xref: /openbmc/linux/arch/x86/kvm/x86.c (revision d3741027)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87 
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92 
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94 
95 #define emul_to_vcpu(ctxt) \
96 	((struct kvm_vcpu *)(ctxt)->vcpu)
97 
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108 
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110 
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112 
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114 
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117 
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126 
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129 
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131 
132 #define KVM_X86_OP(func)					     \
133 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
134 				*(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140 
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143 
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147 
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150 
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153 
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32  __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64  __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166 
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170 
171 /*
172  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
173  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
174  * advancement entirely.  Any other value is used as-is and disables adaptive
175  * tuning, i.e. allows privileged userspace to set an exact advancement time.
176  */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179 
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182 
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186 
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189 
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192 
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197 
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200 
201 /*
202  * Restoring the host value for MSRs that are only consumed when running in
203  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204  * returns to userspace, i.e. the kernel can run with the guest's value.
205  */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207 
208 struct kvm_user_return_msrs {
209 	struct user_return_notifier urn;
210 	bool registered;
211 	struct kvm_user_return_msr_values {
212 		u64 host;
213 		u64 curr;
214 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216 
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221 
222 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226 
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229 
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232 
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235 
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240 
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242 	KVM_GENERIC_VM_STATS(),
243 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244 	STATS_DESC_COUNTER(VM, mmu_pte_write),
245 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246 	STATS_DESC_COUNTER(VM, mmu_flooded),
247 	STATS_DESC_COUNTER(VM, mmu_recycled),
248 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
249 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
250 	STATS_DESC_ICOUNTER(VM, pages_4k),
251 	STATS_DESC_ICOUNTER(VM, pages_2m),
252 	STATS_DESC_ICOUNTER(VM, pages_1g),
253 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257 
258 const struct kvm_stats_header kvm_vm_stats_header = {
259 	.name_size = KVM_STATS_NAME_SIZE,
260 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261 	.id_offset = sizeof(struct kvm_stats_header),
262 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264 		       sizeof(kvm_vm_stats_desc),
265 };
266 
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268 	KVM_GENERIC_VCPU_STATS(),
269 	STATS_DESC_COUNTER(VCPU, pf_taken),
270 	STATS_DESC_COUNTER(VCPU, pf_fixed),
271 	STATS_DESC_COUNTER(VCPU, pf_emulate),
272 	STATS_DESC_COUNTER(VCPU, pf_spurious),
273 	STATS_DESC_COUNTER(VCPU, pf_fast),
274 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
275 	STATS_DESC_COUNTER(VCPU, pf_guest),
276 	STATS_DESC_COUNTER(VCPU, tlb_flush),
277 	STATS_DESC_COUNTER(VCPU, invlpg),
278 	STATS_DESC_COUNTER(VCPU, exits),
279 	STATS_DESC_COUNTER(VCPU, io_exits),
280 	STATS_DESC_COUNTER(VCPU, mmio_exits),
281 	STATS_DESC_COUNTER(VCPU, signal_exits),
282 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
283 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
284 	STATS_DESC_COUNTER(VCPU, l1d_flush),
285 	STATS_DESC_COUNTER(VCPU, halt_exits),
286 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
287 	STATS_DESC_COUNTER(VCPU, irq_exits),
288 	STATS_DESC_COUNTER(VCPU, host_state_reload),
289 	STATS_DESC_COUNTER(VCPU, fpu_reload),
290 	STATS_DESC_COUNTER(VCPU, insn_emulation),
291 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
292 	STATS_DESC_COUNTER(VCPU, hypercalls),
293 	STATS_DESC_COUNTER(VCPU, irq_injections),
294 	STATS_DESC_COUNTER(VCPU, nmi_injections),
295 	STATS_DESC_COUNTER(VCPU, req_event),
296 	STATS_DESC_COUNTER(VCPU, nested_run),
297 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
298 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
299 	STATS_DESC_COUNTER(VCPU, preemption_reported),
300 	STATS_DESC_COUNTER(VCPU, preemption_other),
301 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
302 };
303 
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305 	.name_size = KVM_STATS_NAME_SIZE,
306 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307 	.id_offset = sizeof(struct kvm_stats_header),
308 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310 		       sizeof(kvm_vcpu_stats_desc),
311 };
312 
313 u64 __read_mostly host_xcr0;
314 u64 __read_mostly supported_xcr0;
315 EXPORT_SYMBOL_GPL(supported_xcr0);
316 
317 static struct kmem_cache *x86_emulator_cache;
318 
319 /*
320  * When called, it means the previous get/set msr reached an invalid msr.
321  * Return true if we want to ignore/silent this failed msr access.
322  */
323 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
324 {
325 	const char *op = write ? "wrmsr" : "rdmsr";
326 
327 	if (ignore_msrs) {
328 		if (report_ignored_msrs)
329 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
330 				      op, msr, data);
331 		/* Mask the error */
332 		return true;
333 	} else {
334 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
335 				      op, msr, data);
336 		return false;
337 	}
338 }
339 
340 static struct kmem_cache *kvm_alloc_emulator_cache(void)
341 {
342 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
343 	unsigned int size = sizeof(struct x86_emulate_ctxt);
344 
345 	return kmem_cache_create_usercopy("x86_emulator", size,
346 					  __alignof__(struct x86_emulate_ctxt),
347 					  SLAB_ACCOUNT, useroffset,
348 					  size - useroffset, NULL);
349 }
350 
351 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
352 
353 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
354 {
355 	int i;
356 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
357 		vcpu->arch.apf.gfns[i] = ~0;
358 }
359 
360 static void kvm_on_user_return(struct user_return_notifier *urn)
361 {
362 	unsigned slot;
363 	struct kvm_user_return_msrs *msrs
364 		= container_of(urn, struct kvm_user_return_msrs, urn);
365 	struct kvm_user_return_msr_values *values;
366 	unsigned long flags;
367 
368 	/*
369 	 * Disabling irqs at this point since the following code could be
370 	 * interrupted and executed through kvm_arch_hardware_disable()
371 	 */
372 	local_irq_save(flags);
373 	if (msrs->registered) {
374 		msrs->registered = false;
375 		user_return_notifier_unregister(urn);
376 	}
377 	local_irq_restore(flags);
378 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
379 		values = &msrs->values[slot];
380 		if (values->host != values->curr) {
381 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
382 			values->curr = values->host;
383 		}
384 	}
385 }
386 
387 static int kvm_probe_user_return_msr(u32 msr)
388 {
389 	u64 val;
390 	int ret;
391 
392 	preempt_disable();
393 	ret = rdmsrl_safe(msr, &val);
394 	if (ret)
395 		goto out;
396 	ret = wrmsrl_safe(msr, val);
397 out:
398 	preempt_enable();
399 	return ret;
400 }
401 
402 int kvm_add_user_return_msr(u32 msr)
403 {
404 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
405 
406 	if (kvm_probe_user_return_msr(msr))
407 		return -1;
408 
409 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
410 	return kvm_nr_uret_msrs++;
411 }
412 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
413 
414 int kvm_find_user_return_msr(u32 msr)
415 {
416 	int i;
417 
418 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
419 		if (kvm_uret_msrs_list[i] == msr)
420 			return i;
421 	}
422 	return -1;
423 }
424 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
425 
426 static void kvm_user_return_msr_cpu_online(void)
427 {
428 	unsigned int cpu = smp_processor_id();
429 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
430 	u64 value;
431 	int i;
432 
433 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
434 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
435 		msrs->values[i].host = value;
436 		msrs->values[i].curr = value;
437 	}
438 }
439 
440 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
441 {
442 	unsigned int cpu = smp_processor_id();
443 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
444 	int err;
445 
446 	value = (value & mask) | (msrs->values[slot].host & ~mask);
447 	if (value == msrs->values[slot].curr)
448 		return 0;
449 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
450 	if (err)
451 		return 1;
452 
453 	msrs->values[slot].curr = value;
454 	if (!msrs->registered) {
455 		msrs->urn.on_user_return = kvm_on_user_return;
456 		user_return_notifier_register(&msrs->urn);
457 		msrs->registered = true;
458 	}
459 	return 0;
460 }
461 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
462 
463 static void drop_user_return_notifiers(void)
464 {
465 	unsigned int cpu = smp_processor_id();
466 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
467 
468 	if (msrs->registered)
469 		kvm_on_user_return(&msrs->urn);
470 }
471 
472 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
473 {
474 	return vcpu->arch.apic_base;
475 }
476 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
477 
478 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
479 {
480 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
481 }
482 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
483 
484 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
485 {
486 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
487 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
488 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
489 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
490 
491 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
492 		return 1;
493 	if (!msr_info->host_initiated) {
494 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
495 			return 1;
496 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
497 			return 1;
498 	}
499 
500 	kvm_lapic_set_base(vcpu, msr_info->data);
501 	kvm_recalculate_apic_map(vcpu->kvm);
502 	return 0;
503 }
504 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
505 
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515 	/* Fault while not rebooting.  We want the trace. */
516 	BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519 
520 #define EXCPT_BENIGN		0
521 #define EXCPT_CONTRIBUTORY	1
522 #define EXCPT_PF		2
523 
524 static int exception_class(int vector)
525 {
526 	switch (vector) {
527 	case PF_VECTOR:
528 		return EXCPT_PF;
529 	case DE_VECTOR:
530 	case TS_VECTOR:
531 	case NP_VECTOR:
532 	case SS_VECTOR:
533 	case GP_VECTOR:
534 		return EXCPT_CONTRIBUTORY;
535 	default:
536 		break;
537 	}
538 	return EXCPT_BENIGN;
539 }
540 
541 #define EXCPT_FAULT		0
542 #define EXCPT_TRAP		1
543 #define EXCPT_ABORT		2
544 #define EXCPT_INTERRUPT		3
545 
546 static int exception_type(int vector)
547 {
548 	unsigned int mask;
549 
550 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
551 		return EXCPT_INTERRUPT;
552 
553 	mask = 1 << vector;
554 
555 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
556 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
557 		return EXCPT_TRAP;
558 
559 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
560 		return EXCPT_ABORT;
561 
562 	/* Reserved exceptions will result in fault */
563 	return EXCPT_FAULT;
564 }
565 
566 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
567 {
568 	unsigned nr = vcpu->arch.exception.nr;
569 	bool has_payload = vcpu->arch.exception.has_payload;
570 	unsigned long payload = vcpu->arch.exception.payload;
571 
572 	if (!has_payload)
573 		return;
574 
575 	switch (nr) {
576 	case DB_VECTOR:
577 		/*
578 		 * "Certain debug exceptions may clear bit 0-3.  The
579 		 * remaining contents of the DR6 register are never
580 		 * cleared by the processor".
581 		 */
582 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
583 		/*
584 		 * In order to reflect the #DB exception payload in guest
585 		 * dr6, three components need to be considered: active low
586 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
587 		 * DR6_BS and DR6_BT)
588 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
589 		 * In the target guest dr6:
590 		 * FIXED_1 bits should always be set.
591 		 * Active low bits should be cleared if 1-setting in payload.
592 		 * Active high bits should be set if 1-setting in payload.
593 		 *
594 		 * Note, the payload is compatible with the pending debug
595 		 * exceptions/exit qualification under VMX, that active_low bits
596 		 * are active high in payload.
597 		 * So they need to be flipped for DR6.
598 		 */
599 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
600 		vcpu->arch.dr6 |= payload;
601 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
602 
603 		/*
604 		 * The #DB payload is defined as compatible with the 'pending
605 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
606 		 * defined in the 'pending debug exceptions' field (enabled
607 		 * breakpoint), it is reserved and must be zero in DR6.
608 		 */
609 		vcpu->arch.dr6 &= ~BIT(12);
610 		break;
611 	case PF_VECTOR:
612 		vcpu->arch.cr2 = payload;
613 		break;
614 	}
615 
616 	vcpu->arch.exception.has_payload = false;
617 	vcpu->arch.exception.payload = 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
620 
621 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
622 		unsigned nr, bool has_error, u32 error_code,
623 	        bool has_payload, unsigned long payload, bool reinject)
624 {
625 	u32 prev_nr;
626 	int class1, class2;
627 
628 	kvm_make_request(KVM_REQ_EVENT, vcpu);
629 
630 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
631 	queue:
632 		if (reinject) {
633 			/*
634 			 * On vmentry, vcpu->arch.exception.pending is only
635 			 * true if an event injection was blocked by
636 			 * nested_run_pending.  In that case, however,
637 			 * vcpu_enter_guest requests an immediate exit,
638 			 * and the guest shouldn't proceed far enough to
639 			 * need reinjection.
640 			 */
641 			WARN_ON_ONCE(vcpu->arch.exception.pending);
642 			vcpu->arch.exception.injected = true;
643 			if (WARN_ON_ONCE(has_payload)) {
644 				/*
645 				 * A reinjected event has already
646 				 * delivered its payload.
647 				 */
648 				has_payload = false;
649 				payload = 0;
650 			}
651 		} else {
652 			vcpu->arch.exception.pending = true;
653 			vcpu->arch.exception.injected = false;
654 		}
655 		vcpu->arch.exception.has_error_code = has_error;
656 		vcpu->arch.exception.nr = nr;
657 		vcpu->arch.exception.error_code = error_code;
658 		vcpu->arch.exception.has_payload = has_payload;
659 		vcpu->arch.exception.payload = payload;
660 		if (!is_guest_mode(vcpu))
661 			kvm_deliver_exception_payload(vcpu);
662 		return;
663 	}
664 
665 	/* to check exception */
666 	prev_nr = vcpu->arch.exception.nr;
667 	if (prev_nr == DF_VECTOR) {
668 		/* triple fault -> shutdown */
669 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
670 		return;
671 	}
672 	class1 = exception_class(prev_nr);
673 	class2 = exception_class(nr);
674 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
675 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
676 		/*
677 		 * Generate double fault per SDM Table 5-5.  Set
678 		 * exception.pending = true so that the double fault
679 		 * can trigger a nested vmexit.
680 		 */
681 		vcpu->arch.exception.pending = true;
682 		vcpu->arch.exception.injected = false;
683 		vcpu->arch.exception.has_error_code = true;
684 		vcpu->arch.exception.nr = DF_VECTOR;
685 		vcpu->arch.exception.error_code = 0;
686 		vcpu->arch.exception.has_payload = false;
687 		vcpu->arch.exception.payload = 0;
688 	} else
689 		/* replace previous exception with a new one in a hope
690 		   that instruction re-execution will regenerate lost
691 		   exception */
692 		goto queue;
693 }
694 
695 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
696 {
697 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
698 }
699 EXPORT_SYMBOL_GPL(kvm_queue_exception);
700 
701 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
702 {
703 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
704 }
705 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
706 
707 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
708 			   unsigned long payload)
709 {
710 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
711 }
712 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
713 
714 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
715 				    u32 error_code, unsigned long payload)
716 {
717 	kvm_multiple_exception(vcpu, nr, true, error_code,
718 			       true, payload, false);
719 }
720 
721 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
722 {
723 	if (err)
724 		kvm_inject_gp(vcpu, 0);
725 	else
726 		return kvm_skip_emulated_instruction(vcpu);
727 
728 	return 1;
729 }
730 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
731 
732 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
733 {
734 	if (err) {
735 		kvm_inject_gp(vcpu, 0);
736 		return 1;
737 	}
738 
739 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
740 				       EMULTYPE_COMPLETE_USER_EXIT);
741 }
742 
743 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
744 {
745 	++vcpu->stat.pf_guest;
746 	vcpu->arch.exception.nested_apf =
747 		is_guest_mode(vcpu) && fault->async_page_fault;
748 	if (vcpu->arch.exception.nested_apf) {
749 		vcpu->arch.apf.nested_apf_token = fault->address;
750 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
751 	} else {
752 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
753 					fault->address);
754 	}
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
757 
758 /* Returns true if the page fault was immediately morphed into a VM-Exit. */
759 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
760 				    struct x86_exception *fault)
761 {
762 	struct kvm_mmu *fault_mmu;
763 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
764 
765 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
766 					       vcpu->arch.walk_mmu;
767 
768 	/*
769 	 * Invalidate the TLB entry for the faulting address, if it exists,
770 	 * else the access will fault indefinitely (and to emulate hardware).
771 	 */
772 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
773 	    !(fault->error_code & PFERR_RSVD_MASK))
774 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
775 				       fault_mmu->root.hpa);
776 
777 	/*
778 	 * A workaround for KVM's bad exception handling.  If KVM injected an
779 	 * exception into L2, and L2 encountered a #PF while vectoring the
780 	 * injected exception, manually check to see if L1 wants to intercept
781 	 * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
782 	 * In all other cases, defer the check to nested_ops->check_events(),
783 	 * which will correctly handle priority (this does not).  Note, other
784 	 * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
785 	 * most problematic, e.g. when L0 and L1 are both intercepting #PF for
786 	 * shadow paging.
787 	 *
788 	 * TODO: Rewrite exception handling to track injected and pending
789 	 *       (VM-Exit) exceptions separately.
790 	 */
791 	if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
792 	    kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
793 		return true;
794 
795 	fault_mmu->inject_page_fault(vcpu, fault);
796 	return false;
797 }
798 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
799 
800 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
801 {
802 	atomic_inc(&vcpu->arch.nmi_queued);
803 	kvm_make_request(KVM_REQ_NMI, vcpu);
804 }
805 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
806 
807 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
808 {
809 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
810 }
811 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
812 
813 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
814 {
815 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
816 }
817 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
818 
819 /*
820  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
821  * a #GP and return false.
822  */
823 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
824 {
825 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
826 		return true;
827 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
828 	return false;
829 }
830 EXPORT_SYMBOL_GPL(kvm_require_cpl);
831 
832 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
833 {
834 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
835 		return true;
836 
837 	kvm_queue_exception(vcpu, UD_VECTOR);
838 	return false;
839 }
840 EXPORT_SYMBOL_GPL(kvm_require_dr);
841 
842 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
843 {
844 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
845 }
846 
847 /*
848  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
849  */
850 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
851 {
852 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
853 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
854 	gpa_t real_gpa;
855 	int i;
856 	int ret;
857 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
858 
859 	/*
860 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
861 	 * to an L1 GPA.
862 	 */
863 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
864 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
865 	if (real_gpa == UNMAPPED_GVA)
866 		return 0;
867 
868 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
869 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
870 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
871 	if (ret < 0)
872 		return 0;
873 
874 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
875 		if ((pdpte[i] & PT_PRESENT_MASK) &&
876 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
877 			return 0;
878 		}
879 	}
880 
881 	/*
882 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
883 	 * Shadow page roots need to be reconstructed instead.
884 	 */
885 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
886 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
887 
888 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
889 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
890 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
891 	vcpu->arch.pdptrs_from_userspace = false;
892 
893 	return 1;
894 }
895 EXPORT_SYMBOL_GPL(load_pdptrs);
896 
897 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
898 {
899 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
900 		kvm_clear_async_pf_completion_queue(vcpu);
901 		kvm_async_pf_hash_reset(vcpu);
902 
903 		/*
904 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
905 		 * perspective.
906 		 */
907 		if (!(cr0 & X86_CR0_PG))
908 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
909 	}
910 
911 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
912 		kvm_mmu_reset_context(vcpu);
913 
914 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
915 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
916 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
917 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
918 }
919 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
920 
921 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
922 {
923 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
924 
925 	cr0 |= X86_CR0_ET;
926 
927 #ifdef CONFIG_X86_64
928 	if (cr0 & 0xffffffff00000000UL)
929 		return 1;
930 #endif
931 
932 	cr0 &= ~CR0_RESERVED_BITS;
933 
934 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
935 		return 1;
936 
937 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
938 		return 1;
939 
940 #ifdef CONFIG_X86_64
941 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
942 	    (cr0 & X86_CR0_PG)) {
943 		int cs_db, cs_l;
944 
945 		if (!is_pae(vcpu))
946 			return 1;
947 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
948 		if (cs_l)
949 			return 1;
950 	}
951 #endif
952 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
953 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
954 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
955 		return 1;
956 
957 	if (!(cr0 & X86_CR0_PG) &&
958 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
959 		return 1;
960 
961 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
962 
963 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
964 
965 	return 0;
966 }
967 EXPORT_SYMBOL_GPL(kvm_set_cr0);
968 
969 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
970 {
971 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
972 }
973 EXPORT_SYMBOL_GPL(kvm_lmsw);
974 
975 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
976 {
977 	if (vcpu->arch.guest_state_protected)
978 		return;
979 
980 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
981 
982 		if (vcpu->arch.xcr0 != host_xcr0)
983 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
984 
985 		if (vcpu->arch.xsaves_enabled &&
986 		    vcpu->arch.ia32_xss != host_xss)
987 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
988 	}
989 
990 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
991 	if (static_cpu_has(X86_FEATURE_PKU) &&
992 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
993 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
994 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
995 		write_pkru(vcpu->arch.pkru);
996 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
997 }
998 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
999 
1000 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1001 {
1002 	if (vcpu->arch.guest_state_protected)
1003 		return;
1004 
1005 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1006 	if (static_cpu_has(X86_FEATURE_PKU) &&
1007 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1008 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1009 		vcpu->arch.pkru = rdpkru();
1010 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1011 			write_pkru(vcpu->arch.host_pkru);
1012 	}
1013 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1014 
1015 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1016 
1017 		if (vcpu->arch.xcr0 != host_xcr0)
1018 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1019 
1020 		if (vcpu->arch.xsaves_enabled &&
1021 		    vcpu->arch.ia32_xss != host_xss)
1022 			wrmsrl(MSR_IA32_XSS, host_xss);
1023 	}
1024 
1025 }
1026 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1027 
1028 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
1029 {
1030 	return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1031 }
1032 
1033 #ifdef CONFIG_X86_64
1034 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1035 {
1036 	return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1037 }
1038 #endif
1039 
1040 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1041 {
1042 	u64 xcr0 = xcr;
1043 	u64 old_xcr0 = vcpu->arch.xcr0;
1044 	u64 valid_bits;
1045 
1046 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1047 	if (index != XCR_XFEATURE_ENABLED_MASK)
1048 		return 1;
1049 	if (!(xcr0 & XFEATURE_MASK_FP))
1050 		return 1;
1051 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1052 		return 1;
1053 
1054 	/*
1055 	 * Do not allow the guest to set bits that we do not support
1056 	 * saving.  However, xcr0 bit 0 is always set, even if the
1057 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1058 	 */
1059 	valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1060 	if (xcr0 & ~valid_bits)
1061 		return 1;
1062 
1063 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1064 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1065 		return 1;
1066 
1067 	if (xcr0 & XFEATURE_MASK_AVX512) {
1068 		if (!(xcr0 & XFEATURE_MASK_YMM))
1069 			return 1;
1070 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1071 			return 1;
1072 	}
1073 
1074 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1075 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1076 		return 1;
1077 
1078 	vcpu->arch.xcr0 = xcr0;
1079 
1080 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1081 		kvm_update_cpuid_runtime(vcpu);
1082 	return 0;
1083 }
1084 
1085 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1086 {
1087 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1088 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1089 		kvm_inject_gp(vcpu, 0);
1090 		return 1;
1091 	}
1092 
1093 	return kvm_skip_emulated_instruction(vcpu);
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1096 
1097 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1098 {
1099 	if (cr4 & cr4_reserved_bits)
1100 		return false;
1101 
1102 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1103 		return false;
1104 
1105 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1108 
1109 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1110 {
1111 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1112 		kvm_mmu_reset_context(vcpu);
1113 
1114 	/*
1115 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1116 	 * according to the SDM; however, stale prev_roots could be reused
1117 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1118 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1119 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1120 	 * so fall through.
1121 	 */
1122 	if (!tdp_enabled &&
1123 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1124 		kvm_mmu_unload(vcpu);
1125 
1126 	/*
1127 	 * The TLB has to be flushed for all PCIDs if any of the following
1128 	 * (architecturally required) changes happen:
1129 	 * - CR4.PCIDE is changed from 1 to 0
1130 	 * - CR4.PGE is toggled
1131 	 *
1132 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1133 	 */
1134 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1135 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1136 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1137 
1138 	/*
1139 	 * The TLB has to be flushed for the current PCID if any of the
1140 	 * following (architecturally required) changes happen:
1141 	 * - CR4.SMEP is changed from 0 to 1
1142 	 * - CR4.PAE is toggled
1143 	 */
1144 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1145 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1146 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1147 
1148 }
1149 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1150 
1151 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1152 {
1153 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1154 
1155 	if (!kvm_is_valid_cr4(vcpu, cr4))
1156 		return 1;
1157 
1158 	if (is_long_mode(vcpu)) {
1159 		if (!(cr4 & X86_CR4_PAE))
1160 			return 1;
1161 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1162 			return 1;
1163 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1164 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1165 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1166 		return 1;
1167 
1168 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1169 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1170 			return 1;
1171 
1172 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1173 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1174 			return 1;
1175 	}
1176 
1177 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1178 
1179 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1180 
1181 	return 0;
1182 }
1183 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1184 
1185 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1186 {
1187 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1188 	unsigned long roots_to_free = 0;
1189 	int i;
1190 
1191 	/*
1192 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1193 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1194 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1195 	 * the invalidation, but the guest's TLB entries need to be flushed as
1196 	 * the CPU may have cached entries in its TLB for the target PCID.
1197 	 */
1198 	if (unlikely(tdp_enabled)) {
1199 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1200 		return;
1201 	}
1202 
1203 	/*
1204 	 * If neither the current CR3 nor any of the prev_roots use the given
1205 	 * PCID, then nothing needs to be done here because a resync will
1206 	 * happen anyway before switching to any other CR3.
1207 	 */
1208 	if (kvm_get_active_pcid(vcpu) == pcid) {
1209 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1210 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1211 	}
1212 
1213 	/*
1214 	 * If PCID is disabled, there is no need to free prev_roots even if the
1215 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1216 	 * with PCIDE=0.
1217 	 */
1218 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1219 		return;
1220 
1221 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1222 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1223 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1224 
1225 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1226 }
1227 
1228 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1229 {
1230 	bool skip_tlb_flush = false;
1231 	unsigned long pcid = 0;
1232 #ifdef CONFIG_X86_64
1233 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1234 
1235 	if (pcid_enabled) {
1236 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1237 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1238 		pcid = cr3 & X86_CR3_PCID_MASK;
1239 	}
1240 #endif
1241 
1242 	/* PDPTRs are always reloaded for PAE paging. */
1243 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1244 		goto handle_tlb_flush;
1245 
1246 	/*
1247 	 * Do not condition the GPA check on long mode, this helper is used to
1248 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1249 	 * the current vCPU mode is accurate.
1250 	 */
1251 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1252 		return 1;
1253 
1254 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1255 		return 1;
1256 
1257 	if (cr3 != kvm_read_cr3(vcpu))
1258 		kvm_mmu_new_pgd(vcpu, cr3);
1259 
1260 	vcpu->arch.cr3 = cr3;
1261 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1262 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1263 
1264 handle_tlb_flush:
1265 	/*
1266 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1267 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1268 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1269 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1270 	 * i.e. only PCID=0 can be relevant.
1271 	 */
1272 	if (!skip_tlb_flush)
1273 		kvm_invalidate_pcid(vcpu, pcid);
1274 
1275 	return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1278 
1279 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1280 {
1281 	if (cr8 & CR8_RESERVED_BITS)
1282 		return 1;
1283 	if (lapic_in_kernel(vcpu))
1284 		kvm_lapic_set_tpr(vcpu, cr8);
1285 	else
1286 		vcpu->arch.cr8 = cr8;
1287 	return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1290 
1291 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1292 {
1293 	if (lapic_in_kernel(vcpu))
1294 		return kvm_lapic_get_cr8(vcpu);
1295 	else
1296 		return vcpu->arch.cr8;
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1299 
1300 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1301 {
1302 	int i;
1303 
1304 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1305 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1306 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1307 	}
1308 }
1309 
1310 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1311 {
1312 	unsigned long dr7;
1313 
1314 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1315 		dr7 = vcpu->arch.guest_debug_dr7;
1316 	else
1317 		dr7 = vcpu->arch.dr7;
1318 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1319 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1320 	if (dr7 & DR7_BP_EN_MASK)
1321 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1324 
1325 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1326 {
1327 	u64 fixed = DR6_FIXED_1;
1328 
1329 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1330 		fixed |= DR6_RTM;
1331 
1332 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1333 		fixed |= DR6_BUS_LOCK;
1334 	return fixed;
1335 }
1336 
1337 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1338 {
1339 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1340 
1341 	switch (dr) {
1342 	case 0 ... 3:
1343 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1344 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1345 			vcpu->arch.eff_db[dr] = val;
1346 		break;
1347 	case 4:
1348 	case 6:
1349 		if (!kvm_dr6_valid(val))
1350 			return 1; /* #GP */
1351 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1352 		break;
1353 	case 5:
1354 	default: /* 7 */
1355 		if (!kvm_dr7_valid(val))
1356 			return 1; /* #GP */
1357 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1358 		kvm_update_dr7(vcpu);
1359 		break;
1360 	}
1361 
1362 	return 0;
1363 }
1364 EXPORT_SYMBOL_GPL(kvm_set_dr);
1365 
1366 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1367 {
1368 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1369 
1370 	switch (dr) {
1371 	case 0 ... 3:
1372 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1373 		break;
1374 	case 4:
1375 	case 6:
1376 		*val = vcpu->arch.dr6;
1377 		break;
1378 	case 5:
1379 	default: /* 7 */
1380 		*val = vcpu->arch.dr7;
1381 		break;
1382 	}
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_get_dr);
1385 
1386 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1387 {
1388 	u32 ecx = kvm_rcx_read(vcpu);
1389 	u64 data;
1390 
1391 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1392 		kvm_inject_gp(vcpu, 0);
1393 		return 1;
1394 	}
1395 
1396 	kvm_rax_write(vcpu, (u32)data);
1397 	kvm_rdx_write(vcpu, data >> 32);
1398 	return kvm_skip_emulated_instruction(vcpu);
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1401 
1402 /*
1403  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1404  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1405  *
1406  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1407  * extract the supported MSRs from the related const lists.
1408  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1409  * capabilities of the host cpu. This capabilities test skips MSRs that are
1410  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1411  * may depend on host virtualization features rather than host cpu features.
1412  */
1413 
1414 static const u32 msrs_to_save_all[] = {
1415 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1416 	MSR_STAR,
1417 #ifdef CONFIG_X86_64
1418 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1419 #endif
1420 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1421 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1422 	MSR_IA32_SPEC_CTRL,
1423 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1424 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1425 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1426 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1427 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1428 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1429 	MSR_IA32_UMWAIT_CONTROL,
1430 
1431 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1432 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1433 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1434 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1435 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1436 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1437 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1438 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1439 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1440 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1441 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1442 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1443 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1444 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1445 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1446 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1447 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1448 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1449 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1450 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1451 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1452 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1453 
1454 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1455 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1456 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1457 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1458 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1459 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1460 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1461 };
1462 
1463 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1464 static unsigned num_msrs_to_save;
1465 
1466 static const u32 emulated_msrs_all[] = {
1467 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1468 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1469 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1470 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1471 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1472 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1473 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1474 	HV_X64_MSR_RESET,
1475 	HV_X64_MSR_VP_INDEX,
1476 	HV_X64_MSR_VP_RUNTIME,
1477 	HV_X64_MSR_SCONTROL,
1478 	HV_X64_MSR_STIMER0_CONFIG,
1479 	HV_X64_MSR_VP_ASSIST_PAGE,
1480 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1481 	HV_X64_MSR_TSC_EMULATION_STATUS,
1482 	HV_X64_MSR_SYNDBG_OPTIONS,
1483 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1484 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1485 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1486 
1487 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1488 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1489 
1490 	MSR_IA32_TSC_ADJUST,
1491 	MSR_IA32_TSC_DEADLINE,
1492 	MSR_IA32_ARCH_CAPABILITIES,
1493 	MSR_IA32_PERF_CAPABILITIES,
1494 	MSR_IA32_MISC_ENABLE,
1495 	MSR_IA32_MCG_STATUS,
1496 	MSR_IA32_MCG_CTL,
1497 	MSR_IA32_MCG_EXT_CTL,
1498 	MSR_IA32_SMBASE,
1499 	MSR_SMI_COUNT,
1500 	MSR_PLATFORM_INFO,
1501 	MSR_MISC_FEATURES_ENABLES,
1502 	MSR_AMD64_VIRT_SPEC_CTRL,
1503 	MSR_AMD64_TSC_RATIO,
1504 	MSR_IA32_POWER_CTL,
1505 	MSR_IA32_UCODE_REV,
1506 
1507 	/*
1508 	 * The following list leaves out MSRs whose values are determined
1509 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1510 	 * We always support the "true" VMX control MSRs, even if the host
1511 	 * processor does not, so I am putting these registers here rather
1512 	 * than in msrs_to_save_all.
1513 	 */
1514 	MSR_IA32_VMX_BASIC,
1515 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1516 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1517 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1518 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1519 	MSR_IA32_VMX_MISC,
1520 	MSR_IA32_VMX_CR0_FIXED0,
1521 	MSR_IA32_VMX_CR4_FIXED0,
1522 	MSR_IA32_VMX_VMCS_ENUM,
1523 	MSR_IA32_VMX_PROCBASED_CTLS2,
1524 	MSR_IA32_VMX_EPT_VPID_CAP,
1525 	MSR_IA32_VMX_VMFUNC,
1526 
1527 	MSR_K7_HWCR,
1528 	MSR_KVM_POLL_CONTROL,
1529 };
1530 
1531 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1532 static unsigned num_emulated_msrs;
1533 
1534 /*
1535  * List of msr numbers which are used to expose MSR-based features that
1536  * can be used by a hypervisor to validate requested CPU features.
1537  */
1538 static const u32 msr_based_features_all[] = {
1539 	MSR_IA32_VMX_BASIC,
1540 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1541 	MSR_IA32_VMX_PINBASED_CTLS,
1542 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1543 	MSR_IA32_VMX_PROCBASED_CTLS,
1544 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1545 	MSR_IA32_VMX_EXIT_CTLS,
1546 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1547 	MSR_IA32_VMX_ENTRY_CTLS,
1548 	MSR_IA32_VMX_MISC,
1549 	MSR_IA32_VMX_CR0_FIXED0,
1550 	MSR_IA32_VMX_CR0_FIXED1,
1551 	MSR_IA32_VMX_CR4_FIXED0,
1552 	MSR_IA32_VMX_CR4_FIXED1,
1553 	MSR_IA32_VMX_VMCS_ENUM,
1554 	MSR_IA32_VMX_PROCBASED_CTLS2,
1555 	MSR_IA32_VMX_EPT_VPID_CAP,
1556 	MSR_IA32_VMX_VMFUNC,
1557 
1558 	MSR_F10H_DECFG,
1559 	MSR_IA32_UCODE_REV,
1560 	MSR_IA32_ARCH_CAPABILITIES,
1561 	MSR_IA32_PERF_CAPABILITIES,
1562 };
1563 
1564 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1565 static unsigned int num_msr_based_features;
1566 
1567 static u64 kvm_get_arch_capabilities(void)
1568 {
1569 	u64 data = 0;
1570 
1571 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1572 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1573 
1574 	/*
1575 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1576 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1577 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1578 	 * L1 guests, so it need not worry about its own (L2) guests.
1579 	 */
1580 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1581 
1582 	/*
1583 	 * If we're doing cache flushes (either "always" or "cond")
1584 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1585 	 * If an outer hypervisor is doing the cache flush for us
1586 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1587 	 * capability to the guest too, and if EPT is disabled we're not
1588 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1589 	 * require a nested hypervisor to do a flush of its own.
1590 	 */
1591 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1592 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1593 
1594 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1595 		data |= ARCH_CAP_RDCL_NO;
1596 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1597 		data |= ARCH_CAP_SSB_NO;
1598 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1599 		data |= ARCH_CAP_MDS_NO;
1600 
1601 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1602 		/*
1603 		 * If RTM=0 because the kernel has disabled TSX, the host might
1604 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1605 		 * and therefore knows that there cannot be TAA) but keep
1606 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1607 		 * and we want to allow migrating those guests to tsx=off hosts.
1608 		 */
1609 		data &= ~ARCH_CAP_TAA_NO;
1610 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1611 		data |= ARCH_CAP_TAA_NO;
1612 	} else {
1613 		/*
1614 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1615 		 * host so the guest can choose between disabling TSX or
1616 		 * using VERW to clear CPU buffers.
1617 		 */
1618 	}
1619 
1620 	/* Guests don't need to know "Fill buffer clear control" exists */
1621 	data &= ~ARCH_CAP_FB_CLEAR_CTRL;
1622 
1623 	return data;
1624 }
1625 
1626 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1627 {
1628 	switch (msr->index) {
1629 	case MSR_IA32_ARCH_CAPABILITIES:
1630 		msr->data = kvm_get_arch_capabilities();
1631 		break;
1632 	case MSR_IA32_UCODE_REV:
1633 		rdmsrl_safe(msr->index, &msr->data);
1634 		break;
1635 	default:
1636 		return static_call(kvm_x86_get_msr_feature)(msr);
1637 	}
1638 	return 0;
1639 }
1640 
1641 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1642 {
1643 	struct kvm_msr_entry msr;
1644 	int r;
1645 
1646 	msr.index = index;
1647 	r = kvm_get_msr_feature(&msr);
1648 
1649 	if (r == KVM_MSR_RET_INVALID) {
1650 		/* Unconditionally clear the output for simplicity */
1651 		*data = 0;
1652 		if (kvm_msr_ignored_check(index, 0, false))
1653 			r = 0;
1654 	}
1655 
1656 	if (r)
1657 		return r;
1658 
1659 	*data = msr.data;
1660 
1661 	return 0;
1662 }
1663 
1664 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1665 {
1666 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1667 		return false;
1668 
1669 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1670 		return false;
1671 
1672 	if (efer & (EFER_LME | EFER_LMA) &&
1673 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1674 		return false;
1675 
1676 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1677 		return false;
1678 
1679 	return true;
1680 
1681 }
1682 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1683 {
1684 	if (efer & efer_reserved_bits)
1685 		return false;
1686 
1687 	return __kvm_valid_efer(vcpu, efer);
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1690 
1691 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1692 {
1693 	u64 old_efer = vcpu->arch.efer;
1694 	u64 efer = msr_info->data;
1695 	int r;
1696 
1697 	if (efer & efer_reserved_bits)
1698 		return 1;
1699 
1700 	if (!msr_info->host_initiated) {
1701 		if (!__kvm_valid_efer(vcpu, efer))
1702 			return 1;
1703 
1704 		if (is_paging(vcpu) &&
1705 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1706 			return 1;
1707 	}
1708 
1709 	efer &= ~EFER_LMA;
1710 	efer |= vcpu->arch.efer & EFER_LMA;
1711 
1712 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1713 	if (r) {
1714 		WARN_ON(r > 0);
1715 		return r;
1716 	}
1717 
1718 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1719 		kvm_mmu_reset_context(vcpu);
1720 
1721 	return 0;
1722 }
1723 
1724 void kvm_enable_efer_bits(u64 mask)
1725 {
1726        efer_reserved_bits &= ~mask;
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1729 
1730 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1731 {
1732 	struct kvm_x86_msr_filter *msr_filter;
1733 	struct msr_bitmap_range *ranges;
1734 	struct kvm *kvm = vcpu->kvm;
1735 	bool allowed;
1736 	int idx;
1737 	u32 i;
1738 
1739 	/* x2APIC MSRs do not support filtering. */
1740 	if (index >= 0x800 && index <= 0x8ff)
1741 		return true;
1742 
1743 	idx = srcu_read_lock(&kvm->srcu);
1744 
1745 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1746 	if (!msr_filter) {
1747 		allowed = true;
1748 		goto out;
1749 	}
1750 
1751 	allowed = msr_filter->default_allow;
1752 	ranges = msr_filter->ranges;
1753 
1754 	for (i = 0; i < msr_filter->count; i++) {
1755 		u32 start = ranges[i].base;
1756 		u32 end = start + ranges[i].nmsrs;
1757 		u32 flags = ranges[i].flags;
1758 		unsigned long *bitmap = ranges[i].bitmap;
1759 
1760 		if ((index >= start) && (index < end) && (flags & type)) {
1761 			allowed = !!test_bit(index - start, bitmap);
1762 			break;
1763 		}
1764 	}
1765 
1766 out:
1767 	srcu_read_unlock(&kvm->srcu, idx);
1768 
1769 	return allowed;
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1772 
1773 /*
1774  * Write @data into the MSR specified by @index.  Select MSR specific fault
1775  * checks are bypassed if @host_initiated is %true.
1776  * Returns 0 on success, non-0 otherwise.
1777  * Assumes vcpu_load() was already called.
1778  */
1779 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1780 			 bool host_initiated)
1781 {
1782 	struct msr_data msr;
1783 
1784 	switch (index) {
1785 	case MSR_FS_BASE:
1786 	case MSR_GS_BASE:
1787 	case MSR_KERNEL_GS_BASE:
1788 	case MSR_CSTAR:
1789 	case MSR_LSTAR:
1790 		if (is_noncanonical_address(data, vcpu))
1791 			return 1;
1792 		break;
1793 	case MSR_IA32_SYSENTER_EIP:
1794 	case MSR_IA32_SYSENTER_ESP:
1795 		/*
1796 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1797 		 * non-canonical address is written on Intel but not on
1798 		 * AMD (which ignores the top 32-bits, because it does
1799 		 * not implement 64-bit SYSENTER).
1800 		 *
1801 		 * 64-bit code should hence be able to write a non-canonical
1802 		 * value on AMD.  Making the address canonical ensures that
1803 		 * vmentry does not fail on Intel after writing a non-canonical
1804 		 * value, and that something deterministic happens if the guest
1805 		 * invokes 64-bit SYSENTER.
1806 		 */
1807 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1808 		break;
1809 	case MSR_TSC_AUX:
1810 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1811 			return 1;
1812 
1813 		if (!host_initiated &&
1814 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1815 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1816 			return 1;
1817 
1818 		/*
1819 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1820 		 * incomplete and conflicting architectural behavior.  Current
1821 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1822 		 * reserved and always read as zeros.  Enforce Intel's reserved
1823 		 * bits check if and only if the guest CPU is Intel, and clear
1824 		 * the bits in all other cases.  This ensures cross-vendor
1825 		 * migration will provide consistent behavior for the guest.
1826 		 */
1827 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1828 			return 1;
1829 
1830 		data = (u32)data;
1831 		break;
1832 	}
1833 
1834 	msr.data = data;
1835 	msr.index = index;
1836 	msr.host_initiated = host_initiated;
1837 
1838 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1839 }
1840 
1841 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1842 				     u32 index, u64 data, bool host_initiated)
1843 {
1844 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1845 
1846 	if (ret == KVM_MSR_RET_INVALID)
1847 		if (kvm_msr_ignored_check(index, data, true))
1848 			ret = 0;
1849 
1850 	return ret;
1851 }
1852 
1853 /*
1854  * Read the MSR specified by @index into @data.  Select MSR specific fault
1855  * checks are bypassed if @host_initiated is %true.
1856  * Returns 0 on success, non-0 otherwise.
1857  * Assumes vcpu_load() was already called.
