xref: /openbmc/linux/arch/x86/kvm/x86.c (revision d0b73b48)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70 
71 #define emul_to_vcpu(ctxt) \
72 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84 
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87 
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93 
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96 
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101 
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105 
106 #define KVM_NR_SHARED_MSRS 16
107 
108 struct kvm_shared_msrs_global {
109 	int nr;
110 	u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112 
113 struct kvm_shared_msrs {
114 	struct user_return_notifier urn;
115 	bool registered;
116 	struct kvm_shared_msr_values {
117 		u64 host;
118 		u64 curr;
119 	} values[KVM_NR_SHARED_MSRS];
120 };
121 
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124 
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
127 	{ "pf_guest", VCPU_STAT(pf_guest) },
128 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
129 	{ "invlpg", VCPU_STAT(invlpg) },
130 	{ "exits", VCPU_STAT(exits) },
131 	{ "io_exits", VCPU_STAT(io_exits) },
132 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
133 	{ "signal_exits", VCPU_STAT(signal_exits) },
134 	{ "irq_window", VCPU_STAT(irq_window_exits) },
135 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
136 	{ "halt_exits", VCPU_STAT(halt_exits) },
137 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
138 	{ "hypercalls", VCPU_STAT(hypercalls) },
139 	{ "request_irq", VCPU_STAT(request_irq_exits) },
140 	{ "irq_exits", VCPU_STAT(irq_exits) },
141 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
142 	{ "efer_reload", VCPU_STAT(efer_reload) },
143 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
144 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
145 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146 	{ "irq_injections", VCPU_STAT(irq_injections) },
147 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
148 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
150 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
153 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
154 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
156 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157 	{ "largepages", VM_STAT(lpages) },
158 	{ NULL }
159 };
160 
161 u64 __read_mostly host_xcr0;
162 
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164 
165 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
166 
167 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
168 {
169 	int i;
170 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
171 		vcpu->arch.apf.gfns[i] = ~0;
172 }
173 
174 static void kvm_on_user_return(struct user_return_notifier *urn)
175 {
176 	unsigned slot;
177 	struct kvm_shared_msrs *locals
178 		= container_of(urn, struct kvm_shared_msrs, urn);
179 	struct kvm_shared_msr_values *values;
180 
181 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
182 		values = &locals->values[slot];
183 		if (values->host != values->curr) {
184 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
185 			values->curr = values->host;
186 		}
187 	}
188 	locals->registered = false;
189 	user_return_notifier_unregister(urn);
190 }
191 
192 static void shared_msr_update(unsigned slot, u32 msr)
193 {
194 	u64 value;
195 	unsigned int cpu = smp_processor_id();
196 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
197 
198 	/* only read, and nobody should modify it at this time,
199 	 * so don't need lock */
200 	if (slot >= shared_msrs_global.nr) {
201 		printk(KERN_ERR "kvm: invalid MSR slot!");
202 		return;
203 	}
204 	rdmsrl_safe(msr, &value);
205 	smsr->values[slot].host = value;
206 	smsr->values[slot].curr = value;
207 }
208 
209 void kvm_define_shared_msr(unsigned slot, u32 msr)
210 {
211 	if (slot >= shared_msrs_global.nr)
212 		shared_msrs_global.nr = slot + 1;
213 	shared_msrs_global.msrs[slot] = msr;
214 	/* we need ensured the shared_msr_global have been updated */
215 	smp_wmb();
216 }
217 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
218 
219 static void kvm_shared_msr_cpu_online(void)
220 {
221 	unsigned i;
222 
223 	for (i = 0; i < shared_msrs_global.nr; ++i)
224 		shared_msr_update(i, shared_msrs_global.msrs[i]);
225 }
226 
227 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
228 {
229 	unsigned int cpu = smp_processor_id();
230 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
231 
232 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
233 		return;
234 	smsr->values[slot].curr = value;
235 	wrmsrl(shared_msrs_global.msrs[slot], value);
236 	if (!smsr->registered) {
237 		smsr->urn.on_user_return = kvm_on_user_return;
238 		user_return_notifier_register(&smsr->urn);
239 		smsr->registered = true;
240 	}
241 }
242 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
243 
244 static void drop_user_return_notifiers(void *ignore)
245 {
246 	unsigned int cpu = smp_processor_id();
247 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
248 
249 	if (smsr->registered)
250 		kvm_on_user_return(&smsr->urn);
251 }
252 
253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
254 {
255 	return vcpu->arch.apic_base;
256 }
257 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
258 
259 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
260 {
261 	/* TODO: reserve bits check */
262 	kvm_lapic_set_base(vcpu, data);
263 }
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
265 
266 #define EXCPT_BENIGN		0
267 #define EXCPT_CONTRIBUTORY	1
268 #define EXCPT_PF		2
269 
270 static int exception_class(int vector)
271 {
272 	switch (vector) {
273 	case PF_VECTOR:
274 		return EXCPT_PF;
275 	case DE_VECTOR:
276 	case TS_VECTOR:
277 	case NP_VECTOR:
278 	case SS_VECTOR:
279 	case GP_VECTOR:
280 		return EXCPT_CONTRIBUTORY;
281 	default:
282 		break;
283 	}
284 	return EXCPT_BENIGN;
285 }
286 
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288 		unsigned nr, bool has_error, u32 error_code,
289 		bool reinject)
290 {
291 	u32 prev_nr;
292 	int class1, class2;
293 
294 	kvm_make_request(KVM_REQ_EVENT, vcpu);
295 
296 	if (!vcpu->arch.exception.pending) {
297 	queue:
298 		vcpu->arch.exception.pending = true;
299 		vcpu->arch.exception.has_error_code = has_error;
300 		vcpu->arch.exception.nr = nr;
301 		vcpu->arch.exception.error_code = error_code;
302 		vcpu->arch.exception.reinject = reinject;
303 		return;
304 	}
305 
306 	/* to check exception */
307 	prev_nr = vcpu->arch.exception.nr;
308 	if (prev_nr == DF_VECTOR) {
309 		/* triple fault -> shutdown */
310 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
311 		return;
312 	}
313 	class1 = exception_class(prev_nr);
314 	class2 = exception_class(nr);
315 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317 		/* generate double fault per SDM Table 5-5 */
318 		vcpu->arch.exception.pending = true;
319 		vcpu->arch.exception.has_error_code = true;
320 		vcpu->arch.exception.nr = DF_VECTOR;
321 		vcpu->arch.exception.error_code = 0;
322 	} else
323 		/* replace previous exception with a new one in a hope
324 		   that instruction re-execution will regenerate lost
325 		   exception */
326 		goto queue;
327 }
328 
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331 	kvm_multiple_exception(vcpu, nr, false, 0, false);
332 }
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
334 
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
336 {
337 	kvm_multiple_exception(vcpu, nr, false, 0, true);
338 }
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
340 
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
342 {
343 	if (err)
344 		kvm_inject_gp(vcpu, 0);
345 	else
346 		kvm_x86_ops->skip_emulated_instruction(vcpu);
347 }
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
349 
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
351 {
352 	++vcpu->stat.pf_guest;
353 	vcpu->arch.cr2 = fault->address;
354 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
355 }
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
357 
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
362 	else
363 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
364 }
365 
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
367 {
368 	atomic_inc(&vcpu->arch.nmi_queued);
369 	kvm_make_request(KVM_REQ_NMI, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
372 
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
376 }
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
378 
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
380 {
381 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
382 }
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
384 
385 /*
386  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
387  * a #GP and return false.
388  */
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
390 {
391 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
392 		return true;
393 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
394 	return false;
395 }
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
397 
398 /*
399  * This function will be used to read from the physical memory of the currently
400  * running guest. The difference to kvm_read_guest_page is that this function
401  * can read from guest physical or from the guest's guest physical memory.
402  */
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404 			    gfn_t ngfn, void *data, int offset, int len,
405 			    u32 access)
406 {
407 	gfn_t real_gfn;
408 	gpa_t ngpa;
409 
410 	ngpa     = gfn_to_gpa(ngfn);
411 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412 	if (real_gfn == UNMAPPED_GVA)
413 		return -EFAULT;
414 
415 	real_gfn = gpa_to_gfn(real_gfn);
416 
417 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
418 }
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
420 
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422 			       void *data, int offset, int len, u32 access)
423 {
424 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425 				       data, offset, len, access);
426 }
427 
428 /*
429  * Load the pae pdptrs.  Return true is they are all valid.
430  */
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
432 {
433 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
435 	int i;
436 	int ret;
437 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
438 
439 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440 				      offset * sizeof(u64), sizeof(pdpte),
441 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
442 	if (ret < 0) {
443 		ret = 0;
444 		goto out;
445 	}
446 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447 		if (is_present_gpte(pdpte[i]) &&
448 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
449 			ret = 0;
450 			goto out;
451 		}
452 	}
453 	ret = 1;
454 
455 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456 	__set_bit(VCPU_EXREG_PDPTR,
457 		  (unsigned long *)&vcpu->arch.regs_avail);
458 	__set_bit(VCPU_EXREG_PDPTR,
459 		  (unsigned long *)&vcpu->arch.regs_dirty);
460 out:
461 
462 	return ret;
463 }
464 EXPORT_SYMBOL_GPL(load_pdptrs);
465 
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
467 {
468 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
469 	bool changed = true;
470 	int offset;
471 	gfn_t gfn;
472 	int r;
473 
474 	if (is_long_mode(vcpu) || !is_pae(vcpu))
475 		return false;
476 
477 	if (!test_bit(VCPU_EXREG_PDPTR,
478 		      (unsigned long *)&vcpu->arch.regs_avail))
479 		return true;
480 
481 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
485 	if (r < 0)
486 		goto out;
487 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
488 out:
489 
490 	return changed;
491 }
492 
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
494 {
495 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
496 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497 				    X86_CR0_CD | X86_CR0_NW;
498 
499 	cr0 |= X86_CR0_ET;
500 
501 #ifdef CONFIG_X86_64
502 	if (cr0 & 0xffffffff00000000UL)
503 		return 1;
504 #endif
505 
506 	cr0 &= ~CR0_RESERVED_BITS;
507 
508 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
509 		return 1;
510 
511 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
512 		return 1;
513 
514 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
515 #ifdef CONFIG_X86_64
516 		if ((vcpu->arch.efer & EFER_LME)) {
517 			int cs_db, cs_l;
518 
519 			if (!is_pae(vcpu))
520 				return 1;
521 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
522 			if (cs_l)
523 				return 1;
524 		} else
525 #endif
526 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
527 						 kvm_read_cr3(vcpu)))
528 			return 1;
529 	}
530 
531 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
532 		return 1;
533 
534 	kvm_x86_ops->set_cr0(vcpu, cr0);
535 
536 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
537 		kvm_clear_async_pf_completion_queue(vcpu);
538 		kvm_async_pf_hash_reset(vcpu);
539 	}
540 
541 	if ((cr0 ^ old_cr0) & update_bits)
542 		kvm_mmu_reset_context(vcpu);
543 	return 0;
544 }
545 EXPORT_SYMBOL_GPL(kvm_set_cr0);
546 
547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
548 {
549 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
550 }
551 EXPORT_SYMBOL_GPL(kvm_lmsw);
552 
553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 {
555 	u64 xcr0;
556 
557 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
558 	if (index != XCR_XFEATURE_ENABLED_MASK)
559 		return 1;
560 	xcr0 = xcr;
561 	if (kvm_x86_ops->get_cpl(vcpu) != 0)
562 		return 1;
563 	if (!(xcr0 & XSTATE_FP))
564 		return 1;
565 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
566 		return 1;
567 	if (xcr0 & ~host_xcr0)
568 		return 1;
569 	vcpu->arch.xcr0 = xcr0;
570 	vcpu->guest_xcr0_loaded = 0;
571 	return 0;
572 }
573 
574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
575 {
576 	if (__kvm_set_xcr(vcpu, index, xcr)) {
577 		kvm_inject_gp(vcpu, 0);
578 		return 1;
579 	}
580 	return 0;
581 }
582 EXPORT_SYMBOL_GPL(kvm_set_xcr);
583 
584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
585 {
586 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
587 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
588 				   X86_CR4_PAE | X86_CR4_SMEP;
589 	if (cr4 & CR4_RESERVED_BITS)
590 		return 1;
591 
592 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
593 		return 1;
594 
595 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
596 		return 1;
597 
598 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
599 		return 1;
600 
601 	if (is_long_mode(vcpu)) {
602 		if (!(cr4 & X86_CR4_PAE))
603 			return 1;
604 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605 		   && ((cr4 ^ old_cr4) & pdptr_bits)
606 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 				   kvm_read_cr3(vcpu)))
608 		return 1;
609 
610 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
611 		if (!guest_cpuid_has_pcid(vcpu))
612 			return 1;
613 
614 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
615 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
616 			return 1;
617 	}
618 
619 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
620 		return 1;
621 
622 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
623 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
624 		kvm_mmu_reset_context(vcpu);
625 
626 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627 		kvm_update_cpuid(vcpu);
628 
629 	return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632 
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636 		kvm_mmu_sync_roots(vcpu);
637 		kvm_mmu_flush_tlb(vcpu);
638 		return 0;
639 	}
640 
641 	if (is_long_mode(vcpu)) {
642 		if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
643 			if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
644 				return 1;
645 		} else
646 			if (cr3 & CR3_L_MODE_RESERVED_BITS)
647 				return 1;
648 	} else {
649 		if (is_pae(vcpu)) {
650 			if (cr3 & CR3_PAE_RESERVED_BITS)
651 				return 1;
652 			if (is_paging(vcpu) &&
653 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
654 				return 1;
655 		}
656 		/*
657 		 * We don't check reserved bits in nonpae mode, because
658 		 * this isn't enforced, and VMware depends on this.
659 		 */
660 	}
661 
662 	/*
663 	 * Does the new cr3 value map to physical memory? (Note, we
664 	 * catch an invalid cr3 even in real-mode, because it would
665 	 * cause trouble later on when we turn on paging anyway.)
666 	 *
667 	 * A real CPU would silently accept an invalid cr3 and would
668 	 * attempt to use it - with largely undefined (and often hard
669 	 * to debug) behavior on the guest side.
670 	 */
671 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
672 		return 1;
673 	vcpu->arch.cr3 = cr3;
674 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
675 	vcpu->arch.mmu.new_cr3(vcpu);
676 	return 0;
677 }
678 EXPORT_SYMBOL_GPL(kvm_set_cr3);
679 
680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
681 {
682 	if (cr8 & CR8_RESERVED_BITS)
683 		return 1;
684 	if (irqchip_in_kernel(vcpu->kvm))
685 		kvm_lapic_set_tpr(vcpu, cr8);
686 	else
687 		vcpu->arch.cr8 = cr8;
688 	return 0;
689 }
690 EXPORT_SYMBOL_GPL(kvm_set_cr8);
691 
692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
693 {
694 	if (irqchip_in_kernel(vcpu->kvm))
695 		return kvm_lapic_get_cr8(vcpu);
696 	else
697 		return vcpu->arch.cr8;
698 }
699 EXPORT_SYMBOL_GPL(kvm_get_cr8);
700 
701 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
702 {
703 	unsigned long dr7;
704 
705 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
706 		dr7 = vcpu->arch.guest_debug_dr7;
707 	else
708 		dr7 = vcpu->arch.dr7;
709 	kvm_x86_ops->set_dr7(vcpu, dr7);
710 	vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
711 }
712 
713 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
714 {
715 	switch (dr) {
716 	case 0 ... 3:
717 		vcpu->arch.db[dr] = val;
718 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
719 			vcpu->arch.eff_db[dr] = val;
720 		break;
721 	case 4:
722 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
723 			return 1; /* #UD */
724 		/* fall through */
725 	case 6:
726 		if (val & 0xffffffff00000000ULL)
727 			return -1; /* #GP */
728 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
729 		break;
730 	case 5:
731 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
732 			return 1; /* #UD */
733 		/* fall through */
734 	default: /* 7 */
735 		if (val & 0xffffffff00000000ULL)
736 			return -1; /* #GP */
737 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
738 		kvm_update_dr7(vcpu);
739 		break;
740 	}
741 
742 	return 0;
743 }
744 
745 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
746 {
747 	int res;
748 
749 	res = __kvm_set_dr(vcpu, dr, val);
750 	if (res > 0)
751 		kvm_queue_exception(vcpu, UD_VECTOR);
752 	else if (res < 0)
753 		kvm_inject_gp(vcpu, 0);
754 
755 	return res;
756 }
757 EXPORT_SYMBOL_GPL(kvm_set_dr);
758 
759 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
760 {
761 	switch (dr) {
762 	case 0 ... 3:
763 		*val = vcpu->arch.db[dr];
764 		break;
765 	case 4:
766 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
767 			return 1;
768 		/* fall through */
769 	case 6:
770 		*val = vcpu->arch.dr6;
771 		break;
772 	case 5:
773 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
774 			return 1;
775 		/* fall through */
776 	default: /* 7 */
777 		*val = vcpu->arch.dr7;
778 		break;
779 	}
780 
781 	return 0;
782 }
783 
784 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
785 {
786 	if (_kvm_get_dr(vcpu, dr, val)) {
787 		kvm_queue_exception(vcpu, UD_VECTOR);
788 		return 1;
789 	}
790 	return 0;
791 }
792 EXPORT_SYMBOL_GPL(kvm_get_dr);
793 
794 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
795 {
796 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
797 	u64 data;
798 	int err;
799 
800 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
801 	if (err)
802 		return err;
803 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
804 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
805 	return err;
806 }
807 EXPORT_SYMBOL_GPL(kvm_rdpmc);
808 
809 /*
810  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
811  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
812  *
813  * This list is modified at module load time to reflect the
814  * capabilities of the host cpu. This capabilities test skips MSRs that are
815  * kvm-specific. Those are put in the beginning of the list.
816  */
817 
818 #define KVM_SAVE_MSRS_BEGIN	10
819 static u32 msrs_to_save[] = {
820 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
821 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
822 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
823 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
824 	MSR_KVM_PV_EOI_EN,
825 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
826 	MSR_STAR,
827 #ifdef CONFIG_X86_64
828 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
829 #endif
830 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
831 };
832 
833 static unsigned num_msrs_to_save;
834 
835 static const u32 emulated_msrs[] = {
836 	MSR_IA32_TSC_ADJUST,
837 	MSR_IA32_TSCDEADLINE,
838 	MSR_IA32_MISC_ENABLE,
839 	MSR_IA32_MCG_STATUS,
840 	MSR_IA32_MCG_CTL,
841 };
842 
843 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
844 {
845 	u64 old_efer = vcpu->arch.efer;
846 
847 	if (efer & efer_reserved_bits)
848 		return 1;
849 
850 	if (is_paging(vcpu)
851 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
852 		return 1;
853 
854 	if (efer & EFER_FFXSR) {
855 		struct kvm_cpuid_entry2 *feat;
856 
857 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
858 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
859 			return 1;
860 	}
861 
862 	if (efer & EFER_SVME) {
863 		struct kvm_cpuid_entry2 *feat;
864 
865 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
866 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
867 			return 1;
868 	}
869 
870 	efer &= ~EFER_LMA;
871 	efer |= vcpu->arch.efer & EFER_LMA;
872 
873 	kvm_x86_ops->set_efer(vcpu, efer);
874 
875 	vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
876 
877 	/* Update reserved bits */
878 	if ((efer ^ old_efer) & EFER_NX)
879 		kvm_mmu_reset_context(vcpu);
880 
881 	return 0;
882 }
883 
884 void kvm_enable_efer_bits(u64 mask)
885 {
886        efer_reserved_bits &= ~mask;
887 }
888 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
889 
890 
891 /*
892  * Writes msr value into into the appropriate "register".
893  * Returns 0 on success, non-0 otherwise.
894  * Assumes vcpu_load() was already called.
895  */
896 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
897 {
898 	return kvm_x86_ops->set_msr(vcpu, msr);
899 }
900 
901 /*
902  * Adapt set_msr() to msr_io()'s calling convention
903  */
904 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
905 {
906 	struct msr_data msr;
907 
908 	msr.data = *data;
909 	msr.index = index;
910 	msr.host_initiated = true;
911 	return kvm_set_msr(vcpu, &msr);
912 }
913 
914 #ifdef CONFIG_X86_64
915 struct pvclock_gtod_data {
916 	seqcount_t	seq;
917 
918 	struct { /* extract of a clocksource struct */
919 		int vclock_mode;
920 		cycle_t	cycle_last;
921 		cycle_t	mask;
922 		u32	mult;
923 		u32	shift;
924 	} clock;
925 
926 	/* open coded 'struct timespec' */
927 	u64		monotonic_time_snsec;
928 	time_t		monotonic_time_sec;
929 };
930 
931 static struct pvclock_gtod_data pvclock_gtod_data;
932 
933 static void update_pvclock_gtod(struct timekeeper *tk)
934 {
935 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
936 
937 	write_seqcount_begin(&vdata->seq);
938 
939 	/* copy pvclock gtod data */
940 	vdata->clock.vclock_mode	= tk->clock->archdata.vclock_mode;
941 	vdata->clock.cycle_last		= tk->clock->cycle_last;
942 	vdata->clock.mask		= tk->clock->mask;
943 	vdata->clock.mult		= tk->mult;
944 	vdata->clock.shift		= tk->shift;
945 
946 	vdata->monotonic_time_sec	= tk->xtime_sec
947 					+ tk->wall_to_monotonic.tv_sec;
948 	vdata->monotonic_time_snsec	= tk->xtime_nsec
949 					+ (tk->wall_to_monotonic.tv_nsec
950 						<< tk->shift);
951 	while (vdata->monotonic_time_snsec >=
952 					(((u64)NSEC_PER_SEC) << tk->shift)) {
953 		vdata->monotonic_time_snsec -=
954 					((u64)NSEC_PER_SEC) << tk->shift;
955 		vdata->monotonic_time_sec++;
956 	}
957 
958 	write_seqcount_end(&vdata->seq);
959 }
960 #endif
961 
962 
963 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
964 {
965 	int version;
966 	int r;
967 	struct pvclock_wall_clock wc;
968 	struct timespec boot;
969 
970 	if (!wall_clock)
971 		return;
972 
973 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
974 	if (r)
975 		return;
976 
977 	if (version & 1)
978 		++version;  /* first time write, random junk */
979 
980 	++version;
981 
982 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
983 
984 	/*
985 	 * The guest calculates current wall clock time by adding
986 	 * system time (updated by kvm_guest_time_update below) to the
987 	 * wall clock specified here.  guest system time equals host
988 	 * system time for us, thus we must fill in host boot time here.
989 	 */
990 	getboottime(&boot);
991 
992 	if (kvm->arch.kvmclock_offset) {
993 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
994 		boot = timespec_sub(boot, ts);
995 	}
996 	wc.sec = boot.tv_sec;
997 	wc.nsec = boot.tv_nsec;
998 	wc.version = version;
999 
1000 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1001 
1002 	version++;
1003 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1004 }
1005 
1006 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1007 {
1008 	uint32_t quotient, remainder;
1009 
1010 	/* Don't try to replace with do_div(), this one calculates
1011 	 * "(dividend << 32) / divisor" */
1012 	__asm__ ( "divl %4"
1013 		  : "=a" (quotient), "=d" (remainder)
1014 		  : "0" (0), "1" (dividend), "r" (divisor) );
1015 	return quotient;
1016 }
1017 
1018 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1019 			       s8 *pshift, u32 *pmultiplier)
1020 {
1021 	uint64_t scaled64;
1022 	int32_t  shift = 0;
1023 	uint64_t tps64;
1024 	uint32_t tps32;
1025 
1026 	tps64 = base_khz * 1000LL;
1027 	scaled64 = scaled_khz * 1000LL;
1028 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1029 		tps64 >>= 1;
1030 		shift--;
1031 	}
1032 
1033 	tps32 = (uint32_t)tps64;
1034 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1035 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1036 			scaled64 >>= 1;
1037 		else
1038 			tps32 <<= 1;
1039 		shift++;
1040 	}
1041 
1042 	*pshift = shift;
1043 	*pmultiplier = div_frac(scaled64, tps32);
1044 
1045 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1046 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1047 }
1048 
1049 static inline u64 get_kernel_ns(void)
1050 {
1051 	struct timespec ts;
1052 
1053 	WARN_ON(preemptible());
1054 	ktime_get_ts(&ts);
1055 	monotonic_to_bootbased(&ts);
1056 	return timespec_to_ns(&ts);
1057 }
1058 
1059 #ifdef CONFIG_X86_64
1060 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1061 #endif
1062 
1063 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1064 unsigned long max_tsc_khz;
1065 
1066 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1067 {
1068 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1069 				   vcpu->arch.virtual_tsc_shift);
1070 }
1071 
1072 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1073 {
1074 	u64 v = (u64)khz * (1000000 + ppm);
1075 	do_div(v, 1000000);
1076 	return v;
1077 }
1078 
1079 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1080 {
1081 	u32 thresh_lo, thresh_hi;
1082 	int use_scaling = 0;
1083 
1084 	/* Compute a scale to convert nanoseconds in TSC cycles */
1085 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1086 			   &vcpu->arch.virtual_tsc_shift,
1087 			   &vcpu->arch.virtual_tsc_mult);
1088 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1089 
1090 	/*
1091 	 * Compute the variation in TSC rate which is acceptable
1092 	 * within the range of tolerance and decide if the
1093 	 * rate being applied is within that bounds of the hardware
1094 	 * rate.  If so, no scaling or compensation need be done.
