xref: /openbmc/linux/arch/x86/kvm/x86.c (revision d0676871)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "x86.h"
27 #include "cpuid.h"
28 #include "pmu.h"
29 #include "hyperv.h"
30 #include "lapic.h"
31 
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/export.h>
38 #include <linux/moduleparam.h>
39 #include <linux/mman.h>
40 #include <linux/highmem.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/cpufreq.h>
44 #include <linux/user-return-notifier.h>
45 #include <linux/srcu.h>
46 #include <linux/slab.h>
47 #include <linux/perf_event.h>
48 #include <linux/uaccess.h>
49 #include <linux/hash.h>
50 #include <linux/pci.h>
51 #include <linux/timekeeper_internal.h>
52 #include <linux/pvclock_gtod.h>
53 #include <linux/kvm_irqfd.h>
54 #include <linux/irqbypass.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/isolation.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73 #include <asm/emulate_prefix.h>
74 #include <clocksource/hyperv_timer.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include "trace.h"
78 
79 #define MAX_IO_MSRS 256
80 #define KVM_MAX_MCE_BANKS 32
81 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
82 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
83 
84 #define emul_to_vcpu(ctxt) \
85 	((struct kvm_vcpu *)(ctxt)->vcpu)
86 
87 /* EFER defaults:
88  * - enable syscall per default because its emulated by KVM
89  * - enable LME and LMA per default on 64 bit KVM
90  */
91 #ifdef CONFIG_X86_64
92 static
93 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
94 #else
95 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
96 #endif
97 
98 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
99 
100 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
101 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
102 
103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
105 
106 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
107 static void process_nmi(struct kvm_vcpu *vcpu);
108 static void enter_smm(struct kvm_vcpu *vcpu);
109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
110 static void store_regs(struct kvm_vcpu *vcpu);
111 static int sync_regs(struct kvm_vcpu *vcpu);
112 
113 struct kvm_x86_ops kvm_x86_ops __read_mostly;
114 EXPORT_SYMBOL_GPL(kvm_x86_ops);
115 
116 static bool __read_mostly ignore_msrs = 0;
117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
118 
119 static bool __read_mostly report_ignored_msrs = true;
120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121 
122 unsigned int min_timer_period_us = 200;
123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124 
125 static bool __read_mostly kvmclock_periodic_sync = true;
126 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127 
128 bool __read_mostly kvm_has_tsc_control;
129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
130 u32  __read_mostly kvm_max_guest_tsc_khz;
131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
132 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134 u64  __read_mostly kvm_max_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
136 u64 __read_mostly kvm_default_tsc_scaling_ratio;
137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
138 
139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
140 static u32 __read_mostly tsc_tolerance_ppm = 250;
141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142 
143 /*
144  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
145  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
146  * advancement entirely.  Any other value is used as-is and disables adaptive
147  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148  */
149 static int __read_mostly lapic_timer_advance_ns = -1;
150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
151 
152 static bool __read_mostly vector_hashing = true;
153 module_param(vector_hashing, bool, S_IRUGO);
154 
155 bool __read_mostly enable_vmware_backdoor = false;
156 module_param(enable_vmware_backdoor, bool, S_IRUGO);
157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158 
159 static bool __read_mostly force_emulation_prefix = false;
160 module_param(force_emulation_prefix, bool, S_IRUGO);
161 
162 int __read_mostly pi_inject_timer = -1;
163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164 
165 #define KVM_NR_SHARED_MSRS 16
166 
167 struct kvm_shared_msrs_global {
168 	int nr;
169 	u32 msrs[KVM_NR_SHARED_MSRS];
170 };
171 
172 struct kvm_shared_msrs {
173 	struct user_return_notifier urn;
174 	bool registered;
175 	struct kvm_shared_msr_values {
176 		u64 host;
177 		u64 curr;
178 	} values[KVM_NR_SHARED_MSRS];
179 };
180 
181 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
182 static struct kvm_shared_msrs __percpu *shared_msrs;
183 
184 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
185 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
186 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
187 				| XFEATURE_MASK_PKRU)
188 
189 u64 __read_mostly host_efer;
190 EXPORT_SYMBOL_GPL(host_efer);
191 
192 static u64 __read_mostly host_xss;
193 u64 __read_mostly supported_xss;
194 EXPORT_SYMBOL_GPL(supported_xss);
195 
196 struct kvm_stats_debugfs_item debugfs_entries[] = {
197 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
198 	{ "pf_guest", VCPU_STAT(pf_guest) },
199 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
200 	{ "invlpg", VCPU_STAT(invlpg) },
201 	{ "exits", VCPU_STAT(exits) },
202 	{ "io_exits", VCPU_STAT(io_exits) },
203 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
204 	{ "signal_exits", VCPU_STAT(signal_exits) },
205 	{ "irq_window", VCPU_STAT(irq_window_exits) },
206 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
207 	{ "halt_exits", VCPU_STAT(halt_exits) },
208 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
209 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
210 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
211 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
212 	{ "hypercalls", VCPU_STAT(hypercalls) },
213 	{ "request_irq", VCPU_STAT(request_irq_exits) },
214 	{ "irq_exits", VCPU_STAT(irq_exits) },
215 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
216 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
217 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
218 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
219 	{ "irq_injections", VCPU_STAT(irq_injections) },
220 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
221 	{ "req_event", VCPU_STAT(req_event) },
222 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
223 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
224 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
225 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
226 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
227 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
228 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
229 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
230 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
231 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
232 	{ "largepages", VM_STAT(lpages, .mode = 0444) },
233 	{ "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
234 	{ "max_mmu_page_hash_collisions",
235 		VM_STAT(max_mmu_page_hash_collisions) },
236 	{ NULL }
237 };
238 
239 u64 __read_mostly host_xcr0;
240 u64 __read_mostly supported_xcr0;
241 EXPORT_SYMBOL_GPL(supported_xcr0);
242 
243 struct kmem_cache *x86_fpu_cache;
244 EXPORT_SYMBOL_GPL(x86_fpu_cache);
245 
246 static struct kmem_cache *x86_emulator_cache;
247 
248 static struct kmem_cache *kvm_alloc_emulator_cache(void)
249 {
250 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
251 	unsigned int size = sizeof(struct x86_emulate_ctxt);
252 
253 	return kmem_cache_create_usercopy("x86_emulator", size,
254 					  __alignof__(struct x86_emulate_ctxt),
255 					  SLAB_ACCOUNT, useroffset,
256 					  size - useroffset, NULL);
257 }
258 
259 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
260 
261 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
262 {
263 	int i;
264 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
265 		vcpu->arch.apf.gfns[i] = ~0;
266 }
267 
268 static void kvm_on_user_return(struct user_return_notifier *urn)
269 {
270 	unsigned slot;
271 	struct kvm_shared_msrs *locals
272 		= container_of(urn, struct kvm_shared_msrs, urn);
273 	struct kvm_shared_msr_values *values;
274 	unsigned long flags;
275 
276 	/*
277 	 * Disabling irqs at this point since the following code could be
278 	 * interrupted and executed through kvm_arch_hardware_disable()
279 	 */
280 	local_irq_save(flags);
281 	if (locals->registered) {
282 		locals->registered = false;
283 		user_return_notifier_unregister(urn);
284 	}
285 	local_irq_restore(flags);
286 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
287 		values = &locals->values[slot];
288 		if (values->host != values->curr) {
289 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
290 			values->curr = values->host;
291 		}
292 	}
293 }
294 
295 void kvm_define_shared_msr(unsigned slot, u32 msr)
296 {
297 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
298 	shared_msrs_global.msrs[slot] = msr;
299 	if (slot >= shared_msrs_global.nr)
300 		shared_msrs_global.nr = slot + 1;
301 }
302 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
303 
304 static void kvm_shared_msr_cpu_online(void)
305 {
306 	unsigned int cpu = smp_processor_id();
307 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
308 	u64 value;
309 	int i;
310 
311 	for (i = 0; i < shared_msrs_global.nr; ++i) {
312 		rdmsrl_safe(shared_msrs_global.msrs[i], &value);
313 		smsr->values[i].host = value;
314 		smsr->values[i].curr = value;
315 	}
316 }
317 
318 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
319 {
320 	unsigned int cpu = smp_processor_id();
321 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322 	int err;
323 
324 	value = (value & mask) | (smsr->values[slot].host & ~mask);
325 	if (value == smsr->values[slot].curr)
326 		return 0;
327 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
328 	if (err)
329 		return 1;
330 
331 	smsr->values[slot].curr = value;
332 	if (!smsr->registered) {
333 		smsr->urn.on_user_return = kvm_on_user_return;
334 		user_return_notifier_register(&smsr->urn);
335 		smsr->registered = true;
336 	}
337 	return 0;
338 }
339 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
340 
341 static void drop_user_return_notifiers(void)
342 {
343 	unsigned int cpu = smp_processor_id();
344 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
345 
346 	if (smsr->registered)
347 		kvm_on_user_return(&smsr->urn);
348 }
349 
350 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
351 {
352 	return vcpu->arch.apic_base;
353 }
354 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
355 
356 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
357 {
358 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
359 }
360 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
361 
362 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
363 {
364 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
365 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
366 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
367 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
368 
369 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
370 		return 1;
371 	if (!msr_info->host_initiated) {
372 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
373 			return 1;
374 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
375 			return 1;
376 	}
377 
378 	kvm_lapic_set_base(vcpu, msr_info->data);
379 	kvm_recalculate_apic_map(vcpu->kvm);
380 	return 0;
381 }
382 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
383 
384 asmlinkage __visible void kvm_spurious_fault(void)
385 {
386 	/* Fault while not rebooting.  We want the trace. */
387 	BUG_ON(!kvm_rebooting);
388 }
389 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
390 
391 #define EXCPT_BENIGN		0
392 #define EXCPT_CONTRIBUTORY	1
393 #define EXCPT_PF		2
394 
395 static int exception_class(int vector)
396 {
397 	switch (vector) {
398 	case PF_VECTOR:
399 		return EXCPT_PF;
400 	case DE_VECTOR:
401 	case TS_VECTOR:
402 	case NP_VECTOR:
403 	case SS_VECTOR:
404 	case GP_VECTOR:
405 		return EXCPT_CONTRIBUTORY;
406 	default:
407 		break;
408 	}
409 	return EXCPT_BENIGN;
410 }
411 
412 #define EXCPT_FAULT		0
413 #define EXCPT_TRAP		1
414 #define EXCPT_ABORT		2
415 #define EXCPT_INTERRUPT		3
416 
417 static int exception_type(int vector)
418 {
419 	unsigned int mask;
420 
421 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
422 		return EXCPT_INTERRUPT;
423 
424 	mask = 1 << vector;
425 
426 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
427 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
428 		return EXCPT_TRAP;
429 
430 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
431 		return EXCPT_ABORT;
432 
433 	/* Reserved exceptions will result in fault */
434 	return EXCPT_FAULT;
435 }
436 
437 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
438 {
439 	unsigned nr = vcpu->arch.exception.nr;
440 	bool has_payload = vcpu->arch.exception.has_payload;
441 	unsigned long payload = vcpu->arch.exception.payload;
442 
443 	if (!has_payload)
444 		return;
445 
446 	switch (nr) {
447 	case DB_VECTOR:
448 		/*
449 		 * "Certain debug exceptions may clear bit 0-3.  The
450 		 * remaining contents of the DR6 register are never
451 		 * cleared by the processor".
452 		 */
453 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
454 		/*
455 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
456 		 */
457 		vcpu->arch.dr6 |= DR6_RTM;
458 		vcpu->arch.dr6 |= payload;
459 		/*
460 		 * Bit 16 should be set in the payload whenever the #DB
461 		 * exception should clear DR6.RTM. This makes the payload
462 		 * compatible with the pending debug exceptions under VMX.
463 		 * Though not currently documented in the SDM, this also
464 		 * makes the payload compatible with the exit qualification
465 		 * for #DB exceptions under VMX.
466 		 */
467 		vcpu->arch.dr6 ^= payload & DR6_RTM;
468 
469 		/*
470 		 * The #DB payload is defined as compatible with the 'pending
471 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
472 		 * defined in the 'pending debug exceptions' field (enabled
473 		 * breakpoint), it is reserved and must be zero in DR6.
474 		 */
475 		vcpu->arch.dr6 &= ~BIT(12);
476 		break;
477 	case PF_VECTOR:
478 		vcpu->arch.cr2 = payload;
479 		break;
480 	}
481 
482 	vcpu->arch.exception.has_payload = false;
483 	vcpu->arch.exception.payload = 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
486 
487 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
488 		unsigned nr, bool has_error, u32 error_code,
489 	        bool has_payload, unsigned long payload, bool reinject)
490 {
491 	u32 prev_nr;
492 	int class1, class2;
493 
494 	kvm_make_request(KVM_REQ_EVENT, vcpu);
495 
496 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
497 	queue:
498 		if (has_error && !is_protmode(vcpu))
499 			has_error = false;
500 		if (reinject) {
501 			/*
502 			 * On vmentry, vcpu->arch.exception.pending is only
503 			 * true if an event injection was blocked by
504 			 * nested_run_pending.  In that case, however,
505 			 * vcpu_enter_guest requests an immediate exit,
506 			 * and the guest shouldn't proceed far enough to
507 			 * need reinjection.
508 			 */
509 			WARN_ON_ONCE(vcpu->arch.exception.pending);
510 			vcpu->arch.exception.injected = true;
511 			if (WARN_ON_ONCE(has_payload)) {
512 				/*
513 				 * A reinjected event has already
514 				 * delivered its payload.
515 				 */
516 				has_payload = false;
517 				payload = 0;
518 			}
519 		} else {
520 			vcpu->arch.exception.pending = true;
521 			vcpu->arch.exception.injected = false;
522 		}
523 		vcpu->arch.exception.has_error_code = has_error;
524 		vcpu->arch.exception.nr = nr;
525 		vcpu->arch.exception.error_code = error_code;
526 		vcpu->arch.exception.has_payload = has_payload;
527 		vcpu->arch.exception.payload = payload;
528 		if (!is_guest_mode(vcpu))
529 			kvm_deliver_exception_payload(vcpu);
530 		return;
531 	}
532 
533 	/* to check exception */
534 	prev_nr = vcpu->arch.exception.nr;
535 	if (prev_nr == DF_VECTOR) {
536 		/* triple fault -> shutdown */
537 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
538 		return;
539 	}
540 	class1 = exception_class(prev_nr);
541 	class2 = exception_class(nr);
542 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
543 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
544 		/*
545 		 * Generate double fault per SDM Table 5-5.  Set
546 		 * exception.pending = true so that the double fault
547 		 * can trigger a nested vmexit.
548 		 */
549 		vcpu->arch.exception.pending = true;
550 		vcpu->arch.exception.injected = false;
551 		vcpu->arch.exception.has_error_code = true;
552 		vcpu->arch.exception.nr = DF_VECTOR;
553 		vcpu->arch.exception.error_code = 0;
554 		vcpu->arch.exception.has_payload = false;
555 		vcpu->arch.exception.payload = 0;
556 	} else
557 		/* replace previous exception with a new one in a hope
558 		   that instruction re-execution will regenerate lost
559 		   exception */
560 		goto queue;
561 }
562 
563 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
564 {
565 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
566 }
567 EXPORT_SYMBOL_GPL(kvm_queue_exception);
568 
569 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
570 {
571 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
572 }
573 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
574 
575 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
576 				  unsigned long payload)
577 {
578 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
579 }
580 
581 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
582 				    u32 error_code, unsigned long payload)
583 {
584 	kvm_multiple_exception(vcpu, nr, true, error_code,
585 			       true, payload, false);
586 }
587 
588 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
589 {
590 	if (err)
591 		kvm_inject_gp(vcpu, 0);
592 	else
593 		return kvm_skip_emulated_instruction(vcpu);
594 
595 	return 1;
596 }
597 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
598 
599 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
600 {
601 	++vcpu->stat.pf_guest;
602 	vcpu->arch.exception.nested_apf =
603 		is_guest_mode(vcpu) && fault->async_page_fault;
604 	if (vcpu->arch.exception.nested_apf) {
605 		vcpu->arch.apf.nested_apf_token = fault->address;
606 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
607 	} else {
608 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
609 					fault->address);
610 	}
611 }
612 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
613 
614 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
615 {
616 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
617 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
618 	else
619 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
620 
621 	return fault->nested_page_fault;
622 }
623 
624 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
625 {
626 	atomic_inc(&vcpu->arch.nmi_queued);
627 	kvm_make_request(KVM_REQ_NMI, vcpu);
628 }
629 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
630 
631 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
632 {
633 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
634 }
635 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
636 
637 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
638 {
639 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
640 }
641 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
642 
643 /*
644  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
645  * a #GP and return false.
646  */
647 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
648 {
649 	if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
650 		return true;
651 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
652 	return false;
653 }
654 EXPORT_SYMBOL_GPL(kvm_require_cpl);
655 
656 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
657 {
658 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
659 		return true;
660 
661 	kvm_queue_exception(vcpu, UD_VECTOR);
662 	return false;
663 }
664 EXPORT_SYMBOL_GPL(kvm_require_dr);
665 
666 /*
667  * This function will be used to read from the physical memory of the currently
668  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
669  * can read from guest physical or from the guest's guest physical memory.
670  */
671 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
672 			    gfn_t ngfn, void *data, int offset, int len,
673 			    u32 access)
674 {
675 	struct x86_exception exception;
676 	gfn_t real_gfn;
677 	gpa_t ngpa;
678 
679 	ngpa     = gfn_to_gpa(ngfn);
680 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
681 	if (real_gfn == UNMAPPED_GVA)
682 		return -EFAULT;
683 
684 	real_gfn = gpa_to_gfn(real_gfn);
685 
686 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
687 }
688 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
689 
690 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
691 			       void *data, int offset, int len, u32 access)
692 {
693 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
694 				       data, offset, len, access);
695 }
696 
697 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
698 {
699 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
700 	       rsvd_bits(1, 2);
701 }
702 
703 /*
704  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
705  */
706 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
707 {
708 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
709 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
710 	int i;
711 	int ret;
712 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
713 
714 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
715 				      offset * sizeof(u64), sizeof(pdpte),
716 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
717 	if (ret < 0) {
718 		ret = 0;
719 		goto out;
720 	}
721 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
722 		if ((pdpte[i] & PT_PRESENT_MASK) &&
723 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
724 			ret = 0;
725 			goto out;
726 		}
727 	}
728 	ret = 1;
729 
730 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
731 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
732 
733 out:
734 
735 	return ret;
736 }
737 EXPORT_SYMBOL_GPL(load_pdptrs);
738 
739 bool pdptrs_changed(struct kvm_vcpu *vcpu)
740 {
741 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
742 	int offset;
743 	gfn_t gfn;
744 	int r;
745 
746 	if (!is_pae_paging(vcpu))
747 		return false;
748 
749 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
750 		return true;
751 
752 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
753 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
754 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
755 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
756 	if (r < 0)
757 		return true;
758 
759 	return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
760 }
761 EXPORT_SYMBOL_GPL(pdptrs_changed);
762 
763 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
764 {
765 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
766 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
767 
768 	cr0 |= X86_CR0_ET;
769 
770 #ifdef CONFIG_X86_64
771 	if (cr0 & 0xffffffff00000000UL)
772 		return 1;
773 #endif
774 
775 	cr0 &= ~CR0_RESERVED_BITS;
776 
777 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
778 		return 1;
779 
780 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
781 		return 1;
782 
783 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
784 #ifdef CONFIG_X86_64
785 		if ((vcpu->arch.efer & EFER_LME)) {
786 			int cs_db, cs_l;
787 
788 			if (!is_pae(vcpu))
789 				return 1;
790 			kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
791 			if (cs_l)
792 				return 1;
793 		} else
794 #endif
795 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
796 						 kvm_read_cr3(vcpu)))
797 			return 1;
798 	}
799 
800 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
801 		return 1;
802 
803 	kvm_x86_ops.set_cr0(vcpu, cr0);
804 
805 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
806 		kvm_clear_async_pf_completion_queue(vcpu);
807 		kvm_async_pf_hash_reset(vcpu);
808 	}
809 
810 	if ((cr0 ^ old_cr0) & update_bits)
811 		kvm_mmu_reset_context(vcpu);
812 
813 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
814 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
815 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
816 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
817 
818 	return 0;
819 }
820 EXPORT_SYMBOL_GPL(kvm_set_cr0);
821 
822 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
823 {
824 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
825 }
826 EXPORT_SYMBOL_GPL(kvm_lmsw);
827 
828 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
829 {
830 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
831 
832 		if (vcpu->arch.xcr0 != host_xcr0)
833 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
834 
835 		if (vcpu->arch.xsaves_enabled &&
836 		    vcpu->arch.ia32_xss != host_xss)
837 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
838 	}
839 }
840 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
841 
842 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
843 {
844 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
845 
846 		if (vcpu->arch.xcr0 != host_xcr0)
847 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
848 
849 		if (vcpu->arch.xsaves_enabled &&
850 		    vcpu->arch.ia32_xss != host_xss)
851 			wrmsrl(MSR_IA32_XSS, host_xss);
852 	}
853 
854 }
855 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
856 
857 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
858 {
859 	u64 xcr0 = xcr;
860 	u64 old_xcr0 = vcpu->arch.xcr0;
861 	u64 valid_bits;
862 
863 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
864 	if (index != XCR_XFEATURE_ENABLED_MASK)
865 		return 1;
866 	if (!(xcr0 & XFEATURE_MASK_FP))
867 		return 1;
868 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
869 		return 1;
870 
871 	/*
872 	 * Do not allow the guest to set bits that we do not support
873 	 * saving.  However, xcr0 bit 0 is always set, even if the
874 	 * emulated CPU does not support XSAVE (see fx_init).
875 	 */
876 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
877 	if (xcr0 & ~valid_bits)
878 		return 1;
879 
880 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
881 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
882 		return 1;
883 
884 	if (xcr0 & XFEATURE_MASK_AVX512) {
885 		if (!(xcr0 & XFEATURE_MASK_YMM))
886 			return 1;
887 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
888 			return 1;
889 	}
890 	vcpu->arch.xcr0 = xcr0;
891 
892 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
893 		kvm_update_cpuid(vcpu);
894 	return 0;
895 }
896 
897 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
898 {
899 	if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
900 	    __kvm_set_xcr(vcpu, index, xcr)) {
901 		kvm_inject_gp(vcpu, 0);
902 		return 1;
903 	}
904 	return 0;
905 }
906 EXPORT_SYMBOL_GPL(kvm_set_xcr);
907 
908 #define __cr4_reserved_bits(__cpu_has, __c)		\
909 ({							\
910 	u64 __reserved_bits = CR4_RESERVED_BITS;	\
911 							\
912 	if (!__cpu_has(__c, X86_FEATURE_XSAVE))		\
913 		__reserved_bits |= X86_CR4_OSXSAVE;	\
914 	if (!__cpu_has(__c, X86_FEATURE_SMEP))		\
915 		__reserved_bits |= X86_CR4_SMEP;	\
916 	if (!__cpu_has(__c, X86_FEATURE_SMAP))		\
917 		__reserved_bits |= X86_CR4_SMAP;	\
918 	if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))	\
919 		__reserved_bits |= X86_CR4_FSGSBASE;	\
920 	if (!__cpu_has(__c, X86_FEATURE_PKU))		\
921 		__reserved_bits |= X86_CR4_PKE;		\
922 	if (!__cpu_has(__c, X86_FEATURE_LA57))		\
923 		__reserved_bits |= X86_CR4_LA57;	\
924 	if (!__cpu_has(__c, X86_FEATURE_UMIP))		\
925 		__reserved_bits |= X86_CR4_UMIP;	\
926 	__reserved_bits;				\
927 })
928 
929 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
930 {
931 	if (cr4 & cr4_reserved_bits)
932 		return -EINVAL;
933 
934 	if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
935 		return -EINVAL;
936 
937 	return 0;
938 }
939 
940 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
941 {
942 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
943 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
944 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
945 
946 	if (kvm_valid_cr4(vcpu, cr4))
947 		return 1;
948 
949 	if (is_long_mode(vcpu)) {
950 		if (!(cr4 & X86_CR4_PAE))
951 			return 1;
952 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
953 		   && ((cr4 ^ old_cr4) & pdptr_bits)
954 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
955 				   kvm_read_cr3(vcpu)))
956 		return 1;
957 
958 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
959 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
960 			return 1;
961 
962 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
963 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
964 			return 1;
965 	}
966 
967 	if (kvm_x86_ops.set_cr4(vcpu, cr4))
968 		return 1;
969 
970 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
971 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
972 		kvm_mmu_reset_context(vcpu);
973 
974 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
975 		kvm_update_cpuid(vcpu);
976 
977 	return 0;
978 }
979 EXPORT_SYMBOL_GPL(kvm_set_cr4);
980 
981 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
982 {
983 	bool skip_tlb_flush = false;
984 #ifdef CONFIG_X86_64
985 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
986 
987 	if (pcid_enabled) {
988 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
989 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
990 	}
991 #endif
992 
993 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
994 		if (!skip_tlb_flush) {
995 			kvm_mmu_sync_roots(vcpu);
996 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
997 		}
998 		return 0;
999 	}
1000 
1001 	if (is_long_mode(vcpu) &&
1002 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1003 		return 1;
1004 	else if (is_pae_paging(vcpu) &&
1005 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1006 		return 1;
1007 
1008 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
1009 	vcpu->arch.cr3 = cr3;
1010 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1011 
1012 	return 0;
1013 }
1014 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1015 
1016 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1017 {
1018 	if (cr8 & CR8_RESERVED_BITS)
1019 		return 1;
1020 	if (lapic_in_kernel(vcpu))
1021 		kvm_lapic_set_tpr(vcpu, cr8);
1022 	else
1023 		vcpu->arch.cr8 = cr8;
1024 	return 0;
1025 }
1026 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1027 
1028 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1029 {
1030 	if (lapic_in_kernel(vcpu))
1031 		return kvm_lapic_get_cr8(vcpu);
1032 	else
1033 		return vcpu->arch.cr8;
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1036 
1037 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1038 {
1039 	int i;
1040 
1041 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1042 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1043 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1044 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1045 	}
1046 }
1047 
1048 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1049 {
1050 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1051 		kvm_x86_ops.set_dr6(vcpu, vcpu->arch.dr6);
1052 }
1053 
1054 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1055 {
1056 	unsigned long dr7;
1057 
1058 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1059 		dr7 = vcpu->arch.guest_debug_dr7;
1060 	else
1061 		dr7 = vcpu->arch.dr7;
1062 	kvm_x86_ops.set_dr7(vcpu, dr7);
1063 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1064 	if (dr7 & DR7_BP_EN_MASK)
1065 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1066 }
1067 
1068 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1069 {
1070 	u64 fixed = DR6_FIXED_1;
1071 
1072 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1073 		fixed |= DR6_RTM;
1074 	return fixed;
1075 }
1076 
1077 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1078 {
1079 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1080 
1081 	switch (dr) {
1082 	case 0 ... 3:
1083 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1084 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1085 			vcpu->arch.eff_db[dr] = val;
1086 		break;
1087 	case 4:
1088 		/* fall through */
1089 	case 6:
1090 		if (val & 0xffffffff00000000ULL)
1091 			return -1; /* #GP */
1092 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1093 		kvm_update_dr6(vcpu);
1094 		break;
1095 	case 5:
1096 		/* fall through */
1097 	default: /* 7 */
1098 		if (!kvm_dr7_valid(val))
1099 			return -1; /* #GP */
1100 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1101 		kvm_update_dr7(vcpu);
1102 		break;
1103 	}
1104 
1105 	return 0;
1106 }
1107 
1108 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1109 {
1110 	if (__kvm_set_dr(vcpu, dr, val)) {
1111 		kvm_inject_gp(vcpu, 0);
1112 		return 1;
1113 	}
1114 	return 0;
1115 }
1116 EXPORT_SYMBOL_GPL(kvm_set_dr);
1117 
1118 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1119 {
1120 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1121 
1122 	switch (dr) {
1123 	case 0 ... 3:
1124 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1125 		break;
1126 	case 4:
1127 		/* fall through */
1128 	case 6:
1129 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1130 			*val = vcpu->arch.dr6;
1131 		else
1132 			*val = kvm_x86_ops.get_dr6(vcpu);
1133 		break;
1134 	case 5:
1135 		/* fall through */
1136 	default: /* 7 */
1137 		*val = vcpu->arch.dr7;
1138 		break;
1139 	}
1140 	return 0;
1141 }
1142 EXPORT_SYMBOL_GPL(kvm_get_dr);
1143 
1144 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1145 {
1146 	u32 ecx = kvm_rcx_read(vcpu);
1147 	u64 data;
1148 	int err;
1149 
1150 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1151 	if (err)
1152 		return err;
1153 	kvm_rax_write(vcpu, (u32)data);
1154 	kvm_rdx_write(vcpu, data >> 32);
1155 	return err;
1156 }
1157 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1158 
1159 /*
1160  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1161  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1162  *
1163  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1164  * extract the supported MSRs from the related const lists.
1165  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1166  * capabilities of the host cpu. This capabilities test skips MSRs that are
1167  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1168  * may depend on host virtualization features rather than host cpu features.
1169  */
1170 
1171 static const u32 msrs_to_save_all[] = {
1172 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1173 	MSR_STAR,
1174 #ifdef CONFIG_X86_64
1175 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1176 #endif
1177 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1178 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1179 	MSR_IA32_SPEC_CTRL,
1180 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1181 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1182 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1183 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1184 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1185 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1186 	MSR_IA32_UMWAIT_CONTROL,
1187 
1188 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1189 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1190 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1191 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1192 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1193 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1194 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1195 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1196 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1197 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1198 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1199 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1200 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1201 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1202 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1203 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1204 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1205 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1206 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1207 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1208 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1209 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1210 };
1211 
1212 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1213 static unsigned num_msrs_to_save;
1214 
1215 static const u32 emulated_msrs_all[] = {
1216 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1217 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1218 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1219 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1220 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1221 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1222 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1223 	HV_X64_MSR_RESET,
1224 	HV_X64_MSR_VP_INDEX,
1225 	HV_X64_MSR_VP_RUNTIME,
1226 	HV_X64_MSR_SCONTROL,
1227 	HV_X64_MSR_STIMER0_CONFIG,
1228 	HV_X64_MSR_VP_ASSIST_PAGE,
1229 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1230 	HV_X64_MSR_TSC_EMULATION_STATUS,
1231 
1232 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1233 	MSR_KVM_PV_EOI_EN,
1234 
1235 	MSR_IA32_TSC_ADJUST,
1236 	MSR_IA32_TSCDEADLINE,
1237 	MSR_IA32_ARCH_CAPABILITIES,
1238 	MSR_IA32_MISC_ENABLE,
1239 	MSR_IA32_MCG_STATUS,
1240 	MSR_IA32_MCG_CTL,
1241 	MSR_IA32_MCG_EXT_CTL,
1242 	MSR_IA32_SMBASE,
1243 	MSR_SMI_COUNT,
1244 	MSR_PLATFORM_INFO,
1245 	MSR_MISC_FEATURES_ENABLES,
1246 	MSR_AMD64_VIRT_SPEC_CTRL,
1247 	MSR_IA32_POWER_CTL,
1248 	MSR_IA32_UCODE_REV,
1249 
1250 	/*
1251 	 * The following list leaves out MSRs whose values are determined
1252 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1253 	 * We always support the "true" VMX control MSRs, even if the host
1254 	 * processor does not, so I am putting these registers here rather
1255 	 * than in msrs_to_save_all.
1256 	 */
1257 	MSR_IA32_VMX_BASIC,
1258 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1259 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1260 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1261 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1262 	MSR_IA32_VMX_MISC,
1263 	MSR_IA32_VMX_CR0_FIXED0,
1264 	MSR_IA32_VMX_CR4_FIXED0,
1265 	MSR_IA32_VMX_VMCS_ENUM,
1266 	MSR_IA32_VMX_PROCBASED_CTLS2,
1267 	MSR_IA32_VMX_EPT_VPID_CAP,
1268 	MSR_IA32_VMX_VMFUNC,
1269 
1270 	MSR_K7_HWCR,
1271 	MSR_KVM_POLL_CONTROL,
1272 };
1273 
1274 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1275 static unsigned num_emulated_msrs;
1276 
1277 /*
1278  * List of msr numbers which are used to expose MSR-based features that
1279  * can be used by a hypervisor to validate requested CPU features.
1280  */
1281 static const u32 msr_based_features_all[] = {
1282 	MSR_IA32_VMX_BASIC,
1283 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1284 	MSR_IA32_VMX_PINBASED_CTLS,
1285 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1286 	MSR_IA32_VMX_PROCBASED_CTLS,
1287 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1288 	MSR_IA32_VMX_EXIT_CTLS,
1289 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1290 	MSR_IA32_VMX_ENTRY_CTLS,
1291 	MSR_IA32_VMX_MISC,
1292 	MSR_IA32_VMX_CR0_FIXED0,
1293 	MSR_IA32_VMX_CR0_FIXED1,
1294 	MSR_IA32_VMX_CR4_FIXED0,
1295 	MSR_IA32_VMX_CR4_FIXED1,
1296 	MSR_IA32_VMX_VMCS_ENUM,
1297 	MSR_IA32_VMX_PROCBASED_CTLS2,
1298 	MSR_IA32_VMX_EPT_VPID_CAP,
1299 	MSR_IA32_VMX_VMFUNC,
1300 
1301 	MSR_F10H_DECFG,
1302 	MSR_IA32_UCODE_REV,
1303 	MSR_IA32_ARCH_CAPABILITIES,
1304 };
1305 
1306 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1307 static unsigned int num_msr_based_features;
1308 
1309 static u64 kvm_get_arch_capabilities(void)
1310 {
1311 	u64 data = 0;
1312 
1313 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1314 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1315 
1316 	/*
1317 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1318 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1319 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1320 	 * L1 guests, so it need not worry about its own (L2) guests.
1321 	 */
1322 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1323 
1324 	/*
1325 	 * If we're doing cache flushes (either "always" or "cond")
1326 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1327 	 * If an outer hypervisor is doing the cache flush for us
1328 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1329 	 * capability to the guest too, and if EPT is disabled we're not
1330 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1331 	 * require a nested hypervisor to do a flush of its own.
1332 	 */
1333 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1334 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1335 
1336 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1337 		data |= ARCH_CAP_RDCL_NO;
1338 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1339 		data |= ARCH_CAP_SSB_NO;
1340 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1341 		data |= ARCH_CAP_MDS_NO;
1342 
1343 	/*
1344 	 * On TAA affected systems:
1345 	 *      - nothing to do if TSX is disabled on the host.
1346 	 *      - we emulate TSX_CTRL if present on the host.
1347 	 *	  This lets the guest use VERW to clear CPU buffers.
1348 	 */
1349 	if (!boot_cpu_has(X86_FEATURE_RTM))
1350 		data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1351 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1352 		data |= ARCH_CAP_TAA_NO;
1353 
1354 	return data;
1355 }
1356 
1357 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1358 {
1359 	switch (msr->index) {
1360 	case MSR_IA32_ARCH_CAPABILITIES:
1361 		msr->data = kvm_get_arch_capabilities();
1362 		break;
1363 	case MSR_IA32_UCODE_REV:
1364 		rdmsrl_safe(msr->index, &msr->data);
1365 		break;
1366 	default:
1367 		if (kvm_x86_ops.get_msr_feature(msr))
1368 			return 1;
1369 	}
1370 	return 0;
1371 }
1372 
1373 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1374 {
1375 	struct kvm_msr_entry msr;
1376 	int r;
1377 
1378 	msr.index = index;
1379 	r = kvm_get_msr_feature(&msr);
1380 	if (r)
1381 		return r;
1382 
1383 	*data = msr.data;
1384 
1385 	return 0;
1386 }
1387 
1388 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1389 {
1390 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1391 		return false;
1392 
1393 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1394 		return false;
1395 
1396 	if (efer & (EFER_LME | EFER_LMA) &&
1397 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1398 		return false;
1399 
1400 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1401 		return false;
1402 
1403 	return true;
1404 
1405 }
1406 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1407 {
1408 	if (efer & efer_reserved_bits)
1409 		return false;
1410 
1411 	return __kvm_valid_efer(vcpu, efer);
1412 }
1413 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1414 
1415 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1416 {
1417 	u64 old_efer = vcpu->arch.efer;
1418 	u64 efer = msr_info->data;
1419 
1420 	if (efer & efer_reserved_bits)
1421 		return 1;
1422 
1423 	if (!msr_info->host_initiated) {
1424 		if (!__kvm_valid_efer(vcpu, efer))
1425 			return 1;
1426 
1427 		if (is_paging(vcpu) &&
1428 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1429 			return 1;
1430 	}
1431 
1432 	efer &= ~EFER_LMA;
1433 	efer |= vcpu->arch.efer & EFER_LMA;
1434 
1435 	kvm_x86_ops.set_efer(vcpu, efer);
1436 
1437 	/* Update reserved bits */
1438 	if ((efer ^ old_efer) & EFER_NX)
1439 		kvm_mmu_reset_context(vcpu);
1440 
1441 	return 0;
1442 }
1443 
1444 void kvm_enable_efer_bits(u64 mask)
1445 {
1446        efer_reserved_bits &= ~mask;
1447 }
1448 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1449 
1450 /*
1451  * Write @data into the MSR specified by @index.  Select MSR specific fault
1452  * checks are bypassed if @host_initiated is %true.
1453  * Returns 0 on success, non-0 otherwise.
1454  * Assumes vcpu_load() was already called.