1858  */
1859 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1860 		  bool host_initiated)
1861 {
1862 	struct msr_data msr;
1863 	int ret;
1864 
1865 	switch (index) {
1866 	case MSR_TSC_AUX:
1867 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1868 			return 1;
1869 
1870 		if (!host_initiated &&
1871 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1872 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1873 			return 1;
1874 		break;
1875 	}
1876 
1877 	msr.index = index;
1878 	msr.host_initiated = host_initiated;
1879 
1880 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1881 	if (!ret)
1882 		*data = msr.data;
1883 	return ret;
1884 }
1885 
1886 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1887 				     u32 index, u64 *data, bool host_initiated)
1888 {
1889 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1890 
1891 	if (ret == KVM_MSR_RET_INVALID) {
1892 		/* Unconditionally clear *data for simplicity */
1893 		*data = 0;
1894 		if (kvm_msr_ignored_check(index, 0, false))
1895 			ret = 0;
1896 	}
1897 
1898 	return ret;
1899 }
1900 
1901 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1902 {
1903 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1904 		return KVM_MSR_RET_FILTERED;
1905 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1906 }
1907 
1908 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1909 {
1910 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1911 		return KVM_MSR_RET_FILTERED;
1912 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1913 }
1914 
1915 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1916 {
1917 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1918 }
1919 EXPORT_SYMBOL_GPL(kvm_get_msr);
1920 
1921 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1922 {
1923 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1924 }
1925 EXPORT_SYMBOL_GPL(kvm_set_msr);
1926 
1927 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1928 {
1929 	if (!vcpu->run->msr.error) {
1930 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1931 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1932 	}
1933 }
1934 
1935 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1936 {
1937 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1938 }
1939 
1940 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1941 {
1942 	complete_userspace_rdmsr(vcpu);
1943 	return complete_emulated_msr_access(vcpu);
1944 }
1945 
1946 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1947 {
1948 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1949 }
1950 
1951 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1952 {
1953 	complete_userspace_rdmsr(vcpu);
1954 	return complete_fast_msr_access(vcpu);
1955 }
1956 
1957 static u64 kvm_msr_reason(int r)
1958 {
1959 	switch (r) {
1960 	case KVM_MSR_RET_INVALID:
1961 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1962 	case KVM_MSR_RET_FILTERED:
1963 		return KVM_MSR_EXIT_REASON_FILTER;
1964 	default:
1965 		return KVM_MSR_EXIT_REASON_INVAL;
1966 	}
1967 }
1968 
1969 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1970 			      u32 exit_reason, u64 data,
1971 			      int (*completion)(struct kvm_vcpu *vcpu),
1972 			      int r)
1973 {
1974 	u64 msr_reason = kvm_msr_reason(r);
1975 
1976 	/* Check if the user wanted to know about this MSR fault */
1977 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1978 		return 0;
1979 
1980 	vcpu->run->exit_reason = exit_reason;
1981 	vcpu->run->msr.error = 0;
1982 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1983 	vcpu->run->msr.reason = msr_reason;
1984 	vcpu->run->msr.index = index;
1985 	vcpu->run->msr.data = data;
1986 	vcpu->arch.complete_userspace_io = completion;
1987 
1988 	return 1;
1989 }
1990 
1991 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1992 {
1993 	u32 ecx = kvm_rcx_read(vcpu);
1994 	u64 data;
1995 	int r;
1996 
1997 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
1998 
1999 	if (!r) {
2000 		trace_kvm_msr_read(ecx, data);
2001 
2002 		kvm_rax_write(vcpu, data & -1u);
2003 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2004 	} else {
2005 		/* MSR read failed? See if we should ask user space */
2006 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2007 				       complete_fast_rdmsr, r))
2008 			return 0;
2009 		trace_kvm_msr_read_ex(ecx);
2010 	}
2011 
2012 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2013 }
2014 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2015 
2016 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2017 {
2018 	u32 ecx = kvm_rcx_read(vcpu);
2019 	u64 data = kvm_read_edx_eax(vcpu);
2020 	int r;
2021 
2022 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2023 
2024 	if (!r) {
2025 		trace_kvm_msr_write(ecx, data);
2026 	} else {
2027 		/* MSR write failed? See if we should ask user space */
2028 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2029 				       complete_fast_msr_access, r))
2030 			return 0;
2031 		/* Signal all other negative errors to userspace */
2032 		if (r < 0)
2033 			return r;
2034 		trace_kvm_msr_write_ex(ecx, data);
2035 	}
2036 
2037 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2038 }
2039 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2040 
2041 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2042 {
2043 	return kvm_skip_emulated_instruction(vcpu);
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2046 
2047 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2048 {
2049 	/* Treat an INVD instruction as a NOP and just skip it. */
2050 	return kvm_emulate_as_nop(vcpu);
2051 }
2052 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2053 
2054 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2055 {
2056 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
2057 	return kvm_emulate_as_nop(vcpu);
2058 }
2059 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2060 
2061 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2062 {
2063 	kvm_queue_exception(vcpu, UD_VECTOR);
2064 	return 1;
2065 }
2066 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2067 
2068 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2069 {
2070 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2071 	return kvm_emulate_as_nop(vcpu);
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2074 
2075 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2076 {
2077 	xfer_to_guest_mode_prepare();
2078 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2079 		xfer_to_guest_mode_work_pending();
2080 }
2081 
2082 /*
2083  * The fast path for frequent and performance sensitive wrmsr emulation,
2084  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2085  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2086  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2087  * other cases which must be called after interrupts are enabled on the host.
2088  */
2089 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2090 {
2091 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2092 		return 1;
2093 
2094 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2095 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2096 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2097 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2098 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2099 
2100 	return 1;
2101 }
2102 
2103 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2104 {
2105 	if (!kvm_can_use_hv_timer(vcpu))
2106 		return 1;
2107 
2108 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2109 	return 0;
2110 }
2111 
2112 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2113 {
2114 	u32 msr = kvm_rcx_read(vcpu);
2115 	u64 data;
2116 	fastpath_t ret = EXIT_FASTPATH_NONE;
2117 
2118 	switch (msr) {
2119 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2120 		data = kvm_read_edx_eax(vcpu);
2121 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2122 			kvm_skip_emulated_instruction(vcpu);
2123 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2124 		}
2125 		break;
2126 	case MSR_IA32_TSC_DEADLINE:
2127 		data = kvm_read_edx_eax(vcpu);
2128 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2129 			kvm_skip_emulated_instruction(vcpu);
2130 			ret = EXIT_FASTPATH_REENTER_GUEST;
2131 		}
2132 		break;
2133 	default:
2134 		break;
2135 	}
2136 
2137 	if (ret != EXIT_FASTPATH_NONE)
2138 		trace_kvm_msr_write(msr, data);
2139 
2140 	return ret;
2141 }
2142 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2143 
2144 /*
2145  * Adapt set_msr() to msr_io()'s calling convention
2146  */
2147 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2148 {
2149 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2150 }
2151 
2152 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2153 {
2154 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2155 }
2156 
2157 #ifdef CONFIG_X86_64
2158 struct pvclock_clock {
2159 	int vclock_mode;
2160 	u64 cycle_last;
2161 	u64 mask;
2162 	u32 mult;
2163 	u32 shift;
2164 	u64 base_cycles;
2165 	u64 offset;
2166 };
2167 
2168 struct pvclock_gtod_data {
2169 	seqcount_t	seq;
2170 
2171 	struct pvclock_clock clock; /* extract of a clocksource struct */
2172 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2173 
2174 	ktime_t		offs_boot;
2175 	u64		wall_time_sec;
2176 };
2177 
2178 static struct pvclock_gtod_data pvclock_gtod_data;
2179 
2180 static void update_pvclock_gtod(struct timekeeper *tk)
2181 {
2182 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2183 
2184 	write_seqcount_begin(&vdata->seq);
2185 
2186 	/* copy pvclock gtod data */
2187 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2188 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2189 	vdata->clock.mask		= tk->tkr_mono.mask;
2190 	vdata->clock.mult		= tk->tkr_mono.mult;
2191 	vdata->clock.shift		= tk->tkr_mono.shift;
2192 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2193 	vdata->clock.offset		= tk->tkr_mono.base;
2194 
2195 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2196 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2197 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2198 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2199 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2200 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2201 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2202 
2203 	vdata->wall_time_sec            = tk->xtime_sec;
2204 
2205 	vdata->offs_boot		= tk->offs_boot;
2206 
2207 	write_seqcount_end(&vdata->seq);
2208 }
2209 
2210 static s64 get_kvmclock_base_ns(void)
2211 {
2212 	/* Count up from boot time, but with the frequency of the raw clock.  */
2213 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2214 }
2215 #else
2216 static s64 get_kvmclock_base_ns(void)
2217 {
2218 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2219 	return ktime_get_boottime_ns();
2220 }
2221 #endif
2222 
2223 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2224 {
2225 	int version;
2226 	int r;
2227 	struct pvclock_wall_clock wc;
2228 	u32 wc_sec_hi;
2229 	u64 wall_nsec;
2230 
2231 	if (!wall_clock)
2232 		return;
2233 
2234 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2235 	if (r)
2236 		return;
2237 
2238 	if (version & 1)
2239 		++version;  /* first time write, random junk */
2240 
2241 	++version;
2242 
2243 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2244 		return;
2245 
2246 	/*
2247 	 * The guest calculates current wall clock time by adding
2248 	 * system time (updated by kvm_guest_time_update below) to the
2249 	 * wall clock specified here.  We do the reverse here.
2250 	 */
2251 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2252 
2253 	wc.nsec = do_div(wall_nsec, 1000000000);
2254 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2255 	wc.version = version;
2256 
2257 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2258 
2259 	if (sec_hi_ofs) {
2260 		wc_sec_hi = wall_nsec >> 32;
2261 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2262 				&wc_sec_hi, sizeof(wc_sec_hi));
2263 	}
2264 
2265 	version++;
2266 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2267 }
2268 
2269 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2270 				  bool old_msr, bool host_initiated)
2271 {
2272 	struct kvm_arch *ka = &vcpu->kvm->arch;
2273 
2274 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2275 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2276 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2277 
2278 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2279 	}
2280 
2281 	vcpu->arch.time = system_time;
2282 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2283 
2284 	/* we verify if the enable bit is set... */
2285 	if (system_time & 1) {
2286 		kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2287 					  KVM_HOST_USES_PFN, system_time & ~1ULL,
2288 					  sizeof(struct pvclock_vcpu_time_info));
2289 	} else {
2290 		kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2291 	}
2292 
2293 	return;
2294 }
2295 
2296 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2297 {
2298 	do_shl32_div32(dividend, divisor);
2299 	return dividend;
2300 }
2301 
2302 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2303 			       s8 *pshift, u32 *pmultiplier)
2304 {
2305 	uint64_t scaled64;
2306 	int32_t  shift = 0;
2307 	uint64_t tps64;
2308 	uint32_t tps32;
2309 
2310 	tps64 = base_hz;
2311 	scaled64 = scaled_hz;
2312 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2313 		tps64 >>= 1;
2314 		shift--;
2315 	}
2316 
2317 	tps32 = (uint32_t)tps64;
2318 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2319 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2320 			scaled64 >>= 1;
2321 		else
2322 			tps32 <<= 1;
2323 		shift++;
2324 	}
2325 
2326 	*pshift = shift;
2327 	*pmultiplier = div_frac(scaled64, tps32);
2328 }
2329 
2330 #ifdef CONFIG_X86_64
2331 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2332 #endif
2333 
2334 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2335 static unsigned long max_tsc_khz;
2336 
2337 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2338 {
2339 	u64 v = (u64)khz * (1000000 + ppm);
2340 	do_div(v, 1000000);
2341 	return v;
2342 }
2343 
2344 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2345 
2346 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2347 {
2348 	u64 ratio;
2349 
2350 	/* Guest TSC same frequency as host TSC? */
2351 	if (!scale) {
2352 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2353 		return 0;
2354 	}
2355 
2356 	/* TSC scaling supported? */
2357 	if (!kvm_has_tsc_control) {
2358 		if (user_tsc_khz > tsc_khz) {
2359 			vcpu->arch.tsc_catchup = 1;
2360 			vcpu->arch.tsc_always_catchup = 1;
2361 			return 0;
2362 		} else {
2363 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2364 			return -1;
2365 		}
2366 	}
2367 
2368 	/* TSC scaling required  - calculate ratio */
2369 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2370 				user_tsc_khz, tsc_khz);
2371 
2372 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2373 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2374 			            user_tsc_khz);
2375 		return -1;
2376 	}
2377 
2378 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2379 	return 0;
2380 }
2381 
2382 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2383 {
2384 	u32 thresh_lo, thresh_hi;
2385 	int use_scaling = 0;
2386 
2387 	/* tsc_khz can be zero if TSC calibration fails */
2388 	if (user_tsc_khz == 0) {
2389 		/* set tsc_scaling_ratio to a safe value */
2390 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2391 		return -1;
2392 	}
2393 
2394 	/* Compute a scale to convert nanoseconds in TSC cycles */
2395 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2396 			   &vcpu->arch.virtual_tsc_shift,
2397 			   &vcpu->arch.virtual_tsc_mult);
2398 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2399 
2400 	/*
2401 	 * Compute the variation in TSC rate which is acceptable
2402 	 * within the range of tolerance and decide if the
2403 	 * rate being applied is within that bounds of the hardware
2404 	 * rate.  If so, no scaling or compensation need be done.
2405 	 */
2406 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2407 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2408 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2409 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2410 		use_scaling = 1;
2411 	}
2412 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2413 }
2414 
2415 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2416 {
2417 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2418 				      vcpu->arch.virtual_tsc_mult,
2419 				      vcpu->arch.virtual_tsc_shift);
2420 	tsc += vcpu->arch.this_tsc_write;
2421 	return tsc;
2422 }
2423 
2424 #ifdef CONFIG_X86_64
2425 static inline int gtod_is_based_on_tsc(int mode)
2426 {
2427 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2428 }
2429 #endif
2430 
2431 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2432 {
2433 #ifdef CONFIG_X86_64
2434 	bool vcpus_matched;
2435 	struct kvm_arch *ka = &vcpu->kvm->arch;
2436 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2437 
2438 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2439 			 atomic_read(&vcpu->kvm->online_vcpus));
2440 
2441 	/*
2442 	 * Once the masterclock is enabled, always perform request in
2443 	 * order to update it.
2444 	 *
2445 	 * In order to enable masterclock, the host clocksource must be TSC
2446 	 * and the vcpus need to have matched TSCs.  When that happens,
2447 	 * perform request to enable masterclock.
2448 	 */
2449 	if (ka->use_master_clock ||
2450 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2451 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2452 
2453 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2454 			    atomic_read(&vcpu->kvm->online_vcpus),
2455 		            ka->use_master_clock, gtod->clock.vclock_mode);
2456 #endif
2457 }
2458 
2459 /*
2460  * Multiply tsc by a fixed point number represented by ratio.
2461  *
2462  * The most significant 64-N bits (mult) of ratio represent the
2463  * integral part of the fixed point number; the remaining N bits
2464  * (frac) represent the fractional part, ie. ratio represents a fixed
2465  * point number (mult + frac * 2^(-N)).
2466  *
2467  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2468  */
2469 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2470 {
2471 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2472 }
2473 
2474 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2475 {
2476 	u64 _tsc = tsc;
2477 
2478 	if (ratio != kvm_default_tsc_scaling_ratio)
2479 		_tsc = __scale_tsc(ratio, tsc);
2480 
2481 	return _tsc;
2482 }
2483 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2484 
2485 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2486 {
2487 	u64 tsc;
2488 
2489 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2490 
2491 	return target_tsc - tsc;
2492 }
2493 
2494 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2495 {
2496 	return vcpu->arch.l1_tsc_offset +
2497 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2498 }
2499 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2500 
2501 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2502 {
2503 	u64 nested_offset;
2504 
2505 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2506 		nested_offset = l1_offset;
2507 	else
2508 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2509 						kvm_tsc_scaling_ratio_frac_bits);
2510 
2511 	nested_offset += l2_offset;
2512 	return nested_offset;
2513 }
2514 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2515 
2516 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2517 {
2518 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2519 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2520 				       kvm_tsc_scaling_ratio_frac_bits);
2521 
2522 	return l1_multiplier;
2523 }
2524 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2525 
2526 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2527 {
2528 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2529 				   vcpu->arch.l1_tsc_offset,
2530 				   l1_offset);
2531 
2532 	vcpu->arch.l1_tsc_offset = l1_offset;
2533 
2534 	/*
2535 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2536 	 * according to the spec this should set L1's TSC (as opposed to
2537 	 * setting L1's offset for L2).
2538 	 */
2539 	if (is_guest_mode(vcpu))
2540 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2541 			l1_offset,
2542 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2543 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2544 	else
2545 		vcpu->arch.tsc_offset = l1_offset;
2546 
2547 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2548 }
2549 
2550 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2551 {
2552 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2553 
2554 	/* Userspace is changing the multiplier while L2 is active */
2555 	if (is_guest_mode(vcpu))
2556 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2557 			l1_multiplier,
2558 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2559 	else
2560 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2561 
2562 	if (kvm_has_tsc_control)
2563 		static_call(kvm_x86_write_tsc_multiplier)(
2564 			vcpu, vcpu->arch.tsc_scaling_ratio);
2565 }
2566 
2567 static inline bool kvm_check_tsc_unstable(void)
2568 {
2569 #ifdef CONFIG_X86_64
2570 	/*
2571 	 * TSC is marked unstable when we're running on Hyper-V,
2572 	 * 'TSC page' clocksource is good.
2573 	 */
2574 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2575 		return false;
2576 #endif
2577 	return check_tsc_unstable();
2578 }
2579 
2580 /*
2581  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2582  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2583  * participates in.
2584  */
2585 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2586 				  u64 ns, bool matched)
2587 {
2588 	struct kvm *kvm = vcpu->kvm;
2589 
2590 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2591 
2592 	/*
2593 	 * We also track th most recent recorded KHZ, write and time to
2594 	 * allow the matching interval to be extended at each write.
2595 	 */
2596 	kvm->arch.last_tsc_nsec = ns;
2597 	kvm->arch.last_tsc_write = tsc;
2598 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2599 	kvm->arch.last_tsc_offset = offset;
2600 
2601 	vcpu->arch.last_guest_tsc = tsc;
2602 
2603 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2604 
2605 	if (!matched) {
2606 		/*
2607 		 * We split periods of matched TSC writes into generations.
2608 		 * For each generation, we track the original measured
2609 		 * nanosecond time, offset, and write, so if TSCs are in
2610 		 * sync, we can match exact offset, and if not, we can match
2611 		 * exact software computation in compute_guest_tsc()
2612 		 *
2613 		 * These values are tracked in kvm->arch.cur_xxx variables.
2614 		 */
2615 		kvm->arch.cur_tsc_generation++;
2616 		kvm->arch.cur_tsc_nsec = ns;
2617 		kvm->arch.cur_tsc_write = tsc;
2618 		kvm->arch.cur_tsc_offset = offset;
2619 		kvm->arch.nr_vcpus_matched_tsc = 0;
2620 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2621 		kvm->arch.nr_vcpus_matched_tsc++;
2622 	}
2623 
2624 	/* Keep track of which generation this VCPU has synchronized to */
2625 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2626 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2627 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2628 
2629 	kvm_track_tsc_matching(vcpu);
2630 }
2631 
2632 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2633 {
2634 	struct kvm *kvm = vcpu->kvm;
2635 	u64 offset, ns, elapsed;
2636 	unsigned long flags;
2637 	bool matched = false;
2638 	bool synchronizing = false;
2639 
2640 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2641 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2642 	ns = get_kvmclock_base_ns();
2643 	elapsed = ns - kvm->arch.last_tsc_nsec;
2644 
2645 	if (vcpu->arch.virtual_tsc_khz) {
2646 		if (data == 0) {
2647 			/*
2648 			 * detection of vcpu initialization -- need to sync
2649 			 * with other vCPUs. This particularly helps to keep
2650 			 * kvm_clock stable after CPU hotplug
2651 			 */
2652 			synchronizing = true;
2653 		} else {
2654 			u64 tsc_exp = kvm->arch.last_tsc_write +
2655 						nsec_to_cycles(vcpu, elapsed);
2656 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2657 			/*
2658 			 * Special case: TSC write with a small delta (1 second)
2659 			 * of virtual cycle time against real time is
2660 			 * interpreted as an attempt to synchronize the CPU.
2661 			 */
2662 			synchronizing = data < tsc_exp + tsc_hz &&
2663 					data + tsc_hz > tsc_exp;
2664 		}
2665 	}
2666 
2667 	/*
2668 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2669 	 * TSC, we add elapsed time in this computation.  We could let the
2670 	 * compensation code attempt to catch up if we fall behind, but
2671 	 * it's better to try to match offsets from the beginning.
2672          */
2673 	if (synchronizing &&
2674 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2675 		if (!kvm_check_tsc_unstable()) {
2676 			offset = kvm->arch.cur_tsc_offset;
2677 		} else {
2678 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2679 			data += delta;
2680 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2681 		}
2682 		matched = true;
2683 	}
2684 
2685 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2686 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2687 }
2688 
2689 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2690 					   s64 adjustment)
2691 {
2692 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2693 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2694 }
2695 
2696 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2697 {
2698 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2699 		WARN_ON(adjustment < 0);
2700 	adjustment = kvm_scale_tsc((u64) adjustment,
2701 				   vcpu->arch.l1_tsc_scaling_ratio);
2702 	adjust_tsc_offset_guest(vcpu, adjustment);
2703 }
2704 
2705 #ifdef CONFIG_X86_64
2706 
2707 static u64 read_tsc(void)
2708 {
2709 	u64 ret = (u64)rdtsc_ordered();
2710 	u64 last = pvclock_gtod_data.clock.cycle_last;
2711 
2712 	if (likely(ret >= last))
2713 		return ret;
2714 
2715 	/*
2716 	 * GCC likes to generate cmov here, but this branch is extremely
2717 	 * predictable (it's just a function of time and the likely is
2718 	 * very likely) and there's a data dependence, so force GCC
2719 	 * to generate a branch instead.  I don't barrier() because
2720 	 * we don't actually need a barrier, and if this function
2721 	 * ever gets inlined it will generate worse code.
2722 	 */
2723 	asm volatile ("");
2724 	return last;
2725 }
2726 
2727 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2728 			  int *mode)
2729 {
2730 	long v;
2731 	u64 tsc_pg_val;
2732 
2733 	switch (clock->vclock_mode) {
2734 	case VDSO_CLOCKMODE_HVCLOCK:
2735 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2736 						  tsc_timestamp);
2737 		if (tsc_pg_val != U64_MAX) {
2738 			/* TSC page valid */
2739 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2740 			v = (tsc_pg_val - clock->cycle_last) &
2741 				clock->mask;
2742 		} else {
2743 			/* TSC page invalid */
2744 			*mode = VDSO_CLOCKMODE_NONE;
2745 		}
2746 		break;
2747 	case VDSO_CLOCKMODE_TSC:
2748 		*mode = VDSO_CLOCKMODE_TSC;
2749 		*tsc_timestamp = read_tsc();
2750 		v = (*tsc_timestamp - clock->cycle_last) &
2751 			clock->mask;
2752 		break;
2753 	default:
2754 		*mode = VDSO_CLOCKMODE_NONE;
2755 	}
2756 
2757 	if (*mode == VDSO_CLOCKMODE_NONE)
2758 		*tsc_timestamp = v = 0;
2759 
2760 	return v * clock->mult;
2761 }
2762 
2763 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2764 {
2765 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2766 	unsigned long seq;
2767 	int mode;
2768 	u64 ns;
2769 
2770 	do {
2771 		seq = read_seqcount_begin(&gtod->seq);
2772 		ns = gtod->raw_clock.base_cycles;
2773 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2774 		ns >>= gtod->raw_clock.shift;
2775 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2776 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2777 	*t = ns;
2778 
2779 	return mode;
2780 }
2781 
2782 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2783 {
2784 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2785 	unsigned long seq;
2786 	int mode;
2787 	u64 ns;
2788 
2789 	do {
2790 		seq = read_seqcount_begin(&gtod->seq);
2791 		ts->tv_sec = gtod->wall_time_sec;
2792 		ns = gtod->clock.base_cycles;
2793 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2794 		ns >>= gtod->clock.shift;
2795 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2796 
2797 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2798 	ts->tv_nsec = ns;
2799 
2800 	return mode;
2801 }
2802 
2803 /* returns true if host is using TSC based clocksource */
2804 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2805 {
2806 	/* checked again under seqlock below */
2807 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2808 		return false;
2809 
2810 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2811 						      tsc_timestamp));
2812 }
2813 
2814 /* returns true if host is using TSC based clocksource */
2815 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2816 					   u64 *tsc_timestamp)
2817 {
2818 	/* checked again under seqlock below */
2819 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2820 		return false;
2821 
2822 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2823 }
2824 #endif
2825 
2826 /*
2827  *
2828  * Assuming a stable TSC across physical CPUS, and a stable TSC
2829  * across virtual CPUs, the following condition is possible.
2830  * Each numbered line represents an event visible to both
2831  * CPUs at the next numbered event.
2832  *
2833  * "timespecX" represents host monotonic time. "tscX" represents
2834  * RDTSC value.
2835  *
2836  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2837  *
2838  * 1.  read timespec0,tsc0
2839  * 2.					| timespec1 = timespec0 + N
2840  * 					| tsc1 = tsc0 + M
2841  * 3. transition to guest		| transition to guest
2842  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2843  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2844  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2845  *
2846  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2847  *
2848  * 	- ret0 < ret1
2849  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2850  *		...
2851  *	- 0 < N - M => M < N
2852  *
2853  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2854  * always the case (the difference between two distinct xtime instances
2855  * might be smaller then the difference between corresponding TSC reads,
2856  * when updating guest vcpus pvclock areas).
2857  *
2858  * To avoid that problem, do not allow visibility of distinct
2859  * system_timestamp/tsc_timestamp values simultaneously: use a master
2860  * copy of host monotonic time values. Update that master copy
2861  * in lockstep.
2862  *
2863  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2864  *
2865  */
2866 
2867 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2868 {
2869 #ifdef CONFIG_X86_64
2870 	struct kvm_arch *ka = &kvm->arch;
2871 	int vclock_mode;
2872 	bool host_tsc_clocksource, vcpus_matched;
2873 
2874 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2875 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2876 			atomic_read(&kvm->online_vcpus));
2877 
2878 	/*
2879 	 * If the host uses TSC clock, then passthrough TSC as stable
2880 	 * to the guest.
2881 	 */
2882 	host_tsc_clocksource = kvm_get_time_and_clockread(
2883 					&ka->master_kernel_ns,
2884 					&ka->master_cycle_now);
2885 
2886 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2887 				&& !ka->backwards_tsc_observed
2888 				&& !ka->boot_vcpu_runs_old_kvmclock;
2889 
2890 	if (ka->use_master_clock)
2891 		atomic_set(&kvm_guest_has_master_clock, 1);
2892 
2893 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2894 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2895 					vcpus_matched);
2896 #endif
2897 }
2898 
2899 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2900 {
2901 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2902 }
2903 
2904 static void __kvm_start_pvclock_update(struct kvm *kvm)
2905 {
2906 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2907 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2908 }
2909 
2910 static void kvm_start_pvclock_update(struct kvm *kvm)
2911 {
2912 	kvm_make_mclock_inprogress_request(kvm);
2913 
2914 	/* no guest entries from this point */
2915 	__kvm_start_pvclock_update(kvm);
2916 }
2917 
2918 static void kvm_end_pvclock_update(struct kvm *kvm)
2919 {
2920 	struct kvm_arch *ka = &kvm->arch;
2921 	struct kvm_vcpu *vcpu;
2922 	unsigned long i;
2923 
2924 	write_seqcount_end(&ka->pvclock_sc);
2925 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2926 	kvm_for_each_vcpu(i, vcpu, kvm)
2927 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2928 
2929 	/* guest entries allowed */
2930 	kvm_for_each_vcpu(i, vcpu, kvm)
2931 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2932 }
2933 
2934 static void kvm_update_masterclock(struct kvm *kvm)
2935 {
2936 	kvm_hv_request_tsc_page_update(kvm);
2937 	kvm_start_pvclock_update(kvm);
2938 	pvclock_update_vm_gtod_copy(kvm);
2939 	kvm_end_pvclock_update(kvm);
2940 }
2941 
2942 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2943 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2944 {
2945 	struct kvm_arch *ka = &kvm->arch;
2946 	struct pvclock_vcpu_time_info hv_clock;
2947 
2948 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2949 	get_cpu();
2950 
2951 	data->flags = 0;
2952 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2953 #ifdef CONFIG_X86_64
2954 		struct timespec64 ts;
2955 
2956 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2957 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2958 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2959 		} else
2960 #endif
2961 		data->host_tsc = rdtsc();
2962 
2963 		data->flags |= KVM_CLOCK_TSC_STABLE;
2964 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2965 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2966 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2967 				   &hv_clock.tsc_shift,
2968 				   &hv_clock.tsc_to_system_mul);
2969 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2970 	} else {
2971 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2972 	}
2973 
2974 	put_cpu();
2975 }
2976 
2977 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2978 {
2979 	struct kvm_arch *ka = &kvm->arch;
2980 	unsigned seq;
2981 
2982 	do {
2983 		seq = read_seqcount_begin(&ka->pvclock_sc);
2984 		__get_kvmclock(kvm, data);
2985 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
2986 }
2987 
2988 u64 get_kvmclock_ns(struct kvm *kvm)
2989 {
2990 	struct kvm_clock_data data;
2991 
2992 	get_kvmclock(kvm, &data);
2993 	return data.clock;
2994 }
2995 
2996 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
2997 				    struct gfn_to_pfn_cache *gpc,
2998 				    unsigned int offset)
2999 {
3000 	struct kvm_vcpu_arch *vcpu = &v->arch;
3001 	struct pvclock_vcpu_time_info *guest_hv_clock;
3002 	unsigned long flags;
3003 
3004 	read_lock_irqsave(&gpc->lock, flags);
3005 	while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3006 					   offset + sizeof(*guest_hv_clock))) {
3007 		read_unlock_irqrestore(&gpc->lock, flags);
3008 
3009 		if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3010 						 offset + sizeof(*guest_hv_clock)))
3011 			return;
3012 
3013 		read_lock_irqsave(&gpc->lock, flags);
3014 	}
3015 
3016 	guest_hv_clock = (void *)(gpc->khva + offset);
3017 
3018 	/*
3019 	 * This VCPU is paused, but it's legal for a guest to read another
3020 	 * VCPU's kvmclock, so we really have to follow the specification where
3021 	 * it says that version is odd if data is being modified, and even after
3022 	 * it is consistent.
3023 	 */
3024 
3025 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3026 	smp_wmb();
3027 
3028 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3029 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3030 
3031 	if (vcpu->pvclock_set_guest_stopped_request) {
3032 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3033 		vcpu->pvclock_set_guest_stopped_request = false;
3034 	}
3035 
3036 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3037 	smp_wmb();
3038 
3039 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3040 
3041 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3042 	read_unlock_irqrestore(&gpc->lock, flags);
3043 
3044 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3045 }
3046 
3047 static int kvm_guest_time_update(struct kvm_vcpu *v)
3048 {
3049 	unsigned long flags, tgt_tsc_khz;
3050 	unsigned seq;
3051 	struct kvm_vcpu_arch *vcpu = &v->arch;
3052 	struct kvm_arch *ka = &v->kvm->arch;
3053 	s64 kernel_ns;
3054 	u64 tsc_timestamp, host_tsc;
3055 	u8 pvclock_flags;
3056 	bool use_master_clock;
3057 
3058 	kernel_ns = 0;
3059 	host_tsc = 0;
3060 
3061 	/*
3062 	 * If the host uses TSC clock, then passthrough TSC as stable
3063 	 * to the guest.
3064 	 */
3065 	do {
3066 		seq = read_seqcount_begin(&ka->pvclock_sc);
3067 		use_master_clock = ka->use_master_clock;
3068 		if (use_master_clock) {
3069 			host_tsc = ka->master_cycle_now;
3070 			kernel_ns = ka->master_kernel_ns;
3071 		}
3072 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3073 
3074 	/* Keep irq disabled to prevent changes to the clock */
3075 	local_irq_save(flags);
3076 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3077 	if (unlikely(tgt_tsc_khz == 0)) {
3078 		local_irq_restore(flags);
3079 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3080 		return 1;
3081 	}
3082 	if (!use_master_clock) {
3083 		host_tsc = rdtsc();
3084 		kernel_ns = get_kvmclock_base_ns();
3085 	}
3086 
3087 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3088 
3089 	/*
3090 	 * We may have to catch up the TSC to match elapsed wall clock
3091 	 * time for two reasons, even if kvmclock is used.
3092 	 *   1) CPU could have been running below the maximum TSC rate
3093 	 *   2) Broken TSC compensation resets the base at each VCPU
3094 	 *      entry to avoid unknown leaps of TSC even when running
3095 	 *      again on the same CPU.  This may cause apparent elapsed
3096 	 *      time to disappear, and the guest to stand still or run
3097 	 *	very slowly.
3098 	 */
3099 	if (vcpu->tsc_catchup) {
3100 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3101 		if (tsc > tsc_timestamp) {
3102 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3103 			tsc_timestamp = tsc;
3104 		}
3105 	}
3106 
3107 	local_irq_restore(flags);
3108 
3109 	/* With all the info we got, fill in the values */
3110 
3111 	if (kvm_has_tsc_control)
3112 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3113 					    v->arch.l1_tsc_scaling_ratio);
3114 
3115 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3116 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3117 				   &vcpu->hv_clock.tsc_shift,
3118 				   &vcpu->hv_clock.tsc_to_system_mul);
3119 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3120 	}
3121 
3122 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3123 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3124 	vcpu->last_guest_tsc = tsc_timestamp;
3125 
3126 	/* If the host uses TSC clocksource, then it is stable */
3127 	pvclock_flags = 0;
3128 	if (use_master_clock)
3129 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3130 
3131 	vcpu->hv_clock.flags = pvclock_flags;
3132 
3133 	if (vcpu->pv_time.active)
3134 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3135 	if (vcpu->xen.vcpu_info_cache.active)
3136 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3137 					offsetof(struct compat_vcpu_info, time));
3138 	if (vcpu->xen.vcpu_time_info_cache.active)
3139 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3140 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3141 	return 0;
3142 }
3143 
3144 /*
3145  * kvmclock updates which are isolated to a given vcpu, such as
3146  * vcpu->cpu migration, should not allow system_timestamp from
3147  * the rest of the vcpus to remain static. Otherwise ntp frequency
3148  * correction applies to one vcpu's system_timestamp but not
3149  * the others.
3150  *
3151  * So in those cases, request a kvmclock update for all vcpus.
3152  * We need to rate-limit these requests though, as they can
3153  * considerably slow guests that have a large number of vcpus.
3154  * The time for a remote vcpu to update its kvmclock is bound
3155  * by the delay we use to rate-limit the updates.
3156  */
3157 
3158 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3159 
3160 static void kvmclock_update_fn(struct work_struct *work)
3161 {
3162 	unsigned long i;
3163 	struct delayed_work *dwork = to_delayed_work(work);
3164 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3165 					   kvmclock_update_work);
3166 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3167 	struct kvm_vcpu *vcpu;
3168 
3169 	kvm_for_each_vcpu(i, vcpu, kvm) {
3170 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3171 		kvm_vcpu_kick(vcpu);
3172 	}
3173 }
3174 
3175 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3176 {
3177 	struct kvm *kvm = v->kvm;
3178 
3179 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3180 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3181 					KVMCLOCK_UPDATE_DELAY);
3182 }
3183 
3184 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3185 
3186 static void kvmclock_sync_fn(struct work_struct *work)
3187 {
3188 	struct delayed_work *dwork = to_delayed_work(work);
3189 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3190 					   kvmclock_sync_work);
3191 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3192 
3193 	if (!kvmclock_periodic_sync)
3194 		return;
3195 
3196 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3197 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3198 					KVMCLOCK_SYNC_PERIOD);
3199 }
3200 
3201 /*
3202  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3203  */
3204 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3205 {
3206 	/* McStatusWrEn enabled? */
3207 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3208 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3209 
3210 	return false;
3211 }
3212 
3213 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3214 {
3215 	u64 mcg_cap = vcpu->arch.mcg_cap;
3216 	unsigned bank_num = mcg_cap & 0xff;
3217 	u32 msr = msr_info->index;
3218 	u64 data = msr_info->data;
3219 
3220 	switch (msr) {
3221 	case MSR_IA32_MCG_STATUS:
3222 		vcpu->arch.mcg_status = data;
3223 		break;
3224 	case MSR_IA32_MCG_CTL:
3225 		if (!(mcg_cap & MCG_CTL_P) &&
3226 		    (data || !msr_info->host_initiated))
3227 			return 1;
3228 		if (data != 0 && data != ~(u64)0)
3229 			return 1;
3230 		vcpu->arch.mcg_ctl = data;
3231 		break;
3232 	default:
3233 		if (msr >= MSR_IA32_MC0_CTL &&
3234 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3235 			u32 offset = array_index_nospec(
3236 				msr - MSR_IA32_MC0_CTL,
3237 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3238 
3239 			/* only 0 or all 1s can be written to IA32_MCi_CTL
3240 			 * some Linux kernels though clear bit 10 in bank 4 to
3241 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3242 			 * this to avoid an uncatched #GP in the guest
3243 			 */
3244 			if ((offset & 0x3) == 0 &&
3245 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
3246 				return -1;
3247 
3248 			/* MCi_STATUS */
3249 			if (!msr_info->host_initiated &&
3250 			    (offset & 0x3) == 1 && data != 0) {
3251 				if (!can_set_mci_status(vcpu))
3252 					return -1;
3253 			}
3254 
3255 			vcpu->arch.mce_banks[offset] = data;
3256 			break;
3257 		}
3258 		return 1;
3259 	}
3260 	return 0;
3261 }
3262 
3263 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3264 {
3265 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3266 
3267 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3268 }
3269 
3270 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3271 {
3272 	gpa_t gpa = data & ~0x3f;
3273 
3274 	/* Bits 4:5 are reserved, Should be zero */
3275 	if (data & 0x30)
3276 		return 1;
3277 
3278 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3279 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3280 		return 1;
3281 
3282 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3283 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3284 		return 1;
3285 
3286 	if (!lapic_in_kernel(vcpu))
3287 		return data ? 1 : 0;
3288 
3289 	vcpu->arch.apf.msr_en_val = data;
3290 
3291 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3292 		kvm_clear_async_pf_completion_queue(vcpu);
3293 		kvm_async_pf_hash_reset(vcpu);
3294 		return 0;
3295 	}
3296 
3297 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3298 					sizeof(u64)))
3299 		return 1;
3300 
3301 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3302 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3303 
3304 	kvm_async_pf_wakeup_all(vcpu);
3305 
3306 	return 0;
3307 }
3308 
3309 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3310 {
3311 	/* Bits 8-63 are reserved */
3312 	if (data >> 8)
3313 		return 1;
3314 
3315 	if (!lapic_in_kernel(vcpu))
3316 		return 1;
3317 
3318 	vcpu->arch.apf.msr_int_val = data;
3319 
3320 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3321 
3322 	return 0;
3323 }
3324 
3325 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3326 {
3327 	kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3328 	vcpu->arch.time = 0;
3329 }
3330 
3331 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3332 {
3333 	++vcpu->stat.tlb_flush;
3334 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3335 }
3336 
3337 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3338 {
3339 	++vcpu->stat.tlb_flush;
3340 
3341 	if (!tdp_enabled) {
3342 		/*
3343 		 * A TLB flush on behalf of the guest is equivalent to
3344 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3345 		 * a forced sync of the shadow page tables.  Ensure all the
3346 		 * roots are synced and the guest TLB in hardware is clean.
3347 		 */
3348 		kvm_mmu_sync_roots(vcpu);
3349 		kvm_mmu_sync_prev_roots(vcpu);
3350 	}
3351 
3352 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3353 }
3354 
3355 
3356 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3357 {
3358 	++vcpu->stat.tlb_flush;
3359 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3360 }
3361 
3362 /*
3363  * Service "local" TLB flush requests, which are specific to the current MMU
3364  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3365  * TLB flushes that are targeted at an MMU context also need to be serviced
3366  * prior before nested VM-Enter/VM-Exit.
3367  */
3368 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3369 {
3370 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3371 		kvm_vcpu_flush_tlb_current(vcpu);
3372 
3373 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3374 		kvm_vcpu_flush_tlb_guest(vcpu);
3375 }
3376 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3377 
3378 static void record_steal_time(struct kvm_vcpu *vcpu)
3379 {
3380 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3381 	struct kvm_steal_time __user *st;
3382 	struct kvm_memslots *slots;
3383 	u64 steal;
3384 	u32 version;
3385 
3386 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3387 		kvm_xen_runstate_set_running(vcpu);
3388 		return;
3389 	}
3390 
3391 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3392 		return;
3393 
3394 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3395 		return;
3396 
3397 	slots = kvm_memslots(vcpu->kvm);
3398 
3399 	if (unlikely(slots->generation != ghc->generation ||
3400 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3401 		gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3402 
3403 		/* We rely on the fact that it fits in a single page. */
3404 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3405 
3406 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3407 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3408 			return;
3409 	}
3410 
3411 	st = (struct kvm_steal_time __user *)ghc->hva;
3412 	/*
3413 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3414 	 * expensive IPIs.
3415 	 */
3416 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3417 		u8 st_preempted = 0;
3418 		int err = -EFAULT;
3419 
3420 		if (!user_access_begin(st, sizeof(*st)))
3421 			return;
3422 
3423 		asm volatile("1: xchgb %0, %2\n"
3424 			     "xor %1, %1\n"
3425 			     "2:\n"
3426 			     _ASM_EXTABLE_UA(1b, 2b)
3427 			     : "+q" (st_preempted),
3428 			       "+&r" (err),
3429 			       "+m" (st->preempted));
3430 		if (err)
3431 			goto out;
3432 
3433 		user_access_end();
3434 
3435 		vcpu->arch.st.preempted = 0;
3436 
3437 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3438 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3439 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3440 			kvm_vcpu_flush_tlb_guest(vcpu);
3441 
3442 		if (!user_access_begin(st, sizeof(*st)))
3443 			goto dirty;
3444 	} else {
3445 		if (!user_access_begin(st, sizeof(*st)))
3446 			return;
3447 
3448 		unsafe_put_user(0, &st->preempted, out);
3449 		vcpu->arch.st.preempted = 0;
3450 	}
3451 
3452 	unsafe_get_user(version, &st->version, out);
3453 	if (version & 1)
3454 		version += 1;  /* first time write, random junk */
3455 
3456 	version += 1;
3457 	unsafe_put_user(version, &st->version, out);
3458 
3459 	smp_wmb();
3460 
3461 	unsafe_get_user(steal, &st->steal, out);
3462 	steal += current->sched_info.run_delay -
3463 		vcpu->arch.st.last_steal;
3464 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3465 	unsafe_put_user(steal, &st->steal, out);
3466 
3467 	version += 1;
3468 	unsafe_put_user(version, &st->version, out);
3469 
3470  out:
3471 	user_access_end();
3472  dirty:
3473 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3474 }
3475 
3476 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3477 {
3478 	bool pr = false;
3479 	u32 msr = msr_info->index;
3480 	u64 data = msr_info->data;
3481 
3482 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3483 		return kvm_xen_write_hypercall_page(vcpu, data);
3484 
3485 	switch (msr) {
3486 	case MSR_AMD64_NB_CFG:
3487 	case MSR_IA32_UCODE_WRITE:
3488 	case MSR_VM_HSAVE_PA:
3489 	case MSR_AMD64_PATCH_LOADER:
3490 	case MSR_AMD64_BU_CFG2:
3491 	case MSR_AMD64_DC_CFG:
3492 	case MSR_F15H_EX_CFG:
3493 		break;
3494 
3495 	case MSR_IA32_UCODE_REV:
3496 		if (msr_info->host_initiated)
3497 			vcpu->arch.microcode_version = data;
3498 		break;
3499 	case MSR_IA32_ARCH_CAPABILITIES:
3500 		if (!msr_info->host_initiated)
3501 			return 1;
3502 		vcpu->arch.arch_capabilities = data;
3503 		break;
3504 	case MSR_IA32_PERF_CAPABILITIES: {
3505 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3506 
3507 		if (!msr_info->host_initiated)
3508 			return 1;
3509 		if (kvm_get_msr_feature(&msr_ent))
3510 			return 1;
3511 		if (data & ~msr_ent.data)
3512 			return 1;
3513 
3514 		vcpu->arch.perf_capabilities = data;
3515 
3516 		return 0;
3517 		}
3518 	case MSR_EFER:
3519 		return set_efer(vcpu, msr_info);
3520 	case MSR_K7_HWCR:
3521 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3522 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3523 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3524 
3525 		/* Handle McStatusWrEn */
3526 		if (data == BIT_ULL(18)) {
3527 			vcpu->arch.msr_hwcr = data;
3528 		} else if (data != 0) {
3529 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3530 				    data);
3531 			return 1;
3532 		}
3533 		break;
3534 	case MSR_FAM10H_MMIO_CONF_BASE:
3535 		if (data != 0) {
3536 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3537 				    "0x%llx\n", data);
3538 			return 1;
3539 		}
3540 		break;
3541 	case 0x200 ... 0x2ff:
3542 		return kvm_mtrr_set_msr(vcpu, msr, data);
3543 	case MSR_IA32_APICBASE:
3544 		return kvm_set_apic_base(vcpu, msr_info);
3545 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3546 		return kvm_x2apic_msr_write(vcpu, msr, data);
3547 	case MSR_IA32_TSC_DEADLINE:
3548 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3549 		break;
3550 	case MSR_IA32_TSC_ADJUST:
3551 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3552 			if (!msr_info->host_initiated) {
3553 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3554 				adjust_tsc_offset_guest(vcpu, adj);
3555 				/* Before back to guest, tsc_timestamp must be adjusted
3556 				 * as well, otherwise guest's percpu pvclock time could jump.
