVM_CAP_REINJECT_CONTROL:
3719 	case KVM_CAP_IRQ_INJECT_STATUS:
3720 	case KVM_CAP_IOEVENTFD:
3721 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3722 	case KVM_CAP_PIT2:
3723 	case KVM_CAP_PIT_STATE2:
3724 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3725 	case KVM_CAP_VCPU_EVENTS:
3726 	case KVM_CAP_HYPERV:
3727 	case KVM_CAP_HYPERV_VAPIC:
3728 	case KVM_CAP_HYPERV_SPIN:
3729 	case KVM_CAP_HYPERV_SYNIC:
3730 	case KVM_CAP_HYPERV_SYNIC2:
3731 	case KVM_CAP_HYPERV_VP_INDEX:
3732 	case KVM_CAP_HYPERV_EVENTFD:
3733 	case KVM_CAP_HYPERV_TLBFLUSH:
3734 	case KVM_CAP_HYPERV_SEND_IPI:
3735 	case KVM_CAP_HYPERV_CPUID:
3736 	case KVM_CAP_SYS_HYPERV_CPUID:
3737 	case KVM_CAP_PCI_SEGMENT:
3738 	case KVM_CAP_DEBUGREGS:
3739 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3740 	case KVM_CAP_XSAVE:
3741 	case KVM_CAP_ASYNC_PF:
3742 	case KVM_CAP_ASYNC_PF_INT:
3743 	case KVM_CAP_GET_TSC_KHZ:
3744 	case KVM_CAP_KVMCLOCK_CTRL:
3745 	case KVM_CAP_READONLY_MEM:
3746 	case KVM_CAP_HYPERV_TIME:
3747 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3748 	case KVM_CAP_TSC_DEADLINE_TIMER:
3749 	case KVM_CAP_DISABLE_QUIRKS:
3750 	case KVM_CAP_SET_BOOT_CPU_ID:
3751  	case KVM_CAP_SPLIT_IRQCHIP:
3752 	case KVM_CAP_IMMEDIATE_EXIT:
3753 	case KVM_CAP_PMU_EVENT_FILTER:
3754 	case KVM_CAP_GET_MSR_FEATURES:
3755 	case KVM_CAP_MSR_PLATFORM_INFO:
3756 	case KVM_CAP_EXCEPTION_PAYLOAD:
3757 	case KVM_CAP_SET_GUEST_DEBUG:
3758 	case KVM_CAP_LAST_CPU:
3759 	case KVM_CAP_X86_USER_SPACE_MSR:
3760 	case KVM_CAP_X86_MSR_FILTER:
3761 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3762 		r = 1;
3763 		break;
3764 #ifdef CONFIG_KVM_XEN
3765 	case KVM_CAP_XEN_HVM:
3766 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
3767 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
3768 		    KVM_XEN_HVM_CONFIG_SHARED_INFO;
3769 		if (sched_info_on())
3770 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
3771 		break;
3772 #endif
3773 	case KVM_CAP_SYNC_REGS:
3774 		r = KVM_SYNC_X86_VALID_FIELDS;
3775 		break;
3776 	case KVM_CAP_ADJUST_CLOCK:
3777 		r = KVM_CLOCK_TSC_STABLE;
3778 		break;
3779 	case KVM_CAP_X86_DISABLE_EXITS:
3780 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3781 		      KVM_X86_DISABLE_EXITS_CSTATE;
3782 		if(kvm_can_mwait_in_guest())
3783 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3784 		break;
3785 	case KVM_CAP_X86_SMM:
3786 		/* SMBASE is usually relocated above 1M on modern chipsets,
3787 		 * and SMM handlers might indeed rely on 4G segment limits,
3788 		 * so do not report SMM to be available if real mode is
3789 		 * emulated via vm86 mode.  Still, do not go to great lengths
3790 		 * to avoid userspace's usage of the feature, because it is a
3791 		 * fringe case that is not enabled except via specific settings
3792 		 * of the module parameters.
3793 		 */
3794 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
3795 		break;
3796 	case KVM_CAP_VAPIC:
3797 		r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
3798 		break;
3799 	case KVM_CAP_NR_VCPUS:
3800 		r = KVM_SOFT_MAX_VCPUS;
3801 		break;
3802 	case KVM_CAP_MAX_VCPUS:
3803 		r = KVM_MAX_VCPUS;
3804 		break;
3805 	case KVM_CAP_MAX_VCPU_ID:
3806 		r = KVM_MAX_VCPU_ID;
3807 		break;
3808 	case KVM_CAP_PV_MMU:	/* obsolete */
3809 		r = 0;
3810 		break;
3811 	case KVM_CAP_MCE:
3812 		r = KVM_MAX_MCE_BANKS;
3813 		break;
3814 	case KVM_CAP_XCRS:
3815 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3816 		break;
3817 	case KVM_CAP_TSC_CONTROL:
3818 		r = kvm_has_tsc_control;
3819 		break;
3820 	case KVM_CAP_X2APIC_API:
3821 		r = KVM_X2APIC_API_VALID_FLAGS;
3822 		break;
3823 	case KVM_CAP_NESTED_STATE:
3824 		r = kvm_x86_ops.nested_ops->get_state ?
3825 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
3826 		break;
3827 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3828 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3829 		break;
3830 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3831 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
3832 		break;
3833 	case KVM_CAP_SMALLER_MAXPHYADDR:
3834 		r = (int) allow_smaller_maxphyaddr;
3835 		break;
3836 	case KVM_CAP_STEAL_TIME:
3837 		r = sched_info_on();
3838 		break;
3839 	case KVM_CAP_X86_BUS_LOCK_EXIT:
3840 		if (kvm_has_bus_lock_exit)
3841 			r = KVM_BUS_LOCK_DETECTION_OFF |
3842 			    KVM_BUS_LOCK_DETECTION_EXIT;
3843 		else
3844 			r = 0;
3845 		break;
3846 	default:
3847 		break;
3848 	}
3849 	return r;
3850 
3851 }
3852 
3853 long kvm_arch_dev_ioctl(struct file *filp,
3854 			unsigned int ioctl, unsigned long arg)
3855 {
3856 	void __user *argp = (void __user *)arg;
3857 	long r;
3858 
3859 	switch (ioctl) {
3860 	case KVM_GET_MSR_INDEX_LIST: {
3861 		struct kvm_msr_list __user *user_msr_list = argp;
3862 		struct kvm_msr_list msr_list;
3863 		unsigned n;
3864 
3865 		r = -EFAULT;
3866 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3867 			goto out;
3868 		n = msr_list.nmsrs;
3869 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3870 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3871 			goto out;
3872 		r = -E2BIG;
3873 		if (n < msr_list.nmsrs)
3874 			goto out;
3875 		r = -EFAULT;
3876 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3877 				 num_msrs_to_save * sizeof(u32)))
3878 			goto out;
3879 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3880 				 &emulated_msrs,
3881 				 num_emulated_msrs * sizeof(u32)))
3882 			goto out;
3883 		r = 0;
3884 		break;
3885 	}
3886 	case KVM_GET_SUPPORTED_CPUID:
3887 	case KVM_GET_EMULATED_CPUID: {
3888 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3889 		struct kvm_cpuid2 cpuid;
3890 
3891 		r = -EFAULT;
3892 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3893 			goto out;
3894 
3895 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3896 					    ioctl);
3897 		if (r)
3898 			goto out;
3899 
3900 		r = -EFAULT;
3901 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3902 			goto out;
3903 		r = 0;
3904 		break;
3905 	}
3906 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3907 		r = -EFAULT;
3908 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3909 				 sizeof(kvm_mce_cap_supported)))
3910 			goto out;
3911 		r = 0;
3912 		break;
3913 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3914 		struct kvm_msr_list __user *user_msr_list = argp;
3915 		struct kvm_msr_list msr_list;
3916 		unsigned int n;
3917 
3918 		r = -EFAULT;
3919 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3920 			goto out;
3921 		n = msr_list.nmsrs;
3922 		msr_list.nmsrs = num_msr_based_features;
3923 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3924 			goto out;
3925 		r = -E2BIG;
3926 		if (n < msr_list.nmsrs)
3927 			goto out;
3928 		r = -EFAULT;
3929 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3930 				 num_msr_based_features * sizeof(u32)))
3931 			goto out;
3932 		r = 0;
3933 		break;
3934 	}
3935 	case KVM_GET_MSRS:
3936 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3937 		break;
3938 	case KVM_GET_SUPPORTED_HV_CPUID:
3939 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3940 		break;
3941 	default:
3942 		r = -EINVAL;
3943 		break;
3944 	}
3945 out:
3946 	return r;
3947 }
3948 
3949 static void wbinvd_ipi(void *garbage)
3950 {
3951 	wbinvd();
3952 }
3953 
3954 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3955 {
3956 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3957 }
3958 
3959 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3960 {
3961 	/* Address WBINVD may be executed by guest */
3962 	if (need_emulate_wbinvd(vcpu)) {
3963 		if (static_call(kvm_x86_has_wbinvd_exit)())
3964 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3965 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3966 			smp_call_function_single(vcpu->cpu,
3967 					wbinvd_ipi, NULL, 1);
3968 	}
3969 
3970 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
3971 
3972 	/* Save host pkru register if supported */
3973 	vcpu->arch.host_pkru = read_pkru();
3974 
3975 	/* Apply any externally detected TSC adjustments (due to suspend) */
3976 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3977 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3978 		vcpu->arch.tsc_offset_adjustment = 0;
3979 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3980 	}
3981 
3982 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3983 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3984 				rdtsc() - vcpu->arch.last_host_tsc;
3985 		if (tsc_delta < 0)
3986 			mark_tsc_unstable("KVM discovered backwards TSC");
3987 
3988 		if (kvm_check_tsc_unstable()) {
3989 			u64 offset = kvm_compute_tsc_offset(vcpu,
3990 						vcpu->arch.last_guest_tsc);
3991 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3992 			vcpu->arch.tsc_catchup = 1;
3993 		}
3994 
3995 		if (kvm_lapic_hv_timer_in_use(vcpu))
3996 			kvm_lapic_restart_hv_timer(vcpu);
3997 
3998 		/*
3999 		 * On a host with synchronized TSC, there is no need to update
4000 		 * kvmclock on vcpu->cpu migration
4001 		 */
4002 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4003 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4004 		if (vcpu->cpu != cpu)
4005 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4006 		vcpu->cpu = cpu;
4007 	}
4008 
4009 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4010 }
4011 
4012 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4013 {
4014 	struct kvm_host_map map;
4015 	struct kvm_steal_time *st;
4016 	int idx;
4017 
4018 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4019 		return;
4020 
4021 	if (vcpu->arch.st.preempted)
4022 		return;
4023 
4024 	/*
4025 	 * Take the srcu lock as memslots will be accessed to check the gfn
4026 	 * cache generation against the memslots generation.
4027 	 */
4028 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4029 
4030 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4031 			&vcpu->arch.st.cache, true))
4032 		goto out;
4033 
4034 	st = map.hva +
4035 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4036 
4037 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4038 
4039 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4040 
4041 out:
4042 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4043 }
4044 
4045 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4046 {
4047 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4048 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4049 
4050 	if (kvm_xen_msr_enabled(vcpu->kvm))
4051 		kvm_xen_runstate_set_preempted(vcpu);
4052 	else
4053 		kvm_steal_time_set_preempted(vcpu);
4054 
4055 	static_call(kvm_x86_vcpu_put)(vcpu);
4056 	vcpu->arch.last_host_tsc = rdtsc();
4057 	/*
4058 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4059 	 * on every vmexit, but if not, we might have a stale dr6 from the
4060 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4061 	 */
4062 	set_debugreg(0, 6);
4063 }
4064 
4065 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4066 				    struct kvm_lapic_state *s)
4067 {
4068 	if (vcpu->arch.apicv_active)
4069 		static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4070 
4071 	return kvm_apic_get_state(vcpu, s);
4072 }
4073 
4074 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4075 				    struct kvm_lapic_state *s)
4076 {
4077 	int r;
4078 
4079 	r = kvm_apic_set_state(vcpu, s);
4080 	if (r)
4081 		return r;
4082 	update_cr8_intercept(vcpu);
4083 
4084 	return 0;
4085 }
4086 
4087 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4088 {
4089 	/*
4090 	 * We can accept userspace's request for interrupt injection
4091 	 * as long as we have a place to store the interrupt number.
4092 	 * The actual injection will happen when the CPU is able to
4093 	 * deliver the interrupt.
4094 	 */
4095 	if (kvm_cpu_has_extint(vcpu))
4096 		return false;
4097 
4098 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4099 	return (!lapic_in_kernel(vcpu) ||
4100 		kvm_apic_accept_pic_intr(vcpu));
4101 }
4102 
4103 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4104 {
4105 	return kvm_arch_interrupt_allowed(vcpu) &&
4106 		kvm_cpu_accept_dm_intr(vcpu);
4107 }
4108 
4109 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4110 				    struct kvm_interrupt *irq)
4111 {
4112 	if (irq->irq >= KVM_NR_INTERRUPTS)
4113 		return -EINVAL;
4114 
4115 	if (!irqchip_in_kernel(vcpu->kvm)) {
4116 		kvm_queue_interrupt(vcpu, irq->irq, false);
4117 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4118 		return 0;
4119 	}
4120 
4121 	/*
4122 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4123 	 * fail for in-kernel 8259.
4124 	 */
4125 	if (pic_in_kernel(vcpu->kvm))
4126 		return -ENXIO;
4127 
4128 	if (vcpu->arch.pending_external_vector != -1)
4129 		return -EEXIST;
4130 
4131 	vcpu->arch.pending_external_vector = irq->irq;
4132 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4133 	return 0;
4134 }
4135 
4136 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4137 {
4138 	kvm_inject_nmi(vcpu);
4139 
4140 	return 0;
4141 }
4142 
4143 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4144 {
4145 	kvm_make_request(KVM_REQ_SMI, vcpu);
4146 
4147 	return 0;
4148 }
4149 
4150 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4151 					   struct kvm_tpr_access_ctl *tac)
4152 {
4153 	if (tac->flags)
4154 		return -EINVAL;
4155 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4156 	return 0;
4157 }
4158 
4159 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4160 					u64 mcg_cap)
4161 {
4162 	int r;
4163 	unsigned bank_num = mcg_cap & 0xff, bank;
4164 
4165 	r = -EINVAL;
4166 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4167 		goto out;
4168 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4169 		goto out;
4170 	r = 0;
4171 	vcpu->arch.mcg_cap = mcg_cap;
4172 	/* Init IA32_MCG_CTL to all 1s */
4173 	if (mcg_cap & MCG_CTL_P)
4174 		vcpu->arch.mcg_ctl = ~(u64)0;
4175 	/* Init IA32_MCi_CTL to all 1s */
4176 	for (bank = 0; bank < bank_num; bank++)
4177 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4178 
4179 	static_call(kvm_x86_setup_mce)(vcpu);
4180 out:
4181 	return r;
4182 }
4183 
4184 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4185 				      struct kvm_x86_mce *mce)
4186 {
4187 	u64 mcg_cap = vcpu->arch.mcg_cap;
4188 	unsigned bank_num = mcg_cap & 0xff;
4189 	u64 *banks = vcpu->arch.mce_banks;
4190 
4191 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4192 		return -EINVAL;
4193 	/*
4194 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4195 	 * reporting is disabled
4196 	 */
4197 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4198 	    vcpu->arch.mcg_ctl != ~(u64)0)
4199 		return 0;
4200 	banks += 4 * mce->bank;
4201 	/*
4202 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4203 	 * reporting is disabled for the bank
4204 	 */
4205 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4206 		return 0;
4207 	if (mce->status & MCI_STATUS_UC) {
4208 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4209 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4210 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4211 			return 0;
4212 		}
4213 		if (banks[1] & MCI_STATUS_VAL)
4214 			mce->status |= MCI_STATUS_OVER;
4215 		banks[2] = mce->addr;
4216 		banks[3] = mce->misc;
4217 		vcpu->arch.mcg_status = mce->mcg_status;
4218 		banks[1] = mce->status;
4219 		kvm_queue_exception(vcpu, MC_VECTOR);
4220 	} else if (!(banks[1] & MCI_STATUS_VAL)
4221 		   || !(banks[1] & MCI_STATUS_UC)) {
4222 		if (banks[1] & MCI_STATUS_VAL)
4223 			mce->status |= MCI_STATUS_OVER;
4224 		banks[2] = mce->addr;
4225 		banks[3] = mce->misc;
4226 		banks[1] = mce->status;
4227 	} else
4228 		banks[1] |= MCI_STATUS_OVER;
4229 	return 0;
4230 }
4231 
4232 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4233 					       struct kvm_vcpu_events *events)
4234 {
4235 	process_nmi(vcpu);
4236 
4237 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4238 		process_smi(vcpu);
4239 
4240 	/*
4241 	 * In guest mode, payload delivery should be deferred,
4242 	 * so that the L1 hypervisor can intercept #PF before
4243 	 * CR2 is modified (or intercept #DB before DR6 is
4244 	 * modified under nVMX). Unless the per-VM capability,
4245 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4246 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4247 	 * opportunistically defer the exception payload, deliver it if the
4248 	 * capability hasn't been requested before processing a
4249 	 * KVM_GET_VCPU_EVENTS.
4250 	 */
4251 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4252 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4253 		kvm_deliver_exception_payload(vcpu);
4254 
4255 	/*
4256 	 * The API doesn't provide the instruction length for software
4257 	 * exceptions, so don't report them. As long as the guest RIP
4258 	 * isn't advanced, we should expect to encounter the exception
4259 	 * again.
4260 	 */
4261 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4262 		events->exception.injected = 0;
4263 		events->exception.pending = 0;
4264 	} else {
4265 		events->exception.injected = vcpu->arch.exception.injected;
4266 		events->exception.pending = vcpu->arch.exception.pending;
4267 		/*
4268 		 * For ABI compatibility, deliberately conflate
4269 		 * pending and injected exceptions when
4270 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4271 		 */
4272 		if (!vcpu->kvm->arch.exception_payload_enabled)
4273 			events->exception.injected |=
4274 				vcpu->arch.exception.pending;
4275 	}
4276 	events->exception.nr = vcpu->arch.exception.nr;
4277 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4278 	events->exception.error_code = vcpu->arch.exception.error_code;
4279 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4280 	events->exception_payload = vcpu->arch.exception.payload;
4281 
4282 	events->interrupt.injected =
4283 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4284 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4285 	events->interrupt.soft = 0;
4286 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4287 
4288 	events->nmi.injected = vcpu->arch.nmi_injected;
4289 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4290 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4291 	events->nmi.pad = 0;
4292 
4293 	events->sipi_vector = 0; /* never valid when reporting to user space */
4294 
4295 	events->smi.smm = is_smm(vcpu);
4296 	events->smi.pending = vcpu->arch.smi_pending;
4297 	events->smi.smm_inside_nmi =
4298 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4299 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4300 
4301 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4302 			 | KVM_VCPUEVENT_VALID_SHADOW
4303 			 | KVM_VCPUEVENT_VALID_SMM);
4304 	if (vcpu->kvm->arch.exception_payload_enabled)
4305 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4306 
4307 	memset(&events->reserved, 0, sizeof(events->reserved));
4308 }
4309 
4310 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4311 
4312 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4313 					      struct kvm_vcpu_events *events)
4314 {
4315 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4316 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4317 			      | KVM_VCPUEVENT_VALID_SHADOW
4318 			      | KVM_VCPUEVENT_VALID_SMM
4319 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4320 		return -EINVAL;
4321 
4322 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4323 		if (!vcpu->kvm->arch.exception_payload_enabled)
4324 			return -EINVAL;
4325 		if (events->exception.pending)
4326 			events->exception.injected = 0;
4327 		else
4328 			events->exception_has_payload = 0;
4329 	} else {
4330 		events->exception.pending = 0;
4331 		events->exception_has_payload = 0;
4332 	}
4333 
4334 	if ((events->exception.injected || events->exception.pending) &&
4335 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4336 		return -EINVAL;
4337 
4338 	/* INITs are latched while in SMM */
4339 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4340 	    (events->smi.smm || events->smi.pending) &&
4341 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4342 		return -EINVAL;
4343 
4344 	process_nmi(vcpu);
4345 	vcpu->arch.exception.injected = events->exception.injected;
4346 	vcpu->arch.exception.pending = events->exception.pending;
4347 	vcpu->arch.exception.nr = events->exception.nr;
4348 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4349 	vcpu->arch.exception.error_code = events->exception.error_code;
4350 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4351 	vcpu->arch.exception.payload = events->exception_payload;
4352 
4353 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4354 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4355 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4356 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4357 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4358 						events->interrupt.shadow);
4359 
4360 	vcpu->arch.nmi_injected = events->nmi.injected;
4361 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4362 		vcpu->arch.nmi_pending = events->nmi.pending;
4363 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4364 
4365 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4366 	    lapic_in_kernel(vcpu))
4367 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4368 
4369 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4370 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4371 			if (events->smi.smm)
4372 				vcpu->arch.hflags |= HF_SMM_MASK;
4373 			else
4374 				vcpu->arch.hflags &= ~HF_SMM_MASK;
4375 			kvm_smm_changed(vcpu);
4376 		}
4377 
4378 		vcpu->arch.smi_pending = events->smi.pending;
4379 
4380 		if (events->smi.smm) {
4381 			if (events->smi.smm_inside_nmi)
4382 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4383 			else
4384 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4385 		}
4386 
4387 		if (lapic_in_kernel(vcpu)) {
4388 			if (events->smi.latched_init)
4389 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4390 			else
4391 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4392 		}
4393 	}
4394 
4395 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4396 
4397 	return 0;
4398 }
4399 
4400 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4401 					     struct kvm_debugregs *dbgregs)
4402 {
4403 	unsigned long val;
4404 
4405 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4406 	kvm_get_dr(vcpu, 6, &val);
4407 	dbgregs->dr6 = val;
4408 	dbgregs->dr7 = vcpu->arch.dr7;
4409 	dbgregs->flags = 0;
4410 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4411 }
4412 
4413 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4414 					    struct kvm_debugregs *dbgregs)
4415 {
4416 	if (dbgregs->flags)
4417 		return -EINVAL;
4418 
4419 	if (!kvm_dr6_valid(dbgregs->dr6))
4420 		return -EINVAL;
4421 	if (!kvm_dr7_valid(dbgregs->dr7))
4422 		return -EINVAL;
4423 
4424 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4425 	kvm_update_dr0123(vcpu);
4426 	vcpu->arch.dr6 = dbgregs->dr6;
4427 	vcpu->arch.dr7 = dbgregs->dr7;
4428 	kvm_update_dr7(vcpu);
4429 
4430 	return 0;
4431 }
4432 
4433 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4434 
4435 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4436 {
4437 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4438 	u64 xstate_bv = xsave->header.xfeatures;
4439 	u64 valid;
4440 
4441 	/*
4442 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4443 	 * leaves 0 and 1 in the loop below.
4444 	 */
4445 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4446 
4447 	/* Set XSTATE_BV */
4448 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4449 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4450 
4451 	/*
4452 	 * Copy each region from the possibly compacted offset to the
4453 	 * non-compacted offset.
4454 	 */
4455 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4456 	while (valid) {
4457 		u64 xfeature_mask = valid & -valid;
4458 		int xfeature_nr = fls64(xfeature_mask) - 1;
4459 		void *src = get_xsave_addr(xsave, xfeature_nr);
4460 
4461 		if (src) {
4462 			u32 size, offset, ecx, edx;
4463 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4464 				    &size, &offset, &ecx, &edx);
4465 			if (xfeature_nr == XFEATURE_PKRU)
4466 				memcpy(dest + offset, &vcpu->arch.pkru,
4467 				       sizeof(vcpu->arch.pkru));
4468 			else
4469 				memcpy(dest + offset, src, size);
4470 
4471 		}
4472 
4473 		valid -= xfeature_mask;
4474 	}
4475 }
4476 
4477 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4478 {
4479 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4480 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4481 	u64 valid;
4482 
4483 	/*
4484 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4485 	 * leaves 0 and 1 in the loop below.
4486 	 */
4487 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4488 
4489 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4490 	xsave->header.xfeatures = xstate_bv;
4491 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4492 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4493 
4494 	/*
4495 	 * Copy each region from the non-compacted offset to the
4496 	 * possibly compacted offset.
4497 	 */
4498 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4499 	while (valid) {
4500 		u64 xfeature_mask = valid & -valid;
4501 		int xfeature_nr = fls64(xfeature_mask) - 1;
4502 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4503 
4504 		if (dest) {
4505 			u32 size, offset, ecx, edx;
4506 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4507 				    &size, &offset, &ecx, &edx);
4508 			if (xfeature_nr == XFEATURE_PKRU)
4509 				memcpy(&vcpu->arch.pkru, src + offset,
4510 				       sizeof(vcpu->arch.pkru));
4511 			else
4512 				memcpy(dest, src + offset, size);
4513 		}
4514 
4515 		valid -= xfeature_mask;
4516 	}
4517 }
4518 
4519 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4520 					 struct kvm_xsave *guest_xsave)
4521 {
4522 	if (!vcpu->arch.guest_fpu)
4523 		return;
4524 
4525 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4526 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4527 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4528 	} else {
4529 		memcpy(guest_xsave->region,
4530 			&vcpu->arch.guest_fpu->state.fxsave,
4531 			sizeof(struct fxregs_state));
4532 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4533 			XFEATURE_MASK_FPSSE;
4534 	}
4535 }
4536 
4537 #define XSAVE_MXCSR_OFFSET 24
4538 
4539 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4540 					struct kvm_xsave *guest_xsave)
4541 {
4542 	u64 xstate_bv;
4543 	u32 mxcsr;
4544 
4545 	if (!vcpu->arch.guest_fpu)
4546 		return 0;
4547 
4548 	xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4549 	mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4550 
4551 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4552 		/*
4553 		 * Here we allow setting states that are not present in
4554 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4555 		 * with old userspace.
4556 		 */
4557 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4558 			return -EINVAL;
4559 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4560 	} else {
4561 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4562 			mxcsr & ~mxcsr_feature_mask)
4563 			return -EINVAL;
4564 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4565 			guest_xsave->region, sizeof(struct fxregs_state));
4566 	}
4567 	return 0;
4568 }
4569 
4570 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4571 					struct kvm_xcrs *guest_xcrs)
4572 {
4573 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4574 		guest_xcrs->nr_xcrs = 0;
4575 		return;
4576 	}
4577 
4578 	guest_xcrs->nr_xcrs = 1;
4579 	guest_xcrs->flags = 0;
4580 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4581 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4582 }
4583 
4584 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4585 				       struct kvm_xcrs *guest_xcrs)
4586 {
4587 	int i, r = 0;
4588 
4589 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4590 		return -EINVAL;
4591 
4592 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4593 		return -EINVAL;
4594 
4595 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4596 		/* Only support XCR0 currently */
4597 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4598 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4599 				guest_xcrs->xcrs[i].value);
4600 			break;
4601 		}
4602 	if (r)
4603 		r = -EINVAL;
4604 	return r;
4605 }
4606 
4607 /*
4608  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4609  * stopped by the hypervisor.  This function will be called from the host only.
4610  * EINVAL is returned when the host attempts to set the flag for a guest that
4611  * does not support pv clocks.