1095 	 */
1096 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1097 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1098 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1099 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1100 		use_scaling = 1;
1101 	}
1102 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1103 }
1104 
1105 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1106 {
1107 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1108 				      vcpu->arch.virtual_tsc_mult,
1109 				      vcpu->arch.virtual_tsc_shift);
1110 	tsc += vcpu->arch.this_tsc_write;
1111 	return tsc;
1112 }
1113 
1114 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1115 {
1116 #ifdef CONFIG_X86_64
1117 	bool vcpus_matched;
1118 	bool do_request = false;
1119 	struct kvm_arch *ka = &vcpu->kvm->arch;
1120 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1121 
1122 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1123 			 atomic_read(&vcpu->kvm->online_vcpus));
1124 
1125 	if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1126 		if (!ka->use_master_clock)
1127 			do_request = 1;
1128 
1129 	if (!vcpus_matched && ka->use_master_clock)
1130 			do_request = 1;
1131 
1132 	if (do_request)
1133 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1134 
1135 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1136 			    atomic_read(&vcpu->kvm->online_vcpus),
1137 		            ka->use_master_clock, gtod->clock.vclock_mode);
1138 #endif
1139 }
1140 
1141 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1142 {
1143 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1144 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1145 }
1146 
1147 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1148 {
1149 	struct kvm *kvm = vcpu->kvm;
1150 	u64 offset, ns, elapsed;
1151 	unsigned long flags;
1152 	s64 usdiff;
1153 	bool matched;
1154 	u64 data = msr->data;
1155 
1156 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1157 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1158 	ns = get_kernel_ns();
1159 	elapsed = ns - kvm->arch.last_tsc_nsec;
1160 
1161 	/* n.b - signed multiplication and division required */
1162 	usdiff = data - kvm->arch.last_tsc_write;
1163 #ifdef CONFIG_X86_64
1164 	usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1165 #else
1166 	/* do_div() only does unsigned */
1167 	asm("idivl %2; xor %%edx, %%edx"
1168 	    : "=A"(usdiff)
1169 	    : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1170 #endif
1171 	do_div(elapsed, 1000);
1172 	usdiff -= elapsed;
1173 	if (usdiff < 0)
1174 		usdiff = -usdiff;
1175 
1176 	/*
1177 	 * Special case: TSC write with a small delta (1 second) of virtual
1178 	 * cycle time against real time is interpreted as an attempt to
1179 	 * synchronize the CPU.
1180          *
1181 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1182 	 * TSC, we add elapsed time in this computation.  We could let the
1183 	 * compensation code attempt to catch up if we fall behind, but
1184 	 * it's better to try to match offsets from the beginning.
1185          */
1186 	if (usdiff < USEC_PER_SEC &&
1187 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1188 		if (!check_tsc_unstable()) {
1189 			offset = kvm->arch.cur_tsc_offset;
1190 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1191 		} else {
1192 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1193 			data += delta;
1194 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1195 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1196 		}
1197 		matched = true;
1198 	} else {
1199 		/*
1200 		 * We split periods of matched TSC writes into generations.
1201 		 * For each generation, we track the original measured
1202 		 * nanosecond time, offset, and write, so if TSCs are in
1203 		 * sync, we can match exact offset, and if not, we can match
1204 		 * exact software computation in compute_guest_tsc()
1205 		 *
1206 		 * These values are tracked in kvm->arch.cur_xxx variables.
1207 		 */
1208 		kvm->arch.cur_tsc_generation++;
1209 		kvm->arch.cur_tsc_nsec = ns;
1210 		kvm->arch.cur_tsc_write = data;
1211 		kvm->arch.cur_tsc_offset = offset;
1212 		matched = false;
1213 		pr_debug("kvm: new tsc generation %u, clock %llu\n",
1214 			 kvm->arch.cur_tsc_generation, data);
1215 	}
1216 
1217 	/*
1218 	 * We also track th most recent recorded KHZ, write and time to
1219 	 * allow the matching interval to be extended at each write.
1220 	 */
1221 	kvm->arch.last_tsc_nsec = ns;
1222 	kvm->arch.last_tsc_write = data;
1223 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1224 
1225 	/* Reset of TSC must disable overshoot protection below */
1226 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1227 	vcpu->arch.last_guest_tsc = data;
1228 
1229 	/* Keep track of which generation this VCPU has synchronized to */
1230 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1231 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1232 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1233 
1234 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1235 		update_ia32_tsc_adjust_msr(vcpu, offset);
1236 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1237 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1238 
1239 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1240 	if (matched)
1241 		kvm->arch.nr_vcpus_matched_tsc++;
1242 	else
1243 		kvm->arch.nr_vcpus_matched_tsc = 0;
1244 
1245 	kvm_track_tsc_matching(vcpu);
1246 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1247 }
1248 
1249 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1250 
1251 #ifdef CONFIG_X86_64
1252 
1253 static cycle_t read_tsc(void)
1254 {
1255 	cycle_t ret;
1256 	u64 last;
1257 
1258 	/*
1259 	 * Empirically, a fence (of type that depends on the CPU)
1260 	 * before rdtsc is enough to ensure that rdtsc is ordered
1261 	 * with respect to loads.  The various CPU manuals are unclear
1262 	 * as to whether rdtsc can be reordered with later loads,
1263 	 * but no one has ever seen it happen.
1264 	 */
1265 	rdtsc_barrier();
1266 	ret = (cycle_t)vget_cycles();
1267 
1268 	last = pvclock_gtod_data.clock.cycle_last;
1269 
1270 	if (likely(ret >= last))
1271 		return ret;
1272 
1273 	/*
1274 	 * GCC likes to generate cmov here, but this branch is extremely
1275 	 * predictable (it's just a funciton of time and the likely is
1276 	 * very likely) and there's a data dependence, so force GCC
1277 	 * to generate a branch instead.  I don't barrier() because
1278 	 * we don't actually need a barrier, and if this function
1279 	 * ever gets inlined it will generate worse code.
1280 	 */
1281 	asm volatile ("");
1282 	return last;
1283 }
1284 
1285 static inline u64 vgettsc(cycle_t *cycle_now)
1286 {
1287 	long v;
1288 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1289 
1290 	*cycle_now = read_tsc();
1291 
1292 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1293 	return v * gtod->clock.mult;
1294 }
1295 
1296 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1297 {
1298 	unsigned long seq;
1299 	u64 ns;
1300 	int mode;
1301 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1302 
1303 	ts->tv_nsec = 0;
1304 	do {
1305 		seq = read_seqcount_begin(&gtod->seq);
1306 		mode = gtod->clock.vclock_mode;
1307 		ts->tv_sec = gtod->monotonic_time_sec;
1308 		ns = gtod->monotonic_time_snsec;
1309 		ns += vgettsc(cycle_now);
1310 		ns >>= gtod->clock.shift;
1311 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1312 	timespec_add_ns(ts, ns);
1313 
1314 	return mode;
1315 }
1316 
1317 /* returns true if host is using tsc clocksource */
1318 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1319 {
1320 	struct timespec ts;
1321 
1322 	/* checked again under seqlock below */
1323 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1324 		return false;
1325 
1326 	if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1327 		return false;
1328 
1329 	monotonic_to_bootbased(&ts);
1330 	*kernel_ns = timespec_to_ns(&ts);
1331 
1332 	return true;
1333 }
1334 #endif
1335 
1336 /*
1337  *
1338  * Assuming a stable TSC across physical CPUS, and a stable TSC
1339  * across virtual CPUs, the following condition is possible.
1340  * Each numbered line represents an event visible to both
1341  * CPUs at the next numbered event.
1342  *
1343  * "timespecX" represents host monotonic time. "tscX" represents
1344  * RDTSC value.
1345  *
1346  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1347  *
1348  * 1.  read timespec0,tsc0
1349  * 2.					| timespec1 = timespec0 + N
1350  * 					| tsc1 = tsc0 + M
1351  * 3. transition to guest		| transition to guest
1352  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1353  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1354  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1355  *
1356  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1357  *
1358  * 	- ret0 < ret1
1359  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1360  *		...
1361  *	- 0 < N - M => M < N
1362  *
1363  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1364  * always the case (the difference between two distinct xtime instances
1365  * might be smaller then the difference between corresponding TSC reads,
1366  * when updating guest vcpus pvclock areas).
1367  *
1368  * To avoid that problem, do not allow visibility of distinct
1369  * system_timestamp/tsc_timestamp values simultaneously: use a master
1370  * copy of host monotonic time values. Update that master copy
1371  * in lockstep.
1372  *
1373  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1374  *
1375  */
1376 
1377 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1378 {
1379 #ifdef CONFIG_X86_64
1380 	struct kvm_arch *ka = &kvm->arch;
1381 	int vclock_mode;
1382 	bool host_tsc_clocksource, vcpus_matched;
1383 
1384 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1385 			atomic_read(&kvm->online_vcpus));
1386 
1387 	/*
1388 	 * If the host uses TSC clock, then passthrough TSC as stable
1389 	 * to the guest.
1390 	 */
1391 	host_tsc_clocksource = kvm_get_time_and_clockread(
1392 					&ka->master_kernel_ns,
1393 					&ka->master_cycle_now);
1394 
1395 	ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1396 
1397 	if (ka->use_master_clock)
1398 		atomic_set(&kvm_guest_has_master_clock, 1);
1399 
1400 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1401 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1402 					vcpus_matched);
1403 #endif
1404 }
1405 
1406 static int kvm_guest_time_update(struct kvm_vcpu *v)
1407 {
1408 	unsigned long flags, this_tsc_khz;
1409 	struct kvm_vcpu_arch *vcpu = &v->arch;
1410 	struct kvm_arch *ka = &v->kvm->arch;
1411 	void *shared_kaddr;
1412 	s64 kernel_ns, max_kernel_ns;
1413 	u64 tsc_timestamp, host_tsc;
1414 	struct pvclock_vcpu_time_info *guest_hv_clock;
1415 	u8 pvclock_flags;
1416 	bool use_master_clock;
1417 
1418 	kernel_ns = 0;
1419 	host_tsc = 0;
1420 
1421 	/* Keep irq disabled to prevent changes to the clock */
1422 	local_irq_save(flags);
1423 	this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1424 	if (unlikely(this_tsc_khz == 0)) {
1425 		local_irq_restore(flags);
1426 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1427 		return 1;
1428 	}
1429 
1430 	/*
1431 	 * If the host uses TSC clock, then passthrough TSC as stable
1432 	 * to the guest.
1433 	 */
1434 	spin_lock(&ka->pvclock_gtod_sync_lock);
1435 	use_master_clock = ka->use_master_clock;
1436 	if (use_master_clock) {
1437 		host_tsc = ka->master_cycle_now;
1438 		kernel_ns = ka->master_kernel_ns;
1439 	}
1440 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1441 	if (!use_master_clock) {
1442 		host_tsc = native_read_tsc();
1443 		kernel_ns = get_kernel_ns();
1444 	}
1445 
1446 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1447 
1448 	/*
1449 	 * We may have to catch up the TSC to match elapsed wall clock
1450 	 * time for two reasons, even if kvmclock is used.
1451 	 *   1) CPU could have been running below the maximum TSC rate
1452 	 *   2) Broken TSC compensation resets the base at each VCPU
1453 	 *      entry to avoid unknown leaps of TSC even when running
1454 	 *      again on the same CPU.  This may cause apparent elapsed
1455 	 *      time to disappear, and the guest to stand still or run
1456 	 *	very slowly.
1457 	 */
1458 	if (vcpu->tsc_catchup) {
1459 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1460 		if (tsc > tsc_timestamp) {
1461 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1462 			tsc_timestamp = tsc;
1463 		}
1464 	}
1465 
1466 	local_irq_restore(flags);
1467 
1468 	if (!vcpu->time_page)
1469 		return 0;
1470 
1471 	/*
1472 	 * Time as measured by the TSC may go backwards when resetting the base
1473 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1474 	 * higher than the resolution of the other clock scales.  Thus, many
1475 	 * possible measurments of the TSC correspond to one measurement of any
1476 	 * other clock, and so a spread of values is possible.  This is not a
1477 	 * problem for the computation of the nanosecond clock; with TSC rates
1478 	 * around 1GHZ, there can only be a few cycles which correspond to one
1479 	 * nanosecond value, and any path through this code will inevitably
1480 	 * take longer than that.  However, with the kernel_ns value itself,
1481 	 * the precision may be much lower, down to HZ granularity.  If the
1482 	 * first sampling of TSC against kernel_ns ends in the low part of the
1483 	 * range, and the second in the high end of the range, we can get:
1484 	 *
1485 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1486 	 *
1487 	 * As the sampling errors potentially range in the thousands of cycles,
1488 	 * it is possible such a time value has already been observed by the
1489 	 * guest.  To protect against this, we must compute the system time as
1490 	 * observed by the guest and ensure the new system time is greater.
1491 	 */
1492 	max_kernel_ns = 0;
1493 	if (vcpu->hv_clock.tsc_timestamp) {
1494 		max_kernel_ns = vcpu->last_guest_tsc -
1495 				vcpu->hv_clock.tsc_timestamp;
1496 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1497 				    vcpu->hv_clock.tsc_to_system_mul,
1498 				    vcpu->hv_clock.tsc_shift);
1499 		max_kernel_ns += vcpu->last_kernel_ns;
1500 	}
1501 
1502 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1503 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1504 				   &vcpu->hv_clock.tsc_shift,
1505 				   &vcpu->hv_clock.tsc_to_system_mul);
1506 		vcpu->hw_tsc_khz = this_tsc_khz;
1507 	}
1508 
1509 	/* with a master <monotonic time, tsc value> tuple,
1510 	 * pvclock clock reads always increase at the (scaled) rate
1511 	 * of guest TSC - no need to deal with sampling errors.
1512 	 */
1513 	if (!use_master_clock) {
1514 		if (max_kernel_ns > kernel_ns)
1515 			kernel_ns = max_kernel_ns;
1516 	}
1517 	/* With all the info we got, fill in the values */
1518 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1519 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1520 	vcpu->last_kernel_ns = kernel_ns;
1521 	vcpu->last_guest_tsc = tsc_timestamp;
1522 
1523 	/*
1524 	 * The interface expects us to write an even number signaling that the
1525 	 * update is finished. Since the guest won't see the intermediate
1526 	 * state, we just increase by 2 at the end.
1527 	 */
1528 	vcpu->hv_clock.version += 2;
1529 
1530 	shared_kaddr = kmap_atomic(vcpu->time_page);
1531 
1532 	guest_hv_clock = shared_kaddr + vcpu->time_offset;
1533 
1534 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1535 	pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
1536 
1537 	if (vcpu->pvclock_set_guest_stopped_request) {
1538 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1539 		vcpu->pvclock_set_guest_stopped_request = false;
1540 	}
1541 
1542 	/* If the host uses TSC clocksource, then it is stable */
1543 	if (use_master_clock)
1544 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1545 
1546 	vcpu->hv_clock.flags = pvclock_flags;
1547 
1548 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1549 	       sizeof(vcpu->hv_clock));
1550 
1551 	kunmap_atomic(shared_kaddr);
1552 
1553 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1554 	return 0;
1555 }
1556 
1557 static bool msr_mtrr_valid(unsigned msr)
1558 {
1559 	switch (msr) {
1560 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1561 	case MSR_MTRRfix64K_00000:
1562 	case MSR_MTRRfix16K_80000:
1563 	case MSR_MTRRfix16K_A0000:
1564 	case MSR_MTRRfix4K_C0000:
1565 	case MSR_MTRRfix4K_C8000:
1566 	case MSR_MTRRfix4K_D0000:
1567 	case MSR_MTRRfix4K_D8000:
1568 	case MSR_MTRRfix4K_E0000:
1569 	case MSR_MTRRfix4K_E8000:
1570 	case MSR_MTRRfix4K_F0000:
1571 	case MSR_MTRRfix4K_F8000:
1572 	case MSR_MTRRdefType:
1573 	case MSR_IA32_CR_PAT:
1574 		return true;
1575 	case 0x2f8:
1576 		return true;
1577 	}
1578 	return false;
1579 }
1580 
1581 static bool valid_pat_type(unsigned t)
1582 {
1583 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1584 }
1585 
1586 static bool valid_mtrr_type(unsigned t)
1587 {
1588 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1589 }
1590 
1591 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1592 {
1593 	int i;
1594 
1595 	if (!msr_mtrr_valid(msr))
1596 		return false;
1597 
1598 	if (msr == MSR_IA32_CR_PAT) {
1599 		for (i = 0; i < 8; i++)
1600 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1601 				return false;
1602 		return true;
1603 	} else if (msr == MSR_MTRRdefType) {
1604 		if (data & ~0xcff)
1605 			return false;
1606 		return valid_mtrr_type(data & 0xff);
1607 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1608 		for (i = 0; i < 8 ; i++)
1609 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1610 				return false;
1611 		return true;
1612 	}
1613 
1614 	/* variable MTRRs */
1615 	return valid_mtrr_type(data & 0xff);
1616 }
1617 
1618 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1619 {
1620 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1621 
1622 	if (!mtrr_valid(vcpu, msr, data))
1623 		return 1;
1624 
1625 	if (msr == MSR_MTRRdefType) {
1626 		vcpu->arch.mtrr_state.def_type = data;
1627 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1628 	} else if (msr == MSR_MTRRfix64K_00000)
1629 		p[0] = data;
1630 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1631 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1632 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1633 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1634 	else if (msr == MSR_IA32_CR_PAT)
1635 		vcpu->arch.pat = data;
1636 	else {	/* Variable MTRRs */
1637 		int idx, is_mtrr_mask;
1638 		u64 *pt;
1639 
1640 		idx = (msr - 0x200) / 2;
1641 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1642 		if (!is_mtrr_mask)
1643 			pt =
1644 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1645 		else
1646 			pt =
1647 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1648 		*pt = data;
1649 	}
1650 
1651 	kvm_mmu_reset_context(vcpu);
1652 	return 0;
1653 }
1654 
1655 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1656 {
1657 	u64 mcg_cap = vcpu->arch.mcg_cap;
1658 	unsigned bank_num = mcg_cap & 0xff;
1659 
1660 	switch (msr) {
1661 	case MSR_IA32_MCG_STATUS:
1662 		vcpu->arch.mcg_status = data;
1663 		break;
1664 	case MSR_IA32_MCG_CTL:
1665 		if (!(mcg_cap & MCG_CTL_P))
1666 			return 1;
1667 		if (data != 0 && data != ~(u64)0)
1668 			return -1;
1669 		vcpu->arch.mcg_ctl = data;
1670 		break;
1671 	default:
1672 		if (msr >= MSR_IA32_MC0_CTL &&
1673 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1674 			u32 offset = msr - MSR_IA32_MC0_CTL;
1675 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1676 			 * some Linux kernels though clear bit 10 in bank 4 to
1677 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1678 			 * this to avoid an uncatched #GP in the guest
1679 			 */
1680 			if ((offset & 0x3) == 0 &&
1681 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1682 				return -1;
1683 			vcpu->arch.mce_banks[offset] = data;
1684 			break;
1685 		}
1686 		return 1;
1687 	}
1688 	return 0;
1689 }
1690 
1691 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1692 {
1693 	struct kvm *kvm = vcpu->kvm;
1694 	int lm = is_long_mode(vcpu);
1695 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1696 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1697 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1698 		: kvm->arch.xen_hvm_config.blob_size_32;
1699 	u32 page_num = data & ~PAGE_MASK;
1700 	u64 page_addr = data & PAGE_MASK;
1701 	u8 *page;
1702 	int r;
1703 
1704 	r = -E2BIG;
1705 	if (page_num >= blob_size)
1706 		goto out;
1707 	r = -ENOMEM;
1708 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1709 	if (IS_ERR(page)) {
1710 		r = PTR_ERR(page);
1711 		goto out;
1712 	}
1713 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1714 		goto out_free;
1715 	r = 0;
1716 out_free:
1717 	kfree(page);
1718 out:
1719 	return r;
1720 }
1721 
1722 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1723 {
1724 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1725 }
1726 
1727 static bool kvm_hv_msr_partition_wide(u32 msr)
1728 {
1729 	bool r = false;
1730 	switch (msr) {
1731 	case HV_X64_MSR_GUEST_OS_ID:
1732 	case HV_X64_MSR_HYPERCALL:
1733 		r = true;
1734 		break;
1735 	}
1736 
1737 	return r;
1738 }
1739 
1740 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1741 {
1742 	struct kvm *kvm = vcpu->kvm;
1743 
1744 	switch (msr) {
1745 	case HV_X64_MSR_GUEST_OS_ID:
1746 		kvm->arch.hv_guest_os_id = data;
1747 		/* setting guest os id to zero disables hypercall page */
1748 		if (!kvm->arch.hv_guest_os_id)
1749 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1750 		break;
1751 	case HV_X64_MSR_HYPERCALL: {
1752 		u64 gfn;
1753 		unsigned long addr;
1754 		u8 instructions[4];
1755 
1756 		/* if guest os id is not set hypercall should remain disabled */
1757 		if (!kvm->arch.hv_guest_os_id)
1758 			break;
1759 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1760 			kvm->arch.hv_hypercall = data;
1761 			break;
1762 		}
1763 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1764 		addr = gfn_to_hva(kvm, gfn);
1765 		if (kvm_is_error_hva(addr))
1766 			return 1;
1767 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1768 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1769 		if (__copy_to_user((void __user *)addr, instructions, 4))
1770 			return 1;
1771 		kvm->arch.hv_hypercall = data;
1772 		break;
1773 	}
1774 	default:
1775 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1776 			    "data 0x%llx\n", msr, data);
1777 		return 1;
1778 	}
1779 	return 0;
1780 }
1781 
1782 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1783 {
1784 	switch (msr) {
1785 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1786 		unsigned long addr;
1787 
1788 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1789 			vcpu->arch.hv_vapic = data;
1790 			break;
1791 		}
1792 		addr = gfn_to_hva(vcpu->kvm, data >>
1793 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1794 		if (kvm_is_error_hva(addr))
1795 			return 1;
1796 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1797 			return 1;
1798 		vcpu->arch.hv_vapic = data;
1799 		break;
1800 	}
1801 	case HV_X64_MSR_EOI:
1802 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1803 	case HV_X64_MSR_ICR:
1804 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1805 	case HV_X64_MSR_TPR:
1806 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1807 	default:
1808 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1809 			    "data 0x%llx\n", msr, data);
1810 		return 1;
1811 	}
1812 
1813 	return 0;
1814 }
1815 
1816 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1817 {
1818 	gpa_t gpa = data & ~0x3f;
1819 
1820 	/* Bits 2:5 are reserved, Should be zero */
1821 	if (data & 0x3c)
1822 		return 1;
1823 
1824 	vcpu->arch.apf.msr_val = data;
1825 
1826 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1827 		kvm_clear_async_pf_completion_queue(vcpu);
1828 		kvm_async_pf_hash_reset(vcpu);
1829 		return 0;
1830 	}
1831 
1832 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1833 		return 1;
1834 
1835 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1836 	kvm_async_pf_wakeup_all(vcpu);
1837 	return 0;
1838 }
1839 
1840 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1841 {
1842 	if (vcpu->arch.time_page) {
1843 		kvm_release_page_dirty(vcpu->arch.time_page);
1844 		vcpu->arch.time_page = NULL;
1845 	}
1846 }
1847 
1848 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1849 {
1850 	u64 delta;
1851 
1852 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1853 		return;
1854 
1855 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1856 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1857 	vcpu->arch.st.accum_steal = delta;
1858 }
1859 
1860 static void record_steal_time(struct kvm_vcpu *vcpu)
1861 {
1862 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1863 		return;
1864 
1865 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1866 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1867 		return;
1868 
1869 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1870 	vcpu->arch.st.steal.version += 2;
1871 	vcpu->arch.st.accum_steal = 0;
1872 
1873 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1874 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1875 }
1876 
1877 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1878 {
1879 	bool pr = false;
1880 	u32 msr = msr_info->index;
1881 	u64 data = msr_info->data;
1882 
1883 	switch (msr) {
1884 	case MSR_EFER:
1885 		return set_efer(vcpu, data);
1886 	case MSR_K7_HWCR:
1887 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1888 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1889 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
1890 		if (data != 0) {
1891 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1892 				    data);
1893 			return 1;
1894 		}
1895 		break;
1896 	case MSR_FAM10H_MMIO_CONF_BASE:
1897 		if (data != 0) {
1898 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1899 				    "0x%llx\n", data);
1900 			return 1;
1901 		}
1902 		break;
1903 	case MSR_AMD64_NB_CFG:
1904 		break;
1905 	case MSR_IA32_DEBUGCTLMSR:
1906 		if (!data) {
1907 			/* We support the non-activated case already */
1908 			break;
1909 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1910 			/* Values other than LBR and BTF are vendor-specific,
1911 			   thus reserved and should throw a #GP */
1912 			return 1;
1913 		}
1914 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1915 			    __func__, data);
1916 		break;
1917 	case MSR_IA32_UCODE_REV:
1918 	case MSR_IA32_UCODE_WRITE:
1919 	case MSR_VM_HSAVE_PA:
1920 	case MSR_AMD64_PATCH_LOADER:
1921 		break;
1922 	case 0x200 ... 0x2ff:
1923 		return set_msr_mtrr(vcpu, msr, data);
1924 	case MSR_IA32_APICBASE:
1925 		kvm_set_apic_base(vcpu, data);
1926 		break;
1927 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1928 		return kvm_x2apic_msr_write(vcpu, msr, data);
1929 	case MSR_IA32_TSCDEADLINE:
1930 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
1931 		break;
1932 	case MSR_IA32_TSC_ADJUST:
1933 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
1934 			if (!msr_info->host_initiated) {
1935 				u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1936 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1937 			}
1938 			vcpu->arch.ia32_tsc_adjust_msr = data;
1939 		}
1940 		break;
1941 	case MSR_IA32_MISC_ENABLE:
1942 		vcpu->arch.ia32_misc_enable_msr = data;
1943 		break;
1944 	case MSR_KVM_WALL_CLOCK_NEW:
1945 	case MSR_KVM_WALL_CLOCK:
1946 		vcpu->kvm->arch.wall_clock = data;
1947 		kvm_write_wall_clock(vcpu->kvm, data);
1948 		break;
1949 	case MSR_KVM_SYSTEM_TIME_NEW:
1950 	case MSR_KVM_SYSTEM_TIME: {
1951 		kvmclock_reset(vcpu);
1952 
1953 		vcpu->arch.time = data;
1954 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1955 
1956 		/* we verify if the enable bit is set... */
1957 		if (!(data & 1))
1958 			break;
1959 
1960 		/* ...but clean it before doing the actual write */
1961 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1962 
1963 		vcpu->arch.time_page =
1964 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1965 
1966 		if (is_error_page(vcpu->arch.time_page))
1967 			vcpu->arch.time_page = NULL;
1968 
1969 		break;
1970 	}
1971 	case MSR_KVM_ASYNC_PF_EN:
1972 		if (kvm_pv_enable_async_pf(vcpu, data))
1973 			return 1;
1974 		break;
1975 	case MSR_KVM_STEAL_TIME:
1976 
1977 		if (unlikely(!sched_info_on()))
1978 			return 1;
1979 
1980 		if (data & KVM_STEAL_RESERVED_MASK)
1981 			return 1;
1982 
1983 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1984 							data & KVM_STEAL_VALID_BITS))
1985 			return 1;
1986 
1987 		vcpu->arch.st.msr_val = data;
1988 
1989 		if (!(data & KVM_MSR_ENABLED))
1990 			break;
1991 
1992 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
1993 
1994 		preempt_disable();
1995 		accumulate_steal_time(vcpu);
1996 		preempt_enable();
1997 
1998 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1999 
2000 		break;
2001 	case MSR_KVM_PV_EOI_EN:
2002 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2003 			return 1;
2004 		break;
2005 
2006 	case MSR_IA32_MCG_CTL:
2007 	case MSR_IA32_MCG_STATUS:
2008 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2009 		return set_msr_mce(vcpu, msr, data);
2010 
2011 	/* Performance counters are not protected by a CPUID bit,
2012 	 * so we should check all of them in the generic path for the sake of
2013 	 * cross vendor migration.