1455  */
1456 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1457 			 bool host_initiated)
1458 {
1459 	struct msr_data msr;
1460 
1461 	switch (index) {
1462 	case MSR_FS_BASE:
1463 	case MSR_GS_BASE:
1464 	case MSR_KERNEL_GS_BASE:
1465 	case MSR_CSTAR:
1466 	case MSR_LSTAR:
1467 		if (is_noncanonical_address(data, vcpu))
1468 			return 1;
1469 		break;
1470 	case MSR_IA32_SYSENTER_EIP:
1471 	case MSR_IA32_SYSENTER_ESP:
1472 		/*
1473 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1474 		 * non-canonical address is written on Intel but not on
1475 		 * AMD (which ignores the top 32-bits, because it does
1476 		 * not implement 64-bit SYSENTER).
1477 		 *
1478 		 * 64-bit code should hence be able to write a non-canonical
1479 		 * value on AMD.  Making the address canonical ensures that
1480 		 * vmentry does not fail on Intel after writing a non-canonical
1481 		 * value, and that something deterministic happens if the guest
1482 		 * invokes 64-bit SYSENTER.
1483 		 */
1484 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1485 	}
1486 
1487 	msr.data = data;
1488 	msr.index = index;
1489 	msr.host_initiated = host_initiated;
1490 
1491 	return kvm_x86_ops.set_msr(vcpu, &msr);
1492 }
1493 
1494 /*
1495  * Read the MSR specified by @index into @data.  Select MSR specific fault
1496  * checks are bypassed if @host_initiated is %true.
1497  * Returns 0 on success, non-0 otherwise.
1498  * Assumes vcpu_load() was already called.
1499  */
1500 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1501 		  bool host_initiated)
1502 {
1503 	struct msr_data msr;
1504 	int ret;
1505 
1506 	msr.index = index;
1507 	msr.host_initiated = host_initiated;
1508 
1509 	ret = kvm_x86_ops.get_msr(vcpu, &msr);
1510 	if (!ret)
1511 		*data = msr.data;
1512 	return ret;
1513 }
1514 
1515 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1516 {
1517 	return __kvm_get_msr(vcpu, index, data, false);
1518 }
1519 EXPORT_SYMBOL_GPL(kvm_get_msr);
1520 
1521 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1522 {
1523 	return __kvm_set_msr(vcpu, index, data, false);
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_set_msr);
1526 
1527 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1528 {
1529 	u32 ecx = kvm_rcx_read(vcpu);
1530 	u64 data;
1531 
1532 	if (kvm_get_msr(vcpu, ecx, &data)) {
1533 		trace_kvm_msr_read_ex(ecx);
1534 		kvm_inject_gp(vcpu, 0);
1535 		return 1;
1536 	}
1537 
1538 	trace_kvm_msr_read(ecx, data);
1539 
1540 	kvm_rax_write(vcpu, data & -1u);
1541 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1542 	return kvm_skip_emulated_instruction(vcpu);
1543 }
1544 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1545 
1546 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1547 {
1548 	u32 ecx = kvm_rcx_read(vcpu);
1549 	u64 data = kvm_read_edx_eax(vcpu);
1550 
1551 	if (kvm_set_msr(vcpu, ecx, data)) {
1552 		trace_kvm_msr_write_ex(ecx, data);
1553 		kvm_inject_gp(vcpu, 0);
1554 		return 1;
1555 	}
1556 
1557 	trace_kvm_msr_write(ecx, data);
1558 	return kvm_skip_emulated_instruction(vcpu);
1559 }
1560 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1561 
1562 /*
1563  * The fast path for frequent and performance sensitive wrmsr emulation,
1564  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1565  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1566  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1567  * other cases which must be called after interrupts are enabled on the host.
1568  */
1569 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1570 {
1571 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1572 		return 1;
1573 
1574 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1575 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1576 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1577 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
1578 
1579 		data &= ~(1 << 12);
1580 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1581 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1582 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1583 		trace_kvm_apic_write(APIC_ICR, (u32)data);
1584 		return 0;
1585 	}
1586 
1587 	return 1;
1588 }
1589 
1590 enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1591 {
1592 	u32 msr = kvm_rcx_read(vcpu);
1593 	u64 data;
1594 	int ret = 0;
1595 
1596 	switch (msr) {
1597 	case APIC_BASE_MSR + (APIC_ICR >> 4):
1598 		data = kvm_read_edx_eax(vcpu);
1599 		ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
1600 		break;
1601 	default:
1602 		return EXIT_FASTPATH_NONE;
1603 	}
1604 
1605 	if (!ret) {
1606 		trace_kvm_msr_write(msr, data);
1607 		return EXIT_FASTPATH_SKIP_EMUL_INS;
1608 	}
1609 
1610 	return EXIT_FASTPATH_NONE;
1611 }
1612 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1613 
1614 /*
1615  * Adapt set_msr() to msr_io()'s calling convention
1616  */
1617 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1618 {
1619 	return __kvm_get_msr(vcpu, index, data, true);
1620 }
1621 
1622 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1623 {
1624 	return __kvm_set_msr(vcpu, index, *data, true);
1625 }
1626 
1627 #ifdef CONFIG_X86_64
1628 struct pvclock_clock {
1629 	int vclock_mode;
1630 	u64 cycle_last;
1631 	u64 mask;
1632 	u32 mult;
1633 	u32 shift;
1634 	u64 base_cycles;
1635 	u64 offset;
1636 };
1637 
1638 struct pvclock_gtod_data {
1639 	seqcount_t	seq;
1640 
1641 	struct pvclock_clock clock; /* extract of a clocksource struct */
1642 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1643 
1644 	ktime_t		offs_boot;
1645 	u64		wall_time_sec;
1646 };
1647 
1648 static struct pvclock_gtod_data pvclock_gtod_data;
1649 
1650 static void update_pvclock_gtod(struct timekeeper *tk)
1651 {
1652 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1653 
1654 	write_seqcount_begin(&vdata->seq);
1655 
1656 	/* copy pvclock gtod data */
1657 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
1658 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1659 	vdata->clock.mask		= tk->tkr_mono.mask;
1660 	vdata->clock.mult		= tk->tkr_mono.mult;
1661 	vdata->clock.shift		= tk->tkr_mono.shift;
1662 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
1663 	vdata->clock.offset		= tk->tkr_mono.base;
1664 
1665 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
1666 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
1667 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
1668 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
1669 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
1670 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
1671 	vdata->raw_clock.offset		= tk->tkr_raw.base;
1672 
1673 	vdata->wall_time_sec            = tk->xtime_sec;
1674 
1675 	vdata->offs_boot		= tk->offs_boot;
1676 
1677 	write_seqcount_end(&vdata->seq);
1678 }
1679 
1680 static s64 get_kvmclock_base_ns(void)
1681 {
1682 	/* Count up from boot time, but with the frequency of the raw clock.  */
1683 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1684 }
1685 #else
1686 static s64 get_kvmclock_base_ns(void)
1687 {
1688 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
1689 	return ktime_get_boottime_ns();
1690 }
1691 #endif
1692 
1693 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1694 {
1695 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1696 	kvm_vcpu_kick(vcpu);
1697 }
1698 
1699 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1700 {
1701 	int version;
1702 	int r;
1703 	struct pvclock_wall_clock wc;
1704 	u64 wall_nsec;
1705 
1706 	if (!wall_clock)
1707 		return;
1708 
1709 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1710 	if (r)
1711 		return;
1712 
1713 	if (version & 1)
1714 		++version;  /* first time write, random junk */
1715 
1716 	++version;
1717 
1718 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1719 		return;
1720 
1721 	/*
1722 	 * The guest calculates current wall clock time by adding
1723 	 * system time (updated by kvm_guest_time_update below) to the
1724 	 * wall clock specified here.  We do the reverse here.
1725 	 */
1726 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
1727 
1728 	wc.nsec = do_div(wall_nsec, 1000000000);
1729 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
1730 	wc.version = version;
1731 
1732 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1733 
1734 	version++;
1735 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1736 }
1737 
1738 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1739 {
1740 	do_shl32_div32(dividend, divisor);
1741 	return dividend;
1742 }
1743 
1744 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1745 			       s8 *pshift, u32 *pmultiplier)
1746 {
1747 	uint64_t scaled64;
1748 	int32_t  shift = 0;
1749 	uint64_t tps64;
1750 	uint32_t tps32;
1751 
1752 	tps64 = base_hz;
1753 	scaled64 = scaled_hz;
1754 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1755 		tps64 >>= 1;
1756 		shift--;
1757 	}
1758 
1759 	tps32 = (uint32_t)tps64;
1760 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1761 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1762 			scaled64 >>= 1;
1763 		else
1764 			tps32 <<= 1;
1765 		shift++;
1766 	}
1767 
1768 	*pshift = shift;
1769 	*pmultiplier = div_frac(scaled64, tps32);
1770 }
1771 
1772 #ifdef CONFIG_X86_64
1773 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1774 #endif
1775 
1776 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1777 static unsigned long max_tsc_khz;
1778 
1779 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1780 {
1781 	u64 v = (u64)khz * (1000000 + ppm);
1782 	do_div(v, 1000000);
1783 	return v;
1784 }
1785 
1786 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1787 {
1788 	u64 ratio;
1789 
1790 	/* Guest TSC same frequency as host TSC? */
1791 	if (!scale) {
1792 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1793 		return 0;
1794 	}
1795 
1796 	/* TSC scaling supported? */
1797 	if (!kvm_has_tsc_control) {
1798 		if (user_tsc_khz > tsc_khz) {
1799 			vcpu->arch.tsc_catchup = 1;
1800 			vcpu->arch.tsc_always_catchup = 1;
1801 			return 0;
1802 		} else {
1803 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1804 			return -1;
1805 		}
1806 	}
1807 
1808 	/* TSC scaling required  - calculate ratio */
1809 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1810 				user_tsc_khz, tsc_khz);
1811 
1812 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1813 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1814 			            user_tsc_khz);
1815 		return -1;
1816 	}
1817 
1818 	vcpu->arch.tsc_scaling_ratio = ratio;
1819 	return 0;
1820 }
1821 
1822 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1823 {
1824 	u32 thresh_lo, thresh_hi;
1825 	int use_scaling = 0;
1826 
1827 	/* tsc_khz can be zero if TSC calibration fails */
1828 	if (user_tsc_khz == 0) {
1829 		/* set tsc_scaling_ratio to a safe value */
1830 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1831 		return -1;
1832 	}
1833 
1834 	/* Compute a scale to convert nanoseconds in TSC cycles */
1835 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1836 			   &vcpu->arch.virtual_tsc_shift,
1837 			   &vcpu->arch.virtual_tsc_mult);
1838 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1839 
1840 	/*
1841 	 * Compute the variation in TSC rate which is acceptable
1842 	 * within the range of tolerance and decide if the
1843 	 * rate being applied is within that bounds of the hardware
1844 	 * rate.  If so, no scaling or compensation need be done.
1845 	 */
1846 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1847 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1848 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1849 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1850 		use_scaling = 1;
1851 	}
1852 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1853 }
1854 
1855 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1856 {
1857 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1858 				      vcpu->arch.virtual_tsc_mult,
1859 				      vcpu->arch.virtual_tsc_shift);
1860 	tsc += vcpu->arch.this_tsc_write;
1861 	return tsc;
1862 }
1863 
1864 static inline int gtod_is_based_on_tsc(int mode)
1865 {
1866 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
1867 }
1868 
1869 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1870 {
1871 #ifdef CONFIG_X86_64
1872 	bool vcpus_matched;
1873 	struct kvm_arch *ka = &vcpu->kvm->arch;
1874 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1875 
1876 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1877 			 atomic_read(&vcpu->kvm->online_vcpus));
1878 
1879 	/*
1880 	 * Once the masterclock is enabled, always perform request in
1881 	 * order to update it.
1882 	 *
1883 	 * In order to enable masterclock, the host clocksource must be TSC
1884 	 * and the vcpus need to have matched TSCs.  When that happens,
1885 	 * perform request to enable masterclock.
1886 	 */
1887 	if (ka->use_master_clock ||
1888 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1889 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1890 
1891 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1892 			    atomic_read(&vcpu->kvm->online_vcpus),
1893 		            ka->use_master_clock, gtod->clock.vclock_mode);
1894 #endif
1895 }
1896 
1897 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1898 {
1899 	u64 curr_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
1900 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1901 }
1902 
1903 /*
1904  * Multiply tsc by a fixed point number represented by ratio.
1905  *
1906  * The most significant 64-N bits (mult) of ratio represent the
1907  * integral part of the fixed point number; the remaining N bits
1908  * (frac) represent the fractional part, ie. ratio represents a fixed
1909  * point number (mult + frac * 2^(-N)).
1910  *
1911  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1912  */
1913 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1914 {
1915 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1916 }
1917 
1918 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1919 {
1920 	u64 _tsc = tsc;
1921 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1922 
1923 	if (ratio != kvm_default_tsc_scaling_ratio)
1924 		_tsc = __scale_tsc(ratio, tsc);
1925 
1926 	return _tsc;
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1929 
1930 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1931 {
1932 	u64 tsc;
1933 
1934 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1935 
1936 	return target_tsc - tsc;
1937 }
1938 
1939 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1940 {
1941 	u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
1942 
1943 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1946 
1947 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1948 {
1949 	vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
1950 }
1951 
1952 static inline bool kvm_check_tsc_unstable(void)
1953 {
1954 #ifdef CONFIG_X86_64
1955 	/*
1956 	 * TSC is marked unstable when we're running on Hyper-V,
1957 	 * 'TSC page' clocksource is good.
1958 	 */
1959 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
1960 		return false;
1961 #endif
1962 	return check_tsc_unstable();
1963 }
1964 
1965 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1966 {
1967 	struct kvm *kvm = vcpu->kvm;
1968 	u64 offset, ns, elapsed;
1969 	unsigned long flags;
1970 	bool matched;
1971 	bool already_matched;
1972 	u64 data = msr->data;
1973 	bool synchronizing = false;
1974 
1975 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1976 	offset = kvm_compute_tsc_offset(vcpu, data);
1977 	ns = get_kvmclock_base_ns();
1978 	elapsed = ns - kvm->arch.last_tsc_nsec;
1979 
1980 	if (vcpu->arch.virtual_tsc_khz) {
1981 		if (data == 0 && msr->host_initiated) {
1982 			/*
1983 			 * detection of vcpu initialization -- need to sync
1984 			 * with other vCPUs. This particularly helps to keep
1985 			 * kvm_clock stable after CPU hotplug
1986 			 */
1987 			synchronizing = true;
1988 		} else {
1989 			u64 tsc_exp = kvm->arch.last_tsc_write +
1990 						nsec_to_cycles(vcpu, elapsed);
1991 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1992 			/*
1993 			 * Special case: TSC write with a small delta (1 second)
1994 			 * of virtual cycle time against real time is
1995 			 * interpreted as an attempt to synchronize the CPU.
1996 			 */
1997 			synchronizing = data < tsc_exp + tsc_hz &&
1998 					data + tsc_hz > tsc_exp;
1999 		}
2000 	}
2001 
2002 	/*
2003 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2004 	 * TSC, we add elapsed time in this computation.  We could let the
2005 	 * compensation code attempt to catch up if we fall behind, but
2006 	 * it's better to try to match offsets from the beginning.
2007          */
2008 	if (synchronizing &&
2009 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2010 		if (!kvm_check_tsc_unstable()) {
2011 			offset = kvm->arch.cur_tsc_offset;
2012 		} else {
2013 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2014 			data += delta;
2015 			offset = kvm_compute_tsc_offset(vcpu, data);
2016 		}
2017 		matched = true;
2018 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2019 	} else {
2020 		/*
2021 		 * We split periods of matched TSC writes into generations.
2022 		 * For each generation, we track the original measured
2023 		 * nanosecond time, offset, and write, so if TSCs are in
2024 		 * sync, we can match exact offset, and if not, we can match
2025 		 * exact software computation in compute_guest_tsc()
2026 		 *
2027 		 * These values are tracked in kvm->arch.cur_xxx variables.
2028 		 */
2029 		kvm->arch.cur_tsc_generation++;
2030 		kvm->arch.cur_tsc_nsec = ns;
2031 		kvm->arch.cur_tsc_write = data;
2032 		kvm->arch.cur_tsc_offset = offset;
2033 		matched = false;
2034 	}
2035 
2036 	/*
2037 	 * We also track th most recent recorded KHZ, write and time to
2038 	 * allow the matching interval to be extended at each write.
2039 	 */
2040 	kvm->arch.last_tsc_nsec = ns;
2041 	kvm->arch.last_tsc_write = data;
2042 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2043 
2044 	vcpu->arch.last_guest_tsc = data;
2045 
2046 	/* Keep track of which generation this VCPU has synchronized to */
2047 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2048 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2049 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2050 
2051 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2052 		update_ia32_tsc_adjust_msr(vcpu, offset);
2053 
2054 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2055 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2056 
2057 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2058 	if (!matched) {
2059 		kvm->arch.nr_vcpus_matched_tsc = 0;
2060 	} else if (!already_matched) {
2061 		kvm->arch.nr_vcpus_matched_tsc++;
2062 	}
2063 
2064 	kvm_track_tsc_matching(vcpu);
2065 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2066 }
2067 
2068 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2069 
2070 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2071 					   s64 adjustment)
2072 {
2073 	u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
2074 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2075 }
2076 
2077 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2078 {
2079 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2080 		WARN_ON(adjustment < 0);
2081 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2082 	adjust_tsc_offset_guest(vcpu, adjustment);
2083 }
2084 
2085 #ifdef CONFIG_X86_64
2086 
2087 static u64 read_tsc(void)
2088 {
2089 	u64 ret = (u64)rdtsc_ordered();
2090 	u64 last = pvclock_gtod_data.clock.cycle_last;
2091 
2092 	if (likely(ret >= last))
2093 		return ret;
2094 
2095 	/*
2096 	 * GCC likes to generate cmov here, but this branch is extremely
2097 	 * predictable (it's just a function of time and the likely is
2098 	 * very likely) and there's a data dependence, so force GCC
2099 	 * to generate a branch instead.  I don't barrier() because
2100 	 * we don't actually need a barrier, and if this function
2101 	 * ever gets inlined it will generate worse code.
2102 	 */
2103 	asm volatile ("");
2104 	return last;
2105 }
2106 
2107 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2108 			  int *mode)
2109 {
2110 	long v;
2111 	u64 tsc_pg_val;
2112 
2113 	switch (clock->vclock_mode) {
2114 	case VDSO_CLOCKMODE_HVCLOCK:
2115 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2116 						  tsc_timestamp);
2117 		if (tsc_pg_val != U64_MAX) {
2118 			/* TSC page valid */
2119 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2120 			v = (tsc_pg_val - clock->cycle_last) &
2121 				clock->mask;
2122 		} else {
2123 			/* TSC page invalid */
2124 			*mode = VDSO_CLOCKMODE_NONE;
2125 		}
2126 		break;
2127 	case VDSO_CLOCKMODE_TSC:
2128 		*mode = VDSO_CLOCKMODE_TSC;
2129 		*tsc_timestamp = read_tsc();
2130 		v = (*tsc_timestamp - clock->cycle_last) &
2131 			clock->mask;
2132 		break;
2133 	default:
2134 		*mode = VDSO_CLOCKMODE_NONE;
2135 	}
2136 
2137 	if (*mode == VDSO_CLOCKMODE_NONE)
2138 		*tsc_timestamp = v = 0;
2139 
2140 	return v * clock->mult;
2141 }
2142 
2143 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2144 {
2145 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2146 	unsigned long seq;
2147 	int mode;
2148 	u64 ns;
2149 
2150 	do {
2151 		seq = read_seqcount_begin(&gtod->seq);
2152 		ns = gtod->raw_clock.base_cycles;
2153 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2154 		ns >>= gtod->raw_clock.shift;
2155 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2156 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2157 	*t = ns;
2158 
2159 	return mode;
2160 }
2161 
2162 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2163 {
2164 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2165 	unsigned long seq;
2166 	int mode;
2167 	u64 ns;
2168 
2169 	do {
2170 		seq = read_seqcount_begin(&gtod->seq);
2171 		ts->tv_sec = gtod->wall_time_sec;
2172 		ns = gtod->clock.base_cycles;
2173 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2174 		ns >>= gtod->clock.shift;
2175 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2176 
2177 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2178 	ts->tv_nsec = ns;
2179 
2180 	return mode;
2181 }
2182 
2183 /* returns true if host is using TSC based clocksource */
2184 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2185 {
2186 	/* checked again under seqlock below */
2187 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2188 		return false;
2189 
2190 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2191 						      tsc_timestamp));
2192 }
2193 
2194 /* returns true if host is using TSC based clocksource */
2195 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2196 					   u64 *tsc_timestamp)
2197 {
2198 	/* checked again under seqlock below */
2199 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2200 		return false;
2201 
2202 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2203 }
2204 #endif
2205 
2206 /*
2207  *
2208  * Assuming a stable TSC across physical CPUS, and a stable TSC
2209  * across virtual CPUs, the following condition is possible.
2210  * Each numbered line represents an event visible to both
2211  * CPUs at the next numbered event.
2212  *
2213  * "timespecX" represents host monotonic time. "tscX" represents
2214  * RDTSC value.
2215  *
2216  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2217  *
2218  * 1.  read timespec0,tsc0
2219  * 2.					| timespec1 = timespec0 + N
2220  * 					| tsc1 = tsc0 + M
2221  * 3. transition to guest		| transition to guest
2222  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2223  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2224  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2225  *
2226  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2227  *
2228  * 	- ret0 < ret1
2229  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2230  *		...
2231  *	- 0 < N - M => M < N
2232  *
2233  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2234  * always the case (the difference between two distinct xtime instances
2235  * might be smaller then the difference between corresponding TSC reads,
2236  * when updating guest vcpus pvclock areas).
2237  *
2238  * To avoid that problem, do not allow visibility of distinct
2239  * system_timestamp/tsc_timestamp values simultaneously: use a master
2240  * copy of host monotonic time values. Update that master copy
2241  * in lockstep.
2242  *
2243  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2244  *
2245  */
2246 
2247 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2248 {
2249 #ifdef CONFIG_X86_64
2250 	struct kvm_arch *ka = &kvm->arch;
2251 	int vclock_mode;
2252 	bool host_tsc_clocksource, vcpus_matched;
2253 
2254 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2255 			atomic_read(&kvm->online_vcpus));
2256 
2257 	/*
2258 	 * If the host uses TSC clock, then passthrough TSC as stable
2259 	 * to the guest.
2260 	 */
2261 	host_tsc_clocksource = kvm_get_time_and_clockread(
2262 					&ka->master_kernel_ns,
2263 					&ka->master_cycle_now);
2264 
2265 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2266 				&& !ka->backwards_tsc_observed
2267 				&& !ka->boot_vcpu_runs_old_kvmclock;
2268 
2269 	if (ka->use_master_clock)
2270 		atomic_set(&kvm_guest_has_master_clock, 1);
2271 
2272 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2273 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2274 					vcpus_matched);
2275 #endif
2276 }
2277 
2278 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2279 {
2280 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2281 }
2282 
2283 static void kvm_gen_update_masterclock(struct kvm *kvm)
2284 {
2285 #ifdef CONFIG_X86_64
2286 	int i;
2287 	struct kvm_vcpu *vcpu;
2288 	struct kvm_arch *ka = &kvm->arch;
2289 
2290 	spin_lock(&ka->pvclock_gtod_sync_lock);
2291 	kvm_make_mclock_inprogress_request(kvm);
2292 	/* no guest entries from this point */
2293 	pvclock_update_vm_gtod_copy(kvm);
2294 
2295 	kvm_for_each_vcpu(i, vcpu, kvm)
2296 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2297 
2298 	/* guest entries allowed */
2299 	kvm_for_each_vcpu(i, vcpu, kvm)
2300 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2301 
2302 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2303 #endif
2304 }
2305 
2306 u64 get_kvmclock_ns(struct kvm *kvm)
2307 {
2308 	struct kvm_arch *ka = &kvm->arch;
2309 	struct pvclock_vcpu_time_info hv_clock;
2310 	u64 ret;
2311 
2312 	spin_lock(&ka->pvclock_gtod_sync_lock);
2313 	if (!ka->use_master_clock) {
2314 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2315 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2316 	}
2317 
2318 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2319 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2320 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2321 
2322 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2323 	get_cpu();
2324 
2325 	if (__this_cpu_read(cpu_tsc_khz)) {
2326 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2327 				   &hv_clock.tsc_shift,
2328 				   &hv_clock.tsc_to_system_mul);
2329 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2330 	} else
2331 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2332 
2333 	put_cpu();
2334 
2335 	return ret;
2336 }
2337 
2338 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2339 {
2340 	struct kvm_vcpu_arch *vcpu = &v->arch;
2341 	struct pvclock_vcpu_time_info guest_hv_clock;
2342 
2343 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2344 		&guest_hv_clock, sizeof(guest_hv_clock))))
2345 		return;
2346 
2347 	/* This VCPU is paused, but it's legal for a guest to read another
2348 	 * VCPU's kvmclock, so we really have to follow the specification where
2349 	 * it says that version is odd if data is being modified, and even after
2350 	 * it is consistent.
2351 	 *
2352 	 * Version field updates must be kept separate.  This is because
2353 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2354 	 * writes within a string instruction are weakly ordered.  So there
2355 	 * are three writes overall.
2356 	 *
2357 	 * As a small optimization, only write the version field in the first
2358 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2359 	 * version field is the first in the struct.
2360 	 */
2361 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2362 
2363 	if (guest_hv_clock.version & 1)
2364 		++guest_hv_clock.version;  /* first time write, random junk */
2365 
2366 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2367 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2368 				&vcpu->hv_clock,
2369 				sizeof(vcpu->hv_clock.version));
2370 
2371 	smp_wmb();
2372 
2373 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2374 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2375 
2376 	if (vcpu->pvclock_set_guest_stopped_request) {
2377 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2378 		vcpu->pvclock_set_guest_stopped_request = false;
2379 	}
2380 
2381 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2382 
2383 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2384 				&vcpu->hv_clock,
2385 				sizeof(vcpu->hv_clock));
2386 
2387 	smp_wmb();
2388 
2389 	vcpu->hv_clock.version++;
2390 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2391 				&vcpu->hv_clock,
2392 				sizeof(vcpu->hv_clock.version));
2393 }
2394 
2395 static int kvm_guest_time_update(struct kvm_vcpu *v)
2396 {
2397 	unsigned long flags, tgt_tsc_khz;
2398 	struct kvm_vcpu_arch *vcpu = &v->arch;
2399 	struct kvm_arch *ka = &v->kvm->arch;
2400 	s64 kernel_ns;
2401 	u64 tsc_timestamp, host_tsc;
2402 	u8 pvclock_flags;
2403 	bool use_master_clock;
2404 
2405 	kernel_ns = 0;
2406 	host_tsc = 0;
2407 
2408 	/*
2409 	 * If the host uses TSC clock, then passthrough TSC as stable
2410 	 * to the guest.
2411 	 */
2412 	spin_lock(&ka->pvclock_gtod_sync_lock);
2413 	use_master_clock = ka->use_master_clock;
2414 	if (use_master_clock) {
2415 		host_tsc = ka->master_cycle_now;
2416 		kernel_ns = ka->master_kernel_ns;
2417 	}
2418 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2419 
2420 	/* Keep irq disabled to prevent changes to the clock */
2421 	local_irq_save(flags);
2422 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2423 	if (unlikely(tgt_tsc_khz == 0)) {
2424 		local_irq_restore(flags);
2425 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2426 		return 1;
2427 	}
2428 	if (!use_master_clock) {
2429 		host_tsc = rdtsc();
2430 		kernel_ns = get_kvmclock_base_ns();
2431 	}
2432 
2433 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2434 
2435 	/*
2436 	 * We may have to catch up the TSC to match elapsed wall clock
2437 	 * time for two reasons, even if kvmclock is used.
2438 	 *   1) CPU could have been running below the maximum TSC rate
2439 	 *   2) Broken TSC compensation resets the base at each VCPU
2440 	 *      entry to avoid unknown leaps of TSC even when running
2441 	 *      again on the same CPU.  This may cause apparent elapsed
2442 	 *      time to disappear, and the guest to stand still or run
2443 	 *	very slowly.
2444 	 */
2445 	if (vcpu->tsc_catchup) {
2446 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2447 		if (tsc > tsc_timestamp) {
2448 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2449 			tsc_timestamp = tsc;
2450 		}
2451 	}
2452 
2453 	local_irq_restore(flags);
2454 
2455 	/* With all the info we got, fill in the values */
2456 
2457 	if (kvm_has_tsc_control)
2458 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2459 
2460 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2461 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2462 				   &vcpu->hv_clock.tsc_shift,
2463 				   &vcpu->hv_clock.tsc_to_system_mul);
2464 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2465 	}
2466 
2467 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2468 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2469 	vcpu->last_guest_tsc = tsc_timestamp;
2470 
2471 	/* If the host uses TSC clocksource, then it is stable */
2472 	pvclock_flags = 0;
2473 	if (use_master_clock)
2474 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2475 
2476 	vcpu->hv_clock.flags = pvclock_flags;
2477 
2478 	if (vcpu->pv_time_enabled)
2479 		kvm_setup_pvclock_page(v);
2480 	if (v == kvm_get_vcpu(v->kvm, 0))
2481 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2482 	return 0;
2483 }
2484 
2485 /*
2486  * kvmclock updates which are isolated to a given vcpu, such as
2487  * vcpu->cpu migration, should not allow system_timestamp from
2488  * the rest of the vcpus to remain static. Otherwise ntp frequency
2489  * correction applies to one vcpu's system_timestamp but not
2490  * the others.
2491  *
2492  * So in those cases, request a kvmclock update for all vcpus.
2493  * We need to rate-limit these requests though, as they can
2494  * considerably slow guests that have a large number of vcpus.
2495  * The time for a remote vcpu to update its kvmclock is bound
2496  * by the delay we use to rate-limit the updates.
2497  */
2498 
2499 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2500 
2501 static void kvmclock_update_fn(struct work_struct *work)
2502 {
2503 	int i;
2504 	struct delayed_work *dwork = to_delayed_work(work);
2505 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2506 					   kvmclock_update_work);
2507 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2508 	struct kvm_vcpu *vcpu;
2509 
2510 	kvm_for_each_vcpu(i, vcpu, kvm) {
2511 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2512 		kvm_vcpu_kick(vcpu);
2513 	}
2514 }
2515 
2516 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2517 {
2518 	struct kvm *kvm = v->kvm;
2519 
2520 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2521 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2522 					KVMCLOCK_UPDATE_DELAY);
2523 }
2524 
2525 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2526 
2527 static void kvmclock_sync_fn(struct work_struct *work)
2528 {
2529 	struct delayed_work *dwork = to_delayed_work(work);
2530 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2531 					   kvmclock_sync_work);
2532 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2533 
2534 	if (!kvmclock_periodic_sync)
2535 		return;
2536 
2537 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2538 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2539 					KVMCLOCK_SYNC_PERIOD);
2540 }
2541 
2542 /*
2543  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2544  */
2545 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2546 {
2547 	/* McStatusWrEn enabled? */
2548 	if (guest_cpuid_is_amd_or_hygon(vcpu))
2549 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2550 
2551 	return false;
2552 }
2553 
2554 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2555 {
2556 	u64 mcg_cap = vcpu->arch.mcg_cap;
2557 	unsigned bank_num = mcg_cap & 0xff;
2558 	u32 msr = msr_info->index;
2559 	u64 data = msr_info->data;
2560 
2561 	switch (msr) {
2562 	case MSR_IA32_MCG_STATUS:
2563 		vcpu->arch.mcg_status = data;
2564 		break;
2565 	case MSR_IA32_MCG_CTL:
2566 		if (!(mcg_cap & MCG_CTL_P) &&
2567 		    (data || !msr_info->host_initiated))
2568 			return 1;
2569 		if (data != 0 && data != ~(u64)0)
2570 			return 1;
2571 		vcpu->arch.mcg_ctl = data;
2572 		break;
2573 	default:
2574 		if (msr >= MSR_IA32_MC0_CTL &&
2575 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2576 			u32 offset = array_index_nospec(
2577 				msr - MSR_IA32_MC0_CTL,
2578 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2579 
2580 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2581 			 * some Linux kernels though clear bit 10 in bank 4 to
2582 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2583 			 * this to avoid an uncatched #GP in the guest
2584 			 */
2585 			if ((offset & 0x3) == 0 &&
2586 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2587 				return -1;
2588 
2589 			/* MCi_STATUS */
2590 			if (!msr_info->host_initiated &&
2591 			    (offset & 0x3) == 1 && data != 0) {
2592 				if (!can_set_mci_status(vcpu))
2593 					return -1;
2594 			}
2595 
2596 			vcpu->arch.mce_banks[offset] = data;
2597 			break;
2598 		}
2599 		return 1;
2600 	}
2601 	return 0;
2602 }
2603 
2604 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2605 {
2606 	struct kvm *kvm = vcpu->kvm;
2607 	int lm = is_long_mode(vcpu);
2608 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2609 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2610 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2611 		: kvm->arch.xen_hvm_config.blob_size_32;
2612 	u32 page_num = data & ~PAGE_MASK;
2613 	u64 page_addr = data & PAGE_MASK;
2614 	u8 *page;
2615 	int r;
2616 
2617 	r = -E2BIG;
2618 	if (page_num >= blob_size)
2619 		goto out;
2620 	r = -ENOMEM;
2621 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2622 	if (IS_ERR(page)) {
2623 		r = PTR_ERR(page);
2624 		goto out;
2625 	}
2626 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2627 		goto out_free;
2628 	r = 0;
2629 out_free:
2630 	kfree(page);
2631 out:
2632 	return r;
2633 }
2634 
2635 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2636 {
2637 	gpa_t gpa = data & ~0x3f;
2638 
2639 	/* Bits 3:5 are reserved, Should be zero */
2640 	if (data & 0x38)
2641 		return 1;
2642 
2643 	vcpu->arch.apf.msr_val = data;
2644 
2645 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2646 		kvm_clear_async_pf_completion_queue(vcpu);
2647 		kvm_async_pf_hash_reset(vcpu);
2648 		return 0;
2649 	}
2650 
2651 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2652 					sizeof(u32)))
2653 		return 1;
2654 
2655 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2656 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2657 	kvm_async_pf_wakeup_all(vcpu);
2658 	return 0;
2659 }
2660 
2661 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2662 {
2663 	vcpu->arch.pv_time_enabled = false;
2664 	vcpu->arch.time = 0;
2665 }
2666 
2667 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2668 {
2669 	++vcpu->stat.tlb_flush;
2670 	kvm_x86_ops.tlb_flush(vcpu, invalidate_gpa);
2671 }
2672 
2673 static void record_steal_time(struct kvm_vcpu *vcpu)
2674 {
2675 	struct kvm_host_map map;
2676 	struct kvm_steal_time *st;
2677 
2678 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2679 		return;
2680 
2681 	/* -EAGAIN is returned in atomic context so we can just return. */
2682 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2683 			&map, &vcpu->arch.st.cache, false))
2684 		return;
2685 
2686 	st = map.hva +
2687 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2688 
2689 	/*
2690 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2691 	 * expensive IPIs.
2692 	 */
2693 	trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2694 		st->preempted & KVM_VCPU_FLUSH_TLB);
2695 	if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2696 		kvm_vcpu_flush_tlb(vcpu, false);
2697 
2698 	vcpu->arch.st.preempted = 0;
2699 
2700 	if (st->version & 1)
2701 		st->version += 1;  /* first time write, random junk */
2702 
2703 	st->version += 1;
2704 
2705 	smp_wmb();
2706 
2707 	st->steal += current->sched_info.run_delay -
2708 		vcpu->arch.st.last_steal;
2709 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2710 
2711 	smp_wmb();
2712 
2713 	st->version += 1;
2714 
2715 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2716 }
2717 
2718 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2719 {
2720 	bool pr = false;
2721 	u32 msr = msr_info->index;
2722 	u64 data = msr_info->data;
2723 
2724 	switch (msr) {
2725 	case MSR_AMD64_NB_CFG:
2726 	case MSR_IA32_UCODE_WRITE:
2727 	case MSR_VM_HSAVE_PA:
2728 	case MSR_AMD64_PATCH_LOADER:
2729 	case MSR_AMD64_BU_CFG2:
2730 	case MSR_AMD64_DC_CFG:
2731 	case MSR_F15H_EX_CFG:
2732 		break;
2733 
2734 	case MSR_IA32_UCODE_REV:
2735 		if (msr_info->host_initiated)
2736 			vcpu->arch.microcode_version = data;
2737 		break;
2738 	case MSR_IA32_ARCH_CAPABILITIES:
2739 		if (!msr_info->host_initiated)
2740 			return 1;
2741 		vcpu->arch.arch_capabilities = data;
2742 		break;
2743 	case MSR_EFER:
2744 		return set_efer(vcpu, msr_info);
2745 	case MSR_K7_HWCR:
2746 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2747 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2748 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2749 
2750 		/* Handle McStatusWrEn */
2751 		if (data == BIT_ULL(18)) {
2752 			vcpu->arch.msr_hwcr = data;
2753 		} else if (data != 0) {
2754 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2755 				    data);
2756 			return 1;
2757 		}
2758 		break;
2759 	case MSR_FAM10H_MMIO_CONF_BASE:
2760 		if (data != 0) {
2761 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2762 				    "0x%llx\n", data);
2763 			return 1;
2764 		}
2765 		break;
2766 	case MSR_IA32_DEBUGCTLMSR:
2767 		if (!data) {
2768 			/* We support the non-activated case already */
2769 			break;
2770 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2771 			/* Values other than LBR and BTF are vendor-specific,
2772 			   thus reserved and should throw a #GP */
2773 			return 1;
2774 		}
2775 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2776 			    __func__, data);
2777 		break;
2778 	case 0x200 ... 0x2ff:
2779 		return kvm_mtrr_set_msr(vcpu, msr, data);
2780 	case MSR_IA32_APICBASE:
2781 		return kvm_set_apic_base(vcpu, msr_info);
2782 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2783 		return kvm_x2apic_msr_write(vcpu, msr, data);
2784 	case MSR_IA32_TSCDEADLINE:
2785 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2786 		break;
2787 	case MSR_IA32_TSC_ADJUST:
2788 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2789 			if (!msr_info->host_initiated) {
2790 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2791 				adjust_tsc_offset_guest(vcpu, adj);
2792 			}
2793 			vcpu->arch.ia32_tsc_adjust_msr = data;
2794 		}
2795 		break;
2796 	case MSR_IA32_MISC_ENABLE:
2797 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2798 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2799 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2800 				return 1;
2801 			vcpu->arch.ia32_misc_enable_msr = data;
2802 			kvm_update_cpuid(vcpu);
2803 		} else {
2804 			vcpu->arch.ia32_misc_enable_msr = data;
2805 		}
2806 		break;
2807 	case MSR_IA32_SMBASE:
2808 		if (!msr_info->host_initiated)
2809 			return 1;
2810 		vcpu->arch.smbase = data;
2811 		break;
2812 	case MSR_IA32_POWER_CTL:
2813 		vcpu->arch.msr_ia32_power_ctl = data;
2814 		break;
2815 	case MSR_IA32_TSC:
2816 		kvm_write_tsc(vcpu, msr_info);
2817 		break;
2818 	case MSR_IA32_XSS:
2819 		if (!msr_info->host_initiated &&
2820 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2821 			return 1;
2822 		/*
2823 		 * KVM supports exposing PT to the guest, but does not support
2824 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2825 		 * XSAVES/XRSTORS to save/restore PT MSRs.