3557 				 */
3558 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3559 			}
3560 			vcpu->arch.ia32_tsc_adjust_msr = data;
3561 		}
3562 		break;
3563 	case MSR_IA32_MISC_ENABLE:
3564 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3565 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3566 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3567 				return 1;
3568 			vcpu->arch.ia32_misc_enable_msr = data;
3569 			kvm_update_cpuid_runtime(vcpu);
3570 		} else {
3571 			vcpu->arch.ia32_misc_enable_msr = data;
3572 		}
3573 		break;
3574 	case MSR_IA32_SMBASE:
3575 		if (!msr_info->host_initiated)
3576 			return 1;
3577 		vcpu->arch.smbase = data;
3578 		break;
3579 	case MSR_IA32_POWER_CTL:
3580 		vcpu->arch.msr_ia32_power_ctl = data;
3581 		break;
3582 	case MSR_IA32_TSC:
3583 		if (msr_info->host_initiated) {
3584 			kvm_synchronize_tsc(vcpu, data);
3585 		} else {
3586 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3587 			adjust_tsc_offset_guest(vcpu, adj);
3588 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3589 		}
3590 		break;
3591 	case MSR_IA32_XSS:
3592 		if (!msr_info->host_initiated &&
3593 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3594 			return 1;
3595 		/*
3596 		 * KVM supports exposing PT to the guest, but does not support
3597 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3598 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3599 		 */
3600 		if (data & ~supported_xss)
3601 			return 1;
3602 		vcpu->arch.ia32_xss = data;
3603 		kvm_update_cpuid_runtime(vcpu);
3604 		break;
3605 	case MSR_SMI_COUNT:
3606 		if (!msr_info->host_initiated)
3607 			return 1;
3608 		vcpu->arch.smi_count = data;
3609 		break;
3610 	case MSR_KVM_WALL_CLOCK_NEW:
3611 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3612 			return 1;
3613 
3614 		vcpu->kvm->arch.wall_clock = data;
3615 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3616 		break;
3617 	case MSR_KVM_WALL_CLOCK:
3618 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3619 			return 1;
3620 
3621 		vcpu->kvm->arch.wall_clock = data;
3622 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3623 		break;
3624 	case MSR_KVM_SYSTEM_TIME_NEW:
3625 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3626 			return 1;
3627 
3628 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3629 		break;
3630 	case MSR_KVM_SYSTEM_TIME:
3631 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3632 			return 1;
3633 
3634 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3635 		break;
3636 	case MSR_KVM_ASYNC_PF_EN:
3637 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3638 			return 1;
3639 
3640 		if (kvm_pv_enable_async_pf(vcpu, data))
3641 			return 1;
3642 		break;
3643 	case MSR_KVM_ASYNC_PF_INT:
3644 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3645 			return 1;
3646 
3647 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3648 			return 1;
3649 		break;
3650 	case MSR_KVM_ASYNC_PF_ACK:
3651 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3652 			return 1;
3653 		if (data & 0x1) {
3654 			vcpu->arch.apf.pageready_pending = false;
3655 			kvm_check_async_pf_completion(vcpu);
3656 		}
3657 		break;
3658 	case MSR_KVM_STEAL_TIME:
3659 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3660 			return 1;
3661 
3662 		if (unlikely(!sched_info_on()))
3663 			return 1;
3664 
3665 		if (data & KVM_STEAL_RESERVED_MASK)
3666 			return 1;
3667 
3668 		vcpu->arch.st.msr_val = data;
3669 
3670 		if (!(data & KVM_MSR_ENABLED))
3671 			break;
3672 
3673 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3674 
3675 		break;
3676 	case MSR_KVM_PV_EOI_EN:
3677 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3678 			return 1;
3679 
3680 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3681 			return 1;
3682 		break;
3683 
3684 	case MSR_KVM_POLL_CONTROL:
3685 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3686 			return 1;
3687 
3688 		/* only enable bit supported */
3689 		if (data & (-1ULL << 1))
3690 			return 1;
3691 
3692 		vcpu->arch.msr_kvm_poll_control = data;
3693 		break;
3694 
3695 	case MSR_IA32_MCG_CTL:
3696 	case MSR_IA32_MCG_STATUS:
3697 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3698 		return set_msr_mce(vcpu, msr_info);
3699 
3700 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3701 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3702 		pr = true;
3703 		fallthrough;
3704 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3705 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3706 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3707 			return kvm_pmu_set_msr(vcpu, msr_info);
3708 
3709 		if (pr || data != 0)
3710 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3711 				    "0x%x data 0x%llx\n", msr, data);
3712 		break;
3713 	case MSR_K7_CLK_CTL:
3714 		/*
3715 		 * Ignore all writes to this no longer documented MSR.
3716 		 * Writes are only relevant for old K7 processors,
3717 		 * all pre-dating SVM, but a recommended workaround from
3718 		 * AMD for these chips. It is possible to specify the
3719 		 * affected processor models on the command line, hence
3720 		 * the need to ignore the workaround.
3721 		 */
3722 		break;
3723 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3724 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3725 	case HV_X64_MSR_SYNDBG_OPTIONS:
3726 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3727 	case HV_X64_MSR_CRASH_CTL:
3728 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3729 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3730 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3731 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3732 		return kvm_hv_set_msr_common(vcpu, msr, data,
3733 					     msr_info->host_initiated);
3734 	case MSR_IA32_BBL_CR_CTL3:
3735 		/* Drop writes to this legacy MSR -- see rdmsr
3736 		 * counterpart for further detail.
3737 		 */
3738 		if (report_ignored_msrs)
3739 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3740 				msr, data);
3741 		break;
3742 	case MSR_AMD64_OSVW_ID_LENGTH:
3743 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3744 			return 1;
3745 		vcpu->arch.osvw.length = data;
3746 		break;
3747 	case MSR_AMD64_OSVW_STATUS:
3748 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3749 			return 1;
3750 		vcpu->arch.osvw.status = data;
3751 		break;
3752 	case MSR_PLATFORM_INFO:
3753 		if (!msr_info->host_initiated ||
3754 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3755 		     cpuid_fault_enabled(vcpu)))
3756 			return 1;
3757 		vcpu->arch.msr_platform_info = data;
3758 		break;
3759 	case MSR_MISC_FEATURES_ENABLES:
3760 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3761 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3762 		     !supports_cpuid_fault(vcpu)))
3763 			return 1;
3764 		vcpu->arch.msr_misc_features_enables = data;
3765 		break;
3766 #ifdef CONFIG_X86_64
3767 	case MSR_IA32_XFD:
3768 		if (!msr_info->host_initiated &&
3769 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3770 			return 1;
3771 
3772 		if (data & ~kvm_guest_supported_xfd(vcpu))
3773 			return 1;
3774 
3775 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3776 		break;
3777 	case MSR_IA32_XFD_ERR:
3778 		if (!msr_info->host_initiated &&
3779 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3780 			return 1;
3781 
3782 		if (data & ~kvm_guest_supported_xfd(vcpu))
3783 			return 1;
3784 
3785 		vcpu->arch.guest_fpu.xfd_err = data;
3786 		break;
3787 #endif
3788 	default:
3789 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3790 			return kvm_pmu_set_msr(vcpu, msr_info);
3791 		return KVM_MSR_RET_INVALID;
3792 	}
3793 	return 0;
3794 }
3795 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3796 
3797 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3798 {
3799 	u64 data;
3800 	u64 mcg_cap = vcpu->arch.mcg_cap;
3801 	unsigned bank_num = mcg_cap & 0xff;
3802 
3803 	switch (msr) {
3804 	case MSR_IA32_P5_MC_ADDR:
3805 	case MSR_IA32_P5_MC_TYPE:
3806 		data = 0;
3807 		break;
3808 	case MSR_IA32_MCG_CAP:
3809 		data = vcpu->arch.mcg_cap;
3810 		break;
3811 	case MSR_IA32_MCG_CTL:
3812 		if (!(mcg_cap & MCG_CTL_P) && !host)
3813 			return 1;
3814 		data = vcpu->arch.mcg_ctl;
3815 		break;
3816 	case MSR_IA32_MCG_STATUS:
3817 		data = vcpu->arch.mcg_status;
3818 		break;
3819 	default:
3820 		if (msr >= MSR_IA32_MC0_CTL &&
3821 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3822 			u32 offset = array_index_nospec(
3823 				msr - MSR_IA32_MC0_CTL,
3824 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3825 
3826 			data = vcpu->arch.mce_banks[offset];
3827 			break;
3828 		}
3829 		return 1;
3830 	}
3831 	*pdata = data;
3832 	return 0;
3833 }
3834 
3835 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3836 {
3837 	switch (msr_info->index) {
3838 	case MSR_IA32_PLATFORM_ID:
3839 	case MSR_IA32_EBL_CR_POWERON:
3840 	case MSR_IA32_LASTBRANCHFROMIP:
3841 	case MSR_IA32_LASTBRANCHTOIP:
3842 	case MSR_IA32_LASTINTFROMIP:
3843 	case MSR_IA32_LASTINTTOIP:
3844 	case MSR_AMD64_SYSCFG:
3845 	case MSR_K8_TSEG_ADDR:
3846 	case MSR_K8_TSEG_MASK:
3847 	case MSR_VM_HSAVE_PA:
3848 	case MSR_K8_INT_PENDING_MSG:
3849 	case MSR_AMD64_NB_CFG:
3850 	case MSR_FAM10H_MMIO_CONF_BASE:
3851 	case MSR_AMD64_BU_CFG2:
3852 	case MSR_IA32_PERF_CTL:
3853 	case MSR_AMD64_DC_CFG:
3854 	case MSR_F15H_EX_CFG:
3855 	/*
3856 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3857 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3858 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3859 	 * so for existing CPU-specific MSRs.
3860 	 */
3861 	case MSR_RAPL_POWER_UNIT:
3862 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3863 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3864 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3865 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3866 		msr_info->data = 0;
3867 		break;
3868 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3869 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3870 			return kvm_pmu_get_msr(vcpu, msr_info);
3871 		if (!msr_info->host_initiated)
3872 			return 1;
3873 		msr_info->data = 0;
3874 		break;
3875 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3876 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3877 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3878 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3879 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3880 			return kvm_pmu_get_msr(vcpu, msr_info);
3881 		msr_info->data = 0;
3882 		break;
3883 	case MSR_IA32_UCODE_REV:
3884 		msr_info->data = vcpu->arch.microcode_version;
3885 		break;
3886 	case MSR_IA32_ARCH_CAPABILITIES:
3887 		if (!msr_info->host_initiated &&
3888 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3889 			return 1;
3890 		msr_info->data = vcpu->arch.arch_capabilities;
3891 		break;
3892 	case MSR_IA32_PERF_CAPABILITIES:
3893 		if (!msr_info->host_initiated &&
3894 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3895 			return 1;
3896 		msr_info->data = vcpu->arch.perf_capabilities;
3897 		break;
3898 	case MSR_IA32_POWER_CTL:
3899 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3900 		break;
3901 	case MSR_IA32_TSC: {
3902 		/*
3903 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3904 		 * even when not intercepted. AMD manual doesn't explicitly
3905 		 * state this but appears to behave the same.
3906 		 *
3907 		 * On userspace reads and writes, however, we unconditionally
3908 		 * return L1's TSC value to ensure backwards-compatible
3909 		 * behavior for migration.
3910 		 */
3911 		u64 offset, ratio;
3912 
3913 		if (msr_info->host_initiated) {
3914 			offset = vcpu->arch.l1_tsc_offset;
3915 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3916 		} else {
3917 			offset = vcpu->arch.tsc_offset;
3918 			ratio = vcpu->arch.tsc_scaling_ratio;
3919 		}
3920 
3921 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3922 		break;
3923 	}
3924 	case MSR_MTRRcap:
3925 	case 0x200 ... 0x2ff:
3926 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3927 	case 0xcd: /* fsb frequency */
3928 		msr_info->data = 3;
3929 		break;
3930 		/*
3931 		 * MSR_EBC_FREQUENCY_ID
3932 		 * Conservative value valid for even the basic CPU models.
3933 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3934 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3935 		 * and 266MHz for model 3, or 4. Set Core Clock
3936 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3937 		 * 31:24) even though these are only valid for CPU
3938 		 * models > 2, however guests may end up dividing or
3939 		 * multiplying by zero otherwise.
3940 		 */
3941 	case MSR_EBC_FREQUENCY_ID:
3942 		msr_info->data = 1 << 24;
3943 		break;
3944 	case MSR_IA32_APICBASE:
3945 		msr_info->data = kvm_get_apic_base(vcpu);
3946 		break;
3947 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3948 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3949 	case MSR_IA32_TSC_DEADLINE:
3950 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3951 		break;
3952 	case MSR_IA32_TSC_ADJUST:
3953 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3954 		break;
3955 	case MSR_IA32_MISC_ENABLE:
3956 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3957 		break;
3958 	case MSR_IA32_SMBASE:
3959 		if (!msr_info->host_initiated)
3960 			return 1;
3961 		msr_info->data = vcpu->arch.smbase;
3962 		break;
3963 	case MSR_SMI_COUNT:
3964 		msr_info->data = vcpu->arch.smi_count;
3965 		break;
3966 	case MSR_IA32_PERF_STATUS:
3967 		/* TSC increment by tick */
3968 		msr_info->data = 1000ULL;
3969 		/* CPU multiplier */
3970 		msr_info->data |= (((uint64_t)4ULL) << 40);
3971 		break;
3972 	case MSR_EFER:
3973 		msr_info->data = vcpu->arch.efer;
3974 		break;
3975 	case MSR_KVM_WALL_CLOCK:
3976 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3977 			return 1;
3978 
3979 		msr_info->data = vcpu->kvm->arch.wall_clock;
3980 		break;
3981 	case MSR_KVM_WALL_CLOCK_NEW:
3982 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3983 			return 1;
3984 
3985 		msr_info->data = vcpu->kvm->arch.wall_clock;
3986 		break;
3987 	case MSR_KVM_SYSTEM_TIME:
3988 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3989 			return 1;
3990 
3991 		msr_info->data = vcpu->arch.time;
3992 		break;
3993 	case MSR_KVM_SYSTEM_TIME_NEW:
3994 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3995 			return 1;
3996 
3997 		msr_info->data = vcpu->arch.time;
3998 		break;
3999 	case MSR_KVM_ASYNC_PF_EN:
4000 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4001 			return 1;
4002 
4003 		msr_info->data = vcpu->arch.apf.msr_en_val;
4004 		break;
4005 	case MSR_KVM_ASYNC_PF_INT:
4006 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4007 			return 1;
4008 
4009 		msr_info->data = vcpu->arch.apf.msr_int_val;
4010 		break;
4011 	case MSR_KVM_ASYNC_PF_ACK:
4012 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4013 			return 1;
4014 
4015 		msr_info->data = 0;
4016 		break;
4017 	case MSR_KVM_STEAL_TIME:
4018 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4019 			return 1;
4020 
4021 		msr_info->data = vcpu->arch.st.msr_val;
4022 		break;
4023 	case MSR_KVM_PV_EOI_EN:
4024 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4025 			return 1;
4026 
4027 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4028 		break;
4029 	case MSR_KVM_POLL_CONTROL:
4030 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4031 			return 1;
4032 
4033 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4034 		break;
4035 	case MSR_IA32_P5_MC_ADDR:
4036 	case MSR_IA32_P5_MC_TYPE:
4037 	case MSR_IA32_MCG_CAP:
4038 	case MSR_IA32_MCG_CTL:
4039 	case MSR_IA32_MCG_STATUS:
4040 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4041 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4042 				   msr_info->host_initiated);
4043 	case MSR_IA32_XSS:
4044 		if (!msr_info->host_initiated &&
4045 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4046 			return 1;
4047 		msr_info->data = vcpu->arch.ia32_xss;
4048 		break;
4049 	case MSR_K7_CLK_CTL:
4050 		/*
4051 		 * Provide expected ramp-up count for K7. All other
4052 		 * are set to zero, indicating minimum divisors for
4053 		 * every field.
4054 		 *
4055 		 * This prevents guest kernels on AMD host with CPU
4056 		 * type 6, model 8 and higher from exploding due to
4057 		 * the rdmsr failing.
4058 		 */
4059 		msr_info->data = 0x20000000;
4060 		break;
4061 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4062 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4063 	case HV_X64_MSR_SYNDBG_OPTIONS:
4064 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4065 	case HV_X64_MSR_CRASH_CTL:
4066 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4067 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4068 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4069 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4070 		return kvm_hv_get_msr_common(vcpu,
4071 					     msr_info->index, &msr_info->data,
4072 					     msr_info->host_initiated);
4073 	case MSR_IA32_BBL_CR_CTL3:
4074 		/* This legacy MSR exists but isn't fully documented in current
4075 		 * silicon.  It is however accessed by winxp in very narrow
4076 		 * scenarios where it sets bit #19, itself documented as
4077 		 * a "reserved" bit.  Best effort attempt to source coherent
4078 		 * read data here should the balance of the register be
4079 		 * interpreted by the guest:
4080 		 *
4081 		 * L2 cache control register 3: 64GB range, 256KB size,
4082 		 * enabled, latency 0x1, configured
4083 		 */
4084 		msr_info->data = 0xbe702111;
4085 		break;
4086 	case MSR_AMD64_OSVW_ID_LENGTH:
4087 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4088 			return 1;
4089 		msr_info->data = vcpu->arch.osvw.length;
4090 		break;
4091 	case MSR_AMD64_OSVW_STATUS:
4092 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4093 			return 1;
4094 		msr_info->data = vcpu->arch.osvw.status;
4095 		break;
4096 	case MSR_PLATFORM_INFO:
4097 		if (!msr_info->host_initiated &&
4098 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4099 			return 1;
4100 		msr_info->data = vcpu->arch.msr_platform_info;
4101 		break;
4102 	case MSR_MISC_FEATURES_ENABLES:
4103 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4104 		break;
4105 	case MSR_K7_HWCR:
4106 		msr_info->data = vcpu->arch.msr_hwcr;
4107 		break;
4108 #ifdef CONFIG_X86_64
4109 	case MSR_IA32_XFD:
4110 		if (!msr_info->host_initiated &&
4111 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4112 			return 1;
4113 
4114 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4115 		break;
4116 	case MSR_IA32_XFD_ERR:
4117 		if (!msr_info->host_initiated &&
4118 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4119 			return 1;
4120 
4121 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4122 		break;
4123 #endif
4124 	default:
4125 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4126 			return kvm_pmu_get_msr(vcpu, msr_info);
4127 		return KVM_MSR_RET_INVALID;
4128 	}
4129 	return 0;
4130 }
4131 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4132 
4133 /*
4134  * Read or write a bunch of msrs. All parameters are kernel addresses.
4135  *
4136  * @return number of msrs set successfully.
4137  */
4138 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4139 		    struct kvm_msr_entry *entries,
4140 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4141 				  unsigned index, u64 *data))
4142 {
4143 	int i;
4144 
4145 	for (i = 0; i < msrs->nmsrs; ++i)
4146 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4147 			break;
4148 
4149 	return i;
4150 }
4151 
4152 /*
4153  * Read or write a bunch of msrs. Parameters are user addresses.
4154  *
4155  * @return number of msrs set successfully.
4156  */
4157 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4158 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4159 				unsigned index, u64 *data),
4160 		  int writeback)
4161 {
4162 	struct kvm_msrs msrs;
4163 	struct kvm_msr_entry *entries;
4164 	int r, n;
4165 	unsigned size;
4166 
4167 	r = -EFAULT;
4168 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4169 		goto out;
4170 
4171 	r = -E2BIG;
4172 	if (msrs.nmsrs >= MAX_IO_MSRS)
4173 		goto out;
4174 
4175 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4176 	entries = memdup_user(user_msrs->entries, size);
4177 	if (IS_ERR(entries)) {
4178 		r = PTR_ERR(entries);
4179 		goto out;
4180 	}
4181 
4182 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4183 	if (r < 0)
4184 		goto out_free;
4185 
4186 	r = -EFAULT;
4187 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4188 		goto out_free;
4189 
4190 	r = n;
4191 
4192 out_free:
4193 	kfree(entries);
4194 out:
4195 	return r;
4196 }
4197 
4198 static inline bool kvm_can_mwait_in_guest(void)
4199 {
4200 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4201 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4202 		boot_cpu_has(X86_FEATURE_ARAT);
4203 }
4204 
4205 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4206 					    struct kvm_cpuid2 __user *cpuid_arg)
4207 {
4208 	struct kvm_cpuid2 cpuid;
4209 	int r;
4210 
4211 	r = -EFAULT;
4212 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4213 		return r;
4214 
4215 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4216 	if (r)
4217 		return r;
4218 
4219 	r = -EFAULT;
4220 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4221 		return r;
4222 
4223 	return 0;
4224 }
4225 
4226 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4227 {
4228 	int r = 0;
4229 
4230 	switch (ext) {
4231 	case KVM_CAP_IRQCHIP:
4232 	case KVM_CAP_HLT:
4233 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4234 	case KVM_CAP_SET_TSS_ADDR:
4235 	case KVM_CAP_EXT_CPUID:
4236 	case KVM_CAP_EXT_EMUL_CPUID:
4237 	case KVM_CAP_CLOCKSOURCE:
4238 	case KVM_CAP_PIT:
4239 	case KVM_CAP_NOP_IO_DELAY:
4240 	case KVM_CAP_MP_STATE:
4241 	case KVM_CAP_SYNC_MMU:
4242 	case KVM_CAP_USER_NMI:
4243 	case KVM_CAP_REINJECT_CONTROL:
4244 	case KVM_CAP_IRQ_INJECT_STATUS:
4245 	case KVM_CAP_IOEVENTFD:
4246 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4247 	case KVM_CAP_PIT2:
4248 	case KVM_CAP_PIT_STATE2:
4249 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4250 	case KVM_CAP_VCPU_EVENTS:
4251 	case KVM_CAP_HYPERV:
4252 	case KVM_CAP_HYPERV_VAPIC:
4253 	case KVM_CAP_HYPERV_SPIN:
4254 	case KVM_CAP_HYPERV_SYNIC:
4255 	case KVM_CAP_HYPERV_SYNIC2:
4256 	case KVM_CAP_HYPERV_VP_INDEX:
4257 	case KVM_CAP_HYPERV_EVENTFD:
4258 	case KVM_CAP_HYPERV_TLBFLUSH:
4259 	case KVM_CAP_HYPERV_SEND_IPI:
4260 	case KVM_CAP_HYPERV_CPUID:
4261 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4262 	case KVM_CAP_SYS_HYPERV_CPUID:
4263 	case KVM_CAP_PCI_SEGMENT:
4264 	case KVM_CAP_DEBUGREGS:
4265 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4266 	case KVM_CAP_XSAVE:
4267 	case KVM_CAP_ASYNC_PF:
4268 	case KVM_CAP_ASYNC_PF_INT:
4269 	case KVM_CAP_GET_TSC_KHZ:
4270 	case KVM_CAP_KVMCLOCK_CTRL:
4271 	case KVM_CAP_READONLY_MEM:
4272 	case KVM_CAP_HYPERV_TIME:
4273 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4274 	case KVM_CAP_TSC_DEADLINE_TIMER:
4275 	case KVM_CAP_DISABLE_QUIRKS:
4276 	case KVM_CAP_SET_BOOT_CPU_ID:
4277  	case KVM_CAP_SPLIT_IRQCHIP:
4278 	case KVM_CAP_IMMEDIATE_EXIT:
4279 	case KVM_CAP_PMU_EVENT_FILTER:
4280 	case KVM_CAP_GET_MSR_FEATURES:
4281 	case KVM_CAP_MSR_PLATFORM_INFO:
4282 	case KVM_CAP_EXCEPTION_PAYLOAD:
4283 	case KVM_CAP_SET_GUEST_DEBUG:
4284 	case KVM_CAP_LAST_CPU:
4285 	case KVM_CAP_X86_USER_SPACE_MSR:
4286 	case KVM_CAP_X86_MSR_FILTER:
4287 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4288 #ifdef CONFIG_X86_SGX_KVM
4289 	case KVM_CAP_SGX_ATTRIBUTE:
4290 #endif
4291 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4292 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4293 	case KVM_CAP_SREGS2:
4294 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4295 	case KVM_CAP_VCPU_ATTRIBUTES:
4296 	case KVM_CAP_SYS_ATTRIBUTES:
4297 	case KVM_CAP_VAPIC:
4298 	case KVM_CAP_ENABLE_CAP:
4299 		r = 1;
4300 		break;
4301 	case KVM_CAP_EXIT_HYPERCALL:
4302 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4303 		break;
4304 	case KVM_CAP_SET_GUEST_DEBUG2:
4305 		return KVM_GUESTDBG_VALID_MASK;
4306 #ifdef CONFIG_KVM_XEN
4307 	case KVM_CAP_XEN_HVM:
4308 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4309 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4310 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4311 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4312 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4313 		if (sched_info_on())
4314 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4315 		break;
4316 #endif
4317 	case KVM_CAP_SYNC_REGS:
4318 		r = KVM_SYNC_X86_VALID_FIELDS;
4319 		break;
4320 	case KVM_CAP_ADJUST_CLOCK:
4321 		r = KVM_CLOCK_VALID_FLAGS;
4322 		break;
4323 	case KVM_CAP_X86_DISABLE_EXITS:
4324 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4325 		      KVM_X86_DISABLE_EXITS_CSTATE;
4326 		if(kvm_can_mwait_in_guest())
4327 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4328 		break;
4329 	case KVM_CAP_X86_SMM:
4330 		/* SMBASE is usually relocated above 1M on modern chipsets,
4331 		 * and SMM handlers might indeed rely on 4G segment limits,
4332 		 * so do not report SMM to be available if real mode is
4333 		 * emulated via vm86 mode.  Still, do not go to great lengths
4334 		 * to avoid userspace's usage of the feature, because it is a
4335 		 * fringe case that is not enabled except via specific settings
4336 		 * of the module parameters.
4337 		 */
4338 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4339 		break;
4340 	case KVM_CAP_NR_VCPUS:
4341 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4342 		break;
4343 	case KVM_CAP_MAX_VCPUS:
4344 		r = KVM_MAX_VCPUS;
4345 		break;
4346 	case KVM_CAP_MAX_VCPU_ID:
4347 		r = KVM_MAX_VCPU_IDS;
4348 		break;
4349 	case KVM_CAP_PV_MMU:	/* obsolete */
4350 		r = 0;
4351 		break;
4352 	case KVM_CAP_MCE:
4353 		r = KVM_MAX_MCE_BANKS;
4354 		break;
4355 	case KVM_CAP_XCRS:
4356 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4357 		break;
4358 	case KVM_CAP_TSC_CONTROL:
4359 	case KVM_CAP_VM_TSC_CONTROL:
4360 		r = kvm_has_tsc_control;
4361 		break;
4362 	case KVM_CAP_X2APIC_API:
4363 		r = KVM_X2APIC_API_VALID_FLAGS;
4364 		break;
4365 	case KVM_CAP_NESTED_STATE:
4366 		r = kvm_x86_ops.nested_ops->get_state ?
4367 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4368 		break;
4369 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4370 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4371 		break;
4372 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4373 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4374 		break;
4375 	case KVM_CAP_SMALLER_MAXPHYADDR:
4376 		r = (int) allow_smaller_maxphyaddr;
4377 		break;
4378 	case KVM_CAP_STEAL_TIME:
4379 		r = sched_info_on();
4380 		break;
4381 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4382 		if (kvm_has_bus_lock_exit)
4383 			r = KVM_BUS_LOCK_DETECTION_OFF |
4384 			    KVM_BUS_LOCK_DETECTION_EXIT;
4385 		else
4386 			r = 0;
4387 		break;
4388 	case KVM_CAP_XSAVE2: {
4389 		u64 guest_perm = xstate_get_guest_group_perm();
4390 
4391 		r = xstate_required_size(supported_xcr0 & guest_perm, false);
4392 		if (r < sizeof(struct kvm_xsave))
4393 			r = sizeof(struct kvm_xsave);
4394 		break;
4395 	case KVM_CAP_PMU_CAPABILITY:
4396 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4397 		break;
4398 	}
4399 	case KVM_CAP_DISABLE_QUIRKS2:
4400 		r = KVM_X86_VALID_QUIRKS;
4401 		break;
4402 	default:
4403 		break;
4404 	}
4405 	return r;
4406 }
4407 
4408 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4409 {
4410 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4411 
4412 	if ((u64)(unsigned long)uaddr != attr->addr)
4413 		return ERR_PTR_USR(-EFAULT);
4414 	return uaddr;
4415 }
4416 
4417 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4418 {
4419 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4420 
4421 	if (attr->group)
4422 		return -ENXIO;
4423 
4424 	if (IS_ERR(uaddr))
4425 		return PTR_ERR(uaddr);
4426 
4427 	switch (attr->attr) {
4428 	case KVM_X86_XCOMP_GUEST_SUPP:
4429 		if (put_user(supported_xcr0, uaddr))
4430 			return -EFAULT;
4431 		return 0;
4432 	default:
4433 		return -ENXIO;
4434 		break;
4435 	}
4436 }
4437 
4438 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4439 {
4440 	if (attr->group)
4441 		return -ENXIO;
4442 
4443 	switch (attr->attr) {
4444 	case KVM_X86_XCOMP_GUEST_SUPP:
4445 		return 0;
4446 	default:
4447 		return -ENXIO;
4448 	}
4449 }
4450 
4451 long kvm_arch_dev_ioctl(struct file *filp,
4452 			unsigned int ioctl, unsigned long arg)
4453 {
4454 	void __user *argp = (void __user *)arg;
4455 	long r;
4456 
4457 	switch (ioctl) {
4458 	case KVM_GET_MSR_INDEX_LIST: {
4459 		struct kvm_msr_list __user *user_msr_list = argp;
4460 		struct kvm_msr_list msr_list;
4461 		unsigned n;
4462 
4463 		r = -EFAULT;
4464 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4465 			goto out;
4466 		n = msr_list.nmsrs;
4467 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4468 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4469 			goto out;
4470 		r = -E2BIG;
4471 		if (n < msr_list.nmsrs)
4472 			goto out;
4473 		r = -EFAULT;
4474 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4475 				 num_msrs_to_save * sizeof(u32)))
4476 			goto out;
4477 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4478 				 &emulated_msrs,
4479 				 num_emulated_msrs * sizeof(u32)))
4480 			goto out;
4481 		r = 0;
4482 		break;
4483 	}
4484 	case KVM_GET_SUPPORTED_CPUID:
4485 	case KVM_GET_EMULATED_CPUID: {
4486 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4487 		struct kvm_cpuid2 cpuid;
4488 
4489 		r = -EFAULT;
4490 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4491 			goto out;
4492 
4493 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4494 					    ioctl);
4495 		if (r)
4496 			goto out;
4497 
4498 		r = -EFAULT;
4499 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4500 			goto out;
4501 		r = 0;
4502 		break;
4503 	}
4504 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4505 		r = -EFAULT;
4506 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4507 				 sizeof(kvm_mce_cap_supported)))
4508 			goto out;
4509 		r = 0;
4510 		break;
4511 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4512 		struct kvm_msr_list __user *user_msr_list = argp;
4513 		struct kvm_msr_list msr_list;
4514 		unsigned int n;
4515 
4516 		r = -EFAULT;
4517 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4518 			goto out;
4519 		n = msr_list.nmsrs;
4520 		msr_list.nmsrs = num_msr_based_features;
4521 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4522 			goto out;
4523 		r = -E2BIG;
4524 		if (n < msr_list.nmsrs)
4525 			goto out;
4526 		r = -EFAULT;
4527 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4528 				 num_msr_based_features * sizeof(u32)))
4529 			goto out;
4530 		r = 0;
4531 		break;
4532 	}
4533 	case KVM_GET_MSRS:
4534 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4535 		break;
4536 	case KVM_GET_SUPPORTED_HV_CPUID:
4537 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4538 		break;
4539 	case KVM_GET_DEVICE_ATTR: {
4540 		struct kvm_device_attr attr;
4541 		r = -EFAULT;
4542 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4543 			break;
4544 		r = kvm_x86_dev_get_attr(&attr);
4545 		break;
4546 	}
4547 	case KVM_HAS_DEVICE_ATTR: {
4548 		struct kvm_device_attr attr;
4549 		r = -EFAULT;
4550 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4551 			break;
4552 		r = kvm_x86_dev_has_attr(&attr);
4553 		break;
4554 	}
4555 	default:
4556 		r = -EINVAL;
4557 		break;
4558 	}
4559 out:
4560 	return r;
4561 }
4562 
4563 static void wbinvd_ipi(void *garbage)
4564 {
4565 	wbinvd();
4566 }
4567 
4568 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4569 {
4570 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4571 }
4572 
4573 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4574 {
4575 	/* Address WBINVD may be executed by guest */
4576 	if (need_emulate_wbinvd(vcpu)) {
4577 		if (static_call(kvm_x86_has_wbinvd_exit)())
4578 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4579 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4580 			smp_call_function_single(vcpu->cpu,
4581 					wbinvd_ipi, NULL, 1);
4582 	}
4583 
4584 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4585 
4586 	/* Save host pkru register if supported */
4587 	vcpu->arch.host_pkru = read_pkru();
4588 
4589 	/* Apply any externally detected TSC adjustments (due to suspend) */
4590 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4591 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4592 		vcpu->arch.tsc_offset_adjustment = 0;
4593 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4594 	}
4595 
4596 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4597 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4598 				rdtsc() - vcpu->arch.last_host_tsc;
4599 		if (tsc_delta < 0)
4600 			mark_tsc_unstable("KVM discovered backwards TSC");
4601 
4602 		if (kvm_check_tsc_unstable()) {
4603 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4604 						vcpu->arch.last_guest_tsc);
4605 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4606 			vcpu->arch.tsc_catchup = 1;
4607 		}
4608 
4609 		if (kvm_lapic_hv_timer_in_use(vcpu))
4610 			kvm_lapic_restart_hv_timer(vcpu);
4611 
4612 		/*
4613 		 * On a host with synchronized TSC, there is no need to update
4614 		 * kvmclock on vcpu->cpu migration
4615 		 */
4616 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4617 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4618 		if (vcpu->cpu != cpu)
4619 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4620 		vcpu->cpu = cpu;
4621 	}
4622 
4623 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4624 }
4625 
4626 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4627 {
4628 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4629 	struct kvm_steal_time __user *st;
4630 	struct kvm_memslots *slots;
4631 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4632 
4633 	/*
4634 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4635 	 * an instruction boundary and will not trigger guest emulation of any
4636 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4637 	 * when this is true, for example allowing the vCPU to be marked
4638 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4639 	 */
4640 	if (!vcpu->arch.at_instruction_boundary) {
4641 		vcpu->stat.preemption_other++;
4642 		return;
4643 	}
4644 
4645 	vcpu->stat.preemption_reported++;
4646 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4647 		return;
4648 
4649 	if (vcpu->arch.st.preempted)
4650 		return;
4651 
4652 	/* This happens on process exit */
4653 	if (unlikely(current->mm != vcpu->kvm->mm))
4654 		return;
4655 
4656 	slots = kvm_memslots(vcpu->kvm);
4657 
4658 	if (unlikely(slots->generation != ghc->generation ||
4659 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4660 		return;
4661 
4662 	st = (struct kvm_steal_time __user *)ghc->hva;
4663 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4664 
4665 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4666 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4667 
4668 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4669 }
4670 
4671 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4672 {
4673 	int idx;
4674 
4675 	if (vcpu->preempted) {
4676 		if (!vcpu->arch.guest_state_protected)
4677 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4678 
4679 		/*
4680 		 * Take the srcu lock as memslots will be accessed to check the gfn
4681 		 * cache generation against the memslots generation.
4682 		 */
4683 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4684 		if (kvm_xen_msr_enabled(vcpu->kvm))
4685 			kvm_xen_runstate_set_preempted(vcpu);
4686 		else
4687 			kvm_steal_time_set_preempted(vcpu);
4688 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4689 	}
4690 
4691 	static_call(kvm_x86_vcpu_put)(vcpu);
4692 	vcpu->arch.last_host_tsc = rdtsc();
4693 }
4694 
4695 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4696 				    struct kvm_lapic_state *s)
4697 {
4698 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4699 
4700 	return kvm_apic_get_state(vcpu, s);
4701 }
4702 
4703 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4704 				    struct kvm_lapic_state *s)
4705 {
4706 	int r;
4707 
4708 	r = kvm_apic_set_state(vcpu, s);
4709 	if (r)
4710 		return r;
4711 	update_cr8_intercept(vcpu);
4712 
4713 	return 0;
4714 }
4715 
4716 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4717 {
4718 	/*
4719 	 * We can accept userspace's request for interrupt injection
4720 	 * as long as we have a place to store the interrupt number.
4721 	 * The actual injection will happen when the CPU is able to
4722 	 * deliver the interrupt.
4723 	 */
4724 	if (kvm_cpu_has_extint(vcpu))
4725 		return false;
4726 
4727 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4728 	return (!lapic_in_kernel(vcpu) ||
4729 		kvm_apic_accept_pic_intr(vcpu));
4730 }
4731 
4732 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4733 {
4734 	/*
4735 	 * Do not cause an interrupt window exit if an exception
4736 	 * is pending or an event needs reinjection; userspace
4737 	 * might want to inject the interrupt manually using KVM_SET_REGS
4738 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4739 	 * instruction boundary and with no events half-injected.
4740 	 */
4741 	return (kvm_arch_interrupt_allowed(vcpu) &&
4742 		kvm_cpu_accept_dm_intr(vcpu) &&
4743 		!kvm_event_needs_reinjection(vcpu) &&
4744 		!vcpu->arch.exception.pending);
4745 }
4746 
4747 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4748 				    struct kvm_interrupt *irq)
4749 {
4750 	if (irq->irq >= KVM_NR_INTERRUPTS)
4751 		return -EINVAL;
4752 
4753 	if (!irqchip_in_kernel(vcpu->kvm)) {
4754 		kvm_queue_interrupt(vcpu, irq->irq, false);
4755 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4756 		return 0;
4757 	}
4758 
4759 	/*
4760 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4761 	 * fail for in-kernel 8259.
4762 	 */
4763 	if (pic_in_kernel(vcpu->kvm))
4764 		return -ENXIO;
4765 
4766 	if (vcpu->arch.pending_external_vector != -1)
4767 		return -EEXIST;
4768 
4769 	vcpu->arch.pending_external_vector = irq->irq;
4770 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4771 	return 0;
4772 }
4773 
4774 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4775 {
4776 	kvm_inject_nmi(vcpu);
4777 
4778 	return 0;
4779 }
4780 
4781 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4782 {
4783 	kvm_make_request(KVM_REQ_SMI, vcpu);
4784 
4785 	return 0;
4786 }
4787 
4788 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4789 					   struct kvm_tpr_access_ctl *tac)
4790 {
4791 	if (tac->flags)
4792 		return -EINVAL;
4793 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4794 	return 0;
4795 }
4796 
4797 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4798 					u64 mcg_cap)
4799 {
4800 	int r;
4801 	unsigned bank_num = mcg_cap & 0xff, bank;
4802 
4803 	r = -EINVAL;
4804 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4805 		goto out;
4806 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4807 		goto out;
4808 	r = 0;
4809 	vcpu->arch.mcg_cap = mcg_cap;
4810 	/* Init IA32_MCG_CTL to all 1s */
4811 	if (mcg_cap & MCG_CTL_P)
4812 		vcpu->arch.mcg_ctl = ~(u64)0;
4813 	/* Init IA32_MCi_CTL to all 1s */
4814 	for (bank = 0; bank < bank_num; bank++)
4815 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4816 
4817 	static_call(kvm_x86_setup_mce)(vcpu);
4818 out:
4819 	return r;
4820 }
4821 
4822 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4823 				      struct kvm_x86_mce *mce)
4824 {
4825 	u64 mcg_cap = vcpu->arch.mcg_cap;
4826 	unsigned bank_num = mcg_cap & 0xff;
4827 	u64 *banks = vcpu->arch.mce_banks;
4828 
4829 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4830 		return -EINVAL;
4831 	/*
4832 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4833 	 * reporting is disabled
4834 	 */
4835 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4836 	    vcpu->arch.mcg_ctl != ~(u64)0)
4837 		return 0;
4838 	banks += 4 * mce->bank;
4839 	/*
4840 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4841 	 * reporting is disabled for the bank
4842 	 */
4843 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4844 		return 0;
4845 	if (mce->status & MCI_STATUS_UC) {
4846 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4847 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4848 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4849 			return 0;
4850 		}
4851 		if (banks[1] & MCI_STATUS_VAL)
4852 			mce->status |= MCI_STATUS_OVER;
4853 		banks[2] = mce->addr;
4854 		banks[3] = mce->misc;
4855 		vcpu->arch.mcg_status = mce->mcg_status;
4856 		banks[1] = mce->status;
4857 		kvm_queue_exception(vcpu, MC_VECTOR);
4858 	} else if (!(banks[1] & MCI_STATUS_VAL)
4859 		   || !(banks[1] & MCI_STATUS_UC)) {
4860 		if (banks[1] & MCI_STATUS_VAL)
4861 			mce->status |= MCI_STATUS_OVER;
4862 		banks[2] = mce->addr;
4863 		banks[3] = mce->misc;
4864 		banks[1] = mce->status;
4865 	} else
4866 		banks[1] |= MCI_STATUS_OVER;
4867 	return 0;
4868 }
4869 
4870 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4871 					       struct kvm_vcpu_events *events)
4872 {
4873 	process_nmi(vcpu);
4874 
4875 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4876 		process_smi(vcpu);
4877 
4878 	/*
4879 	 * In guest mode, payload delivery should be deferred,
4880 	 * so that the L1 hypervisor can intercept #PF before
4881 	 * CR2 is modified (or intercept #DB before DR6 is
4882 	 * modified under nVMX). Unless the per-VM capability,
4883 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4884 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4885 	 * opportunistically defer the exception payload, deliver it if the
4886 	 * capability hasn't been requested before processing a
4887 	 * KVM_GET_VCPU_EVENTS.
4888 	 */
4889 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4890 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4891 		kvm_deliver_exception_payload(vcpu);
4892 
4893 	/*
4894 	 * The API doesn't provide the instruction length for software
4895 	 * exceptions, so don't report them. As long as the guest RIP
4896 	 * isn't advanced, we should expect to encounter the exception
4897 	 * again.