4612  */
4613 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4614 {
4615 	if (!vcpu->arch.pv_time_enabled)
4616 		return -EINVAL;
4617 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4618 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4619 	return 0;
4620 }
4621 
4622 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4623 				     struct kvm_enable_cap *cap)
4624 {
4625 	int r;
4626 	uint16_t vmcs_version;
4627 	void __user *user_ptr;
4628 
4629 	if (cap->flags)
4630 		return -EINVAL;
4631 
4632 	switch (cap->cap) {
4633 	case KVM_CAP_HYPERV_SYNIC2:
4634 		if (cap->args[0])
4635 			return -EINVAL;
4636 		fallthrough;
4637 
4638 	case KVM_CAP_HYPERV_SYNIC:
4639 		if (!irqchip_in_kernel(vcpu->kvm))
4640 			return -EINVAL;
4641 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4642 					     KVM_CAP_HYPERV_SYNIC2);
4643 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4644 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
4645 			return -ENOTTY;
4646 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4647 		if (!r) {
4648 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4649 			if (copy_to_user(user_ptr, &vmcs_version,
4650 					 sizeof(vmcs_version)))
4651 				r = -EFAULT;
4652 		}
4653 		return r;
4654 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4655 		if (!kvm_x86_ops.enable_direct_tlbflush)
4656 			return -ENOTTY;
4657 
4658 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4659 
4660 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4661 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
4662 		if (vcpu->arch.pv_cpuid.enforce)
4663 			kvm_update_pv_runtime(vcpu);
4664 
4665 		return 0;
4666 
4667 	default:
4668 		return -EINVAL;
4669 	}
4670 }
4671 
4672 long kvm_arch_vcpu_ioctl(struct file *filp,
4673 			 unsigned int ioctl, unsigned long arg)
4674 {
4675 	struct kvm_vcpu *vcpu = filp->private_data;
4676 	void __user *argp = (void __user *)arg;
4677 	int r;
4678 	union {
4679 		struct kvm_lapic_state *lapic;
4680 		struct kvm_xsave *xsave;
4681 		struct kvm_xcrs *xcrs;
4682 		void *buffer;
4683 	} u;
4684 
4685 	vcpu_load(vcpu);
4686 
4687 	u.buffer = NULL;
4688 	switch (ioctl) {
4689 	case KVM_GET_LAPIC: {
4690 		r = -EINVAL;
4691 		if (!lapic_in_kernel(vcpu))
4692 			goto out;
4693 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4694 				GFP_KERNEL_ACCOUNT);
4695 
4696 		r = -ENOMEM;
4697 		if (!u.lapic)
4698 			goto out;
4699 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4700 		if (r)
4701 			goto out;
4702 		r = -EFAULT;
4703 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4704 			goto out;
4705 		r = 0;
4706 		break;
4707 	}
4708 	case KVM_SET_LAPIC: {
4709 		r = -EINVAL;
4710 		if (!lapic_in_kernel(vcpu))
4711 			goto out;
4712 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4713 		if (IS_ERR(u.lapic)) {
4714 			r = PTR_ERR(u.lapic);
4715 			goto out_nofree;
4716 		}
4717 
4718 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4719 		break;
4720 	}
4721 	case KVM_INTERRUPT: {
4722 		struct kvm_interrupt irq;
4723 
4724 		r = -EFAULT;
4725 		if (copy_from_user(&irq, argp, sizeof(irq)))
4726 			goto out;
4727 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4728 		break;
4729 	}
4730 	case KVM_NMI: {
4731 		r = kvm_vcpu_ioctl_nmi(vcpu);
4732 		break;
4733 	}
4734 	case KVM_SMI: {
4735 		r = kvm_vcpu_ioctl_smi(vcpu);
4736 		break;
4737 	}
4738 	case KVM_SET_CPUID: {
4739 		struct kvm_cpuid __user *cpuid_arg = argp;
4740 		struct kvm_cpuid cpuid;
4741 
4742 		r = -EFAULT;
4743 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4744 			goto out;
4745 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4746 		break;
4747 	}
4748 	case KVM_SET_CPUID2: {
4749 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4750 		struct kvm_cpuid2 cpuid;
4751 
4752 		r = -EFAULT;
4753 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4754 			goto out;
4755 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4756 					      cpuid_arg->entries);
4757 		break;
4758 	}
4759 	case KVM_GET_CPUID2: {
4760 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4761 		struct kvm_cpuid2 cpuid;
4762 
4763 		r = -EFAULT;
4764 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4765 			goto out;
4766 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4767 					      cpuid_arg->entries);
4768 		if (r)
4769 			goto out;
4770 		r = -EFAULT;
4771 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4772 			goto out;
4773 		r = 0;
4774 		break;
4775 	}
4776 	case KVM_GET_MSRS: {
4777 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4778 		r = msr_io(vcpu, argp, do_get_msr, 1);
4779 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4780 		break;
4781 	}
4782 	case KVM_SET_MSRS: {
4783 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4784 		r = msr_io(vcpu, argp, do_set_msr, 0);
4785 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4786 		break;
4787 	}
4788 	case KVM_TPR_ACCESS_REPORTING: {
4789 		struct kvm_tpr_access_ctl tac;
4790 
4791 		r = -EFAULT;
4792 		if (copy_from_user(&tac, argp, sizeof(tac)))
4793 			goto out;
4794 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4795 		if (r)
4796 			goto out;
4797 		r = -EFAULT;
4798 		if (copy_to_user(argp, &tac, sizeof(tac)))
4799 			goto out;
4800 		r = 0;
4801 		break;
4802 	};
4803 	case KVM_SET_VAPIC_ADDR: {
4804 		struct kvm_vapic_addr va;
4805 		int idx;
4806 
4807 		r = -EINVAL;
4808 		if (!lapic_in_kernel(vcpu))
4809 			goto out;
4810 		r = -EFAULT;
4811 		if (copy_from_user(&va, argp, sizeof(va)))
4812 			goto out;
4813 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4814 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4815 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4816 		break;
4817 	}
4818 	case KVM_X86_SETUP_MCE: {
4819 		u64 mcg_cap;
4820 
4821 		r = -EFAULT;
4822 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4823 			goto out;
4824 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4825 		break;
4826 	}
4827 	case KVM_X86_SET_MCE: {
4828 		struct kvm_x86_mce mce;
4829 
4830 		r = -EFAULT;
4831 		if (copy_from_user(&mce, argp, sizeof(mce)))
4832 			goto out;
4833 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4834 		break;
4835 	}
4836 	case KVM_GET_VCPU_EVENTS: {
4837 		struct kvm_vcpu_events events;
4838 
4839 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4840 
4841 		r = -EFAULT;
4842 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4843 			break;
4844 		r = 0;
4845 		break;
4846 	}
4847 	case KVM_SET_VCPU_EVENTS: {
4848 		struct kvm_vcpu_events events;
4849 
4850 		r = -EFAULT;
4851 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4852 			break;
4853 
4854 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4855 		break;
4856 	}
4857 	case KVM_GET_DEBUGREGS: {
4858 		struct kvm_debugregs dbgregs;
4859 
4860 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4861 
4862 		r = -EFAULT;
4863 		if (copy_to_user(argp, &dbgregs,
4864 				 sizeof(struct kvm_debugregs)))
4865 			break;
4866 		r = 0;
4867 		break;
4868 	}
4869 	case KVM_SET_DEBUGREGS: {
4870 		struct kvm_debugregs dbgregs;
4871 
4872 		r = -EFAULT;
4873 		if (copy_from_user(&dbgregs, argp,
4874 				   sizeof(struct kvm_debugregs)))
4875 			break;
4876 
4877 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4878 		break;
4879 	}
4880 	case KVM_GET_XSAVE: {
4881 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4882 		r = -ENOMEM;
4883 		if (!u.xsave)
4884 			break;
4885 
4886 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4887 
4888 		r = -EFAULT;
4889 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4890 			break;
4891 		r = 0;
4892 		break;
4893 	}
4894 	case KVM_SET_XSAVE: {
4895 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4896 		if (IS_ERR(u.xsave)) {
4897 			r = PTR_ERR(u.xsave);
4898 			goto out_nofree;
4899 		}
4900 
4901 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4902 		break;
4903 	}
4904 	case KVM_GET_XCRS: {
4905 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4906 		r = -ENOMEM;
4907 		if (!u.xcrs)
4908 			break;
4909 
4910 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4911 
4912 		r = -EFAULT;
4913 		if (copy_to_user(argp, u.xcrs,
4914 				 sizeof(struct kvm_xcrs)))
4915 			break;
4916 		r = 0;
4917 		break;
4918 	}
4919 	case KVM_SET_XCRS: {
4920 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4921 		if (IS_ERR(u.xcrs)) {
4922 			r = PTR_ERR(u.xcrs);
4923 			goto out_nofree;
4924 		}
4925 
4926 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4927 		break;
4928 	}
4929 	case KVM_SET_TSC_KHZ: {
4930 		u32 user_tsc_khz;
4931 
4932 		r = -EINVAL;
4933 		user_tsc_khz = (u32)arg;
4934 
4935 		if (kvm_has_tsc_control &&
4936 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
4937 			goto out;
4938 
4939 		if (user_tsc_khz == 0)
4940 			user_tsc_khz = tsc_khz;
4941 
4942 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4943 			r = 0;
4944 
4945 		goto out;
4946 	}
4947 	case KVM_GET_TSC_KHZ: {
4948 		r = vcpu->arch.virtual_tsc_khz;
4949 		goto out;
4950 	}
4951 	case KVM_KVMCLOCK_CTRL: {
4952 		r = kvm_set_guest_paused(vcpu);
4953 		goto out;
4954 	}
4955 	case KVM_ENABLE_CAP: {
4956 		struct kvm_enable_cap cap;
4957 
4958 		r = -EFAULT;
4959 		if (copy_from_user(&cap, argp, sizeof(cap)))
4960 			goto out;
4961 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4962 		break;
4963 	}
4964 	case KVM_GET_NESTED_STATE: {
4965 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4966 		u32 user_data_size;
4967 
4968 		r = -EINVAL;
4969 		if (!kvm_x86_ops.nested_ops->get_state)
4970 			break;
4971 
4972 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4973 		r = -EFAULT;
4974 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4975 			break;
4976 
4977 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4978 						     user_data_size);
4979 		if (r < 0)
4980 			break;
4981 
4982 		if (r > user_data_size) {
4983 			if (put_user(r, &user_kvm_nested_state->size))
4984 				r = -EFAULT;
4985 			else
4986 				r = -E2BIG;
4987 			break;
4988 		}
4989 
4990 		r = 0;
4991 		break;
4992 	}
4993 	case KVM_SET_NESTED_STATE: {
4994 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4995 		struct kvm_nested_state kvm_state;
4996 		int idx;
4997 
4998 		r = -EINVAL;
4999 		if (!kvm_x86_ops.nested_ops->set_state)
5000 			break;
5001 
5002 		r = -EFAULT;
5003 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5004 			break;
5005 
5006 		r = -EINVAL;
5007 		if (kvm_state.size < sizeof(kvm_state))
5008 			break;
5009 
5010 		if (kvm_state.flags &
5011 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5012 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5013 		      | KVM_STATE_NESTED_GIF_SET))
5014 			break;
5015 
5016 		/* nested_run_pending implies guest_mode.  */
5017 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5018 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5019 			break;
5020 
5021 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5022 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5023 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5024 		break;
5025 	}
5026 	case KVM_GET_SUPPORTED_HV_CPUID:
5027 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5028 		break;
5029 #ifdef CONFIG_KVM_XEN
5030 	case KVM_XEN_VCPU_GET_ATTR: {
5031 		struct kvm_xen_vcpu_attr xva;
5032 
5033 		r = -EFAULT;
5034 		if (copy_from_user(&xva, argp, sizeof(xva)))
5035 			goto out;
5036 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5037 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5038 			r = -EFAULT;
5039 		break;
5040 	}
5041 	case KVM_XEN_VCPU_SET_ATTR: {
5042 		struct kvm_xen_vcpu_attr xva;
5043 
5044 		r = -EFAULT;
5045 		if (copy_from_user(&xva, argp, sizeof(xva)))
5046 			goto out;
5047 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5048 		break;
5049 	}
5050 #endif
5051 	default:
5052 		r = -EINVAL;
5053 	}
5054 out:
5055 	kfree(u.buffer);
5056 out_nofree:
5057 	vcpu_put(vcpu);
5058 	return r;
5059 }
5060 
5061 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5062 {
5063 	return VM_FAULT_SIGBUS;
5064 }
5065 
5066 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5067 {
5068 	int ret;
5069 
5070 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5071 		return -EINVAL;
5072 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5073 	return ret;
5074 }
5075 
5076 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5077 					      u64 ident_addr)
5078 {
5079 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5080 }
5081 
5082 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5083 					 unsigned long kvm_nr_mmu_pages)
5084 {
5085 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5086 		return -EINVAL;
5087 
5088 	mutex_lock(&kvm->slots_lock);
5089 
5090 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5091 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5092 
5093 	mutex_unlock(&kvm->slots_lock);
5094 	return 0;
5095 }
5096 
5097 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5098 {
5099 	return kvm->arch.n_max_mmu_pages;
5100 }
5101 
5102 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5103 {
5104 	struct kvm_pic *pic = kvm->arch.vpic;
5105 	int r;
5106 
5107 	r = 0;
5108 	switch (chip->chip_id) {
5109 	case KVM_IRQCHIP_PIC_MASTER:
5110 		memcpy(&chip->chip.pic, &pic->pics[0],
5111 			sizeof(struct kvm_pic_state));
5112 		break;
5113 	case KVM_IRQCHIP_PIC_SLAVE:
5114 		memcpy(&chip->chip.pic, &pic->pics[1],
5115 			sizeof(struct kvm_pic_state));
5116 		break;
5117 	case KVM_IRQCHIP_IOAPIC:
5118 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5119 		break;
5120 	default:
5121 		r = -EINVAL;
5122 		break;
5123 	}
5124 	return r;
5125 }
5126 
5127 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5128 {
5129 	struct kvm_pic *pic = kvm->arch.vpic;
5130 	int r;
5131 
5132 	r = 0;
5133 	switch (chip->chip_id) {
5134 	case KVM_IRQCHIP_PIC_MASTER:
5135 		spin_lock(&pic->lock);
5136 		memcpy(&pic->pics[0], &chip->chip.pic,
5137 			sizeof(struct kvm_pic_state));
5138 		spin_unlock(&pic->lock);
5139 		break;
5140 	case KVM_IRQCHIP_PIC_SLAVE:
5141 		spin_lock(&pic->lock);
5142 		memcpy(&pic->pics[1], &chip->chip.pic,
5143 			sizeof(struct kvm_pic_state));
5144 		spin_unlock(&pic->lock);
5145 		break;
5146 	case KVM_IRQCHIP_IOAPIC:
5147 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5148 		break;
5149 	default:
5150 		r = -EINVAL;
5151 		break;
5152 	}
5153 	kvm_pic_update_irq(pic);
5154 	return r;
5155 }
5156 
5157 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5158 {
5159 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5160 
5161 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5162 
5163 	mutex_lock(&kps->lock);
5164 	memcpy(ps, &kps->channels, sizeof(*ps));
5165 	mutex_unlock(&kps->lock);
5166 	return 0;
5167 }
5168 
5169 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5170 {
5171 	int i;
5172 	struct kvm_pit *pit = kvm->arch.vpit;
5173 
5174 	mutex_lock(&pit->pit_state.lock);
5175 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5176 	for (i = 0; i < 3; i++)
5177 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5178 	mutex_unlock(&pit->pit_state.lock);
5179 	return 0;
5180 }
5181 
5182 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5183 {
5184 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5185 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5186 		sizeof(ps->channels));
5187 	ps->flags = kvm->arch.vpit->pit_state.flags;
5188 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5189 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5190 	return 0;
5191 }
5192 
5193 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5194 {
5195 	int start = 0;
5196 	int i;
5197 	u32 prev_legacy, cur_legacy;
5198 	struct kvm_pit *pit = kvm->arch.vpit;
5199 
5200 	mutex_lock(&pit->pit_state.lock);
5201 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5202 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5203 	if (!prev_legacy && cur_legacy)
5204 		start = 1;
5205 	memcpy(&pit->pit_state.channels, &ps->channels,
5206 	       sizeof(pit->pit_state.channels));
5207 	pit->pit_state.flags = ps->flags;
5208 	for (i = 0; i < 3; i++)
5209 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5210 				   start && i == 0);
5211 	mutex_unlock(&pit->pit_state.lock);
5212 	return 0;
5213 }
5214 
5215 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5216 				 struct kvm_reinject_control *control)
5217 {
5218 	struct kvm_pit *pit = kvm->arch.vpit;
5219 
5220 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5221 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5222 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5223 	 */
5224 	mutex_lock(&pit->pit_state.lock);
5225 	kvm_pit_set_reinject(pit, control->pit_reinject);
5226 	mutex_unlock(&pit->pit_state.lock);
5227 
5228 	return 0;
5229 }
5230 
5231 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5232 {
5233 
5234 	/*
5235 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5236 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5237 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5238 	 * VM-Exit.
5239 	 */
5240 	struct kvm_vcpu *vcpu;
5241 	int i;
5242 
5243 	kvm_for_each_vcpu(i, vcpu, kvm)
5244 		kvm_vcpu_kick(vcpu);
5245 }
5246 
5247 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5248 			bool line_status)
5249 {
5250 	if (!irqchip_in_kernel(kvm))
5251 		return -ENXIO;
5252 
5253 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5254 					irq_event->irq, irq_event->level,
5255 					line_status);
5256 	return 0;
5257 }
5258 
5259 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5260 			    struct kvm_enable_cap *cap)
5261 {
5262 	int r;
5263 
5264 	if (cap->flags)
5265 		return -EINVAL;
5266 
5267 	switch (cap->cap) {
5268 	case KVM_CAP_DISABLE_QUIRKS:
5269 		kvm->arch.disabled_quirks = cap->args[0];
5270 		r = 0;
5271 		break;
5272 	case KVM_CAP_SPLIT_IRQCHIP: {
5273 		mutex_lock(&kvm->lock);
5274 		r = -EINVAL;
5275 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5276 			goto split_irqchip_unlock;
5277 		r = -EEXIST;
5278 		if (irqchip_in_kernel(kvm))
5279 			goto split_irqchip_unlock;
5280 		if (kvm->created_vcpus)
5281 			goto split_irqchip_unlock;
5282 		r = kvm_setup_empty_irq_routing(kvm);
5283 		if (r)
5284 			goto split_irqchip_unlock;
5285 		/* Pairs with irqchip_in_kernel. */
5286 		smp_wmb();
5287 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5288 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5289 		r = 0;
5290 split_irqchip_unlock:
5291 		mutex_unlock(&kvm->lock);
5292 		break;
5293 	}
5294 	case KVM_CAP_X2APIC_API:
5295 		r = -EINVAL;
5296 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5297 			break;
5298 
5299 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5300 			kvm->arch.x2apic_format = true;
5301 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5302 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5303 
5304 		r = 0;
5305 		break;
5306 	case KVM_CAP_X86_DISABLE_EXITS:
5307 		r = -EINVAL;
5308 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5309 			break;
5310 
5311 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5312 			kvm_can_mwait_in_guest())
5313 			kvm->arch.mwait_in_guest = true;
5314 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5315 			kvm->arch.hlt_in_guest = true;
5316 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5317 			kvm->arch.pause_in_guest = true;
5318 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5319 			kvm->arch.cstate_in_guest = true;
5320 		r = 0;
5321 		break;
5322 	case KVM_CAP_MSR_PLATFORM_INFO:
5323 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5324 		r = 0;
5325 		break;
5326 	case KVM_CAP_EXCEPTION_PAYLOAD:
5327 		kvm->arch.exception_payload_enabled = cap->args[0];
5328 		r = 0;
5329 		break;
5330 	case KVM_CAP_X86_USER_SPACE_MSR:
5331 		kvm->arch.user_space_msr_mask = cap->args[0];
5332 		r = 0;
5333 		break;
5334 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5335 		r = -EINVAL;
5336 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5337 			break;
5338 
5339 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5340 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5341 			break;
5342 
5343 		if (kvm_has_bus_lock_exit &&
5344 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5345 			kvm->arch.bus_lock_detection_enabled = true;
5346 		r = 0;
5347 		break;
5348 	default:
5349 		r = -EINVAL;
5350 		break;
5351 	}
5352 	return r;
5353 }
5354 
5355 static void kvm_clear_msr_filter(struct kvm *kvm)
5356 {
5357 	u32 i;
5358 	u32 count = kvm->arch.msr_filter.count;
5359 	struct msr_bitmap_range ranges[16];
5360 
5361 	mutex_lock(&kvm->lock);
5362 	kvm->arch.msr_filter.count = 0;
5363 	memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5364 	mutex_unlock(&kvm->lock);
5365 	synchronize_srcu(&kvm->srcu);
5366 
5367 	for (i = 0; i < count; i++)
5368 		kfree(ranges[i].bitmap);
5369 }
5370 
5371 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5372 {
5373 	struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5374 	struct msr_bitmap_range range;
5375 	unsigned long *bitmap = NULL;
5376 	size_t bitmap_size;
5377 	int r;
5378 
5379 	if (!user_range->nmsrs)
5380 		return 0;
5381 
5382 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5383 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5384 		return -EINVAL;
5385 
5386 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5387 	if (IS_ERR(bitmap))
5388 		return PTR_ERR(bitmap);
5389 
5390 	range = (struct msr_bitmap_range) {
5391 		.flags = user_range->flags,
5392 		.base = user_range->base,
5393 		.nmsrs = user_range->nmsrs,
5394 		.bitmap = bitmap,
5395 	};
5396 
5397 	if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5398 		r = -EINVAL;
5399 		goto err;
5400 	}
5401 
5402 	if (!range.flags) {
5403 		r = -EINVAL;
5404 		goto err;
5405 	}
5406 
5407 	/* Everything ok, add this range identifier to our global pool */
5408 	ranges[kvm->arch.msr_filter.count] = range;
5409 	/* Make sure we filled the array before we tell anyone to walk it */
5410 	smp_wmb();
5411 	kvm->arch.msr_filter.count++;
5412 
5413 	return 0;
5414 err:
5415 	kfree(bitmap);
5416 	return r;
5417 }
5418 
5419 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5420 {
5421 	struct kvm_msr_filter __user *user_msr_filter = argp;
5422 	struct kvm_msr_filter filter;
5423 	bool default_allow;
5424 	int r = 0;
5425 	bool empty = true;
5426 	u32 i;
5427 
5428 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5429 		return -EFAULT;
5430 
5431 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5432 		empty &= !filter.ranges[i].nmsrs;
5433 
5434 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5435 	if (empty && !default_allow)
5436 		return -EINVAL;
5437 
5438 	kvm_clear_msr_filter(kvm);
5439 
5440 	kvm->arch.msr_filter.default_allow = default_allow;
5441 
5442 	/*
5443 	 * Protect from concurrent calls to this function that could trigger
5444 	 * a TOCTOU violation on kvm->arch.msr_filter.count.
5445 	 */
5446 	mutex_lock(&kvm->lock);
5447 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5448 		r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5449 		if (r)
5450 			break;
5451 	}
5452 
5453 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5454 	mutex_unlock(&kvm->lock);
5455 
5456 	return r;
5457 }
5458 
5459 long kvm_arch_vm_ioctl(struct file *filp,
5460 		       unsigned int ioctl, unsigned long arg)
5461 {
5462 	struct kvm *kvm = filp->private_data;
5463 	void __user *argp = (void __user *)arg;
5464 	int r = -ENOTTY;
5465 	/*
5466 	 * This union makes it completely explicit to gcc-3.x
5467 	 * that these two variables' stack usage should be
5468 	 * combined, not added together.
5469 	 */
5470 	union {
5471 		struct kvm_pit_state ps;
5472 		struct kvm_pit_state2 ps2;
5473 		struct kvm_pit_config pit_config;
5474 	} u;
5475 
5476 	switch (ioctl) {
5477 	case KVM_SET_TSS_ADDR:
5478 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5479 		break;
5480 	case KVM_SET_IDENTITY_MAP_ADDR: {
5481 		u64 ident_addr;
5482 
5483 		mutex_lock(&kvm->lock);
5484 		r = -EINVAL;
5485 		if (kvm->created_vcpus)
5486 			goto set_identity_unlock;
5487 		r = -EFAULT;
5488 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5489 			goto set_identity_unlock;
5490 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5491 set_identity_unlock:
5492 		mutex_unlock(&kvm->lock);
5493 		break;
5494 	}
5495 	case KVM_SET_NR_MMU_PAGES:
5496 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5497 		break;
5498 	case KVM_GET_NR_MMU_PAGES:
5499 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5500 		break;
5501 	case KVM_CREATE_IRQCHIP: {
5502 		mutex_lock(&kvm->lock);
5503 
5504 		r = -EEXIST;
5505 		if (irqchip_in_kernel(kvm))
5506 			goto create_irqchip_unlock;
5507 
5508 		r = -EINVAL;
5509 		if (kvm->created_vcpus)
5510 			goto create_irqchip_unlock;
5511 
5512 		r = kvm_pic_init(kvm);
5513 		if (r)
5514 			goto create_irqchip_unlock;
5515 
5516 		r = kvm_ioapic_init(kvm);
5517 		if (r) {
5518 			kvm_pic_destroy(kvm);
5519 			goto create_irqchip_unlock;
5520 		}
5521 
5522 		r = kvm_setup_default_irq_routing(kvm);
5523 		if (r) {
5524 			kvm_ioapic_destroy(kvm);
5525 			kvm_pic_destroy(kvm);
5526 			goto create_irqchip_unlock;
5527 		}
5528 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5529 		smp_wmb();
5530 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5531 	create_irqchip_unlock:
5532 		mutex_unlock(&kvm->lock);
5533 		break;
5534 	}
5535 	case KVM_CREATE_PIT:
5536 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5537 		goto create_pit;
5538 	case KVM_CREATE_PIT2:
5539 		r = -EFAULT;
5540 		if (copy_from_user(&u.pit_config, argp,
5541 				   sizeof(struct kvm_pit_config)))
5542 			goto out;
5543 	create_pit:
5544 		mutex_lock(&kvm->lock);
5545 		r = -EEXIST;
5546 		if (kvm->arch.vpit)
5547 			goto create_pit_unlock;
5548 		r = -ENOMEM;
5549 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5550 		if (kvm->arch.vpit)
5551 			r = 0;
5552 	create_pit_unlock:
5553 		mutex_unlock(&kvm->lock);
5554 		break;
5555 	case KVM_GET_IRQCHIP: {
5556 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5557 		struct kvm_irqchip *chip;
5558 
5559 		chip = memdup_user(argp, sizeof(*chip));
5560 		if (IS_ERR(chip)) {
5561 			r = PTR_ERR(chip);
5562 			goto out;
5563 		}
5564 
5565 		r = -ENXIO;
5566 		if (!irqchip_kernel(kvm))
5567 			goto get_irqchip_out;
5568 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5569 		if (r)
5570 			goto get_irqchip_out;
5571 		r = -EFAULT;
5572 		if (copy_to_user(argp, chip, sizeof(*chip)))
5573 			goto get_irqchip_out;
5574 		r = 0;
5575 	get_irqchip_out:
5576 		kfree(chip);
5577 		break;
5578 	}
5579 	case KVM_SET_IRQCHIP: {
5580 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5581 		struct kvm_irqchip *chip;
5582 
5583 		chip = memdup_user(argp, sizeof(*chip));
5584 		if (IS_ERR(chip)) {
5585 			r = PTR_ERR(chip);
5586 			goto out;
5587 		}
5588 
5589 		r = -ENXIO;
5590 		if (!irqchip_kernel(kvm))
5591 			goto set_irqchip_out;
5592 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5593 	set_irqchip_out:
5594 		kfree(chip);
5595 		break;
5596 	}
5597 	case KVM_GET_PIT: {
5598 		r = -EFAULT;
5599 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5600 			goto out;
5601 		r = -ENXIO;
5602 		if (!kvm->arch.vpit)
5603 			goto out;
5604 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5605 		if (r)
5606 			goto out;
5607 		r = -EFAULT;
5608 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5609 			goto out;
5610 		r = 0;
5611 		break;
5612 	}
5613 	case KVM_SET_PIT: {
5614 		r = -EFAULT;
5615 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5616 			goto out;
5617 		mutex_lock(&kvm->lock);
5618 		r = -ENXIO;
5619 		if (!kvm->arch.vpit)
5620 			goto set_pit_out;
5621 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5622 set_pit_out:
5623 		mutex_unlock(&kvm->lock);
5624 		break;
5625 	}
5626 	case KVM_GET_PIT2: {
5627 		r = -ENXIO;
5628 		if (!kvm->arch.vpit)
5629 			goto out;
5630 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5631 		if (r)
5632 			goto out;
5633 		r = -EFAULT;
5634 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5635 			goto out;
5636 		r = 0;
5637 		break;
5638 	}
5639 	case KVM_SET_PIT2: {
5640 		r = -EFAULT;
5641 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5642 			goto out;
5643 		mutex_lock(&kvm->lock);
5644 		r = -ENXIO;
5645 		if (!kvm->arch.vpit)
5646 			goto set_pit2_out;
5647 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5648 set_pit2_out:
5649 		mutex_unlock(&kvm->lock);
5650 		break;
5651 	}
5652 	case KVM_REINJECT_CONTROL: {
5653 		struct kvm_reinject_control control;
5654 		r =  -EFAULT;
5655 		if (copy_from_user(&control, argp, sizeof(control)))
5656 			goto out;
5657 		r = -ENXIO;
5658 		if (!kvm->arch.vpit)
5659 			goto out;
5660 		r = kvm_vm_ioctl_reinject(kvm, &control);
5661 		break;
5662 	}
5663 	case KVM_SET_BOOT_CPU_ID:
5664 		r = 0;
5665 		mutex_lock(&kvm->lock);
5666 		if (kvm->created_vcpus)
5667 			r = -EBUSY;
5668 		else
5669 			kvm->arch.bsp_vcpu_id = arg;
5670 		mutex_unlock(&kvm->lock);
5671 		break;
5672 #ifdef CONFIG_KVM_XEN
5673 	case KVM_XEN_HVM_CONFIG: {
5674 		struct kvm_xen_hvm_config xhc;
5675 		r = -EFAULT;
5676 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5677 			goto out;
5678 		r = kvm_xen_hvm_config(kvm, &xhc);
5679 		break;
5680 	}
5681 	case KVM_XEN_HVM_GET_ATTR: {
5682 		struct kvm_xen_hvm_attr xha;
5683 
5684 		r = -EFAULT;
5685 		if (copy_from_user(&xha, argp, sizeof(xha)))
5686 			goto out;
5687 		r = kvm_xen_hvm_get_attr(kvm, &xha);
5688 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
5689 			r = -EFAULT;
5690 		break;
5691 	}
5692 	case KVM_XEN_HVM_SET_ATTR: {
5693 		struct kvm_xen_hvm_attr xha;
5694 
5695 		r = -EFAULT;
5696 		if (copy_from_user(&xha, argp, sizeof(xha)))
5697 			goto out;
5698 		r = kvm_xen_hvm_set_attr(kvm, &xha);
5699 		break;
5700 	}
5701 #endif
5702 	case KVM_SET_CLOCK: {
5703 		struct kvm_clock_data user_ns;
5704 		u64 now_ns;
5705 
5706 		r = -EFAULT;
5707 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5708 			goto out;
5709 
5710 		r = -EINVAL;
5711 		if (user_ns.flags)
5712 			goto out;
5713 
5714 		r = 0;
5715 		/*
5716 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5717 		 * kvm_gen_update_masterclock() can be cut down to locked
5718 		 * pvclock_update_vm_gtod_copy().
