xref: /openbmc/linux/arch/x86/kvm/x86.c (revision cc698db4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65 
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68 
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91 
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94 
95 struct kvm_caps kvm_caps __read_mostly = {
96 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99 
100 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101 
102 #define emul_to_vcpu(ctxt) \
103 	((struct kvm_vcpu *)(ctxt)->vcpu)
104 
105 /* EFER defaults:
106  * - enable syscall per default because its emulated by KVM
107  * - enable LME and LMA per default on 64 bit KVM
108  */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115 
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117 
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119 
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121 
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124 
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131 
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134 
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137 
138 #define KVM_X86_OP(func)					     \
139 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
140 				*(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146 
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
149 
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153 
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
156 
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
159 
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
163 
164 /*
165  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167  * advancement entirely.  Any other value is used as-is and disables adaptive
168  * tuning, i.e. allows privileged userspace to set an exact advancement time.
169  */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
172 
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, S_IRUGO);
175 
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, S_IRUGO);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179 
180 /*
181  * Flags to manipulate forced emulation behavior (any non-zero value will
182  * enable forced emulation).
183  */
184 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187 
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
190 
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195 
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198 
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202 
203 /*
204  * Restoring the host value for MSRs that are only consumed when running in
205  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206  * returns to userspace, i.e. the kernel can run with the guest's value.
207  */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209 
210 struct kvm_user_return_msrs {
211 	struct user_return_notifier urn;
212 	bool registered;
213 	struct kvm_user_return_msr_values {
214 		u64 host;
215 		u64 curr;
216 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218 
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223 
224 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228 
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231 
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234 
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237 
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240 
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243 
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 	KVM_GENERIC_VM_STATS(),
246 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 	STATS_DESC_COUNTER(VM, mmu_pte_write),
248 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 	STATS_DESC_COUNTER(VM, mmu_flooded),
250 	STATS_DESC_COUNTER(VM, mmu_recycled),
251 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 	STATS_DESC_ICOUNTER(VM, pages_4k),
254 	STATS_DESC_ICOUNTER(VM, pages_2m),
255 	STATS_DESC_ICOUNTER(VM, pages_1g),
256 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260 
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 	.name_size = KVM_STATS_NAME_SIZE,
263 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 	.id_offset = sizeof(struct kvm_stats_header),
265 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 		       sizeof(kvm_vm_stats_desc),
268 };
269 
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 	KVM_GENERIC_VCPU_STATS(),
272 	STATS_DESC_COUNTER(VCPU, pf_taken),
273 	STATS_DESC_COUNTER(VCPU, pf_fixed),
274 	STATS_DESC_COUNTER(VCPU, pf_emulate),
275 	STATS_DESC_COUNTER(VCPU, pf_spurious),
276 	STATS_DESC_COUNTER(VCPU, pf_fast),
277 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 	STATS_DESC_COUNTER(VCPU, pf_guest),
279 	STATS_DESC_COUNTER(VCPU, tlb_flush),
280 	STATS_DESC_COUNTER(VCPU, invlpg),
281 	STATS_DESC_COUNTER(VCPU, exits),
282 	STATS_DESC_COUNTER(VCPU, io_exits),
283 	STATS_DESC_COUNTER(VCPU, mmio_exits),
284 	STATS_DESC_COUNTER(VCPU, signal_exits),
285 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 	STATS_DESC_COUNTER(VCPU, l1d_flush),
288 	STATS_DESC_COUNTER(VCPU, halt_exits),
289 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 	STATS_DESC_COUNTER(VCPU, irq_exits),
291 	STATS_DESC_COUNTER(VCPU, host_state_reload),
292 	STATS_DESC_COUNTER(VCPU, fpu_reload),
293 	STATS_DESC_COUNTER(VCPU, insn_emulation),
294 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 	STATS_DESC_COUNTER(VCPU, hypercalls),
296 	STATS_DESC_COUNTER(VCPU, irq_injections),
297 	STATS_DESC_COUNTER(VCPU, nmi_injections),
298 	STATS_DESC_COUNTER(VCPU, req_event),
299 	STATS_DESC_COUNTER(VCPU, nested_run),
300 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 	STATS_DESC_COUNTER(VCPU, preemption_reported),
303 	STATS_DESC_COUNTER(VCPU, preemption_other),
304 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307 
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 	.name_size = KVM_STATS_NAME_SIZE,
310 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 	.id_offset = sizeof(struct kvm_stats_header),
312 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 		       sizeof(kvm_vcpu_stats_desc),
315 };
316 
317 u64 __read_mostly host_xcr0;
318 
319 static struct kmem_cache *x86_emulator_cache;
320 
321 /*
322  * When called, it means the previous get/set msr reached an invalid msr.
323  * Return true if we want to ignore/silent this failed msr access.
324  */
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327 	const char *op = write ? "wrmsr" : "rdmsr";
328 
329 	if (ignore_msrs) {
330 		if (report_ignored_msrs)
331 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 				      op, msr, data);
333 		/* Mask the error */
334 		return true;
335 	} else {
336 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 				      op, msr, data);
338 		return false;
339 	}
340 }
341 
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 	unsigned int size = sizeof(struct x86_emulate_ctxt);
346 
347 	return kmem_cache_create_usercopy("x86_emulator", size,
348 					  __alignof__(struct x86_emulate_ctxt),
349 					  SLAB_ACCOUNT, useroffset,
350 					  size - useroffset, NULL);
351 }
352 
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354 
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357 	int i;
358 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 		vcpu->arch.apf.gfns[i] = ~0;
360 }
361 
362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364 	unsigned slot;
365 	struct kvm_user_return_msrs *msrs
366 		= container_of(urn, struct kvm_user_return_msrs, urn);
367 	struct kvm_user_return_msr_values *values;
368 	unsigned long flags;
369 
370 	/*
371 	 * Disabling irqs at this point since the following code could be
372 	 * interrupted and executed through kvm_arch_hardware_disable()
373 	 */
374 	local_irq_save(flags);
375 	if (msrs->registered) {
376 		msrs->registered = false;
377 		user_return_notifier_unregister(urn);
378 	}
379 	local_irq_restore(flags);
380 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 		values = &msrs->values[slot];
382 		if (values->host != values->curr) {
383 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 			values->curr = values->host;
385 		}
386 	}
387 }
388 
389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391 	u64 val;
392 	int ret;
393 
394 	preempt_disable();
395 	ret = rdmsrl_safe(msr, &val);
396 	if (ret)
397 		goto out;
398 	ret = wrmsrl_safe(msr, val);
399 out:
400 	preempt_enable();
401 	return ret;
402 }
403 
404 int kvm_add_user_return_msr(u32 msr)
405 {
406 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407 
408 	if (kvm_probe_user_return_msr(msr))
409 		return -1;
410 
411 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 	return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415 
416 int kvm_find_user_return_msr(u32 msr)
417 {
418 	int i;
419 
420 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 		if (kvm_uret_msrs_list[i] == msr)
422 			return i;
423 	}
424 	return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427 
428 static void kvm_user_return_msr_cpu_online(void)
429 {
430 	unsigned int cpu = smp_processor_id();
431 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 	u64 value;
433 	int i;
434 
435 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 		msrs->values[i].host = value;
438 		msrs->values[i].curr = value;
439 	}
440 }
441 
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444 	unsigned int cpu = smp_processor_id();
445 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 	int err;
447 
448 	value = (value & mask) | (msrs->values[slot].host & ~mask);
449 	if (value == msrs->values[slot].curr)
450 		return 0;
451 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452 	if (err)
453 		return 1;
454 
455 	msrs->values[slot].curr = value;
456 	if (!msrs->registered) {
457 		msrs->urn.on_user_return = kvm_on_user_return;
458 		user_return_notifier_register(&msrs->urn);
459 		msrs->registered = true;
460 	}
461 	return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464 
465 static void drop_user_return_notifiers(void)
466 {
467 	unsigned int cpu = smp_processor_id();
468 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469 
470 	if (msrs->registered)
471 		kvm_on_user_return(&msrs->urn);
472 }
473 
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476 	return vcpu->arch.apic_base;
477 }
478 
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484 
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491 
492 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 		return 1;
494 	if (!msr_info->host_initiated) {
495 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 			return 1;
497 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 			return 1;
499 	}
500 
501 	kvm_lapic_set_base(vcpu, msr_info->data);
502 	kvm_recalculate_apic_map(vcpu->kvm);
503 	return 0;
504 }
505 
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515 	/* Fault while not rebooting.  We want the trace. */
516 	BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519 
520 #define EXCPT_BENIGN		0
521 #define EXCPT_CONTRIBUTORY	1
522 #define EXCPT_PF		2
523 
524 static int exception_class(int vector)
525 {
526 	switch (vector) {
527 	case PF_VECTOR:
528 		return EXCPT_PF;
529 	case DE_VECTOR:
530 	case TS_VECTOR:
531 	case NP_VECTOR:
532 	case SS_VECTOR:
533 	case GP_VECTOR:
534 		return EXCPT_CONTRIBUTORY;
535 	default:
536 		break;
537 	}
538 	return EXCPT_BENIGN;
539 }
540 
541 #define EXCPT_FAULT		0
542 #define EXCPT_TRAP		1
543 #define EXCPT_ABORT		2
544 #define EXCPT_INTERRUPT		3
545 #define EXCPT_DB		4
546 
547 static int exception_type(int vector)
548 {
549 	unsigned int mask;
550 
551 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 		return EXCPT_INTERRUPT;
553 
554 	mask = 1 << vector;
555 
556 	/*
557 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 	 */
560 	if (mask & (1 << DB_VECTOR))
561 		return EXCPT_DB;
562 
563 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 		return EXCPT_TRAP;
565 
566 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 		return EXCPT_ABORT;
568 
569 	/* Reserved exceptions will result in fault */
570 	return EXCPT_FAULT;
571 }
572 
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 				   struct kvm_queued_exception *ex)
575 {
576 	if (!ex->has_payload)
577 		return;
578 
579 	switch (ex->vector) {
580 	case DB_VECTOR:
581 		/*
582 		 * "Certain debug exceptions may clear bit 0-3.  The
583 		 * remaining contents of the DR6 register are never
584 		 * cleared by the processor".
585 		 */
586 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 		/*
588 		 * In order to reflect the #DB exception payload in guest
589 		 * dr6, three components need to be considered: active low
590 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 		 * DR6_BS and DR6_BT)
592 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 		 * In the target guest dr6:
594 		 * FIXED_1 bits should always be set.
595 		 * Active low bits should be cleared if 1-setting in payload.
596 		 * Active high bits should be set if 1-setting in payload.
597 		 *
598 		 * Note, the payload is compatible with the pending debug
599 		 * exceptions/exit qualification under VMX, that active_low bits
600 		 * are active high in payload.
601 		 * So they need to be flipped for DR6.
602 		 */
603 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 		vcpu->arch.dr6 |= ex->payload;
605 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606 
607 		/*
608 		 * The #DB payload is defined as compatible with the 'pending
609 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 		 * defined in the 'pending debug exceptions' field (enabled
611 		 * breakpoint), it is reserved and must be zero in DR6.
612 		 */
613 		vcpu->arch.dr6 &= ~BIT(12);
614 		break;
615 	case PF_VECTOR:
616 		vcpu->arch.cr2 = ex->payload;
617 		break;
618 	}
619 
620 	ex->has_payload = false;
621 	ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624 
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 				       bool has_error_code, u32 error_code,
627 				       bool has_payload, unsigned long payload)
628 {
629 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630 
631 	ex->vector = vector;
632 	ex->injected = false;
633 	ex->pending = true;
634 	ex->has_error_code = has_error_code;
635 	ex->error_code = error_code;
636 	ex->has_payload = has_payload;
637 	ex->payload = payload;
638 }
639 
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645 
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 		unsigned nr, bool has_error, u32 error_code,
648 	        bool has_payload, unsigned long payload, bool reinject)
649 {
650 	u32 prev_nr;
651 	int class1, class2;
652 
653 	kvm_make_request(KVM_REQ_EVENT, vcpu);
654 
655 	/*
656 	 * If the exception is destined for L2 and isn't being reinjected,
657 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658 	 * previously injected exception is not checked because it was checked
659 	 * when it was original queued, and re-checking is incorrect if _L1_
660 	 * injected the exception, in which case it's exempt from interception.
661 	 */
662 	if (!reinject && is_guest_mode(vcpu) &&
663 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 					   has_payload, payload);
666 		return;
667 	}
668 
669 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 	queue:
671 		if (reinject) {
672 			/*
673 			 * On VM-Entry, an exception can be pending if and only
674 			 * if event injection was blocked by nested_run_pending.
675 			 * In that case, however, vcpu_enter_guest() requests an
676 			 * immediate exit, and the guest shouldn't proceed far
677 			 * enough to need reinjection.
678 			 */
679 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 			vcpu->arch.exception.injected = true;
681 			if (WARN_ON_ONCE(has_payload)) {
682 				/*
683 				 * A reinjected event has already
684 				 * delivered its payload.
685 				 */
686 				has_payload = false;
687 				payload = 0;
688 			}
689 		} else {
690 			vcpu->arch.exception.pending = true;
691 			vcpu->arch.exception.injected = false;
692 		}
693 		vcpu->arch.exception.has_error_code = has_error;
694 		vcpu->arch.exception.vector = nr;
695 		vcpu->arch.exception.error_code = error_code;
696 		vcpu->arch.exception.has_payload = has_payload;
697 		vcpu->arch.exception.payload = payload;
698 		if (!is_guest_mode(vcpu))
699 			kvm_deliver_exception_payload(vcpu,
700 						      &vcpu->arch.exception);
701 		return;
702 	}
703 
704 	/* to check exception */
705 	prev_nr = vcpu->arch.exception.vector;
706 	if (prev_nr == DF_VECTOR) {
707 		/* triple fault -> shutdown */
708 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 		return;
710 	}
711 	class1 = exception_class(prev_nr);
712 	class2 = exception_class(nr);
713 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 		/*
716 		 * Synthesize #DF.  Clear the previously injected or pending
717 		 * exception so as not to incorrectly trigger shutdown.
718 		 */
719 		vcpu->arch.exception.injected = false;
720 		vcpu->arch.exception.pending = false;
721 
722 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723 	} else {
724 		/* replace previous exception with a new one in a hope
725 		   that instruction re-execution will regenerate lost
726 		   exception */
727 		goto queue;
728 	}
729 }
730 
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736 
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742 
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 			   unsigned long payload)
745 {
746 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749 
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 				    u32 error_code, unsigned long payload)
752 {
753 	kvm_multiple_exception(vcpu, nr, true, error_code,
754 			       true, payload, false);
755 }
756 
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759 	if (err)
760 		kvm_inject_gp(vcpu, 0);
761 	else
762 		return kvm_skip_emulated_instruction(vcpu);
763 
764 	return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767 
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770 	if (err) {
771 		kvm_inject_gp(vcpu, 0);
772 		return 1;
773 	}
774 
775 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 				       EMULTYPE_COMPLETE_USER_EXIT);
777 }
778 
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781 	++vcpu->stat.pf_guest;
782 
783 	/*
784 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 	 * whether or not L1 wants to intercept "regular" #PF.
786 	 */
787 	if (is_guest_mode(vcpu) && fault->async_page_fault)
788 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 					   true, fault->error_code,
790 					   true, fault->address);
791 	else
792 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793 					fault->address);
794 }
795 
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 				    struct x86_exception *fault)
798 {
799 	struct kvm_mmu *fault_mmu;
800 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
801 
802 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 					       vcpu->arch.walk_mmu;
804 
805 	/*
806 	 * Invalidate the TLB entry for the faulting address, if it exists,
807 	 * else the access will fault indefinitely (and to emulate hardware).
808 	 */
809 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 	    !(fault->error_code & PFERR_RSVD_MASK))
811 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 					KVM_MMU_ROOT_CURRENT);
813 
814 	fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817 
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820 	atomic_inc(&vcpu->arch.nmi_queued);
821 	kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823 
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829 
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835 
836 /*
837  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838  * a #GP and return false.
839  */
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 		return true;
844 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 	return false;
846 }
847 
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 		return true;
852 
853 	kvm_queue_exception(vcpu, UD_VECTOR);
854 	return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857 
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862 
863 /*
864  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865  */
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 	gpa_t real_gpa;
871 	int i;
872 	int ret;
873 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874 
875 	/*
876 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 	 * to an L1 GPA.
878 	 */
879 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 	if (real_gpa == INVALID_GPA)
882 		return 0;
883 
884 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
887 	if (ret < 0)
888 		return 0;
889 
890 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 		if ((pdpte[i] & PT_PRESENT_MASK) &&
892 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 			return 0;
894 		}
895 	}
896 
897 	/*
898 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 	 * Shadow page roots need to be reconstructed instead.
900 	 */
901 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903 
904 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 	vcpu->arch.pdptrs_from_userspace = false;
908 
909 	return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912 
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916 	if (cr0 & 0xffffffff00000000UL)
917 		return false;
918 #endif
919 
920 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 		return false;
922 
923 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 		return false;
925 
926 	return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928 
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931 	/*
932 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
934 	 * as there are no permission bits to emulate.  If TDP is enabled, the
935 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 	 * translations does the right thing, but there's no need to unload the
937 	 * root as CR0.WP doesn't affect SPTEs.
938 	 */
939 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 		if (!(cr0 & X86_CR0_PG))
941 			return;
942 
943 		if (tdp_enabled) {
944 			kvm_init_mmu(vcpu);
945 			return;
946 		}
947 	}
948 
949 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 		kvm_clear_async_pf_completion_queue(vcpu);
951 		kvm_async_pf_hash_reset(vcpu);
952 
953 		/*
954 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 		 * perspective.
956 		 */
957 		if (!(cr0 & X86_CR0_PG))
958 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 	}
960 
961 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 		kvm_mmu_reset_context(vcpu);
963 
964 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
966 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970 
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
974 
975 	if (!kvm_is_valid_cr0(vcpu, cr0))
976 		return 1;
977 
978 	cr0 |= X86_CR0_ET;
979 
980 	/* Write to CR0 reserved bits are ignored, even on Intel. */
981 	cr0 &= ~CR0_RESERVED_BITS;
982 
983 #ifdef CONFIG_X86_64
984 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 	    (cr0 & X86_CR0_PG)) {
986 		int cs_db, cs_l;
987 
988 		if (!is_pae(vcpu))
989 			return 1;
990 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 		if (cs_l)
992 			return 1;
993 	}
994 #endif
995 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 		return 1;
999 
1000 	if (!(cr0 & X86_CR0_PG) &&
1001 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 		return 1;
1003 
1004 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005 
1006 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007 
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011 
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017 
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020 	if (vcpu->arch.guest_state_protected)
1021 		return;
1022 
1023 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024 
1025 		if (vcpu->arch.xcr0 != host_xcr0)
1026 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027 
1028 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 		    vcpu->arch.ia32_xss != host_xss)
1030 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031 	}
1032 
1033 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 		write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040 
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043 	if (vcpu->arch.guest_state_protected)
1044 		return;
1045 
1046 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 		vcpu->arch.pkru = rdpkru();
1050 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 			write_pkru(vcpu->arch.host_pkru);
1052 	}
1053 
1054 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055 
1056 		if (vcpu->arch.xcr0 != host_xcr0)
1057 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058 
1059 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 		    vcpu->arch.ia32_xss != host_xss)
1061 			wrmsrl(MSR_IA32_XSS, host_xss);
1062 	}
1063 
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066 
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073 
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076 	u64 xcr0 = xcr;
1077 	u64 old_xcr0 = vcpu->arch.xcr0;
1078 	u64 valid_bits;
1079 
1080 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081 	if (index != XCR_XFEATURE_ENABLED_MASK)
1082 		return 1;
1083 	if (!(xcr0 & XFEATURE_MASK_FP))
1084 		return 1;
1085 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 		return 1;
1087 
1088 	/*
1089 	 * Do not allow the guest to set bits that we do not support
1090 	 * saving.  However, xcr0 bit 0 is always set, even if the
1091 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 	 */
1093 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 	if (xcr0 & ~valid_bits)
1095 		return 1;
1096 
1097 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 		return 1;
1100 
1101 	if (xcr0 & XFEATURE_MASK_AVX512) {
1102 		if (!(xcr0 & XFEATURE_MASK_YMM))
1103 			return 1;
1104 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 			return 1;
1106 	}
1107 
1108 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 		return 1;
1111 
1112 	vcpu->arch.xcr0 = xcr0;
1113 
1114 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 		kvm_update_cpuid_runtime(vcpu);
1116 	return 0;
1117 }
1118 
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 		kvm_inject_gp(vcpu, 0);
1125 		return 1;
1126 	}
1127 
1128 	return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131 
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134 	if (cr4 & cr4_reserved_bits)
1135 		return false;
1136 
1137 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 		return false;
1139 
1140 	return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143 
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149 
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 		kvm_mmu_reset_context(vcpu);
1154 
1155 	/*
1156 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 	 * according to the SDM; however, stale prev_roots could be reused
1158 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 	 * so fall through.
1162 	 */
1163 	if (!tdp_enabled &&
1164 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 		kvm_mmu_unload(vcpu);
1166 
1167 	/*
1168 	 * The TLB has to be flushed for all PCIDs if any of the following
1169 	 * (architecturally required) changes happen:
1170 	 * - CR4.PCIDE is changed from 1 to 0
1171 	 * - CR4.PGE is toggled
1172 	 *
1173 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 	 */
1175 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178 
1179 	/*
1180 	 * The TLB has to be flushed for the current PCID if any of the
1181 	 * following (architecturally required) changes happen:
1182 	 * - CR4.SMEP is changed from 0 to 1
1183 	 * - CR4.PAE is toggled
1184 	 */
1185 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188 
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191 
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195 
1196 	if (!kvm_is_valid_cr4(vcpu, cr4))
1197 		return 1;
1198 
1199 	if (is_long_mode(vcpu)) {
1200 		if (!(cr4 & X86_CR4_PAE))
1201 			return 1;
1202 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 			return 1;
1204 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 		return 1;
1208 
1209 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 			return 1;
1213 	}
1214 
1215 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216 
1217 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218 
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222 
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 	unsigned long roots_to_free = 0;
1227 	int i;
1228 
1229 	/*
1230 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1233 	 * the invalidation, but the guest's TLB entries need to be flushed as
1234 	 * the CPU may have cached entries in its TLB for the target PCID.
1235 	 */
1236 	if (unlikely(tdp_enabled)) {
1237 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * If neither the current CR3 nor any of the prev_roots use the given
1243 	 * PCID, then nothing needs to be done here because a resync will
1244 	 * happen anyway before switching to any other CR3.
1245 	 */
1246 	if (kvm_get_active_pcid(vcpu) == pcid) {
1247 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 	}
1250 
1251 	/*
1252 	 * If PCID is disabled, there is no need to free prev_roots even if the
1253 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 	 * with PCIDE=0.
1255 	 */
1256 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 		return;
1258 
1259 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262 
1263 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265 
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268 	bool skip_tlb_flush = false;
1269 	unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 		pcid = cr3 & X86_CR3_PCID_MASK;
1275 	}
1276 #endif
1277 
1278 	/* PDPTRs are always reloaded for PAE paging. */
1279 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 		goto handle_tlb_flush;
1281 
1282 	/*
1283 	 * Do not condition the GPA check on long mode, this helper is used to
1284 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 	 * the current vCPU mode is accurate.
1286 	 */
1287 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1288 		return 1;
1289 
1290 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 		return 1;
1292 
1293 	if (cr3 != kvm_read_cr3(vcpu))
1294 		kvm_mmu_new_pgd(vcpu, cr3);
1295 
1296 	vcpu->arch.cr3 = cr3;
1297 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299 
1300 handle_tlb_flush:
1301 	/*
1302 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 	 * i.e. only PCID=0 can be relevant.
1307 	 */
1308 	if (!skip_tlb_flush)
1309 		kvm_invalidate_pcid(vcpu, pcid);
1310 
1311 	return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314 
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317 	if (cr8 & CR8_RESERVED_BITS)
1318 		return 1;
1319 	if (lapic_in_kernel(vcpu))
1320 		kvm_lapic_set_tpr(vcpu, cr8);
1321 	else
1322 		vcpu->arch.cr8 = cr8;
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326 
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329 	if (lapic_in_kernel(vcpu))
1330 		return kvm_lapic_get_cr8(vcpu);
1331 	else
1332 		return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335 
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338 	int i;
1339 
1340 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 	}
1344 }
1345 
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348 	unsigned long dr7;
1349 
1350 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 		dr7 = vcpu->arch.guest_debug_dr7;
1352 	else
1353 		dr7 = vcpu->arch.dr7;
1354 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 	if (dr7 & DR7_BP_EN_MASK)
1357 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360 
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363 	u64 fixed = DR6_FIXED_1;
1364 
1365 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 		fixed |= DR6_RTM;
1367 
1368 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 		fixed |= DR6_BUS_LOCK;
1370 	return fixed;
1371 }
1372 
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1376 
1377 	switch (dr) {
1378 	case 0 ... 3:
1379 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 			vcpu->arch.eff_db[dr] = val;
1382 		break;
1383 	case 4:
1384 	case 6:
1385 		if (!kvm_dr6_valid(val))
1386 			return 1; /* #GP */
1387 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 		break;
1389 	case 5:
1390 	default: /* 7 */
1391 		if (!kvm_dr7_valid(val))
1392 			return 1; /* #GP */
1393 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 		kvm_update_dr7(vcpu);
1395 		break;
1396 	}
1397 
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401 
1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1405 
1406 	switch (dr) {
1407 	case 0 ... 3:
1408 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1409 		break;
1410 	case 4:
1411 	case 6:
1412 		*val = vcpu->arch.dr6;
1413 		break;
1414 	case 5:
1415 	default: /* 7 */
1416 		*val = vcpu->arch.dr7;
1417 		break;
1418 	}
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421 
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424 	u32 ecx = kvm_rcx_read(vcpu);
1425 	u64 data;
1426 
1427 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 		kvm_inject_gp(vcpu, 0);
1429 		return 1;
1430 	}
1431 
1432 	kvm_rax_write(vcpu, (u32)data);
1433 	kvm_rdx_write(vcpu, data >> 32);
1434 	return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437 
1438 /*
1439  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1442  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1443  * MSRs that KVM emulates without strictly requiring host support.
1444  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1446  * msrs_to_save and emulated_msrs.
1447  */
1448 
1449 static const u32 msrs_to_save_base[] = {
1450 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451 	MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 	MSR_IA32_UMWAIT_CONTROL,
1465 
1466 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468 
1469 static const u32 msrs_to_save_pmu[] = {
1470 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475 
1476 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485 
1486 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488 
1489 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494 
1495 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499 
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 			ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503 
1504 static const u32 emulated_msrs_all[] = {
1505 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1508 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1509 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1510 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1511 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1512 	HV_X64_MSR_RESET,
1513 	HV_X64_MSR_VP_INDEX,
1514 	HV_X64_MSR_VP_RUNTIME,
1515 	HV_X64_MSR_SCONTROL,
1516 	HV_X64_MSR_STIMER0_CONFIG,
1517 	HV_X64_MSR_VP_ASSIST_PAGE,
1518 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1519 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1520 	HV_X64_MSR_SYNDBG_OPTIONS,
1521 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1522 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1523 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1524 
1525 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1527 
1528 	MSR_IA32_TSC_ADJUST,
1529 	MSR_IA32_TSC_DEADLINE,
1530 	MSR_IA32_ARCH_CAPABILITIES,
1531 	MSR_IA32_PERF_CAPABILITIES,
1532 	MSR_IA32_MISC_ENABLE,
1533 	MSR_IA32_MCG_STATUS,
1534 	MSR_IA32_MCG_CTL,
1535 	MSR_IA32_MCG_EXT_CTL,
1536 	MSR_IA32_SMBASE,
1537 	MSR_SMI_COUNT,
1538 	MSR_PLATFORM_INFO,
1539 	MSR_MISC_FEATURES_ENABLES,
1540 	MSR_AMD64_VIRT_SPEC_CTRL,
1541 	MSR_AMD64_TSC_RATIO,
1542 	MSR_IA32_POWER_CTL,
1543 	MSR_IA32_UCODE_REV,
1544 
1545 	/*
1546 	 * KVM always supports the "true" VMX control MSRs, even if the host
1547 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1548 	 * doesn't strictly require them to exist in the host (ignoring that
1549 	 * KVM would refuse to load in the first place if the core set of MSRs
1550 	 * aren't supported).
1551 	 */
1552 	MSR_IA32_VMX_BASIC,
1553 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1557 	MSR_IA32_VMX_MISC,
1558 	MSR_IA32_VMX_CR0_FIXED0,
1559 	MSR_IA32_VMX_CR4_FIXED0,
1560 	MSR_IA32_VMX_VMCS_ENUM,
1561 	MSR_IA32_VMX_PROCBASED_CTLS2,
1562 	MSR_IA32_VMX_EPT_VPID_CAP,
1563 	MSR_IA32_VMX_VMFUNC,
1564 
1565 	MSR_K7_HWCR,
1566 	MSR_KVM_POLL_CONTROL,
1567 };
1568 
1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570 static unsigned num_emulated_msrs;
1571 
1572 /*
1573  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1575  * feature MSRs, but are handled separately to allow expedited lookups.
1576  */
1577 static const u32 msr_based_features_all_except_vmx[] = {
1578 	MSR_AMD64_DE_CFG,
1579 	MSR_IA32_UCODE_REV,
1580 	MSR_IA32_ARCH_CAPABILITIES,
1581 	MSR_IA32_PERF_CAPABILITIES,
1582 };
1583 
1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586 static unsigned int num_msr_based_features;
1587 
1588 /*
1589  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590  * patch, are immutable once the vCPU model is defined.
1591  */
1592 static bool kvm_is_immutable_feature_msr(u32 msr)
1593 {
1594 	int i;
1595 
1596 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1597 		return true;
1598 
1599 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600 		if (msr == msr_based_features_all_except_vmx[i])
1601 			return msr != MSR_IA32_UCODE_REV;
1602 	}
1603 
1604 	return false;
1605 }
1606 
1607 /*
1608  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609  * does not yet virtualize. These include:
1610  *   10 - MISC_PACKAGE_CTRLS
1611  *   11 - ENERGY_FILTERING_CTL
1612  *   12 - DOITM
1613  *   18 - FB_CLEAR_CTRL
1614  *   21 - XAPIC_DISABLE_STATUS
1615  *   23 - OVERCLOCKING_STATUS
1616  */
1617 
1618 #define KVM_SUPPORTED_ARCH_CAP \
1619 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1624 
1625 static u64 kvm_get_arch_capabilities(void)
1626 {
1627 	u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1628 
1629 	/*
1630 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1631 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1632 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1633 	 * L1 guests, so it need not worry about its own (L2) guests.
1634 	 */
1635 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1636 
1637 	/*
1638 	 * If we're doing cache flushes (either "always" or "cond")
1639 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1640 	 * If an outer hypervisor is doing the cache flush for us
1641 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1642 	 * capability to the guest too, and if EPT is disabled we're not
1643 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1644 	 * require a nested hypervisor to do a flush of its own.
1645 	 */
1646 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1647 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1648 
1649 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1650 		data |= ARCH_CAP_RDCL_NO;
1651 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1652 		data |= ARCH_CAP_SSB_NO;
1653 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1654 		data |= ARCH_CAP_MDS_NO;
1655 
1656 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1657 		/*
1658 		 * If RTM=0 because the kernel has disabled TSX, the host might
1659 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1660 		 * and therefore knows that there cannot be TAA) but keep
1661 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1662 		 * and we want to allow migrating those guests to tsx=off hosts.
1663 		 */
1664 		data &= ~ARCH_CAP_TAA_NO;
1665 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1666 		data |= ARCH_CAP_TAA_NO;
1667 	} else {
1668 		/*
1669 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1670 		 * host so the guest can choose between disabling TSX or
1671 		 * using VERW to clear CPU buffers.
1672 		 */
1673 	}
1674 
1675 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1676 		data |= ARCH_CAP_GDS_NO;
1677 
1678 	return data;
1679 }
1680 
1681 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1682 {
1683 	switch (msr->index) {
1684 	case MSR_IA32_ARCH_CAPABILITIES:
1685 		msr->data = kvm_get_arch_capabilities();
1686 		break;
1687 	case MSR_IA32_PERF_CAPABILITIES:
1688 		msr->data = kvm_caps.supported_perf_cap;
1689 		break;
1690 	case MSR_IA32_UCODE_REV:
1691 		rdmsrl_safe(msr->index, &msr->data);
1692 		break;
1693 	default:
1694 		return static_call(kvm_x86_get_msr_feature)(msr);
1695 	}
1696 	return 0;
1697 }
1698 
1699 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1700 {
1701 	struct kvm_msr_entry msr;
1702 	int r;
1703 
1704 	msr.index = index;
1705 	r = kvm_get_msr_feature(&msr);
1706 
1707 	if (r == KVM_MSR_RET_INVALID) {
1708 		/* Unconditionally clear the output for simplicity */
1709 		*data = 0;
1710 		if (kvm_msr_ignored_check(index, 0, false))
1711 			r = 0;
1712 	}
1713 
1714 	if (r)
1715 		return r;
1716 
1717 	*data = msr.data;
1718 
1719 	return 0;
1720 }
1721 
1722 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1723 {
1724 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1725 		return false;
1726 
1727 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1728 		return false;
1729 
1730 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1731 		return false;
1732 
1733 	if (efer & (EFER_LME | EFER_LMA) &&
1734 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1735 		return false;
1736 
1737 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1738 		return false;
1739 
1740 	return true;
1741 
1742 }
1743 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1744 {
1745 	if (efer & efer_reserved_bits)
1746 		return false;
1747 
1748 	return __kvm_valid_efer(vcpu, efer);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1751 
1752 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1753 {
1754 	u64 old_efer = vcpu->arch.efer;
1755 	u64 efer = msr_info->data;
1756 	int r;
1757 
1758 	if (efer & efer_reserved_bits)
1759 		return 1;
1760 
1761 	if (!msr_info->host_initiated) {
1762 		if (!__kvm_valid_efer(vcpu, efer))
1763 			return 1;
1764 
1765 		if (is_paging(vcpu) &&
1766 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1767 			return 1;
1768 	}
1769 
1770 	efer &= ~EFER_LMA;
1771 	efer |= vcpu->arch.efer & EFER_LMA;
1772 
1773 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1774 	if (r) {
1775 		WARN_ON(r > 0);
1776 		return r;
1777 	}
1778 
1779 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1780 		kvm_mmu_reset_context(vcpu);
1781 
1782 	return 0;
1783 }
1784 
1785 void kvm_enable_efer_bits(u64 mask)
1786 {
1787        efer_reserved_bits &= ~mask;
1788 }
1789 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1790 
1791 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1792 {
1793 	struct kvm_x86_msr_filter *msr_filter;
1794 	struct msr_bitmap_range *ranges;
1795 	struct kvm *kvm = vcpu->kvm;
1796 	bool allowed;
1797 	int idx;
1798 	u32 i;
1799 
1800 	/* x2APIC MSRs do not support filtering. */
1801 	if (index >= 0x800 && index <= 0x8ff)
1802 		return true;
1803 
1804 	idx = srcu_read_lock(&kvm->srcu);
1805 
1806 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1807 	if (!msr_filter) {
1808 		allowed = true;
1809 		goto out;
1810 	}
1811 
1812 	allowed = msr_filter->default_allow;
1813 	ranges = msr_filter->ranges;
1814 
1815 	for (i = 0; i < msr_filter->count; i++) {
1816 		u32 start = ranges[i].base;
1817 		u32 end = start + ranges[i].nmsrs;
1818 		u32 flags = ranges[i].flags;
1819 		unsigned long *bitmap = ranges[i].bitmap;
1820 
1821 		if ((index >= start) && (index < end) && (flags & type)) {
1822 			allowed = test_bit(index - start, bitmap);
1823 			break;
1824 		}
1825 	}
1826 
1827 out:
1828 	srcu_read_unlock(&kvm->srcu, idx);
1829 
1830 	return allowed;
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1833 
1834 /*
1835  * Write @data into the MSR specified by @index.  Select MSR specific fault
1836  * checks are bypassed if @host_initiated is %true.
1837  * Returns 0 on success, non-0 otherwise.
1838  * Assumes vcpu_load() was already called.
1839  */
1840 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1841 			 bool host_initiated)
1842 {
1843 	struct msr_data msr;
1844 
1845 	switch (index) {
1846 	case MSR_FS_BASE:
1847 	case MSR_GS_BASE:
1848 	case MSR_KERNEL_GS_BASE:
1849 	case MSR_CSTAR:
1850 	case MSR_LSTAR:
1851 		if (is_noncanonical_address(data, vcpu))
1852 			return 1;
1853 		break;
1854 	case MSR_IA32_SYSENTER_EIP:
1855 	case MSR_IA32_SYSENTER_ESP:
1856 		/*
1857 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1858 		 * non-canonical address is written on Intel but not on
1859 		 * AMD (which ignores the top 32-bits, because it does
1860 		 * not implement 64-bit SYSENTER).
1861 		 *
1862 		 * 64-bit code should hence be able to write a non-canonical
1863 		 * value on AMD.  Making the address canonical ensures that
1864 		 * vmentry does not fail on Intel after writing a non-canonical
1865 		 * value, and that something deterministic happens if the guest
1866 		 * invokes 64-bit SYSENTER.
1867 		 */
1868 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1869 		break;
1870 	case MSR_TSC_AUX:
1871 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1872 			return 1;
1873 
1874 		if (!host_initiated &&
1875 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1876 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1877 			return 1;
1878 
1879 		/*
1880 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1881 		 * incomplete and conflicting architectural behavior.  Current
1882 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1883 		 * reserved and always read as zeros.  Enforce Intel's reserved
1884 		 * bits check if and only if the guest CPU is Intel, and clear
1885 		 * the bits in all other cases.  This ensures cross-vendor
1886 		 * migration will provide consistent behavior for the guest.
