xref: /openbmc/linux/arch/x86/kvm/x86.c (revision d2ba09c1)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75 
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80 
81 #define emul_to_vcpu(ctxt) \
82 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94 
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97 
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100 
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107 
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110 
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113 
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116 
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122 
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133 
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137 
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 
142 static bool __read_mostly vector_hashing = true;
143 module_param(vector_hashing, bool, S_IRUGO);
144 
145 bool __read_mostly enable_vmware_backdoor = false;
146 module_param(enable_vmware_backdoor, bool, S_IRUGO);
147 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
148 
149 static bool __read_mostly force_emulation_prefix = false;
150 module_param(force_emulation_prefix, bool, S_IRUGO);
151 
152 #define KVM_NR_SHARED_MSRS 16
153 
154 struct kvm_shared_msrs_global {
155 	int nr;
156 	u32 msrs[KVM_NR_SHARED_MSRS];
157 };
158 
159 struct kvm_shared_msrs {
160 	struct user_return_notifier urn;
161 	bool registered;
162 	struct kvm_shared_msr_values {
163 		u64 host;
164 		u64 curr;
165 	} values[KVM_NR_SHARED_MSRS];
166 };
167 
168 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
169 static struct kvm_shared_msrs __percpu *shared_msrs;
170 
171 struct kvm_stats_debugfs_item debugfs_entries[] = {
172 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
173 	{ "pf_guest", VCPU_STAT(pf_guest) },
174 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
175 	{ "invlpg", VCPU_STAT(invlpg) },
176 	{ "exits", VCPU_STAT(exits) },
177 	{ "io_exits", VCPU_STAT(io_exits) },
178 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
179 	{ "signal_exits", VCPU_STAT(signal_exits) },
180 	{ "irq_window", VCPU_STAT(irq_window_exits) },
181 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
182 	{ "halt_exits", VCPU_STAT(halt_exits) },
183 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
184 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
185 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
186 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
187 	{ "hypercalls", VCPU_STAT(hypercalls) },
188 	{ "request_irq", VCPU_STAT(request_irq_exits) },
189 	{ "irq_exits", VCPU_STAT(irq_exits) },
190 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
191 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
192 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
193 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
194 	{ "irq_injections", VCPU_STAT(irq_injections) },
195 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
196 	{ "req_event", VCPU_STAT(req_event) },
197 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
198 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
199 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
200 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
201 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
202 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
203 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
204 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
205 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
206 	{ "largepages", VM_STAT(lpages) },
207 	{ "max_mmu_page_hash_collisions",
208 		VM_STAT(max_mmu_page_hash_collisions) },
209 	{ NULL }
210 };
211 
212 u64 __read_mostly host_xcr0;
213 
214 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
215 
216 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
217 {
218 	int i;
219 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
220 		vcpu->arch.apf.gfns[i] = ~0;
221 }
222 
223 static void kvm_on_user_return(struct user_return_notifier *urn)
224 {
225 	unsigned slot;
226 	struct kvm_shared_msrs *locals
227 		= container_of(urn, struct kvm_shared_msrs, urn);
228 	struct kvm_shared_msr_values *values;
229 	unsigned long flags;
230 
231 	/*
232 	 * Disabling irqs at this point since the following code could be
233 	 * interrupted and executed through kvm_arch_hardware_disable()
234 	 */
235 	local_irq_save(flags);
236 	if (locals->registered) {
237 		locals->registered = false;
238 		user_return_notifier_unregister(urn);
239 	}
240 	local_irq_restore(flags);
241 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
242 		values = &locals->values[slot];
243 		if (values->host != values->curr) {
244 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
245 			values->curr = values->host;
246 		}
247 	}
248 }
249 
250 static void shared_msr_update(unsigned slot, u32 msr)
251 {
252 	u64 value;
253 	unsigned int cpu = smp_processor_id();
254 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
255 
256 	/* only read, and nobody should modify it at this time,
257 	 * so don't need lock */
258 	if (slot >= shared_msrs_global.nr) {
259 		printk(KERN_ERR "kvm: invalid MSR slot!");
260 		return;
261 	}
262 	rdmsrl_safe(msr, &value);
263 	smsr->values[slot].host = value;
264 	smsr->values[slot].curr = value;
265 }
266 
267 void kvm_define_shared_msr(unsigned slot, u32 msr)
268 {
269 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
270 	shared_msrs_global.msrs[slot] = msr;
271 	if (slot >= shared_msrs_global.nr)
272 		shared_msrs_global.nr = slot + 1;
273 }
274 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
275 
276 static void kvm_shared_msr_cpu_online(void)
277 {
278 	unsigned i;
279 
280 	for (i = 0; i < shared_msrs_global.nr; ++i)
281 		shared_msr_update(i, shared_msrs_global.msrs[i]);
282 }
283 
284 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
285 {
286 	unsigned int cpu = smp_processor_id();
287 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
288 	int err;
289 
290 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
291 		return 0;
292 	smsr->values[slot].curr = value;
293 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
294 	if (err)
295 		return 1;
296 
297 	if (!smsr->registered) {
298 		smsr->urn.on_user_return = kvm_on_user_return;
299 		user_return_notifier_register(&smsr->urn);
300 		smsr->registered = true;
301 	}
302 	return 0;
303 }
304 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
305 
306 static void drop_user_return_notifiers(void)
307 {
308 	unsigned int cpu = smp_processor_id();
309 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
310 
311 	if (smsr->registered)
312 		kvm_on_user_return(&smsr->urn);
313 }
314 
315 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
316 {
317 	return vcpu->arch.apic_base;
318 }
319 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
320 
321 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
322 {
323 	u64 old_state = vcpu->arch.apic_base &
324 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
325 	u64 new_state = msr_info->data &
326 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
327 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
328 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
329 
330 	if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
331 		return 1;
332 	if (!msr_info->host_initiated &&
333 	    ((new_state == MSR_IA32_APICBASE_ENABLE &&
334 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
335 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
336 	      old_state == 0)))
337 		return 1;
338 
339 	kvm_lapic_set_base(vcpu, msr_info->data);
340 	return 0;
341 }
342 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
343 
344 asmlinkage __visible void kvm_spurious_fault(void)
345 {
346 	/* Fault while not rebooting.  We want the trace. */
347 	BUG();
348 }
349 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
350 
351 #define EXCPT_BENIGN		0
352 #define EXCPT_CONTRIBUTORY	1
353 #define EXCPT_PF		2
354 
355 static int exception_class(int vector)
356 {
357 	switch (vector) {
358 	case PF_VECTOR:
359 		return EXCPT_PF;
360 	case DE_VECTOR:
361 	case TS_VECTOR:
362 	case NP_VECTOR:
363 	case SS_VECTOR:
364 	case GP_VECTOR:
365 		return EXCPT_CONTRIBUTORY;
366 	default:
367 		break;
368 	}
369 	return EXCPT_BENIGN;
370 }
371 
372 #define EXCPT_FAULT		0
373 #define EXCPT_TRAP		1
374 #define EXCPT_ABORT		2
375 #define EXCPT_INTERRUPT		3
376 
377 static int exception_type(int vector)
378 {
379 	unsigned int mask;
380 
381 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
382 		return EXCPT_INTERRUPT;
383 
384 	mask = 1 << vector;
385 
386 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
387 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
388 		return EXCPT_TRAP;
389 
390 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
391 		return EXCPT_ABORT;
392 
393 	/* Reserved exceptions will result in fault */
394 	return EXCPT_FAULT;
395 }
396 
397 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
398 		unsigned nr, bool has_error, u32 error_code,
399 		bool reinject)
400 {
401 	u32 prev_nr;
402 	int class1, class2;
403 
404 	kvm_make_request(KVM_REQ_EVENT, vcpu);
405 
406 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
407 	queue:
408 		if (has_error && !is_protmode(vcpu))
409 			has_error = false;
410 		if (reinject) {
411 			/*
412 			 * On vmentry, vcpu->arch.exception.pending is only
413 			 * true if an event injection was blocked by
414 			 * nested_run_pending.  In that case, however,
415 			 * vcpu_enter_guest requests an immediate exit,
416 			 * and the guest shouldn't proceed far enough to
417 			 * need reinjection.
418 			 */
419 			WARN_ON_ONCE(vcpu->arch.exception.pending);
420 			vcpu->arch.exception.injected = true;
421 		} else {
422 			vcpu->arch.exception.pending = true;
423 			vcpu->arch.exception.injected = false;
424 		}
425 		vcpu->arch.exception.has_error_code = has_error;
426 		vcpu->arch.exception.nr = nr;
427 		vcpu->arch.exception.error_code = error_code;
428 		return;
429 	}
430 
431 	/* to check exception */
432 	prev_nr = vcpu->arch.exception.nr;
433 	if (prev_nr == DF_VECTOR) {
434 		/* triple fault -> shutdown */
435 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
436 		return;
437 	}
438 	class1 = exception_class(prev_nr);
439 	class2 = exception_class(nr);
440 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
441 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
442 		/*
443 		 * Generate double fault per SDM Table 5-5.  Set
444 		 * exception.pending = true so that the double fault
445 		 * can trigger a nested vmexit.
446 		 */
447 		vcpu->arch.exception.pending = true;
448 		vcpu->arch.exception.injected = false;
449 		vcpu->arch.exception.has_error_code = true;
450 		vcpu->arch.exception.nr = DF_VECTOR;
451 		vcpu->arch.exception.error_code = 0;
452 	} else
453 		/* replace previous exception with a new one in a hope
454 		   that instruction re-execution will regenerate lost
455 		   exception */
456 		goto queue;
457 }
458 
459 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
460 {
461 	kvm_multiple_exception(vcpu, nr, false, 0, false);
462 }
463 EXPORT_SYMBOL_GPL(kvm_queue_exception);
464 
465 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
466 {
467 	kvm_multiple_exception(vcpu, nr, false, 0, true);
468 }
469 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
470 
471 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
472 {
473 	if (err)
474 		kvm_inject_gp(vcpu, 0);
475 	else
476 		return kvm_skip_emulated_instruction(vcpu);
477 
478 	return 1;
479 }
480 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
481 
482 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
483 {
484 	++vcpu->stat.pf_guest;
485 	vcpu->arch.exception.nested_apf =
486 		is_guest_mode(vcpu) && fault->async_page_fault;
487 	if (vcpu->arch.exception.nested_apf)
488 		vcpu->arch.apf.nested_apf_token = fault->address;
489 	else
490 		vcpu->arch.cr2 = fault->address;
491 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
492 }
493 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
494 
495 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
496 {
497 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
498 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
499 	else
500 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
501 
502 	return fault->nested_page_fault;
503 }
504 
505 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
506 {
507 	atomic_inc(&vcpu->arch.nmi_queued);
508 	kvm_make_request(KVM_REQ_NMI, vcpu);
509 }
510 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
511 
512 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
513 {
514 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
515 }
516 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
517 
518 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
519 {
520 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
521 }
522 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
523 
524 /*
525  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
526  * a #GP and return false.
527  */
528 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
529 {
530 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
531 		return true;
532 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
533 	return false;
534 }
535 EXPORT_SYMBOL_GPL(kvm_require_cpl);
536 
537 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
538 {
539 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
540 		return true;
541 
542 	kvm_queue_exception(vcpu, UD_VECTOR);
543 	return false;
544 }
545 EXPORT_SYMBOL_GPL(kvm_require_dr);
546 
547 /*
548  * This function will be used to read from the physical memory of the currently
549  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
550  * can read from guest physical or from the guest's guest physical memory.
551  */
552 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
553 			    gfn_t ngfn, void *data, int offset, int len,
554 			    u32 access)
555 {
556 	struct x86_exception exception;
557 	gfn_t real_gfn;
558 	gpa_t ngpa;
559 
560 	ngpa     = gfn_to_gpa(ngfn);
561 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
562 	if (real_gfn == UNMAPPED_GVA)
563 		return -EFAULT;
564 
565 	real_gfn = gpa_to_gfn(real_gfn);
566 
567 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
568 }
569 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
570 
571 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
572 			       void *data, int offset, int len, u32 access)
573 {
574 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
575 				       data, offset, len, access);
576 }
577 
578 /*
579  * Load the pae pdptrs.  Return true is they are all valid.
580  */
581 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
582 {
583 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
584 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
585 	int i;
586 	int ret;
587 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
588 
589 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
590 				      offset * sizeof(u64), sizeof(pdpte),
591 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
592 	if (ret < 0) {
593 		ret = 0;
594 		goto out;
595 	}
596 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
597 		if ((pdpte[i] & PT_PRESENT_MASK) &&
598 		    (pdpte[i] &
599 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
600 			ret = 0;
601 			goto out;
602 		}
603 	}
604 	ret = 1;
605 
606 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
607 	__set_bit(VCPU_EXREG_PDPTR,
608 		  (unsigned long *)&vcpu->arch.regs_avail);
609 	__set_bit(VCPU_EXREG_PDPTR,
610 		  (unsigned long *)&vcpu->arch.regs_dirty);
611 out:
612 
613 	return ret;
614 }
615 EXPORT_SYMBOL_GPL(load_pdptrs);
616 
617 bool pdptrs_changed(struct kvm_vcpu *vcpu)
618 {
619 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
620 	bool changed = true;
621 	int offset;
622 	gfn_t gfn;
623 	int r;
624 
625 	if (is_long_mode(vcpu) || !is_pae(vcpu))
626 		return false;
627 
628 	if (!test_bit(VCPU_EXREG_PDPTR,
629 		      (unsigned long *)&vcpu->arch.regs_avail))
630 		return true;
631 
632 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
633 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
634 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
635 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
636 	if (r < 0)
637 		goto out;
638 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
639 out:
640 
641 	return changed;
642 }
643 EXPORT_SYMBOL_GPL(pdptrs_changed);
644 
645 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
646 {
647 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
648 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
649 
650 	cr0 |= X86_CR0_ET;
651 
652 #ifdef CONFIG_X86_64
653 	if (cr0 & 0xffffffff00000000UL)
654 		return 1;
655 #endif
656 
657 	cr0 &= ~CR0_RESERVED_BITS;
658 
659 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
660 		return 1;
661 
662 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
663 		return 1;
664 
665 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
666 #ifdef CONFIG_X86_64
667 		if ((vcpu->arch.efer & EFER_LME)) {
668 			int cs_db, cs_l;
669 
670 			if (!is_pae(vcpu))
671 				return 1;
672 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
673 			if (cs_l)
674 				return 1;
675 		} else
676 #endif
677 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
678 						 kvm_read_cr3(vcpu)))
679 			return 1;
680 	}
681 
682 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
683 		return 1;
684 
685 	kvm_x86_ops->set_cr0(vcpu, cr0);
686 
687 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
688 		kvm_clear_async_pf_completion_queue(vcpu);
689 		kvm_async_pf_hash_reset(vcpu);
690 	}
691 
692 	if ((cr0 ^ old_cr0) & update_bits)
693 		kvm_mmu_reset_context(vcpu);
694 
695 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
696 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
697 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
698 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
699 
700 	return 0;
701 }
702 EXPORT_SYMBOL_GPL(kvm_set_cr0);
703 
704 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
705 {
706 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
707 }
708 EXPORT_SYMBOL_GPL(kvm_lmsw);
709 
710 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
711 {
712 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
713 			!vcpu->guest_xcr0_loaded) {
714 		/* kvm_set_xcr() also depends on this */
715 		if (vcpu->arch.xcr0 != host_xcr0)
716 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
717 		vcpu->guest_xcr0_loaded = 1;
718 	}
719 }
720 
721 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
722 {
723 	if (vcpu->guest_xcr0_loaded) {
724 		if (vcpu->arch.xcr0 != host_xcr0)
725 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
726 		vcpu->guest_xcr0_loaded = 0;
727 	}
728 }
729 
730 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
731 {
732 	u64 xcr0 = xcr;
733 	u64 old_xcr0 = vcpu->arch.xcr0;
734 	u64 valid_bits;
735 
736 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
737 	if (index != XCR_XFEATURE_ENABLED_MASK)
738 		return 1;
739 	if (!(xcr0 & XFEATURE_MASK_FP))
740 		return 1;
741 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
742 		return 1;
743 
744 	/*
745 	 * Do not allow the guest to set bits that we do not support
746 	 * saving.  However, xcr0 bit 0 is always set, even if the
747 	 * emulated CPU does not support XSAVE (see fx_init).
748 	 */
749 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
750 	if (xcr0 & ~valid_bits)
751 		return 1;
752 
753 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
754 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
755 		return 1;
756 
757 	if (xcr0 & XFEATURE_MASK_AVX512) {
758 		if (!(xcr0 & XFEATURE_MASK_YMM))
759 			return 1;
760 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
761 			return 1;
762 	}
763 	vcpu->arch.xcr0 = xcr0;
764 
765 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
766 		kvm_update_cpuid(vcpu);
767 	return 0;
768 }
769 
770 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
771 {
772 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
773 	    __kvm_set_xcr(vcpu, index, xcr)) {
774 		kvm_inject_gp(vcpu, 0);
775 		return 1;
776 	}
777 	return 0;
778 }
779 EXPORT_SYMBOL_GPL(kvm_set_xcr);
780 
781 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
782 {
783 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
784 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
785 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
786 
787 	if (cr4 & CR4_RESERVED_BITS)
788 		return 1;
789 
790 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
791 		return 1;
792 
793 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
794 		return 1;
795 
796 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
797 		return 1;
798 
799 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
800 		return 1;
801 
802 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
803 		return 1;
804 
805 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
806 		return 1;
807 
808 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
809 		return 1;
810 
811 	if (is_long_mode(vcpu)) {
812 		if (!(cr4 & X86_CR4_PAE))
813 			return 1;
814 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
815 		   && ((cr4 ^ old_cr4) & pdptr_bits)
816 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
817 				   kvm_read_cr3(vcpu)))
818 		return 1;
819 
820 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
821 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
822 			return 1;
823 
824 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
825 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
826 			return 1;
827 	}
828 
829 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
830 		return 1;
831 
832 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
833 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
834 		kvm_mmu_reset_context(vcpu);
835 
836 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
837 		kvm_update_cpuid(vcpu);
838 
839 	return 0;
840 }
841 EXPORT_SYMBOL_GPL(kvm_set_cr4);
842 
843 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
844 {
845 #ifdef CONFIG_X86_64
846 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
847 
848 	if (pcid_enabled)
849 		cr3 &= ~CR3_PCID_INVD;
850 #endif
851 
852 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
853 		kvm_mmu_sync_roots(vcpu);
854 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
855 		return 0;
856 	}
857 
858 	if (is_long_mode(vcpu) &&
859 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
860 		return 1;
861 	else if (is_pae(vcpu) && is_paging(vcpu) &&
862 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
863 		return 1;
864 
865 	vcpu->arch.cr3 = cr3;
866 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
867 	kvm_mmu_new_cr3(vcpu);
868 	return 0;
869 }
870 EXPORT_SYMBOL_GPL(kvm_set_cr3);
871 
872 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
873 {
874 	if (cr8 & CR8_RESERVED_BITS)
875 		return 1;
876 	if (lapic_in_kernel(vcpu))
877 		kvm_lapic_set_tpr(vcpu, cr8);
878 	else
879 		vcpu->arch.cr8 = cr8;
880 	return 0;
881 }
882 EXPORT_SYMBOL_GPL(kvm_set_cr8);
883 
884 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
885 {
886 	if (lapic_in_kernel(vcpu))
887 		return kvm_lapic_get_cr8(vcpu);
888 	else
889 		return vcpu->arch.cr8;
890 }
891 EXPORT_SYMBOL_GPL(kvm_get_cr8);
892 
893 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
894 {
895 	int i;
896 
897 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
898 		for (i = 0; i < KVM_NR_DB_REGS; i++)
899 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
900 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
901 	}
902 }
903 
904 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
905 {
906 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
907 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
908 }
909 
910 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
911 {
912 	unsigned long dr7;
913 
914 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
915 		dr7 = vcpu->arch.guest_debug_dr7;
916 	else
917 		dr7 = vcpu->arch.dr7;
918 	kvm_x86_ops->set_dr7(vcpu, dr7);
919 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
920 	if (dr7 & DR7_BP_EN_MASK)
921 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
922 }
923 
924 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
925 {
926 	u64 fixed = DR6_FIXED_1;
927 
928 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
929 		fixed |= DR6_RTM;
930 	return fixed;
931 }
932 
933 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
934 {
935 	switch (dr) {
936 	case 0 ... 3:
937 		vcpu->arch.db[dr] = val;
938 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
939 			vcpu->arch.eff_db[dr] = val;
940 		break;
941 	case 4:
942 		/* fall through */
943 	case 6:
944 		if (val & 0xffffffff00000000ULL)
945 			return -1; /* #GP */
946 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
947 		kvm_update_dr6(vcpu);
948 		break;
949 	case 5:
950 		/* fall through */
951 	default: /* 7 */
952 		if (val & 0xffffffff00000000ULL)
953 			return -1; /* #GP */
954 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
955 		kvm_update_dr7(vcpu);
956 		break;
957 	}
958 
959 	return 0;
960 }
961 
962 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
963 {
964 	if (__kvm_set_dr(vcpu, dr, val)) {
965 		kvm_inject_gp(vcpu, 0);
966 		return 1;
967 	}
968 	return 0;
969 }
970 EXPORT_SYMBOL_GPL(kvm_set_dr);
971 
972 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
973 {
974 	switch (dr) {
975 	case 0 ... 3:
976 		*val = vcpu->arch.db[dr];
977 		break;
978 	case 4:
979 		/* fall through */
980 	case 6:
981 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
982 			*val = vcpu->arch.dr6;
983 		else
984 			*val = kvm_x86_ops->get_dr6(vcpu);
985 		break;
986 	case 5:
987 		/* fall through */
988 	default: /* 7 */
989 		*val = vcpu->arch.dr7;
990 		break;
991 	}
992 	return 0;
993 }
994 EXPORT_SYMBOL_GPL(kvm_get_dr);
995 
996 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
997 {
998 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
999 	u64 data;
1000 	int err;
1001 
1002 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1003 	if (err)
1004 		return err;
1005 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1006 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1007 	return err;
1008 }
1009 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1010 
1011 /*
1012  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1013  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1014  *
1015  * This list is modified at module load time to reflect the
1016  * capabilities of the host cpu. This capabilities test skips MSRs that are
1017  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1018  * may depend on host virtualization features rather than host cpu features.
1019  */
1020 
1021 static u32 msrs_to_save[] = {
1022 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1023 	MSR_STAR,
1024 #ifdef CONFIG_X86_64
1025 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1026 #endif
1027 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1028 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1029 	MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1030 };
1031 
1032 static unsigned num_msrs_to_save;
1033 
1034 static u32 emulated_msrs[] = {
1035 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1036 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1037 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1038 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1039 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1040 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1041 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1042 	HV_X64_MSR_RESET,
1043 	HV_X64_MSR_VP_INDEX,
1044 	HV_X64_MSR_VP_RUNTIME,
1045 	HV_X64_MSR_SCONTROL,
1046 	HV_X64_MSR_STIMER0_CONFIG,
1047 	HV_X64_MSR_VP_ASSIST_PAGE,
1048 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1049 	HV_X64_MSR_TSC_EMULATION_STATUS,
1050 
1051 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1052 	MSR_KVM_PV_EOI_EN,
1053 
1054 	MSR_IA32_TSC_ADJUST,
1055 	MSR_IA32_TSCDEADLINE,
1056 	MSR_IA32_MISC_ENABLE,
1057 	MSR_IA32_MCG_STATUS,
1058 	MSR_IA32_MCG_CTL,
1059 	MSR_IA32_MCG_EXT_CTL,
1060 	MSR_IA32_SMBASE,
1061 	MSR_SMI_COUNT,
1062 	MSR_PLATFORM_INFO,
1063 	MSR_MISC_FEATURES_ENABLES,
1064 };
1065 
1066 static unsigned num_emulated_msrs;
1067 
1068 /*
1069  * List of msr numbers which are used to expose MSR-based features that
1070  * can be used by a hypervisor to validate requested CPU features.
1071  */
1072 static u32 msr_based_features[] = {
1073 	MSR_IA32_VMX_BASIC,
1074 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1075 	MSR_IA32_VMX_PINBASED_CTLS,
1076 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1077 	MSR_IA32_VMX_PROCBASED_CTLS,
1078 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1079 	MSR_IA32_VMX_EXIT_CTLS,
1080 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1081 	MSR_IA32_VMX_ENTRY_CTLS,
1082 	MSR_IA32_VMX_MISC,
1083 	MSR_IA32_VMX_CR0_FIXED0,
1084 	MSR_IA32_VMX_CR0_FIXED1,
1085 	MSR_IA32_VMX_CR4_FIXED0,
1086 	MSR_IA32_VMX_CR4_FIXED1,
1087 	MSR_IA32_VMX_VMCS_ENUM,
1088 	MSR_IA32_VMX_PROCBASED_CTLS2,
1089 	MSR_IA32_VMX_EPT_VPID_CAP,
1090 	MSR_IA32_VMX_VMFUNC,
1091 
1092 	MSR_F10H_DECFG,
1093 	MSR_IA32_UCODE_REV,
1094 };
1095 
1096 static unsigned int num_msr_based_features;
1097 
1098 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1099 {
1100 	switch (msr->index) {
1101 	case MSR_IA32_UCODE_REV:
1102 		rdmsrl(msr->index, msr->data);
1103 		break;
1104 	default:
1105 		if (kvm_x86_ops->get_msr_feature(msr))
1106 			return 1;
1107 	}
1108 	return 0;
1109 }
1110 
1111 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1112 {
1113 	struct kvm_msr_entry msr;
1114 	int r;
1115 
1116 	msr.index = index;
1117 	r = kvm_get_msr_feature(&msr);
1118 	if (r)
1119 		return r;
1120 
1121 	*data = msr.data;
1122 
1123 	return 0;
1124 }
1125 
1126 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1127 {
1128 	if (efer & efer_reserved_bits)
1129 		return false;
1130 
1131 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1132 			return false;
1133 
1134 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1135 			return false;
1136 
1137 	return true;
1138 }
1139 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1140 
1141 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1142 {
1143 	u64 old_efer = vcpu->arch.efer;
1144 
1145 	if (!kvm_valid_efer(vcpu, efer))
1146 		return 1;
1147 
1148 	if (is_paging(vcpu)
1149 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1150 		return 1;
1151 
1152 	efer &= ~EFER_LMA;
1153 	efer |= vcpu->arch.efer & EFER_LMA;
1154 
1155 	kvm_x86_ops->set_efer(vcpu, efer);
1156 
1157 	/* Update reserved bits */
1158 	if ((efer ^ old_efer) & EFER_NX)
1159 		kvm_mmu_reset_context(vcpu);
1160 
1161 	return 0;
1162 }
1163 
1164 void kvm_enable_efer_bits(u64 mask)
1165 {
1166        efer_reserved_bits &= ~mask;
1167 }
1168 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1169 
1170 /*
1171  * Writes msr value into into the appropriate "register".
1172  * Returns 0 on success, non-0 otherwise.
1173  * Assumes vcpu_load() was already called.
1174  */
1175 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1176 {
1177 	switch (msr->index) {
1178 	case MSR_FS_BASE:
1179 	case MSR_GS_BASE:
1180 	case MSR_KERNEL_GS_BASE:
1181 	case MSR_CSTAR:
1182 	case MSR_LSTAR:
1183 		if (is_noncanonical_address(msr->data, vcpu))
1184 			return 1;
1185 		break;
1186 	case MSR_IA32_SYSENTER_EIP:
1187 	case MSR_IA32_SYSENTER_ESP:
1188 		/*
1189 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1190 		 * non-canonical address is written on Intel but not on
1191 		 * AMD (which ignores the top 32-bits, because it does
1192 		 * not implement 64-bit SYSENTER).
1193 		 *
1194 		 * 64-bit code should hence be able to write a non-canonical
1195 		 * value on AMD.  Making the address canonical ensures that
1196 		 * vmentry does not fail on Intel after writing a non-canonical
1197 		 * value, and that something deterministic happens if the guest
1198 		 * invokes 64-bit SYSENTER.
1199 		 */
1200 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1201 	}
1202 	return kvm_x86_ops->set_msr(vcpu, msr);
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_set_msr);
1205 
1206 /*
1207  * Adapt set_msr() to msr_io()'s calling convention
1208  */
1209 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1210 {
1211 	struct msr_data msr;
1212 	int r;
1213 
1214 	msr.index = index;
1215 	msr.host_initiated = true;
1216 	r = kvm_get_msr(vcpu, &msr);
1217 	if (r)
1218 		return r;
1219 
1220 	*data = msr.data;
1221 	return 0;
1222 }
1223 
1224 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1225 {
1226 	struct msr_data msr;
1227 
1228 	msr.data = *data;
1229 	msr.index = index;
1230 	msr.host_initiated = true;
1231 	return kvm_set_msr(vcpu, &msr);
1232 }
1233 
1234 #ifdef CONFIG_X86_64
1235 struct pvclock_gtod_data {
1236 	seqcount_t	seq;
1237 
1238 	struct { /* extract of a clocksource struct */
1239 		int vclock_mode;
1240 		u64	cycle_last;
1241 		u64	mask;
1242 		u32	mult;
1243 		u32	shift;
1244 	} clock;
1245 
1246 	u64		boot_ns;
1247 	u64		nsec_base;
1248 	u64		wall_time_sec;
1249 };
1250 
1251 static struct pvclock_gtod_data pvclock_gtod_data;
1252 
1253 static void update_pvclock_gtod(struct timekeeper *tk)
1254 {
1255 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1256 	u64 boot_ns;
1257 
1258 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1259 
1260 	write_seqcount_begin(&vdata->seq);
1261 
1262 	/* copy pvclock gtod data */
1263 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1264 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1265 	vdata->clock.mask		= tk->tkr_mono.mask;
1266 	vdata->clock.mult		= tk->tkr_mono.mult;
1267 	vdata->clock.shift		= tk->tkr_mono.shift;
1268 
1269 	vdata->boot_ns			= boot_ns;
1270 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1271 
1272 	vdata->wall_time_sec            = tk->xtime_sec;
1273 
1274 	write_seqcount_end(&vdata->seq);
1275 }
1276 #endif
1277 
1278 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1279 {
1280 	/*
1281 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1282 	 * vcpu_enter_guest.  This function is only called from
1283 	 * the physical CPU that is running vcpu.
1284 	 */
1285 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1286 }
1287 
1288 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1289 {
1290 	int version;
1291 	int r;
1292 	struct pvclock_wall_clock wc;
1293 	struct timespec64 boot;
1294 
1295 	if (!wall_clock)
1296 		return;
1297 
1298 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1299 	if (r)
1300 		return;
1301 
1302 	if (version & 1)
1303 		++version;  /* first time write, random junk */
1304 
1305 	++version;
1306 
1307 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1308 		return;
1309 
1310 	/*
1311 	 * The guest calculates current wall clock time by adding
1312 	 * system time (updated by kvm_guest_time_update below) to the
1313 	 * wall clock specified here.  guest system time equals host
1314 	 * system time for us, thus we must fill in host boot time here.