4898 	 */
4899 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4900 		events->exception.injected = 0;
4901 		events->exception.pending = 0;
4902 	} else {
4903 		events->exception.injected = vcpu->arch.exception.injected;
4904 		events->exception.pending = vcpu->arch.exception.pending;
4905 		/*
4906 		 * For ABI compatibility, deliberately conflate
4907 		 * pending and injected exceptions when
4908 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4909 		 */
4910 		if (!vcpu->kvm->arch.exception_payload_enabled)
4911 			events->exception.injected |=
4912 				vcpu->arch.exception.pending;
4913 	}
4914 	events->exception.nr = vcpu->arch.exception.nr;
4915 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4916 	events->exception.error_code = vcpu->arch.exception.error_code;
4917 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4918 	events->exception_payload = vcpu->arch.exception.payload;
4919 
4920 	events->interrupt.injected =
4921 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4922 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4923 	events->interrupt.soft = 0;
4924 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4925 
4926 	events->nmi.injected = vcpu->arch.nmi_injected;
4927 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4928 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4929 	events->nmi.pad = 0;
4930 
4931 	events->sipi_vector = 0; /* never valid when reporting to user space */
4932 
4933 	events->smi.smm = is_smm(vcpu);
4934 	events->smi.pending = vcpu->arch.smi_pending;
4935 	events->smi.smm_inside_nmi =
4936 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4937 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4938 
4939 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4940 			 | KVM_VCPUEVENT_VALID_SHADOW
4941 			 | KVM_VCPUEVENT_VALID_SMM);
4942 	if (vcpu->kvm->arch.exception_payload_enabled)
4943 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4944 
4945 	memset(&events->reserved, 0, sizeof(events->reserved));
4946 }
4947 
4948 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4949 
4950 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4951 					      struct kvm_vcpu_events *events)
4952 {
4953 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4954 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4955 			      | KVM_VCPUEVENT_VALID_SHADOW
4956 			      | KVM_VCPUEVENT_VALID_SMM
4957 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4958 		return -EINVAL;
4959 
4960 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4961 		if (!vcpu->kvm->arch.exception_payload_enabled)
4962 			return -EINVAL;
4963 		if (events->exception.pending)
4964 			events->exception.injected = 0;
4965 		else
4966 			events->exception_has_payload = 0;
4967 	} else {
4968 		events->exception.pending = 0;
4969 		events->exception_has_payload = 0;
4970 	}
4971 
4972 	if ((events->exception.injected || events->exception.pending) &&
4973 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4974 		return -EINVAL;
4975 
4976 	/* INITs are latched while in SMM */
4977 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4978 	    (events->smi.smm || events->smi.pending) &&
4979 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4980 		return -EINVAL;
4981 
4982 	process_nmi(vcpu);
4983 	vcpu->arch.exception.injected = events->exception.injected;
4984 	vcpu->arch.exception.pending = events->exception.pending;
4985 	vcpu->arch.exception.nr = events->exception.nr;
4986 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4987 	vcpu->arch.exception.error_code = events->exception.error_code;
4988 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4989 	vcpu->arch.exception.payload = events->exception_payload;
4990 
4991 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4992 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4993 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4994 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4995 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4996 						events->interrupt.shadow);
4997 
4998 	vcpu->arch.nmi_injected = events->nmi.injected;
4999 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5000 		vcpu->arch.nmi_pending = events->nmi.pending;
5001 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5002 
5003 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5004 	    lapic_in_kernel(vcpu))
5005 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5006 
5007 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5008 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5009 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
5010 			kvm_smm_changed(vcpu, events->smi.smm);
5011 		}
5012 
5013 		vcpu->arch.smi_pending = events->smi.pending;
5014 
5015 		if (events->smi.smm) {
5016 			if (events->smi.smm_inside_nmi)
5017 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5018 			else
5019 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5020 		}
5021 
5022 		if (lapic_in_kernel(vcpu)) {
5023 			if (events->smi.latched_init)
5024 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5025 			else
5026 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5027 		}
5028 	}
5029 
5030 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5031 
5032 	return 0;
5033 }
5034 
5035 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5036 					     struct kvm_debugregs *dbgregs)
5037 {
5038 	unsigned long val;
5039 
5040 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5041 	kvm_get_dr(vcpu, 6, &val);
5042 	dbgregs->dr6 = val;
5043 	dbgregs->dr7 = vcpu->arch.dr7;
5044 	dbgregs->flags = 0;
5045 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5046 }
5047 
5048 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5049 					    struct kvm_debugregs *dbgregs)
5050 {
5051 	if (dbgregs->flags)
5052 		return -EINVAL;
5053 
5054 	if (!kvm_dr6_valid(dbgregs->dr6))
5055 		return -EINVAL;
5056 	if (!kvm_dr7_valid(dbgregs->dr7))
5057 		return -EINVAL;
5058 
5059 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5060 	kvm_update_dr0123(vcpu);
5061 	vcpu->arch.dr6 = dbgregs->dr6;
5062 	vcpu->arch.dr7 = dbgregs->dr7;
5063 	kvm_update_dr7(vcpu);
5064 
5065 	return 0;
5066 }
5067 
5068 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5069 					 struct kvm_xsave *guest_xsave)
5070 {
5071 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5072 		return;
5073 
5074 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5075 				       guest_xsave->region,
5076 				       sizeof(guest_xsave->region),
5077 				       vcpu->arch.pkru);
5078 }
5079 
5080 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5081 					  u8 *state, unsigned int size)
5082 {
5083 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5084 		return;
5085 
5086 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5087 				       state, size, vcpu->arch.pkru);
5088 }
5089 
5090 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5091 					struct kvm_xsave *guest_xsave)
5092 {
5093 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5094 		return 0;
5095 
5096 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5097 					      guest_xsave->region,
5098 					      supported_xcr0, &vcpu->arch.pkru);
5099 }
5100 
5101 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5102 					struct kvm_xcrs *guest_xcrs)
5103 {
5104 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5105 		guest_xcrs->nr_xcrs = 0;
5106 		return;
5107 	}
5108 
5109 	guest_xcrs->nr_xcrs = 1;
5110 	guest_xcrs->flags = 0;
5111 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5112 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5113 }
5114 
5115 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5116 				       struct kvm_xcrs *guest_xcrs)
5117 {
5118 	int i, r = 0;
5119 
5120 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5121 		return -EINVAL;
5122 
5123 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5124 		return -EINVAL;
5125 
5126 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5127 		/* Only support XCR0 currently */
5128 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5129 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5130 				guest_xcrs->xcrs[i].value);
5131 			break;
5132 		}
5133 	if (r)
5134 		r = -EINVAL;
5135 	return r;
5136 }
5137 
5138 /*
5139  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5140  * stopped by the hypervisor.  This function will be called from the host only.
5141  * EINVAL is returned when the host attempts to set the flag for a guest that
5142  * does not support pv clocks.
5143  */
5144 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5145 {
5146 	if (!vcpu->arch.pv_time.active)
5147 		return -EINVAL;
5148 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5149 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5150 	return 0;
5151 }
5152 
5153 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5154 				 struct kvm_device_attr *attr)
5155 {
5156 	int r;
5157 
5158 	switch (attr->attr) {
5159 	case KVM_VCPU_TSC_OFFSET:
5160 		r = 0;
5161 		break;
5162 	default:
5163 		r = -ENXIO;
5164 	}
5165 
5166 	return r;
5167 }
5168 
5169 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5170 				 struct kvm_device_attr *attr)
5171 {
5172 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5173 	int r;
5174 
5175 	if (IS_ERR(uaddr))
5176 		return PTR_ERR(uaddr);
5177 
5178 	switch (attr->attr) {
5179 	case KVM_VCPU_TSC_OFFSET:
5180 		r = -EFAULT;
5181 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5182 			break;
5183 		r = 0;
5184 		break;
5185 	default:
5186 		r = -ENXIO;
5187 	}
5188 
5189 	return r;
5190 }
5191 
5192 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5193 				 struct kvm_device_attr *attr)
5194 {
5195 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5196 	struct kvm *kvm = vcpu->kvm;
5197 	int r;
5198 
5199 	if (IS_ERR(uaddr))
5200 		return PTR_ERR(uaddr);
5201 
5202 	switch (attr->attr) {
5203 	case KVM_VCPU_TSC_OFFSET: {
5204 		u64 offset, tsc, ns;
5205 		unsigned long flags;
5206 		bool matched;
5207 
5208 		r = -EFAULT;
5209 		if (get_user(offset, uaddr))
5210 			break;
5211 
5212 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5213 
5214 		matched = (vcpu->arch.virtual_tsc_khz &&
5215 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5216 			   kvm->arch.last_tsc_offset == offset);
5217 
5218 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5219 		ns = get_kvmclock_base_ns();
5220 
5221 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5222 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5223 
5224 		r = 0;
5225 		break;
5226 	}
5227 	default:
5228 		r = -ENXIO;
5229 	}
5230 
5231 	return r;
5232 }
5233 
5234 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5235 				      unsigned int ioctl,
5236 				      void __user *argp)
5237 {
5238 	struct kvm_device_attr attr;
5239 	int r;
5240 
5241 	if (copy_from_user(&attr, argp, sizeof(attr)))
5242 		return -EFAULT;
5243 
5244 	if (attr.group != KVM_VCPU_TSC_CTRL)
5245 		return -ENXIO;
5246 
5247 	switch (ioctl) {
5248 	case KVM_HAS_DEVICE_ATTR:
5249 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5250 		break;
5251 	case KVM_GET_DEVICE_ATTR:
5252 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5253 		break;
5254 	case KVM_SET_DEVICE_ATTR:
5255 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5256 		break;
5257 	}
5258 
5259 	return r;
5260 }
5261 
5262 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5263 				     struct kvm_enable_cap *cap)
5264 {
5265 	int r;
5266 	uint16_t vmcs_version;
5267 	void __user *user_ptr;
5268 
5269 	if (cap->flags)
5270 		return -EINVAL;
5271 
5272 	switch (cap->cap) {
5273 	case KVM_CAP_HYPERV_SYNIC2:
5274 		if (cap->args[0])
5275 			return -EINVAL;
5276 		fallthrough;
5277 
5278 	case KVM_CAP_HYPERV_SYNIC:
5279 		if (!irqchip_in_kernel(vcpu->kvm))
5280 			return -EINVAL;
5281 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5282 					     KVM_CAP_HYPERV_SYNIC2);
5283 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5284 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5285 			return -ENOTTY;
5286 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5287 		if (!r) {
5288 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5289 			if (copy_to_user(user_ptr, &vmcs_version,
5290 					 sizeof(vmcs_version)))
5291 				r = -EFAULT;
5292 		}
5293 		return r;
5294 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5295 		if (!kvm_x86_ops.enable_direct_tlbflush)
5296 			return -ENOTTY;
5297 
5298 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5299 
5300 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5301 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5302 
5303 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5304 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5305 		if (vcpu->arch.pv_cpuid.enforce)
5306 			kvm_update_pv_runtime(vcpu);
5307 
5308 		return 0;
5309 	default:
5310 		return -EINVAL;
5311 	}
5312 }
5313 
5314 long kvm_arch_vcpu_ioctl(struct file *filp,
5315 			 unsigned int ioctl, unsigned long arg)
5316 {
5317 	struct kvm_vcpu *vcpu = filp->private_data;
5318 	void __user *argp = (void __user *)arg;
5319 	int r;
5320 	union {
5321 		struct kvm_sregs2 *sregs2;
5322 		struct kvm_lapic_state *lapic;
5323 		struct kvm_xsave *xsave;
5324 		struct kvm_xcrs *xcrs;
5325 		void *buffer;
5326 	} u;
5327 
5328 	vcpu_load(vcpu);
5329 
5330 	u.buffer = NULL;
5331 	switch (ioctl) {
5332 	case KVM_GET_LAPIC: {
5333 		r = -EINVAL;
5334 		if (!lapic_in_kernel(vcpu))
5335 			goto out;
5336 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5337 				GFP_KERNEL_ACCOUNT);
5338 
5339 		r = -ENOMEM;
5340 		if (!u.lapic)
5341 			goto out;
5342 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5343 		if (r)
5344 			goto out;
5345 		r = -EFAULT;
5346 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5347 			goto out;
5348 		r = 0;
5349 		break;
5350 	}
5351 	case KVM_SET_LAPIC: {
5352 		r = -EINVAL;
5353 		if (!lapic_in_kernel(vcpu))
5354 			goto out;
5355 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5356 		if (IS_ERR(u.lapic)) {
5357 			r = PTR_ERR(u.lapic);
5358 			goto out_nofree;
5359 		}
5360 
5361 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5362 		break;
5363 	}
5364 	case KVM_INTERRUPT: {
5365 		struct kvm_interrupt irq;
5366 
5367 		r = -EFAULT;
5368 		if (copy_from_user(&irq, argp, sizeof(irq)))
5369 			goto out;
5370 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5371 		break;
5372 	}
5373 	case KVM_NMI: {
5374 		r = kvm_vcpu_ioctl_nmi(vcpu);
5375 		break;
5376 	}
5377 	case KVM_SMI: {
5378 		r = kvm_vcpu_ioctl_smi(vcpu);
5379 		break;
5380 	}
5381 	case KVM_SET_CPUID: {
5382 		struct kvm_cpuid __user *cpuid_arg = argp;
5383 		struct kvm_cpuid cpuid;
5384 
5385 		r = -EFAULT;
5386 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5387 			goto out;
5388 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5389 		break;
5390 	}
5391 	case KVM_SET_CPUID2: {
5392 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5393 		struct kvm_cpuid2 cpuid;
5394 
5395 		r = -EFAULT;
5396 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5397 			goto out;
5398 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5399 					      cpuid_arg->entries);
5400 		break;
5401 	}
5402 	case KVM_GET_CPUID2: {
5403 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5404 		struct kvm_cpuid2 cpuid;
5405 
5406 		r = -EFAULT;
5407 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5408 			goto out;
5409 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5410 					      cpuid_arg->entries);
5411 		if (r)
5412 			goto out;
5413 		r = -EFAULT;
5414 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5415 			goto out;
5416 		r = 0;
5417 		break;
5418 	}
5419 	case KVM_GET_MSRS: {
5420 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5421 		r = msr_io(vcpu, argp, do_get_msr, 1);
5422 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5423 		break;
5424 	}
5425 	case KVM_SET_MSRS: {
5426 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5427 		r = msr_io(vcpu, argp, do_set_msr, 0);
5428 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5429 		break;
5430 	}
5431 	case KVM_TPR_ACCESS_REPORTING: {
5432 		struct kvm_tpr_access_ctl tac;
5433 
5434 		r = -EFAULT;
5435 		if (copy_from_user(&tac, argp, sizeof(tac)))
5436 			goto out;
5437 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5438 		if (r)
5439 			goto out;
5440 		r = -EFAULT;
5441 		if (copy_to_user(argp, &tac, sizeof(tac)))
5442 			goto out;
5443 		r = 0;
5444 		break;
5445 	};
5446 	case KVM_SET_VAPIC_ADDR: {
5447 		struct kvm_vapic_addr va;
5448 		int idx;
5449 
5450 		r = -EINVAL;
5451 		if (!lapic_in_kernel(vcpu))
5452 			goto out;
5453 		r = -EFAULT;
5454 		if (copy_from_user(&va, argp, sizeof(va)))
5455 			goto out;
5456 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5457 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5458 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5459 		break;
5460 	}
5461 	case KVM_X86_SETUP_MCE: {
5462 		u64 mcg_cap;
5463 
5464 		r = -EFAULT;
5465 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5466 			goto out;
5467 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5468 		break;
5469 	}
5470 	case KVM_X86_SET_MCE: {
5471 		struct kvm_x86_mce mce;
5472 
5473 		r = -EFAULT;
5474 		if (copy_from_user(&mce, argp, sizeof(mce)))
5475 			goto out;
5476 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5477 		break;
5478 	}
5479 	case KVM_GET_VCPU_EVENTS: {
5480 		struct kvm_vcpu_events events;
5481 
5482 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5483 
5484 		r = -EFAULT;
5485 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5486 			break;
5487 		r = 0;
5488 		break;
5489 	}
5490 	case KVM_SET_VCPU_EVENTS: {
5491 		struct kvm_vcpu_events events;
5492 
5493 		r = -EFAULT;
5494 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5495 			break;
5496 
5497 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5498 		break;
5499 	}
5500 	case KVM_GET_DEBUGREGS: {
5501 		struct kvm_debugregs dbgregs;
5502 
5503 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5504 
5505 		r = -EFAULT;
5506 		if (copy_to_user(argp, &dbgregs,
5507 				 sizeof(struct kvm_debugregs)))
5508 			break;
5509 		r = 0;
5510 		break;
5511 	}
5512 	case KVM_SET_DEBUGREGS: {
5513 		struct kvm_debugregs dbgregs;
5514 
5515 		r = -EFAULT;
5516 		if (copy_from_user(&dbgregs, argp,
5517 				   sizeof(struct kvm_debugregs)))
5518 			break;
5519 
5520 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5521 		break;
5522 	}
5523 	case KVM_GET_XSAVE: {
5524 		r = -EINVAL;
5525 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5526 			break;
5527 
5528 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5529 		r = -ENOMEM;
5530 		if (!u.xsave)
5531 			break;
5532 
5533 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5534 
5535 		r = -EFAULT;
5536 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5537 			break;
5538 		r = 0;
5539 		break;
5540 	}
5541 	case KVM_SET_XSAVE: {
5542 		int size = vcpu->arch.guest_fpu.uabi_size;
5543 
5544 		u.xsave = memdup_user(argp, size);
5545 		if (IS_ERR(u.xsave)) {
5546 			r = PTR_ERR(u.xsave);
5547 			goto out_nofree;
5548 		}
5549 
5550 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5551 		break;
5552 	}
5553 
5554 	case KVM_GET_XSAVE2: {
5555 		int size = vcpu->arch.guest_fpu.uabi_size;
5556 
5557 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5558 		r = -ENOMEM;
5559 		if (!u.xsave)
5560 			break;
5561 
5562 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5563 
5564 		r = -EFAULT;
5565 		if (copy_to_user(argp, u.xsave, size))
5566 			break;
5567 
5568 		r = 0;
5569 		break;
5570 	}
5571 
5572 	case KVM_GET_XCRS: {
5573 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5574 		r = -ENOMEM;
5575 		if (!u.xcrs)
5576 			break;
5577 
5578 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5579 
5580 		r = -EFAULT;
5581 		if (copy_to_user(argp, u.xcrs,
5582 				 sizeof(struct kvm_xcrs)))
5583 			break;
5584 		r = 0;
5585 		break;
5586 	}
5587 	case KVM_SET_XCRS: {
5588 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5589 		if (IS_ERR(u.xcrs)) {
5590 			r = PTR_ERR(u.xcrs);
5591 			goto out_nofree;
5592 		}
5593 
5594 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5595 		break;
5596 	}
5597 	case KVM_SET_TSC_KHZ: {
5598 		u32 user_tsc_khz;
5599 
5600 		r = -EINVAL;
5601 		user_tsc_khz = (u32)arg;
5602 
5603 		if (kvm_has_tsc_control &&
5604 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5605 			goto out;
5606 
5607 		if (user_tsc_khz == 0)
5608 			user_tsc_khz = tsc_khz;
5609 
5610 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5611 			r = 0;
5612 
5613 		goto out;
5614 	}
5615 	case KVM_GET_TSC_KHZ: {
5616 		r = vcpu->arch.virtual_tsc_khz;
5617 		goto out;
5618 	}
5619 	case KVM_KVMCLOCK_CTRL: {
5620 		r = kvm_set_guest_paused(vcpu);
5621 		goto out;
5622 	}
5623 	case KVM_ENABLE_CAP: {
5624 		struct kvm_enable_cap cap;
5625 
5626 		r = -EFAULT;
5627 		if (copy_from_user(&cap, argp, sizeof(cap)))
5628 			goto out;
5629 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5630 		break;
5631 	}
5632 	case KVM_GET_NESTED_STATE: {
5633 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5634 		u32 user_data_size;
5635 
5636 		r = -EINVAL;
5637 		if (!kvm_x86_ops.nested_ops->get_state)
5638 			break;
5639 
5640 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5641 		r = -EFAULT;
5642 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5643 			break;
5644 
5645 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5646 						     user_data_size);
5647 		if (r < 0)
5648 			break;
5649 
5650 		if (r > user_data_size) {
5651 			if (put_user(r, &user_kvm_nested_state->size))
5652 				r = -EFAULT;
5653 			else
5654 				r = -E2BIG;
5655 			break;
5656 		}
5657 
5658 		r = 0;
5659 		break;
5660 	}
5661 	case KVM_SET_NESTED_STATE: {
5662 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5663 		struct kvm_nested_state kvm_state;
5664 		int idx;
5665 
5666 		r = -EINVAL;
5667 		if (!kvm_x86_ops.nested_ops->set_state)
5668 			break;
5669 
5670 		r = -EFAULT;
5671 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5672 			break;
5673 
5674 		r = -EINVAL;
5675 		if (kvm_state.size < sizeof(kvm_state))
5676 			break;
5677 
5678 		if (kvm_state.flags &
5679 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5680 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5681 		      | KVM_STATE_NESTED_GIF_SET))
5682 			break;
5683 
5684 		/* nested_run_pending implies guest_mode.  */
5685 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5686 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5687 			break;
5688 
5689 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5690 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5691 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5692 		break;
5693 	}
5694 	case KVM_GET_SUPPORTED_HV_CPUID:
5695 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5696 		break;
5697 #ifdef CONFIG_KVM_XEN
5698 	case KVM_XEN_VCPU_GET_ATTR: {
5699 		struct kvm_xen_vcpu_attr xva;
5700 
5701 		r = -EFAULT;
5702 		if (copy_from_user(&xva, argp, sizeof(xva)))
5703 			goto out;
5704 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5705 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5706 			r = -EFAULT;
5707 		break;
5708 	}
5709 	case KVM_XEN_VCPU_SET_ATTR: {
5710 		struct kvm_xen_vcpu_attr xva;
5711 
5712 		r = -EFAULT;
5713 		if (copy_from_user(&xva, argp, sizeof(xva)))
5714 			goto out;
5715 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5716 		break;
5717 	}
5718 #endif
5719 	case KVM_GET_SREGS2: {
5720 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5721 		r = -ENOMEM;
5722 		if (!u.sregs2)
5723 			goto out;
5724 		__get_sregs2(vcpu, u.sregs2);
5725 		r = -EFAULT;
5726 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5727 			goto out;
5728 		r = 0;
5729 		break;
5730 	}
5731 	case KVM_SET_SREGS2: {
5732 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5733 		if (IS_ERR(u.sregs2)) {
5734 			r = PTR_ERR(u.sregs2);
5735 			u.sregs2 = NULL;
5736 			goto out;
5737 		}
5738 		r = __set_sregs2(vcpu, u.sregs2);
5739 		break;
5740 	}
5741 	case KVM_HAS_DEVICE_ATTR:
5742 	case KVM_GET_DEVICE_ATTR:
5743 	case KVM_SET_DEVICE_ATTR:
5744 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5745 		break;
5746 	default:
5747 		r = -EINVAL;
5748 	}
5749 out:
5750 	kfree(u.buffer);
5751 out_nofree:
5752 	vcpu_put(vcpu);
5753 	return r;
5754 }
5755 
5756 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5757 {
5758 	return VM_FAULT_SIGBUS;
5759 }
5760 
5761 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5762 {
5763 	int ret;
5764 
5765 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5766 		return -EINVAL;
5767 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5768 	return ret;
5769 }
5770 
5771 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5772 					      u64 ident_addr)
5773 {
5774 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5775 }
5776 
5777 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5778 					 unsigned long kvm_nr_mmu_pages)
5779 {
5780 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5781 		return -EINVAL;
5782 
5783 	mutex_lock(&kvm->slots_lock);
5784 
5785 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5786 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5787 
5788 	mutex_unlock(&kvm->slots_lock);
5789 	return 0;
5790 }
5791 
5792 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5793 {
5794 	return kvm->arch.n_max_mmu_pages;
5795 }
5796 
5797 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5798 {
5799 	struct kvm_pic *pic = kvm->arch.vpic;
5800 	int r;
5801 
5802 	r = 0;
5803 	switch (chip->chip_id) {
5804 	case KVM_IRQCHIP_PIC_MASTER:
5805 		memcpy(&chip->chip.pic, &pic->pics[0],
5806 			sizeof(struct kvm_pic_state));
5807 		break;
5808 	case KVM_IRQCHIP_PIC_SLAVE:
5809 		memcpy(&chip->chip.pic, &pic->pics[1],
5810 			sizeof(struct kvm_pic_state));
5811 		break;
5812 	case KVM_IRQCHIP_IOAPIC:
5813 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5814 		break;
5815 	default:
5816 		r = -EINVAL;
5817 		break;
5818 	}
5819 	return r;
5820 }
5821 
5822 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5823 {
5824 	struct kvm_pic *pic = kvm->arch.vpic;
5825 	int r;
5826 
5827 	r = 0;
5828 	switch (chip->chip_id) {
5829 	case KVM_IRQCHIP_PIC_MASTER:
5830 		spin_lock(&pic->lock);
5831 		memcpy(&pic->pics[0], &chip->chip.pic,
5832 			sizeof(struct kvm_pic_state));
5833 		spin_unlock(&pic->lock);
5834 		break;
5835 	case KVM_IRQCHIP_PIC_SLAVE:
5836 		spin_lock(&pic->lock);
5837 		memcpy(&pic->pics[1], &chip->chip.pic,
5838 			sizeof(struct kvm_pic_state));
5839 		spin_unlock(&pic->lock);
5840 		break;
5841 	case KVM_IRQCHIP_IOAPIC:
5842 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5843 		break;
5844 	default:
5845 		r = -EINVAL;
5846 		break;
5847 	}
5848 	kvm_pic_update_irq(pic);
5849 	return r;
5850 }
5851 
5852 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5853 {
5854 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5855 
5856 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5857 
5858 	mutex_lock(&kps->lock);
5859 	memcpy(ps, &kps->channels, sizeof(*ps));
5860 	mutex_unlock(&kps->lock);
5861 	return 0;
5862 }
5863 
5864 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5865 {
5866 	int i;
5867 	struct kvm_pit *pit = kvm->arch.vpit;
5868 
5869 	mutex_lock(&pit->pit_state.lock);
5870 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5871 	for (i = 0; i < 3; i++)
5872 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5873 	mutex_unlock(&pit->pit_state.lock);
5874 	return 0;
5875 }
5876 
5877 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5878 {
5879 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5880 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5881 		sizeof(ps->channels));
5882 	ps->flags = kvm->arch.vpit->pit_state.flags;
5883 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5884 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5885 	return 0;
5886 }
5887 
5888 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5889 {
5890 	int start = 0;
5891 	int i;
5892 	u32 prev_legacy, cur_legacy;
5893 	struct kvm_pit *pit = kvm->arch.vpit;
5894 
5895 	mutex_lock(&pit->pit_state.lock);
5896 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5897 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5898 	if (!prev_legacy && cur_legacy)
5899 		start = 1;
5900 	memcpy(&pit->pit_state.channels, &ps->channels,
5901 	       sizeof(pit->pit_state.channels));
5902 	pit->pit_state.flags = ps->flags;
5903 	for (i = 0; i < 3; i++)
5904 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5905 				   start && i == 0);
5906 	mutex_unlock(&pit->pit_state.lock);
5907 	return 0;
5908 }
5909 
5910 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5911 				 struct kvm_reinject_control *control)
5912 {
5913 	struct kvm_pit *pit = kvm->arch.vpit;
5914 
5915 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5916 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5917 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5918 	 */
5919 	mutex_lock(&pit->pit_state.lock);
5920 	kvm_pit_set_reinject(pit, control->pit_reinject);
5921 	mutex_unlock(&pit->pit_state.lock);
5922 
5923 	return 0;
5924 }
5925 
5926 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5927 {
5928 
5929 	/*
5930 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5931 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5932 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5933 	 * VM-Exit.
5934 	 */
5935 	struct kvm_vcpu *vcpu;
5936 	unsigned long i;
5937 
5938 	kvm_for_each_vcpu(i, vcpu, kvm)
5939 		kvm_vcpu_kick(vcpu);
5940 }
5941 
5942 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5943 			bool line_status)
5944 {
5945 	if (!irqchip_in_kernel(kvm))
5946 		return -ENXIO;
5947 
5948 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5949 					irq_event->irq, irq_event->level,
5950 					line_status);
5951 	return 0;
5952 }
5953 
5954 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5955 			    struct kvm_enable_cap *cap)
5956 {
5957 	int r;
5958 
5959 	if (cap->flags)
5960 		return -EINVAL;
5961 
5962 	switch (cap->cap) {
5963 	case KVM_CAP_DISABLE_QUIRKS2:
5964 		r = -EINVAL;
5965 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
5966 			break;
5967 		fallthrough;
5968 	case KVM_CAP_DISABLE_QUIRKS:
5969 		kvm->arch.disabled_quirks = cap->args[0];
5970 		r = 0;
5971 		break;
5972 	case KVM_CAP_SPLIT_IRQCHIP: {
5973 		mutex_lock(&kvm->lock);
5974 		r = -EINVAL;
5975 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5976 			goto split_irqchip_unlock;
5977 		r = -EEXIST;
5978 		if (irqchip_in_kernel(kvm))
5979 			goto split_irqchip_unlock;
5980 		if (kvm->created_vcpus)
5981 			goto split_irqchip_unlock;
5982 		r = kvm_setup_empty_irq_routing(kvm);
5983 		if (r)
5984 			goto split_irqchip_unlock;
5985 		/* Pairs with irqchip_in_kernel. */
5986 		smp_wmb();
5987 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5988 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5989 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
5990 		r = 0;
5991 split_irqchip_unlock:
5992 		mutex_unlock(&kvm->lock);
5993 		break;
5994 	}
5995 	case KVM_CAP_X2APIC_API:
5996 		r = -EINVAL;
5997 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5998 			break;
5999 
6000 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6001 			kvm->arch.x2apic_format = true;
6002 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6003 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6004 
6005 		r = 0;
6006 		break;
6007 	case KVM_CAP_X86_DISABLE_EXITS:
6008 		r = -EINVAL;
6009 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6010 			break;
6011 
6012 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6013 			kvm_can_mwait_in_guest())
6014 			kvm->arch.mwait_in_guest = true;
6015 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6016 			kvm->arch.hlt_in_guest = true;
6017 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6018 			kvm->arch.pause_in_guest = true;
6019 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6020 			kvm->arch.cstate_in_guest = true;
6021 		r = 0;
6022 		break;
6023 	case KVM_CAP_MSR_PLATFORM_INFO:
6024 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6025 		r = 0;
6026 		break;
6027 	case KVM_CAP_EXCEPTION_PAYLOAD:
6028 		kvm->arch.exception_payload_enabled = cap->args[0];
6029 		r = 0;
6030 		break;
6031 	case KVM_CAP_X86_USER_SPACE_MSR:
6032 		kvm->arch.user_space_msr_mask = cap->args[0];
6033 		r = 0;
6034 		break;
6035 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6036 		r = -EINVAL;
6037 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6038 			break;
6039 
6040 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6041 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6042 			break;
6043 
6044 		if (kvm_has_bus_lock_exit &&
6045 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6046 			kvm->arch.bus_lock_detection_enabled = true;
6047 		r = 0;
6048 		break;
6049 #ifdef CONFIG_X86_SGX_KVM
6050 	case KVM_CAP_SGX_ATTRIBUTE: {
6051 		unsigned long allowed_attributes = 0;
6052 
6053 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6054 		if (r)
6055 			break;
6056 
6057 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6058 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6059 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6060 			kvm->arch.sgx_provisioning_allowed = true;
6061 		else
6062 			r = -EINVAL;
6063 		break;
6064 	}
6065 #endif
6066 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6067 		r = -EINVAL;
6068 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6069 			break;
6070 
6071 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6072 		break;
6073 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6074 		r = -EINVAL;
6075 		if (!kvm_x86_ops.vm_move_enc_context_from)
6076 			break;
6077 
6078 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6079 		break;
6080 	case KVM_CAP_EXIT_HYPERCALL:
6081 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6082 			r = -EINVAL;
6083 			break;
6084 		}
6085 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6086 		r = 0;
6087 		break;
6088 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6089 		r = -EINVAL;
6090 		if (cap->args[0] & ~1)
6091 			break;
6092 		kvm->arch.exit_on_emulation_error = cap->args[0];
6093 		r = 0;
6094 		break;
6095 	case KVM_CAP_PMU_CAPABILITY:
6096 		r = -EINVAL;
6097 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6098 			break;
6099 
6100 		mutex_lock(&kvm->lock);
6101 		if (!kvm->created_vcpus) {
6102 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6103 			r = 0;
6104 		}
6105 		mutex_unlock(&kvm->lock);
6106 		break;
6107 	default:
6108 		r = -EINVAL;
6109 		break;
6110 	}
6111 	return r;
6112 }
6113 
6114 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6115 {
6116 	struct kvm_x86_msr_filter *msr_filter;
6117 
6118 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6119 	if (!msr_filter)
6120 		return NULL;
6121 
6122 	msr_filter->default_allow = default_allow;
6123 	return msr_filter;
6124 }
6125 
6126 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6127 {
6128 	u32 i;
6129 
6130 	if (!msr_filter)
6131 		return;
6132 
6133 	for (i = 0; i < msr_filter->count; i++)
6134 		kfree(msr_filter->ranges[i].bitmap);
6135 
6136 	kfree(msr_filter);
6137 }
6138 
6139 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6140 			      struct kvm_msr_filter_range *user_range)
6141 {
6142 	unsigned long *bitmap = NULL;
6143 	size_t bitmap_size;
6144 
6145 	if (!user_range->nmsrs)
6146 		return 0;
6147 
6148 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6149 		return -EINVAL;
6150 
6151 	if (!user_range->flags)
6152 		return -EINVAL;
6153 
6154 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6155 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6156 		return -EINVAL;
6157 
6158 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6159 	if (IS_ERR(bitmap))
6160 		return PTR_ERR(bitmap);
6161 
6162 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6163 		.flags = user_range->flags,
6164 		.base = user_range->base,
6165 		.nmsrs = user_range->nmsrs,
6166 		.bitmap = bitmap,
6167 	};
6168 
6169 	msr_filter->count++;
6170 	return 0;
6171 }
6172 
6173 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6174 {
6175 	struct kvm_msr_filter __user *user_msr_filter = argp;
6176 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6177 	struct kvm_msr_filter filter;
6178 	bool default_allow;
6179 	bool empty = true;
6180 	int r = 0;
6181 	u32 i;
6182 
6183 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6184 		return -EFAULT;
6185 
6186 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6187 		empty &= !filter.ranges[i].nmsrs;
6188 
6189 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6190 	if (empty && !default_allow)
6191 		return -EINVAL;
6192 
6193 	new_filter = kvm_alloc_msr_filter(default_allow);
6194 	if (!new_filter)
6195 		return -ENOMEM;
6196 
6197 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6198 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6199 		if (r) {
6200 			kvm_free_msr_filter(new_filter);
6201 			return r;
6202 		}
6203 	}
6204 
6205 	mutex_lock(&kvm->lock);
6206 
6207 	/* The per-VM filter is protected by kvm->lock... */
6208 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6209 
6210 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6211 	synchronize_srcu(&kvm->srcu);
6212 
6213 	kvm_free_msr_filter(old_filter);
6214 
6215 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6216 	mutex_unlock(&kvm->lock);
6217 
6218 	return 0;
6219 }
6220 
6221 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6222 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6223 {
6224 	struct kvm_vcpu *vcpu;
6225 	unsigned long i;
6226 	int ret = 0;
6227 
6228 	mutex_lock(&kvm->lock);
6229 	kvm_for_each_vcpu(i, vcpu, kvm) {
6230 		if (!vcpu->arch.pv_time.active)
6231 			continue;
6232 
6233 		ret = kvm_set_guest_paused(vcpu);
6234 		if (ret) {
6235 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6236 				vcpu->vcpu_id, ret);
6237 			break;
6238 		}
6239 	}
6240 	mutex_unlock(&kvm->lock);
6241 
6242 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6243 }
6244 
6245 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6246 {
6247 	switch (state) {
6248 	case PM_HIBERNATION_PREPARE:
6249 	case PM_SUSPEND_PREPARE:
6250 		return kvm_arch_suspend_notifier(kvm);
6251 	}
6252 
6253 	return NOTIFY_DONE;
6254 }
6255 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6256 
6257 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6258 {
6259 	struct kvm_clock_data data = { 0 };
6260 
6261 	get_kvmclock(kvm, &data);
6262 	if (copy_to_user(argp, &data, sizeof(data)))
6263 		return -EFAULT;
6264 
6265 	return 0;
6266 }
6267 
6268 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6269 {
6270 	struct kvm_arch *ka = &kvm->arch;
6271 	struct kvm_clock_data data;
6272 	u64 now_raw_ns;
6273 
6274 	if (copy_from_user(&data, argp, sizeof(data)))
6275 		return -EFAULT;
6276 
6277 	/*
6278 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6279 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6280 	 */
6281 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6282 		return -EINVAL;
6283 
6284 	kvm_hv_request_tsc_page_update(kvm);
6285 	kvm_start_pvclock_update(kvm);
6286 	pvclock_update_vm_gtod_copy(kvm);
6287 
6288 	/*
6289 	 * This pairs with kvm_guest_time_update(): when masterclock is
6290 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6291 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6292 	 * is slightly ahead) here we risk going negative on unsigned
6293 	 * 'system_time' when 'data.clock' is very small.
6294 	 */
6295 	if (data.flags & KVM_CLOCK_REALTIME) {
6296 		u64 now_real_ns = ktime_get_real_ns();
6297 
6298 		/*
6299 		 * Avoid stepping the kvmclock backwards.
6300 		 */
6301 		if (now_real_ns > data.realtime)
6302 			data.clock += now_real_ns - data.realtime;
6303 	}
6304 
6305 	if (ka->use_master_clock)
6306 		now_raw_ns = ka->master_kernel_ns;
6307 	else
6308 		now_raw_ns = get_kvmclock_base_ns();
6309 	ka->kvmclock_offset = data.clock - now_raw_ns;
6310 	kvm_end_pvclock_update(kvm);
6311 	return 0;
6312 }
6313 
6314 long kvm_arch_vm_ioctl(struct file *filp,
6315 		       unsigned int ioctl, unsigned long arg)
6316 {
6317 	struct kvm *kvm = filp->private_data;
6318 	void __user *argp = (void __user *)arg;
6319 	int r = -ENOTTY;
6320 	/*
6321 	 * This union makes it completely explicit to gcc-3.x
6322 	 * that these two variables' stack usage should be
6323 	 * combined, not added together.
6324 	 */
6325 	union {
6326 		struct kvm_pit_state ps;
6327 		struct kvm_pit_state2 ps2;
6328 		struct kvm_pit_config pit_config;
6329 	} u;
6330 
6331 	switch (ioctl) {
6332 	case KVM_SET_TSS_ADDR:
6333 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6334 		break;
6335 	case KVM_SET_IDENTITY_MAP_ADDR: {
6336 		u64 ident_addr;
6337 
6338 		mutex_lock(&kvm->lock);
6339 		r = -EINVAL;
6340 		if (kvm->created_vcpus)
6341 			goto set_identity_unlock;
6342 		r = -EFAULT;
6343 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6344 			goto set_identity_unlock;
6345 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6346 set_identity_unlock:
6347 		mutex_unlock(&kvm->lock);
6348 		break;
6349 	}
6350 	case KVM_SET_NR_MMU_PAGES:
6351 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6352 		break;
6353 	case KVM_GET_NR_MMU_PAGES:
6354 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6355 		break;
6356 	case KVM_CREATE_IRQCHIP: {
6357 		mutex_lock(&kvm->lock);
6358 
6359 		r = -EEXIST;
6360 		if (irqchip_in_kernel(kvm))
6361 			goto create_irqchip_unlock;
6362 
6363 		r = -EINVAL;
6364 		if (kvm->created_vcpus)
6365 			goto create_irqchip_unlock;
6366 
6367 		r = kvm_pic_init(kvm);
6368 		if (r)
6369 			goto create_irqchip_unlock;
6370 
6371 		r = kvm_ioapic_init(kvm);
6372 		if (r) {
6373 			kvm_pic_destroy(kvm);
6374 			goto create_irqchip_unlock;
6375 		}
6376 
6377 		r = kvm_setup_default_irq_routing(kvm);
6378 		if (r) {
6379 			kvm_ioapic_destroy(kvm);
6380 			kvm_pic_destroy(kvm);
6381 			goto create_irqchip_unlock;
6382 		}
6383 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6384 		smp_wmb();
6385 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6386 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6387 	create_irqchip_unlock:
6388 		mutex_unlock(&kvm->lock);
6389 		break;
6390 	}
6391 	case KVM_CREATE_PIT:
6392 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6393 		goto create_pit;
6394 	case KVM_CREATE_PIT2:
6395 		r = -EFAULT;
6396 		if (copy_from_user(&u.pit_config, argp,
6397 				   sizeof(struct kvm_pit_config)))
6398 			goto out;
6399 	create_pit:
6400 		mutex_lock(&kvm->lock);
6401 		r = -EEXIST;
6402 		if (kvm->arch.vpit)
6403 			goto create_pit_unlock;
6404 		r = -ENOMEM;
6405 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6406 		if (kvm->arch.vpit)
6407 			r = 0;
6408 	create_pit_unlock:
6409 		mutex_unlock(&kvm->lock);
6410 		break;
6411 	case KVM_GET_IRQCHIP: {
6412 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6413 		struct kvm_irqchip *chip;
6414 
6415 		chip = memdup_user(argp, sizeof(*chip));
6416 		if (IS_ERR(chip)) {
6417 			r = PTR_ERR(chip);
6418 			goto out;
6419 		}
6420 
6421 		r = -ENXIO;
6422 		if (!irqchip_kernel(kvm))
6423 			goto get_irqchip_out;
6424 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6425 		if (r)
6426 			goto get_irqchip_out;
6427 		r = -EFAULT;
6428 		if (copy_to_user(argp, chip, sizeof(*chip)))
6429 			goto get_irqchip_out;
6430 		r = 0;
6431 	get_irqchip_out:
6432 		kfree(chip);
6433 		break;
6434 	}
6435 	case KVM_SET_IRQCHIP: {
6436 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6437 		struct kvm_irqchip *chip;
6438 
6439 		chip = memdup_user(argp, sizeof(*chip));
6440 		if (IS_ERR(chip)) {
6441 			r = PTR_ERR(chip);
6442 			goto out;
6443 		}
6444 
6445 		r = -ENXIO;
6446 		if (!irqchip_kernel(kvm))
6447 			goto set_irqchip_out;
6448 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6449 	set_irqchip_out:
6450 		kfree(chip);
6451 		break;
6452 	}
6453 	case KVM_GET_PIT: {
6454 		r = -EFAULT;
6455 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6456 			goto out;
6457 		r = -ENXIO;
6458 		if (!kvm->arch.vpit)
6459 			goto out;
6460 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6461 		if (r)
6462 			goto out;
6463 		r = -EFAULT;
6464 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6465 			goto out;
6466 		r = 0;
6467 		break;
6468 	}
6469 	case KVM_SET_PIT: {
6470 		r = -EFAULT;
6471 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6472 			goto out;
6473 		mutex_lock(&kvm->lock);
6474 		r = -ENXIO;
6475 		if (!kvm->arch.vpit)
6476 			goto set_pit_out;
6477 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6478 set_pit_out:
6479 		mutex_unlock(&kvm->lock);
6480 		break;
6481 	}
6482 	case KVM_GET_PIT2: {
6483 		r = -ENXIO;
6484 		if (!kvm->arch.vpit)
6485 			goto out;
6486 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6487 		if (r)
6488 			goto out;
6489 		r = -EFAULT;
6490 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6491 			goto out;
6492 		r = 0;
6493 		break;
6494 	}
6495 	case KVM_SET_PIT2: {
6496 		r = -EFAULT;
6497 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6498 			goto out;
6499 		mutex_lock(&kvm->lock);
6500 		r = -ENXIO;
6501 		if (!kvm->arch.vpit)
6502 			goto set_pit2_out;
6503 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6504 set_pit2_out:
6505 		mutex_unlock(&kvm->lock);
6506 		break;
6507 	}
6508 	case KVM_REINJECT_CONTROL: {
6509 		struct kvm_reinject_control control;
6510 		r =  -EFAULT;
6511 		if (copy_from_user(&control, argp, sizeof(control)))
6512 			goto out;
6513 		r = -ENXIO;
6514 		if (!kvm->arch.vpit)
6515 			goto out;
6516 		r = kvm_vm_ioctl_reinject(kvm, &control);
6517 		break;
6518 	}
6519 	case KVM_SET_BOOT_CPU_ID:
6520 		r = 0;
6521 		mutex_lock(&kvm->lock);
6522 		if (kvm->created_vcpus)
6523 			r = -EBUSY;
6524 		else
6525 			kvm->arch.bsp_vcpu_id = arg;
6526 		mutex_unlock(&kvm->lock);
6527 		break;
6528 #ifdef CONFIG_KVM_XEN
6529 	case KVM_XEN_HVM_CONFIG: {
6530 		struct kvm_xen_hvm_config xhc;
6531 		r = -EFAULT;
6532 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6533 			goto out;
6534 		r = kvm_xen_hvm_config(kvm, &xhc);
6535 		break;
6536 	}
6537 	case KVM_XEN_HVM_GET_ATTR: {
6538 		struct kvm_xen_hvm_attr xha;
6539 
6540 		r = -EFAULT;
6541 		if (copy_from_user(&xha, argp, sizeof(xha)))
6542 			goto out;
6543 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6544 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6545 			r = -EFAULT;
6546 		break;
6547 	}
6548 	case KVM_XEN_HVM_SET_ATTR: {
6549 		struct kvm_xen_hvm_attr xha;
6550 
6551 		r = -EFAULT;
6552 		if (copy_from_user(&xha, argp, sizeof(xha)))
6553 			goto out;
6554 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6555 		break;
6556 	}
6557 	case KVM_XEN_HVM_EVTCHN_SEND: {
6558 		struct kvm_irq_routing_xen_evtchn uxe;
6559 
6560 		r = -EFAULT;
6561 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6562 			goto out;
6563 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6564 		break;
6565 	}
6566 #endif
6567 	case KVM_SET_CLOCK:
6568 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6569 		break;
6570 	case KVM_GET_CLOCK:
6571 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6572 		break;
6573 	case KVM_SET_TSC_KHZ: {
6574 		u32 user_tsc_khz;
6575 
6576 		r = -EINVAL;
6577 		user_tsc_khz = (u32)arg;
6578 
6579 		if (kvm_has_tsc_control &&
6580 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
6581 			goto out;
6582 
6583 		if (user_tsc_khz == 0)
6584 			user_tsc_khz = tsc_khz;
6585 
6586 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6587 		r = 0;
6588 
6589 		goto out;
6590 	}
6591 	case KVM_GET_TSC_KHZ: {
6592 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6593 		goto out;
6594 	}
6595 	case KVM_MEMORY_ENCRYPT_OP: {
6596 		r = -ENOTTY;
6597 		if (!kvm_x86_ops.mem_enc_ioctl)
6598 			goto out;
6599 
6600 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6601 		break;
6602 	}
6603 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6604 		struct kvm_enc_region region;
6605 
6606 		r = -EFAULT;
6607 		if (copy_from_user(&region, argp, sizeof(region)))
6608 			goto out;
6609 
6610 		r = -ENOTTY;
6611 		if (!kvm_x86_ops.mem_enc_register_region)
6612 			goto out;
6613 
6614 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6615 		break;
6616 	}
6617 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6618 		struct kvm_enc_region region;
6619 
6620 		r = -EFAULT;
6621 		if (copy_from_user(&region, argp, sizeof(region)))
6622 			goto out;
6623 
6624 		r = -ENOTTY;
6625 		if (!kvm_x86_ops.mem_enc_unregister_region)
6626 			goto out;
6627 
6628 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6629 		break;
6630 	}
6631 	case KVM_HYPERV_EVENTFD: {
6632 		struct kvm_hyperv_eventfd hvevfd;
6633 
6634 		r = -EFAULT;
6635 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6636 			goto out;
6637 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6638 		break;
6639 	}
6640 	case KVM_SET_PMU_EVENT_FILTER:
6641 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6642 		break;
6643 	case KVM_X86_SET_MSR_FILTER:
6644 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6645 		break;
6646 	default:
6647 		r = -ENOTTY;
6648 	}
6649 out:
6650 	return r;
6651 }
6652 
6653 static void kvm_init_msr_list(void)
6654 {
6655 	struct x86_pmu_capability x86_pmu;
6656 	u32 dummy[2];
6657 	unsigned i;
6658 
6659 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6660 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6661 
6662 	perf_get_x86_pmu_capability(&x86_pmu);
6663 
6664 	num_msrs_to_save = 0;
6665 	num_emulated_msrs = 0;
6666 	num_msr_based_features = 0;
6667 
6668 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6669 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6670 			continue;
6671 
6672 		/*
6673 		 * Even MSRs that are valid in the host may not be exposed
6674 		 * to the guests in some cases.