5719 		 */
5720 		kvm_gen_update_masterclock(kvm);
5721 		now_ns = get_kvmclock_ns(kvm);
5722 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5723 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5724 		break;
5725 	}
5726 	case KVM_GET_CLOCK: {
5727 		struct kvm_clock_data user_ns;
5728 		u64 now_ns;
5729 
5730 		now_ns = get_kvmclock_ns(kvm);
5731 		user_ns.clock = now_ns;
5732 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5733 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5734 
5735 		r = -EFAULT;
5736 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5737 			goto out;
5738 		r = 0;
5739 		break;
5740 	}
5741 	case KVM_MEMORY_ENCRYPT_OP: {
5742 		r = -ENOTTY;
5743 		if (kvm_x86_ops.mem_enc_op)
5744 			r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
5745 		break;
5746 	}
5747 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5748 		struct kvm_enc_region region;
5749 
5750 		r = -EFAULT;
5751 		if (copy_from_user(&region, argp, sizeof(region)))
5752 			goto out;
5753 
5754 		r = -ENOTTY;
5755 		if (kvm_x86_ops.mem_enc_reg_region)
5756 			r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
5757 		break;
5758 	}
5759 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5760 		struct kvm_enc_region region;
5761 
5762 		r = -EFAULT;
5763 		if (copy_from_user(&region, argp, sizeof(region)))
5764 			goto out;
5765 
5766 		r = -ENOTTY;
5767 		if (kvm_x86_ops.mem_enc_unreg_region)
5768 			r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
5769 		break;
5770 	}
5771 	case KVM_HYPERV_EVENTFD: {
5772 		struct kvm_hyperv_eventfd hvevfd;
5773 
5774 		r = -EFAULT;
5775 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5776 			goto out;
5777 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5778 		break;
5779 	}
5780 	case KVM_SET_PMU_EVENT_FILTER:
5781 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5782 		break;
5783 	case KVM_X86_SET_MSR_FILTER:
5784 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5785 		break;
5786 	default:
5787 		r = -ENOTTY;
5788 	}
5789 out:
5790 	return r;
5791 }
5792 
5793 static void kvm_init_msr_list(void)
5794 {
5795 	struct x86_pmu_capability x86_pmu;
5796 	u32 dummy[2];
5797 	unsigned i;
5798 
5799 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5800 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5801 
5802 	perf_get_x86_pmu_capability(&x86_pmu);
5803 
5804 	num_msrs_to_save = 0;
5805 	num_emulated_msrs = 0;
5806 	num_msr_based_features = 0;
5807 
5808 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5809 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5810 			continue;
5811 
5812 		/*
5813 		 * Even MSRs that are valid in the host may not be exposed
5814 		 * to the guests in some cases.
5815 		 */
5816 		switch (msrs_to_save_all[i]) {
5817 		case MSR_IA32_BNDCFGS:
5818 			if (!kvm_mpx_supported())
5819 				continue;
5820 			break;
5821 		case MSR_TSC_AUX:
5822 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5823 				continue;
5824 			break;
5825 		case MSR_IA32_UMWAIT_CONTROL:
5826 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5827 				continue;
5828 			break;
5829 		case MSR_IA32_RTIT_CTL:
5830 		case MSR_IA32_RTIT_STATUS:
5831 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5832 				continue;
5833 			break;
5834 		case MSR_IA32_RTIT_CR3_MATCH:
5835 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5836 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5837 				continue;
5838 			break;
5839 		case MSR_IA32_RTIT_OUTPUT_BASE:
5840 		case MSR_IA32_RTIT_OUTPUT_MASK:
5841 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5842 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5843 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5844 				continue;
5845 			break;
5846 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
5847 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5848 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5849 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5850 				continue;
5851 			break;
5852 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5853 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5854 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5855 				continue;
5856 			break;
5857 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5858 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5859 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5860 				continue;
5861 			break;
5862 		default:
5863 			break;
5864 		}
5865 
5866 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5867 	}
5868 
5869 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5870 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
5871 			continue;
5872 
5873 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5874 	}
5875 
5876 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5877 		struct kvm_msr_entry msr;
5878 
5879 		msr.index = msr_based_features_all[i];
5880 		if (kvm_get_msr_feature(&msr))
5881 			continue;
5882 
5883 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5884 	}
5885 }
5886 
5887 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5888 			   const void *v)
5889 {
5890 	int handled = 0;
5891 	int n;
5892 
5893 	do {
5894 		n = min(len, 8);
5895 		if (!(lapic_in_kernel(vcpu) &&
5896 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5897 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5898 			break;
5899 		handled += n;
5900 		addr += n;
5901 		len -= n;
5902 		v += n;
5903 	} while (len);
5904 
5905 	return handled;
5906 }
5907 
5908 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5909 {
5910 	int handled = 0;
5911 	int n;
5912 
5913 	do {
5914 		n = min(len, 8);
5915 		if (!(lapic_in_kernel(vcpu) &&
5916 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5917 					 addr, n, v))
5918 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5919 			break;
5920 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5921 		handled += n;
5922 		addr += n;
5923 		len -= n;
5924 		v += n;
5925 	} while (len);
5926 
5927 	return handled;
5928 }
5929 
5930 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5931 			struct kvm_segment *var, int seg)
5932 {
5933 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
5934 }
5935 
5936 void kvm_get_segment(struct kvm_vcpu *vcpu,
5937 		     struct kvm_segment *var, int seg)
5938 {
5939 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
5940 }
5941 
5942 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5943 			   struct x86_exception *exception)
5944 {
5945 	gpa_t t_gpa;
5946 
5947 	BUG_ON(!mmu_is_nested(vcpu));
5948 
5949 	/* NPT walks are always user-walks */
5950 	access |= PFERR_USER_MASK;
5951 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5952 
5953 	return t_gpa;
5954 }
5955 
5956 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5957 			      struct x86_exception *exception)
5958 {
5959 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5960 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5961 }
5962 
5963  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5964 				struct x86_exception *exception)
5965 {
5966 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5967 	access |= PFERR_FETCH_MASK;
5968 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5969 }
5970 
5971 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5972 			       struct x86_exception *exception)
5973 {
5974 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
5975 	access |= PFERR_WRITE_MASK;
5976 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5977 }
5978 
5979 /* uses this to access any guest's mapped memory without checking CPL */
5980 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5981 				struct x86_exception *exception)
5982 {
5983 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5984 }
5985 
5986 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5987 				      struct kvm_vcpu *vcpu, u32 access,
5988 				      struct x86_exception *exception)
5989 {
5990 	void *data = val;
5991 	int r = X86EMUL_CONTINUE;
5992 
5993 	while (bytes) {
5994 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5995 							    exception);
5996 		unsigned offset = addr & (PAGE_SIZE-1);
5997 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5998 		int ret;
5999 
6000 		if (gpa == UNMAPPED_GVA)
6001 			return X86EMUL_PROPAGATE_FAULT;
6002 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6003 					       offset, toread);
6004 		if (ret < 0) {
6005 			r = X86EMUL_IO_NEEDED;
6006 			goto out;
6007 		}
6008 
6009 		bytes -= toread;
6010 		data += toread;
6011 		addr += toread;
6012 	}
6013 out:
6014 	return r;
6015 }
6016 
6017 /* used for instruction fetching */
6018 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6019 				gva_t addr, void *val, unsigned int bytes,
6020 				struct x86_exception *exception)
6021 {
6022 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6023 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6024 	unsigned offset;
6025 	int ret;
6026 
6027 	/* Inline kvm_read_guest_virt_helper for speed.  */
6028 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6029 						    exception);
6030 	if (unlikely(gpa == UNMAPPED_GVA))
6031 		return X86EMUL_PROPAGATE_FAULT;
6032 
6033 	offset = addr & (PAGE_SIZE-1);
6034 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6035 		bytes = (unsigned)PAGE_SIZE - offset;
6036 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6037 				       offset, bytes);
6038 	if (unlikely(ret < 0))
6039 		return X86EMUL_IO_NEEDED;
6040 
6041 	return X86EMUL_CONTINUE;
6042 }
6043 
6044 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6045 			       gva_t addr, void *val, unsigned int bytes,
6046 			       struct x86_exception *exception)
6047 {
6048 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6049 
6050 	/*
6051 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6052 	 * is returned, but our callers are not ready for that and they blindly
6053 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6054 	 * uninitialized kernel stack memory into cr2 and error code.
6055 	 */
6056 	memset(exception, 0, sizeof(*exception));
6057 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6058 					  exception);
6059 }
6060 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6061 
6062 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6063 			     gva_t addr, void *val, unsigned int bytes,
6064 			     struct x86_exception *exception, bool system)
6065 {
6066 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6067 	u32 access = 0;
6068 
6069 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6070 		access |= PFERR_USER_MASK;
6071 
6072 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6073 }
6074 
6075 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6076 		unsigned long addr, void *val, unsigned int bytes)
6077 {
6078 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6079 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6080 
6081 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6082 }
6083 
6084 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6085 				      struct kvm_vcpu *vcpu, u32 access,
6086 				      struct x86_exception *exception)
6087 {
6088 	void *data = val;
6089 	int r = X86EMUL_CONTINUE;
6090 
6091 	while (bytes) {
6092 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6093 							     access,
6094 							     exception);
6095 		unsigned offset = addr & (PAGE_SIZE-1);
6096 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6097 		int ret;
6098 
6099 		if (gpa == UNMAPPED_GVA)
6100 			return X86EMUL_PROPAGATE_FAULT;
6101 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6102 		if (ret < 0) {
6103 			r = X86EMUL_IO_NEEDED;
6104 			goto out;
6105 		}
6106 
6107 		bytes -= towrite;
6108 		data += towrite;
6109 		addr += towrite;
6110 	}
6111 out:
6112 	return r;
6113 }
6114 
6115 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6116 			      unsigned int bytes, struct x86_exception *exception,
6117 			      bool system)
6118 {
6119 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6120 	u32 access = PFERR_WRITE_MASK;
6121 
6122 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6123 		access |= PFERR_USER_MASK;
6124 
6125 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6126 					   access, exception);
6127 }
6128 
6129 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6130 				unsigned int bytes, struct x86_exception *exception)
6131 {
6132 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6133 	vcpu->arch.l1tf_flush_l1d = true;
6134 
6135 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6136 					   PFERR_WRITE_MASK, exception);
6137 }
6138 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6139 
6140 int handle_ud(struct kvm_vcpu *vcpu)
6141 {
6142 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6143 	int emul_type = EMULTYPE_TRAP_UD;
6144 	char sig[5]; /* ud2; .ascii "kvm" */
6145 	struct x86_exception e;
6146 
6147 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6148 		return 1;
6149 
6150 	if (force_emulation_prefix &&
6151 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6152 				sig, sizeof(sig), &e) == 0 &&
6153 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6154 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6155 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6156 	}
6157 
6158 	return kvm_emulate_instruction(vcpu, emul_type);
6159 }
6160 EXPORT_SYMBOL_GPL(handle_ud);
6161 
6162 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6163 			    gpa_t gpa, bool write)
6164 {
6165 	/* For APIC access vmexit */
6166 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6167 		return 1;
6168 
6169 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6170 		trace_vcpu_match_mmio(gva, gpa, write, true);
6171 		return 1;
6172 	}
6173 
6174 	return 0;
6175 }
6176 
6177 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6178 				gpa_t *gpa, struct x86_exception *exception,
6179 				bool write)
6180 {
6181 	u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6182 		| (write ? PFERR_WRITE_MASK : 0);
6183 
6184 	/*
6185 	 * currently PKRU is only applied to ept enabled guest so
6186 	 * there is no pkey in EPT page table for L1 guest or EPT
6187 	 * shadow page table for L2 guest.
6188 	 */
6189 	if (vcpu_match_mmio_gva(vcpu, gva)
6190 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6191 				 vcpu->arch.mmio_access, 0, access)) {
6192 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6193 					(gva & (PAGE_SIZE - 1));
6194 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6195 		return 1;
6196 	}
6197 
6198 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6199 
6200 	if (*gpa == UNMAPPED_GVA)
6201 		return -1;
6202 
6203 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6204 }
6205 
6206 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6207 			const void *val, int bytes)
6208 {
6209 	int ret;
6210 
6211 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6212 	if (ret < 0)
6213 		return 0;
6214 	kvm_page_track_write(vcpu, gpa, val, bytes);
6215 	return 1;
6216 }
6217 
6218 struct read_write_emulator_ops {
6219 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6220 				  int bytes);
6221 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6222 				  void *val, int bytes);
6223 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6224 			       int bytes, void *val);
6225 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6226 				    void *val, int bytes);
6227 	bool write;
6228 };
6229 
6230 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6231 {
6232 	if (vcpu->mmio_read_completed) {
6233 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6234 			       vcpu->mmio_fragments[0].gpa, val);
6235 		vcpu->mmio_read_completed = 0;
6236 		return 1;
6237 	}
6238 
6239 	return 0;
6240 }
6241 
6242 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6243 			void *val, int bytes)
6244 {
6245 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6246 }
6247 
6248 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6249 			 void *val, int bytes)
6250 {
6251 	return emulator_write_phys(vcpu, gpa, val, bytes);
6252 }
6253 
6254 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6255 {
6256 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6257 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6258 }
6259 
6260 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6261 			  void *val, int bytes)
6262 {
6263 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6264 	return X86EMUL_IO_NEEDED;
6265 }
6266 
6267 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6268 			   void *val, int bytes)
6269 {
6270 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6271 
6272 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6273 	return X86EMUL_CONTINUE;
6274 }
6275 
6276 static const struct read_write_emulator_ops read_emultor = {
6277 	.read_write_prepare = read_prepare,
6278 	.read_write_emulate = read_emulate,
6279 	.read_write_mmio = vcpu_mmio_read,
6280 	.read_write_exit_mmio = read_exit_mmio,
6281 };
6282 
6283 static const struct read_write_emulator_ops write_emultor = {
6284 	.read_write_emulate = write_emulate,
6285 	.read_write_mmio = write_mmio,
6286 	.read_write_exit_mmio = write_exit_mmio,
6287 	.write = true,
6288 };
6289 
6290 static int emulator_read_write_onepage(unsigned long addr, void *val,
6291 				       unsigned int bytes,
6292 				       struct x86_exception *exception,
6293 				       struct kvm_vcpu *vcpu,
6294 				       const struct read_write_emulator_ops *ops)
6295 {
6296 	gpa_t gpa;
6297 	int handled, ret;
6298 	bool write = ops->write;
6299 	struct kvm_mmio_fragment *frag;
6300 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6301 
6302 	/*
6303 	 * If the exit was due to a NPF we may already have a GPA.
6304 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6305 	 * Note, this cannot be used on string operations since string
6306 	 * operation using rep will only have the initial GPA from the NPF
6307 	 * occurred.
6308 	 */
6309 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6310 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6311 		gpa = ctxt->gpa_val;
6312 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6313 	} else {
6314 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6315 		if (ret < 0)
6316 			return X86EMUL_PROPAGATE_FAULT;
6317 	}
6318 
6319 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6320 		return X86EMUL_CONTINUE;
6321 
6322 	/*
6323 	 * Is this MMIO handled locally?
6324 	 */
6325 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6326 	if (handled == bytes)
6327 		return X86EMUL_CONTINUE;
6328 
6329 	gpa += handled;
6330 	bytes -= handled;
6331 	val += handled;
6332 
6333 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6334 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6335 	frag->gpa = gpa;
6336 	frag->data = val;
6337 	frag->len = bytes;
6338 	return X86EMUL_CONTINUE;
6339 }
6340 
6341 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6342 			unsigned long addr,
6343 			void *val, unsigned int bytes,
6344 			struct x86_exception *exception,
6345 			const struct read_write_emulator_ops *ops)
6346 {
6347 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6348 	gpa_t gpa;
6349 	int rc;
6350 
6351 	if (ops->read_write_prepare &&
6352 		  ops->read_write_prepare(vcpu, val, bytes))
6353 		return X86EMUL_CONTINUE;
6354 
6355 	vcpu->mmio_nr_fragments = 0;
6356 
6357 	/* Crossing a page boundary? */
6358 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6359 		int now;
6360 
6361 		now = -addr & ~PAGE_MASK;
6362 		rc = emulator_read_write_onepage(addr, val, now, exception,
6363 						 vcpu, ops);
6364 
6365 		if (rc != X86EMUL_CONTINUE)
6366 			return rc;
6367 		addr += now;
6368 		if (ctxt->mode != X86EMUL_MODE_PROT64)
6369 			addr = (u32)addr;
6370 		val += now;
6371 		bytes -= now;
6372 	}
6373 
6374 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
6375 					 vcpu, ops);
6376 	if (rc != X86EMUL_CONTINUE)
6377 		return rc;
6378 
6379 	if (!vcpu->mmio_nr_fragments)
6380 		return rc;
6381 
6382 	gpa = vcpu->mmio_fragments[0].gpa;
6383 
6384 	vcpu->mmio_needed = 1;
6385 	vcpu->mmio_cur_fragment = 0;
6386 
6387 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6388 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6389 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
6390 	vcpu->run->mmio.phys_addr = gpa;
6391 
6392 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6393 }
6394 
6395 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6396 				  unsigned long addr,
6397 				  void *val,
6398 				  unsigned int bytes,
6399 				  struct x86_exception *exception)
6400 {
6401 	return emulator_read_write(ctxt, addr, val, bytes,
6402 				   exception, &read_emultor);
6403 }
6404 
6405 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6406 			    unsigned long addr,
6407 			    const void *val,
6408 			    unsigned int bytes,
6409 			    struct x86_exception *exception)
6410 {
6411 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
6412 				   exception, &write_emultor);
6413 }
6414 
6415 #define CMPXCHG_TYPE(t, ptr, old, new) \
6416 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6417 
6418 #ifdef CONFIG_X86_64
6419 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6420 #else
6421 #  define CMPXCHG64(ptr, old, new) \
6422 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6423 #endif
6424 
6425 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6426 				     unsigned long addr,
6427 				     const void *old,
6428 				     const void *new,
6429 				     unsigned int bytes,
6430 				     struct x86_exception *exception)
6431 {
6432 	struct kvm_host_map map;
6433 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6434 	u64 page_line_mask;
6435 	gpa_t gpa;
6436 	char *kaddr;
6437 	bool exchanged;
6438 
6439 	/* guests cmpxchg8b have to be emulated atomically */
6440 	if (bytes > 8 || (bytes & (bytes - 1)))
6441 		goto emul_write;
6442 
6443 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6444 
6445 	if (gpa == UNMAPPED_GVA ||
6446 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6447 		goto emul_write;
6448 
6449 	/*
6450 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
6451 	 * enabled in the host and the access splits a cache line.