2826 		 */
2827 		if (data & ~supported_xss)
2828 			return 1;
2829 		vcpu->arch.ia32_xss = data;
2830 		break;
2831 	case MSR_SMI_COUNT:
2832 		if (!msr_info->host_initiated)
2833 			return 1;
2834 		vcpu->arch.smi_count = data;
2835 		break;
2836 	case MSR_KVM_WALL_CLOCK_NEW:
2837 	case MSR_KVM_WALL_CLOCK:
2838 		vcpu->kvm->arch.wall_clock = data;
2839 		kvm_write_wall_clock(vcpu->kvm, data);
2840 		break;
2841 	case MSR_KVM_SYSTEM_TIME_NEW:
2842 	case MSR_KVM_SYSTEM_TIME: {
2843 		struct kvm_arch *ka = &vcpu->kvm->arch;
2844 
2845 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2846 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2847 
2848 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2849 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2850 
2851 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2852 		}
2853 
2854 		vcpu->arch.time = data;
2855 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2856 
2857 		/* we verify if the enable bit is set... */
2858 		vcpu->arch.pv_time_enabled = false;
2859 		if (!(data & 1))
2860 			break;
2861 
2862 		if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2863 		     &vcpu->arch.pv_time, data & ~1ULL,
2864 		     sizeof(struct pvclock_vcpu_time_info)))
2865 			vcpu->arch.pv_time_enabled = true;
2866 
2867 		break;
2868 	}
2869 	case MSR_KVM_ASYNC_PF_EN:
2870 		if (kvm_pv_enable_async_pf(vcpu, data))
2871 			return 1;
2872 		break;
2873 	case MSR_KVM_STEAL_TIME:
2874 
2875 		if (unlikely(!sched_info_on()))
2876 			return 1;
2877 
2878 		if (data & KVM_STEAL_RESERVED_MASK)
2879 			return 1;
2880 
2881 		vcpu->arch.st.msr_val = data;
2882 
2883 		if (!(data & KVM_MSR_ENABLED))
2884 			break;
2885 
2886 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2887 
2888 		break;
2889 	case MSR_KVM_PV_EOI_EN:
2890 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2891 			return 1;
2892 		break;
2893 
2894 	case MSR_KVM_POLL_CONTROL:
2895 		/* only enable bit supported */
2896 		if (data & (-1ULL << 1))
2897 			return 1;
2898 
2899 		vcpu->arch.msr_kvm_poll_control = data;
2900 		break;
2901 
2902 	case MSR_IA32_MCG_CTL:
2903 	case MSR_IA32_MCG_STATUS:
2904 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2905 		return set_msr_mce(vcpu, msr_info);
2906 
2907 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2908 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2909 		pr = true; /* fall through */
2910 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2911 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2912 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2913 			return kvm_pmu_set_msr(vcpu, msr_info);
2914 
2915 		if (pr || data != 0)
2916 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2917 				    "0x%x data 0x%llx\n", msr, data);
2918 		break;
2919 	case MSR_K7_CLK_CTL:
2920 		/*
2921 		 * Ignore all writes to this no longer documented MSR.
2922 		 * Writes are only relevant for old K7 processors,
2923 		 * all pre-dating SVM, but a recommended workaround from
2924 		 * AMD for these chips. It is possible to specify the
2925 		 * affected processor models on the command line, hence
2926 		 * the need to ignore the workaround.
2927 		 */
2928 		break;
2929 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2930 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2931 	case HV_X64_MSR_CRASH_CTL:
2932 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2933 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2934 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2935 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2936 		return kvm_hv_set_msr_common(vcpu, msr, data,
2937 					     msr_info->host_initiated);
2938 	case MSR_IA32_BBL_CR_CTL3:
2939 		/* Drop writes to this legacy MSR -- see rdmsr
2940 		 * counterpart for further detail.
2941 		 */
2942 		if (report_ignored_msrs)
2943 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2944 				msr, data);
2945 		break;
2946 	case MSR_AMD64_OSVW_ID_LENGTH:
2947 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2948 			return 1;
2949 		vcpu->arch.osvw.length = data;
2950 		break;
2951 	case MSR_AMD64_OSVW_STATUS:
2952 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2953 			return 1;
2954 		vcpu->arch.osvw.status = data;
2955 		break;
2956 	case MSR_PLATFORM_INFO:
2957 		if (!msr_info->host_initiated ||
2958 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2959 		     cpuid_fault_enabled(vcpu)))
2960 			return 1;
2961 		vcpu->arch.msr_platform_info = data;
2962 		break;
2963 	case MSR_MISC_FEATURES_ENABLES:
2964 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2965 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2966 		     !supports_cpuid_fault(vcpu)))
2967 			return 1;
2968 		vcpu->arch.msr_misc_features_enables = data;
2969 		break;
2970 	default:
2971 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2972 			return xen_hvm_config(vcpu, data);
2973 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2974 			return kvm_pmu_set_msr(vcpu, msr_info);
2975 		if (!ignore_msrs) {
2976 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2977 				    msr, data);
2978 			return 1;
2979 		} else {
2980 			if (report_ignored_msrs)
2981 				vcpu_unimpl(vcpu,
2982 					"ignored wrmsr: 0x%x data 0x%llx\n",
2983 					msr, data);
2984 			break;
2985 		}
2986 	}
2987 	return 0;
2988 }
2989 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2990 
2991 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2992 {
2993 	u64 data;
2994 	u64 mcg_cap = vcpu->arch.mcg_cap;
2995 	unsigned bank_num = mcg_cap & 0xff;
2996 
2997 	switch (msr) {
2998 	case MSR_IA32_P5_MC_ADDR:
2999 	case MSR_IA32_P5_MC_TYPE:
3000 		data = 0;
3001 		break;
3002 	case MSR_IA32_MCG_CAP:
3003 		data = vcpu->arch.mcg_cap;
3004 		break;
3005 	case MSR_IA32_MCG_CTL:
3006 		if (!(mcg_cap & MCG_CTL_P) && !host)
3007 			return 1;
3008 		data = vcpu->arch.mcg_ctl;
3009 		break;
3010 	case MSR_IA32_MCG_STATUS:
3011 		data = vcpu->arch.mcg_status;
3012 		break;
3013 	default:
3014 		if (msr >= MSR_IA32_MC0_CTL &&
3015 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3016 			u32 offset = array_index_nospec(
3017 				msr - MSR_IA32_MC0_CTL,
3018 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3019 
3020 			data = vcpu->arch.mce_banks[offset];
3021 			break;
3022 		}
3023 		return 1;
3024 	}
3025 	*pdata = data;
3026 	return 0;
3027 }
3028 
3029 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3030 {
3031 	switch (msr_info->index) {
3032 	case MSR_IA32_PLATFORM_ID:
3033 	case MSR_IA32_EBL_CR_POWERON:
3034 	case MSR_IA32_DEBUGCTLMSR:
3035 	case MSR_IA32_LASTBRANCHFROMIP:
3036 	case MSR_IA32_LASTBRANCHTOIP:
3037 	case MSR_IA32_LASTINTFROMIP:
3038 	case MSR_IA32_LASTINTTOIP:
3039 	case MSR_K8_SYSCFG:
3040 	case MSR_K8_TSEG_ADDR:
3041 	case MSR_K8_TSEG_MASK:
3042 	case MSR_VM_HSAVE_PA:
3043 	case MSR_K8_INT_PENDING_MSG:
3044 	case MSR_AMD64_NB_CFG:
3045 	case MSR_FAM10H_MMIO_CONF_BASE:
3046 	case MSR_AMD64_BU_CFG2:
3047 	case MSR_IA32_PERF_CTL:
3048 	case MSR_AMD64_DC_CFG:
3049 	case MSR_F15H_EX_CFG:
3050 	/*
3051 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3052 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3053 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3054 	 * so for existing CPU-specific MSRs.
3055 	 */
3056 	case MSR_RAPL_POWER_UNIT:
3057 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3058 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3059 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3060 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3061 		msr_info->data = 0;
3062 		break;
3063 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3064 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3065 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3066 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3067 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3068 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3069 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3070 		msr_info->data = 0;
3071 		break;
3072 	case MSR_IA32_UCODE_REV:
3073 		msr_info->data = vcpu->arch.microcode_version;
3074 		break;
3075 	case MSR_IA32_ARCH_CAPABILITIES:
3076 		if (!msr_info->host_initiated &&
3077 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3078 			return 1;
3079 		msr_info->data = vcpu->arch.arch_capabilities;
3080 		break;
3081 	case MSR_IA32_POWER_CTL:
3082 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3083 		break;
3084 	case MSR_IA32_TSC:
3085 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3086 		break;
3087 	case MSR_MTRRcap:
3088 	case 0x200 ... 0x2ff:
3089 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3090 	case 0xcd: /* fsb frequency */
3091 		msr_info->data = 3;
3092 		break;
3093 		/*
3094 		 * MSR_EBC_FREQUENCY_ID
3095 		 * Conservative value valid for even the basic CPU models.
3096 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3097 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3098 		 * and 266MHz for model 3, or 4. Set Core Clock
3099 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3100 		 * 31:24) even though these are only valid for CPU
3101 		 * models > 2, however guests may end up dividing or
3102 		 * multiplying by zero otherwise.
3103 		 */
3104 	case MSR_EBC_FREQUENCY_ID:
3105 		msr_info->data = 1 << 24;
3106 		break;
3107 	case MSR_IA32_APICBASE:
3108 		msr_info->data = kvm_get_apic_base(vcpu);
3109 		break;
3110 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3111 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3112 	case MSR_IA32_TSCDEADLINE:
3113 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3114 		break;
3115 	case MSR_IA32_TSC_ADJUST:
3116 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3117 		break;
3118 	case MSR_IA32_MISC_ENABLE:
3119 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3120 		break;
3121 	case MSR_IA32_SMBASE:
3122 		if (!msr_info->host_initiated)
3123 			return 1;
3124 		msr_info->data = vcpu->arch.smbase;
3125 		break;
3126 	case MSR_SMI_COUNT:
3127 		msr_info->data = vcpu->arch.smi_count;
3128 		break;
3129 	case MSR_IA32_PERF_STATUS:
3130 		/* TSC increment by tick */
3131 		msr_info->data = 1000ULL;
3132 		/* CPU multiplier */
3133 		msr_info->data |= (((uint64_t)4ULL) << 40);
3134 		break;
3135 	case MSR_EFER:
3136 		msr_info->data = vcpu->arch.efer;
3137 		break;
3138 	case MSR_KVM_WALL_CLOCK:
3139 	case MSR_KVM_WALL_CLOCK_NEW:
3140 		msr_info->data = vcpu->kvm->arch.wall_clock;
3141 		break;
3142 	case MSR_KVM_SYSTEM_TIME:
3143 	case MSR_KVM_SYSTEM_TIME_NEW:
3144 		msr_info->data = vcpu->arch.time;
3145 		break;
3146 	case MSR_KVM_ASYNC_PF_EN:
3147 		msr_info->data = vcpu->arch.apf.msr_val;
3148 		break;
3149 	case MSR_KVM_STEAL_TIME:
3150 		msr_info->data = vcpu->arch.st.msr_val;
3151 		break;
3152 	case MSR_KVM_PV_EOI_EN:
3153 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3154 		break;
3155 	case MSR_KVM_POLL_CONTROL:
3156 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3157 		break;
3158 	case MSR_IA32_P5_MC_ADDR:
3159 	case MSR_IA32_P5_MC_TYPE:
3160 	case MSR_IA32_MCG_CAP:
3161 	case MSR_IA32_MCG_CTL:
3162 	case MSR_IA32_MCG_STATUS:
3163 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3164 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3165 				   msr_info->host_initiated);
3166 	case MSR_IA32_XSS:
3167 		if (!msr_info->host_initiated &&
3168 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3169 			return 1;
3170 		msr_info->data = vcpu->arch.ia32_xss;
3171 		break;
3172 	case MSR_K7_CLK_CTL:
3173 		/*
3174 		 * Provide expected ramp-up count for K7. All other
3175 		 * are set to zero, indicating minimum divisors for
3176 		 * every field.
3177 		 *
3178 		 * This prevents guest kernels on AMD host with CPU
3179 		 * type 6, model 8 and higher from exploding due to
3180 		 * the rdmsr failing.
3181 		 */
3182 		msr_info->data = 0x20000000;
3183 		break;
3184 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3185 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3186 	case HV_X64_MSR_CRASH_CTL:
3187 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3188 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3189 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3190 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3191 		return kvm_hv_get_msr_common(vcpu,
3192 					     msr_info->index, &msr_info->data,
3193 					     msr_info->host_initiated);
3194 	case MSR_IA32_BBL_CR_CTL3:
3195 		/* This legacy MSR exists but isn't fully documented in current
3196 		 * silicon.  It is however accessed by winxp in very narrow
3197 		 * scenarios where it sets bit #19, itself documented as
3198 		 * a "reserved" bit.  Best effort attempt to source coherent
3199 		 * read data here should the balance of the register be
3200 		 * interpreted by the guest:
3201 		 *
3202 		 * L2 cache control register 3: 64GB range, 256KB size,
3203 		 * enabled, latency 0x1, configured
3204 		 */
3205 		msr_info->data = 0xbe702111;
3206 		break;
3207 	case MSR_AMD64_OSVW_ID_LENGTH:
3208 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3209 			return 1;
3210 		msr_info->data = vcpu->arch.osvw.length;
3211 		break;
3212 	case MSR_AMD64_OSVW_STATUS:
3213 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3214 			return 1;
3215 		msr_info->data = vcpu->arch.osvw.status;
3216 		break;
3217 	case MSR_PLATFORM_INFO:
3218 		if (!msr_info->host_initiated &&
3219 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3220 			return 1;
3221 		msr_info->data = vcpu->arch.msr_platform_info;
3222 		break;
3223 	case MSR_MISC_FEATURES_ENABLES:
3224 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3225 		break;
3226 	case MSR_K7_HWCR:
3227 		msr_info->data = vcpu->arch.msr_hwcr;
3228 		break;
3229 	default:
3230 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3231 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3232 		if (!ignore_msrs) {
3233 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3234 					       msr_info->index);
3235 			return 1;
3236 		} else {
3237 			if (report_ignored_msrs)
3238 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3239 					msr_info->index);
3240 			msr_info->data = 0;
3241 		}
3242 		break;
3243 	}
3244 	return 0;
3245 }
3246 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3247 
3248 /*
3249  * Read or write a bunch of msrs. All parameters are kernel addresses.
3250  *
3251  * @return number of msrs set successfully.
3252  */
3253 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3254 		    struct kvm_msr_entry *entries,
3255 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3256 				  unsigned index, u64 *data))
3257 {
3258 	int i;
3259 
3260 	for (i = 0; i < msrs->nmsrs; ++i)
3261 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3262 			break;
3263 
3264 	return i;
3265 }
3266 
3267 /*
3268  * Read or write a bunch of msrs. Parameters are user addresses.
3269  *
3270  * @return number of msrs set successfully.
3271  */
3272 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3273 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3274 				unsigned index, u64 *data),
3275 		  int writeback)
3276 {
3277 	struct kvm_msrs msrs;
3278 	struct kvm_msr_entry *entries;
3279 	int r, n;
3280 	unsigned size;
3281 
3282 	r = -EFAULT;
3283 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3284 		goto out;
3285 
3286 	r = -E2BIG;
3287 	if (msrs.nmsrs >= MAX_IO_MSRS)
3288 		goto out;
3289 
3290 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3291 	entries = memdup_user(user_msrs->entries, size);
3292 	if (IS_ERR(entries)) {
3293 		r = PTR_ERR(entries);
3294 		goto out;
3295 	}
3296 
3297 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3298 	if (r < 0)
3299 		goto out_free;
3300 
3301 	r = -EFAULT;
3302 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3303 		goto out_free;
3304 
3305 	r = n;
3306 
3307 out_free:
3308 	kfree(entries);
3309 out:
3310 	return r;
3311 }
3312 
3313 static inline bool kvm_can_mwait_in_guest(void)
3314 {
3315 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3316 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3317 		boot_cpu_has(X86_FEATURE_ARAT);
3318 }
3319 
3320 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3321 {
3322 	int r = 0;
3323 
3324 	switch (ext) {
3325 	case KVM_CAP_IRQCHIP:
3326 	case KVM_CAP_HLT:
3327 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3328 	case KVM_CAP_SET_TSS_ADDR:
3329 	case KVM_CAP_EXT_CPUID:
3330 	case KVM_CAP_EXT_EMUL_CPUID:
3331 	case KVM_CAP_CLOCKSOURCE:
3332 	case KVM_CAP_PIT:
3333 	case KVM_CAP_NOP_IO_DELAY:
3334 	case KVM_CAP_MP_STATE:
3335 	case KVM_CAP_SYNC_MMU:
3336 	case KVM_CAP_USER_NMI:
3337 	case KVM_CAP_REINJECT_CONTROL:
3338 	case KVM_CAP_IRQ_INJECT_STATUS:
3339 	case KVM_CAP_IOEVENTFD:
3340 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3341 	case KVM_CAP_PIT2:
3342 	case KVM_CAP_PIT_STATE2:
3343 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3344 	case KVM_CAP_XEN_HVM:
3345 	case KVM_CAP_VCPU_EVENTS:
3346 	case KVM_CAP_HYPERV:
3347 	case KVM_CAP_HYPERV_VAPIC:
3348 	case KVM_CAP_HYPERV_SPIN:
3349 	case KVM_CAP_HYPERV_SYNIC:
3350 	case KVM_CAP_HYPERV_SYNIC2:
3351 	case KVM_CAP_HYPERV_VP_INDEX:
3352 	case KVM_CAP_HYPERV_EVENTFD:
3353 	case KVM_CAP_HYPERV_TLBFLUSH:
3354 	case KVM_CAP_HYPERV_SEND_IPI:
3355 	case KVM_CAP_HYPERV_CPUID:
3356 	case KVM_CAP_PCI_SEGMENT:
3357 	case KVM_CAP_DEBUGREGS:
3358 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3359 	case KVM_CAP_XSAVE:
3360 	case KVM_CAP_ASYNC_PF:
3361 	case KVM_CAP_GET_TSC_KHZ:
3362 	case KVM_CAP_KVMCLOCK_CTRL:
3363 	case KVM_CAP_READONLY_MEM:
3364 	case KVM_CAP_HYPERV_TIME:
3365 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3366 	case KVM_CAP_TSC_DEADLINE_TIMER:
3367 	case KVM_CAP_DISABLE_QUIRKS:
3368 	case KVM_CAP_SET_BOOT_CPU_ID:
3369  	case KVM_CAP_SPLIT_IRQCHIP:
3370 	case KVM_CAP_IMMEDIATE_EXIT:
3371 	case KVM_CAP_PMU_EVENT_FILTER:
3372 	case KVM_CAP_GET_MSR_FEATURES:
3373 	case KVM_CAP_MSR_PLATFORM_INFO:
3374 	case KVM_CAP_EXCEPTION_PAYLOAD:
3375 	case KVM_CAP_SET_GUEST_DEBUG:
3376 		r = 1;
3377 		break;
3378 	case KVM_CAP_SYNC_REGS:
3379 		r = KVM_SYNC_X86_VALID_FIELDS;
3380 		break;
3381 	case KVM_CAP_ADJUST_CLOCK:
3382 		r = KVM_CLOCK_TSC_STABLE;
3383 		break;
3384 	case KVM_CAP_X86_DISABLE_EXITS:
3385 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3386 		      KVM_X86_DISABLE_EXITS_CSTATE;
3387 		if(kvm_can_mwait_in_guest())
3388 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3389 		break;
3390 	case KVM_CAP_X86_SMM:
3391 		/* SMBASE is usually relocated above 1M on modern chipsets,
3392 		 * and SMM handlers might indeed rely on 4G segment limits,
3393 		 * so do not report SMM to be available if real mode is
3394 		 * emulated via vm86 mode.  Still, do not go to great lengths
3395 		 * to avoid userspace's usage of the feature, because it is a
3396 		 * fringe case that is not enabled except via specific settings
3397 		 * of the module parameters.
3398 		 */
3399 		r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
3400 		break;
3401 	case KVM_CAP_VAPIC:
3402 		r = !kvm_x86_ops.cpu_has_accelerated_tpr();
3403 		break;
3404 	case KVM_CAP_NR_VCPUS:
3405 		r = KVM_SOFT_MAX_VCPUS;
3406 		break;
3407 	case KVM_CAP_MAX_VCPUS:
3408 		r = KVM_MAX_VCPUS;
3409 		break;
3410 	case KVM_CAP_MAX_VCPU_ID:
3411 		r = KVM_MAX_VCPU_ID;
3412 		break;
3413 	case KVM_CAP_PV_MMU:	/* obsolete */
3414 		r = 0;
3415 		break;
3416 	case KVM_CAP_MCE:
3417 		r = KVM_MAX_MCE_BANKS;
3418 		break;
3419 	case KVM_CAP_XCRS:
3420 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3421 		break;
3422 	case KVM_CAP_TSC_CONTROL:
3423 		r = kvm_has_tsc_control;
3424 		break;
3425 	case KVM_CAP_X2APIC_API:
3426 		r = KVM_X2APIC_API_VALID_FLAGS;
3427 		break;
3428 	case KVM_CAP_NESTED_STATE:
3429 		r = kvm_x86_ops.get_nested_state ?
3430 			kvm_x86_ops.get_nested_state(NULL, NULL, 0) : 0;
3431 		break;
3432 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3433 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
3434 		break;
3435 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3436 		r = kvm_x86_ops.nested_enable_evmcs != NULL;
3437 		break;
3438 	default:
3439 		break;
3440 	}
3441 	return r;
3442 
3443 }
3444 
3445 long kvm_arch_dev_ioctl(struct file *filp,
3446 			unsigned int ioctl, unsigned long arg)
3447 {
3448 	void __user *argp = (void __user *)arg;
3449 	long r;
3450 
3451 	switch (ioctl) {
3452 	case KVM_GET_MSR_INDEX_LIST: {
3453 		struct kvm_msr_list __user *user_msr_list = argp;
3454 		struct kvm_msr_list msr_list;
3455 		unsigned n;
3456 
3457 		r = -EFAULT;
3458 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3459 			goto out;
3460 		n = msr_list.nmsrs;
3461 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3462 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3463 			goto out;
3464 		r = -E2BIG;
3465 		if (n < msr_list.nmsrs)
3466 			goto out;
3467 		r = -EFAULT;
3468 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3469 				 num_msrs_to_save * sizeof(u32)))
3470 			goto out;
3471 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3472 				 &emulated_msrs,
3473 				 num_emulated_msrs * sizeof(u32)))
3474 			goto out;
3475 		r = 0;
3476 		break;
3477 	}
3478 	case KVM_GET_SUPPORTED_CPUID:
3479 	case KVM_GET_EMULATED_CPUID: {
3480 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3481 		struct kvm_cpuid2 cpuid;
3482 
3483 		r = -EFAULT;
3484 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3485 			goto out;
3486 
3487 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3488 					    ioctl);
3489 		if (r)
3490 			goto out;
3491 
3492 		r = -EFAULT;
3493 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3494 			goto out;
3495 		r = 0;
3496 		break;
3497 	}
3498 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
3499 		r = -EFAULT;
3500 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3501 				 sizeof(kvm_mce_cap_supported)))
3502 			goto out;
3503 		r = 0;
3504 		break;
3505 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3506 		struct kvm_msr_list __user *user_msr_list = argp;
3507 		struct kvm_msr_list msr_list;
3508 		unsigned int n;
3509 
3510 		r = -EFAULT;
3511 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3512 			goto out;
3513 		n = msr_list.nmsrs;
3514 		msr_list.nmsrs = num_msr_based_features;
3515 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3516 			goto out;
3517 		r = -E2BIG;
3518 		if (n < msr_list.nmsrs)
3519 			goto out;
3520 		r = -EFAULT;
3521 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3522 				 num_msr_based_features * sizeof(u32)))
3523 			goto out;
3524 		r = 0;
3525 		break;
3526 	}
3527 	case KVM_GET_MSRS:
3528 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3529 		break;
3530 	default:
3531 		r = -EINVAL;
3532 		break;
3533 	}
3534 out:
3535 	return r;
3536 }
3537 
3538 static void wbinvd_ipi(void *garbage)
3539 {
3540 	wbinvd();
3541 }
3542 
3543 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3544 {
3545 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3546 }
3547 
3548 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3549 {
3550 	/* Address WBINVD may be executed by guest */
3551 	if (need_emulate_wbinvd(vcpu)) {
3552 		if (kvm_x86_ops.has_wbinvd_exit())
3553 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3554 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3555 			smp_call_function_single(vcpu->cpu,
3556 					wbinvd_ipi, NULL, 1);
3557 	}
3558 
3559 	kvm_x86_ops.vcpu_load(vcpu, cpu);
3560 
3561 	/* Apply any externally detected TSC adjustments (due to suspend) */
3562 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3563 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3564 		vcpu->arch.tsc_offset_adjustment = 0;
3565 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3566 	}
3567 
3568 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3569 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3570 				rdtsc() - vcpu->arch.last_host_tsc;
3571 		if (tsc_delta < 0)
3572 			mark_tsc_unstable("KVM discovered backwards TSC");
3573 
3574 		if (kvm_check_tsc_unstable()) {
3575 			u64 offset = kvm_compute_tsc_offset(vcpu,
3576 						vcpu->arch.last_guest_tsc);
3577 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3578 			vcpu->arch.tsc_catchup = 1;
3579 		}
3580 
3581 		if (kvm_lapic_hv_timer_in_use(vcpu))
3582 			kvm_lapic_restart_hv_timer(vcpu);
3583 
3584 		/*
3585 		 * On a host with synchronized TSC, there is no need to update
3586 		 * kvmclock on vcpu->cpu migration
3587 		 */
3588 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3589 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3590 		if (vcpu->cpu != cpu)
3591 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3592 		vcpu->cpu = cpu;
3593 	}
3594 
3595 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3596 }
3597 
3598 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3599 {
3600 	struct kvm_host_map map;
3601 	struct kvm_steal_time *st;
3602 
3603 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3604 		return;
3605 
3606 	if (vcpu->arch.st.preempted)
3607 		return;
3608 
3609 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3610 			&vcpu->arch.st.cache, true))
3611 		return;
3612 
3613 	st = map.hva +
3614 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3615 
3616 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3617 
3618 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3619 }
3620 
3621 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3622 {
3623 	int idx;
3624 
3625 	if (vcpu->preempted)
3626 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
3627 
3628 	/*
3629 	 * Disable page faults because we're in atomic context here.
3630 	 * kvm_write_guest_offset_cached() would call might_fault()
3631 	 * that relies on pagefault_disable() to tell if there's a
3632 	 * bug. NOTE: the write to guest memory may not go through if
3633 	 * during postcopy live migration or if there's heavy guest
3634 	 * paging.
3635 	 */
3636 	pagefault_disable();
3637 	/*
3638 	 * kvm_memslots() will be called by
3639 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3640 	 */
3641 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3642 	kvm_steal_time_set_preempted(vcpu);
3643 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3644 	pagefault_enable();
3645 	kvm_x86_ops.vcpu_put(vcpu);
3646 	vcpu->arch.last_host_tsc = rdtsc();
3647 	/*
3648 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3649 	 * on every vmexit, but if not, we might have a stale dr6 from the
3650 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3651 	 */
3652 	set_debugreg(0, 6);
3653 }
3654 
3655 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3656 				    struct kvm_lapic_state *s)
3657 {
3658 	if (vcpu->arch.apicv_active)
3659 		kvm_x86_ops.sync_pir_to_irr(vcpu);
3660 
3661 	return kvm_apic_get_state(vcpu, s);
3662 }
3663 
3664 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3665 				    struct kvm_lapic_state *s)
3666 {
3667 	int r;
3668 
3669 	r = kvm_apic_set_state(vcpu, s);
3670 	if (r)
3671 		return r;
3672 	update_cr8_intercept(vcpu);
3673 
3674 	return 0;
3675 }
3676 
3677 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3678 {
3679 	return (!lapic_in_kernel(vcpu) ||
3680 		kvm_apic_accept_pic_intr(vcpu));
3681 }
3682 
3683 /*
3684  * if userspace requested an interrupt window, check that the
3685  * interrupt window is open.
3686  *
3687  * No need to exit to userspace if we already have an interrupt queued.
3688  */
3689 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3690 {
3691 	return kvm_arch_interrupt_allowed(vcpu) &&
3692 		!kvm_cpu_has_interrupt(vcpu) &&
3693 		!kvm_event_needs_reinjection(vcpu) &&
3694 		kvm_cpu_accept_dm_intr(vcpu);
3695 }
3696 
3697 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3698 				    struct kvm_interrupt *irq)
3699 {
3700 	if (irq->irq >= KVM_NR_INTERRUPTS)
3701 		return -EINVAL;
3702 
3703 	if (!irqchip_in_kernel(vcpu->kvm)) {
3704 		kvm_queue_interrupt(vcpu, irq->irq, false);
3705 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3706 		return 0;
3707 	}
3708 
3709 	/*
3710 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3711 	 * fail for in-kernel 8259.
3712 	 */
3713 	if (pic_in_kernel(vcpu->kvm))
3714 		return -ENXIO;
3715 
3716 	if (vcpu->arch.pending_external_vector != -1)
3717 		return -EEXIST;
3718 
3719 	vcpu->arch.pending_external_vector = irq->irq;
3720 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3721 	return 0;
3722 }
3723 
3724 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3725 {
3726 	kvm_inject_nmi(vcpu);
3727 
3728 	return 0;
3729 }
3730 
3731 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3732 {
3733 	kvm_make_request(KVM_REQ_SMI, vcpu);
3734 
3735 	return 0;
3736 }
3737 
3738 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3739 					   struct kvm_tpr_access_ctl *tac)
3740 {
3741 	if (tac->flags)
3742 		return -EINVAL;
3743 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3744 	return 0;
3745 }
3746 
3747 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3748 					u64 mcg_cap)
3749 {
3750 	int r;
3751 	unsigned bank_num = mcg_cap & 0xff, bank;
3752 
3753 	r = -EINVAL;
3754 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3755 		goto out;
3756 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3757 		goto out;
3758 	r = 0;
3759 	vcpu->arch.mcg_cap = mcg_cap;
3760 	/* Init IA32_MCG_CTL to all 1s */
3761 	if (mcg_cap & MCG_CTL_P)
3762 		vcpu->arch.mcg_ctl = ~(u64)0;
3763 	/* Init IA32_MCi_CTL to all 1s */
3764 	for (bank = 0; bank < bank_num; bank++)
3765 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3766 
3767 	kvm_x86_ops.setup_mce(vcpu);
3768 out:
3769 	return r;
3770 }
3771 
3772 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3773 				      struct kvm_x86_mce *mce)
3774 {
3775 	u64 mcg_cap = vcpu->arch.mcg_cap;
3776 	unsigned bank_num = mcg_cap & 0xff;
3777 	u64 *banks = vcpu->arch.mce_banks;
3778 
3779 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3780 		return -EINVAL;
3781 	/*
3782 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3783 	 * reporting is disabled
3784 	 */
3785 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3786 	    vcpu->arch.mcg_ctl != ~(u64)0)
3787 		return 0;
3788 	banks += 4 * mce->bank;
3789 	/*
3790 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3791 	 * reporting is disabled for the bank
3792 	 */
3793 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3794 		return 0;
3795 	if (mce->status & MCI_STATUS_UC) {
3796 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3797 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3798 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3799 			return 0;
3800 		}
3801 		if (banks[1] & MCI_STATUS_VAL)
3802 			mce->status |= MCI_STATUS_OVER;
3803 		banks[2] = mce->addr;
3804 		banks[3] = mce->misc;
3805 		vcpu->arch.mcg_status = mce->mcg_status;
3806 		banks[1] = mce->status;
3807 		kvm_queue_exception(vcpu, MC_VECTOR);
3808 	} else if (!(banks[1] & MCI_STATUS_VAL)
3809 		   || !(banks[1] & MCI_STATUS_UC)) {
3810 		if (banks[1] & MCI_STATUS_VAL)
3811 			mce->status |= MCI_STATUS_OVER;
3812 		banks[2] = mce->addr;
3813 		banks[3] = mce->misc;
3814 		banks[1] = mce->status;
3815 	} else
3816 		banks[1] |= MCI_STATUS_OVER;
3817 	return 0;
3818 }
3819 
3820 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3821 					       struct kvm_vcpu_events *events)
3822 {
3823 	process_nmi(vcpu);
3824 
3825 	/*
3826 	 * In guest mode, payload delivery should be deferred,
3827 	 * so that the L1 hypervisor can intercept #PF before
3828 	 * CR2 is modified (or intercept #DB before DR6 is
3829 	 * modified under nVMX). Unless the per-VM capability,
3830 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3831 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3832 	 * opportunistically defer the exception payload, deliver it if the
3833 	 * capability hasn't been requested before processing a
3834 	 * KVM_GET_VCPU_EVENTS.
3835 	 */
3836 	if (!vcpu->kvm->arch.exception_payload_enabled &&
3837 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
3838 		kvm_deliver_exception_payload(vcpu);
3839 
3840 	/*
3841 	 * The API doesn't provide the instruction length for software
3842 	 * exceptions, so don't report them. As long as the guest RIP
3843 	 * isn't advanced, we should expect to encounter the exception
3844 	 * again.