6675 		 */
6676 		switch (msrs_to_save_all[i]) {
6677 		case MSR_IA32_BNDCFGS:
6678 			if (!kvm_mpx_supported())
6679 				continue;
6680 			break;
6681 		case MSR_TSC_AUX:
6682 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6683 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6684 				continue;
6685 			break;
6686 		case MSR_IA32_UMWAIT_CONTROL:
6687 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6688 				continue;
6689 			break;
6690 		case MSR_IA32_RTIT_CTL:
6691 		case MSR_IA32_RTIT_STATUS:
6692 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6693 				continue;
6694 			break;
6695 		case MSR_IA32_RTIT_CR3_MATCH:
6696 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6697 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6698 				continue;
6699 			break;
6700 		case MSR_IA32_RTIT_OUTPUT_BASE:
6701 		case MSR_IA32_RTIT_OUTPUT_MASK:
6702 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6703 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6704 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6705 				continue;
6706 			break;
6707 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6708 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6709 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6710 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6711 				continue;
6712 			break;
6713 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6714 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6715 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6716 				continue;
6717 			break;
6718 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6719 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6720 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6721 				continue;
6722 			break;
6723 		case MSR_IA32_XFD:
6724 		case MSR_IA32_XFD_ERR:
6725 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6726 				continue;
6727 			break;
6728 		default:
6729 			break;
6730 		}
6731 
6732 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6733 	}
6734 
6735 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6736 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6737 			continue;
6738 
6739 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6740 	}
6741 
6742 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6743 		struct kvm_msr_entry msr;
6744 
6745 		msr.index = msr_based_features_all[i];
6746 		if (kvm_get_msr_feature(&msr))
6747 			continue;
6748 
6749 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6750 	}
6751 }
6752 
6753 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6754 			   const void *v)
6755 {
6756 	int handled = 0;
6757 	int n;
6758 
6759 	do {
6760 		n = min(len, 8);
6761 		if (!(lapic_in_kernel(vcpu) &&
6762 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6763 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6764 			break;
6765 		handled += n;
6766 		addr += n;
6767 		len -= n;
6768 		v += n;
6769 	} while (len);
6770 
6771 	return handled;
6772 }
6773 
6774 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6775 {
6776 	int handled = 0;
6777 	int n;
6778 
6779 	do {
6780 		n = min(len, 8);
6781 		if (!(lapic_in_kernel(vcpu) &&
6782 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6783 					 addr, n, v))
6784 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6785 			break;
6786 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6787 		handled += n;
6788 		addr += n;
6789 		len -= n;
6790 		v += n;
6791 	} while (len);
6792 
6793 	return handled;
6794 }
6795 
6796 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6797 			struct kvm_segment *var, int seg)
6798 {
6799 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6800 }
6801 
6802 void kvm_get_segment(struct kvm_vcpu *vcpu,
6803 		     struct kvm_segment *var, int seg)
6804 {
6805 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6806 }
6807 
6808 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
6809 			   struct x86_exception *exception)
6810 {
6811 	struct kvm_mmu *mmu = vcpu->arch.mmu;
6812 	gpa_t t_gpa;
6813 
6814 	BUG_ON(!mmu_is_nested(vcpu));
6815 
6816 	/* NPT walks are always user-walks */
6817 	access |= PFERR_USER_MASK;
6818 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6819 
6820 	return t_gpa;
6821 }
6822 
6823 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6824 			      struct x86_exception *exception)
6825 {
6826 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6827 
6828 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6829 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6830 }
6831 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6832 
6833  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6834 				struct x86_exception *exception)
6835 {
6836 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6837 
6838 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6839 	access |= PFERR_FETCH_MASK;
6840 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6841 }
6842 
6843 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6844 			       struct x86_exception *exception)
6845 {
6846 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6847 
6848 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6849 	access |= PFERR_WRITE_MASK;
6850 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6851 }
6852 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6853 
6854 /* uses this to access any guest's mapped memory without checking CPL */
6855 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6856 				struct x86_exception *exception)
6857 {
6858 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6859 
6860 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6861 }
6862 
6863 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6864 				      struct kvm_vcpu *vcpu, u64 access,
6865 				      struct x86_exception *exception)
6866 {
6867 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6868 	void *data = val;
6869 	int r = X86EMUL_CONTINUE;
6870 
6871 	while (bytes) {
6872 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6873 		unsigned offset = addr & (PAGE_SIZE-1);
6874 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6875 		int ret;
6876 
6877 		if (gpa == UNMAPPED_GVA)
6878 			return X86EMUL_PROPAGATE_FAULT;
6879 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6880 					       offset, toread);
6881 		if (ret < 0) {
6882 			r = X86EMUL_IO_NEEDED;
6883 			goto out;
6884 		}
6885 
6886 		bytes -= toread;
6887 		data += toread;
6888 		addr += toread;
6889 	}
6890 out:
6891 	return r;
6892 }
6893 
6894 /* used for instruction fetching */
6895 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6896 				gva_t addr, void *val, unsigned int bytes,
6897 				struct x86_exception *exception)
6898 {
6899 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6900 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6901 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6902 	unsigned offset;
6903 	int ret;
6904 
6905 	/* Inline kvm_read_guest_virt_helper for speed.  */
6906 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6907 				    exception);
6908 	if (unlikely(gpa == UNMAPPED_GVA))
6909 		return X86EMUL_PROPAGATE_FAULT;
6910 
6911 	offset = addr & (PAGE_SIZE-1);
6912 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6913 		bytes = (unsigned)PAGE_SIZE - offset;
6914 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6915 				       offset, bytes);
6916 	if (unlikely(ret < 0))
6917 		return X86EMUL_IO_NEEDED;
6918 
6919 	return X86EMUL_CONTINUE;
6920 }
6921 
6922 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6923 			       gva_t addr, void *val, unsigned int bytes,
6924 			       struct x86_exception *exception)
6925 {
6926 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6927 
6928 	/*
6929 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6930 	 * is returned, but our callers are not ready for that and they blindly
6931 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6932 	 * uninitialized kernel stack memory into cr2 and error code.
6933 	 */
6934 	memset(exception, 0, sizeof(*exception));
6935 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6936 					  exception);
6937 }
6938 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6939 
6940 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6941 			     gva_t addr, void *val, unsigned int bytes,
6942 			     struct x86_exception *exception, bool system)
6943 {
6944 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6945 	u64 access = 0;
6946 
6947 	if (system)
6948 		access |= PFERR_IMPLICIT_ACCESS;
6949 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6950 		access |= PFERR_USER_MASK;
6951 
6952 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6953 }
6954 
6955 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6956 		unsigned long addr, void *val, unsigned int bytes)
6957 {
6958 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6959 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6960 
6961 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6962 }
6963 
6964 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6965 				      struct kvm_vcpu *vcpu, u64 access,
6966 				      struct x86_exception *exception)
6967 {
6968 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6969 	void *data = val;
6970 	int r = X86EMUL_CONTINUE;
6971 
6972 	while (bytes) {
6973 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6974 		unsigned offset = addr & (PAGE_SIZE-1);
6975 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6976 		int ret;
6977 
6978 		if (gpa == UNMAPPED_GVA)
6979 			return X86EMUL_PROPAGATE_FAULT;
6980 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6981 		if (ret < 0) {
6982 			r = X86EMUL_IO_NEEDED;
6983 			goto out;
6984 		}
6985 
6986 		bytes -= towrite;
6987 		data += towrite;
6988 		addr += towrite;
6989 	}
6990 out:
6991 	return r;
6992 }
6993 
6994 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6995 			      unsigned int bytes, struct x86_exception *exception,
6996 			      bool system)
6997 {
6998 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6999 	u64 access = PFERR_WRITE_MASK;
7000 
7001 	if (system)
7002 		access |= PFERR_IMPLICIT_ACCESS;
7003 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7004 		access |= PFERR_USER_MASK;
7005 
7006 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7007 					   access, exception);
7008 }
7009 
7010 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7011 				unsigned int bytes, struct x86_exception *exception)
7012 {
7013 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7014 	vcpu->arch.l1tf_flush_l1d = true;
7015 
7016 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7017 					   PFERR_WRITE_MASK, exception);
7018 }
7019 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7020 
7021 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7022 				void *insn, int insn_len)
7023 {
7024 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7025 							    insn, insn_len);
7026 }
7027 
7028 int handle_ud(struct kvm_vcpu *vcpu)
7029 {
7030 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7031 	int emul_type = EMULTYPE_TRAP_UD;
7032 	char sig[5]; /* ud2; .ascii "kvm" */
7033 	struct x86_exception e;
7034 
7035 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7036 		return 1;
7037 
7038 	if (force_emulation_prefix &&
7039 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7040 				sig, sizeof(sig), &e) == 0 &&
7041 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7042 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7043 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7044 	}
7045 
7046 	return kvm_emulate_instruction(vcpu, emul_type);
7047 }
7048 EXPORT_SYMBOL_GPL(handle_ud);
7049 
7050 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7051 			    gpa_t gpa, bool write)
7052 {
7053 	/* For APIC access vmexit */
7054 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7055 		return 1;
7056 
7057 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7058 		trace_vcpu_match_mmio(gva, gpa, write, true);
7059 		return 1;
7060 	}
7061 
7062 	return 0;
7063 }
7064 
7065 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7066 				gpa_t *gpa, struct x86_exception *exception,
7067 				bool write)
7068 {
7069 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7070 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7071 		| (write ? PFERR_WRITE_MASK : 0);
7072 
7073 	/*
7074 	 * currently PKRU is only applied to ept enabled guest so
7075 	 * there is no pkey in EPT page table for L1 guest or EPT
7076 	 * shadow page table for L2 guest.
7077 	 */
7078 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7079 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7080 			      vcpu->arch.mmio_access, 0, access))) {
7081 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7082 					(gva & (PAGE_SIZE - 1));
7083 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7084 		return 1;
7085 	}
7086 
7087 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7088 
7089 	if (*gpa == UNMAPPED_GVA)
7090 		return -1;
7091 
7092 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7093 }
7094 
7095 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7096 			const void *val, int bytes)
7097 {
7098 	int ret;
7099 
7100 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7101 	if (ret < 0)
7102 		return 0;
7103 	kvm_page_track_write(vcpu, gpa, val, bytes);
7104 	return 1;
7105 }
7106 
7107 struct read_write_emulator_ops {
7108 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7109 				  int bytes);
7110 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7111 				  void *val, int bytes);
7112 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7113 			       int bytes, void *val);
7114 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7115 				    void *val, int bytes);
7116 	bool write;
7117 };
7118 
7119 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7120 {
7121 	if (vcpu->mmio_read_completed) {
7122 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7123 			       vcpu->mmio_fragments[0].gpa, val);
7124 		vcpu->mmio_read_completed = 0;
7125 		return 1;
7126 	}
7127 
7128 	return 0;
7129 }
7130 
7131 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7132 			void *val, int bytes)
7133 {
7134 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7135 }
7136 
7137 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7138 			 void *val, int bytes)
7139 {
7140 	return emulator_write_phys(vcpu, gpa, val, bytes);
7141 }
7142 
7143 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7144 {
7145 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7146 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7147 }
7148 
7149 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7150 			  void *val, int bytes)
7151 {
7152 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7153 	return X86EMUL_IO_NEEDED;
7154 }
7155 
7156 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7157 			   void *val, int bytes)
7158 {
7159 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7160 
7161 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7162 	return X86EMUL_CONTINUE;
7163 }
7164 
7165 static const struct read_write_emulator_ops read_emultor = {
7166 	.read_write_prepare = read_prepare,
7167 	.read_write_emulate = read_emulate,
7168 	.read_write_mmio = vcpu_mmio_read,
7169 	.read_write_exit_mmio = read_exit_mmio,
7170 };
7171 
7172 static const struct read_write_emulator_ops write_emultor = {
7173 	.read_write_emulate = write_emulate,
7174 	.read_write_mmio = write_mmio,
7175 	.read_write_exit_mmio = write_exit_mmio,
7176 	.write = true,
7177 };
7178 
7179 static int emulator_read_write_onepage(unsigned long addr, void *val,
7180 				       unsigned int bytes,
7181 				       struct x86_exception *exception,
7182 				       struct kvm_vcpu *vcpu,
7183 				       const struct read_write_emulator_ops *ops)
7184 {
7185 	gpa_t gpa;
7186 	int handled, ret;
7187 	bool write = ops->write;
7188 	struct kvm_mmio_fragment *frag;
7189 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7190 
7191 	/*
7192 	 * If the exit was due to a NPF we may already have a GPA.
7193 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7194 	 * Note, this cannot be used on string operations since string
7195 	 * operation using rep will only have the initial GPA from the NPF
7196 	 * occurred.
7197 	 */
7198 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7199 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7200 		gpa = ctxt->gpa_val;
7201 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7202 	} else {
7203 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7204 		if (ret < 0)
7205 			return X86EMUL_PROPAGATE_FAULT;
7206 	}
7207 
7208 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7209 		return X86EMUL_CONTINUE;
7210 
7211 	/*
7212 	 * Is this MMIO handled locally?
7213 	 */
7214 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7215 	if (handled == bytes)
7216 		return X86EMUL_CONTINUE;
7217 
7218 	gpa += handled;
7219 	bytes -= handled;
7220 	val += handled;
7221 
7222 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7223 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7224 	frag->gpa = gpa;
7225 	frag->data = val;
7226 	frag->len = bytes;
7227 	return X86EMUL_CONTINUE;
7228 }
7229 
7230 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7231 			unsigned long addr,
7232 			void *val, unsigned int bytes,
7233 			struct x86_exception *exception,
7234 			const struct read_write_emulator_ops *ops)
7235 {
7236 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7237 	gpa_t gpa;
7238 	int rc;
7239 
7240 	if (ops->read_write_prepare &&
7241 		  ops->read_write_prepare(vcpu, val, bytes))
7242 		return X86EMUL_CONTINUE;
7243 
7244 	vcpu->mmio_nr_fragments = 0;
7245 
7246 	/* Crossing a page boundary? */
7247 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7248 		int now;
7249 
7250 		now = -addr & ~PAGE_MASK;
7251 		rc = emulator_read_write_onepage(addr, val, now, exception,
7252 						 vcpu, ops);
7253 
7254 		if (rc != X86EMUL_CONTINUE)
7255 			return rc;
7256 		addr += now;
7257 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7258 			addr = (u32)addr;
7259 		val += now;
7260 		bytes -= now;
7261 	}
7262 
7263 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7264 					 vcpu, ops);
7265 	if (rc != X86EMUL_CONTINUE)
7266 		return rc;
7267 
7268 	if (!vcpu->mmio_nr_fragments)
7269 		return rc;
7270 
7271 	gpa = vcpu->mmio_fragments[0].gpa;
7272 
7273 	vcpu->mmio_needed = 1;
7274 	vcpu->mmio_cur_fragment = 0;
7275 
7276 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7277 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7278 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7279 	vcpu->run->mmio.phys_addr = gpa;
7280 
7281 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7282 }
7283 
7284 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7285 				  unsigned long addr,
7286 				  void *val,
7287 				  unsigned int bytes,
7288 				  struct x86_exception *exception)
7289 {
7290 	return emulator_read_write(ctxt, addr, val, bytes,
7291 				   exception, &read_emultor);
7292 }
7293 
7294 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7295 			    unsigned long addr,
7296 			    const void *val,
7297 			    unsigned int bytes,
7298 			    struct x86_exception *exception)
7299 {
7300 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7301 				   exception, &write_emultor);
7302 }
7303 
7304 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7305 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7306 
7307 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7308 				     unsigned long addr,
7309 				     const void *old,
7310 				     const void *new,
7311 				     unsigned int bytes,
7312 				     struct x86_exception *exception)
7313 {
7314 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7315 	u64 page_line_mask;
7316 	unsigned long hva;
7317 	gpa_t gpa;
7318 	int r;
7319 
7320 	/* guests cmpxchg8b have to be emulated atomically */
7321 	if (bytes > 8 || (bytes & (bytes - 1)))
7322 		goto emul_write;
7323 
7324 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7325 
7326 	if (gpa == UNMAPPED_GVA ||
7327 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7328 		goto emul_write;
7329 
7330 	/*
7331 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7332 	 * enabled in the host and the access splits a cache line.
7333 	 */
7334 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7335 		page_line_mask = ~(cache_line_size() - 1);
7336 	else
7337 		page_line_mask = PAGE_MASK;
7338 
7339 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7340 		goto emul_write;
7341 
7342 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7343 	if (kvm_is_error_hva(hva))
7344 		goto emul_write;
7345 
7346 	hva += offset_in_page(gpa);
7347 
7348 	switch (bytes) {
7349 	case 1:
7350 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7351 		break;
7352 	case 2:
7353 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7354 		break;
7355 	case 4:
7356 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7357 		break;
7358 	case 8:
7359 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7360 		break;
7361 	default:
7362 		BUG();
7363 	}
7364 
7365 	if (r < 0)
7366 		return X86EMUL_UNHANDLEABLE;
7367 	if (r)
7368 		return X86EMUL_CMPXCHG_FAILED;
7369 
7370 	kvm_page_track_write(vcpu, gpa, new, bytes);
7371 
7372 	return X86EMUL_CONTINUE;
7373 
7374 emul_write:
7375 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7376 
7377 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7378 }
7379 
7380 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7381 {
7382 	int r = 0, i;
7383 
7384 	for (i = 0; i < vcpu->arch.pio.count; i++) {
7385 		if (vcpu->arch.pio.in)
7386 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7387 					    vcpu->arch.pio.size, pd);
7388 		else
7389 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7390 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
7391 					     pd);
7392 		if (r)
7393 			break;
7394 		pd += vcpu->arch.pio.size;
7395 	}
7396 	return r;
7397 }
7398 
7399 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7400 			       unsigned short port,
7401 			       unsigned int count, bool in)
7402 {
7403 	vcpu->arch.pio.port = port;
7404 	vcpu->arch.pio.in = in;
7405 	vcpu->arch.pio.count  = count;
7406 	vcpu->arch.pio.size = size;
7407 
7408 	if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7409 		return 1;
7410 
7411 	vcpu->run->exit_reason = KVM_EXIT_IO;
7412 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7413 	vcpu->run->io.size = size;
7414 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7415 	vcpu->run->io.count = count;
7416 	vcpu->run->io.port = port;
7417 
7418 	return 0;
7419 }
7420 
7421 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7422 			     unsigned short port, unsigned int count)
7423 {
7424 	WARN_ON(vcpu->arch.pio.count);
7425 	memset(vcpu->arch.pio_data, 0, size * count);
7426 	return emulator_pio_in_out(vcpu, size, port, count, true);
7427 }
7428 
7429 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7430 {
7431 	int size = vcpu->arch.pio.size;
7432 	unsigned count = vcpu->arch.pio.count;
7433 	memcpy(val, vcpu->arch.pio_data, size * count);
7434 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7435 	vcpu->arch.pio.count = 0;
7436 }
7437 
7438 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7439 			   unsigned short port, void *val, unsigned int count)
7440 {
7441 	if (vcpu->arch.pio.count) {
7442 		/*
7443 		 * Complete a previous iteration that required userspace I/O.
7444 		 * Note, @count isn't guaranteed to match pio.count as userspace
7445 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7446 		 * shenanigans as KVM doesn't support modifying the rep count,
7447 		 * and the emulator ensures @count doesn't overflow the buffer.
7448 		 */
7449 	} else {
7450 		int r = __emulator_pio_in(vcpu, size, port, count);
7451 		if (!r)
7452 			return r;
7453 
7454 		/* Results already available, fall through.  */
7455 	}
7456 
7457 	complete_emulator_pio_in(vcpu, val);
7458 	return 1;
7459 }
7460 
7461 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7462 				    int size, unsigned short port, void *val,
7463 				    unsigned int count)
7464 {
7465 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7466 
7467 }
7468 
7469 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7470 			    unsigned short port, const void *val,
7471 			    unsigned int count)
7472 {
7473 	int ret;
7474 
7475 	memcpy(vcpu->arch.pio_data, val, size * count);
7476 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7477 	ret = emulator_pio_in_out(vcpu, size, port, count, false);
7478 	if (ret)
7479                 vcpu->arch.pio.count = 0;
7480 
7481         return ret;
7482 }
7483 
7484 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7485 				     int size, unsigned short port,
7486 				     const void *val, unsigned int count)
7487 {
7488 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7489 }
7490 
7491 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7492 {
7493 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7494 }
7495 
7496 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7497 {
7498 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7499 }
7500 
7501 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7502 {
7503 	if (!need_emulate_wbinvd(vcpu))
7504 		return X86EMUL_CONTINUE;
7505 
7506 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7507 		int cpu = get_cpu();
7508 
7509 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7510 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7511 				wbinvd_ipi, NULL, 1);
7512 		put_cpu();
7513 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7514 	} else
7515 		wbinvd();
7516 	return X86EMUL_CONTINUE;
7517 }
7518 
7519 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7520 {
7521 	kvm_emulate_wbinvd_noskip(vcpu);
7522 	return kvm_skip_emulated_instruction(vcpu);
7523 }
7524 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7525 
7526 
7527 
7528 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7529 {
7530 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7531 }
7532 
7533 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7534 			    unsigned long *dest)
7535 {
7536 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7537 }
7538 
7539 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7540 			   unsigned long value)
7541 {
7542 
7543 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7544 }
7545 
7546 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7547 {
7548 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7549 }
7550 
7551 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7552 {
7553 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7554 	unsigned long value;
7555 
7556 	switch (cr) {
7557 	case 0:
7558 		value = kvm_read_cr0(vcpu);
7559 		break;
7560 	case 2:
7561 		value = vcpu->arch.cr2;
7562 		break;
7563 	case 3:
7564 		value = kvm_read_cr3(vcpu);
7565 		break;
7566 	case 4:
7567 		value = kvm_read_cr4(vcpu);
7568 		break;
7569 	case 8:
7570 		value = kvm_get_cr8(vcpu);
7571 		break;
7572 	default:
7573 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7574 		return 0;
7575 	}
7576 
7577 	return value;
7578 }
7579 
7580 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7581 {
7582 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7583 	int res = 0;
7584 
7585 	switch (cr) {
7586 	case 0:
7587 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7588 		break;
7589 	case 2:
7590 		vcpu->arch.cr2 = val;
7591 		break;
7592 	case 3:
7593 		res = kvm_set_cr3(vcpu, val);
7594 		break;
7595 	case 4:
7596 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7597 		break;
7598 	case 8:
7599 		res = kvm_set_cr8(vcpu, val);
7600 		break;
7601 	default:
7602 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7603 		res = -1;
7604 	}
7605 
7606 	return res;
7607 }
7608 
7609 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7610 {
7611 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7612 }
7613 
7614 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7615 {
7616 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7617 }
7618 
7619 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7620 {
7621 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7622 }
7623 
7624 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7625 {
7626 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7627 }
7628 
7629 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7630 {
7631 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7632 }
7633 
7634 static unsigned long emulator_get_cached_segment_base(
7635 	struct x86_emulate_ctxt *ctxt, int seg)
7636 {
7637 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7638 }
7639 
7640 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7641 				 struct desc_struct *desc, u32 *base3,
7642 				 int seg)
7643 {
7644 	struct kvm_segment var;
7645 
7646 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7647 	*selector = var.selector;
7648 
7649 	if (var.unusable) {
7650 		memset(desc, 0, sizeof(*desc));
7651 		if (base3)
7652 			*base3 = 0;
7653 		return false;
7654 	}
7655 
7656 	if (var.g)
7657 		var.limit >>= 12;
7658 	set_desc_limit(desc, var.limit);
7659 	set_desc_base(desc, (unsigned long)var.base);
7660 #ifdef CONFIG_X86_64
7661 	if (base3)
7662 		*base3 = var.base >> 32;
7663 #endif
7664 	desc->type = var.type;
7665 	desc->s = var.s;
7666 	desc->dpl = var.dpl;
7667 	desc->p = var.present;
7668 	desc->avl = var.avl;
7669 	desc->l = var.l;
7670 	desc->d = var.db;
7671 	desc->g = var.g;
7672 
7673 	return true;
7674 }
7675 
7676 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7677 				 struct desc_struct *desc, u32 base3,
7678 				 int seg)
7679 {
7680 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7681 	struct kvm_segment var;
7682 
7683 	var.selector = selector;
7684 	var.base = get_desc_base(desc);
7685 #ifdef CONFIG_X86_64
7686 	var.base |= ((u64)base3) << 32;
7687 #endif
7688 	var.limit = get_desc_limit(desc);
7689 	if (desc->g)
7690 		var.limit = (var.limit << 12) | 0xfff;
7691 	var.type = desc->type;
7692 	var.dpl = desc->dpl;
7693 	var.db = desc->d;
7694 	var.s = desc->s;
7695 	var.l = desc->l;
7696 	var.g = desc->g;
7697 	var.avl = desc->avl;
7698 	var.present = desc->p;
7699 	var.unusable = !var.present;
7700 	var.padding = 0;
7701 
7702 	kvm_set_segment(vcpu, &var, seg);
7703 	return;
7704 }
7705 
7706 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7707 					u32 msr_index, u64 *pdata)
7708 {
7709 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7710 	int r;
7711 
7712 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7713 
7714 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7715 				    complete_emulated_rdmsr, r)) {
7716 		/* Bounce to user space */
7717 		return X86EMUL_IO_NEEDED;
7718 	}
7719 
7720 	return r;
7721 }
7722 
7723 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7724 					u32 msr_index, u64 data)
7725 {
7726 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7727 	int r;
7728 
7729 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7730 
7731 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7732 				    complete_emulated_msr_access, r)) {
7733 		/* Bounce to user space */
7734 		return X86EMUL_IO_NEEDED;
7735 	}
7736 
7737 	return r;
7738 }
7739 
7740 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7741 			    u32 msr_index, u64 *pdata)
7742 {
7743 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7744 }
7745 
7746 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7747 			    u32 msr_index, u64 data)
7748 {
7749 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7750 }
7751 
7752 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7753 {
7754 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7755 
7756 	return vcpu->arch.smbase;
7757 }
7758 
7759 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7760 {
7761 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7762 
7763 	vcpu->arch.smbase = smbase;
7764 }
7765 
7766 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7767 			      u32 pmc)
7768 {
7769 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7770 		return 0;
7771 	return -EINVAL;
7772 }
7773 
7774 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7775 			     u32 pmc, u64 *pdata)
7776 {
7777 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7778 }
7779 
7780 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7781 {
7782 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7783 }
7784 
7785 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7786 			      struct x86_instruction_info *info,
7787 			      enum x86_intercept_stage stage)
7788 {
7789 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7790 					    &ctxt->exception);
7791 }
7792 
7793 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7794 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7795 			      bool exact_only)
7796 {
7797 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7798 }
7799 
7800 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7801 {
7802 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7803 }
7804 
7805 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7806 {
7807 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7808 }
7809 
7810 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7811 {
7812 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7813 }
7814 
7815 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7816 {
7817 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7818 }
7819 
7820 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7821 {
7822 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7823 }
7824 
7825 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7826 {
7827 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7828 }
7829 
7830 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7831 {
7832 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7833 }
7834 
7835 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7836 {
7837 	return emul_to_vcpu(ctxt)->arch.hflags;
7838 }
7839 
7840 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7841 {
7842 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7843 
7844 	kvm_smm_changed(vcpu, false);
7845 }
7846 
7847 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7848 				  const char *smstate)
7849 {
7850 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7851 }
7852 
7853 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7854 {
7855 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7856 }
7857 
7858 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7859 {
7860 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7861 }
7862 
7863 static const struct x86_emulate_ops emulate_ops = {
7864 	.read_gpr            = emulator_read_gpr,
7865 	.write_gpr           = emulator_write_gpr,
7866 	.read_std            = emulator_read_std,
7867 	.write_std           = emulator_write_std,
7868 	.read_phys           = kvm_read_guest_phys_system,
7869 	.fetch               = kvm_fetch_guest_virt,
7870 	.read_emulated       = emulator_read_emulated,
7871 	.write_emulated      = emulator_write_emulated,
7872 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7873 	.invlpg              = emulator_invlpg,
7874 	.pio_in_emulated     = emulator_pio_in_emulated,
7875 	.pio_out_emulated    = emulator_pio_out_emulated,
7876 	.get_segment         = emulator_get_segment,
7877 	.set_segment         = emulator_set_segment,
7878 	.get_cached_segment_base = emulator_get_cached_segment_base,
7879 	.get_gdt             = emulator_get_gdt,
7880 	.get_idt	     = emulator_get_idt,
7881 	.set_gdt             = emulator_set_gdt,
7882 	.set_idt	     = emulator_set_idt,
7883 	.get_cr              = emulator_get_cr,
7884 	.set_cr              = emulator_set_cr,
7885 	.cpl                 = emulator_get_cpl,
7886 	.get_dr              = emulator_get_dr,
7887 	.set_dr              = emulator_set_dr,
7888 	.get_smbase          = emulator_get_smbase,
7889 	.set_smbase          = emulator_set_smbase,
7890 	.set_msr_with_filter = emulator_set_msr_with_filter,
7891 	.get_msr_with_filter = emulator_get_msr_with_filter,
7892 	.set_msr             = emulator_set_msr,
7893 	.get_msr             = emulator_get_msr,
7894 	.check_pmc	     = emulator_check_pmc,
7895 	.read_pmc            = emulator_read_pmc,
7896 	.halt                = emulator_halt,
7897 	.wbinvd              = emulator_wbinvd,
7898 	.fix_hypercall       = emulator_fix_hypercall,
7899 	.intercept           = emulator_intercept,
7900 	.get_cpuid           = emulator_get_cpuid,
7901 	.guest_has_long_mode = emulator_guest_has_long_mode,
7902 	.guest_has_movbe     = emulator_guest_has_movbe,
7903 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7904 	.guest_has_rdpid     = emulator_guest_has_rdpid,
7905 	.set_nmi_mask        = emulator_set_nmi_mask,
7906 	.get_hflags          = emulator_get_hflags,
7907 	.exiting_smm         = emulator_exiting_smm,
7908 	.leave_smm           = emulator_leave_smm,
7909 	.triple_fault        = emulator_triple_fault,
7910 	.set_xcr             = emulator_set_xcr,
7911 };
7912 
7913 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7914 {
7915 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7916 	/*
7917 	 * an sti; sti; sequence only disable interrupts for the first
7918 	 * instruction. So, if the last instruction, be it emulated or
7919 	 * not, left the system with the INT_STI flag enabled, it
7920 	 * means that the last instruction is an sti. We should not
7921 	 * leave the flag on in this case. The same goes for mov ss
7922 	 */
7923 	if (int_shadow & mask)
7924 		mask = 0;
7925 	if (unlikely(int_shadow || mask)) {
7926 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7927 		if (!mask)
7928 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7929 	}
7930 }
7931 
7932 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7933 {
7934 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7935 	if (ctxt->exception.vector == PF_VECTOR)
7936 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7937 
7938 	if (ctxt->exception.error_code_valid)
7939 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7940 				      ctxt->exception.error_code);
7941 	else
7942 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7943 	return false;
7944 }
7945 
7946 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7947 {
7948 	struct x86_emulate_ctxt *ctxt;
7949 
7950 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7951 	if (!ctxt) {
7952 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7953 		return NULL;
7954 	}
7955 
7956 	ctxt->vcpu = vcpu;
7957 	ctxt->ops = &emulate_ops;
7958 	vcpu->arch.emulate_ctxt = ctxt;
7959 
7960 	return ctxt;
7961 }
7962 
7963 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7964 {
7965 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7966 	int cs_db, cs_l;
7967 
7968 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7969 
7970 	ctxt->gpa_available = false;
7971 	ctxt->eflags = kvm_get_rflags(vcpu);
7972 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7973 
7974 	ctxt->eip = kvm_rip_read(vcpu);
7975 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7976 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7977 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7978 		     cs_db				? X86EMUL_MODE_PROT32 :
7979 							  X86EMUL_MODE_PROT16;
7980 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7981 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7982 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7983 
7984 	ctxt->interruptibility = 0;
7985 	ctxt->have_exception = false;
7986 	ctxt->exception.vector = -1;
7987 	ctxt->perm_ok = false;
7988 
7989 	init_decode_cache(ctxt);
7990 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7991 }
7992 
7993 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7994 {
7995 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7996 	int ret;
7997 
7998 	init_emulate_ctxt(vcpu);
7999 
8000 	ctxt->op_bytes = 2;
8001 	ctxt->ad_bytes = 2;
8002 	ctxt->_eip = ctxt->eip + inc_eip;
8003 	ret = emulate_int_real(ctxt, irq);
8004 
8005 	if (ret != X86EMUL_CONTINUE) {
8006 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8007 	} else {
8008 		ctxt->eip = ctxt->_eip;
8009 		kvm_rip_write(vcpu, ctxt->eip);
8010 		kvm_set_rflags(vcpu, ctxt->eflags);
8011 	}
8012 }
8013 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8014 
8015 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8016 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8017 {
8018 	struct kvm_run *run = vcpu->run;
8019 	u64 info[5];
8020 	u8 info_start;
8021 
8022 	/*
8023 	 * Zero the whole array used to retrieve the exit info, as casting to
8024 	 * u32 for select entries will leave some chunks uninitialized.
8025 	 */
8026 	memset(&info, 0, sizeof(info));
8027 
8028 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8029 					   &info[2], (u32 *)&info[3],
8030 					   (u32 *)&info[4]);
8031 
8032 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8033 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8034 
8035 	/*
8036 	 * There's currently space for 13 entries, but 5 are used for the exit
8037 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8038 	 * when expanding kvm_run.emulation_failure in the future.
8039 	 */
8040 	if (WARN_ON_ONCE(ndata > 4))
8041 		ndata = 4;
8042 
8043 	/* Always include the flags as a 'data' entry. */
8044 	info_start = 1;
8045 	run->emulation_failure.flags = 0;
8046 
8047 	if (insn_size) {
8048 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8049 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8050 		info_start += 2;
8051 		run->emulation_failure.flags |=
8052 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8053 		run->emulation_failure.insn_size = insn_size;
8054 		memset(run->emulation_failure.insn_bytes, 0x90,
8055 		       sizeof(run->emulation_failure.insn_bytes));
8056 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8057 	}
8058 
8059 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8060 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8061 	       ndata * sizeof(data[0]));
8062 
8063 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8064 }
8065 
8066 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8067 {
8068 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8069 
8070 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8071 				       ctxt->fetch.end - ctxt->fetch.data);
8072 }
8073 
8074 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8075 					  u8 ndata)
8076 {
8077 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8078 }
8079 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8080 
8081 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8082 {
8083 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8084 }
8085 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8086 
8087 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8088 {
8089 	struct kvm *kvm = vcpu->kvm;
8090 
8091 	++vcpu->stat.insn_emulation_fail;
8092 	trace_kvm_emulate_insn_failed(vcpu);
8093 
8094 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8095 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8096 		return 1;
8097 	}
8098 
8099 	if (kvm->arch.exit_on_emulation_error ||
8100 	    (emulation_type & EMULTYPE_SKIP)) {
8101 		prepare_emulation_ctxt_failure_exit(vcpu);
8102 		return 0;
8103 	}
8104 
8105 	kvm_queue_exception(vcpu, UD_VECTOR);
8106 
8107 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8108 		prepare_emulation_ctxt_failure_exit(vcpu);
8109 		return 0;
8110 	}
8111 
8112 	return 1;
8113 }
8114 
8115 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8116 				  bool write_fault_to_shadow_pgtable,
8117 				  int emulation_type)
8118 {
8119 	gpa_t gpa = cr2_or_gpa;
8120 	kvm_pfn_t pfn;
8121 
8122 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8123 		return false;
8124 
8125 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8126 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8127 		return false;
8128 
8129 	if (!vcpu->arch.mmu->root_role.direct) {
8130 		/*
8131 		 * Write permission should be allowed since only
8132 		 * write access need to be emulated.
8133 		 */
8134 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8135 
8136 		/*
8137 		 * If the mapping is invalid in guest, let cpu retry
8138 		 * it to generate fault.
8139 		 */
8140 		if (gpa == UNMAPPED_GVA)
8141 			return true;
8142 	}
8143 
8144 	/*
8145 	 * Do not retry the unhandleable instruction if it faults on the
8146 	 * readonly host memory, otherwise it will goto a infinite loop:
8147 	 * retry instruction -> write #PF -> emulation fail -> retry
8148 	 * instruction -> ...
8149 	 */
8150 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8151 
8152 	/*
8153 	 * If the instruction failed on the error pfn, it can not be fixed,
8154 	 * report the error to userspace.
8155 	 */
8156 	if (is_error_noslot_pfn(pfn))
8157 		return false;
8158 
8159 	kvm_release_pfn_clean(pfn);
8160 
8161 	/* The instructions are well-emulated on direct mmu. */
8162 	if (vcpu->arch.mmu->root_role.direct) {
8163 		unsigned int indirect_shadow_pages;
8164 
8165 		write_lock(&vcpu->kvm->mmu_lock);
8166 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8167 		write_unlock(&vcpu->kvm->mmu_lock);
8168 
8169 		if (indirect_shadow_pages)
8170 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8171 
8172 		return true;
8173 	}
8174 
8175 	/*
8176 	 * if emulation was due to access to shadowed page table
8177 	 * and it failed try to unshadow page and re-enter the
8178 	 * guest to let CPU execute the instruction.
8179 	 */
8180 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8181 
8182 	/*
8183 	 * If the access faults on its page table, it can not
8184 	 * be fixed by unprotecting shadow page and it should
8185 	 * be reported to userspace.
8186 	 */
8187 	return !write_fault_to_shadow_pgtable;
8188 }
8189 
8190 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8191 			      gpa_t cr2_or_gpa,  int emulation_type)
8192 {
8193 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8194 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8195 
8196 	last_retry_eip = vcpu->arch.last_retry_eip;
8197 	last_retry_addr = vcpu->arch.last_retry_addr;
8198 
8199 	/*
8200 	 * If the emulation is caused by #PF and it is non-page_table
8201 	 * writing instruction, it means the VM-EXIT is caused by shadow
8202 	 * page protected, we can zap the shadow page and retry this
8203 	 * instruction directly.
8204 	 *
8205 	 * Note: if the guest uses a non-page-table modifying instruction
8206 	 * on the PDE that points to the instruction, then we will unmap
8207 	 * the instruction and go to an infinite loop. So, we cache the
8208 	 * last retried eip and the last fault address, if we meet the eip
8209 	 * and the address again, we can break out of the potential infinite
8210 	 * loop.
8211 	 */
8212 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8213 
8214 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8215 		return false;
8216 
8217 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8218 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8219 		return false;
8220 
8221 	if (x86_page_table_writing_insn(ctxt))
8222 		return false;
8223 
8224 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8225 		return false;
8226 
8227 	vcpu->arch.last_retry_eip = ctxt->eip;
8228 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8229 
8230 	if (!vcpu->arch.mmu->root_role.direct)
8231 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8232 
8233 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8234 
8235 	return true;
8236 }
8237 
8238 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8239 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8240 
8241 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8242 {
8243 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8244 
8245 	if (entering_smm) {
8246 		vcpu->arch.hflags |= HF_SMM_MASK;
8247 	} else {
8248 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8249 
8250 		/* Process a latched INIT or SMI, if any.  */
8251 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8252 
8253 		/*
8254 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8255 		 * on SMM exit we still need to reload them from
8256 		 * guest memory
8257 		 */
8258 		vcpu->arch.pdptrs_from_userspace = false;
8259 	}
8260 
8261 	kvm_mmu_reset_context(vcpu);
8262 }
8263 
8264 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8265 				unsigned long *db)
8266 {
8267 	u32 dr6 = 0;
8268 	int i;
8269 	u32 enable, rwlen;
8270 
8271 	enable = dr7;
8272 	rwlen = dr7 >> 16;
8273 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8274 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8275 			dr6 |= (1 << i);
8276 	return dr6;
8277 }
8278 
8279 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8280 {
8281 	struct kvm_run *kvm_run = vcpu->run;
8282 
8283 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8284 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8285 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8286 		kvm_run->debug.arch.exception = DB_VECTOR;
8287 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8288 		return 0;
8289 	}
8290 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8291 	return 1;
8292 }
8293 
8294 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8295 {
8296 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8297 	int r;
8298 
8299 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8300 	if (unlikely(!r))
8301 		return 0;
8302 
8303 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8304 
8305 	/*
8306 	 * rflags is the old, "raw" value of the flags.  The new value has
8307 	 * not been saved yet.
8308 	 *
8309 	 * This is correct even for TF set by the guest, because "the
8310 	 * processor will not generate this exception after the instruction
8311 	 * that sets the TF flag".