1887 		 */
1888 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1889 			return 1;
1890 
1891 		data = (u32)data;
1892 		break;
1893 	}
1894 
1895 	msr.data = data;
1896 	msr.index = index;
1897 	msr.host_initiated = host_initiated;
1898 
1899 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1900 }
1901 
1902 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1903 				     u32 index, u64 data, bool host_initiated)
1904 {
1905 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1906 
1907 	if (ret == KVM_MSR_RET_INVALID)
1908 		if (kvm_msr_ignored_check(index, data, true))
1909 			ret = 0;
1910 
1911 	return ret;
1912 }
1913 
1914 /*
1915  * Read the MSR specified by @index into @data.  Select MSR specific fault
1916  * checks are bypassed if @host_initiated is %true.
1917  * Returns 0 on success, non-0 otherwise.
1918  * Assumes vcpu_load() was already called.
1919  */
1920 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1921 		  bool host_initiated)
1922 {
1923 	struct msr_data msr;
1924 	int ret;
1925 
1926 	switch (index) {
1927 	case MSR_TSC_AUX:
1928 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1929 			return 1;
1930 
1931 		if (!host_initiated &&
1932 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1933 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1934 			return 1;
1935 		break;
1936 	}
1937 
1938 	msr.index = index;
1939 	msr.host_initiated = host_initiated;
1940 
1941 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1942 	if (!ret)
1943 		*data = msr.data;
1944 	return ret;
1945 }
1946 
1947 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1948 				     u32 index, u64 *data, bool host_initiated)
1949 {
1950 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1951 
1952 	if (ret == KVM_MSR_RET_INVALID) {
1953 		/* Unconditionally clear *data for simplicity */
1954 		*data = 0;
1955 		if (kvm_msr_ignored_check(index, 0, false))
1956 			ret = 0;
1957 	}
1958 
1959 	return ret;
1960 }
1961 
1962 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1963 {
1964 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1965 		return KVM_MSR_RET_FILTERED;
1966 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1967 }
1968 
1969 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1970 {
1971 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1972 		return KVM_MSR_RET_FILTERED;
1973 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1974 }
1975 
1976 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1977 {
1978 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1979 }
1980 EXPORT_SYMBOL_GPL(kvm_get_msr);
1981 
1982 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1983 {
1984 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_set_msr);
1987 
1988 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1989 {
1990 	if (!vcpu->run->msr.error) {
1991 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1992 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1993 	}
1994 }
1995 
1996 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1997 {
1998 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1999 }
2000 
2001 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2002 {
2003 	complete_userspace_rdmsr(vcpu);
2004 	return complete_emulated_msr_access(vcpu);
2005 }
2006 
2007 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2008 {
2009 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2010 }
2011 
2012 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2013 {
2014 	complete_userspace_rdmsr(vcpu);
2015 	return complete_fast_msr_access(vcpu);
2016 }
2017 
2018 static u64 kvm_msr_reason(int r)
2019 {
2020 	switch (r) {
2021 	case KVM_MSR_RET_INVALID:
2022 		return KVM_MSR_EXIT_REASON_UNKNOWN;
2023 	case KVM_MSR_RET_FILTERED:
2024 		return KVM_MSR_EXIT_REASON_FILTER;
2025 	default:
2026 		return KVM_MSR_EXIT_REASON_INVAL;
2027 	}
2028 }
2029 
2030 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2031 			      u32 exit_reason, u64 data,
2032 			      int (*completion)(struct kvm_vcpu *vcpu),
2033 			      int r)
2034 {
2035 	u64 msr_reason = kvm_msr_reason(r);
2036 
2037 	/* Check if the user wanted to know about this MSR fault */
2038 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2039 		return 0;
2040 
2041 	vcpu->run->exit_reason = exit_reason;
2042 	vcpu->run->msr.error = 0;
2043 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2044 	vcpu->run->msr.reason = msr_reason;
2045 	vcpu->run->msr.index = index;
2046 	vcpu->run->msr.data = data;
2047 	vcpu->arch.complete_userspace_io = completion;
2048 
2049 	return 1;
2050 }
2051 
2052 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2053 {
2054 	u32 ecx = kvm_rcx_read(vcpu);
2055 	u64 data;
2056 	int r;
2057 
2058 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2059 
2060 	if (!r) {
2061 		trace_kvm_msr_read(ecx, data);
2062 
2063 		kvm_rax_write(vcpu, data & -1u);
2064 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2065 	} else {
2066 		/* MSR read failed? See if we should ask user space */
2067 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2068 				       complete_fast_rdmsr, r))
2069 			return 0;
2070 		trace_kvm_msr_read_ex(ecx);
2071 	}
2072 
2073 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2074 }
2075 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2076 
2077 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2078 {
2079 	u32 ecx = kvm_rcx_read(vcpu);
2080 	u64 data = kvm_read_edx_eax(vcpu);
2081 	int r;
2082 
2083 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2084 
2085 	if (!r) {
2086 		trace_kvm_msr_write(ecx, data);
2087 	} else {
2088 		/* MSR write failed? See if we should ask user space */
2089 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2090 				       complete_fast_msr_access, r))
2091 			return 0;
2092 		/* Signal all other negative errors to userspace */
2093 		if (r < 0)
2094 			return r;
2095 		trace_kvm_msr_write_ex(ecx, data);
2096 	}
2097 
2098 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2101 
2102 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2103 {
2104 	return kvm_skip_emulated_instruction(vcpu);
2105 }
2106 
2107 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2108 {
2109 	/* Treat an INVD instruction as a NOP and just skip it. */
2110 	return kvm_emulate_as_nop(vcpu);
2111 }
2112 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2113 
2114 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2115 {
2116 	kvm_queue_exception(vcpu, UD_VECTOR);
2117 	return 1;
2118 }
2119 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2120 
2121 
2122 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2123 {
2124 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2125 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2126 		return kvm_handle_invalid_op(vcpu);
2127 
2128 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2129 	return kvm_emulate_as_nop(vcpu);
2130 }
2131 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2132 {
2133 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2134 }
2135 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2136 
2137 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2138 {
2139 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2140 }
2141 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2142 
2143 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2144 {
2145 	xfer_to_guest_mode_prepare();
2146 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2147 		xfer_to_guest_mode_work_pending();
2148 }
2149 
2150 /*
2151  * The fast path for frequent and performance sensitive wrmsr emulation,
2152  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2153  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2154  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2155  * other cases which must be called after interrupts are enabled on the host.
2156  */
2157 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2158 {
2159 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2160 		return 1;
2161 
2162 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2163 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2164 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2165 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2166 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2167 
2168 	return 1;
2169 }
2170 
2171 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2172 {
2173 	if (!kvm_can_use_hv_timer(vcpu))
2174 		return 1;
2175 
2176 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2177 	return 0;
2178 }
2179 
2180 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2181 {
2182 	u32 msr = kvm_rcx_read(vcpu);
2183 	u64 data;
2184 	fastpath_t ret = EXIT_FASTPATH_NONE;
2185 
2186 	kvm_vcpu_srcu_read_lock(vcpu);
2187 
2188 	switch (msr) {
2189 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2190 		data = kvm_read_edx_eax(vcpu);
2191 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2192 			kvm_skip_emulated_instruction(vcpu);
2193 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2194 		}
2195 		break;
2196 	case MSR_IA32_TSC_DEADLINE:
2197 		data = kvm_read_edx_eax(vcpu);
2198 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2199 			kvm_skip_emulated_instruction(vcpu);
2200 			ret = EXIT_FASTPATH_REENTER_GUEST;
2201 		}
2202 		break;
2203 	default:
2204 		break;
2205 	}
2206 
2207 	if (ret != EXIT_FASTPATH_NONE)
2208 		trace_kvm_msr_write(msr, data);
2209 
2210 	kvm_vcpu_srcu_read_unlock(vcpu);
2211 
2212 	return ret;
2213 }
2214 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2215 
2216 /*
2217  * Adapt set_msr() to msr_io()'s calling convention
2218  */
2219 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2220 {
2221 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2222 }
2223 
2224 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2225 {
2226 	u64 val;
2227 
2228 	/*
2229 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2230 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2231 	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2232 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2233 	 * all MSRs when emulating RESET.
2234 	 */
2235 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2236 		if (do_get_msr(vcpu, index, &val) || *data != val)
2237 			return -EINVAL;
2238 
2239 		return 0;
2240 	}
2241 
2242 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2243 }
2244 
2245 #ifdef CONFIG_X86_64
2246 struct pvclock_clock {
2247 	int vclock_mode;
2248 	u64 cycle_last;
2249 	u64 mask;
2250 	u32 mult;
2251 	u32 shift;
2252 	u64 base_cycles;
2253 	u64 offset;
2254 };
2255 
2256 struct pvclock_gtod_data {
2257 	seqcount_t	seq;
2258 
2259 	struct pvclock_clock clock; /* extract of a clocksource struct */
2260 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2261 
2262 	ktime_t		offs_boot;
2263 	u64		wall_time_sec;
2264 };
2265 
2266 static struct pvclock_gtod_data pvclock_gtod_data;
2267 
2268 static void update_pvclock_gtod(struct timekeeper *tk)
2269 {
2270 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2271 
2272 	write_seqcount_begin(&vdata->seq);
2273 
2274 	/* copy pvclock gtod data */
2275 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2276 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2277 	vdata->clock.mask		= tk->tkr_mono.mask;
2278 	vdata->clock.mult		= tk->tkr_mono.mult;
2279 	vdata->clock.shift		= tk->tkr_mono.shift;
2280 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2281 	vdata->clock.offset		= tk->tkr_mono.base;
2282 
2283 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2284 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2285 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2286 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2287 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2288 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2289 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2290 
2291 	vdata->wall_time_sec            = tk->xtime_sec;
2292 
2293 	vdata->offs_boot		= tk->offs_boot;
2294 
2295 	write_seqcount_end(&vdata->seq);
2296 }
2297 
2298 static s64 get_kvmclock_base_ns(void)
2299 {
2300 	/* Count up from boot time, but with the frequency of the raw clock.  */
2301 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2302 }
2303 #else
2304 static s64 get_kvmclock_base_ns(void)
2305 {
2306 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2307 	return ktime_get_boottime_ns();
2308 }
2309 #endif
2310 
2311 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2312 {
2313 	int version;
2314 	int r;
2315 	struct pvclock_wall_clock wc;
2316 	u32 wc_sec_hi;
2317 	u64 wall_nsec;
2318 
2319 	if (!wall_clock)
2320 		return;
2321 
2322 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2323 	if (r)
2324 		return;
2325 
2326 	if (version & 1)
2327 		++version;  /* first time write, random junk */
2328 
2329 	++version;
2330 
2331 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2332 		return;
2333 
2334 	/*
2335 	 * The guest calculates current wall clock time by adding
2336 	 * system time (updated by kvm_guest_time_update below) to the
2337 	 * wall clock specified here.  We do the reverse here.
2338 	 */
2339 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2340 
2341 	wc.nsec = do_div(wall_nsec, 1000000000);
2342 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2343 	wc.version = version;
2344 
2345 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2346 
2347 	if (sec_hi_ofs) {
2348 		wc_sec_hi = wall_nsec >> 32;
2349 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2350 				&wc_sec_hi, sizeof(wc_sec_hi));
2351 	}
2352 
2353 	version++;
2354 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2355 }
2356 
2357 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2358 				  bool old_msr, bool host_initiated)
2359 {
2360 	struct kvm_arch *ka = &vcpu->kvm->arch;
2361 
2362 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2363 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2364 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2365 
2366 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2367 	}
2368 
2369 	vcpu->arch.time = system_time;
2370 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2371 
2372 	/* we verify if the enable bit is set... */
2373 	if (system_time & 1)
2374 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2375 				 sizeof(struct pvclock_vcpu_time_info));
2376 	else
2377 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2378 
2379 	return;
2380 }
2381 
2382 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2383 {
2384 	do_shl32_div32(dividend, divisor);
2385 	return dividend;
2386 }
2387 
2388 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2389 			       s8 *pshift, u32 *pmultiplier)
2390 {
2391 	uint64_t scaled64;
2392 	int32_t  shift = 0;
2393 	uint64_t tps64;
2394 	uint32_t tps32;
2395 
2396 	tps64 = base_hz;
2397 	scaled64 = scaled_hz;
2398 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2399 		tps64 >>= 1;
2400 		shift--;
2401 	}
2402 
2403 	tps32 = (uint32_t)tps64;
2404 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2405 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2406 			scaled64 >>= 1;
2407 		else
2408 			tps32 <<= 1;
2409 		shift++;
2410 	}
2411 
2412 	*pshift = shift;
2413 	*pmultiplier = div_frac(scaled64, tps32);
2414 }
2415 
2416 #ifdef CONFIG_X86_64
2417 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2418 #endif
2419 
2420 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2421 static unsigned long max_tsc_khz;
2422 
2423 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2424 {
2425 	u64 v = (u64)khz * (1000000 + ppm);
2426 	do_div(v, 1000000);
2427 	return v;
2428 }
2429 
2430 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2431 
2432 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2433 {
2434 	u64 ratio;
2435 
2436 	/* Guest TSC same frequency as host TSC? */
2437 	if (!scale) {
2438 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2439 		return 0;
2440 	}
2441 
2442 	/* TSC scaling supported? */
2443 	if (!kvm_caps.has_tsc_control) {
2444 		if (user_tsc_khz > tsc_khz) {
2445 			vcpu->arch.tsc_catchup = 1;
2446 			vcpu->arch.tsc_always_catchup = 1;
2447 			return 0;
2448 		} else {
2449 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2450 			return -1;
2451 		}
2452 	}
2453 
2454 	/* TSC scaling required  - calculate ratio */
2455 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2456 				user_tsc_khz, tsc_khz);
2457 
2458 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2459 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2460 			            user_tsc_khz);
2461 		return -1;
2462 	}
2463 
2464 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2465 	return 0;
2466 }
2467 
2468 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2469 {
2470 	u32 thresh_lo, thresh_hi;
2471 	int use_scaling = 0;
2472 
2473 	/* tsc_khz can be zero if TSC calibration fails */
2474 	if (user_tsc_khz == 0) {
2475 		/* set tsc_scaling_ratio to a safe value */
2476 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2477 		return -1;
2478 	}
2479 
2480 	/* Compute a scale to convert nanoseconds in TSC cycles */
2481 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2482 			   &vcpu->arch.virtual_tsc_shift,
2483 			   &vcpu->arch.virtual_tsc_mult);
2484 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2485 
2486 	/*
2487 	 * Compute the variation in TSC rate which is acceptable
2488 	 * within the range of tolerance and decide if the
2489 	 * rate being applied is within that bounds of the hardware
2490 	 * rate.  If so, no scaling or compensation need be done.
2491 	 */
2492 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2493 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2494 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2495 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2496 			 user_tsc_khz, thresh_lo, thresh_hi);
2497 		use_scaling = 1;
2498 	}
2499 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2500 }
2501 
2502 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2503 {
2504 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2505 				      vcpu->arch.virtual_tsc_mult,
2506 				      vcpu->arch.virtual_tsc_shift);
2507 	tsc += vcpu->arch.this_tsc_write;
2508 	return tsc;
2509 }
2510 
2511 #ifdef CONFIG_X86_64
2512 static inline int gtod_is_based_on_tsc(int mode)
2513 {
2514 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2515 }
2516 #endif
2517 
2518 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2519 {
2520 #ifdef CONFIG_X86_64
2521 	bool vcpus_matched;
2522 	struct kvm_arch *ka = &vcpu->kvm->arch;
2523 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2524 
2525 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2526 			 atomic_read(&vcpu->kvm->online_vcpus));
2527 
2528 	/*
2529 	 * Once the masterclock is enabled, always perform request in
2530 	 * order to update it.
2531 	 *
2532 	 * In order to enable masterclock, the host clocksource must be TSC
2533 	 * and the vcpus need to have matched TSCs.  When that happens,
2534 	 * perform request to enable masterclock.
2535 	 */
2536 	if (ka->use_master_clock ||
2537 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2538 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2539 
2540 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2541 			    atomic_read(&vcpu->kvm->online_vcpus),
2542 		            ka->use_master_clock, gtod->clock.vclock_mode);
2543 #endif
2544 }
2545 
2546 /*
2547  * Multiply tsc by a fixed point number represented by ratio.
2548  *
2549  * The most significant 64-N bits (mult) of ratio represent the
2550  * integral part of the fixed point number; the remaining N bits
2551  * (frac) represent the fractional part, ie. ratio represents a fixed
2552  * point number (mult + frac * 2^(-N)).
2553  *
2554  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2555  */
2556 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2557 {
2558 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2559 }
2560 
2561 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2562 {
2563 	u64 _tsc = tsc;
2564 
2565 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2566 		_tsc = __scale_tsc(ratio, tsc);
2567 
2568 	return _tsc;
2569 }
2570 
2571 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2572 {
2573 	u64 tsc;
2574 
2575 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2576 
2577 	return target_tsc - tsc;
2578 }
2579 
2580 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2581 {
2582 	return vcpu->arch.l1_tsc_offset +
2583 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2584 }
2585 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2586 
2587 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2588 {
2589 	u64 nested_offset;
2590 
2591 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2592 		nested_offset = l1_offset;
2593 	else
2594 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2595 						kvm_caps.tsc_scaling_ratio_frac_bits);
2596 
2597 	nested_offset += l2_offset;
2598 	return nested_offset;
2599 }
2600 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2601 
2602 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2603 {
2604 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2605 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2606 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2607 
2608 	return l1_multiplier;
2609 }
2610 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2611 
2612 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2613 {
2614 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2615 				   vcpu->arch.l1_tsc_offset,
2616 				   l1_offset);
2617 
2618 	vcpu->arch.l1_tsc_offset = l1_offset;
2619 
2620 	/*
2621 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2622 	 * according to the spec this should set L1's TSC (as opposed to
2623 	 * setting L1's offset for L2).
2624 	 */
2625 	if (is_guest_mode(vcpu))
2626 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2627 			l1_offset,
2628 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2629 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2630 	else
2631 		vcpu->arch.tsc_offset = l1_offset;
2632 
2633 	static_call(kvm_x86_write_tsc_offset)(vcpu);
2634 }
2635 
2636 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2637 {
2638 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2639 
2640 	/* Userspace is changing the multiplier while L2 is active */
2641 	if (is_guest_mode(vcpu))
2642 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2643 			l1_multiplier,
2644 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2645 	else
2646 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2647 
2648 	if (kvm_caps.has_tsc_control)
2649 		static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2650 }
2651 
2652 static inline bool kvm_check_tsc_unstable(void)
2653 {
2654 #ifdef CONFIG_X86_64
2655 	/*
2656 	 * TSC is marked unstable when we're running on Hyper-V,
2657 	 * 'TSC page' clocksource is good.
2658 	 */
2659 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2660 		return false;
2661 #endif
2662 	return check_tsc_unstable();
2663 }
2664 
2665 /*
2666  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2667  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2668  * participates in.
2669  */
2670 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2671 				  u64 ns, bool matched)
2672 {
2673 	struct kvm *kvm = vcpu->kvm;
2674 
2675 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2676 
2677 	/*
2678 	 * We also track th most recent recorded KHZ, write and time to
2679 	 * allow the matching interval to be extended at each write.
2680 	 */
2681 	kvm->arch.last_tsc_nsec = ns;
2682 	kvm->arch.last_tsc_write = tsc;
2683 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2684 	kvm->arch.last_tsc_offset = offset;
2685 
2686 	vcpu->arch.last_guest_tsc = tsc;
2687 
2688 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2689 
2690 	if (!matched) {
2691 		/*
2692 		 * We split periods of matched TSC writes into generations.
2693 		 * For each generation, we track the original measured
2694 		 * nanosecond time, offset, and write, so if TSCs are in
2695 		 * sync, we can match exact offset, and if not, we can match
2696 		 * exact software computation in compute_guest_tsc()
2697 		 *
2698 		 * These values are tracked in kvm->arch.cur_xxx variables.
2699 		 */
2700 		kvm->arch.cur_tsc_generation++;
2701 		kvm->arch.cur_tsc_nsec = ns;
2702 		kvm->arch.cur_tsc_write = tsc;
2703 		kvm->arch.cur_tsc_offset = offset;
2704 		kvm->arch.nr_vcpus_matched_tsc = 0;
2705 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2706 		kvm->arch.nr_vcpus_matched_tsc++;
2707 	}
2708 
2709 	/* Keep track of which generation this VCPU has synchronized to */
2710 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2711 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2712 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2713 
2714 	kvm_track_tsc_matching(vcpu);
2715 }
2716 
2717 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2718 {
2719 	struct kvm *kvm = vcpu->kvm;
2720 	u64 offset, ns, elapsed;
2721 	unsigned long flags;
2722 	bool matched = false;
2723 	bool synchronizing = false;
2724 
2725 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2726 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2727 	ns = get_kvmclock_base_ns();
2728 	elapsed = ns - kvm->arch.last_tsc_nsec;
2729 
2730 	if (vcpu->arch.virtual_tsc_khz) {
2731 		if (data == 0) {
2732 			/*
2733 			 * detection of vcpu initialization -- need to sync
2734 			 * with other vCPUs. This particularly helps to keep
2735 			 * kvm_clock stable after CPU hotplug
2736 			 */
2737 			synchronizing = true;
2738 		} else {
2739 			u64 tsc_exp = kvm->arch.last_tsc_write +
2740 						nsec_to_cycles(vcpu, elapsed);
2741 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2742 			/*
2743 			 * Special case: TSC write with a small delta (1 second)
2744 			 * of virtual cycle time against real time is
2745 			 * interpreted as an attempt to synchronize the CPU.
2746 			 */
2747 			synchronizing = data < tsc_exp + tsc_hz &&
2748 					data + tsc_hz > tsc_exp;
2749 		}
2750 	}
2751 
2752 	/*
2753 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2754 	 * TSC, we add elapsed time in this computation.  We could let the
2755 	 * compensation code attempt to catch up if we fall behind, but
2756 	 * it's better to try to match offsets from the beginning.
2757          */
2758 	if (synchronizing &&
2759 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2760 		if (!kvm_check_tsc_unstable()) {
2761 			offset = kvm->arch.cur_tsc_offset;
2762 		} else {
2763 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2764 			data += delta;
2765 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2766 		}
2767 		matched = true;
2768 	}
2769 
2770 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2771 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2772 }
2773 
2774 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2775 					   s64 adjustment)
2776 {
2777 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2778 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2779 }
2780 
2781 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2782 {
2783 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2784 		WARN_ON(adjustment < 0);
2785 	adjustment = kvm_scale_tsc((u64) adjustment,
2786 				   vcpu->arch.l1_tsc_scaling_ratio);
2787 	adjust_tsc_offset_guest(vcpu, adjustment);
2788 }
2789 
2790 #ifdef CONFIG_X86_64
2791 
2792 static u64 read_tsc(void)
2793 {
2794 	u64 ret = (u64)rdtsc_ordered();
2795 	u64 last = pvclock_gtod_data.clock.cycle_last;
2796 
2797 	if (likely(ret >= last))
2798 		return ret;
2799 
2800 	/*
2801 	 * GCC likes to generate cmov here, but this branch is extremely
2802 	 * predictable (it's just a function of time and the likely is
2803 	 * very likely) and there's a data dependence, so force GCC
2804 	 * to generate a branch instead.  I don't barrier() because
2805 	 * we don't actually need a barrier, and if this function
2806 	 * ever gets inlined it will generate worse code.
2807 	 */
2808 	asm volatile ("");
2809 	return last;
2810 }
2811 
2812 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2813 			  int *mode)
2814 {
2815 	u64 tsc_pg_val;
2816 	long v;
2817 
2818 	switch (clock->vclock_mode) {
2819 	case VDSO_CLOCKMODE_HVCLOCK:
2820 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2821 					 tsc_timestamp, &tsc_pg_val)) {
2822 			/* TSC page valid */
2823 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2824 			v = (tsc_pg_val - clock->cycle_last) &
2825 				clock->mask;
2826 		} else {
2827 			/* TSC page invalid */
2828 			*mode = VDSO_CLOCKMODE_NONE;
2829 		}
2830 		break;
2831 	case VDSO_CLOCKMODE_TSC:
2832 		*mode = VDSO_CLOCKMODE_TSC;
2833 		*tsc_timestamp = read_tsc();
2834 		v = (*tsc_timestamp - clock->cycle_last) &
2835 			clock->mask;
2836 		break;
2837 	default:
2838 		*mode = VDSO_CLOCKMODE_NONE;
2839 	}
2840 
2841 	if (*mode == VDSO_CLOCKMODE_NONE)
2842 		*tsc_timestamp = v = 0;
2843 
2844 	return v * clock->mult;
2845 }
2846 
2847 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2848 {
2849 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2850 	unsigned long seq;
2851 	int mode;
2852 	u64 ns;
2853 
2854 	do {
2855 		seq = read_seqcount_begin(&gtod->seq);
2856 		ns = gtod->raw_clock.base_cycles;
2857 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2858 		ns >>= gtod->raw_clock.shift;
2859 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2860 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2861 	*t = ns;
2862 
2863 	return mode;
2864 }
2865 
2866 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2867 {
2868 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2869 	unsigned long seq;
2870 	int mode;
2871 	u64 ns;
2872 
2873 	do {
2874 		seq = read_seqcount_begin(&gtod->seq);
2875 		ts->tv_sec = gtod->wall_time_sec;
2876 		ns = gtod->clock.base_cycles;
2877 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2878 		ns >>= gtod->clock.shift;
2879 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2880 
2881 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2882 	ts->tv_nsec = ns;
2883 
2884 	return mode;
2885 }
2886 
2887 /* returns true if host is using TSC based clocksource */
2888 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2889 {
2890 	/* checked again under seqlock below */
2891 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2892 		return false;
2893 
2894 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2895 						      tsc_timestamp));
2896 }
2897 
2898 /* returns true if host is using TSC based clocksource */
2899 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2900 					   u64 *tsc_timestamp)
2901 {
2902 	/* checked again under seqlock below */
2903 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2904 		return false;
2905 
2906 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2907 }
2908 #endif
2909 
2910 /*
2911  *
2912  * Assuming a stable TSC across physical CPUS, and a stable TSC
2913  * across virtual CPUs, the following condition is possible.
2914  * Each numbered line represents an event visible to both
2915  * CPUs at the next numbered event.
2916  *
2917  * "timespecX" represents host monotonic time. "tscX" represents
2918  * RDTSC value.
2919  *
2920  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2921  *
2922  * 1.  read timespec0,tsc0
2923  * 2.					| timespec1 = timespec0 + N
2924  * 					| tsc1 = tsc0 + M
2925  * 3. transition to guest		| transition to guest
2926  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2927  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2928  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2929  *
2930  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2931  *
2932  * 	- ret0 < ret1
2933  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2934  *		...
2935  *	- 0 < N - M => M < N
2936  *
2937  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2938  * always the case (the difference between two distinct xtime instances
2939  * might be smaller then the difference between corresponding TSC reads,
2940  * when updating guest vcpus pvclock areas).
2941  *
2942  * To avoid that problem, do not allow visibility of distinct
2943  * system_timestamp/tsc_timestamp values simultaneously: use a master
2944  * copy of host monotonic time values. Update that master copy
2945  * in lockstep.
2946  *
2947  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2948  *
2949  */
2950 
2951 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2952 {
2953 #ifdef CONFIG_X86_64
2954 	struct kvm_arch *ka = &kvm->arch;
2955 	int vclock_mode;
2956 	bool host_tsc_clocksource, vcpus_matched;
2957 
2958 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2959 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2960 			atomic_read(&kvm->online_vcpus));
2961 
2962 	/*
2963 	 * If the host uses TSC clock, then passthrough TSC as stable
2964 	 * to the guest.
2965 	 */
2966 	host_tsc_clocksource = kvm_get_time_and_clockread(
2967 					&ka->master_kernel_ns,
2968 					&ka->master_cycle_now);
2969 
2970 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2971 				&& !ka->backwards_tsc_observed
2972 				&& !ka->boot_vcpu_runs_old_kvmclock;
2973 
2974 	if (ka->use_master_clock)
2975 		atomic_set(&kvm_guest_has_master_clock, 1);
2976 
2977 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2978 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2979 					vcpus_matched);
2980 #endif
2981 }
2982 
2983 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2984 {
2985 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2986 }
2987 
2988 static void __kvm_start_pvclock_update(struct kvm *kvm)
2989 {
2990 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2991 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2992 }
2993 
2994 static void kvm_start_pvclock_update(struct kvm *kvm)
2995 {
2996 	kvm_make_mclock_inprogress_request(kvm);
2997 
2998 	/* no guest entries from this point */
2999 	__kvm_start_pvclock_update(kvm);
3000 }
3001 
3002 static void kvm_end_pvclock_update(struct kvm *kvm)
3003 {
3004 	struct kvm_arch *ka = &kvm->arch;
3005 	struct kvm_vcpu *vcpu;
3006 	unsigned long i;
3007 
3008 	write_seqcount_end(&ka->pvclock_sc);
3009 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3010 	kvm_for_each_vcpu(i, vcpu, kvm)
3011 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3012 
3013 	/* guest entries allowed */
3014 	kvm_for_each_vcpu(i, vcpu, kvm)
3015 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3016 }
3017 
3018 static void kvm_update_masterclock(struct kvm *kvm)
3019 {
3020 	kvm_hv_request_tsc_page_update(kvm);
3021 	kvm_start_pvclock_update(kvm);
3022 	pvclock_update_vm_gtod_copy(kvm);
3023 	kvm_end_pvclock_update(kvm);
3024 }
3025 
3026 /*
3027  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3028  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3029  * can change during boot even if the TSC is constant, as it's possible for KVM
3030  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3031  * notification when calibration completes, but practically speaking calibration
3032  * will complete before userspace is alive enough to create VMs.
3033  */
3034 static unsigned long get_cpu_tsc_khz(void)
3035 {
3036 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3037 		return tsc_khz;
3038 	else
3039 		return __this_cpu_read(cpu_tsc_khz);
3040 }
3041 
3042 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3043 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3044 {
3045 	struct kvm_arch *ka = &kvm->arch;
3046 	struct pvclock_vcpu_time_info hv_clock;
3047 
3048 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3049 	get_cpu();
3050 
3051 	data->flags = 0;
3052 	if (ka->use_master_clock &&
3053 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3054 #ifdef CONFIG_X86_64
3055 		struct timespec64 ts;
3056 
3057 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3058 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3059 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3060 		} else
3061 #endif
3062 		data->host_tsc = rdtsc();
3063 
3064 		data->flags |= KVM_CLOCK_TSC_STABLE;
3065 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3066 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3067 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3068 				   &hv_clock.tsc_shift,
3069 				   &hv_clock.tsc_to_system_mul);
3070 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3071 	} else {
3072 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3073 	}
3074 
3075 	put_cpu();
3076 }
3077 
3078 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3079 {
3080 	struct kvm_arch *ka = &kvm->arch;
3081 	unsigned seq;
3082 
3083 	do {
3084 		seq = read_seqcount_begin(&ka->pvclock_sc);
3085 		__get_kvmclock(kvm, data);
3086 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3087 }
3088 
3089 u64 get_kvmclock_ns(struct kvm *kvm)
3090 {
3091 	struct kvm_clock_data data;
3092 
3093 	get_kvmclock(kvm, &data);
3094 	return data.clock;
3095 }
3096 
3097 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3098 				    struct gfn_to_pfn_cache *gpc,
3099 				    unsigned int offset)
3100 {
3101 	struct kvm_vcpu_arch *vcpu = &v->arch;
3102 	struct pvclock_vcpu_time_info *guest_hv_clock;
3103 	unsigned long flags;
3104 
3105 	read_lock_irqsave(&gpc->lock, flags);
3106 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3107 		read_unlock_irqrestore(&gpc->lock, flags);
3108 
3109 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3110 			return;
3111 
3112 		read_lock_irqsave(&gpc->lock, flags);
3113 	}
3114 
3115 	guest_hv_clock = (void *)(gpc->khva + offset);
3116 
3117 	/*
3118 	 * This VCPU is paused, but it's legal for a guest to read another
3119 	 * VCPU's kvmclock, so we really have to follow the specification where
3120 	 * it says that version is odd if data is being modified, and even after
3121 	 * it is consistent.
3122 	 */
3123 
3124 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3125 	smp_wmb();
3126 
3127 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3128 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3129 
3130 	if (vcpu->pvclock_set_guest_stopped_request) {
3131 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3132 		vcpu->pvclock_set_guest_stopped_request = false;
3133 	}
3134 
3135 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3136 	smp_wmb();
3137 
3138 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3139 
3140 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3141 	read_unlock_irqrestore(&gpc->lock, flags);
3142 
3143 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3144 }
3145 
3146 static int kvm_guest_time_update(struct kvm_vcpu *v)
3147 {
3148 	unsigned long flags, tgt_tsc_khz;
3149 	unsigned seq;
3150 	struct kvm_vcpu_arch *vcpu = &v->arch;
3151 	struct kvm_arch *ka = &v->kvm->arch;
3152 	s64 kernel_ns;
3153 	u64 tsc_timestamp, host_tsc;
3154 	u8 pvclock_flags;
3155 	bool use_master_clock;
3156 
3157 	kernel_ns = 0;
3158 	host_tsc = 0;
3159 
3160 	/*
3161 	 * If the host uses TSC clock, then passthrough TSC as stable
3162 	 * to the guest.
3163 	 */
3164 	do {
3165 		seq = read_seqcount_begin(&ka->pvclock_sc);
3166 		use_master_clock = ka->use_master_clock;
3167 		if (use_master_clock) {
3168 			host_tsc = ka->master_cycle_now;
3169 			kernel_ns = ka->master_kernel_ns;
3170 		}
3171 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3172 
3173 	/* Keep irq disabled to prevent changes to the clock */
3174 	local_irq_save(flags);
3175 	tgt_tsc_khz = get_cpu_tsc_khz();
3176 	if (unlikely(tgt_tsc_khz == 0)) {
3177 		local_irq_restore(flags);
3178 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3179 		return 1;
3180 	}
3181 	if (!use_master_clock) {
3182 		host_tsc = rdtsc();
3183 		kernel_ns = get_kvmclock_base_ns();
3184 	}
3185 
3186 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3187 
3188 	/*
3189 	 * We may have to catch up the TSC to match elapsed wall clock
3190 	 * time for two reasons, even if kvmclock is used.
3191 	 *   1) CPU could have been running below the maximum TSC rate
3192 	 *   2) Broken TSC compensation resets the base at each VCPU
3193 	 *      entry to avoid unknown leaps of TSC even when running
3194 	 *      again on the same CPU.  This may cause apparent elapsed
3195 	 *      time to disappear, and the guest to stand still or run
3196 	 *	very slowly.
3197 	 */
3198 	if (vcpu->tsc_catchup) {
3199 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3200 		if (tsc > tsc_timestamp) {
3201 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3202 			tsc_timestamp = tsc;
3203 		}
3204 	}
3205 
3206 	local_irq_restore(flags);
3207 
3208 	/* With all the info we got, fill in the values */
3209 
3210 	if (kvm_caps.has_tsc_control)
3211 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3212 					    v->arch.l1_tsc_scaling_ratio);
3213 
3214 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3215 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3216 				   &vcpu->hv_clock.tsc_shift,
3217 				   &vcpu->hv_clock.tsc_to_system_mul);
3218 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3219 		kvm_xen_update_tsc_info(v);
3220 	}
3221 
3222 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3223 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3224 	vcpu->last_guest_tsc = tsc_timestamp;
3225 
3226 	/* If the host uses TSC clocksource, then it is stable */
3227 	pvclock_flags = 0;
3228 	if (use_master_clock)
3229 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3230 
3231 	vcpu->hv_clock.flags = pvclock_flags;
3232 
3233 	if (vcpu->pv_time.active)
3234 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3235 	if (vcpu->xen.vcpu_info_cache.active)
3236 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3237 					offsetof(struct compat_vcpu_info, time));
3238 	if (vcpu->xen.vcpu_time_info_cache.active)
3239 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3240 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3241 	return 0;
3242 }
3243 
3244 /*
3245  * kvmclock updates which are isolated to a given vcpu, such as
3246  * vcpu->cpu migration, should not allow system_timestamp from
3247  * the rest of the vcpus to remain static. Otherwise ntp frequency
3248  * correction applies to one vcpu's system_timestamp but not
3249  * the others.
3250  *
3251  * So in those cases, request a kvmclock update for all vcpus.
3252  * We need to rate-limit these requests though, as they can
3253  * considerably slow guests that have a large number of vcpus.
3254  * The time for a remote vcpu to update its kvmclock is bound
3255  * by the delay we use to rate-limit the updates.