3845 	 */
3846 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3847 		events->exception.injected = 0;
3848 		events->exception.pending = 0;
3849 	} else {
3850 		events->exception.injected = vcpu->arch.exception.injected;
3851 		events->exception.pending = vcpu->arch.exception.pending;
3852 		/*
3853 		 * For ABI compatibility, deliberately conflate
3854 		 * pending and injected exceptions when
3855 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3856 		 */
3857 		if (!vcpu->kvm->arch.exception_payload_enabled)
3858 			events->exception.injected |=
3859 				vcpu->arch.exception.pending;
3860 	}
3861 	events->exception.nr = vcpu->arch.exception.nr;
3862 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3863 	events->exception.error_code = vcpu->arch.exception.error_code;
3864 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3865 	events->exception_payload = vcpu->arch.exception.payload;
3866 
3867 	events->interrupt.injected =
3868 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3869 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3870 	events->interrupt.soft = 0;
3871 	events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
3872 
3873 	events->nmi.injected = vcpu->arch.nmi_injected;
3874 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3875 	events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
3876 	events->nmi.pad = 0;
3877 
3878 	events->sipi_vector = 0; /* never valid when reporting to user space */
3879 
3880 	events->smi.smm = is_smm(vcpu);
3881 	events->smi.pending = vcpu->arch.smi_pending;
3882 	events->smi.smm_inside_nmi =
3883 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3884 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3885 
3886 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3887 			 | KVM_VCPUEVENT_VALID_SHADOW
3888 			 | KVM_VCPUEVENT_VALID_SMM);
3889 	if (vcpu->kvm->arch.exception_payload_enabled)
3890 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3891 
3892 	memset(&events->reserved, 0, sizeof(events->reserved));
3893 }
3894 
3895 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3896 
3897 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3898 					      struct kvm_vcpu_events *events)
3899 {
3900 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3901 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3902 			      | KVM_VCPUEVENT_VALID_SHADOW
3903 			      | KVM_VCPUEVENT_VALID_SMM
3904 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3905 		return -EINVAL;
3906 
3907 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3908 		if (!vcpu->kvm->arch.exception_payload_enabled)
3909 			return -EINVAL;
3910 		if (events->exception.pending)
3911 			events->exception.injected = 0;
3912 		else
3913 			events->exception_has_payload = 0;
3914 	} else {
3915 		events->exception.pending = 0;
3916 		events->exception_has_payload = 0;
3917 	}
3918 
3919 	if ((events->exception.injected || events->exception.pending) &&
3920 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3921 		return -EINVAL;
3922 
3923 	/* INITs are latched while in SMM */
3924 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3925 	    (events->smi.smm || events->smi.pending) &&
3926 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3927 		return -EINVAL;
3928 
3929 	process_nmi(vcpu);
3930 	vcpu->arch.exception.injected = events->exception.injected;
3931 	vcpu->arch.exception.pending = events->exception.pending;
3932 	vcpu->arch.exception.nr = events->exception.nr;
3933 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3934 	vcpu->arch.exception.error_code = events->exception.error_code;
3935 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3936 	vcpu->arch.exception.payload = events->exception_payload;
3937 
3938 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3939 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3940 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3941 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3942 		kvm_x86_ops.set_interrupt_shadow(vcpu,
3943 						  events->interrupt.shadow);
3944 
3945 	vcpu->arch.nmi_injected = events->nmi.injected;
3946 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3947 		vcpu->arch.nmi_pending = events->nmi.pending;
3948 	kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
3949 
3950 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3951 	    lapic_in_kernel(vcpu))
3952 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3953 
3954 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3955 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3956 			if (events->smi.smm)
3957 				vcpu->arch.hflags |= HF_SMM_MASK;
3958 			else
3959 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3960 			kvm_smm_changed(vcpu);
3961 		}
3962 
3963 		vcpu->arch.smi_pending = events->smi.pending;
3964 
3965 		if (events->smi.smm) {
3966 			if (events->smi.smm_inside_nmi)
3967 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3968 			else
3969 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3970 		}
3971 
3972 		if (lapic_in_kernel(vcpu)) {
3973 			if (events->smi.latched_init)
3974 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3975 			else
3976 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3977 		}
3978 	}
3979 
3980 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3981 
3982 	return 0;
3983 }
3984 
3985 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3986 					     struct kvm_debugregs *dbgregs)
3987 {
3988 	unsigned long val;
3989 
3990 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3991 	kvm_get_dr(vcpu, 6, &val);
3992 	dbgregs->dr6 = val;
3993 	dbgregs->dr7 = vcpu->arch.dr7;
3994 	dbgregs->flags = 0;
3995 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3996 }
3997 
3998 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3999 					    struct kvm_debugregs *dbgregs)
4000 {
4001 	if (dbgregs->flags)
4002 		return -EINVAL;
4003 
4004 	if (dbgregs->dr6 & ~0xffffffffull)
4005 		return -EINVAL;
4006 	if (dbgregs->dr7 & ~0xffffffffull)
4007 		return -EINVAL;
4008 
4009 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4010 	kvm_update_dr0123(vcpu);
4011 	vcpu->arch.dr6 = dbgregs->dr6;
4012 	kvm_update_dr6(vcpu);
4013 	vcpu->arch.dr7 = dbgregs->dr7;
4014 	kvm_update_dr7(vcpu);
4015 
4016 	return 0;
4017 }
4018 
4019 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4020 
4021 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4022 {
4023 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4024 	u64 xstate_bv = xsave->header.xfeatures;
4025 	u64 valid;
4026 
4027 	/*
4028 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4029 	 * leaves 0 and 1 in the loop below.
4030 	 */
4031 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4032 
4033 	/* Set XSTATE_BV */
4034 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4035 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4036 
4037 	/*
4038 	 * Copy each region from the possibly compacted offset to the
4039 	 * non-compacted offset.
4040 	 */
4041 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4042 	while (valid) {
4043 		u64 xfeature_mask = valid & -valid;
4044 		int xfeature_nr = fls64(xfeature_mask) - 1;
4045 		void *src = get_xsave_addr(xsave, xfeature_nr);
4046 
4047 		if (src) {
4048 			u32 size, offset, ecx, edx;
4049 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4050 				    &size, &offset, &ecx, &edx);
4051 			if (xfeature_nr == XFEATURE_PKRU)
4052 				memcpy(dest + offset, &vcpu->arch.pkru,
4053 				       sizeof(vcpu->arch.pkru));
4054 			else
4055 				memcpy(dest + offset, src, size);
4056 
4057 		}
4058 
4059 		valid -= xfeature_mask;
4060 	}
4061 }
4062 
4063 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4064 {
4065 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4066 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4067 	u64 valid;
4068 
4069 	/*
4070 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4071 	 * leaves 0 and 1 in the loop below.
4072 	 */
4073 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4074 
4075 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4076 	xsave->header.xfeatures = xstate_bv;
4077 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4078 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4079 
4080 	/*
4081 	 * Copy each region from the non-compacted offset to the
4082 	 * possibly compacted offset.
4083 	 */
4084 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4085 	while (valid) {
4086 		u64 xfeature_mask = valid & -valid;
4087 		int xfeature_nr = fls64(xfeature_mask) - 1;
4088 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4089 
4090 		if (dest) {
4091 			u32 size, offset, ecx, edx;
4092 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4093 				    &size, &offset, &ecx, &edx);
4094 			if (xfeature_nr == XFEATURE_PKRU)
4095 				memcpy(&vcpu->arch.pkru, src + offset,
4096 				       sizeof(vcpu->arch.pkru));
4097 			else
4098 				memcpy(dest, src + offset, size);
4099 		}
4100 
4101 		valid -= xfeature_mask;
4102 	}
4103 }
4104 
4105 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4106 					 struct kvm_xsave *guest_xsave)
4107 {
4108 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4109 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4110 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4111 	} else {
4112 		memcpy(guest_xsave->region,
4113 			&vcpu->arch.guest_fpu->state.fxsave,
4114 			sizeof(struct fxregs_state));
4115 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4116 			XFEATURE_MASK_FPSSE;
4117 	}
4118 }
4119 
4120 #define XSAVE_MXCSR_OFFSET 24
4121 
4122 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4123 					struct kvm_xsave *guest_xsave)
4124 {
4125 	u64 xstate_bv =
4126 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4127 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4128 
4129 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4130 		/*
4131 		 * Here we allow setting states that are not present in
4132 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4133 		 * with old userspace.
4134 		 */
4135 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4136 			return -EINVAL;
4137 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4138 	} else {
4139 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4140 			mxcsr & ~mxcsr_feature_mask)
4141 			return -EINVAL;
4142 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4143 			guest_xsave->region, sizeof(struct fxregs_state));
4144 	}
4145 	return 0;
4146 }
4147 
4148 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4149 					struct kvm_xcrs *guest_xcrs)
4150 {
4151 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4152 		guest_xcrs->nr_xcrs = 0;
4153 		return;
4154 	}
4155 
4156 	guest_xcrs->nr_xcrs = 1;
4157 	guest_xcrs->flags = 0;
4158 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4159 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4160 }
4161 
4162 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4163 				       struct kvm_xcrs *guest_xcrs)
4164 {
4165 	int i, r = 0;
4166 
4167 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4168 		return -EINVAL;
4169 
4170 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4171 		return -EINVAL;
4172 
4173 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4174 		/* Only support XCR0 currently */
4175 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4176 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4177 				guest_xcrs->xcrs[i].value);
4178 			break;
4179 		}
4180 	if (r)
4181 		r = -EINVAL;
4182 	return r;
4183 }
4184 
4185 /*
4186  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4187  * stopped by the hypervisor.  This function will be called from the host only.
4188  * EINVAL is returned when the host attempts to set the flag for a guest that
4189  * does not support pv clocks.
4190  */
4191 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4192 {
4193 	if (!vcpu->arch.pv_time_enabled)
4194 		return -EINVAL;
4195 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4196 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4197 	return 0;
4198 }
4199 
4200 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4201 				     struct kvm_enable_cap *cap)
4202 {
4203 	int r;
4204 	uint16_t vmcs_version;
4205 	void __user *user_ptr;
4206 
4207 	if (cap->flags)
4208 		return -EINVAL;
4209 
4210 	switch (cap->cap) {
4211 	case KVM_CAP_HYPERV_SYNIC2:
4212 		if (cap->args[0])
4213 			return -EINVAL;
4214 		/* fall through */
4215 
4216 	case KVM_CAP_HYPERV_SYNIC:
4217 		if (!irqchip_in_kernel(vcpu->kvm))
4218 			return -EINVAL;
4219 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4220 					     KVM_CAP_HYPERV_SYNIC2);
4221 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4222 		if (!kvm_x86_ops.nested_enable_evmcs)
4223 			return -ENOTTY;
4224 		r = kvm_x86_ops.nested_enable_evmcs(vcpu, &vmcs_version);
4225 		if (!r) {
4226 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4227 			if (copy_to_user(user_ptr, &vmcs_version,
4228 					 sizeof(vmcs_version)))
4229 				r = -EFAULT;
4230 		}
4231 		return r;
4232 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4233 		if (!kvm_x86_ops.enable_direct_tlbflush)
4234 			return -ENOTTY;
4235 
4236 		return kvm_x86_ops.enable_direct_tlbflush(vcpu);
4237 
4238 	default:
4239 		return -EINVAL;
4240 	}
4241 }
4242 
4243 long kvm_arch_vcpu_ioctl(struct file *filp,
4244 			 unsigned int ioctl, unsigned long arg)
4245 {
4246 	struct kvm_vcpu *vcpu = filp->private_data;
4247 	void __user *argp = (void __user *)arg;
4248 	int r;
4249 	union {
4250 		struct kvm_lapic_state *lapic;
4251 		struct kvm_xsave *xsave;
4252 		struct kvm_xcrs *xcrs;
4253 		void *buffer;
4254 	} u;
4255 
4256 	vcpu_load(vcpu);
4257 
4258 	u.buffer = NULL;
4259 	switch (ioctl) {
4260 	case KVM_GET_LAPIC: {
4261 		r = -EINVAL;
4262 		if (!lapic_in_kernel(vcpu))
4263 			goto out;
4264 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4265 				GFP_KERNEL_ACCOUNT);
4266 
4267 		r = -ENOMEM;
4268 		if (!u.lapic)
4269 			goto out;
4270 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4271 		if (r)
4272 			goto out;
4273 		r = -EFAULT;
4274 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4275 			goto out;
4276 		r = 0;
4277 		break;
4278 	}
4279 	case KVM_SET_LAPIC: {
4280 		r = -EINVAL;
4281 		if (!lapic_in_kernel(vcpu))
4282 			goto out;
4283 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4284 		if (IS_ERR(u.lapic)) {
4285 			r = PTR_ERR(u.lapic);
4286 			goto out_nofree;
4287 		}
4288 
4289 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4290 		break;
4291 	}
4292 	case KVM_INTERRUPT: {
4293 		struct kvm_interrupt irq;
4294 
4295 		r = -EFAULT;
4296 		if (copy_from_user(&irq, argp, sizeof(irq)))
4297 			goto out;
4298 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4299 		break;
4300 	}
4301 	case KVM_NMI: {
4302 		r = kvm_vcpu_ioctl_nmi(vcpu);
4303 		break;
4304 	}
4305 	case KVM_SMI: {
4306 		r = kvm_vcpu_ioctl_smi(vcpu);
4307 		break;
4308 	}
4309 	case KVM_SET_CPUID: {
4310 		struct kvm_cpuid __user *cpuid_arg = argp;
4311 		struct kvm_cpuid cpuid;
4312 
4313 		r = -EFAULT;
4314 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4315 			goto out;
4316 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4317 		break;
4318 	}
4319 	case KVM_SET_CPUID2: {
4320 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4321 		struct kvm_cpuid2 cpuid;
4322 
4323 		r = -EFAULT;
4324 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4325 			goto out;
4326 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4327 					      cpuid_arg->entries);
4328 		break;
4329 	}
4330 	case KVM_GET_CPUID2: {
4331 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4332 		struct kvm_cpuid2 cpuid;
4333 
4334 		r = -EFAULT;
4335 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4336 			goto out;
4337 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4338 					      cpuid_arg->entries);
4339 		if (r)
4340 			goto out;
4341 		r = -EFAULT;
4342 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4343 			goto out;
4344 		r = 0;
4345 		break;
4346 	}
4347 	case KVM_GET_MSRS: {
4348 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4349 		r = msr_io(vcpu, argp, do_get_msr, 1);
4350 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4351 		break;
4352 	}
4353 	case KVM_SET_MSRS: {
4354 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4355 		r = msr_io(vcpu, argp, do_set_msr, 0);
4356 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4357 		break;
4358 	}
4359 	case KVM_TPR_ACCESS_REPORTING: {
4360 		struct kvm_tpr_access_ctl tac;
4361 
4362 		r = -EFAULT;
4363 		if (copy_from_user(&tac, argp, sizeof(tac)))
4364 			goto out;
4365 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4366 		if (r)
4367 			goto out;
4368 		r = -EFAULT;
4369 		if (copy_to_user(argp, &tac, sizeof(tac)))
4370 			goto out;
4371 		r = 0;
4372 		break;
4373 	};
4374 	case KVM_SET_VAPIC_ADDR: {
4375 		struct kvm_vapic_addr va;
4376 		int idx;
4377 
4378 		r = -EINVAL;
4379 		if (!lapic_in_kernel(vcpu))
4380 			goto out;
4381 		r = -EFAULT;
4382 		if (copy_from_user(&va, argp, sizeof(va)))
4383 			goto out;
4384 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4385 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4386 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4387 		break;
4388 	}
4389 	case KVM_X86_SETUP_MCE: {
4390 		u64 mcg_cap;
4391 
4392 		r = -EFAULT;
4393 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4394 			goto out;
4395 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4396 		break;
4397 	}
4398 	case KVM_X86_SET_MCE: {
4399 		struct kvm_x86_mce mce;
4400 
4401 		r = -EFAULT;
4402 		if (copy_from_user(&mce, argp, sizeof(mce)))
4403 			goto out;
4404 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4405 		break;
4406 	}
4407 	case KVM_GET_VCPU_EVENTS: {
4408 		struct kvm_vcpu_events events;
4409 
4410 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4411 
4412 		r = -EFAULT;
4413 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4414 			break;
4415 		r = 0;
4416 		break;
4417 	}
4418 	case KVM_SET_VCPU_EVENTS: {
4419 		struct kvm_vcpu_events events;
4420 
4421 		r = -EFAULT;
4422 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4423 			break;
4424 
4425 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4426 		break;
4427 	}
4428 	case KVM_GET_DEBUGREGS: {
4429 		struct kvm_debugregs dbgregs;
4430 
4431 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4432 
4433 		r = -EFAULT;
4434 		if (copy_to_user(argp, &dbgregs,
4435 				 sizeof(struct kvm_debugregs)))
4436 			break;
4437 		r = 0;
4438 		break;
4439 	}
4440 	case KVM_SET_DEBUGREGS: {
4441 		struct kvm_debugregs dbgregs;
4442 
4443 		r = -EFAULT;
4444 		if (copy_from_user(&dbgregs, argp,
4445 				   sizeof(struct kvm_debugregs)))
4446 			break;
4447 
4448 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4449 		break;
4450 	}
4451 	case KVM_GET_XSAVE: {
4452 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4453 		r = -ENOMEM;
4454 		if (!u.xsave)
4455 			break;
4456 
4457 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4458 
4459 		r = -EFAULT;
4460 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4461 			break;
4462 		r = 0;
4463 		break;
4464 	}
4465 	case KVM_SET_XSAVE: {
4466 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4467 		if (IS_ERR(u.xsave)) {
4468 			r = PTR_ERR(u.xsave);
4469 			goto out_nofree;
4470 		}
4471 
4472 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4473 		break;
4474 	}
4475 	case KVM_GET_XCRS: {
4476 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4477 		r = -ENOMEM;
4478 		if (!u.xcrs)
4479 			break;
4480 
4481 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4482 
4483 		r = -EFAULT;
4484 		if (copy_to_user(argp, u.xcrs,
4485 				 sizeof(struct kvm_xcrs)))
4486 			break;
4487 		r = 0;
4488 		break;
4489 	}
4490 	case KVM_SET_XCRS: {
4491 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4492 		if (IS_ERR(u.xcrs)) {
4493 			r = PTR_ERR(u.xcrs);
4494 			goto out_nofree;
4495 		}
4496 
4497 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4498 		break;
4499 	}
4500 	case KVM_SET_TSC_KHZ: {
4501 		u32 user_tsc_khz;
4502 
4503 		r = -EINVAL;
4504 		user_tsc_khz = (u32)arg;
4505 
4506 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4507 			goto out;
4508 
4509 		if (user_tsc_khz == 0)
4510 			user_tsc_khz = tsc_khz;
4511 
4512 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4513 			r = 0;
4514 
4515 		goto out;
4516 	}
4517 	case KVM_GET_TSC_KHZ: {
4518 		r = vcpu->arch.virtual_tsc_khz;
4519 		goto out;
4520 	}
4521 	case KVM_KVMCLOCK_CTRL: {
4522 		r = kvm_set_guest_paused(vcpu);
4523 		goto out;
4524 	}
4525 	case KVM_ENABLE_CAP: {
4526 		struct kvm_enable_cap cap;
4527 
4528 		r = -EFAULT;
4529 		if (copy_from_user(&cap, argp, sizeof(cap)))
4530 			goto out;
4531 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4532 		break;
4533 	}
4534 	case KVM_GET_NESTED_STATE: {
4535 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4536 		u32 user_data_size;
4537 
4538 		r = -EINVAL;
4539 		if (!kvm_x86_ops.get_nested_state)
4540 			break;
4541 
4542 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4543 		r = -EFAULT;
4544 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4545 			break;
4546 
4547 		r = kvm_x86_ops.get_nested_state(vcpu, user_kvm_nested_state,
4548 						  user_data_size);
4549 		if (r < 0)
4550 			break;
4551 
4552 		if (r > user_data_size) {
4553 			if (put_user(r, &user_kvm_nested_state->size))
4554 				r = -EFAULT;
4555 			else
4556 				r = -E2BIG;
4557 			break;
4558 		}
4559 
4560 		r = 0;
4561 		break;
4562 	}
4563 	case KVM_SET_NESTED_STATE: {
4564 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4565 		struct kvm_nested_state kvm_state;
4566 		int idx;
4567 
4568 		r = -EINVAL;
4569 		if (!kvm_x86_ops.set_nested_state)
4570 			break;
4571 
4572 		r = -EFAULT;
4573 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4574 			break;
4575 
4576 		r = -EINVAL;
4577 		if (kvm_state.size < sizeof(kvm_state))
4578 			break;
4579 
4580 		if (kvm_state.flags &
4581 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4582 		      | KVM_STATE_NESTED_EVMCS))
4583 			break;
4584 
4585 		/* nested_run_pending implies guest_mode.  */
4586 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4587 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4588 			break;
4589 
4590 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4591 		r = kvm_x86_ops.set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4592 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4593 		break;
4594 	}
4595 	case KVM_GET_SUPPORTED_HV_CPUID: {
4596 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4597 		struct kvm_cpuid2 cpuid;
4598 
4599 		r = -EFAULT;
4600 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4601 			goto out;
4602 
4603 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4604 						cpuid_arg->entries);
4605 		if (r)
4606 			goto out;
4607 
4608 		r = -EFAULT;
4609 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4610 			goto out;
4611 		r = 0;
4612 		break;
4613 	}
4614 	default:
4615 		r = -EINVAL;
4616 	}
4617 out:
4618 	kfree(u.buffer);
4619 out_nofree:
4620 	vcpu_put(vcpu);
4621 	return r;
4622 }
4623 
4624 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4625 {
4626 	return VM_FAULT_SIGBUS;
4627 }
4628 
4629 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4630 {
4631 	int ret;
4632 
4633 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4634 		return -EINVAL;
4635 	ret = kvm_x86_ops.set_tss_addr(kvm, addr);
4636 	return ret;
4637 }
4638 
4639 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4640 					      u64 ident_addr)
4641 {
4642 	return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
4643 }
4644 
4645 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4646 					 unsigned long kvm_nr_mmu_pages)
4647 {
4648 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4649 		return -EINVAL;
4650 
4651 	mutex_lock(&kvm->slots_lock);
4652 
4653 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4654 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4655 
4656 	mutex_unlock(&kvm->slots_lock);
4657 	return 0;
4658 }
4659 
4660 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4661 {
4662 	return kvm->arch.n_max_mmu_pages;
4663 }
4664 
4665 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4666 {
4667 	struct kvm_pic *pic = kvm->arch.vpic;
4668 	int r;
4669 
4670 	r = 0;
4671 	switch (chip->chip_id) {
4672 	case KVM_IRQCHIP_PIC_MASTER:
4673 		memcpy(&chip->chip.pic, &pic->pics[0],
4674 			sizeof(struct kvm_pic_state));
4675 		break;
4676 	case KVM_IRQCHIP_PIC_SLAVE:
4677 		memcpy(&chip->chip.pic, &pic->pics[1],
4678 			sizeof(struct kvm_pic_state));
4679 		break;
4680 	case KVM_IRQCHIP_IOAPIC:
4681 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4682 		break;
4683 	default:
4684 		r = -EINVAL;
4685 		break;
4686 	}
4687 	return r;
4688 }
4689 
4690 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4691 {
4692 	struct kvm_pic *pic = kvm->arch.vpic;
4693 	int r;
4694 
4695 	r = 0;
4696 	switch (chip->chip_id) {
4697 	case KVM_IRQCHIP_PIC_MASTER:
4698 		spin_lock(&pic->lock);
4699 		memcpy(&pic->pics[0], &chip->chip.pic,
4700 			sizeof(struct kvm_pic_state));
4701 		spin_unlock(&pic->lock);
4702 		break;
4703 	case KVM_IRQCHIP_PIC_SLAVE:
4704 		spin_lock(&pic->lock);
4705 		memcpy(&pic->pics[1], &chip->chip.pic,
4706 			sizeof(struct kvm_pic_state));
4707 		spin_unlock(&pic->lock);
4708 		break;
4709 	case KVM_IRQCHIP_IOAPIC:
4710 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4711 		break;
4712 	default:
4713 		r = -EINVAL;
4714 		break;
4715 	}
4716 	kvm_pic_update_irq(pic);
4717 	return r;
4718 }
4719 
4720 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4721 {
4722 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4723 
4724 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4725 
4726 	mutex_lock(&kps->lock);
4727 	memcpy(ps, &kps->channels, sizeof(*ps));
4728 	mutex_unlock(&kps->lock);
4729 	return 0;
4730 }
4731 
4732 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4733 {
4734 	int i;
4735 	struct kvm_pit *pit = kvm->arch.vpit;
4736 
4737 	mutex_lock(&pit->pit_state.lock);
4738 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4739 	for (i = 0; i < 3; i++)
4740 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4741 	mutex_unlock(&pit->pit_state.lock);
4742 	return 0;
4743 }
4744 
4745 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4746 {
4747 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4748 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4749 		sizeof(ps->channels));
4750 	ps->flags = kvm->arch.vpit->pit_state.flags;
4751 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4752 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4753 	return 0;
4754 }
4755 
4756 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4757 {
4758 	int start = 0;
4759 	int i;
4760 	u32 prev_legacy, cur_legacy;
4761 	struct kvm_pit *pit = kvm->arch.vpit;
4762 
4763 	mutex_lock(&pit->pit_state.lock);
4764 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4765 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4766 	if (!prev_legacy && cur_legacy)
4767 		start = 1;
4768 	memcpy(&pit->pit_state.channels, &ps->channels,
4769 	       sizeof(pit->pit_state.channels));
4770 	pit->pit_state.flags = ps->flags;
4771 	for (i = 0; i < 3; i++)
4772 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4773 				   start && i == 0);
4774 	mutex_unlock(&pit->pit_state.lock);
4775 	return 0;
4776 }
4777 
4778 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4779 				 struct kvm_reinject_control *control)
4780 {
4781 	struct kvm_pit *pit = kvm->arch.vpit;
4782 
4783 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4784 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4785 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4786 	 */
4787 	mutex_lock(&pit->pit_state.lock);
4788 	kvm_pit_set_reinject(pit, control->pit_reinject);
4789 	mutex_unlock(&pit->pit_state.lock);
4790 
4791 	return 0;
4792 }
4793 
4794 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
4795 {
4796 	/*
4797 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4798 	 */
4799 	if (kvm_x86_ops.flush_log_dirty)
4800 		kvm_x86_ops.flush_log_dirty(kvm);
4801 }
4802 
4803 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4804 			bool line_status)
4805 {
4806 	if (!irqchip_in_kernel(kvm))
4807 		return -ENXIO;
4808 
4809 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4810 					irq_event->irq, irq_event->level,
4811 					line_status);
4812 	return 0;
4813 }
4814 
4815 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4816 			    struct kvm_enable_cap *cap)
4817 {
4818 	int r;
4819 
4820 	if (cap->flags)
4821 		return -EINVAL;
4822 
4823 	switch (cap->cap) {
4824 	case KVM_CAP_DISABLE_QUIRKS:
4825 		kvm->arch.disabled_quirks = cap->args[0];
4826 		r = 0;
4827 		break;
4828 	case KVM_CAP_SPLIT_IRQCHIP: {
4829 		mutex_lock(&kvm->lock);
4830 		r = -EINVAL;
4831 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4832 			goto split_irqchip_unlock;
4833 		r = -EEXIST;
4834 		if (irqchip_in_kernel(kvm))
4835 			goto split_irqchip_unlock;
4836 		if (kvm->created_vcpus)
4837 			goto split_irqchip_unlock;
4838 		r = kvm_setup_empty_irq_routing(kvm);
4839 		if (r)
4840 			goto split_irqchip_unlock;
4841 		/* Pairs with irqchip_in_kernel. */
4842 		smp_wmb();
4843 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4844 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4845 		r = 0;
4846 split_irqchip_unlock:
4847 		mutex_unlock(&kvm->lock);
4848 		break;
4849 	}
4850 	case KVM_CAP_X2APIC_API:
4851 		r = -EINVAL;
4852 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4853 			break;
4854 
4855 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4856 			kvm->arch.x2apic_format = true;
4857 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4858 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4859 
4860 		r = 0;
4861 		break;
4862 	case KVM_CAP_X86_DISABLE_EXITS:
4863 		r = -EINVAL;
4864 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4865 			break;
4866 
4867 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4868 			kvm_can_mwait_in_guest())
4869 			kvm->arch.mwait_in_guest = true;
4870 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4871 			kvm->arch.hlt_in_guest = true;
4872 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4873 			kvm->arch.pause_in_guest = true;
4874 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4875 			kvm->arch.cstate_in_guest = true;
4876 		r = 0;
4877 		break;
4878 	case KVM_CAP_MSR_PLATFORM_INFO:
4879 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4880 		r = 0;
4881 		break;
4882 	case KVM_CAP_EXCEPTION_PAYLOAD:
4883 		kvm->arch.exception_payload_enabled = cap->args[0];
4884 		r = 0;
4885 		break;
4886 	default:
4887 		r = -EINVAL;
4888 		break;
4889 	}
4890 	return r;
4891 }
4892 
4893 long kvm_arch_vm_ioctl(struct file *filp,
4894 		       unsigned int ioctl, unsigned long arg)
4895 {
4896 	struct kvm *kvm = filp->private_data;
4897 	void __user *argp = (void __user *)arg;
4898 	int r = -ENOTTY;
4899 	/*
4900 	 * This union makes it completely explicit to gcc-3.x
4901 	 * that these two variables' stack usage should be
4902 	 * combined, not added together.
4903 	 */
4904 	union {
4905 		struct kvm_pit_state ps;
4906 		struct kvm_pit_state2 ps2;
4907 		struct kvm_pit_config pit_config;
4908 	} u;
4909 
4910 	switch (ioctl) {
4911 	case KVM_SET_TSS_ADDR:
4912 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4913 		break;
4914 	case KVM_SET_IDENTITY_MAP_ADDR: {
4915 		u64 ident_addr;
4916 
4917 		mutex_lock(&kvm->lock);
4918 		r = -EINVAL;
4919 		if (kvm->created_vcpus)
4920 			goto set_identity_unlock;
4921 		r = -EFAULT;
4922 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4923 			goto set_identity_unlock;
4924 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4925 set_identity_unlock:
4926 		mutex_unlock(&kvm->lock);
4927 		break;
4928 	}
4929 	case KVM_SET_NR_MMU_PAGES:
4930 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4931 		break;
4932 	case KVM_GET_NR_MMU_PAGES:
4933 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4934 		break;
4935 	case KVM_CREATE_IRQCHIP: {
4936 		mutex_lock(&kvm->lock);
4937 
4938 		r = -EEXIST;
4939 		if (irqchip_in_kernel(kvm))
4940 			goto create_irqchip_unlock;
4941 
4942 		r = -EINVAL;
4943 		if (kvm->created_vcpus)
4944 			goto create_irqchip_unlock;
4945 
4946 		r = kvm_pic_init(kvm);
4947 		if (r)
4948 			goto create_irqchip_unlock;
4949 
4950 		r = kvm_ioapic_init(kvm);
4951 		if (r) {
4952 			kvm_pic_destroy(kvm);
4953 			goto create_irqchip_unlock;
4954 		}
4955 
4956 		r = kvm_setup_default_irq_routing(kvm);
4957 		if (r) {
4958 			kvm_ioapic_destroy(kvm);
4959 			kvm_pic_destroy(kvm);
4960 			goto create_irqchip_unlock;
4961 		}
4962 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4963 		smp_wmb();
4964 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4965 	create_irqchip_unlock:
4966 		mutex_unlock(&kvm->lock);
4967 		break;
4968 	}
4969 	case KVM_CREATE_PIT:
4970 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4971 		goto create_pit;
4972 	case KVM_CREATE_PIT2:
4973 		r = -EFAULT;
4974 		if (copy_from_user(&u.pit_config, argp,
4975 				   sizeof(struct kvm_pit_config)))
4976 			goto out;
4977 	create_pit:
4978 		mutex_lock(&kvm->lock);
4979 		r = -EEXIST;
4980 		if (kvm->arch.vpit)
4981 			goto create_pit_unlock;
4982 		r = -ENOMEM;
4983 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4984 		if (kvm->arch.vpit)
4985 			r = 0;
4986 	create_pit_unlock:
4987 		mutex_unlock(&kvm->lock);
4988 		break;
4989 	case KVM_GET_IRQCHIP: {
4990 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4991 		struct kvm_irqchip *chip;
4992 
4993 		chip = memdup_user(argp, sizeof(*chip));
4994 		if (IS_ERR(chip)) {
4995 			r = PTR_ERR(chip);
4996 			goto out;
4997 		}
4998 
4999 		r = -ENXIO;
5000 		if (!irqchip_kernel(kvm))
5001 			goto get_irqchip_out;
5002 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5003 		if (r)
5004 			goto get_irqchip_out;
5005 		r = -EFAULT;
5006 		if (copy_to_user(argp, chip, sizeof(*chip)))
5007 			goto get_irqchip_out;
5008 		r = 0;
5009 	get_irqchip_out:
5010 		kfree(chip);
5011 		break;
5012 	}
5013 	case KVM_SET_IRQCHIP: {
5014 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5015 		struct kvm_irqchip *chip;
5016 
5017 		chip = memdup_user(argp, sizeof(*chip));
5018 		if (IS_ERR(chip)) {
5019 			r = PTR_ERR(chip);
5020 			goto out;
5021 		}
5022 
5023 		r = -ENXIO;
5024 		if (!irqchip_kernel(kvm))
5025 			goto set_irqchip_out;
5026 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5027 	set_irqchip_out:
5028 		kfree(chip);
5029 		break;
5030 	}
5031 	case KVM_GET_PIT: {
5032 		r = -EFAULT;
5033 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5034 			goto out;
5035 		r = -ENXIO;
5036 		if (!kvm->arch.vpit)
5037 			goto out;
5038 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5039 		if (r)
5040 			goto out;
5041 		r = -EFAULT;
5042 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5043 			goto out;
5044 		r = 0;
5045 		break;
5046 	}
5047 	case KVM_SET_PIT: {
5048 		r = -EFAULT;
5049 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5050 			goto out;
5051 		mutex_lock(&kvm->lock);
5052 		r = -ENXIO;
5053 		if (!kvm->arch.vpit)
5054 			goto set_pit_out;
5055 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5056 set_pit_out:
5057 		mutex_unlock(&kvm->lock);
5058 		break;
5059 	}
5060 	case KVM_GET_PIT2: {
5061 		r = -ENXIO;
5062 		if (!kvm->arch.vpit)
5063 			goto out;
5064 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5065 		if (r)
5066 			goto out;
5067 		r = -EFAULT;
5068 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5069 			goto out;
5070 		r = 0;
5071 		break;
5072 	}
5073 	case KVM_SET_PIT2: {
5074 		r = -EFAULT;
5075 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5076 			goto out;
5077 		mutex_lock(&kvm->lock);
5078 		r = -ENXIO;
5079 		if (!kvm->arch.vpit)
5080 			goto set_pit2_out;
5081 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5082 set_pit2_out:
5083 		mutex_unlock(&kvm->lock);
5084 		break;
5085 	}
5086 	case KVM_REINJECT_CONTROL: {
5087 		struct kvm_reinject_control control;
5088 		r =  -EFAULT;
5089 		if (copy_from_user(&control, argp, sizeof(control)))
5090 			goto out;
5091 		r = -ENXIO;
5092 		if (!kvm->arch.vpit)
5093 			goto out;
5094 		r = kvm_vm_ioctl_reinject(kvm, &control);
5095 		break;
5096 	}
5097 	case KVM_SET_BOOT_CPU_ID:
5098 		r = 0;
5099 		mutex_lock(&kvm->lock);
5100 		if (kvm->created_vcpus)
5101 			r = -EBUSY;
5102 		else
5103 			kvm->arch.bsp_vcpu_id = arg;
5104 		mutex_unlock(&kvm->lock);
5105 		break;
5106 	case KVM_XEN_HVM_CONFIG: {
5107 		struct kvm_xen_hvm_config xhc;
5108 		r = -EFAULT;
5109 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5110 			goto out;
5111 		r = -EINVAL;
5112 		if (xhc.flags)
5113 			goto out;
5114 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5115 		r = 0;
5116 		break;
5117 	}
5118 	case KVM_SET_CLOCK: {
5119 		struct kvm_clock_data user_ns;
5120 		u64 now_ns;
5121 
5122 		r = -EFAULT;
5123 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5124 			goto out;
5125 
5126 		r = -EINVAL;
5127 		if (user_ns.flags)
5128 			goto out;
5129 
5130 		r = 0;
5131 		/*
5132 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5133 		 * kvm_gen_update_masterclock() can be cut down to locked
5134 		 * pvclock_update_vm_gtod_copy().
5135 		 */
5136 		kvm_gen_update_masterclock(kvm);
5137 		now_ns = get_kvmclock_ns(kvm);
5138 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5139 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5140 		break;
5141 	}
5142 	case KVM_GET_CLOCK: {
5143 		struct kvm_clock_data user_ns;
5144 		u64 now_ns;
5145 
5146 		now_ns = get_kvmclock_ns(kvm);
5147 		user_ns.clock = now_ns;
5148 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5149 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5150 
5151 		r = -EFAULT;
5152 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5153 			goto out;
5154 		r = 0;
5155 		break;
5156 	}
5157 	case KVM_MEMORY_ENCRYPT_OP: {
5158 		r = -ENOTTY;
5159 		if (kvm_x86_ops.mem_enc_op)
5160 			r = kvm_x86_ops.mem_enc_op(kvm, argp);
5161 		break;
5162 	}
5163 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5164 		struct kvm_enc_region region;
5165 
5166 		r = -EFAULT;
5167 		if (copy_from_user(&region, argp, sizeof(region)))
5168 			goto out;
5169 
5170 		r = -ENOTTY;
5171 		if (kvm_x86_ops.mem_enc_reg_region)
5172 			r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
5173 		break;
5174 	}
5175 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5176 		struct kvm_enc_region region;
5177 
5178 		r = -EFAULT;
5179 		if (copy_from_user(&region, argp, sizeof(region)))
5180 			goto out;
5181 
5182 		r = -ENOTTY;
5183 		if (kvm_x86_ops.mem_enc_unreg_region)
5184 			r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
5185 		break;
5186 	}
5187 	case KVM_HYPERV_EVENTFD: {
5188 		struct kvm_hyperv_eventfd hvevfd;
5189 
5190 		r = -EFAULT;
5191 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5192 			goto out;
5193 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5194 		break;
5195 	}
5196 	case KVM_SET_PMU_EVENT_FILTER:
5197 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5198 		break;
5199 	default:
5200 		r = -ENOTTY;
5201 	}
5202 out:
5203 	return r;
5204 }
5205 
5206 static void kvm_init_msr_list(void)
5207 {
5208 	struct x86_pmu_capability x86_pmu;
5209 	u32 dummy[2];
5210 	unsigned i;
5211 
5212 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5213 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5214 
5215 	perf_get_x86_pmu_capability(&x86_pmu);
5216 
5217 	num_msrs_to_save = 0;
5218 	num_emulated_msrs = 0;
5219 	num_msr_based_features = 0;
5220 
5221 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5222 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5223 			continue;
5224 
5225 		/*
5226 		 * Even MSRs that are valid in the host may not be exposed
5227 		 * to the guests in some cases.