2014 	 * Writing a zero into the event select MSRs disables them,
2015 	 * which we perfectly emulate ;-). Any other value should be at least
2016 	 * reported, some guests depend on them.
2017 	 */
2018 	case MSR_K7_EVNTSEL0:
2019 	case MSR_K7_EVNTSEL1:
2020 	case MSR_K7_EVNTSEL2:
2021 	case MSR_K7_EVNTSEL3:
2022 		if (data != 0)
2023 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2024 				    "0x%x data 0x%llx\n", msr, data);
2025 		break;
2026 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2027 	 * so we ignore writes to make it happy.
2028 	 */
2029 	case MSR_K7_PERFCTR0:
2030 	case MSR_K7_PERFCTR1:
2031 	case MSR_K7_PERFCTR2:
2032 	case MSR_K7_PERFCTR3:
2033 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2034 			    "0x%x data 0x%llx\n", msr, data);
2035 		break;
2036 	case MSR_P6_PERFCTR0:
2037 	case MSR_P6_PERFCTR1:
2038 		pr = true;
2039 	case MSR_P6_EVNTSEL0:
2040 	case MSR_P6_EVNTSEL1:
2041 		if (kvm_pmu_msr(vcpu, msr))
2042 			return kvm_pmu_set_msr(vcpu, msr, data);
2043 
2044 		if (pr || data != 0)
2045 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2046 				    "0x%x data 0x%llx\n", msr, data);
2047 		break;
2048 	case MSR_K7_CLK_CTL:
2049 		/*
2050 		 * Ignore all writes to this no longer documented MSR.
2051 		 * Writes are only relevant for old K7 processors,
2052 		 * all pre-dating SVM, but a recommended workaround from
2053 		 * AMD for these chips. It is possible to specify the
2054 		 * affected processor models on the command line, hence
2055 		 * the need to ignore the workaround.
2056 		 */
2057 		break;
2058 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2059 		if (kvm_hv_msr_partition_wide(msr)) {
2060 			int r;
2061 			mutex_lock(&vcpu->kvm->lock);
2062 			r = set_msr_hyperv_pw(vcpu, msr, data);
2063 			mutex_unlock(&vcpu->kvm->lock);
2064 			return r;
2065 		} else
2066 			return set_msr_hyperv(vcpu, msr, data);
2067 		break;
2068 	case MSR_IA32_BBL_CR_CTL3:
2069 		/* Drop writes to this legacy MSR -- see rdmsr
2070 		 * counterpart for further detail.
2071 		 */
2072 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2073 		break;
2074 	case MSR_AMD64_OSVW_ID_LENGTH:
2075 		if (!guest_cpuid_has_osvw(vcpu))
2076 			return 1;
2077 		vcpu->arch.osvw.length = data;
2078 		break;
2079 	case MSR_AMD64_OSVW_STATUS:
2080 		if (!guest_cpuid_has_osvw(vcpu))
2081 			return 1;
2082 		vcpu->arch.osvw.status = data;
2083 		break;
2084 	default:
2085 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2086 			return xen_hvm_config(vcpu, data);
2087 		if (kvm_pmu_msr(vcpu, msr))
2088 			return kvm_pmu_set_msr(vcpu, msr, data);
2089 		if (!ignore_msrs) {
2090 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2091 				    msr, data);
2092 			return 1;
2093 		} else {
2094 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2095 				    msr, data);
2096 			break;
2097 		}
2098 	}
2099 	return 0;
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2102 
2103 
2104 /*
2105  * Reads an msr value (of 'msr_index') into 'pdata'.
2106  * Returns 0 on success, non-0 otherwise.
2107  * Assumes vcpu_load() was already called.
2108  */
2109 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2110 {
2111 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2112 }
2113 
2114 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2115 {
2116 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2117 
2118 	if (!msr_mtrr_valid(msr))
2119 		return 1;
2120 
2121 	if (msr == MSR_MTRRdefType)
2122 		*pdata = vcpu->arch.mtrr_state.def_type +
2123 			 (vcpu->arch.mtrr_state.enabled << 10);
2124 	else if (msr == MSR_MTRRfix64K_00000)
2125 		*pdata = p[0];
2126 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2127 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2128 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2129 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2130 	else if (msr == MSR_IA32_CR_PAT)
2131 		*pdata = vcpu->arch.pat;
2132 	else {	/* Variable MTRRs */
2133 		int idx, is_mtrr_mask;
2134 		u64 *pt;
2135 
2136 		idx = (msr - 0x200) / 2;
2137 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2138 		if (!is_mtrr_mask)
2139 			pt =
2140 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2141 		else
2142 			pt =
2143 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2144 		*pdata = *pt;
2145 	}
2146 
2147 	return 0;
2148 }
2149 
2150 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2151 {
2152 	u64 data;
2153 	u64 mcg_cap = vcpu->arch.mcg_cap;
2154 	unsigned bank_num = mcg_cap & 0xff;
2155 
2156 	switch (msr) {
2157 	case MSR_IA32_P5_MC_ADDR:
2158 	case MSR_IA32_P5_MC_TYPE:
2159 		data = 0;
2160 		break;
2161 	case MSR_IA32_MCG_CAP:
2162 		data = vcpu->arch.mcg_cap;
2163 		break;
2164 	case MSR_IA32_MCG_CTL:
2165 		if (!(mcg_cap & MCG_CTL_P))
2166 			return 1;
2167 		data = vcpu->arch.mcg_ctl;
2168 		break;
2169 	case MSR_IA32_MCG_STATUS:
2170 		data = vcpu->arch.mcg_status;
2171 		break;
2172 	default:
2173 		if (msr >= MSR_IA32_MC0_CTL &&
2174 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2175 			u32 offset = msr - MSR_IA32_MC0_CTL;
2176 			data = vcpu->arch.mce_banks[offset];
2177 			break;
2178 		}
2179 		return 1;
2180 	}
2181 	*pdata = data;
2182 	return 0;
2183 }
2184 
2185 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2186 {
2187 	u64 data = 0;
2188 	struct kvm *kvm = vcpu->kvm;
2189 
2190 	switch (msr) {
2191 	case HV_X64_MSR_GUEST_OS_ID:
2192 		data = kvm->arch.hv_guest_os_id;
2193 		break;
2194 	case HV_X64_MSR_HYPERCALL:
2195 		data = kvm->arch.hv_hypercall;
2196 		break;
2197 	default:
2198 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2199 		return 1;
2200 	}
2201 
2202 	*pdata = data;
2203 	return 0;
2204 }
2205 
2206 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2207 {
2208 	u64 data = 0;
2209 
2210 	switch (msr) {
2211 	case HV_X64_MSR_VP_INDEX: {
2212 		int r;
2213 		struct kvm_vcpu *v;
2214 		kvm_for_each_vcpu(r, v, vcpu->kvm)
2215 			if (v == vcpu)
2216 				data = r;
2217 		break;
2218 	}
2219 	case HV_X64_MSR_EOI:
2220 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2221 	case HV_X64_MSR_ICR:
2222 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2223 	case HV_X64_MSR_TPR:
2224 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2225 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2226 		data = vcpu->arch.hv_vapic;
2227 		break;
2228 	default:
2229 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2230 		return 1;
2231 	}
2232 	*pdata = data;
2233 	return 0;
2234 }
2235 
2236 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2237 {
2238 	u64 data;
2239 
2240 	switch (msr) {
2241 	case MSR_IA32_PLATFORM_ID:
2242 	case MSR_IA32_EBL_CR_POWERON:
2243 	case MSR_IA32_DEBUGCTLMSR:
2244 	case MSR_IA32_LASTBRANCHFROMIP:
2245 	case MSR_IA32_LASTBRANCHTOIP:
2246 	case MSR_IA32_LASTINTFROMIP:
2247 	case MSR_IA32_LASTINTTOIP:
2248 	case MSR_K8_SYSCFG:
2249 	case MSR_K7_HWCR:
2250 	case MSR_VM_HSAVE_PA:
2251 	case MSR_K7_EVNTSEL0:
2252 	case MSR_K7_PERFCTR0:
2253 	case MSR_K8_INT_PENDING_MSG:
2254 	case MSR_AMD64_NB_CFG:
2255 	case MSR_FAM10H_MMIO_CONF_BASE:
2256 		data = 0;
2257 		break;
2258 	case MSR_P6_PERFCTR0:
2259 	case MSR_P6_PERFCTR1:
2260 	case MSR_P6_EVNTSEL0:
2261 	case MSR_P6_EVNTSEL1:
2262 		if (kvm_pmu_msr(vcpu, msr))
2263 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2264 		data = 0;
2265 		break;
2266 	case MSR_IA32_UCODE_REV:
2267 		data = 0x100000000ULL;
2268 		break;
2269 	case MSR_MTRRcap:
2270 		data = 0x500 | KVM_NR_VAR_MTRR;
2271 		break;
2272 	case 0x200 ... 0x2ff:
2273 		return get_msr_mtrr(vcpu, msr, pdata);
2274 	case 0xcd: /* fsb frequency */
2275 		data = 3;
2276 		break;
2277 		/*
2278 		 * MSR_EBC_FREQUENCY_ID
2279 		 * Conservative value valid for even the basic CPU models.
2280 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2281 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2282 		 * and 266MHz for model 3, or 4. Set Core Clock
2283 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2284 		 * 31:24) even though these are only valid for CPU
2285 		 * models > 2, however guests may end up dividing or
2286 		 * multiplying by zero otherwise.
2287 		 */
2288 	case MSR_EBC_FREQUENCY_ID:
2289 		data = 1 << 24;
2290 		break;
2291 	case MSR_IA32_APICBASE:
2292 		data = kvm_get_apic_base(vcpu);
2293 		break;
2294 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2295 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2296 		break;
2297 	case MSR_IA32_TSCDEADLINE:
2298 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2299 		break;
2300 	case MSR_IA32_TSC_ADJUST:
2301 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2302 		break;
2303 	case MSR_IA32_MISC_ENABLE:
2304 		data = vcpu->arch.ia32_misc_enable_msr;
2305 		break;
2306 	case MSR_IA32_PERF_STATUS:
2307 		/* TSC increment by tick */
2308 		data = 1000ULL;
2309 		/* CPU multiplier */
2310 		data |= (((uint64_t)4ULL) << 40);
2311 		break;
2312 	case MSR_EFER:
2313 		data = vcpu->arch.efer;
2314 		break;
2315 	case MSR_KVM_WALL_CLOCK:
2316 	case MSR_KVM_WALL_CLOCK_NEW:
2317 		data = vcpu->kvm->arch.wall_clock;
2318 		break;
2319 	case MSR_KVM_SYSTEM_TIME:
2320 	case MSR_KVM_SYSTEM_TIME_NEW:
2321 		data = vcpu->arch.time;
2322 		break;
2323 	case MSR_KVM_ASYNC_PF_EN:
2324 		data = vcpu->arch.apf.msr_val;
2325 		break;
2326 	case MSR_KVM_STEAL_TIME:
2327 		data = vcpu->arch.st.msr_val;
2328 		break;
2329 	case MSR_KVM_PV_EOI_EN:
2330 		data = vcpu->arch.pv_eoi.msr_val;
2331 		break;
2332 	case MSR_IA32_P5_MC_ADDR:
2333 	case MSR_IA32_P5_MC_TYPE:
2334 	case MSR_IA32_MCG_CAP:
2335 	case MSR_IA32_MCG_CTL:
2336 	case MSR_IA32_MCG_STATUS:
2337 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2338 		return get_msr_mce(vcpu, msr, pdata);
2339 	case MSR_K7_CLK_CTL:
2340 		/*
2341 		 * Provide expected ramp-up count for K7. All other
2342 		 * are set to zero, indicating minimum divisors for
2343 		 * every field.
2344 		 *
2345 		 * This prevents guest kernels on AMD host with CPU
2346 		 * type 6, model 8 and higher from exploding due to
2347 		 * the rdmsr failing.
2348 		 */
2349 		data = 0x20000000;
2350 		break;
2351 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2352 		if (kvm_hv_msr_partition_wide(msr)) {
2353 			int r;
2354 			mutex_lock(&vcpu->kvm->lock);
2355 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2356 			mutex_unlock(&vcpu->kvm->lock);
2357 			return r;
2358 		} else
2359 			return get_msr_hyperv(vcpu, msr, pdata);
2360 		break;
2361 	case MSR_IA32_BBL_CR_CTL3:
2362 		/* This legacy MSR exists but isn't fully documented in current
2363 		 * silicon.  It is however accessed by winxp in very narrow
2364 		 * scenarios where it sets bit #19, itself documented as
2365 		 * a "reserved" bit.  Best effort attempt to source coherent
2366 		 * read data here should the balance of the register be
2367 		 * interpreted by the guest:
2368 		 *
2369 		 * L2 cache control register 3: 64GB range, 256KB size,
2370 		 * enabled, latency 0x1, configured
2371 		 */
2372 		data = 0xbe702111;
2373 		break;
2374 	case MSR_AMD64_OSVW_ID_LENGTH:
2375 		if (!guest_cpuid_has_osvw(vcpu))
2376 			return 1;
2377 		data = vcpu->arch.osvw.length;
2378 		break;
2379 	case MSR_AMD64_OSVW_STATUS:
2380 		if (!guest_cpuid_has_osvw(vcpu))
2381 			return 1;
2382 		data = vcpu->arch.osvw.status;
2383 		break;
2384 	default:
2385 		if (kvm_pmu_msr(vcpu, msr))
2386 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2387 		if (!ignore_msrs) {
2388 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2389 			return 1;
2390 		} else {
2391 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2392 			data = 0;
2393 		}
2394 		break;
2395 	}
2396 	*pdata = data;
2397 	return 0;
2398 }
2399 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2400 
2401 /*
2402  * Read or write a bunch of msrs. All parameters are kernel addresses.
2403  *
2404  * @return number of msrs set successfully.
2405  */
2406 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2407 		    struct kvm_msr_entry *entries,
2408 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2409 				  unsigned index, u64 *data))
2410 {
2411 	int i, idx;
2412 
2413 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2414 	for (i = 0; i < msrs->nmsrs; ++i)
2415 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2416 			break;
2417 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2418 
2419 	return i;
2420 }
2421 
2422 /*
2423  * Read or write a bunch of msrs. Parameters are user addresses.
2424  *
2425  * @return number of msrs set successfully.