1315 	 */
1316 	getboottime64(&boot);
1317 
1318 	if (kvm->arch.kvmclock_offset) {
1319 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1320 		boot = timespec64_sub(boot, ts);
1321 	}
1322 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1323 	wc.nsec = boot.tv_nsec;
1324 	wc.version = version;
1325 
1326 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1327 
1328 	version++;
1329 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1330 }
1331 
1332 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1333 {
1334 	do_shl32_div32(dividend, divisor);
1335 	return dividend;
1336 }
1337 
1338 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1339 			       s8 *pshift, u32 *pmultiplier)
1340 {
1341 	uint64_t scaled64;
1342 	int32_t  shift = 0;
1343 	uint64_t tps64;
1344 	uint32_t tps32;
1345 
1346 	tps64 = base_hz;
1347 	scaled64 = scaled_hz;
1348 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1349 		tps64 >>= 1;
1350 		shift--;
1351 	}
1352 
1353 	tps32 = (uint32_t)tps64;
1354 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1355 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1356 			scaled64 >>= 1;
1357 		else
1358 			tps32 <<= 1;
1359 		shift++;
1360 	}
1361 
1362 	*pshift = shift;
1363 	*pmultiplier = div_frac(scaled64, tps32);
1364 
1365 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1366 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1367 }
1368 
1369 #ifdef CONFIG_X86_64
1370 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1371 #endif
1372 
1373 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1374 static unsigned long max_tsc_khz;
1375 
1376 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1377 {
1378 	u64 v = (u64)khz * (1000000 + ppm);
1379 	do_div(v, 1000000);
1380 	return v;
1381 }
1382 
1383 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1384 {
1385 	u64 ratio;
1386 
1387 	/* Guest TSC same frequency as host TSC? */
1388 	if (!scale) {
1389 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1390 		return 0;
1391 	}
1392 
1393 	/* TSC scaling supported? */
1394 	if (!kvm_has_tsc_control) {
1395 		if (user_tsc_khz > tsc_khz) {
1396 			vcpu->arch.tsc_catchup = 1;
1397 			vcpu->arch.tsc_always_catchup = 1;
1398 			return 0;
1399 		} else {
1400 			WARN(1, "user requested TSC rate below hardware speed\n");
1401 			return -1;
1402 		}
1403 	}
1404 
1405 	/* TSC scaling required  - calculate ratio */
1406 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1407 				user_tsc_khz, tsc_khz);
1408 
1409 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1410 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1411 			  user_tsc_khz);
1412 		return -1;
1413 	}
1414 
1415 	vcpu->arch.tsc_scaling_ratio = ratio;
1416 	return 0;
1417 }
1418 
1419 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1420 {
1421 	u32 thresh_lo, thresh_hi;
1422 	int use_scaling = 0;
1423 
1424 	/* tsc_khz can be zero if TSC calibration fails */
1425 	if (user_tsc_khz == 0) {
1426 		/* set tsc_scaling_ratio to a safe value */
1427 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1428 		return -1;
1429 	}
1430 
1431 	/* Compute a scale to convert nanoseconds in TSC cycles */
1432 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1433 			   &vcpu->arch.virtual_tsc_shift,
1434 			   &vcpu->arch.virtual_tsc_mult);
1435 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1436 
1437 	/*
1438 	 * Compute the variation in TSC rate which is acceptable
1439 	 * within the range of tolerance and decide if the
1440 	 * rate being applied is within that bounds of the hardware
1441 	 * rate.  If so, no scaling or compensation need be done.
1442 	 */
1443 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1444 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1445 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1446 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1447 		use_scaling = 1;
1448 	}
1449 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1450 }
1451 
1452 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1453 {
1454 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1455 				      vcpu->arch.virtual_tsc_mult,
1456 				      vcpu->arch.virtual_tsc_shift);
1457 	tsc += vcpu->arch.this_tsc_write;
1458 	return tsc;
1459 }
1460 
1461 static inline int gtod_is_based_on_tsc(int mode)
1462 {
1463 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1464 }
1465 
1466 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1467 {
1468 #ifdef CONFIG_X86_64
1469 	bool vcpus_matched;
1470 	struct kvm_arch *ka = &vcpu->kvm->arch;
1471 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1472 
1473 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1474 			 atomic_read(&vcpu->kvm->online_vcpus));
1475 
1476 	/*
1477 	 * Once the masterclock is enabled, always perform request in
1478 	 * order to update it.
1479 	 *
1480 	 * In order to enable masterclock, the host clocksource must be TSC
1481 	 * and the vcpus need to have matched TSCs.  When that happens,
1482 	 * perform request to enable masterclock.
1483 	 */
1484 	if (ka->use_master_clock ||
1485 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1486 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1487 
1488 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1489 			    atomic_read(&vcpu->kvm->online_vcpus),
1490 		            ka->use_master_clock, gtod->clock.vclock_mode);
1491 #endif
1492 }
1493 
1494 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1495 {
1496 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1497 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1498 }
1499 
1500 /*
1501  * Multiply tsc by a fixed point number represented by ratio.
1502  *
1503  * The most significant 64-N bits (mult) of ratio represent the
1504  * integral part of the fixed point number; the remaining N bits
1505  * (frac) represent the fractional part, ie. ratio represents a fixed
1506  * point number (mult + frac * 2^(-N)).
1507  *
1508  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1509  */
1510 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1511 {
1512 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1513 }
1514 
1515 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1516 {
1517 	u64 _tsc = tsc;
1518 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1519 
1520 	if (ratio != kvm_default_tsc_scaling_ratio)
1521 		_tsc = __scale_tsc(ratio, tsc);
1522 
1523 	return _tsc;
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1526 
1527 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1528 {
1529 	u64 tsc;
1530 
1531 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1532 
1533 	return target_tsc - tsc;
1534 }
1535 
1536 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1537 {
1538 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1539 
1540 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1541 }
1542 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1543 
1544 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1545 {
1546 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1547 	vcpu->arch.tsc_offset = offset;
1548 }
1549 
1550 static inline bool kvm_check_tsc_unstable(void)
1551 {
1552 #ifdef CONFIG_X86_64
1553 	/*
1554 	 * TSC is marked unstable when we're running on Hyper-V,
1555 	 * 'TSC page' clocksource is good.
1556 	 */
1557 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1558 		return false;
1559 #endif
1560 	return check_tsc_unstable();
1561 }
1562 
1563 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1564 {
1565 	struct kvm *kvm = vcpu->kvm;
1566 	u64 offset, ns, elapsed;
1567 	unsigned long flags;
1568 	bool matched;
1569 	bool already_matched;
1570 	u64 data = msr->data;
1571 	bool synchronizing = false;
1572 
1573 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1574 	offset = kvm_compute_tsc_offset(vcpu, data);
1575 	ns = ktime_get_boot_ns();
1576 	elapsed = ns - kvm->arch.last_tsc_nsec;
1577 
1578 	if (vcpu->arch.virtual_tsc_khz) {
1579 		if (data == 0 && msr->host_initiated) {
1580 			/*
1581 			 * detection of vcpu initialization -- need to sync
1582 			 * with other vCPUs. This particularly helps to keep
1583 			 * kvm_clock stable after CPU hotplug
1584 			 */
1585 			synchronizing = true;
1586 		} else {
1587 			u64 tsc_exp = kvm->arch.last_tsc_write +
1588 						nsec_to_cycles(vcpu, elapsed);
1589 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1590 			/*
1591 			 * Special case: TSC write with a small delta (1 second)
1592 			 * of virtual cycle time against real time is
1593 			 * interpreted as an attempt to synchronize the CPU.
1594 			 */
1595 			synchronizing = data < tsc_exp + tsc_hz &&
1596 					data + tsc_hz > tsc_exp;
1597 		}
1598 	}
1599 
1600 	/*
1601 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1602 	 * TSC, we add elapsed time in this computation.  We could let the
1603 	 * compensation code attempt to catch up if we fall behind, but
1604 	 * it's better to try to match offsets from the beginning.
1605          */
1606 	if (synchronizing &&
1607 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1608 		if (!kvm_check_tsc_unstable()) {
1609 			offset = kvm->arch.cur_tsc_offset;
1610 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1611 		} else {
1612 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1613 			data += delta;
1614 			offset = kvm_compute_tsc_offset(vcpu, data);
1615 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1616 		}
1617 		matched = true;
1618 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1619 	} else {
1620 		/*
1621 		 * We split periods of matched TSC writes into generations.
1622 		 * For each generation, we track the original measured
1623 		 * nanosecond time, offset, and write, so if TSCs are in
1624 		 * sync, we can match exact offset, and if not, we can match
1625 		 * exact software computation in compute_guest_tsc()
1626 		 *
1627 		 * These values are tracked in kvm->arch.cur_xxx variables.
1628 		 */
1629 		kvm->arch.cur_tsc_generation++;
1630 		kvm->arch.cur_tsc_nsec = ns;
1631 		kvm->arch.cur_tsc_write = data;
1632 		kvm->arch.cur_tsc_offset = offset;
1633 		matched = false;
1634 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1635 			 kvm->arch.cur_tsc_generation, data);
1636 	}
1637 
1638 	/*
1639 	 * We also track th most recent recorded KHZ, write and time to
1640 	 * allow the matching interval to be extended at each write.
1641 	 */
1642 	kvm->arch.last_tsc_nsec = ns;
1643 	kvm->arch.last_tsc_write = data;
1644 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1645 
1646 	vcpu->arch.last_guest_tsc = data;
1647 
1648 	/* Keep track of which generation this VCPU has synchronized to */
1649 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1650 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1651 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1652 
1653 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1654 		update_ia32_tsc_adjust_msr(vcpu, offset);
1655 
1656 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1657 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1658 
1659 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1660 	if (!matched) {
1661 		kvm->arch.nr_vcpus_matched_tsc = 0;
1662 	} else if (!already_matched) {
1663 		kvm->arch.nr_vcpus_matched_tsc++;
1664 	}
1665 
1666 	kvm_track_tsc_matching(vcpu);
1667 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1668 }
1669 
1670 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1671 
1672 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1673 					   s64 adjustment)
1674 {
1675 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1676 }
1677 
1678 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1679 {
1680 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1681 		WARN_ON(adjustment < 0);
1682 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1683 	adjust_tsc_offset_guest(vcpu, adjustment);
1684 }
1685 
1686 #ifdef CONFIG_X86_64
1687 
1688 static u64 read_tsc(void)
1689 {
1690 	u64 ret = (u64)rdtsc_ordered();
1691 	u64 last = pvclock_gtod_data.clock.cycle_last;
1692 
1693 	if (likely(ret >= last))
1694 		return ret;
1695 
1696 	/*
1697 	 * GCC likes to generate cmov here, but this branch is extremely
1698 	 * predictable (it's just a function of time and the likely is
1699 	 * very likely) and there's a data dependence, so force GCC
1700 	 * to generate a branch instead.  I don't barrier() because
1701 	 * we don't actually need a barrier, and if this function
1702 	 * ever gets inlined it will generate worse code.
1703 	 */
1704 	asm volatile ("");
1705 	return last;
1706 }
1707 
1708 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1709 {
1710 	long v;
1711 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1712 	u64 tsc_pg_val;
1713 
1714 	switch (gtod->clock.vclock_mode) {
1715 	case VCLOCK_HVCLOCK:
1716 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1717 						  tsc_timestamp);
1718 		if (tsc_pg_val != U64_MAX) {
1719 			/* TSC page valid */
1720 			*mode = VCLOCK_HVCLOCK;
1721 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1722 				gtod->clock.mask;
1723 		} else {
1724 			/* TSC page invalid */
1725 			*mode = VCLOCK_NONE;
1726 		}
1727 		break;
1728 	case VCLOCK_TSC:
1729 		*mode = VCLOCK_TSC;
1730 		*tsc_timestamp = read_tsc();
1731 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1732 			gtod->clock.mask;
1733 		break;
1734 	default:
1735 		*mode = VCLOCK_NONE;
1736 	}
1737 
1738 	if (*mode == VCLOCK_NONE)
1739 		*tsc_timestamp = v = 0;
1740 
1741 	return v * gtod->clock.mult;
1742 }
1743 
1744 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1745 {
1746 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1747 	unsigned long seq;
1748 	int mode;
1749 	u64 ns;
1750 
1751 	do {
1752 		seq = read_seqcount_begin(&gtod->seq);
1753 		ns = gtod->nsec_base;
1754 		ns += vgettsc(tsc_timestamp, &mode);
1755 		ns >>= gtod->clock.shift;
1756 		ns += gtod->boot_ns;
1757 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1758 	*t = ns;
1759 
1760 	return mode;
1761 }
1762 
1763 static int do_realtime(struct timespec *ts, u64 *tsc_timestamp)
1764 {
1765 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1766 	unsigned long seq;
1767 	int mode;
1768 	u64 ns;
1769 
1770 	do {
1771 		seq = read_seqcount_begin(&gtod->seq);
1772 		ts->tv_sec = gtod->wall_time_sec;
1773 		ns = gtod->nsec_base;
1774 		ns += vgettsc(tsc_timestamp, &mode);
1775 		ns >>= gtod->clock.shift;
1776 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1777 
1778 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1779 	ts->tv_nsec = ns;
1780 
1781 	return mode;
1782 }
1783 
1784 /* returns true if host is using TSC based clocksource */
1785 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1786 {
1787 	/* checked again under seqlock below */
1788 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1789 		return false;
1790 
1791 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1792 						      tsc_timestamp));
1793 }
1794 
1795 /* returns true if host is using TSC based clocksource */
1796 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1797 					   u64 *tsc_timestamp)
1798 {
1799 	/* checked again under seqlock below */
1800 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1801 		return false;
1802 
1803 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1804 }
1805 #endif
1806 
1807 /*
1808  *
1809  * Assuming a stable TSC across physical CPUS, and a stable TSC
1810  * across virtual CPUs, the following condition is possible.
1811  * Each numbered line represents an event visible to both
1812  * CPUs at the next numbered event.
1813  *
1814  * "timespecX" represents host monotonic time. "tscX" represents
1815  * RDTSC value.
1816  *
1817  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1818  *
1819  * 1.  read timespec0,tsc0
1820  * 2.					| timespec1 = timespec0 + N
1821  * 					| tsc1 = tsc0 + M
1822  * 3. transition to guest		| transition to guest
1823  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1824  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1825  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1826  *
1827  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1828  *
1829  * 	- ret0 < ret1
1830  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1831  *		...
1832  *	- 0 < N - M => M < N
1833  *
1834  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1835  * always the case (the difference between two distinct xtime instances
1836  * might be smaller then the difference between corresponding TSC reads,
1837  * when updating guest vcpus pvclock areas).
1838  *
1839  * To avoid that problem, do not allow visibility of distinct
1840  * system_timestamp/tsc_timestamp values simultaneously: use a master
1841  * copy of host monotonic time values. Update that master copy
1842  * in lockstep.
1843  *
1844  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1845  *
1846  */
1847 
1848 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1849 {
1850 #ifdef CONFIG_X86_64
1851 	struct kvm_arch *ka = &kvm->arch;
1852 	int vclock_mode;
1853 	bool host_tsc_clocksource, vcpus_matched;
1854 
1855 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1856 			atomic_read(&kvm->online_vcpus));
1857 
1858 	/*
1859 	 * If the host uses TSC clock, then passthrough TSC as stable
1860 	 * to the guest.
1861 	 */
1862 	host_tsc_clocksource = kvm_get_time_and_clockread(
1863 					&ka->master_kernel_ns,
1864 					&ka->master_cycle_now);
1865 
1866 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1867 				&& !ka->backwards_tsc_observed
1868 				&& !ka->boot_vcpu_runs_old_kvmclock;
1869 
1870 	if (ka->use_master_clock)
1871 		atomic_set(&kvm_guest_has_master_clock, 1);
1872 
1873 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1874 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1875 					vcpus_matched);
1876 #endif
1877 }
1878 
1879 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1880 {
1881 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1882 }
1883 
1884 static void kvm_gen_update_masterclock(struct kvm *kvm)
1885 {
1886 #ifdef CONFIG_X86_64
1887 	int i;
1888 	struct kvm_vcpu *vcpu;
1889 	struct kvm_arch *ka = &kvm->arch;
1890 
1891 	spin_lock(&ka->pvclock_gtod_sync_lock);
1892 	kvm_make_mclock_inprogress_request(kvm);
1893 	/* no guest entries from this point */
1894 	pvclock_update_vm_gtod_copy(kvm);
1895 
1896 	kvm_for_each_vcpu(i, vcpu, kvm)
1897 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1898 
1899 	/* guest entries allowed */
1900 	kvm_for_each_vcpu(i, vcpu, kvm)
1901 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1902 
1903 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1904 #endif
1905 }
1906 
1907 u64 get_kvmclock_ns(struct kvm *kvm)
1908 {
1909 	struct kvm_arch *ka = &kvm->arch;
1910 	struct pvclock_vcpu_time_info hv_clock;
1911 	u64 ret;
1912 
1913 	spin_lock(&ka->pvclock_gtod_sync_lock);
1914 	if (!ka->use_master_clock) {
1915 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1916 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1917 	}
1918 
1919 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1920 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1921 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1922 
1923 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
1924 	get_cpu();
1925 
1926 	if (__this_cpu_read(cpu_tsc_khz)) {
1927 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1928 				   &hv_clock.tsc_shift,
1929 				   &hv_clock.tsc_to_system_mul);
1930 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1931 	} else
1932 		ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1933 
1934 	put_cpu();
1935 
1936 	return ret;
1937 }
1938 
1939 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1940 {
1941 	struct kvm_vcpu_arch *vcpu = &v->arch;
1942 	struct pvclock_vcpu_time_info guest_hv_clock;
1943 
1944 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1945 		&guest_hv_clock, sizeof(guest_hv_clock))))
1946 		return;
1947 
1948 	/* This VCPU is paused, but it's legal for a guest to read another
1949 	 * VCPU's kvmclock, so we really have to follow the specification where
1950 	 * it says that version is odd if data is being modified, and even after
1951 	 * it is consistent.
1952 	 *
1953 	 * Version field updates must be kept separate.  This is because
1954 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1955 	 * writes within a string instruction are weakly ordered.  So there
1956 	 * are three writes overall.
1957 	 *
1958 	 * As a small optimization, only write the version field in the first
1959 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1960 	 * version field is the first in the struct.
1961 	 */
1962 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1963 
1964 	if (guest_hv_clock.version & 1)
1965 		++guest_hv_clock.version;  /* first time write, random junk */
1966 
1967 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1968 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1969 				&vcpu->hv_clock,
1970 				sizeof(vcpu->hv_clock.version));
1971 
1972 	smp_wmb();
1973 
1974 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1975 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1976 
1977 	if (vcpu->pvclock_set_guest_stopped_request) {
1978 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1979 		vcpu->pvclock_set_guest_stopped_request = false;
1980 	}
1981 
1982 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1983 
1984 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1985 				&vcpu->hv_clock,
1986 				sizeof(vcpu->hv_clock));
1987 
1988 	smp_wmb();
1989 
1990 	vcpu->hv_clock.version++;
1991 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1992 				&vcpu->hv_clock,
1993 				sizeof(vcpu->hv_clock.version));
1994 }
1995 
1996 static int kvm_guest_time_update(struct kvm_vcpu *v)
1997 {
1998 	unsigned long flags, tgt_tsc_khz;
1999 	struct kvm_vcpu_arch *vcpu = &v->arch;
2000 	struct kvm_arch *ka = &v->kvm->arch;
2001 	s64 kernel_ns;
2002 	u64 tsc_timestamp, host_tsc;
2003 	u8 pvclock_flags;
2004 	bool use_master_clock;
2005 
2006 	kernel_ns = 0;
2007 	host_tsc = 0;
2008 
2009 	/*
2010 	 * If the host uses TSC clock, then passthrough TSC as stable
2011 	 * to the guest.
2012 	 */
2013 	spin_lock(&ka->pvclock_gtod_sync_lock);
2014 	use_master_clock = ka->use_master_clock;
2015 	if (use_master_clock) {
2016 		host_tsc = ka->master_cycle_now;
2017 		kernel_ns = ka->master_kernel_ns;
2018 	}
2019 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2020 
2021 	/* Keep irq disabled to prevent changes to the clock */
2022 	local_irq_save(flags);
2023 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2024 	if (unlikely(tgt_tsc_khz == 0)) {
2025 		local_irq_restore(flags);
2026 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2027 		return 1;
2028 	}
2029 	if (!use_master_clock) {
2030 		host_tsc = rdtsc();
2031 		kernel_ns = ktime_get_boot_ns();
2032 	}
2033 
2034 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2035 
2036 	/*
2037 	 * We may have to catch up the TSC to match elapsed wall clock
2038 	 * time for two reasons, even if kvmclock is used.
2039 	 *   1) CPU could have been running below the maximum TSC rate
2040 	 *   2) Broken TSC compensation resets the base at each VCPU
2041 	 *      entry to avoid unknown leaps of TSC even when running
2042 	 *      again on the same CPU.  This may cause apparent elapsed
2043 	 *      time to disappear, and the guest to stand still or run
2044 	 *	very slowly.
2045 	 */
2046 	if (vcpu->tsc_catchup) {
2047 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2048 		if (tsc > tsc_timestamp) {
2049 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2050 			tsc_timestamp = tsc;
2051 		}
2052 	}
2053 
2054 	local_irq_restore(flags);
2055 
2056 	/* With all the info we got, fill in the values */
2057 
2058 	if (kvm_has_tsc_control)
2059 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2060 
2061 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2062 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2063 				   &vcpu->hv_clock.tsc_shift,
2064 				   &vcpu->hv_clock.tsc_to_system_mul);
2065 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2066 	}
2067 
2068 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2069 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2070 	vcpu->last_guest_tsc = tsc_timestamp;
2071 
2072 	/* If the host uses TSC clocksource, then it is stable */
2073 	pvclock_flags = 0;
2074 	if (use_master_clock)
2075 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2076 
2077 	vcpu->hv_clock.flags = pvclock_flags;
2078 
2079 	if (vcpu->pv_time_enabled)
2080 		kvm_setup_pvclock_page(v);
2081 	if (v == kvm_get_vcpu(v->kvm, 0))
2082 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2083 	return 0;
2084 }
2085 
2086 /*
2087  * kvmclock updates which are isolated to a given vcpu, such as
2088  * vcpu->cpu migration, should not allow system_timestamp from
2089  * the rest of the vcpus to remain static. Otherwise ntp frequency
2090  * correction applies to one vcpu's system_timestamp but not
2091  * the others.
2092  *
2093  * So in those cases, request a kvmclock update for all vcpus.
2094  * We need to rate-limit these requests though, as they can
2095  * considerably slow guests that have a large number of vcpus.
2096  * The time for a remote vcpu to update its kvmclock is bound
2097  * by the delay we use to rate-limit the updates.
2098  */
2099 
2100 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2101 
2102 static void kvmclock_update_fn(struct work_struct *work)
2103 {
2104 	int i;
2105 	struct delayed_work *dwork = to_delayed_work(work);
2106 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2107 					   kvmclock_update_work);
2108 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2109 	struct kvm_vcpu *vcpu;
2110 
2111 	kvm_for_each_vcpu(i, vcpu, kvm) {
2112 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2113 		kvm_vcpu_kick(vcpu);
2114 	}
2115 }
2116 
2117 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2118 {
2119 	struct kvm *kvm = v->kvm;
2120 
2121 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2122 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2123 					KVMCLOCK_UPDATE_DELAY);
2124 }
2125 
2126 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2127 
2128 static void kvmclock_sync_fn(struct work_struct *work)
2129 {
2130 	struct delayed_work *dwork = to_delayed_work(work);
2131 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2132 					   kvmclock_sync_work);
2133 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2134 
2135 	if (!kvmclock_periodic_sync)
2136 		return;
2137 
2138 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2139 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2140 					KVMCLOCK_SYNC_PERIOD);
2141 }
2142 
2143 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2144 {
2145 	u64 mcg_cap = vcpu->arch.mcg_cap;
2146 	unsigned bank_num = mcg_cap & 0xff;
2147 	u32 msr = msr_info->index;
2148 	u64 data = msr_info->data;
2149 
2150 	switch (msr) {
2151 	case MSR_IA32_MCG_STATUS:
2152 		vcpu->arch.mcg_status = data;
2153 		break;
2154 	case MSR_IA32_MCG_CTL:
2155 		if (!(mcg_cap & MCG_CTL_P))
2156 			return 1;
2157 		if (data != 0 && data != ~(u64)0)
2158 			return -1;
2159 		vcpu->arch.mcg_ctl = data;
2160 		break;
2161 	default:
2162 		if (msr >= MSR_IA32_MC0_CTL &&
2163 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2164 			u32 offset = msr - MSR_IA32_MC0_CTL;
2165 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2166 			 * some Linux kernels though clear bit 10 in bank 4 to
2167 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2168 			 * this to avoid an uncatched #GP in the guest
2169 			 */
2170 			if ((offset & 0x3) == 0 &&
2171 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2172 				return -1;
2173 			if (!msr_info->host_initiated &&
2174 				(offset & 0x3) == 1 && data != 0)
2175 				return -1;
2176 			vcpu->arch.mce_banks[offset] = data;
2177 			break;
2178 		}
2179 		return 1;
2180 	}
2181 	return 0;
2182 }
2183 
2184 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2185 {
2186 	struct kvm *kvm = vcpu->kvm;
2187 	int lm = is_long_mode(vcpu);
2188 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2189 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2190 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2191 		: kvm->arch.xen_hvm_config.blob_size_32;
2192 	u32 page_num = data & ~PAGE_MASK;
2193 	u64 page_addr = data & PAGE_MASK;
2194 	u8 *page;
2195 	int r;
2196 
2197 	r = -E2BIG;
2198 	if (page_num >= blob_size)
2199 		goto out;
2200 	r = -ENOMEM;
2201 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2202 	if (IS_ERR(page)) {
2203 		r = PTR_ERR(page);
2204 		goto out;
2205 	}
2206 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2207 		goto out_free;
2208 	r = 0;
2209 out_free:
2210 	kfree(page);
2211 out:
2212 	return r;
2213 }
2214 
2215 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2216 {
2217 	gpa_t gpa = data & ~0x3f;
2218 
2219 	/* Bits 3:5 are reserved, Should be zero */
2220 	if (data & 0x38)
2221 		return 1;
2222 
2223 	vcpu->arch.apf.msr_val = data;
2224 
2225 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2226 		kvm_clear_async_pf_completion_queue(vcpu);
2227 		kvm_async_pf_hash_reset(vcpu);
2228 		return 0;
2229 	}
2230 
2231 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2232 					sizeof(u32)))
2233 		return 1;
2234 
2235 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2236 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2237 	kvm_async_pf_wakeup_all(vcpu);
2238 	return 0;
2239 }
2240 
2241 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2242 {
2243 	vcpu->arch.pv_time_enabled = false;
2244 }
2245 
2246 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2247 {
2248 	++vcpu->stat.tlb_flush;
2249 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2250 }
2251 
2252 static void record_steal_time(struct kvm_vcpu *vcpu)
2253 {
2254 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2255 		return;
2256 
2257 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2258 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2259 		return;
2260 
2261 	/*
2262 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2263 	 * expensive IPIs.
2264 	 */
2265 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2266 		kvm_vcpu_flush_tlb(vcpu, false);
2267 
2268 	if (vcpu->arch.st.steal.version & 1)
2269 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2270 
2271 	vcpu->arch.st.steal.version += 1;
2272 
2273 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2274 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2275 
2276 	smp_wmb();
2277 
2278 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2279 		vcpu->arch.st.last_steal;
2280 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2281 
2282 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2283 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2284 
2285 	smp_wmb();
2286 
2287 	vcpu->arch.st.steal.version += 1;
2288 
2289 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2290 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2291 }
2292 
2293 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2294 {
2295 	bool pr = false;
2296 	u32 msr = msr_info->index;
2297 	u64 data = msr_info->data;
2298 
2299 	switch (msr) {
2300 	case MSR_AMD64_NB_CFG:
2301 	case MSR_IA32_UCODE_WRITE:
2302 	case MSR_VM_HSAVE_PA:
2303 	case MSR_AMD64_PATCH_LOADER:
2304 	case MSR_AMD64_BU_CFG2:
2305 	case MSR_AMD64_DC_CFG:
2306 		break;
2307 
2308 	case MSR_IA32_UCODE_REV:
2309 		if (msr_info->host_initiated)
2310 			vcpu->arch.microcode_version = data;
2311 		break;
2312 	case MSR_EFER:
2313 		return set_efer(vcpu, data);
2314 	case MSR_K7_HWCR:
2315 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2316 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2317 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2318 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2319 		if (data != 0) {
2320 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2321 				    data);
2322 			return 1;
2323 		}
2324 		break;
2325 	case MSR_FAM10H_MMIO_CONF_BASE:
2326 		if (data != 0) {
2327 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2328 				    "0x%llx\n", data);
2329 			return 1;
2330 		}
2331 		break;
2332 	case MSR_IA32_DEBUGCTLMSR:
2333 		if (!data) {
2334 			/* We support the non-activated case already */
2335 			break;
2336 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2337 			/* Values other than LBR and BTF are vendor-specific,
2338 			   thus reserved and should throw a #GP */
2339 			return 1;
2340 		}
2341 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2342 			    __func__, data);
2343 		break;
2344 	case 0x200 ... 0x2ff:
2345 		return kvm_mtrr_set_msr(vcpu, msr, data);
2346 	case MSR_IA32_APICBASE:
2347 		return kvm_set_apic_base(vcpu, msr_info);
2348 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2349 		return kvm_x2apic_msr_write(vcpu, msr, data);
2350 	case MSR_IA32_TSCDEADLINE:
2351 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2352 		break;
2353 	case MSR_IA32_TSC_ADJUST:
2354 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2355 			if (!msr_info->host_initiated) {
2356 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2357 				adjust_tsc_offset_guest(vcpu, adj);
2358 			}
2359 			vcpu->arch.ia32_tsc_adjust_msr = data;
2360 		}
2361 		break;
2362 	case MSR_IA32_MISC_ENABLE:
2363 		vcpu->arch.ia32_misc_enable_msr = data;
2364 		break;
2365 	case MSR_IA32_SMBASE:
2366 		if (!msr_info->host_initiated)
2367 			return 1;
2368 		vcpu->arch.smbase = data;
2369 		break;
2370 	case MSR_IA32_TSC:
2371 		kvm_write_tsc(vcpu, msr_info);
2372 		break;
2373 	case MSR_SMI_COUNT:
2374 		if (!msr_info->host_initiated)
2375 			return 1;
2376 		vcpu->arch.smi_count = data;
2377 		break;
2378 	case MSR_KVM_WALL_CLOCK_NEW:
2379 	case MSR_KVM_WALL_CLOCK:
2380 		vcpu->kvm->arch.wall_clock = data;
2381 		kvm_write_wall_clock(vcpu->kvm, data);
2382 		break;
2383 	case MSR_KVM_SYSTEM_TIME_NEW:
2384 	case MSR_KVM_SYSTEM_TIME: {
2385 		struct kvm_arch *ka = &vcpu->kvm->arch;
2386 
2387 		kvmclock_reset(vcpu);
2388 
2389 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2390 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2391 
2392 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2393 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2394 
2395 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2396 		}
2397 
2398 		vcpu->arch.time = data;
2399 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2400 
2401 		/* we verify if the enable bit is set... */
2402 		if (!(data & 1))
2403 			break;
2404 
2405 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2406 		     &vcpu->arch.pv_time, data & ~1ULL,
2407 		     sizeof(struct pvclock_vcpu_time_info)))
2408 			vcpu->arch.pv_time_enabled = false;
2409 		else
2410 			vcpu->arch.pv_time_enabled = true;
2411 
2412 		break;
2413 	}
2414 	case MSR_KVM_ASYNC_PF_EN:
2415 		if (kvm_pv_enable_async_pf(vcpu, data))
2416 			return 1;
2417 		break;
2418 	case MSR_KVM_STEAL_TIME:
2419 
2420 		if (unlikely(!sched_info_on()))
2421 			return 1;
2422 
2423 		if (data & KVM_STEAL_RESERVED_MASK)
2424 			return 1;
2425 
2426 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2427 						data & KVM_STEAL_VALID_BITS,
2428 						sizeof(struct kvm_steal_time)))
2429 			return 1;
2430 
2431 		vcpu->arch.st.msr_val = data;
2432 
2433 		if (!(data & KVM_MSR_ENABLED))
2434 			break;
2435 
2436 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2437 
2438 		break;
2439 	case MSR_KVM_PV_EOI_EN:
2440 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2441 			return 1;
2442 		break;
2443 
2444 	case MSR_IA32_MCG_CTL:
2445 	case MSR_IA32_MCG_STATUS:
2446 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2447 		return set_msr_mce(vcpu, msr_info);
2448 
2449 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2450 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2451 		pr = true; /* fall through */
2452 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2453 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2454 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2455 			return kvm_pmu_set_msr(vcpu, msr_info);
2456 
2457 		if (pr || data != 0)
2458 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2459 				    "0x%x data 0x%llx\n", msr, data);
2460 		break;
2461 	case MSR_K7_CLK_CTL:
2462 		/*
2463 		 * Ignore all writes to this no longer documented MSR.
2464 		 * Writes are only relevant for old K7 processors,
2465 		 * all pre-dating SVM, but a recommended workaround from
2466 		 * AMD for these chips. It is possible to specify the
2467 		 * affected processor models on the command line, hence
2468 		 * the need to ignore the workaround.
2469 		 */
2470 		break;
2471 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2472 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2473 	case HV_X64_MSR_CRASH_CTL:
2474 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2475 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2476 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2477 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2478 		return kvm_hv_set_msr_common(vcpu, msr, data,
2479 					     msr_info->host_initiated);
2480 	case MSR_IA32_BBL_CR_CTL3:
2481 		/* Drop writes to this legacy MSR -- see rdmsr
2482 		 * counterpart for further detail.