6452 	 */
6453 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6454 		page_line_mask = ~(cache_line_size() - 1);
6455 	else
6456 		page_line_mask = PAGE_MASK;
6457 
6458 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6459 		goto emul_write;
6460 
6461 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6462 		goto emul_write;
6463 
6464 	kaddr = map.hva + offset_in_page(gpa);
6465 
6466 	switch (bytes) {
6467 	case 1:
6468 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6469 		break;
6470 	case 2:
6471 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6472 		break;
6473 	case 4:
6474 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6475 		break;
6476 	case 8:
6477 		exchanged = CMPXCHG64(kaddr, old, new);
6478 		break;
6479 	default:
6480 		BUG();
6481 	}
6482 
6483 	kvm_vcpu_unmap(vcpu, &map, true);
6484 
6485 	if (!exchanged)
6486 		return X86EMUL_CMPXCHG_FAILED;
6487 
6488 	kvm_page_track_write(vcpu, gpa, new, bytes);
6489 
6490 	return X86EMUL_CONTINUE;
6491 
6492 emul_write:
6493 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6494 
6495 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6496 }
6497 
6498 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6499 {
6500 	int r = 0, i;
6501 
6502 	for (i = 0; i < vcpu->arch.pio.count; i++) {
6503 		if (vcpu->arch.pio.in)
6504 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6505 					    vcpu->arch.pio.size, pd);
6506 		else
6507 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6508 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
6509 					     pd);
6510 		if (r)
6511 			break;
6512 		pd += vcpu->arch.pio.size;
6513 	}
6514 	return r;
6515 }
6516 
6517 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6518 			       unsigned short port, void *val,
6519 			       unsigned int count, bool in)
6520 {
6521 	vcpu->arch.pio.port = port;
6522 	vcpu->arch.pio.in = in;
6523 	vcpu->arch.pio.count  = count;
6524 	vcpu->arch.pio.size = size;
6525 
6526 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
6527 		vcpu->arch.pio.count = 0;
6528 		return 1;
6529 	}
6530 
6531 	vcpu->run->exit_reason = KVM_EXIT_IO;
6532 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6533 	vcpu->run->io.size = size;
6534 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6535 	vcpu->run->io.count = count;
6536 	vcpu->run->io.port = port;
6537 
6538 	return 0;
6539 }
6540 
6541 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6542 			   unsigned short port, void *val, unsigned int count)
6543 {
6544 	int ret;
6545 
6546 	if (vcpu->arch.pio.count)
6547 		goto data_avail;
6548 
6549 	memset(vcpu->arch.pio_data, 0, size * count);
6550 
6551 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6552 	if (ret) {
6553 data_avail:
6554 		memcpy(val, vcpu->arch.pio_data, size * count);
6555 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6556 		vcpu->arch.pio.count = 0;
6557 		return 1;
6558 	}
6559 
6560 	return 0;
6561 }
6562 
6563 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6564 				    int size, unsigned short port, void *val,
6565 				    unsigned int count)
6566 {
6567 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6568 
6569 }
6570 
6571 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6572 			    unsigned short port, const void *val,
6573 			    unsigned int count)
6574 {
6575 	memcpy(vcpu->arch.pio_data, val, size * count);
6576 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6577 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6578 }
6579 
6580 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6581 				     int size, unsigned short port,
6582 				     const void *val, unsigned int count)
6583 {
6584 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6585 }
6586 
6587 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6588 {
6589 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6590 }
6591 
6592 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6593 {
6594 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6595 }
6596 
6597 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6598 {
6599 	if (!need_emulate_wbinvd(vcpu))
6600 		return X86EMUL_CONTINUE;
6601 
6602 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
6603 		int cpu = get_cpu();
6604 
6605 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6606 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6607 				wbinvd_ipi, NULL, 1);
6608 		put_cpu();
6609 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6610 	} else
6611 		wbinvd();
6612 	return X86EMUL_CONTINUE;
6613 }
6614 
6615 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6616 {
6617 	kvm_emulate_wbinvd_noskip(vcpu);
6618 	return kvm_skip_emulated_instruction(vcpu);
6619 }
6620 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6621 
6622 
6623 
6624 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6625 {
6626 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6627 }
6628 
6629 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6630 			    unsigned long *dest)
6631 {
6632 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6633 }
6634 
6635 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6636 			   unsigned long value)
6637 {
6638 
6639 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6640 }
6641 
6642 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6643 {
6644 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6645 }
6646 
6647 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6648 {
6649 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6650 	unsigned long value;
6651 
6652 	switch (cr) {
6653 	case 0:
6654 		value = kvm_read_cr0(vcpu);
6655 		break;
6656 	case 2:
6657 		value = vcpu->arch.cr2;
6658 		break;
6659 	case 3:
6660 		value = kvm_read_cr3(vcpu);
6661 		break;
6662 	case 4:
6663 		value = kvm_read_cr4(vcpu);
6664 		break;
6665 	case 8:
6666 		value = kvm_get_cr8(vcpu);
6667 		break;
6668 	default:
6669 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6670 		return 0;
6671 	}
6672 
6673 	return value;
6674 }
6675 
6676 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6677 {
6678 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6679 	int res = 0;
6680 
6681 	switch (cr) {
6682 	case 0:
6683 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6684 		break;
6685 	case 2:
6686 		vcpu->arch.cr2 = val;
6687 		break;
6688 	case 3:
6689 		res = kvm_set_cr3(vcpu, val);
6690 		break;
6691 	case 4:
6692 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6693 		break;
6694 	case 8:
6695 		res = kvm_set_cr8(vcpu, val);
6696 		break;
6697 	default:
6698 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6699 		res = -1;
6700 	}
6701 
6702 	return res;
6703 }
6704 
6705 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6706 {
6707 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
6708 }
6709 
6710 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6711 {
6712 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
6713 }
6714 
6715 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6716 {
6717 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
6718 }
6719 
6720 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6721 {
6722 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
6723 }
6724 
6725 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6726 {
6727 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
6728 }
6729 
6730 static unsigned long emulator_get_cached_segment_base(
6731 	struct x86_emulate_ctxt *ctxt, int seg)
6732 {
6733 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6734 }
6735 
6736 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6737 				 struct desc_struct *desc, u32 *base3,
6738 				 int seg)
6739 {
6740 	struct kvm_segment var;
6741 
6742 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6743 	*selector = var.selector;
6744 
6745 	if (var.unusable) {
6746 		memset(desc, 0, sizeof(*desc));
6747 		if (base3)
6748 			*base3 = 0;
6749 		return false;
6750 	}
6751 
6752 	if (var.g)
6753 		var.limit >>= 12;
6754 	set_desc_limit(desc, var.limit);
6755 	set_desc_base(desc, (unsigned long)var.base);
6756 #ifdef CONFIG_X86_64
6757 	if (base3)
6758 		*base3 = var.base >> 32;
6759 #endif
6760 	desc->type = var.type;
6761 	desc->s = var.s;
6762 	desc->dpl = var.dpl;
6763 	desc->p = var.present;
6764 	desc->avl = var.avl;
6765 	desc->l = var.l;
6766 	desc->d = var.db;
6767 	desc->g = var.g;
6768 
6769 	return true;
6770 }
6771 
6772 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6773 				 struct desc_struct *desc, u32 base3,
6774 				 int seg)
6775 {
6776 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6777 	struct kvm_segment var;
6778 
6779 	var.selector = selector;
6780 	var.base = get_desc_base(desc);
6781 #ifdef CONFIG_X86_64
6782 	var.base |= ((u64)base3) << 32;
6783 #endif
6784 	var.limit = get_desc_limit(desc);
6785 	if (desc->g)
6786 		var.limit = (var.limit << 12) | 0xfff;
6787 	var.type = desc->type;
6788 	var.dpl = desc->dpl;
6789 	var.db = desc->d;
6790 	var.s = desc->s;
6791 	var.l = desc->l;
6792 	var.g = desc->g;
6793 	var.avl = desc->avl;
6794 	var.present = desc->p;
6795 	var.unusable = !var.present;
6796 	var.padding = 0;
6797 
6798 	kvm_set_segment(vcpu, &var, seg);
6799 	return;
6800 }
6801 
6802 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6803 			    u32 msr_index, u64 *pdata)
6804 {
6805 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6806 	int r;
6807 
6808 	r = kvm_get_msr(vcpu, msr_index, pdata);
6809 
6810 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6811 		/* Bounce to user space */
6812 		return X86EMUL_IO_NEEDED;
6813 	}
6814 
6815 	return r;
6816 }
6817 
6818 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6819 			    u32 msr_index, u64 data)
6820 {
6821 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6822 	int r;
6823 
6824 	r = kvm_set_msr(vcpu, msr_index, data);
6825 
6826 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6827 		/* Bounce to user space */
6828 		return X86EMUL_IO_NEEDED;
6829 	}
6830 
6831 	return r;
6832 }
6833 
6834 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6835 {
6836 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6837 
6838 	return vcpu->arch.smbase;
6839 }
6840 
6841 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6842 {
6843 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6844 
6845 	vcpu->arch.smbase = smbase;
6846 }
6847 
6848 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6849 			      u32 pmc)
6850 {
6851 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6852 }
6853 
6854 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6855 			     u32 pmc, u64 *pdata)
6856 {
6857 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6858 }
6859 
6860 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6861 {
6862 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6863 }
6864 
6865 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6866 			      struct x86_instruction_info *info,
6867 			      enum x86_intercept_stage stage)
6868 {
6869 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
6870 					    &ctxt->exception);
6871 }
6872 
6873 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6874 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6875 			      bool exact_only)
6876 {
6877 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6878 }
6879 
6880 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6881 {
6882 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6883 }
6884 
6885 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6886 {
6887 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6888 }
6889 
6890 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6891 {
6892 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6893 }
6894 
6895 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6896 {
6897 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6898 }
6899 
6900 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6901 {
6902 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6903 }
6904 
6905 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6906 {
6907 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
6908 }
6909 
6910 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6911 {
6912 	return emul_to_vcpu(ctxt)->arch.hflags;
6913 }
6914 
6915 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6916 {
6917 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6918 }
6919 
6920 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6921 				  const char *smstate)
6922 {
6923 	return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate);
6924 }
6925 
6926 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6927 {
6928 	kvm_smm_changed(emul_to_vcpu(ctxt));
6929 }
6930 
6931 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6932 {
6933 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6934 }
6935 
6936 static const struct x86_emulate_ops emulate_ops = {
6937 	.read_gpr            = emulator_read_gpr,
6938 	.write_gpr           = emulator_write_gpr,
6939 	.read_std            = emulator_read_std,
6940 	.write_std           = emulator_write_std,
6941 	.read_phys           = kvm_read_guest_phys_system,
6942 	.fetch               = kvm_fetch_guest_virt,
6943 	.read_emulated       = emulator_read_emulated,
6944 	.write_emulated      = emulator_write_emulated,
6945 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6946 	.invlpg              = emulator_invlpg,
6947 	.pio_in_emulated     = emulator_pio_in_emulated,
6948 	.pio_out_emulated    = emulator_pio_out_emulated,
6949 	.get_segment         = emulator_get_segment,
6950 	.set_segment         = emulator_set_segment,
6951 	.get_cached_segment_base = emulator_get_cached_segment_base,
6952 	.get_gdt             = emulator_get_gdt,
6953 	.get_idt	     = emulator_get_idt,
6954 	.set_gdt             = emulator_set_gdt,
6955 	.set_idt	     = emulator_set_idt,
6956 	.get_cr              = emulator_get_cr,
6957 	.set_cr              = emulator_set_cr,
6958 	.cpl                 = emulator_get_cpl,
6959 	.get_dr              = emulator_get_dr,
6960 	.set_dr              = emulator_set_dr,
6961 	.get_smbase          = emulator_get_smbase,
6962 	.set_smbase          = emulator_set_smbase,
6963 	.set_msr             = emulator_set_msr,
6964 	.get_msr             = emulator_get_msr,
6965 	.check_pmc	     = emulator_check_pmc,
6966 	.read_pmc            = emulator_read_pmc,
6967 	.halt                = emulator_halt,
6968 	.wbinvd              = emulator_wbinvd,
6969 	.fix_hypercall       = emulator_fix_hypercall,
6970 	.intercept           = emulator_intercept,
6971 	.get_cpuid           = emulator_get_cpuid,
6972 	.guest_has_long_mode = emulator_guest_has_long_mode,
6973 	.guest_has_movbe     = emulator_guest_has_movbe,
6974 	.guest_has_fxsr      = emulator_guest_has_fxsr,
6975 	.set_nmi_mask        = emulator_set_nmi_mask,
6976 	.get_hflags          = emulator_get_hflags,
6977 	.set_hflags          = emulator_set_hflags,
6978 	.pre_leave_smm       = emulator_pre_leave_smm,
6979 	.post_leave_smm      = emulator_post_leave_smm,
6980 	.set_xcr             = emulator_set_xcr,
6981 };
6982 
6983 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6984 {
6985 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
6986 	/*
6987 	 * an sti; sti; sequence only disable interrupts for the first
6988 	 * instruction. So, if the last instruction, be it emulated or
6989 	 * not, left the system with the INT_STI flag enabled, it
6990 	 * means that the last instruction is an sti. We should not
6991 	 * leave the flag on in this case. The same goes for mov ss
6992 	 */
6993 	if (int_shadow & mask)
6994 		mask = 0;
6995 	if (unlikely(int_shadow || mask)) {
6996 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
6997 		if (!mask)
6998 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6999 	}
7000 }
7001 
7002 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7003 {
7004 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7005 	if (ctxt->exception.vector == PF_VECTOR)
7006 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7007 
7008 	if (ctxt->exception.error_code_valid)
7009 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7010 				      ctxt->exception.error_code);
7011 	else
7012 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7013 	return false;
7014 }
7015 
7016 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7017 {
7018 	struct x86_emulate_ctxt *ctxt;
7019 
7020 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7021 	if (!ctxt) {
7022 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7023 		return NULL;
7024 	}
7025 
7026 	ctxt->vcpu = vcpu;
7027 	ctxt->ops = &emulate_ops;
7028 	vcpu->arch.emulate_ctxt = ctxt;
7029 
7030 	return ctxt;
7031 }
7032 
7033 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7034 {
7035 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7036 	int cs_db, cs_l;
7037 
7038 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7039 
7040 	ctxt->gpa_available = false;
7041 	ctxt->eflags = kvm_get_rflags(vcpu);
7042 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7043 
7044 	ctxt->eip = kvm_rip_read(vcpu);
7045 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7046 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7047 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7048 		     cs_db				? X86EMUL_MODE_PROT32 :
7049 							  X86EMUL_MODE_PROT16;
7050 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7051 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7052 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7053 
7054 	init_decode_cache(ctxt);
7055 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7056 }
7057 
7058 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7059 {
7060 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7061 	int ret;
7062 
7063 	init_emulate_ctxt(vcpu);
7064 
7065 	ctxt->op_bytes = 2;
7066 	ctxt->ad_bytes = 2;
7067 	ctxt->_eip = ctxt->eip + inc_eip;
7068 	ret = emulate_int_real(ctxt, irq);
7069 
7070 	if (ret != X86EMUL_CONTINUE) {
7071 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7072 	} else {
7073 		ctxt->eip = ctxt->_eip;
7074 		kvm_rip_write(vcpu, ctxt->eip);
7075 		kvm_set_rflags(vcpu, ctxt->eflags);
7076 	}
7077 }
7078 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7079 
7080 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7081 {
7082 	++vcpu->stat.insn_emulation_fail;
7083 	trace_kvm_emulate_insn_failed(vcpu);
7084 
7085 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7086 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7087 		return 1;
7088 	}
7089 
7090 	if (emulation_type & EMULTYPE_SKIP) {
7091 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7092 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7093 		vcpu->run->internal.ndata = 0;
7094 		return 0;
7095 	}
7096 
7097 	kvm_queue_exception(vcpu, UD_VECTOR);
7098 
7099 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7100 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7101 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7102 		vcpu->run->internal.ndata = 0;
7103 		return 0;
7104 	}
7105 
7106 	return 1;
7107 }
7108 
7109 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7110 				  bool write_fault_to_shadow_pgtable,
7111 				  int emulation_type)
7112 {
7113 	gpa_t gpa = cr2_or_gpa;
7114 	kvm_pfn_t pfn;
7115 
7116 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7117 		return false;
7118 
7119 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7120 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7121 		return false;
7122 
7123 	if (!vcpu->arch.mmu->direct_map) {
7124 		/*
7125 		 * Write permission should be allowed since only
7126 		 * write access need to be emulated.
7127 		 */
7128 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7129 
7130 		/*
7131 		 * If the mapping is invalid in guest, let cpu retry
7132 		 * it to generate fault.
7133 		 */
7134 		if (gpa == UNMAPPED_GVA)
7135 			return true;
7136 	}
7137 
7138 	/*
7139 	 * Do not retry the unhandleable instruction if it faults on the
7140 	 * readonly host memory, otherwise it will goto a infinite loop:
7141 	 * retry instruction -> write #PF -> emulation fail -> retry
7142 	 * instruction -> ...
7143 	 */
7144 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7145 
7146 	/*
7147 	 * If the instruction failed on the error pfn, it can not be fixed,
7148 	 * report the error to userspace.
7149 	 */
7150 	if (is_error_noslot_pfn(pfn))
7151 		return false;
7152 
7153 	kvm_release_pfn_clean(pfn);
7154 
7155 	/* The instructions are well-emulated on direct mmu. */
7156 	if (vcpu->arch.mmu->direct_map) {
7157 		unsigned int indirect_shadow_pages;
7158 
7159 		write_lock(&vcpu->kvm->mmu_lock);
7160 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7161 		write_unlock(&vcpu->kvm->mmu_lock);
7162 
7163 		if (indirect_shadow_pages)
7164 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7165 
7166 		return true;
7167 	}
7168 
7169 	/*
7170 	 * if emulation was due to access to shadowed page table
7171 	 * and it failed try to unshadow page and re-enter the
7172 	 * guest to let CPU execute the instruction.
7173 	 */
7174 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7175 
7176 	/*
7177 	 * If the access faults on its page table, it can not
7178 	 * be fixed by unprotecting shadow page and it should
7179 	 * be reported to userspace.
7180 	 */
7181 	return !write_fault_to_shadow_pgtable;
7182 }
7183 
7184 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7185 			      gpa_t cr2_or_gpa,  int emulation_type)
7186 {
7187 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7188 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7189 
7190 	last_retry_eip = vcpu->arch.last_retry_eip;
7191 	last_retry_addr = vcpu->arch.last_retry_addr;
7192 
7193 	/*
7194 	 * If the emulation is caused by #PF and it is non-page_table
7195 	 * writing instruction, it means the VM-EXIT is caused by shadow
7196 	 * page protected, we can zap the shadow page and retry this
7197 	 * instruction directly.
7198 	 *
7199 	 * Note: if the guest uses a non-page-table modifying instruction
7200 	 * on the PDE that points to the instruction, then we will unmap
7201 	 * the instruction and go to an infinite loop. So, we cache the
7202 	 * last retried eip and the last fault address, if we meet the eip
7203 	 * and the address again, we can break out of the potential infinite
7204 	 * loop.
7205 	 */
7206 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7207 
7208 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7209 		return false;
7210 
7211 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7212 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7213 		return false;
7214 
7215 	if (x86_page_table_writing_insn(ctxt))
7216 		return false;
7217 
7218 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7219 		return false;
7220 
7221 	vcpu->arch.last_retry_eip = ctxt->eip;
7222 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7223 
7224 	if (!vcpu->arch.mmu->direct_map)
7225 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7226 
7227 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7228 
7229 	return true;
7230 }
7231 
7232 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7233 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7234 
7235 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7236 {
7237 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7238 		/* This is a good place to trace that we are exiting SMM.  */
7239 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7240 
7241 		/* Process a latched INIT or SMI, if any.  */
7242 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7243 	}
7244 
7245 	kvm_mmu_reset_context(vcpu);
7246 }
7247 
7248 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7249 				unsigned long *db)
7250 {
7251 	u32 dr6 = 0;
7252 	int i;
7253 	u32 enable, rwlen;
7254 
7255 	enable = dr7;
7256 	rwlen = dr7 >> 16;
7257 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7258 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7259 			dr6 |= (1 << i);
7260 	return dr6;
7261 }
7262 
7263 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7264 {
7265 	struct kvm_run *kvm_run = vcpu->run;
7266 
7267 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7268 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7269 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7270 		kvm_run->debug.arch.exception = DB_VECTOR;
7271 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7272 		return 0;
7273 	}
7274 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7275 	return 1;
7276 }
7277 
7278 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7279 {
7280 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7281 	int r;
7282 
7283 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7284 	if (unlikely(!r))
7285 		return 0;
7286 
7287 	/*
7288 	 * rflags is the old, "raw" value of the flags.  The new value has
7289 	 * not been saved yet.
7290 	 *
7291 	 * This is correct even for TF set by the guest, because "the
7292 	 * processor will not generate this exception after the instruction
7293 	 * that sets the TF flag".
7294 	 */
7295 	if (unlikely(rflags & X86_EFLAGS_TF))
7296 		r = kvm_vcpu_do_singlestep(vcpu);
7297 	return r;
7298 }
7299 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7300 
7301 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7302 {
7303 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7304 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7305 		struct kvm_run *kvm_run = vcpu->run;
7306 		unsigned long eip = kvm_get_linear_rip(vcpu);
7307 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7308 					   vcpu->arch.guest_debug_dr7,
7309 					   vcpu->arch.eff_db);
7310 
7311 		if (dr6 != 0) {
7312 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7313 			kvm_run->debug.arch.pc = eip;
7314 			kvm_run->debug.arch.exception = DB_VECTOR;
7315 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
7316 			*r = 0;
7317 			return true;
7318 		}
7319 	}
7320 
7321 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7322 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7323 		unsigned long eip = kvm_get_linear_rip(vcpu);
7324 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7325 					   vcpu->arch.dr7,
7326 					   vcpu->arch.db);
7327 
7328 		if (dr6 != 0) {
7329 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7330 			*r = 1;
7331 			return true;
7332 		}
7333 	}
7334 
7335 	return false;
7336 }
7337 
7338 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7339 {
7340 	switch (ctxt->opcode_len) {
7341 	case 1:
7342 		switch (ctxt->b) {
7343 		case 0xe4:	/* IN */
7344 		case 0xe5:
7345 		case 0xec:
7346 		case 0xed:
7347 		case 0xe6:	/* OUT */
7348 		case 0xe7:
7349 		case 0xee:
7350 		case 0xef:
7351 		case 0x6c:	/* INS */
7352 		case 0x6d:
7353 		case 0x6e:	/* OUTS */
7354 		case 0x6f:
7355 			return true;
7356 		}
7357 		break;
7358 	case 2:
7359 		switch (ctxt->b) {
7360 		case 0x33:	/* RDPMC */
7361 			return true;
7362 		}
7363 		break;
7364 	}
7365 
7366 	return false;
7367 }
7368 
7369 /*
7370  * Decode to be emulated instruction. Return EMULATION_OK if success.
7371  */
7372 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7373 				    void *insn, int insn_len)
7374 {
7375 	int r = EMULATION_OK;
7376 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7377 
7378 	init_emulate_ctxt(vcpu);
7379 
7380 	/*
7381 	 * We will reenter on the same instruction since we do not set
7382 	 * complete_userspace_io. This does not handle watchpoints yet,
7383 	 * those would be handled in the emulate_ops.
7384 	 */
7385 	if (!(emulation_type & EMULTYPE_SKIP) &&
7386 	    kvm_vcpu_check_breakpoint(vcpu, &r))
7387 		return r;
7388 
7389 	ctxt->interruptibility = 0;
7390 	ctxt->have_exception = false;
7391 	ctxt->exception.vector = -1;
7392 	ctxt->perm_ok = false;
7393 
7394 	ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
7395 
7396 	r = x86_decode_insn(ctxt, insn, insn_len);
7397 
7398 	trace_kvm_emulate_insn_start(vcpu);
7399 	++vcpu->stat.insn_emulation;
7400 
7401 	return r;
7402 }
7403 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7404 
7405 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7406 			    int emulation_type, void *insn, int insn_len)
7407 {
7408 	int r;
7409 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7410 	bool writeback = true;
7411 	bool write_fault_to_spt;
7412 
7413 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7414 		return 1;
7415 
7416 	vcpu->arch.l1tf_flush_l1d = true;
7417 
7418 	/*
7419 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
7420 	 * never reused.
7421 	 */
7422 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7423 	vcpu->arch.write_fault_to_shadow_pgtable = false;
7424 
7425 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7426 		kvm_clear_exception_queue(vcpu);
7427 
7428 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
7429 						    insn, insn_len);
7430 		if (r != EMULATION_OK)  {
7431 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
7432 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7433 				kvm_queue_exception(vcpu, UD_VECTOR);
7434 				return 1;
7435 			}
7436 			if (reexecute_instruction(vcpu, cr2_or_gpa,
7437 						  write_fault_to_spt,
7438 						  emulation_type))
7439 				return 1;
7440 			if (ctxt->have_exception) {
7441 				/*
7442 				 * #UD should result in just EMULATION_FAILED, and trap-like
7443 				 * exception should not be encountered during decode.
7444 				 */
7445 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7446 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7447 				inject_emulated_exception(vcpu);
7448 				return 1;
7449 			}
7450 			return handle_emulation_failure(vcpu, emulation_type);
7451 		}
7452 	}
7453 
7454 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7455 	    !is_vmware_backdoor_opcode(ctxt)) {
7456 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7457 		return 1;
7458 	}
7459 
7460 	/*
7461 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7462 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
7463 	 * updating interruptibility state and injecting single-step #DBs.
7464 	 */
7465 	if (emulation_type & EMULTYPE_SKIP) {
7466 		kvm_rip_write(vcpu, ctxt->_eip);
7467 		if (ctxt->eflags & X86_EFLAGS_RF)
7468 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7469 		return 1;
7470 	}
7471 
7472 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7473 		return 1;
7474 
7475 	/* this is needed for vmware backdoor interface to work since it
7476 	   changes registers values  during IO operation */
7477 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7478 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7479 		emulator_invalidate_register_cache(ctxt);
7480 	}
7481 
7482 restart:
7483 	if (emulation_type & EMULTYPE_PF) {
7484 		/* Save the faulting GPA (cr2) in the address field */
7485 		ctxt->exception.address = cr2_or_gpa;
7486 
7487 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
7488 		if (vcpu->arch.mmu->direct_map) {
7489 			ctxt->gpa_available = true;
7490 			ctxt->gpa_val = cr2_or_gpa;
7491 		}
7492 	} else {
7493 		/* Sanitize the address out of an abundance of paranoia. */
7494 		ctxt->exception.address = 0;
7495 	}
7496 
7497 	r = x86_emulate_insn(ctxt);
7498 
7499 	if (r == EMULATION_INTERCEPTED)
7500 		return 1;
7501 
7502 	if (r == EMULATION_FAILED) {
7503 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7504 					emulation_type))
7505 			return 1;
7506 
7507 		return handle_emulation_failure(vcpu, emulation_type);
7508 	}
7509 
7510 	if (ctxt->have_exception) {
7511 		r = 1;
7512 		if (inject_emulated_exception(vcpu))
7513 			return r;
7514 	} else if (vcpu->arch.pio.count) {
7515 		if (!vcpu->arch.pio.in) {
7516 			/* FIXME: return into emulator if single-stepping.  */
7517 			vcpu->arch.pio.count = 0;
7518 		} else {
7519 			writeback = false;
7520 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
7521 		}
7522 		r = 0;
7523 	} else if (vcpu->mmio_needed) {
7524 		++vcpu->stat.mmio_exits;
7525 
7526 		if (!vcpu->mmio_is_write)
7527 			writeback = false;
7528 		r = 0;
7529 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7530 	} else if (r == EMULATION_RESTART)
7531 		goto restart;
7532 	else
7533 		r = 1;
7534 
7535 	if (writeback) {
7536 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7537 		toggle_interruptibility(vcpu, ctxt->interruptibility);
7538 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7539 		if (!ctxt->have_exception ||
7540 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7541 			kvm_rip_write(vcpu, ctxt->eip);
7542 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7543 				r = kvm_vcpu_do_singlestep(vcpu);
7544 			if (kvm_x86_ops.update_emulated_instruction)
7545 				static_call(kvm_x86_update_emulated_instruction)(vcpu);
7546 			__kvm_set_rflags(vcpu, ctxt->eflags);
7547 		}
7548 
7549 		/*
7550 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7551 		 * do nothing, and it will be requested again as soon as
7552 		 * the shadow expires.  But we still need to check here,
7553 		 * because POPF has no interrupt shadow.
7554 		 */
7555 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7556 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7557 	} else
7558 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7559 
7560 	return r;
7561 }
7562 
7563 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7564 {
7565 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7566 }
7567 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7568 
7569 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7570 					void *insn, int insn_len)
7571 {
7572 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7573 }
7574 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7575 
7576 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7577 {
7578 	vcpu->arch.pio.count = 0;
7579 	return 1;
7580 }
7581 
7582 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7583 {
7584 	vcpu->arch.pio.count = 0;
7585 
7586 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7587 		return 1;
7588 
7589 	return kvm_skip_emulated_instruction(vcpu);
7590 }
7591 
7592 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7593 			    unsigned short port)
7594 {
7595 	unsigned long val = kvm_rax_read(vcpu);
7596 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7597 
7598 	if (ret)
7599 		return ret;
7600 
7601 	/*
7602 	 * Workaround userspace that relies on old KVM behavior of %rip being
7603 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7604 	 */
7605 	if (port == 0x7e &&
7606 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7607 		vcpu->arch.complete_userspace_io =
7608 			complete_fast_pio_out_port_0x7e;
7609 		kvm_skip_emulated_instruction(vcpu);
7610 	} else {
7611 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7612 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7613 	}
7614 	return 0;
7615 }
7616 
7617 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7618 {
7619 	unsigned long val;
7620 
7621 	/* We should only ever be called with arch.pio.count equal to 1 */
7622 	BUG_ON(vcpu->arch.pio.count != 1);
7623 
7624 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7625 		vcpu->arch.pio.count = 0;
7626 		return 1;
7627 	}
7628 
7629 	/* For size less than 4 we merge, else we zero extend */
7630 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7631 
7632 	/*
7633 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7634 	 * the copy and tracing
7635 	 */
7636 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7637 	kvm_rax_write(vcpu, val);
7638 
7639 	return kvm_skip_emulated_instruction(vcpu);
7640 }
7641 
7642 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7643 			   unsigned short port)
7644 {
7645 	unsigned long val;
7646 	int ret;
7647 
7648 	/* For size less than 4 we merge, else we zero extend */
7649 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7650 
7651 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7652 	if (ret) {
7653 		kvm_rax_write(vcpu, val);
7654 		return ret;
7655 	}
7656 
7657 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7658 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7659 
7660 	return 0;
7661 }
7662 
7663 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7664 {
7665 	int ret;
7666 
7667 	if (in)
7668 		ret = kvm_fast_pio_in(vcpu, size, port);
7669 	else
7670 		ret = kvm_fast_pio_out(vcpu, size, port);
7671 	return ret && kvm_skip_emulated_instruction(vcpu);
7672 }
7673 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7674 
7675 static int kvmclock_cpu_down_prep(unsigned int cpu)
7676 {
7677 	__this_cpu_write(cpu_tsc_khz, 0);
7678 	return 0;
7679 }
7680 
7681 static void tsc_khz_changed(void *data)
7682 {
7683 	struct cpufreq_freqs *freq = data;
7684 	unsigned long khz = 0;
7685 
7686 	if (data)
7687 		khz = freq->new;
7688 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7689 		khz = cpufreq_quick_get(raw_smp_processor_id());
7690 	if (!khz)
7691 		khz = tsc_khz;
7692 	__this_cpu_write(cpu_tsc_khz, khz);
7693 }
7694 
7695 #ifdef CONFIG_X86_64
7696 static void kvm_hyperv_tsc_notifier(void)
7697 {
7698 	struct kvm *kvm;
7699 	struct kvm_vcpu *vcpu;
7700 	int cpu;
7701 
7702 	mutex_lock(&kvm_lock);
7703 	list_for_each_entry(kvm, &vm_list, vm_list)
7704 		kvm_make_mclock_inprogress_request(kvm);
7705 
7706 	hyperv_stop_tsc_emulation();
7707 
7708 	/* TSC frequency always matches when on Hyper-V */
7709 	for_each_present_cpu(cpu)
7710 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7711 	kvm_max_guest_tsc_khz = tsc_khz;
7712 
7713 	list_for_each_entry(kvm, &vm_list, vm_list) {
7714 		struct kvm_arch *ka = &kvm->arch;
7715 
7716 		spin_lock(&ka->pvclock_gtod_sync_lock);
7717 
7718 		pvclock_update_vm_gtod_copy(kvm);
7719 
7720 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7721 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7722 
7723 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7724 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7725 
7726 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7727 	}
7728 	mutex_unlock(&kvm_lock);
7729 }
7730 #endif
7731 
7732 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7733 {
7734 	struct kvm *kvm;
7735 	struct kvm_vcpu *vcpu;
7736 	int i, send_ipi = 0;
7737 
7738 	/*
7739 	 * We allow guests to temporarily run on slowing clocks,
7740 	 * provided we notify them after, or to run on accelerating
7741 	 * clocks, provided we notify them before.  Thus time never
7742 	 * goes backwards.
7743 	 *
7744 	 * However, we have a problem.  We can't atomically update
7745 	 * the frequency of a given CPU from this function; it is
7746 	 * merely a notifier, which can be called from any CPU.
7747 	 * Changing the TSC frequency at arbitrary points in time
7748 	 * requires a recomputation of local variables related to
7749 	 * the TSC for each VCPU.  We must flag these local variables
7750 	 * to be updated and be sure the update takes place with the
7751 	 * new frequency before any guests proceed.
7752 	 *
7753 	 * Unfortunately, the combination of hotplug CPU and frequency
7754 	 * change creates an intractable locking scenario; the order
7755 	 * of when these callouts happen is undefined with respect to
7756 	 * CPU hotplug, and they can race with each other.  As such,
7757 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7758 	 * undefined; you can actually have a CPU frequency change take
7759 	 * place in between the computation of X and the setting of the
7760 	 * variable.  To protect against this problem, all updates of
7761 	 * the per_cpu tsc_khz variable are done in an interrupt
7762 	 * protected IPI, and all callers wishing to update the value
7763 	 * must wait for a synchronous IPI to complete (which is trivial
7764 	 * if the caller is on the CPU already).  This establishes the
7765 	 * necessary total order on variable updates.
7766 	 *
7767 	 * Note that because a guest time update may take place
7768 	 * anytime after the setting of the VCPU's request bit, the
7769 	 * correct TSC value must be set before the request.  However,
7770 	 * to ensure the update actually makes it to any guest which
7771 	 * starts running in hardware virtualization between the set
7772 	 * and the acquisition of the spinlock, we must also ping the
7773 	 * CPU after setting the request bit.
7774 	 *
7775 	 */
7776 
7777 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7778 
7779 	mutex_lock(&kvm_lock);
7780 	list_for_each_entry(kvm, &vm_list, vm_list) {
7781 		kvm_for_each_vcpu(i, vcpu, kvm) {
7782 			if (vcpu->cpu != cpu)
7783 				continue;
7784 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7785 			if (vcpu->cpu != raw_smp_processor_id())
7786 				send_ipi = 1;
7787 		}
7788 	}
7789 	mutex_unlock(&kvm_lock);
7790 
7791 	if (freq->old < freq->new && send_ipi) {
7792 		/*
7793 		 * We upscale the frequency.  Must make the guest
7794 		 * doesn't see old kvmclock values while running with
7795 		 * the new frequency, otherwise we risk the guest sees
7796 		 * time go backwards.