2426  */
2427 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2428 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2429 				unsigned index, u64 *data),
2430 		  int writeback)
2431 {
2432 	struct kvm_msrs msrs;
2433 	struct kvm_msr_entry *entries;
2434 	int r, n;
2435 	unsigned size;
2436 
2437 	r = -EFAULT;
2438 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2439 		goto out;
2440 
2441 	r = -E2BIG;
2442 	if (msrs.nmsrs >= MAX_IO_MSRS)
2443 		goto out;
2444 
2445 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2446 	entries = memdup_user(user_msrs->entries, size);
2447 	if (IS_ERR(entries)) {
2448 		r = PTR_ERR(entries);
2449 		goto out;
2450 	}
2451 
2452 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2453 	if (r < 0)
2454 		goto out_free;
2455 
2456 	r = -EFAULT;
2457 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2458 		goto out_free;
2459 
2460 	r = n;
2461 
2462 out_free:
2463 	kfree(entries);
2464 out:
2465 	return r;
2466 }
2467 
2468 int kvm_dev_ioctl_check_extension(long ext)
2469 {
2470 	int r;
2471 
2472 	switch (ext) {
2473 	case KVM_CAP_IRQCHIP:
2474 	case KVM_CAP_HLT:
2475 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2476 	case KVM_CAP_SET_TSS_ADDR:
2477 	case KVM_CAP_EXT_CPUID:
2478 	case KVM_CAP_CLOCKSOURCE:
2479 	case KVM_CAP_PIT:
2480 	case KVM_CAP_NOP_IO_DELAY:
2481 	case KVM_CAP_MP_STATE:
2482 	case KVM_CAP_SYNC_MMU:
2483 	case KVM_CAP_USER_NMI:
2484 	case KVM_CAP_REINJECT_CONTROL:
2485 	case KVM_CAP_IRQ_INJECT_STATUS:
2486 	case KVM_CAP_ASSIGN_DEV_IRQ:
2487 	case KVM_CAP_IRQFD:
2488 	case KVM_CAP_IOEVENTFD:
2489 	case KVM_CAP_PIT2:
2490 	case KVM_CAP_PIT_STATE2:
2491 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2492 	case KVM_CAP_XEN_HVM:
2493 	case KVM_CAP_ADJUST_CLOCK:
2494 	case KVM_CAP_VCPU_EVENTS:
2495 	case KVM_CAP_HYPERV:
2496 	case KVM_CAP_HYPERV_VAPIC:
2497 	case KVM_CAP_HYPERV_SPIN:
2498 	case KVM_CAP_PCI_SEGMENT:
2499 	case KVM_CAP_DEBUGREGS:
2500 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2501 	case KVM_CAP_XSAVE:
2502 	case KVM_CAP_ASYNC_PF:
2503 	case KVM_CAP_GET_TSC_KHZ:
2504 	case KVM_CAP_PCI_2_3:
2505 	case KVM_CAP_KVMCLOCK_CTRL:
2506 	case KVM_CAP_READONLY_MEM:
2507 	case KVM_CAP_IRQFD_RESAMPLE:
2508 		r = 1;
2509 		break;
2510 	case KVM_CAP_COALESCED_MMIO:
2511 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2512 		break;
2513 	case KVM_CAP_VAPIC:
2514 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2515 		break;
2516 	case KVM_CAP_NR_VCPUS:
2517 		r = KVM_SOFT_MAX_VCPUS;
2518 		break;
2519 	case KVM_CAP_MAX_VCPUS:
2520 		r = KVM_MAX_VCPUS;
2521 		break;
2522 	case KVM_CAP_NR_MEMSLOTS:
2523 		r = KVM_MEMORY_SLOTS;
2524 		break;
2525 	case KVM_CAP_PV_MMU:	/* obsolete */
2526 		r = 0;
2527 		break;
2528 	case KVM_CAP_IOMMU:
2529 		r = iommu_present(&pci_bus_type);
2530 		break;
2531 	case KVM_CAP_MCE:
2532 		r = KVM_MAX_MCE_BANKS;
2533 		break;
2534 	case KVM_CAP_XCRS:
2535 		r = cpu_has_xsave;
2536 		break;
2537 	case KVM_CAP_TSC_CONTROL:
2538 		r = kvm_has_tsc_control;
2539 		break;
2540 	case KVM_CAP_TSC_DEADLINE_TIMER:
2541 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2542 		break;
2543 	default:
2544 		r = 0;
2545 		break;
2546 	}
2547 	return r;
2548 
2549 }
2550 
2551 long kvm_arch_dev_ioctl(struct file *filp,
2552 			unsigned int ioctl, unsigned long arg)
2553 {
2554 	void __user *argp = (void __user *)arg;
2555 	long r;
2556 
2557 	switch (ioctl) {
2558 	case KVM_GET_MSR_INDEX_LIST: {
2559 		struct kvm_msr_list __user *user_msr_list = argp;
2560 		struct kvm_msr_list msr_list;
2561 		unsigned n;
2562 
2563 		r = -EFAULT;
2564 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2565 			goto out;
2566 		n = msr_list.nmsrs;
2567 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2568 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2569 			goto out;
2570 		r = -E2BIG;
2571 		if (n < msr_list.nmsrs)
2572 			goto out;
2573 		r = -EFAULT;
2574 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2575 				 num_msrs_to_save * sizeof(u32)))
2576 			goto out;
2577 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2578 				 &emulated_msrs,
2579 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2580 			goto out;
2581 		r = 0;
2582 		break;
2583 	}
2584 	case KVM_GET_SUPPORTED_CPUID: {
2585 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2586 		struct kvm_cpuid2 cpuid;
2587 
2588 		r = -EFAULT;
2589 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2590 			goto out;
2591 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2592 						      cpuid_arg->entries);
2593 		if (r)
2594 			goto out;
2595 
2596 		r = -EFAULT;
2597 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2598 			goto out;
2599 		r = 0;
2600 		break;
2601 	}
2602 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2603 		u64 mce_cap;
2604 
2605 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2606 		r = -EFAULT;
2607 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2608 			goto out;
2609 		r = 0;
2610 		break;
2611 	}
2612 	default:
2613 		r = -EINVAL;
2614 	}
2615 out:
2616 	return r;
2617 }
2618 
2619 static void wbinvd_ipi(void *garbage)
2620 {
2621 	wbinvd();
2622 }
2623 
2624 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2625 {
2626 	return vcpu->kvm->arch.iommu_domain &&
2627 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2628 }
2629 
2630 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2631 {
2632 	/* Address WBINVD may be executed by guest */
2633 	if (need_emulate_wbinvd(vcpu)) {
2634 		if (kvm_x86_ops->has_wbinvd_exit())
2635 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2636 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2637 			smp_call_function_single(vcpu->cpu,
2638 					wbinvd_ipi, NULL, 1);
2639 	}
2640 
2641 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2642 
2643 	/* Apply any externally detected TSC adjustments (due to suspend) */
2644 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2645 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2646 		vcpu->arch.tsc_offset_adjustment = 0;
2647 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2648 	}
2649 
2650 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2651 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2652 				native_read_tsc() - vcpu->arch.last_host_tsc;
2653 		if (tsc_delta < 0)
2654 			mark_tsc_unstable("KVM discovered backwards TSC");
2655 		if (check_tsc_unstable()) {
2656 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2657 						vcpu->arch.last_guest_tsc);
2658 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2659 			vcpu->arch.tsc_catchup = 1;
2660 		}
2661 		/*
2662 		 * On a host with synchronized TSC, there is no need to update
2663 		 * kvmclock on vcpu->cpu migration
2664 		 */
2665 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2666 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2667 		if (vcpu->cpu != cpu)
2668 			kvm_migrate_timers(vcpu);
2669 		vcpu->cpu = cpu;
2670 	}
2671 
2672 	accumulate_steal_time(vcpu);
2673 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2674 }
2675 
2676 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2677 {
2678 	kvm_x86_ops->vcpu_put(vcpu);
2679 	kvm_put_guest_fpu(vcpu);
2680 	vcpu->arch.last_host_tsc = native_read_tsc();
2681 }
2682 
2683 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2684 				    struct kvm_lapic_state *s)
2685 {
2686 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2687 
2688 	return 0;
2689 }
2690 
2691 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2692 				    struct kvm_lapic_state *s)
2693 {
2694 	kvm_apic_post_state_restore(vcpu, s);
2695 	update_cr8_intercept(vcpu);
2696 
2697 	return 0;
2698 }
2699 
2700 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2701 				    struct kvm_interrupt *irq)
2702 {
2703 	if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2704 		return -EINVAL;
2705 	if (irqchip_in_kernel(vcpu->kvm))
2706 		return -ENXIO;
2707 
2708 	kvm_queue_interrupt(vcpu, irq->irq, false);
2709 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2710 
2711 	return 0;
2712 }
2713 
2714 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2715 {
2716 	kvm_inject_nmi(vcpu);
2717 
2718 	return 0;
2719 }
2720 
2721 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2722 					   struct kvm_tpr_access_ctl *tac)
2723 {
2724 	if (tac->flags)
2725 		return -EINVAL;
2726 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2727 	return 0;
2728 }
2729 
2730 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2731 					u64 mcg_cap)
2732 {
2733 	int r;
2734 	unsigned bank_num = mcg_cap & 0xff, bank;
2735 
2736 	r = -EINVAL;
2737 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2738 		goto out;
2739 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2740 		goto out;
2741 	r = 0;
2742 	vcpu->arch.mcg_cap = mcg_cap;
2743 	/* Init IA32_MCG_CTL to all 1s */
2744 	if (mcg_cap & MCG_CTL_P)
2745 		vcpu->arch.mcg_ctl = ~(u64)0;
2746 	/* Init IA32_MCi_CTL to all 1s */
2747 	for (bank = 0; bank < bank_num; bank++)
2748 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2749 out:
2750 	return r;
2751 }
2752 
2753 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2754 				      struct kvm_x86_mce *mce)
2755 {
2756 	u64 mcg_cap = vcpu->arch.mcg_cap;
2757 	unsigned bank_num = mcg_cap & 0xff;
2758 	u64 *banks = vcpu->arch.mce_banks;
2759 
2760 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2761 		return -EINVAL;
2762 	/*
2763 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2764 	 * reporting is disabled
2765 	 */
2766 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2767 	    vcpu->arch.mcg_ctl != ~(u64)0)
2768 		return 0;
2769 	banks += 4 * mce->bank;
2770 	/*
2771 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2772 	 * reporting is disabled for the bank
2773 	 */
2774 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2775 		return 0;
2776 	if (mce->status & MCI_STATUS_UC) {
2777 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2778 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2779 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2780 			return 0;
2781 		}
2782 		if (banks[1] & MCI_STATUS_VAL)
2783 			mce->status |= MCI_STATUS_OVER;
2784 		banks[2] = mce->addr;
2785 		banks[3] = mce->misc;
2786 		vcpu->arch.mcg_status = mce->mcg_status;
2787 		banks[1] = mce->status;
2788 		kvm_queue_exception(vcpu, MC_VECTOR);
2789 	} else if (!(banks[1] & MCI_STATUS_VAL)
2790 		   || !(banks[1] & MCI_STATUS_UC)) {
2791 		if (banks[1] & MCI_STATUS_VAL)
2792 			mce->status |= MCI_STATUS_OVER;
2793 		banks[2] = mce->addr;
2794 		banks[3] = mce->misc;
2795 		banks[1] = mce->status;
2796 	} else
2797 		banks[1] |= MCI_STATUS_OVER;
2798 	return 0;
2799 }
2800 
2801 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2802 					       struct kvm_vcpu_events *events)
2803 {
2804 	process_nmi(vcpu);
2805 	events->exception.injected =
2806 		vcpu->arch.exception.pending &&
2807 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2808 	events->exception.nr = vcpu->arch.exception.nr;
2809 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2810 	events->exception.pad = 0;
2811 	events->exception.error_code = vcpu->arch.exception.error_code;
2812 
2813 	events->interrupt.injected =
2814 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2815 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2816 	events->interrupt.soft = 0;
2817 	events->interrupt.shadow =
2818 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2819 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2820 
2821 	events->nmi.injected = vcpu->arch.nmi_injected;
2822 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2823 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2824 	events->nmi.pad = 0;
2825 
2826 	events->sipi_vector = vcpu->arch.sipi_vector;
2827 
2828 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2829 			 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2830 			 | KVM_VCPUEVENT_VALID_SHADOW);
2831 	memset(&events->reserved, 0, sizeof(events->reserved));
2832 }
2833 
2834 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2835 					      struct kvm_vcpu_events *events)
2836 {
2837 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2838 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2839 			      | KVM_VCPUEVENT_VALID_SHADOW))
2840 		return -EINVAL;
2841 
2842 	process_nmi(vcpu);
2843 	vcpu->arch.exception.pending = events->exception.injected;
2844 	vcpu->arch.exception.nr = events->exception.nr;
2845 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2846 	vcpu->arch.exception.error_code = events->exception.error_code;
2847 
2848 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2849 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2850 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2851 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2852 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2853 						  events->interrupt.shadow);
2854 
2855 	vcpu->arch.nmi_injected = events->nmi.injected;
2856 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2857 		vcpu->arch.nmi_pending = events->nmi.pending;
2858 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2859 
2860 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2861 		vcpu->arch.sipi_vector = events->sipi_vector;
2862 
2863 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2864 
2865 	return 0;
2866 }
2867 
2868 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2869 					     struct kvm_debugregs *dbgregs)
2870 {
2871 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2872 	dbgregs->dr6 = vcpu->arch.dr6;
2873 	dbgregs->dr7 = vcpu->arch.dr7;
2874 	dbgregs->flags = 0;
2875 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2876 }
2877 
2878 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2879 					    struct kvm_debugregs *dbgregs)
2880 {
2881 	if (dbgregs->flags)
2882 		return -EINVAL;
2883 
2884 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2885 	vcpu->arch.dr6 = dbgregs->dr6;
2886 	vcpu->arch.dr7 = dbgregs->dr7;
2887 
2888 	return 0;
2889 }
2890 
2891 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2892 					 struct kvm_xsave *guest_xsave)
2893 {
2894 	if (cpu_has_xsave)
2895 		memcpy(guest_xsave->region,
2896 			&vcpu->arch.guest_fpu.state->xsave,
2897 			xstate_size);
2898 	else {
2899 		memcpy(guest_xsave->region,
2900 			&vcpu->arch.guest_fpu.state->fxsave,
2901 			sizeof(struct i387_fxsave_struct));
2902 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2903 			XSTATE_FPSSE;
2904 	}
2905 }
2906 
2907 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2908 					struct kvm_xsave *guest_xsave)
2909 {
2910 	u64 xstate_bv =
2911 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2912 
2913 	if (cpu_has_xsave)
2914 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
2915 			guest_xsave->region, xstate_size);
2916 	else {
2917 		if (xstate_bv & ~XSTATE_FPSSE)
2918 			return -EINVAL;
2919 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2920 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
2921 	}
2922 	return 0;
2923 }
2924 
2925 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2926 					struct kvm_xcrs *guest_xcrs)
2927 {
2928 	if (!cpu_has_xsave) {
2929 		guest_xcrs->nr_xcrs = 0;
2930 		return;
2931 	}
2932 
2933 	guest_xcrs->nr_xcrs = 1;
2934 	guest_xcrs->flags = 0;
2935 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2936 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2937 }
2938 
2939 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2940 				       struct kvm_xcrs *guest_xcrs)
2941 {
2942 	int i, r = 0;
2943 
2944 	if (!cpu_has_xsave)
2945 		return -EINVAL;
2946 
2947 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2948 		return -EINVAL;
2949 
2950 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2951 		/* Only support XCR0 currently */
2952 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2953 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2954 				guest_xcrs->xcrs[0].value);
2955 			break;
2956 		}
2957 	if (r)
2958 		r = -EINVAL;
2959 	return r;
2960 }
2961 
2962 /*
2963  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2964  * stopped by the hypervisor.  This function will be called from the host only.
2965  * EINVAL is returned when the host attempts to set the flag for a guest that
2966  * does not support pv clocks.
2967  */
2968 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2969 {
2970 	if (!vcpu->arch.time_page)
2971 		return -EINVAL;
2972 	vcpu->arch.pvclock_set_guest_stopped_request = true;
2973 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2974 	return 0;
2975 }
2976 
2977 long kvm_arch_vcpu_ioctl(struct file *filp,
2978 			 unsigned int ioctl, unsigned long arg)
2979 {
2980 	struct kvm_vcpu *vcpu = filp->private_data;
2981 	void __user *argp = (void __user *)arg;
2982 	int r;
2983 	union {
2984 		struct kvm_lapic_state *lapic;
2985 		struct kvm_xsave *xsave;
2986 		struct kvm_xcrs *xcrs;
2987 		void *buffer;
2988 	} u;
2989 
2990 	u.buffer = NULL;
2991 	switch (ioctl) {
2992 	case KVM_GET_LAPIC: {
2993 		r = -EINVAL;
2994 		if (!vcpu->arch.apic)
2995 			goto out;
2996 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2997 
2998 		r = -ENOMEM;
2999 		if (!u.lapic)
3000 			goto out;
3001 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3002 		if (r)
3003 			goto out;
3004 		r = -EFAULT;
3005 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3006 			goto out;
3007 		r = 0;
3008 		break;
3009 	}
3010 	case KVM_SET_LAPIC: {
3011 		r = -EINVAL;
3012 		if (!vcpu->arch.apic)
3013 			goto out;
3014 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3015 		if (IS_ERR(u.lapic))
3016 			return PTR_ERR(u.lapic);
3017 
3018 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3019 		break;
3020 	}
3021 	case KVM_INTERRUPT: {
3022 		struct kvm_interrupt irq;
3023 
3024 		r = -EFAULT;
3025 		if (copy_from_user(&irq, argp, sizeof irq))
3026 			goto out;
3027 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3028 		break;
3029 	}
3030 	case KVM_NMI: {
3031 		r = kvm_vcpu_ioctl_nmi(vcpu);
3032 		break;
3033 	}
3034 	case KVM_SET_CPUID: {
3035 		struct kvm_cpuid __user *cpuid_arg = argp;
3036 		struct kvm_cpuid cpuid;
3037 
3038 		r = -EFAULT;
3039 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3040 			goto out;
3041 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3042 		break;
3043 	}
3044 	case KVM_SET_CPUID2: {
3045 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3046 		struct kvm_cpuid2 cpuid;
3047 
3048 		r = -EFAULT;
3049 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3050 			goto out;
3051 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3052 					      cpuid_arg->entries);
3053 		break;
3054 	}
3055 	case KVM_GET_CPUID2: {
3056 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3057 		struct kvm_cpuid2 cpuid;
3058 
3059 		r = -EFAULT;
3060 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3061 			goto out;
3062 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3063 					      cpuid_arg->entries);
3064 		if (r)
3065 			goto out;
3066 		r = -EFAULT;
3067 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3068 			goto out;
3069 		r = 0;
3070 		break;
3071 	}
3072 	case KVM_GET_MSRS:
3073 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3074 		break;
3075 	case KVM_SET_MSRS:
3076 		r = msr_io(vcpu, argp, do_set_msr, 0);
3077 		break;
3078 	case KVM_TPR_ACCESS_REPORTING: {
3079 		struct kvm_tpr_access_ctl tac;
3080 
3081 		r = -EFAULT;
3082 		if (copy_from_user(&tac, argp, sizeof tac))
3083 			goto out;
3084 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3085 		if (r)
3086 			goto out;
3087 		r = -EFAULT;
3088 		if (copy_to_user(argp, &tac, sizeof tac))
3089 			goto out;
3090 		r = 0;
3091 		break;
3092 	};
3093 	case KVM_SET_VAPIC_ADDR: {
3094 		struct kvm_vapic_addr va;
3095 
3096 		r = -EINVAL;
3097 		if (!irqchip_in_kernel(vcpu->kvm))
3098 			goto out;
3099 		r = -EFAULT;
3100 		if (copy_from_user(&va, argp, sizeof va))
3101 			goto out;
3102 		r = 0;
3103 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3104 		break;
3105 	}
3106 	case KVM_X86_SETUP_MCE: {
3107 		u64 mcg_cap;
3108 
3109 		r = -EFAULT;
3110 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3111 			goto out;
3112 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3113 		break;
3114 	}
3115 	case KVM_X86_SET_MCE: {
3116 		struct kvm_x86_mce mce;
3117 
3118 		r = -EFAULT;
3119 		if (copy_from_user(&mce, argp, sizeof mce))
3120 			goto out;
3121 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3122 		break;
3123 	}
3124 	case KVM_GET_VCPU_EVENTS: {
3125 		struct kvm_vcpu_events events;
3126 
3127 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3128 
3129 		r = -EFAULT;
3130 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3131 			break;
3132 		r = 0;
3133 		break;
3134 	}
3135 	case KVM_SET_VCPU_EVENTS: {
3136 		struct kvm_vcpu_events events;
3137 
3138 		r = -EFAULT;
3139 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3140 			break;
3141 
3142 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3143 		break;
3144 	}
3145 	case KVM_GET_DEBUGREGS: {
3146 		struct kvm_debugregs dbgregs;
3147 
3148 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3149 
3150 		r = -EFAULT;
3151 		if (copy_to_user(argp, &dbgregs,
3152 				 sizeof(struct kvm_debugregs)))
3153 			break;
3154 		r = 0;
3155 		break;
3156 	}
3157 	case KVM_SET_DEBUGREGS: {
3158 		struct kvm_debugregs dbgregs;
3159 
3160 		r = -EFAULT;
3161 		if (copy_from_user(&dbgregs, argp,
3162 				   sizeof(struct kvm_debugregs)))
3163 			break;
3164 
3165 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3166 		break;
3167 	}
3168 	case KVM_GET_XSAVE: {
3169 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3170 		r = -ENOMEM;
3171 		if (!u.xsave)
3172 			break;
3173 
3174 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3175 
3176 		r = -EFAULT;
3177 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3178 			break;
3179 		r = 0;
3180 		break;
3181 	}
3182 	case KVM_SET_XSAVE: {
3183 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3184 		if (IS_ERR(u.xsave))
3185 			return PTR_ERR(u.xsave);
3186 
3187 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3188 		break;
3189 	}
3190 	case KVM_GET_XCRS: {
3191 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3192 		r = -ENOMEM;
3193 		if (!u.xcrs)
3194 			break;
3195 
3196 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3197 
3198 		r = -EFAULT;
3199 		if (copy_to_user(argp, u.xcrs,
3200 				 sizeof(struct kvm_xcrs)))
3201 			break;
3202 		r = 0;
3203 		break;
3204 	}
3205 	case KVM_SET_XCRS: {
3206 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3207 		if (IS_ERR(u.xcrs))
3208 			return PTR_ERR(u.xcrs);
3209 
3210 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3211 		break;
3212 	}
3213 	case KVM_SET_TSC_KHZ: {
3214 		u32 user_tsc_khz;
3215 
3216 		r = -EINVAL;
3217 		user_tsc_khz = (u32)arg;
3218 
3219 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3220 			goto out;
3221 
3222 		if (user_tsc_khz == 0)
3223 			user_tsc_khz = tsc_khz;
3224 
3225 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3226 
3227 		r = 0;
3228 		goto out;
3229 	}
3230 	case KVM_GET_TSC_KHZ: {
3231 		r = vcpu->arch.virtual_tsc_khz;
3232 		goto out;
3233 	}
3234 	case KVM_KVMCLOCK_CTRL: {
3235 		r = kvm_set_guest_paused(vcpu);
3236 		goto out;
3237 	}
3238 	default:
3239 		r = -EINVAL;
3240 	}
3241 out:
3242 	kfree(u.buffer);
3243 	return r;
3244 }
3245 
3246 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3247 {
3248 	return VM_FAULT_SIGBUS;
3249 }
3250 
3251 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3252 {
3253 	int ret;
3254 
3255 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3256 		return -EINVAL;
3257 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3258 	return ret;
3259 }
3260 
3261 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3262 					      u64 ident_addr)
3263 {
3264 	kvm->arch.ept_identity_map_addr = ident_addr;
3265 	return 0;
3266 }
3267 
3268 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3269 					  u32 kvm_nr_mmu_pages)
3270 {
3271 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3272 		return -EINVAL;
3273 
3274 	mutex_lock(&kvm->slots_lock);
3275 	spin_lock(&kvm->mmu_lock);
3276 
3277 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3278 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3279 
3280 	spin_unlock(&kvm->mmu_lock);
3281 	mutex_unlock(&kvm->slots_lock);
3282 	return 0;
3283 }
3284 
3285 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3286 {
3287 	return kvm->arch.n_max_mmu_pages;
3288 }
3289 
3290 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3291 {
3292 	int r;
3293 
3294 	r = 0;
3295 	switch (chip->chip_id) {
3296 	case KVM_IRQCHIP_PIC_MASTER:
3297 		memcpy(&chip->chip.pic,
3298 			&pic_irqchip(kvm)->pics[0],
3299 			sizeof(struct kvm_pic_state));
3300 		break;
3301 	case KVM_IRQCHIP_PIC_SLAVE:
3302 		memcpy(&chip->chip.pic,
3303 			&pic_irqchip(kvm)->pics[1],
3304 			sizeof(struct kvm_pic_state));
3305 		break;
3306 	case KVM_IRQCHIP_IOAPIC:
3307 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3308 		break;
3309 	default:
3310 		r = -EINVAL;
3311 		break;
3312 	}
3313 	return r;
3314 }
3315 
3316 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3317 {
3318 	int r;
3319 
3320 	r = 0;
3321 	switch (chip->chip_id) {
3322 	case KVM_IRQCHIP_PIC_MASTER:
3323 		spin_lock(&pic_irqchip(kvm)->lock);
3324 		memcpy(&pic_irqchip(kvm)->pics[0],
3325 			&chip->chip.pic,
3326 			sizeof(struct kvm_pic_state));
3327 		spin_unlock(&pic_irqchip(kvm)->lock);
3328 		break;
3329 	case KVM_IRQCHIP_PIC_SLAVE:
3330 		spin_lock(&pic_irqchip(kvm)->lock);
3331 		memcpy(&pic_irqchip(kvm)->pics[1],
3332 			&chip->chip.pic,
3333 			sizeof(struct kvm_pic_state));
3334 		spin_unlock(&pic_irqchip(kvm)->lock);
3335 		break;
3336 	case KVM_IRQCHIP_IOAPIC:
3337 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3338 		break;
3339 	default:
3340 		r = -EINVAL;
3341 		break;
3342 	}
3343 	kvm_pic_update_irq(pic_irqchip(kvm));
3344 	return r;
3345 }
3346 
3347 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3348 {
3349 	int r = 0;
3350 
3351 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3352 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3353 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3354 	return r;
3355 }
3356 
3357 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3358 {
3359 	int r = 0;
3360 
3361 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3362 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3363 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3364 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3365 	return r;
3366 }
3367 
3368 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3369 {
3370 	int r = 0;
3371 
3372 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3373 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3374 		sizeof(ps->channels));
3375 	ps->flags = kvm->arch.vpit->pit_state.flags;
3376 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3377 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3378 	return r;
3379 }
3380 
3381 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3382 {
3383 	int r = 0, start = 0;
3384 	u32 prev_legacy, cur_legacy;
3385 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3386 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3387 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3388 	if (!prev_legacy && cur_legacy)
3389 		start = 1;
3390 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3391 	       sizeof(kvm->arch.vpit->pit_state.channels));
3392 	kvm->arch.vpit->pit_state.flags = ps->flags;
3393 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3394 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3395 	return r;
3396 }
3397 
3398 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3399 				 struct kvm_reinject_control *control)
3400 {
3401 	if (!kvm->arch.vpit)
3402 		return -ENXIO;
3403 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3404 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3405 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3406 	return 0;
3407 }
3408 
3409 /**
3410  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3411  * @kvm: kvm instance
3412  * @log: slot id and address to which we copy the log
3413  *
3414  * We need to keep it in mind that VCPU threads can write to the bitmap
3415  * concurrently.  So, to avoid losing data, we keep the following order for
3416  * each bit:
3417  *
3418  *   1. Take a snapshot of the bit and clear it if needed.
3419  *   2. Write protect the corresponding page.
3420  *   3. Flush TLB's if needed.
3421  *   4. Copy the snapshot to the userspace.
3422  *
3423  * Between 2 and 3, the guest may write to the page using the remaining TLB
3424  * entry.  This is not a problem because the page will be reported dirty at
3425  * step 4 using the snapshot taken before and step 3 ensures that successive
3426  * writes will be logged for the next call.
3427  */
3428 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3429 {
3430 	int r;
3431 	struct kvm_memory_slot *memslot;
3432 	unsigned long n, i;
3433 	unsigned long *dirty_bitmap;
3434 	unsigned long *dirty_bitmap_buffer;
3435 	bool is_dirty = false;
3436 
3437 	mutex_lock(&kvm->slots_lock);
3438 
3439 	r = -EINVAL;
3440 	if (log->slot >= KVM_MEMORY_SLOTS)
3441 		goto out;
3442 
3443 	memslot = id_to_memslot(kvm->memslots, log->slot);
3444 
3445 	dirty_bitmap = memslot->dirty_bitmap;
3446 	r = -ENOENT;
3447 	if (!dirty_bitmap)
3448 		goto out;
3449 
3450 	n = kvm_dirty_bitmap_bytes(memslot);
3451 
3452 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3453 	memset(dirty_bitmap_buffer, 0, n);
3454 
3455 	spin_lock(&kvm->mmu_lock);
3456 
3457 	for (i = 0; i < n / sizeof(long); i++) {
3458 		unsigned long mask;
3459 		gfn_t offset;
3460 
3461 		if (!dirty_bitmap[i])
3462 			continue;
3463 
3464 		is_dirty = true;
3465 
3466 		mask = xchg(&dirty_bitmap[i], 0);
3467 		dirty_bitmap_buffer[i] = mask;
3468 
3469 		offset = i * BITS_PER_LONG;
3470 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3471 	}
3472 	if (is_dirty)
3473 		kvm_flush_remote_tlbs(kvm);
3474 
3475 	spin_unlock(&kvm->mmu_lock);
3476 
3477 	r = -EFAULT;
3478 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3479 		goto out;
3480 
3481 	r = 0;
3482 out:
3483 	mutex_unlock(&kvm->slots_lock);
3484 	return r;
3485 }
3486 
3487 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3488 {
3489 	if (!irqchip_in_kernel(kvm))
3490 		return -ENXIO;
3491 
3492 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3493 					irq_event->irq, irq_event->level);
3494 	return 0;
3495 }
3496 
3497 long kvm_arch_vm_ioctl(struct file *filp,
3498 		       unsigned int ioctl, unsigned long arg)
3499 {
3500 	struct kvm *kvm = filp->private_data;
3501 	void __user *argp = (void __user *)arg;
3502 	int r = -ENOTTY;
3503 	/*
3504 	 * This union makes it completely explicit to gcc-3.x
3505 	 * that these two variables' stack usage should be
3506 	 * combined, not added together.