2483 		 */
2484 		if (report_ignored_msrs)
2485 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2486 				msr, data);
2487 		break;
2488 	case MSR_AMD64_OSVW_ID_LENGTH:
2489 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2490 			return 1;
2491 		vcpu->arch.osvw.length = data;
2492 		break;
2493 	case MSR_AMD64_OSVW_STATUS:
2494 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2495 			return 1;
2496 		vcpu->arch.osvw.status = data;
2497 		break;
2498 	case MSR_PLATFORM_INFO:
2499 		if (!msr_info->host_initiated ||
2500 		    data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2501 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2502 		     cpuid_fault_enabled(vcpu)))
2503 			return 1;
2504 		vcpu->arch.msr_platform_info = data;
2505 		break;
2506 	case MSR_MISC_FEATURES_ENABLES:
2507 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2508 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2509 		     !supports_cpuid_fault(vcpu)))
2510 			return 1;
2511 		vcpu->arch.msr_misc_features_enables = data;
2512 		break;
2513 	default:
2514 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2515 			return xen_hvm_config(vcpu, data);
2516 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2517 			return kvm_pmu_set_msr(vcpu, msr_info);
2518 		if (!ignore_msrs) {
2519 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2520 				    msr, data);
2521 			return 1;
2522 		} else {
2523 			if (report_ignored_msrs)
2524 				vcpu_unimpl(vcpu,
2525 					"ignored wrmsr: 0x%x data 0x%llx\n",
2526 					msr, data);
2527 			break;
2528 		}
2529 	}
2530 	return 0;
2531 }
2532 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2533 
2534 
2535 /*
2536  * Reads an msr value (of 'msr_index') into 'pdata'.
2537  * Returns 0 on success, non-0 otherwise.
2538  * Assumes vcpu_load() was already called.
2539  */
2540 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2541 {
2542 	return kvm_x86_ops->get_msr(vcpu, msr);
2543 }
2544 EXPORT_SYMBOL_GPL(kvm_get_msr);
2545 
2546 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2547 {
2548 	u64 data;
2549 	u64 mcg_cap = vcpu->arch.mcg_cap;
2550 	unsigned bank_num = mcg_cap & 0xff;
2551 
2552 	switch (msr) {
2553 	case MSR_IA32_P5_MC_ADDR:
2554 	case MSR_IA32_P5_MC_TYPE:
2555 		data = 0;
2556 		break;
2557 	case MSR_IA32_MCG_CAP:
2558 		data = vcpu->arch.mcg_cap;
2559 		break;
2560 	case MSR_IA32_MCG_CTL:
2561 		if (!(mcg_cap & MCG_CTL_P))
2562 			return 1;
2563 		data = vcpu->arch.mcg_ctl;
2564 		break;
2565 	case MSR_IA32_MCG_STATUS:
2566 		data = vcpu->arch.mcg_status;
2567 		break;
2568 	default:
2569 		if (msr >= MSR_IA32_MC0_CTL &&
2570 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2571 			u32 offset = msr - MSR_IA32_MC0_CTL;
2572 			data = vcpu->arch.mce_banks[offset];
2573 			break;
2574 		}
2575 		return 1;
2576 	}
2577 	*pdata = data;
2578 	return 0;
2579 }
2580 
2581 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2582 {
2583 	switch (msr_info->index) {
2584 	case MSR_IA32_PLATFORM_ID:
2585 	case MSR_IA32_EBL_CR_POWERON:
2586 	case MSR_IA32_DEBUGCTLMSR:
2587 	case MSR_IA32_LASTBRANCHFROMIP:
2588 	case MSR_IA32_LASTBRANCHTOIP:
2589 	case MSR_IA32_LASTINTFROMIP:
2590 	case MSR_IA32_LASTINTTOIP:
2591 	case MSR_K8_SYSCFG:
2592 	case MSR_K8_TSEG_ADDR:
2593 	case MSR_K8_TSEG_MASK:
2594 	case MSR_K7_HWCR:
2595 	case MSR_VM_HSAVE_PA:
2596 	case MSR_K8_INT_PENDING_MSG:
2597 	case MSR_AMD64_NB_CFG:
2598 	case MSR_FAM10H_MMIO_CONF_BASE:
2599 	case MSR_AMD64_BU_CFG2:
2600 	case MSR_IA32_PERF_CTL:
2601 	case MSR_AMD64_DC_CFG:
2602 		msr_info->data = 0;
2603 		break;
2604 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2605 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2606 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2607 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2608 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2609 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2610 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2611 		msr_info->data = 0;
2612 		break;
2613 	case MSR_IA32_UCODE_REV:
2614 		msr_info->data = vcpu->arch.microcode_version;
2615 		break;
2616 	case MSR_IA32_TSC:
2617 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2618 		break;
2619 	case MSR_MTRRcap:
2620 	case 0x200 ... 0x2ff:
2621 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2622 	case 0xcd: /* fsb frequency */
2623 		msr_info->data = 3;
2624 		break;
2625 		/*
2626 		 * MSR_EBC_FREQUENCY_ID
2627 		 * Conservative value valid for even the basic CPU models.
2628 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2629 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2630 		 * and 266MHz for model 3, or 4. Set Core Clock
2631 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2632 		 * 31:24) even though these are only valid for CPU
2633 		 * models > 2, however guests may end up dividing or
2634 		 * multiplying by zero otherwise.
2635 		 */
2636 	case MSR_EBC_FREQUENCY_ID:
2637 		msr_info->data = 1 << 24;
2638 		break;
2639 	case MSR_IA32_APICBASE:
2640 		msr_info->data = kvm_get_apic_base(vcpu);
2641 		break;
2642 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2643 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2644 		break;
2645 	case MSR_IA32_TSCDEADLINE:
2646 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2647 		break;
2648 	case MSR_IA32_TSC_ADJUST:
2649 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2650 		break;
2651 	case MSR_IA32_MISC_ENABLE:
2652 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2653 		break;
2654 	case MSR_IA32_SMBASE:
2655 		if (!msr_info->host_initiated)
2656 			return 1;
2657 		msr_info->data = vcpu->arch.smbase;
2658 		break;
2659 	case MSR_SMI_COUNT:
2660 		msr_info->data = vcpu->arch.smi_count;
2661 		break;
2662 	case MSR_IA32_PERF_STATUS:
2663 		/* TSC increment by tick */
2664 		msr_info->data = 1000ULL;
2665 		/* CPU multiplier */
2666 		msr_info->data |= (((uint64_t)4ULL) << 40);
2667 		break;
2668 	case MSR_EFER:
2669 		msr_info->data = vcpu->arch.efer;
2670 		break;
2671 	case MSR_KVM_WALL_CLOCK:
2672 	case MSR_KVM_WALL_CLOCK_NEW:
2673 		msr_info->data = vcpu->kvm->arch.wall_clock;
2674 		break;
2675 	case MSR_KVM_SYSTEM_TIME:
2676 	case MSR_KVM_SYSTEM_TIME_NEW:
2677 		msr_info->data = vcpu->arch.time;
2678 		break;
2679 	case MSR_KVM_ASYNC_PF_EN:
2680 		msr_info->data = vcpu->arch.apf.msr_val;
2681 		break;
2682 	case MSR_KVM_STEAL_TIME:
2683 		msr_info->data = vcpu->arch.st.msr_val;
2684 		break;
2685 	case MSR_KVM_PV_EOI_EN:
2686 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2687 		break;
2688 	case MSR_IA32_P5_MC_ADDR:
2689 	case MSR_IA32_P5_MC_TYPE:
2690 	case MSR_IA32_MCG_CAP:
2691 	case MSR_IA32_MCG_CTL:
2692 	case MSR_IA32_MCG_STATUS:
2693 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2694 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2695 	case MSR_K7_CLK_CTL:
2696 		/*
2697 		 * Provide expected ramp-up count for K7. All other
2698 		 * are set to zero, indicating minimum divisors for
2699 		 * every field.
2700 		 *
2701 		 * This prevents guest kernels on AMD host with CPU
2702 		 * type 6, model 8 and higher from exploding due to
2703 		 * the rdmsr failing.
2704 		 */
2705 		msr_info->data = 0x20000000;
2706 		break;
2707 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2708 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2709 	case HV_X64_MSR_CRASH_CTL:
2710 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2711 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2712 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2713 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2714 		return kvm_hv_get_msr_common(vcpu,
2715 					     msr_info->index, &msr_info->data);
2716 		break;
2717 	case MSR_IA32_BBL_CR_CTL3:
2718 		/* This legacy MSR exists but isn't fully documented in current
2719 		 * silicon.  It is however accessed by winxp in very narrow
2720 		 * scenarios where it sets bit #19, itself documented as
2721 		 * a "reserved" bit.  Best effort attempt to source coherent
2722 		 * read data here should the balance of the register be
2723 		 * interpreted by the guest:
2724 		 *
2725 		 * L2 cache control register 3: 64GB range, 256KB size,
2726 		 * enabled, latency 0x1, configured
2727 		 */
2728 		msr_info->data = 0xbe702111;
2729 		break;
2730 	case MSR_AMD64_OSVW_ID_LENGTH:
2731 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2732 			return 1;
2733 		msr_info->data = vcpu->arch.osvw.length;
2734 		break;
2735 	case MSR_AMD64_OSVW_STATUS:
2736 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2737 			return 1;
2738 		msr_info->data = vcpu->arch.osvw.status;
2739 		break;
2740 	case MSR_PLATFORM_INFO:
2741 		msr_info->data = vcpu->arch.msr_platform_info;
2742 		break;
2743 	case MSR_MISC_FEATURES_ENABLES:
2744 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2745 		break;
2746 	default:
2747 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2748 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2749 		if (!ignore_msrs) {
2750 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2751 					       msr_info->index);
2752 			return 1;
2753 		} else {
2754 			if (report_ignored_msrs)
2755 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2756 					msr_info->index);
2757 			msr_info->data = 0;
2758 		}
2759 		break;
2760 	}
2761 	return 0;
2762 }
2763 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2764 
2765 /*
2766  * Read or write a bunch of msrs. All parameters are kernel addresses.
2767  *
2768  * @return number of msrs set successfully.
2769  */
2770 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2771 		    struct kvm_msr_entry *entries,
2772 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2773 				  unsigned index, u64 *data))
2774 {
2775 	int i;
2776 
2777 	for (i = 0; i < msrs->nmsrs; ++i)
2778 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2779 			break;
2780 
2781 	return i;
2782 }
2783 
2784 /*
2785  * Read or write a bunch of msrs. Parameters are user addresses.
2786  *
2787  * @return number of msrs set successfully.
2788  */
2789 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2790 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2791 				unsigned index, u64 *data),
2792 		  int writeback)
2793 {
2794 	struct kvm_msrs msrs;
2795 	struct kvm_msr_entry *entries;
2796 	int r, n;
2797 	unsigned size;
2798 
2799 	r = -EFAULT;
2800 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2801 		goto out;
2802 
2803 	r = -E2BIG;
2804 	if (msrs.nmsrs >= MAX_IO_MSRS)
2805 		goto out;
2806 
2807 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2808 	entries = memdup_user(user_msrs->entries, size);
2809 	if (IS_ERR(entries)) {
2810 		r = PTR_ERR(entries);
2811 		goto out;
2812 	}
2813 
2814 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2815 	if (r < 0)
2816 		goto out_free;
2817 
2818 	r = -EFAULT;
2819 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2820 		goto out_free;
2821 
2822 	r = n;
2823 
2824 out_free:
2825 	kfree(entries);
2826 out:
2827 	return r;
2828 }
2829 
2830 static inline bool kvm_can_mwait_in_guest(void)
2831 {
2832 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
2833 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
2834 		boot_cpu_has(X86_FEATURE_ARAT);
2835 }
2836 
2837 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2838 {
2839 	int r = 0;
2840 
2841 	switch (ext) {
2842 	case KVM_CAP_IRQCHIP:
2843 	case KVM_CAP_HLT:
2844 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2845 	case KVM_CAP_SET_TSS_ADDR:
2846 	case KVM_CAP_EXT_CPUID:
2847 	case KVM_CAP_EXT_EMUL_CPUID:
2848 	case KVM_CAP_CLOCKSOURCE:
2849 	case KVM_CAP_PIT:
2850 	case KVM_CAP_NOP_IO_DELAY:
2851 	case KVM_CAP_MP_STATE:
2852 	case KVM_CAP_SYNC_MMU:
2853 	case KVM_CAP_USER_NMI:
2854 	case KVM_CAP_REINJECT_CONTROL:
2855 	case KVM_CAP_IRQ_INJECT_STATUS:
2856 	case KVM_CAP_IOEVENTFD:
2857 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2858 	case KVM_CAP_PIT2:
2859 	case KVM_CAP_PIT_STATE2:
2860 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2861 	case KVM_CAP_XEN_HVM:
2862 	case KVM_CAP_VCPU_EVENTS:
2863 	case KVM_CAP_HYPERV:
2864 	case KVM_CAP_HYPERV_VAPIC:
2865 	case KVM_CAP_HYPERV_SPIN:
2866 	case KVM_CAP_HYPERV_SYNIC:
2867 	case KVM_CAP_HYPERV_SYNIC2:
2868 	case KVM_CAP_HYPERV_VP_INDEX:
2869 	case KVM_CAP_HYPERV_EVENTFD:
2870 	case KVM_CAP_PCI_SEGMENT:
2871 	case KVM_CAP_DEBUGREGS:
2872 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2873 	case KVM_CAP_XSAVE:
2874 	case KVM_CAP_ASYNC_PF:
2875 	case KVM_CAP_GET_TSC_KHZ:
2876 	case KVM_CAP_KVMCLOCK_CTRL:
2877 	case KVM_CAP_READONLY_MEM:
2878 	case KVM_CAP_HYPERV_TIME:
2879 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2880 	case KVM_CAP_TSC_DEADLINE_TIMER:
2881 	case KVM_CAP_ENABLE_CAP_VM:
2882 	case KVM_CAP_DISABLE_QUIRKS:
2883 	case KVM_CAP_SET_BOOT_CPU_ID:
2884  	case KVM_CAP_SPLIT_IRQCHIP:
2885 	case KVM_CAP_IMMEDIATE_EXIT:
2886 	case KVM_CAP_GET_MSR_FEATURES:
2887 		r = 1;
2888 		break;
2889 	case KVM_CAP_SYNC_REGS:
2890 		r = KVM_SYNC_X86_VALID_FIELDS;
2891 		break;
2892 	case KVM_CAP_ADJUST_CLOCK:
2893 		r = KVM_CLOCK_TSC_STABLE;
2894 		break;
2895 	case KVM_CAP_X86_DISABLE_EXITS:
2896 		r |=  KVM_X86_DISABLE_EXITS_HTL | KVM_X86_DISABLE_EXITS_PAUSE;
2897 		if(kvm_can_mwait_in_guest())
2898 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
2899 		break;
2900 	case KVM_CAP_X86_SMM:
2901 		/* SMBASE is usually relocated above 1M on modern chipsets,
2902 		 * and SMM handlers might indeed rely on 4G segment limits,
2903 		 * so do not report SMM to be available if real mode is
2904 		 * emulated via vm86 mode.  Still, do not go to great lengths
2905 		 * to avoid userspace's usage of the feature, because it is a
2906 		 * fringe case that is not enabled except via specific settings
2907 		 * of the module parameters.
2908 		 */
2909 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2910 		break;
2911 	case KVM_CAP_VAPIC:
2912 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2913 		break;
2914 	case KVM_CAP_NR_VCPUS:
2915 		r = KVM_SOFT_MAX_VCPUS;
2916 		break;
2917 	case KVM_CAP_MAX_VCPUS:
2918 		r = KVM_MAX_VCPUS;
2919 		break;
2920 	case KVM_CAP_NR_MEMSLOTS:
2921 		r = KVM_USER_MEM_SLOTS;
2922 		break;
2923 	case KVM_CAP_PV_MMU:	/* obsolete */
2924 		r = 0;
2925 		break;
2926 	case KVM_CAP_MCE:
2927 		r = KVM_MAX_MCE_BANKS;
2928 		break;
2929 	case KVM_CAP_XCRS:
2930 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2931 		break;
2932 	case KVM_CAP_TSC_CONTROL:
2933 		r = kvm_has_tsc_control;
2934 		break;
2935 	case KVM_CAP_X2APIC_API:
2936 		r = KVM_X2APIC_API_VALID_FLAGS;
2937 		break;
2938 	default:
2939 		break;
2940 	}
2941 	return r;
2942 
2943 }
2944 
2945 long kvm_arch_dev_ioctl(struct file *filp,
2946 			unsigned int ioctl, unsigned long arg)
2947 {
2948 	void __user *argp = (void __user *)arg;
2949 	long r;
2950 
2951 	switch (ioctl) {
2952 	case KVM_GET_MSR_INDEX_LIST: {
2953 		struct kvm_msr_list __user *user_msr_list = argp;
2954 		struct kvm_msr_list msr_list;
2955 		unsigned n;
2956 
2957 		r = -EFAULT;
2958 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2959 			goto out;
2960 		n = msr_list.nmsrs;
2961 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2962 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2963 			goto out;
2964 		r = -E2BIG;
2965 		if (n < msr_list.nmsrs)
2966 			goto out;
2967 		r = -EFAULT;
2968 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2969 				 num_msrs_to_save * sizeof(u32)))
2970 			goto out;
2971 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2972 				 &emulated_msrs,
2973 				 num_emulated_msrs * sizeof(u32)))
2974 			goto out;
2975 		r = 0;
2976 		break;
2977 	}
2978 	case KVM_GET_SUPPORTED_CPUID:
2979 	case KVM_GET_EMULATED_CPUID: {
2980 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2981 		struct kvm_cpuid2 cpuid;
2982 
2983 		r = -EFAULT;
2984 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2985 			goto out;
2986 
2987 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2988 					    ioctl);
2989 		if (r)
2990 			goto out;
2991 
2992 		r = -EFAULT;
2993 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2994 			goto out;
2995 		r = 0;
2996 		break;
2997 	}
2998 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2999 		r = -EFAULT;
3000 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3001 				 sizeof(kvm_mce_cap_supported)))
3002 			goto out;
3003 		r = 0;
3004 		break;
3005 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3006 		struct kvm_msr_list __user *user_msr_list = argp;
3007 		struct kvm_msr_list msr_list;
3008 		unsigned int n;
3009 
3010 		r = -EFAULT;
3011 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3012 			goto out;
3013 		n = msr_list.nmsrs;
3014 		msr_list.nmsrs = num_msr_based_features;
3015 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3016 			goto out;
3017 		r = -E2BIG;
3018 		if (n < msr_list.nmsrs)
3019 			goto out;
3020 		r = -EFAULT;
3021 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3022 				 num_msr_based_features * sizeof(u32)))
3023 			goto out;
3024 		r = 0;
3025 		break;
3026 	}
3027 	case KVM_GET_MSRS:
3028 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3029 		break;
3030 	}
3031 	default:
3032 		r = -EINVAL;
3033 	}
3034 out:
3035 	return r;
3036 }
3037 
3038 static void wbinvd_ipi(void *garbage)
3039 {
3040 	wbinvd();
3041 }
3042 
3043 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3044 {
3045 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3046 }
3047 
3048 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3049 {
3050 	/* Address WBINVD may be executed by guest */
3051 	if (need_emulate_wbinvd(vcpu)) {
3052 		if (kvm_x86_ops->has_wbinvd_exit())
3053 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3054 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3055 			smp_call_function_single(vcpu->cpu,
3056 					wbinvd_ipi, NULL, 1);
3057 	}
3058 
3059 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3060 
3061 	/* Apply any externally detected TSC adjustments (due to suspend) */
3062 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3063 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3064 		vcpu->arch.tsc_offset_adjustment = 0;
3065 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3066 	}
3067 
3068 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3069 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3070 				rdtsc() - vcpu->arch.last_host_tsc;
3071 		if (tsc_delta < 0)
3072 			mark_tsc_unstable("KVM discovered backwards TSC");
3073 
3074 		if (kvm_check_tsc_unstable()) {
3075 			u64 offset = kvm_compute_tsc_offset(vcpu,
3076 						vcpu->arch.last_guest_tsc);
3077 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3078 			vcpu->arch.tsc_catchup = 1;
3079 		}
3080 
3081 		if (kvm_lapic_hv_timer_in_use(vcpu))
3082 			kvm_lapic_restart_hv_timer(vcpu);
3083 
3084 		/*
3085 		 * On a host with synchronized TSC, there is no need to update
3086 		 * kvmclock on vcpu->cpu migration
3087 		 */
3088 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3089 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3090 		if (vcpu->cpu != cpu)
3091 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3092 		vcpu->cpu = cpu;
3093 	}
3094 
3095 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3096 }
3097 
3098 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3099 {
3100 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3101 		return;
3102 
3103 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3104 
3105 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3106 			&vcpu->arch.st.steal.preempted,
3107 			offsetof(struct kvm_steal_time, preempted),
3108 			sizeof(vcpu->arch.st.steal.preempted));
3109 }
3110 
3111 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3112 {
3113 	int idx;
3114 
3115 	if (vcpu->preempted)
3116 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3117 
3118 	/*
3119 	 * Disable page faults because we're in atomic context here.
3120 	 * kvm_write_guest_offset_cached() would call might_fault()
3121 	 * that relies on pagefault_disable() to tell if there's a
3122 	 * bug. NOTE: the write to guest memory may not go through if
3123 	 * during postcopy live migration or if there's heavy guest
3124 	 * paging.
3125 	 */
3126 	pagefault_disable();
3127 	/*
3128 	 * kvm_memslots() will be called by
3129 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3130 	 */
3131 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3132 	kvm_steal_time_set_preempted(vcpu);
3133 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3134 	pagefault_enable();
3135 	kvm_x86_ops->vcpu_put(vcpu);
3136 	vcpu->arch.last_host_tsc = rdtsc();
3137 	/*
3138 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3139 	 * on every vmexit, but if not, we might have a stale dr6 from the
3140 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3141 	 */
3142 	set_debugreg(0, 6);
3143 }
3144 
3145 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3146 				    struct kvm_lapic_state *s)
3147 {
3148 	if (vcpu->arch.apicv_active)
3149 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3150 
3151 	return kvm_apic_get_state(vcpu, s);
3152 }
3153 
3154 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3155 				    struct kvm_lapic_state *s)
3156 {
3157 	int r;
3158 
3159 	r = kvm_apic_set_state(vcpu, s);
3160 	if (r)
3161 		return r;
3162 	update_cr8_intercept(vcpu);
3163 
3164 	return 0;
3165 }
3166 
3167 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3168 {
3169 	return (!lapic_in_kernel(vcpu) ||
3170 		kvm_apic_accept_pic_intr(vcpu));
3171 }
3172 
3173 /*
3174  * if userspace requested an interrupt window, check that the
3175  * interrupt window is open.
3176  *
3177  * No need to exit to userspace if we already have an interrupt queued.
3178  */
3179 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3180 {
3181 	return kvm_arch_interrupt_allowed(vcpu) &&
3182 		!kvm_cpu_has_interrupt(vcpu) &&
3183 		!kvm_event_needs_reinjection(vcpu) &&
3184 		kvm_cpu_accept_dm_intr(vcpu);
3185 }
3186 
3187 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3188 				    struct kvm_interrupt *irq)
3189 {
3190 	if (irq->irq >= KVM_NR_INTERRUPTS)
3191 		return -EINVAL;
3192 
3193 	if (!irqchip_in_kernel(vcpu->kvm)) {
3194 		kvm_queue_interrupt(vcpu, irq->irq, false);
3195 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3196 		return 0;
3197 	}
3198 
3199 	/*
3200 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3201 	 * fail for in-kernel 8259.
3202 	 */
3203 	if (pic_in_kernel(vcpu->kvm))
3204 		return -ENXIO;
3205 
3206 	if (vcpu->arch.pending_external_vector != -1)
3207 		return -EEXIST;
3208 
3209 	vcpu->arch.pending_external_vector = irq->irq;
3210 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3211 	return 0;
3212 }
3213 
3214 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3215 {
3216 	kvm_inject_nmi(vcpu);
3217 
3218 	return 0;
3219 }
3220 
3221 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3222 {
3223 	kvm_make_request(KVM_REQ_SMI, vcpu);
3224 
3225 	return 0;
3226 }
3227 
3228 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3229 					   struct kvm_tpr_access_ctl *tac)
3230 {
3231 	if (tac->flags)
3232 		return -EINVAL;
3233 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3234 	return 0;
3235 }
3236 
3237 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3238 					u64 mcg_cap)
3239 {
3240 	int r;
3241 	unsigned bank_num = mcg_cap & 0xff, bank;
3242 
3243 	r = -EINVAL;
3244 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3245 		goto out;
3246 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3247 		goto out;
3248 	r = 0;
3249 	vcpu->arch.mcg_cap = mcg_cap;
3250 	/* Init IA32_MCG_CTL to all 1s */
3251 	if (mcg_cap & MCG_CTL_P)
3252 		vcpu->arch.mcg_ctl = ~(u64)0;
3253 	/* Init IA32_MCi_CTL to all 1s */
3254 	for (bank = 0; bank < bank_num; bank++)
3255 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3256 
3257 	if (kvm_x86_ops->setup_mce)
3258 		kvm_x86_ops->setup_mce(vcpu);
3259 out:
3260 	return r;
3261 }
3262 
3263 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3264 				      struct kvm_x86_mce *mce)
3265 {
3266 	u64 mcg_cap = vcpu->arch.mcg_cap;
3267 	unsigned bank_num = mcg_cap & 0xff;
3268 	u64 *banks = vcpu->arch.mce_banks;
3269 
3270 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3271 		return -EINVAL;
3272 	/*
3273 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3274 	 * reporting is disabled
3275 	 */
3276 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3277 	    vcpu->arch.mcg_ctl != ~(u64)0)
3278 		return 0;
3279 	banks += 4 * mce->bank;
3280 	/*
3281 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3282 	 * reporting is disabled for the bank
3283 	 */
3284 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3285 		return 0;
3286 	if (mce->status & MCI_STATUS_UC) {
3287 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3288 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3289 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3290 			return 0;
3291 		}
3292 		if (banks[1] & MCI_STATUS_VAL)
3293 			mce->status |= MCI_STATUS_OVER;
3294 		banks[2] = mce->addr;
3295 		banks[3] = mce->misc;
3296 		vcpu->arch.mcg_status = mce->mcg_status;
3297 		banks[1] = mce->status;
3298 		kvm_queue_exception(vcpu, MC_VECTOR);
3299 	} else if (!(banks[1] & MCI_STATUS_VAL)
3300 		   || !(banks[1] & MCI_STATUS_UC)) {
3301 		if (banks[1] & MCI_STATUS_VAL)
3302 			mce->status |= MCI_STATUS_OVER;
3303 		banks[2] = mce->addr;
3304 		banks[3] = mce->misc;
3305 		banks[1] = mce->status;
3306 	} else
3307 		banks[1] |= MCI_STATUS_OVER;
3308 	return 0;
3309 }
3310 
3311 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3312 					       struct kvm_vcpu_events *events)
3313 {
3314 	process_nmi(vcpu);
3315 	/*
3316 	 * FIXME: pass injected and pending separately.  This is only
3317 	 * needed for nested virtualization, whose state cannot be
3318 	 * migrated yet.  For now we can combine them.
3319 	 */
3320 	events->exception.injected =
3321 		(vcpu->arch.exception.pending ||
3322 		 vcpu->arch.exception.injected) &&
3323 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3324 	events->exception.nr = vcpu->arch.exception.nr;
3325 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3326 	events->exception.pad = 0;
3327 	events->exception.error_code = vcpu->arch.exception.error_code;
3328 
3329 	events->interrupt.injected =
3330 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3331 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3332 	events->interrupt.soft = 0;
3333 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3334 
3335 	events->nmi.injected = vcpu->arch.nmi_injected;
3336 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3337 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3338 	events->nmi.pad = 0;
3339 
3340 	events->sipi_vector = 0; /* never valid when reporting to user space */
3341 
3342 	events->smi.smm = is_smm(vcpu);
3343 	events->smi.pending = vcpu->arch.smi_pending;
3344 	events->smi.smm_inside_nmi =
3345 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3346 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3347 
3348 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3349 			 | KVM_VCPUEVENT_VALID_SHADOW
3350 			 | KVM_VCPUEVENT_VALID_SMM);
3351 	memset(&events->reserved, 0, sizeof(events->reserved));
3352 }
3353 
3354 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3355 
3356 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3357 					      struct kvm_vcpu_events *events)
3358 {
3359 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3360 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3361 			      | KVM_VCPUEVENT_VALID_SHADOW
3362 			      | KVM_VCPUEVENT_VALID_SMM))
3363 		return -EINVAL;
3364 
3365 	if (events->exception.injected &&
3366 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3367 	     is_guest_mode(vcpu)))
3368 		return -EINVAL;
3369 
3370 	/* INITs are latched while in SMM */
3371 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3372 	    (events->smi.smm || events->smi.pending) &&
3373 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3374 		return -EINVAL;
3375 
3376 	process_nmi(vcpu);
3377 	vcpu->arch.exception.injected = false;
3378 	vcpu->arch.exception.pending = events->exception.injected;
3379 	vcpu->arch.exception.nr = events->exception.nr;
3380 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3381 	vcpu->arch.exception.error_code = events->exception.error_code;
3382 
3383 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3384 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3385 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3386 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3387 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3388 						  events->interrupt.shadow);
3389 
3390 	vcpu->arch.nmi_injected = events->nmi.injected;
3391 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3392 		vcpu->arch.nmi_pending = events->nmi.pending;
3393 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3394 
3395 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3396 	    lapic_in_kernel(vcpu))
3397 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3398 
3399 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3400 		u32 hflags = vcpu->arch.hflags;
3401 		if (events->smi.smm)
3402 			hflags |= HF_SMM_MASK;
3403 		else
3404 			hflags &= ~HF_SMM_MASK;
3405 		kvm_set_hflags(vcpu, hflags);
3406 
3407 		vcpu->arch.smi_pending = events->smi.pending;
3408 
3409 		if (events->smi.smm) {
3410 			if (events->smi.smm_inside_nmi)
3411 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3412 			else
3413 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3414 			if (lapic_in_kernel(vcpu)) {
3415 				if (events->smi.latched_init)
3416 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3417 				else
3418 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3419 			}
3420 		}
3421 	}
3422 
3423 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3424 
3425 	return 0;
3426 }
3427 
3428 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3429 					     struct kvm_debugregs *dbgregs)
3430 {
3431 	unsigned long val;
3432 
3433 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3434 	kvm_get_dr(vcpu, 6, &val);
3435 	dbgregs->dr6 = val;
3436 	dbgregs->dr7 = vcpu->arch.dr7;
3437 	dbgregs->flags = 0;
3438 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3439 }
3440 
3441 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3442 					    struct kvm_debugregs *dbgregs)
3443 {
3444 	if (dbgregs->flags)
3445 		return -EINVAL;
3446 
3447 	if (dbgregs->dr6 & ~0xffffffffull)
3448 		return -EINVAL;
3449 	if (dbgregs->dr7 & ~0xffffffffull)
3450 		return -EINVAL;
3451 
3452 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3453 	kvm_update_dr0123(vcpu);
3454 	vcpu->arch.dr6 = dbgregs->dr6;
3455 	kvm_update_dr6(vcpu);
3456 	vcpu->arch.dr7 = dbgregs->dr7;
3457 	kvm_update_dr7(vcpu);
3458 
3459 	return 0;
3460 }
3461 
3462 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3463 
3464 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3465 {
3466 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3467 	u64 xstate_bv = xsave->header.xfeatures;
3468 	u64 valid;
3469 
3470 	/*
3471 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3472 	 * leaves 0 and 1 in the loop below.
3473 	 */
3474 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3475 
3476 	/* Set XSTATE_BV */
3477 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3478 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3479 
3480 	/*
3481 	 * Copy each region from the possibly compacted offset to the
3482 	 * non-compacted offset.
3483 	 */
3484 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3485 	while (valid) {
3486 		u64 feature = valid & -valid;
3487 		int index = fls64(feature) - 1;
3488 		void *src = get_xsave_addr(xsave, feature);
3489 
3490 		if (src) {
3491 			u32 size, offset, ecx, edx;
3492 			cpuid_count(XSTATE_CPUID, index,
3493 				    &size, &offset, &ecx, &edx);
3494 			if (feature == XFEATURE_MASK_PKRU)
3495 				memcpy(dest + offset, &vcpu->arch.pkru,
3496 				       sizeof(vcpu->arch.pkru));
3497 			else
3498 				memcpy(dest + offset, src, size);
3499 
3500 		}
3501 
3502 		valid -= feature;
3503 	}
3504 }
3505 
3506 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3507 {
3508 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3509 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3510 	u64 valid;
3511 
3512 	/*
3513 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3514 	 * leaves 0 and 1 in the loop below.
3515 	 */
3516 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3517 
3518 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3519 	xsave->header.xfeatures = xstate_bv;
3520 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3521 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3522 
3523 	/*
3524 	 * Copy each region from the non-compacted offset to the
3525 	 * possibly compacted offset.