3256  */
3257 
3258 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3259 
3260 static void kvmclock_update_fn(struct work_struct *work)
3261 {
3262 	unsigned long i;
3263 	struct delayed_work *dwork = to_delayed_work(work);
3264 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3265 					   kvmclock_update_work);
3266 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3267 	struct kvm_vcpu *vcpu;
3268 
3269 	kvm_for_each_vcpu(i, vcpu, kvm) {
3270 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3271 		kvm_vcpu_kick(vcpu);
3272 	}
3273 }
3274 
3275 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3276 {
3277 	struct kvm *kvm = v->kvm;
3278 
3279 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3280 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3281 					KVMCLOCK_UPDATE_DELAY);
3282 }
3283 
3284 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3285 
3286 static void kvmclock_sync_fn(struct work_struct *work)
3287 {
3288 	struct delayed_work *dwork = to_delayed_work(work);
3289 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3290 					   kvmclock_sync_work);
3291 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3292 
3293 	if (!kvmclock_periodic_sync)
3294 		return;
3295 
3296 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3297 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3298 					KVMCLOCK_SYNC_PERIOD);
3299 }
3300 
3301 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3302 static bool is_mci_control_msr(u32 msr)
3303 {
3304 	return (msr & 3) == 0;
3305 }
3306 static bool is_mci_status_msr(u32 msr)
3307 {
3308 	return (msr & 3) == 1;
3309 }
3310 
3311 /*
3312  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3313  */
3314 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3315 {
3316 	/* McStatusWrEn enabled? */
3317 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3318 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3319 
3320 	return false;
3321 }
3322 
3323 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3324 {
3325 	u64 mcg_cap = vcpu->arch.mcg_cap;
3326 	unsigned bank_num = mcg_cap & 0xff;
3327 	u32 msr = msr_info->index;
3328 	u64 data = msr_info->data;
3329 	u32 offset, last_msr;
3330 
3331 	switch (msr) {
3332 	case MSR_IA32_MCG_STATUS:
3333 		vcpu->arch.mcg_status = data;
3334 		break;
3335 	case MSR_IA32_MCG_CTL:
3336 		if (!(mcg_cap & MCG_CTL_P) &&
3337 		    (data || !msr_info->host_initiated))
3338 			return 1;
3339 		if (data != 0 && data != ~(u64)0)
3340 			return 1;
3341 		vcpu->arch.mcg_ctl = data;
3342 		break;
3343 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3344 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3345 		if (msr > last_msr)
3346 			return 1;
3347 
3348 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3349 			return 1;
3350 		/* An attempt to write a 1 to a reserved bit raises #GP */
3351 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3352 			return 1;
3353 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3354 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3355 		vcpu->arch.mci_ctl2_banks[offset] = data;
3356 		break;
3357 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3358 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3359 		if (msr > last_msr)
3360 			return 1;
3361 
3362 		/*
3363 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3364 		 * values are architecturally undefined.  But, some Linux
3365 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3366 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3367 		 * other bits in order to avoid an uncaught #GP in the guest.
3368 		 *
3369 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3370 		 * single-bit ECC data errors.
3371 		 */
3372 		if (is_mci_control_msr(msr) &&
3373 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3374 			return 1;
3375 
3376 		/*
3377 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3378 		 * AMD-based CPUs allow non-zero values, but if and only if
3379 		 * HWCR[McStatusWrEn] is set.
3380 		 */
3381 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3382 		    data != 0 && !can_set_mci_status(vcpu))
3383 			return 1;
3384 
3385 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3386 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3387 		vcpu->arch.mce_banks[offset] = data;
3388 		break;
3389 	default:
3390 		return 1;
3391 	}
3392 	return 0;
3393 }
3394 
3395 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3396 {
3397 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3398 
3399 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3400 }
3401 
3402 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3403 {
3404 	gpa_t gpa = data & ~0x3f;
3405 
3406 	/* Bits 4:5 are reserved, Should be zero */
3407 	if (data & 0x30)
3408 		return 1;
3409 
3410 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3411 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3412 		return 1;
3413 
3414 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3415 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3416 		return 1;
3417 
3418 	if (!lapic_in_kernel(vcpu))
3419 		return data ? 1 : 0;
3420 
3421 	vcpu->arch.apf.msr_en_val = data;
3422 
3423 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3424 		kvm_clear_async_pf_completion_queue(vcpu);
3425 		kvm_async_pf_hash_reset(vcpu);
3426 		return 0;
3427 	}
3428 
3429 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3430 					sizeof(u64)))
3431 		return 1;
3432 
3433 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3434 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3435 
3436 	kvm_async_pf_wakeup_all(vcpu);
3437 
3438 	return 0;
3439 }
3440 
3441 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3442 {
3443 	/* Bits 8-63 are reserved */
3444 	if (data >> 8)
3445 		return 1;
3446 
3447 	if (!lapic_in_kernel(vcpu))
3448 		return 1;
3449 
3450 	vcpu->arch.apf.msr_int_val = data;
3451 
3452 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3453 
3454 	return 0;
3455 }
3456 
3457 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3458 {
3459 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3460 	vcpu->arch.time = 0;
3461 }
3462 
3463 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3464 {
3465 	++vcpu->stat.tlb_flush;
3466 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3467 
3468 	/* Flushing all ASIDs flushes the current ASID... */
3469 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3470 }
3471 
3472 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3473 {
3474 	++vcpu->stat.tlb_flush;
3475 
3476 	if (!tdp_enabled) {
3477 		/*
3478 		 * A TLB flush on behalf of the guest is equivalent to
3479 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3480 		 * a forced sync of the shadow page tables.  Ensure all the
3481 		 * roots are synced and the guest TLB in hardware is clean.
3482 		 */
3483 		kvm_mmu_sync_roots(vcpu);
3484 		kvm_mmu_sync_prev_roots(vcpu);
3485 	}
3486 
3487 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3488 
3489 	/*
3490 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3491 	 * grained flushing.
3492 	 */
3493 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3494 }
3495 
3496 
3497 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3498 {
3499 	++vcpu->stat.tlb_flush;
3500 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3501 }
3502 
3503 /*
3504  * Service "local" TLB flush requests, which are specific to the current MMU
3505  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3506  * TLB flushes that are targeted at an MMU context also need to be serviced
3507  * prior before nested VM-Enter/VM-Exit.
3508  */
3509 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3510 {
3511 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3512 		kvm_vcpu_flush_tlb_current(vcpu);
3513 
3514 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3515 		kvm_vcpu_flush_tlb_guest(vcpu);
3516 }
3517 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3518 
3519 static void record_steal_time(struct kvm_vcpu *vcpu)
3520 {
3521 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3522 	struct kvm_steal_time __user *st;
3523 	struct kvm_memslots *slots;
3524 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3525 	u64 steal;
3526 	u32 version;
3527 
3528 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3529 		kvm_xen_runstate_set_running(vcpu);
3530 		return;
3531 	}
3532 
3533 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3534 		return;
3535 
3536 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3537 		return;
3538 
3539 	slots = kvm_memslots(vcpu->kvm);
3540 
3541 	if (unlikely(slots->generation != ghc->generation ||
3542 		     gpa != ghc->gpa ||
3543 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3544 		/* We rely on the fact that it fits in a single page. */
3545 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3546 
3547 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3548 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3549 			return;
3550 	}
3551 
3552 	st = (struct kvm_steal_time __user *)ghc->hva;
3553 	/*
3554 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3555 	 * expensive IPIs.
3556 	 */
3557 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3558 		u8 st_preempted = 0;
3559 		int err = -EFAULT;
3560 
3561 		if (!user_access_begin(st, sizeof(*st)))
3562 			return;
3563 
3564 		asm volatile("1: xchgb %0, %2\n"
3565 			     "xor %1, %1\n"
3566 			     "2:\n"
3567 			     _ASM_EXTABLE_UA(1b, 2b)
3568 			     : "+q" (st_preempted),
3569 			       "+&r" (err),
3570 			       "+m" (st->preempted));
3571 		if (err)
3572 			goto out;
3573 
3574 		user_access_end();
3575 
3576 		vcpu->arch.st.preempted = 0;
3577 
3578 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3579 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3580 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3581 			kvm_vcpu_flush_tlb_guest(vcpu);
3582 
3583 		if (!user_access_begin(st, sizeof(*st)))
3584 			goto dirty;
3585 	} else {
3586 		if (!user_access_begin(st, sizeof(*st)))
3587 			return;
3588 
3589 		unsafe_put_user(0, &st->preempted, out);
3590 		vcpu->arch.st.preempted = 0;
3591 	}
3592 
3593 	unsafe_get_user(version, &st->version, out);
3594 	if (version & 1)
3595 		version += 1;  /* first time write, random junk */
3596 
3597 	version += 1;
3598 	unsafe_put_user(version, &st->version, out);
3599 
3600 	smp_wmb();
3601 
3602 	unsafe_get_user(steal, &st->steal, out);
3603 	steal += current->sched_info.run_delay -
3604 		vcpu->arch.st.last_steal;
3605 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3606 	unsafe_put_user(steal, &st->steal, out);
3607 
3608 	version += 1;
3609 	unsafe_put_user(version, &st->version, out);
3610 
3611  out:
3612 	user_access_end();
3613  dirty:
3614 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3615 }
3616 
3617 static bool kvm_is_msr_to_save(u32 msr_index)
3618 {
3619 	unsigned int i;
3620 
3621 	for (i = 0; i < num_msrs_to_save; i++) {
3622 		if (msrs_to_save[i] == msr_index)
3623 			return true;
3624 	}
3625 
3626 	return false;
3627 }
3628 
3629 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3630 {
3631 	u32 msr = msr_info->index;
3632 	u64 data = msr_info->data;
3633 
3634 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3635 		return kvm_xen_write_hypercall_page(vcpu, data);
3636 
3637 	switch (msr) {
3638 	case MSR_AMD64_NB_CFG:
3639 	case MSR_IA32_UCODE_WRITE:
3640 	case MSR_VM_HSAVE_PA:
3641 	case MSR_AMD64_PATCH_LOADER:
3642 	case MSR_AMD64_BU_CFG2:
3643 	case MSR_AMD64_DC_CFG:
3644 	case MSR_AMD64_TW_CFG:
3645 	case MSR_F15H_EX_CFG:
3646 		break;
3647 
3648 	case MSR_IA32_UCODE_REV:
3649 		if (msr_info->host_initiated)
3650 			vcpu->arch.microcode_version = data;
3651 		break;
3652 	case MSR_IA32_ARCH_CAPABILITIES:
3653 		if (!msr_info->host_initiated)
3654 			return 1;
3655 		vcpu->arch.arch_capabilities = data;
3656 		break;
3657 	case MSR_IA32_PERF_CAPABILITIES:
3658 		if (!msr_info->host_initiated)
3659 			return 1;
3660 		if (data & ~kvm_caps.supported_perf_cap)
3661 			return 1;
3662 
3663 		/*
3664 		 * Note, this is not just a performance optimization!  KVM
3665 		 * disallows changing feature MSRs after the vCPU has run; PMU
3666 		 * refresh will bug the VM if called after the vCPU has run.
3667 		 */
3668 		if (vcpu->arch.perf_capabilities == data)
3669 			break;
3670 
3671 		vcpu->arch.perf_capabilities = data;
3672 		kvm_pmu_refresh(vcpu);
3673 		break;
3674 	case MSR_IA32_PRED_CMD:
3675 		if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3676 			return 1;
3677 
3678 		if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3679 			return 1;
3680 		if (!data)
3681 			break;
3682 
3683 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3684 		break;
3685 	case MSR_IA32_FLUSH_CMD:
3686 		if (!msr_info->host_initiated &&
3687 		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3688 			return 1;
3689 
3690 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3691 			return 1;
3692 		if (!data)
3693 			break;
3694 
3695 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3696 		break;
3697 	case MSR_EFER:
3698 		return set_efer(vcpu, msr_info);
3699 	case MSR_K7_HWCR:
3700 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3701 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3702 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3703 
3704 		/* Handle McStatusWrEn */
3705 		if (data == BIT_ULL(18)) {
3706 			vcpu->arch.msr_hwcr = data;
3707 		} else if (data != 0) {
3708 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3709 			return 1;
3710 		}
3711 		break;
3712 	case MSR_FAM10H_MMIO_CONF_BASE:
3713 		if (data != 0) {
3714 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3715 			return 1;
3716 		}
3717 		break;
3718 	case MSR_IA32_CR_PAT:
3719 		if (!kvm_pat_valid(data))
3720 			return 1;
3721 
3722 		vcpu->arch.pat = data;
3723 		break;
3724 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3725 	case MSR_MTRRdefType:
3726 		return kvm_mtrr_set_msr(vcpu, msr, data);
3727 	case MSR_IA32_APICBASE:
3728 		return kvm_set_apic_base(vcpu, msr_info);
3729 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3730 		return kvm_x2apic_msr_write(vcpu, msr, data);
3731 	case MSR_IA32_TSC_DEADLINE:
3732 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3733 		break;
3734 	case MSR_IA32_TSC_ADJUST:
3735 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3736 			if (!msr_info->host_initiated) {
3737 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3738 				adjust_tsc_offset_guest(vcpu, adj);
3739 				/* Before back to guest, tsc_timestamp must be adjusted
3740 				 * as well, otherwise guest's percpu pvclock time could jump.
3741 				 */
3742 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3743 			}
3744 			vcpu->arch.ia32_tsc_adjust_msr = data;
3745 		}
3746 		break;
3747 	case MSR_IA32_MISC_ENABLE: {
3748 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3749 
3750 		if (!msr_info->host_initiated) {
3751 			/* RO bits */
3752 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3753 				return 1;
3754 
3755 			/* R bits, i.e. writes are ignored, but don't fault. */
3756 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3757 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3758 		}
3759 
3760 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3761 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3762 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3763 				return 1;
3764 			vcpu->arch.ia32_misc_enable_msr = data;
3765 			kvm_update_cpuid_runtime(vcpu);
3766 		} else {
3767 			vcpu->arch.ia32_misc_enable_msr = data;
3768 		}
3769 		break;
3770 	}
3771 	case MSR_IA32_SMBASE:
3772 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3773 			return 1;
3774 		vcpu->arch.smbase = data;
3775 		break;
3776 	case MSR_IA32_POWER_CTL:
3777 		vcpu->arch.msr_ia32_power_ctl = data;
3778 		break;
3779 	case MSR_IA32_TSC:
3780 		if (msr_info->host_initiated) {
3781 			kvm_synchronize_tsc(vcpu, data);
3782 		} else {
3783 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3784 			adjust_tsc_offset_guest(vcpu, adj);
3785 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3786 		}
3787 		break;
3788 	case MSR_IA32_XSS:
3789 		if (!msr_info->host_initiated &&
3790 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3791 			return 1;
3792 		/*
3793 		 * KVM supports exposing PT to the guest, but does not support
3794 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3795 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3796 		 */
3797 		if (data & ~kvm_caps.supported_xss)
3798 			return 1;
3799 		vcpu->arch.ia32_xss = data;
3800 		kvm_update_cpuid_runtime(vcpu);
3801 		break;
3802 	case MSR_SMI_COUNT:
3803 		if (!msr_info->host_initiated)
3804 			return 1;
3805 		vcpu->arch.smi_count = data;
3806 		break;
3807 	case MSR_KVM_WALL_CLOCK_NEW:
3808 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3809 			return 1;
3810 
3811 		vcpu->kvm->arch.wall_clock = data;
3812 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3813 		break;
3814 	case MSR_KVM_WALL_CLOCK:
3815 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3816 			return 1;
3817 
3818 		vcpu->kvm->arch.wall_clock = data;
3819 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3820 		break;
3821 	case MSR_KVM_SYSTEM_TIME_NEW:
3822 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3823 			return 1;
3824 
3825 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3826 		break;
3827 	case MSR_KVM_SYSTEM_TIME:
3828 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3829 			return 1;
3830 
3831 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3832 		break;
3833 	case MSR_KVM_ASYNC_PF_EN:
3834 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3835 			return 1;
3836 
3837 		if (kvm_pv_enable_async_pf(vcpu, data))
3838 			return 1;
3839 		break;
3840 	case MSR_KVM_ASYNC_PF_INT:
3841 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3842 			return 1;
3843 
3844 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3845 			return 1;
3846 		break;
3847 	case MSR_KVM_ASYNC_PF_ACK:
3848 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3849 			return 1;
3850 		if (data & 0x1) {
3851 			vcpu->arch.apf.pageready_pending = false;
3852 			kvm_check_async_pf_completion(vcpu);
3853 		}
3854 		break;
3855 	case MSR_KVM_STEAL_TIME:
3856 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3857 			return 1;
3858 
3859 		if (unlikely(!sched_info_on()))
3860 			return 1;
3861 
3862 		if (data & KVM_STEAL_RESERVED_MASK)
3863 			return 1;
3864 
3865 		vcpu->arch.st.msr_val = data;
3866 
3867 		if (!(data & KVM_MSR_ENABLED))
3868 			break;
3869 
3870 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3871 
3872 		break;
3873 	case MSR_KVM_PV_EOI_EN:
3874 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3875 			return 1;
3876 
3877 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3878 			return 1;
3879 		break;
3880 
3881 	case MSR_KVM_POLL_CONTROL:
3882 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3883 			return 1;
3884 
3885 		/* only enable bit supported */
3886 		if (data & (-1ULL << 1))
3887 			return 1;
3888 
3889 		vcpu->arch.msr_kvm_poll_control = data;
3890 		break;
3891 
3892 	case MSR_IA32_MCG_CTL:
3893 	case MSR_IA32_MCG_STATUS:
3894 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3895 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3896 		return set_msr_mce(vcpu, msr_info);
3897 
3898 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3899 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3900 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3901 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3902 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3903 			return kvm_pmu_set_msr(vcpu, msr_info);
3904 
3905 		if (data)
3906 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3907 		break;
3908 	case MSR_K7_CLK_CTL:
3909 		/*
3910 		 * Ignore all writes to this no longer documented MSR.
3911 		 * Writes are only relevant for old K7 processors,
3912 		 * all pre-dating SVM, but a recommended workaround from
3913 		 * AMD for these chips. It is possible to specify the
3914 		 * affected processor models on the command line, hence
3915 		 * the need to ignore the workaround.
3916 		 */
3917 		break;
3918 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3919 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3920 	case HV_X64_MSR_SYNDBG_OPTIONS:
3921 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3922 	case HV_X64_MSR_CRASH_CTL:
3923 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3924 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3925 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3926 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3927 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3928 		return kvm_hv_set_msr_common(vcpu, msr, data,
3929 					     msr_info->host_initiated);
3930 	case MSR_IA32_BBL_CR_CTL3:
3931 		/* Drop writes to this legacy MSR -- see rdmsr
3932 		 * counterpart for further detail.
3933 		 */
3934 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3935 		break;
3936 	case MSR_AMD64_OSVW_ID_LENGTH:
3937 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3938 			return 1;
3939 		vcpu->arch.osvw.length = data;
3940 		break;
3941 	case MSR_AMD64_OSVW_STATUS:
3942 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3943 			return 1;
3944 		vcpu->arch.osvw.status = data;
3945 		break;
3946 	case MSR_PLATFORM_INFO:
3947 		if (!msr_info->host_initiated ||
3948 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3949 		     cpuid_fault_enabled(vcpu)))
3950 			return 1;
3951 		vcpu->arch.msr_platform_info = data;
3952 		break;
3953 	case MSR_MISC_FEATURES_ENABLES:
3954 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3955 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3956 		     !supports_cpuid_fault(vcpu)))
3957 			return 1;
3958 		vcpu->arch.msr_misc_features_enables = data;
3959 		break;
3960 #ifdef CONFIG_X86_64
3961 	case MSR_IA32_XFD:
3962 		if (!msr_info->host_initiated &&
3963 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3964 			return 1;
3965 
3966 		if (data & ~kvm_guest_supported_xfd(vcpu))
3967 			return 1;
3968 
3969 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3970 		break;
3971 	case MSR_IA32_XFD_ERR:
3972 		if (!msr_info->host_initiated &&
3973 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3974 			return 1;
3975 
3976 		if (data & ~kvm_guest_supported_xfd(vcpu))
3977 			return 1;
3978 
3979 		vcpu->arch.guest_fpu.xfd_err = data;
3980 		break;
3981 #endif
3982 	default:
3983 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3984 			return kvm_pmu_set_msr(vcpu, msr_info);
3985 
3986 		/*
3987 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3988 		 * as to-be-saved, even if an MSRs isn't fully supported.
3989 		 */
3990 		if (msr_info->host_initiated && !data &&
3991 		    kvm_is_msr_to_save(msr))
3992 			break;
3993 
3994 		return KVM_MSR_RET_INVALID;
3995 	}
3996 	return 0;
3997 }
3998 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3999 
4000 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4001 {
4002 	u64 data;
4003 	u64 mcg_cap = vcpu->arch.mcg_cap;
4004 	unsigned bank_num = mcg_cap & 0xff;
4005 	u32 offset, last_msr;
4006 
4007 	switch (msr) {
4008 	case MSR_IA32_P5_MC_ADDR:
4009 	case MSR_IA32_P5_MC_TYPE:
4010 		data = 0;
4011 		break;
4012 	case MSR_IA32_MCG_CAP:
4013 		data = vcpu->arch.mcg_cap;
4014 		break;
4015 	case MSR_IA32_MCG_CTL:
4016 		if (!(mcg_cap & MCG_CTL_P) && !host)
4017 			return 1;
4018 		data = vcpu->arch.mcg_ctl;
4019 		break;
4020 	case MSR_IA32_MCG_STATUS:
4021 		data = vcpu->arch.mcg_status;
4022 		break;
4023 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4024 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4025 		if (msr > last_msr)
4026 			return 1;
4027 
4028 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4029 			return 1;
4030 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4031 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4032 		data = vcpu->arch.mci_ctl2_banks[offset];
4033 		break;
4034 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4035 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4036 		if (msr > last_msr)
4037 			return 1;
4038 
4039 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4040 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4041 		data = vcpu->arch.mce_banks[offset];
4042 		break;
4043 	default:
4044 		return 1;
4045 	}
4046 	*pdata = data;
4047 	return 0;
4048 }
4049 
4050 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4051 {
4052 	switch (msr_info->index) {
4053 	case MSR_IA32_PLATFORM_ID:
4054 	case MSR_IA32_EBL_CR_POWERON:
4055 	case MSR_IA32_LASTBRANCHFROMIP:
4056 	case MSR_IA32_LASTBRANCHTOIP:
4057 	case MSR_IA32_LASTINTFROMIP:
4058 	case MSR_IA32_LASTINTTOIP:
4059 	case MSR_AMD64_SYSCFG:
4060 	case MSR_K8_TSEG_ADDR:
4061 	case MSR_K8_TSEG_MASK:
4062 	case MSR_VM_HSAVE_PA:
4063 	case MSR_K8_INT_PENDING_MSG:
4064 	case MSR_AMD64_NB_CFG:
4065 	case MSR_FAM10H_MMIO_CONF_BASE:
4066 	case MSR_AMD64_BU_CFG2:
4067 	case MSR_IA32_PERF_CTL:
4068 	case MSR_AMD64_DC_CFG:
4069 	case MSR_AMD64_TW_CFG:
4070 	case MSR_F15H_EX_CFG:
4071 	/*
4072 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4073 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4074 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4075 	 * so for existing CPU-specific MSRs.
4076 	 */
4077 	case MSR_RAPL_POWER_UNIT:
4078 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4079 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4080 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4081 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4082 		msr_info->data = 0;
4083 		break;
4084 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4085 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4086 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4087 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4088 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4089 			return kvm_pmu_get_msr(vcpu, msr_info);
4090 		msr_info->data = 0;
4091 		break;
4092 	case MSR_IA32_UCODE_REV:
4093 		msr_info->data = vcpu->arch.microcode_version;
4094 		break;
4095 	case MSR_IA32_ARCH_CAPABILITIES:
4096 		if (!msr_info->host_initiated &&
4097 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4098 			return 1;
4099 		msr_info->data = vcpu->arch.arch_capabilities;
4100 		break;
4101 	case MSR_IA32_PERF_CAPABILITIES:
4102 		if (!msr_info->host_initiated &&
4103 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4104 			return 1;
4105 		msr_info->data = vcpu->arch.perf_capabilities;
4106 		break;
4107 	case MSR_IA32_POWER_CTL:
4108 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4109 		break;
4110 	case MSR_IA32_TSC: {
4111 		/*
4112 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4113 		 * even when not intercepted. AMD manual doesn't explicitly
4114 		 * state this but appears to behave the same.
4115 		 *
4116 		 * On userspace reads and writes, however, we unconditionally
4117 		 * return L1's TSC value to ensure backwards-compatible
4118 		 * behavior for migration.
4119 		 */
4120 		u64 offset, ratio;
4121 
4122 		if (msr_info->host_initiated) {
4123 			offset = vcpu->arch.l1_tsc_offset;
4124 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4125 		} else {
4126 			offset = vcpu->arch.tsc_offset;
4127 			ratio = vcpu->arch.tsc_scaling_ratio;
4128 		}
4129 
4130 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4131 		break;
4132 	}
4133 	case MSR_IA32_CR_PAT:
4134 		msr_info->data = vcpu->arch.pat;
4135 		break;
4136 	case MSR_MTRRcap:
4137 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4138 	case MSR_MTRRdefType:
4139 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4140 	case 0xcd: /* fsb frequency */
4141 		msr_info->data = 3;
4142 		break;
4143 		/*
4144 		 * MSR_EBC_FREQUENCY_ID
4145 		 * Conservative value valid for even the basic CPU models.
4146 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4147 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4148 		 * and 266MHz for model 3, or 4. Set Core Clock
4149 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4150 		 * 31:24) even though these are only valid for CPU
4151 		 * models > 2, however guests may end up dividing or
4152 		 * multiplying by zero otherwise.
4153 		 */
4154 	case MSR_EBC_FREQUENCY_ID:
4155 		msr_info->data = 1 << 24;
4156 		break;
4157 	case MSR_IA32_APICBASE:
4158 		msr_info->data = kvm_get_apic_base(vcpu);
4159 		break;
4160 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4161 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4162 	case MSR_IA32_TSC_DEADLINE:
4163 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4164 		break;
4165 	case MSR_IA32_TSC_ADJUST:
4166 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4167 		break;
4168 	case MSR_IA32_MISC_ENABLE:
4169 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4170 		break;
4171 	case MSR_IA32_SMBASE:
4172 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4173 			return 1;
4174 		msr_info->data = vcpu->arch.smbase;
4175 		break;
4176 	case MSR_SMI_COUNT:
4177 		msr_info->data = vcpu->arch.smi_count;
4178 		break;
4179 	case MSR_IA32_PERF_STATUS:
4180 		/* TSC increment by tick */
4181 		msr_info->data = 1000ULL;
4182 		/* CPU multiplier */
4183 		msr_info->data |= (((uint64_t)4ULL) << 40);
4184 		break;
4185 	case MSR_EFER:
4186 		msr_info->data = vcpu->arch.efer;
4187 		break;
4188 	case MSR_KVM_WALL_CLOCK:
4189 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4190 			return 1;
4191 
4192 		msr_info->data = vcpu->kvm->arch.wall_clock;
4193 		break;
4194 	case MSR_KVM_WALL_CLOCK_NEW:
4195 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4196 			return 1;
4197 
4198 		msr_info->data = vcpu->kvm->arch.wall_clock;
4199 		break;
4200 	case MSR_KVM_SYSTEM_TIME:
4201 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4202 			return 1;
4203 
4204 		msr_info->data = vcpu->arch.time;
4205 		break;
4206 	case MSR_KVM_SYSTEM_TIME_NEW:
4207 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4208 			return 1;
4209 
4210 		msr_info->data = vcpu->arch.time;
4211 		break;
4212 	case MSR_KVM_ASYNC_PF_EN:
4213 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4214 			return 1;
4215 
4216 		msr_info->data = vcpu->arch.apf.msr_en_val;
4217 		break;
4218 	case MSR_KVM_ASYNC_PF_INT:
4219 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4220 			return 1;
4221 
4222 		msr_info->data = vcpu->arch.apf.msr_int_val;
4223 		break;
4224 	case MSR_KVM_ASYNC_PF_ACK:
4225 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4226 			return 1;
4227 
4228 		msr_info->data = 0;
4229 		break;
4230 	case MSR_KVM_STEAL_TIME:
4231 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4232 			return 1;
4233 
4234 		msr_info->data = vcpu->arch.st.msr_val;
4235 		break;
4236 	case MSR_KVM_PV_EOI_EN:
4237 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4238 			return 1;
4239 
4240 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4241 		break;
4242 	case MSR_KVM_POLL_CONTROL:
4243 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4244 			return 1;
4245 
4246 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4247 		break;
4248 	case MSR_IA32_P5_MC_ADDR:
4249 	case MSR_IA32_P5_MC_TYPE:
4250 	case MSR_IA32_MCG_CAP:
4251 	case MSR_IA32_MCG_CTL:
4252 	case MSR_IA32_MCG_STATUS:
4253 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4254 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4255 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4256 				   msr_info->host_initiated);
4257 	case MSR_IA32_XSS:
4258 		if (!msr_info->host_initiated &&
4259 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4260 			return 1;
4261 		msr_info->data = vcpu->arch.ia32_xss;
4262 		break;
4263 	case MSR_K7_CLK_CTL:
4264 		/*
4265 		 * Provide expected ramp-up count for K7. All other
4266 		 * are set to zero, indicating minimum divisors for
4267 		 * every field.
4268 		 *
4269 		 * This prevents guest kernels on AMD host with CPU
4270 		 * type 6, model 8 and higher from exploding due to
4271 		 * the rdmsr failing.
4272 		 */
4273 		msr_info->data = 0x20000000;
4274 		break;
4275 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4276 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4277 	case HV_X64_MSR_SYNDBG_OPTIONS:
4278 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4279 	case HV_X64_MSR_CRASH_CTL:
4280 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4281 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4282 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4283 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4284 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4285 		return kvm_hv_get_msr_common(vcpu,
4286 					     msr_info->index, &msr_info->data,
4287 					     msr_info->host_initiated);
4288 	case MSR_IA32_BBL_CR_CTL3:
4289 		/* This legacy MSR exists but isn't fully documented in current
4290 		 * silicon.  It is however accessed by winxp in very narrow
4291 		 * scenarios where it sets bit #19, itself documented as
4292 		 * a "reserved" bit.  Best effort attempt to source coherent
4293 		 * read data here should the balance of the register be
4294 		 * interpreted by the guest:
4295 		 *
4296 		 * L2 cache control register 3: 64GB range, 256KB size,
4297 		 * enabled, latency 0x1, configured
4298 		 */
4299 		msr_info->data = 0xbe702111;
4300 		break;
4301 	case MSR_AMD64_OSVW_ID_LENGTH:
4302 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4303 			return 1;
4304 		msr_info->data = vcpu->arch.osvw.length;
4305 		break;
4306 	case MSR_AMD64_OSVW_STATUS:
4307 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4308 			return 1;
4309 		msr_info->data = vcpu->arch.osvw.status;
4310 		break;
4311 	case MSR_PLATFORM_INFO:
4312 		if (!msr_info->host_initiated &&
4313 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4314 			return 1;
4315 		msr_info->data = vcpu->arch.msr_platform_info;
4316 		break;
4317 	case MSR_MISC_FEATURES_ENABLES:
4318 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4319 		break;
4320 	case MSR_K7_HWCR:
4321 		msr_info->data = vcpu->arch.msr_hwcr;
4322 		break;
4323 #ifdef CONFIG_X86_64
4324 	case MSR_IA32_XFD:
4325 		if (!msr_info->host_initiated &&
4326 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4327 			return 1;
4328 
4329 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4330 		break;
4331 	case MSR_IA32_XFD_ERR:
4332 		if (!msr_info->host_initiated &&
4333 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4334 			return 1;
4335 
4336 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4337 		break;
4338 #endif
4339 	default:
4340 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4341 			return kvm_pmu_get_msr(vcpu, msr_info);
4342 
4343 		/*
4344 		 * Userspace is allowed to read MSRs that KVM reports as
4345 		 * to-be-saved, even if an MSR isn't fully supported.
4346 		 */
4347 		if (msr_info->host_initiated &&
4348 		    kvm_is_msr_to_save(msr_info->index)) {
4349 			msr_info->data = 0;
4350 			break;
4351 		}
4352 
4353 		return KVM_MSR_RET_INVALID;
4354 	}
4355 	return 0;
4356 }
4357 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4358 
4359 /*
4360  * Read or write a bunch of msrs. All parameters are kernel addresses.
4361  *
4362  * @return number of msrs set successfully.
4363  */
4364 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4365 		    struct kvm_msr_entry *entries,
4366 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4367 				  unsigned index, u64 *data))
4368 {
4369 	int i;
4370 
4371 	for (i = 0; i < msrs->nmsrs; ++i)
4372 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4373 			break;
4374 
4375 	return i;
4376 }
4377 
4378 /*
4379  * Read or write a bunch of msrs. Parameters are user addresses.
4380  *
4381  * @return number of msrs set successfully.
4382  */
4383 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4384 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4385 				unsigned index, u64 *data),
4386 		  int writeback)
4387 {
4388 	struct kvm_msrs msrs;
4389 	struct kvm_msr_entry *entries;
4390 	unsigned size;
4391 	int r;
4392 
4393 	r = -EFAULT;
4394 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4395 		goto out;
4396 
4397 	r = -E2BIG;
4398 	if (msrs.nmsrs >= MAX_IO_MSRS)
4399 		goto out;
4400 
4401 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4402 	entries = memdup_user(user_msrs->entries, size);
4403 	if (IS_ERR(entries)) {
4404 		r = PTR_ERR(entries);
4405 		goto out;
4406 	}
4407 
4408 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4409 
4410 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4411 		r = -EFAULT;
4412 
4413 	kfree(entries);
4414 out:
4415 	return r;
4416 }
4417 
4418 static inline bool kvm_can_mwait_in_guest(void)
4419 {
4420 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4421 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4422 		boot_cpu_has(X86_FEATURE_ARAT);
4423 }
4424 
4425 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4426 					    struct kvm_cpuid2 __user *cpuid_arg)
4427 {
4428 	struct kvm_cpuid2 cpuid;
4429 	int r;
4430 
4431 	r = -EFAULT;
4432 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4433 		return r;
4434 
4435 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4436 	if (r)
4437 		return r;
4438 
4439 	r = -EFAULT;
4440 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4441 		return r;
4442 
4443 	return 0;
4444 }
4445 
4446 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4447 {
4448 	int r = 0;
4449 
4450 	switch (ext) {
4451 	case KVM_CAP_IRQCHIP:
4452 	case KVM_CAP_HLT:
4453 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4454 	case KVM_CAP_SET_TSS_ADDR:
4455 	case KVM_CAP_EXT_CPUID:
4456 	case KVM_CAP_EXT_EMUL_CPUID:
4457 	case KVM_CAP_CLOCKSOURCE:
4458 	case KVM_CAP_PIT:
4459 	case KVM_CAP_NOP_IO_DELAY:
4460 	case KVM_CAP_MP_STATE:
4461 	case KVM_CAP_SYNC_MMU:
4462 	case KVM_CAP_USER_NMI:
4463 	case KVM_CAP_REINJECT_CONTROL:
4464 	case KVM_CAP_IRQ_INJECT_STATUS:
4465 	case KVM_CAP_IOEVENTFD:
4466 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4467 	case KVM_CAP_PIT2:
4468 	case KVM_CAP_PIT_STATE2:
4469 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4470 	case KVM_CAP_VCPU_EVENTS:
4471 	case KVM_CAP_HYPERV:
4472 	case KVM_CAP_HYPERV_VAPIC:
4473 	case KVM_CAP_HYPERV_SPIN:
4474 	case KVM_CAP_HYPERV_SYNIC:
4475 	case KVM_CAP_HYPERV_SYNIC2:
4476 	case KVM_CAP_HYPERV_VP_INDEX:
4477 	case KVM_CAP_HYPERV_EVENTFD:
4478 	case KVM_CAP_HYPERV_TLBFLUSH:
4479 	case KVM_CAP_HYPERV_SEND_IPI:
4480 	case KVM_CAP_HYPERV_CPUID:
4481 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4482 	case KVM_CAP_SYS_HYPERV_CPUID:
4483 	case KVM_CAP_PCI_SEGMENT:
4484 	case KVM_CAP_DEBUGREGS:
4485 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4486 	case KVM_CAP_XSAVE:
4487 	case KVM_CAP_ASYNC_PF:
4488 	case KVM_CAP_ASYNC_PF_INT:
4489 	case KVM_CAP_GET_TSC_KHZ:
4490 	case KVM_CAP_KVMCLOCK_CTRL:
4491 	case KVM_CAP_READONLY_MEM:
4492 	case KVM_CAP_HYPERV_TIME:
4493 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4494 	case KVM_CAP_TSC_DEADLINE_TIMER:
4495 	case KVM_CAP_DISABLE_QUIRKS:
4496 	case KVM_CAP_SET_BOOT_CPU_ID:
4497  	case KVM_CAP_SPLIT_IRQCHIP:
4498 	case KVM_CAP_IMMEDIATE_EXIT:
4499 	case KVM_CAP_PMU_EVENT_FILTER:
4500 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4501 	case KVM_CAP_GET_MSR_FEATURES:
4502 	case KVM_CAP_MSR_PLATFORM_INFO:
4503 	case KVM_CAP_EXCEPTION_PAYLOAD:
4504 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4505 	case KVM_CAP_SET_GUEST_DEBUG:
4506 	case KVM_CAP_LAST_CPU:
4507 	case KVM_CAP_X86_USER_SPACE_MSR:
4508 	case KVM_CAP_X86_MSR_FILTER:
4509 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4510 #ifdef CONFIG_X86_SGX_KVM
4511 	case KVM_CAP_SGX_ATTRIBUTE:
4512 #endif
4513 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4514 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4515 	case KVM_CAP_SREGS2:
4516 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4517 	case KVM_CAP_VCPU_ATTRIBUTES:
4518 	case KVM_CAP_SYS_ATTRIBUTES:
4519 	case KVM_CAP_VAPIC:
4520 	case KVM_CAP_ENABLE_CAP:
4521 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4522 	case KVM_CAP_IRQFD_RESAMPLE:
4523 		r = 1;
4524 		break;
4525 	case KVM_CAP_EXIT_HYPERCALL:
4526 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4527 		break;
4528 	case KVM_CAP_SET_GUEST_DEBUG2:
4529 		return KVM_GUESTDBG_VALID_MASK;
4530 #ifdef CONFIG_KVM_XEN
4531 	case KVM_CAP_XEN_HVM:
4532 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4533 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4534 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4535 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4536 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4537 		if (sched_info_on())
4538 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4539 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4540 		break;
4541 #endif
4542 	case KVM_CAP_SYNC_REGS:
4543 		r = KVM_SYNC_X86_VALID_FIELDS;
4544 		break;
4545 	case KVM_CAP_ADJUST_CLOCK:
4546 		r = KVM_CLOCK_VALID_FLAGS;
4547 		break;
4548 	case KVM_CAP_X86_DISABLE_EXITS:
4549 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4550 
4551 		if (!mitigate_smt_rsb) {
4552 			r |= KVM_X86_DISABLE_EXITS_HLT |
4553 			     KVM_X86_DISABLE_EXITS_CSTATE;
4554 
4555 			if (kvm_can_mwait_in_guest())
4556 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4557 		}
4558 		break;
4559 	case KVM_CAP_X86_SMM:
4560 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4561 			break;
4562 
4563 		/* SMBASE is usually relocated above 1M on modern chipsets,
4564 		 * and SMM handlers might indeed rely on 4G segment limits,
4565 		 * so do not report SMM to be available if real mode is
4566 		 * emulated via vm86 mode.  Still, do not go to great lengths
4567 		 * to avoid userspace's usage of the feature, because it is a
4568 		 * fringe case that is not enabled except via specific settings
4569 		 * of the module parameters.