7797 		 *
7798 		 * In case we update the frequency for another cpu
7799 		 * (which might be in guest context) send an interrupt
7800 		 * to kick the cpu out of guest context.  Next time
7801 		 * guest context is entered kvmclock will be updated,
7802 		 * so the guest will not see stale values.
7803 		 */
7804 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7805 	}
7806 }
7807 
7808 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7809 				     void *data)
7810 {
7811 	struct cpufreq_freqs *freq = data;
7812 	int cpu;
7813 
7814 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7815 		return 0;
7816 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7817 		return 0;
7818 
7819 	for_each_cpu(cpu, freq->policy->cpus)
7820 		__kvmclock_cpufreq_notifier(freq, cpu);
7821 
7822 	return 0;
7823 }
7824 
7825 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7826 	.notifier_call  = kvmclock_cpufreq_notifier
7827 };
7828 
7829 static int kvmclock_cpu_online(unsigned int cpu)
7830 {
7831 	tsc_khz_changed(NULL);
7832 	return 0;
7833 }
7834 
7835 static void kvm_timer_init(void)
7836 {
7837 	max_tsc_khz = tsc_khz;
7838 
7839 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7840 #ifdef CONFIG_CPU_FREQ
7841 		struct cpufreq_policy *policy;
7842 		int cpu;
7843 
7844 		cpu = get_cpu();
7845 		policy = cpufreq_cpu_get(cpu);
7846 		if (policy) {
7847 			if (policy->cpuinfo.max_freq)
7848 				max_tsc_khz = policy->cpuinfo.max_freq;
7849 			cpufreq_cpu_put(policy);
7850 		}
7851 		put_cpu();
7852 #endif
7853 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7854 					  CPUFREQ_TRANSITION_NOTIFIER);
7855 	}
7856 
7857 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7858 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7859 }
7860 
7861 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7862 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7863 
7864 int kvm_is_in_guest(void)
7865 {
7866 	return __this_cpu_read(current_vcpu) != NULL;
7867 }
7868 
7869 static int kvm_is_user_mode(void)
7870 {
7871 	int user_mode = 3;
7872 
7873 	if (__this_cpu_read(current_vcpu))
7874 		user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
7875 
7876 	return user_mode != 0;
7877 }
7878 
7879 static unsigned long kvm_get_guest_ip(void)
7880 {
7881 	unsigned long ip = 0;
7882 
7883 	if (__this_cpu_read(current_vcpu))
7884 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7885 
7886 	return ip;
7887 }
7888 
7889 static void kvm_handle_intel_pt_intr(void)
7890 {
7891 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7892 
7893 	kvm_make_request(KVM_REQ_PMI, vcpu);
7894 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7895 			(unsigned long *)&vcpu->arch.pmu.global_status);
7896 }
7897 
7898 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7899 	.is_in_guest		= kvm_is_in_guest,
7900 	.is_user_mode		= kvm_is_user_mode,
7901 	.get_guest_ip		= kvm_get_guest_ip,
7902 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7903 };
7904 
7905 #ifdef CONFIG_X86_64
7906 static void pvclock_gtod_update_fn(struct work_struct *work)
7907 {
7908 	struct kvm *kvm;
7909 
7910 	struct kvm_vcpu *vcpu;
7911 	int i;
7912 
7913 	mutex_lock(&kvm_lock);
7914 	list_for_each_entry(kvm, &vm_list, vm_list)
7915 		kvm_for_each_vcpu(i, vcpu, kvm)
7916 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7917 	atomic_set(&kvm_guest_has_master_clock, 0);
7918 	mutex_unlock(&kvm_lock);
7919 }
7920 
7921 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7922 
7923 /*
7924  * Notification about pvclock gtod data update.
7925  */
7926 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7927 			       void *priv)
7928 {
7929 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7930 	struct timekeeper *tk = priv;
7931 
7932 	update_pvclock_gtod(tk);
7933 
7934 	/* disable master clock if host does not trust, or does not
7935 	 * use, TSC based clocksource.
7936 	 */
7937 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7938 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7939 		queue_work(system_long_wq, &pvclock_gtod_work);
7940 
7941 	return 0;
7942 }
7943 
7944 static struct notifier_block pvclock_gtod_notifier = {
7945 	.notifier_call = pvclock_gtod_notify,
7946 };
7947 #endif
7948 
7949 int kvm_arch_init(void *opaque)
7950 {
7951 	struct kvm_x86_init_ops *ops = opaque;
7952 	int r;
7953 
7954 	if (kvm_x86_ops.hardware_enable) {
7955 		printk(KERN_ERR "kvm: already loaded the other module\n");
7956 		r = -EEXIST;
7957 		goto out;
7958 	}
7959 
7960 	if (!ops->cpu_has_kvm_support()) {
7961 		pr_err_ratelimited("kvm: no hardware support\n");
7962 		r = -EOPNOTSUPP;
7963 		goto out;
7964 	}
7965 	if (ops->disabled_by_bios()) {
7966 		pr_err_ratelimited("kvm: disabled by bios\n");
7967 		r = -EOPNOTSUPP;
7968 		goto out;
7969 	}
7970 
7971 	/*
7972 	 * KVM explicitly assumes that the guest has an FPU and
7973 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7974 	 * vCPU's FPU state as a fxregs_state struct.
7975 	 */
7976 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7977 		printk(KERN_ERR "kvm: inadequate fpu\n");
7978 		r = -EOPNOTSUPP;
7979 		goto out;
7980 	}
7981 
7982 	r = -ENOMEM;
7983 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7984 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7985 					  NULL);
7986 	if (!x86_fpu_cache) {
7987 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7988 		goto out;
7989 	}
7990 
7991 	x86_emulator_cache = kvm_alloc_emulator_cache();
7992 	if (!x86_emulator_cache) {
7993 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
7994 		goto out_free_x86_fpu_cache;
7995 	}
7996 
7997 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7998 	if (!user_return_msrs) {
7999 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8000 		goto out_free_x86_emulator_cache;
8001 	}
8002 
8003 	r = kvm_mmu_module_init();
8004 	if (r)
8005 		goto out_free_percpu;
8006 
8007 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
8008 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
8009 			PT_PRESENT_MASK, 0, sme_me_mask);
8010 	kvm_timer_init();
8011 
8012 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
8013 
8014 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8015 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8016 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8017 	}
8018 
8019 	if (pi_inject_timer == -1)
8020 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8021 #ifdef CONFIG_X86_64
8022 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8023 
8024 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8025 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8026 #endif
8027 
8028 	return 0;
8029 
8030 out_free_percpu:
8031 	free_percpu(user_return_msrs);
8032 out_free_x86_emulator_cache:
8033 	kmem_cache_destroy(x86_emulator_cache);
8034 out_free_x86_fpu_cache:
8035 	kmem_cache_destroy(x86_fpu_cache);
8036 out:
8037 	return r;
8038 }
8039 
8040 void kvm_arch_exit(void)
8041 {
8042 #ifdef CONFIG_X86_64
8043 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8044 		clear_hv_tscchange_cb();
8045 #endif
8046 	kvm_lapic_exit();
8047 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8048 
8049 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8050 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8051 					    CPUFREQ_TRANSITION_NOTIFIER);
8052 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8053 #ifdef CONFIG_X86_64
8054 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8055 #endif
8056 	kvm_x86_ops.hardware_enable = NULL;
8057 	kvm_mmu_module_exit();
8058 	free_percpu(user_return_msrs);
8059 	kmem_cache_destroy(x86_fpu_cache);
8060 #ifdef CONFIG_KVM_XEN
8061 	static_key_deferred_flush(&kvm_xen_enabled);
8062 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8063 #endif
8064 }
8065 
8066 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8067 {
8068 	++vcpu->stat.halt_exits;
8069 	if (lapic_in_kernel(vcpu)) {
8070 		vcpu->arch.mp_state = state;
8071 		return 1;
8072 	} else {
8073 		vcpu->run->exit_reason = reason;
8074 		return 0;
8075 	}
8076 }
8077 
8078 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8079 {
8080 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8081 }
8082 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8083 
8084 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8085 {
8086 	int ret = kvm_skip_emulated_instruction(vcpu);
8087 	/*
8088 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8089 	 * KVM_EXIT_DEBUG here.
8090 	 */
8091 	return kvm_vcpu_halt(vcpu) && ret;
8092 }
8093 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8094 
8095 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8096 {
8097 	int ret = kvm_skip_emulated_instruction(vcpu);
8098 
8099 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8100 }
8101 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8102 
8103 #ifdef CONFIG_X86_64
8104 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8105 			        unsigned long clock_type)
8106 {
8107 	struct kvm_clock_pairing clock_pairing;
8108 	struct timespec64 ts;
8109 	u64 cycle;
8110 	int ret;
8111 
8112 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8113 		return -KVM_EOPNOTSUPP;
8114 
8115 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8116 		return -KVM_EOPNOTSUPP;
8117 
8118 	clock_pairing.sec = ts.tv_sec;
8119 	clock_pairing.nsec = ts.tv_nsec;
8120 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8121 	clock_pairing.flags = 0;
8122 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8123 
8124 	ret = 0;
8125 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8126 			    sizeof(struct kvm_clock_pairing)))
8127 		ret = -KVM_EFAULT;
8128 
8129 	return ret;
8130 }
8131 #endif
8132 
8133 /*
8134  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8135  *
8136  * @apicid - apicid of vcpu to be kicked.
8137  */
8138 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8139 {
8140 	struct kvm_lapic_irq lapic_irq;
8141 
8142 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
8143 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8144 	lapic_irq.level = 0;
8145 	lapic_irq.dest_id = apicid;
8146 	lapic_irq.msi_redir_hint = false;
8147 
8148 	lapic_irq.delivery_mode = APIC_DM_REMRD;
8149 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8150 }
8151 
8152 bool kvm_apicv_activated(struct kvm *kvm)
8153 {
8154 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8155 }
8156 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8157 
8158 void kvm_apicv_init(struct kvm *kvm, bool enable)
8159 {
8160 	if (enable)
8161 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
8162 			  &kvm->arch.apicv_inhibit_reasons);
8163 	else
8164 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8165 			&kvm->arch.apicv_inhibit_reasons);
8166 }
8167 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8168 
8169 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8170 {
8171 	struct kvm_vcpu *target = NULL;
8172 	struct kvm_apic_map *map;
8173 
8174 	rcu_read_lock();
8175 	map = rcu_dereference(kvm->arch.apic_map);
8176 
8177 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8178 		target = map->phys_map[dest_id]->vcpu;
8179 
8180 	rcu_read_unlock();
8181 
8182 	if (target && READ_ONCE(target->ready))
8183 		kvm_vcpu_yield_to(target);
8184 }
8185 
8186 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8187 {
8188 	unsigned long nr, a0, a1, a2, a3, ret;
8189 	int op_64_bit;
8190 
8191 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
8192 		return kvm_xen_hypercall(vcpu);
8193 
8194 	if (kvm_hv_hypercall_enabled(vcpu))
8195 		return kvm_hv_hypercall(vcpu);
8196 
8197 	nr = kvm_rax_read(vcpu);
8198 	a0 = kvm_rbx_read(vcpu);
8199 	a1 = kvm_rcx_read(vcpu);
8200 	a2 = kvm_rdx_read(vcpu);
8201 	a3 = kvm_rsi_read(vcpu);
8202 
8203 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8204 
8205 	op_64_bit = is_64_bit_mode(vcpu);
8206 	if (!op_64_bit) {
8207 		nr &= 0xFFFFFFFF;
8208 		a0 &= 0xFFFFFFFF;
8209 		a1 &= 0xFFFFFFFF;
8210 		a2 &= 0xFFFFFFFF;
8211 		a3 &= 0xFFFFFFFF;
8212 	}
8213 
8214 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8215 		ret = -KVM_EPERM;
8216 		goto out;
8217 	}
8218 
8219 	ret = -KVM_ENOSYS;
8220 
8221 	switch (nr) {
8222 	case KVM_HC_VAPIC_POLL_IRQ:
8223 		ret = 0;
8224 		break;
8225 	case KVM_HC_KICK_CPU:
8226 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8227 			break;
8228 
8229 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8230 		kvm_sched_yield(vcpu->kvm, a1);
8231 		ret = 0;
8232 		break;
8233 #ifdef CONFIG_X86_64
8234 	case KVM_HC_CLOCK_PAIRING:
8235 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8236 		break;
8237 #endif
8238 	case KVM_HC_SEND_IPI:
8239 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8240 			break;
8241 
8242 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8243 		break;
8244 	case KVM_HC_SCHED_YIELD:
8245 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8246 			break;
8247 
8248 		kvm_sched_yield(vcpu->kvm, a0);
8249 		ret = 0;
8250 		break;
8251 	default:
8252 		ret = -KVM_ENOSYS;
8253 		break;
8254 	}
8255 out:
8256 	if (!op_64_bit)
8257 		ret = (u32)ret;
8258 	kvm_rax_write(vcpu, ret);
8259 
8260 	++vcpu->stat.hypercalls;
8261 	return kvm_skip_emulated_instruction(vcpu);
8262 }
8263 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8264 
8265 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8266 {
8267 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8268 	char instruction[3];
8269 	unsigned long rip = kvm_rip_read(vcpu);
8270 
8271 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8272 
8273 	return emulator_write_emulated(ctxt, rip, instruction, 3,
8274 		&ctxt->exception);
8275 }
8276 
8277 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8278 {
8279 	return vcpu->run->request_interrupt_window &&
8280 		likely(!pic_in_kernel(vcpu->kvm));
8281 }
8282 
8283 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8284 {
8285 	struct kvm_run *kvm_run = vcpu->run;
8286 
8287 	/*
8288 	 * if_flag is obsolete and useless, so do not bother
8289 	 * setting it for SEV-ES guests.  Userspace can just
8290 	 * use kvm_run->ready_for_interrupt_injection.
8291 	 */
8292 	kvm_run->if_flag = !vcpu->arch.guest_state_protected
8293 		&& (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8294 
8295 	kvm_run->cr8 = kvm_get_cr8(vcpu);
8296 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
8297 	kvm_run->ready_for_interrupt_injection =
8298 		pic_in_kernel(vcpu->kvm) ||
8299 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
8300 
8301 	if (is_smm(vcpu))
8302 		kvm_run->flags |= KVM_RUN_X86_SMM;
8303 }
8304 
8305 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8306 {
8307 	int max_irr, tpr;
8308 
8309 	if (!kvm_x86_ops.update_cr8_intercept)
8310 		return;
8311 
8312 	if (!lapic_in_kernel(vcpu))
8313 		return;
8314 
8315 	if (vcpu->arch.apicv_active)
8316 		return;
8317 
8318 	if (!vcpu->arch.apic->vapic_addr)
8319 		max_irr = kvm_lapic_find_highest_irr(vcpu);
8320 	else
8321 		max_irr = -1;
8322 
8323 	if (max_irr != -1)
8324 		max_irr >>= 4;
8325 
8326 	tpr = kvm_lapic_get_cr8(vcpu);
8327 
8328 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8329 }
8330 
8331 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8332 {
8333 	int r;
8334 	bool can_inject = true;
8335 
8336 	/* try to reinject previous events if any */
8337 
8338 	if (vcpu->arch.exception.injected) {
8339 		static_call(kvm_x86_queue_exception)(vcpu);
8340 		can_inject = false;
8341 	}
8342 	/*
8343 	 * Do not inject an NMI or interrupt if there is a pending
8344 	 * exception.  Exceptions and interrupts are recognized at
8345 	 * instruction boundaries, i.e. the start of an instruction.
8346 	 * Trap-like exceptions, e.g. #DB, have higher priority than
8347 	 * NMIs and interrupts, i.e. traps are recognized before an
8348 	 * NMI/interrupt that's pending on the same instruction.
8349 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8350 	 * priority, but are only generated (pended) during instruction
8351 	 * execution, i.e. a pending fault-like exception means the
8352 	 * fault occurred on the *previous* instruction and must be
8353 	 * serviced prior to recognizing any new events in order to
8354 	 * fully complete the previous instruction.
8355 	 */
8356 	else if (!vcpu->arch.exception.pending) {
8357 		if (vcpu->arch.nmi_injected) {
8358 			static_call(kvm_x86_set_nmi)(vcpu);
8359 			can_inject = false;
8360 		} else if (vcpu->arch.interrupt.injected) {
8361 			static_call(kvm_x86_set_irq)(vcpu);
8362 			can_inject = false;
8363 		}
8364 	}
8365 
8366 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
8367 		     vcpu->arch.exception.pending);
8368 
8369 	/*
8370 	 * Call check_nested_events() even if we reinjected a previous event
8371 	 * in order for caller to determine if it should require immediate-exit
8372 	 * from L2 to L1 due to pending L1 events which require exit
8373 	 * from L2 to L1.
8374 	 */
8375 	if (is_guest_mode(vcpu)) {
8376 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
8377 		if (r < 0)
8378 			goto busy;
8379 	}
8380 
8381 	/* try to inject new event if pending */
8382 	if (vcpu->arch.exception.pending) {
8383 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
8384 					vcpu->arch.exception.has_error_code,
8385 					vcpu->arch.exception.error_code);
8386 
8387 		vcpu->arch.exception.pending = false;
8388 		vcpu->arch.exception.injected = true;
8389 
8390 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8391 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8392 					     X86_EFLAGS_RF);
8393 
8394 		if (vcpu->arch.exception.nr == DB_VECTOR) {
8395 			kvm_deliver_exception_payload(vcpu);
8396 			if (vcpu->arch.dr7 & DR7_GD) {
8397 				vcpu->arch.dr7 &= ~DR7_GD;
8398 				kvm_update_dr7(vcpu);
8399 			}
8400 		}
8401 
8402 		static_call(kvm_x86_queue_exception)(vcpu);
8403 		can_inject = false;
8404 	}
8405 
8406 	/*
8407 	 * Finally, inject interrupt events.  If an event cannot be injected
8408 	 * due to architectural conditions (e.g. IF=0) a window-open exit
8409 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8410 	 * and can architecturally be injected, but we cannot do it right now:
8411 	 * an interrupt could have arrived just now and we have to inject it
8412 	 * as a vmexit, or there could already an event in the queue, which is
8413 	 * indicated by can_inject.  In that case we request an immediate exit
8414 	 * in order to make progress and get back here for another iteration.
8415 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8416 	 */
8417 	if (vcpu->arch.smi_pending) {
8418 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8419 		if (r < 0)
8420 			goto busy;
8421 		if (r) {
8422 			vcpu->arch.smi_pending = false;
8423 			++vcpu->arch.smi_count;
8424 			enter_smm(vcpu);
8425 			can_inject = false;
8426 		} else
8427 			static_call(kvm_x86_enable_smi_window)(vcpu);
8428 	}
8429 
8430 	if (vcpu->arch.nmi_pending) {
8431 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8432 		if (r < 0)
8433 			goto busy;
8434 		if (r) {
8435 			--vcpu->arch.nmi_pending;
8436 			vcpu->arch.nmi_injected = true;
8437 			static_call(kvm_x86_set_nmi)(vcpu);
8438 			can_inject = false;
8439 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8440 		}
8441 		if (vcpu->arch.nmi_pending)
8442 			static_call(kvm_x86_enable_nmi_window)(vcpu);
8443 	}
8444 
8445 	if (kvm_cpu_has_injectable_intr(vcpu)) {
8446 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8447 		if (r < 0)
8448 			goto busy;
8449 		if (r) {
8450 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8451 			static_call(kvm_x86_set_irq)(vcpu);
8452 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8453 		}
8454 		if (kvm_cpu_has_injectable_intr(vcpu))
8455 			static_call(kvm_x86_enable_irq_window)(vcpu);
8456 	}
8457 
8458 	if (is_guest_mode(vcpu) &&
8459 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
8460 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8461 		*req_immediate_exit = true;
8462 
8463 	WARN_ON(vcpu->arch.exception.pending);
8464 	return;
8465 
8466 busy:
8467 	*req_immediate_exit = true;
8468 	return;
8469 }
8470 
8471 static void process_nmi(struct kvm_vcpu *vcpu)
8472 {
8473 	unsigned limit = 2;
8474 
8475 	/*
8476 	 * x86 is limited to one NMI running, and one NMI pending after it.
8477 	 * If an NMI is already in progress, limit further NMIs to just one.
8478 	 * Otherwise, allow two (and we'll inject the first one immediately).
8479 	 */
8480 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8481 		limit = 1;
8482 
8483 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8484 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8485 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8486 }
8487 
8488 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8489 {
8490 	u32 flags = 0;
8491 	flags |= seg->g       << 23;
8492 	flags |= seg->db      << 22;
8493 	flags |= seg->l       << 21;
8494 	flags |= seg->avl     << 20;
8495 	flags |= seg->present << 15;
8496 	flags |= seg->dpl     << 13;
8497 	flags |= seg->s       << 12;
8498 	flags |= seg->type    << 8;
8499 	return flags;
8500 }
8501 
8502 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8503 {
8504 	struct kvm_segment seg;
8505 	int offset;
8506 
8507 	kvm_get_segment(vcpu, &seg, n);
8508 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8509 
8510 	if (n < 3)
8511 		offset = 0x7f84 + n * 12;
8512 	else
8513 		offset = 0x7f2c + (n - 3) * 12;
8514 
8515 	put_smstate(u32, buf, offset + 8, seg.base);
8516 	put_smstate(u32, buf, offset + 4, seg.limit);
8517 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8518 }
8519 
8520 #ifdef CONFIG_X86_64
8521 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8522 {
8523 	struct kvm_segment seg;
8524 	int offset;
8525 	u16 flags;
8526 
8527 	kvm_get_segment(vcpu, &seg, n);
8528 	offset = 0x7e00 + n * 16;
8529 
8530 	flags = enter_smm_get_segment_flags(&seg) >> 8;
8531 	put_smstate(u16, buf, offset, seg.selector);
8532 	put_smstate(u16, buf, offset + 2, flags);
8533 	put_smstate(u32, buf, offset + 4, seg.limit);
8534 	put_smstate(u64, buf, offset + 8, seg.base);
8535 }
8536 #endif
8537 
8538 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8539 {
8540 	struct desc_ptr dt;
8541 	struct kvm_segment seg;
8542 	unsigned long val;
8543 	int i;
8544 
8545 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8546 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8547 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8548 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8549 
8550 	for (i = 0; i < 8; i++)
8551 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8552 
8553 	kvm_get_dr(vcpu, 6, &val);
8554 	put_smstate(u32, buf, 0x7fcc, (u32)val);
8555 	kvm_get_dr(vcpu, 7, &val);
8556 	put_smstate(u32, buf, 0x7fc8, (u32)val);
8557 
8558 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8559 	put_smstate(u32, buf, 0x7fc4, seg.selector);
8560 	put_smstate(u32, buf, 0x7f64, seg.base);
8561 	put_smstate(u32, buf, 0x7f60, seg.limit);
8562 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8563 
8564 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8565 	put_smstate(u32, buf, 0x7fc0, seg.selector);
8566 	put_smstate(u32, buf, 0x7f80, seg.base);
8567 	put_smstate(u32, buf, 0x7f7c, seg.limit);
8568 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8569 
8570 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
8571 	put_smstate(u32, buf, 0x7f74, dt.address);
8572 	put_smstate(u32, buf, 0x7f70, dt.size);
8573 
8574 	static_call(kvm_x86_get_idt)(vcpu, &dt);
8575 	put_smstate(u32, buf, 0x7f58, dt.address);
8576 	put_smstate(u32, buf, 0x7f54, dt.size);
8577 
8578 	for (i = 0; i < 6; i++)
8579 		enter_smm_save_seg_32(vcpu, buf, i);
8580 
8581 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8582 
8583 	/* revision id */
8584 	put_smstate(u32, buf, 0x7efc, 0x00020000);
8585 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8586 }
8587 
8588 #ifdef CONFIG_X86_64
8589 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8590 {
8591 	struct desc_ptr dt;
8592 	struct kvm_segment seg;
8593 	unsigned long val;
8594 	int i;
8595 
8596 	for (i = 0; i < 16; i++)
8597 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8598 
8599 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8600 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8601 
8602 	kvm_get_dr(vcpu, 6, &val);
8603 	put_smstate(u64, buf, 0x7f68, val);
8604 	kvm_get_dr(vcpu, 7, &val);
8605 	put_smstate(u64, buf, 0x7f60, val);
8606 
8607 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8608 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8609 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8610 
8611 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8612 
8613 	/* revision id */
8614 	put_smstate(u32, buf, 0x7efc, 0x00020064);
8615 
8616 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8617 
8618 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8619 	put_smstate(u16, buf, 0x7e90, seg.selector);
8620 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8621 	put_smstate(u32, buf, 0x7e94, seg.limit);
8622 	put_smstate(u64, buf, 0x7e98, seg.base);
8623 
8624 	static_call(kvm_x86_get_idt)(vcpu, &dt);
8625 	put_smstate(u32, buf, 0x7e84, dt.size);
8626 	put_smstate(u64, buf, 0x7e88, dt.address);
8627 
8628 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8629 	put_smstate(u16, buf, 0x7e70, seg.selector);
8630 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8631 	put_smstate(u32, buf, 0x7e74, seg.limit);
8632 	put_smstate(u64, buf, 0x7e78, seg.base);
8633 
8634 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
8635 	put_smstate(u32, buf, 0x7e64, dt.size);
8636 	put_smstate(u64, buf, 0x7e68, dt.address);
8637 
8638 	for (i = 0; i < 6; i++)
8639 		enter_smm_save_seg_64(vcpu, buf, i);
8640 }
8641 #endif
8642 
8643 static void enter_smm(struct kvm_vcpu *vcpu)
8644 {
8645 	struct kvm_segment cs, ds;
8646 	struct desc_ptr dt;
8647 	char buf[512];
8648 	u32 cr0;
8649 
8650 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
8651 	memset(buf, 0, 512);
8652 #ifdef CONFIG_X86_64
8653 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8654 		enter_smm_save_state_64(vcpu, buf);
8655 	else
8656 #endif
8657 		enter_smm_save_state_32(vcpu, buf);
8658 
8659 	/*
8660 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8661 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
8662 	 * the SMM state-save area.
8663 	 */
8664 	static_call(kvm_x86_pre_enter_smm)(vcpu, buf);
8665 
8666 	vcpu->arch.hflags |= HF_SMM_MASK;
8667 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
8668 
8669 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
8670 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8671 	else
8672 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
8673 
8674 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8675 	kvm_rip_write(vcpu, 0x8000);
8676 
8677 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
8678 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
8679 	vcpu->arch.cr0 = cr0;
8680 
8681 	static_call(kvm_x86_set_cr4)(vcpu, 0);
8682 
8683 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
8684 	dt.address = dt.size = 0;
8685 	static_call(kvm_x86_set_idt)(vcpu, &dt);
8686 
8687 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8688 
8689 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8690 	cs.base = vcpu->arch.smbase;
8691 
8692 	ds.selector = 0;
8693 	ds.base = 0;
8694 
8695 	cs.limit    = ds.limit = 0xffffffff;
8696 	cs.type     = ds.type = 0x3;
8697 	cs.dpl      = ds.dpl = 0;
8698 	cs.db       = ds.db = 0;
8699 	cs.s        = ds.s = 1;
8700 	cs.l        = ds.l = 0;
8701 	cs.g        = ds.g = 1;
8702 	cs.avl      = ds.avl = 0;
8703 	cs.present  = ds.present = 1;
8704 	cs.unusable = ds.unusable = 0;
8705 	cs.padding  = ds.padding = 0;
8706 
8707 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8708 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8709 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8710 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8711 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8712 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8713 
8714 #ifdef CONFIG_X86_64
8715 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8716 		static_call(kvm_x86_set_efer)(vcpu, 0);
8717 #endif
8718 
8719 	kvm_update_cpuid_runtime(vcpu);
8720 	kvm_mmu_reset_context(vcpu);
8721 }
8722 
8723 static void process_smi(struct kvm_vcpu *vcpu)
8724 {
8725 	vcpu->arch.smi_pending = true;
8726 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8727 }
8728 
8729 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8730 				       unsigned long *vcpu_bitmap)
8731 {
8732 	cpumask_var_t cpus;
8733 
8734 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8735 
8736 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8737 				    NULL, vcpu_bitmap, cpus);
8738 
8739 	free_cpumask_var(cpus);
8740 }
8741 
8742 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8743 {
8744 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8745 }
8746 
8747 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8748 {
8749 	if (!lapic_in_kernel(vcpu))
8750 		return;
8751 
8752 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8753 	kvm_apic_update_apicv(vcpu);
8754 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
8755 }
8756 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8757 
8758 /*
8759  * NOTE: Do not hold any lock prior to calling this.