5228 		 */
5229 		switch (msrs_to_save_all[i]) {
5230 		case MSR_IA32_BNDCFGS:
5231 			if (!kvm_mpx_supported())
5232 				continue;
5233 			break;
5234 		case MSR_TSC_AUX:
5235 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
5236 				continue;
5237 			break;
5238 		case MSR_IA32_RTIT_CTL:
5239 		case MSR_IA32_RTIT_STATUS:
5240 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
5241 				continue;
5242 			break;
5243 		case MSR_IA32_RTIT_CR3_MATCH:
5244 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5245 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5246 				continue;
5247 			break;
5248 		case MSR_IA32_RTIT_OUTPUT_BASE:
5249 		case MSR_IA32_RTIT_OUTPUT_MASK:
5250 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5251 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5252 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5253 				continue;
5254 			break;
5255 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5256 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
5257 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5258 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5259 				continue;
5260 			break;
5261 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5262 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5263 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5264 				continue;
5265 			break;
5266 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5267 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5268 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5269 				continue;
5270 		}
5271 		default:
5272 			break;
5273 		}
5274 
5275 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5276 	}
5277 
5278 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5279 		if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
5280 			continue;
5281 
5282 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5283 	}
5284 
5285 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5286 		struct kvm_msr_entry msr;
5287 
5288 		msr.index = msr_based_features_all[i];
5289 		if (kvm_get_msr_feature(&msr))
5290 			continue;
5291 
5292 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5293 	}
5294 }
5295 
5296 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5297 			   const void *v)
5298 {
5299 	int handled = 0;
5300 	int n;
5301 
5302 	do {
5303 		n = min(len, 8);
5304 		if (!(lapic_in_kernel(vcpu) &&
5305 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5306 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5307 			break;
5308 		handled += n;
5309 		addr += n;
5310 		len -= n;
5311 		v += n;
5312 	} while (len);
5313 
5314 	return handled;
5315 }
5316 
5317 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5318 {
5319 	int handled = 0;
5320 	int n;
5321 
5322 	do {
5323 		n = min(len, 8);
5324 		if (!(lapic_in_kernel(vcpu) &&
5325 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5326 					 addr, n, v))
5327 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5328 			break;
5329 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5330 		handled += n;
5331 		addr += n;
5332 		len -= n;
5333 		v += n;
5334 	} while (len);
5335 
5336 	return handled;
5337 }
5338 
5339 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5340 			struct kvm_segment *var, int seg)
5341 {
5342 	kvm_x86_ops.set_segment(vcpu, var, seg);
5343 }
5344 
5345 void kvm_get_segment(struct kvm_vcpu *vcpu,
5346 		     struct kvm_segment *var, int seg)
5347 {
5348 	kvm_x86_ops.get_segment(vcpu, var, seg);
5349 }
5350 
5351 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5352 			   struct x86_exception *exception)
5353 {
5354 	gpa_t t_gpa;
5355 
5356 	BUG_ON(!mmu_is_nested(vcpu));
5357 
5358 	/* NPT walks are always user-walks */
5359 	access |= PFERR_USER_MASK;
5360 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5361 
5362 	return t_gpa;
5363 }
5364 
5365 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5366 			      struct x86_exception *exception)
5367 {
5368 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5369 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5370 }
5371 
5372  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5373 				struct x86_exception *exception)
5374 {
5375 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5376 	access |= PFERR_FETCH_MASK;
5377 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5378 }
5379 
5380 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5381 			       struct x86_exception *exception)
5382 {
5383 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5384 	access |= PFERR_WRITE_MASK;
5385 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5386 }
5387 
5388 /* uses this to access any guest's mapped memory without checking CPL */
5389 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5390 				struct x86_exception *exception)
5391 {
5392 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5393 }
5394 
5395 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5396 				      struct kvm_vcpu *vcpu, u32 access,
5397 				      struct x86_exception *exception)
5398 {
5399 	void *data = val;
5400 	int r = X86EMUL_CONTINUE;
5401 
5402 	while (bytes) {
5403 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5404 							    exception);
5405 		unsigned offset = addr & (PAGE_SIZE-1);
5406 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5407 		int ret;
5408 
5409 		if (gpa == UNMAPPED_GVA)
5410 			return X86EMUL_PROPAGATE_FAULT;
5411 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5412 					       offset, toread);
5413 		if (ret < 0) {
5414 			r = X86EMUL_IO_NEEDED;
5415 			goto out;
5416 		}
5417 
5418 		bytes -= toread;
5419 		data += toread;
5420 		addr += toread;
5421 	}
5422 out:
5423 	return r;
5424 }
5425 
5426 /* used for instruction fetching */
5427 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5428 				gva_t addr, void *val, unsigned int bytes,
5429 				struct x86_exception *exception)
5430 {
5431 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5432 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5433 	unsigned offset;
5434 	int ret;
5435 
5436 	/* Inline kvm_read_guest_virt_helper for speed.  */
5437 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5438 						    exception);
5439 	if (unlikely(gpa == UNMAPPED_GVA))
5440 		return X86EMUL_PROPAGATE_FAULT;
5441 
5442 	offset = addr & (PAGE_SIZE-1);
5443 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5444 		bytes = (unsigned)PAGE_SIZE - offset;
5445 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5446 				       offset, bytes);
5447 	if (unlikely(ret < 0))
5448 		return X86EMUL_IO_NEEDED;
5449 
5450 	return X86EMUL_CONTINUE;
5451 }
5452 
5453 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5454 			       gva_t addr, void *val, unsigned int bytes,
5455 			       struct x86_exception *exception)
5456 {
5457 	u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5458 
5459 	/*
5460 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5461 	 * is returned, but our callers are not ready for that and they blindly
5462 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5463 	 * uninitialized kernel stack memory into cr2 and error code.
5464 	 */
5465 	memset(exception, 0, sizeof(*exception));
5466 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5467 					  exception);
5468 }
5469 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5470 
5471 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5472 			     gva_t addr, void *val, unsigned int bytes,
5473 			     struct x86_exception *exception, bool system)
5474 {
5475 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5476 	u32 access = 0;
5477 
5478 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5479 		access |= PFERR_USER_MASK;
5480 
5481 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5482 }
5483 
5484 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5485 		unsigned long addr, void *val, unsigned int bytes)
5486 {
5487 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5488 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5489 
5490 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5491 }
5492 
5493 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5494 				      struct kvm_vcpu *vcpu, u32 access,
5495 				      struct x86_exception *exception)
5496 {
5497 	void *data = val;
5498 	int r = X86EMUL_CONTINUE;
5499 
5500 	while (bytes) {
5501 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5502 							     access,
5503 							     exception);
5504 		unsigned offset = addr & (PAGE_SIZE-1);
5505 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5506 		int ret;
5507 
5508 		if (gpa == UNMAPPED_GVA)
5509 			return X86EMUL_PROPAGATE_FAULT;
5510 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5511 		if (ret < 0) {
5512 			r = X86EMUL_IO_NEEDED;
5513 			goto out;
5514 		}
5515 
5516 		bytes -= towrite;
5517 		data += towrite;
5518 		addr += towrite;
5519 	}
5520 out:
5521 	return r;
5522 }
5523 
5524 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5525 			      unsigned int bytes, struct x86_exception *exception,
5526 			      bool system)
5527 {
5528 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5529 	u32 access = PFERR_WRITE_MASK;
5530 
5531 	if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
5532 		access |= PFERR_USER_MASK;
5533 
5534 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5535 					   access, exception);
5536 }
5537 
5538 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5539 				unsigned int bytes, struct x86_exception *exception)
5540 {
5541 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5542 	vcpu->arch.l1tf_flush_l1d = true;
5543 
5544 	/*
5545 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5546 	 * is returned, but our callers are not ready for that and they blindly
5547 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5548 	 * uninitialized kernel stack memory into cr2 and error code.
5549 	 */
5550 	memset(exception, 0, sizeof(*exception));
5551 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5552 					   PFERR_WRITE_MASK, exception);
5553 }
5554 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5555 
5556 int handle_ud(struct kvm_vcpu *vcpu)
5557 {
5558 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5559 	int emul_type = EMULTYPE_TRAP_UD;
5560 	char sig[5]; /* ud2; .ascii "kvm" */
5561 	struct x86_exception e;
5562 
5563 	if (force_emulation_prefix &&
5564 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5565 				sig, sizeof(sig), &e) == 0 &&
5566 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5567 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5568 		emul_type = EMULTYPE_TRAP_UD_FORCED;
5569 	}
5570 
5571 	return kvm_emulate_instruction(vcpu, emul_type);
5572 }
5573 EXPORT_SYMBOL_GPL(handle_ud);
5574 
5575 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5576 			    gpa_t gpa, bool write)
5577 {
5578 	/* For APIC access vmexit */
5579 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5580 		return 1;
5581 
5582 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5583 		trace_vcpu_match_mmio(gva, gpa, write, true);
5584 		return 1;
5585 	}
5586 
5587 	return 0;
5588 }
5589 
5590 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5591 				gpa_t *gpa, struct x86_exception *exception,
5592 				bool write)
5593 {
5594 	u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5595 		| (write ? PFERR_WRITE_MASK : 0);
5596 
5597 	/*
5598 	 * currently PKRU is only applied to ept enabled guest so
5599 	 * there is no pkey in EPT page table for L1 guest or EPT
5600 	 * shadow page table for L2 guest.
5601 	 */
5602 	if (vcpu_match_mmio_gva(vcpu, gva)
5603 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5604 				 vcpu->arch.mmio_access, 0, access)) {
5605 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5606 					(gva & (PAGE_SIZE - 1));
5607 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5608 		return 1;
5609 	}
5610 
5611 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5612 
5613 	if (*gpa == UNMAPPED_GVA)
5614 		return -1;
5615 
5616 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5617 }
5618 
5619 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5620 			const void *val, int bytes)
5621 {
5622 	int ret;
5623 
5624 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5625 	if (ret < 0)
5626 		return 0;
5627 	kvm_page_track_write(vcpu, gpa, val, bytes);
5628 	return 1;
5629 }
5630 
5631 struct read_write_emulator_ops {
5632 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5633 				  int bytes);
5634 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5635 				  void *val, int bytes);
5636 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5637 			       int bytes, void *val);
5638 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5639 				    void *val, int bytes);
5640 	bool write;
5641 };
5642 
5643 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5644 {
5645 	if (vcpu->mmio_read_completed) {
5646 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5647 			       vcpu->mmio_fragments[0].gpa, val);
5648 		vcpu->mmio_read_completed = 0;
5649 		return 1;
5650 	}
5651 
5652 	return 0;
5653 }
5654 
5655 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5656 			void *val, int bytes)
5657 {
5658 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5659 }
5660 
5661 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5662 			 void *val, int bytes)
5663 {
5664 	return emulator_write_phys(vcpu, gpa, val, bytes);
5665 }
5666 
5667 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5668 {
5669 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5670 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5671 }
5672 
5673 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5674 			  void *val, int bytes)
5675 {
5676 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5677 	return X86EMUL_IO_NEEDED;
5678 }
5679 
5680 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5681 			   void *val, int bytes)
5682 {
5683 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5684 
5685 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5686 	return X86EMUL_CONTINUE;
5687 }
5688 
5689 static const struct read_write_emulator_ops read_emultor = {
5690 	.read_write_prepare = read_prepare,
5691 	.read_write_emulate = read_emulate,
5692 	.read_write_mmio = vcpu_mmio_read,
5693 	.read_write_exit_mmio = read_exit_mmio,
5694 };
5695 
5696 static const struct read_write_emulator_ops write_emultor = {
5697 	.read_write_emulate = write_emulate,
5698 	.read_write_mmio = write_mmio,
5699 	.read_write_exit_mmio = write_exit_mmio,
5700 	.write = true,
5701 };
5702 
5703 static int emulator_read_write_onepage(unsigned long addr, void *val,
5704 				       unsigned int bytes,
5705 				       struct x86_exception *exception,
5706 				       struct kvm_vcpu *vcpu,
5707 				       const struct read_write_emulator_ops *ops)
5708 {
5709 	gpa_t gpa;
5710 	int handled, ret;
5711 	bool write = ops->write;
5712 	struct kvm_mmio_fragment *frag;
5713 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
5714 
5715 	/*
5716 	 * If the exit was due to a NPF we may already have a GPA.
5717 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5718 	 * Note, this cannot be used on string operations since string
5719 	 * operation using rep will only have the initial GPA from the NPF
5720 	 * occurred.
5721 	 */
5722 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5723 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5724 		gpa = ctxt->gpa_val;
5725 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5726 	} else {
5727 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5728 		if (ret < 0)
5729 			return X86EMUL_PROPAGATE_FAULT;
5730 	}
5731 
5732 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5733 		return X86EMUL_CONTINUE;
5734 
5735 	/*
5736 	 * Is this MMIO handled locally?
5737 	 */
5738 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5739 	if (handled == bytes)
5740 		return X86EMUL_CONTINUE;
5741 
5742 	gpa += handled;
5743 	bytes -= handled;
5744 	val += handled;
5745 
5746 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5747 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5748 	frag->gpa = gpa;
5749 	frag->data = val;
5750 	frag->len = bytes;
5751 	return X86EMUL_CONTINUE;
5752 }
5753 
5754 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5755 			unsigned long addr,
5756 			void *val, unsigned int bytes,
5757 			struct x86_exception *exception,
5758 			const struct read_write_emulator_ops *ops)
5759 {
5760 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5761 	gpa_t gpa;
5762 	int rc;
5763 
5764 	if (ops->read_write_prepare &&
5765 		  ops->read_write_prepare(vcpu, val, bytes))
5766 		return X86EMUL_CONTINUE;
5767 
5768 	vcpu->mmio_nr_fragments = 0;
5769 
5770 	/* Crossing a page boundary? */
5771 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5772 		int now;
5773 
5774 		now = -addr & ~PAGE_MASK;
5775 		rc = emulator_read_write_onepage(addr, val, now, exception,
5776 						 vcpu, ops);
5777 
5778 		if (rc != X86EMUL_CONTINUE)
5779 			return rc;
5780 		addr += now;
5781 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5782 			addr = (u32)addr;
5783 		val += now;
5784 		bytes -= now;
5785 	}
5786 
5787 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5788 					 vcpu, ops);
5789 	if (rc != X86EMUL_CONTINUE)
5790 		return rc;
5791 
5792 	if (!vcpu->mmio_nr_fragments)
5793 		return rc;
5794 
5795 	gpa = vcpu->mmio_fragments[0].gpa;
5796 
5797 	vcpu->mmio_needed = 1;
5798 	vcpu->mmio_cur_fragment = 0;
5799 
5800 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5801 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5802 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5803 	vcpu->run->mmio.phys_addr = gpa;
5804 
5805 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5806 }
5807 
5808 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5809 				  unsigned long addr,
5810 				  void *val,
5811 				  unsigned int bytes,
5812 				  struct x86_exception *exception)
5813 {
5814 	return emulator_read_write(ctxt, addr, val, bytes,
5815 				   exception, &read_emultor);
5816 }
5817 
5818 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5819 			    unsigned long addr,
5820 			    const void *val,
5821 			    unsigned int bytes,
5822 			    struct x86_exception *exception)
5823 {
5824 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5825 				   exception, &write_emultor);
5826 }
5827 
5828 #define CMPXCHG_TYPE(t, ptr, old, new) \
5829 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5830 
5831 #ifdef CONFIG_X86_64
5832 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5833 #else
5834 #  define CMPXCHG64(ptr, old, new) \
5835 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5836 #endif
5837 
5838 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5839 				     unsigned long addr,
5840 				     const void *old,
5841 				     const void *new,
5842 				     unsigned int bytes,
5843 				     struct x86_exception *exception)
5844 {
5845 	struct kvm_host_map map;
5846 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5847 	u64 page_line_mask;
5848 	gpa_t gpa;
5849 	char *kaddr;
5850 	bool exchanged;
5851 
5852 	/* guests cmpxchg8b have to be emulated atomically */
5853 	if (bytes > 8 || (bytes & (bytes - 1)))
5854 		goto emul_write;
5855 
5856 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5857 
5858 	if (gpa == UNMAPPED_GVA ||
5859 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5860 		goto emul_write;
5861 
5862 	/*
5863 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
5864 	 * enabled in the host and the access splits a cache line.
5865 	 */
5866 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5867 		page_line_mask = ~(cache_line_size() - 1);
5868 	else
5869 		page_line_mask = PAGE_MASK;
5870 
5871 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
5872 		goto emul_write;
5873 
5874 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5875 		goto emul_write;
5876 
5877 	kaddr = map.hva + offset_in_page(gpa);
5878 
5879 	switch (bytes) {
5880 	case 1:
5881 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5882 		break;
5883 	case 2:
5884 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5885 		break;
5886 	case 4:
5887 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5888 		break;
5889 	case 8:
5890 		exchanged = CMPXCHG64(kaddr, old, new);
5891 		break;
5892 	default:
5893 		BUG();
5894 	}
5895 
5896 	kvm_vcpu_unmap(vcpu, &map, true);
5897 
5898 	if (!exchanged)
5899 		return X86EMUL_CMPXCHG_FAILED;
5900 
5901 	kvm_page_track_write(vcpu, gpa, new, bytes);
5902 
5903 	return X86EMUL_CONTINUE;
5904 
5905 emul_write:
5906 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5907 
5908 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5909 }
5910 
5911 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5912 {
5913 	int r = 0, i;
5914 
5915 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5916 		if (vcpu->arch.pio.in)
5917 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5918 					    vcpu->arch.pio.size, pd);
5919 		else
5920 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5921 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5922 					     pd);
5923 		if (r)
5924 			break;
5925 		pd += vcpu->arch.pio.size;
5926 	}
5927 	return r;
5928 }
5929 
5930 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5931 			       unsigned short port, void *val,
5932 			       unsigned int count, bool in)
5933 {
5934 	vcpu->arch.pio.port = port;
5935 	vcpu->arch.pio.in = in;
5936 	vcpu->arch.pio.count  = count;
5937 	vcpu->arch.pio.size = size;
5938 
5939 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5940 		vcpu->arch.pio.count = 0;
5941 		return 1;
5942 	}
5943 
5944 	vcpu->run->exit_reason = KVM_EXIT_IO;
5945 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5946 	vcpu->run->io.size = size;
5947 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5948 	vcpu->run->io.count = count;
5949 	vcpu->run->io.port = port;
5950 
5951 	return 0;
5952 }
5953 
5954 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
5955 			   unsigned short port, void *val, unsigned int count)
5956 {
5957 	int ret;
5958 
5959 	if (vcpu->arch.pio.count)
5960 		goto data_avail;
5961 
5962 	memset(vcpu->arch.pio_data, 0, size * count);
5963 
5964 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5965 	if (ret) {
5966 data_avail:
5967 		memcpy(val, vcpu->arch.pio_data, size * count);
5968 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5969 		vcpu->arch.pio.count = 0;
5970 		return 1;
5971 	}
5972 
5973 	return 0;
5974 }
5975 
5976 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5977 				    int size, unsigned short port, void *val,
5978 				    unsigned int count)
5979 {
5980 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
5981 
5982 }
5983 
5984 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
5985 			    unsigned short port, const void *val,
5986 			    unsigned int count)
5987 {
5988 	memcpy(vcpu->arch.pio_data, val, size * count);
5989 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5990 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5991 }
5992 
5993 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5994 				     int size, unsigned short port,
5995 				     const void *val, unsigned int count)
5996 {
5997 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
5998 }
5999 
6000 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6001 {
6002 	return kvm_x86_ops.get_segment_base(vcpu, seg);
6003 }
6004 
6005 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6006 {
6007 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6008 }
6009 
6010 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6011 {
6012 	if (!need_emulate_wbinvd(vcpu))
6013 		return X86EMUL_CONTINUE;
6014 
6015 	if (kvm_x86_ops.has_wbinvd_exit()) {
6016 		int cpu = get_cpu();
6017 
6018 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6019 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6020 				wbinvd_ipi, NULL, 1);
6021 		put_cpu();
6022 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6023 	} else
6024 		wbinvd();
6025 	return X86EMUL_CONTINUE;
6026 }
6027 
6028 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6029 {
6030 	kvm_emulate_wbinvd_noskip(vcpu);
6031 	return kvm_skip_emulated_instruction(vcpu);
6032 }
6033 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6034 
6035 
6036 
6037 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6038 {
6039 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6040 }
6041 
6042 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6043 			   unsigned long *dest)
6044 {
6045 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6046 }
6047 
6048 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6049 			   unsigned long value)
6050 {
6051 
6052 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6053 }
6054 
6055 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6056 {
6057 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6058 }
6059 
6060 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6061 {
6062 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6063 	unsigned long value;
6064 
6065 	switch (cr) {
6066 	case 0:
6067 		value = kvm_read_cr0(vcpu);
6068 		break;
6069 	case 2:
6070 		value = vcpu->arch.cr2;
6071 		break;
6072 	case 3:
6073 		value = kvm_read_cr3(vcpu);
6074 		break;
6075 	case 4:
6076 		value = kvm_read_cr4(vcpu);
6077 		break;
6078 	case 8:
6079 		value = kvm_get_cr8(vcpu);
6080 		break;
6081 	default:
6082 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6083 		return 0;
6084 	}
6085 
6086 	return value;
6087 }
6088 
6089 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6090 {
6091 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6092 	int res = 0;
6093 
6094 	switch (cr) {
6095 	case 0:
6096 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6097 		break;
6098 	case 2:
6099 		vcpu->arch.cr2 = val;
6100 		break;
6101 	case 3:
6102 		res = kvm_set_cr3(vcpu, val);
6103 		break;
6104 	case 4:
6105 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6106 		break;
6107 	case 8:
6108 		res = kvm_set_cr8(vcpu, val);
6109 		break;
6110 	default:
6111 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6112 		res = -1;
6113 	}
6114 
6115 	return res;
6116 }
6117 
6118 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6119 {
6120 	return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
6121 }
6122 
6123 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6124 {
6125 	kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
6126 }
6127 
6128 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6129 {
6130 	kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
6131 }
6132 
6133 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6134 {
6135 	kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
6136 }
6137 
6138 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6139 {
6140 	kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
6141 }
6142 
6143 static unsigned long emulator_get_cached_segment_base(
6144 	struct x86_emulate_ctxt *ctxt, int seg)
6145 {
6146 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6147 }
6148 
6149 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6150 				 struct desc_struct *desc, u32 *base3,
6151 				 int seg)
6152 {
6153 	struct kvm_segment var;
6154 
6155 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6156 	*selector = var.selector;
6157 
6158 	if (var.unusable) {
6159 		memset(desc, 0, sizeof(*desc));
6160 		if (base3)
6161 			*base3 = 0;
6162 		return false;
6163 	}
6164 
6165 	if (var.g)
6166 		var.limit >>= 12;
6167 	set_desc_limit(desc, var.limit);
6168 	set_desc_base(desc, (unsigned long)var.base);
6169 #ifdef CONFIG_X86_64
6170 	if (base3)
6171 		*base3 = var.base >> 32;
6172 #endif
6173 	desc->type = var.type;
6174 	desc->s = var.s;
6175 	desc->dpl = var.dpl;
6176 	desc->p = var.present;
6177 	desc->avl = var.avl;
6178 	desc->l = var.l;
6179 	desc->d = var.db;
6180 	desc->g = var.g;
6181 
6182 	return true;
6183 }
6184 
6185 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6186 				 struct desc_struct *desc, u32 base3,
6187 				 int seg)
6188 {
6189 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6190 	struct kvm_segment var;
6191 
6192 	var.selector = selector;
6193 	var.base = get_desc_base(desc);
6194 #ifdef CONFIG_X86_64
6195 	var.base |= ((u64)base3) << 32;
6196 #endif
6197 	var.limit = get_desc_limit(desc);
6198 	if (desc->g)
6199 		var.limit = (var.limit << 12) | 0xfff;
6200 	var.type = desc->type;
6201 	var.dpl = desc->dpl;
6202 	var.db = desc->d;
6203 	var.s = desc->s;
6204 	var.l = desc->l;
6205 	var.g = desc->g;
6206 	var.avl = desc->avl;
6207 	var.present = desc->p;
6208 	var.unusable = !var.present;
6209 	var.padding = 0;
6210 
6211 	kvm_set_segment(vcpu, &var, seg);
6212 	return;
6213 }
6214 
6215 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6216 			    u32 msr_index, u64 *pdata)
6217 {
6218 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6219 }
6220 
6221 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6222 			    u32 msr_index, u64 data)
6223 {
6224 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6225 }
6226 
6227 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6228 {
6229 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6230 
6231 	return vcpu->arch.smbase;
6232 }
6233 
6234 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6235 {
6236 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6237 
6238 	vcpu->arch.smbase = smbase;
6239 }
6240 
6241 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6242 			      u32 pmc)
6243 {
6244 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6245 }
6246 
6247 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6248 			     u32 pmc, u64 *pdata)
6249 {
6250 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6251 }
6252 
6253 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6254 {
6255 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6256 }
6257 
6258 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6259 			      struct x86_instruction_info *info,
6260 			      enum x86_intercept_stage stage)
6261 {
6262 	return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
6263 					    &ctxt->exception);
6264 }
6265 
6266 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6267 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6268 			      bool exact_only)
6269 {
6270 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
6271 }
6272 
6273 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6274 {
6275 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6276 }
6277 
6278 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6279 {
6280 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6281 }
6282 
6283 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6284 {
6285 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6286 }
6287 
6288 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6289 {
6290 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6291 }
6292 
6293 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6294 {
6295 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6296 }
6297 
6298 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6299 {
6300 	kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
6301 }
6302 
6303 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6304 {
6305 	return emul_to_vcpu(ctxt)->arch.hflags;
6306 }
6307 
6308 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6309 {
6310 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6311 }
6312 
6313 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6314 				  const char *smstate)
6315 {
6316 	return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6317 }
6318 
6319 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6320 {
6321 	kvm_smm_changed(emul_to_vcpu(ctxt));
6322 }
6323 
6324 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6325 {
6326 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6327 }
6328 
6329 static const struct x86_emulate_ops emulate_ops = {
6330 	.read_gpr            = emulator_read_gpr,
6331 	.write_gpr           = emulator_write_gpr,
6332 	.read_std            = emulator_read_std,
6333 	.write_std           = emulator_write_std,
6334 	.read_phys           = kvm_read_guest_phys_system,
6335 	.fetch               = kvm_fetch_guest_virt,
6336 	.read_emulated       = emulator_read_emulated,
6337 	.write_emulated      = emulator_write_emulated,
6338 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6339 	.invlpg              = emulator_invlpg,
6340 	.pio_in_emulated     = emulator_pio_in_emulated,
6341 	.pio_out_emulated    = emulator_pio_out_emulated,
6342 	.get_segment         = emulator_get_segment,
6343 	.set_segment         = emulator_set_segment,
6344 	.get_cached_segment_base = emulator_get_cached_segment_base,
6345 	.get_gdt             = emulator_get_gdt,
6346 	.get_idt	     = emulator_get_idt,
6347 	.set_gdt             = emulator_set_gdt,
6348 	.set_idt	     = emulator_set_idt,
6349 	.get_cr              = emulator_get_cr,
6350 	.set_cr              = emulator_set_cr,
6351 	.cpl                 = emulator_get_cpl,
6352 	.get_dr              = emulator_get_dr,
6353 	.set_dr              = emulator_set_dr,
6354 	.get_smbase          = emulator_get_smbase,
6355 	.set_smbase          = emulator_set_smbase,
6356 	.set_msr             = emulator_set_msr,
6357 	.get_msr             = emulator_get_msr,
6358 	.check_pmc	     = emulator_check_pmc,
6359 	.read_pmc            = emulator_read_pmc,
6360 	.halt                = emulator_halt,
6361 	.wbinvd              = emulator_wbinvd,
6362 	.fix_hypercall       = emulator_fix_hypercall,
6363 	.intercept           = emulator_intercept,
6364 	.get_cpuid           = emulator_get_cpuid,
6365 	.guest_has_long_mode = emulator_guest_has_long_mode,
6366 	.guest_has_movbe     = emulator_guest_has_movbe,
6367 	.guest_has_fxsr      = emulator_guest_has_fxsr,
6368 	.set_nmi_mask        = emulator_set_nmi_mask,
6369 	.get_hflags          = emulator_get_hflags,
6370 	.set_hflags          = emulator_set_hflags,
6371 	.pre_leave_smm       = emulator_pre_leave_smm,
6372 	.post_leave_smm      = emulator_post_leave_smm,
6373 	.set_xcr             = emulator_set_xcr,
6374 };
6375 
6376 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6377 {
6378 	u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
6379 	/*
6380 	 * an sti; sti; sequence only disable interrupts for the first
6381 	 * instruction. So, if the last instruction, be it emulated or
6382 	 * not, left the system with the INT_STI flag enabled, it
6383 	 * means that the last instruction is an sti. We should not
6384 	 * leave the flag on in this case. The same goes for mov ss
6385 	 */
6386 	if (int_shadow & mask)
6387 		mask = 0;
6388 	if (unlikely(int_shadow || mask)) {
6389 		kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6390 		if (!mask)
6391 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6392 	}
6393 }
6394 
6395 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6396 {
6397 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6398 	if (ctxt->exception.vector == PF_VECTOR)
6399 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6400 
6401 	if (ctxt->exception.error_code_valid)
6402 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6403 				      ctxt->exception.error_code);
6404 	else
6405 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6406 	return false;
6407 }
6408 
6409 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6410 {
6411 	struct x86_emulate_ctxt *ctxt;
6412 
6413 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6414 	if (!ctxt) {
6415 		pr_err("kvm: failed to allocate vcpu's emulator\n");
6416 		return NULL;
6417 	}
6418 
6419 	ctxt->vcpu = vcpu;
6420 	ctxt->ops = &emulate_ops;
6421 	vcpu->arch.emulate_ctxt = ctxt;
6422 
6423 	return ctxt;
6424 }
6425 
6426 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6427 {
6428 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6429 	int cs_db, cs_l;
6430 
6431 	kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6432 
6433 	ctxt->gpa_available = false;
6434 	ctxt->eflags = kvm_get_rflags(vcpu);
6435 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6436 
6437 	ctxt->eip = kvm_rip_read(vcpu);
6438 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6439 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6440 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6441 		     cs_db				? X86EMUL_MODE_PROT32 :
6442 							  X86EMUL_MODE_PROT16;
6443 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6444 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6445 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6446 
6447 	init_decode_cache(ctxt);
6448 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6449 }
6450 
6451 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6452 {
6453 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6454 	int ret;
6455 
6456 	init_emulate_ctxt(vcpu);
6457 
6458 	ctxt->op_bytes = 2;
6459 	ctxt->ad_bytes = 2;
6460 	ctxt->_eip = ctxt->eip + inc_eip;
6461 	ret = emulate_int_real(ctxt, irq);
6462 
6463 	if (ret != X86EMUL_CONTINUE) {
6464 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6465 	} else {
6466 		ctxt->eip = ctxt->_eip;
6467 		kvm_rip_write(vcpu, ctxt->eip);
6468 		kvm_set_rflags(vcpu, ctxt->eflags);
6469 	}
6470 }
6471 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6472 
6473 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6474 {
6475 	++vcpu->stat.insn_emulation_fail;
6476 	trace_kvm_emulate_insn_failed(vcpu);
6477 
6478 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6479 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6480 		return 1;
6481 	}
6482 
6483 	if (emulation_type & EMULTYPE_SKIP) {
6484 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6485 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6486 		vcpu->run->internal.ndata = 0;
6487 		return 0;
6488 	}
6489 
6490 	kvm_queue_exception(vcpu, UD_VECTOR);
6491 
6492 	if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
6493 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6494 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6495 		vcpu->run->internal.ndata = 0;
6496 		return 0;
6497 	}
6498 
6499 	return 1;
6500 }
6501 
6502 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6503 				  bool write_fault_to_shadow_pgtable,
6504 				  int emulation_type)
6505 {
6506 	gpa_t gpa = cr2_or_gpa;
6507 	kvm_pfn_t pfn;
6508 
6509 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6510 		return false;
6511 
6512 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6513 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6514 		return false;
6515 
6516 	if (!vcpu->arch.mmu->direct_map) {
6517 		/*
6518 		 * Write permission should be allowed since only
6519 		 * write access need to be emulated.
6520 		 */
6521 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6522 
6523 		/*
6524 		 * If the mapping is invalid in guest, let cpu retry
6525 		 * it to generate fault.
6526 		 */
6527 		if (gpa == UNMAPPED_GVA)
6528 			return true;
6529 	}
6530 
6531 	/*
6532 	 * Do not retry the unhandleable instruction if it faults on the
6533 	 * readonly host memory, otherwise it will goto a infinite loop:
6534 	 * retry instruction -> write #PF -> emulation fail -> retry
6535 	 * instruction -> ...
6536 	 */
6537 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6538 
6539 	/*
6540 	 * If the instruction failed on the error pfn, it can not be fixed,
6541 	 * report the error to userspace.
6542 	 */
6543 	if (is_error_noslot_pfn(pfn))
6544 		return false;
6545 
6546 	kvm_release_pfn_clean(pfn);
6547 
6548 	/* The instructions are well-emulated on direct mmu. */
6549 	if (vcpu->arch.mmu->direct_map) {
6550 		unsigned int indirect_shadow_pages;
6551 
6552 		spin_lock(&vcpu->kvm->mmu_lock);
6553 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6554 		spin_unlock(&vcpu->kvm->mmu_lock);
6555 
6556 		if (indirect_shadow_pages)
6557 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6558 
6559 		return true;
6560 	}
6561 
6562 	/*
6563 	 * if emulation was due to access to shadowed page table
6564 	 * and it failed try to unshadow page and re-enter the
6565 	 * guest to let CPU execute the instruction.
6566 	 */
6567 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6568 
6569 	/*
6570 	 * If the access faults on its page table, it can not
6571 	 * be fixed by unprotecting shadow page and it should
6572 	 * be reported to userspace.
6573 	 */
6574 	return !write_fault_to_shadow_pgtable;
6575 }
6576 
6577 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6578 			      gpa_t cr2_or_gpa,  int emulation_type)
6579 {
6580 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6581 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6582 
6583 	last_retry_eip = vcpu->arch.last_retry_eip;
6584 	last_retry_addr = vcpu->arch.last_retry_addr;
6585 
6586 	/*
6587 	 * If the emulation is caused by #PF and it is non-page_table
6588 	 * writing instruction, it means the VM-EXIT is caused by shadow
6589 	 * page protected, we can zap the shadow page and retry this
6590 	 * instruction directly.
6591 	 *
6592 	 * Note: if the guest uses a non-page-table modifying instruction
6593 	 * on the PDE that points to the instruction, then we will unmap
6594 	 * the instruction and go to an infinite loop. So, we cache the
6595 	 * last retried eip and the last fault address, if we meet the eip
6596 	 * and the address again, we can break out of the potential infinite
6597 	 * loop.
6598 	 */
6599 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6600 
6601 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
6602 		return false;
6603 
6604 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6605 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6606 		return false;
6607 
6608 	if (x86_page_table_writing_insn(ctxt))
6609 		return false;
6610 
6611 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6612 		return false;
6613 
6614 	vcpu->arch.last_retry_eip = ctxt->eip;
6615 	vcpu->arch.last_retry_addr = cr2_or_gpa;
6616 
6617 	if (!vcpu->arch.mmu->direct_map)
6618 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6619 
6620 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6621 
6622 	return true;
6623 }
6624 
6625 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6626 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6627 
6628 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6629 {
6630 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6631 		/* This is a good place to trace that we are exiting SMM.  */
6632 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6633 
6634 		/* Process a latched INIT or SMI, if any.  */
6635 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6636 	}
6637 
6638 	kvm_mmu_reset_context(vcpu);
6639 }
6640 
6641 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6642 				unsigned long *db)
6643 {
6644 	u32 dr6 = 0;
6645 	int i;
6646 	u32 enable, rwlen;
6647 
6648 	enable = dr7;
6649 	rwlen = dr7 >> 16;
6650 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6651 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6652 			dr6 |= (1 << i);
6653 	return dr6;
6654 }
6655 
6656 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6657 {
6658 	struct kvm_run *kvm_run = vcpu->run;
6659 
6660 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6661 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6662 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6663 		kvm_run->debug.arch.exception = DB_VECTOR;
6664 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6665 		return 0;
6666 	}
6667 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6668 	return 1;
6669 }
6670 
6671 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6672 {
6673 	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6674 	int r;
6675 
6676 	r = kvm_x86_ops.skip_emulated_instruction(vcpu);
6677 	if (unlikely(!r))
6678 		return 0;
6679 
6680 	/*
6681 	 * rflags is the old, "raw" value of the flags.  The new value has
6682 	 * not been saved yet.
6683 	 *
6684 	 * This is correct even for TF set by the guest, because "the
6685 	 * processor will not generate this exception after the instruction
6686 	 * that sets the TF flag".