4570 		 */
4571 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4572 		break;
4573 	case KVM_CAP_NR_VCPUS:
4574 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4575 		break;
4576 	case KVM_CAP_MAX_VCPUS:
4577 		r = KVM_MAX_VCPUS;
4578 		break;
4579 	case KVM_CAP_MAX_VCPU_ID:
4580 		r = KVM_MAX_VCPU_IDS;
4581 		break;
4582 	case KVM_CAP_PV_MMU:	/* obsolete */
4583 		r = 0;
4584 		break;
4585 	case KVM_CAP_MCE:
4586 		r = KVM_MAX_MCE_BANKS;
4587 		break;
4588 	case KVM_CAP_XCRS:
4589 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4590 		break;
4591 	case KVM_CAP_TSC_CONTROL:
4592 	case KVM_CAP_VM_TSC_CONTROL:
4593 		r = kvm_caps.has_tsc_control;
4594 		break;
4595 	case KVM_CAP_X2APIC_API:
4596 		r = KVM_X2APIC_API_VALID_FLAGS;
4597 		break;
4598 	case KVM_CAP_NESTED_STATE:
4599 		r = kvm_x86_ops.nested_ops->get_state ?
4600 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4601 		break;
4602 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4603 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4604 		break;
4605 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4606 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4607 		break;
4608 	case KVM_CAP_SMALLER_MAXPHYADDR:
4609 		r = (int) allow_smaller_maxphyaddr;
4610 		break;
4611 	case KVM_CAP_STEAL_TIME:
4612 		r = sched_info_on();
4613 		break;
4614 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4615 		if (kvm_caps.has_bus_lock_exit)
4616 			r = KVM_BUS_LOCK_DETECTION_OFF |
4617 			    KVM_BUS_LOCK_DETECTION_EXIT;
4618 		else
4619 			r = 0;
4620 		break;
4621 	case KVM_CAP_XSAVE2: {
4622 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4623 		if (r < sizeof(struct kvm_xsave))
4624 			r = sizeof(struct kvm_xsave);
4625 		break;
4626 	}
4627 	case KVM_CAP_PMU_CAPABILITY:
4628 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4629 		break;
4630 	case KVM_CAP_DISABLE_QUIRKS2:
4631 		r = KVM_X86_VALID_QUIRKS;
4632 		break;
4633 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4634 		r = kvm_caps.has_notify_vmexit;
4635 		break;
4636 	default:
4637 		break;
4638 	}
4639 	return r;
4640 }
4641 
4642 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4643 {
4644 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4645 
4646 	if ((u64)(unsigned long)uaddr != attr->addr)
4647 		return ERR_PTR_USR(-EFAULT);
4648 	return uaddr;
4649 }
4650 
4651 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4652 {
4653 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4654 
4655 	if (attr->group)
4656 		return -ENXIO;
4657 
4658 	if (IS_ERR(uaddr))
4659 		return PTR_ERR(uaddr);
4660 
4661 	switch (attr->attr) {
4662 	case KVM_X86_XCOMP_GUEST_SUPP:
4663 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4664 			return -EFAULT;
4665 		return 0;
4666 	default:
4667 		return -ENXIO;
4668 	}
4669 }
4670 
4671 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4672 {
4673 	if (attr->group)
4674 		return -ENXIO;
4675 
4676 	switch (attr->attr) {
4677 	case KVM_X86_XCOMP_GUEST_SUPP:
4678 		return 0;
4679 	default:
4680 		return -ENXIO;
4681 	}
4682 }
4683 
4684 long kvm_arch_dev_ioctl(struct file *filp,
4685 			unsigned int ioctl, unsigned long arg)
4686 {
4687 	void __user *argp = (void __user *)arg;
4688 	long r;
4689 
4690 	switch (ioctl) {
4691 	case KVM_GET_MSR_INDEX_LIST: {
4692 		struct kvm_msr_list __user *user_msr_list = argp;
4693 		struct kvm_msr_list msr_list;
4694 		unsigned n;
4695 
4696 		r = -EFAULT;
4697 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4698 			goto out;
4699 		n = msr_list.nmsrs;
4700 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4701 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4702 			goto out;
4703 		r = -E2BIG;
4704 		if (n < msr_list.nmsrs)
4705 			goto out;
4706 		r = -EFAULT;
4707 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4708 				 num_msrs_to_save * sizeof(u32)))
4709 			goto out;
4710 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4711 				 &emulated_msrs,
4712 				 num_emulated_msrs * sizeof(u32)))
4713 			goto out;
4714 		r = 0;
4715 		break;
4716 	}
4717 	case KVM_GET_SUPPORTED_CPUID:
4718 	case KVM_GET_EMULATED_CPUID: {
4719 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4720 		struct kvm_cpuid2 cpuid;
4721 
4722 		r = -EFAULT;
4723 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4724 			goto out;
4725 
4726 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4727 					    ioctl);
4728 		if (r)
4729 			goto out;
4730 
4731 		r = -EFAULT;
4732 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4733 			goto out;
4734 		r = 0;
4735 		break;
4736 	}
4737 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4738 		r = -EFAULT;
4739 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4740 				 sizeof(kvm_caps.supported_mce_cap)))
4741 			goto out;
4742 		r = 0;
4743 		break;
4744 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4745 		struct kvm_msr_list __user *user_msr_list = argp;
4746 		struct kvm_msr_list msr_list;
4747 		unsigned int n;
4748 
4749 		r = -EFAULT;
4750 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4751 			goto out;
4752 		n = msr_list.nmsrs;
4753 		msr_list.nmsrs = num_msr_based_features;
4754 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4755 			goto out;
4756 		r = -E2BIG;
4757 		if (n < msr_list.nmsrs)
4758 			goto out;
4759 		r = -EFAULT;
4760 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4761 				 num_msr_based_features * sizeof(u32)))
4762 			goto out;
4763 		r = 0;
4764 		break;
4765 	}
4766 	case KVM_GET_MSRS:
4767 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4768 		break;
4769 	case KVM_GET_SUPPORTED_HV_CPUID:
4770 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4771 		break;
4772 	case KVM_GET_DEVICE_ATTR: {
4773 		struct kvm_device_attr attr;
4774 		r = -EFAULT;
4775 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4776 			break;
4777 		r = kvm_x86_dev_get_attr(&attr);
4778 		break;
4779 	}
4780 	case KVM_HAS_DEVICE_ATTR: {
4781 		struct kvm_device_attr attr;
4782 		r = -EFAULT;
4783 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4784 			break;
4785 		r = kvm_x86_dev_has_attr(&attr);
4786 		break;
4787 	}
4788 	default:
4789 		r = -EINVAL;
4790 		break;
4791 	}
4792 out:
4793 	return r;
4794 }
4795 
4796 static void wbinvd_ipi(void *garbage)
4797 {
4798 	wbinvd();
4799 }
4800 
4801 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4802 {
4803 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4804 }
4805 
4806 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4807 {
4808 	/* Address WBINVD may be executed by guest */
4809 	if (need_emulate_wbinvd(vcpu)) {
4810 		if (static_call(kvm_x86_has_wbinvd_exit)())
4811 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4812 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4813 			smp_call_function_single(vcpu->cpu,
4814 					wbinvd_ipi, NULL, 1);
4815 	}
4816 
4817 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4818 
4819 	/* Save host pkru register if supported */
4820 	vcpu->arch.host_pkru = read_pkru();
4821 
4822 	/* Apply any externally detected TSC adjustments (due to suspend) */
4823 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4824 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4825 		vcpu->arch.tsc_offset_adjustment = 0;
4826 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4827 	}
4828 
4829 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4830 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4831 				rdtsc() - vcpu->arch.last_host_tsc;
4832 		if (tsc_delta < 0)
4833 			mark_tsc_unstable("KVM discovered backwards TSC");
4834 
4835 		if (kvm_check_tsc_unstable()) {
4836 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4837 						vcpu->arch.last_guest_tsc);
4838 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4839 			vcpu->arch.tsc_catchup = 1;
4840 		}
4841 
4842 		if (kvm_lapic_hv_timer_in_use(vcpu))
4843 			kvm_lapic_restart_hv_timer(vcpu);
4844 
4845 		/*
4846 		 * On a host with synchronized TSC, there is no need to update
4847 		 * kvmclock on vcpu->cpu migration
4848 		 */
4849 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4850 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4851 		if (vcpu->cpu != cpu)
4852 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4853 		vcpu->cpu = cpu;
4854 	}
4855 
4856 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4857 }
4858 
4859 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4860 {
4861 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4862 	struct kvm_steal_time __user *st;
4863 	struct kvm_memslots *slots;
4864 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4865 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4866 
4867 	/*
4868 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4869 	 * an instruction boundary and will not trigger guest emulation of any
4870 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4871 	 * when this is true, for example allowing the vCPU to be marked
4872 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4873 	 */
4874 	if (!vcpu->arch.at_instruction_boundary) {
4875 		vcpu->stat.preemption_other++;
4876 		return;
4877 	}
4878 
4879 	vcpu->stat.preemption_reported++;
4880 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4881 		return;
4882 
4883 	if (vcpu->arch.st.preempted)
4884 		return;
4885 
4886 	/* This happens on process exit */
4887 	if (unlikely(current->mm != vcpu->kvm->mm))
4888 		return;
4889 
4890 	slots = kvm_memslots(vcpu->kvm);
4891 
4892 	if (unlikely(slots->generation != ghc->generation ||
4893 		     gpa != ghc->gpa ||
4894 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4895 		return;
4896 
4897 	st = (struct kvm_steal_time __user *)ghc->hva;
4898 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4899 
4900 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4901 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4902 
4903 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4904 }
4905 
4906 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4907 {
4908 	int idx;
4909 
4910 	if (vcpu->preempted) {
4911 		if (!vcpu->arch.guest_state_protected)
4912 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4913 
4914 		/*
4915 		 * Take the srcu lock as memslots will be accessed to check the gfn
4916 		 * cache generation against the memslots generation.
4917 		 */
4918 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4919 		if (kvm_xen_msr_enabled(vcpu->kvm))
4920 			kvm_xen_runstate_set_preempted(vcpu);
4921 		else
4922 			kvm_steal_time_set_preempted(vcpu);
4923 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4924 	}
4925 
4926 	static_call(kvm_x86_vcpu_put)(vcpu);
4927 	vcpu->arch.last_host_tsc = rdtsc();
4928 }
4929 
4930 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4931 				    struct kvm_lapic_state *s)
4932 {
4933 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4934 
4935 	return kvm_apic_get_state(vcpu, s);
4936 }
4937 
4938 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4939 				    struct kvm_lapic_state *s)
4940 {
4941 	int r;
4942 
4943 	r = kvm_apic_set_state(vcpu, s);
4944 	if (r)
4945 		return r;
4946 	update_cr8_intercept(vcpu);
4947 
4948 	return 0;
4949 }
4950 
4951 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4952 {
4953 	/*
4954 	 * We can accept userspace's request for interrupt injection
4955 	 * as long as we have a place to store the interrupt number.
4956 	 * The actual injection will happen when the CPU is able to
4957 	 * deliver the interrupt.
4958 	 */
4959 	if (kvm_cpu_has_extint(vcpu))
4960 		return false;
4961 
4962 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4963 	return (!lapic_in_kernel(vcpu) ||
4964 		kvm_apic_accept_pic_intr(vcpu));
4965 }
4966 
4967 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4968 {
4969 	/*
4970 	 * Do not cause an interrupt window exit if an exception
4971 	 * is pending or an event needs reinjection; userspace
4972 	 * might want to inject the interrupt manually using KVM_SET_REGS
4973 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4974 	 * instruction boundary and with no events half-injected.
4975 	 */
4976 	return (kvm_arch_interrupt_allowed(vcpu) &&
4977 		kvm_cpu_accept_dm_intr(vcpu) &&
4978 		!kvm_event_needs_reinjection(vcpu) &&
4979 		!kvm_is_exception_pending(vcpu));
4980 }
4981 
4982 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4983 				    struct kvm_interrupt *irq)
4984 {
4985 	if (irq->irq >= KVM_NR_INTERRUPTS)
4986 		return -EINVAL;
4987 
4988 	if (!irqchip_in_kernel(vcpu->kvm)) {
4989 		kvm_queue_interrupt(vcpu, irq->irq, false);
4990 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4991 		return 0;
4992 	}
4993 
4994 	/*
4995 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4996 	 * fail for in-kernel 8259.
4997 	 */
4998 	if (pic_in_kernel(vcpu->kvm))
4999 		return -ENXIO;
5000 
5001 	if (vcpu->arch.pending_external_vector != -1)
5002 		return -EEXIST;
5003 
5004 	vcpu->arch.pending_external_vector = irq->irq;
5005 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5006 	return 0;
5007 }
5008 
5009 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5010 {
5011 	kvm_inject_nmi(vcpu);
5012 
5013 	return 0;
5014 }
5015 
5016 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5017 					   struct kvm_tpr_access_ctl *tac)
5018 {
5019 	if (tac->flags)
5020 		return -EINVAL;
5021 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5022 	return 0;
5023 }
5024 
5025 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5026 					u64 mcg_cap)
5027 {
5028 	int r;
5029 	unsigned bank_num = mcg_cap & 0xff, bank;
5030 
5031 	r = -EINVAL;
5032 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5033 		goto out;
5034 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5035 		goto out;
5036 	r = 0;
5037 	vcpu->arch.mcg_cap = mcg_cap;
5038 	/* Init IA32_MCG_CTL to all 1s */
5039 	if (mcg_cap & MCG_CTL_P)
5040 		vcpu->arch.mcg_ctl = ~(u64)0;
5041 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5042 	for (bank = 0; bank < bank_num; bank++) {
5043 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5044 		if (mcg_cap & MCG_CMCI_P)
5045 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5046 	}
5047 
5048 	kvm_apic_after_set_mcg_cap(vcpu);
5049 
5050 	static_call(kvm_x86_setup_mce)(vcpu);
5051 out:
5052 	return r;
5053 }
5054 
5055 /*
5056  * Validate this is an UCNA (uncorrectable no action) error by checking the
5057  * MCG_STATUS and MCi_STATUS registers:
5058  * - none of the bits for Machine Check Exceptions are set
5059  * - both the VAL (valid) and UC (uncorrectable) bits are set
5060  * MCI_STATUS_PCC - Processor Context Corrupted
5061  * MCI_STATUS_S - Signaled as a Machine Check Exception
5062  * MCI_STATUS_AR - Software recoverable Action Required
5063  */
5064 static bool is_ucna(struct kvm_x86_mce *mce)
5065 {
5066 	return	!mce->mcg_status &&
5067 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5068 		(mce->status & MCI_STATUS_VAL) &&
5069 		(mce->status & MCI_STATUS_UC);
5070 }
5071 
5072 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5073 {
5074 	u64 mcg_cap = vcpu->arch.mcg_cap;
5075 
5076 	banks[1] = mce->status;
5077 	banks[2] = mce->addr;
5078 	banks[3] = mce->misc;
5079 	vcpu->arch.mcg_status = mce->mcg_status;
5080 
5081 	if (!(mcg_cap & MCG_CMCI_P) ||
5082 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5083 		return 0;
5084 
5085 	if (lapic_in_kernel(vcpu))
5086 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5087 
5088 	return 0;
5089 }
5090 
5091 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5092 				      struct kvm_x86_mce *mce)
5093 {
5094 	u64 mcg_cap = vcpu->arch.mcg_cap;
5095 	unsigned bank_num = mcg_cap & 0xff;
5096 	u64 *banks = vcpu->arch.mce_banks;
5097 
5098 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5099 		return -EINVAL;
5100 
5101 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5102 
5103 	if (is_ucna(mce))
5104 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5105 
5106 	/*
5107 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5108 	 * reporting is disabled
5109 	 */
5110 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5111 	    vcpu->arch.mcg_ctl != ~(u64)0)
5112 		return 0;
5113 	/*
5114 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5115 	 * reporting is disabled for the bank
5116 	 */
5117 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5118 		return 0;
5119 	if (mce->status & MCI_STATUS_UC) {
5120 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5121 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5122 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5123 			return 0;
5124 		}
5125 		if (banks[1] & MCI_STATUS_VAL)
5126 			mce->status |= MCI_STATUS_OVER;
5127 		banks[2] = mce->addr;
5128 		banks[3] = mce->misc;
5129 		vcpu->arch.mcg_status = mce->mcg_status;
5130 		banks[1] = mce->status;
5131 		kvm_queue_exception(vcpu, MC_VECTOR);
5132 	} else if (!(banks[1] & MCI_STATUS_VAL)
5133 		   || !(banks[1] & MCI_STATUS_UC)) {
5134 		if (banks[1] & MCI_STATUS_VAL)
5135 			mce->status |= MCI_STATUS_OVER;
5136 		banks[2] = mce->addr;
5137 		banks[3] = mce->misc;
5138 		banks[1] = mce->status;
5139 	} else
5140 		banks[1] |= MCI_STATUS_OVER;
5141 	return 0;
5142 }
5143 
5144 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5145 					       struct kvm_vcpu_events *events)
5146 {
5147 	struct kvm_queued_exception *ex;
5148 
5149 	process_nmi(vcpu);
5150 
5151 #ifdef CONFIG_KVM_SMM
5152 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5153 		process_smi(vcpu);
5154 #endif
5155 
5156 	/*
5157 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5158 	 * the only time there can be two queued exceptions is if there's a
5159 	 * non-exiting _injected_ exception, and a pending exiting exception.
5160 	 * In that case, ignore the VM-Exiting exception as it's an extension
5161 	 * of the injected exception.
5162 	 */
5163 	if (vcpu->arch.exception_vmexit.pending &&
5164 	    !vcpu->arch.exception.pending &&
5165 	    !vcpu->arch.exception.injected)
5166 		ex = &vcpu->arch.exception_vmexit;
5167 	else
5168 		ex = &vcpu->arch.exception;
5169 
5170 	/*
5171 	 * In guest mode, payload delivery should be deferred if the exception
5172 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5173 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5174 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5175 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5176 	 * the payload if the capability hasn't been requested.
5177 	 */
5178 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5179 	    ex->pending && ex->has_payload)
5180 		kvm_deliver_exception_payload(vcpu, ex);
5181 
5182 	memset(events, 0, sizeof(*events));
5183 
5184 	/*
5185 	 * The API doesn't provide the instruction length for software
5186 	 * exceptions, so don't report them. As long as the guest RIP
5187 	 * isn't advanced, we should expect to encounter the exception
5188 	 * again.
5189 	 */
5190 	if (!kvm_exception_is_soft(ex->vector)) {
5191 		events->exception.injected = ex->injected;
5192 		events->exception.pending = ex->pending;
5193 		/*
5194 		 * For ABI compatibility, deliberately conflate
5195 		 * pending and injected exceptions when
5196 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5197 		 */
5198 		if (!vcpu->kvm->arch.exception_payload_enabled)
5199 			events->exception.injected |= ex->pending;
5200 	}
5201 	events->exception.nr = ex->vector;
5202 	events->exception.has_error_code = ex->has_error_code;
5203 	events->exception.error_code = ex->error_code;
5204 	events->exception_has_payload = ex->has_payload;
5205 	events->exception_payload = ex->payload;
5206 
5207 	events->interrupt.injected =
5208 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5209 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5210 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5211 
5212 	events->nmi.injected = vcpu->arch.nmi_injected;
5213 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5214 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5215 
5216 	/* events->sipi_vector is never valid when reporting to user space */
5217 
5218 #ifdef CONFIG_KVM_SMM
5219 	events->smi.smm = is_smm(vcpu);
5220 	events->smi.pending = vcpu->arch.smi_pending;
5221 	events->smi.smm_inside_nmi =
5222 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5223 #endif
5224 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5225 
5226 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5227 			 | KVM_VCPUEVENT_VALID_SHADOW
5228 			 | KVM_VCPUEVENT_VALID_SMM);
5229 	if (vcpu->kvm->arch.exception_payload_enabled)
5230 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5231 	if (vcpu->kvm->arch.triple_fault_event) {
5232 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5233 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5234 	}
5235 }
5236 
5237 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5238 					      struct kvm_vcpu_events *events)
5239 {
5240 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5241 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5242 			      | KVM_VCPUEVENT_VALID_SHADOW
5243 			      | KVM_VCPUEVENT_VALID_SMM
5244 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5245 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5246 		return -EINVAL;
5247 
5248 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5249 		if (!vcpu->kvm->arch.exception_payload_enabled)
5250 			return -EINVAL;
5251 		if (events->exception.pending)
5252 			events->exception.injected = 0;
5253 		else
5254 			events->exception_has_payload = 0;
5255 	} else {
5256 		events->exception.pending = 0;
5257 		events->exception_has_payload = 0;
5258 	}
5259 
5260 	if ((events->exception.injected || events->exception.pending) &&
5261 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5262 		return -EINVAL;
5263 
5264 	/* INITs are latched while in SMM */
5265 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5266 	    (events->smi.smm || events->smi.pending) &&
5267 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5268 		return -EINVAL;
5269 
5270 	process_nmi(vcpu);
5271 
5272 	/*
5273 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5274 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5275 	 * pending exceptions, already-injected exceptions are not subject to
5276 	 * intercpetion.  Note, userspace that conflates pending and injected
5277 	 * is hosed, and will incorrectly convert an injected exception into a
5278 	 * pending exception, which in turn may cause a spurious VM-Exit.
5279 	 */
5280 	vcpu->arch.exception_from_userspace = events->exception.pending;
5281 
5282 	vcpu->arch.exception_vmexit.pending = false;
5283 
5284 	vcpu->arch.exception.injected = events->exception.injected;
5285 	vcpu->arch.exception.pending = events->exception.pending;
5286 	vcpu->arch.exception.vector = events->exception.nr;
5287 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5288 	vcpu->arch.exception.error_code = events->exception.error_code;
5289 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5290 	vcpu->arch.exception.payload = events->exception_payload;
5291 
5292 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5293 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5294 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5295 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5296 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5297 						events->interrupt.shadow);
5298 
5299 	vcpu->arch.nmi_injected = events->nmi.injected;
5300 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5301 		vcpu->arch.nmi_pending = 0;
5302 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5303 		if (events->nmi.pending)
5304 			kvm_make_request(KVM_REQ_NMI, vcpu);
5305 	}
5306 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5307 
5308 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5309 	    lapic_in_kernel(vcpu))
5310 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5311 
5312 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5313 #ifdef CONFIG_KVM_SMM
5314 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5315 			kvm_leave_nested(vcpu);
5316 			kvm_smm_changed(vcpu, events->smi.smm);
5317 		}
5318 
5319 		vcpu->arch.smi_pending = events->smi.pending;
5320 
5321 		if (events->smi.smm) {
5322 			if (events->smi.smm_inside_nmi)
5323 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5324 			else
5325 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5326 		}
5327 
5328 #else
5329 		if (events->smi.smm || events->smi.pending ||
5330 		    events->smi.smm_inside_nmi)
5331 			return -EINVAL;
5332 #endif
5333 
5334 		if (lapic_in_kernel(vcpu)) {
5335 			if (events->smi.latched_init)
5336 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5337 			else
5338 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5339 		}
5340 	}
5341 
5342 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5343 		if (!vcpu->kvm->arch.triple_fault_event)
5344 			return -EINVAL;
5345 		if (events->triple_fault.pending)
5346 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5347 		else
5348 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5349 	}
5350 
5351 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5352 
5353 	return 0;
5354 }
5355 
5356 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5357 					     struct kvm_debugregs *dbgregs)
5358 {
5359 	unsigned long val;
5360 
5361 	memset(dbgregs, 0, sizeof(*dbgregs));
5362 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5363 	kvm_get_dr(vcpu, 6, &val);
5364 	dbgregs->dr6 = val;
5365 	dbgregs->dr7 = vcpu->arch.dr7;
5366 }
5367 
5368 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5369 					    struct kvm_debugregs *dbgregs)
5370 {
5371 	if (dbgregs->flags)
5372 		return -EINVAL;
5373 
5374 	if (!kvm_dr6_valid(dbgregs->dr6))
5375 		return -EINVAL;
5376 	if (!kvm_dr7_valid(dbgregs->dr7))
5377 		return -EINVAL;
5378 
5379 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5380 	kvm_update_dr0123(vcpu);
5381 	vcpu->arch.dr6 = dbgregs->dr6;
5382 	vcpu->arch.dr7 = dbgregs->dr7;
5383 	kvm_update_dr7(vcpu);
5384 
5385 	return 0;
5386 }
5387 
5388 
5389 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5390 					  u8 *state, unsigned int size)
5391 {
5392 	/*
5393 	 * Only copy state for features that are enabled for the guest.  The
5394 	 * state itself isn't problematic, but setting bits in the header for
5395 	 * features that are supported in *this* host but not exposed to the
5396 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5397 	 * compatible host without the features that are NOT exposed to the
5398 	 * guest.
5399 	 *
5400 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5401 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5402 	 * supported by the host.
5403 	 */
5404 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5405 			     XFEATURE_MASK_FPSSE;
5406 
5407 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5408 		return;
5409 
5410 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5411 				       supported_xcr0, vcpu->arch.pkru);
5412 }
5413 
5414 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5415 					 struct kvm_xsave *guest_xsave)
5416 {
5417 	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5418 					     sizeof(guest_xsave->region));
5419 }
5420 
5421 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5422 					struct kvm_xsave *guest_xsave)
5423 {
5424 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5425 		return 0;
5426 
5427 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5428 					      guest_xsave->region,
5429 					      kvm_caps.supported_xcr0,
5430 					      &vcpu->arch.pkru);
5431 }
5432 
5433 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5434 					struct kvm_xcrs *guest_xcrs)
5435 {
5436 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5437 		guest_xcrs->nr_xcrs = 0;
5438 		return;
5439 	}
5440 
5441 	guest_xcrs->nr_xcrs = 1;
5442 	guest_xcrs->flags = 0;
5443 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5444 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5445 }
5446 
5447 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5448 				       struct kvm_xcrs *guest_xcrs)
5449 {
5450 	int i, r = 0;
5451 
5452 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5453 		return -EINVAL;
5454 
5455 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5456 		return -EINVAL;
5457 
5458 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5459 		/* Only support XCR0 currently */
5460 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5461 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5462 				guest_xcrs->xcrs[i].value);
5463 			break;
5464 		}
5465 	if (r)
5466 		r = -EINVAL;
5467 	return r;
5468 }
5469 
5470 /*
5471  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5472  * stopped by the hypervisor.  This function will be called from the host only.
5473  * EINVAL is returned when the host attempts to set the flag for a guest that
5474  * does not support pv clocks.
5475  */
5476 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5477 {
5478 	if (!vcpu->arch.pv_time.active)
5479 		return -EINVAL;
5480 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5481 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5482 	return 0;
5483 }
5484 
5485 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5486 				 struct kvm_device_attr *attr)
5487 {
5488 	int r;
5489 
5490 	switch (attr->attr) {
5491 	case KVM_VCPU_TSC_OFFSET:
5492 		r = 0;
5493 		break;
5494 	default:
5495 		r = -ENXIO;
5496 	}
5497 
5498 	return r;
5499 }
5500 
5501 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5502 				 struct kvm_device_attr *attr)
5503 {
5504 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5505 	int r;
5506 
5507 	if (IS_ERR(uaddr))
5508 		return PTR_ERR(uaddr);
5509 
5510 	switch (attr->attr) {
5511 	case KVM_VCPU_TSC_OFFSET:
5512 		r = -EFAULT;
5513 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5514 			break;
5515 		r = 0;
5516 		break;
5517 	default:
5518 		r = -ENXIO;
5519 	}
5520 
5521 	return r;
5522 }
5523 
5524 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5525 				 struct kvm_device_attr *attr)
5526 {
5527 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5528 	struct kvm *kvm = vcpu->kvm;
5529 	int r;
5530 
5531 	if (IS_ERR(uaddr))
5532 		return PTR_ERR(uaddr);
5533 
5534 	switch (attr->attr) {
5535 	case KVM_VCPU_TSC_OFFSET: {
5536 		u64 offset, tsc, ns;
5537 		unsigned long flags;
5538 		bool matched;
5539 
5540 		r = -EFAULT;
5541 		if (get_user(offset, uaddr))
5542 			break;
5543 
5544 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5545 
5546 		matched = (vcpu->arch.virtual_tsc_khz &&
5547 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5548 			   kvm->arch.last_tsc_offset == offset);
5549 
5550 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5551 		ns = get_kvmclock_base_ns();
5552 
5553 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5554 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5555 
5556 		r = 0;
5557 		break;
5558 	}
5559 	default:
5560 		r = -ENXIO;
5561 	}
5562 
5563 	return r;
5564 }
5565 
5566 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5567 				      unsigned int ioctl,
5568 				      void __user *argp)
5569 {
5570 	struct kvm_device_attr attr;
5571 	int r;
5572 
5573 	if (copy_from_user(&attr, argp, sizeof(attr)))
5574 		return -EFAULT;
5575 
5576 	if (attr.group != KVM_VCPU_TSC_CTRL)
5577 		return -ENXIO;
5578 
5579 	switch (ioctl) {
5580 	case KVM_HAS_DEVICE_ATTR:
5581 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5582 		break;
5583 	case KVM_GET_DEVICE_ATTR:
5584 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5585 		break;
5586 	case KVM_SET_DEVICE_ATTR:
5587 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5588 		break;
5589 	}
5590 
5591 	return r;
5592 }
5593 
5594 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5595 				     struct kvm_enable_cap *cap)
5596 {
5597 	int r;
5598 	uint16_t vmcs_version;
5599 	void __user *user_ptr;
5600 
5601 	if (cap->flags)
5602 		return -EINVAL;
5603 
5604 	switch (cap->cap) {
5605 	case KVM_CAP_HYPERV_SYNIC2:
5606 		if (cap->args[0])
5607 			return -EINVAL;
5608 		fallthrough;
5609 
5610 	case KVM_CAP_HYPERV_SYNIC:
5611 		if (!irqchip_in_kernel(vcpu->kvm))
5612 			return -EINVAL;
5613 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5614 					     KVM_CAP_HYPERV_SYNIC2);
5615 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5616 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5617 			return -ENOTTY;
5618 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5619 		if (!r) {
5620 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5621 			if (copy_to_user(user_ptr, &vmcs_version,
5622 					 sizeof(vmcs_version)))
5623 				r = -EFAULT;
5624 		}
5625 		return r;
5626 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5627 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5628 			return -ENOTTY;
5629 
5630 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5631 
5632 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5633 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5634 
5635 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5636 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5637 		if (vcpu->arch.pv_cpuid.enforce)
5638 			kvm_update_pv_runtime(vcpu);
5639 
5640 		return 0;
5641 	default:
5642 		return -EINVAL;
5643 	}
5644 }
5645 
5646 long kvm_arch_vcpu_ioctl(struct file *filp,
5647 			 unsigned int ioctl, unsigned long arg)
5648 {
5649 	struct kvm_vcpu *vcpu = filp->private_data;
5650 	void __user *argp = (void __user *)arg;
5651 	int r;
5652 	union {
5653 		struct kvm_sregs2 *sregs2;
5654 		struct kvm_lapic_state *lapic;
5655 		struct kvm_xsave *xsave;
5656 		struct kvm_xcrs *xcrs;
5657 		void *buffer;
5658 	} u;
5659 
5660 	vcpu_load(vcpu);
5661 
5662 	u.buffer = NULL;
5663 	switch (ioctl) {
5664 	case KVM_GET_LAPIC: {
5665 		r = -EINVAL;
5666 		if (!lapic_in_kernel(vcpu))
5667 			goto out;
5668 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5669 				GFP_KERNEL_ACCOUNT);
5670 
5671 		r = -ENOMEM;
5672 		if (!u.lapic)
5673 			goto out;
5674 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5675 		if (r)
5676 			goto out;
5677 		r = -EFAULT;
5678 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5679 			goto out;
5680 		r = 0;
5681 		break;
5682 	}
5683 	case KVM_SET_LAPIC: {
5684 		r = -EINVAL;
5685 		if (!lapic_in_kernel(vcpu))
5686 			goto out;
5687 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5688 		if (IS_ERR(u.lapic)) {
5689 			r = PTR_ERR(u.lapic);
5690 			goto out_nofree;
5691 		}
5692 
5693 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5694 		break;
5695 	}
5696 	case KVM_INTERRUPT: {
5697 		struct kvm_interrupt irq;
5698 
5699 		r = -EFAULT;
5700 		if (copy_from_user(&irq, argp, sizeof(irq)))
5701 			goto out;
5702 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5703 		break;
5704 	}
5705 	case KVM_NMI: {
5706 		r = kvm_vcpu_ioctl_nmi(vcpu);
5707 		break;
5708 	}
5709 	case KVM_SMI: {
5710 		r = kvm_inject_smi(vcpu);
5711 		break;
5712 	}
5713 	case KVM_SET_CPUID: {
5714 		struct kvm_cpuid __user *cpuid_arg = argp;
5715 		struct kvm_cpuid cpuid;
5716 
5717 		r = -EFAULT;
5718 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5719 			goto out;
5720 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5721 		break;
5722 	}
5723 	case KVM_SET_CPUID2: {
5724 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5725 		struct kvm_cpuid2 cpuid;
5726 
5727 		r = -EFAULT;
5728 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5729 			goto out;
5730 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5731 					      cpuid_arg->entries);
5732 		break;
5733 	}
5734 	case KVM_GET_CPUID2: {
5735 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5736 		struct kvm_cpuid2 cpuid;
5737 
5738 		r = -EFAULT;
5739 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5740 			goto out;
5741 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5742 					      cpuid_arg->entries);
5743 		if (r)
5744 			goto out;
5745 		r = -EFAULT;
5746 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5747 			goto out;
5748 		r = 0;
5749 		break;
5750 	}
5751 	case KVM_GET_MSRS: {
5752 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5753 		r = msr_io(vcpu, argp, do_get_msr, 1);
5754 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5755 		break;
5756 	}
5757 	case KVM_SET_MSRS: {
5758 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5759 		r = msr_io(vcpu, argp, do_set_msr, 0);
5760 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5761 		break;
5762 	}
5763 	case KVM_TPR_ACCESS_REPORTING: {
5764 		struct kvm_tpr_access_ctl tac;
5765 
5766 		r = -EFAULT;
5767 		if (copy_from_user(&tac, argp, sizeof(tac)))
5768 			goto out;
5769 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5770 		if (r)
5771 			goto out;
5772 		r = -EFAULT;
5773 		if (copy_to_user(argp, &tac, sizeof(tac)))
5774 			goto out;
5775 		r = 0;
5776 		break;
5777 	};
5778 	case KVM_SET_VAPIC_ADDR: {
5779 		struct kvm_vapic_addr va;
5780 		int idx;
5781 
5782 		r = -EINVAL;
5783 		if (!lapic_in_kernel(vcpu))
5784 			goto out;
5785 		r = -EFAULT;
5786 		if (copy_from_user(&va, argp, sizeof(va)))
5787 			goto out;
5788 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5789 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5790 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5791 		break;
5792 	}
5793 	case KVM_X86_SETUP_MCE: {
5794 		u64 mcg_cap;
5795 
5796 		r = -EFAULT;
5797 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5798 			goto out;
5799 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5800 		break;
5801 	}
5802 	case KVM_X86_SET_MCE: {
5803 		struct kvm_x86_mce mce;
5804 
5805 		r = -EFAULT;
5806 		if (copy_from_user(&mce, argp, sizeof(mce)))
5807 			goto out;
5808 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5809 		break;
5810 	}
5811 	case KVM_GET_VCPU_EVENTS: {
5812 		struct kvm_vcpu_events events;
5813 
5814 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5815 
5816 		r = -EFAULT;
5817 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5818 			break;
5819 		r = 0;
5820 		break;
5821 	}
5822 	case KVM_SET_VCPU_EVENTS: {
5823 		struct kvm_vcpu_events events;
5824 
5825 		r = -EFAULT;
5826 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5827 			break;
5828 
5829 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5830 		break;
5831 	}
5832 	case KVM_GET_DEBUGREGS: {
5833 		struct kvm_debugregs dbgregs;
5834 
5835 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5836 
5837 		r = -EFAULT;
5838 		if (copy_to_user(argp, &dbgregs,
5839 				 sizeof(struct kvm_debugregs)))
5840 			break;
5841 		r = 0;
5842 		break;
5843 	}
5844 	case KVM_SET_DEBUGREGS: {
5845 		struct kvm_debugregs dbgregs;
5846 
5847 		r = -EFAULT;
5848 		if (copy_from_user(&dbgregs, argp,
5849 				   sizeof(struct kvm_debugregs)))
5850 			break;
5851 
5852 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5853 		break;
5854 	}
5855 	case KVM_GET_XSAVE: {
5856 		r = -EINVAL;
5857 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5858 			break;
5859 
5860 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5861 		r = -ENOMEM;
5862 		if (!u.xsave)
5863 			break;
5864 
5865 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5866 
5867 		r = -EFAULT;
5868 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5869 			break;
5870 		r = 0;
5871 		break;
5872 	}
5873 	case KVM_SET_XSAVE: {
5874 		int size = vcpu->arch.guest_fpu.uabi_size;
5875 
5876 		u.xsave = memdup_user(argp, size);
5877 		if (IS_ERR(u.xsave)) {
5878 			r = PTR_ERR(u.xsave);
5879 			goto out_nofree;
5880 		}
5881 
5882 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5883 		break;
5884 	}
5885 
5886 	case KVM_GET_XSAVE2: {
5887 		int size = vcpu->arch.guest_fpu.uabi_size;
5888 
5889 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5890 		r = -ENOMEM;
5891 		if (!u.xsave)
5892 			break;
5893 
5894 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5895 
5896 		r = -EFAULT;
5897 		if (copy_to_user(argp, u.xsave, size))
5898 			break;
5899 
5900 		r = 0;
5901 		break;
5902 	}
5903 
5904 	case KVM_GET_XCRS: {
5905 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5906 		r = -ENOMEM;
5907 		if (!u.xcrs)
5908 			break;
5909 
5910 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5911 
5912 		r = -EFAULT;
5913 		if (copy_to_user(argp, u.xcrs,
5914 				 sizeof(struct kvm_xcrs)))
5915 			break;
5916 		r = 0;
5917 		break;
5918 	}
5919 	case KVM_SET_XCRS: {
5920 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5921 		if (IS_ERR(u.xcrs)) {
5922 			r = PTR_ERR(u.xcrs);
5923 			goto out_nofree;
5924 		}
5925 
5926 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5927 		break;
5928 	}
5929 	case KVM_SET_TSC_KHZ: {
5930 		u32 user_tsc_khz;
5931 
5932 		r = -EINVAL;
5933 		user_tsc_khz = (u32)arg;
5934 
5935 		if (kvm_caps.has_tsc_control &&
5936 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5937 			goto out;
5938 
5939 		if (user_tsc_khz == 0)
5940 			user_tsc_khz = tsc_khz;
5941 
5942 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5943 			r = 0;
5944 
5945 		goto out;
5946 	}
5947 	case KVM_GET_TSC_KHZ: {
5948 		r = vcpu->arch.virtual_tsc_khz;
5949 		goto out;
5950 	}
5951 	case KVM_KVMCLOCK_CTRL: {
5952 		r = kvm_set_guest_paused(vcpu);
5953 		goto out;
5954 	}
5955 	case KVM_ENABLE_CAP: {
5956 		struct kvm_enable_cap cap;
5957 
5958 		r = -EFAULT;
5959 		if (copy_from_user(&cap, argp, sizeof(cap)))
5960 			goto out;
5961 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5962 		break;
5963 	}
5964 	case KVM_GET_NESTED_STATE: {
5965 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5966 		u32 user_data_size;
5967 
5968 		r = -EINVAL;
5969 		if (!kvm_x86_ops.nested_ops->get_state)
5970 			break;
5971 
5972 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5973 		r = -EFAULT;
5974 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5975 			break;
5976 
5977 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5978 						     user_data_size);
5979 		if (r < 0)
5980 			break;
5981 
5982 		if (r > user_data_size) {
5983 			if (put_user(r, &user_kvm_nested_state->size))
5984 				r = -EFAULT;
5985 			else
5986 				r = -E2BIG;
5987 			break;
5988 		}
5989 
5990 		r = 0;
5991 		break;
5992 	}
5993 	case KVM_SET_NESTED_STATE: {
5994 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5995 		struct kvm_nested_state kvm_state;
5996 		int idx;
5997 
5998 		r = -EINVAL;
5999 		if (!kvm_x86_ops.nested_ops->set_state)
6000 			break;
6001 
6002 		r = -EFAULT;
6003 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6004 			break;
6005 
6006 		r = -EINVAL;
6007 		if (kvm_state.size < sizeof(kvm_state))
6008 			break;
6009 
6010 		if (kvm_state.flags &
6011 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6012 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6013 		      | KVM_STATE_NESTED_GIF_SET))
6014 			break;
6015 
6016 		/* nested_run_pending implies guest_mode.  */
6017 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6018 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6019 			break;
6020 
6021 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6022 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6023 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6024 		break;
6025 	}
6026 	case KVM_GET_SUPPORTED_HV_CPUID:
6027 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6028 		break;
6029 #ifdef CONFIG_KVM_XEN
6030 	case KVM_XEN_VCPU_GET_ATTR: {
6031 		struct kvm_xen_vcpu_attr xva;
6032 
6033 		r = -EFAULT;
6034 		if (copy_from_user(&xva, argp, sizeof(xva)))
6035 			goto out;
6036 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6037 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6038 			r = -EFAULT;
6039 		break;
6040 	}
6041 	case KVM_XEN_VCPU_SET_ATTR: {
6042 		struct kvm_xen_vcpu_attr xva;
6043 
6044 		r = -EFAULT;
6045 		if (copy_from_user(&xva, argp, sizeof(xva)))
6046 			goto out;
6047 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6048 		break;
6049 	}
6050 #endif
6051 	case KVM_GET_SREGS2: {
6052 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6053 		r = -ENOMEM;
6054 		if (!u.sregs2)
6055 			goto out;
6056 		__get_sregs2(vcpu, u.sregs2);
6057 		r = -EFAULT;
6058 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6059 			goto out;
6060 		r = 0;
6061 		break;
6062 	}
6063 	case KVM_SET_SREGS2: {
6064 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6065 		if (IS_ERR(u.sregs2)) {
6066 			r = PTR_ERR(u.sregs2);
6067 			u.sregs2 = NULL;
6068 			goto out;
6069 		}
6070 		r = __set_sregs2(vcpu, u.sregs2);
6071 		break;
6072 	}
6073 	case KVM_HAS_DEVICE_ATTR:
6074 	case KVM_GET_DEVICE_ATTR:
6075 	case KVM_SET_DEVICE_ATTR:
6076 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6077 		break;
6078 	default:
6079 		r = -EINVAL;
6080 	}
6081 out:
6082 	kfree(u.buffer);
6083 out_nofree:
6084 	vcpu_put(vcpu);
6085 	return r;
6086 }
6087 
6088 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6089 {
6090 	return VM_FAULT_SIGBUS;
6091 }
6092 
6093 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6094 {
6095 	int ret;
6096 
6097 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6098 		return -EINVAL;
6099 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6100 	return ret;
6101 }
6102 
6103 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6104 					      u64 ident_addr)
6105 {
6106 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6107 }
6108 
6109 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6110 					 unsigned long kvm_nr_mmu_pages)
6111 {
6112 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6113 		return -EINVAL;
6114 
6115 	mutex_lock(&kvm->slots_lock);
6116 
6117 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6118 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6119 
6120 	mutex_unlock(&kvm->slots_lock);
6121 	return 0;
6122 }
6123 
6124 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6125 {
6126 	struct kvm_pic *pic = kvm->arch.vpic;
6127 	int r;
6128 
6129 	r = 0;
6130 	switch (chip->chip_id) {
6131 	case KVM_IRQCHIP_PIC_MASTER:
6132 		memcpy(&chip->chip.pic, &pic->pics[0],
6133 			sizeof(struct kvm_pic_state));
6134 		break;
6135 	case KVM_IRQCHIP_PIC_SLAVE:
6136 		memcpy(&chip->chip.pic, &pic->pics[1],
6137 			sizeof(struct kvm_pic_state));
6138 		break;
6139 	case KVM_IRQCHIP_IOAPIC:
6140 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6141 		break;
6142 	default:
6143 		r = -EINVAL;
6144 		break;
6145 	}
6146 	return r;
6147 }
6148 
6149 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6150 {
6151 	struct kvm_pic *pic = kvm->arch.vpic;
6152 	int r;
6153 
6154 	r = 0;
6155 	switch (chip->chip_id) {
6156 	case KVM_IRQCHIP_PIC_MASTER:
6157 		spin_lock(&pic->lock);
6158 		memcpy(&pic->pics[0], &chip->chip.pic,
6159 			sizeof(struct kvm_pic_state));
6160 		spin_unlock(&pic->lock);
6161 		break;
6162 	case KVM_IRQCHIP_PIC_SLAVE:
6163 		spin_lock(&pic->lock);
6164 		memcpy(&pic->pics[1], &chip->chip.pic,
6165 			sizeof(struct kvm_pic_state));
6166 		spin_unlock(&pic->lock);
6167 		break;
6168 	case KVM_IRQCHIP_IOAPIC:
6169 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6170 		break;
6171 	default:
6172 		r = -EINVAL;
6173 		break;
6174 	}
6175 	kvm_pic_update_irq(pic);
6176 	return r;
6177 }
6178 
6179 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6180 {
6181 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6182 
6183 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6184 
6185 	mutex_lock(&kps->lock);
6186 	memcpy(ps, &kps->channels, sizeof(*ps));
6187 	mutex_unlock(&kps->lock);
6188 	return 0;
6189 }
6190 
6191 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6192 {
6193 	int i;
6194 	struct kvm_pit *pit = kvm->arch.vpit;
6195 
6196 	mutex_lock(&pit->pit_state.lock);
6197 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6198 	for (i = 0; i < 3; i++)
6199 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6200 	mutex_unlock(&pit->pit_state.lock);
6201 	return 0;
6202 }
6203 
6204 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6205 {
6206 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6207 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6208 		sizeof(ps->channels));
6209 	ps->flags = kvm->arch.vpit->pit_state.flags;
6210 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6211 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6212 	return 0;
6213 }
6214 
6215 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6216 {
6217 	int start = 0;
6218 	int i;
6219 	u32 prev_legacy, cur_legacy;
6220 	struct kvm_pit *pit = kvm->arch.vpit;
6221 
6222 	mutex_lock(&pit->pit_state.lock);
6223 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6224 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6225 	if (!prev_legacy && cur_legacy)
6226 		start = 1;
6227 	memcpy(&pit->pit_state.channels, &ps->channels,
6228 	       sizeof(pit->pit_state.channels));
6229 	pit->pit_state.flags = ps->flags;
6230 	for (i = 0; i < 3; i++)
6231 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6232 				   start && i == 0);
6233 	mutex_unlock(&pit->pit_state.lock);
6234 	return 0;
6235 }
6236 
6237 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6238 				 struct kvm_reinject_control *control)
6239 {
6240 	struct kvm_pit *pit = kvm->arch.vpit;
6241 
6242 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6243 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6244 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6245 	 */
6246 	mutex_lock(&pit->pit_state.lock);
6247 	kvm_pit_set_reinject(pit, control->pit_reinject);
6248 	mutex_unlock(&pit->pit_state.lock);
6249 
6250 	return 0;
6251 }
6252 
6253 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6254 {
6255 
6256 	/*
6257 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6258 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6259 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6260 	 * VM-Exit.