8760  *
8761  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8762  * locked, because it calls __x86_set_memory_region() which does
8763  * synchronize_srcu(&kvm->srcu).
8764  */
8765 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8766 {
8767 	struct kvm_vcpu *except;
8768 	unsigned long old, new, expected;
8769 
8770 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8771 	    !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
8772 		return;
8773 
8774 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8775 	do {
8776 		expected = new = old;
8777 		if (activate)
8778 			__clear_bit(bit, &new);
8779 		else
8780 			__set_bit(bit, &new);
8781 		if (new == old)
8782 			break;
8783 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8784 	} while (old != expected);
8785 
8786 	if (!!old == !!new)
8787 		return;
8788 
8789 	trace_kvm_apicv_update_request(activate, bit);
8790 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8791 		static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
8792 
8793 	/*
8794 	 * Sending request to update APICV for all other vcpus,
8795 	 * while update the calling vcpu immediately instead of
8796 	 * waiting for another #VMEXIT to handle the request.
8797 	 */
8798 	except = kvm_get_running_vcpu();
8799 	kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8800 					 except);
8801 	if (except)
8802 		kvm_vcpu_update_apicv(except);
8803 }
8804 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8805 
8806 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8807 {
8808 	if (!kvm_apic_present(vcpu))
8809 		return;
8810 
8811 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8812 
8813 	if (irqchip_split(vcpu->kvm))
8814 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8815 	else {
8816 		if (vcpu->arch.apicv_active)
8817 			static_call(kvm_x86_sync_pir_to_irr)(vcpu);
8818 		if (ioapic_in_kernel(vcpu->kvm))
8819 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8820 	}
8821 
8822 	if (is_guest_mode(vcpu))
8823 		vcpu->arch.load_eoi_exitmap_pending = true;
8824 	else
8825 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8826 }
8827 
8828 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8829 {
8830 	u64 eoi_exit_bitmap[4];
8831 
8832 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8833 		return;
8834 
8835 	if (to_hv_vcpu(vcpu))
8836 		bitmap_or((ulong *)eoi_exit_bitmap,
8837 			  vcpu->arch.ioapic_handled_vectors,
8838 			  to_hv_synic(vcpu)->vec_bitmap, 256);
8839 
8840 	static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
8841 }
8842 
8843 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8844 					    unsigned long start, unsigned long end)
8845 {
8846 	unsigned long apic_address;
8847 
8848 	/*
8849 	 * The physical address of apic access page is stored in the VMCS.
8850 	 * Update it when it becomes invalid.
8851 	 */
8852 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8853 	if (start <= apic_address && apic_address < end)
8854 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8855 }
8856 
8857 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8858 {
8859 	if (!lapic_in_kernel(vcpu))
8860 		return;
8861 
8862 	if (!kvm_x86_ops.set_apic_access_page_addr)
8863 		return;
8864 
8865 	static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
8866 }
8867 
8868 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8869 {
8870 	smp_send_reschedule(vcpu->cpu);
8871 }
8872 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8873 
8874 /*
8875  * Returns 1 to let vcpu_run() continue the guest execution loop without
8876  * exiting to the userspace.  Otherwise, the value will be returned to the
8877  * userspace.
8878  */
8879 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8880 {
8881 	int r;
8882 	bool req_int_win =
8883 		dm_request_for_irq_injection(vcpu) &&
8884 		kvm_cpu_accept_dm_intr(vcpu);
8885 	fastpath_t exit_fastpath;
8886 
8887 	bool req_immediate_exit = false;
8888 
8889 	/* Forbid vmenter if vcpu dirty ring is soft-full */
8890 	if (unlikely(vcpu->kvm->dirty_ring_size &&
8891 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8892 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8893 		trace_kvm_dirty_ring_exit(vcpu);
8894 		r = 0;
8895 		goto out;
8896 	}
8897 
8898 	if (kvm_request_pending(vcpu)) {
8899 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8900 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
8901 				r = 0;
8902 				goto out;
8903 			}
8904 		}
8905 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8906 			kvm_mmu_unload(vcpu);
8907 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8908 			__kvm_migrate_timers(vcpu);
8909 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8910 			kvm_gen_update_masterclock(vcpu->kvm);
8911 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8912 			kvm_gen_kvmclock_update(vcpu);
8913 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8914 			r = kvm_guest_time_update(vcpu);
8915 			if (unlikely(r))
8916 				goto out;
8917 		}
8918 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8919 			kvm_mmu_sync_roots(vcpu);
8920 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8921 			kvm_mmu_load_pgd(vcpu);
8922 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
8923 			kvm_vcpu_flush_tlb_all(vcpu);
8924 
8925 			/* Flushing all ASIDs flushes the current ASID... */
8926 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8927 		}
8928 		if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8929 			kvm_vcpu_flush_tlb_current(vcpu);
8930 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8931 			kvm_vcpu_flush_tlb_guest(vcpu);
8932 
8933 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8934 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8935 			r = 0;
8936 			goto out;
8937 		}
8938 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8939 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8940 			vcpu->mmio_needed = 0;
8941 			r = 0;
8942 			goto out;
8943 		}
8944 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8945 			/* Page is swapped out. Do synthetic halt */
8946 			vcpu->arch.apf.halted = true;
8947 			r = 1;
8948 			goto out;
8949 		}
8950 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8951 			record_steal_time(vcpu);
8952 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8953 			process_smi(vcpu);
8954 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8955 			process_nmi(vcpu);
8956 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8957 			kvm_pmu_handle_event(vcpu);
8958 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8959 			kvm_pmu_deliver_pmi(vcpu);
8960 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8961 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8962 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8963 				     vcpu->arch.ioapic_handled_vectors)) {
8964 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8965 				vcpu->run->eoi.vector =
8966 						vcpu->arch.pending_ioapic_eoi;
8967 				r = 0;
8968 				goto out;
8969 			}
8970 		}
8971 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8972 			vcpu_scan_ioapic(vcpu);
8973 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8974 			vcpu_load_eoi_exitmap(vcpu);
8975 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8976 			kvm_vcpu_reload_apic_access_page(vcpu);
8977 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8978 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8979 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8980 			r = 0;
8981 			goto out;
8982 		}
8983 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8984 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8985 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8986 			r = 0;
8987 			goto out;
8988 		}
8989 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8990 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
8991 
8992 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8993 			vcpu->run->hyperv = hv_vcpu->exit;
8994 			r = 0;
8995 			goto out;
8996 		}
8997 
8998 		/*
8999 		 * KVM_REQ_HV_STIMER has to be processed after
9000 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9001 		 * depend on the guest clock being up-to-date
9002 		 */
9003 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9004 			kvm_hv_process_stimers(vcpu);
9005 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9006 			kvm_vcpu_update_apicv(vcpu);
9007 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9008 			kvm_check_async_pf_completion(vcpu);
9009 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9010 			static_call(kvm_x86_msr_filter_changed)(vcpu);
9011 
9012 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9013 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9014 	}
9015 
9016 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9017 	    kvm_xen_has_interrupt(vcpu)) {
9018 		++vcpu->stat.req_event;
9019 		kvm_apic_accept_events(vcpu);
9020 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9021 			r = 1;
9022 			goto out;
9023 		}
9024 
9025 		inject_pending_event(vcpu, &req_immediate_exit);
9026 		if (req_int_win)
9027 			static_call(kvm_x86_enable_irq_window)(vcpu);
9028 
9029 		if (kvm_lapic_enabled(vcpu)) {
9030 			update_cr8_intercept(vcpu);
9031 			kvm_lapic_sync_to_vapic(vcpu);
9032 		}
9033 	}
9034 
9035 	r = kvm_mmu_reload(vcpu);
9036 	if (unlikely(r)) {
9037 		goto cancel_injection;
9038 	}
9039 
9040 	preempt_disable();
9041 
9042 	static_call(kvm_x86_prepare_guest_switch)(vcpu);
9043 
9044 	/*
9045 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9046 	 * IPI are then delayed after guest entry, which ensures that they
9047 	 * result in virtual interrupt delivery.
9048 	 */
9049 	local_irq_disable();
9050 	vcpu->mode = IN_GUEST_MODE;
9051 
9052 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9053 
9054 	/*
9055 	 * 1) We should set ->mode before checking ->requests.  Please see
9056 	 * the comment in kvm_vcpu_exiting_guest_mode().
9057 	 *
9058 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
9059 	 * pairs with the memory barrier implicit in pi_test_and_set_on
9060 	 * (see vmx_deliver_posted_interrupt).
9061 	 *
9062 	 * 3) This also orders the write to mode from any reads to the page
9063 	 * tables done while the VCPU is running.  Please see the comment
9064 	 * in kvm_flush_remote_tlbs.
9065 	 */
9066 	smp_mb__after_srcu_read_unlock();
9067 
9068 	/*
9069 	 * This handles the case where a posted interrupt was
9070 	 * notified with kvm_vcpu_kick.
9071 	 */
9072 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9073 		static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9074 
9075 	if (kvm_vcpu_exit_request(vcpu)) {
9076 		vcpu->mode = OUTSIDE_GUEST_MODE;
9077 		smp_wmb();
9078 		local_irq_enable();
9079 		preempt_enable();
9080 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9081 		r = 1;
9082 		goto cancel_injection;
9083 	}
9084 
9085 	if (req_immediate_exit) {
9086 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9087 		static_call(kvm_x86_request_immediate_exit)(vcpu);
9088 	}
9089 
9090 	fpregs_assert_state_consistent();
9091 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9092 		switch_fpu_return();
9093 
9094 	if (unlikely(vcpu->arch.switch_db_regs)) {
9095 		set_debugreg(0, 7);
9096 		set_debugreg(vcpu->arch.eff_db[0], 0);
9097 		set_debugreg(vcpu->arch.eff_db[1], 1);
9098 		set_debugreg(vcpu->arch.eff_db[2], 2);
9099 		set_debugreg(vcpu->arch.eff_db[3], 3);
9100 		set_debugreg(vcpu->arch.dr6, 6);
9101 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9102 	}
9103 
9104 	for (;;) {
9105 		exit_fastpath = static_call(kvm_x86_run)(vcpu);
9106 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9107 			break;
9108 
9109                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9110 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9111 			break;
9112 		}
9113 
9114 		if (vcpu->arch.apicv_active)
9115 			static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9116         }
9117 
9118 	/*
9119 	 * Do this here before restoring debug registers on the host.  And
9120 	 * since we do this before handling the vmexit, a DR access vmexit
9121 	 * can (a) read the correct value of the debug registers, (b) set
9122 	 * KVM_DEBUGREG_WONT_EXIT again.
9123 	 */
9124 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9125 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9126 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9127 		kvm_update_dr0123(vcpu);
9128 		kvm_update_dr7(vcpu);
9129 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9130 	}
9131 
9132 	/*
9133 	 * If the guest has used debug registers, at least dr7
9134 	 * will be disabled while returning to the host.
9135 	 * If we don't have active breakpoints in the host, we don't
9136 	 * care about the messed up debug address registers. But if
9137 	 * we have some of them active, restore the old state.
9138 	 */
9139 	if (hw_breakpoint_active())
9140 		hw_breakpoint_restore();
9141 
9142 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9143 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9144 
9145 	vcpu->mode = OUTSIDE_GUEST_MODE;
9146 	smp_wmb();
9147 
9148 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9149 
9150 	/*
9151 	 * Consume any pending interrupts, including the possible source of
9152 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9153 	 * An instruction is required after local_irq_enable() to fully unblock
9154 	 * interrupts on processors that implement an interrupt shadow, the
9155 	 * stat.exits increment will do nicely.
9156 	 */
9157 	kvm_before_interrupt(vcpu);
9158 	local_irq_enable();
9159 	++vcpu->stat.exits;
9160 	local_irq_disable();
9161 	kvm_after_interrupt(vcpu);
9162 
9163 	if (lapic_in_kernel(vcpu)) {
9164 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9165 		if (delta != S64_MIN) {
9166 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9167 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9168 		}
9169 	}
9170 
9171 	local_irq_enable();
9172 	preempt_enable();
9173 
9174 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9175 
9176 	/*
9177 	 * Profile KVM exit RIPs:
9178 	 */
9179 	if (unlikely(prof_on == KVM_PROFILING)) {
9180 		unsigned long rip = kvm_rip_read(vcpu);
9181 		profile_hit(KVM_PROFILING, (void *)rip);
9182 	}
9183 
9184 	if (unlikely(vcpu->arch.tsc_always_catchup))
9185 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9186 
9187 	if (vcpu->arch.apic_attention)
9188 		kvm_lapic_sync_from_vapic(vcpu);
9189 
9190 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9191 	return r;
9192 
9193 cancel_injection:
9194 	if (req_immediate_exit)
9195 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9196 	static_call(kvm_x86_cancel_injection)(vcpu);
9197 	if (unlikely(vcpu->arch.apic_attention))
9198 		kvm_lapic_sync_from_vapic(vcpu);
9199 out:
9200 	return r;
9201 }
9202 
9203 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9204 {
9205 	if (!kvm_arch_vcpu_runnable(vcpu) &&
9206 	    (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9207 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9208 		kvm_vcpu_block(vcpu);
9209 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9210 
9211 		if (kvm_x86_ops.post_block)
9212 			static_call(kvm_x86_post_block)(vcpu);
9213 
9214 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9215 			return 1;
9216 	}
9217 
9218 	kvm_apic_accept_events(vcpu);
9219 	switch(vcpu->arch.mp_state) {
9220 	case KVM_MP_STATE_HALTED:
9221 	case KVM_MP_STATE_AP_RESET_HOLD:
9222 		vcpu->arch.pv.pv_unhalted = false;
9223 		vcpu->arch.mp_state =
9224 			KVM_MP_STATE_RUNNABLE;
9225 		fallthrough;
9226 	case KVM_MP_STATE_RUNNABLE:
9227 		vcpu->arch.apf.halted = false;
9228 		break;
9229 	case KVM_MP_STATE_INIT_RECEIVED:
9230 		break;
9231 	default:
9232 		return -EINTR;
9233 	}
9234 	return 1;
9235 }
9236 
9237 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9238 {
9239 	if (is_guest_mode(vcpu))
9240 		kvm_x86_ops.nested_ops->check_events(vcpu);
9241 
9242 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9243 		!vcpu->arch.apf.halted);
9244 }
9245 
9246 static int vcpu_run(struct kvm_vcpu *vcpu)
9247 {
9248 	int r;
9249 	struct kvm *kvm = vcpu->kvm;
9250 
9251 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9252 	vcpu->arch.l1tf_flush_l1d = true;
9253 
9254 	for (;;) {
9255 		if (kvm_vcpu_running(vcpu)) {
9256 			r = vcpu_enter_guest(vcpu);
9257 		} else {
9258 			r = vcpu_block(kvm, vcpu);
9259 		}
9260 
9261 		if (r <= 0)
9262 			break;
9263 
9264 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
9265 		if (kvm_cpu_has_pending_timer(vcpu))
9266 			kvm_inject_pending_timer_irqs(vcpu);
9267 
9268 		if (dm_request_for_irq_injection(vcpu) &&
9269 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9270 			r = 0;
9271 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9272 			++vcpu->stat.request_irq_exits;
9273 			break;
9274 		}
9275 
9276 		if (__xfer_to_guest_mode_work_pending()) {
9277 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9278 			r = xfer_to_guest_mode_handle_work(vcpu);
9279 			if (r)
9280 				return r;
9281 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9282 		}
9283 	}
9284 
9285 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9286 
9287 	return r;
9288 }
9289 
9290 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9291 {
9292 	int r;
9293 
9294 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9295 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9296 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9297 	return r;
9298 }
9299 
9300 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9301 {
9302 	BUG_ON(!vcpu->arch.pio.count);
9303 
9304 	return complete_emulated_io(vcpu);
9305 }
9306 
9307 /*
9308  * Implements the following, as a state machine:
9309  *
9310  * read:
9311  *   for each fragment
9312  *     for each mmio piece in the fragment
9313  *       write gpa, len
9314  *       exit
9315  *       copy data
9316  *   execute insn
9317  *
9318  * write:
9319  *   for each fragment
9320  *     for each mmio piece in the fragment
9321  *       write gpa, len
9322  *       copy data
9323  *       exit
9324  */
9325 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9326 {
9327 	struct kvm_run *run = vcpu->run;
9328 	struct kvm_mmio_fragment *frag;
9329 	unsigned len;
9330 
9331 	BUG_ON(!vcpu->mmio_needed);
9332 
9333 	/* Complete previous fragment */
9334 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9335 	len = min(8u, frag->len);
9336 	if (!vcpu->mmio_is_write)
9337 		memcpy(frag->data, run->mmio.data, len);
9338 
9339 	if (frag->len <= 8) {
9340 		/* Switch to the next fragment. */
9341 		frag++;
9342 		vcpu->mmio_cur_fragment++;
9343 	} else {
9344 		/* Go forward to the next mmio piece. */
9345 		frag->data += len;
9346 		frag->gpa += len;
9347 		frag->len -= len;
9348 	}
9349 
9350 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9351 		vcpu->mmio_needed = 0;
9352 
9353 		/* FIXME: return into emulator if single-stepping.  */
9354 		if (vcpu->mmio_is_write)
9355 			return 1;
9356 		vcpu->mmio_read_completed = 1;
9357 		return complete_emulated_io(vcpu);
9358 	}
9359 
9360 	run->exit_reason = KVM_EXIT_MMIO;
9361 	run->mmio.phys_addr = frag->gpa;
9362 	if (vcpu->mmio_is_write)
9363 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9364 	run->mmio.len = min(8u, frag->len);
9365 	run->mmio.is_write = vcpu->mmio_is_write;
9366 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9367 	return 0;
9368 }
9369 
9370 static void kvm_save_current_fpu(struct fpu *fpu)
9371 {
9372 	/*
9373 	 * If the target FPU state is not resident in the CPU registers, just
9374 	 * memcpy() from current, else save CPU state directly to the target.
9375 	 */
9376 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9377 		memcpy(&fpu->state, &current->thread.fpu.state,
9378 		       fpu_kernel_xstate_size);
9379 	else
9380 		copy_fpregs_to_fpstate(fpu);
9381 }
9382 
9383 /* Swap (qemu) user FPU context for the guest FPU context. */
9384 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9385 {
9386 	fpregs_lock();
9387 
9388 	kvm_save_current_fpu(vcpu->arch.user_fpu);
9389 
9390 	/*
9391 	 * Guests with protected state can't have it set by the hypervisor,
9392 	 * so skip trying to set it.
9393 	 */
9394 	if (vcpu->arch.guest_fpu)
9395 		/* PKRU is separately restored in kvm_x86_ops.run. */
9396 		__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9397 					~XFEATURE_MASK_PKRU);
9398 
9399 	fpregs_mark_activate();
9400 	fpregs_unlock();
9401 
9402 	trace_kvm_fpu(1);
9403 }
9404 
9405 /* When vcpu_run ends, restore user space FPU context. */
9406 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9407 {
9408 	fpregs_lock();
9409 
9410 	/*
9411 	 * Guests with protected state can't have it read by the hypervisor,
9412 	 * so skip trying to save it.
9413 	 */
9414 	if (vcpu->arch.guest_fpu)
9415 		kvm_save_current_fpu(vcpu->arch.guest_fpu);
9416 
9417 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9418 
9419 	fpregs_mark_activate();
9420 	fpregs_unlock();
9421 
9422 	++vcpu->stat.fpu_reload;
9423 	trace_kvm_fpu(0);
9424 }
9425 
9426 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9427 {
9428 	struct kvm_run *kvm_run = vcpu->run;
9429 	int r;
9430 
9431 	vcpu_load(vcpu);
9432 	kvm_sigset_activate(vcpu);
9433 	kvm_run->flags = 0;
9434 	kvm_load_guest_fpu(vcpu);
9435 
9436 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9437 		if (kvm_run->immediate_exit) {
9438 			r = -EINTR;
9439 			goto out;
9440 		}
9441 		kvm_vcpu_block(vcpu);
9442 		kvm_apic_accept_events(vcpu);
9443 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9444 		r = -EAGAIN;
9445 		if (signal_pending(current)) {
9446 			r = -EINTR;
9447 			kvm_run->exit_reason = KVM_EXIT_INTR;
9448 			++vcpu->stat.signal_exits;
9449 		}
9450 		goto out;
9451 	}
9452 
9453 	if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9454 		r = -EINVAL;
9455 		goto out;
9456 	}
9457 
9458 	if (kvm_run->kvm_dirty_regs) {
9459 		r = sync_regs(vcpu);
9460 		if (r != 0)
9461 			goto out;
9462 	}
9463 
9464 	/* re-sync apic's tpr */
9465 	if (!lapic_in_kernel(vcpu)) {
9466 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9467 			r = -EINVAL;
9468 			goto out;
9469 		}
9470 	}
9471 
9472 	if (unlikely(vcpu->arch.complete_userspace_io)) {
9473 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9474 		vcpu->arch.complete_userspace_io = NULL;
9475 		r = cui(vcpu);
9476 		if (r <= 0)
9477 			goto out;
9478 	} else
9479 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9480 
9481 	if (kvm_run->immediate_exit)
9482 		r = -EINTR;
9483 	else
9484 		r = vcpu_run(vcpu);
9485 
9486 out:
9487 	kvm_put_guest_fpu(vcpu);
9488 	if (kvm_run->kvm_valid_regs)
9489 		store_regs(vcpu);
9490 	post_kvm_run_save(vcpu);
9491 	kvm_sigset_deactivate(vcpu);
9492 
9493 	vcpu_put(vcpu);
9494 	return r;
9495 }
9496 
9497 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9498 {
9499 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9500 		/*
9501 		 * We are here if userspace calls get_regs() in the middle of
9502 		 * instruction emulation. Registers state needs to be copied
9503 		 * back from emulation context to vcpu. Userspace shouldn't do
9504 		 * that usually, but some bad designed PV devices (vmware
9505 		 * backdoor interface) need this to work
9506 		 */
9507 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9508 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9509 	}
9510 	regs->rax = kvm_rax_read(vcpu);
9511 	regs->rbx = kvm_rbx_read(vcpu);
9512 	regs->rcx = kvm_rcx_read(vcpu);
9513 	regs->rdx = kvm_rdx_read(vcpu);
9514 	regs->rsi = kvm_rsi_read(vcpu);
9515 	regs->rdi = kvm_rdi_read(vcpu);
9516 	regs->rsp = kvm_rsp_read(vcpu);
9517 	regs->rbp = kvm_rbp_read(vcpu);
9518 #ifdef CONFIG_X86_64
9519 	regs->r8 = kvm_r8_read(vcpu);
9520 	regs->r9 = kvm_r9_read(vcpu);
9521 	regs->r10 = kvm_r10_read(vcpu);
9522 	regs->r11 = kvm_r11_read(vcpu);
9523 	regs->r12 = kvm_r12_read(vcpu);
9524 	regs->r13 = kvm_r13_read(vcpu);
9525 	regs->r14 = kvm_r14_read(vcpu);
9526 	regs->r15 = kvm_r15_read(vcpu);
9527 #endif
9528 
9529 	regs->rip = kvm_rip_read(vcpu);
9530 	regs->rflags = kvm_get_rflags(vcpu);
9531 }
9532 
9533 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9534 {
9535 	vcpu_load(vcpu);
9536 	__get_regs(vcpu, regs);
9537 	vcpu_put(vcpu);
9538 	return 0;
9539 }
9540 
9541 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9542 {
9543 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9544 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9545 
9546 	kvm_rax_write(vcpu, regs->rax);
9547 	kvm_rbx_write(vcpu, regs->rbx);
9548 	kvm_rcx_write(vcpu, regs->rcx);
9549 	kvm_rdx_write(vcpu, regs->rdx);
9550 	kvm_rsi_write(vcpu, regs->rsi);
9551 	kvm_rdi_write(vcpu, regs->rdi);
9552 	kvm_rsp_write(vcpu, regs->rsp);
9553 	kvm_rbp_write(vcpu, regs->rbp);
9554 #ifdef CONFIG_X86_64
9555 	kvm_r8_write(vcpu, regs->r8);
9556 	kvm_r9_write(vcpu, regs->r9);
9557 	kvm_r10_write(vcpu, regs->r10);
9558 	kvm_r11_write(vcpu, regs->r11);
9559 	kvm_r12_write(vcpu, regs->r12);
9560 	kvm_r13_write(vcpu, regs->r13);
9561 	kvm_r14_write(vcpu, regs->r14);
9562 	kvm_r15_write(vcpu, regs->r15);
9563 #endif
9564 
9565 	kvm_rip_write(vcpu, regs->rip);
9566 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9567 
9568 	vcpu->arch.exception.pending = false;
9569 
9570 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9571 }
9572 
9573 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9574 {
9575 	vcpu_load(vcpu);
9576 	__set_regs(vcpu, regs);
9577 	vcpu_put(vcpu);
9578 	return 0;
9579 }
9580 
9581 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9582 {
9583 	struct kvm_segment cs;
9584 
9585 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9586 	*db = cs.db;
9587 	*l = cs.l;
9588 }
9589 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9590 
9591 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9592 {
9593 	struct desc_ptr dt;
9594 
9595 	if (vcpu->arch.guest_state_protected)
9596 		goto skip_protected_regs;
9597 
9598 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9599 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9600 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9601 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9602 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9603 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9604 
9605 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9606 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9607 
9608 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9609 	sregs->idt.limit = dt.size;
9610 	sregs->idt.base = dt.address;
9611 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9612 	sregs->gdt.limit = dt.size;
9613 	sregs->gdt.base = dt.address;
9614 
9615 	sregs->cr2 = vcpu->arch.cr2;
9616 	sregs->cr3 = kvm_read_cr3(vcpu);
9617 
9618 skip_protected_regs:
9619 	sregs->cr0 = kvm_read_cr0(vcpu);
9620 	sregs->cr4 = kvm_read_cr4(vcpu);
9621 	sregs->cr8 = kvm_get_cr8(vcpu);
9622 	sregs->efer = vcpu->arch.efer;
9623 	sregs->apic_base = kvm_get_apic_base(vcpu);
9624 
9625 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
9626 
9627 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
9628 		set_bit(vcpu->arch.interrupt.nr,
9629 			(unsigned long *)sregs->interrupt_bitmap);
9630 }
9631 
9632 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9633 				  struct kvm_sregs *sregs)
9634 {
9635 	vcpu_load(vcpu);
9636 	__get_sregs(vcpu, sregs);
9637 	vcpu_put(vcpu);
9638 	return 0;
9639 }
9640 
9641 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9642 				    struct kvm_mp_state *mp_state)
9643 {
9644 	vcpu_load(vcpu);
9645 	if (kvm_mpx_supported())
9646 		kvm_load_guest_fpu(vcpu);
9647 
9648 	kvm_apic_accept_events(vcpu);
9649 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
9650 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
9651 	    vcpu->arch.pv.pv_unhalted)
9652 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9653 	else
9654 		mp_state->mp_state = vcpu->arch.mp_state;
9655 
9656 	if (kvm_mpx_supported())
9657 		kvm_put_guest_fpu(vcpu);
9658 	vcpu_put(vcpu);
9659 	return 0;
9660 }
9661 
9662 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9663 				    struct kvm_mp_state *mp_state)
9664 {
9665 	int ret = -EINVAL;
9666 
9667 	vcpu_load(vcpu);
9668 
9669 	if (!lapic_in_kernel(vcpu) &&
9670 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
9671 		goto out;
9672 
9673 	/*
9674 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9675 	 * INIT state; latched init should be reported using
9676 	 * KVM_SET_VCPU_EVENTS, so reject it here.