6687 	 */
6688 	if (unlikely(rflags & X86_EFLAGS_TF))
6689 		r = kvm_vcpu_do_singlestep(vcpu);
6690 	return r;
6691 }
6692 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6693 
6694 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6695 {
6696 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6697 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6698 		struct kvm_run *kvm_run = vcpu->run;
6699 		unsigned long eip = kvm_get_linear_rip(vcpu);
6700 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6701 					   vcpu->arch.guest_debug_dr7,
6702 					   vcpu->arch.eff_db);
6703 
6704 		if (dr6 != 0) {
6705 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6706 			kvm_run->debug.arch.pc = eip;
6707 			kvm_run->debug.arch.exception = DB_VECTOR;
6708 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6709 			*r = 0;
6710 			return true;
6711 		}
6712 	}
6713 
6714 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6715 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6716 		unsigned long eip = kvm_get_linear_rip(vcpu);
6717 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6718 					   vcpu->arch.dr7,
6719 					   vcpu->arch.db);
6720 
6721 		if (dr6 != 0) {
6722 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6723 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6724 			kvm_queue_exception(vcpu, DB_VECTOR);
6725 			*r = 1;
6726 			return true;
6727 		}
6728 	}
6729 
6730 	return false;
6731 }
6732 
6733 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6734 {
6735 	switch (ctxt->opcode_len) {
6736 	case 1:
6737 		switch (ctxt->b) {
6738 		case 0xe4:	/* IN */
6739 		case 0xe5:
6740 		case 0xec:
6741 		case 0xed:
6742 		case 0xe6:	/* OUT */
6743 		case 0xe7:
6744 		case 0xee:
6745 		case 0xef:
6746 		case 0x6c:	/* INS */
6747 		case 0x6d:
6748 		case 0x6e:	/* OUTS */
6749 		case 0x6f:
6750 			return true;
6751 		}
6752 		break;
6753 	case 2:
6754 		switch (ctxt->b) {
6755 		case 0x33:	/* RDPMC */
6756 			return true;
6757 		}
6758 		break;
6759 	}
6760 
6761 	return false;
6762 }
6763 
6764 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6765 			    int emulation_type, void *insn, int insn_len)
6766 {
6767 	int r;
6768 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6769 	bool writeback = true;
6770 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6771 
6772 	vcpu->arch.l1tf_flush_l1d = true;
6773 
6774 	/*
6775 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6776 	 * never reused.
6777 	 */
6778 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6779 	kvm_clear_exception_queue(vcpu);
6780 
6781 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6782 		init_emulate_ctxt(vcpu);
6783 
6784 		/*
6785 		 * We will reenter on the same instruction since
6786 		 * we do not set complete_userspace_io.  This does not
6787 		 * handle watchpoints yet, those would be handled in
6788 		 * the emulate_ops.
6789 		 */
6790 		if (!(emulation_type & EMULTYPE_SKIP) &&
6791 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6792 			return r;
6793 
6794 		ctxt->interruptibility = 0;
6795 		ctxt->have_exception = false;
6796 		ctxt->exception.vector = -1;
6797 		ctxt->perm_ok = false;
6798 
6799 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6800 
6801 		r = x86_decode_insn(ctxt, insn, insn_len);
6802 
6803 		trace_kvm_emulate_insn_start(vcpu);
6804 		++vcpu->stat.insn_emulation;
6805 		if (r != EMULATION_OK)  {
6806 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
6807 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6808 				kvm_queue_exception(vcpu, UD_VECTOR);
6809 				return 1;
6810 			}
6811 			if (reexecute_instruction(vcpu, cr2_or_gpa,
6812 						  write_fault_to_spt,
6813 						  emulation_type))
6814 				return 1;
6815 			if (ctxt->have_exception) {
6816 				/*
6817 				 * #UD should result in just EMULATION_FAILED, and trap-like
6818 				 * exception should not be encountered during decode.
6819 				 */
6820 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6821 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6822 				inject_emulated_exception(vcpu);
6823 				return 1;
6824 			}
6825 			return handle_emulation_failure(vcpu, emulation_type);
6826 		}
6827 	}
6828 
6829 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6830 	    !is_vmware_backdoor_opcode(ctxt)) {
6831 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6832 		return 1;
6833 	}
6834 
6835 	/*
6836 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6837 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
6838 	 * updating interruptibility state and injecting single-step #DBs.
6839 	 */
6840 	if (emulation_type & EMULTYPE_SKIP) {
6841 		kvm_rip_write(vcpu, ctxt->_eip);
6842 		if (ctxt->eflags & X86_EFLAGS_RF)
6843 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6844 		return 1;
6845 	}
6846 
6847 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6848 		return 1;
6849 
6850 	/* this is needed for vmware backdoor interface to work since it
6851 	   changes registers values  during IO operation */
6852 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6853 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6854 		emulator_invalidate_register_cache(ctxt);
6855 	}
6856 
6857 restart:
6858 	if (emulation_type & EMULTYPE_PF) {
6859 		/* Save the faulting GPA (cr2) in the address field */
6860 		ctxt->exception.address = cr2_or_gpa;
6861 
6862 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
6863 		if (vcpu->arch.mmu->direct_map) {
6864 			ctxt->gpa_available = true;
6865 			ctxt->gpa_val = cr2_or_gpa;
6866 		}
6867 	} else {
6868 		/* Sanitize the address out of an abundance of paranoia. */
6869 		ctxt->exception.address = 0;
6870 	}
6871 
6872 	r = x86_emulate_insn(ctxt);
6873 
6874 	if (r == EMULATION_INTERCEPTED)
6875 		return 1;
6876 
6877 	if (r == EMULATION_FAILED) {
6878 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6879 					emulation_type))
6880 			return 1;
6881 
6882 		return handle_emulation_failure(vcpu, emulation_type);
6883 	}
6884 
6885 	if (ctxt->have_exception) {
6886 		r = 1;
6887 		if (inject_emulated_exception(vcpu))
6888 			return r;
6889 	} else if (vcpu->arch.pio.count) {
6890 		if (!vcpu->arch.pio.in) {
6891 			/* FIXME: return into emulator if single-stepping.  */
6892 			vcpu->arch.pio.count = 0;
6893 		} else {
6894 			writeback = false;
6895 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6896 		}
6897 		r = 0;
6898 	} else if (vcpu->mmio_needed) {
6899 		++vcpu->stat.mmio_exits;
6900 
6901 		if (!vcpu->mmio_is_write)
6902 			writeback = false;
6903 		r = 0;
6904 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6905 	} else if (r == EMULATION_RESTART)
6906 		goto restart;
6907 	else
6908 		r = 1;
6909 
6910 	if (writeback) {
6911 		unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
6912 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6913 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6914 		if (!ctxt->have_exception ||
6915 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6916 			kvm_rip_write(vcpu, ctxt->eip);
6917 			if (r && ctxt->tf)
6918 				r = kvm_vcpu_do_singlestep(vcpu);
6919 			if (kvm_x86_ops.update_emulated_instruction)
6920 				kvm_x86_ops.update_emulated_instruction(vcpu);
6921 			__kvm_set_rflags(vcpu, ctxt->eflags);
6922 		}
6923 
6924 		/*
6925 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6926 		 * do nothing, and it will be requested again as soon as
6927 		 * the shadow expires.  But we still need to check here,
6928 		 * because POPF has no interrupt shadow.
6929 		 */
6930 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6931 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6932 	} else
6933 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6934 
6935 	return r;
6936 }
6937 
6938 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6939 {
6940 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6941 }
6942 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6943 
6944 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6945 					void *insn, int insn_len)
6946 {
6947 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6948 }
6949 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6950 
6951 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6952 {
6953 	vcpu->arch.pio.count = 0;
6954 	return 1;
6955 }
6956 
6957 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6958 {
6959 	vcpu->arch.pio.count = 0;
6960 
6961 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6962 		return 1;
6963 
6964 	return kvm_skip_emulated_instruction(vcpu);
6965 }
6966 
6967 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6968 			    unsigned short port)
6969 {
6970 	unsigned long val = kvm_rax_read(vcpu);
6971 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
6972 
6973 	if (ret)
6974 		return ret;
6975 
6976 	/*
6977 	 * Workaround userspace that relies on old KVM behavior of %rip being
6978 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6979 	 */
6980 	if (port == 0x7e &&
6981 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6982 		vcpu->arch.complete_userspace_io =
6983 			complete_fast_pio_out_port_0x7e;
6984 		kvm_skip_emulated_instruction(vcpu);
6985 	} else {
6986 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6987 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6988 	}
6989 	return 0;
6990 }
6991 
6992 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6993 {
6994 	unsigned long val;
6995 
6996 	/* We should only ever be called with arch.pio.count equal to 1 */
6997 	BUG_ON(vcpu->arch.pio.count != 1);
6998 
6999 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7000 		vcpu->arch.pio.count = 0;
7001 		return 1;
7002 	}
7003 
7004 	/* For size less than 4 we merge, else we zero extend */
7005 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7006 
7007 	/*
7008 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7009 	 * the copy and tracing
7010 	 */
7011 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7012 	kvm_rax_write(vcpu, val);
7013 
7014 	return kvm_skip_emulated_instruction(vcpu);
7015 }
7016 
7017 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7018 			   unsigned short port)
7019 {
7020 	unsigned long val;
7021 	int ret;
7022 
7023 	/* For size less than 4 we merge, else we zero extend */
7024 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7025 
7026 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
7027 	if (ret) {
7028 		kvm_rax_write(vcpu, val);
7029 		return ret;
7030 	}
7031 
7032 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7033 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7034 
7035 	return 0;
7036 }
7037 
7038 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7039 {
7040 	int ret;
7041 
7042 	if (in)
7043 		ret = kvm_fast_pio_in(vcpu, size, port);
7044 	else
7045 		ret = kvm_fast_pio_out(vcpu, size, port);
7046 	return ret && kvm_skip_emulated_instruction(vcpu);
7047 }
7048 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7049 
7050 static int kvmclock_cpu_down_prep(unsigned int cpu)
7051 {
7052 	__this_cpu_write(cpu_tsc_khz, 0);
7053 	return 0;
7054 }
7055 
7056 static void tsc_khz_changed(void *data)
7057 {
7058 	struct cpufreq_freqs *freq = data;
7059 	unsigned long khz = 0;
7060 
7061 	if (data)
7062 		khz = freq->new;
7063 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7064 		khz = cpufreq_quick_get(raw_smp_processor_id());
7065 	if (!khz)
7066 		khz = tsc_khz;
7067 	__this_cpu_write(cpu_tsc_khz, khz);
7068 }
7069 
7070 #ifdef CONFIG_X86_64
7071 static void kvm_hyperv_tsc_notifier(void)
7072 {
7073 	struct kvm *kvm;
7074 	struct kvm_vcpu *vcpu;
7075 	int cpu;
7076 
7077 	mutex_lock(&kvm_lock);
7078 	list_for_each_entry(kvm, &vm_list, vm_list)
7079 		kvm_make_mclock_inprogress_request(kvm);
7080 
7081 	hyperv_stop_tsc_emulation();
7082 
7083 	/* TSC frequency always matches when on Hyper-V */
7084 	for_each_present_cpu(cpu)
7085 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7086 	kvm_max_guest_tsc_khz = tsc_khz;
7087 
7088 	list_for_each_entry(kvm, &vm_list, vm_list) {
7089 		struct kvm_arch *ka = &kvm->arch;
7090 
7091 		spin_lock(&ka->pvclock_gtod_sync_lock);
7092 
7093 		pvclock_update_vm_gtod_copy(kvm);
7094 
7095 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7096 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7097 
7098 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7099 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7100 
7101 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7102 	}
7103 	mutex_unlock(&kvm_lock);
7104 }
7105 #endif
7106 
7107 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7108 {
7109 	struct kvm *kvm;
7110 	struct kvm_vcpu *vcpu;
7111 	int i, send_ipi = 0;
7112 
7113 	/*
7114 	 * We allow guests to temporarily run on slowing clocks,
7115 	 * provided we notify them after, or to run on accelerating
7116 	 * clocks, provided we notify them before.  Thus time never
7117 	 * goes backwards.
7118 	 *
7119 	 * However, we have a problem.  We can't atomically update
7120 	 * the frequency of a given CPU from this function; it is
7121 	 * merely a notifier, which can be called from any CPU.
7122 	 * Changing the TSC frequency at arbitrary points in time
7123 	 * requires a recomputation of local variables related to
7124 	 * the TSC for each VCPU.  We must flag these local variables
7125 	 * to be updated and be sure the update takes place with the
7126 	 * new frequency before any guests proceed.
7127 	 *
7128 	 * Unfortunately, the combination of hotplug CPU and frequency
7129 	 * change creates an intractable locking scenario; the order
7130 	 * of when these callouts happen is undefined with respect to
7131 	 * CPU hotplug, and they can race with each other.  As such,
7132 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7133 	 * undefined; you can actually have a CPU frequency change take
7134 	 * place in between the computation of X and the setting of the
7135 	 * variable.  To protect against this problem, all updates of
7136 	 * the per_cpu tsc_khz variable are done in an interrupt
7137 	 * protected IPI, and all callers wishing to update the value
7138 	 * must wait for a synchronous IPI to complete (which is trivial
7139 	 * if the caller is on the CPU already).  This establishes the
7140 	 * necessary total order on variable updates.
7141 	 *
7142 	 * Note that because a guest time update may take place
7143 	 * anytime after the setting of the VCPU's request bit, the
7144 	 * correct TSC value must be set before the request.  However,
7145 	 * to ensure the update actually makes it to any guest which
7146 	 * starts running in hardware virtualization between the set
7147 	 * and the acquisition of the spinlock, we must also ping the
7148 	 * CPU after setting the request bit.
7149 	 *
7150 	 */
7151 
7152 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7153 
7154 	mutex_lock(&kvm_lock);
7155 	list_for_each_entry(kvm, &vm_list, vm_list) {
7156 		kvm_for_each_vcpu(i, vcpu, kvm) {
7157 			if (vcpu->cpu != cpu)
7158 				continue;
7159 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7160 			if (vcpu->cpu != raw_smp_processor_id())
7161 				send_ipi = 1;
7162 		}
7163 	}
7164 	mutex_unlock(&kvm_lock);
7165 
7166 	if (freq->old < freq->new && send_ipi) {
7167 		/*
7168 		 * We upscale the frequency.  Must make the guest
7169 		 * doesn't see old kvmclock values while running with
7170 		 * the new frequency, otherwise we risk the guest sees
7171 		 * time go backwards.
7172 		 *
7173 		 * In case we update the frequency for another cpu
7174 		 * (which might be in guest context) send an interrupt
7175 		 * to kick the cpu out of guest context.  Next time
7176 		 * guest context is entered kvmclock will be updated,
7177 		 * so the guest will not see stale values.
7178 		 */
7179 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7180 	}
7181 }
7182 
7183 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7184 				     void *data)
7185 {
7186 	struct cpufreq_freqs *freq = data;
7187 	int cpu;
7188 
7189 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7190 		return 0;
7191 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7192 		return 0;
7193 
7194 	for_each_cpu(cpu, freq->policy->cpus)
7195 		__kvmclock_cpufreq_notifier(freq, cpu);
7196 
7197 	return 0;
7198 }
7199 
7200 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7201 	.notifier_call  = kvmclock_cpufreq_notifier
7202 };
7203 
7204 static int kvmclock_cpu_online(unsigned int cpu)
7205 {
7206 	tsc_khz_changed(NULL);
7207 	return 0;
7208 }
7209 
7210 static void kvm_timer_init(void)
7211 {
7212 	max_tsc_khz = tsc_khz;
7213 
7214 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7215 #ifdef CONFIG_CPU_FREQ
7216 		struct cpufreq_policy *policy;
7217 		int cpu;
7218 
7219 		cpu = get_cpu();
7220 		policy = cpufreq_cpu_get(cpu);
7221 		if (policy) {
7222 			if (policy->cpuinfo.max_freq)
7223 				max_tsc_khz = policy->cpuinfo.max_freq;
7224 			cpufreq_cpu_put(policy);
7225 		}
7226 		put_cpu();
7227 #endif
7228 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7229 					  CPUFREQ_TRANSITION_NOTIFIER);
7230 	}
7231 
7232 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7233 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7234 }
7235 
7236 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7237 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7238 
7239 int kvm_is_in_guest(void)
7240 {
7241 	return __this_cpu_read(current_vcpu) != NULL;
7242 }
7243 
7244 static int kvm_is_user_mode(void)
7245 {
7246 	int user_mode = 3;
7247 
7248 	if (__this_cpu_read(current_vcpu))
7249 		user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
7250 
7251 	return user_mode != 0;
7252 }
7253 
7254 static unsigned long kvm_get_guest_ip(void)
7255 {
7256 	unsigned long ip = 0;
7257 
7258 	if (__this_cpu_read(current_vcpu))
7259 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7260 
7261 	return ip;
7262 }
7263 
7264 static void kvm_handle_intel_pt_intr(void)
7265 {
7266 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7267 
7268 	kvm_make_request(KVM_REQ_PMI, vcpu);
7269 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7270 			(unsigned long *)&vcpu->arch.pmu.global_status);
7271 }
7272 
7273 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7274 	.is_in_guest		= kvm_is_in_guest,
7275 	.is_user_mode		= kvm_is_user_mode,
7276 	.get_guest_ip		= kvm_get_guest_ip,
7277 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7278 };
7279 
7280 #ifdef CONFIG_X86_64
7281 static void pvclock_gtod_update_fn(struct work_struct *work)
7282 {
7283 	struct kvm *kvm;
7284 
7285 	struct kvm_vcpu *vcpu;
7286 	int i;
7287 
7288 	mutex_lock(&kvm_lock);
7289 	list_for_each_entry(kvm, &vm_list, vm_list)
7290 		kvm_for_each_vcpu(i, vcpu, kvm)
7291 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7292 	atomic_set(&kvm_guest_has_master_clock, 0);
7293 	mutex_unlock(&kvm_lock);
7294 }
7295 
7296 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7297 
7298 /*
7299  * Notification about pvclock gtod data update.
7300  */
7301 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7302 			       void *priv)
7303 {
7304 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7305 	struct timekeeper *tk = priv;
7306 
7307 	update_pvclock_gtod(tk);
7308 
7309 	/* disable master clock if host does not trust, or does not
7310 	 * use, TSC based clocksource.
7311 	 */
7312 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7313 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7314 		queue_work(system_long_wq, &pvclock_gtod_work);
7315 
7316 	return 0;
7317 }
7318 
7319 static struct notifier_block pvclock_gtod_notifier = {
7320 	.notifier_call = pvclock_gtod_notify,
7321 };
7322 #endif
7323 
7324 int kvm_arch_init(void *opaque)
7325 {
7326 	struct kvm_x86_init_ops *ops = opaque;
7327 	int r;
7328 
7329 	if (kvm_x86_ops.hardware_enable) {
7330 		printk(KERN_ERR "kvm: already loaded the other module\n");
7331 		r = -EEXIST;
7332 		goto out;
7333 	}
7334 
7335 	if (!ops->cpu_has_kvm_support()) {
7336 		pr_err_ratelimited("kvm: no hardware support\n");
7337 		r = -EOPNOTSUPP;
7338 		goto out;
7339 	}
7340 	if (ops->disabled_by_bios()) {
7341 		pr_err_ratelimited("kvm: disabled by bios\n");
7342 		r = -EOPNOTSUPP;
7343 		goto out;
7344 	}
7345 
7346 	/*
7347 	 * KVM explicitly assumes that the guest has an FPU and
7348 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7349 	 * vCPU's FPU state as a fxregs_state struct.
7350 	 */
7351 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7352 		printk(KERN_ERR "kvm: inadequate fpu\n");
7353 		r = -EOPNOTSUPP;
7354 		goto out;
7355 	}
7356 
7357 	r = -ENOMEM;
7358 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7359 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7360 					  NULL);
7361 	if (!x86_fpu_cache) {
7362 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7363 		goto out;
7364 	}
7365 
7366 	x86_emulator_cache = kvm_alloc_emulator_cache();
7367 	if (!x86_emulator_cache) {
7368 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
7369 		goto out_free_x86_fpu_cache;
7370 	}
7371 
7372 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7373 	if (!shared_msrs) {
7374 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7375 		goto out_free_x86_emulator_cache;
7376 	}
7377 
7378 	r = kvm_mmu_module_init();
7379 	if (r)
7380 		goto out_free_percpu;
7381 
7382 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7383 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7384 			PT_PRESENT_MASK, 0, sme_me_mask);
7385 	kvm_timer_init();
7386 
7387 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7388 
7389 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
7390 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7391 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7392 	}
7393 
7394 	kvm_lapic_init();
7395 	if (pi_inject_timer == -1)
7396 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7397 #ifdef CONFIG_X86_64
7398 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7399 
7400 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7401 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7402 #endif
7403 
7404 	return 0;
7405 
7406 out_free_percpu:
7407 	free_percpu(shared_msrs);
7408 out_free_x86_emulator_cache:
7409 	kmem_cache_destroy(x86_emulator_cache);
7410 out_free_x86_fpu_cache:
7411 	kmem_cache_destroy(x86_fpu_cache);
7412 out:
7413 	return r;
7414 }
7415 
7416 void kvm_arch_exit(void)
7417 {
7418 #ifdef CONFIG_X86_64
7419 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7420 		clear_hv_tscchange_cb();
7421 #endif
7422 	kvm_lapic_exit();
7423 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7424 
7425 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7426 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7427 					    CPUFREQ_TRANSITION_NOTIFIER);
7428 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7429 #ifdef CONFIG_X86_64
7430 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7431 #endif
7432 	kvm_x86_ops.hardware_enable = NULL;
7433 	kvm_mmu_module_exit();
7434 	free_percpu(shared_msrs);
7435 	kmem_cache_destroy(x86_fpu_cache);
7436 }
7437 
7438 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7439 {
7440 	++vcpu->stat.halt_exits;
7441 	if (lapic_in_kernel(vcpu)) {
7442 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7443 		return 1;
7444 	} else {
7445 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7446 		return 0;
7447 	}
7448 }
7449 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7450 
7451 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7452 {
7453 	int ret = kvm_skip_emulated_instruction(vcpu);
7454 	/*
7455 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7456 	 * KVM_EXIT_DEBUG here.
7457 	 */
7458 	return kvm_vcpu_halt(vcpu) && ret;
7459 }
7460 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7461 
7462 #ifdef CONFIG_X86_64
7463 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7464 			        unsigned long clock_type)
7465 {
7466 	struct kvm_clock_pairing clock_pairing;
7467 	struct timespec64 ts;
7468 	u64 cycle;
7469 	int ret;
7470 
7471 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7472 		return -KVM_EOPNOTSUPP;
7473 
7474 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7475 		return -KVM_EOPNOTSUPP;
7476 
7477 	clock_pairing.sec = ts.tv_sec;
7478 	clock_pairing.nsec = ts.tv_nsec;
7479 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7480 	clock_pairing.flags = 0;
7481 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7482 
7483 	ret = 0;
7484 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7485 			    sizeof(struct kvm_clock_pairing)))
7486 		ret = -KVM_EFAULT;
7487 
7488 	return ret;
7489 }
7490 #endif
7491 
7492 /*
7493  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7494  *
7495  * @apicid - apicid of vcpu to be kicked.
7496  */
7497 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7498 {
7499 	struct kvm_lapic_irq lapic_irq;
7500 
7501 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
7502 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7503 	lapic_irq.level = 0;
7504 	lapic_irq.dest_id = apicid;
7505 	lapic_irq.msi_redir_hint = false;
7506 
7507 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7508 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7509 }
7510 
7511 bool kvm_apicv_activated(struct kvm *kvm)
7512 {
7513 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7514 }
7515 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7516 
7517 void kvm_apicv_init(struct kvm *kvm, bool enable)
7518 {
7519 	if (enable)
7520 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
7521 			  &kvm->arch.apicv_inhibit_reasons);
7522 	else
7523 		set_bit(APICV_INHIBIT_REASON_DISABLE,
7524 			&kvm->arch.apicv_inhibit_reasons);
7525 }
7526 EXPORT_SYMBOL_GPL(kvm_apicv_init);
7527 
7528 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7529 {
7530 	struct kvm_vcpu *target = NULL;
7531 	struct kvm_apic_map *map;
7532 
7533 	rcu_read_lock();
7534 	map = rcu_dereference(kvm->arch.apic_map);
7535 
7536 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7537 		target = map->phys_map[dest_id]->vcpu;
7538 
7539 	rcu_read_unlock();
7540 
7541 	if (target && READ_ONCE(target->ready))
7542 		kvm_vcpu_yield_to(target);
7543 }
7544 
7545 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7546 {
7547 	unsigned long nr, a0, a1, a2, a3, ret;
7548 	int op_64_bit;
7549 
7550 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7551 		return kvm_hv_hypercall(vcpu);
7552 
7553 	nr = kvm_rax_read(vcpu);
7554 	a0 = kvm_rbx_read(vcpu);
7555 	a1 = kvm_rcx_read(vcpu);
7556 	a2 = kvm_rdx_read(vcpu);
7557 	a3 = kvm_rsi_read(vcpu);
7558 
7559 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7560 
7561 	op_64_bit = is_64_bit_mode(vcpu);
7562 	if (!op_64_bit) {
7563 		nr &= 0xFFFFFFFF;
7564 		a0 &= 0xFFFFFFFF;
7565 		a1 &= 0xFFFFFFFF;
7566 		a2 &= 0xFFFFFFFF;
7567 		a3 &= 0xFFFFFFFF;
7568 	}
7569 
7570 	if (kvm_x86_ops.get_cpl(vcpu) != 0) {
7571 		ret = -KVM_EPERM;
7572 		goto out;
7573 	}
7574 
7575 	switch (nr) {
7576 	case KVM_HC_VAPIC_POLL_IRQ:
7577 		ret = 0;
7578 		break;
7579 	case KVM_HC_KICK_CPU:
7580 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7581 		kvm_sched_yield(vcpu->kvm, a1);
7582 		ret = 0;
7583 		break;
7584 #ifdef CONFIG_X86_64
7585 	case KVM_HC_CLOCK_PAIRING:
7586 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7587 		break;
7588 #endif
7589 	case KVM_HC_SEND_IPI:
7590 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7591 		break;
7592 	case KVM_HC_SCHED_YIELD:
7593 		kvm_sched_yield(vcpu->kvm, a0);
7594 		ret = 0;
7595 		break;
7596 	default:
7597 		ret = -KVM_ENOSYS;
7598 		break;
7599 	}
7600 out:
7601 	if (!op_64_bit)
7602 		ret = (u32)ret;
7603 	kvm_rax_write(vcpu, ret);
7604 
7605 	++vcpu->stat.hypercalls;
7606 	return kvm_skip_emulated_instruction(vcpu);
7607 }
7608 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7609 
7610 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7611 {
7612 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7613 	char instruction[3];
7614 	unsigned long rip = kvm_rip_read(vcpu);
7615 
7616 	kvm_x86_ops.patch_hypercall(vcpu, instruction);
7617 
7618 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7619 		&ctxt->exception);
7620 }
7621 
7622 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7623 {
7624 	return vcpu->run->request_interrupt_window &&
7625 		likely(!pic_in_kernel(vcpu->kvm));
7626 }
7627 
7628 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7629 {
7630 	struct kvm_run *kvm_run = vcpu->run;
7631 
7632 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7633 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7634 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7635 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7636 	kvm_run->ready_for_interrupt_injection =
7637 		pic_in_kernel(vcpu->kvm) ||
7638 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7639 }
7640 
7641 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7642 {
7643 	int max_irr, tpr;
7644 
7645 	if (!kvm_x86_ops.update_cr8_intercept)
7646 		return;
7647 
7648 	if (!lapic_in_kernel(vcpu))
7649 		return;
7650 
7651 	if (vcpu->arch.apicv_active)
7652 		return;
7653 
7654 	if (!vcpu->arch.apic->vapic_addr)
7655 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7656 	else
7657 		max_irr = -1;
7658 
7659 	if (max_irr != -1)
7660 		max_irr >>= 4;
7661 
7662 	tpr = kvm_lapic_get_cr8(vcpu);
7663 
7664 	kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
7665 }
7666 
7667 static int inject_pending_event(struct kvm_vcpu *vcpu)
7668 {
7669 	int r;
7670 
7671 	/* try to reinject previous events if any */
7672 
7673 	if (vcpu->arch.exception.injected)
7674 		kvm_x86_ops.queue_exception(vcpu);
7675 	/*
7676 	 * Do not inject an NMI or interrupt if there is a pending
7677 	 * exception.  Exceptions and interrupts are recognized at
7678 	 * instruction boundaries, i.e. the start of an instruction.
7679 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7680 	 * NMIs and interrupts, i.e. traps are recognized before an
7681 	 * NMI/interrupt that's pending on the same instruction.
7682 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7683 	 * priority, but are only generated (pended) during instruction
7684 	 * execution, i.e. a pending fault-like exception means the
7685 	 * fault occurred on the *previous* instruction and must be
7686 	 * serviced prior to recognizing any new events in order to
7687 	 * fully complete the previous instruction.
7688 	 */
7689 	else if (!vcpu->arch.exception.pending) {
7690 		if (vcpu->arch.nmi_injected)
7691 			kvm_x86_ops.set_nmi(vcpu);
7692 		else if (vcpu->arch.interrupt.injected)
7693 			kvm_x86_ops.set_irq(vcpu);
7694 	}
7695 
7696 	/*
7697 	 * Call check_nested_events() even if we reinjected a previous event
7698 	 * in order for caller to determine if it should require immediate-exit
7699 	 * from L2 to L1 due to pending L1 events which require exit
7700 	 * from L2 to L1.
7701 	 */
7702 	if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) {
7703 		r = kvm_x86_ops.check_nested_events(vcpu);
7704 		if (r != 0)
7705 			return r;
7706 	}
7707 
7708 	/* try to inject new event if pending */
7709 	if (vcpu->arch.exception.pending) {
7710 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7711 					vcpu->arch.exception.has_error_code,
7712 					vcpu->arch.exception.error_code);
7713 
7714 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7715 		vcpu->arch.exception.pending = false;
7716 		vcpu->arch.exception.injected = true;
7717 
7718 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7719 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7720 					     X86_EFLAGS_RF);
7721 
7722 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7723 			/*
7724 			 * This code assumes that nSVM doesn't use
7725 			 * check_nested_events(). If it does, the
7726 			 * DR6/DR7 changes should happen before L1
7727 			 * gets a #VMEXIT for an intercepted #DB in
7728 			 * L2.  (Under VMX, on the other hand, the
7729 			 * DR6/DR7 changes should not happen in the
7730 			 * event of a VM-exit to L1 for an intercepted
7731 			 * #DB in L2.)
7732 			 */
7733 			kvm_deliver_exception_payload(vcpu);
7734 			if (vcpu->arch.dr7 & DR7_GD) {
7735 				vcpu->arch.dr7 &= ~DR7_GD;
7736 				kvm_update_dr7(vcpu);
7737 			}
7738 		}
7739 
7740 		kvm_x86_ops.queue_exception(vcpu);
7741 	}
7742 
7743 	/* Don't consider new event if we re-injected an event */
7744 	if (kvm_event_needs_reinjection(vcpu))
7745 		return 0;
7746 
7747 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7748 	    kvm_x86_ops.smi_allowed(vcpu)) {
7749 		vcpu->arch.smi_pending = false;
7750 		++vcpu->arch.smi_count;
7751 		enter_smm(vcpu);
7752 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops.nmi_allowed(vcpu)) {
7753 		--vcpu->arch.nmi_pending;
7754 		vcpu->arch.nmi_injected = true;
7755 		kvm_x86_ops.set_nmi(vcpu);
7756 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7757 		/*
7758 		 * Because interrupts can be injected asynchronously, we are
7759 		 * calling check_nested_events again here to avoid a race condition.
7760 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7761 		 * proposal and current concerns.  Perhaps we should be setting
7762 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7763 		 */
7764 		if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) {
7765 			r = kvm_x86_ops.check_nested_events(vcpu);
7766 			if (r != 0)
7767 				return r;
7768 		}
7769 		if (kvm_x86_ops.interrupt_allowed(vcpu)) {
7770 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7771 					    false);
7772 			kvm_x86_ops.set_irq(vcpu);
7773 		}
7774 	}
7775 
7776 	return 0;
7777 }
7778 
7779 static void process_nmi(struct kvm_vcpu *vcpu)
7780 {
7781 	unsigned limit = 2;
7782 
7783 	/*
7784 	 * x86 is limited to one NMI running, and one NMI pending after it.
7785 	 * If an NMI is already in progress, limit further NMIs to just one.
7786 	 * Otherwise, allow two (and we'll inject the first one immediately).
7787 	 */
7788 	if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7789 		limit = 1;
7790 
7791 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7792 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7793 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7794 }
7795 
7796 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7797 {
7798 	u32 flags = 0;
7799 	flags |= seg->g       << 23;
7800 	flags |= seg->db      << 22;
7801 	flags |= seg->l       << 21;
7802 	flags |= seg->avl     << 20;
7803 	flags |= seg->present << 15;
7804 	flags |= seg->dpl     << 13;
7805 	flags |= seg->s       << 12;
7806 	flags |= seg->type    << 8;
7807 	return flags;
7808 }
7809 
7810 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7811 {
7812 	struct kvm_segment seg;
7813 	int offset;
7814 
7815 	kvm_get_segment(vcpu, &seg, n);
7816 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7817 
7818 	if (n < 3)
7819 		offset = 0x7f84 + n * 12;
7820 	else
7821 		offset = 0x7f2c + (n - 3) * 12;
7822 
7823 	put_smstate(u32, buf, offset + 8, seg.base);
7824 	put_smstate(u32, buf, offset + 4, seg.limit);
7825 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7826 }
7827 
7828 #ifdef CONFIG_X86_64
7829 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7830 {
7831 	struct kvm_segment seg;
7832 	int offset;
7833 	u16 flags;
7834 
7835 	kvm_get_segment(vcpu, &seg, n);
7836 	offset = 0x7e00 + n * 16;
7837 
7838 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7839 	put_smstate(u16, buf, offset, seg.selector);
7840 	put_smstate(u16, buf, offset + 2, flags);
7841 	put_smstate(u32, buf, offset + 4, seg.limit);
7842 	put_smstate(u64, buf, offset + 8, seg.base);
7843 }
7844 #endif
7845 
7846 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7847 {
7848 	struct desc_ptr dt;
7849 	struct kvm_segment seg;
7850 	unsigned long val;
7851 	int i;
7852 
7853 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7854 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7855 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7856 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7857 
7858 	for (i = 0; i < 8; i++)
7859 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7860 
7861 	kvm_get_dr(vcpu, 6, &val);
7862 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7863 	kvm_get_dr(vcpu, 7, &val);
7864 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7865 
7866 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7867 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7868 	put_smstate(u32, buf, 0x7f64, seg.base);
7869 	put_smstate(u32, buf, 0x7f60, seg.limit);
7870 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7871 
7872 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7873 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7874 	put_smstate(u32, buf, 0x7f80, seg.base);
7875 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7876 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7877 
7878 	kvm_x86_ops.get_gdt(vcpu, &dt);
7879 	put_smstate(u32, buf, 0x7f74, dt.address);
7880 	put_smstate(u32, buf, 0x7f70, dt.size);
7881 
7882 	kvm_x86_ops.get_idt(vcpu, &dt);
7883 	put_smstate(u32, buf, 0x7f58, dt.address);
7884 	put_smstate(u32, buf, 0x7f54, dt.size);
7885 
7886 	for (i = 0; i < 6; i++)
7887 		enter_smm_save_seg_32(vcpu, buf, i);
7888 
7889 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7890 
7891 	/* revision id */
7892 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7893 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7894 }
7895 
7896 #ifdef CONFIG_X86_64
7897 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7898 {
7899 	struct desc_ptr dt;
7900 	struct kvm_segment seg;
7901 	unsigned long val;
7902 	int i;
7903 
7904 	for (i = 0; i < 16; i++)
7905 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7906 
7907 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7908 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7909 
7910 	kvm_get_dr(vcpu, 6, &val);
7911 	put_smstate(u64, buf, 0x7f68, val);
7912 	kvm_get_dr(vcpu, 7, &val);
7913 	put_smstate(u64, buf, 0x7f60, val);
7914 
7915 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7916 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7917 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7918 
7919 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7920 
7921 	/* revision id */
7922 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7923 
7924 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7925 
7926 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7927 	put_smstate(u16, buf, 0x7e90, seg.selector);
7928 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7929 	put_smstate(u32, buf, 0x7e94, seg.limit);
7930 	put_smstate(u64, buf, 0x7e98, seg.base);
7931 
7932 	kvm_x86_ops.get_idt(vcpu, &dt);
7933 	put_smstate(u32, buf, 0x7e84, dt.size);
7934 	put_smstate(u64, buf, 0x7e88, dt.address);
7935 
7936 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7937 	put_smstate(u16, buf, 0x7e70, seg.selector);
7938 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7939 	put_smstate(u32, buf, 0x7e74, seg.limit);
7940 	put_smstate(u64, buf, 0x7e78, seg.base);
7941 
7942 	kvm_x86_ops.get_gdt(vcpu, &dt);
7943 	put_smstate(u32, buf, 0x7e64, dt.size);
7944 	put_smstate(u64, buf, 0x7e68, dt.address);
7945 
7946 	for (i = 0; i < 6; i++)
7947 		enter_smm_save_seg_64(vcpu, buf, i);
7948 }
7949 #endif
7950 
7951 static void enter_smm(struct kvm_vcpu *vcpu)
7952 {
7953 	struct kvm_segment cs, ds;
7954 	struct desc_ptr dt;
7955 	char buf[512];
7956 	u32 cr0;
7957 
7958 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7959 	memset(buf, 0, 512);
7960 #ifdef CONFIG_X86_64
7961 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7962 		enter_smm_save_state_64(vcpu, buf);
7963 	else
7964 #endif
7965 		enter_smm_save_state_32(vcpu, buf);
7966 
7967 	/*
7968 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7969 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7970 	 * the SMM state-save area.