3526 	 */
3527 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3528 	while (valid) {
3529 		u64 feature = valid & -valid;
3530 		int index = fls64(feature) - 1;
3531 		void *dest = get_xsave_addr(xsave, feature);
3532 
3533 		if (dest) {
3534 			u32 size, offset, ecx, edx;
3535 			cpuid_count(XSTATE_CPUID, index,
3536 				    &size, &offset, &ecx, &edx);
3537 			if (feature == XFEATURE_MASK_PKRU)
3538 				memcpy(&vcpu->arch.pkru, src + offset,
3539 				       sizeof(vcpu->arch.pkru));
3540 			else
3541 				memcpy(dest, src + offset, size);
3542 		}
3543 
3544 		valid -= feature;
3545 	}
3546 }
3547 
3548 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3549 					 struct kvm_xsave *guest_xsave)
3550 {
3551 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3552 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3553 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3554 	} else {
3555 		memcpy(guest_xsave->region,
3556 			&vcpu->arch.guest_fpu.state.fxsave,
3557 			sizeof(struct fxregs_state));
3558 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3559 			XFEATURE_MASK_FPSSE;
3560 	}
3561 }
3562 
3563 #define XSAVE_MXCSR_OFFSET 24
3564 
3565 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3566 					struct kvm_xsave *guest_xsave)
3567 {
3568 	u64 xstate_bv =
3569 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3570 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3571 
3572 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3573 		/*
3574 		 * Here we allow setting states that are not present in
3575 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3576 		 * with old userspace.
3577 		 */
3578 		if (xstate_bv & ~kvm_supported_xcr0() ||
3579 			mxcsr & ~mxcsr_feature_mask)
3580 			return -EINVAL;
3581 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3582 	} else {
3583 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3584 			mxcsr & ~mxcsr_feature_mask)
3585 			return -EINVAL;
3586 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3587 			guest_xsave->region, sizeof(struct fxregs_state));
3588 	}
3589 	return 0;
3590 }
3591 
3592 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3593 					struct kvm_xcrs *guest_xcrs)
3594 {
3595 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3596 		guest_xcrs->nr_xcrs = 0;
3597 		return;
3598 	}
3599 
3600 	guest_xcrs->nr_xcrs = 1;
3601 	guest_xcrs->flags = 0;
3602 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3603 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3604 }
3605 
3606 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3607 				       struct kvm_xcrs *guest_xcrs)
3608 {
3609 	int i, r = 0;
3610 
3611 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3612 		return -EINVAL;
3613 
3614 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3615 		return -EINVAL;
3616 
3617 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3618 		/* Only support XCR0 currently */
3619 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3620 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3621 				guest_xcrs->xcrs[i].value);
3622 			break;
3623 		}
3624 	if (r)
3625 		r = -EINVAL;
3626 	return r;
3627 }
3628 
3629 /*
3630  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3631  * stopped by the hypervisor.  This function will be called from the host only.
3632  * EINVAL is returned when the host attempts to set the flag for a guest that
3633  * does not support pv clocks.
3634  */
3635 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3636 {
3637 	if (!vcpu->arch.pv_time_enabled)
3638 		return -EINVAL;
3639 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3640 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3641 	return 0;
3642 }
3643 
3644 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3645 				     struct kvm_enable_cap *cap)
3646 {
3647 	if (cap->flags)
3648 		return -EINVAL;
3649 
3650 	switch (cap->cap) {
3651 	case KVM_CAP_HYPERV_SYNIC2:
3652 		if (cap->args[0])
3653 			return -EINVAL;
3654 	case KVM_CAP_HYPERV_SYNIC:
3655 		if (!irqchip_in_kernel(vcpu->kvm))
3656 			return -EINVAL;
3657 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3658 					     KVM_CAP_HYPERV_SYNIC2);
3659 	default:
3660 		return -EINVAL;
3661 	}
3662 }
3663 
3664 long kvm_arch_vcpu_ioctl(struct file *filp,
3665 			 unsigned int ioctl, unsigned long arg)
3666 {
3667 	struct kvm_vcpu *vcpu = filp->private_data;
3668 	void __user *argp = (void __user *)arg;
3669 	int r;
3670 	union {
3671 		struct kvm_lapic_state *lapic;
3672 		struct kvm_xsave *xsave;
3673 		struct kvm_xcrs *xcrs;
3674 		void *buffer;
3675 	} u;
3676 
3677 	vcpu_load(vcpu);
3678 
3679 	u.buffer = NULL;
3680 	switch (ioctl) {
3681 	case KVM_GET_LAPIC: {
3682 		r = -EINVAL;
3683 		if (!lapic_in_kernel(vcpu))
3684 			goto out;
3685 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3686 
3687 		r = -ENOMEM;
3688 		if (!u.lapic)
3689 			goto out;
3690 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3691 		if (r)
3692 			goto out;
3693 		r = -EFAULT;
3694 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3695 			goto out;
3696 		r = 0;
3697 		break;
3698 	}
3699 	case KVM_SET_LAPIC: {
3700 		r = -EINVAL;
3701 		if (!lapic_in_kernel(vcpu))
3702 			goto out;
3703 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3704 		if (IS_ERR(u.lapic)) {
3705 			r = PTR_ERR(u.lapic);
3706 			goto out_nofree;
3707 		}
3708 
3709 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3710 		break;
3711 	}
3712 	case KVM_INTERRUPT: {
3713 		struct kvm_interrupt irq;
3714 
3715 		r = -EFAULT;
3716 		if (copy_from_user(&irq, argp, sizeof irq))
3717 			goto out;
3718 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3719 		break;
3720 	}
3721 	case KVM_NMI: {
3722 		r = kvm_vcpu_ioctl_nmi(vcpu);
3723 		break;
3724 	}
3725 	case KVM_SMI: {
3726 		r = kvm_vcpu_ioctl_smi(vcpu);
3727 		break;
3728 	}
3729 	case KVM_SET_CPUID: {
3730 		struct kvm_cpuid __user *cpuid_arg = argp;
3731 		struct kvm_cpuid cpuid;
3732 
3733 		r = -EFAULT;
3734 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3735 			goto out;
3736 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3737 		break;
3738 	}
3739 	case KVM_SET_CPUID2: {
3740 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3741 		struct kvm_cpuid2 cpuid;
3742 
3743 		r = -EFAULT;
3744 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3745 			goto out;
3746 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3747 					      cpuid_arg->entries);
3748 		break;
3749 	}
3750 	case KVM_GET_CPUID2: {
3751 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3752 		struct kvm_cpuid2 cpuid;
3753 
3754 		r = -EFAULT;
3755 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3756 			goto out;
3757 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3758 					      cpuid_arg->entries);
3759 		if (r)
3760 			goto out;
3761 		r = -EFAULT;
3762 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3763 			goto out;
3764 		r = 0;
3765 		break;
3766 	}
3767 	case KVM_GET_MSRS: {
3768 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3769 		r = msr_io(vcpu, argp, do_get_msr, 1);
3770 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3771 		break;
3772 	}
3773 	case KVM_SET_MSRS: {
3774 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3775 		r = msr_io(vcpu, argp, do_set_msr, 0);
3776 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3777 		break;
3778 	}
3779 	case KVM_TPR_ACCESS_REPORTING: {
3780 		struct kvm_tpr_access_ctl tac;
3781 
3782 		r = -EFAULT;
3783 		if (copy_from_user(&tac, argp, sizeof tac))
3784 			goto out;
3785 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3786 		if (r)
3787 			goto out;
3788 		r = -EFAULT;
3789 		if (copy_to_user(argp, &tac, sizeof tac))
3790 			goto out;
3791 		r = 0;
3792 		break;
3793 	};
3794 	case KVM_SET_VAPIC_ADDR: {
3795 		struct kvm_vapic_addr va;
3796 		int idx;
3797 
3798 		r = -EINVAL;
3799 		if (!lapic_in_kernel(vcpu))
3800 			goto out;
3801 		r = -EFAULT;
3802 		if (copy_from_user(&va, argp, sizeof va))
3803 			goto out;
3804 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3805 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3806 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3807 		break;
3808 	}
3809 	case KVM_X86_SETUP_MCE: {
3810 		u64 mcg_cap;
3811 
3812 		r = -EFAULT;
3813 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3814 			goto out;
3815 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3816 		break;
3817 	}
3818 	case KVM_X86_SET_MCE: {
3819 		struct kvm_x86_mce mce;
3820 
3821 		r = -EFAULT;
3822 		if (copy_from_user(&mce, argp, sizeof mce))
3823 			goto out;
3824 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3825 		break;
3826 	}
3827 	case KVM_GET_VCPU_EVENTS: {
3828 		struct kvm_vcpu_events events;
3829 
3830 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3831 
3832 		r = -EFAULT;
3833 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3834 			break;
3835 		r = 0;
3836 		break;
3837 	}
3838 	case KVM_SET_VCPU_EVENTS: {
3839 		struct kvm_vcpu_events events;
3840 
3841 		r = -EFAULT;
3842 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3843 			break;
3844 
3845 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3846 		break;
3847 	}
3848 	case KVM_GET_DEBUGREGS: {
3849 		struct kvm_debugregs dbgregs;
3850 
3851 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3852 
3853 		r = -EFAULT;
3854 		if (copy_to_user(argp, &dbgregs,
3855 				 sizeof(struct kvm_debugregs)))
3856 			break;
3857 		r = 0;
3858 		break;
3859 	}
3860 	case KVM_SET_DEBUGREGS: {
3861 		struct kvm_debugregs dbgregs;
3862 
3863 		r = -EFAULT;
3864 		if (copy_from_user(&dbgregs, argp,
3865 				   sizeof(struct kvm_debugregs)))
3866 			break;
3867 
3868 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3869 		break;
3870 	}
3871 	case KVM_GET_XSAVE: {
3872 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3873 		r = -ENOMEM;
3874 		if (!u.xsave)
3875 			break;
3876 
3877 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3878 
3879 		r = -EFAULT;
3880 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3881 			break;
3882 		r = 0;
3883 		break;
3884 	}
3885 	case KVM_SET_XSAVE: {
3886 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3887 		if (IS_ERR(u.xsave)) {
3888 			r = PTR_ERR(u.xsave);
3889 			goto out_nofree;
3890 		}
3891 
3892 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3893 		break;
3894 	}
3895 	case KVM_GET_XCRS: {
3896 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3897 		r = -ENOMEM;
3898 		if (!u.xcrs)
3899 			break;
3900 
3901 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3902 
3903 		r = -EFAULT;
3904 		if (copy_to_user(argp, u.xcrs,
3905 				 sizeof(struct kvm_xcrs)))
3906 			break;
3907 		r = 0;
3908 		break;
3909 	}
3910 	case KVM_SET_XCRS: {
3911 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3912 		if (IS_ERR(u.xcrs)) {
3913 			r = PTR_ERR(u.xcrs);
3914 			goto out_nofree;
3915 		}
3916 
3917 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3918 		break;
3919 	}
3920 	case KVM_SET_TSC_KHZ: {
3921 		u32 user_tsc_khz;
3922 
3923 		r = -EINVAL;
3924 		user_tsc_khz = (u32)arg;
3925 
3926 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3927 			goto out;
3928 
3929 		if (user_tsc_khz == 0)
3930 			user_tsc_khz = tsc_khz;
3931 
3932 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3933 			r = 0;
3934 
3935 		goto out;
3936 	}
3937 	case KVM_GET_TSC_KHZ: {
3938 		r = vcpu->arch.virtual_tsc_khz;
3939 		goto out;
3940 	}
3941 	case KVM_KVMCLOCK_CTRL: {
3942 		r = kvm_set_guest_paused(vcpu);
3943 		goto out;
3944 	}
3945 	case KVM_ENABLE_CAP: {
3946 		struct kvm_enable_cap cap;
3947 
3948 		r = -EFAULT;
3949 		if (copy_from_user(&cap, argp, sizeof(cap)))
3950 			goto out;
3951 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3952 		break;
3953 	}
3954 	default:
3955 		r = -EINVAL;
3956 	}
3957 out:
3958 	kfree(u.buffer);
3959 out_nofree:
3960 	vcpu_put(vcpu);
3961 	return r;
3962 }
3963 
3964 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3965 {
3966 	return VM_FAULT_SIGBUS;
3967 }
3968 
3969 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3970 {
3971 	int ret;
3972 
3973 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3974 		return -EINVAL;
3975 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3976 	return ret;
3977 }
3978 
3979 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3980 					      u64 ident_addr)
3981 {
3982 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
3983 }
3984 
3985 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3986 					  u32 kvm_nr_mmu_pages)
3987 {
3988 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3989 		return -EINVAL;
3990 
3991 	mutex_lock(&kvm->slots_lock);
3992 
3993 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3994 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3995 
3996 	mutex_unlock(&kvm->slots_lock);
3997 	return 0;
3998 }
3999 
4000 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4001 {
4002 	return kvm->arch.n_max_mmu_pages;
4003 }
4004 
4005 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4006 {
4007 	struct kvm_pic *pic = kvm->arch.vpic;
4008 	int r;
4009 
4010 	r = 0;
4011 	switch (chip->chip_id) {
4012 	case KVM_IRQCHIP_PIC_MASTER:
4013 		memcpy(&chip->chip.pic, &pic->pics[0],
4014 			sizeof(struct kvm_pic_state));
4015 		break;
4016 	case KVM_IRQCHIP_PIC_SLAVE:
4017 		memcpy(&chip->chip.pic, &pic->pics[1],
4018 			sizeof(struct kvm_pic_state));
4019 		break;
4020 	case KVM_IRQCHIP_IOAPIC:
4021 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4022 		break;
4023 	default:
4024 		r = -EINVAL;
4025 		break;
4026 	}
4027 	return r;
4028 }
4029 
4030 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4031 {
4032 	struct kvm_pic *pic = kvm->arch.vpic;
4033 	int r;
4034 
4035 	r = 0;
4036 	switch (chip->chip_id) {
4037 	case KVM_IRQCHIP_PIC_MASTER:
4038 		spin_lock(&pic->lock);
4039 		memcpy(&pic->pics[0], &chip->chip.pic,
4040 			sizeof(struct kvm_pic_state));
4041 		spin_unlock(&pic->lock);
4042 		break;
4043 	case KVM_IRQCHIP_PIC_SLAVE:
4044 		spin_lock(&pic->lock);
4045 		memcpy(&pic->pics[1], &chip->chip.pic,
4046 			sizeof(struct kvm_pic_state));
4047 		spin_unlock(&pic->lock);
4048 		break;
4049 	case KVM_IRQCHIP_IOAPIC:
4050 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4051 		break;
4052 	default:
4053 		r = -EINVAL;
4054 		break;
4055 	}
4056 	kvm_pic_update_irq(pic);
4057 	return r;
4058 }
4059 
4060 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4061 {
4062 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4063 
4064 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4065 
4066 	mutex_lock(&kps->lock);
4067 	memcpy(ps, &kps->channels, sizeof(*ps));
4068 	mutex_unlock(&kps->lock);
4069 	return 0;
4070 }
4071 
4072 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4073 {
4074 	int i;
4075 	struct kvm_pit *pit = kvm->arch.vpit;
4076 
4077 	mutex_lock(&pit->pit_state.lock);
4078 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4079 	for (i = 0; i < 3; i++)
4080 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4081 	mutex_unlock(&pit->pit_state.lock);
4082 	return 0;
4083 }
4084 
4085 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4086 {
4087 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4088 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4089 		sizeof(ps->channels));
4090 	ps->flags = kvm->arch.vpit->pit_state.flags;
4091 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4092 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4093 	return 0;
4094 }
4095 
4096 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4097 {
4098 	int start = 0;
4099 	int i;
4100 	u32 prev_legacy, cur_legacy;
4101 	struct kvm_pit *pit = kvm->arch.vpit;
4102 
4103 	mutex_lock(&pit->pit_state.lock);
4104 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4105 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4106 	if (!prev_legacy && cur_legacy)
4107 		start = 1;
4108 	memcpy(&pit->pit_state.channels, &ps->channels,
4109 	       sizeof(pit->pit_state.channels));
4110 	pit->pit_state.flags = ps->flags;
4111 	for (i = 0; i < 3; i++)
4112 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4113 				   start && i == 0);
4114 	mutex_unlock(&pit->pit_state.lock);
4115 	return 0;
4116 }
4117 
4118 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4119 				 struct kvm_reinject_control *control)
4120 {
4121 	struct kvm_pit *pit = kvm->arch.vpit;
4122 
4123 	if (!pit)
4124 		return -ENXIO;
4125 
4126 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4127 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4128 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4129 	 */
4130 	mutex_lock(&pit->pit_state.lock);
4131 	kvm_pit_set_reinject(pit, control->pit_reinject);
4132 	mutex_unlock(&pit->pit_state.lock);
4133 
4134 	return 0;
4135 }
4136 
4137 /**
4138  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4139  * @kvm: kvm instance
4140  * @log: slot id and address to which we copy the log
4141  *
4142  * Steps 1-4 below provide general overview of dirty page logging. See
4143  * kvm_get_dirty_log_protect() function description for additional details.
4144  *
4145  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4146  * always flush the TLB (step 4) even if previous step failed  and the dirty
4147  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4148  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4149  * writes will be marked dirty for next log read.
4150  *
4151  *   1. Take a snapshot of the bit and clear it if needed.
4152  *   2. Write protect the corresponding page.
4153  *   3. Copy the snapshot to the userspace.
4154  *   4. Flush TLB's if needed.
4155  */
4156 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4157 {
4158 	bool is_dirty = false;
4159 	int r;
4160 
4161 	mutex_lock(&kvm->slots_lock);
4162 
4163 	/*
4164 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4165 	 */
4166 	if (kvm_x86_ops->flush_log_dirty)
4167 		kvm_x86_ops->flush_log_dirty(kvm);
4168 
4169 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4170 
4171 	/*
4172 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4173 	 * kvm_mmu_slot_remove_write_access().
4174 	 */
4175 	lockdep_assert_held(&kvm->slots_lock);
4176 	if (is_dirty)
4177 		kvm_flush_remote_tlbs(kvm);
4178 
4179 	mutex_unlock(&kvm->slots_lock);
4180 	return r;
4181 }
4182 
4183 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4184 			bool line_status)
4185 {
4186 	if (!irqchip_in_kernel(kvm))
4187 		return -ENXIO;
4188 
4189 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4190 					irq_event->irq, irq_event->level,
4191 					line_status);
4192 	return 0;
4193 }
4194 
4195 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4196 				   struct kvm_enable_cap *cap)
4197 {
4198 	int r;
4199 
4200 	if (cap->flags)
4201 		return -EINVAL;
4202 
4203 	switch (cap->cap) {
4204 	case KVM_CAP_DISABLE_QUIRKS:
4205 		kvm->arch.disabled_quirks = cap->args[0];
4206 		r = 0;
4207 		break;
4208 	case KVM_CAP_SPLIT_IRQCHIP: {
4209 		mutex_lock(&kvm->lock);
4210 		r = -EINVAL;
4211 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4212 			goto split_irqchip_unlock;
4213 		r = -EEXIST;
4214 		if (irqchip_in_kernel(kvm))
4215 			goto split_irqchip_unlock;
4216 		if (kvm->created_vcpus)
4217 			goto split_irqchip_unlock;
4218 		r = kvm_setup_empty_irq_routing(kvm);
4219 		if (r)
4220 			goto split_irqchip_unlock;
4221 		/* Pairs with irqchip_in_kernel. */
4222 		smp_wmb();
4223 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4224 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4225 		r = 0;
4226 split_irqchip_unlock:
4227 		mutex_unlock(&kvm->lock);
4228 		break;
4229 	}
4230 	case KVM_CAP_X2APIC_API:
4231 		r = -EINVAL;
4232 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4233 			break;
4234 
4235 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4236 			kvm->arch.x2apic_format = true;
4237 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4238 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4239 
4240 		r = 0;
4241 		break;
4242 	case KVM_CAP_X86_DISABLE_EXITS:
4243 		r = -EINVAL;
4244 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4245 			break;
4246 
4247 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4248 			kvm_can_mwait_in_guest())
4249 			kvm->arch.mwait_in_guest = true;
4250 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HTL)
4251 			kvm->arch.hlt_in_guest = true;
4252 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4253 			kvm->arch.pause_in_guest = true;
4254 		r = 0;
4255 		break;
4256 	default:
4257 		r = -EINVAL;
4258 		break;
4259 	}
4260 	return r;
4261 }
4262 
4263 long kvm_arch_vm_ioctl(struct file *filp,
4264 		       unsigned int ioctl, unsigned long arg)
4265 {
4266 	struct kvm *kvm = filp->private_data;
4267 	void __user *argp = (void __user *)arg;
4268 	int r = -ENOTTY;
4269 	/*
4270 	 * This union makes it completely explicit to gcc-3.x
4271 	 * that these two variables' stack usage should be
4272 	 * combined, not added together.
4273 	 */
4274 	union {
4275 		struct kvm_pit_state ps;
4276 		struct kvm_pit_state2 ps2;
4277 		struct kvm_pit_config pit_config;
4278 	} u;
4279 
4280 	switch (ioctl) {
4281 	case KVM_SET_TSS_ADDR:
4282 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4283 		break;
4284 	case KVM_SET_IDENTITY_MAP_ADDR: {
4285 		u64 ident_addr;
4286 
4287 		mutex_lock(&kvm->lock);
4288 		r = -EINVAL;
4289 		if (kvm->created_vcpus)
4290 			goto set_identity_unlock;
4291 		r = -EFAULT;
4292 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4293 			goto set_identity_unlock;
4294 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4295 set_identity_unlock:
4296 		mutex_unlock(&kvm->lock);
4297 		break;
4298 	}
4299 	case KVM_SET_NR_MMU_PAGES:
4300 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4301 		break;
4302 	case KVM_GET_NR_MMU_PAGES:
4303 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4304 		break;
4305 	case KVM_CREATE_IRQCHIP: {
4306 		mutex_lock(&kvm->lock);
4307 
4308 		r = -EEXIST;
4309 		if (irqchip_in_kernel(kvm))
4310 			goto create_irqchip_unlock;
4311 
4312 		r = -EINVAL;
4313 		if (kvm->created_vcpus)
4314 			goto create_irqchip_unlock;
4315 
4316 		r = kvm_pic_init(kvm);
4317 		if (r)
4318 			goto create_irqchip_unlock;
4319 
4320 		r = kvm_ioapic_init(kvm);
4321 		if (r) {
4322 			kvm_pic_destroy(kvm);
4323 			goto create_irqchip_unlock;
4324 		}
4325 
4326 		r = kvm_setup_default_irq_routing(kvm);
4327 		if (r) {
4328 			kvm_ioapic_destroy(kvm);
4329 			kvm_pic_destroy(kvm);
4330 			goto create_irqchip_unlock;
4331 		}
4332 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4333 		smp_wmb();
4334 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4335 	create_irqchip_unlock:
4336 		mutex_unlock(&kvm->lock);
4337 		break;
4338 	}
4339 	case KVM_CREATE_PIT:
4340 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4341 		goto create_pit;
4342 	case KVM_CREATE_PIT2:
4343 		r = -EFAULT;
4344 		if (copy_from_user(&u.pit_config, argp,
4345 				   sizeof(struct kvm_pit_config)))
4346 			goto out;
4347 	create_pit:
4348 		mutex_lock(&kvm->lock);
4349 		r = -EEXIST;
4350 		if (kvm->arch.vpit)
4351 			goto create_pit_unlock;
4352 		r = -ENOMEM;
4353 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4354 		if (kvm->arch.vpit)
4355 			r = 0;
4356 	create_pit_unlock:
4357 		mutex_unlock(&kvm->lock);
4358 		break;
4359 	case KVM_GET_IRQCHIP: {
4360 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4361 		struct kvm_irqchip *chip;
4362 
4363 		chip = memdup_user(argp, sizeof(*chip));
4364 		if (IS_ERR(chip)) {
4365 			r = PTR_ERR(chip);
4366 			goto out;
4367 		}
4368 
4369 		r = -ENXIO;
4370 		if (!irqchip_kernel(kvm))
4371 			goto get_irqchip_out;
4372 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4373 		if (r)
4374 			goto get_irqchip_out;
4375 		r = -EFAULT;
4376 		if (copy_to_user(argp, chip, sizeof *chip))
4377 			goto get_irqchip_out;
4378 		r = 0;
4379 	get_irqchip_out:
4380 		kfree(chip);
4381 		break;
4382 	}
4383 	case KVM_SET_IRQCHIP: {
4384 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4385 		struct kvm_irqchip *chip;
4386 
4387 		chip = memdup_user(argp, sizeof(*chip));
4388 		if (IS_ERR(chip)) {
4389 			r = PTR_ERR(chip);
4390 			goto out;
4391 		}
4392 
4393 		r = -ENXIO;
4394 		if (!irqchip_kernel(kvm))
4395 			goto set_irqchip_out;
4396 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4397 		if (r)
4398 			goto set_irqchip_out;
4399 		r = 0;
4400 	set_irqchip_out:
4401 		kfree(chip);
4402 		break;
4403 	}
4404 	case KVM_GET_PIT: {
4405 		r = -EFAULT;
4406 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4407 			goto out;
4408 		r = -ENXIO;
4409 		if (!kvm->arch.vpit)
4410 			goto out;
4411 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4412 		if (r)
4413 			goto out;
4414 		r = -EFAULT;
4415 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4416 			goto out;
4417 		r = 0;
4418 		break;
4419 	}
4420 	case KVM_SET_PIT: {
4421 		r = -EFAULT;
4422 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4423 			goto out;
4424 		r = -ENXIO;
4425 		if (!kvm->arch.vpit)
4426 			goto out;
4427 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4428 		break;
4429 	}
4430 	case KVM_GET_PIT2: {
4431 		r = -ENXIO;
4432 		if (!kvm->arch.vpit)
4433 			goto out;
4434 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4435 		if (r)
4436 			goto out;
4437 		r = -EFAULT;
4438 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4439 			goto out;
4440 		r = 0;
4441 		break;
4442 	}
4443 	case KVM_SET_PIT2: {
4444 		r = -EFAULT;
4445 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4446 			goto out;
4447 		r = -ENXIO;
4448 		if (!kvm->arch.vpit)
4449 			goto out;
4450 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4451 		break;
4452 	}
4453 	case KVM_REINJECT_CONTROL: {
4454 		struct kvm_reinject_control control;
4455 		r =  -EFAULT;
4456 		if (copy_from_user(&control, argp, sizeof(control)))
4457 			goto out;
4458 		r = kvm_vm_ioctl_reinject(kvm, &control);
4459 		break;
4460 	}
4461 	case KVM_SET_BOOT_CPU_ID:
4462 		r = 0;
4463 		mutex_lock(&kvm->lock);
4464 		if (kvm->created_vcpus)
4465 			r = -EBUSY;
4466 		else
4467 			kvm->arch.bsp_vcpu_id = arg;
4468 		mutex_unlock(&kvm->lock);
4469 		break;
4470 	case KVM_XEN_HVM_CONFIG: {
4471 		struct kvm_xen_hvm_config xhc;
4472 		r = -EFAULT;
4473 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4474 			goto out;
4475 		r = -EINVAL;
4476 		if (xhc.flags)
4477 			goto out;
4478 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4479 		r = 0;
4480 		break;
4481 	}
4482 	case KVM_SET_CLOCK: {
4483 		struct kvm_clock_data user_ns;
4484 		u64 now_ns;
4485 
4486 		r = -EFAULT;
4487 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4488 			goto out;
4489 
4490 		r = -EINVAL;
4491 		if (user_ns.flags)
4492 			goto out;
4493 
4494 		r = 0;
4495 		/*
4496 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4497 		 * kvm_gen_update_masterclock() can be cut down to locked
4498 		 * pvclock_update_vm_gtod_copy().
4499 		 */
4500 		kvm_gen_update_masterclock(kvm);
4501 		now_ns = get_kvmclock_ns(kvm);
4502 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4503 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4504 		break;
4505 	}
4506 	case KVM_GET_CLOCK: {
4507 		struct kvm_clock_data user_ns;
4508 		u64 now_ns;
4509 
4510 		now_ns = get_kvmclock_ns(kvm);
4511 		user_ns.clock = now_ns;
4512 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4513 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4514 
4515 		r = -EFAULT;
4516 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4517 			goto out;
4518 		r = 0;
4519 		break;
4520 	}
4521 	case KVM_ENABLE_CAP: {
4522 		struct kvm_enable_cap cap;
4523 
4524 		r = -EFAULT;
4525 		if (copy_from_user(&cap, argp, sizeof(cap)))
4526 			goto out;
4527 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4528 		break;
4529 	}
4530 	case KVM_MEMORY_ENCRYPT_OP: {
4531 		r = -ENOTTY;
4532 		if (kvm_x86_ops->mem_enc_op)
4533 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
4534 		break;
4535 	}
4536 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
4537 		struct kvm_enc_region region;
4538 
4539 		r = -EFAULT;
4540 		if (copy_from_user(&region, argp, sizeof(region)))
4541 			goto out;
4542 
4543 		r = -ENOTTY;
4544 		if (kvm_x86_ops->mem_enc_reg_region)
4545 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4546 		break;
4547 	}
4548 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4549 		struct kvm_enc_region region;
4550 
4551 		r = -EFAULT;
4552 		if (copy_from_user(&region, argp, sizeof(region)))
4553 			goto out;
4554 
4555 		r = -ENOTTY;
4556 		if (kvm_x86_ops->mem_enc_unreg_region)
4557 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4558 		break;
4559 	}
4560 	case KVM_HYPERV_EVENTFD: {
4561 		struct kvm_hyperv_eventfd hvevfd;
4562 
4563 		r = -EFAULT;
4564 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4565 			goto out;
4566 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4567 		break;
4568 	}
4569 	default:
4570 		r = -ENOTTY;
4571 	}
4572 out:
4573 	return r;
4574 }
4575 
4576 static void kvm_init_msr_list(void)
4577 {
4578 	u32 dummy[2];
4579 	unsigned i, j;
4580 
4581 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4582 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4583 			continue;
4584 
4585 		/*
4586 		 * Even MSRs that are valid in the host may not be exposed
4587 		 * to the guests in some cases.