6261 	 */
6262 	struct kvm_vcpu *vcpu;
6263 	unsigned long i;
6264 
6265 	kvm_for_each_vcpu(i, vcpu, kvm)
6266 		kvm_vcpu_kick(vcpu);
6267 }
6268 
6269 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6270 			bool line_status)
6271 {
6272 	if (!irqchip_in_kernel(kvm))
6273 		return -ENXIO;
6274 
6275 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6276 					irq_event->irq, irq_event->level,
6277 					line_status);
6278 	return 0;
6279 }
6280 
6281 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6282 			    struct kvm_enable_cap *cap)
6283 {
6284 	int r;
6285 
6286 	if (cap->flags)
6287 		return -EINVAL;
6288 
6289 	switch (cap->cap) {
6290 	case KVM_CAP_DISABLE_QUIRKS2:
6291 		r = -EINVAL;
6292 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6293 			break;
6294 		fallthrough;
6295 	case KVM_CAP_DISABLE_QUIRKS:
6296 		kvm->arch.disabled_quirks = cap->args[0];
6297 		r = 0;
6298 		break;
6299 	case KVM_CAP_SPLIT_IRQCHIP: {
6300 		mutex_lock(&kvm->lock);
6301 		r = -EINVAL;
6302 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6303 			goto split_irqchip_unlock;
6304 		r = -EEXIST;
6305 		if (irqchip_in_kernel(kvm))
6306 			goto split_irqchip_unlock;
6307 		if (kvm->created_vcpus)
6308 			goto split_irqchip_unlock;
6309 		r = kvm_setup_empty_irq_routing(kvm);
6310 		if (r)
6311 			goto split_irqchip_unlock;
6312 		/* Pairs with irqchip_in_kernel. */
6313 		smp_wmb();
6314 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6315 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6316 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6317 		r = 0;
6318 split_irqchip_unlock:
6319 		mutex_unlock(&kvm->lock);
6320 		break;
6321 	}
6322 	case KVM_CAP_X2APIC_API:
6323 		r = -EINVAL;
6324 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6325 			break;
6326 
6327 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6328 			kvm->arch.x2apic_format = true;
6329 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6330 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6331 
6332 		r = 0;
6333 		break;
6334 	case KVM_CAP_X86_DISABLE_EXITS:
6335 		r = -EINVAL;
6336 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6337 			break;
6338 
6339 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6340 			kvm->arch.pause_in_guest = true;
6341 
6342 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6343 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6344 
6345 		if (!mitigate_smt_rsb) {
6346 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6347 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6348 				pr_warn_once(SMT_RSB_MSG);
6349 
6350 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6351 			    kvm_can_mwait_in_guest())
6352 				kvm->arch.mwait_in_guest = true;
6353 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6354 				kvm->arch.hlt_in_guest = true;
6355 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6356 				kvm->arch.cstate_in_guest = true;
6357 		}
6358 
6359 		r = 0;
6360 		break;
6361 	case KVM_CAP_MSR_PLATFORM_INFO:
6362 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6363 		r = 0;
6364 		break;
6365 	case KVM_CAP_EXCEPTION_PAYLOAD:
6366 		kvm->arch.exception_payload_enabled = cap->args[0];
6367 		r = 0;
6368 		break;
6369 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6370 		kvm->arch.triple_fault_event = cap->args[0];
6371 		r = 0;
6372 		break;
6373 	case KVM_CAP_X86_USER_SPACE_MSR:
6374 		r = -EINVAL;
6375 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6376 			break;
6377 		kvm->arch.user_space_msr_mask = cap->args[0];
6378 		r = 0;
6379 		break;
6380 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6381 		r = -EINVAL;
6382 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6383 			break;
6384 
6385 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6386 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6387 			break;
6388 
6389 		if (kvm_caps.has_bus_lock_exit &&
6390 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6391 			kvm->arch.bus_lock_detection_enabled = true;
6392 		r = 0;
6393 		break;
6394 #ifdef CONFIG_X86_SGX_KVM
6395 	case KVM_CAP_SGX_ATTRIBUTE: {
6396 		unsigned long allowed_attributes = 0;
6397 
6398 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6399 		if (r)
6400 			break;
6401 
6402 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6403 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6404 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6405 			kvm->arch.sgx_provisioning_allowed = true;
6406 		else
6407 			r = -EINVAL;
6408 		break;
6409 	}
6410 #endif
6411 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6412 		r = -EINVAL;
6413 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6414 			break;
6415 
6416 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6417 		break;
6418 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6419 		r = -EINVAL;
6420 		if (!kvm_x86_ops.vm_move_enc_context_from)
6421 			break;
6422 
6423 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6424 		break;
6425 	case KVM_CAP_EXIT_HYPERCALL:
6426 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6427 			r = -EINVAL;
6428 			break;
6429 		}
6430 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6431 		r = 0;
6432 		break;
6433 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6434 		r = -EINVAL;
6435 		if (cap->args[0] & ~1)
6436 			break;
6437 		kvm->arch.exit_on_emulation_error = cap->args[0];
6438 		r = 0;
6439 		break;
6440 	case KVM_CAP_PMU_CAPABILITY:
6441 		r = -EINVAL;
6442 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6443 			break;
6444 
6445 		mutex_lock(&kvm->lock);
6446 		if (!kvm->created_vcpus) {
6447 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6448 			r = 0;
6449 		}
6450 		mutex_unlock(&kvm->lock);
6451 		break;
6452 	case KVM_CAP_MAX_VCPU_ID:
6453 		r = -EINVAL;
6454 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6455 			break;
6456 
6457 		mutex_lock(&kvm->lock);
6458 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6459 			r = 0;
6460 		} else if (!kvm->arch.max_vcpu_ids) {
6461 			kvm->arch.max_vcpu_ids = cap->args[0];
6462 			r = 0;
6463 		}
6464 		mutex_unlock(&kvm->lock);
6465 		break;
6466 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6467 		r = -EINVAL;
6468 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6469 			break;
6470 		if (!kvm_caps.has_notify_vmexit)
6471 			break;
6472 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6473 			break;
6474 		mutex_lock(&kvm->lock);
6475 		if (!kvm->created_vcpus) {
6476 			kvm->arch.notify_window = cap->args[0] >> 32;
6477 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6478 			r = 0;
6479 		}
6480 		mutex_unlock(&kvm->lock);
6481 		break;
6482 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6483 		r = -EINVAL;
6484 
6485 		/*
6486 		 * Since the risk of disabling NX hugepages is a guest crashing
6487 		 * the system, ensure the userspace process has permission to
6488 		 * reboot the system.
6489 		 *
6490 		 * Note that unlike the reboot() syscall, the process must have
6491 		 * this capability in the root namespace because exposing
6492 		 * /dev/kvm into a container does not limit the scope of the
6493 		 * iTLB multihit bug to that container. In other words,
6494 		 * this must use capable(), not ns_capable().
6495 		 */
6496 		if (!capable(CAP_SYS_BOOT)) {
6497 			r = -EPERM;
6498 			break;
6499 		}
6500 
6501 		if (cap->args[0])
6502 			break;
6503 
6504 		mutex_lock(&kvm->lock);
6505 		if (!kvm->created_vcpus) {
6506 			kvm->arch.disable_nx_huge_pages = true;
6507 			r = 0;
6508 		}
6509 		mutex_unlock(&kvm->lock);
6510 		break;
6511 	default:
6512 		r = -EINVAL;
6513 		break;
6514 	}
6515 	return r;
6516 }
6517 
6518 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6519 {
6520 	struct kvm_x86_msr_filter *msr_filter;
6521 
6522 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6523 	if (!msr_filter)
6524 		return NULL;
6525 
6526 	msr_filter->default_allow = default_allow;
6527 	return msr_filter;
6528 }
6529 
6530 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6531 {
6532 	u32 i;
6533 
6534 	if (!msr_filter)
6535 		return;
6536 
6537 	for (i = 0; i < msr_filter->count; i++)
6538 		kfree(msr_filter->ranges[i].bitmap);
6539 
6540 	kfree(msr_filter);
6541 }
6542 
6543 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6544 			      struct kvm_msr_filter_range *user_range)
6545 {
6546 	unsigned long *bitmap;
6547 	size_t bitmap_size;
6548 
6549 	if (!user_range->nmsrs)
6550 		return 0;
6551 
6552 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6553 		return -EINVAL;
6554 
6555 	if (!user_range->flags)
6556 		return -EINVAL;
6557 
6558 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6559 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6560 		return -EINVAL;
6561 
6562 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6563 	if (IS_ERR(bitmap))
6564 		return PTR_ERR(bitmap);
6565 
6566 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6567 		.flags = user_range->flags,
6568 		.base = user_range->base,
6569 		.nmsrs = user_range->nmsrs,
6570 		.bitmap = bitmap,
6571 	};
6572 
6573 	msr_filter->count++;
6574 	return 0;
6575 }
6576 
6577 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6578 				       struct kvm_msr_filter *filter)
6579 {
6580 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6581 	bool default_allow;
6582 	bool empty = true;
6583 	int r;
6584 	u32 i;
6585 
6586 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6587 		return -EINVAL;
6588 
6589 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6590 		empty &= !filter->ranges[i].nmsrs;
6591 
6592 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6593 	if (empty && !default_allow)
6594 		return -EINVAL;
6595 
6596 	new_filter = kvm_alloc_msr_filter(default_allow);
6597 	if (!new_filter)
6598 		return -ENOMEM;
6599 
6600 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6601 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6602 		if (r) {
6603 			kvm_free_msr_filter(new_filter);
6604 			return r;
6605 		}
6606 	}
6607 
6608 	mutex_lock(&kvm->lock);
6609 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6610 					 mutex_is_locked(&kvm->lock));
6611 	mutex_unlock(&kvm->lock);
6612 	synchronize_srcu(&kvm->srcu);
6613 
6614 	kvm_free_msr_filter(old_filter);
6615 
6616 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6617 
6618 	return 0;
6619 }
6620 
6621 #ifdef CONFIG_KVM_COMPAT
6622 /* for KVM_X86_SET_MSR_FILTER */
6623 struct kvm_msr_filter_range_compat {
6624 	__u32 flags;
6625 	__u32 nmsrs;
6626 	__u32 base;
6627 	__u32 bitmap;
6628 };
6629 
6630 struct kvm_msr_filter_compat {
6631 	__u32 flags;
6632 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6633 };
6634 
6635 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6636 
6637 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6638 			      unsigned long arg)
6639 {
6640 	void __user *argp = (void __user *)arg;
6641 	struct kvm *kvm = filp->private_data;
6642 	long r = -ENOTTY;
6643 
6644 	switch (ioctl) {
6645 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6646 		struct kvm_msr_filter __user *user_msr_filter = argp;
6647 		struct kvm_msr_filter_compat filter_compat;
6648 		struct kvm_msr_filter filter;
6649 		int i;
6650 
6651 		if (copy_from_user(&filter_compat, user_msr_filter,
6652 				   sizeof(filter_compat)))
6653 			return -EFAULT;
6654 
6655 		filter.flags = filter_compat.flags;
6656 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6657 			struct kvm_msr_filter_range_compat *cr;
6658 
6659 			cr = &filter_compat.ranges[i];
6660 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6661 				.flags = cr->flags,
6662 				.nmsrs = cr->nmsrs,
6663 				.base = cr->base,
6664 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6665 			};
6666 		}
6667 
6668 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6669 		break;
6670 	}
6671 	}
6672 
6673 	return r;
6674 }
6675 #endif
6676 
6677 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6678 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6679 {
6680 	struct kvm_vcpu *vcpu;
6681 	unsigned long i;
6682 	int ret = 0;
6683 
6684 	mutex_lock(&kvm->lock);
6685 	kvm_for_each_vcpu(i, vcpu, kvm) {
6686 		if (!vcpu->arch.pv_time.active)
6687 			continue;
6688 
6689 		ret = kvm_set_guest_paused(vcpu);
6690 		if (ret) {
6691 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6692 				vcpu->vcpu_id, ret);
6693 			break;
6694 		}
6695 	}
6696 	mutex_unlock(&kvm->lock);
6697 
6698 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6699 }
6700 
6701 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6702 {
6703 	switch (state) {
6704 	case PM_HIBERNATION_PREPARE:
6705 	case PM_SUSPEND_PREPARE:
6706 		return kvm_arch_suspend_notifier(kvm);
6707 	}
6708 
6709 	return NOTIFY_DONE;
6710 }
6711 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6712 
6713 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6714 {
6715 	struct kvm_clock_data data = { 0 };
6716 
6717 	get_kvmclock(kvm, &data);
6718 	if (copy_to_user(argp, &data, sizeof(data)))
6719 		return -EFAULT;
6720 
6721 	return 0;
6722 }
6723 
6724 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6725 {
6726 	struct kvm_arch *ka = &kvm->arch;
6727 	struct kvm_clock_data data;
6728 	u64 now_raw_ns;
6729 
6730 	if (copy_from_user(&data, argp, sizeof(data)))
6731 		return -EFAULT;
6732 
6733 	/*
6734 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6735 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6736 	 */
6737 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6738 		return -EINVAL;
6739 
6740 	kvm_hv_request_tsc_page_update(kvm);
6741 	kvm_start_pvclock_update(kvm);
6742 	pvclock_update_vm_gtod_copy(kvm);
6743 
6744 	/*
6745 	 * This pairs with kvm_guest_time_update(): when masterclock is
6746 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6747 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6748 	 * is slightly ahead) here we risk going negative on unsigned
6749 	 * 'system_time' when 'data.clock' is very small.
6750 	 */
6751 	if (data.flags & KVM_CLOCK_REALTIME) {
6752 		u64 now_real_ns = ktime_get_real_ns();
6753 
6754 		/*
6755 		 * Avoid stepping the kvmclock backwards.
6756 		 */
6757 		if (now_real_ns > data.realtime)
6758 			data.clock += now_real_ns - data.realtime;
6759 	}
6760 
6761 	if (ka->use_master_clock)
6762 		now_raw_ns = ka->master_kernel_ns;
6763 	else
6764 		now_raw_ns = get_kvmclock_base_ns();
6765 	ka->kvmclock_offset = data.clock - now_raw_ns;
6766 	kvm_end_pvclock_update(kvm);
6767 	return 0;
6768 }
6769 
6770 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6771 {
6772 	struct kvm *kvm = filp->private_data;
6773 	void __user *argp = (void __user *)arg;
6774 	int r = -ENOTTY;
6775 	/*
6776 	 * This union makes it completely explicit to gcc-3.x
6777 	 * that these two variables' stack usage should be
6778 	 * combined, not added together.
6779 	 */
6780 	union {
6781 		struct kvm_pit_state ps;
6782 		struct kvm_pit_state2 ps2;
6783 		struct kvm_pit_config pit_config;
6784 	} u;
6785 
6786 	switch (ioctl) {
6787 	case KVM_SET_TSS_ADDR:
6788 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6789 		break;
6790 	case KVM_SET_IDENTITY_MAP_ADDR: {
6791 		u64 ident_addr;
6792 
6793 		mutex_lock(&kvm->lock);
6794 		r = -EINVAL;
6795 		if (kvm->created_vcpus)
6796 			goto set_identity_unlock;
6797 		r = -EFAULT;
6798 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6799 			goto set_identity_unlock;
6800 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6801 set_identity_unlock:
6802 		mutex_unlock(&kvm->lock);
6803 		break;
6804 	}
6805 	case KVM_SET_NR_MMU_PAGES:
6806 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6807 		break;
6808 	case KVM_CREATE_IRQCHIP: {
6809 		mutex_lock(&kvm->lock);
6810 
6811 		r = -EEXIST;
6812 		if (irqchip_in_kernel(kvm))
6813 			goto create_irqchip_unlock;
6814 
6815 		r = -EINVAL;
6816 		if (kvm->created_vcpus)
6817 			goto create_irqchip_unlock;
6818 
6819 		r = kvm_pic_init(kvm);
6820 		if (r)
6821 			goto create_irqchip_unlock;
6822 
6823 		r = kvm_ioapic_init(kvm);
6824 		if (r) {
6825 			kvm_pic_destroy(kvm);
6826 			goto create_irqchip_unlock;
6827 		}
6828 
6829 		r = kvm_setup_default_irq_routing(kvm);
6830 		if (r) {
6831 			kvm_ioapic_destroy(kvm);
6832 			kvm_pic_destroy(kvm);
6833 			goto create_irqchip_unlock;
6834 		}
6835 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6836 		smp_wmb();
6837 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6838 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6839 	create_irqchip_unlock:
6840 		mutex_unlock(&kvm->lock);
6841 		break;
6842 	}
6843 	case KVM_CREATE_PIT:
6844 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6845 		goto create_pit;
6846 	case KVM_CREATE_PIT2:
6847 		r = -EFAULT;
6848 		if (copy_from_user(&u.pit_config, argp,
6849 				   sizeof(struct kvm_pit_config)))
6850 			goto out;
6851 	create_pit:
6852 		mutex_lock(&kvm->lock);
6853 		r = -EEXIST;
6854 		if (kvm->arch.vpit)
6855 			goto create_pit_unlock;
6856 		r = -ENOMEM;
6857 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6858 		if (kvm->arch.vpit)
6859 			r = 0;
6860 	create_pit_unlock:
6861 		mutex_unlock(&kvm->lock);
6862 		break;
6863 	case KVM_GET_IRQCHIP: {
6864 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6865 		struct kvm_irqchip *chip;
6866 
6867 		chip = memdup_user(argp, sizeof(*chip));
6868 		if (IS_ERR(chip)) {
6869 			r = PTR_ERR(chip);
6870 			goto out;
6871 		}
6872 
6873 		r = -ENXIO;
6874 		if (!irqchip_kernel(kvm))
6875 			goto get_irqchip_out;
6876 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6877 		if (r)
6878 			goto get_irqchip_out;
6879 		r = -EFAULT;
6880 		if (copy_to_user(argp, chip, sizeof(*chip)))
6881 			goto get_irqchip_out;
6882 		r = 0;
6883 	get_irqchip_out:
6884 		kfree(chip);
6885 		break;
6886 	}
6887 	case KVM_SET_IRQCHIP: {
6888 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6889 		struct kvm_irqchip *chip;
6890 
6891 		chip = memdup_user(argp, sizeof(*chip));
6892 		if (IS_ERR(chip)) {
6893 			r = PTR_ERR(chip);
6894 			goto out;
6895 		}
6896 
6897 		r = -ENXIO;
6898 		if (!irqchip_kernel(kvm))
6899 			goto set_irqchip_out;
6900 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6901 	set_irqchip_out:
6902 		kfree(chip);
6903 		break;
6904 	}
6905 	case KVM_GET_PIT: {
6906 		r = -EFAULT;
6907 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6908 			goto out;
6909 		r = -ENXIO;
6910 		if (!kvm->arch.vpit)
6911 			goto out;
6912 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6913 		if (r)
6914 			goto out;
6915 		r = -EFAULT;
6916 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6917 			goto out;
6918 		r = 0;
6919 		break;
6920 	}
6921 	case KVM_SET_PIT: {
6922 		r = -EFAULT;
6923 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6924 			goto out;
6925 		mutex_lock(&kvm->lock);
6926 		r = -ENXIO;
6927 		if (!kvm->arch.vpit)
6928 			goto set_pit_out;
6929 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6930 set_pit_out:
6931 		mutex_unlock(&kvm->lock);
6932 		break;
6933 	}
6934 	case KVM_GET_PIT2: {
6935 		r = -ENXIO;
6936 		if (!kvm->arch.vpit)
6937 			goto out;
6938 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6939 		if (r)
6940 			goto out;
6941 		r = -EFAULT;
6942 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6943 			goto out;
6944 		r = 0;
6945 		break;
6946 	}
6947 	case KVM_SET_PIT2: {
6948 		r = -EFAULT;
6949 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6950 			goto out;
6951 		mutex_lock(&kvm->lock);
6952 		r = -ENXIO;
6953 		if (!kvm->arch.vpit)
6954 			goto set_pit2_out;
6955 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6956 set_pit2_out:
6957 		mutex_unlock(&kvm->lock);
6958 		break;
6959 	}
6960 	case KVM_REINJECT_CONTROL: {
6961 		struct kvm_reinject_control control;
6962 		r =  -EFAULT;
6963 		if (copy_from_user(&control, argp, sizeof(control)))
6964 			goto out;
6965 		r = -ENXIO;
6966 		if (!kvm->arch.vpit)
6967 			goto out;
6968 		r = kvm_vm_ioctl_reinject(kvm, &control);
6969 		break;
6970 	}
6971 	case KVM_SET_BOOT_CPU_ID:
6972 		r = 0;
6973 		mutex_lock(&kvm->lock);
6974 		if (kvm->created_vcpus)
6975 			r = -EBUSY;
6976 		else
6977 			kvm->arch.bsp_vcpu_id = arg;
6978 		mutex_unlock(&kvm->lock);
6979 		break;
6980 #ifdef CONFIG_KVM_XEN
6981 	case KVM_XEN_HVM_CONFIG: {
6982 		struct kvm_xen_hvm_config xhc;
6983 		r = -EFAULT;
6984 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6985 			goto out;
6986 		r = kvm_xen_hvm_config(kvm, &xhc);
6987 		break;
6988 	}
6989 	case KVM_XEN_HVM_GET_ATTR: {
6990 		struct kvm_xen_hvm_attr xha;
6991 
6992 		r = -EFAULT;
6993 		if (copy_from_user(&xha, argp, sizeof(xha)))
6994 			goto out;
6995 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6996 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6997 			r = -EFAULT;
6998 		break;
6999 	}
7000 	case KVM_XEN_HVM_SET_ATTR: {
7001 		struct kvm_xen_hvm_attr xha;
7002 
7003 		r = -EFAULT;
7004 		if (copy_from_user(&xha, argp, sizeof(xha)))
7005 			goto out;
7006 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7007 		break;
7008 	}
7009 	case KVM_XEN_HVM_EVTCHN_SEND: {
7010 		struct kvm_irq_routing_xen_evtchn uxe;
7011 
7012 		r = -EFAULT;
7013 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7014 			goto out;
7015 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7016 		break;
7017 	}
7018 #endif
7019 	case KVM_SET_CLOCK:
7020 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7021 		break;
7022 	case KVM_GET_CLOCK:
7023 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7024 		break;
7025 	case KVM_SET_TSC_KHZ: {
7026 		u32 user_tsc_khz;
7027 
7028 		r = -EINVAL;
7029 		user_tsc_khz = (u32)arg;
7030 
7031 		if (kvm_caps.has_tsc_control &&
7032 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7033 			goto out;
7034 
7035 		if (user_tsc_khz == 0)
7036 			user_tsc_khz = tsc_khz;
7037 
7038 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7039 		r = 0;
7040 
7041 		goto out;
7042 	}
7043 	case KVM_GET_TSC_KHZ: {
7044 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7045 		goto out;
7046 	}
7047 	case KVM_MEMORY_ENCRYPT_OP: {
7048 		r = -ENOTTY;
7049 		if (!kvm_x86_ops.mem_enc_ioctl)
7050 			goto out;
7051 
7052 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7053 		break;
7054 	}
7055 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7056 		struct kvm_enc_region region;
7057 
7058 		r = -EFAULT;
7059 		if (copy_from_user(&region, argp, sizeof(region)))
7060 			goto out;
7061 
7062 		r = -ENOTTY;
7063 		if (!kvm_x86_ops.mem_enc_register_region)
7064 			goto out;
7065 
7066 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7067 		break;
7068 	}
7069 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7070 		struct kvm_enc_region region;
7071 
7072 		r = -EFAULT;
7073 		if (copy_from_user(&region, argp, sizeof(region)))
7074 			goto out;
7075 
7076 		r = -ENOTTY;
7077 		if (!kvm_x86_ops.mem_enc_unregister_region)
7078 			goto out;
7079 
7080 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7081 		break;
7082 	}
7083 	case KVM_HYPERV_EVENTFD: {
7084 		struct kvm_hyperv_eventfd hvevfd;
7085 
7086 		r = -EFAULT;
7087 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7088 			goto out;
7089 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7090 		break;
7091 	}
7092 	case KVM_SET_PMU_EVENT_FILTER:
7093 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7094 		break;
7095 	case KVM_X86_SET_MSR_FILTER: {
7096 		struct kvm_msr_filter __user *user_msr_filter = argp;
7097 		struct kvm_msr_filter filter;
7098 
7099 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7100 			return -EFAULT;
7101 
7102 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7103 		break;
7104 	}
7105 	default:
7106 		r = -ENOTTY;
7107 	}
7108 out:
7109 	return r;
7110 }
7111 
7112 static void kvm_probe_feature_msr(u32 msr_index)
7113 {
7114 	struct kvm_msr_entry msr = {
7115 		.index = msr_index,
7116 	};
7117 
7118 	if (kvm_get_msr_feature(&msr))
7119 		return;
7120 
7121 	msr_based_features[num_msr_based_features++] = msr_index;
7122 }
7123 
7124 static void kvm_probe_msr_to_save(u32 msr_index)
7125 {
7126 	u32 dummy[2];
7127 
7128 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7129 		return;
7130 
7131 	/*
7132 	 * Even MSRs that are valid in the host may not be exposed to guests in
7133 	 * some cases.