9677 	 */
9678 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
9679 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9680 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
9681 		goto out;
9682 
9683 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9684 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9685 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9686 	} else
9687 		vcpu->arch.mp_state = mp_state->mp_state;
9688 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9689 
9690 	ret = 0;
9691 out:
9692 	vcpu_put(vcpu);
9693 	return ret;
9694 }
9695 
9696 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9697 		    int reason, bool has_error_code, u32 error_code)
9698 {
9699 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9700 	int ret;
9701 
9702 	init_emulate_ctxt(vcpu);
9703 
9704 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9705 				   has_error_code, error_code);
9706 	if (ret) {
9707 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9708 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9709 		vcpu->run->internal.ndata = 0;
9710 		return 0;
9711 	}
9712 
9713 	kvm_rip_write(vcpu, ctxt->eip);
9714 	kvm_set_rflags(vcpu, ctxt->eflags);
9715 	return 1;
9716 }
9717 EXPORT_SYMBOL_GPL(kvm_task_switch);
9718 
9719 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9720 {
9721 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9722 		/*
9723 		 * When EFER.LME and CR0.PG are set, the processor is in
9724 		 * 64-bit mode (though maybe in a 32-bit code segment).
9725 		 * CR4.PAE and EFER.LMA must be set.
9726 		 */
9727 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9728 			return false;
9729 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
9730 			return false;
9731 	} else {
9732 		/*
9733 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9734 		 * segment cannot be 64-bit.
9735 		 */
9736 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9737 			return false;
9738 	}
9739 
9740 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
9741 }
9742 
9743 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9744 {
9745 	struct msr_data apic_base_msr;
9746 	int mmu_reset_needed = 0;
9747 	int pending_vec, max_bits, idx;
9748 	struct desc_ptr dt;
9749 	int ret = -EINVAL;
9750 
9751 	if (!kvm_is_valid_sregs(vcpu, sregs))
9752 		goto out;
9753 
9754 	apic_base_msr.data = sregs->apic_base;
9755 	apic_base_msr.host_initiated = true;
9756 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9757 		goto out;
9758 
9759 	if (vcpu->arch.guest_state_protected)
9760 		goto skip_protected_regs;
9761 
9762 	dt.size = sregs->idt.limit;
9763 	dt.address = sregs->idt.base;
9764 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9765 	dt.size = sregs->gdt.limit;
9766 	dt.address = sregs->gdt.base;
9767 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
9768 
9769 	vcpu->arch.cr2 = sregs->cr2;
9770 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9771 	vcpu->arch.cr3 = sregs->cr3;
9772 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9773 
9774 	kvm_set_cr8(vcpu, sregs->cr8);
9775 
9776 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9777 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
9778 
9779 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9780 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
9781 	vcpu->arch.cr0 = sregs->cr0;
9782 
9783 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9784 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
9785 
9786 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9787 	if (is_pae_paging(vcpu)) {
9788 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9789 		mmu_reset_needed = 1;
9790 	}
9791 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9792 
9793 	if (mmu_reset_needed)
9794 		kvm_mmu_reset_context(vcpu);
9795 
9796 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9797 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9798 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9799 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9800 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9801 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9802 
9803 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9804 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9805 
9806 	update_cr8_intercept(vcpu);
9807 
9808 	/* Older userspace won't unhalt the vcpu on reset. */
9809 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9810 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9811 	    !is_protmode(vcpu))
9812 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9813 
9814 skip_protected_regs:
9815 	max_bits = KVM_NR_INTERRUPTS;
9816 	pending_vec = find_first_bit(
9817 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9818 	if (pending_vec < max_bits) {
9819 		kvm_queue_interrupt(vcpu, pending_vec, false);
9820 		pr_debug("Set back pending irq %d\n", pending_vec);
9821 	}
9822 
9823 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9824 
9825 	ret = 0;
9826 out:
9827 	return ret;
9828 }
9829 
9830 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9831 				  struct kvm_sregs *sregs)
9832 {
9833 	int ret;
9834 
9835 	vcpu_load(vcpu);
9836 	ret = __set_sregs(vcpu, sregs);
9837 	vcpu_put(vcpu);
9838 	return ret;
9839 }
9840 
9841 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9842 					struct kvm_guest_debug *dbg)
9843 {
9844 	unsigned long rflags;
9845 	int i, r;
9846 
9847 	if (vcpu->arch.guest_state_protected)
9848 		return -EINVAL;
9849 
9850 	vcpu_load(vcpu);
9851 
9852 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9853 		r = -EBUSY;
9854 		if (vcpu->arch.exception.pending)
9855 			goto out;
9856 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9857 			kvm_queue_exception(vcpu, DB_VECTOR);
9858 		else
9859 			kvm_queue_exception(vcpu, BP_VECTOR);
9860 	}
9861 
9862 	/*
9863 	 * Read rflags as long as potentially injected trace flags are still
9864 	 * filtered out.
9865 	 */
9866 	rflags = kvm_get_rflags(vcpu);
9867 
9868 	vcpu->guest_debug = dbg->control;
9869 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9870 		vcpu->guest_debug = 0;
9871 
9872 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9873 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9874 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9875 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9876 	} else {
9877 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9878 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9879 	}
9880 	kvm_update_dr7(vcpu);
9881 
9882 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9883 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9884 			get_segment_base(vcpu, VCPU_SREG_CS);
9885 
9886 	/*
9887 	 * Trigger an rflags update that will inject or remove the trace
9888 	 * flags.
9889 	 */
9890 	kvm_set_rflags(vcpu, rflags);
9891 
9892 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
9893 
9894 	r = 0;
9895 
9896 out:
9897 	vcpu_put(vcpu);
9898 	return r;
9899 }
9900 
9901 /*
9902  * Translate a guest virtual address to a guest physical address.
9903  */
9904 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9905 				    struct kvm_translation *tr)
9906 {
9907 	unsigned long vaddr = tr->linear_address;
9908 	gpa_t gpa;
9909 	int idx;
9910 
9911 	vcpu_load(vcpu);
9912 
9913 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9914 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9915 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9916 	tr->physical_address = gpa;
9917 	tr->valid = gpa != UNMAPPED_GVA;
9918 	tr->writeable = 1;
9919 	tr->usermode = 0;
9920 
9921 	vcpu_put(vcpu);
9922 	return 0;
9923 }
9924 
9925 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9926 {
9927 	struct fxregs_state *fxsave;
9928 
9929 	if (!vcpu->arch.guest_fpu)
9930 		return 0;
9931 
9932 	vcpu_load(vcpu);
9933 
9934 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9935 	memcpy(fpu->fpr, fxsave->st_space, 128);
9936 	fpu->fcw = fxsave->cwd;
9937 	fpu->fsw = fxsave->swd;
9938 	fpu->ftwx = fxsave->twd;
9939 	fpu->last_opcode = fxsave->fop;
9940 	fpu->last_ip = fxsave->rip;
9941 	fpu->last_dp = fxsave->rdp;
9942 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9943 
9944 	vcpu_put(vcpu);
9945 	return 0;
9946 }
9947 
9948 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9949 {
9950 	struct fxregs_state *fxsave;
9951 
9952 	if (!vcpu->arch.guest_fpu)
9953 		return 0;
9954 
9955 	vcpu_load(vcpu);
9956 
9957 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9958 
9959 	memcpy(fxsave->st_space, fpu->fpr, 128);
9960 	fxsave->cwd = fpu->fcw;
9961 	fxsave->swd = fpu->fsw;
9962 	fxsave->twd = fpu->ftwx;
9963 	fxsave->fop = fpu->last_opcode;
9964 	fxsave->rip = fpu->last_ip;
9965 	fxsave->rdp = fpu->last_dp;
9966 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9967 
9968 	vcpu_put(vcpu);
9969 	return 0;
9970 }
9971 
9972 static void store_regs(struct kvm_vcpu *vcpu)
9973 {
9974 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9975 
9976 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9977 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9978 
9979 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9980 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9981 
9982 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9983 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9984 				vcpu, &vcpu->run->s.regs.events);
9985 }
9986 
9987 static int sync_regs(struct kvm_vcpu *vcpu)
9988 {
9989 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9990 		return -EINVAL;
9991 
9992 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9993 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9994 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9995 	}
9996 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9997 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9998 			return -EINVAL;
9999 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10000 	}
10001 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10002 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10003 				vcpu, &vcpu->run->s.regs.events))
10004 			return -EINVAL;
10005 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10006 	}
10007 
10008 	return 0;
10009 }
10010 
10011 static void fx_init(struct kvm_vcpu *vcpu)
10012 {
10013 	if (!vcpu->arch.guest_fpu)
10014 		return;
10015 
10016 	fpstate_init(&vcpu->arch.guest_fpu->state);
10017 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10018 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10019 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
10020 
10021 	/*
10022 	 * Ensure guest xcr0 is valid for loading
10023 	 */
10024 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10025 
10026 	vcpu->arch.cr0 |= X86_CR0_ET;
10027 }
10028 
10029 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10030 {
10031 	if (vcpu->arch.guest_fpu) {
10032 		kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10033 		vcpu->arch.guest_fpu = NULL;
10034 	}
10035 }
10036 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10037 
10038 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10039 {
10040 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10041 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10042 			     "guest TSC will not be reliable\n");
10043 
10044 	return 0;
10045 }
10046 
10047 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10048 {
10049 	struct page *page;
10050 	int r;
10051 
10052 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10053 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10054 	else
10055 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10056 
10057 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
10058 
10059 	r = kvm_mmu_create(vcpu);
10060 	if (r < 0)
10061 		return r;
10062 
10063 	if (irqchip_in_kernel(vcpu->kvm)) {
10064 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10065 		if (r < 0)
10066 			goto fail_mmu_destroy;
10067 		if (kvm_apicv_activated(vcpu->kvm))
10068 			vcpu->arch.apicv_active = true;
10069 	} else
10070 		static_branch_inc(&kvm_has_noapic_vcpu);
10071 
10072 	r = -ENOMEM;
10073 
10074 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10075 	if (!page)
10076 		goto fail_free_lapic;
10077 	vcpu->arch.pio_data = page_address(page);
10078 
10079 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10080 				       GFP_KERNEL_ACCOUNT);
10081 	if (!vcpu->arch.mce_banks)
10082 		goto fail_free_pio_data;
10083 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10084 
10085 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10086 				GFP_KERNEL_ACCOUNT))
10087 		goto fail_free_mce_banks;
10088 
10089 	if (!alloc_emulate_ctxt(vcpu))
10090 		goto free_wbinvd_dirty_mask;
10091 
10092 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10093 						GFP_KERNEL_ACCOUNT);
10094 	if (!vcpu->arch.user_fpu) {
10095 		pr_err("kvm: failed to allocate userspace's fpu\n");
10096 		goto free_emulate_ctxt;
10097 	}
10098 
10099 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10100 						 GFP_KERNEL_ACCOUNT);
10101 	if (!vcpu->arch.guest_fpu) {
10102 		pr_err("kvm: failed to allocate vcpu's fpu\n");
10103 		goto free_user_fpu;
10104 	}
10105 	fx_init(vcpu);
10106 
10107 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10108 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10109 
10110 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10111 
10112 	kvm_async_pf_hash_reset(vcpu);
10113 	kvm_pmu_init(vcpu);
10114 
10115 	vcpu->arch.pending_external_vector = -1;
10116 	vcpu->arch.preempted_in_kernel = false;
10117 
10118 	r = static_call(kvm_x86_vcpu_create)(vcpu);
10119 	if (r)
10120 		goto free_guest_fpu;
10121 
10122 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10123 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10124 	kvm_vcpu_mtrr_init(vcpu);
10125 	vcpu_load(vcpu);
10126 	kvm_vcpu_reset(vcpu, false);
10127 	kvm_init_mmu(vcpu, false);
10128 	vcpu_put(vcpu);
10129 	return 0;
10130 
10131 free_guest_fpu:
10132 	kvm_free_guest_fpu(vcpu);
10133 free_user_fpu:
10134 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10135 free_emulate_ctxt:
10136 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10137 free_wbinvd_dirty_mask:
10138 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10139 fail_free_mce_banks:
10140 	kfree(vcpu->arch.mce_banks);
10141 fail_free_pio_data:
10142 	free_page((unsigned long)vcpu->arch.pio_data);
10143 fail_free_lapic:
10144 	kvm_free_lapic(vcpu);
10145 fail_mmu_destroy:
10146 	kvm_mmu_destroy(vcpu);
10147 	return r;
10148 }
10149 
10150 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10151 {
10152 	struct kvm *kvm = vcpu->kvm;
10153 
10154 	if (mutex_lock_killable(&vcpu->mutex))
10155 		return;
10156 	vcpu_load(vcpu);
10157 	kvm_synchronize_tsc(vcpu, 0);
10158 	vcpu_put(vcpu);
10159 
10160 	/* poll control enabled by default */
10161 	vcpu->arch.msr_kvm_poll_control = 1;
10162 
10163 	mutex_unlock(&vcpu->mutex);
10164 
10165 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10166 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10167 						KVMCLOCK_SYNC_PERIOD);
10168 }
10169 
10170 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10171 {
10172 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10173 	int idx;
10174 
10175 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
10176 
10177 	kvmclock_reset(vcpu);
10178 
10179 	static_call(kvm_x86_vcpu_free)(vcpu);
10180 
10181 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10182 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10183 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10184 	kvm_free_guest_fpu(vcpu);
10185 
10186 	kvm_hv_vcpu_uninit(vcpu);
10187 	kvm_pmu_destroy(vcpu);
10188 	kfree(vcpu->arch.mce_banks);
10189 	kvm_free_lapic(vcpu);
10190 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10191 	kvm_mmu_destroy(vcpu);
10192 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10193 	free_page((unsigned long)vcpu->arch.pio_data);
10194 	kvfree(vcpu->arch.cpuid_entries);
10195 	if (!lapic_in_kernel(vcpu))
10196 		static_branch_dec(&kvm_has_noapic_vcpu);
10197 }
10198 
10199 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10200 {
10201 	kvm_lapic_reset(vcpu, init_event);
10202 
10203 	vcpu->arch.hflags = 0;
10204 
10205 	vcpu->arch.smi_pending = 0;
10206 	vcpu->arch.smi_count = 0;
10207 	atomic_set(&vcpu->arch.nmi_queued, 0);
10208 	vcpu->arch.nmi_pending = 0;
10209 	vcpu->arch.nmi_injected = false;
10210 	kvm_clear_interrupt_queue(vcpu);
10211 	kvm_clear_exception_queue(vcpu);
10212 
10213 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10214 	kvm_update_dr0123(vcpu);
10215 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10216 	vcpu->arch.dr7 = DR7_FIXED_1;
10217 	kvm_update_dr7(vcpu);
10218 
10219 	vcpu->arch.cr2 = 0;
10220 
10221 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10222 	vcpu->arch.apf.msr_en_val = 0;
10223 	vcpu->arch.apf.msr_int_val = 0;
10224 	vcpu->arch.st.msr_val = 0;
10225 
10226 	kvmclock_reset(vcpu);
10227 
10228 	kvm_clear_async_pf_completion_queue(vcpu);
10229 	kvm_async_pf_hash_reset(vcpu);
10230 	vcpu->arch.apf.halted = false;
10231 
10232 	if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10233 		void *mpx_state_buffer;
10234 
10235 		/*
10236 		 * To avoid have the INIT path from kvm_apic_has_events() that be
10237 		 * called with loaded FPU and does not let userspace fix the state.
10238 		 */
10239 		if (init_event)
10240 			kvm_put_guest_fpu(vcpu);
10241 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10242 					XFEATURE_BNDREGS);
10243 		if (mpx_state_buffer)
10244 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10245 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10246 					XFEATURE_BNDCSR);
10247 		if (mpx_state_buffer)
10248 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10249 		if (init_event)
10250 			kvm_load_guest_fpu(vcpu);
10251 	}
10252 
10253 	if (!init_event) {
10254 		kvm_pmu_reset(vcpu);
10255 		vcpu->arch.smbase = 0x30000;
10256 
10257 		vcpu->arch.msr_misc_features_enables = 0;
10258 
10259 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10260 	}
10261 
10262 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10263 	vcpu->arch.regs_avail = ~0;
10264 	vcpu->arch.regs_dirty = ~0;
10265 
10266 	vcpu->arch.ia32_xss = 0;
10267 
10268 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10269 }
10270 
10271 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10272 {
10273 	struct kvm_segment cs;
10274 
10275 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10276 	cs.selector = vector << 8;
10277 	cs.base = vector << 12;
10278 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10279 	kvm_rip_write(vcpu, 0);
10280 }
10281 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10282 
10283 int kvm_arch_hardware_enable(void)
10284 {
10285 	struct kvm *kvm;
10286 	struct kvm_vcpu *vcpu;
10287 	int i;
10288 	int ret;
10289 	u64 local_tsc;
10290 	u64 max_tsc = 0;
10291 	bool stable, backwards_tsc = false;
10292 
10293 	kvm_user_return_msr_cpu_online();
10294 	ret = static_call(kvm_x86_hardware_enable)();
10295 	if (ret != 0)
10296 		return ret;
10297 
10298 	local_tsc = rdtsc();
10299 	stable = !kvm_check_tsc_unstable();
10300 	list_for_each_entry(kvm, &vm_list, vm_list) {
10301 		kvm_for_each_vcpu(i, vcpu, kvm) {
10302 			if (!stable && vcpu->cpu == smp_processor_id())
10303 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10304 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10305 				backwards_tsc = true;
10306 				if (vcpu->arch.last_host_tsc > max_tsc)
10307 					max_tsc = vcpu->arch.last_host_tsc;
10308 			}
10309 		}
10310 	}
10311 
10312 	/*
10313 	 * Sometimes, even reliable TSCs go backwards.  This happens on
10314 	 * platforms that reset TSC during suspend or hibernate actions, but
10315 	 * maintain synchronization.  We must compensate.  Fortunately, we can
10316 	 * detect that condition here, which happens early in CPU bringup,
10317 	 * before any KVM threads can be running.  Unfortunately, we can't
10318 	 * bring the TSCs fully up to date with real time, as we aren't yet far
10319 	 * enough into CPU bringup that we know how much real time has actually
10320 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10321 	 * variables that haven't been updated yet.
10322 	 *
10323 	 * So we simply find the maximum observed TSC above, then record the
10324 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
10325 	 * the adjustment will be applied.  Note that we accumulate
10326 	 * adjustments, in case multiple suspend cycles happen before some VCPU
10327 	 * gets a chance to run again.  In the event that no KVM threads get a
10328 	 * chance to run, we will miss the entire elapsed period, as we'll have
10329 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10330 	 * loose cycle time.  This isn't too big a deal, since the loss will be
10331 	 * uniform across all VCPUs (not to mention the scenario is extremely
10332 	 * unlikely). It is possible that a second hibernate recovery happens
10333 	 * much faster than a first, causing the observed TSC here to be
10334 	 * smaller; this would require additional padding adjustment, which is
10335 	 * why we set last_host_tsc to the local tsc observed here.
10336 	 *
10337 	 * N.B. - this code below runs only on platforms with reliable TSC,
10338 	 * as that is the only way backwards_tsc is set above.  Also note
10339 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10340 	 * have the same delta_cyc adjustment applied if backwards_tsc
10341 	 * is detected.  Note further, this adjustment is only done once,
10342 	 * as we reset last_host_tsc on all VCPUs to stop this from being
10343 	 * called multiple times (one for each physical CPU bringup).
10344 	 *
10345 	 * Platforms with unreliable TSCs don't have to deal with this, they
10346 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
10347 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
10348 	 * guarantee that they stay in perfect synchronization.
10349 	 */
10350 	if (backwards_tsc) {
10351 		u64 delta_cyc = max_tsc - local_tsc;
10352 		list_for_each_entry(kvm, &vm_list, vm_list) {
10353 			kvm->arch.backwards_tsc_observed = true;
10354 			kvm_for_each_vcpu(i, vcpu, kvm) {
10355 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
10356 				vcpu->arch.last_host_tsc = local_tsc;
10357 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10358 			}
10359 
10360 			/*
10361 			 * We have to disable TSC offset matching.. if you were
10362 			 * booting a VM while issuing an S4 host suspend....
10363 			 * you may have some problem.  Solving this issue is
10364 			 * left as an exercise to the reader.
10365 			 */
10366 			kvm->arch.last_tsc_nsec = 0;
10367 			kvm->arch.last_tsc_write = 0;
10368 		}
10369 
10370 	}
10371 	return 0;
10372 }
10373 
10374 void kvm_arch_hardware_disable(void)
10375 {
10376 	static_call(kvm_x86_hardware_disable)();
10377 	drop_user_return_notifiers();
10378 }
10379 
10380 int kvm_arch_hardware_setup(void *opaque)
10381 {
10382 	struct kvm_x86_init_ops *ops = opaque;
10383 	int r;
10384 
10385 	rdmsrl_safe(MSR_EFER, &host_efer);
10386 
10387 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10388 		rdmsrl(MSR_IA32_XSS, host_xss);
10389 
10390 	r = ops->hardware_setup();
10391 	if (r != 0)
10392 		return r;
10393 
10394 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10395 	kvm_ops_static_call_update();
10396 
10397 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10398 		supported_xss = 0;
10399 
10400 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10401 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10402 #undef __kvm_cpu_cap_has
10403 
10404 	if (kvm_has_tsc_control) {
10405 		/*
10406 		 * Make sure the user can only configure tsc_khz values that
10407 		 * fit into a signed integer.
10408 		 * A min value is not calculated because it will always
10409 		 * be 1 on all machines.
10410 		 */
10411 		u64 max = min(0x7fffffffULL,
10412 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10413 		kvm_max_guest_tsc_khz = max;
10414 
10415 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10416 	}
10417 
10418 	kvm_init_msr_list();
10419 	return 0;
10420 }
10421 
10422 void kvm_arch_hardware_unsetup(void)
10423 {
10424 	static_call(kvm_x86_hardware_unsetup)();
10425 }
10426 
10427 int kvm_arch_check_processor_compat(void *opaque)
10428 {
10429 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10430 	struct kvm_x86_init_ops *ops = opaque;
10431 
10432 	WARN_ON(!irqs_disabled());
10433 
10434 	if (__cr4_reserved_bits(cpu_has, c) !=
10435 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10436 		return -EIO;
10437 
10438 	return ops->check_processor_compatibility();
10439 }
10440 
10441 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10442 {
10443 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10444 }
10445 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10446 
10447 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10448 {
10449 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10450 }
10451 
10452 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
10453 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
10454 
10455 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10456 {
10457 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10458 
10459 	vcpu->arch.l1tf_flush_l1d = true;
10460 	if (pmu->version && unlikely(pmu->event_count)) {
10461 		pmu->need_cleanup = true;
10462 		kvm_make_request(KVM_REQ_PMU, vcpu);
10463 	}
10464 	static_call(kvm_x86_sched_in)(vcpu, cpu);
10465 }
10466 
10467 void kvm_arch_free_vm(struct kvm *kvm)
10468 {
10469 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
10470 	vfree(kvm);
10471 }
10472 
10473 
10474 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10475 {
10476 	if (type)
10477 		return -EINVAL;
10478 
10479 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10480 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10481 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10482 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10483 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10484 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10485 
10486 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10487 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10488 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10489 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10490 		&kvm->arch.irq_sources_bitmap);
10491 
10492 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10493 	mutex_init(&kvm->arch.apic_map_lock);
10494 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10495 
10496 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10497 	pvclock_update_vm_gtod_copy(kvm);
10498 
10499 	kvm->arch.guest_can_read_msr_platform_info = true;
10500 
10501 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10502 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10503 
10504 	kvm_hv_init_vm(kvm);
10505 	kvm_page_track_init(kvm);
10506 	kvm_mmu_init_vm(kvm);
10507 
10508 	return static_call(kvm_x86_vm_init)(kvm);
10509 }
10510 
10511 int kvm_arch_post_init_vm(struct kvm *kvm)
10512 {
10513 	return kvm_mmu_post_init_vm(kvm);
10514 }
10515 
10516 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10517 {
10518 	vcpu_load(vcpu);
10519 	kvm_mmu_unload(vcpu);
10520 	vcpu_put(vcpu);
10521 }
10522 
10523 static void kvm_free_vcpus(struct kvm *kvm)
10524 {
10525 	unsigned int i;
10526 	struct kvm_vcpu *vcpu;
10527 
10528 	/*
10529 	 * Unpin any mmu pages first.
10530 	 */
10531 	kvm_for_each_vcpu(i, vcpu, kvm) {
10532 		kvm_clear_async_pf_completion_queue(vcpu);
10533 		kvm_unload_vcpu_mmu(vcpu);
10534 	}
10535 	kvm_for_each_vcpu(i, vcpu, kvm)
10536 		kvm_vcpu_destroy(vcpu);
10537 
10538 	mutex_lock(&kvm->lock);
10539 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10540 		kvm->vcpus[i] = NULL;
10541 
10542 	atomic_set(&kvm->online_vcpus, 0);
10543 	mutex_unlock(&kvm->lock);
10544 }
10545 
10546 void kvm_arch_sync_events(struct kvm *kvm)
10547 {
10548 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10549 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10550 	kvm_free_pit(kvm);
10551 }
10552 
10553 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
10554 
10555 /**
10556  * __x86_set_memory_region: Setup KVM internal memory slot
10557  *
10558  * @kvm: the kvm pointer to the VM.
10559  * @id: the slot ID to setup.
10560  * @gpa: the GPA to install the slot (unused when @size == 0).
10561  * @size: the size of the slot. Set to zero to uninstall a slot.
10562  *
10563  * This function helps to setup a KVM internal memory slot.  Specify
10564  * @size > 0 to install a new slot, while @size == 0 to uninstall a
10565  * slot.  The return code can be one of the following:
10566  *
10567  *   HVA:           on success (uninstall will return a bogus HVA)
10568  *   -errno:        on error
10569  *
10570  * The caller should always use IS_ERR() to check the return value
10571  * before use.  Note, the KVM internal memory slots are guaranteed to
10572  * remain valid and unchanged until the VM is destroyed, i.e., the
10573  * GPA->HVA translation will not change.  However, the HVA is a user
10574  * address, i.e. its accessibility is not guaranteed, and must be
10575  * accessed via __copy_{to,from}_user().
10576  */
10577 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10578 				      u32 size)
10579 {
10580 	int i, r;
10581 	unsigned long hva, old_npages;
10582 	struct kvm_memslots *slots = kvm_memslots(kvm);
10583 	struct kvm_memory_slot *slot;
10584 
10585 	/* Called with kvm->slots_lock held.  */
10586 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10587 		return ERR_PTR_USR(-EINVAL);
10588 
10589 	slot = id_to_memslot(slots, id);
10590 	if (size) {
10591 		if (slot && slot->npages)
10592 			return ERR_PTR_USR(-EEXIST);
10593 
10594 		/*
10595 		 * MAP_SHARED to prevent internal slot pages from being moved
10596 		 * by fork()/COW.
10597 		 */
10598 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10599 			      MAP_SHARED | MAP_ANONYMOUS, 0);
10600 		if (IS_ERR((void *)hva))
10601 			return (void __user *)hva;
10602 	} else {
10603 		if (!slot || !slot->npages)
10604 			return 0;
10605 
10606 		old_npages = slot->npages;
10607 		hva = slot->userspace_addr;
10608 	}
10609 
10610 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
10611 		struct kvm_userspace_memory_region m;
10612 
10613 		m.slot = id | (i << 16);
10614 		m.flags = 0;
10615 		m.guest_phys_addr = gpa;
10616 		m.userspace_addr = hva;
10617 		m.memory_size = size;
10618 		r = __kvm_set_memory_region(kvm, &m);
10619 		if (r < 0)
10620 			return ERR_PTR_USR(r);
10621 	}
10622 
10623 	if (!size)
10624 		vm_munmap(hva, old_npages * PAGE_SIZE);
10625 
10626 	return (void __user *)hva;
10627 }
10628 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10629 
10630 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10631 {
10632 	kvm_mmu_pre_destroy_vm(kvm);
10633 }
10634 
10635 void kvm_arch_destroy_vm(struct kvm *kvm)
10636 {
10637 	u32 i;
10638 
10639 	if (current->mm == kvm->mm) {
10640 		/*
10641 		 * Free memory regions allocated on behalf of userspace,
10642 		 * unless the the memory map has changed due to process exit
10643 		 * or fd copying.