4588 		 */
4589 		switch (msrs_to_save[i]) {
4590 		case MSR_IA32_BNDCFGS:
4591 			if (!kvm_x86_ops->mpx_supported())
4592 				continue;
4593 			break;
4594 		case MSR_TSC_AUX:
4595 			if (!kvm_x86_ops->rdtscp_supported())
4596 				continue;
4597 			break;
4598 		default:
4599 			break;
4600 		}
4601 
4602 		if (j < i)
4603 			msrs_to_save[j] = msrs_to_save[i];
4604 		j++;
4605 	}
4606 	num_msrs_to_save = j;
4607 
4608 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4609 		switch (emulated_msrs[i]) {
4610 		case MSR_IA32_SMBASE:
4611 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4612 				continue;
4613 			break;
4614 		default:
4615 			break;
4616 		}
4617 
4618 		if (j < i)
4619 			emulated_msrs[j] = emulated_msrs[i];
4620 		j++;
4621 	}
4622 	num_emulated_msrs = j;
4623 
4624 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4625 		struct kvm_msr_entry msr;
4626 
4627 		msr.index = msr_based_features[i];
4628 		if (kvm_get_msr_feature(&msr))
4629 			continue;
4630 
4631 		if (j < i)
4632 			msr_based_features[j] = msr_based_features[i];
4633 		j++;
4634 	}
4635 	num_msr_based_features = j;
4636 }
4637 
4638 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4639 			   const void *v)
4640 {
4641 	int handled = 0;
4642 	int n;
4643 
4644 	do {
4645 		n = min(len, 8);
4646 		if (!(lapic_in_kernel(vcpu) &&
4647 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4648 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4649 			break;
4650 		handled += n;
4651 		addr += n;
4652 		len -= n;
4653 		v += n;
4654 	} while (len);
4655 
4656 	return handled;
4657 }
4658 
4659 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4660 {
4661 	int handled = 0;
4662 	int n;
4663 
4664 	do {
4665 		n = min(len, 8);
4666 		if (!(lapic_in_kernel(vcpu) &&
4667 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4668 					 addr, n, v))
4669 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4670 			break;
4671 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4672 		handled += n;
4673 		addr += n;
4674 		len -= n;
4675 		v += n;
4676 	} while (len);
4677 
4678 	return handled;
4679 }
4680 
4681 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4682 			struct kvm_segment *var, int seg)
4683 {
4684 	kvm_x86_ops->set_segment(vcpu, var, seg);
4685 }
4686 
4687 void kvm_get_segment(struct kvm_vcpu *vcpu,
4688 		     struct kvm_segment *var, int seg)
4689 {
4690 	kvm_x86_ops->get_segment(vcpu, var, seg);
4691 }
4692 
4693 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4694 			   struct x86_exception *exception)
4695 {
4696 	gpa_t t_gpa;
4697 
4698 	BUG_ON(!mmu_is_nested(vcpu));
4699 
4700 	/* NPT walks are always user-walks */
4701 	access |= PFERR_USER_MASK;
4702 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4703 
4704 	return t_gpa;
4705 }
4706 
4707 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4708 			      struct x86_exception *exception)
4709 {
4710 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4711 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4712 }
4713 
4714  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4715 				struct x86_exception *exception)
4716 {
4717 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4718 	access |= PFERR_FETCH_MASK;
4719 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4720 }
4721 
4722 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4723 			       struct x86_exception *exception)
4724 {
4725 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4726 	access |= PFERR_WRITE_MASK;
4727 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4728 }
4729 
4730 /* uses this to access any guest's mapped memory without checking CPL */
4731 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4732 				struct x86_exception *exception)
4733 {
4734 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4735 }
4736 
4737 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4738 				      struct kvm_vcpu *vcpu, u32 access,
4739 				      struct x86_exception *exception)
4740 {
4741 	void *data = val;
4742 	int r = X86EMUL_CONTINUE;
4743 
4744 	while (bytes) {
4745 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4746 							    exception);
4747 		unsigned offset = addr & (PAGE_SIZE-1);
4748 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4749 		int ret;
4750 
4751 		if (gpa == UNMAPPED_GVA)
4752 			return X86EMUL_PROPAGATE_FAULT;
4753 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4754 					       offset, toread);
4755 		if (ret < 0) {
4756 			r = X86EMUL_IO_NEEDED;
4757 			goto out;
4758 		}
4759 
4760 		bytes -= toread;
4761 		data += toread;
4762 		addr += toread;
4763 	}
4764 out:
4765 	return r;
4766 }
4767 
4768 /* used for instruction fetching */
4769 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4770 				gva_t addr, void *val, unsigned int bytes,
4771 				struct x86_exception *exception)
4772 {
4773 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4774 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4775 	unsigned offset;
4776 	int ret;
4777 
4778 	/* Inline kvm_read_guest_virt_helper for speed.  */
4779 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4780 						    exception);
4781 	if (unlikely(gpa == UNMAPPED_GVA))
4782 		return X86EMUL_PROPAGATE_FAULT;
4783 
4784 	offset = addr & (PAGE_SIZE-1);
4785 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4786 		bytes = (unsigned)PAGE_SIZE - offset;
4787 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4788 				       offset, bytes);
4789 	if (unlikely(ret < 0))
4790 		return X86EMUL_IO_NEEDED;
4791 
4792 	return X86EMUL_CONTINUE;
4793 }
4794 
4795 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4796 			       gva_t addr, void *val, unsigned int bytes,
4797 			       struct x86_exception *exception)
4798 {
4799 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4800 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4801 
4802 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4803 					  exception);
4804 }
4805 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4806 
4807 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4808 				      gva_t addr, void *val, unsigned int bytes,
4809 				      struct x86_exception *exception)
4810 {
4811 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4812 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4813 }
4814 
4815 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4816 		unsigned long addr, void *val, unsigned int bytes)
4817 {
4818 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4819 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4820 
4821 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4822 }
4823 
4824 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4825 				       gva_t addr, void *val,
4826 				       unsigned int bytes,
4827 				       struct x86_exception *exception)
4828 {
4829 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4830 	void *data = val;
4831 	int r = X86EMUL_CONTINUE;
4832 
4833 	while (bytes) {
4834 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4835 							     PFERR_WRITE_MASK,
4836 							     exception);
4837 		unsigned offset = addr & (PAGE_SIZE-1);
4838 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4839 		int ret;
4840 
4841 		if (gpa == UNMAPPED_GVA)
4842 			return X86EMUL_PROPAGATE_FAULT;
4843 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4844 		if (ret < 0) {
4845 			r = X86EMUL_IO_NEEDED;
4846 			goto out;
4847 		}
4848 
4849 		bytes -= towrite;
4850 		data += towrite;
4851 		addr += towrite;
4852 	}
4853 out:
4854 	return r;
4855 }
4856 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4857 
4858 int handle_ud(struct kvm_vcpu *vcpu)
4859 {
4860 	int emul_type = EMULTYPE_TRAP_UD;
4861 	enum emulation_result er;
4862 	char sig[5]; /* ud2; .ascii "kvm" */
4863 	struct x86_exception e;
4864 
4865 	if (force_emulation_prefix &&
4866 	    kvm_read_guest_virt(&vcpu->arch.emulate_ctxt,
4867 				kvm_get_linear_rip(vcpu), sig, sizeof(sig), &e) == 0 &&
4868 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4869 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
4870 		emul_type = 0;
4871 	}
4872 
4873 	er = emulate_instruction(vcpu, emul_type);
4874 	if (er == EMULATE_USER_EXIT)
4875 		return 0;
4876 	if (er != EMULATE_DONE)
4877 		kvm_queue_exception(vcpu, UD_VECTOR);
4878 	return 1;
4879 }
4880 EXPORT_SYMBOL_GPL(handle_ud);
4881 
4882 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4883 			    gpa_t gpa, bool write)
4884 {
4885 	/* For APIC access vmexit */
4886 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4887 		return 1;
4888 
4889 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4890 		trace_vcpu_match_mmio(gva, gpa, write, true);
4891 		return 1;
4892 	}
4893 
4894 	return 0;
4895 }
4896 
4897 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4898 				gpa_t *gpa, struct x86_exception *exception,
4899 				bool write)
4900 {
4901 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4902 		| (write ? PFERR_WRITE_MASK : 0);
4903 
4904 	/*
4905 	 * currently PKRU is only applied to ept enabled guest so
4906 	 * there is no pkey in EPT page table for L1 guest or EPT
4907 	 * shadow page table for L2 guest.
4908 	 */
4909 	if (vcpu_match_mmio_gva(vcpu, gva)
4910 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4911 				 vcpu->arch.access, 0, access)) {
4912 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4913 					(gva & (PAGE_SIZE - 1));
4914 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4915 		return 1;
4916 	}
4917 
4918 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4919 
4920 	if (*gpa == UNMAPPED_GVA)
4921 		return -1;
4922 
4923 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4924 }
4925 
4926 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4927 			const void *val, int bytes)
4928 {
4929 	int ret;
4930 
4931 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4932 	if (ret < 0)
4933 		return 0;
4934 	kvm_page_track_write(vcpu, gpa, val, bytes);
4935 	return 1;
4936 }
4937 
4938 struct read_write_emulator_ops {
4939 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4940 				  int bytes);
4941 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4942 				  void *val, int bytes);
4943 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4944 			       int bytes, void *val);
4945 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4946 				    void *val, int bytes);
4947 	bool write;
4948 };
4949 
4950 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4951 {
4952 	if (vcpu->mmio_read_completed) {
4953 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4954 			       vcpu->mmio_fragments[0].gpa, val);
4955 		vcpu->mmio_read_completed = 0;
4956 		return 1;
4957 	}
4958 
4959 	return 0;
4960 }
4961 
4962 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4963 			void *val, int bytes)
4964 {
4965 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4966 }
4967 
4968 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4969 			 void *val, int bytes)
4970 {
4971 	return emulator_write_phys(vcpu, gpa, val, bytes);
4972 }
4973 
4974 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4975 {
4976 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4977 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4978 }
4979 
4980 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4981 			  void *val, int bytes)
4982 {
4983 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4984 	return X86EMUL_IO_NEEDED;
4985 }
4986 
4987 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4988 			   void *val, int bytes)
4989 {
4990 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4991 
4992 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4993 	return X86EMUL_CONTINUE;
4994 }
4995 
4996 static const struct read_write_emulator_ops read_emultor = {
4997 	.read_write_prepare = read_prepare,
4998 	.read_write_emulate = read_emulate,
4999 	.read_write_mmio = vcpu_mmio_read,
5000 	.read_write_exit_mmio = read_exit_mmio,
5001 };
5002 
5003 static const struct read_write_emulator_ops write_emultor = {
5004 	.read_write_emulate = write_emulate,
5005 	.read_write_mmio = write_mmio,
5006 	.read_write_exit_mmio = write_exit_mmio,
5007 	.write = true,
5008 };
5009 
5010 static int emulator_read_write_onepage(unsigned long addr, void *val,
5011 				       unsigned int bytes,
5012 				       struct x86_exception *exception,
5013 				       struct kvm_vcpu *vcpu,
5014 				       const struct read_write_emulator_ops *ops)
5015 {
5016 	gpa_t gpa;
5017 	int handled, ret;
5018 	bool write = ops->write;
5019 	struct kvm_mmio_fragment *frag;
5020 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5021 
5022 	/*
5023 	 * If the exit was due to a NPF we may already have a GPA.
5024 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5025 	 * Note, this cannot be used on string operations since string
5026 	 * operation using rep will only have the initial GPA from the NPF
5027 	 * occurred.
5028 	 */
5029 	if (vcpu->arch.gpa_available &&
5030 	    emulator_can_use_gpa(ctxt) &&
5031 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5032 		gpa = vcpu->arch.gpa_val;
5033 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5034 	} else {
5035 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5036 		if (ret < 0)
5037 			return X86EMUL_PROPAGATE_FAULT;
5038 	}
5039 
5040 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5041 		return X86EMUL_CONTINUE;
5042 
5043 	/*
5044 	 * Is this MMIO handled locally?
5045 	 */
5046 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5047 	if (handled == bytes)
5048 		return X86EMUL_CONTINUE;
5049 
5050 	gpa += handled;
5051 	bytes -= handled;
5052 	val += handled;
5053 
5054 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5055 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5056 	frag->gpa = gpa;
5057 	frag->data = val;
5058 	frag->len = bytes;
5059 	return X86EMUL_CONTINUE;
5060 }
5061 
5062 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5063 			unsigned long addr,
5064 			void *val, unsigned int bytes,
5065 			struct x86_exception *exception,
5066 			const struct read_write_emulator_ops *ops)
5067 {
5068 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5069 	gpa_t gpa;
5070 	int rc;
5071 
5072 	if (ops->read_write_prepare &&
5073 		  ops->read_write_prepare(vcpu, val, bytes))
5074 		return X86EMUL_CONTINUE;
5075 
5076 	vcpu->mmio_nr_fragments = 0;
5077 
5078 	/* Crossing a page boundary? */
5079 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5080 		int now;
5081 
5082 		now = -addr & ~PAGE_MASK;
5083 		rc = emulator_read_write_onepage(addr, val, now, exception,
5084 						 vcpu, ops);
5085 
5086 		if (rc != X86EMUL_CONTINUE)
5087 			return rc;
5088 		addr += now;
5089 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5090 			addr = (u32)addr;
5091 		val += now;
5092 		bytes -= now;
5093 	}
5094 
5095 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5096 					 vcpu, ops);
5097 	if (rc != X86EMUL_CONTINUE)
5098 		return rc;
5099 
5100 	if (!vcpu->mmio_nr_fragments)
5101 		return rc;
5102 
5103 	gpa = vcpu->mmio_fragments[0].gpa;
5104 
5105 	vcpu->mmio_needed = 1;
5106 	vcpu->mmio_cur_fragment = 0;
5107 
5108 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5109 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5110 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5111 	vcpu->run->mmio.phys_addr = gpa;
5112 
5113 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5114 }
5115 
5116 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5117 				  unsigned long addr,
5118 				  void *val,
5119 				  unsigned int bytes,
5120 				  struct x86_exception *exception)
5121 {
5122 	return emulator_read_write(ctxt, addr, val, bytes,
5123 				   exception, &read_emultor);
5124 }
5125 
5126 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5127 			    unsigned long addr,
5128 			    const void *val,
5129 			    unsigned int bytes,
5130 			    struct x86_exception *exception)
5131 {
5132 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5133 				   exception, &write_emultor);
5134 }
5135 
5136 #define CMPXCHG_TYPE(t, ptr, old, new) \
5137 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5138 
5139 #ifdef CONFIG_X86_64
5140 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5141 #else
5142 #  define CMPXCHG64(ptr, old, new) \
5143 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5144 #endif
5145 
5146 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5147 				     unsigned long addr,
5148 				     const void *old,
5149 				     const void *new,
5150 				     unsigned int bytes,
5151 				     struct x86_exception *exception)
5152 {
5153 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5154 	gpa_t gpa;
5155 	struct page *page;
5156 	char *kaddr;
5157 	bool exchanged;
5158 
5159 	/* guests cmpxchg8b have to be emulated atomically */
5160 	if (bytes > 8 || (bytes & (bytes - 1)))
5161 		goto emul_write;
5162 
5163 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5164 
5165 	if (gpa == UNMAPPED_GVA ||
5166 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5167 		goto emul_write;
5168 
5169 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5170 		goto emul_write;
5171 
5172 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5173 	if (is_error_page(page))
5174 		goto emul_write;
5175 
5176 	kaddr = kmap_atomic(page);
5177 	kaddr += offset_in_page(gpa);
5178 	switch (bytes) {
5179 	case 1:
5180 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5181 		break;
5182 	case 2:
5183 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5184 		break;
5185 	case 4:
5186 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5187 		break;
5188 	case 8:
5189 		exchanged = CMPXCHG64(kaddr, old, new);
5190 		break;
5191 	default:
5192 		BUG();
5193 	}
5194 	kunmap_atomic(kaddr);
5195 	kvm_release_page_dirty(page);
5196 
5197 	if (!exchanged)
5198 		return X86EMUL_CMPXCHG_FAILED;
5199 
5200 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5201 	kvm_page_track_write(vcpu, gpa, new, bytes);
5202 
5203 	return X86EMUL_CONTINUE;
5204 
5205 emul_write:
5206 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5207 
5208 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5209 }
5210 
5211 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5212 {
5213 	int r = 0, i;
5214 
5215 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5216 		if (vcpu->arch.pio.in)
5217 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5218 					    vcpu->arch.pio.size, pd);
5219 		else
5220 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5221 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5222 					     pd);
5223 		if (r)
5224 			break;
5225 		pd += vcpu->arch.pio.size;
5226 	}
5227 	return r;
5228 }
5229 
5230 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5231 			       unsigned short port, void *val,
5232 			       unsigned int count, bool in)
5233 {
5234 	vcpu->arch.pio.port = port;
5235 	vcpu->arch.pio.in = in;
5236 	vcpu->arch.pio.count  = count;
5237 	vcpu->arch.pio.size = size;
5238 
5239 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5240 		vcpu->arch.pio.count = 0;
5241 		return 1;
5242 	}
5243 
5244 	vcpu->run->exit_reason = KVM_EXIT_IO;
5245 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5246 	vcpu->run->io.size = size;
5247 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5248 	vcpu->run->io.count = count;
5249 	vcpu->run->io.port = port;
5250 
5251 	return 0;
5252 }
5253 
5254 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5255 				    int size, unsigned short port, void *val,
5256 				    unsigned int count)
5257 {
5258 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5259 	int ret;
5260 
5261 	if (vcpu->arch.pio.count)
5262 		goto data_avail;
5263 
5264 	memset(vcpu->arch.pio_data, 0, size * count);
5265 
5266 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5267 	if (ret) {
5268 data_avail:
5269 		memcpy(val, vcpu->arch.pio_data, size * count);
5270 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5271 		vcpu->arch.pio.count = 0;
5272 		return 1;
5273 	}
5274 
5275 	return 0;
5276 }
5277 
5278 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5279 				     int size, unsigned short port,
5280 				     const void *val, unsigned int count)
5281 {
5282 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5283 
5284 	memcpy(vcpu->arch.pio_data, val, size * count);
5285 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5286 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5287 }
5288 
5289 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5290 {
5291 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5292 }
5293 
5294 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5295 {
5296 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5297 }
5298 
5299 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5300 {
5301 	if (!need_emulate_wbinvd(vcpu))
5302 		return X86EMUL_CONTINUE;
5303 
5304 	if (kvm_x86_ops->has_wbinvd_exit()) {
5305 		int cpu = get_cpu();
5306 
5307 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5308 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5309 				wbinvd_ipi, NULL, 1);
5310 		put_cpu();
5311 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5312 	} else
5313 		wbinvd();
5314 	return X86EMUL_CONTINUE;
5315 }
5316 
5317 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5318 {
5319 	kvm_emulate_wbinvd_noskip(vcpu);
5320 	return kvm_skip_emulated_instruction(vcpu);
5321 }
5322 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5323 
5324 
5325 
5326 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5327 {
5328 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5329 }
5330 
5331 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5332 			   unsigned long *dest)
5333 {
5334 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5335 }
5336 
5337 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5338 			   unsigned long value)
5339 {
5340 
5341 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5342 }
5343 
5344 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5345 {
5346 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5347 }
5348 
5349 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5350 {
5351 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5352 	unsigned long value;
5353 
5354 	switch (cr) {
5355 	case 0:
5356 		value = kvm_read_cr0(vcpu);
5357 		break;
5358 	case 2:
5359 		value = vcpu->arch.cr2;
5360 		break;
5361 	case 3:
5362 		value = kvm_read_cr3(vcpu);
5363 		break;
5364 	case 4:
5365 		value = kvm_read_cr4(vcpu);
5366 		break;
5367 	case 8:
5368 		value = kvm_get_cr8(vcpu);
5369 		break;
5370 	default:
5371 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5372 		return 0;
5373 	}
5374 
5375 	return value;
5376 }
5377 
5378 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5379 {
5380 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5381 	int res = 0;
5382 
5383 	switch (cr) {
5384 	case 0:
5385 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5386 		break;
5387 	case 2:
5388 		vcpu->arch.cr2 = val;
5389 		break;
5390 	case 3:
5391 		res = kvm_set_cr3(vcpu, val);
5392 		break;
5393 	case 4:
5394 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5395 		break;
5396 	case 8:
5397 		res = kvm_set_cr8(vcpu, val);
5398 		break;
5399 	default:
5400 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5401 		res = -1;
5402 	}
5403 
5404 	return res;
5405 }
5406 
5407 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5408 {
5409 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5410 }
5411 
5412 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5413 {
5414 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5415 }
5416 
5417 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5418 {
5419 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5420 }
5421 
5422 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5423 {
5424 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5425 }
5426 
5427 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5428 {
5429 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5430 }
5431 
5432 static unsigned long emulator_get_cached_segment_base(
5433 	struct x86_emulate_ctxt *ctxt, int seg)
5434 {
5435 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5436 }
5437 
5438 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5439 				 struct desc_struct *desc, u32 *base3,
5440 				 int seg)
5441 {
5442 	struct kvm_segment var;
5443 
5444 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5445 	*selector = var.selector;
5446 
5447 	if (var.unusable) {
5448 		memset(desc, 0, sizeof(*desc));
5449 		if (base3)
5450 			*base3 = 0;
5451 		return false;
5452 	}
5453 
5454 	if (var.g)
5455 		var.limit >>= 12;
5456 	set_desc_limit(desc, var.limit);
5457 	set_desc_base(desc, (unsigned long)var.base);
5458 #ifdef CONFIG_X86_64
5459 	if (base3)
5460 		*base3 = var.base >> 32;
5461 #endif
5462 	desc->type = var.type;
5463 	desc->s = var.s;
5464 	desc->dpl = var.dpl;
5465 	desc->p = var.present;
5466 	desc->avl = var.avl;
5467 	desc->l = var.l;
5468 	desc->d = var.db;
5469 	desc->g = var.g;
5470 
5471 	return true;
5472 }
5473 
5474 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5475 				 struct desc_struct *desc, u32 base3,
5476 				 int seg)
5477 {
5478 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5479 	struct kvm_segment var;
5480 
5481 	var.selector = selector;
5482 	var.base = get_desc_base(desc);
5483 #ifdef CONFIG_X86_64
5484 	var.base |= ((u64)base3) << 32;
5485 #endif
5486 	var.limit = get_desc_limit(desc);
5487 	if (desc->g)
5488 		var.limit = (var.limit << 12) | 0xfff;
5489 	var.type = desc->type;
5490 	var.dpl = desc->dpl;
5491 	var.db = desc->d;
5492 	var.s = desc->s;
5493 	var.l = desc->l;
5494 	var.g = desc->g;
5495 	var.avl = desc->avl;
5496 	var.present = desc->p;
5497 	var.unusable = !var.present;
5498 	var.padding = 0;
5499 
5500 	kvm_set_segment(vcpu, &var, seg);
5501 	return;
5502 }
5503 
5504 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5505 			    u32 msr_index, u64 *pdata)
5506 {
5507 	struct msr_data msr;
5508 	int r;
5509 
5510 	msr.index = msr_index;
5511 	msr.host_initiated = false;
5512 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5513 	if (r)
5514 		return r;
5515 
5516 	*pdata = msr.data;
5517 	return 0;
5518 }
5519 
5520 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5521 			    u32 msr_index, u64 data)
5522 {
5523 	struct msr_data msr;
5524 
5525 	msr.data = data;
5526 	msr.index = msr_index;
5527 	msr.host_initiated = false;
5528 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5529 }
5530 
5531 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5532 {
5533 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5534 
5535 	return vcpu->arch.smbase;
5536 }
5537 
5538 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5539 {
5540 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5541 
5542 	vcpu->arch.smbase = smbase;
5543 }
5544 
5545 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5546 			      u32 pmc)
5547 {
5548 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5549 }
5550 
5551 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5552 			     u32 pmc, u64 *pdata)
5553 {
5554 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5555 }
5556 
5557 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5558 {
5559 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5560 }
5561 
5562 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5563 			      struct x86_instruction_info *info,
5564 			      enum x86_intercept_stage stage)
5565 {
5566 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5567 }
5568 
5569 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5570 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5571 {
5572 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5573 }
5574 
5575 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5576 {
5577 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5578 }
5579 
5580 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5581 {
5582 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5583 }
5584 
5585 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5586 {
5587 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5588 }
5589 
5590 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5591 {
5592 	return emul_to_vcpu(ctxt)->arch.hflags;
5593 }
5594 
5595 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5596 {
5597 	kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5598 }
5599 
5600 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5601 {
5602 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5603 }
5604 
5605 static const struct x86_emulate_ops emulate_ops = {
5606 	.read_gpr            = emulator_read_gpr,
5607 	.write_gpr           = emulator_write_gpr,
5608 	.read_std            = kvm_read_guest_virt_system,
5609 	.write_std           = kvm_write_guest_virt_system,
5610 	.read_phys           = kvm_read_guest_phys_system,
5611 	.fetch               = kvm_fetch_guest_virt,
5612 	.read_emulated       = emulator_read_emulated,
5613 	.write_emulated      = emulator_write_emulated,
5614 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5615 	.invlpg              = emulator_invlpg,
5616 	.pio_in_emulated     = emulator_pio_in_emulated,
5617 	.pio_out_emulated    = emulator_pio_out_emulated,
5618 	.get_segment         = emulator_get_segment,
5619 	.set_segment         = emulator_set_segment,
5620 	.get_cached_segment_base = emulator_get_cached_segment_base,
5621 	.get_gdt             = emulator_get_gdt,
5622 	.get_idt	     = emulator_get_idt,
5623 	.set_gdt             = emulator_set_gdt,
5624 	.set_idt	     = emulator_set_idt,
5625 	.get_cr              = emulator_get_cr,
5626 	.set_cr              = emulator_set_cr,
5627 	.cpl                 = emulator_get_cpl,
5628 	.get_dr              = emulator_get_dr,
5629 	.set_dr              = emulator_set_dr,
5630 	.get_smbase          = emulator_get_smbase,
5631 	.set_smbase          = emulator_set_smbase,
5632 	.set_msr             = emulator_set_msr,
5633 	.get_msr             = emulator_get_msr,
5634 	.check_pmc	     = emulator_check_pmc,
5635 	.read_pmc            = emulator_read_pmc,
5636 	.halt                = emulator_halt,
5637 	.wbinvd              = emulator_wbinvd,
5638 	.fix_hypercall       = emulator_fix_hypercall,
5639 	.intercept           = emulator_intercept,
5640 	.get_cpuid           = emulator_get_cpuid,
5641 	.set_nmi_mask        = emulator_set_nmi_mask,
5642 	.get_hflags          = emulator_get_hflags,
5643 	.set_hflags          = emulator_set_hflags,
5644 	.pre_leave_smm       = emulator_pre_leave_smm,
5645 };
5646 
5647 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5648 {
5649 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5650 	/*
5651 	 * an sti; sti; sequence only disable interrupts for the first
5652 	 * instruction. So, if the last instruction, be it emulated or
5653 	 * not, left the system with the INT_STI flag enabled, it
5654 	 * means that the last instruction is an sti. We should not
5655 	 * leave the flag on in this case. The same goes for mov ss
5656 	 */
5657 	if (int_shadow & mask)
5658 		mask = 0;
5659 	if (unlikely(int_shadow || mask)) {
5660 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5661 		if (!mask)
5662 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5663 	}
5664 }
5665 
5666 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5667 {
5668 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5669 	if (ctxt->exception.vector == PF_VECTOR)
5670 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5671 
5672 	if (ctxt->exception.error_code_valid)
5673 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5674 				      ctxt->exception.error_code);
5675 	else
5676 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5677 	return false;
5678 }
5679 
5680 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5681 {
5682 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5683 	int cs_db, cs_l;
5684 
5685 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5686 
5687 	ctxt->eflags = kvm_get_rflags(vcpu);
5688 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5689 
5690 	ctxt->eip = kvm_rip_read(vcpu);
5691 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5692 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5693 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5694 		     cs_db				? X86EMUL_MODE_PROT32 :
5695 							  X86EMUL_MODE_PROT16;
5696 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5697 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5698 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5699 
5700 	init_decode_cache(ctxt);
5701 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5702 }
5703 
5704 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5705 {
5706 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5707 	int ret;
5708 
5709 	init_emulate_ctxt(vcpu);
5710 
5711 	ctxt->op_bytes = 2;
5712 	ctxt->ad_bytes = 2;
5713 	ctxt->_eip = ctxt->eip + inc_eip;
5714 	ret = emulate_int_real(ctxt, irq);
5715 
5716 	if (ret != X86EMUL_CONTINUE)
5717 		return EMULATE_FAIL;
5718 
5719 	ctxt->eip = ctxt->_eip;
5720 	kvm_rip_write(vcpu, ctxt->eip);
5721 	kvm_set_rflags(vcpu, ctxt->eflags);
5722 
5723 	return EMULATE_DONE;
5724 }
5725 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5726 
5727 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5728 {
5729 	int r = EMULATE_DONE;
5730 
5731 	++vcpu->stat.insn_emulation_fail;
5732 	trace_kvm_emulate_insn_failed(vcpu);
5733 
5734 	if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5735 		return EMULATE_FAIL;
5736 
5737 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5738 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5739 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5740 		vcpu->run->internal.ndata = 0;
5741 		r = EMULATE_USER_EXIT;
5742 	}
5743 
5744 	kvm_queue_exception(vcpu, UD_VECTOR);
5745 
5746 	return r;
5747 }
5748 
5749 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5750 				  bool write_fault_to_shadow_pgtable,
5751 				  int emulation_type)
5752 {
5753 	gpa_t gpa = cr2;
5754 	kvm_pfn_t pfn;
5755 
5756 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5757 		return false;
5758 
5759 	if (!vcpu->arch.mmu.direct_map) {
5760 		/*
5761 		 * Write permission should be allowed since only
5762 		 * write access need to be emulated.
5763 		 */
5764 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5765 
5766 		/*
5767 		 * If the mapping is invalid in guest, let cpu retry
5768 		 * it to generate fault.
5769 		 */
5770 		if (gpa == UNMAPPED_GVA)
5771 			return true;
5772 	}
5773 
5774 	/*
5775 	 * Do not retry the unhandleable instruction if it faults on the
5776 	 * readonly host memory, otherwise it will goto a infinite loop:
5777 	 * retry instruction -> write #PF -> emulation fail -> retry
5778 	 * instruction -> ...
5779 	 */
5780 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5781 
5782 	/*
5783 	 * If the instruction failed on the error pfn, it can not be fixed,
5784 	 * report the error to userspace.
5785 	 */
5786 	if (is_error_noslot_pfn(pfn))
5787 		return false;
5788 
5789 	kvm_release_pfn_clean(pfn);
5790 
5791 	/* The instructions are well-emulated on direct mmu. */
5792 	if (vcpu->arch.mmu.direct_map) {
5793 		unsigned int indirect_shadow_pages;
5794 
5795 		spin_lock(&vcpu->kvm->mmu_lock);
5796 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5797 		spin_unlock(&vcpu->kvm->mmu_lock);
5798 
5799 		if (indirect_shadow_pages)
5800 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5801 
5802 		return true;
5803 	}
5804 
5805 	/*
5806 	 * if emulation was due to access to shadowed page table
5807 	 * and it failed try to unshadow page and re-enter the
5808 	 * guest to let CPU execute the instruction.
5809 	 */
5810 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5811 
5812 	/*
5813 	 * If the access faults on its page table, it can not
5814 	 * be fixed by unprotecting shadow page and it should
5815 	 * be reported to userspace.
5816 	 */
5817 	return !write_fault_to_shadow_pgtable;
5818 }
5819 
5820 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5821 			      unsigned long cr2,  int emulation_type)
5822 {
5823 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5824 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5825 
5826 	last_retry_eip = vcpu->arch.last_retry_eip;
5827 	last_retry_addr = vcpu->arch.last_retry_addr;
5828 
5829 	/*
5830 	 * If the emulation is caused by #PF and it is non-page_table
5831 	 * writing instruction, it means the VM-EXIT is caused by shadow
5832 	 * page protected, we can zap the shadow page and retry this
5833 	 * instruction directly.
5834 	 *
5835 	 * Note: if the guest uses a non-page-table modifying instruction
5836 	 * on the PDE that points to the instruction, then we will unmap
5837 	 * the instruction and go to an infinite loop. So, we cache the
5838 	 * last retried eip and the last fault address, if we meet the eip
5839 	 * and the address again, we can break out of the potential infinite
5840 	 * loop.
5841 	 */
5842 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5843 
5844 	if (!(emulation_type & EMULTYPE_RETRY))
5845 		return false;
5846 
5847 	if (x86_page_table_writing_insn(ctxt))
5848 		return false;
5849 
5850 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5851 		return false;
5852 
5853 	vcpu->arch.last_retry_eip = ctxt->eip;
5854 	vcpu->arch.last_retry_addr = cr2;
5855 
5856 	if (!vcpu->arch.mmu.direct_map)
5857 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5858 
5859 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5860 
5861 	return true;
5862 }
5863 
5864 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5865 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5866 
5867 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5868 {
5869 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5870 		/* This is a good place to trace that we are exiting SMM.  */
5871 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5872 
5873 		/* Process a latched INIT or SMI, if any.  */
5874 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5875 	}
5876 
5877 	kvm_mmu_reset_context(vcpu);
5878 }
5879 
5880 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5881 {
5882 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5883 
5884 	vcpu->arch.hflags = emul_flags;
5885 
5886 	if (changed & HF_SMM_MASK)
5887 		kvm_smm_changed(vcpu);
5888 }
5889 
5890 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5891 				unsigned long *db)
5892 {
5893 	u32 dr6 = 0;
5894 	int i;
5895 	u32 enable, rwlen;
5896 
5897 	enable = dr7;
5898 	rwlen = dr7 >> 16;
5899 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5900 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5901 			dr6 |= (1 << i);
5902 	return dr6;
5903 }
5904 
5905 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5906 {
5907 	struct kvm_run *kvm_run = vcpu->run;
5908 
5909 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5910 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5911 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5912 		kvm_run->debug.arch.exception = DB_VECTOR;
5913 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5914 		*r = EMULATE_USER_EXIT;
5915 	} else {
5916 		/*
5917 		 * "Certain debug exceptions may clear bit 0-3.  The
5918 		 * remaining contents of the DR6 register are never
5919 		 * cleared by the processor".
5920 		 */
5921 		vcpu->arch.dr6 &= ~15;
5922 		vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5923 		kvm_queue_exception(vcpu, DB_VECTOR);
5924 	}
5925 }
5926 
5927 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5928 {
5929 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5930 	int r = EMULATE_DONE;
5931 
5932 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5933 
5934 	/*
5935 	 * rflags is the old, "raw" value of the flags.  The new value has
5936 	 * not been saved yet.
5937 	 *
5938 	 * This is correct even for TF set by the guest, because "the
5939 	 * processor will not generate this exception after the instruction
5940 	 * that sets the TF flag".