3507 	 */
3508 	union {
3509 		struct kvm_pit_state ps;
3510 		struct kvm_pit_state2 ps2;
3511 		struct kvm_pit_config pit_config;
3512 	} u;
3513 
3514 	switch (ioctl) {
3515 	case KVM_SET_TSS_ADDR:
3516 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3517 		break;
3518 	case KVM_SET_IDENTITY_MAP_ADDR: {
3519 		u64 ident_addr;
3520 
3521 		r = -EFAULT;
3522 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3523 			goto out;
3524 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3525 		break;
3526 	}
3527 	case KVM_SET_NR_MMU_PAGES:
3528 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3529 		break;
3530 	case KVM_GET_NR_MMU_PAGES:
3531 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3532 		break;
3533 	case KVM_CREATE_IRQCHIP: {
3534 		struct kvm_pic *vpic;
3535 
3536 		mutex_lock(&kvm->lock);
3537 		r = -EEXIST;
3538 		if (kvm->arch.vpic)
3539 			goto create_irqchip_unlock;
3540 		r = -EINVAL;
3541 		if (atomic_read(&kvm->online_vcpus))
3542 			goto create_irqchip_unlock;
3543 		r = -ENOMEM;
3544 		vpic = kvm_create_pic(kvm);
3545 		if (vpic) {
3546 			r = kvm_ioapic_init(kvm);
3547 			if (r) {
3548 				mutex_lock(&kvm->slots_lock);
3549 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3550 							  &vpic->dev_master);
3551 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3552 							  &vpic->dev_slave);
3553 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3554 							  &vpic->dev_eclr);
3555 				mutex_unlock(&kvm->slots_lock);
3556 				kfree(vpic);
3557 				goto create_irqchip_unlock;
3558 			}
3559 		} else
3560 			goto create_irqchip_unlock;
3561 		smp_wmb();
3562 		kvm->arch.vpic = vpic;
3563 		smp_wmb();
3564 		r = kvm_setup_default_irq_routing(kvm);
3565 		if (r) {
3566 			mutex_lock(&kvm->slots_lock);
3567 			mutex_lock(&kvm->irq_lock);
3568 			kvm_ioapic_destroy(kvm);
3569 			kvm_destroy_pic(kvm);
3570 			mutex_unlock(&kvm->irq_lock);
3571 			mutex_unlock(&kvm->slots_lock);
3572 		}
3573 	create_irqchip_unlock:
3574 		mutex_unlock(&kvm->lock);
3575 		break;
3576 	}
3577 	case KVM_CREATE_PIT:
3578 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3579 		goto create_pit;
3580 	case KVM_CREATE_PIT2:
3581 		r = -EFAULT;
3582 		if (copy_from_user(&u.pit_config, argp,
3583 				   sizeof(struct kvm_pit_config)))
3584 			goto out;
3585 	create_pit:
3586 		mutex_lock(&kvm->slots_lock);
3587 		r = -EEXIST;
3588 		if (kvm->arch.vpit)
3589 			goto create_pit_unlock;
3590 		r = -ENOMEM;
3591 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3592 		if (kvm->arch.vpit)
3593 			r = 0;
3594 	create_pit_unlock:
3595 		mutex_unlock(&kvm->slots_lock);
3596 		break;
3597 	case KVM_GET_IRQCHIP: {
3598 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3599 		struct kvm_irqchip *chip;
3600 
3601 		chip = memdup_user(argp, sizeof(*chip));
3602 		if (IS_ERR(chip)) {
3603 			r = PTR_ERR(chip);
3604 			goto out;
3605 		}
3606 
3607 		r = -ENXIO;
3608 		if (!irqchip_in_kernel(kvm))
3609 			goto get_irqchip_out;
3610 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3611 		if (r)
3612 			goto get_irqchip_out;
3613 		r = -EFAULT;
3614 		if (copy_to_user(argp, chip, sizeof *chip))
3615 			goto get_irqchip_out;
3616 		r = 0;
3617 	get_irqchip_out:
3618 		kfree(chip);
3619 		break;
3620 	}
3621 	case KVM_SET_IRQCHIP: {
3622 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3623 		struct kvm_irqchip *chip;
3624 
3625 		chip = memdup_user(argp, sizeof(*chip));
3626 		if (IS_ERR(chip)) {
3627 			r = PTR_ERR(chip);
3628 			goto out;
3629 		}
3630 
3631 		r = -ENXIO;
3632 		if (!irqchip_in_kernel(kvm))
3633 			goto set_irqchip_out;
3634 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3635 		if (r)
3636 			goto set_irqchip_out;
3637 		r = 0;
3638 	set_irqchip_out:
3639 		kfree(chip);
3640 		break;
3641 	}
3642 	case KVM_GET_PIT: {
3643 		r = -EFAULT;
3644 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3645 			goto out;
3646 		r = -ENXIO;
3647 		if (!kvm->arch.vpit)
3648 			goto out;
3649 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3650 		if (r)
3651 			goto out;
3652 		r = -EFAULT;
3653 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3654 			goto out;
3655 		r = 0;
3656 		break;
3657 	}
3658 	case KVM_SET_PIT: {
3659 		r = -EFAULT;
3660 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3661 			goto out;
3662 		r = -ENXIO;
3663 		if (!kvm->arch.vpit)
3664 			goto out;
3665 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3666 		break;
3667 	}
3668 	case KVM_GET_PIT2: {
3669 		r = -ENXIO;
3670 		if (!kvm->arch.vpit)
3671 			goto out;
3672 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3673 		if (r)
3674 			goto out;
3675 		r = -EFAULT;
3676 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3677 			goto out;
3678 		r = 0;
3679 		break;
3680 	}
3681 	case KVM_SET_PIT2: {
3682 		r = -EFAULT;
3683 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3684 			goto out;
3685 		r = -ENXIO;
3686 		if (!kvm->arch.vpit)
3687 			goto out;
3688 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3689 		break;
3690 	}
3691 	case KVM_REINJECT_CONTROL: {
3692 		struct kvm_reinject_control control;
3693 		r =  -EFAULT;
3694 		if (copy_from_user(&control, argp, sizeof(control)))
3695 			goto out;
3696 		r = kvm_vm_ioctl_reinject(kvm, &control);
3697 		break;
3698 	}
3699 	case KVM_XEN_HVM_CONFIG: {
3700 		r = -EFAULT;
3701 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3702 				   sizeof(struct kvm_xen_hvm_config)))
3703 			goto out;
3704 		r = -EINVAL;
3705 		if (kvm->arch.xen_hvm_config.flags)
3706 			goto out;
3707 		r = 0;
3708 		break;
3709 	}
3710 	case KVM_SET_CLOCK: {
3711 		struct kvm_clock_data user_ns;
3712 		u64 now_ns;
3713 		s64 delta;
3714 
3715 		r = -EFAULT;
3716 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3717 			goto out;
3718 
3719 		r = -EINVAL;
3720 		if (user_ns.flags)
3721 			goto out;
3722 
3723 		r = 0;
3724 		local_irq_disable();
3725 		now_ns = get_kernel_ns();
3726 		delta = user_ns.clock - now_ns;
3727 		local_irq_enable();
3728 		kvm->arch.kvmclock_offset = delta;
3729 		break;
3730 	}
3731 	case KVM_GET_CLOCK: {
3732 		struct kvm_clock_data user_ns;
3733 		u64 now_ns;
3734 
3735 		local_irq_disable();
3736 		now_ns = get_kernel_ns();
3737 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3738 		local_irq_enable();
3739 		user_ns.flags = 0;
3740 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3741 
3742 		r = -EFAULT;
3743 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3744 			goto out;
3745 		r = 0;
3746 		break;
3747 	}
3748 
3749 	default:
3750 		;
3751 	}
3752 out:
3753 	return r;
3754 }
3755 
3756 static void kvm_init_msr_list(void)
3757 {
3758 	u32 dummy[2];
3759 	unsigned i, j;
3760 
3761 	/* skip the first msrs in the list. KVM-specific */
3762 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3763 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3764 			continue;
3765 		if (j < i)
3766 			msrs_to_save[j] = msrs_to_save[i];
3767 		j++;
3768 	}
3769 	num_msrs_to_save = j;
3770 }
3771 
3772 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3773 			   const void *v)
3774 {
3775 	int handled = 0;
3776 	int n;
3777 
3778 	do {
3779 		n = min(len, 8);
3780 		if (!(vcpu->arch.apic &&
3781 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3782 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3783 			break;
3784 		handled += n;
3785 		addr += n;
3786 		len -= n;
3787 		v += n;
3788 	} while (len);
3789 
3790 	return handled;
3791 }
3792 
3793 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3794 {
3795 	int handled = 0;
3796 	int n;
3797 
3798 	do {
3799 		n = min(len, 8);
3800 		if (!(vcpu->arch.apic &&
3801 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3802 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3803 			break;
3804 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3805 		handled += n;
3806 		addr += n;
3807 		len -= n;
3808 		v += n;
3809 	} while (len);
3810 
3811 	return handled;
3812 }
3813 
3814 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3815 			struct kvm_segment *var, int seg)
3816 {
3817 	kvm_x86_ops->set_segment(vcpu, var, seg);
3818 }
3819 
3820 void kvm_get_segment(struct kvm_vcpu *vcpu,
3821 		     struct kvm_segment *var, int seg)
3822 {
3823 	kvm_x86_ops->get_segment(vcpu, var, seg);
3824 }
3825 
3826 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3827 {
3828 	gpa_t t_gpa;
3829 	struct x86_exception exception;
3830 
3831 	BUG_ON(!mmu_is_nested(vcpu));
3832 
3833 	/* NPT walks are always user-walks */
3834 	access |= PFERR_USER_MASK;
3835 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3836 
3837 	return t_gpa;
3838 }
3839 
3840 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3841 			      struct x86_exception *exception)
3842 {
3843 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3844 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3845 }
3846 
3847  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3848 				struct x86_exception *exception)
3849 {
3850 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3851 	access |= PFERR_FETCH_MASK;
3852 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3853 }
3854 
3855 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3856 			       struct x86_exception *exception)
3857 {
3858 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3859 	access |= PFERR_WRITE_MASK;
3860 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3861 }
3862 
3863 /* uses this to access any guest's mapped memory without checking CPL */
3864 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3865 				struct x86_exception *exception)
3866 {
3867 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3868 }
3869 
3870 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3871 				      struct kvm_vcpu *vcpu, u32 access,
3872 				      struct x86_exception *exception)
3873 {
3874 	void *data = val;
3875 	int r = X86EMUL_CONTINUE;
3876 
3877 	while (bytes) {
3878 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3879 							    exception);
3880 		unsigned offset = addr & (PAGE_SIZE-1);
3881 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3882 		int ret;
3883 
3884 		if (gpa == UNMAPPED_GVA)
3885 			return X86EMUL_PROPAGATE_FAULT;
3886 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3887 		if (ret < 0) {
3888 			r = X86EMUL_IO_NEEDED;
3889 			goto out;
3890 		}
3891 
3892 		bytes -= toread;
3893 		data += toread;
3894 		addr += toread;
3895 	}
3896 out:
3897 	return r;
3898 }
3899 
3900 /* used for instruction fetching */
3901 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3902 				gva_t addr, void *val, unsigned int bytes,
3903 				struct x86_exception *exception)
3904 {
3905 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3906 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3907 
3908 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3909 					  access | PFERR_FETCH_MASK,
3910 					  exception);
3911 }
3912 
3913 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3914 			       gva_t addr, void *val, unsigned int bytes,
3915 			       struct x86_exception *exception)
3916 {
3917 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3918 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3919 
3920 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3921 					  exception);
3922 }
3923 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3924 
3925 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3926 				      gva_t addr, void *val, unsigned int bytes,
3927 				      struct x86_exception *exception)
3928 {
3929 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3930 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3931 }
3932 
3933 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3934 				       gva_t addr, void *val,
3935 				       unsigned int bytes,
3936 				       struct x86_exception *exception)
3937 {
3938 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3939 	void *data = val;
3940 	int r = X86EMUL_CONTINUE;
3941 
3942 	while (bytes) {
3943 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3944 							     PFERR_WRITE_MASK,
3945 							     exception);
3946 		unsigned offset = addr & (PAGE_SIZE-1);
3947 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3948 		int ret;
3949 
3950 		if (gpa == UNMAPPED_GVA)
3951 			return X86EMUL_PROPAGATE_FAULT;
3952 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3953 		if (ret < 0) {
3954 			r = X86EMUL_IO_NEEDED;
3955 			goto out;
3956 		}
3957 
3958 		bytes -= towrite;
3959 		data += towrite;
3960 		addr += towrite;
3961 	}
3962 out:
3963 	return r;
3964 }
3965 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3966 
3967 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3968 				gpa_t *gpa, struct x86_exception *exception,
3969 				bool write)
3970 {
3971 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3972 		| (write ? PFERR_WRITE_MASK : 0);
3973 
3974 	if (vcpu_match_mmio_gva(vcpu, gva)
3975 	    && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3976 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3977 					(gva & (PAGE_SIZE - 1));
3978 		trace_vcpu_match_mmio(gva, *gpa, write, false);
3979 		return 1;
3980 	}
3981 
3982 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3983 
3984 	if (*gpa == UNMAPPED_GVA)
3985 		return -1;
3986 
3987 	/* For APIC access vmexit */
3988 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3989 		return 1;
3990 
3991 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3992 		trace_vcpu_match_mmio(gva, *gpa, write, true);
3993 		return 1;
3994 	}
3995 
3996 	return 0;
3997 }
3998 
3999 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4000 			const void *val, int bytes)
4001 {
4002 	int ret;
4003 
4004 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4005 	if (ret < 0)
4006 		return 0;
4007 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4008 	return 1;
4009 }
4010 
4011 struct read_write_emulator_ops {
4012 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4013 				  int bytes);
4014 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4015 				  void *val, int bytes);
4016 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4017 			       int bytes, void *val);
4018 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4019 				    void *val, int bytes);
4020 	bool write;
4021 };
4022 
4023 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4024 {
4025 	if (vcpu->mmio_read_completed) {
4026 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4027 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4028 		vcpu->mmio_read_completed = 0;
4029 		return 1;
4030 	}
4031 
4032 	return 0;
4033 }
4034 
4035 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4036 			void *val, int bytes)
4037 {
4038 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4039 }
4040 
4041 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4042 			 void *val, int bytes)
4043 {
4044 	return emulator_write_phys(vcpu, gpa, val, bytes);
4045 }
4046 
4047 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4048 {
4049 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4050 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4051 }
4052 
4053 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4054 			  void *val, int bytes)
4055 {
4056 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4057 	return X86EMUL_IO_NEEDED;
4058 }
4059 
4060 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4061 			   void *val, int bytes)
4062 {
4063 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4064 
4065 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4066 	return X86EMUL_CONTINUE;
4067 }
4068 
4069 static const struct read_write_emulator_ops read_emultor = {
4070 	.read_write_prepare = read_prepare,
4071 	.read_write_emulate = read_emulate,
4072 	.read_write_mmio = vcpu_mmio_read,
4073 	.read_write_exit_mmio = read_exit_mmio,
4074 };
4075 
4076 static const struct read_write_emulator_ops write_emultor = {
4077 	.read_write_emulate = write_emulate,
4078 	.read_write_mmio = write_mmio,
4079 	.read_write_exit_mmio = write_exit_mmio,
4080 	.write = true,
4081 };
4082 
4083 static int emulator_read_write_onepage(unsigned long addr, void *val,
4084 				       unsigned int bytes,
4085 				       struct x86_exception *exception,
4086 				       struct kvm_vcpu *vcpu,
4087 				       const struct read_write_emulator_ops *ops)
4088 {
4089 	gpa_t gpa;
4090 	int handled, ret;
4091 	bool write = ops->write;
4092 	struct kvm_mmio_fragment *frag;
4093 
4094 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4095 
4096 	if (ret < 0)
4097 		return X86EMUL_PROPAGATE_FAULT;
4098 
4099 	/* For APIC access vmexit */
4100 	if (ret)
4101 		goto mmio;
4102 
4103 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4104 		return X86EMUL_CONTINUE;
4105 
4106 mmio:
4107 	/*
4108 	 * Is this MMIO handled locally?
4109 	 */
4110 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4111 	if (handled == bytes)
4112 		return X86EMUL_CONTINUE;
4113 
4114 	gpa += handled;
4115 	bytes -= handled;
4116 	val += handled;
4117 
4118 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4119 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4120 	frag->gpa = gpa;
4121 	frag->data = val;
4122 	frag->len = bytes;
4123 	return X86EMUL_CONTINUE;
4124 }
4125 
4126 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4127 			void *val, unsigned int bytes,
4128 			struct x86_exception *exception,
4129 			const struct read_write_emulator_ops *ops)
4130 {
4131 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4132 	gpa_t gpa;
4133 	int rc;
4134 
4135 	if (ops->read_write_prepare &&
4136 		  ops->read_write_prepare(vcpu, val, bytes))
4137 		return X86EMUL_CONTINUE;
4138 
4139 	vcpu->mmio_nr_fragments = 0;
4140 
4141 	/* Crossing a page boundary? */
4142 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4143 		int now;
4144 
4145 		now = -addr & ~PAGE_MASK;
4146 		rc = emulator_read_write_onepage(addr, val, now, exception,
4147 						 vcpu, ops);
4148 
4149 		if (rc != X86EMUL_CONTINUE)
4150 			return rc;
4151 		addr += now;
4152 		val += now;
4153 		bytes -= now;
4154 	}
4155 
4156 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4157 					 vcpu, ops);
4158 	if (rc != X86EMUL_CONTINUE)
4159 		return rc;
4160 
4161 	if (!vcpu->mmio_nr_fragments)
4162 		return rc;
4163 
4164 	gpa = vcpu->mmio_fragments[0].gpa;
4165 
4166 	vcpu->mmio_needed = 1;
4167 	vcpu->mmio_cur_fragment = 0;
4168 
4169 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4170 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4171 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4172 	vcpu->run->mmio.phys_addr = gpa;
4173 
4174 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4175 }
4176 
4177 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4178 				  unsigned long addr,
4179 				  void *val,
4180 				  unsigned int bytes,
4181 				  struct x86_exception *exception)
4182 {
4183 	return emulator_read_write(ctxt, addr, val, bytes,
4184 				   exception, &read_emultor);
4185 }
4186 
4187 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4188 			    unsigned long addr,
4189 			    const void *val,
4190 			    unsigned int bytes,
4191 			    struct x86_exception *exception)
4192 {
4193 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4194 				   exception, &write_emultor);
4195 }
4196 
4197 #define CMPXCHG_TYPE(t, ptr, old, new) \
4198 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4199 
4200 #ifdef CONFIG_X86_64
4201 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4202 #else
4203 #  define CMPXCHG64(ptr, old, new) \
4204 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4205 #endif
4206 
4207 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4208 				     unsigned long addr,
4209 				     const void *old,
4210 				     const void *new,
4211 				     unsigned int bytes,
4212 				     struct x86_exception *exception)
4213 {
4214 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4215 	gpa_t gpa;
4216 	struct page *page;
4217 	char *kaddr;
4218 	bool exchanged;
4219 
4220 	/* guests cmpxchg8b have to be emulated atomically */
4221 	if (bytes > 8 || (bytes & (bytes - 1)))
4222 		goto emul_write;
4223 
4224 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4225 
4226 	if (gpa == UNMAPPED_GVA ||
4227 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4228 		goto emul_write;
4229 
4230 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4231 		goto emul_write;
4232 
4233 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4234 	if (is_error_page(page))
4235 		goto emul_write;
4236 
4237 	kaddr = kmap_atomic(page);
4238 	kaddr += offset_in_page(gpa);
4239 	switch (bytes) {
4240 	case 1:
4241 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4242 		break;
4243 	case 2:
4244 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4245 		break;
4246 	case 4:
4247 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4248 		break;
4249 	case 8:
4250 		exchanged = CMPXCHG64(kaddr, old, new);
4251 		break;
4252 	default:
4253 		BUG();
4254 	}
4255 	kunmap_atomic(kaddr);
4256 	kvm_release_page_dirty(page);
4257 
4258 	if (!exchanged)
4259 		return X86EMUL_CMPXCHG_FAILED;
4260 
4261 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4262 
4263 	return X86EMUL_CONTINUE;
4264 
4265 emul_write:
4266 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4267 
4268 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4269 }
4270 
4271 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4272 {
4273 	/* TODO: String I/O for in kernel device */
4274 	int r;
4275 
4276 	if (vcpu->arch.pio.in)
4277 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4278 				    vcpu->arch.pio.size, pd);
4279 	else
4280 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4281 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4282 				     pd);
4283 	return r;
4284 }
4285 
4286 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4287 			       unsigned short port, void *val,
4288 			       unsigned int count, bool in)
4289 {
4290 	trace_kvm_pio(!in, port, size, count);
4291 
4292 	vcpu->arch.pio.port = port;
4293 	vcpu->arch.pio.in = in;
4294 	vcpu->arch.pio.count  = count;
4295 	vcpu->arch.pio.size = size;
4296 
4297 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4298 		vcpu->arch.pio.count = 0;
4299 		return 1;
4300 	}
4301 
4302 	vcpu->run->exit_reason = KVM_EXIT_IO;
4303 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4304 	vcpu->run->io.size = size;
4305 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4306 	vcpu->run->io.count = count;
4307 	vcpu->run->io.port = port;
4308 
4309 	return 0;
4310 }
4311 
4312 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4313 				    int size, unsigned short port, void *val,
4314 				    unsigned int count)
4315 {
4316 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4317 	int ret;
4318 
4319 	if (vcpu->arch.pio.count)
4320 		goto data_avail;
4321 
4322 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4323 	if (ret) {
4324 data_avail:
4325 		memcpy(val, vcpu->arch.pio_data, size * count);
4326 		vcpu->arch.pio.count = 0;
4327 		return 1;
4328 	}
4329 
4330 	return 0;
4331 }
4332 
4333 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4334 				     int size, unsigned short port,
4335 				     const void *val, unsigned int count)
4336 {
4337 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4338 
4339 	memcpy(vcpu->arch.pio_data, val, size * count);
4340 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4341 }
4342 
4343 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4344 {
4345 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4346 }
4347 
4348 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4349 {
4350 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4351 }
4352 
4353 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4354 {
4355 	if (!need_emulate_wbinvd(vcpu))
4356 		return X86EMUL_CONTINUE;
4357 
4358 	if (kvm_x86_ops->has_wbinvd_exit()) {
4359 		int cpu = get_cpu();
4360 
4361 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4362 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4363 				wbinvd_ipi, NULL, 1);
4364 		put_cpu();
4365 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4366 	} else
4367 		wbinvd();
4368 	return X86EMUL_CONTINUE;
4369 }
4370 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4371 
4372 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4373 {
4374 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4375 }
4376 
4377 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4378 {
4379 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4380 }
4381 
4382 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4383 {
4384 
4385 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4386 }
4387 
4388 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4389 {
4390 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4391 }
4392 
4393 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4394 {
4395 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4396 	unsigned long value;
4397 
4398 	switch (cr) {
4399 	case 0:
4400 		value = kvm_read_cr0(vcpu);
4401 		break;
4402 	case 2:
4403 		value = vcpu->arch.cr2;
4404 		break;
4405 	case 3:
4406 		value = kvm_read_cr3(vcpu);
4407 		break;
4408 	case 4:
4409 		value = kvm_read_cr4(vcpu);
4410 		break;
4411 	case 8:
4412 		value = kvm_get_cr8(vcpu);
4413 		break;
4414 	default:
4415 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4416 		return 0;
4417 	}
4418 
4419 	return value;
4420 }
4421 
4422 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4423 {
4424 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4425 	int res = 0;
4426 
4427 	switch (cr) {
4428 	case 0:
4429 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4430 		break;
4431 	case 2:
4432 		vcpu->arch.cr2 = val;
4433 		break;
4434 	case 3:
4435 		res = kvm_set_cr3(vcpu, val);
4436 		break;
4437 	case 4:
4438 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4439 		break;
4440 	case 8:
4441 		res = kvm_set_cr8(vcpu, val);
4442 		break;
4443 	default:
4444 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4445 		res = -1;
4446 	}
4447 
4448 	return res;
4449 }
4450 
4451 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4452 {
4453 	kvm_set_rflags(emul_to_vcpu(ctxt), val);
4454 }
4455 
4456 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4457 {
4458 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4459 }
4460 
4461 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4462 {
4463 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4464 }
4465 
4466 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4467 {
4468 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4469 }
4470 
4471 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4472 {
4473 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4474 }
4475 
4476 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4477 {
4478 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4479 }
4480 
4481 static unsigned long emulator_get_cached_segment_base(
4482 	struct x86_emulate_ctxt *ctxt, int seg)
4483 {
4484 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4485 }
4486 
4487 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4488 				 struct desc_struct *desc, u32 *base3,
4489 				 int seg)
4490 {
4491 	struct kvm_segment var;
4492 
4493 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4494 	*selector = var.selector;
4495 
4496 	if (var.unusable)
4497 		return false;
4498 
4499 	if (var.g)
4500 		var.limit >>= 12;
4501 	set_desc_limit(desc, var.limit);
4502 	set_desc_base(desc, (unsigned long)var.base);
4503 #ifdef CONFIG_X86_64
4504 	if (base3)
4505 		*base3 = var.base >> 32;
4506 #endif
4507 	desc->type = var.type;
4508 	desc->s = var.s;
4509 	desc->dpl = var.dpl;
4510 	desc->p = var.present;
4511 	desc->avl = var.avl;
4512 	desc->l = var.l;
4513 	desc->d = var.db;
4514 	desc->g = var.g;
4515 
4516 	return true;
4517 }
4518 
4519 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4520 				 struct desc_struct *desc, u32 base3,
4521 				 int seg)
4522 {
4523 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4524 	struct kvm_segment var;
4525 
4526 	var.selector = selector;
4527 	var.base = get_desc_base(desc);
4528 #ifdef CONFIG_X86_64
4529 	var.base |= ((u64)base3) << 32;
4530 #endif
4531 	var.limit = get_desc_limit(desc);
4532 	if (desc->g)
4533 		var.limit = (var.limit << 12) | 0xfff;
4534 	var.type = desc->type;
4535 	var.present = desc->p;
4536 	var.dpl = desc->dpl;
4537 	var.db = desc->d;
4538 	var.s = desc->s;
4539 	var.l = desc->l;
4540 	var.g = desc->g;
4541 	var.avl = desc->avl;
4542 	var.present = desc->p;
4543 	var.unusable = !var.present;
4544 	var.padding = 0;
4545 
4546 	kvm_set_segment(vcpu, &var, seg);
4547 	return;
4548 }
4549 
4550 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4551 			    u32 msr_index, u64 *pdata)
4552 {
4553 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4554 }
4555 
4556 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4557 			    u32 msr_index, u64 data)
4558 {
4559 	struct msr_data msr;
4560 
4561 	msr.data = data;
4562 	msr.index = msr_index;
4563 	msr.host_initiated = false;
4564 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4565 }
4566 
4567 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4568 			     u32 pmc, u64 *pdata)
4569 {
4570 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4571 }
4572 
4573 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4574 {
4575 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4576 }
4577 
4578 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4579 {
4580 	preempt_disable();
4581 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4582 	/*
4583 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4584 	 * so it may be clear at this point.