7134 	 */
7135 	switch (msr_index) {
7136 	case MSR_IA32_BNDCFGS:
7137 		if (!kvm_mpx_supported())
7138 			return;
7139 		break;
7140 	case MSR_TSC_AUX:
7141 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7142 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7143 			return;
7144 		break;
7145 	case MSR_IA32_UMWAIT_CONTROL:
7146 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7147 			return;
7148 		break;
7149 	case MSR_IA32_RTIT_CTL:
7150 	case MSR_IA32_RTIT_STATUS:
7151 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7152 			return;
7153 		break;
7154 	case MSR_IA32_RTIT_CR3_MATCH:
7155 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7156 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7157 			return;
7158 		break;
7159 	case MSR_IA32_RTIT_OUTPUT_BASE:
7160 	case MSR_IA32_RTIT_OUTPUT_MASK:
7161 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7162 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7163 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7164 			return;
7165 		break;
7166 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7167 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7168 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7169 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7170 			return;
7171 		break;
7172 	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7173 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7174 		    kvm_pmu_cap.num_counters_gp)
7175 			return;
7176 		break;
7177 	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7178 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7179 		    kvm_pmu_cap.num_counters_gp)
7180 			return;
7181 		break;
7182 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7183 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7184 		    kvm_pmu_cap.num_counters_fixed)
7185 			return;
7186 		break;
7187 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7188 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7189 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7190 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7191 			return;
7192 		break;
7193 	case MSR_IA32_XFD:
7194 	case MSR_IA32_XFD_ERR:
7195 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7196 			return;
7197 		break;
7198 	case MSR_IA32_TSX_CTRL:
7199 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7200 			return;
7201 		break;
7202 	default:
7203 		break;
7204 	}
7205 
7206 	msrs_to_save[num_msrs_to_save++] = msr_index;
7207 }
7208 
7209 static void kvm_init_msr_lists(void)
7210 {
7211 	unsigned i;
7212 
7213 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7214 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7215 
7216 	num_msrs_to_save = 0;
7217 	num_emulated_msrs = 0;
7218 	num_msr_based_features = 0;
7219 
7220 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7221 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7222 
7223 	if (enable_pmu) {
7224 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7225 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7226 	}
7227 
7228 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7229 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7230 			continue;
7231 
7232 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7233 	}
7234 
7235 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7236 		kvm_probe_feature_msr(i);
7237 
7238 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7239 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7240 }
7241 
7242 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7243 			   const void *v)
7244 {
7245 	int handled = 0;
7246 	int n;
7247 
7248 	do {
7249 		n = min(len, 8);
7250 		if (!(lapic_in_kernel(vcpu) &&
7251 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7252 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7253 			break;
7254 		handled += n;
7255 		addr += n;
7256 		len -= n;
7257 		v += n;
7258 	} while (len);
7259 
7260 	return handled;
7261 }
7262 
7263 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7264 {
7265 	int handled = 0;
7266 	int n;
7267 
7268 	do {
7269 		n = min(len, 8);
7270 		if (!(lapic_in_kernel(vcpu) &&
7271 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7272 					 addr, n, v))
7273 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7274 			break;
7275 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7276 		handled += n;
7277 		addr += n;
7278 		len -= n;
7279 		v += n;
7280 	} while (len);
7281 
7282 	return handled;
7283 }
7284 
7285 void kvm_set_segment(struct kvm_vcpu *vcpu,
7286 		     struct kvm_segment *var, int seg)
7287 {
7288 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7289 }
7290 
7291 void kvm_get_segment(struct kvm_vcpu *vcpu,
7292 		     struct kvm_segment *var, int seg)
7293 {
7294 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7295 }
7296 
7297 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7298 			   struct x86_exception *exception)
7299 {
7300 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7301 	gpa_t t_gpa;
7302 
7303 	BUG_ON(!mmu_is_nested(vcpu));
7304 
7305 	/* NPT walks are always user-walks */
7306 	access |= PFERR_USER_MASK;
7307 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7308 
7309 	return t_gpa;
7310 }
7311 
7312 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7313 			      struct x86_exception *exception)
7314 {
7315 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7316 
7317 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7318 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7319 }
7320 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7321 
7322 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7323 			       struct x86_exception *exception)
7324 {
7325 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7326 
7327 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7328 	access |= PFERR_WRITE_MASK;
7329 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7330 }
7331 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7332 
7333 /* uses this to access any guest's mapped memory without checking CPL */
7334 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7335 				struct x86_exception *exception)
7336 {
7337 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7338 
7339 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7340 }
7341 
7342 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7343 				      struct kvm_vcpu *vcpu, u64 access,
7344 				      struct x86_exception *exception)
7345 {
7346 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7347 	void *data = val;
7348 	int r = X86EMUL_CONTINUE;
7349 
7350 	while (bytes) {
7351 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7352 		unsigned offset = addr & (PAGE_SIZE-1);
7353 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7354 		int ret;
7355 
7356 		if (gpa == INVALID_GPA)
7357 			return X86EMUL_PROPAGATE_FAULT;
7358 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7359 					       offset, toread);
7360 		if (ret < 0) {
7361 			r = X86EMUL_IO_NEEDED;
7362 			goto out;
7363 		}
7364 
7365 		bytes -= toread;
7366 		data += toread;
7367 		addr += toread;
7368 	}
7369 out:
7370 	return r;
7371 }
7372 
7373 /* used for instruction fetching */
7374 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7375 				gva_t addr, void *val, unsigned int bytes,
7376 				struct x86_exception *exception)
7377 {
7378 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7379 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7380 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7381 	unsigned offset;
7382 	int ret;
7383 
7384 	/* Inline kvm_read_guest_virt_helper for speed.  */
7385 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7386 				    exception);
7387 	if (unlikely(gpa == INVALID_GPA))
7388 		return X86EMUL_PROPAGATE_FAULT;
7389 
7390 	offset = addr & (PAGE_SIZE-1);
7391 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7392 		bytes = (unsigned)PAGE_SIZE - offset;
7393 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7394 				       offset, bytes);
7395 	if (unlikely(ret < 0))
7396 		return X86EMUL_IO_NEEDED;
7397 
7398 	return X86EMUL_CONTINUE;
7399 }
7400 
7401 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7402 			       gva_t addr, void *val, unsigned int bytes,
7403 			       struct x86_exception *exception)
7404 {
7405 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7406 
7407 	/*
7408 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7409 	 * is returned, but our callers are not ready for that and they blindly
7410 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7411 	 * uninitialized kernel stack memory into cr2 and error code.
7412 	 */
7413 	memset(exception, 0, sizeof(*exception));
7414 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7415 					  exception);
7416 }
7417 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7418 
7419 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7420 			     gva_t addr, void *val, unsigned int bytes,
7421 			     struct x86_exception *exception, bool system)
7422 {
7423 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7424 	u64 access = 0;
7425 
7426 	if (system)
7427 		access |= PFERR_IMPLICIT_ACCESS;
7428 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7429 		access |= PFERR_USER_MASK;
7430 
7431 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7432 }
7433 
7434 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7435 				      struct kvm_vcpu *vcpu, u64 access,
7436 				      struct x86_exception *exception)
7437 {
7438 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7439 	void *data = val;
7440 	int r = X86EMUL_CONTINUE;
7441 
7442 	while (bytes) {
7443 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7444 		unsigned offset = addr & (PAGE_SIZE-1);
7445 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7446 		int ret;
7447 
7448 		if (gpa == INVALID_GPA)
7449 			return X86EMUL_PROPAGATE_FAULT;
7450 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7451 		if (ret < 0) {
7452 			r = X86EMUL_IO_NEEDED;
7453 			goto out;
7454 		}
7455 
7456 		bytes -= towrite;
7457 		data += towrite;
7458 		addr += towrite;
7459 	}
7460 out:
7461 	return r;
7462 }
7463 
7464 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7465 			      unsigned int bytes, struct x86_exception *exception,
7466 			      bool system)
7467 {
7468 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7469 	u64 access = PFERR_WRITE_MASK;
7470 
7471 	if (system)
7472 		access |= PFERR_IMPLICIT_ACCESS;
7473 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7474 		access |= PFERR_USER_MASK;
7475 
7476 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7477 					   access, exception);
7478 }
7479 
7480 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7481 				unsigned int bytes, struct x86_exception *exception)
7482 {
7483 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7484 	vcpu->arch.l1tf_flush_l1d = true;
7485 
7486 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7487 					   PFERR_WRITE_MASK, exception);
7488 }
7489 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7490 
7491 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7492 				void *insn, int insn_len)
7493 {
7494 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7495 							    insn, insn_len);
7496 }
7497 
7498 int handle_ud(struct kvm_vcpu *vcpu)
7499 {
7500 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7501 	int fep_flags = READ_ONCE(force_emulation_prefix);
7502 	int emul_type = EMULTYPE_TRAP_UD;
7503 	char sig[5]; /* ud2; .ascii "kvm" */
7504 	struct x86_exception e;
7505 
7506 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7507 		return 1;
7508 
7509 	if (fep_flags &&
7510 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7511 				sig, sizeof(sig), &e) == 0 &&
7512 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7513 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7514 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7515 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7516 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7517 	}
7518 
7519 	return kvm_emulate_instruction(vcpu, emul_type);
7520 }
7521 EXPORT_SYMBOL_GPL(handle_ud);
7522 
7523 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7524 			    gpa_t gpa, bool write)
7525 {
7526 	/* For APIC access vmexit */
7527 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7528 		return 1;
7529 
7530 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7531 		trace_vcpu_match_mmio(gva, gpa, write, true);
7532 		return 1;
7533 	}
7534 
7535 	return 0;
7536 }
7537 
7538 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7539 				gpa_t *gpa, struct x86_exception *exception,
7540 				bool write)
7541 {
7542 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7543 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7544 		| (write ? PFERR_WRITE_MASK : 0);
7545 
7546 	/*
7547 	 * currently PKRU is only applied to ept enabled guest so
7548 	 * there is no pkey in EPT page table for L1 guest or EPT
7549 	 * shadow page table for L2 guest.
7550 	 */
7551 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7552 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7553 			      vcpu->arch.mmio_access, 0, access))) {
7554 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7555 					(gva & (PAGE_SIZE - 1));
7556 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7557 		return 1;
7558 	}
7559 
7560 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7561 
7562 	if (*gpa == INVALID_GPA)
7563 		return -1;
7564 
7565 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7566 }
7567 
7568 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7569 			const void *val, int bytes)
7570 {
7571 	int ret;
7572 
7573 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7574 	if (ret < 0)
7575 		return 0;
7576 	kvm_page_track_write(vcpu, gpa, val, bytes);
7577 	return 1;
7578 }
7579 
7580 struct read_write_emulator_ops {
7581 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7582 				  int bytes);
7583 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7584 				  void *val, int bytes);
7585 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7586 			       int bytes, void *val);
7587 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7588 				    void *val, int bytes);
7589 	bool write;
7590 };
7591 
7592 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7593 {
7594 	if (vcpu->mmio_read_completed) {
7595 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7596 			       vcpu->mmio_fragments[0].gpa, val);
7597 		vcpu->mmio_read_completed = 0;
7598 		return 1;
7599 	}
7600 
7601 	return 0;
7602 }
7603 
7604 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7605 			void *val, int bytes)
7606 {
7607 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7608 }
7609 
7610 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7611 			 void *val, int bytes)
7612 {
7613 	return emulator_write_phys(vcpu, gpa, val, bytes);
7614 }
7615 
7616 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7617 {
7618 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7619 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7620 }
7621 
7622 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7623 			  void *val, int bytes)
7624 {
7625 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7626 	return X86EMUL_IO_NEEDED;
7627 }
7628 
7629 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7630 			   void *val, int bytes)
7631 {
7632 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7633 
7634 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7635 	return X86EMUL_CONTINUE;
7636 }
7637 
7638 static const struct read_write_emulator_ops read_emultor = {
7639 	.read_write_prepare = read_prepare,
7640 	.read_write_emulate = read_emulate,
7641 	.read_write_mmio = vcpu_mmio_read,
7642 	.read_write_exit_mmio = read_exit_mmio,
7643 };
7644 
7645 static const struct read_write_emulator_ops write_emultor = {
7646 	.read_write_emulate = write_emulate,
7647 	.read_write_mmio = write_mmio,
7648 	.read_write_exit_mmio = write_exit_mmio,
7649 	.write = true,
7650 };
7651 
7652 static int emulator_read_write_onepage(unsigned long addr, void *val,
7653 				       unsigned int bytes,
7654 				       struct x86_exception *exception,
7655 				       struct kvm_vcpu *vcpu,
7656 				       const struct read_write_emulator_ops *ops)
7657 {
7658 	gpa_t gpa;
7659 	int handled, ret;
7660 	bool write = ops->write;
7661 	struct kvm_mmio_fragment *frag;
7662 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7663 
7664 	/*
7665 	 * If the exit was due to a NPF we may already have a GPA.
7666 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7667 	 * Note, this cannot be used on string operations since string
7668 	 * operation using rep will only have the initial GPA from the NPF
7669 	 * occurred.
7670 	 */
7671 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7672 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7673 		gpa = ctxt->gpa_val;
7674 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7675 	} else {
7676 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7677 		if (ret < 0)
7678 			return X86EMUL_PROPAGATE_FAULT;
7679 	}
7680 
7681 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7682 		return X86EMUL_CONTINUE;
7683 
7684 	/*
7685 	 * Is this MMIO handled locally?
7686 	 */
7687 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7688 	if (handled == bytes)
7689 		return X86EMUL_CONTINUE;
7690 
7691 	gpa += handled;
7692 	bytes -= handled;
7693 	val += handled;
7694 
7695 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7696 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7697 	frag->gpa = gpa;
7698 	frag->data = val;
7699 	frag->len = bytes;
7700 	return X86EMUL_CONTINUE;
7701 }
7702 
7703 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7704 			unsigned long addr,
7705 			void *val, unsigned int bytes,
7706 			struct x86_exception *exception,
7707 			const struct read_write_emulator_ops *ops)
7708 {
7709 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7710 	gpa_t gpa;
7711 	int rc;
7712 
7713 	if (ops->read_write_prepare &&
7714 		  ops->read_write_prepare(vcpu, val, bytes))
7715 		return X86EMUL_CONTINUE;
7716 
7717 	vcpu->mmio_nr_fragments = 0;
7718 
7719 	/* Crossing a page boundary? */
7720 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7721 		int now;
7722 
7723 		now = -addr & ~PAGE_MASK;
7724 		rc = emulator_read_write_onepage(addr, val, now, exception,
7725 						 vcpu, ops);
7726 
7727 		if (rc != X86EMUL_CONTINUE)
7728 			return rc;
7729 		addr += now;
7730 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7731 			addr = (u32)addr;
7732 		val += now;
7733 		bytes -= now;
7734 	}
7735 
7736 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7737 					 vcpu, ops);
7738 	if (rc != X86EMUL_CONTINUE)
7739 		return rc;
7740 
7741 	if (!vcpu->mmio_nr_fragments)
7742 		return rc;
7743 
7744 	gpa = vcpu->mmio_fragments[0].gpa;
7745 
7746 	vcpu->mmio_needed = 1;
7747 	vcpu->mmio_cur_fragment = 0;
7748 
7749 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7750 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7751 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7752 	vcpu->run->mmio.phys_addr = gpa;
7753 
7754 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7755 }
7756 
7757 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7758 				  unsigned long addr,
7759 				  void *val,
7760 				  unsigned int bytes,
7761 				  struct x86_exception *exception)
7762 {
7763 	return emulator_read_write(ctxt, addr, val, bytes,
7764 				   exception, &read_emultor);
7765 }
7766 
7767 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7768 			    unsigned long addr,
7769 			    const void *val,
7770 			    unsigned int bytes,
7771 			    struct x86_exception *exception)
7772 {
7773 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7774 				   exception, &write_emultor);
7775 }
7776 
7777 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7778 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7779 
7780 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7781 				     unsigned long addr,
7782 				     const void *old,
7783 				     const void *new,
7784 				     unsigned int bytes,
7785 				     struct x86_exception *exception)
7786 {
7787 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7788 	u64 page_line_mask;
7789 	unsigned long hva;
7790 	gpa_t gpa;
7791 	int r;
7792 
7793 	/* guests cmpxchg8b have to be emulated atomically */
7794 	if (bytes > 8 || (bytes & (bytes - 1)))
7795 		goto emul_write;
7796 
7797 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7798 
7799 	if (gpa == INVALID_GPA ||
7800 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7801 		goto emul_write;
7802 
7803 	/*
7804 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7805 	 * enabled in the host and the access splits a cache line.
7806 	 */
7807 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7808 		page_line_mask = ~(cache_line_size() - 1);
7809 	else
7810 		page_line_mask = PAGE_MASK;
7811 
7812 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7813 		goto emul_write;
7814 
7815 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7816 	if (kvm_is_error_hva(hva))
7817 		goto emul_write;
7818 
7819 	hva += offset_in_page(gpa);
7820 
7821 	switch (bytes) {
7822 	case 1:
7823 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7824 		break;
7825 	case 2:
7826 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7827 		break;
7828 	case 4:
7829 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7830 		break;
7831 	case 8:
7832 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7833 		break;
7834 	default:
7835 		BUG();
7836 	}
7837 
7838 	if (r < 0)
7839 		return X86EMUL_UNHANDLEABLE;
7840 	if (r)
7841 		return X86EMUL_CMPXCHG_FAILED;
7842 
7843 	kvm_page_track_write(vcpu, gpa, new, bytes);
7844 
7845 	return X86EMUL_CONTINUE;
7846 
7847 emul_write:
7848 	pr_warn_once("emulating exchange as write\n");
7849 
7850 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7851 }
7852 
7853 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7854 			       unsigned short port, void *data,
7855 			       unsigned int count, bool in)
7856 {
7857 	unsigned i;
7858 	int r;
7859 
7860 	WARN_ON_ONCE(vcpu->arch.pio.count);
7861 	for (i = 0; i < count; i++) {
7862 		if (in)
7863 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7864 		else
7865 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7866 
7867 		if (r) {
7868 			if (i == 0)
7869 				goto userspace_io;
7870 
7871 			/*
7872 			 * Userspace must have unregistered the device while PIO
7873 			 * was running.  Drop writes / read as 0.
7874 			 */
7875 			if (in)
7876 				memset(data, 0, size * (count - i));
7877 			break;
7878 		}
7879 
7880 		data += size;
7881 	}
7882 	return 1;
7883 
7884 userspace_io:
7885 	vcpu->arch.pio.port = port;
7886 	vcpu->arch.pio.in = in;
7887 	vcpu->arch.pio.count = count;
7888 	vcpu->arch.pio.size = size;
7889 
7890 	if (in)
7891 		memset(vcpu->arch.pio_data, 0, size * count);
7892 	else
7893 		memcpy(vcpu->arch.pio_data, data, size * count);
7894 
7895 	vcpu->run->exit_reason = KVM_EXIT_IO;
7896 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7897 	vcpu->run->io.size = size;
7898 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7899 	vcpu->run->io.count = count;
7900 	vcpu->run->io.port = port;
7901 	return 0;
7902 }
7903 
7904 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7905       			   unsigned short port, void *val, unsigned int count)
7906 {
7907 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7908 	if (r)
7909 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7910 
7911 	return r;
7912 }
7913 
7914 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7915 {
7916 	int size = vcpu->arch.pio.size;
7917 	unsigned int count = vcpu->arch.pio.count;
7918 	memcpy(val, vcpu->arch.pio_data, size * count);
7919 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7920 	vcpu->arch.pio.count = 0;
7921 }
7922 
7923 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7924 				    int size, unsigned short port, void *val,
7925 				    unsigned int count)
7926 {
7927 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7928 	if (vcpu->arch.pio.count) {
7929 		/*
7930 		 * Complete a previous iteration that required userspace I/O.
7931 		 * Note, @count isn't guaranteed to match pio.count as userspace
7932 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7933 		 * shenanigans as KVM doesn't support modifying the rep count,
7934 		 * and the emulator ensures @count doesn't overflow the buffer.
7935 		 */
7936 		complete_emulator_pio_in(vcpu, val);
7937 		return 1;
7938 	}
7939 
7940 	return emulator_pio_in(vcpu, size, port, val, count);
7941 }
7942 
7943 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7944 			    unsigned short port, const void *val,
7945 			    unsigned int count)
7946 {
7947 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7948 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7949 }
7950 
7951 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7952 				     int size, unsigned short port,
7953 				     const void *val, unsigned int count)
7954 {
7955 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7956 }
7957 
7958 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7959 {
7960 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7961 }
7962 
7963 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7964 {
7965 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7966 }
7967 
7968 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7969 {
7970 	if (!need_emulate_wbinvd(vcpu))
7971 		return X86EMUL_CONTINUE;
7972 
7973 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7974 		int cpu = get_cpu();
7975 
7976 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7977 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7978 				wbinvd_ipi, NULL, 1);
7979 		put_cpu();
7980 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7981 	} else
7982 		wbinvd();
7983 	return X86EMUL_CONTINUE;
7984 }
7985 
7986 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7987 {
7988 	kvm_emulate_wbinvd_noskip(vcpu);
7989 	return kvm_skip_emulated_instruction(vcpu);
7990 }
7991 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7992 
7993 
7994 
7995 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7996 {
7997 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7998 }
7999 
8000 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8001 			    unsigned long *dest)
8002 {
8003 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8004 }
8005 
8006 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8007 			   unsigned long value)
8008 {
8009 
8010 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8011 }
8012 
8013 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8014 {
8015 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8016 }
8017 
8018 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8019 {
8020 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8021 	unsigned long value;
8022 
8023 	switch (cr) {
8024 	case 0:
8025 		value = kvm_read_cr0(vcpu);
8026 		break;
8027 	case 2:
8028 		value = vcpu->arch.cr2;
8029 		break;
8030 	case 3:
8031 		value = kvm_read_cr3(vcpu);
8032 		break;
8033 	case 4:
8034 		value = kvm_read_cr4(vcpu);
8035 		break;
8036 	case 8:
8037 		value = kvm_get_cr8(vcpu);
8038 		break;
8039 	default:
8040 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8041 		return 0;
8042 	}
8043 
8044 	return value;
8045 }
8046 
8047 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8048 {
8049 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8050 	int res = 0;
8051 
8052 	switch (cr) {
8053 	case 0:
8054 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8055 		break;
8056 	case 2:
8057 		vcpu->arch.cr2 = val;
8058 		break;
8059 	case 3:
8060 		res = kvm_set_cr3(vcpu, val);
8061 		break;
8062 	case 4:
8063 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8064 		break;
8065 	case 8:
8066 		res = kvm_set_cr8(vcpu, val);
8067 		break;
8068 	default:
8069 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8070 		res = -1;
8071 	}
8072 
8073 	return res;
8074 }
8075 
8076 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8077 {
8078 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8079 }
8080 
8081 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8082 {
8083 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8084 }
8085 
8086 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8087 {
8088 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8089 }
8090 
8091 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8092 {
8093 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8094 }
8095 
8096 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8097 {
8098 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8099 }
8100 
8101 static unsigned long emulator_get_cached_segment_base(
8102 	struct x86_emulate_ctxt *ctxt, int seg)
8103 {
8104 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8105 }
8106 
8107 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8108 				 struct desc_struct *desc, u32 *base3,
8109 				 int seg)
8110 {
8111 	struct kvm_segment var;
8112 
8113 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8114 	*selector = var.selector;
8115 
8116 	if (var.unusable) {
8117 		memset(desc, 0, sizeof(*desc));
8118 		if (base3)
8119 			*base3 = 0;
8120 		return false;
8121 	}
8122 
8123 	if (var.g)
8124 		var.limit >>= 12;
8125 	set_desc_limit(desc, var.limit);
8126 	set_desc_base(desc, (unsigned long)var.base);
8127 #ifdef CONFIG_X86_64
8128 	if (base3)
8129 		*base3 = var.base >> 32;
8130 #endif
8131 	desc->type = var.type;
8132 	desc->s = var.s;
8133 	desc->dpl = var.dpl;
8134 	desc->p = var.present;
8135 	desc->avl = var.avl;
8136 	desc->l = var.l;
8137 	desc->d = var.db;
8138 	desc->g = var.g;
8139 
8140 	return true;
8141 }
8142 
8143 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8144 				 struct desc_struct *desc, u32 base3,
8145 				 int seg)
8146 {
8147 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8148 	struct kvm_segment var;
8149 
8150 	var.selector = selector;
8151 	var.base = get_desc_base(desc);
8152 #ifdef CONFIG_X86_64
8153 	var.base |= ((u64)base3) << 32;
8154 #endif
8155 	var.limit = get_desc_limit(desc);
8156 	if (desc->g)
8157 		var.limit = (var.limit << 12) | 0xfff;
8158 	var.type = desc->type;
8159 	var.dpl = desc->dpl;
8160 	var.db = desc->d;
8161 	var.s = desc->s;
8162 	var.l = desc->l;
8163 	var.g = desc->g;
8164 	var.avl = desc->avl;
8165 	var.present = desc->p;
8166 	var.unusable = !var.present;
8167 	var.padding = 0;
8168 
8169 	kvm_set_segment(vcpu, &var, seg);
8170 	return;
8171 }
8172 
8173 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8174 					u32 msr_index, u64 *pdata)
8175 {
8176 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8177 	int r;
8178 
8179 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8180 	if (r < 0)
8181 		return X86EMUL_UNHANDLEABLE;
8182 
8183 	if (r) {
8184 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8185 				       complete_emulated_rdmsr, r))
8186 			return X86EMUL_IO_NEEDED;
8187 
8188 		trace_kvm_msr_read_ex(msr_index);
8189 		return X86EMUL_PROPAGATE_FAULT;
8190 	}
8191 
8192 	trace_kvm_msr_read(msr_index, *pdata);
8193 	return X86EMUL_CONTINUE;
8194 }
8195 
8196 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8197 					u32 msr_index, u64 data)
8198 {
8199 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8200 	int r;
8201 
8202 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8203 	if (r < 0)
8204 		return X86EMUL_UNHANDLEABLE;
8205 
8206 	if (r) {
8207 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8208 				       complete_emulated_msr_access, r))
8209 			return X86EMUL_IO_NEEDED;
8210 
8211 		trace_kvm_msr_write_ex(msr_index, data);
8212 		return X86EMUL_PROPAGATE_FAULT;
8213 	}
8214 
8215 	trace_kvm_msr_write(msr_index, data);
8216 	return X86EMUL_CONTINUE;
8217 }
8218 
8219 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8220 			    u32 msr_index, u64 *pdata)
8221 {
8222 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8223 }
8224 
8225 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8226 			      u32 pmc)
8227 {
8228 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8229 		return 0;
8230 	return -EINVAL;
8231 }
8232 
8233 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8234 			     u32 pmc, u64 *pdata)
8235 {
8236 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8237 }
8238 
8239 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8240 {
8241 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8242 }
8243 
8244 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8245 			      struct x86_instruction_info *info,
8246 			      enum x86_intercept_stage stage)
8247 {
8248 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8249 					    &ctxt->exception);
8250 }
8251 
8252 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8253 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8254 			      bool exact_only)
8255 {
8256 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8257 }
8258 
8259 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8260 {
8261 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8262 }
8263 
8264 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8265 {
8266 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8267 }
8268 
8269 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8270 {
8271 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8272 }
8273 
8274 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8275 {
8276 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8277 }
8278 
8279 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8280 {
8281 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8282 }
8283 
8284 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8285 {
8286 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8287 }
8288 
8289 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8290 {
8291 	return is_smm(emul_to_vcpu(ctxt));
8292 }
8293 
8294 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8295 {
8296 	return is_guest_mode(emul_to_vcpu(ctxt));
8297 }
8298 
8299 #ifndef CONFIG_KVM_SMM
8300 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8301 {
8302 	WARN_ON_ONCE(1);
8303 	return X86EMUL_UNHANDLEABLE;
8304 }
8305 #endif
8306 
8307 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8308 {
8309 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8310 }
8311 
8312 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8313 {
8314 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8315 }
8316 
8317 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8318 {
8319 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8320 
8321 	if (!kvm->vm_bugged)
8322 		kvm_vm_bugged(kvm);
8323 }
8324 
8325 static const struct x86_emulate_ops emulate_ops = {
8326 	.vm_bugged           = emulator_vm_bugged,
8327 	.read_gpr            = emulator_read_gpr,
8328 	.write_gpr           = emulator_write_gpr,
8329 	.read_std            = emulator_read_std,
8330 	.write_std           = emulator_write_std,
8331 	.fetch               = kvm_fetch_guest_virt,
8332 	.read_emulated       = emulator_read_emulated,
8333 	.write_emulated      = emulator_write_emulated,
8334 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8335 	.invlpg              = emulator_invlpg,
8336 	.pio_in_emulated     = emulator_pio_in_emulated,
8337 	.pio_out_emulated    = emulator_pio_out_emulated,
8338 	.get_segment         = emulator_get_segment,
8339 	.set_segment         = emulator_set_segment,
8340 	.get_cached_segment_base = emulator_get_cached_segment_base,
8341 	.get_gdt             = emulator_get_gdt,
8342 	.get_idt	     = emulator_get_idt,
8343 	.set_gdt             = emulator_set_gdt,
8344 	.set_idt	     = emulator_set_idt,
8345 	.get_cr              = emulator_get_cr,
8346 	.set_cr              = emulator_set_cr,
8347 	.cpl                 = emulator_get_cpl,
8348 	.get_dr              = emulator_get_dr,
8349 	.set_dr              = emulator_set_dr,
8350 	.set_msr_with_filter = emulator_set_msr_with_filter,
8351 	.get_msr_with_filter = emulator_get_msr_with_filter,
8352 	.get_msr             = emulator_get_msr,
8353 	.check_pmc	     = emulator_check_pmc,
8354 	.read_pmc            = emulator_read_pmc,
8355 	.halt                = emulator_halt,
8356 	.wbinvd              = emulator_wbinvd,
8357 	.fix_hypercall       = emulator_fix_hypercall,
8358 	.intercept           = emulator_intercept,
8359 	.get_cpuid           = emulator_get_cpuid,
8360 	.guest_has_movbe     = emulator_guest_has_movbe,
8361 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8362 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8363 	.set_nmi_mask        = emulator_set_nmi_mask,
8364 	.is_smm              = emulator_is_smm,
8365 	.is_guest_mode       = emulator_is_guest_mode,
8366 	.leave_smm           = emulator_leave_smm,
8367 	.triple_fault        = emulator_triple_fault,
8368 	.set_xcr             = emulator_set_xcr,
8369 };
8370 
8371 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8372 {
8373 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8374 	/*
8375 	 * an sti; sti; sequence only disable interrupts for the first
8376 	 * instruction. So, if the last instruction, be it emulated or
8377 	 * not, left the system with the INT_STI flag enabled, it
8378 	 * means that the last instruction is an sti. We should not
8379 	 * leave the flag on in this case. The same goes for mov ss
8380 	 */
8381 	if (int_shadow & mask)
8382 		mask = 0;
8383 	if (unlikely(int_shadow || mask)) {
8384 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8385 		if (!mask)
8386 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8387 	}
8388 }
8389 
8390 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8391 {
8392 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8393 
8394 	if (ctxt->exception.vector == PF_VECTOR)
8395 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8396 	else if (ctxt->exception.error_code_valid)
8397 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8398 				      ctxt->exception.error_code);
8399 	else
8400 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8401 }
8402 
8403 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8404 {
8405 	struct x86_emulate_ctxt *ctxt;
8406 
8407 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8408 	if (!ctxt) {
8409 		pr_err("failed to allocate vcpu's emulator\n");
8410 		return NULL;
8411 	}
8412 
8413 	ctxt->vcpu = vcpu;
8414 	ctxt->ops = &emulate_ops;
8415 	vcpu->arch.emulate_ctxt = ctxt;
8416 
8417 	return ctxt;
8418 }
8419 
8420 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8421 {
8422 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8423 	int cs_db, cs_l;
8424 
8425 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8426 
8427 	ctxt->gpa_available = false;
8428 	ctxt->eflags = kvm_get_rflags(vcpu);
8429 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8430 
8431 	ctxt->eip = kvm_rip_read(vcpu);
8432 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8433 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8434 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8435 		     cs_db				? X86EMUL_MODE_PROT32 :
8436 							  X86EMUL_MODE_PROT16;
8437 	ctxt->interruptibility = 0;
8438 	ctxt->have_exception = false;
8439 	ctxt->exception.vector = -1;
8440 	ctxt->perm_ok = false;
8441 
8442 	init_decode_cache(ctxt);
8443 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8444 }
8445 
8446 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8447 {
8448 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8449 	int ret;
8450 
8451 	init_emulate_ctxt(vcpu);
8452 
8453 	ctxt->op_bytes = 2;
8454 	ctxt->ad_bytes = 2;
8455 	ctxt->_eip = ctxt->eip + inc_eip;
8456 	ret = emulate_int_real(ctxt, irq);
8457 
8458 	if (ret != X86EMUL_CONTINUE) {
8459 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8460 	} else {
8461 		ctxt->eip = ctxt->_eip;
8462 		kvm_rip_write(vcpu, ctxt->eip);
8463 		kvm_set_rflags(vcpu, ctxt->eflags);
8464 	}
8465 }
8466 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8467 
8468 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8469 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8470 {
8471 	struct kvm_run *run = vcpu->run;
8472 	u64 info[5];
8473 	u8 info_start;
8474 
8475 	/*
8476 	 * Zero the whole array used to retrieve the exit info, as casting to
8477 	 * u32 for select entries will leave some chunks uninitialized.
8478 	 */
8479 	memset(&info, 0, sizeof(info));
8480 
8481 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8482 					   &info[2], (u32 *)&info[3],
8483 					   (u32 *)&info[4]);
8484 
8485 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8486 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8487 
8488 	/*
8489 	 * There's currently space for 13 entries, but 5 are used for the exit
8490 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8491 	 * when expanding kvm_run.emulation_failure in the future.
8492 	 */
8493 	if (WARN_ON_ONCE(ndata > 4))
8494 		ndata = 4;
8495 
8496 	/* Always include the flags as a 'data' entry. */
8497 	info_start = 1;
8498 	run->emulation_failure.flags = 0;
8499 
8500 	if (insn_size) {
8501 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8502 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8503 		info_start += 2;
8504 		run->emulation_failure.flags |=
8505 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8506 		run->emulation_failure.insn_size = insn_size;
8507 		memset(run->emulation_failure.insn_bytes, 0x90,
8508 		       sizeof(run->emulation_failure.insn_bytes));
8509 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8510 	}
8511 
8512 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8513 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8514 	       ndata * sizeof(data[0]));
8515 
8516 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8517 }
8518 
8519 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8520 {
8521 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8522 
8523 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8524 				       ctxt->fetch.end - ctxt->fetch.data);
8525 }
8526 
8527 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8528 					  u8 ndata)
8529 {
8530 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8531 }
8532 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8533 
8534 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8535 {
8536 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8537 }
8538 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8539 
8540 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8541 {
8542 	struct kvm *kvm = vcpu->kvm;
8543 
8544 	++vcpu->stat.insn_emulation_fail;
8545 	trace_kvm_emulate_insn_failed(vcpu);
8546 
8547 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8548 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8549 		return 1;
8550 	}
8551 
8552 	if (kvm->arch.exit_on_emulation_error ||
8553 	    (emulation_type & EMULTYPE_SKIP)) {
8554 		prepare_emulation_ctxt_failure_exit(vcpu);
8555 		return 0;
8556 	}
8557 
8558 	kvm_queue_exception(vcpu, UD_VECTOR);
8559 
8560 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8561 		prepare_emulation_ctxt_failure_exit(vcpu);
8562 		return 0;
8563 	}
8564 
8565 	return 1;
8566 }
8567 
8568 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8569 				  int emulation_type)
8570 {
8571 	gpa_t gpa = cr2_or_gpa;
8572 	kvm_pfn_t pfn;
8573 
8574 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8575 		return false;
8576 
8577 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8578 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8579 		return false;
8580 
8581 	if (!vcpu->arch.mmu->root_role.direct) {
8582 		/*
8583 		 * Write permission should be allowed since only
8584 		 * write access need to be emulated.
8585 		 */
8586 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8587 
8588 		/*
8589 		 * If the mapping is invalid in guest, let cpu retry
8590 		 * it to generate fault.
8591 		 */
8592 		if (gpa == INVALID_GPA)
8593 			return true;
8594 	}
8595 
8596 	/*
8597 	 * Do not retry the unhandleable instruction if it faults on the
8598 	 * readonly host memory, otherwise it will goto a infinite loop:
8599 	 * retry instruction -> write #PF -> emulation fail -> retry
8600 	 * instruction -> ...
8601 	 */
8602 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8603 
8604 	/*
8605 	 * If the instruction failed on the error pfn, it can not be fixed,
8606 	 * report the error to userspace.
8607 	 */
8608 	if (is_error_noslot_pfn(pfn))
8609 		return false;
8610 
8611 	kvm_release_pfn_clean(pfn);
8612 
8613 	/* The instructions are well-emulated on direct mmu. */
8614 	if (vcpu->arch.mmu->root_role.direct) {
8615 		unsigned int indirect_shadow_pages;
8616 
8617 		write_lock(&vcpu->kvm->mmu_lock);
8618 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8619 		write_unlock(&vcpu->kvm->mmu_lock);
8620 
8621 		if (indirect_shadow_pages)
8622 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8623 
8624 		return true;
8625 	}
8626 
8627 	/*
8628 	 * if emulation was due to access to shadowed page table
8629 	 * and it failed try to unshadow page and re-enter the
8630 	 * guest to let CPU execute the instruction.
8631 	 */
8632 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8633 
8634 	/*
8635 	 * If the access faults on its page table, it can not
8636 	 * be fixed by unprotecting shadow page and it should
8637 	 * be reported to userspace.
8638 	 */
8639 	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8640 }
8641 
8642 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8643 			      gpa_t cr2_or_gpa,  int emulation_type)
8644 {
8645 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8646 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8647 
8648 	last_retry_eip = vcpu->arch.last_retry_eip;
8649 	last_retry_addr = vcpu->arch.last_retry_addr;
8650 
8651 	/*
8652 	 * If the emulation is caused by #PF and it is non-page_table
8653 	 * writing instruction, it means the VM-EXIT is caused by shadow
8654 	 * page protected, we can zap the shadow page and retry this
8655 	 * instruction directly.
8656 	 *
8657 	 * Note: if the guest uses a non-page-table modifying instruction
8658 	 * on the PDE that points to the instruction, then we will unmap
8659 	 * the instruction and go to an infinite loop. So, we cache the
8660 	 * last retried eip and the last fault address, if we meet the eip
8661 	 * and the address again, we can break out of the potential infinite
8662 	 * loop.
8663 	 */
8664 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8665 
8666 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8667 		return false;
8668 
8669 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8670 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8671 		return false;
8672 
8673 	if (x86_page_table_writing_insn(ctxt))
8674 		return false;
8675 
8676 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8677 		return false;
8678 
8679 	vcpu->arch.last_retry_eip = ctxt->eip;
8680 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8681 
8682 	if (!vcpu->arch.mmu->root_role.direct)
8683 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8684 
8685 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8686 
8687 	return true;
8688 }
8689 
8690 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8691 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8692 
8693 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8694 				unsigned long *db)
8695 {
8696 	u32 dr6 = 0;
8697 	int i;
8698 	u32 enable, rwlen;
8699 
8700 	enable = dr7;
8701 	rwlen = dr7 >> 16;
8702 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8703 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8704 			dr6 |= (1 << i);
8705 	return dr6;
8706 }
8707 
8708 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8709 {
8710 	struct kvm_run *kvm_run = vcpu->run;
8711 
8712 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8713 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8714 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8715 		kvm_run->debug.arch.exception = DB_VECTOR;
8716 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8717 		return 0;
8718 	}
8719 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8720 	return 1;
8721 }
8722 
8723 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8724 {
8725 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8726 	int r;
8727 
8728 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8729 	if (unlikely(!r))
8730 		return 0;
8731 
8732 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8733 
8734 	/*
8735 	 * rflags is the old, "raw" value of the flags.  The new value has
8736 	 * not been saved yet.
8737 	 *
8738 	 * This is correct even for TF set by the guest, because "the
8739 	 * processor will not generate this exception after the instruction
8740 	 * that sets the TF flag".