8312 	 */
8313 	if (unlikely(rflags & X86_EFLAGS_TF))
8314 		r = kvm_vcpu_do_singlestep(vcpu);
8315 	return r;
8316 }
8317 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8318 
8319 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
8320 {
8321 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8322 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8323 		struct kvm_run *kvm_run = vcpu->run;
8324 		unsigned long eip = kvm_get_linear_rip(vcpu);
8325 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8326 					   vcpu->arch.guest_debug_dr7,
8327 					   vcpu->arch.eff_db);
8328 
8329 		if (dr6 != 0) {
8330 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8331 			kvm_run->debug.arch.pc = eip;
8332 			kvm_run->debug.arch.exception = DB_VECTOR;
8333 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8334 			*r = 0;
8335 			return true;
8336 		}
8337 	}
8338 
8339 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8340 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8341 		unsigned long eip = kvm_get_linear_rip(vcpu);
8342 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8343 					   vcpu->arch.dr7,
8344 					   vcpu->arch.db);
8345 
8346 		if (dr6 != 0) {
8347 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8348 			*r = 1;
8349 			return true;
8350 		}
8351 	}
8352 
8353 	return false;
8354 }
8355 
8356 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8357 {
8358 	switch (ctxt->opcode_len) {
8359 	case 1:
8360 		switch (ctxt->b) {
8361 		case 0xe4:	/* IN */
8362 		case 0xe5:
8363 		case 0xec:
8364 		case 0xed:
8365 		case 0xe6:	/* OUT */
8366 		case 0xe7:
8367 		case 0xee:
8368 		case 0xef:
8369 		case 0x6c:	/* INS */
8370 		case 0x6d:
8371 		case 0x6e:	/* OUTS */
8372 		case 0x6f:
8373 			return true;
8374 		}
8375 		break;
8376 	case 2:
8377 		switch (ctxt->b) {
8378 		case 0x33:	/* RDPMC */
8379 			return true;
8380 		}
8381 		break;
8382 	}
8383 
8384 	return false;
8385 }
8386 
8387 /*
8388  * Decode an instruction for emulation.  The caller is responsible for handling
8389  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8390  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8391  * code breakpoints have higher priority and thus have already been done by
8392  * hardware.
8393  *
8394  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8395  *     response to a machine check.
8396  */
8397 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8398 				    void *insn, int insn_len)
8399 {
8400 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8401 	int r;
8402 
8403 	init_emulate_ctxt(vcpu);
8404 
8405 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8406 
8407 	trace_kvm_emulate_insn_start(vcpu);
8408 	++vcpu->stat.insn_emulation;
8409 
8410 	return r;
8411 }
8412 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8413 
8414 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8415 			    int emulation_type, void *insn, int insn_len)
8416 {
8417 	int r;
8418 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8419 	bool writeback = true;
8420 	bool write_fault_to_spt;
8421 
8422 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8423 		return 1;
8424 
8425 	vcpu->arch.l1tf_flush_l1d = true;
8426 
8427 	/*
8428 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8429 	 * never reused.
8430 	 */
8431 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8432 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8433 
8434 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8435 		kvm_clear_exception_queue(vcpu);
8436 
8437 		/*
8438 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8439 		 * are fault-like and are higher priority than any faults on
8440 		 * the code fetch itself.
8441 		 */
8442 		if (!(emulation_type & EMULTYPE_SKIP) &&
8443 		    kvm_vcpu_check_code_breakpoint(vcpu, &r))
8444 			return r;
8445 
8446 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8447 						    insn, insn_len);
8448 		if (r != EMULATION_OK)  {
8449 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8450 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8451 				kvm_queue_exception(vcpu, UD_VECTOR);
8452 				return 1;
8453 			}
8454 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8455 						  write_fault_to_spt,
8456 						  emulation_type))
8457 				return 1;
8458 			if (ctxt->have_exception) {
8459 				/*
8460 				 * #UD should result in just EMULATION_FAILED, and trap-like
8461 				 * exception should not be encountered during decode.
8462 				 */
8463 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8464 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8465 				inject_emulated_exception(vcpu);
8466 				return 1;
8467 			}
8468 			return handle_emulation_failure(vcpu, emulation_type);
8469 		}
8470 	}
8471 
8472 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8473 	    !is_vmware_backdoor_opcode(ctxt)) {
8474 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8475 		return 1;
8476 	}
8477 
8478 	/*
8479 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8480 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8481 	 * The caller is responsible for updating interruptibility state and
8482 	 * injecting single-step #DBs.
8483 	 */
8484 	if (emulation_type & EMULTYPE_SKIP) {
8485 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8486 			ctxt->eip = (u32)ctxt->_eip;
8487 		else
8488 			ctxt->eip = ctxt->_eip;
8489 
8490 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8491 			r = 1;
8492 			goto writeback;
8493 		}
8494 
8495 		kvm_rip_write(vcpu, ctxt->eip);
8496 		if (ctxt->eflags & X86_EFLAGS_RF)
8497 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8498 		return 1;
8499 	}
8500 
8501 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8502 		return 1;
8503 
8504 	/* this is needed for vmware backdoor interface to work since it
8505 	   changes registers values  during IO operation */
8506 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8507 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8508 		emulator_invalidate_register_cache(ctxt);
8509 	}
8510 
8511 restart:
8512 	if (emulation_type & EMULTYPE_PF) {
8513 		/* Save the faulting GPA (cr2) in the address field */
8514 		ctxt->exception.address = cr2_or_gpa;
8515 
8516 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8517 		if (vcpu->arch.mmu->root_role.direct) {
8518 			ctxt->gpa_available = true;
8519 			ctxt->gpa_val = cr2_or_gpa;
8520 		}
8521 	} else {
8522 		/* Sanitize the address out of an abundance of paranoia. */
8523 		ctxt->exception.address = 0;
8524 	}
8525 
8526 	r = x86_emulate_insn(ctxt);
8527 
8528 	if (r == EMULATION_INTERCEPTED)
8529 		return 1;
8530 
8531 	if (r == EMULATION_FAILED) {
8532 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8533 					emulation_type))
8534 			return 1;
8535 
8536 		return handle_emulation_failure(vcpu, emulation_type);
8537 	}
8538 
8539 	if (ctxt->have_exception) {
8540 		r = 1;
8541 		if (inject_emulated_exception(vcpu))
8542 			return r;
8543 	} else if (vcpu->arch.pio.count) {
8544 		if (!vcpu->arch.pio.in) {
8545 			/* FIXME: return into emulator if single-stepping.  */
8546 			vcpu->arch.pio.count = 0;
8547 		} else {
8548 			writeback = false;
8549 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8550 		}
8551 		r = 0;
8552 	} else if (vcpu->mmio_needed) {
8553 		++vcpu->stat.mmio_exits;
8554 
8555 		if (!vcpu->mmio_is_write)
8556 			writeback = false;
8557 		r = 0;
8558 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8559 	} else if (vcpu->arch.complete_userspace_io) {
8560 		writeback = false;
8561 		r = 0;
8562 	} else if (r == EMULATION_RESTART)
8563 		goto restart;
8564 	else
8565 		r = 1;
8566 
8567 writeback:
8568 	if (writeback) {
8569 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8570 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8571 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8572 		if (!ctxt->have_exception ||
8573 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8574 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8575 			if (ctxt->is_branch)
8576 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8577 			kvm_rip_write(vcpu, ctxt->eip);
8578 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8579 				r = kvm_vcpu_do_singlestep(vcpu);
8580 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8581 			__kvm_set_rflags(vcpu, ctxt->eflags);
8582 		}
8583 
8584 		/*
8585 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8586 		 * do nothing, and it will be requested again as soon as
8587 		 * the shadow expires.  But we still need to check here,
8588 		 * because POPF has no interrupt shadow.
8589 		 */
8590 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8591 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8592 	} else
8593 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8594 
8595 	return r;
8596 }
8597 
8598 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8599 {
8600 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8601 }
8602 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8603 
8604 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8605 					void *insn, int insn_len)
8606 {
8607 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8608 }
8609 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8610 
8611 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8612 {
8613 	vcpu->arch.pio.count = 0;
8614 	return 1;
8615 }
8616 
8617 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8618 {
8619 	vcpu->arch.pio.count = 0;
8620 
8621 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8622 		return 1;
8623 
8624 	return kvm_skip_emulated_instruction(vcpu);
8625 }
8626 
8627 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8628 			    unsigned short port)
8629 {
8630 	unsigned long val = kvm_rax_read(vcpu);
8631 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8632 
8633 	if (ret)
8634 		return ret;
8635 
8636 	/*
8637 	 * Workaround userspace that relies on old KVM behavior of %rip being
8638 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8639 	 */
8640 	if (port == 0x7e &&
8641 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8642 		vcpu->arch.complete_userspace_io =
8643 			complete_fast_pio_out_port_0x7e;
8644 		kvm_skip_emulated_instruction(vcpu);
8645 	} else {
8646 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8647 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8648 	}
8649 	return 0;
8650 }
8651 
8652 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8653 {
8654 	unsigned long val;
8655 
8656 	/* We should only ever be called with arch.pio.count equal to 1 */
8657 	BUG_ON(vcpu->arch.pio.count != 1);
8658 
8659 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8660 		vcpu->arch.pio.count = 0;
8661 		return 1;
8662 	}
8663 
8664 	/* For size less than 4 we merge, else we zero extend */
8665 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8666 
8667 	/*
8668 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8669 	 * the copy and tracing
8670 	 */
8671 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8672 	kvm_rax_write(vcpu, val);
8673 
8674 	return kvm_skip_emulated_instruction(vcpu);
8675 }
8676 
8677 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8678 			   unsigned short port)
8679 {
8680 	unsigned long val;
8681 	int ret;
8682 
8683 	/* For size less than 4 we merge, else we zero extend */
8684 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8685 
8686 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8687 	if (ret) {
8688 		kvm_rax_write(vcpu, val);
8689 		return ret;
8690 	}
8691 
8692 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8693 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8694 
8695 	return 0;
8696 }
8697 
8698 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8699 {
8700 	int ret;
8701 
8702 	if (in)
8703 		ret = kvm_fast_pio_in(vcpu, size, port);
8704 	else
8705 		ret = kvm_fast_pio_out(vcpu, size, port);
8706 	return ret && kvm_skip_emulated_instruction(vcpu);
8707 }
8708 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8709 
8710 static int kvmclock_cpu_down_prep(unsigned int cpu)
8711 {
8712 	__this_cpu_write(cpu_tsc_khz, 0);
8713 	return 0;
8714 }
8715 
8716 static void tsc_khz_changed(void *data)
8717 {
8718 	struct cpufreq_freqs *freq = data;
8719 	unsigned long khz = 0;
8720 
8721 	if (data)
8722 		khz = freq->new;
8723 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8724 		khz = cpufreq_quick_get(raw_smp_processor_id());
8725 	if (!khz)
8726 		khz = tsc_khz;
8727 	__this_cpu_write(cpu_tsc_khz, khz);
8728 }
8729 
8730 #ifdef CONFIG_X86_64
8731 static void kvm_hyperv_tsc_notifier(void)
8732 {
8733 	struct kvm *kvm;
8734 	int cpu;
8735 
8736 	mutex_lock(&kvm_lock);
8737 	list_for_each_entry(kvm, &vm_list, vm_list)
8738 		kvm_make_mclock_inprogress_request(kvm);
8739 
8740 	/* no guest entries from this point */
8741 	hyperv_stop_tsc_emulation();
8742 
8743 	/* TSC frequency always matches when on Hyper-V */
8744 	for_each_present_cpu(cpu)
8745 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8746 	kvm_max_guest_tsc_khz = tsc_khz;
8747 
8748 	list_for_each_entry(kvm, &vm_list, vm_list) {
8749 		__kvm_start_pvclock_update(kvm);
8750 		pvclock_update_vm_gtod_copy(kvm);
8751 		kvm_end_pvclock_update(kvm);
8752 	}
8753 
8754 	mutex_unlock(&kvm_lock);
8755 }
8756 #endif
8757 
8758 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8759 {
8760 	struct kvm *kvm;
8761 	struct kvm_vcpu *vcpu;
8762 	int send_ipi = 0;
8763 	unsigned long i;
8764 
8765 	/*
8766 	 * We allow guests to temporarily run on slowing clocks,
8767 	 * provided we notify them after, or to run on accelerating
8768 	 * clocks, provided we notify them before.  Thus time never
8769 	 * goes backwards.
8770 	 *
8771 	 * However, we have a problem.  We can't atomically update
8772 	 * the frequency of a given CPU from this function; it is
8773 	 * merely a notifier, which can be called from any CPU.
8774 	 * Changing the TSC frequency at arbitrary points in time
8775 	 * requires a recomputation of local variables related to
8776 	 * the TSC for each VCPU.  We must flag these local variables
8777 	 * to be updated and be sure the update takes place with the
8778 	 * new frequency before any guests proceed.
8779 	 *
8780 	 * Unfortunately, the combination of hotplug CPU and frequency
8781 	 * change creates an intractable locking scenario; the order
8782 	 * of when these callouts happen is undefined with respect to
8783 	 * CPU hotplug, and they can race with each other.  As such,
8784 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8785 	 * undefined; you can actually have a CPU frequency change take
8786 	 * place in between the computation of X and the setting of the
8787 	 * variable.  To protect against this problem, all updates of
8788 	 * the per_cpu tsc_khz variable are done in an interrupt
8789 	 * protected IPI, and all callers wishing to update the value
8790 	 * must wait for a synchronous IPI to complete (which is trivial
8791 	 * if the caller is on the CPU already).  This establishes the
8792 	 * necessary total order on variable updates.
8793 	 *
8794 	 * Note that because a guest time update may take place
8795 	 * anytime after the setting of the VCPU's request bit, the
8796 	 * correct TSC value must be set before the request.  However,
8797 	 * to ensure the update actually makes it to any guest which
8798 	 * starts running in hardware virtualization between the set
8799 	 * and the acquisition of the spinlock, we must also ping the
8800 	 * CPU after setting the request bit.
8801 	 *
8802 	 */
8803 
8804 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8805 
8806 	mutex_lock(&kvm_lock);
8807 	list_for_each_entry(kvm, &vm_list, vm_list) {
8808 		kvm_for_each_vcpu(i, vcpu, kvm) {
8809 			if (vcpu->cpu != cpu)
8810 				continue;
8811 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8812 			if (vcpu->cpu != raw_smp_processor_id())
8813 				send_ipi = 1;
8814 		}
8815 	}
8816 	mutex_unlock(&kvm_lock);
8817 
8818 	if (freq->old < freq->new && send_ipi) {
8819 		/*
8820 		 * We upscale the frequency.  Must make the guest
8821 		 * doesn't see old kvmclock values while running with
8822 		 * the new frequency, otherwise we risk the guest sees
8823 		 * time go backwards.
8824 		 *
8825 		 * In case we update the frequency for another cpu
8826 		 * (which might be in guest context) send an interrupt
8827 		 * to kick the cpu out of guest context.  Next time
8828 		 * guest context is entered kvmclock will be updated,
8829 		 * so the guest will not see stale values.
8830 		 */
8831 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8832 	}
8833 }
8834 
8835 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8836 				     void *data)
8837 {
8838 	struct cpufreq_freqs *freq = data;
8839 	int cpu;
8840 
8841 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8842 		return 0;
8843 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8844 		return 0;
8845 
8846 	for_each_cpu(cpu, freq->policy->cpus)
8847 		__kvmclock_cpufreq_notifier(freq, cpu);
8848 
8849 	return 0;
8850 }
8851 
8852 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8853 	.notifier_call  = kvmclock_cpufreq_notifier
8854 };
8855 
8856 static int kvmclock_cpu_online(unsigned int cpu)
8857 {
8858 	tsc_khz_changed(NULL);
8859 	return 0;
8860 }
8861 
8862 static void kvm_timer_init(void)
8863 {
8864 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8865 		max_tsc_khz = tsc_khz;
8866 
8867 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
8868 			struct cpufreq_policy *policy;
8869 			int cpu;
8870 
8871 			cpu = get_cpu();
8872 			policy = cpufreq_cpu_get(cpu);
8873 			if (policy) {
8874 				if (policy->cpuinfo.max_freq)
8875 					max_tsc_khz = policy->cpuinfo.max_freq;
8876 				cpufreq_cpu_put(policy);
8877 			}
8878 			put_cpu();
8879 		}
8880 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8881 					  CPUFREQ_TRANSITION_NOTIFIER);
8882 	}
8883 
8884 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8885 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8886 }
8887 
8888 #ifdef CONFIG_X86_64
8889 static void pvclock_gtod_update_fn(struct work_struct *work)
8890 {
8891 	struct kvm *kvm;
8892 	struct kvm_vcpu *vcpu;
8893 	unsigned long i;
8894 
8895 	mutex_lock(&kvm_lock);
8896 	list_for_each_entry(kvm, &vm_list, vm_list)
8897 		kvm_for_each_vcpu(i, vcpu, kvm)
8898 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8899 	atomic_set(&kvm_guest_has_master_clock, 0);
8900 	mutex_unlock(&kvm_lock);
8901 }
8902 
8903 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8904 
8905 /*
8906  * Indirection to move queue_work() out of the tk_core.seq write held
8907  * region to prevent possible deadlocks against time accessors which
8908  * are invoked with work related locks held.
8909  */
8910 static void pvclock_irq_work_fn(struct irq_work *w)
8911 {
8912 	queue_work(system_long_wq, &pvclock_gtod_work);
8913 }
8914 
8915 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8916 
8917 /*
8918  * Notification about pvclock gtod data update.
8919  */
8920 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8921 			       void *priv)
8922 {
8923 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8924 	struct timekeeper *tk = priv;
8925 
8926 	update_pvclock_gtod(tk);
8927 
8928 	/*
8929 	 * Disable master clock if host does not trust, or does not use,
8930 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8931 	 * this is invoked with tk_core.seq write held.
8932 	 */
8933 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8934 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8935 		irq_work_queue(&pvclock_irq_work);
8936 	return 0;
8937 }
8938 
8939 static struct notifier_block pvclock_gtod_notifier = {
8940 	.notifier_call = pvclock_gtod_notify,
8941 };
8942 #endif
8943 
8944 int kvm_arch_init(void *opaque)
8945 {
8946 	struct kvm_x86_init_ops *ops = opaque;
8947 	int r;
8948 
8949 	if (kvm_x86_ops.hardware_enable) {
8950 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8951 		r = -EEXIST;
8952 		goto out;
8953 	}
8954 
8955 	if (!ops->cpu_has_kvm_support()) {
8956 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8957 				   ops->runtime_ops->name);
8958 		r = -EOPNOTSUPP;
8959 		goto out;
8960 	}
8961 	if (ops->disabled_by_bios()) {
8962 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8963 				   ops->runtime_ops->name);
8964 		r = -EOPNOTSUPP;
8965 		goto out;
8966 	}
8967 
8968 	/*
8969 	 * KVM explicitly assumes that the guest has an FPU and
8970 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8971 	 * vCPU's FPU state as a fxregs_state struct.
8972 	 */
8973 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8974 		printk(KERN_ERR "kvm: inadequate fpu\n");
8975 		r = -EOPNOTSUPP;
8976 		goto out;
8977 	}
8978 
8979 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8980 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
8981 		r = -EOPNOTSUPP;
8982 		goto out;
8983 	}
8984 
8985 	r = -ENOMEM;
8986 
8987 	x86_emulator_cache = kvm_alloc_emulator_cache();
8988 	if (!x86_emulator_cache) {
8989 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8990 		goto out;
8991 	}
8992 
8993 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8994 	if (!user_return_msrs) {
8995 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8996 		goto out_free_x86_emulator_cache;
8997 	}
8998 	kvm_nr_uret_msrs = 0;
8999 
9000 	r = kvm_mmu_vendor_module_init();
9001 	if (r)
9002 		goto out_free_percpu;
9003 
9004 	kvm_timer_init();
9005 
9006 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9007 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9008 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9009 	}
9010 
9011 	if (pi_inject_timer == -1)
9012 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9013 #ifdef CONFIG_X86_64
9014 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9015 
9016 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9017 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9018 #endif
9019 
9020 	return 0;
9021 
9022 out_free_percpu:
9023 	free_percpu(user_return_msrs);
9024 out_free_x86_emulator_cache:
9025 	kmem_cache_destroy(x86_emulator_cache);
9026 out:
9027 	return r;
9028 }
9029 
9030 void kvm_arch_exit(void)
9031 {
9032 #ifdef CONFIG_X86_64
9033 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9034 		clear_hv_tscchange_cb();
9035 #endif
9036 	kvm_lapic_exit();
9037 
9038 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9039 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9040 					    CPUFREQ_TRANSITION_NOTIFIER);
9041 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9042 #ifdef CONFIG_X86_64
9043 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9044 	irq_work_sync(&pvclock_irq_work);
9045 	cancel_work_sync(&pvclock_gtod_work);
9046 #endif
9047 	kvm_x86_ops.hardware_enable = NULL;
9048 	kvm_mmu_vendor_module_exit();
9049 	free_percpu(user_return_msrs);
9050 	kmem_cache_destroy(x86_emulator_cache);
9051 #ifdef CONFIG_KVM_XEN
9052 	static_key_deferred_flush(&kvm_xen_enabled);
9053 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9054 #endif
9055 }
9056 
9057 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9058 {
9059 	/*
9060 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9061 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9062 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9063 	 * managed by userspace, in which case userspace is responsible for
9064 	 * handling wake events.
9065 	 */
9066 	++vcpu->stat.halt_exits;
9067 	if (lapic_in_kernel(vcpu)) {
9068 		vcpu->arch.mp_state = state;
9069 		return 1;
9070 	} else {
9071 		vcpu->run->exit_reason = reason;
9072 		return 0;
9073 	}
9074 }
9075 
9076 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9077 {
9078 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9079 }
9080 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9081 
9082 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9083 {
9084 	int ret = kvm_skip_emulated_instruction(vcpu);
9085 	/*
9086 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9087 	 * KVM_EXIT_DEBUG here.
9088 	 */
9089 	return kvm_emulate_halt_noskip(vcpu) && ret;
9090 }
9091 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9092 
9093 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9094 {
9095 	int ret = kvm_skip_emulated_instruction(vcpu);
9096 
9097 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9098 					KVM_EXIT_AP_RESET_HOLD) && ret;
9099 }
9100 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9101 
9102 #ifdef CONFIG_X86_64
9103 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9104 			        unsigned long clock_type)
9105 {
9106 	struct kvm_clock_pairing clock_pairing;
9107 	struct timespec64 ts;
9108 	u64 cycle;
9109 	int ret;
9110 
9111 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9112 		return -KVM_EOPNOTSUPP;
9113 
9114 	/*
9115 	 * When tsc is in permanent catchup mode guests won't be able to use
9116 	 * pvclock_read_retry loop to get consistent view of pvclock
9117 	 */
9118 	if (vcpu->arch.tsc_always_catchup)
9119 		return -KVM_EOPNOTSUPP;
9120 
9121 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9122 		return -KVM_EOPNOTSUPP;
9123 
9124 	clock_pairing.sec = ts.tv_sec;
9125 	clock_pairing.nsec = ts.tv_nsec;
9126 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9127 	clock_pairing.flags = 0;
9128 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9129 
9130 	ret = 0;
9131 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9132 			    sizeof(struct kvm_clock_pairing)))
9133 		ret = -KVM_EFAULT;
9134 
9135 	return ret;
9136 }
9137 #endif
9138 
9139 /*
9140  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9141  *
9142  * @apicid - apicid of vcpu to be kicked.
9143  */
9144 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9145 {
9146 	struct kvm_lapic_irq lapic_irq;
9147 
9148 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
9149 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
9150 	lapic_irq.level = 0;
9151 	lapic_irq.dest_id = apicid;
9152 	lapic_irq.msi_redir_hint = false;
9153 
9154 	lapic_irq.delivery_mode = APIC_DM_REMRD;
9155 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9156 }
9157 
9158 bool kvm_apicv_activated(struct kvm *kvm)
9159 {
9160 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9161 }
9162 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9163 
9164 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9165 {
9166 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9167 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9168 
9169 	return (vm_reasons | vcpu_reasons) == 0;
9170 }
9171 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9172 
9173 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9174 				       enum kvm_apicv_inhibit reason, bool set)
9175 {
9176 	if (set)
9177 		__set_bit(reason, inhibits);
9178 	else
9179 		__clear_bit(reason, inhibits);
9180 
9181 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9182 }
9183 
9184 static void kvm_apicv_init(struct kvm *kvm)
9185 {
9186 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9187 
9188 	init_rwsem(&kvm->arch.apicv_update_lock);
9189 
9190 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9191 
9192 	if (!enable_apicv)
9193 		set_or_clear_apicv_inhibit(inhibits,
9194 					   APICV_INHIBIT_REASON_DISABLE, true);
9195 }
9196 
9197 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9198 {
9199 	struct kvm_vcpu *target = NULL;
9200 	struct kvm_apic_map *map;
9201 
9202 	vcpu->stat.directed_yield_attempted++;
9203 
9204 	if (single_task_running())
9205 		goto no_yield;
9206 
9207 	rcu_read_lock();
9208 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9209 
9210 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9211 		target = map->phys_map[dest_id]->vcpu;
9212 
9213 	rcu_read_unlock();
9214 
9215 	if (!target || !READ_ONCE(target->ready))
9216 		goto no_yield;
9217 
9218 	/* Ignore requests to yield to self */
9219 	if (vcpu == target)
9220 		goto no_yield;
9221 
9222 	if (kvm_vcpu_yield_to(target) <= 0)
9223 		goto no_yield;
9224 
9225 	vcpu->stat.directed_yield_successful++;
9226 
9227 no_yield:
9228 	return;
9229 }
9230 
9231 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9232 {
9233 	u64 ret = vcpu->run->hypercall.ret;
9234 
9235 	if (!is_64_bit_mode(vcpu))
9236 		ret = (u32)ret;
9237 	kvm_rax_write(vcpu, ret);
9238 	++vcpu->stat.hypercalls;
9239 	return kvm_skip_emulated_instruction(vcpu);
9240 }
9241 
9242 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9243 {
9244 	unsigned long nr, a0, a1, a2, a3, ret;
9245 	int op_64_bit;
9246 
9247 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9248 		return kvm_xen_hypercall(vcpu);
9249 
9250 	if (kvm_hv_hypercall_enabled(vcpu))
9251 		return kvm_hv_hypercall(vcpu);
9252 
9253 	nr = kvm_rax_read(vcpu);
9254 	a0 = kvm_rbx_read(vcpu);
9255 	a1 = kvm_rcx_read(vcpu);
9256 	a2 = kvm_rdx_read(vcpu);
9257 	a3 = kvm_rsi_read(vcpu);
9258 
9259 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9260 
9261 	op_64_bit = is_64_bit_hypercall(vcpu);
9262 	if (!op_64_bit) {
9263 		nr &= 0xFFFFFFFF;
9264 		a0 &= 0xFFFFFFFF;
9265 		a1 &= 0xFFFFFFFF;
9266 		a2 &= 0xFFFFFFFF;
9267 		a3 &= 0xFFFFFFFF;
9268 	}
9269 
9270 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9271 		ret = -KVM_EPERM;
9272 		goto out;
9273 	}
9274 
9275 	ret = -KVM_ENOSYS;
9276 
9277 	switch (nr) {
9278 	case KVM_HC_VAPIC_POLL_IRQ:
9279 		ret = 0;
9280 		break;
9281 	case KVM_HC_KICK_CPU:
9282 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9283 			break;
9284 
9285 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9286 		kvm_sched_yield(vcpu, a1);
9287 		ret = 0;
9288 		break;
9289 #ifdef CONFIG_X86_64
9290 	case KVM_HC_CLOCK_PAIRING:
9291 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9292 		break;
9293 #endif
9294 	case KVM_HC_SEND_IPI:
9295 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9296 			break;
9297 
9298 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9299 		break;
9300 	case KVM_HC_SCHED_YIELD:
9301 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9302 			break;
9303 
9304 		kvm_sched_yield(vcpu, a0);
9305 		ret = 0;
9306 		break;
9307 	case KVM_HC_MAP_GPA_RANGE: {
9308 		u64 gpa = a0, npages = a1, attrs = a2;
9309 
9310 		ret = -KVM_ENOSYS;
9311 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9312 			break;
9313 
9314 		if (!PAGE_ALIGNED(gpa) || !npages ||
9315 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9316 			ret = -KVM_EINVAL;
9317 			break;
9318 		}
9319 
9320 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9321 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9322 		vcpu->run->hypercall.args[0]  = gpa;
9323 		vcpu->run->hypercall.args[1]  = npages;
9324 		vcpu->run->hypercall.args[2]  = attrs;
9325 		vcpu->run->hypercall.longmode = op_64_bit;
9326 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9327 		return 0;
9328 	}
9329 	default:
9330 		ret = -KVM_ENOSYS;
9331 		break;
9332 	}
9333 out:
9334 	if (!op_64_bit)
9335 		ret = (u32)ret;
9336 	kvm_rax_write(vcpu, ret);
9337 
9338 	++vcpu->stat.hypercalls;
9339 	return kvm_skip_emulated_instruction(vcpu);
9340 }
9341 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9342 
9343 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9344 {
9345 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9346 	char instruction[3];
9347 	unsigned long rip = kvm_rip_read(vcpu);
9348 
9349 	/*
9350 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9351 	 * the pieces.
9352 	 */
9353 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9354 		ctxt->exception.error_code_valid = false;
9355 		ctxt->exception.vector = UD_VECTOR;
9356 		ctxt->have_exception = true;
9357 		return X86EMUL_PROPAGATE_FAULT;
9358 	}
9359 
9360 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9361 
9362 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9363 		&ctxt->exception);
9364 }
9365 
9366 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9367 {
9368 	return vcpu->run->request_interrupt_window &&
9369 		likely(!pic_in_kernel(vcpu->kvm));
9370 }
9371 
9372 /* Called within kvm->srcu read side.  */
9373 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9374 {
9375 	struct kvm_run *kvm_run = vcpu->run;
9376 
9377 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9378 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9379 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9380 
9381 	kvm_run->ready_for_interrupt_injection =
9382 		pic_in_kernel(vcpu->kvm) ||
9383 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9384 
9385 	if (is_smm(vcpu))
9386 		kvm_run->flags |= KVM_RUN_X86_SMM;
9387 }
9388 
9389 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9390 {
9391 	int max_irr, tpr;
9392 
9393 	if (!kvm_x86_ops.update_cr8_intercept)
9394 		return;
9395 
9396 	if (!lapic_in_kernel(vcpu))
9397 		return;
9398 
9399 	if (vcpu->arch.apicv_active)
9400 		return;
9401 
9402 	if (!vcpu->arch.apic->vapic_addr)
9403 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9404 	else
9405 		max_irr = -1;
9406 
9407 	if (max_irr != -1)
9408 		max_irr >>= 4;
9409 
9410 	tpr = kvm_lapic_get_cr8(vcpu);
9411 
9412 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9413 }
9414 
9415 
9416 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9417 {
9418 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9419 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9420 		return 1;
9421 	}
9422 
9423 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9424 }
9425 
9426 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9427 {
9428 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9429 		vcpu->arch.exception.error_code = false;
9430 	static_call(kvm_x86_queue_exception)(vcpu);
9431 }
9432 
9433 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9434 {
9435 	int r;
9436 	bool can_inject = true;
9437 
9438 	/* try to reinject previous events if any */
9439 
9440 	if (vcpu->arch.exception.injected) {
9441 		kvm_inject_exception(vcpu);
9442 		can_inject = false;
9443 	}
9444 	/*
9445 	 * Do not inject an NMI or interrupt if there is a pending
9446 	 * exception.  Exceptions and interrupts are recognized at
9447 	 * instruction boundaries, i.e. the start of an instruction.
9448 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9449 	 * NMIs and interrupts, i.e. traps are recognized before an
9450 	 * NMI/interrupt that's pending on the same instruction.
9451 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9452 	 * priority, but are only generated (pended) during instruction
9453 	 * execution, i.e. a pending fault-like exception means the
9454 	 * fault occurred on the *previous* instruction and must be
9455 	 * serviced prior to recognizing any new events in order to
9456 	 * fully complete the previous instruction.
9457 	 */
9458 	else if (!vcpu->arch.exception.pending) {
9459 		if (vcpu->arch.nmi_injected) {
9460 			static_call(kvm_x86_inject_nmi)(vcpu);
9461 			can_inject = false;
9462 		} else if (vcpu->arch.interrupt.injected) {
9463 			static_call(kvm_x86_inject_irq)(vcpu);
9464 			can_inject = false;
9465 		}
9466 	}
9467 
9468 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9469 		     vcpu->arch.exception.pending);
9470 
9471 	/*
9472 	 * Call check_nested_events() even if we reinjected a previous event
9473 	 * in order for caller to determine if it should require immediate-exit
9474 	 * from L2 to L1 due to pending L1 events which require exit
9475 	 * from L2 to L1.
9476 	 */
9477 	if (is_guest_mode(vcpu)) {
9478 		r = kvm_check_nested_events(vcpu);
9479 		if (r < 0)
9480 			goto out;
9481 	}
9482 
9483 	/* try to inject new event if pending */
9484 	if (vcpu->arch.exception.pending) {
9485 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
9486 					vcpu->arch.exception.has_error_code,
9487 					vcpu->arch.exception.error_code);
9488 
9489 		vcpu->arch.exception.pending = false;
9490 		vcpu->arch.exception.injected = true;
9491 
9492 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9493 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9494 					     X86_EFLAGS_RF);
9495 
9496 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9497 			kvm_deliver_exception_payload(vcpu);
9498 			if (vcpu->arch.dr7 & DR7_GD) {
9499 				vcpu->arch.dr7 &= ~DR7_GD;
9500 				kvm_update_dr7(vcpu);
9501 			}
9502 		}
9503 
9504 		kvm_inject_exception(vcpu);
9505 		can_inject = false;
9506 	}
9507 
9508 	/* Don't inject interrupts if the user asked to avoid doing so */
9509 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9510 		return 0;
9511 
9512 	/*
9513 	 * Finally, inject interrupt events.  If an event cannot be injected
9514 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9515 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9516 	 * and can architecturally be injected, but we cannot do it right now:
9517 	 * an interrupt could have arrived just now and we have to inject it
9518 	 * as a vmexit, or there could already an event in the queue, which is
9519 	 * indicated by can_inject.  In that case we request an immediate exit
9520 	 * in order to make progress and get back here for another iteration.
9521 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9522 	 */
9523 	if (vcpu->arch.smi_pending) {
9524 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9525 		if (r < 0)
9526 			goto out;
9527 		if (r) {
9528 			vcpu->arch.smi_pending = false;
9529 			++vcpu->arch.smi_count;
9530 			enter_smm(vcpu);
9531 			can_inject = false;
9532 		} else
9533 			static_call(kvm_x86_enable_smi_window)(vcpu);
9534 	}
9535 
9536 	if (vcpu->arch.nmi_pending) {
9537 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9538 		if (r < 0)
9539 			goto out;
9540 		if (r) {
9541 			--vcpu->arch.nmi_pending;
9542 			vcpu->arch.nmi_injected = true;
9543 			static_call(kvm_x86_inject_nmi)(vcpu);
9544 			can_inject = false;
9545 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9546 		}
9547 		if (vcpu->arch.nmi_pending)
9548 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9549 	}
9550 
9551 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9552 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9553 		if (r < 0)
9554 			goto out;
9555 		if (r) {
9556 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9557 			static_call(kvm_x86_inject_irq)(vcpu);
9558 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9559 		}
9560 		if (kvm_cpu_has_injectable_intr(vcpu))
9561 			static_call(kvm_x86_enable_irq_window)(vcpu);
9562 	}
9563 
9564 	if (is_guest_mode(vcpu) &&
9565 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9566 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9567 		*req_immediate_exit = true;
9568 
9569 	WARN_ON(vcpu->arch.exception.pending);
9570 	return 0;
9571 
9572 out:
9573 	if (r == -EBUSY) {
9574 		*req_immediate_exit = true;
9575 		r = 0;
9576 	}
9577 	return r;
9578 }
9579 
9580 static void process_nmi(struct kvm_vcpu *vcpu)
9581 {
9582 	unsigned limit = 2;
9583 
9584 	/*
9585 	 * x86 is limited to one NMI running, and one NMI pending after it.
9586 	 * If an NMI is already in progress, limit further NMIs to just one.
9587 	 * Otherwise, allow two (and we'll inject the first one immediately).
9588 	 */
9589 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9590 		limit = 1;
9591 
9592 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9593 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9594 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9595 }
9596 
9597 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9598 {
9599 	u32 flags = 0;
9600 	flags |= seg->g       << 23;
9601 	flags |= seg->db      << 22;
9602 	flags |= seg->l       << 21;
9603 	flags |= seg->avl     << 20;
9604 	flags |= seg->present << 15;
9605 	flags |= seg->dpl     << 13;
9606 	flags |= seg->s       << 12;
9607 	flags |= seg->type    << 8;
9608 	return flags;
9609 }
9610 
9611 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9612 {
9613 	struct kvm_segment seg;
9614 	int offset;
9615 
9616 	kvm_get_segment(vcpu, &seg, n);
9617 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9618 
9619 	if (n < 3)
9620 		offset = 0x7f84 + n * 12;
9621 	else
9622 		offset = 0x7f2c + (n - 3) * 12;
9623 
9624 	put_smstate(u32, buf, offset + 8, seg.base);
9625 	put_smstate(u32, buf, offset + 4, seg.limit);
9626 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9627 }
9628 
9629 #ifdef CONFIG_X86_64
9630 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9631 {
9632 	struct kvm_segment seg;
9633 	int offset;
9634 	u16 flags;
9635 
9636 	kvm_get_segment(vcpu, &seg, n);
9637 	offset = 0x7e00 + n * 16;
9638 
9639 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9640 	put_smstate(u16, buf, offset, seg.selector);
9641 	put_smstate(u16, buf, offset + 2, flags);
9642 	put_smstate(u32, buf, offset + 4, seg.limit);
9643 	put_smstate(u64, buf, offset + 8, seg.base);
9644 }
9645 #endif
9646 
9647 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9648 {
9649 	struct desc_ptr dt;
9650 	struct kvm_segment seg;
9651 	unsigned long val;
9652 	int i;
9653 
9654 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9655 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9656 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9657 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9658 
9659 	for (i = 0; i < 8; i++)
9660 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9661 
9662 	kvm_get_dr(vcpu, 6, &val);
9663 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9664 	kvm_get_dr(vcpu, 7, &val);
9665 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9666 
9667 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9668 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9669 	put_smstate(u32, buf, 0x7f64, seg.base);
9670 	put_smstate(u32, buf, 0x7f60, seg.limit);
9671 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9672 
9673 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9674 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9675 	put_smstate(u32, buf, 0x7f80, seg.base);
9676 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9677 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9678 
9679 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9680 	put_smstate(u32, buf, 0x7f74, dt.address);
9681 	put_smstate(u32, buf, 0x7f70, dt.size);
9682 
9683 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9684 	put_smstate(u32, buf, 0x7f58, dt.address);
9685 	put_smstate(u32, buf, 0x7f54, dt.size);
9686 
9687 	for (i = 0; i < 6; i++)
9688 		enter_smm_save_seg_32(vcpu, buf, i);
9689 
9690 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9691 
9692 	/* revision id */
9693 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9694 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9695 }
9696 
9697 #ifdef CONFIG_X86_64
9698 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9699 {
9700 	struct desc_ptr dt;
9701 	struct kvm_segment seg;
9702 	unsigned long val;
9703 	int i;
9704 
9705 	for (i = 0; i < 16; i++)
9706 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9707 
9708 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9709 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9710 
9711 	kvm_get_dr(vcpu, 6, &val);
9712 	put_smstate(u64, buf, 0x7f68, val);
9713 	kvm_get_dr(vcpu, 7, &val);
9714 	put_smstate(u64, buf, 0x7f60, val);
9715 
9716 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9717 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9718 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9719 
9720 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9721 
9722 	/* revision id */
9723 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9724 
9725 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9726 
9727 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9728 	put_smstate(u16, buf, 0x7e90, seg.selector);
9729 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9730 	put_smstate(u32, buf, 0x7e94, seg.limit);
9731 	put_smstate(u64, buf, 0x7e98, seg.base);
9732 
9733 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9734 	put_smstate(u32, buf, 0x7e84, dt.size);
9735 	put_smstate(u64, buf, 0x7e88, dt.address);
9736 
9737 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9738 	put_smstate(u16, buf, 0x7e70, seg.selector);
9739 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9740 	put_smstate(u32, buf, 0x7e74, seg.limit);
9741 	put_smstate(u64, buf, 0x7e78, seg.base);
9742 
9743 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9744 	put_smstate(u32, buf, 0x7e64, dt.size);
9745 	put_smstate(u64, buf, 0x7e68, dt.address);
9746 
9747 	for (i = 0; i < 6; i++)
9748 		enter_smm_save_seg_64(vcpu, buf, i);
9749 }
9750 #endif
9751 
9752 static void enter_smm(struct kvm_vcpu *vcpu)
9753 {
9754 	struct kvm_segment cs, ds;
9755 	struct desc_ptr dt;
9756 	unsigned long cr0;
9757 	char buf[512];
9758 
9759 	memset(buf, 0, 512);
9760 #ifdef CONFIG_X86_64
9761 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9762 		enter_smm_save_state_64(vcpu, buf);
9763 	else
9764 #endif
9765 		enter_smm_save_state_32(vcpu, buf);
9766 
9767 	/*
9768 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9769 	 * state (e.g. leave guest mode) after we've saved the state into the
9770 	 * SMM state-save area.
9771 	 */
9772 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9773 
9774 	kvm_smm_changed(vcpu, true);
9775 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9776 
9777 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9778 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9779 	else
9780 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9781 
9782 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9783 	kvm_rip_write(vcpu, 0x8000);
9784 
9785 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9786 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9787 	vcpu->arch.cr0 = cr0;
9788 
9789 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9790 
9791 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9792 	dt.address = dt.size = 0;
9793 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9794 
9795 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9796 
9797 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9798 	cs.base = vcpu->arch.smbase;
9799 
9800 	ds.selector = 0;
9801 	ds.base = 0;
9802 
9803 	cs.limit    = ds.limit = 0xffffffff;
9804 	cs.type     = ds.type = 0x3;
9805 	cs.dpl      = ds.dpl = 0;
9806 	cs.db       = ds.db = 0;
9807 	cs.s        = ds.s = 1;
9808 	cs.l        = ds.l = 0;
9809 	cs.g        = ds.g = 1;
9810 	cs.avl      = ds.avl = 0;
9811 	cs.present  = ds.present = 1;
9812 	cs.unusable = ds.unusable = 0;
9813 	cs.padding  = ds.padding = 0;
9814 
9815 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9816 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9817 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9818 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9819 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9820 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9821 
9822 #ifdef CONFIG_X86_64
9823 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9824 		static_call(kvm_x86_set_efer)(vcpu, 0);
9825 #endif
9826 
9827 	kvm_update_cpuid_runtime(vcpu);
9828 	kvm_mmu_reset_context(vcpu);
9829 }
9830 
9831 static void process_smi(struct kvm_vcpu *vcpu)
9832 {
9833 	vcpu->arch.smi_pending = true;
9834 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9835 }
9836 
9837 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9838 				       unsigned long *vcpu_bitmap)
9839 {
9840 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9841 }
9842 
9843 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9844 {
9845 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9846 }
9847 
9848 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9849 {
9850 	bool activate;
9851 
9852 	if (!lapic_in_kernel(vcpu))
9853 		return;
9854 
9855 	down_read(&vcpu->kvm->arch.apicv_update_lock);
9856 	preempt_disable();
9857 
9858 	activate = kvm_vcpu_apicv_activated(vcpu);
9859 
9860 	if (vcpu->arch.apicv_active == activate)
9861 		goto out;
9862 
9863 	vcpu->arch.apicv_active = activate;
9864 	kvm_apic_update_apicv(vcpu);
9865 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9866 
9867 	/*
9868 	 * When APICv gets disabled, we may still have injected interrupts
9869 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9870 	 * still active when the interrupt got accepted. Make sure
9871 	 * inject_pending_event() is called to check for that.
9872 	 */
9873 	if (!vcpu->arch.apicv_active)
9874 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9875 
9876 out:
9877 	preempt_enable();
9878 	up_read(&vcpu->kvm->arch.apicv_update_lock);
9879 }
9880 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9881 
9882 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9883 				      enum kvm_apicv_inhibit reason, bool set)
9884 {
9885 	unsigned long old, new;
9886 
9887 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9888 
9889 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
9890 		return;
9891 
9892 	old = new = kvm->arch.apicv_inhibit_reasons;
9893 
9894 	set_or_clear_apicv_inhibit(&new, reason, set);
9895 
9896 	if (!!old != !!new) {
9897 		/*
9898 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9899 		 * false positives in the sanity check WARN in svm_vcpu_run().
9900 		 * This task will wait for all vCPUs to ack the kick IRQ before
9901 		 * updating apicv_inhibit_reasons, and all other vCPUs will
9902 		 * block on acquiring apicv_update_lock so that vCPUs can't
9903 		 * redo svm_vcpu_run() without seeing the new inhibit state.