4585 	 */
4586 	clts();
4587 }
4588 
4589 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4590 {
4591 	preempt_enable();
4592 }
4593 
4594 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4595 			      struct x86_instruction_info *info,
4596 			      enum x86_intercept_stage stage)
4597 {
4598 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4599 }
4600 
4601 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4602 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4603 {
4604 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4605 }
4606 
4607 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4608 {
4609 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4610 }
4611 
4612 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4613 {
4614 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4615 }
4616 
4617 static const struct x86_emulate_ops emulate_ops = {
4618 	.read_gpr            = emulator_read_gpr,
4619 	.write_gpr           = emulator_write_gpr,
4620 	.read_std            = kvm_read_guest_virt_system,
4621 	.write_std           = kvm_write_guest_virt_system,
4622 	.fetch               = kvm_fetch_guest_virt,
4623 	.read_emulated       = emulator_read_emulated,
4624 	.write_emulated      = emulator_write_emulated,
4625 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4626 	.invlpg              = emulator_invlpg,
4627 	.pio_in_emulated     = emulator_pio_in_emulated,
4628 	.pio_out_emulated    = emulator_pio_out_emulated,
4629 	.get_segment         = emulator_get_segment,
4630 	.set_segment         = emulator_set_segment,
4631 	.get_cached_segment_base = emulator_get_cached_segment_base,
4632 	.get_gdt             = emulator_get_gdt,
4633 	.get_idt	     = emulator_get_idt,
4634 	.set_gdt             = emulator_set_gdt,
4635 	.set_idt	     = emulator_set_idt,
4636 	.get_cr              = emulator_get_cr,
4637 	.set_cr              = emulator_set_cr,
4638 	.set_rflags          = emulator_set_rflags,
4639 	.cpl                 = emulator_get_cpl,
4640 	.get_dr              = emulator_get_dr,
4641 	.set_dr              = emulator_set_dr,
4642 	.set_msr             = emulator_set_msr,
4643 	.get_msr             = emulator_get_msr,
4644 	.read_pmc            = emulator_read_pmc,
4645 	.halt                = emulator_halt,
4646 	.wbinvd              = emulator_wbinvd,
4647 	.fix_hypercall       = emulator_fix_hypercall,
4648 	.get_fpu             = emulator_get_fpu,
4649 	.put_fpu             = emulator_put_fpu,
4650 	.intercept           = emulator_intercept,
4651 	.get_cpuid           = emulator_get_cpuid,
4652 };
4653 
4654 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4655 {
4656 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4657 	/*
4658 	 * an sti; sti; sequence only disable interrupts for the first
4659 	 * instruction. So, if the last instruction, be it emulated or
4660 	 * not, left the system with the INT_STI flag enabled, it
4661 	 * means that the last instruction is an sti. We should not
4662 	 * leave the flag on in this case. The same goes for mov ss
4663 	 */
4664 	if (!(int_shadow & mask))
4665 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4666 }
4667 
4668 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4669 {
4670 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4671 	if (ctxt->exception.vector == PF_VECTOR)
4672 		kvm_propagate_fault(vcpu, &ctxt->exception);
4673 	else if (ctxt->exception.error_code_valid)
4674 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4675 				      ctxt->exception.error_code);
4676 	else
4677 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4678 }
4679 
4680 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4681 {
4682 	memset(&ctxt->twobyte, 0,
4683 	       (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4684 
4685 	ctxt->fetch.start = 0;
4686 	ctxt->fetch.end = 0;
4687 	ctxt->io_read.pos = 0;
4688 	ctxt->io_read.end = 0;
4689 	ctxt->mem_read.pos = 0;
4690 	ctxt->mem_read.end = 0;
4691 }
4692 
4693 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4694 {
4695 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4696 	int cs_db, cs_l;
4697 
4698 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4699 
4700 	ctxt->eflags = kvm_get_rflags(vcpu);
4701 	ctxt->eip = kvm_rip_read(vcpu);
4702 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4703 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4704 		     cs_l				? X86EMUL_MODE_PROT64 :
4705 		     cs_db				? X86EMUL_MODE_PROT32 :
4706 							  X86EMUL_MODE_PROT16;
4707 	ctxt->guest_mode = is_guest_mode(vcpu);
4708 
4709 	init_decode_cache(ctxt);
4710 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4711 }
4712 
4713 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4714 {
4715 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4716 	int ret;
4717 
4718 	init_emulate_ctxt(vcpu);
4719 
4720 	ctxt->op_bytes = 2;
4721 	ctxt->ad_bytes = 2;
4722 	ctxt->_eip = ctxt->eip + inc_eip;
4723 	ret = emulate_int_real(ctxt, irq);
4724 
4725 	if (ret != X86EMUL_CONTINUE)
4726 		return EMULATE_FAIL;
4727 
4728 	ctxt->eip = ctxt->_eip;
4729 	kvm_rip_write(vcpu, ctxt->eip);
4730 	kvm_set_rflags(vcpu, ctxt->eflags);
4731 
4732 	if (irq == NMI_VECTOR)
4733 		vcpu->arch.nmi_pending = 0;
4734 	else
4735 		vcpu->arch.interrupt.pending = false;
4736 
4737 	return EMULATE_DONE;
4738 }
4739 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4740 
4741 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4742 {
4743 	int r = EMULATE_DONE;
4744 
4745 	++vcpu->stat.insn_emulation_fail;
4746 	trace_kvm_emulate_insn_failed(vcpu);
4747 	if (!is_guest_mode(vcpu)) {
4748 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4749 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4750 		vcpu->run->internal.ndata = 0;
4751 		r = EMULATE_FAIL;
4752 	}
4753 	kvm_queue_exception(vcpu, UD_VECTOR);
4754 
4755 	return r;
4756 }
4757 
4758 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4759 {
4760 	gpa_t gpa;
4761 	pfn_t pfn;
4762 
4763 	if (tdp_enabled)
4764 		return false;
4765 
4766 	/*
4767 	 * if emulation was due to access to shadowed page table
4768 	 * and it failed try to unshadow page and re-enter the
4769 	 * guest to let CPU execute the instruction.
4770 	 */
4771 	if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4772 		return true;
4773 
4774 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4775 
4776 	if (gpa == UNMAPPED_GVA)
4777 		return true; /* let cpu generate fault */
4778 
4779 	/*
4780 	 * Do not retry the unhandleable instruction if it faults on the
4781 	 * readonly host memory, otherwise it will goto a infinite loop:
4782 	 * retry instruction -> write #PF -> emulation fail -> retry
4783 	 * instruction -> ...
4784 	 */
4785 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4786 	if (!is_error_noslot_pfn(pfn)) {
4787 		kvm_release_pfn_clean(pfn);
4788 		return true;
4789 	}
4790 
4791 	return false;
4792 }
4793 
4794 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4795 			      unsigned long cr2,  int emulation_type)
4796 {
4797 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4798 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4799 
4800 	last_retry_eip = vcpu->arch.last_retry_eip;
4801 	last_retry_addr = vcpu->arch.last_retry_addr;
4802 
4803 	/*
4804 	 * If the emulation is caused by #PF and it is non-page_table
4805 	 * writing instruction, it means the VM-EXIT is caused by shadow
4806 	 * page protected, we can zap the shadow page and retry this
4807 	 * instruction directly.
4808 	 *
4809 	 * Note: if the guest uses a non-page-table modifying instruction
4810 	 * on the PDE that points to the instruction, then we will unmap
4811 	 * the instruction and go to an infinite loop. So, we cache the
4812 	 * last retried eip and the last fault address, if we meet the eip
4813 	 * and the address again, we can break out of the potential infinite
4814 	 * loop.
4815 	 */
4816 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4817 
4818 	if (!(emulation_type & EMULTYPE_RETRY))
4819 		return false;
4820 
4821 	if (x86_page_table_writing_insn(ctxt))
4822 		return false;
4823 
4824 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4825 		return false;
4826 
4827 	vcpu->arch.last_retry_eip = ctxt->eip;
4828 	vcpu->arch.last_retry_addr = cr2;
4829 
4830 	if (!vcpu->arch.mmu.direct_map)
4831 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4832 
4833 	kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4834 
4835 	return true;
4836 }
4837 
4838 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4839 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4840 
4841 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4842 			    unsigned long cr2,
4843 			    int emulation_type,
4844 			    void *insn,
4845 			    int insn_len)
4846 {
4847 	int r;
4848 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4849 	bool writeback = true;
4850 
4851 	kvm_clear_exception_queue(vcpu);
4852 
4853 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4854 		init_emulate_ctxt(vcpu);
4855 		ctxt->interruptibility = 0;
4856 		ctxt->have_exception = false;
4857 		ctxt->perm_ok = false;
4858 
4859 		ctxt->only_vendor_specific_insn
4860 			= emulation_type & EMULTYPE_TRAP_UD;
4861 
4862 		r = x86_decode_insn(ctxt, insn, insn_len);
4863 
4864 		trace_kvm_emulate_insn_start(vcpu);
4865 		++vcpu->stat.insn_emulation;
4866 		if (r != EMULATION_OK)  {
4867 			if (emulation_type & EMULTYPE_TRAP_UD)
4868 				return EMULATE_FAIL;
4869 			if (reexecute_instruction(vcpu, cr2))
4870 				return EMULATE_DONE;
4871 			if (emulation_type & EMULTYPE_SKIP)
4872 				return EMULATE_FAIL;
4873 			return handle_emulation_failure(vcpu);
4874 		}
4875 	}
4876 
4877 	if (emulation_type & EMULTYPE_SKIP) {
4878 		kvm_rip_write(vcpu, ctxt->_eip);
4879 		return EMULATE_DONE;
4880 	}
4881 
4882 	if (retry_instruction(ctxt, cr2, emulation_type))
4883 		return EMULATE_DONE;
4884 
4885 	/* this is needed for vmware backdoor interface to work since it
4886 	   changes registers values  during IO operation */
4887 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4888 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4889 		emulator_invalidate_register_cache(ctxt);
4890 	}
4891 
4892 restart:
4893 	r = x86_emulate_insn(ctxt);
4894 
4895 	if (r == EMULATION_INTERCEPTED)
4896 		return EMULATE_DONE;
4897 
4898 	if (r == EMULATION_FAILED) {
4899 		if (reexecute_instruction(vcpu, cr2))
4900 			return EMULATE_DONE;
4901 
4902 		return handle_emulation_failure(vcpu);
4903 	}
4904 
4905 	if (ctxt->have_exception) {
4906 		inject_emulated_exception(vcpu);
4907 		r = EMULATE_DONE;
4908 	} else if (vcpu->arch.pio.count) {
4909 		if (!vcpu->arch.pio.in)
4910 			vcpu->arch.pio.count = 0;
4911 		else {
4912 			writeback = false;
4913 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
4914 		}
4915 		r = EMULATE_DO_MMIO;
4916 	} else if (vcpu->mmio_needed) {
4917 		if (!vcpu->mmio_is_write)
4918 			writeback = false;
4919 		r = EMULATE_DO_MMIO;
4920 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4921 	} else if (r == EMULATION_RESTART)
4922 		goto restart;
4923 	else
4924 		r = EMULATE_DONE;
4925 
4926 	if (writeback) {
4927 		toggle_interruptibility(vcpu, ctxt->interruptibility);
4928 		kvm_set_rflags(vcpu, ctxt->eflags);
4929 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4930 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4931 		kvm_rip_write(vcpu, ctxt->eip);
4932 	} else
4933 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4934 
4935 	return r;
4936 }
4937 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4938 
4939 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4940 {
4941 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4942 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4943 					    size, port, &val, 1);
4944 	/* do not return to emulator after return from userspace */
4945 	vcpu->arch.pio.count = 0;
4946 	return ret;
4947 }
4948 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4949 
4950 static void tsc_bad(void *info)
4951 {
4952 	__this_cpu_write(cpu_tsc_khz, 0);
4953 }
4954 
4955 static void tsc_khz_changed(void *data)
4956 {
4957 	struct cpufreq_freqs *freq = data;
4958 	unsigned long khz = 0;
4959 
4960 	if (data)
4961 		khz = freq->new;
4962 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4963 		khz = cpufreq_quick_get(raw_smp_processor_id());
4964 	if (!khz)
4965 		khz = tsc_khz;
4966 	__this_cpu_write(cpu_tsc_khz, khz);
4967 }
4968 
4969 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4970 				     void *data)
4971 {
4972 	struct cpufreq_freqs *freq = data;
4973 	struct kvm *kvm;
4974 	struct kvm_vcpu *vcpu;
4975 	int i, send_ipi = 0;
4976 
4977 	/*
4978 	 * We allow guests to temporarily run on slowing clocks,
4979 	 * provided we notify them after, or to run on accelerating
4980 	 * clocks, provided we notify them before.  Thus time never
4981 	 * goes backwards.
4982 	 *
4983 	 * However, we have a problem.  We can't atomically update
4984 	 * the frequency of a given CPU from this function; it is
4985 	 * merely a notifier, which can be called from any CPU.
4986 	 * Changing the TSC frequency at arbitrary points in time
4987 	 * requires a recomputation of local variables related to
4988 	 * the TSC for each VCPU.  We must flag these local variables
4989 	 * to be updated and be sure the update takes place with the
4990 	 * new frequency before any guests proceed.
4991 	 *
4992 	 * Unfortunately, the combination of hotplug CPU and frequency
4993 	 * change creates an intractable locking scenario; the order
4994 	 * of when these callouts happen is undefined with respect to
4995 	 * CPU hotplug, and they can race with each other.  As such,
4996 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4997 	 * undefined; you can actually have a CPU frequency change take
4998 	 * place in between the computation of X and the setting of the
4999 	 * variable.  To protect against this problem, all updates of
5000 	 * the per_cpu tsc_khz variable are done in an interrupt
5001 	 * protected IPI, and all callers wishing to update the value
5002 	 * must wait for a synchronous IPI to complete (which is trivial
5003 	 * if the caller is on the CPU already).  This establishes the
5004 	 * necessary total order on variable updates.
5005 	 *
5006 	 * Note that because a guest time update may take place
5007 	 * anytime after the setting of the VCPU's request bit, the
5008 	 * correct TSC value must be set before the request.  However,
5009 	 * to ensure the update actually makes it to any guest which
5010 	 * starts running in hardware virtualization between the set
5011 	 * and the acquisition of the spinlock, we must also ping the
5012 	 * CPU after setting the request bit.
5013 	 *
5014 	 */
5015 
5016 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5017 		return 0;
5018 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5019 		return 0;
5020 
5021 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5022 
5023 	raw_spin_lock(&kvm_lock);
5024 	list_for_each_entry(kvm, &vm_list, vm_list) {
5025 		kvm_for_each_vcpu(i, vcpu, kvm) {
5026 			if (vcpu->cpu != freq->cpu)
5027 				continue;
5028 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5029 			if (vcpu->cpu != smp_processor_id())
5030 				send_ipi = 1;
5031 		}
5032 	}
5033 	raw_spin_unlock(&kvm_lock);
5034 
5035 	if (freq->old < freq->new && send_ipi) {
5036 		/*
5037 		 * We upscale the frequency.  Must make the guest
5038 		 * doesn't see old kvmclock values while running with
5039 		 * the new frequency, otherwise we risk the guest sees
5040 		 * time go backwards.
5041 		 *
5042 		 * In case we update the frequency for another cpu
5043 		 * (which might be in guest context) send an interrupt
5044 		 * to kick the cpu out of guest context.  Next time
5045 		 * guest context is entered kvmclock will be updated,
5046 		 * so the guest will not see stale values.
5047 		 */
5048 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5049 	}
5050 	return 0;
5051 }
5052 
5053 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5054 	.notifier_call  = kvmclock_cpufreq_notifier
5055 };
5056 
5057 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5058 					unsigned long action, void *hcpu)
5059 {
5060 	unsigned int cpu = (unsigned long)hcpu;
5061 
5062 	switch (action) {
5063 		case CPU_ONLINE:
5064 		case CPU_DOWN_FAILED:
5065 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5066 			break;
5067 		case CPU_DOWN_PREPARE:
5068 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5069 			break;
5070 	}
5071 	return NOTIFY_OK;
5072 }
5073 
5074 static struct notifier_block kvmclock_cpu_notifier_block = {
5075 	.notifier_call  = kvmclock_cpu_notifier,
5076 	.priority = -INT_MAX
5077 };
5078 
5079 static void kvm_timer_init(void)
5080 {
5081 	int cpu;
5082 
5083 	max_tsc_khz = tsc_khz;
5084 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5085 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5086 #ifdef CONFIG_CPU_FREQ
5087 		struct cpufreq_policy policy;
5088 		memset(&policy, 0, sizeof(policy));
5089 		cpu = get_cpu();
5090 		cpufreq_get_policy(&policy, cpu);
5091 		if (policy.cpuinfo.max_freq)
5092 			max_tsc_khz = policy.cpuinfo.max_freq;
5093 		put_cpu();
5094 #endif
5095 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5096 					  CPUFREQ_TRANSITION_NOTIFIER);
5097 	}
5098 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5099 	for_each_online_cpu(cpu)
5100 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5101 }
5102 
5103 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5104 
5105 int kvm_is_in_guest(void)
5106 {
5107 	return __this_cpu_read(current_vcpu) != NULL;
5108 }
5109 
5110 static int kvm_is_user_mode(void)
5111 {
5112 	int user_mode = 3;
5113 
5114 	if (__this_cpu_read(current_vcpu))
5115 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5116 
5117 	return user_mode != 0;
5118 }
5119 
5120 static unsigned long kvm_get_guest_ip(void)
5121 {
5122 	unsigned long ip = 0;
5123 
5124 	if (__this_cpu_read(current_vcpu))
5125 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5126 
5127 	return ip;
5128 }
5129 
5130 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5131 	.is_in_guest		= kvm_is_in_guest,
5132 	.is_user_mode		= kvm_is_user_mode,
5133 	.get_guest_ip		= kvm_get_guest_ip,
5134 };
5135 
5136 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5137 {
5138 	__this_cpu_write(current_vcpu, vcpu);
5139 }
5140 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5141 
5142 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5143 {
5144 	__this_cpu_write(current_vcpu, NULL);
5145 }
5146 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5147 
5148 static void kvm_set_mmio_spte_mask(void)
5149 {
5150 	u64 mask;
5151 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5152 
5153 	/*
5154 	 * Set the reserved bits and the present bit of an paging-structure
5155 	 * entry to generate page fault with PFER.RSV = 1.
5156 	 */
5157 	mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5158 	mask |= 1ull;
5159 
5160 #ifdef CONFIG_X86_64
5161 	/*
5162 	 * If reserved bit is not supported, clear the present bit to disable
5163 	 * mmio page fault.
5164 	 */
5165 	if (maxphyaddr == 52)
5166 		mask &= ~1ull;
5167 #endif
5168 
5169 	kvm_mmu_set_mmio_spte_mask(mask);
5170 }
5171 
5172 #ifdef CONFIG_X86_64
5173 static void pvclock_gtod_update_fn(struct work_struct *work)
5174 {
5175 	struct kvm *kvm;
5176 
5177 	struct kvm_vcpu *vcpu;
5178 	int i;
5179 
5180 	raw_spin_lock(&kvm_lock);
5181 	list_for_each_entry(kvm, &vm_list, vm_list)
5182 		kvm_for_each_vcpu(i, vcpu, kvm)
5183 			set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5184 	atomic_set(&kvm_guest_has_master_clock, 0);
5185 	raw_spin_unlock(&kvm_lock);
5186 }
5187 
5188 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5189 
5190 /*
5191  * Notification about pvclock gtod data update.
5192  */
5193 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5194 			       void *priv)
5195 {
5196 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5197 	struct timekeeper *tk = priv;
5198 
5199 	update_pvclock_gtod(tk);
5200 
5201 	/* disable master clock if host does not trust, or does not
5202 	 * use, TSC clocksource
5203 	 */
5204 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5205 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5206 		queue_work(system_long_wq, &pvclock_gtod_work);
5207 
5208 	return 0;
5209 }
5210 
5211 static struct notifier_block pvclock_gtod_notifier = {
5212 	.notifier_call = pvclock_gtod_notify,
5213 };
5214 #endif
5215 
5216 int kvm_arch_init(void *opaque)
5217 {
5218 	int r;
5219 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5220 
5221 	if (kvm_x86_ops) {
5222 		printk(KERN_ERR "kvm: already loaded the other module\n");
5223 		r = -EEXIST;
5224 		goto out;
5225 	}
5226 
5227 	if (!ops->cpu_has_kvm_support()) {
5228 		printk(KERN_ERR "kvm: no hardware support\n");
5229 		r = -EOPNOTSUPP;
5230 		goto out;
5231 	}
5232 	if (ops->disabled_by_bios()) {
5233 		printk(KERN_ERR "kvm: disabled by bios\n");
5234 		r = -EOPNOTSUPP;
5235 		goto out;
5236 	}
5237 
5238 	r = -ENOMEM;
5239 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5240 	if (!shared_msrs) {
5241 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5242 		goto out;
5243 	}
5244 
5245 	r = kvm_mmu_module_init();
5246 	if (r)
5247 		goto out_free_percpu;
5248 
5249 	kvm_set_mmio_spte_mask();
5250 	kvm_init_msr_list();
5251 
5252 	kvm_x86_ops = ops;
5253 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5254 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5255 
5256 	kvm_timer_init();
5257 
5258 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5259 
5260 	if (cpu_has_xsave)
5261 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5262 
5263 	kvm_lapic_init();
5264 #ifdef CONFIG_X86_64
5265 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5266 #endif
5267 
5268 	return 0;
5269 
5270 out_free_percpu:
5271 	free_percpu(shared_msrs);
5272 out:
5273 	return r;
5274 }
5275 
5276 void kvm_arch_exit(void)
5277 {
5278 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5279 
5280 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5281 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5282 					    CPUFREQ_TRANSITION_NOTIFIER);
5283 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5284 #ifdef CONFIG_X86_64
5285 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5286 #endif
5287 	kvm_x86_ops = NULL;
5288 	kvm_mmu_module_exit();
5289 	free_percpu(shared_msrs);
5290 }
5291 
5292 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5293 {
5294 	++vcpu->stat.halt_exits;
5295 	if (irqchip_in_kernel(vcpu->kvm)) {
5296 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5297 		return 1;
5298 	} else {
5299 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5300 		return 0;
5301 	}
5302 }
5303 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5304 
5305 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5306 {
5307 	u64 param, ingpa, outgpa, ret;
5308 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5309 	bool fast, longmode;
5310 	int cs_db, cs_l;
5311 
5312 	/*
5313 	 * hypercall generates UD from non zero cpl and real mode
5314 	 * per HYPER-V spec
5315 	 */
5316 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5317 		kvm_queue_exception(vcpu, UD_VECTOR);
5318 		return 0;
5319 	}
5320 
5321 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5322 	longmode = is_long_mode(vcpu) && cs_l == 1;
5323 
5324 	if (!longmode) {
5325 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5326 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5327 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5328 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5329 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5330 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5331 	}
5332 #ifdef CONFIG_X86_64
5333 	else {
5334 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5335 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5336 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5337 	}
5338 #endif
5339 
5340 	code = param & 0xffff;
5341 	fast = (param >> 16) & 0x1;
5342 	rep_cnt = (param >> 32) & 0xfff;
5343 	rep_idx = (param >> 48) & 0xfff;
5344 
5345 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5346 
5347 	switch (code) {
5348 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5349 		kvm_vcpu_on_spin(vcpu);
5350 		break;
5351 	default:
5352 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5353 		break;
5354 	}
5355 
5356 	ret = res | (((u64)rep_done & 0xfff) << 32);
5357 	if (longmode) {
5358 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5359 	} else {
5360 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5361 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5362 	}
5363 
5364 	return 1;
5365 }
5366 
5367 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5368 {
5369 	unsigned long nr, a0, a1, a2, a3, ret;
5370 	int r = 1;
5371 
5372 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5373 		return kvm_hv_hypercall(vcpu);
5374 
5375 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5376 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5377 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5378 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5379 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5380 
5381 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5382 
5383 	if (!is_long_mode(vcpu)) {
5384 		nr &= 0xFFFFFFFF;
5385 		a0 &= 0xFFFFFFFF;
5386 		a1 &= 0xFFFFFFFF;
5387 		a2 &= 0xFFFFFFFF;
5388 		a3 &= 0xFFFFFFFF;
5389 	}
5390 
5391 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5392 		ret = -KVM_EPERM;
5393 		goto out;
5394 	}
5395 
5396 	switch (nr) {
5397 	case KVM_HC_VAPIC_POLL_IRQ:
5398 		ret = 0;
5399 		break;
5400 	default:
5401 		ret = -KVM_ENOSYS;
5402 		break;
5403 	}
5404 out:
5405 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5406 	++vcpu->stat.hypercalls;
5407 	return r;
5408 }
5409 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5410 
5411 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5412 {
5413 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5414 	char instruction[3];
5415 	unsigned long rip = kvm_rip_read(vcpu);
5416 
5417 	/*
5418 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
5419 	 * to ensure that the updated hypercall appears atomically across all
5420 	 * VCPUs.