5941 	 */
5942 	if (unlikely(rflags & X86_EFLAGS_TF))
5943 		kvm_vcpu_do_singlestep(vcpu, &r);
5944 	return r == EMULATE_DONE;
5945 }
5946 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5947 
5948 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5949 {
5950 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5951 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5952 		struct kvm_run *kvm_run = vcpu->run;
5953 		unsigned long eip = kvm_get_linear_rip(vcpu);
5954 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5955 					   vcpu->arch.guest_debug_dr7,
5956 					   vcpu->arch.eff_db);
5957 
5958 		if (dr6 != 0) {
5959 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5960 			kvm_run->debug.arch.pc = eip;
5961 			kvm_run->debug.arch.exception = DB_VECTOR;
5962 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5963 			*r = EMULATE_USER_EXIT;
5964 			return true;
5965 		}
5966 	}
5967 
5968 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5969 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5970 		unsigned long eip = kvm_get_linear_rip(vcpu);
5971 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5972 					   vcpu->arch.dr7,
5973 					   vcpu->arch.db);
5974 
5975 		if (dr6 != 0) {
5976 			vcpu->arch.dr6 &= ~15;
5977 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5978 			kvm_queue_exception(vcpu, DB_VECTOR);
5979 			*r = EMULATE_DONE;
5980 			return true;
5981 		}
5982 	}
5983 
5984 	return false;
5985 }
5986 
5987 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
5988 {
5989 	switch (ctxt->opcode_len) {
5990 	case 1:
5991 		switch (ctxt->b) {
5992 		case 0xe4:	/* IN */
5993 		case 0xe5:
5994 		case 0xec:
5995 		case 0xed:
5996 		case 0xe6:	/* OUT */
5997 		case 0xe7:
5998 		case 0xee:
5999 		case 0xef:
6000 		case 0x6c:	/* INS */
6001 		case 0x6d:
6002 		case 0x6e:	/* OUTS */
6003 		case 0x6f:
6004 			return true;
6005 		}
6006 		break;
6007 	case 2:
6008 		switch (ctxt->b) {
6009 		case 0x33:	/* RDPMC */
6010 			return true;
6011 		}
6012 		break;
6013 	}
6014 
6015 	return false;
6016 }
6017 
6018 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6019 			    unsigned long cr2,
6020 			    int emulation_type,
6021 			    void *insn,
6022 			    int insn_len)
6023 {
6024 	int r;
6025 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6026 	bool writeback = true;
6027 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6028 
6029 	/*
6030 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6031 	 * never reused.
6032 	 */
6033 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6034 	kvm_clear_exception_queue(vcpu);
6035 
6036 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6037 		init_emulate_ctxt(vcpu);
6038 
6039 		/*
6040 		 * We will reenter on the same instruction since
6041 		 * we do not set complete_userspace_io.  This does not
6042 		 * handle watchpoints yet, those would be handled in
6043 		 * the emulate_ops.
6044 		 */
6045 		if (!(emulation_type & EMULTYPE_SKIP) &&
6046 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6047 			return r;
6048 
6049 		ctxt->interruptibility = 0;
6050 		ctxt->have_exception = false;
6051 		ctxt->exception.vector = -1;
6052 		ctxt->perm_ok = false;
6053 
6054 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6055 
6056 		r = x86_decode_insn(ctxt, insn, insn_len);
6057 
6058 		trace_kvm_emulate_insn_start(vcpu);
6059 		++vcpu->stat.insn_emulation;
6060 		if (r != EMULATION_OK)  {
6061 			if (emulation_type & EMULTYPE_TRAP_UD)
6062 				return EMULATE_FAIL;
6063 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6064 						emulation_type))
6065 				return EMULATE_DONE;
6066 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
6067 				return EMULATE_DONE;
6068 			if (emulation_type & EMULTYPE_SKIP)
6069 				return EMULATE_FAIL;
6070 			return handle_emulation_failure(vcpu, emulation_type);
6071 		}
6072 	}
6073 
6074 	if ((emulation_type & EMULTYPE_VMWARE) &&
6075 	    !is_vmware_backdoor_opcode(ctxt))
6076 		return EMULATE_FAIL;
6077 
6078 	if (emulation_type & EMULTYPE_SKIP) {
6079 		kvm_rip_write(vcpu, ctxt->_eip);
6080 		if (ctxt->eflags & X86_EFLAGS_RF)
6081 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6082 		return EMULATE_DONE;
6083 	}
6084 
6085 	if (retry_instruction(ctxt, cr2, emulation_type))
6086 		return EMULATE_DONE;
6087 
6088 	/* this is needed for vmware backdoor interface to work since it
6089 	   changes registers values  during IO operation */
6090 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6091 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6092 		emulator_invalidate_register_cache(ctxt);
6093 	}
6094 
6095 restart:
6096 	/* Save the faulting GPA (cr2) in the address field */
6097 	ctxt->exception.address = cr2;
6098 
6099 	r = x86_emulate_insn(ctxt);
6100 
6101 	if (r == EMULATION_INTERCEPTED)
6102 		return EMULATE_DONE;
6103 
6104 	if (r == EMULATION_FAILED) {
6105 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6106 					emulation_type))
6107 			return EMULATE_DONE;
6108 
6109 		return handle_emulation_failure(vcpu, emulation_type);
6110 	}
6111 
6112 	if (ctxt->have_exception) {
6113 		r = EMULATE_DONE;
6114 		if (inject_emulated_exception(vcpu))
6115 			return r;
6116 	} else if (vcpu->arch.pio.count) {
6117 		if (!vcpu->arch.pio.in) {
6118 			/* FIXME: return into emulator if single-stepping.  */
6119 			vcpu->arch.pio.count = 0;
6120 		} else {
6121 			writeback = false;
6122 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6123 		}
6124 		r = EMULATE_USER_EXIT;
6125 	} else if (vcpu->mmio_needed) {
6126 		if (!vcpu->mmio_is_write)
6127 			writeback = false;
6128 		r = EMULATE_USER_EXIT;
6129 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6130 	} else if (r == EMULATION_RESTART)
6131 		goto restart;
6132 	else
6133 		r = EMULATE_DONE;
6134 
6135 	if (writeback) {
6136 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6137 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6138 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6139 		kvm_rip_write(vcpu, ctxt->eip);
6140 		if (r == EMULATE_DONE &&
6141 		    (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6142 			kvm_vcpu_do_singlestep(vcpu, &r);
6143 		if (!ctxt->have_exception ||
6144 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6145 			__kvm_set_rflags(vcpu, ctxt->eflags);
6146 
6147 		/*
6148 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6149 		 * do nothing, and it will be requested again as soon as
6150 		 * the shadow expires.  But we still need to check here,
6151 		 * because POPF has no interrupt shadow.
6152 		 */
6153 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6154 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6155 	} else
6156 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6157 
6158 	return r;
6159 }
6160 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6161 
6162 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6163 			    unsigned short port)
6164 {
6165 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6166 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6167 					    size, port, &val, 1);
6168 	/* do not return to emulator after return from userspace */
6169 	vcpu->arch.pio.count = 0;
6170 	return ret;
6171 }
6172 
6173 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6174 {
6175 	unsigned long val;
6176 
6177 	/* We should only ever be called with arch.pio.count equal to 1 */
6178 	BUG_ON(vcpu->arch.pio.count != 1);
6179 
6180 	/* For size less than 4 we merge, else we zero extend */
6181 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6182 					: 0;
6183 
6184 	/*
6185 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6186 	 * the copy and tracing
6187 	 */
6188 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6189 				 vcpu->arch.pio.port, &val, 1);
6190 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6191 
6192 	return 1;
6193 }
6194 
6195 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6196 			   unsigned short port)
6197 {
6198 	unsigned long val;
6199 	int ret;
6200 
6201 	/* For size less than 4 we merge, else we zero extend */
6202 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6203 
6204 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6205 				       &val, 1);
6206 	if (ret) {
6207 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6208 		return ret;
6209 	}
6210 
6211 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6212 
6213 	return 0;
6214 }
6215 
6216 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6217 {
6218 	int ret = kvm_skip_emulated_instruction(vcpu);
6219 
6220 	/*
6221 	 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6222 	 * KVM_EXIT_DEBUG here.
6223 	 */
6224 	if (in)
6225 		return kvm_fast_pio_in(vcpu, size, port) && ret;
6226 	else
6227 		return kvm_fast_pio_out(vcpu, size, port) && ret;
6228 }
6229 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6230 
6231 static int kvmclock_cpu_down_prep(unsigned int cpu)
6232 {
6233 	__this_cpu_write(cpu_tsc_khz, 0);
6234 	return 0;
6235 }
6236 
6237 static void tsc_khz_changed(void *data)
6238 {
6239 	struct cpufreq_freqs *freq = data;
6240 	unsigned long khz = 0;
6241 
6242 	if (data)
6243 		khz = freq->new;
6244 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6245 		khz = cpufreq_quick_get(raw_smp_processor_id());
6246 	if (!khz)
6247 		khz = tsc_khz;
6248 	__this_cpu_write(cpu_tsc_khz, khz);
6249 }
6250 
6251 #ifdef CONFIG_X86_64
6252 static void kvm_hyperv_tsc_notifier(void)
6253 {
6254 	struct kvm *kvm;
6255 	struct kvm_vcpu *vcpu;
6256 	int cpu;
6257 
6258 	spin_lock(&kvm_lock);
6259 	list_for_each_entry(kvm, &vm_list, vm_list)
6260 		kvm_make_mclock_inprogress_request(kvm);
6261 
6262 	hyperv_stop_tsc_emulation();
6263 
6264 	/* TSC frequency always matches when on Hyper-V */
6265 	for_each_present_cpu(cpu)
6266 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6267 	kvm_max_guest_tsc_khz = tsc_khz;
6268 
6269 	list_for_each_entry(kvm, &vm_list, vm_list) {
6270 		struct kvm_arch *ka = &kvm->arch;
6271 
6272 		spin_lock(&ka->pvclock_gtod_sync_lock);
6273 
6274 		pvclock_update_vm_gtod_copy(kvm);
6275 
6276 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6277 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6278 
6279 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6280 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6281 
6282 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6283 	}
6284 	spin_unlock(&kvm_lock);
6285 }
6286 #endif
6287 
6288 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6289 				     void *data)
6290 {
6291 	struct cpufreq_freqs *freq = data;
6292 	struct kvm *kvm;
6293 	struct kvm_vcpu *vcpu;
6294 	int i, send_ipi = 0;
6295 
6296 	/*
6297 	 * We allow guests to temporarily run on slowing clocks,
6298 	 * provided we notify them after, or to run on accelerating
6299 	 * clocks, provided we notify them before.  Thus time never
6300 	 * goes backwards.
6301 	 *
6302 	 * However, we have a problem.  We can't atomically update
6303 	 * the frequency of a given CPU from this function; it is
6304 	 * merely a notifier, which can be called from any CPU.
6305 	 * Changing the TSC frequency at arbitrary points in time
6306 	 * requires a recomputation of local variables related to
6307 	 * the TSC for each VCPU.  We must flag these local variables
6308 	 * to be updated and be sure the update takes place with the
6309 	 * new frequency before any guests proceed.
6310 	 *
6311 	 * Unfortunately, the combination of hotplug CPU and frequency
6312 	 * change creates an intractable locking scenario; the order
6313 	 * of when these callouts happen is undefined with respect to
6314 	 * CPU hotplug, and they can race with each other.  As such,
6315 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6316 	 * undefined; you can actually have a CPU frequency change take
6317 	 * place in between the computation of X and the setting of the
6318 	 * variable.  To protect against this problem, all updates of
6319 	 * the per_cpu tsc_khz variable are done in an interrupt
6320 	 * protected IPI, and all callers wishing to update the value
6321 	 * must wait for a synchronous IPI to complete (which is trivial
6322 	 * if the caller is on the CPU already).  This establishes the
6323 	 * necessary total order on variable updates.
6324 	 *
6325 	 * Note that because a guest time update may take place
6326 	 * anytime after the setting of the VCPU's request bit, the
6327 	 * correct TSC value must be set before the request.  However,
6328 	 * to ensure the update actually makes it to any guest which
6329 	 * starts running in hardware virtualization between the set
6330 	 * and the acquisition of the spinlock, we must also ping the
6331 	 * CPU after setting the request bit.
6332 	 *
6333 	 */
6334 
6335 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6336 		return 0;
6337 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6338 		return 0;
6339 
6340 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6341 
6342 	spin_lock(&kvm_lock);
6343 	list_for_each_entry(kvm, &vm_list, vm_list) {
6344 		kvm_for_each_vcpu(i, vcpu, kvm) {
6345 			if (vcpu->cpu != freq->cpu)
6346 				continue;
6347 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6348 			if (vcpu->cpu != smp_processor_id())
6349 				send_ipi = 1;
6350 		}
6351 	}
6352 	spin_unlock(&kvm_lock);
6353 
6354 	if (freq->old < freq->new && send_ipi) {
6355 		/*
6356 		 * We upscale the frequency.  Must make the guest
6357 		 * doesn't see old kvmclock values while running with
6358 		 * the new frequency, otherwise we risk the guest sees
6359 		 * time go backwards.
6360 		 *
6361 		 * In case we update the frequency for another cpu
6362 		 * (which might be in guest context) send an interrupt
6363 		 * to kick the cpu out of guest context.  Next time
6364 		 * guest context is entered kvmclock will be updated,
6365 		 * so the guest will not see stale values.
6366 		 */
6367 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6368 	}
6369 	return 0;
6370 }
6371 
6372 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6373 	.notifier_call  = kvmclock_cpufreq_notifier
6374 };
6375 
6376 static int kvmclock_cpu_online(unsigned int cpu)
6377 {
6378 	tsc_khz_changed(NULL);
6379 	return 0;
6380 }
6381 
6382 static void kvm_timer_init(void)
6383 {
6384 	max_tsc_khz = tsc_khz;
6385 
6386 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6387 #ifdef CONFIG_CPU_FREQ
6388 		struct cpufreq_policy policy;
6389 		int cpu;
6390 
6391 		memset(&policy, 0, sizeof(policy));
6392 		cpu = get_cpu();
6393 		cpufreq_get_policy(&policy, cpu);
6394 		if (policy.cpuinfo.max_freq)
6395 			max_tsc_khz = policy.cpuinfo.max_freq;
6396 		put_cpu();
6397 #endif
6398 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6399 					  CPUFREQ_TRANSITION_NOTIFIER);
6400 	}
6401 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6402 
6403 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6404 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6405 }
6406 
6407 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6408 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6409 
6410 int kvm_is_in_guest(void)
6411 {
6412 	return __this_cpu_read(current_vcpu) != NULL;
6413 }
6414 
6415 static int kvm_is_user_mode(void)
6416 {
6417 	int user_mode = 3;
6418 
6419 	if (__this_cpu_read(current_vcpu))
6420 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6421 
6422 	return user_mode != 0;
6423 }
6424 
6425 static unsigned long kvm_get_guest_ip(void)
6426 {
6427 	unsigned long ip = 0;
6428 
6429 	if (__this_cpu_read(current_vcpu))
6430 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6431 
6432 	return ip;
6433 }
6434 
6435 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6436 	.is_in_guest		= kvm_is_in_guest,
6437 	.is_user_mode		= kvm_is_user_mode,
6438 	.get_guest_ip		= kvm_get_guest_ip,
6439 };
6440 
6441 static void kvm_set_mmio_spte_mask(void)
6442 {
6443 	u64 mask;
6444 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
6445 
6446 	/*
6447 	 * Set the reserved bits and the present bit of an paging-structure
6448 	 * entry to generate page fault with PFER.RSV = 1.
6449 	 */
6450 	 /* Mask the reserved physical address bits. */
6451 	mask = rsvd_bits(maxphyaddr, 51);
6452 
6453 	/* Set the present bit. */
6454 	mask |= 1ull;
6455 
6456 #ifdef CONFIG_X86_64
6457 	/*
6458 	 * If reserved bit is not supported, clear the present bit to disable
6459 	 * mmio page fault.
6460 	 */
6461 	if (maxphyaddr == 52)
6462 		mask &= ~1ull;
6463 #endif
6464 
6465 	kvm_mmu_set_mmio_spte_mask(mask, mask);
6466 }
6467 
6468 #ifdef CONFIG_X86_64
6469 static void pvclock_gtod_update_fn(struct work_struct *work)
6470 {
6471 	struct kvm *kvm;
6472 
6473 	struct kvm_vcpu *vcpu;
6474 	int i;
6475 
6476 	spin_lock(&kvm_lock);
6477 	list_for_each_entry(kvm, &vm_list, vm_list)
6478 		kvm_for_each_vcpu(i, vcpu, kvm)
6479 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6480 	atomic_set(&kvm_guest_has_master_clock, 0);
6481 	spin_unlock(&kvm_lock);
6482 }
6483 
6484 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6485 
6486 /*
6487  * Notification about pvclock gtod data update.
6488  */
6489 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6490 			       void *priv)
6491 {
6492 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6493 	struct timekeeper *tk = priv;
6494 
6495 	update_pvclock_gtod(tk);
6496 
6497 	/* disable master clock if host does not trust, or does not
6498 	 * use, TSC based clocksource.
6499 	 */
6500 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6501 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6502 		queue_work(system_long_wq, &pvclock_gtod_work);
6503 
6504 	return 0;
6505 }
6506 
6507 static struct notifier_block pvclock_gtod_notifier = {
6508 	.notifier_call = pvclock_gtod_notify,
6509 };
6510 #endif
6511 
6512 int kvm_arch_init(void *opaque)
6513 {
6514 	int r;
6515 	struct kvm_x86_ops *ops = opaque;
6516 
6517 	if (kvm_x86_ops) {
6518 		printk(KERN_ERR "kvm: already loaded the other module\n");
6519 		r = -EEXIST;
6520 		goto out;
6521 	}
6522 
6523 	if (!ops->cpu_has_kvm_support()) {
6524 		printk(KERN_ERR "kvm: no hardware support\n");
6525 		r = -EOPNOTSUPP;
6526 		goto out;
6527 	}
6528 	if (ops->disabled_by_bios()) {
6529 		printk(KERN_ERR "kvm: disabled by bios\n");
6530 		r = -EOPNOTSUPP;
6531 		goto out;
6532 	}
6533 
6534 	r = -ENOMEM;
6535 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6536 	if (!shared_msrs) {
6537 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6538 		goto out;
6539 	}
6540 
6541 	r = kvm_mmu_module_init();
6542 	if (r)
6543 		goto out_free_percpu;
6544 
6545 	kvm_set_mmio_spte_mask();
6546 
6547 	kvm_x86_ops = ops;
6548 
6549 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6550 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6551 			PT_PRESENT_MASK, 0, sme_me_mask);
6552 	kvm_timer_init();
6553 
6554 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6555 
6556 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6557 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6558 
6559 	kvm_lapic_init();
6560 #ifdef CONFIG_X86_64
6561 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6562 
6563 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6564 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6565 #endif
6566 
6567 	return 0;
6568 
6569 out_free_percpu:
6570 	free_percpu(shared_msrs);
6571 out:
6572 	return r;
6573 }
6574 
6575 void kvm_arch_exit(void)
6576 {
6577 #ifdef CONFIG_X86_64
6578 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6579 		clear_hv_tscchange_cb();
6580 #endif
6581 	kvm_lapic_exit();
6582 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6583 
6584 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6585 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6586 					    CPUFREQ_TRANSITION_NOTIFIER);
6587 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6588 #ifdef CONFIG_X86_64
6589 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6590 #endif
6591 	kvm_x86_ops = NULL;
6592 	kvm_mmu_module_exit();
6593 	free_percpu(shared_msrs);
6594 }
6595 
6596 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6597 {
6598 	++vcpu->stat.halt_exits;
6599 	if (lapic_in_kernel(vcpu)) {
6600 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6601 		return 1;
6602 	} else {
6603 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6604 		return 0;
6605 	}
6606 }
6607 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6608 
6609 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6610 {
6611 	int ret = kvm_skip_emulated_instruction(vcpu);
6612 	/*
6613 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6614 	 * KVM_EXIT_DEBUG here.
6615 	 */
6616 	return kvm_vcpu_halt(vcpu) && ret;
6617 }
6618 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6619 
6620 #ifdef CONFIG_X86_64
6621 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6622 			        unsigned long clock_type)
6623 {
6624 	struct kvm_clock_pairing clock_pairing;
6625 	struct timespec ts;
6626 	u64 cycle;
6627 	int ret;
6628 
6629 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6630 		return -KVM_EOPNOTSUPP;
6631 
6632 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6633 		return -KVM_EOPNOTSUPP;
6634 
6635 	clock_pairing.sec = ts.tv_sec;
6636 	clock_pairing.nsec = ts.tv_nsec;
6637 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6638 	clock_pairing.flags = 0;
6639 
6640 	ret = 0;
6641 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6642 			    sizeof(struct kvm_clock_pairing)))
6643 		ret = -KVM_EFAULT;
6644 
6645 	return ret;
6646 }
6647 #endif
6648 
6649 /*
6650  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6651  *
6652  * @apicid - apicid of vcpu to be kicked.
6653  */
6654 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6655 {
6656 	struct kvm_lapic_irq lapic_irq;
6657 
6658 	lapic_irq.shorthand = 0;
6659 	lapic_irq.dest_mode = 0;
6660 	lapic_irq.level = 0;
6661 	lapic_irq.dest_id = apicid;
6662 	lapic_irq.msi_redir_hint = false;
6663 
6664 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6665 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6666 }
6667 
6668 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6669 {
6670 	vcpu->arch.apicv_active = false;
6671 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6672 }
6673 
6674 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6675 {
6676 	unsigned long nr, a0, a1, a2, a3, ret;
6677 	int op_64_bit;
6678 
6679 	if (kvm_hv_hypercall_enabled(vcpu->kvm)) {
6680 		if (!kvm_hv_hypercall(vcpu))
6681 			return 0;
6682 		goto out;
6683 	}
6684 
6685 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6686 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6687 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6688 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6689 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6690 
6691 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6692 
6693 	op_64_bit = is_64_bit_mode(vcpu);
6694 	if (!op_64_bit) {
6695 		nr &= 0xFFFFFFFF;
6696 		a0 &= 0xFFFFFFFF;
6697 		a1 &= 0xFFFFFFFF;
6698 		a2 &= 0xFFFFFFFF;
6699 		a3 &= 0xFFFFFFFF;
6700 	}
6701 
6702 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6703 		ret = -KVM_EPERM;
6704 		goto out_error;
6705 	}
6706 
6707 	switch (nr) {
6708 	case KVM_HC_VAPIC_POLL_IRQ:
6709 		ret = 0;
6710 		break;
6711 	case KVM_HC_KICK_CPU:
6712 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6713 		ret = 0;
6714 		break;
6715 #ifdef CONFIG_X86_64
6716 	case KVM_HC_CLOCK_PAIRING:
6717 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6718 		break;
6719 #endif
6720 	default:
6721 		ret = -KVM_ENOSYS;
6722 		break;
6723 	}
6724 out_error:
6725 	if (!op_64_bit)
6726 		ret = (u32)ret;
6727 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6728 
6729 out:
6730 	++vcpu->stat.hypercalls;
6731 	return kvm_skip_emulated_instruction(vcpu);
6732 }
6733 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6734 
6735 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6736 {
6737 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6738 	char instruction[3];
6739 	unsigned long rip = kvm_rip_read(vcpu);
6740 
6741 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6742 
6743 	return emulator_write_emulated(ctxt, rip, instruction, 3,
6744 		&ctxt->exception);
6745 }
6746 
6747 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6748 {
6749 	return vcpu->run->request_interrupt_window &&
6750 		likely(!pic_in_kernel(vcpu->kvm));
6751 }
6752 
6753 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6754 {
6755 	struct kvm_run *kvm_run = vcpu->run;
6756 
6757 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6758 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6759 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6760 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6761 	kvm_run->ready_for_interrupt_injection =
6762 		pic_in_kernel(vcpu->kvm) ||
6763 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6764 }
6765 
6766 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6767 {
6768 	int max_irr, tpr;
6769 
6770 	if (!kvm_x86_ops->update_cr8_intercept)
6771 		return;
6772 
6773 	if (!lapic_in_kernel(vcpu))
6774 		return;
6775 
6776 	if (vcpu->arch.apicv_active)
6777 		return;
6778 
6779 	if (!vcpu->arch.apic->vapic_addr)
6780 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6781 	else
6782 		max_irr = -1;
6783 
6784 	if (max_irr != -1)
6785 		max_irr >>= 4;
6786 
6787 	tpr = kvm_lapic_get_cr8(vcpu);
6788 
6789 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6790 }
6791 
6792 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6793 {
6794 	int r;
6795 
6796 	/* try to reinject previous events if any */
6797 
6798 	if (vcpu->arch.exception.injected)
6799 		kvm_x86_ops->queue_exception(vcpu);
6800 	/*
6801 	 * Do not inject an NMI or interrupt if there is a pending
6802 	 * exception.  Exceptions and interrupts are recognized at
6803 	 * instruction boundaries, i.e. the start of an instruction.
6804 	 * Trap-like exceptions, e.g. #DB, have higher priority than
6805 	 * NMIs and interrupts, i.e. traps are recognized before an
6806 	 * NMI/interrupt that's pending on the same instruction.
6807 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6808 	 * priority, but are only generated (pended) during instruction
6809 	 * execution, i.e. a pending fault-like exception means the
6810 	 * fault occurred on the *previous* instruction and must be
6811 	 * serviced prior to recognizing any new events in order to
6812 	 * fully complete the previous instruction.
6813 	 */
6814 	else if (!vcpu->arch.exception.pending) {
6815 		if (vcpu->arch.nmi_injected)
6816 			kvm_x86_ops->set_nmi(vcpu);
6817 		else if (vcpu->arch.interrupt.injected)
6818 			kvm_x86_ops->set_irq(vcpu);
6819 	}
6820 
6821 	/*
6822 	 * Call check_nested_events() even if we reinjected a previous event
6823 	 * in order for caller to determine if it should require immediate-exit
6824 	 * from L2 to L1 due to pending L1 events which require exit
6825 	 * from L2 to L1.
6826 	 */
6827 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6828 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6829 		if (r != 0)
6830 			return r;
6831 	}
6832 
6833 	/* try to inject new event if pending */
6834 	if (vcpu->arch.exception.pending) {
6835 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6836 					vcpu->arch.exception.has_error_code,
6837 					vcpu->arch.exception.error_code);
6838 
6839 		WARN_ON_ONCE(vcpu->arch.exception.injected);
6840 		vcpu->arch.exception.pending = false;
6841 		vcpu->arch.exception.injected = true;
6842 
6843 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6844 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6845 					     X86_EFLAGS_RF);
6846 
6847 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6848 		    (vcpu->arch.dr7 & DR7_GD)) {
6849 			vcpu->arch.dr7 &= ~DR7_GD;
6850 			kvm_update_dr7(vcpu);
6851 		}
6852 
6853 		kvm_x86_ops->queue_exception(vcpu);
6854 	}
6855 
6856 	/* Don't consider new event if we re-injected an event */
6857 	if (kvm_event_needs_reinjection(vcpu))
6858 		return 0;
6859 
6860 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
6861 	    kvm_x86_ops->smi_allowed(vcpu)) {
6862 		vcpu->arch.smi_pending = false;
6863 		++vcpu->arch.smi_count;
6864 		enter_smm(vcpu);
6865 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6866 		--vcpu->arch.nmi_pending;
6867 		vcpu->arch.nmi_injected = true;
6868 		kvm_x86_ops->set_nmi(vcpu);
6869 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6870 		/*
6871 		 * Because interrupts can be injected asynchronously, we are
6872 		 * calling check_nested_events again here to avoid a race condition.
6873 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6874 		 * proposal and current concerns.  Perhaps we should be setting
6875 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6876 		 */
6877 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6878 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6879 			if (r != 0)
6880 				return r;
6881 		}
6882 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6883 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6884 					    false);
6885 			kvm_x86_ops->set_irq(vcpu);
6886 		}
6887 	}
6888 
6889 	return 0;
6890 }
6891 
6892 static void process_nmi(struct kvm_vcpu *vcpu)
6893 {
6894 	unsigned limit = 2;
6895 
6896 	/*
6897 	 * x86 is limited to one NMI running, and one NMI pending after it.
6898 	 * If an NMI is already in progress, limit further NMIs to just one.
6899 	 * Otherwise, allow two (and we'll inject the first one immediately).
6900 	 */
6901 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6902 		limit = 1;
6903 
6904 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6905 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6906 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6907 }
6908 
6909 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6910 {
6911 	u32 flags = 0;
6912 	flags |= seg->g       << 23;
6913 	flags |= seg->db      << 22;
6914 	flags |= seg->l       << 21;
6915 	flags |= seg->avl     << 20;
6916 	flags |= seg->present << 15;
6917 	flags |= seg->dpl     << 13;
6918 	flags |= seg->s       << 12;
6919 	flags |= seg->type    << 8;
6920 	return flags;
6921 }
6922 
6923 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6924 {
6925 	struct kvm_segment seg;
6926 	int offset;
6927 
6928 	kvm_get_segment(vcpu, &seg, n);
6929 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6930 
6931 	if (n < 3)
6932 		offset = 0x7f84 + n * 12;
6933 	else
6934 		offset = 0x7f2c + (n - 3) * 12;
6935 
6936 	put_smstate(u32, buf, offset + 8, seg.base);
6937 	put_smstate(u32, buf, offset + 4, seg.limit);
6938 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6939 }
6940 
6941 #ifdef CONFIG_X86_64
6942 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6943 {
6944 	struct kvm_segment seg;
6945 	int offset;
6946 	u16 flags;
6947 
6948 	kvm_get_segment(vcpu, &seg, n);
6949 	offset = 0x7e00 + n * 16;
6950 
6951 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6952 	put_smstate(u16, buf, offset, seg.selector);
6953 	put_smstate(u16, buf, offset + 2, flags);
6954 	put_smstate(u32, buf, offset + 4, seg.limit);
6955 	put_smstate(u64, buf, offset + 8, seg.base);
6956 }
6957 #endif
6958 
6959 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6960 {
6961 	struct desc_ptr dt;
6962 	struct kvm_segment seg;
6963 	unsigned long val;
6964 	int i;
6965 
6966 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6967 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6968 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6969 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6970 
6971 	for (i = 0; i < 8; i++)
6972 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6973 
6974 	kvm_get_dr(vcpu, 6, &val);
6975 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6976 	kvm_get_dr(vcpu, 7, &val);
6977 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6978 
6979 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6980 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6981 	put_smstate(u32, buf, 0x7f64, seg.base);
6982 	put_smstate(u32, buf, 0x7f60, seg.limit);
6983 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6984 
6985 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6986 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6987 	put_smstate(u32, buf, 0x7f80, seg.base);
6988 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6989 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6990 
6991 	kvm_x86_ops->get_gdt(vcpu, &dt);
6992 	put_smstate(u32, buf, 0x7f74, dt.address);
6993 	put_smstate(u32, buf, 0x7f70, dt.size);
6994 
6995 	kvm_x86_ops->get_idt(vcpu, &dt);
6996 	put_smstate(u32, buf, 0x7f58, dt.address);
6997 	put_smstate(u32, buf, 0x7f54, dt.size);
6998 
6999 	for (i = 0; i < 6; i++)
7000 		enter_smm_save_seg_32(vcpu, buf, i);
7001 
7002 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7003 
7004 	/* revision id */
7005 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7006 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7007 }
7008 
7009 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7010 {
7011 #ifdef CONFIG_X86_64
7012 	struct desc_ptr dt;
7013 	struct kvm_segment seg;
7014 	unsigned long val;
7015 	int i;
7016 
7017 	for (i = 0; i < 16; i++)
7018 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7019 
7020 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7021 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7022 
7023 	kvm_get_dr(vcpu, 6, &val);
7024 	put_smstate(u64, buf, 0x7f68, val);
7025 	kvm_get_dr(vcpu, 7, &val);
7026 	put_smstate(u64, buf, 0x7f60, val);
7027 
7028 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7029 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7030 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7031 
7032 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7033 
7034 	/* revision id */
7035 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7036 
7037 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7038 
7039 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7040 	put_smstate(u16, buf, 0x7e90, seg.selector);
7041 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7042 	put_smstate(u32, buf, 0x7e94, seg.limit);
7043 	put_smstate(u64, buf, 0x7e98, seg.base);
7044 
7045 	kvm_x86_ops->get_idt(vcpu, &dt);
7046 	put_smstate(u32, buf, 0x7e84, dt.size);
7047 	put_smstate(u64, buf, 0x7e88, dt.address);
7048 
7049 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7050 	put_smstate(u16, buf, 0x7e70, seg.selector);
7051 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7052 	put_smstate(u32, buf, 0x7e74, seg.limit);
7053 	put_smstate(u64, buf, 0x7e78, seg.base);
7054 
7055 	kvm_x86_ops->get_gdt(vcpu, &dt);
7056 	put_smstate(u32, buf, 0x7e64, dt.size);
7057 	put_smstate(u64, buf, 0x7e68, dt.address);
7058 
7059 	for (i = 0; i < 6; i++)
7060 		enter_smm_save_seg_64(vcpu, buf, i);
7061 #else
7062 	WARN_ON_ONCE(1);
7063 #endif
7064 }
7065 
7066 static void enter_smm(struct kvm_vcpu *vcpu)
7067 {
7068 	struct kvm_segment cs, ds;
7069 	struct desc_ptr dt;
7070 	char buf[512];
7071 	u32 cr0;
7072 
7073 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7074 	memset(buf, 0, 512);
7075 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7076 		enter_smm_save_state_64(vcpu, buf);
7077 	else
7078 		enter_smm_save_state_32(vcpu, buf);
7079 
7080 	/*
7081 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7082 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7083 	 * the SMM state-save area.