7971 	 */
7972 	kvm_x86_ops.pre_enter_smm(vcpu, buf);
7973 
7974 	vcpu->arch.hflags |= HF_SMM_MASK;
7975 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7976 
7977 	if (kvm_x86_ops.get_nmi_mask(vcpu))
7978 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7979 	else
7980 		kvm_x86_ops.set_nmi_mask(vcpu, true);
7981 
7982 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7983 	kvm_rip_write(vcpu, 0x8000);
7984 
7985 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7986 	kvm_x86_ops.set_cr0(vcpu, cr0);
7987 	vcpu->arch.cr0 = cr0;
7988 
7989 	kvm_x86_ops.set_cr4(vcpu, 0);
7990 
7991 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7992 	dt.address = dt.size = 0;
7993 	kvm_x86_ops.set_idt(vcpu, &dt);
7994 
7995 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7996 
7997 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7998 	cs.base = vcpu->arch.smbase;
7999 
8000 	ds.selector = 0;
8001 	ds.base = 0;
8002 
8003 	cs.limit    = ds.limit = 0xffffffff;
8004 	cs.type     = ds.type = 0x3;
8005 	cs.dpl      = ds.dpl = 0;
8006 	cs.db       = ds.db = 0;
8007 	cs.s        = ds.s = 1;
8008 	cs.l        = ds.l = 0;
8009 	cs.g        = ds.g = 1;
8010 	cs.avl      = ds.avl = 0;
8011 	cs.present  = ds.present = 1;
8012 	cs.unusable = ds.unusable = 0;
8013 	cs.padding  = ds.padding = 0;
8014 
8015 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8016 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8017 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8018 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8019 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8020 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8021 
8022 #ifdef CONFIG_X86_64
8023 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8024 		kvm_x86_ops.set_efer(vcpu, 0);
8025 #endif
8026 
8027 	kvm_update_cpuid(vcpu);
8028 	kvm_mmu_reset_context(vcpu);
8029 }
8030 
8031 static void process_smi(struct kvm_vcpu *vcpu)
8032 {
8033 	vcpu->arch.smi_pending = true;
8034 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8035 }
8036 
8037 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8038 				       unsigned long *vcpu_bitmap)
8039 {
8040 	cpumask_var_t cpus;
8041 
8042 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8043 
8044 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
8045 				    vcpu_bitmap, cpus);
8046 
8047 	free_cpumask_var(cpus);
8048 }
8049 
8050 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8051 {
8052 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8053 }
8054 
8055 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8056 {
8057 	if (!lapic_in_kernel(vcpu))
8058 		return;
8059 
8060 	vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8061 	kvm_apic_update_apicv(vcpu);
8062 	kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8063 }
8064 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8065 
8066 /*
8067  * NOTE: Do not hold any lock prior to calling this.
8068  *
8069  * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8070  * locked, because it calls __x86_set_memory_region() which does
8071  * synchronize_srcu(&kvm->srcu).
8072  */
8073 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8074 {
8075 	unsigned long old, new, expected;
8076 
8077 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8078 	    !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
8079 		return;
8080 
8081 	old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8082 	do {
8083 		expected = new = old;
8084 		if (activate)
8085 			__clear_bit(bit, &new);
8086 		else
8087 			__set_bit(bit, &new);
8088 		if (new == old)
8089 			break;
8090 		old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8091 	} while (old != expected);
8092 
8093 	if (!!old == !!new)
8094 		return;
8095 
8096 	trace_kvm_apicv_update_request(activate, bit);
8097 	if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8098 		kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8099 	kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
8100 }
8101 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8102 
8103 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8104 {
8105 	if (!kvm_apic_present(vcpu))
8106 		return;
8107 
8108 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8109 
8110 	if (irqchip_split(vcpu->kvm))
8111 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8112 	else {
8113 		if (vcpu->arch.apicv_active)
8114 			kvm_x86_ops.sync_pir_to_irr(vcpu);
8115 		if (ioapic_in_kernel(vcpu->kvm))
8116 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8117 	}
8118 
8119 	if (is_guest_mode(vcpu))
8120 		vcpu->arch.load_eoi_exitmap_pending = true;
8121 	else
8122 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8123 }
8124 
8125 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8126 {
8127 	u64 eoi_exit_bitmap[4];
8128 
8129 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8130 		return;
8131 
8132 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8133 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8134 	kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8135 }
8136 
8137 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8138 		unsigned long start, unsigned long end,
8139 		bool blockable)
8140 {
8141 	unsigned long apic_address;
8142 
8143 	/*
8144 	 * The physical address of apic access page is stored in the VMCS.
8145 	 * Update it when it becomes invalid.
8146 	 */
8147 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8148 	if (start <= apic_address && apic_address < end)
8149 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8150 
8151 	return 0;
8152 }
8153 
8154 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8155 {
8156 	struct page *page = NULL;
8157 
8158 	if (!lapic_in_kernel(vcpu))
8159 		return;
8160 
8161 	if (!kvm_x86_ops.set_apic_access_page_addr)
8162 		return;
8163 
8164 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8165 	if (is_error_page(page))
8166 		return;
8167 	kvm_x86_ops.set_apic_access_page_addr(vcpu, page_to_phys(page));
8168 
8169 	/*
8170 	 * Do not pin apic access page in memory, the MMU notifier
8171 	 * will call us again if it is migrated or swapped out.
8172 	 */
8173 	put_page(page);
8174 }
8175 
8176 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8177 {
8178 	smp_send_reschedule(vcpu->cpu);
8179 }
8180 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8181 
8182 /*
8183  * Returns 1 to let vcpu_run() continue the guest execution loop without
8184  * exiting to the userspace.  Otherwise, the value will be returned to the
8185  * userspace.
8186  */
8187 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8188 {
8189 	int r;
8190 	bool req_int_win =
8191 		dm_request_for_irq_injection(vcpu) &&
8192 		kvm_cpu_accept_dm_intr(vcpu);
8193 	enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE;
8194 
8195 	bool req_immediate_exit = false;
8196 
8197 	if (kvm_request_pending(vcpu)) {
8198 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8199 			if (unlikely(!kvm_x86_ops.get_vmcs12_pages(vcpu))) {
8200 				r = 0;
8201 				goto out;
8202 			}
8203 		}
8204 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8205 			kvm_mmu_unload(vcpu);
8206 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8207 			__kvm_migrate_timers(vcpu);
8208 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8209 			kvm_gen_update_masterclock(vcpu->kvm);
8210 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8211 			kvm_gen_kvmclock_update(vcpu);
8212 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8213 			r = kvm_guest_time_update(vcpu);
8214 			if (unlikely(r))
8215 				goto out;
8216 		}
8217 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8218 			kvm_mmu_sync_roots(vcpu);
8219 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8220 			kvm_mmu_load_pgd(vcpu);
8221 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8222 			kvm_vcpu_flush_tlb(vcpu, true);
8223 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8224 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8225 			r = 0;
8226 			goto out;
8227 		}
8228 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8229 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8230 			vcpu->mmio_needed = 0;
8231 			r = 0;
8232 			goto out;
8233 		}
8234 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8235 			/* Page is swapped out. Do synthetic halt */
8236 			vcpu->arch.apf.halted = true;
8237 			r = 1;
8238 			goto out;
8239 		}
8240 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8241 			record_steal_time(vcpu);
8242 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8243 			process_smi(vcpu);
8244 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8245 			process_nmi(vcpu);
8246 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8247 			kvm_pmu_handle_event(vcpu);
8248 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8249 			kvm_pmu_deliver_pmi(vcpu);
8250 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8251 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8252 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8253 				     vcpu->arch.ioapic_handled_vectors)) {
8254 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8255 				vcpu->run->eoi.vector =
8256 						vcpu->arch.pending_ioapic_eoi;
8257 				r = 0;
8258 				goto out;
8259 			}
8260 		}
8261 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8262 			vcpu_scan_ioapic(vcpu);
8263 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8264 			vcpu_load_eoi_exitmap(vcpu);
8265 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8266 			kvm_vcpu_reload_apic_access_page(vcpu);
8267 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8268 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8269 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8270 			r = 0;
8271 			goto out;
8272 		}
8273 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8274 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8275 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8276 			r = 0;
8277 			goto out;
8278 		}
8279 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8280 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8281 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8282 			r = 0;
8283 			goto out;
8284 		}
8285 
8286 		/*
8287 		 * KVM_REQ_HV_STIMER has to be processed after
8288 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8289 		 * depend on the guest clock being up-to-date
8290 		 */
8291 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8292 			kvm_hv_process_stimers(vcpu);
8293 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8294 			kvm_vcpu_update_apicv(vcpu);
8295 	}
8296 
8297 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8298 		++vcpu->stat.req_event;
8299 		kvm_apic_accept_events(vcpu);
8300 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8301 			r = 1;
8302 			goto out;
8303 		}
8304 
8305 		if (inject_pending_event(vcpu) != 0)
8306 			req_immediate_exit = true;
8307 		else {
8308 			/* Enable SMI/NMI/IRQ window open exits if needed.
8309 			 *
8310 			 * SMIs have three cases:
8311 			 * 1) They can be nested, and then there is nothing to
8312 			 *    do here because RSM will cause a vmexit anyway.
8313 			 * 2) There is an ISA-specific reason why SMI cannot be
8314 			 *    injected, and the moment when this changes can be
8315 			 *    intercepted.
8316 			 * 3) Or the SMI can be pending because
8317 			 *    inject_pending_event has completed the injection
8318 			 *    of an IRQ or NMI from the previous vmexit, and
8319 			 *    then we request an immediate exit to inject the
8320 			 *    SMI.
8321 			 */
8322 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
8323 				if (!kvm_x86_ops.enable_smi_window(vcpu))
8324 					req_immediate_exit = true;
8325 			if (vcpu->arch.nmi_pending)
8326 				kvm_x86_ops.enable_nmi_window(vcpu);
8327 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8328 				kvm_x86_ops.enable_irq_window(vcpu);
8329 			WARN_ON(vcpu->arch.exception.pending);
8330 		}
8331 
8332 		if (kvm_lapic_enabled(vcpu)) {
8333 			update_cr8_intercept(vcpu);
8334 			kvm_lapic_sync_to_vapic(vcpu);
8335 		}
8336 	}
8337 
8338 	r = kvm_mmu_reload(vcpu);
8339 	if (unlikely(r)) {
8340 		goto cancel_injection;
8341 	}
8342 
8343 	preempt_disable();
8344 
8345 	kvm_x86_ops.prepare_guest_switch(vcpu);
8346 
8347 	/*
8348 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8349 	 * IPI are then delayed after guest entry, which ensures that they
8350 	 * result in virtual interrupt delivery.
8351 	 */
8352 	local_irq_disable();
8353 	vcpu->mode = IN_GUEST_MODE;
8354 
8355 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8356 
8357 	/*
8358 	 * 1) We should set ->mode before checking ->requests.  Please see
8359 	 * the comment in kvm_vcpu_exiting_guest_mode().
8360 	 *
8361 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8362 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8363 	 * (see vmx_deliver_posted_interrupt).
8364 	 *
8365 	 * 3) This also orders the write to mode from any reads to the page
8366 	 * tables done while the VCPU is running.  Please see the comment
8367 	 * in kvm_flush_remote_tlbs.
8368 	 */
8369 	smp_mb__after_srcu_read_unlock();
8370 
8371 	/*
8372 	 * This handles the case where a posted interrupt was
8373 	 * notified with kvm_vcpu_kick.
8374 	 */
8375 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8376 		kvm_x86_ops.sync_pir_to_irr(vcpu);
8377 
8378 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8379 	    || need_resched() || signal_pending(current)) {
8380 		vcpu->mode = OUTSIDE_GUEST_MODE;
8381 		smp_wmb();
8382 		local_irq_enable();
8383 		preempt_enable();
8384 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8385 		r = 1;
8386 		goto cancel_injection;
8387 	}
8388 
8389 	if (req_immediate_exit) {
8390 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8391 		kvm_x86_ops.request_immediate_exit(vcpu);
8392 	}
8393 
8394 	trace_kvm_entry(vcpu->vcpu_id);
8395 	guest_enter_irqoff();
8396 
8397 	fpregs_assert_state_consistent();
8398 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8399 		switch_fpu_return();
8400 
8401 	if (unlikely(vcpu->arch.switch_db_regs)) {
8402 		set_debugreg(0, 7);
8403 		set_debugreg(vcpu->arch.eff_db[0], 0);
8404 		set_debugreg(vcpu->arch.eff_db[1], 1);
8405 		set_debugreg(vcpu->arch.eff_db[2], 2);
8406 		set_debugreg(vcpu->arch.eff_db[3], 3);
8407 		set_debugreg(vcpu->arch.dr6, 6);
8408 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8409 	}
8410 
8411 	kvm_x86_ops.run(vcpu);
8412 
8413 	/*
8414 	 * Do this here before restoring debug registers on the host.  And
8415 	 * since we do this before handling the vmexit, a DR access vmexit
8416 	 * can (a) read the correct value of the debug registers, (b) set
8417 	 * KVM_DEBUGREG_WONT_EXIT again.
8418 	 */
8419 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8420 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8421 		kvm_x86_ops.sync_dirty_debug_regs(vcpu);
8422 		kvm_update_dr0123(vcpu);
8423 		kvm_update_dr6(vcpu);
8424 		kvm_update_dr7(vcpu);
8425 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8426 	}
8427 
8428 	/*
8429 	 * If the guest has used debug registers, at least dr7
8430 	 * will be disabled while returning to the host.
8431 	 * If we don't have active breakpoints in the host, we don't
8432 	 * care about the messed up debug address registers. But if
8433 	 * we have some of them active, restore the old state.
8434 	 */
8435 	if (hw_breakpoint_active())
8436 		hw_breakpoint_restore();
8437 
8438 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8439 
8440 	vcpu->mode = OUTSIDE_GUEST_MODE;
8441 	smp_wmb();
8442 
8443 	kvm_x86_ops.handle_exit_irqoff(vcpu, &exit_fastpath);
8444 
8445 	/*
8446 	 * Consume any pending interrupts, including the possible source of
8447 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8448 	 * An instruction is required after local_irq_enable() to fully unblock
8449 	 * interrupts on processors that implement an interrupt shadow, the
8450 	 * stat.exits increment will do nicely.
8451 	 */
8452 	kvm_before_interrupt(vcpu);
8453 	local_irq_enable();
8454 	++vcpu->stat.exits;
8455 	local_irq_disable();
8456 	kvm_after_interrupt(vcpu);
8457 
8458 	guest_exit_irqoff();
8459 	if (lapic_in_kernel(vcpu)) {
8460 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8461 		if (delta != S64_MIN) {
8462 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8463 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8464 		}
8465 	}
8466 
8467 	local_irq_enable();
8468 	preempt_enable();
8469 
8470 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8471 
8472 	/*
8473 	 * Profile KVM exit RIPs:
8474 	 */
8475 	if (unlikely(prof_on == KVM_PROFILING)) {
8476 		unsigned long rip = kvm_rip_read(vcpu);
8477 		profile_hit(KVM_PROFILING, (void *)rip);
8478 	}
8479 
8480 	if (unlikely(vcpu->arch.tsc_always_catchup))
8481 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8482 
8483 	if (vcpu->arch.apic_attention)
8484 		kvm_lapic_sync_from_vapic(vcpu);
8485 
8486 	r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
8487 	return r;
8488 
8489 cancel_injection:
8490 	kvm_x86_ops.cancel_injection(vcpu);
8491 	if (unlikely(vcpu->arch.apic_attention))
8492 		kvm_lapic_sync_from_vapic(vcpu);
8493 out:
8494 	return r;
8495 }
8496 
8497 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8498 {
8499 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8500 	    (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
8501 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8502 		kvm_vcpu_block(vcpu);
8503 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8504 
8505 		if (kvm_x86_ops.post_block)
8506 			kvm_x86_ops.post_block(vcpu);
8507 
8508 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8509 			return 1;
8510 	}
8511 
8512 	kvm_apic_accept_events(vcpu);
8513 	switch(vcpu->arch.mp_state) {
8514 	case KVM_MP_STATE_HALTED:
8515 		vcpu->arch.pv.pv_unhalted = false;
8516 		vcpu->arch.mp_state =
8517 			KVM_MP_STATE_RUNNABLE;
8518 		/* fall through */
8519 	case KVM_MP_STATE_RUNNABLE:
8520 		vcpu->arch.apf.halted = false;
8521 		break;
8522 	case KVM_MP_STATE_INIT_RECEIVED:
8523 		break;
8524 	default:
8525 		return -EINTR;
8526 	}
8527 	return 1;
8528 }
8529 
8530 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8531 {
8532 	if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events)
8533 		kvm_x86_ops.check_nested_events(vcpu);
8534 
8535 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8536 		!vcpu->arch.apf.halted);
8537 }
8538 
8539 static int vcpu_run(struct kvm_vcpu *vcpu)
8540 {
8541 	int r;
8542 	struct kvm *kvm = vcpu->kvm;
8543 
8544 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8545 	vcpu->arch.l1tf_flush_l1d = true;
8546 
8547 	for (;;) {
8548 		if (kvm_vcpu_running(vcpu)) {
8549 			r = vcpu_enter_guest(vcpu);
8550 		} else {
8551 			r = vcpu_block(kvm, vcpu);
8552 		}
8553 
8554 		if (r <= 0)
8555 			break;
8556 
8557 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8558 		if (kvm_cpu_has_pending_timer(vcpu))
8559 			kvm_inject_pending_timer_irqs(vcpu);
8560 
8561 		if (dm_request_for_irq_injection(vcpu) &&
8562 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8563 			r = 0;
8564 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8565 			++vcpu->stat.request_irq_exits;
8566 			break;
8567 		}
8568 
8569 		kvm_check_async_pf_completion(vcpu);
8570 
8571 		if (signal_pending(current)) {
8572 			r = -EINTR;
8573 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8574 			++vcpu->stat.signal_exits;
8575 			break;
8576 		}
8577 		if (need_resched()) {
8578 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8579 			cond_resched();
8580 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8581 		}
8582 	}
8583 
8584 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8585 
8586 	return r;
8587 }
8588 
8589 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8590 {
8591 	int r;
8592 
8593 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8594 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8595 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8596 	return r;
8597 }
8598 
8599 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8600 {
8601 	BUG_ON(!vcpu->arch.pio.count);
8602 
8603 	return complete_emulated_io(vcpu);
8604 }
8605 
8606 /*
8607  * Implements the following, as a state machine:
8608  *
8609  * read:
8610  *   for each fragment
8611  *     for each mmio piece in the fragment
8612  *       write gpa, len
8613  *       exit
8614  *       copy data
8615  *   execute insn
8616  *
8617  * write:
8618  *   for each fragment
8619  *     for each mmio piece in the fragment
8620  *       write gpa, len
8621  *       copy data
8622  *       exit
8623  */
8624 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8625 {
8626 	struct kvm_run *run = vcpu->run;
8627 	struct kvm_mmio_fragment *frag;
8628 	unsigned len;
8629 
8630 	BUG_ON(!vcpu->mmio_needed);
8631 
8632 	/* Complete previous fragment */
8633 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8634 	len = min(8u, frag->len);
8635 	if (!vcpu->mmio_is_write)
8636 		memcpy(frag->data, run->mmio.data, len);
8637 
8638 	if (frag->len <= 8) {
8639 		/* Switch to the next fragment. */
8640 		frag++;
8641 		vcpu->mmio_cur_fragment++;
8642 	} else {
8643 		/* Go forward to the next mmio piece. */
8644 		frag->data += len;
8645 		frag->gpa += len;
8646 		frag->len -= len;
8647 	}
8648 
8649 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8650 		vcpu->mmio_needed = 0;
8651 
8652 		/* FIXME: return into emulator if single-stepping.  */
8653 		if (vcpu->mmio_is_write)
8654 			return 1;
8655 		vcpu->mmio_read_completed = 1;
8656 		return complete_emulated_io(vcpu);
8657 	}
8658 
8659 	run->exit_reason = KVM_EXIT_MMIO;
8660 	run->mmio.phys_addr = frag->gpa;
8661 	if (vcpu->mmio_is_write)
8662 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8663 	run->mmio.len = min(8u, frag->len);
8664 	run->mmio.is_write = vcpu->mmio_is_write;
8665 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8666 	return 0;
8667 }
8668 
8669 static void kvm_save_current_fpu(struct fpu *fpu)
8670 {
8671 	/*
8672 	 * If the target FPU state is not resident in the CPU registers, just
8673 	 * memcpy() from current, else save CPU state directly to the target.
8674 	 */
8675 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8676 		memcpy(&fpu->state, &current->thread.fpu.state,
8677 		       fpu_kernel_xstate_size);
8678 	else
8679 		copy_fpregs_to_fpstate(fpu);
8680 }
8681 
8682 /* Swap (qemu) user FPU context for the guest FPU context. */
8683 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8684 {
8685 	fpregs_lock();
8686 
8687 	kvm_save_current_fpu(vcpu->arch.user_fpu);
8688 
8689 	/* PKRU is separately restored in kvm_x86_ops.run.  */
8690 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8691 				~XFEATURE_MASK_PKRU);
8692 
8693 	fpregs_mark_activate();
8694 	fpregs_unlock();
8695 
8696 	trace_kvm_fpu(1);
8697 }
8698 
8699 /* When vcpu_run ends, restore user space FPU context. */
8700 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8701 {
8702 	fpregs_lock();
8703 
8704 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
8705 
8706 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8707 
8708 	fpregs_mark_activate();
8709 	fpregs_unlock();
8710 
8711 	++vcpu->stat.fpu_reload;
8712 	trace_kvm_fpu(0);
8713 }
8714 
8715 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8716 {
8717 	int r;
8718 
8719 	vcpu_load(vcpu);
8720 	kvm_sigset_activate(vcpu);
8721 	kvm_load_guest_fpu(vcpu);
8722 
8723 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8724 		if (kvm_run->immediate_exit) {
8725 			r = -EINTR;
8726 			goto out;
8727 		}
8728 		kvm_vcpu_block(vcpu);
8729 		kvm_apic_accept_events(vcpu);
8730 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8731 		r = -EAGAIN;
8732 		if (signal_pending(current)) {
8733 			r = -EINTR;
8734 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8735 			++vcpu->stat.signal_exits;
8736 		}
8737 		goto out;
8738 	}
8739 
8740 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8741 		r = -EINVAL;
8742 		goto out;
8743 	}
8744 
8745 	if (vcpu->run->kvm_dirty_regs) {
8746 		r = sync_regs(vcpu);
8747 		if (r != 0)
8748 			goto out;
8749 	}
8750 
8751 	/* re-sync apic's tpr */
8752 	if (!lapic_in_kernel(vcpu)) {
8753 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8754 			r = -EINVAL;
8755 			goto out;
8756 		}
8757 	}
8758 
8759 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8760 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8761 		vcpu->arch.complete_userspace_io = NULL;
8762 		r = cui(vcpu);
8763 		if (r <= 0)
8764 			goto out;
8765 	} else
8766 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8767 
8768 	if (kvm_run->immediate_exit)
8769 		r = -EINTR;
8770 	else
8771 		r = vcpu_run(vcpu);
8772 
8773 out:
8774 	kvm_put_guest_fpu(vcpu);
8775 	if (vcpu->run->kvm_valid_regs)
8776 		store_regs(vcpu);
8777 	post_kvm_run_save(vcpu);
8778 	kvm_sigset_deactivate(vcpu);
8779 
8780 	vcpu_put(vcpu);
8781 	return r;
8782 }
8783 
8784 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8785 {
8786 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8787 		/*
8788 		 * We are here if userspace calls get_regs() in the middle of
8789 		 * instruction emulation. Registers state needs to be copied
8790 		 * back from emulation context to vcpu. Userspace shouldn't do
8791 		 * that usually, but some bad designed PV devices (vmware
8792 		 * backdoor interface) need this to work
8793 		 */
8794 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
8795 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8796 	}
8797 	regs->rax = kvm_rax_read(vcpu);
8798 	regs->rbx = kvm_rbx_read(vcpu);
8799 	regs->rcx = kvm_rcx_read(vcpu);
8800 	regs->rdx = kvm_rdx_read(vcpu);
8801 	regs->rsi = kvm_rsi_read(vcpu);
8802 	regs->rdi = kvm_rdi_read(vcpu);
8803 	regs->rsp = kvm_rsp_read(vcpu);
8804 	regs->rbp = kvm_rbp_read(vcpu);
8805 #ifdef CONFIG_X86_64
8806 	regs->r8 = kvm_r8_read(vcpu);
8807 	regs->r9 = kvm_r9_read(vcpu);
8808 	regs->r10 = kvm_r10_read(vcpu);
8809 	regs->r11 = kvm_r11_read(vcpu);
8810 	regs->r12 = kvm_r12_read(vcpu);
8811 	regs->r13 = kvm_r13_read(vcpu);
8812 	regs->r14 = kvm_r14_read(vcpu);
8813 	regs->r15 = kvm_r15_read(vcpu);
8814 #endif
8815 
8816 	regs->rip = kvm_rip_read(vcpu);
8817 	regs->rflags = kvm_get_rflags(vcpu);
8818 }
8819 
8820 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8821 {
8822 	vcpu_load(vcpu);
8823 	__get_regs(vcpu, regs);
8824 	vcpu_put(vcpu);
8825 	return 0;
8826 }
8827 
8828 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8829 {
8830 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8831 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8832 
8833 	kvm_rax_write(vcpu, regs->rax);
8834 	kvm_rbx_write(vcpu, regs->rbx);
8835 	kvm_rcx_write(vcpu, regs->rcx);
8836 	kvm_rdx_write(vcpu, regs->rdx);
8837 	kvm_rsi_write(vcpu, regs->rsi);
8838 	kvm_rdi_write(vcpu, regs->rdi);
8839 	kvm_rsp_write(vcpu, regs->rsp);
8840 	kvm_rbp_write(vcpu, regs->rbp);
8841 #ifdef CONFIG_X86_64
8842 	kvm_r8_write(vcpu, regs->r8);
8843 	kvm_r9_write(vcpu, regs->r9);
8844 	kvm_r10_write(vcpu, regs->r10);
8845 	kvm_r11_write(vcpu, regs->r11);
8846 	kvm_r12_write(vcpu, regs->r12);
8847 	kvm_r13_write(vcpu, regs->r13);
8848 	kvm_r14_write(vcpu, regs->r14);
8849 	kvm_r15_write(vcpu, regs->r15);
8850 #endif
8851 
8852 	kvm_rip_write(vcpu, regs->rip);
8853 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8854 
8855 	vcpu->arch.exception.pending = false;
8856 
8857 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8858 }
8859 
8860 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8861 {
8862 	vcpu_load(vcpu);
8863 	__set_regs(vcpu, regs);
8864 	vcpu_put(vcpu);
8865 	return 0;
8866 }
8867 
8868 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8869 {
8870 	struct kvm_segment cs;
8871 
8872 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8873 	*db = cs.db;
8874 	*l = cs.l;
8875 }
8876 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8877 
8878 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8879 {
8880 	struct desc_ptr dt;
8881 
8882 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8883 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8884 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8885 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8886 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8887 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8888 
8889 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8890 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8891 
8892 	kvm_x86_ops.get_idt(vcpu, &dt);
8893 	sregs->idt.limit = dt.size;
8894 	sregs->idt.base = dt.address;
8895 	kvm_x86_ops.get_gdt(vcpu, &dt);
8896 	sregs->gdt.limit = dt.size;
8897 	sregs->gdt.base = dt.address;
8898 
8899 	sregs->cr0 = kvm_read_cr0(vcpu);
8900 	sregs->cr2 = vcpu->arch.cr2;
8901 	sregs->cr3 = kvm_read_cr3(vcpu);
8902 	sregs->cr4 = kvm_read_cr4(vcpu);
8903 	sregs->cr8 = kvm_get_cr8(vcpu);
8904 	sregs->efer = vcpu->arch.efer;
8905 	sregs->apic_base = kvm_get_apic_base(vcpu);
8906 
8907 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8908 
8909 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8910 		set_bit(vcpu->arch.interrupt.nr,
8911 			(unsigned long *)sregs->interrupt_bitmap);
8912 }
8913 
8914 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8915 				  struct kvm_sregs *sregs)
8916 {
8917 	vcpu_load(vcpu);
8918 	__get_sregs(vcpu, sregs);
8919 	vcpu_put(vcpu);
8920 	return 0;
8921 }
8922 
8923 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8924 				    struct kvm_mp_state *mp_state)
8925 {
8926 	vcpu_load(vcpu);
8927 	if (kvm_mpx_supported())
8928 		kvm_load_guest_fpu(vcpu);
8929 
8930 	kvm_apic_accept_events(vcpu);
8931 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8932 					vcpu->arch.pv.pv_unhalted)
8933 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8934 	else
8935 		mp_state->mp_state = vcpu->arch.mp_state;
8936 
8937 	if (kvm_mpx_supported())
8938 		kvm_put_guest_fpu(vcpu);
8939 	vcpu_put(vcpu);
8940 	return 0;
8941 }
8942 
8943 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8944 				    struct kvm_mp_state *mp_state)
8945 {
8946 	int ret = -EINVAL;
8947 
8948 	vcpu_load(vcpu);
8949 
8950 	if (!lapic_in_kernel(vcpu) &&
8951 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8952 		goto out;
8953 
8954 	/*
8955 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8956 	 * INIT state; latched init should be reported using
8957 	 * KVM_SET_VCPU_EVENTS, so reject it here.
8958 	 */
8959 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
8960 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8961 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8962 		goto out;
8963 
8964 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8965 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8966 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8967 	} else
8968 		vcpu->arch.mp_state = mp_state->mp_state;
8969 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8970 
8971 	ret = 0;
8972 out:
8973 	vcpu_put(vcpu);
8974 	return ret;
8975 }
8976 
8977 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8978 		    int reason, bool has_error_code, u32 error_code)
8979 {
8980 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8981 	int ret;
8982 
8983 	init_emulate_ctxt(vcpu);
8984 
8985 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8986 				   has_error_code, error_code);
8987 	if (ret) {
8988 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8989 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8990 		vcpu->run->internal.ndata = 0;
8991 		return 0;
8992 	}
8993 
8994 	kvm_rip_write(vcpu, ctxt->eip);
8995 	kvm_set_rflags(vcpu, ctxt->eflags);
8996 	return 1;
8997 }
8998 EXPORT_SYMBOL_GPL(kvm_task_switch);
8999 
9000 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9001 {
9002 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
9003 		/*
9004 		 * When EFER.LME and CR0.PG are set, the processor is in
9005 		 * 64-bit mode (though maybe in a 32-bit code segment).
9006 		 * CR4.PAE and EFER.LMA must be set.
9007 		 */
9008 		if (!(sregs->cr4 & X86_CR4_PAE)
9009 		    || !(sregs->efer & EFER_LMA))
9010 			return -EINVAL;
9011 	} else {
9012 		/*
9013 		 * Not in 64-bit mode: EFER.LMA is clear and the code
9014 		 * segment cannot be 64-bit.
9015 		 */
9016 		if (sregs->efer & EFER_LMA || sregs->cs.l)
9017 			return -EINVAL;
9018 	}
9019 
9020 	return kvm_valid_cr4(vcpu, sregs->cr4);
9021 }
9022 
9023 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9024 {
9025 	struct msr_data apic_base_msr;
9026 	int mmu_reset_needed = 0;
9027 	int cpuid_update_needed = 0;
9028 	int pending_vec, max_bits, idx;
9029 	struct desc_ptr dt;
9030 	int ret = -EINVAL;
9031 
9032 	if (kvm_valid_sregs(vcpu, sregs))
9033 		goto out;
9034 
9035 	apic_base_msr.data = sregs->apic_base;
9036 	apic_base_msr.host_initiated = true;
9037 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
9038 		goto out;
9039 
9040 	dt.size = sregs->idt.limit;
9041 	dt.address = sregs->idt.base;
9042 	kvm_x86_ops.set_idt(vcpu, &dt);
9043 	dt.size = sregs->gdt.limit;
9044 	dt.address = sregs->gdt.base;
9045 	kvm_x86_ops.set_gdt(vcpu, &dt);
9046 
9047 	vcpu->arch.cr2 = sregs->cr2;
9048 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
9049 	vcpu->arch.cr3 = sregs->cr3;
9050 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
9051 
9052 	kvm_set_cr8(vcpu, sregs->cr8);
9053 
9054 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
9055 	kvm_x86_ops.set_efer(vcpu, sregs->efer);
9056 
9057 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
9058 	kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
9059 	vcpu->arch.cr0 = sregs->cr0;
9060 
9061 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
9062 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9063 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
9064 	kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
9065 	if (cpuid_update_needed)
9066 		kvm_update_cpuid(vcpu);
9067 
9068 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9069 	if (is_pae_paging(vcpu)) {
9070 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
9071 		mmu_reset_needed = 1;
9072 	}
9073 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9074 
9075 	if (mmu_reset_needed)
9076 		kvm_mmu_reset_context(vcpu);
9077 
9078 	max_bits = KVM_NR_INTERRUPTS;
9079 	pending_vec = find_first_bit(
9080 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9081 	if (pending_vec < max_bits) {
9082 		kvm_queue_interrupt(vcpu, pending_vec, false);
9083 		pr_debug("Set back pending irq %d\n", pending_vec);
9084 	}
9085 
9086 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9087 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9088 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9089 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9090 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9091 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9092 
9093 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9094 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9095 
9096 	update_cr8_intercept(vcpu);
9097 
9098 	/* Older userspace won't unhalt the vcpu on reset. */
9099 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9100 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9101 	    !is_protmode(vcpu))
9102 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9103 
9104 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9105 
9106 	ret = 0;
9107 out:
9108 	return ret;
9109 }
9110 
9111 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9112 				  struct kvm_sregs *sregs)
9113 {
9114 	int ret;
9115 
9116 	vcpu_load(vcpu);
9117 	ret = __set_sregs(vcpu, sregs);
9118 	vcpu_put(vcpu);
9119 	return ret;
9120 }
9121 
9122 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9123 					struct kvm_guest_debug *dbg)
9124 {
9125 	unsigned long rflags;
9126 	int i, r;
9127 
9128 	vcpu_load(vcpu);
9129 
9130 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9131 		r = -EBUSY;
9132 		if (vcpu->arch.exception.pending)
9133 			goto out;
9134 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9135 			kvm_queue_exception(vcpu, DB_VECTOR);
9136 		else
9137 			kvm_queue_exception(vcpu, BP_VECTOR);
9138 	}
9139 
9140 	/*
9141 	 * Read rflags as long as potentially injected trace flags are still
9142 	 * filtered out.
9143 	 */
9144 	rflags = kvm_get_rflags(vcpu);
9145 
9146 	vcpu->guest_debug = dbg->control;
9147 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9148 		vcpu->guest_debug = 0;
9149 
9150 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9151 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9152 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9153 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9154 	} else {
9155 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9156 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9157 	}
9158 	kvm_update_dr7(vcpu);
9159 
9160 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9161 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9162 			get_segment_base(vcpu, VCPU_SREG_CS);
9163 
9164 	/*
9165 	 * Trigger an rflags update that will inject or remove the trace
9166 	 * flags.
9167 	 */
9168 	kvm_set_rflags(vcpu, rflags);
9169 
9170 	kvm_x86_ops.update_bp_intercept(vcpu);
9171 
9172 	r = 0;
9173 
9174 out:
9175 	vcpu_put(vcpu);
9176 	return r;
9177 }
9178 
9179 /*
9180  * Translate a guest virtual address to a guest physical address.