5421 	 */
5422 	kvm_mmu_zap_all(vcpu->kvm);
5423 
5424 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5425 
5426 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5427 }
5428 
5429 /*
5430  * Check if userspace requested an interrupt window, and that the
5431  * interrupt window is open.
5432  *
5433  * No need to exit to userspace if we already have an interrupt queued.
5434  */
5435 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5436 {
5437 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5438 		vcpu->run->request_interrupt_window &&
5439 		kvm_arch_interrupt_allowed(vcpu));
5440 }
5441 
5442 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5443 {
5444 	struct kvm_run *kvm_run = vcpu->run;
5445 
5446 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5447 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5448 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5449 	if (irqchip_in_kernel(vcpu->kvm))
5450 		kvm_run->ready_for_interrupt_injection = 1;
5451 	else
5452 		kvm_run->ready_for_interrupt_injection =
5453 			kvm_arch_interrupt_allowed(vcpu) &&
5454 			!kvm_cpu_has_interrupt(vcpu) &&
5455 			!kvm_event_needs_reinjection(vcpu);
5456 }
5457 
5458 static int vapic_enter(struct kvm_vcpu *vcpu)
5459 {
5460 	struct kvm_lapic *apic = vcpu->arch.apic;
5461 	struct page *page;
5462 
5463 	if (!apic || !apic->vapic_addr)
5464 		return 0;
5465 
5466 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5467 	if (is_error_page(page))
5468 		return -EFAULT;
5469 
5470 	vcpu->arch.apic->vapic_page = page;
5471 	return 0;
5472 }
5473 
5474 static void vapic_exit(struct kvm_vcpu *vcpu)
5475 {
5476 	struct kvm_lapic *apic = vcpu->arch.apic;
5477 	int idx;
5478 
5479 	if (!apic || !apic->vapic_addr)
5480 		return;
5481 
5482 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5483 	kvm_release_page_dirty(apic->vapic_page);
5484 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5485 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5486 }
5487 
5488 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5489 {
5490 	int max_irr, tpr;
5491 
5492 	if (!kvm_x86_ops->update_cr8_intercept)
5493 		return;
5494 
5495 	if (!vcpu->arch.apic)
5496 		return;
5497 
5498 	if (!vcpu->arch.apic->vapic_addr)
5499 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5500 	else
5501 		max_irr = -1;
5502 
5503 	if (max_irr != -1)
5504 		max_irr >>= 4;
5505 
5506 	tpr = kvm_lapic_get_cr8(vcpu);
5507 
5508 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5509 }
5510 
5511 static void inject_pending_event(struct kvm_vcpu *vcpu)
5512 {
5513 	/* try to reinject previous events if any */
5514 	if (vcpu->arch.exception.pending) {
5515 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5516 					vcpu->arch.exception.has_error_code,
5517 					vcpu->arch.exception.error_code);
5518 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5519 					  vcpu->arch.exception.has_error_code,
5520 					  vcpu->arch.exception.error_code,
5521 					  vcpu->arch.exception.reinject);
5522 		return;
5523 	}
5524 
5525 	if (vcpu->arch.nmi_injected) {
5526 		kvm_x86_ops->set_nmi(vcpu);
5527 		return;
5528 	}
5529 
5530 	if (vcpu->arch.interrupt.pending) {
5531 		kvm_x86_ops->set_irq(vcpu);
5532 		return;
5533 	}
5534 
5535 	/* try to inject new event if pending */
5536 	if (vcpu->arch.nmi_pending) {
5537 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5538 			--vcpu->arch.nmi_pending;
5539 			vcpu->arch.nmi_injected = true;
5540 			kvm_x86_ops->set_nmi(vcpu);
5541 		}
5542 	} else if (kvm_cpu_has_interrupt(vcpu)) {
5543 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5544 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5545 					    false);
5546 			kvm_x86_ops->set_irq(vcpu);
5547 		}
5548 	}
5549 }
5550 
5551 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5552 {
5553 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5554 			!vcpu->guest_xcr0_loaded) {
5555 		/* kvm_set_xcr() also depends on this */
5556 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5557 		vcpu->guest_xcr0_loaded = 1;
5558 	}
5559 }
5560 
5561 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5562 {
5563 	if (vcpu->guest_xcr0_loaded) {
5564 		if (vcpu->arch.xcr0 != host_xcr0)
5565 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5566 		vcpu->guest_xcr0_loaded = 0;
5567 	}
5568 }
5569 
5570 static void process_nmi(struct kvm_vcpu *vcpu)
5571 {
5572 	unsigned limit = 2;
5573 
5574 	/*
5575 	 * x86 is limited to one NMI running, and one NMI pending after it.
5576 	 * If an NMI is already in progress, limit further NMIs to just one.
5577 	 * Otherwise, allow two (and we'll inject the first one immediately).
5578 	 */
5579 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5580 		limit = 1;
5581 
5582 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5583 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5584 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5585 }
5586 
5587 static void kvm_gen_update_masterclock(struct kvm *kvm)
5588 {
5589 #ifdef CONFIG_X86_64
5590 	int i;
5591 	struct kvm_vcpu *vcpu;
5592 	struct kvm_arch *ka = &kvm->arch;
5593 
5594 	spin_lock(&ka->pvclock_gtod_sync_lock);
5595 	kvm_make_mclock_inprogress_request(kvm);
5596 	/* no guest entries from this point */
5597 	pvclock_update_vm_gtod_copy(kvm);
5598 
5599 	kvm_for_each_vcpu(i, vcpu, kvm)
5600 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5601 
5602 	/* guest entries allowed */
5603 	kvm_for_each_vcpu(i, vcpu, kvm)
5604 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5605 
5606 	spin_unlock(&ka->pvclock_gtod_sync_lock);
5607 #endif
5608 }
5609 
5610 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5611 {
5612 	int r;
5613 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5614 		vcpu->run->request_interrupt_window;
5615 	bool req_immediate_exit = 0;
5616 
5617 	if (vcpu->requests) {
5618 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5619 			kvm_mmu_unload(vcpu);
5620 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5621 			__kvm_migrate_timers(vcpu);
5622 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5623 			kvm_gen_update_masterclock(vcpu->kvm);
5624 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5625 			r = kvm_guest_time_update(vcpu);
5626 			if (unlikely(r))
5627 				goto out;
5628 		}
5629 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5630 			kvm_mmu_sync_roots(vcpu);
5631 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5632 			kvm_x86_ops->tlb_flush(vcpu);
5633 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5634 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5635 			r = 0;
5636 			goto out;
5637 		}
5638 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5639 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5640 			r = 0;
5641 			goto out;
5642 		}
5643 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5644 			vcpu->fpu_active = 0;
5645 			kvm_x86_ops->fpu_deactivate(vcpu);
5646 		}
5647 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5648 			/* Page is swapped out. Do synthetic halt */
5649 			vcpu->arch.apf.halted = true;
5650 			r = 1;
5651 			goto out;
5652 		}
5653 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5654 			record_steal_time(vcpu);
5655 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5656 			process_nmi(vcpu);
5657 		req_immediate_exit =
5658 			kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5659 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5660 			kvm_handle_pmu_event(vcpu);
5661 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5662 			kvm_deliver_pmi(vcpu);
5663 	}
5664 
5665 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5666 		inject_pending_event(vcpu);
5667 
5668 		/* enable NMI/IRQ window open exits if needed */
5669 		if (vcpu->arch.nmi_pending)
5670 			kvm_x86_ops->enable_nmi_window(vcpu);
5671 		else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5672 			kvm_x86_ops->enable_irq_window(vcpu);
5673 
5674 		if (kvm_lapic_enabled(vcpu)) {
5675 			update_cr8_intercept(vcpu);
5676 			kvm_lapic_sync_to_vapic(vcpu);
5677 		}
5678 	}
5679 
5680 	r = kvm_mmu_reload(vcpu);
5681 	if (unlikely(r)) {
5682 		goto cancel_injection;
5683 	}
5684 
5685 	preempt_disable();
5686 
5687 	kvm_x86_ops->prepare_guest_switch(vcpu);
5688 	if (vcpu->fpu_active)
5689 		kvm_load_guest_fpu(vcpu);
5690 	kvm_load_guest_xcr0(vcpu);
5691 
5692 	vcpu->mode = IN_GUEST_MODE;
5693 
5694 	/* We should set ->mode before check ->requests,
5695 	 * see the comment in make_all_cpus_request.
5696 	 */
5697 	smp_mb();
5698 
5699 	local_irq_disable();
5700 
5701 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5702 	    || need_resched() || signal_pending(current)) {
5703 		vcpu->mode = OUTSIDE_GUEST_MODE;
5704 		smp_wmb();
5705 		local_irq_enable();
5706 		preempt_enable();
5707 		r = 1;
5708 		goto cancel_injection;
5709 	}
5710 
5711 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5712 
5713 	if (req_immediate_exit)
5714 		smp_send_reschedule(vcpu->cpu);
5715 
5716 	kvm_guest_enter();
5717 
5718 	if (unlikely(vcpu->arch.switch_db_regs)) {
5719 		set_debugreg(0, 7);
5720 		set_debugreg(vcpu->arch.eff_db[0], 0);
5721 		set_debugreg(vcpu->arch.eff_db[1], 1);
5722 		set_debugreg(vcpu->arch.eff_db[2], 2);
5723 		set_debugreg(vcpu->arch.eff_db[3], 3);
5724 	}
5725 
5726 	trace_kvm_entry(vcpu->vcpu_id);
5727 	kvm_x86_ops->run(vcpu);
5728 
5729 	/*
5730 	 * If the guest has used debug registers, at least dr7
5731 	 * will be disabled while returning to the host.
5732 	 * If we don't have active breakpoints in the host, we don't
5733 	 * care about the messed up debug address registers. But if
5734 	 * we have some of them active, restore the old state.
5735 	 */
5736 	if (hw_breakpoint_active())
5737 		hw_breakpoint_restore();
5738 
5739 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5740 							   native_read_tsc());
5741 
5742 	vcpu->mode = OUTSIDE_GUEST_MODE;
5743 	smp_wmb();
5744 	local_irq_enable();
5745 
5746 	++vcpu->stat.exits;
5747 
5748 	/*
5749 	 * We must have an instruction between local_irq_enable() and
5750 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5751 	 * the interrupt shadow.  The stat.exits increment will do nicely.
5752 	 * But we need to prevent reordering, hence this barrier():
5753 	 */
5754 	barrier();
5755 
5756 	kvm_guest_exit();
5757 
5758 	preempt_enable();
5759 
5760 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5761 
5762 	/*
5763 	 * Profile KVM exit RIPs:
5764 	 */
5765 	if (unlikely(prof_on == KVM_PROFILING)) {
5766 		unsigned long rip = kvm_rip_read(vcpu);
5767 		profile_hit(KVM_PROFILING, (void *)rip);
5768 	}
5769 
5770 	if (unlikely(vcpu->arch.tsc_always_catchup))
5771 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5772 
5773 	if (vcpu->arch.apic_attention)
5774 		kvm_lapic_sync_from_vapic(vcpu);
5775 
5776 	r = kvm_x86_ops->handle_exit(vcpu);
5777 	return r;
5778 
5779 cancel_injection:
5780 	kvm_x86_ops->cancel_injection(vcpu);
5781 	if (unlikely(vcpu->arch.apic_attention))
5782 		kvm_lapic_sync_from_vapic(vcpu);
5783 out:
5784 	return r;
5785 }
5786 
5787 
5788 static int __vcpu_run(struct kvm_vcpu *vcpu)
5789 {
5790 	int r;
5791 	struct kvm *kvm = vcpu->kvm;
5792 
5793 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5794 		pr_debug("vcpu %d received sipi with vector # %x\n",
5795 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5796 		kvm_lapic_reset(vcpu);
5797 		r = kvm_vcpu_reset(vcpu);
5798 		if (r)
5799 			return r;
5800 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5801 	}
5802 
5803 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5804 	r = vapic_enter(vcpu);
5805 	if (r) {
5806 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5807 		return r;
5808 	}
5809 
5810 	r = 1;
5811 	while (r > 0) {
5812 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5813 		    !vcpu->arch.apf.halted)
5814 			r = vcpu_enter_guest(vcpu);
5815 		else {
5816 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5817 			kvm_vcpu_block(vcpu);
5818 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5819 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5820 			{
5821 				switch(vcpu->arch.mp_state) {
5822 				case KVM_MP_STATE_HALTED:
5823 					vcpu->arch.mp_state =
5824 						KVM_MP_STATE_RUNNABLE;
5825 				case KVM_MP_STATE_RUNNABLE:
5826 					vcpu->arch.apf.halted = false;
5827 					break;
5828 				case KVM_MP_STATE_SIPI_RECEIVED:
5829 				default:
5830 					r = -EINTR;
5831 					break;
5832 				}
5833 			}
5834 		}
5835 
5836 		if (r <= 0)
5837 			break;
5838 
5839 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5840 		if (kvm_cpu_has_pending_timer(vcpu))
5841 			kvm_inject_pending_timer_irqs(vcpu);
5842 
5843 		if (dm_request_for_irq_injection(vcpu)) {
5844 			r = -EINTR;
5845 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5846 			++vcpu->stat.request_irq_exits;
5847 		}
5848 
5849 		kvm_check_async_pf_completion(vcpu);
5850 
5851 		if (signal_pending(current)) {
5852 			r = -EINTR;
5853 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5854 			++vcpu->stat.signal_exits;
5855 		}
5856 		if (need_resched()) {
5857 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5858 			kvm_resched(vcpu);
5859 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5860 		}
5861 	}
5862 
5863 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5864 
5865 	vapic_exit(vcpu);
5866 
5867 	return r;
5868 }
5869 
5870 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5871 {
5872 	int r;
5873 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5874 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5875 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5876 	if (r != EMULATE_DONE)
5877 		return 0;
5878 	return 1;
5879 }
5880 
5881 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5882 {
5883 	BUG_ON(!vcpu->arch.pio.count);
5884 
5885 	return complete_emulated_io(vcpu);
5886 }
5887 
5888 /*
5889  * Implements the following, as a state machine:
5890  *
5891  * read:
5892  *   for each fragment
5893  *     for each mmio piece in the fragment
5894  *       write gpa, len
5895  *       exit
5896  *       copy data
5897  *   execute insn
5898  *
5899  * write:
5900  *   for each fragment
5901  *     for each mmio piece in the fragment
5902  *       write gpa, len
5903  *       copy data
5904  *       exit
5905  */
5906 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5907 {
5908 	struct kvm_run *run = vcpu->run;
5909 	struct kvm_mmio_fragment *frag;
5910 	unsigned len;
5911 
5912 	BUG_ON(!vcpu->mmio_needed);
5913 
5914 	/* Complete previous fragment */
5915 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5916 	len = min(8u, frag->len);
5917 	if (!vcpu->mmio_is_write)
5918 		memcpy(frag->data, run->mmio.data, len);
5919 
5920 	if (frag->len <= 8) {
5921 		/* Switch to the next fragment. */
5922 		frag++;
5923 		vcpu->mmio_cur_fragment++;
5924 	} else {
5925 		/* Go forward to the next mmio piece. */
5926 		frag->data += len;
5927 		frag->gpa += len;
5928 		frag->len -= len;
5929 	}
5930 
5931 	if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5932 		vcpu->mmio_needed = 0;
5933 		if (vcpu->mmio_is_write)
5934 			return 1;
5935 		vcpu->mmio_read_completed = 1;
5936 		return complete_emulated_io(vcpu);
5937 	}
5938 
5939 	run->exit_reason = KVM_EXIT_MMIO;
5940 	run->mmio.phys_addr = frag->gpa;
5941 	if (vcpu->mmio_is_write)
5942 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
5943 	run->mmio.len = min(8u, frag->len);
5944 	run->mmio.is_write = vcpu->mmio_is_write;
5945 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5946 	return 0;
5947 }
5948 
5949 
5950 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5951 {
5952 	int r;
5953 	sigset_t sigsaved;
5954 
5955 	if (!tsk_used_math(current) && init_fpu(current))
5956 		return -ENOMEM;
5957 
5958 	if (vcpu->sigset_active)
5959 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5960 
5961 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5962 		kvm_vcpu_block(vcpu);
5963 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5964 		r = -EAGAIN;
5965 		goto out;
5966 	}
5967 
5968 	/* re-sync apic's tpr */
5969 	if (!irqchip_in_kernel(vcpu->kvm)) {
5970 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5971 			r = -EINVAL;
5972 			goto out;
5973 		}
5974 	}
5975 
5976 	if (unlikely(vcpu->arch.complete_userspace_io)) {
5977 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
5978 		vcpu->arch.complete_userspace_io = NULL;
5979 		r = cui(vcpu);
5980 		if (r <= 0)
5981 			goto out;
5982 	} else
5983 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5984 
5985 	r = __vcpu_run(vcpu);
5986 
5987 out:
5988 	post_kvm_run_save(vcpu);
5989 	if (vcpu->sigset_active)
5990 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5991 
5992 	return r;
5993 }
5994 
5995 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5996 {
5997 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5998 		/*
5999 		 * We are here if userspace calls get_regs() in the middle of
6000 		 * instruction emulation. Registers state needs to be copied
6001 		 * back from emulation context to vcpu. Userspace shouldn't do
6002 		 * that usually, but some bad designed PV devices (vmware
6003 		 * backdoor interface) need this to work
6004 		 */
6005 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6006 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6007 	}
6008 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6009 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6010 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6011 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6012 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6013 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6014 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6015 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6016 #ifdef CONFIG_X86_64
6017 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6018 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6019 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6020 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6021 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6022 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6023 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6024 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6025 #endif
6026 
6027 	regs->rip = kvm_rip_read(vcpu);
6028 	regs->rflags = kvm_get_rflags(vcpu);
6029 
6030 	return 0;
6031 }
6032 
6033 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6034 {
6035 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6036 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6037 
6038 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6039 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6040 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6041 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6042 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6043 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6044 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6045 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6046 #ifdef CONFIG_X86_64
6047 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6048 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6049 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6050 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6051 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6052 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6053 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6054 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6055 #endif
6056 
6057 	kvm_rip_write(vcpu, regs->rip);
6058 	kvm_set_rflags(vcpu, regs->rflags);
6059 
6060 	vcpu->arch.exception.pending = false;
6061 
6062 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6063 
6064 	return 0;
6065 }
6066 
6067 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6068 {
6069 	struct kvm_segment cs;
6070 
6071 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6072 	*db = cs.db;
6073 	*l = cs.l;
6074 }
6075 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6076 
6077 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6078 				  struct kvm_sregs *sregs)
6079 {
6080 	struct desc_ptr dt;
6081 
6082 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6083 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6084 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6085 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6086 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6087 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6088 
6089 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6090 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6091 
6092 	kvm_x86_ops->get_idt(vcpu, &dt);
6093 	sregs->idt.limit = dt.size;
6094 	sregs->idt.base = dt.address;
6095 	kvm_x86_ops->get_gdt(vcpu, &dt);
6096 	sregs->gdt.limit = dt.size;
6097 	sregs->gdt.base = dt.address;
6098 
6099 	sregs->cr0 = kvm_read_cr0(vcpu);
6100 	sregs->cr2 = vcpu->arch.cr2;
6101 	sregs->cr3 = kvm_read_cr3(vcpu);
6102 	sregs->cr4 = kvm_read_cr4(vcpu);
6103 	sregs->cr8 = kvm_get_cr8(vcpu);
6104 	sregs->efer = vcpu->arch.efer;
6105 	sregs->apic_base = kvm_get_apic_base(vcpu);
6106 
6107 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6108 
6109 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6110 		set_bit(vcpu->arch.interrupt.nr,
6111 			(unsigned long *)sregs->interrupt_bitmap);
6112 
6113 	return 0;
6114 }
6115 
6116 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6117 				    struct kvm_mp_state *mp_state)
6118 {
6119 	mp_state->mp_state = vcpu->arch.mp_state;
6120 	return 0;
6121 }
6122 
6123 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6124 				    struct kvm_mp_state *mp_state)
6125 {
6126 	vcpu->arch.mp_state = mp_state->mp_state;
6127 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6128 	return 0;
6129 }
6130 
6131 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6132 		    int reason, bool has_error_code, u32 error_code)
6133 {
6134 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6135 	int ret;
6136 
6137 	init_emulate_ctxt(vcpu);
6138 
6139 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6140 				   has_error_code, error_code);
6141 
6142 	if (ret)
6143 		return EMULATE_FAIL;
6144 
6145 	kvm_rip_write(vcpu, ctxt->eip);
6146 	kvm_set_rflags(vcpu, ctxt->eflags);
6147 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6148 	return EMULATE_DONE;
6149 }
6150 EXPORT_SYMBOL_GPL(kvm_task_switch);
6151 
6152 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6153 				  struct kvm_sregs *sregs)
6154 {
6155 	int mmu_reset_needed = 0;
6156 	int pending_vec, max_bits, idx;
6157 	struct desc_ptr dt;
6158 
6159 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6160 		return -EINVAL;
6161 
6162 	dt.size = sregs->idt.limit;
6163 	dt.address = sregs->idt.base;
6164 	kvm_x86_ops->set_idt(vcpu, &dt);
6165 	dt.size = sregs->gdt.limit;
6166 	dt.address = sregs->gdt.base;
6167 	kvm_x86_ops->set_gdt(vcpu, &dt);
6168 
6169 	vcpu->arch.cr2 = sregs->cr2;
6170 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6171 	vcpu->arch.cr3 = sregs->cr3;
6172 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6173 
6174 	kvm_set_cr8(vcpu, sregs->cr8);
6175 
6176 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6177 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6178 	kvm_set_apic_base(vcpu, sregs->apic_base);
6179 
6180 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6181 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6182 	vcpu->arch.cr0 = sregs->cr0;
6183 
6184 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6185 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6186 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6187 		kvm_update_cpuid(vcpu);
6188 
6189 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6190 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6191 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6192 		mmu_reset_needed = 1;
6193 	}
6194 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6195 
6196 	if (mmu_reset_needed)
6197 		kvm_mmu_reset_context(vcpu);
6198 
6199 	max_bits = KVM_NR_INTERRUPTS;
6200 	pending_vec = find_first_bit(
6201 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6202 	if (pending_vec < max_bits) {
6203 		kvm_queue_interrupt(vcpu, pending_vec, false);
6204 		pr_debug("Set back pending irq %d\n", pending_vec);
6205 	}
6206 
6207 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6208 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6209 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6210 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6211 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6212 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6213 
6214 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6215 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6216 
6217 	update_cr8_intercept(vcpu);
6218 
6219 	/* Older userspace won't unhalt the vcpu on reset. */
6220 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6221 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6222 	    !is_protmode(vcpu))
6223 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6224 
6225 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6226 
6227 	return 0;
6228 }
6229 
6230 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6231 					struct kvm_guest_debug *dbg)
6232 {
6233 	unsigned long rflags;
6234 	int i, r;
6235 
6236 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6237 		r = -EBUSY;
6238 		if (vcpu->arch.exception.pending)
6239 			goto out;
6240 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6241 			kvm_queue_exception(vcpu, DB_VECTOR);
6242 		else
6243 			kvm_queue_exception(vcpu, BP_VECTOR);
6244 	}
6245 
6246 	/*
6247 	 * Read rflags as long as potentially injected trace flags are still
6248 	 * filtered out.
6249 	 */
6250 	rflags = kvm_get_rflags(vcpu);
6251 
6252 	vcpu->guest_debug = dbg->control;
6253 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6254 		vcpu->guest_debug = 0;
6255 
6256 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6257 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6258 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6259 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6260 	} else {
6261 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6262 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6263 	}
6264 	kvm_update_dr7(vcpu);
6265 
6266 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6267 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6268 			get_segment_base(vcpu, VCPU_SREG_CS);
6269 
6270 	/*
6271 	 * Trigger an rflags update that will inject or remove the trace
6272 	 * flags.
6273 	 */
6274 	kvm_set_rflags(vcpu, rflags);
6275 
6276 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6277 
6278 	r = 0;
6279 
6280 out:
6281 
6282 	return r;
6283 }
6284 
6285 /*
6286  * Translate a guest virtual address to a guest physical address.