7084 	 */
7085 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7086 
7087 	vcpu->arch.hflags |= HF_SMM_MASK;
7088 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7089 
7090 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7091 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7092 	else
7093 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7094 
7095 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7096 	kvm_rip_write(vcpu, 0x8000);
7097 
7098 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7099 	kvm_x86_ops->set_cr0(vcpu, cr0);
7100 	vcpu->arch.cr0 = cr0;
7101 
7102 	kvm_x86_ops->set_cr4(vcpu, 0);
7103 
7104 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7105 	dt.address = dt.size = 0;
7106 	kvm_x86_ops->set_idt(vcpu, &dt);
7107 
7108 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7109 
7110 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7111 	cs.base = vcpu->arch.smbase;
7112 
7113 	ds.selector = 0;
7114 	ds.base = 0;
7115 
7116 	cs.limit    = ds.limit = 0xffffffff;
7117 	cs.type     = ds.type = 0x3;
7118 	cs.dpl      = ds.dpl = 0;
7119 	cs.db       = ds.db = 0;
7120 	cs.s        = ds.s = 1;
7121 	cs.l        = ds.l = 0;
7122 	cs.g        = ds.g = 1;
7123 	cs.avl      = ds.avl = 0;
7124 	cs.present  = ds.present = 1;
7125 	cs.unusable = ds.unusable = 0;
7126 	cs.padding  = ds.padding = 0;
7127 
7128 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7129 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7130 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7131 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7132 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7133 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7134 
7135 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7136 		kvm_x86_ops->set_efer(vcpu, 0);
7137 
7138 	kvm_update_cpuid(vcpu);
7139 	kvm_mmu_reset_context(vcpu);
7140 }
7141 
7142 static void process_smi(struct kvm_vcpu *vcpu)
7143 {
7144 	vcpu->arch.smi_pending = true;
7145 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7146 }
7147 
7148 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7149 {
7150 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7151 }
7152 
7153 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7154 {
7155 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7156 		return;
7157 
7158 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7159 
7160 	if (irqchip_split(vcpu->kvm))
7161 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7162 	else {
7163 		if (vcpu->arch.apicv_active)
7164 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7165 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7166 	}
7167 
7168 	if (is_guest_mode(vcpu))
7169 		vcpu->arch.load_eoi_exitmap_pending = true;
7170 	else
7171 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7172 }
7173 
7174 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7175 {
7176 	u64 eoi_exit_bitmap[4];
7177 
7178 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7179 		return;
7180 
7181 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7182 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7183 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7184 }
7185 
7186 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7187 		unsigned long start, unsigned long end)
7188 {
7189 	unsigned long apic_address;
7190 
7191 	/*
7192 	 * The physical address of apic access page is stored in the VMCS.
7193 	 * Update it when it becomes invalid.
7194 	 */
7195 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7196 	if (start <= apic_address && apic_address < end)
7197 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7198 }
7199 
7200 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7201 {
7202 	struct page *page = NULL;
7203 
7204 	if (!lapic_in_kernel(vcpu))
7205 		return;
7206 
7207 	if (!kvm_x86_ops->set_apic_access_page_addr)
7208 		return;
7209 
7210 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7211 	if (is_error_page(page))
7212 		return;
7213 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7214 
7215 	/*
7216 	 * Do not pin apic access page in memory, the MMU notifier
7217 	 * will call us again if it is migrated or swapped out.
7218 	 */
7219 	put_page(page);
7220 }
7221 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7222 
7223 /*
7224  * Returns 1 to let vcpu_run() continue the guest execution loop without
7225  * exiting to the userspace.  Otherwise, the value will be returned to the
7226  * userspace.
7227  */
7228 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7229 {
7230 	int r;
7231 	bool req_int_win =
7232 		dm_request_for_irq_injection(vcpu) &&
7233 		kvm_cpu_accept_dm_intr(vcpu);
7234 
7235 	bool req_immediate_exit = false;
7236 
7237 	if (kvm_request_pending(vcpu)) {
7238 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7239 			kvm_mmu_unload(vcpu);
7240 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7241 			__kvm_migrate_timers(vcpu);
7242 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7243 			kvm_gen_update_masterclock(vcpu->kvm);
7244 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7245 			kvm_gen_kvmclock_update(vcpu);
7246 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7247 			r = kvm_guest_time_update(vcpu);
7248 			if (unlikely(r))
7249 				goto out;
7250 		}
7251 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7252 			kvm_mmu_sync_roots(vcpu);
7253 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7254 			kvm_vcpu_flush_tlb(vcpu, true);
7255 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7256 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7257 			r = 0;
7258 			goto out;
7259 		}
7260 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7261 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7262 			vcpu->mmio_needed = 0;
7263 			r = 0;
7264 			goto out;
7265 		}
7266 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7267 			/* Page is swapped out. Do synthetic halt */
7268 			vcpu->arch.apf.halted = true;
7269 			r = 1;
7270 			goto out;
7271 		}
7272 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7273 			record_steal_time(vcpu);
7274 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7275 			process_smi(vcpu);
7276 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7277 			process_nmi(vcpu);
7278 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7279 			kvm_pmu_handle_event(vcpu);
7280 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7281 			kvm_pmu_deliver_pmi(vcpu);
7282 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7283 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7284 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7285 				     vcpu->arch.ioapic_handled_vectors)) {
7286 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7287 				vcpu->run->eoi.vector =
7288 						vcpu->arch.pending_ioapic_eoi;
7289 				r = 0;
7290 				goto out;
7291 			}
7292 		}
7293 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7294 			vcpu_scan_ioapic(vcpu);
7295 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7296 			vcpu_load_eoi_exitmap(vcpu);
7297 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7298 			kvm_vcpu_reload_apic_access_page(vcpu);
7299 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7300 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7301 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7302 			r = 0;
7303 			goto out;
7304 		}
7305 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7306 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7307 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7308 			r = 0;
7309 			goto out;
7310 		}
7311 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7312 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7313 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7314 			r = 0;
7315 			goto out;
7316 		}
7317 
7318 		/*
7319 		 * KVM_REQ_HV_STIMER has to be processed after
7320 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7321 		 * depend on the guest clock being up-to-date
7322 		 */
7323 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7324 			kvm_hv_process_stimers(vcpu);
7325 	}
7326 
7327 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7328 		++vcpu->stat.req_event;
7329 		kvm_apic_accept_events(vcpu);
7330 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7331 			r = 1;
7332 			goto out;
7333 		}
7334 
7335 		if (inject_pending_event(vcpu, req_int_win) != 0)
7336 			req_immediate_exit = true;
7337 		else {
7338 			/* Enable SMI/NMI/IRQ window open exits if needed.
7339 			 *
7340 			 * SMIs have three cases:
7341 			 * 1) They can be nested, and then there is nothing to
7342 			 *    do here because RSM will cause a vmexit anyway.
7343 			 * 2) There is an ISA-specific reason why SMI cannot be
7344 			 *    injected, and the moment when this changes can be
7345 			 *    intercepted.
7346 			 * 3) Or the SMI can be pending because
7347 			 *    inject_pending_event has completed the injection
7348 			 *    of an IRQ or NMI from the previous vmexit, and
7349 			 *    then we request an immediate exit to inject the
7350 			 *    SMI.
7351 			 */
7352 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7353 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7354 					req_immediate_exit = true;
7355 			if (vcpu->arch.nmi_pending)
7356 				kvm_x86_ops->enable_nmi_window(vcpu);
7357 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7358 				kvm_x86_ops->enable_irq_window(vcpu);
7359 			WARN_ON(vcpu->arch.exception.pending);
7360 		}
7361 
7362 		if (kvm_lapic_enabled(vcpu)) {
7363 			update_cr8_intercept(vcpu);
7364 			kvm_lapic_sync_to_vapic(vcpu);
7365 		}
7366 	}
7367 
7368 	r = kvm_mmu_reload(vcpu);
7369 	if (unlikely(r)) {
7370 		goto cancel_injection;
7371 	}
7372 
7373 	preempt_disable();
7374 
7375 	kvm_x86_ops->prepare_guest_switch(vcpu);
7376 
7377 	/*
7378 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7379 	 * IPI are then delayed after guest entry, which ensures that they
7380 	 * result in virtual interrupt delivery.
7381 	 */
7382 	local_irq_disable();
7383 	vcpu->mode = IN_GUEST_MODE;
7384 
7385 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7386 
7387 	/*
7388 	 * 1) We should set ->mode before checking ->requests.  Please see
7389 	 * the comment in kvm_vcpu_exiting_guest_mode().
7390 	 *
7391 	 * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7392 	 * pairs with the memory barrier implicit in pi_test_and_set_on
7393 	 * (see vmx_deliver_posted_interrupt).
7394 	 *
7395 	 * 3) This also orders the write to mode from any reads to the page
7396 	 * tables done while the VCPU is running.  Please see the comment
7397 	 * in kvm_flush_remote_tlbs.
7398 	 */
7399 	smp_mb__after_srcu_read_unlock();
7400 
7401 	/*
7402 	 * This handles the case where a posted interrupt was
7403 	 * notified with kvm_vcpu_kick.
7404 	 */
7405 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7406 		kvm_x86_ops->sync_pir_to_irr(vcpu);
7407 
7408 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7409 	    || need_resched() || signal_pending(current)) {
7410 		vcpu->mode = OUTSIDE_GUEST_MODE;
7411 		smp_wmb();
7412 		local_irq_enable();
7413 		preempt_enable();
7414 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7415 		r = 1;
7416 		goto cancel_injection;
7417 	}
7418 
7419 	kvm_load_guest_xcr0(vcpu);
7420 
7421 	if (req_immediate_exit) {
7422 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7423 		smp_send_reschedule(vcpu->cpu);
7424 	}
7425 
7426 	trace_kvm_entry(vcpu->vcpu_id);
7427 	if (lapic_timer_advance_ns)
7428 		wait_lapic_expire(vcpu);
7429 	guest_enter_irqoff();
7430 
7431 	if (unlikely(vcpu->arch.switch_db_regs)) {
7432 		set_debugreg(0, 7);
7433 		set_debugreg(vcpu->arch.eff_db[0], 0);
7434 		set_debugreg(vcpu->arch.eff_db[1], 1);
7435 		set_debugreg(vcpu->arch.eff_db[2], 2);
7436 		set_debugreg(vcpu->arch.eff_db[3], 3);
7437 		set_debugreg(vcpu->arch.dr6, 6);
7438 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7439 	}
7440 
7441 	kvm_x86_ops->run(vcpu);
7442 
7443 	/*
7444 	 * Do this here before restoring debug registers on the host.  And
7445 	 * since we do this before handling the vmexit, a DR access vmexit
7446 	 * can (a) read the correct value of the debug registers, (b) set
7447 	 * KVM_DEBUGREG_WONT_EXIT again.
7448 	 */
7449 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7450 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7451 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7452 		kvm_update_dr0123(vcpu);
7453 		kvm_update_dr6(vcpu);
7454 		kvm_update_dr7(vcpu);
7455 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7456 	}
7457 
7458 	/*
7459 	 * If the guest has used debug registers, at least dr7
7460 	 * will be disabled while returning to the host.
7461 	 * If we don't have active breakpoints in the host, we don't
7462 	 * care about the messed up debug address registers. But if
7463 	 * we have some of them active, restore the old state.
7464 	 */
7465 	if (hw_breakpoint_active())
7466 		hw_breakpoint_restore();
7467 
7468 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7469 
7470 	vcpu->mode = OUTSIDE_GUEST_MODE;
7471 	smp_wmb();
7472 
7473 	kvm_put_guest_xcr0(vcpu);
7474 
7475 	kvm_before_interrupt(vcpu);
7476 	kvm_x86_ops->handle_external_intr(vcpu);
7477 	kvm_after_interrupt(vcpu);
7478 
7479 	++vcpu->stat.exits;
7480 
7481 	guest_exit_irqoff();
7482 
7483 	local_irq_enable();
7484 	preempt_enable();
7485 
7486 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7487 
7488 	/*
7489 	 * Profile KVM exit RIPs:
7490 	 */
7491 	if (unlikely(prof_on == KVM_PROFILING)) {
7492 		unsigned long rip = kvm_rip_read(vcpu);
7493 		profile_hit(KVM_PROFILING, (void *)rip);
7494 	}
7495 
7496 	if (unlikely(vcpu->arch.tsc_always_catchup))
7497 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7498 
7499 	if (vcpu->arch.apic_attention)
7500 		kvm_lapic_sync_from_vapic(vcpu);
7501 
7502 	vcpu->arch.gpa_available = false;
7503 	r = kvm_x86_ops->handle_exit(vcpu);
7504 	return r;
7505 
7506 cancel_injection:
7507 	kvm_x86_ops->cancel_injection(vcpu);
7508 	if (unlikely(vcpu->arch.apic_attention))
7509 		kvm_lapic_sync_from_vapic(vcpu);
7510 out:
7511 	return r;
7512 }
7513 
7514 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7515 {
7516 	if (!kvm_arch_vcpu_runnable(vcpu) &&
7517 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7518 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7519 		kvm_vcpu_block(vcpu);
7520 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7521 
7522 		if (kvm_x86_ops->post_block)
7523 			kvm_x86_ops->post_block(vcpu);
7524 
7525 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7526 			return 1;
7527 	}
7528 
7529 	kvm_apic_accept_events(vcpu);
7530 	switch(vcpu->arch.mp_state) {
7531 	case KVM_MP_STATE_HALTED:
7532 		vcpu->arch.pv.pv_unhalted = false;
7533 		vcpu->arch.mp_state =
7534 			KVM_MP_STATE_RUNNABLE;
7535 	case KVM_MP_STATE_RUNNABLE:
7536 		vcpu->arch.apf.halted = false;
7537 		break;
7538 	case KVM_MP_STATE_INIT_RECEIVED:
7539 		break;
7540 	default:
7541 		return -EINTR;
7542 		break;
7543 	}
7544 	return 1;
7545 }
7546 
7547 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7548 {
7549 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7550 		kvm_x86_ops->check_nested_events(vcpu, false);
7551 
7552 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7553 		!vcpu->arch.apf.halted);
7554 }
7555 
7556 static int vcpu_run(struct kvm_vcpu *vcpu)
7557 {
7558 	int r;
7559 	struct kvm *kvm = vcpu->kvm;
7560 
7561 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7562 
7563 	for (;;) {
7564 		if (kvm_vcpu_running(vcpu)) {
7565 			r = vcpu_enter_guest(vcpu);
7566 		} else {
7567 			r = vcpu_block(kvm, vcpu);
7568 		}
7569 
7570 		if (r <= 0)
7571 			break;
7572 
7573 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7574 		if (kvm_cpu_has_pending_timer(vcpu))
7575 			kvm_inject_pending_timer_irqs(vcpu);
7576 
7577 		if (dm_request_for_irq_injection(vcpu) &&
7578 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7579 			r = 0;
7580 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7581 			++vcpu->stat.request_irq_exits;
7582 			break;
7583 		}
7584 
7585 		kvm_check_async_pf_completion(vcpu);
7586 
7587 		if (signal_pending(current)) {
7588 			r = -EINTR;
7589 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7590 			++vcpu->stat.signal_exits;
7591 			break;
7592 		}
7593 		if (need_resched()) {
7594 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7595 			cond_resched();
7596 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7597 		}
7598 	}
7599 
7600 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7601 
7602 	return r;
7603 }
7604 
7605 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7606 {
7607 	int r;
7608 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7609 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7610 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7611 	if (r != EMULATE_DONE)
7612 		return 0;
7613 	return 1;
7614 }
7615 
7616 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7617 {
7618 	BUG_ON(!vcpu->arch.pio.count);
7619 
7620 	return complete_emulated_io(vcpu);
7621 }
7622 
7623 /*
7624  * Implements the following, as a state machine:
7625  *
7626  * read:
7627  *   for each fragment
7628  *     for each mmio piece in the fragment
7629  *       write gpa, len
7630  *       exit
7631  *       copy data
7632  *   execute insn
7633  *
7634  * write:
7635  *   for each fragment
7636  *     for each mmio piece in the fragment
7637  *       write gpa, len
7638  *       copy data
7639  *       exit
7640  */
7641 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7642 {
7643 	struct kvm_run *run = vcpu->run;
7644 	struct kvm_mmio_fragment *frag;
7645 	unsigned len;
7646 
7647 	BUG_ON(!vcpu->mmio_needed);
7648 
7649 	/* Complete previous fragment */
7650 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7651 	len = min(8u, frag->len);
7652 	if (!vcpu->mmio_is_write)
7653 		memcpy(frag->data, run->mmio.data, len);
7654 
7655 	if (frag->len <= 8) {
7656 		/* Switch to the next fragment. */
7657 		frag++;
7658 		vcpu->mmio_cur_fragment++;
7659 	} else {
7660 		/* Go forward to the next mmio piece. */
7661 		frag->data += len;
7662 		frag->gpa += len;
7663 		frag->len -= len;
7664 	}
7665 
7666 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7667 		vcpu->mmio_needed = 0;
7668 
7669 		/* FIXME: return into emulator if single-stepping.  */
7670 		if (vcpu->mmio_is_write)
7671 			return 1;
7672 		vcpu->mmio_read_completed = 1;
7673 		return complete_emulated_io(vcpu);
7674 	}
7675 
7676 	run->exit_reason = KVM_EXIT_MMIO;
7677 	run->mmio.phys_addr = frag->gpa;
7678 	if (vcpu->mmio_is_write)
7679 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7680 	run->mmio.len = min(8u, frag->len);
7681 	run->mmio.is_write = vcpu->mmio_is_write;
7682 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7683 	return 0;
7684 }
7685 
7686 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7687 {
7688 	int r;
7689 
7690 	vcpu_load(vcpu);
7691 	kvm_sigset_activate(vcpu);
7692 	kvm_load_guest_fpu(vcpu);
7693 
7694 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7695 		if (kvm_run->immediate_exit) {
7696 			r = -EINTR;
7697 			goto out;
7698 		}
7699 		kvm_vcpu_block(vcpu);
7700 		kvm_apic_accept_events(vcpu);
7701 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7702 		r = -EAGAIN;
7703 		if (signal_pending(current)) {
7704 			r = -EINTR;
7705 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7706 			++vcpu->stat.signal_exits;
7707 		}
7708 		goto out;
7709 	}
7710 
7711 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7712 		r = -EINVAL;
7713 		goto out;
7714 	}
7715 
7716 	if (vcpu->run->kvm_dirty_regs) {
7717 		r = sync_regs(vcpu);
7718 		if (r != 0)
7719 			goto out;
7720 	}
7721 
7722 	/* re-sync apic's tpr */
7723 	if (!lapic_in_kernel(vcpu)) {
7724 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7725 			r = -EINVAL;
7726 			goto out;
7727 		}
7728 	}
7729 
7730 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7731 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7732 		vcpu->arch.complete_userspace_io = NULL;
7733 		r = cui(vcpu);
7734 		if (r <= 0)
7735 			goto out;
7736 	} else
7737 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7738 
7739 	if (kvm_run->immediate_exit)
7740 		r = -EINTR;
7741 	else
7742 		r = vcpu_run(vcpu);
7743 
7744 out:
7745 	kvm_put_guest_fpu(vcpu);
7746 	if (vcpu->run->kvm_valid_regs)
7747 		store_regs(vcpu);
7748 	post_kvm_run_save(vcpu);
7749 	kvm_sigset_deactivate(vcpu);
7750 
7751 	vcpu_put(vcpu);
7752 	return r;
7753 }
7754 
7755 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7756 {
7757 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7758 		/*
7759 		 * We are here if userspace calls get_regs() in the middle of
7760 		 * instruction emulation. Registers state needs to be copied
7761 		 * back from emulation context to vcpu. Userspace shouldn't do
7762 		 * that usually, but some bad designed PV devices (vmware
7763 		 * backdoor interface) need this to work
7764 		 */
7765 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7766 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7767 	}
7768 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7769 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7770 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7771 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7772 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7773 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7774 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7775 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7776 #ifdef CONFIG_X86_64
7777 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7778 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7779 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7780 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7781 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7782 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7783 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7784 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7785 #endif
7786 
7787 	regs->rip = kvm_rip_read(vcpu);
7788 	regs->rflags = kvm_get_rflags(vcpu);
7789 }
7790 
7791 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7792 {
7793 	vcpu_load(vcpu);
7794 	__get_regs(vcpu, regs);
7795 	vcpu_put(vcpu);
7796 	return 0;
7797 }
7798 
7799 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7800 {
7801 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7802 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7803 
7804 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7805 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7806 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7807 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7808 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7809 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7810 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7811 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7812 #ifdef CONFIG_X86_64
7813 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7814 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7815 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7816 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7817 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7818 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7819 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7820 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7821 #endif
7822 
7823 	kvm_rip_write(vcpu, regs->rip);
7824 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7825 
7826 	vcpu->arch.exception.pending = false;
7827 
7828 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7829 }
7830 
7831 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7832 {
7833 	vcpu_load(vcpu);
7834 	__set_regs(vcpu, regs);
7835 	vcpu_put(vcpu);
7836 	return 0;
7837 }
7838 
7839 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7840 {
7841 	struct kvm_segment cs;
7842 
7843 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7844 	*db = cs.db;
7845 	*l = cs.l;
7846 }
7847 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7848 
7849 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7850 {
7851 	struct desc_ptr dt;
7852 
7853 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7854 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7855 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7856 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7857 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7858 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7859 
7860 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7861 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7862 
7863 	kvm_x86_ops->get_idt(vcpu, &dt);
7864 	sregs->idt.limit = dt.size;
7865 	sregs->idt.base = dt.address;
7866 	kvm_x86_ops->get_gdt(vcpu, &dt);
7867 	sregs->gdt.limit = dt.size;
7868 	sregs->gdt.base = dt.address;
7869 
7870 	sregs->cr0 = kvm_read_cr0(vcpu);
7871 	sregs->cr2 = vcpu->arch.cr2;
7872 	sregs->cr3 = kvm_read_cr3(vcpu);
7873 	sregs->cr4 = kvm_read_cr4(vcpu);
7874 	sregs->cr8 = kvm_get_cr8(vcpu);
7875 	sregs->efer = vcpu->arch.efer;
7876 	sregs->apic_base = kvm_get_apic_base(vcpu);
7877 
7878 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7879 
7880 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
7881 		set_bit(vcpu->arch.interrupt.nr,
7882 			(unsigned long *)sregs->interrupt_bitmap);
7883 }
7884 
7885 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7886 				  struct kvm_sregs *sregs)
7887 {
7888 	vcpu_load(vcpu);
7889 	__get_sregs(vcpu, sregs);
7890 	vcpu_put(vcpu);
7891 	return 0;
7892 }
7893 
7894 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7895 				    struct kvm_mp_state *mp_state)
7896 {
7897 	vcpu_load(vcpu);
7898 
7899 	kvm_apic_accept_events(vcpu);
7900 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7901 					vcpu->arch.pv.pv_unhalted)
7902 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7903 	else
7904 		mp_state->mp_state = vcpu->arch.mp_state;
7905 
7906 	vcpu_put(vcpu);
7907 	return 0;
7908 }
7909 
7910 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7911 				    struct kvm_mp_state *mp_state)
7912 {
7913 	int ret = -EINVAL;
7914 
7915 	vcpu_load(vcpu);
7916 
7917 	if (!lapic_in_kernel(vcpu) &&
7918 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7919 		goto out;
7920 
7921 	/* INITs are latched while in SMM */
7922 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7923 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7924 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7925 		goto out;
7926 
7927 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7928 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7929 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7930 	} else
7931 		vcpu->arch.mp_state = mp_state->mp_state;
7932 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7933 
7934 	ret = 0;
7935 out:
7936 	vcpu_put(vcpu);
7937 	return ret;
7938 }
7939 
7940 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7941 		    int reason, bool has_error_code, u32 error_code)
7942 {
7943 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7944 	int ret;
7945 
7946 	init_emulate_ctxt(vcpu);
7947 
7948 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7949 				   has_error_code, error_code);
7950 
7951 	if (ret)
7952 		return EMULATE_FAIL;
7953 
7954 	kvm_rip_write(vcpu, ctxt->eip);
7955 	kvm_set_rflags(vcpu, ctxt->eflags);
7956 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7957 	return EMULATE_DONE;
7958 }
7959 EXPORT_SYMBOL_GPL(kvm_task_switch);
7960 
7961 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7962 {
7963 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7964 		/*
7965 		 * When EFER.LME and CR0.PG are set, the processor is in
7966 		 * 64-bit mode (though maybe in a 32-bit code segment).
7967 		 * CR4.PAE and EFER.LMA must be set.
7968 		 */
7969 		if (!(sregs->cr4 & X86_CR4_PAE)
7970 		    || !(sregs->efer & EFER_LMA))
7971 			return -EINVAL;
7972 	} else {
7973 		/*
7974 		 * Not in 64-bit mode: EFER.LMA is clear and the code
7975 		 * segment cannot be 64-bit.
7976 		 */
7977 		if (sregs->efer & EFER_LMA || sregs->cs.l)
7978 			return -EINVAL;
7979 	}
7980 
7981 	return 0;
7982 }
7983 
7984 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7985 {
7986 	struct msr_data apic_base_msr;
7987 	int mmu_reset_needed = 0;
7988 	int pending_vec, max_bits, idx;
7989 	struct desc_ptr dt;
7990 	int ret = -EINVAL;
7991 
7992 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7993 			(sregs->cr4 & X86_CR4_OSXSAVE))
7994 		goto out;
7995 
7996 	if (kvm_valid_sregs(vcpu, sregs))
7997 		goto out;
7998 
7999 	apic_base_msr.data = sregs->apic_base;
8000 	apic_base_msr.host_initiated = true;
8001 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8002 		goto out;
8003 
8004 	dt.size = sregs->idt.limit;
8005 	dt.address = sregs->idt.base;
8006 	kvm_x86_ops->set_idt(vcpu, &dt);
8007 	dt.size = sregs->gdt.limit;
8008 	dt.address = sregs->gdt.base;
8009 	kvm_x86_ops->set_gdt(vcpu, &dt);
8010 
8011 	vcpu->arch.cr2 = sregs->cr2;
8012 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8013 	vcpu->arch.cr3 = sregs->cr3;
8014 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8015 
8016 	kvm_set_cr8(vcpu, sregs->cr8);
8017 
8018 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8019 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8020 
8021 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8022 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8023 	vcpu->arch.cr0 = sregs->cr0;
8024 
8025 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8026 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8027 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
8028 		kvm_update_cpuid(vcpu);
8029 
8030 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8031 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
8032 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8033 		mmu_reset_needed = 1;
8034 	}
8035 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8036 
8037 	if (mmu_reset_needed)
8038 		kvm_mmu_reset_context(vcpu);
8039 
8040 	max_bits = KVM_NR_INTERRUPTS;
8041 	pending_vec = find_first_bit(
8042 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8043 	if (pending_vec < max_bits) {
8044 		kvm_queue_interrupt(vcpu, pending_vec, false);
8045 		pr_debug("Set back pending irq %d\n", pending_vec);
8046 	}
8047 
8048 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8049 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8050 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8051 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8052 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8053 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8054 
8055 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8056 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8057 
8058 	update_cr8_intercept(vcpu);
8059 
8060 	/* Older userspace won't unhalt the vcpu on reset. */
8061 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8062 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8063 	    !is_protmode(vcpu))
8064 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8065 
8066 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8067 
8068 	ret = 0;
8069 out:
8070 	return ret;
8071 }
8072 
8073 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8074 				  struct kvm_sregs *sregs)
8075 {
8076 	int ret;
8077 
8078 	vcpu_load(vcpu);
8079 	ret = __set_sregs(vcpu, sregs);
8080 	vcpu_put(vcpu);
8081 	return ret;
8082 }
8083 
8084 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8085 					struct kvm_guest_debug *dbg)
8086 {
8087 	unsigned long rflags;
8088 	int i, r;
8089 
8090 	vcpu_load(vcpu);
8091 
8092 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8093 		r = -EBUSY;
8094 		if (vcpu->arch.exception.pending)
8095 			goto out;
8096 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8097 			kvm_queue_exception(vcpu, DB_VECTOR);
8098 		else
8099 			kvm_queue_exception(vcpu, BP_VECTOR);
8100 	}
8101 
8102 	/*
8103 	 * Read rflags as long as potentially injected trace flags are still
8104 	 * filtered out.
8105 	 */
8106 	rflags = kvm_get_rflags(vcpu);
8107 
8108 	vcpu->guest_debug = dbg->control;
8109 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8110 		vcpu->guest_debug = 0;
8111 
8112 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8113 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8114 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8115 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8116 	} else {
8117 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8118 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8119 	}
8120 	kvm_update_dr7(vcpu);
8121 
8122 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8123 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8124 			get_segment_base(vcpu, VCPU_SREG_CS);
8125 
8126 	/*
8127 	 * Trigger an rflags update that will inject or remove the trace
8128 	 * flags.
8129 	 */
8130 	kvm_set_rflags(vcpu, rflags);
8131 
8132 	kvm_x86_ops->update_bp_intercept(vcpu);
8133 
8134 	r = 0;
8135 
8136 out:
8137 	vcpu_put(vcpu);
8138 	return r;
8139 }
8140 
8141 /*
8142  * Translate a guest virtual address to a guest physical address.