9904 		 *
9905 		 * Note, holding apicv_update_lock and taking it in the read
9906 		 * side (handling the request) also prevents other vCPUs from
9907 		 * servicing the request with a stale apicv_inhibit_reasons.
9908 		 */
9909 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9910 		kvm->arch.apicv_inhibit_reasons = new;
9911 		if (new) {
9912 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9913 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
9914 		}
9915 	} else {
9916 		kvm->arch.apicv_inhibit_reasons = new;
9917 	}
9918 }
9919 
9920 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9921 				    enum kvm_apicv_inhibit reason, bool set)
9922 {
9923 	if (!enable_apicv)
9924 		return;
9925 
9926 	down_write(&kvm->arch.apicv_update_lock);
9927 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
9928 	up_write(&kvm->arch.apicv_update_lock);
9929 }
9930 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
9931 
9932 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9933 {
9934 	if (!kvm_apic_present(vcpu))
9935 		return;
9936 
9937 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9938 
9939 	if (irqchip_split(vcpu->kvm))
9940 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9941 	else {
9942 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9943 		if (ioapic_in_kernel(vcpu->kvm))
9944 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9945 	}
9946 
9947 	if (is_guest_mode(vcpu))
9948 		vcpu->arch.load_eoi_exitmap_pending = true;
9949 	else
9950 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9951 }
9952 
9953 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9954 {
9955 	u64 eoi_exit_bitmap[4];
9956 
9957 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9958 		return;
9959 
9960 	if (to_hv_vcpu(vcpu)) {
9961 		bitmap_or((ulong *)eoi_exit_bitmap,
9962 			  vcpu->arch.ioapic_handled_vectors,
9963 			  to_hv_synic(vcpu)->vec_bitmap, 256);
9964 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9965 		return;
9966 	}
9967 
9968 	static_call_cond(kvm_x86_load_eoi_exitmap)(
9969 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9970 }
9971 
9972 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9973 					    unsigned long start, unsigned long end)
9974 {
9975 	unsigned long apic_address;
9976 
9977 	/*
9978 	 * The physical address of apic access page is stored in the VMCS.
9979 	 * Update it when it becomes invalid.
9980 	 */
9981 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9982 	if (start <= apic_address && apic_address < end)
9983 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9984 }
9985 
9986 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9987 {
9988 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
9989 }
9990 
9991 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9992 {
9993 	if (!lapic_in_kernel(vcpu))
9994 		return;
9995 
9996 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
9997 }
9998 
9999 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10000 {
10001 	smp_send_reschedule(vcpu->cpu);
10002 }
10003 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10004 
10005 /*
10006  * Called within kvm->srcu read side.
10007  * Returns 1 to let vcpu_run() continue the guest execution loop without
10008  * exiting to the userspace.  Otherwise, the value will be returned to the
10009  * userspace.
10010  */
10011 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10012 {
10013 	int r;
10014 	bool req_int_win =
10015 		dm_request_for_irq_injection(vcpu) &&
10016 		kvm_cpu_accept_dm_intr(vcpu);
10017 	fastpath_t exit_fastpath;
10018 
10019 	bool req_immediate_exit = false;
10020 
10021 	/* Forbid vmenter if vcpu dirty ring is soft-full */
10022 	if (unlikely(vcpu->kvm->dirty_ring_size &&
10023 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10024 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10025 		trace_kvm_dirty_ring_exit(vcpu);
10026 		r = 0;
10027 		goto out;
10028 	}
10029 
10030 	if (kvm_request_pending(vcpu)) {
10031 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10032 			r = -EIO;
10033 			goto out;
10034 		}
10035 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10036 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10037 				r = 0;
10038 				goto out;
10039 			}
10040 		}
10041 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10042 			kvm_mmu_free_obsolete_roots(vcpu);
10043 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10044 			__kvm_migrate_timers(vcpu);
10045 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10046 			kvm_update_masterclock(vcpu->kvm);
10047 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10048 			kvm_gen_kvmclock_update(vcpu);
10049 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10050 			r = kvm_guest_time_update(vcpu);
10051 			if (unlikely(r))
10052 				goto out;
10053 		}
10054 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10055 			kvm_mmu_sync_roots(vcpu);
10056 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10057 			kvm_mmu_load_pgd(vcpu);
10058 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10059 			kvm_vcpu_flush_tlb_all(vcpu);
10060 
10061 			/* Flushing all ASIDs flushes the current ASID... */
10062 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10063 		}
10064 		kvm_service_local_tlb_flush_requests(vcpu);
10065 
10066 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10067 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10068 			r = 0;
10069 			goto out;
10070 		}
10071 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10072 			if (is_guest_mode(vcpu)) {
10073 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10074 			} else {
10075 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10076 				vcpu->mmio_needed = 0;
10077 				r = 0;
10078 				goto out;
10079 			}
10080 		}
10081 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10082 			/* Page is swapped out. Do synthetic halt */
10083 			vcpu->arch.apf.halted = true;
10084 			r = 1;
10085 			goto out;
10086 		}
10087 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10088 			record_steal_time(vcpu);
10089 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10090 			process_smi(vcpu);
10091 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10092 			process_nmi(vcpu);
10093 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10094 			kvm_pmu_handle_event(vcpu);
10095 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10096 			kvm_pmu_deliver_pmi(vcpu);
10097 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10098 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10099 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10100 				     vcpu->arch.ioapic_handled_vectors)) {
10101 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10102 				vcpu->run->eoi.vector =
10103 						vcpu->arch.pending_ioapic_eoi;
10104 				r = 0;
10105 				goto out;
10106 			}
10107 		}
10108 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10109 			vcpu_scan_ioapic(vcpu);
10110 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10111 			vcpu_load_eoi_exitmap(vcpu);
10112 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10113 			kvm_vcpu_reload_apic_access_page(vcpu);
10114 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10115 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10116 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10117 			vcpu->run->system_event.ndata = 0;
10118 			r = 0;
10119 			goto out;
10120 		}
10121 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10122 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10123 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10124 			vcpu->run->system_event.ndata = 0;
10125 			r = 0;
10126 			goto out;
10127 		}
10128 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10129 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10130 
10131 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10132 			vcpu->run->hyperv = hv_vcpu->exit;
10133 			r = 0;
10134 			goto out;
10135 		}
10136 
10137 		/*
10138 		 * KVM_REQ_HV_STIMER has to be processed after
10139 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10140 		 * depend on the guest clock being up-to-date
10141 		 */
10142 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10143 			kvm_hv_process_stimers(vcpu);
10144 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10145 			kvm_vcpu_update_apicv(vcpu);
10146 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10147 			kvm_check_async_pf_completion(vcpu);
10148 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10149 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10150 
10151 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10152 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10153 	}
10154 
10155 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10156 	    kvm_xen_has_interrupt(vcpu)) {
10157 		++vcpu->stat.req_event;
10158 		r = kvm_apic_accept_events(vcpu);
10159 		if (r < 0) {
10160 			r = 0;
10161 			goto out;
10162 		}
10163 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10164 			r = 1;
10165 			goto out;
10166 		}
10167 
10168 		r = inject_pending_event(vcpu, &req_immediate_exit);
10169 		if (r < 0) {
10170 			r = 0;
10171 			goto out;
10172 		}
10173 		if (req_int_win)
10174 			static_call(kvm_x86_enable_irq_window)(vcpu);
10175 
10176 		if (kvm_lapic_enabled(vcpu)) {
10177 			update_cr8_intercept(vcpu);
10178 			kvm_lapic_sync_to_vapic(vcpu);
10179 		}
10180 	}
10181 
10182 	r = kvm_mmu_reload(vcpu);
10183 	if (unlikely(r)) {
10184 		goto cancel_injection;
10185 	}
10186 
10187 	preempt_disable();
10188 
10189 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10190 
10191 	/*
10192 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10193 	 * IPI are then delayed after guest entry, which ensures that they
10194 	 * result in virtual interrupt delivery.
10195 	 */
10196 	local_irq_disable();
10197 
10198 	/* Store vcpu->apicv_active before vcpu->mode.  */
10199 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10200 
10201 	kvm_vcpu_srcu_read_unlock(vcpu);
10202 
10203 	/*
10204 	 * 1) We should set ->mode before checking ->requests.  Please see
10205 	 * the comment in kvm_vcpu_exiting_guest_mode().
10206 	 *
10207 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10208 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10209 	 * (see vmx_deliver_posted_interrupt).
10210 	 *
10211 	 * 3) This also orders the write to mode from any reads to the page
10212 	 * tables done while the VCPU is running.  Please see the comment
10213 	 * in kvm_flush_remote_tlbs.
10214 	 */
10215 	smp_mb__after_srcu_read_unlock();
10216 
10217 	/*
10218 	 * Process pending posted interrupts to handle the case where the
10219 	 * notification IRQ arrived in the host, or was never sent (because the
10220 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10221 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10222 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10223 	 */
10224 	if (kvm_lapic_enabled(vcpu))
10225 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10226 
10227 	if (kvm_vcpu_exit_request(vcpu)) {
10228 		vcpu->mode = OUTSIDE_GUEST_MODE;
10229 		smp_wmb();
10230 		local_irq_enable();
10231 		preempt_enable();
10232 		kvm_vcpu_srcu_read_lock(vcpu);
10233 		r = 1;
10234 		goto cancel_injection;
10235 	}
10236 
10237 	if (req_immediate_exit) {
10238 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10239 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10240 	}
10241 
10242 	fpregs_assert_state_consistent();
10243 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10244 		switch_fpu_return();
10245 
10246 	if (vcpu->arch.guest_fpu.xfd_err)
10247 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10248 
10249 	if (unlikely(vcpu->arch.switch_db_regs)) {
10250 		set_debugreg(0, 7);
10251 		set_debugreg(vcpu->arch.eff_db[0], 0);
10252 		set_debugreg(vcpu->arch.eff_db[1], 1);
10253 		set_debugreg(vcpu->arch.eff_db[2], 2);
10254 		set_debugreg(vcpu->arch.eff_db[3], 3);
10255 	} else if (unlikely(hw_breakpoint_active())) {
10256 		set_debugreg(0, 7);
10257 	}
10258 
10259 	guest_timing_enter_irqoff();
10260 
10261 	for (;;) {
10262 		/*
10263 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10264 		 * update must kick and wait for all vCPUs before toggling the
10265 		 * per-VM state, and responsing vCPUs must wait for the update
10266 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10267 		 */
10268 		WARN_ON_ONCE(kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu));
10269 
10270 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10271 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10272 			break;
10273 
10274 		if (kvm_lapic_enabled(vcpu))
10275 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10276 
10277 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10278 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10279 			break;
10280 		}
10281 	}
10282 
10283 	/*
10284 	 * Do this here before restoring debug registers on the host.  And
10285 	 * since we do this before handling the vmexit, a DR access vmexit
10286 	 * can (a) read the correct value of the debug registers, (b) set
10287 	 * KVM_DEBUGREG_WONT_EXIT again.
10288 	 */
10289 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10290 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10291 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10292 		kvm_update_dr0123(vcpu);
10293 		kvm_update_dr7(vcpu);
10294 	}
10295 
10296 	/*
10297 	 * If the guest has used debug registers, at least dr7
10298 	 * will be disabled while returning to the host.
10299 	 * If we don't have active breakpoints in the host, we don't
10300 	 * care about the messed up debug address registers. But if
10301 	 * we have some of them active, restore the old state.
10302 	 */
10303 	if (hw_breakpoint_active())
10304 		hw_breakpoint_restore();
10305 
10306 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10307 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10308 
10309 	vcpu->mode = OUTSIDE_GUEST_MODE;
10310 	smp_wmb();
10311 
10312 	/*
10313 	 * Sync xfd before calling handle_exit_irqoff() which may
10314 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10315 	 * in #NM irqoff handler).
10316 	 */
10317 	if (vcpu->arch.xfd_no_write_intercept)
10318 		fpu_sync_guest_vmexit_xfd_state();
10319 
10320 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10321 
10322 	if (vcpu->arch.guest_fpu.xfd_err)
10323 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10324 
10325 	/*
10326 	 * Consume any pending interrupts, including the possible source of
10327 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10328 	 * An instruction is required after local_irq_enable() to fully unblock
10329 	 * interrupts on processors that implement an interrupt shadow, the
10330 	 * stat.exits increment will do nicely.
10331 	 */
10332 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10333 	local_irq_enable();
10334 	++vcpu->stat.exits;
10335 	local_irq_disable();
10336 	kvm_after_interrupt(vcpu);
10337 
10338 	/*
10339 	 * Wait until after servicing IRQs to account guest time so that any
10340 	 * ticks that occurred while running the guest are properly accounted
10341 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10342 	 * of accounting via context tracking, but the loss of accuracy is
10343 	 * acceptable for all known use cases.
10344 	 */
10345 	guest_timing_exit_irqoff();
10346 
10347 	local_irq_enable();
10348 	preempt_enable();
10349 
10350 	kvm_vcpu_srcu_read_lock(vcpu);
10351 
10352 	/*
10353 	 * Profile KVM exit RIPs:
10354 	 */
10355 	if (unlikely(prof_on == KVM_PROFILING)) {
10356 		unsigned long rip = kvm_rip_read(vcpu);
10357 		profile_hit(KVM_PROFILING, (void *)rip);
10358 	}
10359 
10360 	if (unlikely(vcpu->arch.tsc_always_catchup))
10361 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10362 
10363 	if (vcpu->arch.apic_attention)
10364 		kvm_lapic_sync_from_vapic(vcpu);
10365 
10366 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10367 	return r;
10368 
10369 cancel_injection:
10370 	if (req_immediate_exit)
10371 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10372 	static_call(kvm_x86_cancel_injection)(vcpu);
10373 	if (unlikely(vcpu->arch.apic_attention))
10374 		kvm_lapic_sync_from_vapic(vcpu);
10375 out:
10376 	return r;
10377 }
10378 
10379 /* Called within kvm->srcu read side.  */
10380 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10381 {
10382 	bool hv_timer;
10383 
10384 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10385 		/*
10386 		 * Switch to the software timer before halt-polling/blocking as
10387 		 * the guest's timer may be a break event for the vCPU, and the
10388 		 * hypervisor timer runs only when the CPU is in guest mode.
10389 		 * Switch before halt-polling so that KVM recognizes an expired
10390 		 * timer before blocking.
10391 		 */
10392 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10393 		if (hv_timer)
10394 			kvm_lapic_switch_to_sw_timer(vcpu);
10395 
10396 		kvm_vcpu_srcu_read_unlock(vcpu);
10397 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10398 			kvm_vcpu_halt(vcpu);
10399 		else
10400 			kvm_vcpu_block(vcpu);
10401 		kvm_vcpu_srcu_read_lock(vcpu);
10402 
10403 		if (hv_timer)
10404 			kvm_lapic_switch_to_hv_timer(vcpu);
10405 
10406 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10407 			return 1;
10408 	}
10409 
10410 	if (kvm_apic_accept_events(vcpu) < 0)
10411 		return 0;
10412 	switch(vcpu->arch.mp_state) {
10413 	case KVM_MP_STATE_HALTED:
10414 	case KVM_MP_STATE_AP_RESET_HOLD:
10415 		vcpu->arch.pv.pv_unhalted = false;
10416 		vcpu->arch.mp_state =
10417 			KVM_MP_STATE_RUNNABLE;
10418 		fallthrough;
10419 	case KVM_MP_STATE_RUNNABLE:
10420 		vcpu->arch.apf.halted = false;
10421 		break;
10422 	case KVM_MP_STATE_INIT_RECEIVED:
10423 		break;
10424 	default:
10425 		return -EINTR;
10426 	}
10427 	return 1;
10428 }
10429 
10430 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10431 {
10432 	if (is_guest_mode(vcpu))
10433 		kvm_check_nested_events(vcpu);
10434 
10435 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10436 		!vcpu->arch.apf.halted);
10437 }
10438 
10439 /* Called within kvm->srcu read side.  */
10440 static int vcpu_run(struct kvm_vcpu *vcpu)
10441 {
10442 	int r;
10443 
10444 	vcpu->arch.l1tf_flush_l1d = true;
10445 
10446 	for (;;) {
10447 		/*
10448 		 * If another guest vCPU requests a PV TLB flush in the middle
10449 		 * of instruction emulation, the rest of the emulation could
10450 		 * use a stale page translation. Assume that any code after
10451 		 * this point can start executing an instruction.
10452 		 */
10453 		vcpu->arch.at_instruction_boundary = false;
10454 		if (kvm_vcpu_running(vcpu)) {
10455 			r = vcpu_enter_guest(vcpu);
10456 		} else {
10457 			r = vcpu_block(vcpu);
10458 		}
10459 
10460 		if (r <= 0)
10461 			break;
10462 
10463 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10464 		if (kvm_xen_has_pending_events(vcpu))
10465 			kvm_xen_inject_pending_events(vcpu);
10466 
10467 		if (kvm_cpu_has_pending_timer(vcpu))
10468 			kvm_inject_pending_timer_irqs(vcpu);
10469 
10470 		if (dm_request_for_irq_injection(vcpu) &&
10471 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10472 			r = 0;
10473 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10474 			++vcpu->stat.request_irq_exits;
10475 			break;
10476 		}
10477 
10478 		if (__xfer_to_guest_mode_work_pending()) {
10479 			kvm_vcpu_srcu_read_unlock(vcpu);
10480 			r = xfer_to_guest_mode_handle_work(vcpu);
10481 			kvm_vcpu_srcu_read_lock(vcpu);
10482 			if (r)
10483 				return r;
10484 		}
10485 	}
10486 
10487 	return r;
10488 }
10489 
10490 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10491 {
10492 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10493 }
10494 
10495 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10496 {
10497 	BUG_ON(!vcpu->arch.pio.count);
10498 
10499 	return complete_emulated_io(vcpu);
10500 }
10501 
10502 /*
10503  * Implements the following, as a state machine:
10504  *
10505  * read:
10506  *   for each fragment
10507  *     for each mmio piece in the fragment
10508  *       write gpa, len
10509  *       exit
10510  *       copy data
10511  *   execute insn
10512  *
10513  * write:
10514  *   for each fragment
10515  *     for each mmio piece in the fragment
10516  *       write gpa, len
10517  *       copy data
10518  *       exit
10519  */
10520 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10521 {
10522 	struct kvm_run *run = vcpu->run;
10523 	struct kvm_mmio_fragment *frag;
10524 	unsigned len;
10525 
10526 	BUG_ON(!vcpu->mmio_needed);
10527 
10528 	/* Complete previous fragment */
10529 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10530 	len = min(8u, frag->len);
10531 	if (!vcpu->mmio_is_write)
10532 		memcpy(frag->data, run->mmio.data, len);
10533 
10534 	if (frag->len <= 8) {
10535 		/* Switch to the next fragment. */
10536 		frag++;
10537 		vcpu->mmio_cur_fragment++;
10538 	} else {
10539 		/* Go forward to the next mmio piece. */
10540 		frag->data += len;
10541 		frag->gpa += len;
10542 		frag->len -= len;
10543 	}
10544 
10545 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10546 		vcpu->mmio_needed = 0;
10547 
10548 		/* FIXME: return into emulator if single-stepping.  */
10549 		if (vcpu->mmio_is_write)
10550 			return 1;
10551 		vcpu->mmio_read_completed = 1;
10552 		return complete_emulated_io(vcpu);
10553 	}
10554 
10555 	run->exit_reason = KVM_EXIT_MMIO;
10556 	run->mmio.phys_addr = frag->gpa;
10557 	if (vcpu->mmio_is_write)
10558 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10559 	run->mmio.len = min(8u, frag->len);
10560 	run->mmio.is_write = vcpu->mmio_is_write;
10561 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10562 	return 0;
10563 }
10564 
10565 /* Swap (qemu) user FPU context for the guest FPU context. */
10566 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10567 {
10568 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10569 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10570 	trace_kvm_fpu(1);
10571 }
10572 
10573 /* When vcpu_run ends, restore user space FPU context. */
10574 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10575 {
10576 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10577 	++vcpu->stat.fpu_reload;
10578 	trace_kvm_fpu(0);
10579 }
10580 
10581 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10582 {
10583 	struct kvm_run *kvm_run = vcpu->run;
10584 	int r;
10585 
10586 	vcpu_load(vcpu);
10587 	kvm_sigset_activate(vcpu);
10588 	kvm_run->flags = 0;
10589 	kvm_load_guest_fpu(vcpu);
10590 
10591 	kvm_vcpu_srcu_read_lock(vcpu);
10592 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10593 		if (kvm_run->immediate_exit) {
10594 			r = -EINTR;
10595 			goto out;
10596 		}
10597 		/*
10598 		 * It should be impossible for the hypervisor timer to be in
10599 		 * use before KVM has ever run the vCPU.
10600 		 */
10601 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10602 
10603 		kvm_vcpu_srcu_read_unlock(vcpu);
10604 		kvm_vcpu_block(vcpu);
10605 		kvm_vcpu_srcu_read_lock(vcpu);
10606 
10607 		if (kvm_apic_accept_events(vcpu) < 0) {
10608 			r = 0;
10609 			goto out;
10610 		}
10611 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10612 		r = -EAGAIN;
10613 		if (signal_pending(current)) {
10614 			r = -EINTR;
10615 			kvm_run->exit_reason = KVM_EXIT_INTR;
10616 			++vcpu->stat.signal_exits;
10617 		}
10618 		goto out;
10619 	}
10620 
10621 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10622 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10623 		r = -EINVAL;
10624 		goto out;
10625 	}
10626 
10627 	if (kvm_run->kvm_dirty_regs) {
10628 		r = sync_regs(vcpu);
10629 		if (r != 0)
10630 			goto out;
10631 	}
10632 
10633 	/* re-sync apic's tpr */
10634 	if (!lapic_in_kernel(vcpu)) {
10635 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10636 			r = -EINVAL;
10637 			goto out;
10638 		}
10639 	}
10640 
10641 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10642 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10643 		vcpu->arch.complete_userspace_io = NULL;
10644 		r = cui(vcpu);
10645 		if (r <= 0)
10646 			goto out;
10647 	} else
10648 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10649 
10650 	if (kvm_run->immediate_exit) {
10651 		r = -EINTR;
10652 		goto out;
10653 	}
10654 
10655 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10656 	if (r <= 0)
10657 		goto out;
10658 
10659 	r = vcpu_run(vcpu);
10660 
10661 out:
10662 	kvm_put_guest_fpu(vcpu);
10663 	if (kvm_run->kvm_valid_regs)
10664 		store_regs(vcpu);
10665 	post_kvm_run_save(vcpu);
10666 	kvm_vcpu_srcu_read_unlock(vcpu);
10667 
10668 	kvm_sigset_deactivate(vcpu);
10669 	vcpu_put(vcpu);
10670 	return r;
10671 }
10672 
10673 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10674 {
10675 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10676 		/*
10677 		 * We are here if userspace calls get_regs() in the middle of
10678 		 * instruction emulation. Registers state needs to be copied
10679 		 * back from emulation context to vcpu. Userspace shouldn't do
10680 		 * that usually, but some bad designed PV devices (vmware
10681 		 * backdoor interface) need this to work
10682 		 */
10683 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10684 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10685 	}
10686 	regs->rax = kvm_rax_read(vcpu);
10687 	regs->rbx = kvm_rbx_read(vcpu);
10688 	regs->rcx = kvm_rcx_read(vcpu);
10689 	regs->rdx = kvm_rdx_read(vcpu);
10690 	regs->rsi = kvm_rsi_read(vcpu);
10691 	regs->rdi = kvm_rdi_read(vcpu);
10692 	regs->rsp = kvm_rsp_read(vcpu);
10693 	regs->rbp = kvm_rbp_read(vcpu);
10694 #ifdef CONFIG_X86_64
10695 	regs->r8 = kvm_r8_read(vcpu);
10696 	regs->r9 = kvm_r9_read(vcpu);
10697 	regs->r10 = kvm_r10_read(vcpu);
10698 	regs->r11 = kvm_r11_read(vcpu);
10699 	regs->r12 = kvm_r12_read(vcpu);
10700 	regs->r13 = kvm_r13_read(vcpu);
10701 	regs->r14 = kvm_r14_read(vcpu);
10702 	regs->r15 = kvm_r15_read(vcpu);
10703 #endif
10704 
10705 	regs->rip = kvm_rip_read(vcpu);
10706 	regs->rflags = kvm_get_rflags(vcpu);
10707 }
10708 
10709 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10710 {
10711 	vcpu_load(vcpu);
10712 	__get_regs(vcpu, regs);
10713 	vcpu_put(vcpu);
10714 	return 0;
10715 }
10716 
10717 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10718 {
10719 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10720 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10721 
10722 	kvm_rax_write(vcpu, regs->rax);
10723 	kvm_rbx_write(vcpu, regs->rbx);
10724 	kvm_rcx_write(vcpu, regs->rcx);
10725 	kvm_rdx_write(vcpu, regs->rdx);
10726 	kvm_rsi_write(vcpu, regs->rsi);
10727 	kvm_rdi_write(vcpu, regs->rdi);
10728 	kvm_rsp_write(vcpu, regs->rsp);
10729 	kvm_rbp_write(vcpu, regs->rbp);
10730 #ifdef CONFIG_X86_64
10731 	kvm_r8_write(vcpu, regs->r8);
10732 	kvm_r9_write(vcpu, regs->r9);
10733 	kvm_r10_write(vcpu, regs->r10);
10734 	kvm_r11_write(vcpu, regs->r11);
10735 	kvm_r12_write(vcpu, regs->r12);
10736 	kvm_r13_write(vcpu, regs->r13);
10737 	kvm_r14_write(vcpu, regs->r14);
10738 	kvm_r15_write(vcpu, regs->r15);
10739 #endif
10740 
10741 	kvm_rip_write(vcpu, regs->rip);
10742 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10743 
10744 	vcpu->arch.exception.pending = false;
10745 
10746 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10747 }
10748 
10749 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10750 {
10751 	vcpu_load(vcpu);
10752 	__set_regs(vcpu, regs);
10753 	vcpu_put(vcpu);
10754 	return 0;
10755 }
10756 
10757 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10758 {
10759 	struct desc_ptr dt;
10760 
10761 	if (vcpu->arch.guest_state_protected)
10762 		goto skip_protected_regs;
10763 
10764 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10765 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10766 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10767 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10768 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10769 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10770 
10771 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10772 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10773 
10774 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10775 	sregs->idt.limit = dt.size;
10776 	sregs->idt.base = dt.address;
10777 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10778 	sregs->gdt.limit = dt.size;
10779 	sregs->gdt.base = dt.address;
10780 
10781 	sregs->cr2 = vcpu->arch.cr2;
10782 	sregs->cr3 = kvm_read_cr3(vcpu);
10783 
10784 skip_protected_regs:
10785 	sregs->cr0 = kvm_read_cr0(vcpu);
10786 	sregs->cr4 = kvm_read_cr4(vcpu);
10787 	sregs->cr8 = kvm_get_cr8(vcpu);
10788 	sregs->efer = vcpu->arch.efer;
10789 	sregs->apic_base = kvm_get_apic_base(vcpu);
10790 }
10791 
10792 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10793 {
10794 	__get_sregs_common(vcpu, sregs);
10795 
10796 	if (vcpu->arch.guest_state_protected)
10797 		return;
10798 
10799 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10800 		set_bit(vcpu->arch.interrupt.nr,
10801 			(unsigned long *)sregs->interrupt_bitmap);
10802 }
10803 
10804 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10805 {
10806 	int i;
10807 
10808 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10809 
10810 	if (vcpu->arch.guest_state_protected)
10811 		return;
10812 
10813 	if (is_pae_paging(vcpu)) {
10814 		for (i = 0 ; i < 4 ; i++)
10815 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10816 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10817 	}
10818 }
10819 
10820 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10821 				  struct kvm_sregs *sregs)
10822 {
10823 	vcpu_load(vcpu);
10824 	__get_sregs(vcpu, sregs);
10825 	vcpu_put(vcpu);
10826 	return 0;
10827 }
10828 
10829 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10830 				    struct kvm_mp_state *mp_state)
10831 {
10832 	int r;
10833 
10834 	vcpu_load(vcpu);
10835 	if (kvm_mpx_supported())
10836 		kvm_load_guest_fpu(vcpu);
10837 
10838 	r = kvm_apic_accept_events(vcpu);
10839 	if (r < 0)
10840 		goto out;
10841 	r = 0;
10842 
10843 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10844 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10845 	    vcpu->arch.pv.pv_unhalted)
10846 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10847 	else
10848 		mp_state->mp_state = vcpu->arch.mp_state;
10849 
10850 out:
10851 	if (kvm_mpx_supported())
10852 		kvm_put_guest_fpu(vcpu);
10853 	vcpu_put(vcpu);
10854 	return r;
10855 }
10856 
10857 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10858 				    struct kvm_mp_state *mp_state)
10859 {
10860 	int ret = -EINVAL;
10861 
10862 	vcpu_load(vcpu);
10863 
10864 	if (!lapic_in_kernel(vcpu) &&
10865 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10866 		goto out;
10867 
10868 	/*
10869 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10870 	 * INIT state; latched init should be reported using
10871 	 * KVM_SET_VCPU_EVENTS, so reject it here.
10872 	 */
10873 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10874 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10875 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10876 		goto out;
10877 
10878 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10879 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10880 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10881 	} else
10882 		vcpu->arch.mp_state = mp_state->mp_state;
10883 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10884 
10885 	ret = 0;
10886 out:
10887 	vcpu_put(vcpu);
10888 	return ret;
10889 }
10890 
10891 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10892 		    int reason, bool has_error_code, u32 error_code)
10893 {
10894 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10895 	int ret;
10896 
10897 	init_emulate_ctxt(vcpu);
10898 
10899 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10900 				   has_error_code, error_code);
10901 	if (ret) {
10902 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10903 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10904 		vcpu->run->internal.ndata = 0;
10905 		return 0;
10906 	}
10907 
10908 	kvm_rip_write(vcpu, ctxt->eip);
10909 	kvm_set_rflags(vcpu, ctxt->eflags);
10910 	return 1;
10911 }
10912 EXPORT_SYMBOL_GPL(kvm_task_switch);
10913 
10914 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10915 {
10916 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10917 		/*
10918 		 * When EFER.LME and CR0.PG are set, the processor is in
10919 		 * 64-bit mode (though maybe in a 32-bit code segment).
10920 		 * CR4.PAE and EFER.LMA must be set.
10921 		 */
10922 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10923 			return false;
10924 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10925 			return false;
10926 	} else {
10927 		/*
10928 		 * Not in 64-bit mode: EFER.LMA is clear and the code
10929 		 * segment cannot be 64-bit.
10930 		 */
10931 		if (sregs->efer & EFER_LMA || sregs->cs.l)
10932 			return false;
10933 	}
10934 
10935 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
10936 }
10937 
10938 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10939 		int *mmu_reset_needed, bool update_pdptrs)
10940 {
10941 	struct msr_data apic_base_msr;
10942 	int idx;
10943 	struct desc_ptr dt;
10944 
10945 	if (!kvm_is_valid_sregs(vcpu, sregs))
10946 		return -EINVAL;
10947 
10948 	apic_base_msr.data = sregs->apic_base;
10949 	apic_base_msr.host_initiated = true;
10950 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
10951 		return -EINVAL;
10952 
10953 	if (vcpu->arch.guest_state_protected)
10954 		return 0;
10955 
10956 	dt.size = sregs->idt.limit;
10957 	dt.address = sregs->idt.base;
10958 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10959 	dt.size = sregs->gdt.limit;
10960 	dt.address = sregs->gdt.base;
10961 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
10962 
10963 	vcpu->arch.cr2 = sregs->cr2;
10964 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10965 	vcpu->arch.cr3 = sregs->cr3;
10966 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10967 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10968 
10969 	kvm_set_cr8(vcpu, sregs->cr8);
10970 
10971 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10972 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10973 
10974 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10975 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10976 	vcpu->arch.cr0 = sregs->cr0;
10977 
10978 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10979 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10980 
10981 	if (update_pdptrs) {
10982 		idx = srcu_read_lock(&vcpu->kvm->srcu);
10983 		if (is_pae_paging(vcpu)) {
10984 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10985 			*mmu_reset_needed = 1;
10986 		}
10987 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
10988 	}
10989 
10990 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10991 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10992 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10993 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10994 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10995 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10996 
10997 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10998 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10999 
11000 	update_cr8_intercept(vcpu);
11001 
11002 	/* Older userspace won't unhalt the vcpu on reset. */
11003 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11004 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11005 	    !is_protmode(vcpu))
11006 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11007 
11008 	return 0;
11009 }
11010 
11011 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11012 {
11013 	int pending_vec, max_bits;
11014 	int mmu_reset_needed = 0;
11015 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11016 
11017 	if (ret)
11018 		return ret;
11019 
11020 	if (mmu_reset_needed)
11021 		kvm_mmu_reset_context(vcpu);
11022 
11023 	max_bits = KVM_NR_INTERRUPTS;
11024 	pending_vec = find_first_bit(
11025 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11026 
11027 	if (pending_vec < max_bits) {
11028 		kvm_queue_interrupt(vcpu, pending_vec, false);
11029 		pr_debug("Set back pending irq %d\n", pending_vec);
11030 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11031 	}
11032 	return 0;
11033 }
11034 
11035 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11036 {
11037 	int mmu_reset_needed = 0;
11038 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11039 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11040 		!(sregs2->efer & EFER_LMA);
11041 	int i, ret;
11042 
11043 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11044 		return -EINVAL;
11045 
11046 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11047 		return -EINVAL;
11048 
11049 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11050 				 &mmu_reset_needed, !valid_pdptrs);
11051 	if (ret)
11052 		return ret;
11053 
11054 	if (valid_pdptrs) {
11055 		for (i = 0; i < 4 ; i++)
11056 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11057 
11058 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11059 		mmu_reset_needed = 1;
11060 		vcpu->arch.pdptrs_from_userspace = true;
11061 	}
11062 	if (mmu_reset_needed)
11063 		kvm_mmu_reset_context(vcpu);
11064 	return 0;
11065 }
11066 
11067 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11068 				  struct kvm_sregs *sregs)
11069 {
11070 	int ret;
11071 
11072 	vcpu_load(vcpu);
11073 	ret = __set_sregs(vcpu, sregs);
11074 	vcpu_put(vcpu);
11075 	return ret;
11076 }
11077 
11078 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11079 {
11080 	bool set = false;
11081 	struct kvm_vcpu *vcpu;
11082 	unsigned long i;
11083 
11084 	if (!enable_apicv)
11085 		return;
11086 
11087 	down_write(&kvm->arch.apicv_update_lock);
11088 
11089 	kvm_for_each_vcpu(i, vcpu, kvm) {
11090 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11091 			set = true;
11092 			break;
11093 		}
11094 	}
11095 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11096 	up_write(&kvm->arch.apicv_update_lock);
11097 }
11098 
11099 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11100 					struct kvm_guest_debug *dbg)
11101 {
11102 	unsigned long rflags;
11103 	int i, r;
11104 
11105 	if (vcpu->arch.guest_state_protected)
11106 		return -EINVAL;
11107 
11108 	vcpu_load(vcpu);
11109 
11110 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11111 		r = -EBUSY;
11112 		if (vcpu->arch.exception.pending)
11113 			goto out;
11114 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11115 			kvm_queue_exception(vcpu, DB_VECTOR);
11116 		else
11117 			kvm_queue_exception(vcpu, BP_VECTOR);
11118 	}
11119 
11120 	/*
11121 	 * Read rflags as long as potentially injected trace flags are still
11122 	 * filtered out.
11123 	 */
11124 	rflags = kvm_get_rflags(vcpu);
11125 
11126 	vcpu->guest_debug = dbg->control;
11127 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11128 		vcpu->guest_debug = 0;
11129 
11130 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11131 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11132 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11133 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11134 	} else {
11135 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11136 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11137 	}
11138 	kvm_update_dr7(vcpu);
11139 
11140 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11141 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11142 
11143 	/*
11144 	 * Trigger an rflags update that will inject or remove the trace
11145 	 * flags.
11146 	 */
11147 	kvm_set_rflags(vcpu, rflags);
11148 
11149 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11150 
11151 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11152 
11153 	r = 0;
11154 
11155 out:
11156 	vcpu_put(vcpu);
11157 	return r;
11158 }
11159 
11160 /*
11161  * Translate a guest virtual address to a guest physical address.
11162  */
11163 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11164 				    struct kvm_translation *tr)
11165 {
11166 	unsigned long vaddr = tr->linear_address;
11167 	gpa_t gpa;
11168 	int idx;
11169 
11170 	vcpu_load(vcpu);
11171 
11172 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11173 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11174 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11175 	tr->physical_address = gpa;
11176 	tr->valid = gpa != UNMAPPED_GVA;
11177 	tr->writeable = 1;
11178 	tr->usermode = 0;
11179 
11180 	vcpu_put(vcpu);
11181 	return 0;
11182 }
11183 
11184 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11185 {
11186 	struct fxregs_state *fxsave;
11187 
11188 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11189 		return 0;
11190 
11191 	vcpu_load(vcpu);
11192 
11193 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11194 	memcpy(fpu->fpr, fxsave->st_space, 128);
11195 	fpu->fcw = fxsave->cwd;
11196 	fpu->fsw = fxsave->swd;
11197 	fpu->ftwx = fxsave->twd;
11198 	fpu->last_opcode = fxsave->fop;
11199 	fpu->last_ip = fxsave->rip;
11200 	fpu->last_dp = fxsave->rdp;
11201 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11202 
11203 	vcpu_put(vcpu);
11204 	return 0;
11205 }
11206 
11207 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11208 {
11209 	struct fxregs_state *fxsave;
11210 
11211 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11212 		return 0;
11213 
11214 	vcpu_load(vcpu);
11215 
11216 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11217 
11218 	memcpy(fxsave->st_space, fpu->fpr, 128);
11219 	fxsave->cwd = fpu->fcw;
11220 	fxsave->swd = fpu->fsw;
11221 	fxsave->twd = fpu->ftwx;
11222 	fxsave->fop = fpu->last_opcode;
11223 	fxsave->rip = fpu->last_ip;
11224 	fxsave->rdp = fpu->last_dp;
11225 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11226 
11227 	vcpu_put(vcpu);
11228 	return 0;
11229 }
11230 
11231 static void store_regs(struct kvm_vcpu *vcpu)
11232 {
11233 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11234 
11235 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11236 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11237 
11238 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11239 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11240 
11241 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11242 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11243 				vcpu, &vcpu->run->s.regs.events);
11244 }
11245 
11246 static int sync_regs(struct kvm_vcpu *vcpu)
11247 {
11248 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11249 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11250 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11251 	}
11252 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11253 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11254 			return -EINVAL;
11255 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11256 	}
11257 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11258 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11259 				vcpu, &vcpu->run->s.regs.events))
11260 			return -EINVAL;
11261 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11262 	}
11263 
11264 	return 0;
11265 }
11266 
11267 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11268 {
11269 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11270 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11271 			     "guest TSC will not be reliable\n");
11272 
11273 	return 0;
11274 }
11275 
11276 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11277 {
11278 	struct page *page;
11279 	int r;
11280 
11281 	vcpu->arch.last_vmentry_cpu = -1;
11282 	vcpu->arch.regs_avail = ~0;
11283 	vcpu->arch.regs_dirty = ~0;
11284 
11285 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11286 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11287 	else
11288 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11289 
11290 	r = kvm_mmu_create(vcpu);
11291 	if (r < 0)
11292 		return r;
11293 
11294 	if (irqchip_in_kernel(vcpu->kvm)) {
11295 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11296 		if (r < 0)
11297 			goto fail_mmu_destroy;
11298 
11299 		/*
11300 		 * Defer evaluating inhibits until the vCPU is first run, as
11301 		 * this vCPU will not get notified of any changes until this
11302 		 * vCPU is visible to other vCPUs (marked online and added to
11303 		 * the set of vCPUs).  Opportunistically mark APICv active as
11304 		 * VMX in particularly is highly unlikely to have inhibits.
11305 		 * Ignore the current per-VM APICv state so that vCPU creation
11306 		 * is guaranteed to run with a deterministic value, the request
11307 		 * will ensure the vCPU gets the correct state before VM-Entry.
11308 		 */
11309 		if (enable_apicv) {
11310 			vcpu->arch.apicv_active = true;
11311 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11312 		}
11313 	} else
11314 		static_branch_inc(&kvm_has_noapic_vcpu);
11315 
11316 	r = -ENOMEM;
11317 
11318 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11319 	if (!page)
11320 		goto fail_free_lapic;
11321 	vcpu->arch.pio_data = page_address(page);
11322 
11323 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11324 				       GFP_KERNEL_ACCOUNT);
11325 	if (!vcpu->arch.mce_banks)
11326 		goto fail_free_pio_data;
11327 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11328 
11329 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11330 				GFP_KERNEL_ACCOUNT))
11331 		goto fail_free_mce_banks;
11332 
11333 	if (!alloc_emulate_ctxt(vcpu))
11334 		goto free_wbinvd_dirty_mask;
11335 
11336 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11337 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11338 		goto free_emulate_ctxt;
11339 	}
11340 
11341 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11342 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11343 
11344 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11345 
11346 	kvm_async_pf_hash_reset(vcpu);
11347 	kvm_pmu_init(vcpu);
11348 
11349 	vcpu->arch.pending_external_vector = -1;
11350 	vcpu->arch.preempted_in_kernel = false;
11351 
11352 #if IS_ENABLED(CONFIG_HYPERV)
11353 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11354 #endif
11355 
11356 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11357 	if (r)
11358 		goto free_guest_fpu;
11359 
11360 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11361 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11362 	kvm_xen_init_vcpu(vcpu);
11363 	kvm_vcpu_mtrr_init(vcpu);
11364 	vcpu_load(vcpu);
11365 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11366 	kvm_vcpu_reset(vcpu, false);
11367 	kvm_init_mmu(vcpu);
11368 	vcpu_put(vcpu);
11369 	return 0;
11370 
11371 free_guest_fpu:
11372 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11373 free_emulate_ctxt:
11374 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11375 free_wbinvd_dirty_mask:
11376 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11377 fail_free_mce_banks:
11378 	kfree(vcpu->arch.mce_banks);
11379 fail_free_pio_data:
11380 	free_page((unsigned long)vcpu->arch.pio_data);
11381 fail_free_lapic:
11382 	kvm_free_lapic(vcpu);
11383 fail_mmu_destroy:
11384 	kvm_mmu_destroy(vcpu);
11385 	return r;
11386 }
11387 
11388 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11389 {
11390 	struct kvm *kvm = vcpu->kvm;
11391 
11392 	if (mutex_lock_killable(&vcpu->mutex))
11393 		return;
11394 	vcpu_load(vcpu);
11395 	kvm_synchronize_tsc(vcpu, 0);
11396 	vcpu_put(vcpu);
11397 
11398 	/* poll control enabled by default */
11399 	vcpu->arch.msr_kvm_poll_control = 1;
11400 
11401 	mutex_unlock(&vcpu->mutex);
11402 
11403 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11404 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11405 						KVMCLOCK_SYNC_PERIOD);
11406 }
11407 
11408 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11409 {
11410 	int idx;
11411 
11412 	kvmclock_reset(vcpu);
11413 
11414 	static_call(kvm_x86_vcpu_free)(vcpu);
11415 
11416 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11417 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11418 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11419 
11420 	kvm_xen_destroy_vcpu(vcpu);
11421 	kvm_hv_vcpu_uninit(vcpu);
11422 	kvm_pmu_destroy(vcpu);
11423 	kfree(vcpu->arch.mce_banks);
11424 	kvm_free_lapic(vcpu);
11425 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11426 	kvm_mmu_destroy(vcpu);
11427 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11428 	free_page((unsigned long)vcpu->arch.pio_data);
11429 	kvfree(vcpu->arch.cpuid_entries);
11430 	if (!lapic_in_kernel(vcpu))
11431 		static_branch_dec(&kvm_has_noapic_vcpu);
11432 }
11433 
11434 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11435 {
11436 	struct kvm_cpuid_entry2 *cpuid_0x1;
11437 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11438 	unsigned long new_cr0;
11439 
11440 	/*
11441 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11442 	 * to handle side effects.  RESET emulation hits those flows and relies
11443 	 * on emulated/virtualized registers, including those that are loaded
11444 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11445 	 * to detect improper or missing initialization.