8741 	 */
8742 	if (unlikely(rflags & X86_EFLAGS_TF))
8743 		r = kvm_vcpu_do_singlestep(vcpu);
8744 	return r;
8745 }
8746 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8747 
8748 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8749 {
8750 	u32 shadow;
8751 
8752 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8753 		return true;
8754 
8755 	/*
8756 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8757 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8758 	 * to avoid the relatively expensive CPUID lookup.
8759 	 */
8760 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8761 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8762 	       guest_cpuid_is_intel(vcpu);
8763 }
8764 
8765 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8766 					   int emulation_type, int *r)
8767 {
8768 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8769 
8770 	/*
8771 	 * Do not check for code breakpoints if hardware has already done the
8772 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8773 	 * the instruction has passed all exception checks, and all intercepted
8774 	 * exceptions that trigger emulation have lower priority than code
8775 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8776 	 * means any code breakpoints have already been serviced.
8777 	 *
8778 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8779 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8780 	 * the instruction being emulated.  The intent of forced emulation is
8781 	 * to behave as if KVM intercepted the instruction without an exception
8782 	 * and without a prefix.
8783 	 */
8784 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8785 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8786 		return false;
8787 
8788 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8789 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8790 		struct kvm_run *kvm_run = vcpu->run;
8791 		unsigned long eip = kvm_get_linear_rip(vcpu);
8792 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8793 					   vcpu->arch.guest_debug_dr7,
8794 					   vcpu->arch.eff_db);
8795 
8796 		if (dr6 != 0) {
8797 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8798 			kvm_run->debug.arch.pc = eip;
8799 			kvm_run->debug.arch.exception = DB_VECTOR;
8800 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8801 			*r = 0;
8802 			return true;
8803 		}
8804 	}
8805 
8806 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8807 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8808 		unsigned long eip = kvm_get_linear_rip(vcpu);
8809 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8810 					   vcpu->arch.dr7,
8811 					   vcpu->arch.db);
8812 
8813 		if (dr6 != 0) {
8814 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8815 			*r = 1;
8816 			return true;
8817 		}
8818 	}
8819 
8820 	return false;
8821 }
8822 
8823 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8824 {
8825 	switch (ctxt->opcode_len) {
8826 	case 1:
8827 		switch (ctxt->b) {
8828 		case 0xe4:	/* IN */
8829 		case 0xe5:
8830 		case 0xec:
8831 		case 0xed:
8832 		case 0xe6:	/* OUT */
8833 		case 0xe7:
8834 		case 0xee:
8835 		case 0xef:
8836 		case 0x6c:	/* INS */
8837 		case 0x6d:
8838 		case 0x6e:	/* OUTS */
8839 		case 0x6f:
8840 			return true;
8841 		}
8842 		break;
8843 	case 2:
8844 		switch (ctxt->b) {
8845 		case 0x33:	/* RDPMC */
8846 			return true;
8847 		}
8848 		break;
8849 	}
8850 
8851 	return false;
8852 }
8853 
8854 /*
8855  * Decode an instruction for emulation.  The caller is responsible for handling
8856  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8857  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8858  * code breakpoints have higher priority and thus have already been done by
8859  * hardware.
8860  *
8861  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8862  *     response to a machine check.
8863  */
8864 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8865 				    void *insn, int insn_len)
8866 {
8867 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8868 	int r;
8869 
8870 	init_emulate_ctxt(vcpu);
8871 
8872 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8873 
8874 	trace_kvm_emulate_insn_start(vcpu);
8875 	++vcpu->stat.insn_emulation;
8876 
8877 	return r;
8878 }
8879 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8880 
8881 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8882 			    int emulation_type, void *insn, int insn_len)
8883 {
8884 	int r;
8885 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8886 	bool writeback = true;
8887 
8888 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8889 		return 1;
8890 
8891 	vcpu->arch.l1tf_flush_l1d = true;
8892 
8893 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8894 		kvm_clear_exception_queue(vcpu);
8895 
8896 		/*
8897 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8898 		 * are fault-like and are higher priority than any faults on
8899 		 * the code fetch itself.
8900 		 */
8901 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8902 			return r;
8903 
8904 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8905 						    insn, insn_len);
8906 		if (r != EMULATION_OK)  {
8907 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8908 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8909 				kvm_queue_exception(vcpu, UD_VECTOR);
8910 				return 1;
8911 			}
8912 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8913 						  emulation_type))
8914 				return 1;
8915 
8916 			if (ctxt->have_exception &&
8917 			    !(emulation_type & EMULTYPE_SKIP)) {
8918 				/*
8919 				 * #UD should result in just EMULATION_FAILED, and trap-like
8920 				 * exception should not be encountered during decode.
8921 				 */
8922 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8923 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8924 				inject_emulated_exception(vcpu);
8925 				return 1;
8926 			}
8927 			return handle_emulation_failure(vcpu, emulation_type);
8928 		}
8929 	}
8930 
8931 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8932 	    !is_vmware_backdoor_opcode(ctxt)) {
8933 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8934 		return 1;
8935 	}
8936 
8937 	/*
8938 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8939 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8940 	 * The caller is responsible for updating interruptibility state and
8941 	 * injecting single-step #DBs.
8942 	 */
8943 	if (emulation_type & EMULTYPE_SKIP) {
8944 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8945 			ctxt->eip = (u32)ctxt->_eip;
8946 		else
8947 			ctxt->eip = ctxt->_eip;
8948 
8949 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8950 			r = 1;
8951 			goto writeback;
8952 		}
8953 
8954 		kvm_rip_write(vcpu, ctxt->eip);
8955 		if (ctxt->eflags & X86_EFLAGS_RF)
8956 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8957 		return 1;
8958 	}
8959 
8960 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8961 		return 1;
8962 
8963 	/* this is needed for vmware backdoor interface to work since it
8964 	   changes registers values  during IO operation */
8965 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8966 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8967 		emulator_invalidate_register_cache(ctxt);
8968 	}
8969 
8970 restart:
8971 	if (emulation_type & EMULTYPE_PF) {
8972 		/* Save the faulting GPA (cr2) in the address field */
8973 		ctxt->exception.address = cr2_or_gpa;
8974 
8975 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8976 		if (vcpu->arch.mmu->root_role.direct) {
8977 			ctxt->gpa_available = true;
8978 			ctxt->gpa_val = cr2_or_gpa;
8979 		}
8980 	} else {
8981 		/* Sanitize the address out of an abundance of paranoia. */
8982 		ctxt->exception.address = 0;
8983 	}
8984 
8985 	r = x86_emulate_insn(ctxt);
8986 
8987 	if (r == EMULATION_INTERCEPTED)
8988 		return 1;
8989 
8990 	if (r == EMULATION_FAILED) {
8991 		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
8992 			return 1;
8993 
8994 		return handle_emulation_failure(vcpu, emulation_type);
8995 	}
8996 
8997 	if (ctxt->have_exception) {
8998 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
8999 		vcpu->mmio_needed = false;
9000 		r = 1;
9001 		inject_emulated_exception(vcpu);
9002 	} else if (vcpu->arch.pio.count) {
9003 		if (!vcpu->arch.pio.in) {
9004 			/* FIXME: return into emulator if single-stepping.  */
9005 			vcpu->arch.pio.count = 0;
9006 		} else {
9007 			writeback = false;
9008 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9009 		}
9010 		r = 0;
9011 	} else if (vcpu->mmio_needed) {
9012 		++vcpu->stat.mmio_exits;
9013 
9014 		if (!vcpu->mmio_is_write)
9015 			writeback = false;
9016 		r = 0;
9017 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9018 	} else if (vcpu->arch.complete_userspace_io) {
9019 		writeback = false;
9020 		r = 0;
9021 	} else if (r == EMULATION_RESTART)
9022 		goto restart;
9023 	else
9024 		r = 1;
9025 
9026 writeback:
9027 	if (writeback) {
9028 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9029 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9030 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9031 
9032 		/*
9033 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9034 		 * only supports code breakpoints and general detect #DB, both
9035 		 * of which are fault-like.
9036 		 */
9037 		if (!ctxt->have_exception ||
9038 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9039 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9040 			if (ctxt->is_branch)
9041 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9042 			kvm_rip_write(vcpu, ctxt->eip);
9043 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9044 				r = kvm_vcpu_do_singlestep(vcpu);
9045 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9046 			__kvm_set_rflags(vcpu, ctxt->eflags);
9047 		}
9048 
9049 		/*
9050 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9051 		 * do nothing, and it will be requested again as soon as
9052 		 * the shadow expires.  But we still need to check here,
9053 		 * because POPF has no interrupt shadow.
9054 		 */
9055 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9056 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9057 	} else
9058 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9059 
9060 	return r;
9061 }
9062 
9063 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9064 {
9065 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9066 }
9067 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9068 
9069 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9070 					void *insn, int insn_len)
9071 {
9072 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9073 }
9074 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9075 
9076 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9077 {
9078 	vcpu->arch.pio.count = 0;
9079 	return 1;
9080 }
9081 
9082 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9083 {
9084 	vcpu->arch.pio.count = 0;
9085 
9086 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9087 		return 1;
9088 
9089 	return kvm_skip_emulated_instruction(vcpu);
9090 }
9091 
9092 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9093 			    unsigned short port)
9094 {
9095 	unsigned long val = kvm_rax_read(vcpu);
9096 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9097 
9098 	if (ret)
9099 		return ret;
9100 
9101 	/*
9102 	 * Workaround userspace that relies on old KVM behavior of %rip being
9103 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9104 	 */
9105 	if (port == 0x7e &&
9106 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9107 		vcpu->arch.complete_userspace_io =
9108 			complete_fast_pio_out_port_0x7e;
9109 		kvm_skip_emulated_instruction(vcpu);
9110 	} else {
9111 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9112 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9113 	}
9114 	return 0;
9115 }
9116 
9117 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9118 {
9119 	unsigned long val;
9120 
9121 	/* We should only ever be called with arch.pio.count equal to 1 */
9122 	BUG_ON(vcpu->arch.pio.count != 1);
9123 
9124 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9125 		vcpu->arch.pio.count = 0;
9126 		return 1;
9127 	}
9128 
9129 	/* For size less than 4 we merge, else we zero extend */
9130 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9131 
9132 	complete_emulator_pio_in(vcpu, &val);
9133 	kvm_rax_write(vcpu, val);
9134 
9135 	return kvm_skip_emulated_instruction(vcpu);
9136 }
9137 
9138 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9139 			   unsigned short port)
9140 {
9141 	unsigned long val;
9142 	int ret;
9143 
9144 	/* For size less than 4 we merge, else we zero extend */
9145 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9146 
9147 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9148 	if (ret) {
9149 		kvm_rax_write(vcpu, val);
9150 		return ret;
9151 	}
9152 
9153 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9154 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9155 
9156 	return 0;
9157 }
9158 
9159 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9160 {
9161 	int ret;
9162 
9163 	if (in)
9164 		ret = kvm_fast_pio_in(vcpu, size, port);
9165 	else
9166 		ret = kvm_fast_pio_out(vcpu, size, port);
9167 	return ret && kvm_skip_emulated_instruction(vcpu);
9168 }
9169 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9170 
9171 static int kvmclock_cpu_down_prep(unsigned int cpu)
9172 {
9173 	__this_cpu_write(cpu_tsc_khz, 0);
9174 	return 0;
9175 }
9176 
9177 static void tsc_khz_changed(void *data)
9178 {
9179 	struct cpufreq_freqs *freq = data;
9180 	unsigned long khz;
9181 
9182 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9183 
9184 	if (data)
9185 		khz = freq->new;
9186 	else
9187 		khz = cpufreq_quick_get(raw_smp_processor_id());
9188 	if (!khz)
9189 		khz = tsc_khz;
9190 	__this_cpu_write(cpu_tsc_khz, khz);
9191 }
9192 
9193 #ifdef CONFIG_X86_64
9194 static void kvm_hyperv_tsc_notifier(void)
9195 {
9196 	struct kvm *kvm;
9197 	int cpu;
9198 
9199 	mutex_lock(&kvm_lock);
9200 	list_for_each_entry(kvm, &vm_list, vm_list)
9201 		kvm_make_mclock_inprogress_request(kvm);
9202 
9203 	/* no guest entries from this point */
9204 	hyperv_stop_tsc_emulation();
9205 
9206 	/* TSC frequency always matches when on Hyper-V */
9207 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9208 		for_each_present_cpu(cpu)
9209 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9210 	}
9211 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9212 
9213 	list_for_each_entry(kvm, &vm_list, vm_list) {
9214 		__kvm_start_pvclock_update(kvm);
9215 		pvclock_update_vm_gtod_copy(kvm);
9216 		kvm_end_pvclock_update(kvm);
9217 	}
9218 
9219 	mutex_unlock(&kvm_lock);
9220 }
9221 #endif
9222 
9223 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9224 {
9225 	struct kvm *kvm;
9226 	struct kvm_vcpu *vcpu;
9227 	int send_ipi = 0;
9228 	unsigned long i;
9229 
9230 	/*
9231 	 * We allow guests to temporarily run on slowing clocks,
9232 	 * provided we notify them after, or to run on accelerating
9233 	 * clocks, provided we notify them before.  Thus time never
9234 	 * goes backwards.
9235 	 *
9236 	 * However, we have a problem.  We can't atomically update
9237 	 * the frequency of a given CPU from this function; it is
9238 	 * merely a notifier, which can be called from any CPU.
9239 	 * Changing the TSC frequency at arbitrary points in time
9240 	 * requires a recomputation of local variables related to
9241 	 * the TSC for each VCPU.  We must flag these local variables
9242 	 * to be updated and be sure the update takes place with the
9243 	 * new frequency before any guests proceed.
9244 	 *
9245 	 * Unfortunately, the combination of hotplug CPU and frequency
9246 	 * change creates an intractable locking scenario; the order
9247 	 * of when these callouts happen is undefined with respect to
9248 	 * CPU hotplug, and they can race with each other.  As such,
9249 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9250 	 * undefined; you can actually have a CPU frequency change take
9251 	 * place in between the computation of X and the setting of the
9252 	 * variable.  To protect against this problem, all updates of
9253 	 * the per_cpu tsc_khz variable are done in an interrupt
9254 	 * protected IPI, and all callers wishing to update the value
9255 	 * must wait for a synchronous IPI to complete (which is trivial
9256 	 * if the caller is on the CPU already).  This establishes the
9257 	 * necessary total order on variable updates.
9258 	 *
9259 	 * Note that because a guest time update may take place
9260 	 * anytime after the setting of the VCPU's request bit, the
9261 	 * correct TSC value must be set before the request.  However,
9262 	 * to ensure the update actually makes it to any guest which
9263 	 * starts running in hardware virtualization between the set
9264 	 * and the acquisition of the spinlock, we must also ping the
9265 	 * CPU after setting the request bit.
9266 	 *
9267 	 */
9268 
9269 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9270 
9271 	mutex_lock(&kvm_lock);
9272 	list_for_each_entry(kvm, &vm_list, vm_list) {
9273 		kvm_for_each_vcpu(i, vcpu, kvm) {
9274 			if (vcpu->cpu != cpu)
9275 				continue;
9276 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9277 			if (vcpu->cpu != raw_smp_processor_id())
9278 				send_ipi = 1;
9279 		}
9280 	}
9281 	mutex_unlock(&kvm_lock);
9282 
9283 	if (freq->old < freq->new && send_ipi) {
9284 		/*
9285 		 * We upscale the frequency.  Must make the guest
9286 		 * doesn't see old kvmclock values while running with
9287 		 * the new frequency, otherwise we risk the guest sees
9288 		 * time go backwards.
9289 		 *
9290 		 * In case we update the frequency for another cpu
9291 		 * (which might be in guest context) send an interrupt
9292 		 * to kick the cpu out of guest context.  Next time
9293 		 * guest context is entered kvmclock will be updated,
9294 		 * so the guest will not see stale values.
9295 		 */
9296 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9297 	}
9298 }
9299 
9300 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9301 				     void *data)
9302 {
9303 	struct cpufreq_freqs *freq = data;
9304 	int cpu;
9305 
9306 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9307 		return 0;
9308 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9309 		return 0;
9310 
9311 	for_each_cpu(cpu, freq->policy->cpus)
9312 		__kvmclock_cpufreq_notifier(freq, cpu);
9313 
9314 	return 0;
9315 }
9316 
9317 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9318 	.notifier_call  = kvmclock_cpufreq_notifier
9319 };
9320 
9321 static int kvmclock_cpu_online(unsigned int cpu)
9322 {
9323 	tsc_khz_changed(NULL);
9324 	return 0;
9325 }
9326 
9327 static void kvm_timer_init(void)
9328 {
9329 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9330 		max_tsc_khz = tsc_khz;
9331 
9332 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9333 			struct cpufreq_policy *policy;
9334 			int cpu;
9335 
9336 			cpu = get_cpu();
9337 			policy = cpufreq_cpu_get(cpu);
9338 			if (policy) {
9339 				if (policy->cpuinfo.max_freq)
9340 					max_tsc_khz = policy->cpuinfo.max_freq;
9341 				cpufreq_cpu_put(policy);
9342 			}
9343 			put_cpu();
9344 		}
9345 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9346 					  CPUFREQ_TRANSITION_NOTIFIER);
9347 
9348 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9349 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9350 	}
9351 }
9352 
9353 #ifdef CONFIG_X86_64
9354 static void pvclock_gtod_update_fn(struct work_struct *work)
9355 {
9356 	struct kvm *kvm;
9357 	struct kvm_vcpu *vcpu;
9358 	unsigned long i;
9359 
9360 	mutex_lock(&kvm_lock);
9361 	list_for_each_entry(kvm, &vm_list, vm_list)
9362 		kvm_for_each_vcpu(i, vcpu, kvm)
9363 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9364 	atomic_set(&kvm_guest_has_master_clock, 0);
9365 	mutex_unlock(&kvm_lock);
9366 }
9367 
9368 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9369 
9370 /*
9371  * Indirection to move queue_work() out of the tk_core.seq write held
9372  * region to prevent possible deadlocks against time accessors which
9373  * are invoked with work related locks held.
9374  */
9375 static void pvclock_irq_work_fn(struct irq_work *w)
9376 {
9377 	queue_work(system_long_wq, &pvclock_gtod_work);
9378 }
9379 
9380 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9381 
9382 /*
9383  * Notification about pvclock gtod data update.
9384  */
9385 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9386 			       void *priv)
9387 {
9388 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9389 	struct timekeeper *tk = priv;
9390 
9391 	update_pvclock_gtod(tk);
9392 
9393 	/*
9394 	 * Disable master clock if host does not trust, or does not use,
9395 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9396 	 * this is invoked with tk_core.seq write held.
9397 	 */
9398 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9399 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9400 		irq_work_queue(&pvclock_irq_work);
9401 	return 0;
9402 }
9403 
9404 static struct notifier_block pvclock_gtod_notifier = {
9405 	.notifier_call = pvclock_gtod_notify,
9406 };
9407 #endif
9408 
9409 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9410 {
9411 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9412 
9413 #define __KVM_X86_OP(func) \
9414 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9415 #define KVM_X86_OP(func) \
9416 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9417 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9418 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9419 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9420 					   (void *)__static_call_return0);
9421 #include <asm/kvm-x86-ops.h>
9422 #undef __KVM_X86_OP
9423 
9424 	kvm_pmu_ops_update(ops->pmu_ops);
9425 }
9426 
9427 static int kvm_x86_check_processor_compatibility(void)
9428 {
9429 	int cpu = smp_processor_id();
9430 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9431 
9432 	/*
9433 	 * Compatibility checks are done when loading KVM and when enabling
9434 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9435 	 * compatible, i.e. KVM should never perform a compatibility check on
9436 	 * an offline CPU.
9437 	 */
9438 	WARN_ON(!cpu_online(cpu));
9439 
9440 	if (__cr4_reserved_bits(cpu_has, c) !=
9441 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9442 		return -EIO;
9443 
9444 	return static_call(kvm_x86_check_processor_compatibility)();
9445 }
9446 
9447 static void kvm_x86_check_cpu_compat(void *ret)
9448 {
9449 	*(int *)ret = kvm_x86_check_processor_compatibility();
9450 }
9451 
9452 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9453 {
9454 	u64 host_pat;
9455 	int r, cpu;
9456 
9457 	if (kvm_x86_ops.hardware_enable) {
9458 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9459 		return -EEXIST;
9460 	}
9461 
9462 	/*
9463 	 * KVM explicitly assumes that the guest has an FPU and
9464 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9465 	 * vCPU's FPU state as a fxregs_state struct.
9466 	 */
9467 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9468 		pr_err("inadequate fpu\n");
9469 		return -EOPNOTSUPP;
9470 	}
9471 
9472 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9473 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9474 		return -EOPNOTSUPP;
9475 	}
9476 
9477 	/*
9478 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9479 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9480 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9481 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9482 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9483 	 */
9484 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9485 	    (host_pat & GENMASK(2, 0)) != 6) {
9486 		pr_err("host PAT[0] is not WB\n");
9487 		return -EIO;
9488 	}
9489 
9490 	x86_emulator_cache = kvm_alloc_emulator_cache();
9491 	if (!x86_emulator_cache) {
9492 		pr_err("failed to allocate cache for x86 emulator\n");
9493 		return -ENOMEM;
9494 	}
9495 
9496 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9497 	if (!user_return_msrs) {
9498 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9499 		r = -ENOMEM;
9500 		goto out_free_x86_emulator_cache;
9501 	}
9502 	kvm_nr_uret_msrs = 0;
9503 
9504 	r = kvm_mmu_vendor_module_init();
9505 	if (r)
9506 		goto out_free_percpu;
9507 
9508 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9509 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9510 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9511 	}
9512 
9513 	rdmsrl_safe(MSR_EFER, &host_efer);
9514 
9515 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9516 		rdmsrl(MSR_IA32_XSS, host_xss);
9517 
9518 	kvm_init_pmu_capability(ops->pmu_ops);
9519 
9520 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9521 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9522 
9523 	r = ops->hardware_setup();
9524 	if (r != 0)
9525 		goto out_mmu_exit;
9526 
9527 	kvm_ops_update(ops);
9528 
9529 	for_each_online_cpu(cpu) {
9530 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9531 		if (r < 0)
9532 			goto out_unwind_ops;
9533 	}
9534 
9535 	/*
9536 	 * Point of no return!  DO NOT add error paths below this point unless
9537 	 * absolutely necessary, as most operations from this point forward
9538 	 * require unwinding.
9539 	 */
9540 	kvm_timer_init();
9541 
9542 	if (pi_inject_timer == -1)
9543 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9544 #ifdef CONFIG_X86_64
9545 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9546 
9547 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9548 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9549 #endif
9550 
9551 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9552 
9553 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9554 		kvm_caps.supported_xss = 0;
9555 
9556 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9557 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9558 #undef __kvm_cpu_cap_has
9559 
9560 	if (kvm_caps.has_tsc_control) {
9561 		/*
9562 		 * Make sure the user can only configure tsc_khz values that
9563 		 * fit into a signed integer.
9564 		 * A min value is not calculated because it will always
9565 		 * be 1 on all machines.
9566 		 */
9567 		u64 max = min(0x7fffffffULL,
9568 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9569 		kvm_caps.max_guest_tsc_khz = max;
9570 	}
9571 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9572 	kvm_init_msr_lists();
9573 	return 0;
9574 
9575 out_unwind_ops:
9576 	kvm_x86_ops.hardware_enable = NULL;
9577 	static_call(kvm_x86_hardware_unsetup)();
9578 out_mmu_exit:
9579 	kvm_mmu_vendor_module_exit();
9580 out_free_percpu:
9581 	free_percpu(user_return_msrs);
9582 out_free_x86_emulator_cache:
9583 	kmem_cache_destroy(x86_emulator_cache);
9584 	return r;
9585 }
9586 
9587 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9588 {
9589 	int r;
9590 
9591 	mutex_lock(&vendor_module_lock);
9592 	r = __kvm_x86_vendor_init(ops);
9593 	mutex_unlock(&vendor_module_lock);
9594 
9595 	return r;
9596 }
9597 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9598 
9599 void kvm_x86_vendor_exit(void)
9600 {
9601 	kvm_unregister_perf_callbacks();
9602 
9603 #ifdef CONFIG_X86_64
9604 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9605 		clear_hv_tscchange_cb();
9606 #endif
9607 	kvm_lapic_exit();
9608 
9609 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9610 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9611 					    CPUFREQ_TRANSITION_NOTIFIER);
9612 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9613 	}
9614 #ifdef CONFIG_X86_64
9615 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9616 	irq_work_sync(&pvclock_irq_work);
9617 	cancel_work_sync(&pvclock_gtod_work);
9618 #endif
9619 	static_call(kvm_x86_hardware_unsetup)();
9620 	kvm_mmu_vendor_module_exit();
9621 	free_percpu(user_return_msrs);
9622 	kmem_cache_destroy(x86_emulator_cache);
9623 #ifdef CONFIG_KVM_XEN
9624 	static_key_deferred_flush(&kvm_xen_enabled);
9625 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9626 #endif
9627 	mutex_lock(&vendor_module_lock);
9628 	kvm_x86_ops.hardware_enable = NULL;
9629 	mutex_unlock(&vendor_module_lock);
9630 }
9631 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9632 
9633 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9634 {
9635 	/*
9636 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9637 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9638 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9639 	 * managed by userspace, in which case userspace is responsible for
9640 	 * handling wake events.
9641 	 */
9642 	++vcpu->stat.halt_exits;
9643 	if (lapic_in_kernel(vcpu)) {
9644 		vcpu->arch.mp_state = state;
9645 		return 1;
9646 	} else {
9647 		vcpu->run->exit_reason = reason;
9648 		return 0;
9649 	}
9650 }
9651 
9652 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9653 {
9654 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9655 }
9656 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9657 
9658 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9659 {
9660 	int ret = kvm_skip_emulated_instruction(vcpu);
9661 	/*
9662 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9663 	 * KVM_EXIT_DEBUG here.
9664 	 */
9665 	return kvm_emulate_halt_noskip(vcpu) && ret;
9666 }
9667 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9668 
9669 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9670 {
9671 	int ret = kvm_skip_emulated_instruction(vcpu);
9672 
9673 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9674 					KVM_EXIT_AP_RESET_HOLD) && ret;
9675 }
9676 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9677 
9678 #ifdef CONFIG_X86_64
9679 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9680 			        unsigned long clock_type)
9681 {
9682 	struct kvm_clock_pairing clock_pairing;
9683 	struct timespec64 ts;
9684 	u64 cycle;
9685 	int ret;
9686 
9687 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9688 		return -KVM_EOPNOTSUPP;
9689 
9690 	/*
9691 	 * When tsc is in permanent catchup mode guests won't be able to use
9692 	 * pvclock_read_retry loop to get consistent view of pvclock
9693 	 */
9694 	if (vcpu->arch.tsc_always_catchup)
9695 		return -KVM_EOPNOTSUPP;
9696 
9697 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9698 		return -KVM_EOPNOTSUPP;
9699 
9700 	clock_pairing.sec = ts.tv_sec;
9701 	clock_pairing.nsec = ts.tv_nsec;
9702 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9703 	clock_pairing.flags = 0;
9704 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9705 
9706 	ret = 0;
9707 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9708 			    sizeof(struct kvm_clock_pairing)))
9709 		ret = -KVM_EFAULT;
9710 
9711 	return ret;
9712 }
9713 #endif
9714 
9715 /*
9716  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9717  *
9718  * @apicid - apicid of vcpu to be kicked.
9719  */
9720 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9721 {
9722 	/*
9723 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9724 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9725 	 */
9726 	struct kvm_lapic_irq lapic_irq = {
9727 		.delivery_mode = APIC_DM_REMRD,
9728 		.dest_mode = APIC_DEST_PHYSICAL,
9729 		.shorthand = APIC_DEST_NOSHORT,
9730 		.dest_id = apicid,
9731 	};
9732 
9733 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9734 }
9735 
9736 bool kvm_apicv_activated(struct kvm *kvm)
9737 {
9738 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9739 }
9740 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9741 
9742 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9743 {
9744 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9745 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9746 
9747 	return (vm_reasons | vcpu_reasons) == 0;
9748 }
9749 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9750 
9751 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9752 				       enum kvm_apicv_inhibit reason, bool set)
9753 {
9754 	if (set)
9755 		__set_bit(reason, inhibits);
9756 	else
9757 		__clear_bit(reason, inhibits);
9758 
9759 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9760 }
9761 
9762 static void kvm_apicv_init(struct kvm *kvm)
9763 {
9764 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9765 
9766 	init_rwsem(&kvm->arch.apicv_update_lock);
9767 
9768 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9769 
9770 	if (!enable_apicv)
9771 		set_or_clear_apicv_inhibit(inhibits,
9772 					   APICV_INHIBIT_REASON_DISABLE, true);
9773 }
9774 
9775 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9776 {
9777 	struct kvm_vcpu *target = NULL;
9778 	struct kvm_apic_map *map;
9779 
9780 	vcpu->stat.directed_yield_attempted++;
9781 
9782 	if (single_task_running())
9783 		goto no_yield;
9784 
9785 	rcu_read_lock();
9786 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9787 
9788 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9789 		target = map->phys_map[dest_id]->vcpu;
9790 
9791 	rcu_read_unlock();
9792 
9793 	if (!target || !READ_ONCE(target->ready))
9794 		goto no_yield;
9795 
9796 	/* Ignore requests to yield to self */
9797 	if (vcpu == target)
9798 		goto no_yield;
9799 
9800 	if (kvm_vcpu_yield_to(target) <= 0)
9801 		goto no_yield;
9802 
9803 	vcpu->stat.directed_yield_successful++;
9804 
9805 no_yield:
9806 	return;
9807 }
9808 
9809 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9810 {
9811 	u64 ret = vcpu->run->hypercall.ret;
9812 
9813 	if (!is_64_bit_mode(vcpu))
9814 		ret = (u32)ret;
9815 	kvm_rax_write(vcpu, ret);
9816 	++vcpu->stat.hypercalls;
9817 	return kvm_skip_emulated_instruction(vcpu);
9818 }
9819 
9820 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9821 {
9822 	unsigned long nr, a0, a1, a2, a3, ret;
9823 	int op_64_bit;
9824 
9825 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9826 		return kvm_xen_hypercall(vcpu);
9827 
9828 	if (kvm_hv_hypercall_enabled(vcpu))
9829 		return kvm_hv_hypercall(vcpu);
9830 
9831 	nr = kvm_rax_read(vcpu);
9832 	a0 = kvm_rbx_read(vcpu);
9833 	a1 = kvm_rcx_read(vcpu);
9834 	a2 = kvm_rdx_read(vcpu);
9835 	a3 = kvm_rsi_read(vcpu);
9836 
9837 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9838 
9839 	op_64_bit = is_64_bit_hypercall(vcpu);
9840 	if (!op_64_bit) {
9841 		nr &= 0xFFFFFFFF;
9842 		a0 &= 0xFFFFFFFF;
9843 		a1 &= 0xFFFFFFFF;
9844 		a2 &= 0xFFFFFFFF;
9845 		a3 &= 0xFFFFFFFF;
9846 	}
9847 
9848 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9849 		ret = -KVM_EPERM;
9850 		goto out;
9851 	}
9852 
9853 	ret = -KVM_ENOSYS;
9854 
9855 	switch (nr) {
9856 	case KVM_HC_VAPIC_POLL_IRQ:
9857 		ret = 0;
9858 		break;
9859 	case KVM_HC_KICK_CPU:
9860 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9861 			break;
9862 
9863 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9864 		kvm_sched_yield(vcpu, a1);
9865 		ret = 0;
9866 		break;
9867 #ifdef CONFIG_X86_64
9868 	case KVM_HC_CLOCK_PAIRING:
9869 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9870 		break;
9871 #endif
9872 	case KVM_HC_SEND_IPI:
9873 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9874 			break;
9875 
9876 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9877 		break;
9878 	case KVM_HC_SCHED_YIELD:
9879 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9880 			break;
9881 
9882 		kvm_sched_yield(vcpu, a0);
9883 		ret = 0;
9884 		break;
9885 	case KVM_HC_MAP_GPA_RANGE: {
9886 		u64 gpa = a0, npages = a1, attrs = a2;
9887 
9888 		ret = -KVM_ENOSYS;
9889 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9890 			break;
9891 
9892 		if (!PAGE_ALIGNED(gpa) || !npages ||
9893 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9894 			ret = -KVM_EINVAL;
9895 			break;
9896 		}
9897 
9898 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9899 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9900 		vcpu->run->hypercall.args[0]  = gpa;
9901 		vcpu->run->hypercall.args[1]  = npages;
9902 		vcpu->run->hypercall.args[2]  = attrs;
9903 		vcpu->run->hypercall.flags    = 0;
9904 		if (op_64_bit)
9905 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9906 
9907 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9908 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9909 		return 0;
9910 	}
9911 	default:
9912 		ret = -KVM_ENOSYS;
9913 		break;
9914 	}
9915 out:
9916 	if (!op_64_bit)
9917 		ret = (u32)ret;
9918 	kvm_rax_write(vcpu, ret);
9919 
9920 	++vcpu->stat.hypercalls;
9921 	return kvm_skip_emulated_instruction(vcpu);
9922 }
9923 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9924 
9925 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9926 {
9927 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9928 	char instruction[3];
9929 	unsigned long rip = kvm_rip_read(vcpu);
9930 
9931 	/*
9932 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9933 	 * the pieces.
9934 	 */
9935 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9936 		ctxt->exception.error_code_valid = false;
9937 		ctxt->exception.vector = UD_VECTOR;
9938 		ctxt->have_exception = true;
9939 		return X86EMUL_PROPAGATE_FAULT;
9940 	}
9941 
9942 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9943 
9944 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9945 		&ctxt->exception);
9946 }
9947 
9948 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9949 {
9950 	return vcpu->run->request_interrupt_window &&
9951 		likely(!pic_in_kernel(vcpu->kvm));
9952 }
9953 
9954 /* Called within kvm->srcu read side.  */
9955 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9956 {
9957 	struct kvm_run *kvm_run = vcpu->run;
9958 
9959 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9960 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9961 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9962 
9963 	kvm_run->ready_for_interrupt_injection =
9964 		pic_in_kernel(vcpu->kvm) ||
9965 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9966 
9967 	if (is_smm(vcpu))
9968 		kvm_run->flags |= KVM_RUN_X86_SMM;
9969 }
9970 
9971 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9972 {
9973 	int max_irr, tpr;
9974 
9975 	if (!kvm_x86_ops.update_cr8_intercept)
9976 		return;
9977 
9978 	if (!lapic_in_kernel(vcpu))
9979 		return;
9980 
9981 	if (vcpu->arch.apic->apicv_active)
9982 		return;
9983 
9984 	if (!vcpu->arch.apic->vapic_addr)
9985 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9986 	else
9987 		max_irr = -1;
9988 
9989 	if (max_irr != -1)
9990 		max_irr >>= 4;
9991 
9992 	tpr = kvm_lapic_get_cr8(vcpu);
9993 
9994 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9995 }
9996 
9997 
9998 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9999 {
10000 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10001 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10002 		return 1;
10003 	}
10004 
10005 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10006 }
10007 
10008 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10009 {
10010 	/*
10011 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10012 	 * exceptions don't report error codes.  The presence of an error code
10013 	 * is carried with the exception and only stripped when the exception
10014 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10015 	 * report an error code despite the CPU being in Real Mode.
10016 	 */
10017 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10018 
10019 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10020 				vcpu->arch.exception.has_error_code,
10021 				vcpu->arch.exception.error_code,
10022 				vcpu->arch.exception.injected);
10023 
10024 	static_call(kvm_x86_inject_exception)(vcpu);
10025 }
10026 
10027 /*
10028  * Check for any event (interrupt or exception) that is ready to be injected,
10029  * and if there is at least one event, inject the event with the highest
10030  * priority.  This handles both "pending" events, i.e. events that have never
10031  * been injected into the guest, and "injected" events, i.e. events that were
10032  * injected as part of a previous VM-Enter, but weren't successfully delivered
10033  * and need to be re-injected.
10034  *
10035  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10036  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10037  * be able to inject exceptions in the "middle" of an instruction, and so must
10038  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10039  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10040  * boundaries is necessary and correct.
10041  *
10042  * For simplicity, KVM uses a single path to inject all events (except events
10043  * that are injected directly from L1 to L2) and doesn't explicitly track
10044  * instruction boundaries for asynchronous events.  However, because VM-Exits
10045  * that can occur during instruction execution typically result in KVM skipping
10046  * the instruction or injecting an exception, e.g. instruction and exception
10047  * intercepts, and because pending exceptions have higher priority than pending
10048  * interrupts, KVM still honors instruction boundaries in most scenarios.
10049  *
10050  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10051  * the instruction or inject an exception, then KVM can incorrecty inject a new
10052  * asynchrounous event if the event became pending after the CPU fetched the
10053  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10054  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10055  * injected on the restarted instruction instead of being deferred until the
10056  * instruction completes.
10057  *
10058  * In practice, this virtualization hole is unlikely to be observed by the
10059  * guest, and even less likely to cause functional problems.  To detect the
10060  * hole, the guest would have to trigger an event on a side effect of an early
10061  * phase of instruction execution, e.g. on the instruction fetch from memory.
10062  * And for it to be a functional problem, the guest would need to depend on the
10063  * ordering between that side effect, the instruction completing, _and_ the
10064  * delivery of the asynchronous event.
10065  */
10066 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10067 				       bool *req_immediate_exit)
10068 {
10069 	bool can_inject;
10070 	int r;
10071 
10072 	/*
10073 	 * Process nested events first, as nested VM-Exit supercedes event
10074 	 * re-injection.  If there's an event queued for re-injection, it will
10075 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10076 	 */
10077 	if (is_guest_mode(vcpu))
10078 		r = kvm_check_nested_events(vcpu);
10079 	else
10080 		r = 0;
10081 
10082 	/*
10083 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10084 	 * to/from L2 is needed, as any event that has already been injected
10085 	 * into L2 needs to complete its lifecycle before injecting a new event.