8143  */
8144 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8145 				    struct kvm_translation *tr)
8146 {
8147 	unsigned long vaddr = tr->linear_address;
8148 	gpa_t gpa;
8149 	int idx;
8150 
8151 	vcpu_load(vcpu);
8152 
8153 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8154 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8155 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8156 	tr->physical_address = gpa;
8157 	tr->valid = gpa != UNMAPPED_GVA;
8158 	tr->writeable = 1;
8159 	tr->usermode = 0;
8160 
8161 	vcpu_put(vcpu);
8162 	return 0;
8163 }
8164 
8165 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8166 {
8167 	struct fxregs_state *fxsave;
8168 
8169 	vcpu_load(vcpu);
8170 
8171 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8172 	memcpy(fpu->fpr, fxsave->st_space, 128);
8173 	fpu->fcw = fxsave->cwd;
8174 	fpu->fsw = fxsave->swd;
8175 	fpu->ftwx = fxsave->twd;
8176 	fpu->last_opcode = fxsave->fop;
8177 	fpu->last_ip = fxsave->rip;
8178 	fpu->last_dp = fxsave->rdp;
8179 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8180 
8181 	vcpu_put(vcpu);
8182 	return 0;
8183 }
8184 
8185 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8186 {
8187 	struct fxregs_state *fxsave;
8188 
8189 	vcpu_load(vcpu);
8190 
8191 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8192 
8193 	memcpy(fxsave->st_space, fpu->fpr, 128);
8194 	fxsave->cwd = fpu->fcw;
8195 	fxsave->swd = fpu->fsw;
8196 	fxsave->twd = fpu->ftwx;
8197 	fxsave->fop = fpu->last_opcode;
8198 	fxsave->rip = fpu->last_ip;
8199 	fxsave->rdp = fpu->last_dp;
8200 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8201 
8202 	vcpu_put(vcpu);
8203 	return 0;
8204 }
8205 
8206 static void store_regs(struct kvm_vcpu *vcpu)
8207 {
8208 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8209 
8210 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8211 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8212 
8213 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8214 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8215 
8216 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8217 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8218 				vcpu, &vcpu->run->s.regs.events);
8219 }
8220 
8221 static int sync_regs(struct kvm_vcpu *vcpu)
8222 {
8223 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8224 		return -EINVAL;
8225 
8226 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8227 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8228 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8229 	}
8230 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8231 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8232 			return -EINVAL;
8233 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8234 	}
8235 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8236 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8237 				vcpu, &vcpu->run->s.regs.events))
8238 			return -EINVAL;
8239 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8240 	}
8241 
8242 	return 0;
8243 }
8244 
8245 static void fx_init(struct kvm_vcpu *vcpu)
8246 {
8247 	fpstate_init(&vcpu->arch.guest_fpu.state);
8248 	if (boot_cpu_has(X86_FEATURE_XSAVES))
8249 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8250 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
8251 
8252 	/*
8253 	 * Ensure guest xcr0 is valid for loading
8254 	 */
8255 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8256 
8257 	vcpu->arch.cr0 |= X86_CR0_ET;
8258 }
8259 
8260 /* Swap (qemu) user FPU context for the guest FPU context. */
8261 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8262 {
8263 	preempt_disable();
8264 	copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8265 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8266 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8267 				~XFEATURE_MASK_PKRU);
8268 	preempt_enable();
8269 	trace_kvm_fpu(1);
8270 }
8271 
8272 /* When vcpu_run ends, restore user space FPU context. */
8273 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8274 {
8275 	preempt_disable();
8276 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8277 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8278 	preempt_enable();
8279 	++vcpu->stat.fpu_reload;
8280 	trace_kvm_fpu(0);
8281 }
8282 
8283 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8284 {
8285 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8286 
8287 	kvmclock_reset(vcpu);
8288 
8289 	kvm_x86_ops->vcpu_free(vcpu);
8290 	free_cpumask_var(wbinvd_dirty_mask);
8291 }
8292 
8293 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8294 						unsigned int id)
8295 {
8296 	struct kvm_vcpu *vcpu;
8297 
8298 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8299 		printk_once(KERN_WARNING
8300 		"kvm: SMP vm created on host with unstable TSC; "
8301 		"guest TSC will not be reliable\n");
8302 
8303 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8304 
8305 	return vcpu;
8306 }
8307 
8308 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8309 {
8310 	kvm_vcpu_mtrr_init(vcpu);
8311 	vcpu_load(vcpu);
8312 	kvm_vcpu_reset(vcpu, false);
8313 	kvm_mmu_setup(vcpu);
8314 	vcpu_put(vcpu);
8315 	return 0;
8316 }
8317 
8318 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8319 {
8320 	struct msr_data msr;
8321 	struct kvm *kvm = vcpu->kvm;
8322 
8323 	kvm_hv_vcpu_postcreate(vcpu);
8324 
8325 	if (mutex_lock_killable(&vcpu->mutex))
8326 		return;
8327 	vcpu_load(vcpu);
8328 	msr.data = 0x0;
8329 	msr.index = MSR_IA32_TSC;
8330 	msr.host_initiated = true;
8331 	kvm_write_tsc(vcpu, &msr);
8332 	vcpu_put(vcpu);
8333 	mutex_unlock(&vcpu->mutex);
8334 
8335 	if (!kvmclock_periodic_sync)
8336 		return;
8337 
8338 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8339 					KVMCLOCK_SYNC_PERIOD);
8340 }
8341 
8342 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8343 {
8344 	vcpu->arch.apf.msr_val = 0;
8345 
8346 	vcpu_load(vcpu);
8347 	kvm_mmu_unload(vcpu);
8348 	vcpu_put(vcpu);
8349 
8350 	kvm_x86_ops->vcpu_free(vcpu);
8351 }
8352 
8353 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8354 {
8355 	kvm_lapic_reset(vcpu, init_event);
8356 
8357 	vcpu->arch.hflags = 0;
8358 
8359 	vcpu->arch.smi_pending = 0;
8360 	vcpu->arch.smi_count = 0;
8361 	atomic_set(&vcpu->arch.nmi_queued, 0);
8362 	vcpu->arch.nmi_pending = 0;
8363 	vcpu->arch.nmi_injected = false;
8364 	kvm_clear_interrupt_queue(vcpu);
8365 	kvm_clear_exception_queue(vcpu);
8366 	vcpu->arch.exception.pending = false;
8367 
8368 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8369 	kvm_update_dr0123(vcpu);
8370 	vcpu->arch.dr6 = DR6_INIT;
8371 	kvm_update_dr6(vcpu);
8372 	vcpu->arch.dr7 = DR7_FIXED_1;
8373 	kvm_update_dr7(vcpu);
8374 
8375 	vcpu->arch.cr2 = 0;
8376 
8377 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8378 	vcpu->arch.apf.msr_val = 0;
8379 	vcpu->arch.st.msr_val = 0;
8380 
8381 	kvmclock_reset(vcpu);
8382 
8383 	kvm_clear_async_pf_completion_queue(vcpu);
8384 	kvm_async_pf_hash_reset(vcpu);
8385 	vcpu->arch.apf.halted = false;
8386 
8387 	if (kvm_mpx_supported()) {
8388 		void *mpx_state_buffer;
8389 
8390 		/*
8391 		 * To avoid have the INIT path from kvm_apic_has_events() that be
8392 		 * called with loaded FPU and does not let userspace fix the state.
8393 		 */
8394 		if (init_event)
8395 			kvm_put_guest_fpu(vcpu);
8396 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8397 					XFEATURE_MASK_BNDREGS);
8398 		if (mpx_state_buffer)
8399 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8400 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8401 					XFEATURE_MASK_BNDCSR);
8402 		if (mpx_state_buffer)
8403 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8404 		if (init_event)
8405 			kvm_load_guest_fpu(vcpu);
8406 	}
8407 
8408 	if (!init_event) {
8409 		kvm_pmu_reset(vcpu);
8410 		vcpu->arch.smbase = 0x30000;
8411 
8412 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8413 		vcpu->arch.msr_misc_features_enables = 0;
8414 
8415 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8416 	}
8417 
8418 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8419 	vcpu->arch.regs_avail = ~0;
8420 	vcpu->arch.regs_dirty = ~0;
8421 
8422 	vcpu->arch.ia32_xss = 0;
8423 
8424 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
8425 }
8426 
8427 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8428 {
8429 	struct kvm_segment cs;
8430 
8431 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8432 	cs.selector = vector << 8;
8433 	cs.base = vector << 12;
8434 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8435 	kvm_rip_write(vcpu, 0);
8436 }
8437 
8438 int kvm_arch_hardware_enable(void)
8439 {
8440 	struct kvm *kvm;
8441 	struct kvm_vcpu *vcpu;
8442 	int i;
8443 	int ret;
8444 	u64 local_tsc;
8445 	u64 max_tsc = 0;
8446 	bool stable, backwards_tsc = false;
8447 
8448 	kvm_shared_msr_cpu_online();
8449 	ret = kvm_x86_ops->hardware_enable();
8450 	if (ret != 0)
8451 		return ret;
8452 
8453 	local_tsc = rdtsc();
8454 	stable = !kvm_check_tsc_unstable();
8455 	list_for_each_entry(kvm, &vm_list, vm_list) {
8456 		kvm_for_each_vcpu(i, vcpu, kvm) {
8457 			if (!stable && vcpu->cpu == smp_processor_id())
8458 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8459 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8460 				backwards_tsc = true;
8461 				if (vcpu->arch.last_host_tsc > max_tsc)
8462 					max_tsc = vcpu->arch.last_host_tsc;
8463 			}
8464 		}
8465 	}
8466 
8467 	/*
8468 	 * Sometimes, even reliable TSCs go backwards.  This happens on
8469 	 * platforms that reset TSC during suspend or hibernate actions, but
8470 	 * maintain synchronization.  We must compensate.  Fortunately, we can
8471 	 * detect that condition here, which happens early in CPU bringup,
8472 	 * before any KVM threads can be running.  Unfortunately, we can't
8473 	 * bring the TSCs fully up to date with real time, as we aren't yet far
8474 	 * enough into CPU bringup that we know how much real time has actually
8475 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8476 	 * variables that haven't been updated yet.
8477 	 *
8478 	 * So we simply find the maximum observed TSC above, then record the
8479 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8480 	 * the adjustment will be applied.  Note that we accumulate
8481 	 * adjustments, in case multiple suspend cycles happen before some VCPU
8482 	 * gets a chance to run again.  In the event that no KVM threads get a
8483 	 * chance to run, we will miss the entire elapsed period, as we'll have
8484 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8485 	 * loose cycle time.  This isn't too big a deal, since the loss will be
8486 	 * uniform across all VCPUs (not to mention the scenario is extremely
8487 	 * unlikely). It is possible that a second hibernate recovery happens
8488 	 * much faster than a first, causing the observed TSC here to be
8489 	 * smaller; this would require additional padding adjustment, which is
8490 	 * why we set last_host_tsc to the local tsc observed here.
8491 	 *
8492 	 * N.B. - this code below runs only on platforms with reliable TSC,
8493 	 * as that is the only way backwards_tsc is set above.  Also note
8494 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8495 	 * have the same delta_cyc adjustment applied if backwards_tsc
8496 	 * is detected.  Note further, this adjustment is only done once,
8497 	 * as we reset last_host_tsc on all VCPUs to stop this from being
8498 	 * called multiple times (one for each physical CPU bringup).
8499 	 *
8500 	 * Platforms with unreliable TSCs don't have to deal with this, they
8501 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
8502 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
8503 	 * guarantee that they stay in perfect synchronization.
8504 	 */
8505 	if (backwards_tsc) {
8506 		u64 delta_cyc = max_tsc - local_tsc;
8507 		list_for_each_entry(kvm, &vm_list, vm_list) {
8508 			kvm->arch.backwards_tsc_observed = true;
8509 			kvm_for_each_vcpu(i, vcpu, kvm) {
8510 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
8511 				vcpu->arch.last_host_tsc = local_tsc;
8512 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8513 			}
8514 
8515 			/*
8516 			 * We have to disable TSC offset matching.. if you were
8517 			 * booting a VM while issuing an S4 host suspend....
8518 			 * you may have some problem.  Solving this issue is
8519 			 * left as an exercise to the reader.
8520 			 */
8521 			kvm->arch.last_tsc_nsec = 0;
8522 			kvm->arch.last_tsc_write = 0;
8523 		}
8524 
8525 	}
8526 	return 0;
8527 }
8528 
8529 void kvm_arch_hardware_disable(void)
8530 {
8531 	kvm_x86_ops->hardware_disable();
8532 	drop_user_return_notifiers();
8533 }
8534 
8535 int kvm_arch_hardware_setup(void)
8536 {
8537 	int r;
8538 
8539 	r = kvm_x86_ops->hardware_setup();
8540 	if (r != 0)
8541 		return r;
8542 
8543 	if (kvm_has_tsc_control) {
8544 		/*
8545 		 * Make sure the user can only configure tsc_khz values that
8546 		 * fit into a signed integer.
8547 		 * A min value is not calculated needed because it will always
8548 		 * be 1 on all machines.
8549 		 */
8550 		u64 max = min(0x7fffffffULL,
8551 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8552 		kvm_max_guest_tsc_khz = max;
8553 
8554 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8555 	}
8556 
8557 	kvm_init_msr_list();
8558 	return 0;
8559 }
8560 
8561 void kvm_arch_hardware_unsetup(void)
8562 {
8563 	kvm_x86_ops->hardware_unsetup();
8564 }
8565 
8566 void kvm_arch_check_processor_compat(void *rtn)
8567 {
8568 	kvm_x86_ops->check_processor_compatibility(rtn);
8569 }
8570 
8571 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8572 {
8573 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8574 }
8575 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8576 
8577 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8578 {
8579 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8580 }
8581 
8582 struct static_key kvm_no_apic_vcpu __read_mostly;
8583 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8584 
8585 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8586 {
8587 	struct page *page;
8588 	int r;
8589 
8590 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8591 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8592 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8593 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8594 	else
8595 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8596 
8597 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8598 	if (!page) {
8599 		r = -ENOMEM;
8600 		goto fail;
8601 	}
8602 	vcpu->arch.pio_data = page_address(page);
8603 
8604 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
8605 
8606 	r = kvm_mmu_create(vcpu);
8607 	if (r < 0)
8608 		goto fail_free_pio_data;
8609 
8610 	if (irqchip_in_kernel(vcpu->kvm)) {
8611 		r = kvm_create_lapic(vcpu);
8612 		if (r < 0)
8613 			goto fail_mmu_destroy;
8614 	} else
8615 		static_key_slow_inc(&kvm_no_apic_vcpu);
8616 
8617 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8618 				       GFP_KERNEL);
8619 	if (!vcpu->arch.mce_banks) {
8620 		r = -ENOMEM;
8621 		goto fail_free_lapic;
8622 	}
8623 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8624 
8625 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8626 		r = -ENOMEM;
8627 		goto fail_free_mce_banks;
8628 	}
8629 
8630 	fx_init(vcpu);
8631 
8632 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8633 
8634 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8635 
8636 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8637 
8638 	kvm_async_pf_hash_reset(vcpu);
8639 	kvm_pmu_init(vcpu);
8640 
8641 	vcpu->arch.pending_external_vector = -1;
8642 	vcpu->arch.preempted_in_kernel = false;
8643 
8644 	kvm_hv_vcpu_init(vcpu);
8645 
8646 	return 0;
8647 
8648 fail_free_mce_banks:
8649 	kfree(vcpu->arch.mce_banks);
8650 fail_free_lapic:
8651 	kvm_free_lapic(vcpu);
8652 fail_mmu_destroy:
8653 	kvm_mmu_destroy(vcpu);
8654 fail_free_pio_data:
8655 	free_page((unsigned long)vcpu->arch.pio_data);
8656 fail:
8657 	return r;
8658 }
8659 
8660 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8661 {
8662 	int idx;
8663 
8664 	kvm_hv_vcpu_uninit(vcpu);
8665 	kvm_pmu_destroy(vcpu);
8666 	kfree(vcpu->arch.mce_banks);
8667 	kvm_free_lapic(vcpu);
8668 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8669 	kvm_mmu_destroy(vcpu);
8670 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8671 	free_page((unsigned long)vcpu->arch.pio_data);
8672 	if (!lapic_in_kernel(vcpu))
8673 		static_key_slow_dec(&kvm_no_apic_vcpu);
8674 }
8675 
8676 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8677 {
8678 	kvm_x86_ops->sched_in(vcpu, cpu);
8679 }
8680 
8681 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8682 {
8683 	if (type)
8684 		return -EINVAL;
8685 
8686 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8687 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8688 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8689 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8690 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8691 
8692 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8693 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8694 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8695 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8696 		&kvm->arch.irq_sources_bitmap);
8697 
8698 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8699 	mutex_init(&kvm->arch.apic_map_lock);
8700 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8701 
8702 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8703 	pvclock_update_vm_gtod_copy(kvm);
8704 
8705 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8706 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8707 
8708 	kvm_hv_init_vm(kvm);
8709 	kvm_page_track_init(kvm);
8710 	kvm_mmu_init_vm(kvm);
8711 
8712 	if (kvm_x86_ops->vm_init)
8713 		return kvm_x86_ops->vm_init(kvm);
8714 
8715 	return 0;
8716 }
8717 
8718 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8719 {
8720 	vcpu_load(vcpu);
8721 	kvm_mmu_unload(vcpu);
8722 	vcpu_put(vcpu);
8723 }
8724 
8725 static void kvm_free_vcpus(struct kvm *kvm)
8726 {
8727 	unsigned int i;
8728 	struct kvm_vcpu *vcpu;
8729 
8730 	/*
8731 	 * Unpin any mmu pages first.
8732 	 */
8733 	kvm_for_each_vcpu(i, vcpu, kvm) {
8734 		kvm_clear_async_pf_completion_queue(vcpu);
8735 		kvm_unload_vcpu_mmu(vcpu);
8736 	}
8737 	kvm_for_each_vcpu(i, vcpu, kvm)
8738 		kvm_arch_vcpu_free(vcpu);
8739 
8740 	mutex_lock(&kvm->lock);
8741 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8742 		kvm->vcpus[i] = NULL;
8743 
8744 	atomic_set(&kvm->online_vcpus, 0);
8745 	mutex_unlock(&kvm->lock);
8746 }
8747 
8748 void kvm_arch_sync_events(struct kvm *kvm)
8749 {
8750 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8751 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8752 	kvm_free_pit(kvm);
8753 }
8754 
8755 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8756 {
8757 	int i, r;
8758 	unsigned long hva;
8759 	struct kvm_memslots *slots = kvm_memslots(kvm);
8760 	struct kvm_memory_slot *slot, old;
8761 
8762 	/* Called with kvm->slots_lock held.  */
8763 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8764 		return -EINVAL;
8765 
8766 	slot = id_to_memslot(slots, id);
8767 	if (size) {
8768 		if (slot->npages)
8769 			return -EEXIST;
8770 
8771 		/*
8772 		 * MAP_SHARED to prevent internal slot pages from being moved
8773 		 * by fork()/COW.
8774 		 */
8775 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8776 			      MAP_SHARED | MAP_ANONYMOUS, 0);
8777 		if (IS_ERR((void *)hva))
8778 			return PTR_ERR((void *)hva);
8779 	} else {
8780 		if (!slot->npages)
8781 			return 0;
8782 
8783 		hva = 0;
8784 	}
8785 
8786 	old = *slot;
8787 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8788 		struct kvm_userspace_memory_region m;
8789 
8790 		m.slot = id | (i << 16);
8791 		m.flags = 0;
8792 		m.guest_phys_addr = gpa;
8793 		m.userspace_addr = hva;
8794 		m.memory_size = size;
8795 		r = __kvm_set_memory_region(kvm, &m);
8796 		if (r < 0)
8797 			return r;
8798 	}
8799 
8800 	if (!size)
8801 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8802 
8803 	return 0;
8804 }
8805 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8806 
8807 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8808 {
8809 	int r;
8810 
8811 	mutex_lock(&kvm->slots_lock);
8812 	r = __x86_set_memory_region(kvm, id, gpa, size);
8813 	mutex_unlock(&kvm->slots_lock);
8814 
8815 	return r;
8816 }
8817 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8818 
8819 void kvm_arch_destroy_vm(struct kvm *kvm)
8820 {
8821 	if (current->mm == kvm->mm) {
8822 		/*
8823 		 * Free memory regions allocated on behalf of userspace,
8824 		 * unless the the memory map has changed due to process exit
8825 		 * or fd copying.
8826 		 */
8827 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8828 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8829 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8830 	}
8831 	if (kvm_x86_ops->vm_destroy)
8832 		kvm_x86_ops->vm_destroy(kvm);
8833 	kvm_pic_destroy(kvm);
8834 	kvm_ioapic_destroy(kvm);
8835 	kvm_free_vcpus(kvm);
8836 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8837 	kvm_mmu_uninit_vm(kvm);
8838 	kvm_page_track_cleanup(kvm);
8839 	kvm_hv_destroy_vm(kvm);
8840 }
8841 
8842 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8843 			   struct kvm_memory_slot *dont)
8844 {
8845 	int i;
8846 
8847 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8848 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8849 			kvfree(free->arch.rmap[i]);
8850 			free->arch.rmap[i] = NULL;
8851 		}
8852 		if (i == 0)
8853 			continue;
8854 
8855 		if (!dont || free->arch.lpage_info[i - 1] !=
8856 			     dont->arch.lpage_info[i - 1]) {
8857 			kvfree(free->arch.lpage_info[i - 1]);
8858 			free->arch.lpage_info[i - 1] = NULL;
8859 		}
8860 	}
8861 
8862 	kvm_page_track_free_memslot(free, dont);
8863 }
8864 
8865 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8866 			    unsigned long npages)
8867 {
8868 	int i;
8869 
8870 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8871 		struct kvm_lpage_info *linfo;
8872 		unsigned long ugfn;
8873 		int lpages;
8874 		int level = i + 1;
8875 
8876 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8877 				      slot->base_gfn, level) + 1;
8878 
8879 		slot->arch.rmap[i] =
8880 			kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8881 		if (!slot->arch.rmap[i])
8882 			goto out_free;
8883 		if (i == 0)
8884 			continue;
8885 
8886 		linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8887 		if (!linfo)
8888 			goto out_free;
8889 
8890 		slot->arch.lpage_info[i - 1] = linfo;
8891 
8892 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8893 			linfo[0].disallow_lpage = 1;
8894 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8895 			linfo[lpages - 1].disallow_lpage = 1;
8896 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8897 		/*
8898 		 * If the gfn and userspace address are not aligned wrt each
8899 		 * other, or if explicitly asked to, disable large page
8900 		 * support for this slot
8901 		 */
8902 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8903 		    !kvm_largepages_enabled()) {
8904 			unsigned long j;
8905 
8906 			for (j = 0; j < lpages; ++j)
8907 				linfo[j].disallow_lpage = 1;
8908 		}
8909 	}
8910 
8911 	if (kvm_page_track_create_memslot(slot, npages))
8912 		goto out_free;
8913 
8914 	return 0;
8915 
8916 out_free:
8917 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8918 		kvfree(slot->arch.rmap[i]);
8919 		slot->arch.rmap[i] = NULL;
8920 		if (i == 0)
8921 			continue;
8922 
8923 		kvfree(slot->arch.lpage_info[i - 1]);
8924 		slot->arch.lpage_info[i - 1] = NULL;
8925 	}
8926 	return -ENOMEM;
8927 }
8928 
8929 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8930 {
8931 	/*
8932 	 * memslots->generation has been incremented.
8933 	 * mmio generation may have reached its maximum value.
8934 	 */
8935 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8936 }
8937 
8938 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8939 				struct kvm_memory_slot *memslot,
8940 				const struct kvm_userspace_memory_region *mem,
8941 				enum kvm_mr_change change)
8942 {
8943 	return 0;
8944 }
8945 
8946 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8947 				     struct kvm_memory_slot *new)
8948 {
8949 	/* Still write protect RO slot */
8950 	if (new->flags & KVM_MEM_READONLY) {
8951 		kvm_mmu_slot_remove_write_access(kvm, new);
8952 		return;
8953 	}
8954 
8955 	/*
8956 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8957 	 *
8958 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8959 	 *
8960 	 *  - KVM_MR_CREATE with dirty logging is disabled
8961 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8962 	 *
8963 	 * The reason is, in case of PML, we need to set D-bit for any slots
8964 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8965 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8966 	 * guarantees leaving PML enabled during guest's lifetime won't have
8967 	 * any additonal overhead from PML when guest is running with dirty
8968 	 * logging disabled for memory slots.
8969 	 *
8970 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8971 	 * to dirty logging mode.
8972 	 *
8973 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8974 	 *
8975 	 * In case of write protect:
8976 	 *
8977 	 * Write protect all pages for dirty logging.
8978 	 *
8979 	 * All the sptes including the large sptes which point to this
8980 	 * slot are set to readonly. We can not create any new large
8981 	 * spte on this slot until the end of the logging.
8982 	 *
8983 	 * See the comments in fast_page_fault().
8984 	 */
8985 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8986 		if (kvm_x86_ops->slot_enable_log_dirty)
8987 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8988 		else
8989 			kvm_mmu_slot_remove_write_access(kvm, new);
8990 	} else {
8991 		if (kvm_x86_ops->slot_disable_log_dirty)
8992 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8993 	}
8994 }
8995 
8996 void kvm_arch_commit_memory_region(struct kvm *kvm,
8997 				const struct kvm_userspace_memory_region *mem,
8998 				const struct kvm_memory_slot *old,
8999 				const struct kvm_memory_slot *new,
9000 				enum kvm_mr_change change)
9001 {
9002 	int nr_mmu_pages = 0;
9003 
9004 	if (!kvm->arch.n_requested_mmu_pages)
9005 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9006 
9007 	if (nr_mmu_pages)
9008 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9009 
9010 	/*
9011 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9012 	 * sptes have to be split.  If live migration is successful, the guest
9013 	 * in the source machine will be destroyed and large sptes will be
9014 	 * created in the destination. However, if the guest continues to run
9015 	 * in the source machine (for example if live migration fails), small
9016 	 * sptes will remain around and cause bad performance.
9017 	 *
9018 	 * Scan sptes if dirty logging has been stopped, dropping those
9019 	 * which can be collapsed into a single large-page spte.  Later
9020 	 * page faults will create the large-page sptes.
9021 	 */
9022 	if ((change != KVM_MR_DELETE) &&
9023 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9024 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9025 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9026 
9027 	/*
9028 	 * Set up write protection and/or dirty logging for the new slot.
9029 	 *
9030 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9031 	 * been zapped so no dirty logging staff is needed for old slot. For
9032 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9033 	 * new and it's also covered when dealing with the new slot.
9034 	 *
9035 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9036 	 */
9037 	if (change != KVM_MR_DELETE)
9038 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9039 }
9040 
9041 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9042 {
9043 	kvm_mmu_invalidate_zap_all_pages(kvm);
9044 }
9045 
9046 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9047 				   struct kvm_memory_slot *slot)
9048 {
9049 	kvm_page_track_flush_slot(kvm, slot);
9050 }
9051 
9052 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9053 {
9054 	if (!list_empty_careful(&vcpu->async_pf.done))
9055 		return true;
9056 
9057 	if (kvm_apic_has_events(vcpu))
9058 		return true;
9059 
9060 	if (vcpu->arch.pv.pv_unhalted)
9061 		return true;
9062 
9063 	if (vcpu->arch.exception.pending)
9064 		return true;
9065 
9066 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9067 	    (vcpu->arch.nmi_pending &&
9068 	     kvm_x86_ops->nmi_allowed(vcpu)))
9069 		return true;
9070 
9071 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9072 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9073 		return true;
9074 
9075 	if (kvm_arch_interrupt_allowed(vcpu) &&
9076 	    kvm_cpu_has_interrupt(vcpu))
9077 		return true;
9078 
9079 	if (kvm_hv_has_stimer_pending(vcpu))
9080 		return true;
9081 
9082 	return false;
9083 }
9084 
9085 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9086 {
9087 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9088 }
9089 
9090 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9091 {
9092 	return vcpu->arch.preempted_in_kernel;
9093 }
9094 
9095 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9096 {
9097 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9098 }
9099 
9100 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9101 {
9102 	return kvm_x86_ops->interrupt_allowed(vcpu);
9103 }
9104 
9105 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9106 {
9107 	if (is_64_bit_mode(vcpu))
9108 		return kvm_rip_read(vcpu);
9109 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9110 		     kvm_rip_read(vcpu));
9111 }
9112 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9113 
9114 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9115 {
9116 	return kvm_get_linear_rip(vcpu) == linear_rip;
9117 }
9118 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9119 
9120 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9121 {
9122 	unsigned long rflags;
9123 
9124 	rflags = kvm_x86_ops->get_rflags(vcpu);
9125 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9126 		rflags &= ~X86_EFLAGS_TF;
9127 	return rflags;
9128 }
9129 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9130 
9131 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9132 {
9133 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9134 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9135 		rflags |= X86_EFLAGS_TF;
9136 	kvm_x86_ops->set_rflags(vcpu, rflags);
9137 }
9138 
9139 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9140 {
9141 	__kvm_set_rflags(vcpu, rflags);
9142 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9143 }
9144 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9145 
9146 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9147 {
9148 	int r;
9149 
9150 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9151 	      work->wakeup_all)
9152 		return;
9153 
9154 	r = kvm_mmu_reload(vcpu);
9155 	if (unlikely(r))
9156 		return;
9157 
9158 	if (!vcpu->arch.mmu.direct_map &&
9159 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9160 		return;
9161 
9162 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9163 }
9164 
9165 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9166 {
9167 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9168 }
9169 
9170 static inline u32 kvm_async_pf_next_probe(u32 key)
9171 {
9172 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9173 }
9174 
9175 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9176 {
9177 	u32 key = kvm_async_pf_hash_fn(gfn);
9178 
9179 	while (vcpu->arch.apf.gfns[key] != ~0)
9180 		key = kvm_async_pf_next_probe(key);
9181 
9182 	vcpu->arch.apf.gfns[key] = gfn;
9183 }
9184 
9185 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9186 {
9187 	int i;
9188 	u32 key = kvm_async_pf_hash_fn(gfn);
9189 
9190 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9191 		     (vcpu->arch.apf.gfns[key] != gfn &&
9192 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9193 		key = kvm_async_pf_next_probe(key);
9194 
9195 	return key;
9196 }
9197 
9198 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9199 {
9200 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9201 }
9202 
9203 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9204 {
9205 	u32 i, j, k;
9206 
9207 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9208 	while (true) {
9209 		vcpu->arch.apf.gfns[i] = ~0;
9210 		do {
9211 			j = kvm_async_pf_next_probe(j);
9212 			if (vcpu->arch.apf.gfns[j] == ~0)
9213 				return;
9214 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9215 			/*
9216 			 * k lies cyclically in ]i,j]
9217 			 * |    i.k.j |
9218 			 * |....j i.k.| or  |.k..j i...|
9219 			 */
9220 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9221 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9222 		i = j;
9223 	}
9224 }
9225 
9226 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9227 {
9228 
9229 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9230 				      sizeof(val));
9231 }
9232 
9233 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9234 {
9235 
9236 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9237 				      sizeof(u32));
9238 }
9239 
9240 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9241 				     struct kvm_async_pf *work)
9242 {
9243 	struct x86_exception fault;
9244 
9245 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9246 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9247 
9248 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9249 	    (vcpu->arch.apf.send_user_only &&
9250 	     kvm_x86_ops->get_cpl(vcpu) == 0))
9251 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9252 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9253 		fault.vector = PF_VECTOR;
9254 		fault.error_code_valid = true;
9255 		fault.error_code = 0;
9256 		fault.nested_page_fault = false;
9257 		fault.address = work->arch.token;
9258 		fault.async_page_fault = true;
9259 		kvm_inject_page_fault(vcpu, &fault);
9260 	}
9261 }
9262 
9263 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9264 				 struct kvm_async_pf *work)
9265 {
9266 	struct x86_exception fault;
9267 	u32 val;
9268 
9269 	if (work->wakeup_all)
9270 		work->arch.token = ~0; /* broadcast wakeup */
9271 	else
9272 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9273 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
9274 
9275 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9276 	    !apf_get_user(vcpu, &val)) {
9277 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9278 		    vcpu->arch.exception.pending &&
9279 		    vcpu->arch.exception.nr == PF_VECTOR &&
9280 		    !apf_put_user(vcpu, 0)) {
9281 			vcpu->arch.exception.injected = false;
9282 			vcpu->arch.exception.pending = false;
9283 			vcpu->arch.exception.nr = 0;
9284 			vcpu->arch.exception.has_error_code = false;
9285 			vcpu->arch.exception.error_code = 0;
9286 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9287 			fault.vector = PF_VECTOR;
9288 			fault.error_code_valid = true;
9289 			fault.error_code = 0;
9290 			fault.nested_page_fault = false;
9291 			fault.address = work->arch.token;
9292 			fault.async_page_fault = true;
9293 			kvm_inject_page_fault(vcpu, &fault);
9294 		}
9295 	}
9296 	vcpu->arch.apf.halted = false;
9297 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9298 }
9299 
9300 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9301 {
9302 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9303 		return true;
9304 	else
9305 		return kvm_can_do_async_pf(vcpu);
9306 }
9307 
9308 void kvm_arch_start_assignment(struct kvm *kvm)
9309 {
9310 	atomic_inc(&kvm->arch.assigned_device_count);
9311 }
9312 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9313 
9314 void kvm_arch_end_assignment(struct kvm *kvm)
9315 {
9316 	atomic_dec(&kvm->arch.assigned_device_count);
9317 }
9318 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9319 
9320 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9321 {
9322 	return atomic_read(&kvm->arch.assigned_device_count);
9323 }
9324 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9325 
9326 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9327 {
9328 	atomic_inc(&kvm->arch.noncoherent_dma_count);
9329 }
9330 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9331 
9332 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9333 {
9334 	atomic_dec(&kvm->arch.noncoherent_dma_count);
9335 }
9336 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9337 
9338 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9339 {
9340 	return atomic_read(&kvm->arch.noncoherent_dma_count);
9341 }
9342 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9343 
9344 bool kvm_arch_has_irq_bypass(void)
9345 {
9346 	return kvm_x86_ops->update_pi_irte != NULL;
9347 }
9348 
9349 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9350 				      struct irq_bypass_producer *prod)
9351 {
9352 	struct kvm_kernel_irqfd *irqfd =
9353 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9354 
9355 	irqfd->producer = prod;
9356 
9357 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9358 					   prod->irq, irqfd->gsi, 1);
9359 }
9360 
9361 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9362 				      struct irq_bypass_producer *prod)
9363 {
9364 	int ret;
9365 	struct kvm_kernel_irqfd *irqfd =
9366 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9367 
9368 	WARN_ON(irqfd->producer != prod);
9369 	irqfd->producer = NULL;
9370 
9371 	/*
9372 	 * When producer of consumer is unregistered, we change back to
9373 	 * remapped mode, so we can re-use the current implementation
9374 	 * when the irq is masked/disabled or the consumer side (KVM
9375 	 * int this case doesn't want to receive the interrupts.
9376 	*/
9377 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9378 	if (ret)
9379 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9380 		       " fails: %d\n", irqfd->consumer.token, ret);
9381 }
9382 
9383 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9384 				   uint32_t guest_irq, bool set)
9385 {
9386 	if (!kvm_x86_ops->update_pi_irte)
9387 		return -EINVAL;
9388 
9389 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9390 }
9391 
9392 bool kvm_vector_hashing_enabled(void)
9393 {
9394 	return vector_hashing;
9395 }
9396 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9397 
9398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9417