11446 	 */
11447 	WARN_ON_ONCE(!init_event &&
11448 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11449 
11450 	kvm_lapic_reset(vcpu, init_event);
11451 
11452 	vcpu->arch.hflags = 0;
11453 
11454 	vcpu->arch.smi_pending = 0;
11455 	vcpu->arch.smi_count = 0;
11456 	atomic_set(&vcpu->arch.nmi_queued, 0);
11457 	vcpu->arch.nmi_pending = 0;
11458 	vcpu->arch.nmi_injected = false;
11459 	kvm_clear_interrupt_queue(vcpu);
11460 	kvm_clear_exception_queue(vcpu);
11461 
11462 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11463 	kvm_update_dr0123(vcpu);
11464 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11465 	vcpu->arch.dr7 = DR7_FIXED_1;
11466 	kvm_update_dr7(vcpu);
11467 
11468 	vcpu->arch.cr2 = 0;
11469 
11470 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11471 	vcpu->arch.apf.msr_en_val = 0;
11472 	vcpu->arch.apf.msr_int_val = 0;
11473 	vcpu->arch.st.msr_val = 0;
11474 
11475 	kvmclock_reset(vcpu);
11476 
11477 	kvm_clear_async_pf_completion_queue(vcpu);
11478 	kvm_async_pf_hash_reset(vcpu);
11479 	vcpu->arch.apf.halted = false;
11480 
11481 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11482 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11483 
11484 		/*
11485 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11486 		 * called with loaded FPU and does not let userspace fix the state.
11487 		 */
11488 		if (init_event)
11489 			kvm_put_guest_fpu(vcpu);
11490 
11491 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11492 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11493 
11494 		if (init_event)
11495 			kvm_load_guest_fpu(vcpu);
11496 	}
11497 
11498 	if (!init_event) {
11499 		kvm_pmu_reset(vcpu);
11500 		vcpu->arch.smbase = 0x30000;
11501 
11502 		vcpu->arch.msr_misc_features_enables = 0;
11503 
11504 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11505 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11506 	}
11507 
11508 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11509 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11510 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11511 
11512 	/*
11513 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11514 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11515 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11516 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11517 	 * on RESET.  But, go through the motions in case that's ever remedied.
11518 	 */
11519 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11520 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11521 
11522 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11523 
11524 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11525 	kvm_rip_write(vcpu, 0xfff0);
11526 
11527 	vcpu->arch.cr3 = 0;
11528 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11529 
11530 	/*
11531 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11532 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11533 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11534 	 */
11535 	new_cr0 = X86_CR0_ET;
11536 	if (init_event)
11537 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11538 	else
11539 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11540 
11541 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11542 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11543 	static_call(kvm_x86_set_efer)(vcpu, 0);
11544 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11545 
11546 	/*
11547 	 * On the standard CR0/CR4/EFER modification paths, there are several
11548 	 * complex conditions determining whether the MMU has to be reset and/or
11549 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11550 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11551 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11552 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11553 	 */
11554 	if (old_cr0 & X86_CR0_PG) {
11555 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11556 		kvm_mmu_reset_context(vcpu);
11557 	}
11558 
11559 	/*
11560 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11561 	 * APM states the TLBs are untouched by INIT, but it also states that
11562 	 * the TLBs are flushed on "External initialization of the processor."
11563 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11564 	 * benefit in relying on the guest to flush the TLB immediately after
11565 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11566 	 * performance perspective.
11567 	 */
11568 	if (init_event)
11569 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11570 }
11571 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11572 
11573 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11574 {
11575 	struct kvm_segment cs;
11576 
11577 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11578 	cs.selector = vector << 8;
11579 	cs.base = vector << 12;
11580 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11581 	kvm_rip_write(vcpu, 0);
11582 }
11583 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11584 
11585 int kvm_arch_hardware_enable(void)
11586 {
11587 	struct kvm *kvm;
11588 	struct kvm_vcpu *vcpu;
11589 	unsigned long i;
11590 	int ret;
11591 	u64 local_tsc;
11592 	u64 max_tsc = 0;
11593 	bool stable, backwards_tsc = false;
11594 
11595 	kvm_user_return_msr_cpu_online();
11596 	ret = static_call(kvm_x86_hardware_enable)();
11597 	if (ret != 0)
11598 		return ret;
11599 
11600 	local_tsc = rdtsc();
11601 	stable = !kvm_check_tsc_unstable();
11602 	list_for_each_entry(kvm, &vm_list, vm_list) {
11603 		kvm_for_each_vcpu(i, vcpu, kvm) {
11604 			if (!stable && vcpu->cpu == smp_processor_id())
11605 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11606 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11607 				backwards_tsc = true;
11608 				if (vcpu->arch.last_host_tsc > max_tsc)
11609 					max_tsc = vcpu->arch.last_host_tsc;
11610 			}
11611 		}
11612 	}
11613 
11614 	/*
11615 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11616 	 * platforms that reset TSC during suspend or hibernate actions, but
11617 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11618 	 * detect that condition here, which happens early in CPU bringup,
11619 	 * before any KVM threads can be running.  Unfortunately, we can't
11620 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11621 	 * enough into CPU bringup that we know how much real time has actually
11622 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11623 	 * variables that haven't been updated yet.
11624 	 *
11625 	 * So we simply find the maximum observed TSC above, then record the
11626 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11627 	 * the adjustment will be applied.  Note that we accumulate
11628 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11629 	 * gets a chance to run again.  In the event that no KVM threads get a
11630 	 * chance to run, we will miss the entire elapsed period, as we'll have
11631 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11632 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11633 	 * uniform across all VCPUs (not to mention the scenario is extremely
11634 	 * unlikely). It is possible that a second hibernate recovery happens
11635 	 * much faster than a first, causing the observed TSC here to be
11636 	 * smaller; this would require additional padding adjustment, which is
11637 	 * why we set last_host_tsc to the local tsc observed here.
11638 	 *
11639 	 * N.B. - this code below runs only on platforms with reliable TSC,
11640 	 * as that is the only way backwards_tsc is set above.  Also note
11641 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11642 	 * have the same delta_cyc adjustment applied if backwards_tsc
11643 	 * is detected.  Note further, this adjustment is only done once,
11644 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11645 	 * called multiple times (one for each physical CPU bringup).
11646 	 *
11647 	 * Platforms with unreliable TSCs don't have to deal with this, they
11648 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11649 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11650 	 * guarantee that they stay in perfect synchronization.
11651 	 */
11652 	if (backwards_tsc) {
11653 		u64 delta_cyc = max_tsc - local_tsc;
11654 		list_for_each_entry(kvm, &vm_list, vm_list) {
11655 			kvm->arch.backwards_tsc_observed = true;
11656 			kvm_for_each_vcpu(i, vcpu, kvm) {
11657 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11658 				vcpu->arch.last_host_tsc = local_tsc;
11659 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11660 			}
11661 
11662 			/*
11663 			 * We have to disable TSC offset matching.. if you were
11664 			 * booting a VM while issuing an S4 host suspend....
11665 			 * you may have some problem.  Solving this issue is
11666 			 * left as an exercise to the reader.
11667 			 */
11668 			kvm->arch.last_tsc_nsec = 0;
11669 			kvm->arch.last_tsc_write = 0;
11670 		}
11671 
11672 	}
11673 	return 0;
11674 }
11675 
11676 void kvm_arch_hardware_disable(void)
11677 {
11678 	static_call(kvm_x86_hardware_disable)();
11679 	drop_user_return_notifiers();
11680 }
11681 
11682 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11683 {
11684 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11685 
11686 #define __KVM_X86_OP(func) \
11687 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11688 #define KVM_X86_OP(func) \
11689 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11690 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11691 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11692 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11693 					   (void *)__static_call_return0);
11694 #include <asm/kvm-x86-ops.h>
11695 #undef __KVM_X86_OP
11696 
11697 	kvm_pmu_ops_update(ops->pmu_ops);
11698 }
11699 
11700 int kvm_arch_hardware_setup(void *opaque)
11701 {
11702 	struct kvm_x86_init_ops *ops = opaque;
11703 	int r;
11704 
11705 	rdmsrl_safe(MSR_EFER, &host_efer);
11706 
11707 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11708 		rdmsrl(MSR_IA32_XSS, host_xss);
11709 
11710 	r = ops->hardware_setup();
11711 	if (r != 0)
11712 		return r;
11713 
11714 	kvm_ops_update(ops);
11715 
11716 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11717 
11718 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11719 		supported_xss = 0;
11720 
11721 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11722 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11723 #undef __kvm_cpu_cap_has
11724 
11725 	if (kvm_has_tsc_control) {
11726 		/*
11727 		 * Make sure the user can only configure tsc_khz values that
11728 		 * fit into a signed integer.
11729 		 * A min value is not calculated because it will always
11730 		 * be 1 on all machines.
11731 		 */
11732 		u64 max = min(0x7fffffffULL,
11733 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11734 		kvm_max_guest_tsc_khz = max;
11735 	}
11736 	kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11737 	kvm_init_msr_list();
11738 	return 0;
11739 }
11740 
11741 void kvm_arch_hardware_unsetup(void)
11742 {
11743 	kvm_unregister_perf_callbacks();
11744 
11745 	static_call(kvm_x86_hardware_unsetup)();
11746 }
11747 
11748 int kvm_arch_check_processor_compat(void *opaque)
11749 {
11750 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11751 	struct kvm_x86_init_ops *ops = opaque;
11752 
11753 	WARN_ON(!irqs_disabled());
11754 
11755 	if (__cr4_reserved_bits(cpu_has, c) !=
11756 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11757 		return -EIO;
11758 
11759 	return ops->check_processor_compatibility();
11760 }
11761 
11762 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11763 {
11764 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11765 }
11766 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11767 
11768 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11769 {
11770 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11771 }
11772 
11773 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11774 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11775 
11776 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11777 {
11778 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11779 
11780 	vcpu->arch.l1tf_flush_l1d = true;
11781 	if (pmu->version && unlikely(pmu->event_count)) {
11782 		pmu->need_cleanup = true;
11783 		kvm_make_request(KVM_REQ_PMU, vcpu);
11784 	}
11785 	static_call(kvm_x86_sched_in)(vcpu, cpu);
11786 }
11787 
11788 void kvm_arch_free_vm(struct kvm *kvm)
11789 {
11790 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
11791 	__kvm_arch_free_vm(kvm);
11792 }
11793 
11794 
11795 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11796 {
11797 	int ret;
11798 	unsigned long flags;
11799 
11800 	if (type)
11801 		return -EINVAL;
11802 
11803 	ret = kvm_page_track_init(kvm);
11804 	if (ret)
11805 		goto out;
11806 
11807 	ret = kvm_mmu_init_vm(kvm);
11808 	if (ret)
11809 		goto out_page_track;
11810 
11811 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11812 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11813 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11814 
11815 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11816 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11817 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11818 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11819 		&kvm->arch.irq_sources_bitmap);
11820 
11821 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11822 	mutex_init(&kvm->arch.apic_map_lock);
11823 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11824 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11825 
11826 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11827 	pvclock_update_vm_gtod_copy(kvm);
11828 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11829 
11830 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
11831 	kvm->arch.guest_can_read_msr_platform_info = true;
11832 	kvm->arch.enable_pmu = enable_pmu;
11833 
11834 #if IS_ENABLED(CONFIG_HYPERV)
11835 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11836 	kvm->arch.hv_root_tdp = INVALID_PAGE;
11837 #endif
11838 
11839 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11840 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11841 
11842 	kvm_apicv_init(kvm);
11843 	kvm_hv_init_vm(kvm);
11844 	kvm_xen_init_vm(kvm);
11845 
11846 	return static_call(kvm_x86_vm_init)(kvm);
11847 
11848 out_page_track:
11849 	kvm_page_track_cleanup(kvm);
11850 out:
11851 	return ret;
11852 }
11853 
11854 int kvm_arch_post_init_vm(struct kvm *kvm)
11855 {
11856 	return kvm_mmu_post_init_vm(kvm);
11857 }
11858 
11859 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11860 {
11861 	vcpu_load(vcpu);
11862 	kvm_mmu_unload(vcpu);
11863 	vcpu_put(vcpu);
11864 }
11865 
11866 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
11867 {
11868 	unsigned long i;
11869 	struct kvm_vcpu *vcpu;
11870 
11871 	kvm_for_each_vcpu(i, vcpu, kvm) {
11872 		kvm_clear_async_pf_completion_queue(vcpu);
11873 		kvm_unload_vcpu_mmu(vcpu);
11874 	}
11875 }
11876 
11877 void kvm_arch_sync_events(struct kvm *kvm)
11878 {
11879 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11880 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11881 	kvm_free_pit(kvm);
11882 }
11883 
11884 /**
11885  * __x86_set_memory_region: Setup KVM internal memory slot
11886  *
11887  * @kvm: the kvm pointer to the VM.
11888  * @id: the slot ID to setup.
11889  * @gpa: the GPA to install the slot (unused when @size == 0).
11890  * @size: the size of the slot. Set to zero to uninstall a slot.
11891  *
11892  * This function helps to setup a KVM internal memory slot.  Specify
11893  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11894  * slot.  The return code can be one of the following:
11895  *
11896  *   HVA:           on success (uninstall will return a bogus HVA)
11897  *   -errno:        on error
11898  *
11899  * The caller should always use IS_ERR() to check the return value
11900  * before use.  Note, the KVM internal memory slots are guaranteed to
11901  * remain valid and unchanged until the VM is destroyed, i.e., the
11902  * GPA->HVA translation will not change.  However, the HVA is a user
11903  * address, i.e. its accessibility is not guaranteed, and must be
11904  * accessed via __copy_{to,from}_user().
11905  */
11906 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11907 				      u32 size)
11908 {
11909 	int i, r;
11910 	unsigned long hva, old_npages;
11911 	struct kvm_memslots *slots = kvm_memslots(kvm);
11912 	struct kvm_memory_slot *slot;
11913 
11914 	/* Called with kvm->slots_lock held.  */
11915 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11916 		return ERR_PTR_USR(-EINVAL);
11917 
11918 	slot = id_to_memslot(slots, id);
11919 	if (size) {
11920 		if (slot && slot->npages)
11921 			return ERR_PTR_USR(-EEXIST);
11922 
11923 		/*
11924 		 * MAP_SHARED to prevent internal slot pages from being moved
11925 		 * by fork()/COW.
11926 		 */
11927 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11928 			      MAP_SHARED | MAP_ANONYMOUS, 0);
11929 		if (IS_ERR((void *)hva))
11930 			return (void __user *)hva;
11931 	} else {
11932 		if (!slot || !slot->npages)
11933 			return NULL;
11934 
11935 		old_npages = slot->npages;
11936 		hva = slot->userspace_addr;
11937 	}
11938 
11939 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11940 		struct kvm_userspace_memory_region m;
11941 
11942 		m.slot = id | (i << 16);
11943 		m.flags = 0;
11944 		m.guest_phys_addr = gpa;
11945 		m.userspace_addr = hva;
11946 		m.memory_size = size;
11947 		r = __kvm_set_memory_region(kvm, &m);
11948 		if (r < 0)
11949 			return ERR_PTR_USR(r);
11950 	}
11951 
11952 	if (!size)
11953 		vm_munmap(hva, old_npages * PAGE_SIZE);
11954 
11955 	return (void __user *)hva;
11956 }
11957 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11958 
11959 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11960 {
11961 	kvm_mmu_pre_destroy_vm(kvm);
11962 }
11963 
11964 void kvm_arch_destroy_vm(struct kvm *kvm)
11965 {
11966 	if (current->mm == kvm->mm) {
11967 		/*
11968 		 * Free memory regions allocated on behalf of userspace,
11969 		 * unless the memory map has changed due to process exit
11970 		 * or fd copying.
11971 		 */
11972 		mutex_lock(&kvm->slots_lock);
11973 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11974 					0, 0);
11975 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11976 					0, 0);
11977 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11978 		mutex_unlock(&kvm->slots_lock);
11979 	}
11980 	kvm_unload_vcpu_mmus(kvm);
11981 	static_call_cond(kvm_x86_vm_destroy)(kvm);
11982 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11983 	kvm_pic_destroy(kvm);
11984 	kvm_ioapic_destroy(kvm);
11985 	kvm_destroy_vcpus(kvm);
11986 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11987 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11988 	kvm_mmu_uninit_vm(kvm);
11989 	kvm_page_track_cleanup(kvm);
11990 	kvm_xen_destroy_vm(kvm);
11991 	kvm_hv_destroy_vm(kvm);
11992 }
11993 
11994 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11995 {
11996 	int i;
11997 
11998 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11999 		kvfree(slot->arch.rmap[i]);
12000 		slot->arch.rmap[i] = NULL;
12001 	}
12002 }
12003 
12004 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12005 {
12006 	int i;
12007 
12008 	memslot_rmap_free(slot);
12009 
12010 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12011 		kvfree(slot->arch.lpage_info[i - 1]);
12012 		slot->arch.lpage_info[i - 1] = NULL;
12013 	}
12014 
12015 	kvm_page_track_free_memslot(slot);
12016 }
12017 
12018 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12019 {
12020 	const int sz = sizeof(*slot->arch.rmap[0]);
12021 	int i;
12022 
12023 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12024 		int level = i + 1;
12025 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12026 
12027 		if (slot->arch.rmap[i])
12028 			continue;
12029 
12030 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12031 		if (!slot->arch.rmap[i]) {
12032 			memslot_rmap_free(slot);
12033 			return -ENOMEM;
12034 		}
12035 	}
12036 
12037 	return 0;
12038 }
12039 
12040 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12041 				      struct kvm_memory_slot *slot)
12042 {
12043 	unsigned long npages = slot->npages;
12044 	int i, r;
12045 
12046 	/*
12047 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12048 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12049 	 * the new memslot is successful.
12050 	 */
12051 	memset(&slot->arch, 0, sizeof(slot->arch));
12052 
12053 	if (kvm_memslots_have_rmaps(kvm)) {
12054 		r = memslot_rmap_alloc(slot, npages);
12055 		if (r)
12056 			return r;
12057 	}
12058 
12059 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12060 		struct kvm_lpage_info *linfo;
12061 		unsigned long ugfn;
12062 		int lpages;
12063 		int level = i + 1;
12064 
12065 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12066 
12067 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12068 		if (!linfo)
12069 			goto out_free;
12070 
12071 		slot->arch.lpage_info[i - 1] = linfo;
12072 
12073 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12074 			linfo[0].disallow_lpage = 1;
12075 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12076 			linfo[lpages - 1].disallow_lpage = 1;
12077 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12078 		/*
12079 		 * If the gfn and userspace address are not aligned wrt each
12080 		 * other, disable large page support for this slot.
12081 		 */
12082 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12083 			unsigned long j;
12084 
12085 			for (j = 0; j < lpages; ++j)
12086 				linfo[j].disallow_lpage = 1;
12087 		}
12088 	}
12089 
12090 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12091 		goto out_free;
12092 
12093 	return 0;
12094 
12095 out_free:
12096 	memslot_rmap_free(slot);
12097 
12098 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12099 		kvfree(slot->arch.lpage_info[i - 1]);
12100 		slot->arch.lpage_info[i - 1] = NULL;
12101 	}
12102 	return -ENOMEM;
12103 }
12104 
12105 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12106 {
12107 	struct kvm_vcpu *vcpu;
12108 	unsigned long i;
12109 
12110 	/*
12111 	 * memslots->generation has been incremented.
12112 	 * mmio generation may have reached its maximum value.
12113 	 */
12114 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12115 
12116 	/* Force re-initialization of steal_time cache */
12117 	kvm_for_each_vcpu(i, vcpu, kvm)
12118 		kvm_vcpu_kick(vcpu);
12119 }
12120 
12121 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12122 				   const struct kvm_memory_slot *old,
12123 				   struct kvm_memory_slot *new,
12124 				   enum kvm_mr_change change)
12125 {
12126 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12127 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12128 			return -EINVAL;
12129 
12130 		return kvm_alloc_memslot_metadata(kvm, new);
12131 	}
12132 
12133 	if (change == KVM_MR_FLAGS_ONLY)
12134 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12135 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12136 		return -EIO;
12137 
12138 	return 0;
12139 }
12140 
12141 
12142 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12143 {
12144 	struct kvm_arch *ka = &kvm->arch;
12145 
12146 	if (!kvm_x86_ops.cpu_dirty_log_size)
12147 		return;
12148 
12149 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12150 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12151 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12152 
12153 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12154 }
12155 
12156 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12157 				     struct kvm_memory_slot *old,
12158 				     const struct kvm_memory_slot *new,
12159 				     enum kvm_mr_change change)
12160 {
12161 	u32 old_flags = old ? old->flags : 0;
12162 	u32 new_flags = new ? new->flags : 0;
12163 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12164 
12165 	/*
12166 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12167 	 * applies to all operations.
12168 	 */
12169 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12170 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12171 
12172 	/*
12173 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12174 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12175 	 *
12176 	 * For a memslot with dirty logging disabled:
12177 	 * CREATE:      No dirty mappings will already exist.
12178 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12179 	 *		kvm_arch_flush_shadow_memslot()
12180 	 *
12181 	 * For a memslot with dirty logging enabled:
12182 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12183 	 *		and no dirty bits to clear.
12184 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12185 	 *		kvm_arch_flush_shadow_memslot().
12186 	 */
12187 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12188 		return;
12189 
12190 	/*
12191 	 * READONLY and non-flags changes were filtered out above, and the only
12192 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12193 	 * logging isn't being toggled on or off.
12194 	 */
12195 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12196 		return;
12197 
12198 	if (!log_dirty_pages) {
12199 		/*
12200 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12201 		 * large sptes have to be split.  If live migration succeeds,
12202 		 * the guest in the source machine will be destroyed and large
12203 		 * sptes will be created in the destination.  However, if the
12204 		 * guest continues to run in the source machine (for example if
12205 		 * live migration fails), small sptes will remain around and
12206 		 * cause bad performance.
12207 		 *
12208 		 * Scan sptes if dirty logging has been stopped, dropping those
12209 		 * which can be collapsed into a single large-page spte.  Later
12210 		 * page faults will create the large-page sptes.
12211 		 */
12212 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12213 	} else {
12214 		/*
12215 		 * Initially-all-set does not require write protecting any page,
12216 		 * because they're all assumed to be dirty.
12217 		 */
12218 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12219 			return;
12220 
12221 		if (READ_ONCE(eager_page_split))
12222 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12223 
12224 		if (kvm_x86_ops.cpu_dirty_log_size) {
12225 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12226 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12227 		} else {
12228 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12229 		}
12230 	}
12231 }
12232 
12233 void kvm_arch_commit_memory_region(struct kvm *kvm,
12234 				struct kvm_memory_slot *old,
12235 				const struct kvm_memory_slot *new,
12236 				enum kvm_mr_change change)
12237 {
12238 	if (!kvm->arch.n_requested_mmu_pages &&
12239 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12240 		unsigned long nr_mmu_pages;
12241 
12242 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12243 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12244 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12245 	}
12246 
12247 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12248 
12249 	/* Free the arrays associated with the old memslot. */
12250 	if (change == KVM_MR_MOVE)
12251 		kvm_arch_free_memslot(kvm, old);
12252 }
12253 
12254 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12255 {
12256 	kvm_mmu_zap_all(kvm);
12257 }
12258 
12259 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12260 				   struct kvm_memory_slot *slot)
12261 {
12262 	kvm_page_track_flush_slot(kvm, slot);
12263 }
12264 
12265 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12266 {
12267 	return (is_guest_mode(vcpu) &&
12268 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12269 }
12270 
12271 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12272 {
12273 	if (!list_empty_careful(&vcpu->async_pf.done))
12274 		return true;
12275 
12276 	if (kvm_apic_has_events(vcpu))
12277 		return true;
12278 
12279 	if (vcpu->arch.pv.pv_unhalted)
12280 		return true;
12281 
12282 	if (vcpu->arch.exception.pending)
12283 		return true;
12284 
12285 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12286 	    (vcpu->arch.nmi_pending &&
12287 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12288 		return true;
12289 
12290 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12291 	    (vcpu->arch.smi_pending &&
12292 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12293 		return true;
12294 
12295 	if (kvm_arch_interrupt_allowed(vcpu) &&
12296 	    (kvm_cpu_has_interrupt(vcpu) ||
12297 	    kvm_guest_apic_has_interrupt(vcpu)))
12298 		return true;
12299 
12300 	if (kvm_hv_has_stimer_pending(vcpu))
12301 		return true;
12302 
12303 	if (is_guest_mode(vcpu) &&
12304 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
12305 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12306 		return true;
12307 
12308 	if (kvm_xen_has_pending_events(vcpu))
12309 		return true;
12310 
12311 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
12312 		return true;
12313 
12314 	return false;
12315 }
12316 
12317 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12318 {
12319 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12320 }
12321 
12322 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12323 {
12324 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12325 		return true;
12326 
12327 	return false;
12328 }
12329 
12330 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12331 {
12332 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12333 		return true;
12334 
12335 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12336 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12337 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12338 		return true;
12339 
12340 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12341 }
12342 
12343 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12344 {
12345 	if (vcpu->arch.guest_state_protected)
12346 		return true;
12347 
12348 	return vcpu->arch.preempted_in_kernel;
12349 }
12350 
12351 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12352 {
12353 	return kvm_rip_read(vcpu);
12354 }
12355 
12356 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12357 {
12358 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12359 }
12360 
12361 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12362 {
12363 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12364 }
12365 
12366 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12367 {
12368 	/* Can't read the RIP when guest state is protected, just return 0 */
12369 	if (vcpu->arch.guest_state_protected)
12370 		return 0;
12371 
12372 	if (is_64_bit_mode(vcpu))
12373 		return kvm_rip_read(vcpu);
12374 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12375 		     kvm_rip_read(vcpu));
12376 }
12377 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12378 
12379 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12380 {
12381 	return kvm_get_linear_rip(vcpu) == linear_rip;
12382 }
12383 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12384 
12385 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12386 {
12387 	unsigned long rflags;
12388 
12389 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12390 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12391 		rflags &= ~X86_EFLAGS_TF;
12392 	return rflags;
12393 }
12394 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12395 
12396 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12397 {
12398 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12399 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12400 		rflags |= X86_EFLAGS_TF;
12401 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12402 }
12403 
12404 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12405 {
12406 	__kvm_set_rflags(vcpu, rflags);
12407 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12408 }
12409 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12410 
12411 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12412 {
12413 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12414 
12415 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12416 }
12417 
12418 static inline u32 kvm_async_pf_next_probe(u32 key)
12419 {
12420 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12421 }
12422 
12423 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12424 {
12425 	u32 key = kvm_async_pf_hash_fn(gfn);
12426 
12427 	while (vcpu->arch.apf.gfns[key] != ~0)
12428 		key = kvm_async_pf_next_probe(key);
12429 
12430 	vcpu->arch.apf.gfns[key] = gfn;
12431 }
12432 
12433 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12434 {
12435 	int i;
12436 	u32 key = kvm_async_pf_hash_fn(gfn);
12437 
12438 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12439 		     (vcpu->arch.apf.gfns[key] != gfn &&
12440 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12441 		key = kvm_async_pf_next_probe(key);
12442 
12443 	return key;
12444 }
12445 
12446 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12447 {
12448 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12449 }
12450 
12451 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12452 {
12453 	u32 i, j, k;
12454 
12455 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12456 
12457 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12458 		return;
12459 
12460 	while (true) {
12461 		vcpu->arch.apf.gfns[i] = ~0;
12462 		do {
12463 			j = kvm_async_pf_next_probe(j);
12464 			if (vcpu->arch.apf.gfns[j] == ~0)
12465 				return;
12466 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12467 			/*
12468 			 * k lies cyclically in ]i,j]
12469 			 * |    i.k.j |
12470 			 * |....j i.k.| or  |.k..j i...|
12471 			 */
12472 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12473 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12474 		i = j;
12475 	}
12476 }
12477 
12478 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12479 {
12480 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12481 
12482 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12483 				      sizeof(reason));
12484 }
12485 
12486 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12487 {
12488 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12489 
12490 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12491 					     &token, offset, sizeof(token));
12492 }
12493 
12494 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12495 {
12496 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12497 	u32 val;
12498 
12499 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12500 					 &val, offset, sizeof(val)))
12501 		return false;
12502 
12503 	return !val;
12504 }
12505 
12506 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12507 {
12508 
12509 	if (!kvm_pv_async_pf_enabled(vcpu))
12510 		return false;
12511 
12512 	if (vcpu->arch.apf.send_user_only &&
12513 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12514 		return false;
12515 
12516 	if (is_guest_mode(vcpu)) {
12517 		/*
12518 		 * L1 needs to opt into the special #PF vmexits that are
12519 		 * used to deliver async page faults.
12520 		 */
12521 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12522 	} else {
12523 		/*
12524 		 * Play it safe in case the guest temporarily disables paging.
12525 		 * The real mode IDT in particular is unlikely to have a #PF
12526 		 * exception setup.
12527 		 */
12528 		return is_paging(vcpu);
12529 	}
12530 }
12531 
12532 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12533 {
12534 	if (unlikely(!lapic_in_kernel(vcpu) ||
12535 		     kvm_event_needs_reinjection(vcpu) ||
12536 		     vcpu->arch.exception.pending))
12537 		return false;
12538 
12539 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12540 		return false;
12541 
12542 	/*
12543 	 * If interrupts are off we cannot even use an artificial
12544 	 * halt state.
12545 	 */
12546 	return kvm_arch_interrupt_allowed(vcpu);
12547 }
12548 
12549 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12550 				     struct kvm_async_pf *work)
12551 {
12552 	struct x86_exception fault;
12553 
12554 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12555 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12556 
12557 	if (kvm_can_deliver_async_pf(vcpu) &&
12558 	    !apf_put_user_notpresent(vcpu)) {
12559 		fault.vector = PF_VECTOR;
12560 		fault.error_code_valid = true;
12561 		fault.error_code = 0;
12562 		fault.nested_page_fault = false;
12563 		fault.address = work->arch.token;
12564 		fault.async_page_fault = true;
12565 		kvm_inject_page_fault(vcpu, &fault);
12566 		return true;
12567 	} else {
12568 		/*
12569 		 * It is not possible to deliver a paravirtualized asynchronous
12570 		 * page fault, but putting the guest in an artificial halt state
12571 		 * can be beneficial nevertheless: if an interrupt arrives, we
12572 		 * can deliver it timely and perhaps the guest will schedule
12573 		 * another process.  When the instruction that triggered a page
12574 		 * fault is retried, hopefully the page will be ready in the host.
12575 		 */
12576 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12577 		return false;
12578 	}
12579 }
12580 
12581 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12582 				 struct kvm_async_pf *work)
12583 {
12584 	struct kvm_lapic_irq irq = {
12585 		.delivery_mode = APIC_DM_FIXED,
12586 		.vector = vcpu->arch.apf.vec
12587 	};
12588 
12589 	if (work->wakeup_all)
12590 		work->arch.token = ~0; /* broadcast wakeup */
12591 	else
12592 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12593 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12594 
12595 	if ((work->wakeup_all || work->notpresent_injected) &&
12596 	    kvm_pv_async_pf_enabled(vcpu) &&
12597 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12598 		vcpu->arch.apf.pageready_pending = true;
12599 		kvm_apic_set_irq(vcpu, &irq, NULL);
12600 	}
12601 
12602 	vcpu->arch.apf.halted = false;
12603 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12604 }
12605 
12606 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12607 {
12608 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12609 	if (!vcpu->arch.apf.pageready_pending)
12610 		kvm_vcpu_kick(vcpu);
12611 }
12612 
12613 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12614 {
12615 	if (!kvm_pv_async_pf_enabled(vcpu))
12616 		return true;
12617 	else
12618 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12619 }
12620 
12621 void kvm_arch_start_assignment(struct kvm *kvm)
12622 {
12623 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12624 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12625 }
12626 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12627 
12628 void kvm_arch_end_assignment(struct kvm *kvm)
12629 {
12630 	atomic_dec(&kvm->arch.assigned_device_count);
12631 }
12632 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12633 
12634 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12635 {
12636 	return atomic_read(&kvm->arch.assigned_device_count);
12637 }
12638 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12639 
12640 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12641 {
12642 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12643 }
12644 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12645 
12646 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12647 {
12648 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12649 }
12650 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12651 
12652 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12653 {
12654 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12655 }
12656 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12657 
12658 bool kvm_arch_has_irq_bypass(void)
12659 {
12660 	return true;
12661 }
12662 
12663 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12664 				      struct irq_bypass_producer *prod)
12665 {
12666 	struct kvm_kernel_irqfd *irqfd =
12667 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12668 	int ret;
12669 
12670 	irqfd->producer = prod;
12671 	kvm_arch_start_assignment(irqfd->kvm);
12672 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12673 					 prod->irq, irqfd->gsi, 1);
12674 
12675 	if (ret)
12676 		kvm_arch_end_assignment(irqfd->kvm);
12677 
12678 	return ret;
12679 }
12680 
12681 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12682 				      struct irq_bypass_producer *prod)
12683 {
12684 	int ret;
12685 	struct kvm_kernel_irqfd *irqfd =
12686 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12687 
12688 	WARN_ON(irqfd->producer != prod);
12689 	irqfd->producer = NULL;
12690 
12691 	/*
12692 	 * When producer of consumer is unregistered, we change back to
12693 	 * remapped mode, so we can re-use the current implementation
12694 	 * when the irq is masked/disabled or the consumer side (KVM
12695 	 * int this case doesn't want to receive the interrupts.
12696 	*/
12697 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12698 	if (ret)
12699 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12700 		       " fails: %d\n", irqfd->consumer.token, ret);
12701 
12702 	kvm_arch_end_assignment(irqfd->kvm);
12703 }
12704 
12705 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12706 				   uint32_t guest_irq, bool set)
12707 {
12708 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12709 }
12710 
12711 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12712 				  struct kvm_kernel_irq_routing_entry *new)
12713 {
12714 	if (new->type != KVM_IRQ_ROUTING_MSI)
12715 		return true;
12716 
12717 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12718 }
12719 
12720 bool kvm_vector_hashing_enabled(void)
12721 {
12722 	return vector_hashing;
12723 }
12724 
12725 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12726 {
12727 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12728 }
12729 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12730 
12731 
12732 int kvm_spec_ctrl_test_value(u64 value)
12733 {
12734 	/*
12735 	 * test that setting IA32_SPEC_CTRL to given value
12736 	 * is allowed by the host processor
12737 	 */
12738 
12739 	u64 saved_value;
12740 	unsigned long flags;
12741 	int ret = 0;
12742 
12743 	local_irq_save(flags);
12744 
12745 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12746 		ret = 1;
12747 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12748 		ret = 1;
12749 	else
12750 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12751 
12752 	local_irq_restore(flags);
12753 
12754 	return ret;
12755 }
12756 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12757 
12758 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12759 {
12760 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12761 	struct x86_exception fault;
12762 	u64 access = error_code &
12763 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12764 
12765 	if (!(error_code & PFERR_PRESENT_MASK) ||
12766 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12767 		/*
12768 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12769 		 * tables probably do not match the TLB.  Just proceed
12770 		 * with the error code that the processor gave.
12771 		 */
12772 		fault.vector = PF_VECTOR;
12773 		fault.error_code_valid = true;
12774 		fault.error_code = error_code;
12775 		fault.nested_page_fault = false;
12776 		fault.address = gva;
12777 	}
12778 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12779 }
12780 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12781 
12782 /*
12783  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12784  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12785  * indicates whether exit to userspace is needed.
12786  */
12787 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12788 			      struct x86_exception *e)
12789 {
12790 	if (r == X86EMUL_PROPAGATE_FAULT) {
12791 		kvm_inject_emulated_page_fault(vcpu, e);
12792 		return 1;
12793 	}
12794 
12795 	/*
12796 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12797 	 * while handling a VMX instruction KVM could've handled the request
12798 	 * correctly by exiting to userspace and performing I/O but there
12799 	 * doesn't seem to be a real use-case behind such requests, just return
12800 	 * KVM_EXIT_INTERNAL_ERROR for now.
12801 	 */
12802 	kvm_prepare_emulation_failure_exit(vcpu);
12803 
12804 	return 0;
12805 }
12806 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12807 
12808 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12809 {
12810 	bool pcid_enabled;
12811 	struct x86_exception e;
12812 	struct {
12813 		u64 pcid;
12814 		u64 gla;
12815 	} operand;
12816 	int r;
12817 
12818 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12819 	if (r != X86EMUL_CONTINUE)
12820 		return kvm_handle_memory_failure(vcpu, r, &e);
12821 
12822 	if (operand.pcid >> 12 != 0) {
12823 		kvm_inject_gp(vcpu, 0);
12824 		return 1;
12825 	}
12826 
12827 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12828 
12829 	switch (type) {
12830 	case INVPCID_TYPE_INDIV_ADDR:
12831 		if ((!pcid_enabled && (operand.pcid != 0)) ||
12832 		    is_noncanonical_address(operand.gla, vcpu)) {
12833 			kvm_inject_gp(vcpu, 0);
12834 			return 1;
12835 		}
12836 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12837 		return kvm_skip_emulated_instruction(vcpu);
12838 
12839 	case INVPCID_TYPE_SINGLE_CTXT:
12840 		if (!pcid_enabled && (operand.pcid != 0)) {
12841 			kvm_inject_gp(vcpu, 0);
12842 			return 1;
12843 		}
12844 
12845 		kvm_invalidate_pcid(vcpu, operand.pcid);
12846 		return kvm_skip_emulated_instruction(vcpu);
12847 
12848 	case INVPCID_TYPE_ALL_NON_GLOBAL:
12849 		/*
12850 		 * Currently, KVM doesn't mark global entries in the shadow
12851 		 * page tables, so a non-global flush just degenerates to a
12852 		 * global flush. If needed, we could optimize this later by
12853 		 * keeping track of global entries in shadow page tables.
12854 		 */
12855 
12856 		fallthrough;
12857 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
12858 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12859 		return kvm_skip_emulated_instruction(vcpu);
12860 
12861 	default:
12862 		kvm_inject_gp(vcpu, 0);
12863 		return 1;
12864 	}
12865 }
12866 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12867 
12868 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12869 {
12870 	struct kvm_run *run = vcpu->run;
12871 	struct kvm_mmio_fragment *frag;
12872 	unsigned int len;
12873 
12874 	BUG_ON(!vcpu->mmio_needed);
12875 
12876 	/* Complete previous fragment */
12877 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12878 	len = min(8u, frag->len);
12879 	if (!vcpu->mmio_is_write)
12880 		memcpy(frag->data, run->mmio.data, len);
12881 
12882 	if (frag->len <= 8) {
12883 		/* Switch to the next fragment. */
12884 		frag++;
12885 		vcpu->mmio_cur_fragment++;
12886 	} else {
12887 		/* Go forward to the next mmio piece. */
12888 		frag->data += len;
12889 		frag->gpa += len;
12890 		frag->len -= len;
12891 	}
12892 
12893 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12894 		vcpu->mmio_needed = 0;
12895 
12896 		// VMG change, at this point, we're always done
12897 		// RIP has already been advanced
12898 		return 1;
12899 	}
12900 
12901 	// More MMIO is needed
12902 	run->mmio.phys_addr = frag->gpa;
12903 	run->mmio.len = min(8u, frag->len);
12904 	run->mmio.is_write = vcpu->mmio_is_write;
12905 	if (run->mmio.is_write)
12906 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12907 	run->exit_reason = KVM_EXIT_MMIO;
12908 
12909 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12910 
12911 	return 0;
12912 }
12913 
12914 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12915 			  void *data)
12916 {
12917 	int handled;
12918 	struct kvm_mmio_fragment *frag;
12919 
12920 	if (!data)
12921 		return -EINVAL;
12922 
12923 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12924 	if (handled == bytes)
12925 		return 1;
12926 
12927 	bytes -= handled;
12928 	gpa += handled;
12929 	data += handled;
12930 
12931 	/*TODO: Check if need to increment number of frags */
12932 	frag = vcpu->mmio_fragments;
12933 	vcpu->mmio_nr_fragments = 1;
12934 	frag->len = bytes;
12935 	frag->gpa = gpa;
12936 	frag->data = data;
12937 
12938 	vcpu->mmio_needed = 1;
12939 	vcpu->mmio_cur_fragment = 0;
12940 
12941 	vcpu->run->mmio.phys_addr = gpa;
12942 	vcpu->run->mmio.len = min(8u, frag->len);
12943 	vcpu->run->mmio.is_write = 1;
12944 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12945 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12946 
12947 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12948 
12949 	return 0;
12950 }
12951 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12952 
12953 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12954 			 void *data)
12955 {
12956 	int handled;
12957 	struct kvm_mmio_fragment *frag;
12958 
12959 	if (!data)
12960 		return -EINVAL;
12961 
12962 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12963 	if (handled == bytes)
12964 		return 1;
12965 
12966 	bytes -= handled;
12967 	gpa += handled;
12968 	data += handled;
12969 
12970 	/*TODO: Check if need to increment number of frags */
12971 	frag = vcpu->mmio_fragments;
12972 	vcpu->mmio_nr_fragments = 1;
12973 	frag->len = bytes;
12974 	frag->gpa = gpa;
12975 	frag->data = data;
12976 
12977 	vcpu->mmio_needed = 1;
12978 	vcpu->mmio_cur_fragment = 0;
12979 
12980 	vcpu->run->mmio.phys_addr = gpa;
12981 	vcpu->run->mmio.len = min(8u, frag->len);
12982 	vcpu->run->mmio.is_write = 0;
12983 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12984 
12985 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12986 
12987 	return 0;
12988 }
12989 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12990 
12991 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12992 			   unsigned int port);
12993 
12994 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12995 {
12996 	int size = vcpu->arch.pio.size;
12997 	int port = vcpu->arch.pio.port;
12998 
12999 	vcpu->arch.pio.count = 0;
13000 	if (vcpu->arch.sev_pio_count)
13001 		return kvm_sev_es_outs(vcpu, size, port);
13002 	return 1;
13003 }
13004 
13005 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13006 			   unsigned int port)
13007 {
13008 	for (;;) {
13009 		unsigned int count =
13010 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13011 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13012 
13013 		/* memcpy done already by emulator_pio_out.  */
13014 		vcpu->arch.sev_pio_count -= count;
13015 		vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13016 		if (!ret)
13017 			break;
13018 
13019 		/* Emulation done by the kernel.  */
13020 		if (!vcpu->arch.sev_pio_count)
13021 			return 1;
13022 	}
13023 
13024 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13025 	return 0;
13026 }
13027 
13028 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13029 			  unsigned int port);
13030 
13031 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13032 {
13033 	unsigned count = vcpu->arch.pio.count;
13034 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13035 	vcpu->arch.sev_pio_count -= count;
13036 	vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13037 }
13038 
13039 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13040 {
13041 	int size = vcpu->arch.pio.size;
13042 	int port = vcpu->arch.pio.port;
13043 
13044 	advance_sev_es_emulated_ins(vcpu);
13045 	if (vcpu->arch.sev_pio_count)
13046 		return kvm_sev_es_ins(vcpu, size, port);
13047 	return 1;
13048 }
13049 
13050 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13051 			  unsigned int port)
13052 {
13053 	for (;;) {
13054 		unsigned int count =
13055 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13056 		if (!__emulator_pio_in(vcpu, size, port, count))
13057 			break;
13058 
13059 		/* Emulation done by the kernel.  */
13060 		advance_sev_es_emulated_ins(vcpu);
13061 		if (!vcpu->arch.sev_pio_count)
13062 			return 1;
13063 	}
13064 
13065 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13066 	return 0;
13067 }
13068 
13069 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13070 			 unsigned int port, void *data,  unsigned int count,
13071 			 int in)
13072 {
13073 	vcpu->arch.sev_pio_data = data;
13074 	vcpu->arch.sev_pio_count = count;
13075 	return in ? kvm_sev_es_ins(vcpu, size, port)
13076 		  : kvm_sev_es_outs(vcpu, size, port);
13077 }
13078 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13079 
13080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13081 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13082 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13083 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13084 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13085 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13086 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
13088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13091 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13092 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13093 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13094 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13095 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13096 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13097 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13098 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13099 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13100 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13101 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13102 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13103 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13104 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13105 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13106 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13107 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13108 
13109 static int __init kvm_x86_init(void)
13110 {
13111 	kvm_mmu_x86_module_init();
13112 	return 0;
13113 }
13114 module_init(kvm_x86_init);
13115 
13116 static void __exit kvm_x86_exit(void)
13117 {
13118 	/*
13119 	 * If module_init() is implemented, module_exit() must also be
13120 	 * implemented to allow module unload.
13121 	 */
13122 }
13123 module_exit(kvm_x86_exit);
13124