6287  */
6288 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6289 				    struct kvm_translation *tr)
6290 {
6291 	unsigned long vaddr = tr->linear_address;
6292 	gpa_t gpa;
6293 	int idx;
6294 
6295 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6296 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6297 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6298 	tr->physical_address = gpa;
6299 	tr->valid = gpa != UNMAPPED_GVA;
6300 	tr->writeable = 1;
6301 	tr->usermode = 0;
6302 
6303 	return 0;
6304 }
6305 
6306 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6307 {
6308 	struct i387_fxsave_struct *fxsave =
6309 			&vcpu->arch.guest_fpu.state->fxsave;
6310 
6311 	memcpy(fpu->fpr, fxsave->st_space, 128);
6312 	fpu->fcw = fxsave->cwd;
6313 	fpu->fsw = fxsave->swd;
6314 	fpu->ftwx = fxsave->twd;
6315 	fpu->last_opcode = fxsave->fop;
6316 	fpu->last_ip = fxsave->rip;
6317 	fpu->last_dp = fxsave->rdp;
6318 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6319 
6320 	return 0;
6321 }
6322 
6323 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6324 {
6325 	struct i387_fxsave_struct *fxsave =
6326 			&vcpu->arch.guest_fpu.state->fxsave;
6327 
6328 	memcpy(fxsave->st_space, fpu->fpr, 128);
6329 	fxsave->cwd = fpu->fcw;
6330 	fxsave->swd = fpu->fsw;
6331 	fxsave->twd = fpu->ftwx;
6332 	fxsave->fop = fpu->last_opcode;
6333 	fxsave->rip = fpu->last_ip;
6334 	fxsave->rdp = fpu->last_dp;
6335 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6336 
6337 	return 0;
6338 }
6339 
6340 int fx_init(struct kvm_vcpu *vcpu)
6341 {
6342 	int err;
6343 
6344 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6345 	if (err)
6346 		return err;
6347 
6348 	fpu_finit(&vcpu->arch.guest_fpu);
6349 
6350 	/*
6351 	 * Ensure guest xcr0 is valid for loading
6352 	 */
6353 	vcpu->arch.xcr0 = XSTATE_FP;
6354 
6355 	vcpu->arch.cr0 |= X86_CR0_ET;
6356 
6357 	return 0;
6358 }
6359 EXPORT_SYMBOL_GPL(fx_init);
6360 
6361 static void fx_free(struct kvm_vcpu *vcpu)
6362 {
6363 	fpu_free(&vcpu->arch.guest_fpu);
6364 }
6365 
6366 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6367 {
6368 	if (vcpu->guest_fpu_loaded)
6369 		return;
6370 
6371 	/*
6372 	 * Restore all possible states in the guest,
6373 	 * and assume host would use all available bits.
6374 	 * Guest xcr0 would be loaded later.
6375 	 */
6376 	kvm_put_guest_xcr0(vcpu);
6377 	vcpu->guest_fpu_loaded = 1;
6378 	__kernel_fpu_begin();
6379 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6380 	trace_kvm_fpu(1);
6381 }
6382 
6383 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6384 {
6385 	kvm_put_guest_xcr0(vcpu);
6386 
6387 	if (!vcpu->guest_fpu_loaded)
6388 		return;
6389 
6390 	vcpu->guest_fpu_loaded = 0;
6391 	fpu_save_init(&vcpu->arch.guest_fpu);
6392 	__kernel_fpu_end();
6393 	++vcpu->stat.fpu_reload;
6394 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6395 	trace_kvm_fpu(0);
6396 }
6397 
6398 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6399 {
6400 	kvmclock_reset(vcpu);
6401 
6402 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6403 	fx_free(vcpu);
6404 	kvm_x86_ops->vcpu_free(vcpu);
6405 }
6406 
6407 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6408 						unsigned int id)
6409 {
6410 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6411 		printk_once(KERN_WARNING
6412 		"kvm: SMP vm created on host with unstable TSC; "
6413 		"guest TSC will not be reliable\n");
6414 	return kvm_x86_ops->vcpu_create(kvm, id);
6415 }
6416 
6417 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6418 {
6419 	int r;
6420 
6421 	vcpu->arch.mtrr_state.have_fixed = 1;
6422 	r = vcpu_load(vcpu);
6423 	if (r)
6424 		return r;
6425 	r = kvm_vcpu_reset(vcpu);
6426 	if (r == 0)
6427 		r = kvm_mmu_setup(vcpu);
6428 	vcpu_put(vcpu);
6429 
6430 	return r;
6431 }
6432 
6433 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6434 {
6435 	int r;
6436 	struct msr_data msr;
6437 
6438 	r = vcpu_load(vcpu);
6439 	if (r)
6440 		return r;
6441 	msr.data = 0x0;
6442 	msr.index = MSR_IA32_TSC;
6443 	msr.host_initiated = true;
6444 	kvm_write_tsc(vcpu, &msr);
6445 	vcpu_put(vcpu);
6446 
6447 	return r;
6448 }
6449 
6450 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6451 {
6452 	int r;
6453 	vcpu->arch.apf.msr_val = 0;
6454 
6455 	r = vcpu_load(vcpu);
6456 	BUG_ON(r);
6457 	kvm_mmu_unload(vcpu);
6458 	vcpu_put(vcpu);
6459 
6460 	fx_free(vcpu);
6461 	kvm_x86_ops->vcpu_free(vcpu);
6462 }
6463 
6464 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6465 {
6466 	atomic_set(&vcpu->arch.nmi_queued, 0);
6467 	vcpu->arch.nmi_pending = 0;
6468 	vcpu->arch.nmi_injected = false;
6469 
6470 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6471 	vcpu->arch.dr6 = DR6_FIXED_1;
6472 	vcpu->arch.dr7 = DR7_FIXED_1;
6473 	kvm_update_dr7(vcpu);
6474 
6475 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6476 	vcpu->arch.apf.msr_val = 0;
6477 	vcpu->arch.st.msr_val = 0;
6478 
6479 	kvmclock_reset(vcpu);
6480 
6481 	kvm_clear_async_pf_completion_queue(vcpu);
6482 	kvm_async_pf_hash_reset(vcpu);
6483 	vcpu->arch.apf.halted = false;
6484 
6485 	kvm_pmu_reset(vcpu);
6486 
6487 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6488 	vcpu->arch.regs_avail = ~0;
6489 	vcpu->arch.regs_dirty = ~0;
6490 
6491 	return kvm_x86_ops->vcpu_reset(vcpu);
6492 }
6493 
6494 int kvm_arch_hardware_enable(void *garbage)
6495 {
6496 	struct kvm *kvm;
6497 	struct kvm_vcpu *vcpu;
6498 	int i;
6499 	int ret;
6500 	u64 local_tsc;
6501 	u64 max_tsc = 0;
6502 	bool stable, backwards_tsc = false;
6503 
6504 	kvm_shared_msr_cpu_online();
6505 	ret = kvm_x86_ops->hardware_enable(garbage);
6506 	if (ret != 0)
6507 		return ret;
6508 
6509 	local_tsc = native_read_tsc();
6510 	stable = !check_tsc_unstable();
6511 	list_for_each_entry(kvm, &vm_list, vm_list) {
6512 		kvm_for_each_vcpu(i, vcpu, kvm) {
6513 			if (!stable && vcpu->cpu == smp_processor_id())
6514 				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6515 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6516 				backwards_tsc = true;
6517 				if (vcpu->arch.last_host_tsc > max_tsc)
6518 					max_tsc = vcpu->arch.last_host_tsc;
6519 			}
6520 		}
6521 	}
6522 
6523 	/*
6524 	 * Sometimes, even reliable TSCs go backwards.  This happens on
6525 	 * platforms that reset TSC during suspend or hibernate actions, but
6526 	 * maintain synchronization.  We must compensate.  Fortunately, we can
6527 	 * detect that condition here, which happens early in CPU bringup,
6528 	 * before any KVM threads can be running.  Unfortunately, we can't
6529 	 * bring the TSCs fully up to date with real time, as we aren't yet far
6530 	 * enough into CPU bringup that we know how much real time has actually
6531 	 * elapsed; our helper function, get_kernel_ns() will be using boot
6532 	 * variables that haven't been updated yet.
6533 	 *
6534 	 * So we simply find the maximum observed TSC above, then record the
6535 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6536 	 * the adjustment will be applied.  Note that we accumulate
6537 	 * adjustments, in case multiple suspend cycles happen before some VCPU
6538 	 * gets a chance to run again.  In the event that no KVM threads get a
6539 	 * chance to run, we will miss the entire elapsed period, as we'll have
6540 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6541 	 * loose cycle time.  This isn't too big a deal, since the loss will be
6542 	 * uniform across all VCPUs (not to mention the scenario is extremely
6543 	 * unlikely). It is possible that a second hibernate recovery happens
6544 	 * much faster than a first, causing the observed TSC here to be
6545 	 * smaller; this would require additional padding adjustment, which is
6546 	 * why we set last_host_tsc to the local tsc observed here.
6547 	 *
6548 	 * N.B. - this code below runs only on platforms with reliable TSC,
6549 	 * as that is the only way backwards_tsc is set above.  Also note
6550 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6551 	 * have the same delta_cyc adjustment applied if backwards_tsc
6552 	 * is detected.  Note further, this adjustment is only done once,
6553 	 * as we reset last_host_tsc on all VCPUs to stop this from being
6554 	 * called multiple times (one for each physical CPU bringup).
6555 	 *
6556 	 * Platforms with unreliable TSCs don't have to deal with this, they
6557 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
6558 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
6559 	 * guarantee that they stay in perfect synchronization.
6560 	 */
6561 	if (backwards_tsc) {
6562 		u64 delta_cyc = max_tsc - local_tsc;
6563 		list_for_each_entry(kvm, &vm_list, vm_list) {
6564 			kvm_for_each_vcpu(i, vcpu, kvm) {
6565 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
6566 				vcpu->arch.last_host_tsc = local_tsc;
6567 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6568 					&vcpu->requests);
6569 			}
6570 
6571 			/*
6572 			 * We have to disable TSC offset matching.. if you were
6573 			 * booting a VM while issuing an S4 host suspend....
6574 			 * you may have some problem.  Solving this issue is
6575 			 * left as an exercise to the reader.
6576 			 */
6577 			kvm->arch.last_tsc_nsec = 0;
6578 			kvm->arch.last_tsc_write = 0;
6579 		}
6580 
6581 	}
6582 	return 0;
6583 }
6584 
6585 void kvm_arch_hardware_disable(void *garbage)
6586 {
6587 	kvm_x86_ops->hardware_disable(garbage);
6588 	drop_user_return_notifiers(garbage);
6589 }
6590 
6591 int kvm_arch_hardware_setup(void)
6592 {
6593 	return kvm_x86_ops->hardware_setup();
6594 }
6595 
6596 void kvm_arch_hardware_unsetup(void)
6597 {
6598 	kvm_x86_ops->hardware_unsetup();
6599 }
6600 
6601 void kvm_arch_check_processor_compat(void *rtn)
6602 {
6603 	kvm_x86_ops->check_processor_compatibility(rtn);
6604 }
6605 
6606 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6607 {
6608 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6609 }
6610 
6611 struct static_key kvm_no_apic_vcpu __read_mostly;
6612 
6613 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6614 {
6615 	struct page *page;
6616 	struct kvm *kvm;
6617 	int r;
6618 
6619 	BUG_ON(vcpu->kvm == NULL);
6620 	kvm = vcpu->kvm;
6621 
6622 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6623 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6624 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6625 	else
6626 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6627 
6628 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6629 	if (!page) {
6630 		r = -ENOMEM;
6631 		goto fail;
6632 	}
6633 	vcpu->arch.pio_data = page_address(page);
6634 
6635 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
6636 
6637 	r = kvm_mmu_create(vcpu);
6638 	if (r < 0)
6639 		goto fail_free_pio_data;
6640 
6641 	if (irqchip_in_kernel(kvm)) {
6642 		r = kvm_create_lapic(vcpu);
6643 		if (r < 0)
6644 			goto fail_mmu_destroy;
6645 	} else
6646 		static_key_slow_inc(&kvm_no_apic_vcpu);
6647 
6648 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6649 				       GFP_KERNEL);
6650 	if (!vcpu->arch.mce_banks) {
6651 		r = -ENOMEM;
6652 		goto fail_free_lapic;
6653 	}
6654 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6655 
6656 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6657 		goto fail_free_mce_banks;
6658 
6659 	r = fx_init(vcpu);
6660 	if (r)
6661 		goto fail_free_wbinvd_dirty_mask;
6662 
6663 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6664 	kvm_async_pf_hash_reset(vcpu);
6665 	kvm_pmu_init(vcpu);
6666 
6667 	return 0;
6668 fail_free_wbinvd_dirty_mask:
6669 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6670 fail_free_mce_banks:
6671 	kfree(vcpu->arch.mce_banks);
6672 fail_free_lapic:
6673 	kvm_free_lapic(vcpu);
6674 fail_mmu_destroy:
6675 	kvm_mmu_destroy(vcpu);
6676 fail_free_pio_data:
6677 	free_page((unsigned long)vcpu->arch.pio_data);
6678 fail:
6679 	return r;
6680 }
6681 
6682 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6683 {
6684 	int idx;
6685 
6686 	kvm_pmu_destroy(vcpu);
6687 	kfree(vcpu->arch.mce_banks);
6688 	kvm_free_lapic(vcpu);
6689 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6690 	kvm_mmu_destroy(vcpu);
6691 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6692 	free_page((unsigned long)vcpu->arch.pio_data);
6693 	if (!irqchip_in_kernel(vcpu->kvm))
6694 		static_key_slow_dec(&kvm_no_apic_vcpu);
6695 }
6696 
6697 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6698 {
6699 	if (type)
6700 		return -EINVAL;
6701 
6702 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6703 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6704 
6705 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6706 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6707 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6708 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6709 		&kvm->arch.irq_sources_bitmap);
6710 
6711 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6712 	mutex_init(&kvm->arch.apic_map_lock);
6713 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6714 
6715 	pvclock_update_vm_gtod_copy(kvm);
6716 
6717 	return 0;
6718 }
6719 
6720 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6721 {
6722 	int r;
6723 	r = vcpu_load(vcpu);
6724 	BUG_ON(r);
6725 	kvm_mmu_unload(vcpu);
6726 	vcpu_put(vcpu);
6727 }
6728 
6729 static void kvm_free_vcpus(struct kvm *kvm)
6730 {
6731 	unsigned int i;
6732 	struct kvm_vcpu *vcpu;
6733 
6734 	/*
6735 	 * Unpin any mmu pages first.
6736 	 */
6737 	kvm_for_each_vcpu(i, vcpu, kvm) {
6738 		kvm_clear_async_pf_completion_queue(vcpu);
6739 		kvm_unload_vcpu_mmu(vcpu);
6740 	}
6741 	kvm_for_each_vcpu(i, vcpu, kvm)
6742 		kvm_arch_vcpu_free(vcpu);
6743 
6744 	mutex_lock(&kvm->lock);
6745 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6746 		kvm->vcpus[i] = NULL;
6747 
6748 	atomic_set(&kvm->online_vcpus, 0);
6749 	mutex_unlock(&kvm->lock);
6750 }
6751 
6752 void kvm_arch_sync_events(struct kvm *kvm)
6753 {
6754 	kvm_free_all_assigned_devices(kvm);
6755 	kvm_free_pit(kvm);
6756 }
6757 
6758 void kvm_arch_destroy_vm(struct kvm *kvm)
6759 {
6760 	kvm_iommu_unmap_guest(kvm);
6761 	kfree(kvm->arch.vpic);
6762 	kfree(kvm->arch.vioapic);
6763 	kvm_free_vcpus(kvm);
6764 	if (kvm->arch.apic_access_page)
6765 		put_page(kvm->arch.apic_access_page);
6766 	if (kvm->arch.ept_identity_pagetable)
6767 		put_page(kvm->arch.ept_identity_pagetable);
6768 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6769 }
6770 
6771 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6772 			   struct kvm_memory_slot *dont)
6773 {
6774 	int i;
6775 
6776 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6777 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6778 			kvm_kvfree(free->arch.rmap[i]);
6779 			free->arch.rmap[i] = NULL;
6780 		}
6781 		if (i == 0)
6782 			continue;
6783 
6784 		if (!dont || free->arch.lpage_info[i - 1] !=
6785 			     dont->arch.lpage_info[i - 1]) {
6786 			kvm_kvfree(free->arch.lpage_info[i - 1]);
6787 			free->arch.lpage_info[i - 1] = NULL;
6788 		}
6789 	}
6790 }
6791 
6792 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6793 {
6794 	int i;
6795 
6796 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6797 		unsigned long ugfn;
6798 		int lpages;
6799 		int level = i + 1;
6800 
6801 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
6802 				      slot->base_gfn, level) + 1;
6803 
6804 		slot->arch.rmap[i] =
6805 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6806 		if (!slot->arch.rmap[i])
6807 			goto out_free;
6808 		if (i == 0)
6809 			continue;
6810 
6811 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6812 					sizeof(*slot->arch.lpage_info[i - 1]));
6813 		if (!slot->arch.lpage_info[i - 1])
6814 			goto out_free;
6815 
6816 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6817 			slot->arch.lpage_info[i - 1][0].write_count = 1;
6818 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6819 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6820 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
6821 		/*
6822 		 * If the gfn and userspace address are not aligned wrt each
6823 		 * other, or if explicitly asked to, disable large page
6824 		 * support for this slot
6825 		 */
6826 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6827 		    !kvm_largepages_enabled()) {
6828 			unsigned long j;
6829 
6830 			for (j = 0; j < lpages; ++j)
6831 				slot->arch.lpage_info[i - 1][j].write_count = 1;
6832 		}
6833 	}
6834 
6835 	return 0;
6836 
6837 out_free:
6838 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6839 		kvm_kvfree(slot->arch.rmap[i]);
6840 		slot->arch.rmap[i] = NULL;
6841 		if (i == 0)
6842 			continue;
6843 
6844 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
6845 		slot->arch.lpage_info[i - 1] = NULL;
6846 	}
6847 	return -ENOMEM;
6848 }
6849 
6850 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6851 				struct kvm_memory_slot *memslot,
6852 				struct kvm_memory_slot old,
6853 				struct kvm_userspace_memory_region *mem,
6854 				int user_alloc)
6855 {
6856 	int npages = memslot->npages;
6857 	int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6858 
6859 	/* Prevent internal slot pages from being moved by fork()/COW. */
6860 	if (memslot->id >= KVM_MEMORY_SLOTS)
6861 		map_flags = MAP_SHARED | MAP_ANONYMOUS;
6862 
6863 	/*To keep backward compatibility with older userspace,
6864 	 *x86 needs to handle !user_alloc case.
6865 	 */
6866 	if (!user_alloc) {
6867 		if (npages && !old.npages) {
6868 			unsigned long userspace_addr;
6869 
6870 			userspace_addr = vm_mmap(NULL, 0,
6871 						 npages * PAGE_SIZE,
6872 						 PROT_READ | PROT_WRITE,
6873 						 map_flags,
6874 						 0);
6875 
6876 			if (IS_ERR((void *)userspace_addr))
6877 				return PTR_ERR((void *)userspace_addr);
6878 
6879 			memslot->userspace_addr = userspace_addr;
6880 		}
6881 	}
6882 
6883 
6884 	return 0;
6885 }
6886 
6887 void kvm_arch_commit_memory_region(struct kvm *kvm,
6888 				struct kvm_userspace_memory_region *mem,
6889 				struct kvm_memory_slot old,
6890 				int user_alloc)
6891 {
6892 
6893 	int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6894 
6895 	if (!user_alloc && !old.user_alloc && old.npages && !npages) {
6896 		int ret;
6897 
6898 		ret = vm_munmap(old.userspace_addr,
6899 				old.npages * PAGE_SIZE);
6900 		if (ret < 0)
6901 			printk(KERN_WARNING
6902 			       "kvm_vm_ioctl_set_memory_region: "
6903 			       "failed to munmap memory\n");
6904 	}
6905 
6906 	if (!kvm->arch.n_requested_mmu_pages)
6907 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6908 
6909 	spin_lock(&kvm->mmu_lock);
6910 	if (nr_mmu_pages)
6911 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6912 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6913 	spin_unlock(&kvm->mmu_lock);
6914 	/*
6915 	 * If memory slot is created, or moved, we need to clear all
6916 	 * mmio sptes.
6917 	 */
6918 	if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6919 		kvm_mmu_zap_all(kvm);
6920 		kvm_reload_remote_mmus(kvm);
6921 	}
6922 }
6923 
6924 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6925 {
6926 	kvm_mmu_zap_all(kvm);
6927 	kvm_reload_remote_mmus(kvm);
6928 }
6929 
6930 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6931 				   struct kvm_memory_slot *slot)
6932 {
6933 	kvm_arch_flush_shadow_all(kvm);
6934 }
6935 
6936 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6937 {
6938 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6939 		!vcpu->arch.apf.halted)
6940 		|| !list_empty_careful(&vcpu->async_pf.done)
6941 		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6942 		|| atomic_read(&vcpu->arch.nmi_queued) ||
6943 		(kvm_arch_interrupt_allowed(vcpu) &&
6944 		 kvm_cpu_has_interrupt(vcpu));
6945 }
6946 
6947 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6948 {
6949 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6950 }
6951 
6952 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6953 {
6954 	return kvm_x86_ops->interrupt_allowed(vcpu);
6955 }
6956 
6957 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6958 {
6959 	unsigned long current_rip = kvm_rip_read(vcpu) +
6960 		get_segment_base(vcpu, VCPU_SREG_CS);
6961 
6962 	return current_rip == linear_rip;
6963 }
6964 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6965 
6966 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6967 {
6968 	unsigned long rflags;
6969 
6970 	rflags = kvm_x86_ops->get_rflags(vcpu);
6971 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6972 		rflags &= ~X86_EFLAGS_TF;
6973 	return rflags;
6974 }
6975 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6976 
6977 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6978 {
6979 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6980 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6981 		rflags |= X86_EFLAGS_TF;
6982 	kvm_x86_ops->set_rflags(vcpu, rflags);
6983 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6984 }
6985 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6986 
6987 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6988 {
6989 	int r;
6990 
6991 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6992 	      is_error_page(work->page))
6993 		return;
6994 
6995 	r = kvm_mmu_reload(vcpu);
6996 	if (unlikely(r))
6997 		return;
6998 
6999 	if (!vcpu->arch.mmu.direct_map &&
7000 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7001 		return;
7002 
7003 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7004 }
7005 
7006 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7007 {
7008 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7009 }
7010 
7011 static inline u32 kvm_async_pf_next_probe(u32 key)
7012 {
7013 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7014 }
7015 
7016 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7017 {
7018 	u32 key = kvm_async_pf_hash_fn(gfn);
7019 
7020 	while (vcpu->arch.apf.gfns[key] != ~0)
7021 		key = kvm_async_pf_next_probe(key);
7022 
7023 	vcpu->arch.apf.gfns[key] = gfn;
7024 }
7025 
7026 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7027 {
7028 	int i;
7029 	u32 key = kvm_async_pf_hash_fn(gfn);
7030 
7031 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7032 		     (vcpu->arch.apf.gfns[key] != gfn &&
7033 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7034 		key = kvm_async_pf_next_probe(key);
7035 
7036 	return key;
7037 }
7038 
7039 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7040 {
7041 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7042 }
7043 
7044 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7045 {
7046 	u32 i, j, k;
7047 
7048 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7049 	while (true) {
7050 		vcpu->arch.apf.gfns[i] = ~0;
7051 		do {
7052 			j = kvm_async_pf_next_probe(j);
7053 			if (vcpu->arch.apf.gfns[j] == ~0)
7054 				return;
7055 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7056 			/*
7057 			 * k lies cyclically in ]i,j]
7058 			 * |    i.k.j |
7059 			 * |....j i.k.| or  |.k..j i...|
7060 			 */
7061 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7062 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7063 		i = j;
7064 	}
7065 }
7066 
7067 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7068 {
7069 
7070 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7071 				      sizeof(val));
7072 }
7073 
7074 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7075 				     struct kvm_async_pf *work)
7076 {
7077 	struct x86_exception fault;
7078 
7079 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7080 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7081 
7082 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7083 	    (vcpu->arch.apf.send_user_only &&
7084 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7085 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7086 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7087 		fault.vector = PF_VECTOR;
7088 		fault.error_code_valid = true;
7089 		fault.error_code = 0;
7090 		fault.nested_page_fault = false;
7091 		fault.address = work->arch.token;
7092 		kvm_inject_page_fault(vcpu, &fault);
7093 	}
7094 }
7095 
7096 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7097 				 struct kvm_async_pf *work)
7098 {
7099 	struct x86_exception fault;
7100 
7101 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7102 	if (is_error_page(work->page))
7103 		work->arch.token = ~0; /* broadcast wakeup */
7104 	else
7105 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7106 
7107 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7108 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7109 		fault.vector = PF_VECTOR;
7110 		fault.error_code_valid = true;
7111 		fault.error_code = 0;
7112 		fault.nested_page_fault = false;
7113 		fault.address = work->arch.token;
7114 		kvm_inject_page_fault(vcpu, &fault);
7115 	}
7116 	vcpu->arch.apf.halted = false;
7117 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7118 }
7119 
7120 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7121 {
7122 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7123 		return true;
7124 	else
7125 		return !kvm_event_needs_reinjection(vcpu) &&
7126 			kvm_x86_ops->interrupt_allowed(vcpu);
7127 }
7128 
7129 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7130 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7131 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7132 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7133 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7134 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7135 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7136 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7137 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7138 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7139 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7140 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7141