10644 		 */
10645 		mutex_lock(&kvm->slots_lock);
10646 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10647 					0, 0);
10648 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10649 					0, 0);
10650 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10651 		mutex_unlock(&kvm->slots_lock);
10652 	}
10653 	static_call_cond(kvm_x86_vm_destroy)(kvm);
10654 	for (i = 0; i < kvm->arch.msr_filter.count; i++)
10655 		kfree(kvm->arch.msr_filter.ranges[i].bitmap);
10656 	kvm_pic_destroy(kvm);
10657 	kvm_ioapic_destroy(kvm);
10658 	kvm_free_vcpus(kvm);
10659 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
10660 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
10661 	kvm_mmu_uninit_vm(kvm);
10662 	kvm_page_track_cleanup(kvm);
10663 	kvm_xen_destroy_vm(kvm);
10664 	kvm_hv_destroy_vm(kvm);
10665 }
10666 
10667 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
10668 {
10669 	int i;
10670 
10671 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10672 		kvfree(slot->arch.rmap[i]);
10673 		slot->arch.rmap[i] = NULL;
10674 
10675 		if (i == 0)
10676 			continue;
10677 
10678 		kvfree(slot->arch.lpage_info[i - 1]);
10679 		slot->arch.lpage_info[i - 1] = NULL;
10680 	}
10681 
10682 	kvm_page_track_free_memslot(slot);
10683 }
10684 
10685 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10686 				      unsigned long npages)
10687 {
10688 	int i;
10689 
10690 	/*
10691 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
10692 	 * old arrays will be freed by __kvm_set_memory_region() if installing
10693 	 * the new memslot is successful.
10694 	 */
10695 	memset(&slot->arch, 0, sizeof(slot->arch));
10696 
10697 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10698 		struct kvm_lpage_info *linfo;
10699 		unsigned long ugfn;
10700 		int lpages;
10701 		int level = i + 1;
10702 
10703 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
10704 				      slot->base_gfn, level) + 1;
10705 
10706 		slot->arch.rmap[i] =
10707 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
10708 				 GFP_KERNEL_ACCOUNT);
10709 		if (!slot->arch.rmap[i])
10710 			goto out_free;
10711 		if (i == 0)
10712 			continue;
10713 
10714 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
10715 		if (!linfo)
10716 			goto out_free;
10717 
10718 		slot->arch.lpage_info[i - 1] = linfo;
10719 
10720 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
10721 			linfo[0].disallow_lpage = 1;
10722 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
10723 			linfo[lpages - 1].disallow_lpage = 1;
10724 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
10725 		/*
10726 		 * If the gfn and userspace address are not aligned wrt each
10727 		 * other, disable large page support for this slot.
10728 		 */
10729 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
10730 			unsigned long j;
10731 
10732 			for (j = 0; j < lpages; ++j)
10733 				linfo[j].disallow_lpage = 1;
10734 		}
10735 	}
10736 
10737 	if (kvm_page_track_create_memslot(slot, npages))
10738 		goto out_free;
10739 
10740 	return 0;
10741 
10742 out_free:
10743 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
10744 		kvfree(slot->arch.rmap[i]);
10745 		slot->arch.rmap[i] = NULL;
10746 		if (i == 0)
10747 			continue;
10748 
10749 		kvfree(slot->arch.lpage_info[i - 1]);
10750 		slot->arch.lpage_info[i - 1] = NULL;
10751 	}
10752 	return -ENOMEM;
10753 }
10754 
10755 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
10756 {
10757 	struct kvm_vcpu *vcpu;
10758 	int i;
10759 
10760 	/*
10761 	 * memslots->generation has been incremented.
10762 	 * mmio generation may have reached its maximum value.
10763 	 */
10764 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10765 
10766 	/* Force re-initialization of steal_time cache */
10767 	kvm_for_each_vcpu(i, vcpu, kvm)
10768 		kvm_vcpu_kick(vcpu);
10769 }
10770 
10771 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10772 				struct kvm_memory_slot *memslot,
10773 				const struct kvm_userspace_memory_region *mem,
10774 				enum kvm_mr_change change)
10775 {
10776 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10777 		return kvm_alloc_memslot_metadata(memslot,
10778 						  mem->memory_size >> PAGE_SHIFT);
10779 	return 0;
10780 }
10781 
10782 
10783 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
10784 {
10785 	struct kvm_arch *ka = &kvm->arch;
10786 
10787 	if (!kvm_x86_ops.cpu_dirty_log_size)
10788 		return;
10789 
10790 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
10791 	    (!enable && --ka->cpu_dirty_logging_count == 0))
10792 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
10793 
10794 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
10795 }
10796 
10797 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10798 				     struct kvm_memory_slot *old,
10799 				     struct kvm_memory_slot *new,
10800 				     enum kvm_mr_change change)
10801 {
10802 	bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
10803 
10804 	/*
10805 	 * Update CPU dirty logging if dirty logging is being toggled.  This
10806 	 * applies to all operations.
10807 	 */
10808 	if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
10809 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
10810 
10811 	/*
10812 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
10813 	 * made writable) or CREATE/MOVE/DELETE of a slot.
10814 	 *
10815 	 * For a memslot with dirty logging disabled:
10816 	 * CREATE:      No dirty mappings will already exist.
10817 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10818 	 *		kvm_arch_flush_shadow_memslot()
10819 	 *
10820 	 * For a memslot with dirty logging enabled:
10821 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
10822 	 *		and no dirty bits to clear.
10823 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
10824 	 *		kvm_arch_flush_shadow_memslot().
10825 	 */
10826 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
10827 		return;
10828 
10829 	/*
10830 	 * READONLY and non-flags changes were filtered out above, and the only
10831 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
10832 	 * logging isn't being toggled on or off.
10833 	 */
10834 	if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
10835 		return;
10836 
10837 	if (!log_dirty_pages) {
10838 		/*
10839 		 * Dirty logging tracks sptes in 4k granularity, meaning that
10840 		 * large sptes have to be split.  If live migration succeeds,
10841 		 * the guest in the source machine will be destroyed and large
10842 		 * sptes will be created in the destination.  However, if the
10843 		 * guest continues to run in the source machine (for example if
10844 		 * live migration fails), small sptes will remain around and
10845 		 * cause bad performance.
10846 		 *
10847 		 * Scan sptes if dirty logging has been stopped, dropping those
10848 		 * which can be collapsed into a single large-page spte.  Later
10849 		 * page faults will create the large-page sptes.
10850 		 */
10851 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10852 	} else {
10853 		/* By default, write-protect everything to log writes. */
10854 		int level = PG_LEVEL_4K;
10855 
10856 		if (kvm_x86_ops.cpu_dirty_log_size) {
10857 			/*
10858 			 * Clear all dirty bits, unless pages are treated as
10859 			 * dirty from the get-go.
10860 			 */
10861 			if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
10862 				kvm_mmu_slot_leaf_clear_dirty(kvm, new);
10863 
10864 			/*
10865 			 * Write-protect large pages on write so that dirty
10866 			 * logging happens at 4k granularity.  No need to
10867 			 * write-protect small SPTEs since write accesses are
10868 			 * logged by the CPU via dirty bits.
10869 			 */
10870 			level = PG_LEVEL_2M;
10871 		} else if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
10872 			/*
10873 			 * If we're with initial-all-set, we don't need
10874 			 * to write protect any small page because
10875 			 * they're reported as dirty already.  However
10876 			 * we still need to write-protect huge pages
10877 			 * so that the page split can happen lazily on
10878 			 * the first write to the huge page.
10879 			 */
10880 			level = PG_LEVEL_2M;
10881 		}
10882 		kvm_mmu_slot_remove_write_access(kvm, new, level);
10883 	}
10884 }
10885 
10886 void kvm_arch_commit_memory_region(struct kvm *kvm,
10887 				const struct kvm_userspace_memory_region *mem,
10888 				struct kvm_memory_slot *old,
10889 				const struct kvm_memory_slot *new,
10890 				enum kvm_mr_change change)
10891 {
10892 	if (!kvm->arch.n_requested_mmu_pages)
10893 		kvm_mmu_change_mmu_pages(kvm,
10894 				kvm_mmu_calculate_default_mmu_pages(kvm));
10895 
10896 	/*
10897 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10898 	 */
10899 	kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
10900 
10901 	/* Free the arrays associated with the old memslot. */
10902 	if (change == KVM_MR_MOVE)
10903 		kvm_arch_free_memslot(kvm, old);
10904 }
10905 
10906 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10907 {
10908 	kvm_mmu_zap_all(kvm);
10909 }
10910 
10911 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10912 				   struct kvm_memory_slot *slot)
10913 {
10914 	kvm_page_track_flush_slot(kvm, slot);
10915 }
10916 
10917 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10918 {
10919 	return (is_guest_mode(vcpu) &&
10920 			kvm_x86_ops.guest_apic_has_interrupt &&
10921 			static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
10922 }
10923 
10924 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10925 {
10926 	if (!list_empty_careful(&vcpu->async_pf.done))
10927 		return true;
10928 
10929 	if (kvm_apic_has_events(vcpu))
10930 		return true;
10931 
10932 	if (vcpu->arch.pv.pv_unhalted)
10933 		return true;
10934 
10935 	if (vcpu->arch.exception.pending)
10936 		return true;
10937 
10938 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10939 	    (vcpu->arch.nmi_pending &&
10940 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
10941 		return true;
10942 
10943 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10944 	    (vcpu->arch.smi_pending &&
10945 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
10946 		return true;
10947 
10948 	if (kvm_arch_interrupt_allowed(vcpu) &&
10949 	    (kvm_cpu_has_interrupt(vcpu) ||
10950 	    kvm_guest_apic_has_interrupt(vcpu)))
10951 		return true;
10952 
10953 	if (kvm_hv_has_stimer_pending(vcpu))
10954 		return true;
10955 
10956 	if (is_guest_mode(vcpu) &&
10957 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
10958 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10959 		return true;
10960 
10961 	return false;
10962 }
10963 
10964 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10965 {
10966 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10967 }
10968 
10969 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10970 {
10971 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10972 		return true;
10973 
10974 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10975 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10976 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10977 		return true;
10978 
10979 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
10980 		return true;
10981 
10982 	return false;
10983 }
10984 
10985 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10986 {
10987 	return vcpu->arch.preempted_in_kernel;
10988 }
10989 
10990 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10991 {
10992 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10993 }
10994 
10995 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10996 {
10997 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
10998 }
10999 
11000 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11001 {
11002 	/* Can't read the RIP when guest state is protected, just return 0 */
11003 	if (vcpu->arch.guest_state_protected)
11004 		return 0;
11005 
11006 	if (is_64_bit_mode(vcpu))
11007 		return kvm_rip_read(vcpu);
11008 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11009 		     kvm_rip_read(vcpu));
11010 }
11011 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11012 
11013 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11014 {
11015 	return kvm_get_linear_rip(vcpu) == linear_rip;
11016 }
11017 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11018 
11019 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11020 {
11021 	unsigned long rflags;
11022 
11023 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
11024 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11025 		rflags &= ~X86_EFLAGS_TF;
11026 	return rflags;
11027 }
11028 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11029 
11030 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11031 {
11032 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11033 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11034 		rflags |= X86_EFLAGS_TF;
11035 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
11036 }
11037 
11038 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11039 {
11040 	__kvm_set_rflags(vcpu, rflags);
11041 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11042 }
11043 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11044 
11045 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11046 {
11047 	int r;
11048 
11049 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11050 	      work->wakeup_all)
11051 		return;
11052 
11053 	r = kvm_mmu_reload(vcpu);
11054 	if (unlikely(r))
11055 		return;
11056 
11057 	if (!vcpu->arch.mmu->direct_map &&
11058 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11059 		return;
11060 
11061 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11062 }
11063 
11064 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11065 {
11066 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11067 
11068 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11069 }
11070 
11071 static inline u32 kvm_async_pf_next_probe(u32 key)
11072 {
11073 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11074 }
11075 
11076 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11077 {
11078 	u32 key = kvm_async_pf_hash_fn(gfn);
11079 
11080 	while (vcpu->arch.apf.gfns[key] != ~0)
11081 		key = kvm_async_pf_next_probe(key);
11082 
11083 	vcpu->arch.apf.gfns[key] = gfn;
11084 }
11085 
11086 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11087 {
11088 	int i;
11089 	u32 key = kvm_async_pf_hash_fn(gfn);
11090 
11091 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
11092 		     (vcpu->arch.apf.gfns[key] != gfn &&
11093 		      vcpu->arch.apf.gfns[key] != ~0); i++)
11094 		key = kvm_async_pf_next_probe(key);
11095 
11096 	return key;
11097 }
11098 
11099 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11100 {
11101 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11102 }
11103 
11104 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11105 {
11106 	u32 i, j, k;
11107 
11108 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11109 
11110 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11111 		return;
11112 
11113 	while (true) {
11114 		vcpu->arch.apf.gfns[i] = ~0;
11115 		do {
11116 			j = kvm_async_pf_next_probe(j);
11117 			if (vcpu->arch.apf.gfns[j] == ~0)
11118 				return;
11119 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11120 			/*
11121 			 * k lies cyclically in ]i,j]
11122 			 * |    i.k.j |
11123 			 * |....j i.k.| or  |.k..j i...|
11124 			 */
11125 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11126 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11127 		i = j;
11128 	}
11129 }
11130 
11131 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11132 {
11133 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11134 
11135 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11136 				      sizeof(reason));
11137 }
11138 
11139 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11140 {
11141 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11142 
11143 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11144 					     &token, offset, sizeof(token));
11145 }
11146 
11147 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11148 {
11149 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11150 	u32 val;
11151 
11152 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11153 					 &val, offset, sizeof(val)))
11154 		return false;
11155 
11156 	return !val;
11157 }
11158 
11159 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11160 {
11161 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11162 		return false;
11163 
11164 	if (!kvm_pv_async_pf_enabled(vcpu) ||
11165 	    (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11166 		return false;
11167 
11168 	return true;
11169 }
11170 
11171 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11172 {
11173 	if (unlikely(!lapic_in_kernel(vcpu) ||
11174 		     kvm_event_needs_reinjection(vcpu) ||
11175 		     vcpu->arch.exception.pending))
11176 		return false;
11177 
11178 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11179 		return false;
11180 
11181 	/*
11182 	 * If interrupts are off we cannot even use an artificial
11183 	 * halt state.
11184 	 */
11185 	return kvm_arch_interrupt_allowed(vcpu);
11186 }
11187 
11188 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11189 				     struct kvm_async_pf *work)
11190 {
11191 	struct x86_exception fault;
11192 
11193 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11194 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11195 
11196 	if (kvm_can_deliver_async_pf(vcpu) &&
11197 	    !apf_put_user_notpresent(vcpu)) {
11198 		fault.vector = PF_VECTOR;
11199 		fault.error_code_valid = true;
11200 		fault.error_code = 0;
11201 		fault.nested_page_fault = false;
11202 		fault.address = work->arch.token;
11203 		fault.async_page_fault = true;
11204 		kvm_inject_page_fault(vcpu, &fault);
11205 		return true;
11206 	} else {
11207 		/*
11208 		 * It is not possible to deliver a paravirtualized asynchronous
11209 		 * page fault, but putting the guest in an artificial halt state
11210 		 * can be beneficial nevertheless: if an interrupt arrives, we
11211 		 * can deliver it timely and perhaps the guest will schedule
11212 		 * another process.  When the instruction that triggered a page
11213 		 * fault is retried, hopefully the page will be ready in the host.
11214 		 */
11215 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11216 		return false;
11217 	}
11218 }
11219 
11220 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11221 				 struct kvm_async_pf *work)
11222 {
11223 	struct kvm_lapic_irq irq = {
11224 		.delivery_mode = APIC_DM_FIXED,
11225 		.vector = vcpu->arch.apf.vec
11226 	};
11227 
11228 	if (work->wakeup_all)
11229 		work->arch.token = ~0; /* broadcast wakeup */
11230 	else
11231 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11232 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11233 
11234 	if ((work->wakeup_all || work->notpresent_injected) &&
11235 	    kvm_pv_async_pf_enabled(vcpu) &&
11236 	    !apf_put_user_ready(vcpu, work->arch.token)) {
11237 		vcpu->arch.apf.pageready_pending = true;
11238 		kvm_apic_set_irq(vcpu, &irq, NULL);
11239 	}
11240 
11241 	vcpu->arch.apf.halted = false;
11242 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11243 }
11244 
11245 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11246 {
11247 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
11248 	if (!vcpu->arch.apf.pageready_pending)
11249 		kvm_vcpu_kick(vcpu);
11250 }
11251 
11252 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11253 {
11254 	if (!kvm_pv_async_pf_enabled(vcpu))
11255 		return true;
11256 	else
11257 		return apf_pageready_slot_free(vcpu);
11258 }
11259 
11260 void kvm_arch_start_assignment(struct kvm *kvm)
11261 {
11262 	atomic_inc(&kvm->arch.assigned_device_count);
11263 }
11264 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11265 
11266 void kvm_arch_end_assignment(struct kvm *kvm)
11267 {
11268 	atomic_dec(&kvm->arch.assigned_device_count);
11269 }
11270 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11271 
11272 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11273 {
11274 	return atomic_read(&kvm->arch.assigned_device_count);
11275 }
11276 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11277 
11278 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11279 {
11280 	atomic_inc(&kvm->arch.noncoherent_dma_count);
11281 }
11282 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11283 
11284 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11285 {
11286 	atomic_dec(&kvm->arch.noncoherent_dma_count);
11287 }
11288 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11289 
11290 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11291 {
11292 	return atomic_read(&kvm->arch.noncoherent_dma_count);
11293 }
11294 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11295 
11296 bool kvm_arch_has_irq_bypass(void)
11297 {
11298 	return true;
11299 }
11300 
11301 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11302 				      struct irq_bypass_producer *prod)
11303 {
11304 	struct kvm_kernel_irqfd *irqfd =
11305 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11306 	int ret;
11307 
11308 	irqfd->producer = prod;
11309 	kvm_arch_start_assignment(irqfd->kvm);
11310 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11311 					 prod->irq, irqfd->gsi, 1);
11312 
11313 	if (ret)
11314 		kvm_arch_end_assignment(irqfd->kvm);
11315 
11316 	return ret;
11317 }
11318 
11319 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11320 				      struct irq_bypass_producer *prod)
11321 {
11322 	int ret;
11323 	struct kvm_kernel_irqfd *irqfd =
11324 		container_of(cons, struct kvm_kernel_irqfd, consumer);
11325 
11326 	WARN_ON(irqfd->producer != prod);
11327 	irqfd->producer = NULL;
11328 
11329 	/*
11330 	 * When producer of consumer is unregistered, we change back to
11331 	 * remapped mode, so we can re-use the current implementation
11332 	 * when the irq is masked/disabled or the consumer side (KVM
11333 	 * int this case doesn't want to receive the interrupts.
11334 	*/
11335 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11336 	if (ret)
11337 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11338 		       " fails: %d\n", irqfd->consumer.token, ret);
11339 
11340 	kvm_arch_end_assignment(irqfd->kvm);
11341 }
11342 
11343 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11344 				   uint32_t guest_irq, bool set)
11345 {
11346 	return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
11347 }
11348 
11349 bool kvm_vector_hashing_enabled(void)
11350 {
11351 	return vector_hashing;
11352 }
11353 
11354 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11355 {
11356 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11357 }
11358 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11359 
11360 
11361 int kvm_spec_ctrl_test_value(u64 value)
11362 {
11363 	/*
11364 	 * test that setting IA32_SPEC_CTRL to given value
11365 	 * is allowed by the host processor
11366 	 */
11367 
11368 	u64 saved_value;
11369 	unsigned long flags;
11370 	int ret = 0;
11371 
11372 	local_irq_save(flags);
11373 
11374 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11375 		ret = 1;
11376 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11377 		ret = 1;
11378 	else
11379 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11380 
11381 	local_irq_restore(flags);
11382 
11383 	return ret;
11384 }
11385 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11386 
11387 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11388 {
11389 	struct x86_exception fault;
11390 	u32 access = error_code &
11391 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11392 
11393 	if (!(error_code & PFERR_PRESENT_MASK) ||
11394 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11395 		/*
11396 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11397 		 * tables probably do not match the TLB.  Just proceed
11398 		 * with the error code that the processor gave.
11399 		 */
11400 		fault.vector = PF_VECTOR;
11401 		fault.error_code_valid = true;
11402 		fault.error_code = error_code;
11403 		fault.nested_page_fault = false;
11404 		fault.address = gva;
11405 	}
11406 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11407 }
11408 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11409 
11410 /*
11411  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11412  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11413  * indicates whether exit to userspace is needed.
11414  */
11415 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11416 			      struct x86_exception *e)
11417 {
11418 	if (r == X86EMUL_PROPAGATE_FAULT) {
11419 		kvm_inject_emulated_page_fault(vcpu, e);
11420 		return 1;
11421 	}
11422 
11423 	/*
11424 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11425 	 * while handling a VMX instruction KVM could've handled the request
11426 	 * correctly by exiting to userspace and performing I/O but there
11427 	 * doesn't seem to be a real use-case behind such requests, just return
11428 	 * KVM_EXIT_INTERNAL_ERROR for now.
11429 	 */
11430 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11431 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11432 	vcpu->run->internal.ndata = 0;
11433 
11434 	return 0;
11435 }
11436 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11437 
11438 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11439 {
11440 	bool pcid_enabled;
11441 	struct x86_exception e;
11442 	unsigned i;
11443 	unsigned long roots_to_free = 0;
11444 	struct {
11445 		u64 pcid;
11446 		u64 gla;
11447 	} operand;
11448 	int r;
11449 
11450 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11451 	if (r != X86EMUL_CONTINUE)
11452 		return kvm_handle_memory_failure(vcpu, r, &e);
11453 
11454 	if (operand.pcid >> 12 != 0) {
11455 		kvm_inject_gp(vcpu, 0);
11456 		return 1;
11457 	}
11458 
11459 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11460 
11461 	switch (type) {
11462 	case INVPCID_TYPE_INDIV_ADDR:
11463 		if ((!pcid_enabled && (operand.pcid != 0)) ||
11464 		    is_noncanonical_address(operand.gla, vcpu)) {
11465 			kvm_inject_gp(vcpu, 0);
11466 			return 1;
11467 		}
11468 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11469 		return kvm_skip_emulated_instruction(vcpu);
11470 
11471 	case INVPCID_TYPE_SINGLE_CTXT:
11472 		if (!pcid_enabled && (operand.pcid != 0)) {
11473 			kvm_inject_gp(vcpu, 0);
11474 			return 1;
11475 		}
11476 
11477 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11478 			kvm_mmu_sync_roots(vcpu);
11479 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11480 		}
11481 
11482 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11483 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11484 			    == operand.pcid)
11485 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11486 
11487 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11488 		/*
11489 		 * If neither the current cr3 nor any of the prev_roots use the
11490 		 * given PCID, then nothing needs to be done here because a
11491 		 * resync will happen anyway before switching to any other CR3.
11492 		 */
11493 
11494 		return kvm_skip_emulated_instruction(vcpu);
11495 
11496 	case INVPCID_TYPE_ALL_NON_GLOBAL:
11497 		/*
11498 		 * Currently, KVM doesn't mark global entries in the shadow
11499 		 * page tables, so a non-global flush just degenerates to a
11500 		 * global flush. If needed, we could optimize this later by
11501 		 * keeping track of global entries in shadow page tables.
11502 		 */
11503 
11504 		fallthrough;
11505 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
11506 		kvm_mmu_unload(vcpu);
11507 		return kvm_skip_emulated_instruction(vcpu);
11508 
11509 	default:
11510 		BUG(); /* We have already checked above that type <= 3 */
11511 	}
11512 }
11513 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11514 
11515 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11516 {
11517 	struct kvm_run *run = vcpu->run;
11518 	struct kvm_mmio_fragment *frag;
11519 	unsigned int len;
11520 
11521 	BUG_ON(!vcpu->mmio_needed);
11522 
11523 	/* Complete previous fragment */
11524 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11525 	len = min(8u, frag->len);
11526 	if (!vcpu->mmio_is_write)
11527 		memcpy(frag->data, run->mmio.data, len);
11528 
11529 	if (frag->len <= 8) {
11530 		/* Switch to the next fragment. */
11531 		frag++;
11532 		vcpu->mmio_cur_fragment++;
11533 	} else {
11534 		/* Go forward to the next mmio piece. */
11535 		frag->data += len;
11536 		frag->gpa += len;
11537 		frag->len -= len;
11538 	}
11539 
11540 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11541 		vcpu->mmio_needed = 0;
11542 
11543 		// VMG change, at this point, we're always done
11544 		// RIP has already been advanced
11545 		return 1;
11546 	}
11547 
11548 	// More MMIO is needed
11549 	run->mmio.phys_addr = frag->gpa;
11550 	run->mmio.len = min(8u, frag->len);
11551 	run->mmio.is_write = vcpu->mmio_is_write;
11552 	if (run->mmio.is_write)
11553 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11554 	run->exit_reason = KVM_EXIT_MMIO;
11555 
11556 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11557 
11558 	return 0;
11559 }
11560 
11561 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11562 			  void *data)
11563 {
11564 	int handled;
11565 	struct kvm_mmio_fragment *frag;
11566 
11567 	if (!data)
11568 		return -EINVAL;
11569 
11570 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11571 	if (handled == bytes)
11572 		return 1;
11573 
11574 	bytes -= handled;
11575 	gpa += handled;
11576 	data += handled;
11577 
11578 	/*TODO: Check if need to increment number of frags */
11579 	frag = vcpu->mmio_fragments;
11580 	vcpu->mmio_nr_fragments = 1;
11581 	frag->len = bytes;
11582 	frag->gpa = gpa;
11583 	frag->data = data;
11584 
11585 	vcpu->mmio_needed = 1;
11586 	vcpu->mmio_cur_fragment = 0;
11587 
11588 	vcpu->run->mmio.phys_addr = gpa;
11589 	vcpu->run->mmio.len = min(8u, frag->len);
11590 	vcpu->run->mmio.is_write = 1;
11591 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11592 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
11593 
11594 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11595 
11596 	return 0;
11597 }
11598 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
11599 
11600 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11601 			 void *data)
11602 {
11603 	int handled;
11604 	struct kvm_mmio_fragment *frag;
11605 
11606 	if (!data)
11607 		return -EINVAL;
11608 
11609 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11610 	if (handled == bytes)
11611 		return 1;
11612 
11613 	bytes -= handled;
11614 	gpa += handled;
11615 	data += handled;
11616 
11617 	/*TODO: Check if need to increment number of frags */
11618 	frag = vcpu->mmio_fragments;
11619 	vcpu->mmio_nr_fragments = 1;
11620 	frag->len = bytes;
11621 	frag->gpa = gpa;
11622 	frag->data = data;
11623 
11624 	vcpu->mmio_needed = 1;
11625 	vcpu->mmio_cur_fragment = 0;
11626 
11627 	vcpu->run->mmio.phys_addr = gpa;
11628 	vcpu->run->mmio.len = min(8u, frag->len);
11629 	vcpu->run->mmio.is_write = 0;
11630 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
11631 
11632 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11633 
11634 	return 0;
11635 }
11636 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
11637 
11638 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
11639 {
11640 	memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data,
11641 	       vcpu->arch.pio.count * vcpu->arch.pio.size);
11642 	vcpu->arch.pio.count = 0;
11643 
11644 	return 1;
11645 }
11646 
11647 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
11648 			   unsigned int port, void *data,  unsigned int count)
11649 {
11650 	int ret;
11651 
11652 	ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port,
11653 					data, count);
11654 	if (ret)
11655 		return ret;
11656 
11657 	vcpu->arch.pio.count = 0;
11658 
11659 	return 0;
11660 }
11661 
11662 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
11663 			  unsigned int port, void *data, unsigned int count)
11664 {
11665 	int ret;
11666 
11667 	ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port,
11668 				       data, count);
11669 	if (ret) {
11670 		vcpu->arch.pio.count = 0;
11671 	} else {
11672 		vcpu->arch.guest_ins_data = data;
11673 		vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
11674 	}
11675 
11676 	return 0;
11677 }
11678 
11679 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
11680 			 unsigned int port, void *data,  unsigned int count,
11681 			 int in)
11682 {
11683 	return in ? kvm_sev_es_ins(vcpu, size, port, data, count)
11684 		  : kvm_sev_es_outs(vcpu, size, port, data, count);
11685 }
11686 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
11687 
11688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
11689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
11690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
11691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
11695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
11696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
11697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
11698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
11699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
11700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
11701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
11702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
11703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
11704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
11705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
11706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
11707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
11709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
11710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
11711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
11712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
11713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
11714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
11715