9181  */
9182 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9183 				    struct kvm_translation *tr)
9184 {
9185 	unsigned long vaddr = tr->linear_address;
9186 	gpa_t gpa;
9187 	int idx;
9188 
9189 	vcpu_load(vcpu);
9190 
9191 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9192 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9193 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9194 	tr->physical_address = gpa;
9195 	tr->valid = gpa != UNMAPPED_GVA;
9196 	tr->writeable = 1;
9197 	tr->usermode = 0;
9198 
9199 	vcpu_put(vcpu);
9200 	return 0;
9201 }
9202 
9203 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9204 {
9205 	struct fxregs_state *fxsave;
9206 
9207 	vcpu_load(vcpu);
9208 
9209 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9210 	memcpy(fpu->fpr, fxsave->st_space, 128);
9211 	fpu->fcw = fxsave->cwd;
9212 	fpu->fsw = fxsave->swd;
9213 	fpu->ftwx = fxsave->twd;
9214 	fpu->last_opcode = fxsave->fop;
9215 	fpu->last_ip = fxsave->rip;
9216 	fpu->last_dp = fxsave->rdp;
9217 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9218 
9219 	vcpu_put(vcpu);
9220 	return 0;
9221 }
9222 
9223 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9224 {
9225 	struct fxregs_state *fxsave;
9226 
9227 	vcpu_load(vcpu);
9228 
9229 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9230 
9231 	memcpy(fxsave->st_space, fpu->fpr, 128);
9232 	fxsave->cwd = fpu->fcw;
9233 	fxsave->swd = fpu->fsw;
9234 	fxsave->twd = fpu->ftwx;
9235 	fxsave->fop = fpu->last_opcode;
9236 	fxsave->rip = fpu->last_ip;
9237 	fxsave->rdp = fpu->last_dp;
9238 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9239 
9240 	vcpu_put(vcpu);
9241 	return 0;
9242 }
9243 
9244 static void store_regs(struct kvm_vcpu *vcpu)
9245 {
9246 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9247 
9248 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9249 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9250 
9251 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9252 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9253 
9254 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9255 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9256 				vcpu, &vcpu->run->s.regs.events);
9257 }
9258 
9259 static int sync_regs(struct kvm_vcpu *vcpu)
9260 {
9261 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9262 		return -EINVAL;
9263 
9264 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9265 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9266 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9267 	}
9268 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9269 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9270 			return -EINVAL;
9271 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9272 	}
9273 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9274 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9275 				vcpu, &vcpu->run->s.regs.events))
9276 			return -EINVAL;
9277 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9278 	}
9279 
9280 	return 0;
9281 }
9282 
9283 static void fx_init(struct kvm_vcpu *vcpu)
9284 {
9285 	fpstate_init(&vcpu->arch.guest_fpu->state);
9286 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9287 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9288 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9289 
9290 	/*
9291 	 * Ensure guest xcr0 is valid for loading
9292 	 */
9293 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9294 
9295 	vcpu->arch.cr0 |= X86_CR0_ET;
9296 }
9297 
9298 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
9299 {
9300 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9301 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9302 			     "guest TSC will not be reliable\n");
9303 
9304 	return 0;
9305 }
9306 
9307 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
9308 {
9309 	struct page *page;
9310 	int r;
9311 
9312 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9313 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9314 	else
9315 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9316 
9317 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9318 
9319 	r = kvm_mmu_create(vcpu);
9320 	if (r < 0)
9321 		return r;
9322 
9323 	if (irqchip_in_kernel(vcpu->kvm)) {
9324 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9325 		if (r < 0)
9326 			goto fail_mmu_destroy;
9327 		if (kvm_apicv_activated(vcpu->kvm))
9328 			vcpu->arch.apicv_active = true;
9329 	} else
9330 		static_key_slow_inc(&kvm_no_apic_vcpu);
9331 
9332 	r = -ENOMEM;
9333 
9334 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9335 	if (!page)
9336 		goto fail_free_lapic;
9337 	vcpu->arch.pio_data = page_address(page);
9338 
9339 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9340 				       GFP_KERNEL_ACCOUNT);
9341 	if (!vcpu->arch.mce_banks)
9342 		goto fail_free_pio_data;
9343 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9344 
9345 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9346 				GFP_KERNEL_ACCOUNT))
9347 		goto fail_free_mce_banks;
9348 
9349 	if (!alloc_emulate_ctxt(vcpu))
9350 		goto free_wbinvd_dirty_mask;
9351 
9352 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9353 						GFP_KERNEL_ACCOUNT);
9354 	if (!vcpu->arch.user_fpu) {
9355 		pr_err("kvm: failed to allocate userspace's fpu\n");
9356 		goto free_emulate_ctxt;
9357 	}
9358 
9359 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9360 						 GFP_KERNEL_ACCOUNT);
9361 	if (!vcpu->arch.guest_fpu) {
9362 		pr_err("kvm: failed to allocate vcpu's fpu\n");
9363 		goto free_user_fpu;
9364 	}
9365 	fx_init(vcpu);
9366 
9367 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9368 
9369 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9370 
9371 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9372 
9373 	kvm_async_pf_hash_reset(vcpu);
9374 	kvm_pmu_init(vcpu);
9375 
9376 	vcpu->arch.pending_external_vector = -1;
9377 	vcpu->arch.preempted_in_kernel = false;
9378 
9379 	kvm_hv_vcpu_init(vcpu);
9380 
9381 	r = kvm_x86_ops.vcpu_create(vcpu);
9382 	if (r)
9383 		goto free_guest_fpu;
9384 
9385 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9386 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9387 	kvm_vcpu_mtrr_init(vcpu);
9388 	vcpu_load(vcpu);
9389 	kvm_vcpu_reset(vcpu, false);
9390 	kvm_init_mmu(vcpu, false);
9391 	vcpu_put(vcpu);
9392 	return 0;
9393 
9394 free_guest_fpu:
9395 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9396 free_user_fpu:
9397 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9398 free_emulate_ctxt:
9399 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9400 free_wbinvd_dirty_mask:
9401 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9402 fail_free_mce_banks:
9403 	kfree(vcpu->arch.mce_banks);
9404 fail_free_pio_data:
9405 	free_page((unsigned long)vcpu->arch.pio_data);
9406 fail_free_lapic:
9407 	kvm_free_lapic(vcpu);
9408 fail_mmu_destroy:
9409 	kvm_mmu_destroy(vcpu);
9410 	return r;
9411 }
9412 
9413 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9414 {
9415 	struct msr_data msr;
9416 	struct kvm *kvm = vcpu->kvm;
9417 
9418 	kvm_hv_vcpu_postcreate(vcpu);
9419 
9420 	if (mutex_lock_killable(&vcpu->mutex))
9421 		return;
9422 	vcpu_load(vcpu);
9423 	msr.data = 0x0;
9424 	msr.index = MSR_IA32_TSC;
9425 	msr.host_initiated = true;
9426 	kvm_write_tsc(vcpu, &msr);
9427 	vcpu_put(vcpu);
9428 
9429 	/* poll control enabled by default */
9430 	vcpu->arch.msr_kvm_poll_control = 1;
9431 
9432 	mutex_unlock(&vcpu->mutex);
9433 
9434 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9435 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9436 						KVMCLOCK_SYNC_PERIOD);
9437 }
9438 
9439 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9440 {
9441 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9442 	int idx;
9443 
9444 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
9445 
9446 	kvmclock_reset(vcpu);
9447 
9448 	kvm_x86_ops.vcpu_free(vcpu);
9449 
9450 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
9451 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9452 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9453 	kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9454 
9455 	kvm_hv_vcpu_uninit(vcpu);
9456 	kvm_pmu_destroy(vcpu);
9457 	kfree(vcpu->arch.mce_banks);
9458 	kvm_free_lapic(vcpu);
9459 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9460 	kvm_mmu_destroy(vcpu);
9461 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9462 	free_page((unsigned long)vcpu->arch.pio_data);
9463 	if (!lapic_in_kernel(vcpu))
9464 		static_key_slow_dec(&kvm_no_apic_vcpu);
9465 }
9466 
9467 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9468 {
9469 	kvm_lapic_reset(vcpu, init_event);
9470 
9471 	vcpu->arch.hflags = 0;
9472 
9473 	vcpu->arch.smi_pending = 0;
9474 	vcpu->arch.smi_count = 0;
9475 	atomic_set(&vcpu->arch.nmi_queued, 0);
9476 	vcpu->arch.nmi_pending = 0;
9477 	vcpu->arch.nmi_injected = false;
9478 	kvm_clear_interrupt_queue(vcpu);
9479 	kvm_clear_exception_queue(vcpu);
9480 
9481 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9482 	kvm_update_dr0123(vcpu);
9483 	vcpu->arch.dr6 = DR6_INIT;
9484 	kvm_update_dr6(vcpu);
9485 	vcpu->arch.dr7 = DR7_FIXED_1;
9486 	kvm_update_dr7(vcpu);
9487 
9488 	vcpu->arch.cr2 = 0;
9489 
9490 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9491 	vcpu->arch.apf.msr_val = 0;
9492 	vcpu->arch.st.msr_val = 0;
9493 
9494 	kvmclock_reset(vcpu);
9495 
9496 	kvm_clear_async_pf_completion_queue(vcpu);
9497 	kvm_async_pf_hash_reset(vcpu);
9498 	vcpu->arch.apf.halted = false;
9499 
9500 	if (kvm_mpx_supported()) {
9501 		void *mpx_state_buffer;
9502 
9503 		/*
9504 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9505 		 * called with loaded FPU and does not let userspace fix the state.
9506 		 */
9507 		if (init_event)
9508 			kvm_put_guest_fpu(vcpu);
9509 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9510 					XFEATURE_BNDREGS);
9511 		if (mpx_state_buffer)
9512 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9513 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9514 					XFEATURE_BNDCSR);
9515 		if (mpx_state_buffer)
9516 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9517 		if (init_event)
9518 			kvm_load_guest_fpu(vcpu);
9519 	}
9520 
9521 	if (!init_event) {
9522 		kvm_pmu_reset(vcpu);
9523 		vcpu->arch.smbase = 0x30000;
9524 
9525 		vcpu->arch.msr_misc_features_enables = 0;
9526 
9527 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9528 	}
9529 
9530 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9531 	vcpu->arch.regs_avail = ~0;
9532 	vcpu->arch.regs_dirty = ~0;
9533 
9534 	vcpu->arch.ia32_xss = 0;
9535 
9536 	kvm_x86_ops.vcpu_reset(vcpu, init_event);
9537 }
9538 
9539 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9540 {
9541 	struct kvm_segment cs;
9542 
9543 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9544 	cs.selector = vector << 8;
9545 	cs.base = vector << 12;
9546 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9547 	kvm_rip_write(vcpu, 0);
9548 }
9549 
9550 int kvm_arch_hardware_enable(void)
9551 {
9552 	struct kvm *kvm;
9553 	struct kvm_vcpu *vcpu;
9554 	int i;
9555 	int ret;
9556 	u64 local_tsc;
9557 	u64 max_tsc = 0;
9558 	bool stable, backwards_tsc = false;
9559 
9560 	kvm_shared_msr_cpu_online();
9561 	ret = kvm_x86_ops.hardware_enable();
9562 	if (ret != 0)
9563 		return ret;
9564 
9565 	local_tsc = rdtsc();
9566 	stable = !kvm_check_tsc_unstable();
9567 	list_for_each_entry(kvm, &vm_list, vm_list) {
9568 		kvm_for_each_vcpu(i, vcpu, kvm) {
9569 			if (!stable && vcpu->cpu == smp_processor_id())
9570 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9571 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9572 				backwards_tsc = true;
9573 				if (vcpu->arch.last_host_tsc > max_tsc)
9574 					max_tsc = vcpu->arch.last_host_tsc;
9575 			}
9576 		}
9577 	}
9578 
9579 	/*
9580 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9581 	 * platforms that reset TSC during suspend or hibernate actions, but
9582 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9583 	 * detect that condition here, which happens early in CPU bringup,
9584 	 * before any KVM threads can be running.  Unfortunately, we can't
9585 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9586 	 * enough into CPU bringup that we know how much real time has actually
9587 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9588 	 * variables that haven't been updated yet.
9589 	 *
9590 	 * So we simply find the maximum observed TSC above, then record the
9591 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9592 	 * the adjustment will be applied.  Note that we accumulate
9593 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9594 	 * gets a chance to run again.  In the event that no KVM threads get a
9595 	 * chance to run, we will miss the entire elapsed period, as we'll have
9596 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9597 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9598 	 * uniform across all VCPUs (not to mention the scenario is extremely
9599 	 * unlikely). It is possible that a second hibernate recovery happens
9600 	 * much faster than a first, causing the observed TSC here to be
9601 	 * smaller; this would require additional padding adjustment, which is
9602 	 * why we set last_host_tsc to the local tsc observed here.
9603 	 *
9604 	 * N.B. - this code below runs only on platforms with reliable TSC,
9605 	 * as that is the only way backwards_tsc is set above.  Also note
9606 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9607 	 * have the same delta_cyc adjustment applied if backwards_tsc
9608 	 * is detected.  Note further, this adjustment is only done once,
9609 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9610 	 * called multiple times (one for each physical CPU bringup).
9611 	 *
9612 	 * Platforms with unreliable TSCs don't have to deal with this, they
9613 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9614 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9615 	 * guarantee that they stay in perfect synchronization.
9616 	 */
9617 	if (backwards_tsc) {
9618 		u64 delta_cyc = max_tsc - local_tsc;
9619 		list_for_each_entry(kvm, &vm_list, vm_list) {
9620 			kvm->arch.backwards_tsc_observed = true;
9621 			kvm_for_each_vcpu(i, vcpu, kvm) {
9622 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9623 				vcpu->arch.last_host_tsc = local_tsc;
9624 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9625 			}
9626 
9627 			/*
9628 			 * We have to disable TSC offset matching.. if you were
9629 			 * booting a VM while issuing an S4 host suspend....
9630 			 * you may have some problem.  Solving this issue is
9631 			 * left as an exercise to the reader.
9632 			 */
9633 			kvm->arch.last_tsc_nsec = 0;
9634 			kvm->arch.last_tsc_write = 0;
9635 		}
9636 
9637 	}
9638 	return 0;
9639 }
9640 
9641 void kvm_arch_hardware_disable(void)
9642 {
9643 	kvm_x86_ops.hardware_disable();
9644 	drop_user_return_notifiers();
9645 }
9646 
9647 int kvm_arch_hardware_setup(void *opaque)
9648 {
9649 	struct kvm_x86_init_ops *ops = opaque;
9650 	int r;
9651 
9652 	rdmsrl_safe(MSR_EFER, &host_efer);
9653 
9654 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9655 		rdmsrl(MSR_IA32_XSS, host_xss);
9656 
9657 	r = ops->hardware_setup();
9658 	if (r != 0)
9659 		return r;
9660 
9661 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9662 
9663 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9664 		supported_xss = 0;
9665 
9666 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9667 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9668 #undef __kvm_cpu_cap_has
9669 
9670 	if (kvm_has_tsc_control) {
9671 		/*
9672 		 * Make sure the user can only configure tsc_khz values that
9673 		 * fit into a signed integer.
9674 		 * A min value is not calculated because it will always
9675 		 * be 1 on all machines.
9676 		 */
9677 		u64 max = min(0x7fffffffULL,
9678 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9679 		kvm_max_guest_tsc_khz = max;
9680 
9681 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9682 	}
9683 
9684 	kvm_init_msr_list();
9685 	return 0;
9686 }
9687 
9688 void kvm_arch_hardware_unsetup(void)
9689 {
9690 	kvm_x86_ops.hardware_unsetup();
9691 }
9692 
9693 int kvm_arch_check_processor_compat(void *opaque)
9694 {
9695 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9696 	struct kvm_x86_init_ops *ops = opaque;
9697 
9698 	WARN_ON(!irqs_disabled());
9699 
9700 	if (__cr4_reserved_bits(cpu_has, c) !=
9701 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9702 		return -EIO;
9703 
9704 	return ops->check_processor_compatibility();
9705 }
9706 
9707 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9708 {
9709 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9710 }
9711 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9712 
9713 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9714 {
9715 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9716 }
9717 
9718 struct static_key kvm_no_apic_vcpu __read_mostly;
9719 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9720 
9721 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9722 {
9723 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9724 
9725 	vcpu->arch.l1tf_flush_l1d = true;
9726 	if (pmu->version && unlikely(pmu->event_count)) {
9727 		pmu->need_cleanup = true;
9728 		kvm_make_request(KVM_REQ_PMU, vcpu);
9729 	}
9730 	kvm_x86_ops.sched_in(vcpu, cpu);
9731 }
9732 
9733 void kvm_arch_free_vm(struct kvm *kvm)
9734 {
9735 	kfree(kvm->arch.hyperv.hv_pa_pg);
9736 	vfree(kvm);
9737 }
9738 
9739 
9740 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9741 {
9742 	if (type)
9743 		return -EINVAL;
9744 
9745 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9746 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9747 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9748 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9749 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9750 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9751 
9752 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9753 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9754 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9755 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9756 		&kvm->arch.irq_sources_bitmap);
9757 
9758 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9759 	mutex_init(&kvm->arch.apic_map_lock);
9760 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9761 
9762 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
9763 	pvclock_update_vm_gtod_copy(kvm);
9764 
9765 	kvm->arch.guest_can_read_msr_platform_info = true;
9766 
9767 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9768 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9769 
9770 	kvm_hv_init_vm(kvm);
9771 	kvm_page_track_init(kvm);
9772 	kvm_mmu_init_vm(kvm);
9773 
9774 	return kvm_x86_ops.vm_init(kvm);
9775 }
9776 
9777 int kvm_arch_post_init_vm(struct kvm *kvm)
9778 {
9779 	return kvm_mmu_post_init_vm(kvm);
9780 }
9781 
9782 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9783 {
9784 	vcpu_load(vcpu);
9785 	kvm_mmu_unload(vcpu);
9786 	vcpu_put(vcpu);
9787 }
9788 
9789 static void kvm_free_vcpus(struct kvm *kvm)
9790 {
9791 	unsigned int i;
9792 	struct kvm_vcpu *vcpu;
9793 
9794 	/*
9795 	 * Unpin any mmu pages first.
9796 	 */
9797 	kvm_for_each_vcpu(i, vcpu, kvm) {
9798 		kvm_clear_async_pf_completion_queue(vcpu);
9799 		kvm_unload_vcpu_mmu(vcpu);
9800 	}
9801 	kvm_for_each_vcpu(i, vcpu, kvm)
9802 		kvm_vcpu_destroy(vcpu);
9803 
9804 	mutex_lock(&kvm->lock);
9805 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9806 		kvm->vcpus[i] = NULL;
9807 
9808 	atomic_set(&kvm->online_vcpus, 0);
9809 	mutex_unlock(&kvm->lock);
9810 }
9811 
9812 void kvm_arch_sync_events(struct kvm *kvm)
9813 {
9814 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9815 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9816 	kvm_free_pit(kvm);
9817 }
9818 
9819 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9820 {
9821 	int i, r;
9822 	unsigned long hva, uninitialized_var(old_npages);
9823 	struct kvm_memslots *slots = kvm_memslots(kvm);
9824 	struct kvm_memory_slot *slot;
9825 
9826 	/* Called with kvm->slots_lock held.  */
9827 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9828 		return -EINVAL;
9829 
9830 	slot = id_to_memslot(slots, id);
9831 	if (size) {
9832 		if (slot && slot->npages)
9833 			return -EEXIST;
9834 
9835 		/*
9836 		 * MAP_SHARED to prevent internal slot pages from being moved
9837 		 * by fork()/COW.
9838 		 */
9839 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9840 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9841 		if (IS_ERR((void *)hva))
9842 			return PTR_ERR((void *)hva);
9843 	} else {
9844 		if (!slot || !slot->npages)
9845 			return 0;
9846 
9847 		/*
9848 		 * Stuff a non-canonical value to catch use-after-delete.  This
9849 		 * ends up being 0 on 32-bit KVM, but there's no better
9850 		 * alternative.
9851 		 */
9852 		hva = (unsigned long)(0xdeadull << 48);
9853 		old_npages = slot->npages;
9854 	}
9855 
9856 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9857 		struct kvm_userspace_memory_region m;
9858 
9859 		m.slot = id | (i << 16);
9860 		m.flags = 0;
9861 		m.guest_phys_addr = gpa;
9862 		m.userspace_addr = hva;
9863 		m.memory_size = size;
9864 		r = __kvm_set_memory_region(kvm, &m);
9865 		if (r < 0)
9866 			return r;
9867 	}
9868 
9869 	if (!size)
9870 		vm_munmap(hva, old_npages * PAGE_SIZE);
9871 
9872 	return 0;
9873 }
9874 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9875 
9876 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9877 {
9878 	kvm_mmu_pre_destroy_vm(kvm);
9879 }
9880 
9881 void kvm_arch_destroy_vm(struct kvm *kvm)
9882 {
9883 	if (current->mm == kvm->mm) {
9884 		/*
9885 		 * Free memory regions allocated on behalf of userspace,
9886 		 * unless the the memory map has changed due to process exit
9887 		 * or fd copying.
9888 		 */
9889 		mutex_lock(&kvm->slots_lock);
9890 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
9891 					0, 0);
9892 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
9893 					0, 0);
9894 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9895 		mutex_unlock(&kvm->slots_lock);
9896 	}
9897 	if (kvm_x86_ops.vm_destroy)
9898 		kvm_x86_ops.vm_destroy(kvm);
9899 	kvm_pic_destroy(kvm);
9900 	kvm_ioapic_destroy(kvm);
9901 	kvm_free_vcpus(kvm);
9902 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9903 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9904 	kvm_mmu_uninit_vm(kvm);
9905 	kvm_page_track_cleanup(kvm);
9906 	kvm_hv_destroy_vm(kvm);
9907 }
9908 
9909 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
9910 {
9911 	int i;
9912 
9913 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9914 		kvfree(slot->arch.rmap[i]);
9915 		slot->arch.rmap[i] = NULL;
9916 
9917 		if (i == 0)
9918 			continue;
9919 
9920 		kvfree(slot->arch.lpage_info[i - 1]);
9921 		slot->arch.lpage_info[i - 1] = NULL;
9922 	}
9923 
9924 	kvm_page_track_free_memslot(slot);
9925 }
9926 
9927 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
9928 				      unsigned long npages)
9929 {
9930 	int i;
9931 
9932 	/*
9933 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
9934 	 * old arrays will be freed by __kvm_set_memory_region() if installing
9935 	 * the new memslot is successful.
9936 	 */
9937 	memset(&slot->arch, 0, sizeof(slot->arch));
9938 
9939 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9940 		struct kvm_lpage_info *linfo;
9941 		unsigned long ugfn;
9942 		int lpages;
9943 		int level = i + 1;
9944 
9945 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9946 				      slot->base_gfn, level) + 1;
9947 
9948 		slot->arch.rmap[i] =
9949 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9950 				 GFP_KERNEL_ACCOUNT);
9951 		if (!slot->arch.rmap[i])
9952 			goto out_free;
9953 		if (i == 0)
9954 			continue;
9955 
9956 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9957 		if (!linfo)
9958 			goto out_free;
9959 
9960 		slot->arch.lpage_info[i - 1] = linfo;
9961 
9962 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9963 			linfo[0].disallow_lpage = 1;
9964 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9965 			linfo[lpages - 1].disallow_lpage = 1;
9966 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9967 		/*
9968 		 * If the gfn and userspace address are not aligned wrt each
9969 		 * other, disable large page support for this slot.
9970 		 */
9971 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
9972 			unsigned long j;
9973 
9974 			for (j = 0; j < lpages; ++j)
9975 				linfo[j].disallow_lpage = 1;
9976 		}
9977 	}
9978 
9979 	if (kvm_page_track_create_memslot(slot, npages))
9980 		goto out_free;
9981 
9982 	return 0;
9983 
9984 out_free:
9985 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9986 		kvfree(slot->arch.rmap[i]);
9987 		slot->arch.rmap[i] = NULL;
9988 		if (i == 0)
9989 			continue;
9990 
9991 		kvfree(slot->arch.lpage_info[i - 1]);
9992 		slot->arch.lpage_info[i - 1] = NULL;
9993 	}
9994 	return -ENOMEM;
9995 }
9996 
9997 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9998 {
9999 	struct kvm_vcpu *vcpu;
10000 	int i;
10001 
10002 	/*
10003 	 * memslots->generation has been incremented.
10004 	 * mmio generation may have reached its maximum value.
10005 	 */
10006 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
10007 
10008 	/* Force re-initialization of steal_time cache */
10009 	kvm_for_each_vcpu(i, vcpu, kvm)
10010 		kvm_vcpu_kick(vcpu);
10011 }
10012 
10013 int kvm_arch_prepare_memory_region(struct kvm *kvm,
10014 				struct kvm_memory_slot *memslot,
10015 				const struct kvm_userspace_memory_region *mem,
10016 				enum kvm_mr_change change)
10017 {
10018 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10019 		return kvm_alloc_memslot_metadata(memslot,
10020 						  mem->memory_size >> PAGE_SHIFT);
10021 	return 0;
10022 }
10023 
10024 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10025 				     struct kvm_memory_slot *new)
10026 {
10027 	/* Still write protect RO slot */
10028 	if (new->flags & KVM_MEM_READONLY) {
10029 		kvm_mmu_slot_remove_write_access(kvm, new, PT_PAGE_TABLE_LEVEL);
10030 		return;
10031 	}
10032 
10033 	/*
10034 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
10035 	 *
10036 	 * kvm_x86_ops.slot_disable_log_dirty is called when:
10037 	 *
10038 	 *  - KVM_MR_CREATE with dirty logging is disabled
10039 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
10040 	 *
10041 	 * The reason is, in case of PML, we need to set D-bit for any slots
10042 	 * with dirty logging disabled in order to eliminate unnecessary GPA
10043 	 * logging in PML buffer (and potential PML buffer full VMEXIT). This
10044 	 * guarantees leaving PML enabled during guest's lifetime won't have
10045 	 * any additional overhead from PML when guest is running with dirty
10046 	 * logging disabled for memory slots.
10047 	 *
10048 	 * kvm_x86_ops.slot_enable_log_dirty is called when switching new slot
10049 	 * to dirty logging mode.
10050 	 *
10051 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
10052 	 *
10053 	 * In case of write protect:
10054 	 *
10055 	 * Write protect all pages for dirty logging.
10056 	 *
10057 	 * All the sptes including the large sptes which point to this
10058 	 * slot are set to readonly. We can not create any new large
10059 	 * spte on this slot until the end of the logging.
10060 	 *
10061 	 * See the comments in fast_page_fault().
10062 	 */
10063 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
10064 		if (kvm_x86_ops.slot_enable_log_dirty) {
10065 			kvm_x86_ops.slot_enable_log_dirty(kvm, new);
10066 		} else {
10067 			int level =
10068 				kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10069 				PT_DIRECTORY_LEVEL : PT_PAGE_TABLE_LEVEL;
10070 
10071 			/*
10072 			 * If we're with initial-all-set, we don't need
10073 			 * to write protect any small page because
10074 			 * they're reported as dirty already.  However
10075 			 * we still need to write-protect huge pages
10076 			 * so that the page split can happen lazily on
10077 			 * the first write to the huge page.
10078 			 */
10079 			kvm_mmu_slot_remove_write_access(kvm, new, level);
10080 		}
10081 	} else {
10082 		if (kvm_x86_ops.slot_disable_log_dirty)
10083 			kvm_x86_ops.slot_disable_log_dirty(kvm, new);
10084 	}
10085 }
10086 
10087 void kvm_arch_commit_memory_region(struct kvm *kvm,
10088 				const struct kvm_userspace_memory_region *mem,
10089 				struct kvm_memory_slot *old,
10090 				const struct kvm_memory_slot *new,
10091 				enum kvm_mr_change change)
10092 {
10093 	if (!kvm->arch.n_requested_mmu_pages)
10094 		kvm_mmu_change_mmu_pages(kvm,
10095 				kvm_mmu_calculate_default_mmu_pages(kvm));
10096 
10097 	/*
10098 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
10099 	 * sptes have to be split.  If live migration is successful, the guest
10100 	 * in the source machine will be destroyed and large sptes will be
10101 	 * created in the destination. However, if the guest continues to run
10102 	 * in the source machine (for example if live migration fails), small
10103 	 * sptes will remain around and cause bad performance.
10104 	 *
10105 	 * Scan sptes if dirty logging has been stopped, dropping those
10106 	 * which can be collapsed into a single large-page spte.  Later
10107 	 * page faults will create the large-page sptes.
10108 	 *
10109 	 * There is no need to do this in any of the following cases:
10110 	 * CREATE:	No dirty mappings will already exist.
10111 	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
10112 	 *		kvm_arch_flush_shadow_memslot()
10113 	 */
10114 	if (change == KVM_MR_FLAGS_ONLY &&
10115 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10116 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10117 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10118 
10119 	/*
10120 	 * Set up write protection and/or dirty logging for the new slot.
10121 	 *
10122 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
10123 	 * been zapped so no dirty logging staff is needed for old slot. For
10124 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
10125 	 * new and it's also covered when dealing with the new slot.
10126 	 *
10127 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10128 	 */
10129 	if (change != KVM_MR_DELETE)
10130 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
10131 
10132 	/* Free the arrays associated with the old memslot. */
10133 	if (change == KVM_MR_MOVE)
10134 		kvm_arch_free_memslot(kvm, old);
10135 }
10136 
10137 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10138 {
10139 	kvm_mmu_zap_all(kvm);
10140 }
10141 
10142 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10143 				   struct kvm_memory_slot *slot)
10144 {
10145 	kvm_page_track_flush_slot(kvm, slot);
10146 }
10147 
10148 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10149 {
10150 	return (is_guest_mode(vcpu) &&
10151 			kvm_x86_ops.guest_apic_has_interrupt &&
10152 			kvm_x86_ops.guest_apic_has_interrupt(vcpu));
10153 }
10154 
10155 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10156 {
10157 	if (!list_empty_careful(&vcpu->async_pf.done))
10158 		return true;
10159 
10160 	if (kvm_apic_has_events(vcpu))
10161 		return true;
10162 
10163 	if (vcpu->arch.pv.pv_unhalted)
10164 		return true;
10165 
10166 	if (vcpu->arch.exception.pending)
10167 		return true;
10168 
10169 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10170 	    (vcpu->arch.nmi_pending &&
10171 	     kvm_x86_ops.nmi_allowed(vcpu)))
10172 		return true;
10173 
10174 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10175 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
10176 		return true;
10177 
10178 	if (kvm_arch_interrupt_allowed(vcpu) &&
10179 	    (kvm_cpu_has_interrupt(vcpu) ||
10180 	    kvm_guest_apic_has_interrupt(vcpu)))
10181 		return true;
10182 
10183 	if (kvm_hv_has_stimer_pending(vcpu))
10184 		return true;
10185 
10186 	return false;
10187 }
10188 
10189 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10190 {
10191 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10192 }
10193 
10194 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10195 {
10196 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10197 		return true;
10198 
10199 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10200 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10201 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10202 		return true;
10203 
10204 	if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
10205 		return true;
10206 
10207 	return false;
10208 }
10209 
10210 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10211 {
10212 	return vcpu->arch.preempted_in_kernel;
10213 }
10214 
10215 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10216 {
10217 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10218 }
10219 
10220 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10221 {
10222 	return kvm_x86_ops.interrupt_allowed(vcpu);
10223 }
10224 
10225 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10226 {
10227 	if (is_64_bit_mode(vcpu))
10228 		return kvm_rip_read(vcpu);
10229 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10230 		     kvm_rip_read(vcpu));
10231 }
10232 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10233 
10234 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10235 {
10236 	return kvm_get_linear_rip(vcpu) == linear_rip;
10237 }
10238 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10239 
10240 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10241 {
10242 	unsigned long rflags;
10243 
10244 	rflags = kvm_x86_ops.get_rflags(vcpu);
10245 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10246 		rflags &= ~X86_EFLAGS_TF;
10247 	return rflags;
10248 }
10249 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10250 
10251 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10252 {
10253 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10254 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10255 		rflags |= X86_EFLAGS_TF;
10256 	kvm_x86_ops.set_rflags(vcpu, rflags);
10257 }
10258 
10259 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10260 {
10261 	__kvm_set_rflags(vcpu, rflags);
10262 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10263 }
10264 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10265 
10266 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10267 {
10268 	int r;
10269 
10270 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10271 	      work->wakeup_all)
10272 		return;
10273 
10274 	r = kvm_mmu_reload(vcpu);
10275 	if (unlikely(r))
10276 		return;
10277 
10278 	if (!vcpu->arch.mmu->direct_map &&
10279 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
10280 		return;
10281 
10282 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
10283 }
10284 
10285 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10286 {
10287 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10288 }
10289 
10290 static inline u32 kvm_async_pf_next_probe(u32 key)
10291 {
10292 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10293 }
10294 
10295 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10296 {
10297 	u32 key = kvm_async_pf_hash_fn(gfn);
10298 
10299 	while (vcpu->arch.apf.gfns[key] != ~0)
10300 		key = kvm_async_pf_next_probe(key);
10301 
10302 	vcpu->arch.apf.gfns[key] = gfn;
10303 }
10304 
10305 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10306 {
10307 	int i;
10308 	u32 key = kvm_async_pf_hash_fn(gfn);
10309 
10310 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10311 		     (vcpu->arch.apf.gfns[key] != gfn &&
10312 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10313 		key = kvm_async_pf_next_probe(key);
10314 
10315 	return key;
10316 }
10317 
10318 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10319 {
10320 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10321 }
10322 
10323 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10324 {
10325 	u32 i, j, k;
10326 
10327 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10328 	while (true) {
10329 		vcpu->arch.apf.gfns[i] = ~0;
10330 		do {
10331 			j = kvm_async_pf_next_probe(j);
10332 			if (vcpu->arch.apf.gfns[j] == ~0)
10333 				return;
10334 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10335 			/*
10336 			 * k lies cyclically in ]i,j]
10337 			 * |    i.k.j |
10338 			 * |....j i.k.| or  |.k..j i...|
10339 			 */
10340 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10341 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10342 		i = j;
10343 	}
10344 }
10345 
10346 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10347 {
10348 
10349 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10350 				      sizeof(val));
10351 }
10352 
10353 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10354 {
10355 
10356 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10357 				      sizeof(u32));
10358 }
10359 
10360 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10361 {
10362 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10363 		return false;
10364 
10365 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10366 	    (vcpu->arch.apf.send_user_only &&
10367 	     kvm_x86_ops.get_cpl(vcpu) == 0))
10368 		return false;
10369 
10370 	return true;
10371 }
10372 
10373 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10374 {
10375 	if (unlikely(!lapic_in_kernel(vcpu) ||
10376 		     kvm_event_needs_reinjection(vcpu) ||
10377 		     vcpu->arch.exception.pending))
10378 		return false;
10379 
10380 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10381 		return false;
10382 
10383 	/*
10384 	 * If interrupts are off we cannot even use an artificial
10385 	 * halt state.
10386 	 */
10387 	return kvm_x86_ops.interrupt_allowed(vcpu);
10388 }
10389 
10390 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10391 				     struct kvm_async_pf *work)
10392 {
10393 	struct x86_exception fault;
10394 
10395 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10396 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10397 
10398 	if (kvm_can_deliver_async_pf(vcpu) &&
10399 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10400 		fault.vector = PF_VECTOR;
10401 		fault.error_code_valid = true;
10402 		fault.error_code = 0;
10403 		fault.nested_page_fault = false;
10404 		fault.address = work->arch.token;
10405 		fault.async_page_fault = true;
10406 		kvm_inject_page_fault(vcpu, &fault);
10407 	} else {
10408 		/*
10409 		 * It is not possible to deliver a paravirtualized asynchronous
10410 		 * page fault, but putting the guest in an artificial halt state
10411 		 * can be beneficial nevertheless: if an interrupt arrives, we
10412 		 * can deliver it timely and perhaps the guest will schedule
10413 		 * another process.  When the instruction that triggered a page
10414 		 * fault is retried, hopefully the page will be ready in the host.
10415 		 */
10416 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10417 	}
10418 }
10419 
10420 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10421 				 struct kvm_async_pf *work)
10422 {
10423 	struct x86_exception fault;
10424 	u32 val;
10425 
10426 	if (work->wakeup_all)
10427 		work->arch.token = ~0; /* broadcast wakeup */
10428 	else
10429 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10430 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10431 
10432 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10433 	    !apf_get_user(vcpu, &val)) {
10434 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10435 		    vcpu->arch.exception.pending &&
10436 		    vcpu->arch.exception.nr == PF_VECTOR &&
10437 		    !apf_put_user(vcpu, 0)) {
10438 			vcpu->arch.exception.injected = false;
10439 			vcpu->arch.exception.pending = false;
10440 			vcpu->arch.exception.nr = 0;
10441 			vcpu->arch.exception.has_error_code = false;
10442 			vcpu->arch.exception.error_code = 0;
10443 			vcpu->arch.exception.has_payload = false;
10444 			vcpu->arch.exception.payload = 0;
10445 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10446 			fault.vector = PF_VECTOR;
10447 			fault.error_code_valid = true;
10448 			fault.error_code = 0;
10449 			fault.nested_page_fault = false;
10450 			fault.address = work->arch.token;
10451 			fault.async_page_fault = true;
10452 			kvm_inject_page_fault(vcpu, &fault);
10453 		}
10454 	}
10455 	vcpu->arch.apf.halted = false;
10456 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10457 }
10458 
10459 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10460 {
10461 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10462 		return true;
10463 	else
10464 		return kvm_can_do_async_pf(vcpu);
10465 }
10466 
10467 void kvm_arch_start_assignment(struct kvm *kvm)
10468 {
10469 	atomic_inc(&kvm->arch.assigned_device_count);
10470 }
10471 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10472 
10473 void kvm_arch_end_assignment(struct kvm *kvm)
10474 {
10475 	atomic_dec(&kvm->arch.assigned_device_count);
10476 }
10477 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10478 
10479 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10480 {
10481 	return atomic_read(&kvm->arch.assigned_device_count);
10482 }
10483 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10484 
10485 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10486 {
10487 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10488 }
10489 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10490 
10491 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10492 {
10493 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10494 }
10495 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10496 
10497 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10498 {
10499 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10500 }
10501 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10502 
10503 bool kvm_arch_has_irq_bypass(void)
10504 {
10505 	return true;
10506 }
10507 
10508 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10509 				      struct irq_bypass_producer *prod)
10510 {
10511 	struct kvm_kernel_irqfd *irqfd =
10512 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10513 
10514 	irqfd->producer = prod;
10515 
10516 	return kvm_x86_ops.update_pi_irte(irqfd->kvm,
10517 					   prod->irq, irqfd->gsi, 1);
10518 }
10519 
10520 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10521 				      struct irq_bypass_producer *prod)
10522 {
10523 	int ret;
10524 	struct kvm_kernel_irqfd *irqfd =
10525 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10526 
10527 	WARN_ON(irqfd->producer != prod);
10528 	irqfd->producer = NULL;
10529 
10530 	/*
10531 	 * When producer of consumer is unregistered, we change back to
10532 	 * remapped mode, so we can re-use the current implementation
10533 	 * when the irq is masked/disabled or the consumer side (KVM
10534 	 * int this case doesn't want to receive the interrupts.
10535 	*/
10536 	ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10537 	if (ret)
10538 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10539 		       " fails: %d\n", irqfd->consumer.token, ret);
10540 }
10541 
10542 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10543 				   uint32_t guest_irq, bool set)
10544 {
10545 	return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
10546 }
10547 
10548 bool kvm_vector_hashing_enabled(void)
10549 {
10550 	return vector_hashing;
10551 }
10552 
10553 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10554 {
10555 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10556 }
10557 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10558 
10559 u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10560 {
10561 	uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10562 
10563 	/* The STIBP bit doesn't fault even if it's not advertised */
10564 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10565 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10566 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10567 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10568 	    !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10569 		bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10570 
10571 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10572 	    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10573 		bits &= ~SPEC_CTRL_SSBD;
10574 	if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10575 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10576 		bits &= ~SPEC_CTRL_SSBD;
10577 
10578 	return bits;
10579 }
10580 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
10581 
10582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10599 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10600 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10601 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10602 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
10603 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
10604