10086 	 *
10087 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10088 	 * This collision arises if an exception occurred while vectoring the
10089 	 * injected event, KVM intercepted said exception, and KVM ultimately
10090 	 * determined the fault belongs to the guest and queues the exception
10091 	 * for injection back into the guest.
10092 	 *
10093 	 * "Injected" interrupts can also collide with pending exceptions if
10094 	 * userspace ignores the "ready for injection" flag and blindly queues
10095 	 * an interrupt.  In that case, prioritizing the exception is correct,
10096 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10097 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10098 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10099 	 * priority, they're only generated (pended) during instruction
10100 	 * execution, and interrupts are recognized at instruction boundaries.
10101 	 * Thus a pending fault-like exception means the fault occurred on the
10102 	 * *previous* instruction and must be serviced prior to recognizing any
10103 	 * new events in order to fully complete the previous instruction.
10104 	 */
10105 	if (vcpu->arch.exception.injected)
10106 		kvm_inject_exception(vcpu);
10107 	else if (kvm_is_exception_pending(vcpu))
10108 		; /* see above */
10109 	else if (vcpu->arch.nmi_injected)
10110 		static_call(kvm_x86_inject_nmi)(vcpu);
10111 	else if (vcpu->arch.interrupt.injected)
10112 		static_call(kvm_x86_inject_irq)(vcpu, true);
10113 
10114 	/*
10115 	 * Exceptions that morph to VM-Exits are handled above, and pending
10116 	 * exceptions on top of injected exceptions that do not VM-Exit should
10117 	 * either morph to #DF or, sadly, override the injected exception.
10118 	 */
10119 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10120 		     vcpu->arch.exception.pending);
10121 
10122 	/*
10123 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10124 	 * nested VM-Enter or event re-injection so that a different pending
10125 	 * event can be serviced (or if KVM needs to exit to userspace).
10126 	 *
10127 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10128 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10129 	 * there may now be events that can be injected into L1.
10130 	 */
10131 	if (r < 0)
10132 		goto out;
10133 
10134 	/*
10135 	 * A pending exception VM-Exit should either result in nested VM-Exit
10136 	 * or force an immediate re-entry and exit to/from L2, and exception
10137 	 * VM-Exits cannot be injected (flag should _never_ be set).
10138 	 */
10139 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10140 		     vcpu->arch.exception_vmexit.pending);
10141 
10142 	/*
10143 	 * New events, other than exceptions, cannot be injected if KVM needs
10144 	 * to re-inject a previous event.  See above comments on re-injecting
10145 	 * for why pending exceptions get priority.
10146 	 */
10147 	can_inject = !kvm_event_needs_reinjection(vcpu);
10148 
10149 	if (vcpu->arch.exception.pending) {
10150 		/*
10151 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10152 		 * value pushed on the stack.  Trap-like exception and all #DBs
10153 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10154 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10155 		 *
10156 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10157 		 * describe the behavior of General Detect #DBs, which are
10158 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10159 		 */
10160 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10161 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10162 					     X86_EFLAGS_RF);
10163 
10164 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10165 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10166 			if (vcpu->arch.dr7 & DR7_GD) {
10167 				vcpu->arch.dr7 &= ~DR7_GD;
10168 				kvm_update_dr7(vcpu);
10169 			}
10170 		}
10171 
10172 		kvm_inject_exception(vcpu);
10173 
10174 		vcpu->arch.exception.pending = false;
10175 		vcpu->arch.exception.injected = true;
10176 
10177 		can_inject = false;
10178 	}
10179 
10180 	/* Don't inject interrupts if the user asked to avoid doing so */
10181 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10182 		return 0;
10183 
10184 	/*
10185 	 * Finally, inject interrupt events.  If an event cannot be injected
10186 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10187 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10188 	 * and can architecturally be injected, but we cannot do it right now:
10189 	 * an interrupt could have arrived just now and we have to inject it
10190 	 * as a vmexit, or there could already an event in the queue, which is
10191 	 * indicated by can_inject.  In that case we request an immediate exit
10192 	 * in order to make progress and get back here for another iteration.
10193 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10194 	 */
10195 #ifdef CONFIG_KVM_SMM
10196 	if (vcpu->arch.smi_pending) {
10197 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10198 		if (r < 0)
10199 			goto out;
10200 		if (r) {
10201 			vcpu->arch.smi_pending = false;
10202 			++vcpu->arch.smi_count;
10203 			enter_smm(vcpu);
10204 			can_inject = false;
10205 		} else
10206 			static_call(kvm_x86_enable_smi_window)(vcpu);
10207 	}
10208 #endif
10209 
10210 	if (vcpu->arch.nmi_pending) {
10211 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10212 		if (r < 0)
10213 			goto out;
10214 		if (r) {
10215 			--vcpu->arch.nmi_pending;
10216 			vcpu->arch.nmi_injected = true;
10217 			static_call(kvm_x86_inject_nmi)(vcpu);
10218 			can_inject = false;
10219 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10220 		}
10221 		if (vcpu->arch.nmi_pending)
10222 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10223 	}
10224 
10225 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10226 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10227 		if (r < 0)
10228 			goto out;
10229 		if (r) {
10230 			int irq = kvm_cpu_get_interrupt(vcpu);
10231 
10232 			if (!WARN_ON_ONCE(irq == -1)) {
10233 				kvm_queue_interrupt(vcpu, irq, false);
10234 				static_call(kvm_x86_inject_irq)(vcpu, false);
10235 				WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10236 			}
10237 		}
10238 		if (kvm_cpu_has_injectable_intr(vcpu))
10239 			static_call(kvm_x86_enable_irq_window)(vcpu);
10240 	}
10241 
10242 	if (is_guest_mode(vcpu) &&
10243 	    kvm_x86_ops.nested_ops->has_events &&
10244 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10245 		*req_immediate_exit = true;
10246 
10247 	/*
10248 	 * KVM must never queue a new exception while injecting an event; KVM
10249 	 * is done emulating and should only propagate the to-be-injected event
10250 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10251 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10252 	 * exception and start the cycle all over.
10253 	 *
10254 	 * Exempt triple faults as they have special handling and won't put the
10255 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10256 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10257 	 * Mode events (see kvm_inject_realmode_interrupt()).
10258 	 */
10259 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10260 		     vcpu->arch.exception_vmexit.pending);
10261 	return 0;
10262 
10263 out:
10264 	if (r == -EBUSY) {
10265 		*req_immediate_exit = true;
10266 		r = 0;
10267 	}
10268 	return r;
10269 }
10270 
10271 static void process_nmi(struct kvm_vcpu *vcpu)
10272 {
10273 	unsigned int limit;
10274 
10275 	/*
10276 	 * x86 is limited to one NMI pending, but because KVM can't react to
10277 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10278 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10279 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10280 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10281 	 * waiting for a previous NMI injection to complete (which effectively
10282 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10283 	 * will request an NMI window to handle the second NMI.
10284 	 */
10285 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10286 		limit = 1;
10287 	else
10288 		limit = 2;
10289 
10290 	/*
10291 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10292 	 * tracked in vcpu->arch.nmi_pending.
10293 	 */
10294 	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10295 		limit--;
10296 
10297 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10298 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10299 
10300 	if (vcpu->arch.nmi_pending &&
10301 	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10302 		vcpu->arch.nmi_pending--;
10303 
10304 	if (vcpu->arch.nmi_pending)
10305 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10306 }
10307 
10308 /* Return total number of NMIs pending injection to the VM */
10309 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10310 {
10311 	return vcpu->arch.nmi_pending +
10312 	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10313 }
10314 
10315 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10316 				       unsigned long *vcpu_bitmap)
10317 {
10318 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10319 }
10320 
10321 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10322 {
10323 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10324 }
10325 
10326 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10327 {
10328 	struct kvm_lapic *apic = vcpu->arch.apic;
10329 	bool activate;
10330 
10331 	if (!lapic_in_kernel(vcpu))
10332 		return;
10333 
10334 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10335 	preempt_disable();
10336 
10337 	/* Do not activate APICV when APIC is disabled */
10338 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10339 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10340 
10341 	if (apic->apicv_active == activate)
10342 		goto out;
10343 
10344 	apic->apicv_active = activate;
10345 	kvm_apic_update_apicv(vcpu);
10346 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10347 
10348 	/*
10349 	 * When APICv gets disabled, we may still have injected interrupts
10350 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10351 	 * still active when the interrupt got accepted. Make sure
10352 	 * kvm_check_and_inject_events() is called to check for that.
10353 	 */
10354 	if (!apic->apicv_active)
10355 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10356 
10357 out:
10358 	preempt_enable();
10359 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10360 }
10361 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10362 
10363 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10364 {
10365 	if (!lapic_in_kernel(vcpu))
10366 		return;
10367 
10368 	/*
10369 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10370 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10371 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10372 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10373 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10374 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10375 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10376 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10377 	 * access page is sticky.
10378 	 */
10379 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10380 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10381 		kvm_inhibit_apic_access_page(vcpu);
10382 
10383 	__kvm_vcpu_update_apicv(vcpu);
10384 }
10385 
10386 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10387 				      enum kvm_apicv_inhibit reason, bool set)
10388 {
10389 	unsigned long old, new;
10390 
10391 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10392 
10393 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10394 		return;
10395 
10396 	old = new = kvm->arch.apicv_inhibit_reasons;
10397 
10398 	set_or_clear_apicv_inhibit(&new, reason, set);
10399 
10400 	if (!!old != !!new) {
10401 		/*
10402 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10403 		 * false positives in the sanity check WARN in svm_vcpu_run().
10404 		 * This task will wait for all vCPUs to ack the kick IRQ before
10405 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10406 		 * block on acquiring apicv_update_lock so that vCPUs can't
10407 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10408 		 *
10409 		 * Note, holding apicv_update_lock and taking it in the read
10410 		 * side (handling the request) also prevents other vCPUs from
10411 		 * servicing the request with a stale apicv_inhibit_reasons.
10412 		 */
10413 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10414 		kvm->arch.apicv_inhibit_reasons = new;
10415 		if (new) {
10416 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10417 			int idx = srcu_read_lock(&kvm->srcu);
10418 
10419 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10420 			srcu_read_unlock(&kvm->srcu, idx);
10421 		}
10422 	} else {
10423 		kvm->arch.apicv_inhibit_reasons = new;
10424 	}
10425 }
10426 
10427 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10428 				    enum kvm_apicv_inhibit reason, bool set)
10429 {
10430 	if (!enable_apicv)
10431 		return;
10432 
10433 	down_write(&kvm->arch.apicv_update_lock);
10434 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10435 	up_write(&kvm->arch.apicv_update_lock);
10436 }
10437 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10438 
10439 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10440 {
10441 	if (!kvm_apic_present(vcpu))
10442 		return;
10443 
10444 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10445 
10446 	if (irqchip_split(vcpu->kvm))
10447 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10448 	else {
10449 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10450 		if (ioapic_in_kernel(vcpu->kvm))
10451 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10452 	}
10453 
10454 	if (is_guest_mode(vcpu))
10455 		vcpu->arch.load_eoi_exitmap_pending = true;
10456 	else
10457 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10458 }
10459 
10460 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10461 {
10462 	u64 eoi_exit_bitmap[4];
10463 
10464 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10465 		return;
10466 
10467 	if (to_hv_vcpu(vcpu)) {
10468 		bitmap_or((ulong *)eoi_exit_bitmap,
10469 			  vcpu->arch.ioapic_handled_vectors,
10470 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10471 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10472 		return;
10473 	}
10474 
10475 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10476 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10477 }
10478 
10479 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10480 {
10481 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10482 }
10483 
10484 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10485 {
10486 	if (!lapic_in_kernel(vcpu))
10487 		return;
10488 
10489 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10490 }
10491 
10492 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10493 {
10494 	smp_send_reschedule(vcpu->cpu);
10495 }
10496 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10497 
10498 /*
10499  * Called within kvm->srcu read side.
10500  * Returns 1 to let vcpu_run() continue the guest execution loop without
10501  * exiting to the userspace.  Otherwise, the value will be returned to the
10502  * userspace.
10503  */
10504 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10505 {
10506 	int r;
10507 	bool req_int_win =
10508 		dm_request_for_irq_injection(vcpu) &&
10509 		kvm_cpu_accept_dm_intr(vcpu);
10510 	fastpath_t exit_fastpath;
10511 
10512 	bool req_immediate_exit = false;
10513 
10514 	if (kvm_request_pending(vcpu)) {
10515 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10516 			r = -EIO;
10517 			goto out;
10518 		}
10519 
10520 		if (kvm_dirty_ring_check_request(vcpu)) {
10521 			r = 0;
10522 			goto out;
10523 		}
10524 
10525 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10526 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10527 				r = 0;
10528 				goto out;
10529 			}
10530 		}
10531 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10532 			kvm_mmu_free_obsolete_roots(vcpu);
10533 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10534 			__kvm_migrate_timers(vcpu);
10535 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10536 			kvm_update_masterclock(vcpu->kvm);
10537 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10538 			kvm_gen_kvmclock_update(vcpu);
10539 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10540 			r = kvm_guest_time_update(vcpu);
10541 			if (unlikely(r))
10542 				goto out;
10543 		}
10544 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10545 			kvm_mmu_sync_roots(vcpu);
10546 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10547 			kvm_mmu_load_pgd(vcpu);
10548 
10549 		/*
10550 		 * Note, the order matters here, as flushing "all" TLB entries
10551 		 * also flushes the "current" TLB entries, i.e. servicing the
10552 		 * flush "all" will clear any request to flush "current".
10553 		 */
10554 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10555 			kvm_vcpu_flush_tlb_all(vcpu);
10556 
10557 		kvm_service_local_tlb_flush_requests(vcpu);
10558 
10559 		/*
10560 		 * Fall back to a "full" guest flush if Hyper-V's precise
10561 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10562 		 * the flushes are considered "remote" and not "local" because
10563 		 * the requests can be initiated from other vCPUs.
10564 		 */
10565 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10566 		    kvm_hv_vcpu_flush_tlb(vcpu))
10567 			kvm_vcpu_flush_tlb_guest(vcpu);
10568 
10569 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10570 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10571 			r = 0;
10572 			goto out;
10573 		}
10574 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10575 			if (is_guest_mode(vcpu))
10576 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10577 
10578 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10579 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10580 				vcpu->mmio_needed = 0;
10581 				r = 0;
10582 				goto out;
10583 			}
10584 		}
10585 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10586 			/* Page is swapped out. Do synthetic halt */
10587 			vcpu->arch.apf.halted = true;
10588 			r = 1;
10589 			goto out;
10590 		}
10591 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10592 			record_steal_time(vcpu);
10593 #ifdef CONFIG_KVM_SMM
10594 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10595 			process_smi(vcpu);
10596 #endif
10597 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10598 			process_nmi(vcpu);
10599 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10600 			kvm_pmu_handle_event(vcpu);
10601 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10602 			kvm_pmu_deliver_pmi(vcpu);
10603 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10604 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10605 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10606 				     vcpu->arch.ioapic_handled_vectors)) {
10607 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10608 				vcpu->run->eoi.vector =
10609 						vcpu->arch.pending_ioapic_eoi;
10610 				r = 0;
10611 				goto out;
10612 			}
10613 		}
10614 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10615 			vcpu_scan_ioapic(vcpu);
10616 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10617 			vcpu_load_eoi_exitmap(vcpu);
10618 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10619 			kvm_vcpu_reload_apic_access_page(vcpu);
10620 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10621 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10622 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10623 			vcpu->run->system_event.ndata = 0;
10624 			r = 0;
10625 			goto out;
10626 		}
10627 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10628 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10629 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10630 			vcpu->run->system_event.ndata = 0;
10631 			r = 0;
10632 			goto out;
10633 		}
10634 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10635 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10636 
10637 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10638 			vcpu->run->hyperv = hv_vcpu->exit;
10639 			r = 0;
10640 			goto out;
10641 		}
10642 
10643 		/*
10644 		 * KVM_REQ_HV_STIMER has to be processed after
10645 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10646 		 * depend on the guest clock being up-to-date
10647 		 */
10648 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10649 			kvm_hv_process_stimers(vcpu);
10650 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10651 			kvm_vcpu_update_apicv(vcpu);
10652 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10653 			kvm_check_async_pf_completion(vcpu);
10654 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10655 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10656 
10657 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10658 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10659 	}
10660 
10661 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10662 	    kvm_xen_has_interrupt(vcpu)) {
10663 		++vcpu->stat.req_event;
10664 		r = kvm_apic_accept_events(vcpu);
10665 		if (r < 0) {
10666 			r = 0;
10667 			goto out;
10668 		}
10669 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10670 			r = 1;
10671 			goto out;
10672 		}
10673 
10674 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10675 		if (r < 0) {
10676 			r = 0;
10677 			goto out;
10678 		}
10679 		if (req_int_win)
10680 			static_call(kvm_x86_enable_irq_window)(vcpu);
10681 
10682 		if (kvm_lapic_enabled(vcpu)) {
10683 			update_cr8_intercept(vcpu);
10684 			kvm_lapic_sync_to_vapic(vcpu);
10685 		}
10686 	}
10687 
10688 	r = kvm_mmu_reload(vcpu);
10689 	if (unlikely(r)) {
10690 		goto cancel_injection;
10691 	}
10692 
10693 	preempt_disable();
10694 
10695 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10696 
10697 	/*
10698 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10699 	 * IPI are then delayed after guest entry, which ensures that they
10700 	 * result in virtual interrupt delivery.
10701 	 */
10702 	local_irq_disable();
10703 
10704 	/* Store vcpu->apicv_active before vcpu->mode.  */
10705 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10706 
10707 	kvm_vcpu_srcu_read_unlock(vcpu);
10708 
10709 	/*
10710 	 * 1) We should set ->mode before checking ->requests.  Please see
10711 	 * the comment in kvm_vcpu_exiting_guest_mode().
10712 	 *
10713 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10714 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10715 	 * (see vmx_deliver_posted_interrupt).
10716 	 *
10717 	 * 3) This also orders the write to mode from any reads to the page
10718 	 * tables done while the VCPU is running.  Please see the comment
10719 	 * in kvm_flush_remote_tlbs.
10720 	 */
10721 	smp_mb__after_srcu_read_unlock();
10722 
10723 	/*
10724 	 * Process pending posted interrupts to handle the case where the
10725 	 * notification IRQ arrived in the host, or was never sent (because the
10726 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10727 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10728 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10729 	 */
10730 	if (kvm_lapic_enabled(vcpu))
10731 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10732 
10733 	if (kvm_vcpu_exit_request(vcpu)) {
10734 		vcpu->mode = OUTSIDE_GUEST_MODE;
10735 		smp_wmb();
10736 		local_irq_enable();
10737 		preempt_enable();
10738 		kvm_vcpu_srcu_read_lock(vcpu);
10739 		r = 1;
10740 		goto cancel_injection;
10741 	}
10742 
10743 	if (req_immediate_exit) {
10744 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10745 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10746 	}
10747 
10748 	fpregs_assert_state_consistent();
10749 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10750 		switch_fpu_return();
10751 
10752 	if (vcpu->arch.guest_fpu.xfd_err)
10753 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10754 
10755 	if (unlikely(vcpu->arch.switch_db_regs)) {
10756 		set_debugreg(0, 7);
10757 		set_debugreg(vcpu->arch.eff_db[0], 0);
10758 		set_debugreg(vcpu->arch.eff_db[1], 1);
10759 		set_debugreg(vcpu->arch.eff_db[2], 2);
10760 		set_debugreg(vcpu->arch.eff_db[3], 3);
10761 	} else if (unlikely(hw_breakpoint_active())) {
10762 		set_debugreg(0, 7);
10763 	}
10764 
10765 	guest_timing_enter_irqoff();
10766 
10767 	for (;;) {
10768 		/*
10769 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10770 		 * update must kick and wait for all vCPUs before toggling the
10771 		 * per-VM state, and responsing vCPUs must wait for the update
10772 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10773 		 */
10774 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10775 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10776 
10777 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10778 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10779 			break;
10780 
10781 		if (kvm_lapic_enabled(vcpu))
10782 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10783 
10784 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10785 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10786 			break;
10787 		}
10788 
10789 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10790 		++vcpu->stat.exits;
10791 	}
10792 
10793 	/*
10794 	 * Do this here before restoring debug registers on the host.  And
10795 	 * since we do this before handling the vmexit, a DR access vmexit
10796 	 * can (a) read the correct value of the debug registers, (b) set
10797 	 * KVM_DEBUGREG_WONT_EXIT again.
10798 	 */
10799 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10800 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10801 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10802 		kvm_update_dr0123(vcpu);
10803 		kvm_update_dr7(vcpu);
10804 	}
10805 
10806 	/*
10807 	 * If the guest has used debug registers, at least dr7
10808 	 * will be disabled while returning to the host.
10809 	 * If we don't have active breakpoints in the host, we don't
10810 	 * care about the messed up debug address registers. But if
10811 	 * we have some of them active, restore the old state.
10812 	 */
10813 	if (hw_breakpoint_active())
10814 		hw_breakpoint_restore();
10815 
10816 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10817 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10818 
10819 	vcpu->mode = OUTSIDE_GUEST_MODE;
10820 	smp_wmb();
10821 
10822 	/*
10823 	 * Sync xfd before calling handle_exit_irqoff() which may
10824 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10825 	 * in #NM irqoff handler).
10826 	 */
10827 	if (vcpu->arch.xfd_no_write_intercept)
10828 		fpu_sync_guest_vmexit_xfd_state();
10829 
10830 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10831 
10832 	if (vcpu->arch.guest_fpu.xfd_err)
10833 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10834 
10835 	/*
10836 	 * Consume any pending interrupts, including the possible source of
10837 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10838 	 * An instruction is required after local_irq_enable() to fully unblock
10839 	 * interrupts on processors that implement an interrupt shadow, the
10840 	 * stat.exits increment will do nicely.
10841 	 */
10842 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10843 	local_irq_enable();
10844 	++vcpu->stat.exits;
10845 	local_irq_disable();
10846 	kvm_after_interrupt(vcpu);
10847 
10848 	/*
10849 	 * Wait until after servicing IRQs to account guest time so that any
10850 	 * ticks that occurred while running the guest are properly accounted
10851 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10852 	 * of accounting via context tracking, but the loss of accuracy is
10853 	 * acceptable for all known use cases.
10854 	 */
10855 	guest_timing_exit_irqoff();
10856 
10857 	local_irq_enable();
10858 	preempt_enable();
10859 
10860 	kvm_vcpu_srcu_read_lock(vcpu);
10861 
10862 	/*
10863 	 * Profile KVM exit RIPs:
10864 	 */
10865 	if (unlikely(prof_on == KVM_PROFILING)) {
10866 		unsigned long rip = kvm_rip_read(vcpu);
10867 		profile_hit(KVM_PROFILING, (void *)rip);
10868 	}
10869 
10870 	if (unlikely(vcpu->arch.tsc_always_catchup))
10871 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10872 
10873 	if (vcpu->arch.apic_attention)
10874 		kvm_lapic_sync_from_vapic(vcpu);
10875 
10876 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10877 	return r;
10878 
10879 cancel_injection:
10880 	if (req_immediate_exit)
10881 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10882 	static_call(kvm_x86_cancel_injection)(vcpu);
10883 	if (unlikely(vcpu->arch.apic_attention))
10884 		kvm_lapic_sync_from_vapic(vcpu);
10885 out:
10886 	return r;
10887 }
10888 
10889 /* Called within kvm->srcu read side.  */
10890 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10891 {
10892 	bool hv_timer;
10893 
10894 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10895 		/*
10896 		 * Switch to the software timer before halt-polling/blocking as
10897 		 * the guest's timer may be a break event for the vCPU, and the
10898 		 * hypervisor timer runs only when the CPU is in guest mode.
10899 		 * Switch before halt-polling so that KVM recognizes an expired
10900 		 * timer before blocking.
10901 		 */
10902 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10903 		if (hv_timer)
10904 			kvm_lapic_switch_to_sw_timer(vcpu);
10905 
10906 		kvm_vcpu_srcu_read_unlock(vcpu);
10907 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10908 			kvm_vcpu_halt(vcpu);
10909 		else
10910 			kvm_vcpu_block(vcpu);
10911 		kvm_vcpu_srcu_read_lock(vcpu);
10912 
10913 		if (hv_timer)
10914 			kvm_lapic_switch_to_hv_timer(vcpu);
10915 
10916 		/*
10917 		 * If the vCPU is not runnable, a signal or another host event
10918 		 * of some kind is pending; service it without changing the
10919 		 * vCPU's activity state.
10920 		 */
10921 		if (!kvm_arch_vcpu_runnable(vcpu))
10922 			return 1;
10923 	}
10924 
10925 	/*
10926 	 * Evaluate nested events before exiting the halted state.  This allows
10927 	 * the halt state to be recorded properly in the VMCS12's activity
10928 	 * state field (AMD does not have a similar field and a VM-Exit always
10929 	 * causes a spurious wakeup from HLT).
10930 	 */
10931 	if (is_guest_mode(vcpu)) {
10932 		if (kvm_check_nested_events(vcpu) < 0)
10933 			return 0;
10934 	}
10935 
10936 	if (kvm_apic_accept_events(vcpu) < 0)
10937 		return 0;
10938 	switch(vcpu->arch.mp_state) {
10939 	case KVM_MP_STATE_HALTED:
10940 	case KVM_MP_STATE_AP_RESET_HOLD:
10941 		vcpu->arch.pv.pv_unhalted = false;
10942 		vcpu->arch.mp_state =
10943 			KVM_MP_STATE_RUNNABLE;
10944 		fallthrough;
10945 	case KVM_MP_STATE_RUNNABLE:
10946 		vcpu->arch.apf.halted = false;
10947 		break;
10948 	case KVM_MP_STATE_INIT_RECEIVED:
10949 		break;
10950 	default:
10951 		WARN_ON_ONCE(1);
10952 		break;
10953 	}
10954 	return 1;
10955 }
10956 
10957 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10958 {
10959 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10960 		!vcpu->arch.apf.halted);
10961 }
10962 
10963 /* Called within kvm->srcu read side.  */
10964 static int vcpu_run(struct kvm_vcpu *vcpu)
10965 {
10966 	int r;
10967 
10968 	vcpu->arch.l1tf_flush_l1d = true;
10969 
10970 	for (;;) {
10971 		/*
10972 		 * If another guest vCPU requests a PV TLB flush in the middle
10973 		 * of instruction emulation, the rest of the emulation could
10974 		 * use a stale page translation. Assume that any code after
10975 		 * this point can start executing an instruction.
10976 		 */
10977 		vcpu->arch.at_instruction_boundary = false;
10978 		if (kvm_vcpu_running(vcpu)) {
10979 			r = vcpu_enter_guest(vcpu);
10980 		} else {
10981 			r = vcpu_block(vcpu);
10982 		}
10983 
10984 		if (r <= 0)
10985 			break;
10986 
10987 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10988 		if (kvm_xen_has_pending_events(vcpu))
10989 			kvm_xen_inject_pending_events(vcpu);
10990 
10991 		if (kvm_cpu_has_pending_timer(vcpu))
10992 			kvm_inject_pending_timer_irqs(vcpu);
10993 
10994 		if (dm_request_for_irq_injection(vcpu) &&
10995 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10996 			r = 0;
10997 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10998 			++vcpu->stat.request_irq_exits;
10999 			break;
11000 		}
11001 
11002 		if (__xfer_to_guest_mode_work_pending()) {
11003 			kvm_vcpu_srcu_read_unlock(vcpu);
11004 			r = xfer_to_guest_mode_handle_work(vcpu);
11005 			kvm_vcpu_srcu_read_lock(vcpu);
11006 			if (r)
11007 				return r;
11008 		}
11009 	}
11010 
11011 	return r;
11012 }
11013 
11014 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11015 {
11016 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11017 }
11018 
11019 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11020 {
11021 	BUG_ON(!vcpu->arch.pio.count);
11022 
11023 	return complete_emulated_io(vcpu);
11024 }
11025 
11026 /*
11027  * Implements the following, as a state machine:
11028  *
11029  * read:
11030  *   for each fragment
11031  *     for each mmio piece in the fragment
11032  *       write gpa, len
11033  *       exit
11034  *       copy data
11035  *   execute insn
11036  *
11037  * write:
11038  *   for each fragment
11039  *     for each mmio piece in the fragment
11040  *       write gpa, len
11041  *       copy data
11042  *       exit
11043  */
11044 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11045 {
11046 	struct kvm_run *run = vcpu->run;
11047 	struct kvm_mmio_fragment *frag;
11048 	unsigned len;
11049 
11050 	BUG_ON(!vcpu->mmio_needed);
11051 
11052 	/* Complete previous fragment */
11053 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11054 	len = min(8u, frag->len);
11055 	if (!vcpu->mmio_is_write)
11056 		memcpy(frag->data, run->mmio.data, len);
11057 
11058 	if (frag->len <= 8) {
11059 		/* Switch to the next fragment. */
11060 		frag++;
11061 		vcpu->mmio_cur_fragment++;
11062 	} else {
11063 		/* Go forward to the next mmio piece. */
11064 		frag->data += len;
11065 		frag->gpa += len;
11066 		frag->len -= len;
11067 	}
11068 
11069 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11070 		vcpu->mmio_needed = 0;
11071 
11072 		/* FIXME: return into emulator if single-stepping.  */
11073 		if (vcpu->mmio_is_write)
11074 			return 1;
11075 		vcpu->mmio_read_completed = 1;
11076 		return complete_emulated_io(vcpu);
11077 	}
11078 
11079 	run->exit_reason = KVM_EXIT_MMIO;
11080 	run->mmio.phys_addr = frag->gpa;
11081 	if (vcpu->mmio_is_write)
11082 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11083 	run->mmio.len = min(8u, frag->len);
11084 	run->mmio.is_write = vcpu->mmio_is_write;
11085 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11086 	return 0;
11087 }
11088 
11089 /* Swap (qemu) user FPU context for the guest FPU context. */
11090 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11091 {
11092 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11093 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11094 	trace_kvm_fpu(1);
11095 }
11096 
11097 /* When vcpu_run ends, restore user space FPU context. */
11098 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11099 {
11100 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11101 	++vcpu->stat.fpu_reload;
11102 	trace_kvm_fpu(0);
11103 }
11104 
11105 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11106 {
11107 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11108 	struct kvm_run *kvm_run = vcpu->run;
11109 	int r;
11110 
11111 	vcpu_load(vcpu);
11112 	kvm_sigset_activate(vcpu);
11113 	kvm_run->flags = 0;
11114 	kvm_load_guest_fpu(vcpu);
11115 
11116 	kvm_vcpu_srcu_read_lock(vcpu);
11117 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11118 		if (kvm_run->immediate_exit) {
11119 			r = -EINTR;
11120 			goto out;
11121 		}
11122 
11123 		/*
11124 		 * Don't bother switching APIC timer emulation from the
11125 		 * hypervisor timer to the software timer, the only way for the
11126 		 * APIC timer to be active is if userspace stuffed vCPU state,
11127 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11128 		 * will transition the vCPU out of UNINITIALIZED (without more
11129 		 * state stuffing from userspace), which will reset the local
11130 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11131 		 * already expired).
11132 		 */
11133 		kvm_vcpu_srcu_read_unlock(vcpu);
11134 		kvm_vcpu_block(vcpu);
11135 		kvm_vcpu_srcu_read_lock(vcpu);
11136 
11137 		if (kvm_apic_accept_events(vcpu) < 0) {
11138 			r = 0;
11139 			goto out;
11140 		}
11141 		r = -EAGAIN;
11142 		if (signal_pending(current)) {
11143 			r = -EINTR;
11144 			kvm_run->exit_reason = KVM_EXIT_INTR;
11145 			++vcpu->stat.signal_exits;
11146 		}
11147 		goto out;
11148 	}
11149 
11150 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11151 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11152 		r = -EINVAL;
11153 		goto out;
11154 	}
11155 
11156 	if (kvm_run->kvm_dirty_regs) {
11157 		r = sync_regs(vcpu);
11158 		if (r != 0)
11159 			goto out;
11160 	}
11161 
11162 	/* re-sync apic's tpr */
11163 	if (!lapic_in_kernel(vcpu)) {
11164 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11165 			r = -EINVAL;
11166 			goto out;
11167 		}
11168 	}
11169 
11170 	/*
11171 	 * If userspace set a pending exception and L2 is active, convert it to
11172 	 * a pending VM-Exit if L1 wants to intercept the exception.
11173 	 */
11174 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11175 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11176 							ex->error_code)) {
11177 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11178 					   ex->has_error_code, ex->error_code,
11179 					   ex->has_payload, ex->payload);
11180 		ex->injected = false;
11181 		ex->pending = false;
11182 	}
11183 	vcpu->arch.exception_from_userspace = false;
11184 
11185 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11186 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11187 		vcpu->arch.complete_userspace_io = NULL;
11188 		r = cui(vcpu);
11189 		if (r <= 0)
11190 			goto out;
11191 	} else {
11192 		WARN_ON_ONCE(vcpu->arch.pio.count);
11193 		WARN_ON_ONCE(vcpu->mmio_needed);
11194 	}
11195 
11196 	if (kvm_run->immediate_exit) {
11197 		r = -EINTR;
11198 		goto out;
11199 	}
11200 
11201 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11202 	if (r <= 0)
11203 		goto out;
11204 
11205 	r = vcpu_run(vcpu);
11206 
11207 out:
11208 	kvm_put_guest_fpu(vcpu);
11209 	if (kvm_run->kvm_valid_regs)
11210 		store_regs(vcpu);
11211 	post_kvm_run_save(vcpu);
11212 	kvm_vcpu_srcu_read_unlock(vcpu);
11213 
11214 	kvm_sigset_deactivate(vcpu);
11215 	vcpu_put(vcpu);
11216 	return r;
11217 }
11218 
11219 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11220 {
11221 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11222 		/*
11223 		 * We are here if userspace calls get_regs() in the middle of
11224 		 * instruction emulation. Registers state needs to be copied
11225 		 * back from emulation context to vcpu. Userspace shouldn't do
11226 		 * that usually, but some bad designed PV devices (vmware
11227 		 * backdoor interface) need this to work
11228 		 */
11229 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11230 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11231 	}
11232 	regs->rax = kvm_rax_read(vcpu);
11233 	regs->rbx = kvm_rbx_read(vcpu);
11234 	regs->rcx = kvm_rcx_read(vcpu);
11235 	regs->rdx = kvm_rdx_read(vcpu);
11236 	regs->rsi = kvm_rsi_read(vcpu);
11237 	regs->rdi = kvm_rdi_read(vcpu);
11238 	regs->rsp = kvm_rsp_read(vcpu);
11239 	regs->rbp = kvm_rbp_read(vcpu);
11240 #ifdef CONFIG_X86_64
11241 	regs->r8 = kvm_r8_read(vcpu);
11242 	regs->r9 = kvm_r9_read(vcpu);
11243 	regs->r10 = kvm_r10_read(vcpu);
11244 	regs->r11 = kvm_r11_read(vcpu);
11245 	regs->r12 = kvm_r12_read(vcpu);
11246 	regs->r13 = kvm_r13_read(vcpu);
11247 	regs->r14 = kvm_r14_read(vcpu);
11248 	regs->r15 = kvm_r15_read(vcpu);
11249 #endif
11250 
11251 	regs->rip = kvm_rip_read(vcpu);
11252 	regs->rflags = kvm_get_rflags(vcpu);
11253 }
11254 
11255 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11256 {
11257 	vcpu_load(vcpu);
11258 	__get_regs(vcpu, regs);
11259 	vcpu_put(vcpu);
11260 	return 0;
11261 }
11262 
11263 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11264 {
11265 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11266 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11267 
11268 	kvm_rax_write(vcpu, regs->rax);
11269 	kvm_rbx_write(vcpu, regs->rbx);
11270 	kvm_rcx_write(vcpu, regs->rcx);
11271 	kvm_rdx_write(vcpu, regs->rdx);
11272 	kvm_rsi_write(vcpu, regs->rsi);
11273 	kvm_rdi_write(vcpu, regs->rdi);
11274 	kvm_rsp_write(vcpu, regs->rsp);
11275 	kvm_rbp_write(vcpu, regs->rbp);
11276 #ifdef CONFIG_X86_64
11277 	kvm_r8_write(vcpu, regs->r8);
11278 	kvm_r9_write(vcpu, regs->r9);
11279 	kvm_r10_write(vcpu, regs->r10);
11280 	kvm_r11_write(vcpu, regs->r11);
11281 	kvm_r12_write(vcpu, regs->r12);
11282 	kvm_r13_write(vcpu, regs->r13);
11283 	kvm_r14_write(vcpu, regs->r14);
11284 	kvm_r15_write(vcpu, regs->r15);
11285 #endif
11286 
11287 	kvm_rip_write(vcpu, regs->rip);
11288 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11289 
11290 	vcpu->arch.exception.pending = false;
11291 	vcpu->arch.exception_vmexit.pending = false;
11292 
11293 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11294 }
11295 
11296 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11297 {
11298 	vcpu_load(vcpu);
11299 	__set_regs(vcpu, regs);
11300 	vcpu_put(vcpu);
11301 	return 0;
11302 }
11303 
11304 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11305 {
11306 	struct desc_ptr dt;
11307 
11308 	if (vcpu->arch.guest_state_protected)
11309 		goto skip_protected_regs;
11310 
11311 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11312 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11313 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11314 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11315 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11316 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11317 
11318 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11319 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11320 
11321 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11322 	sregs->idt.limit = dt.size;
11323 	sregs->idt.base = dt.address;
11324 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11325 	sregs->gdt.limit = dt.size;
11326 	sregs->gdt.base = dt.address;
11327 
11328 	sregs->cr2 = vcpu->arch.cr2;
11329 	sregs->cr3 = kvm_read_cr3(vcpu);
11330 
11331 skip_protected_regs:
11332 	sregs->cr0 = kvm_read_cr0(vcpu);
11333 	sregs->cr4 = kvm_read_cr4(vcpu);
11334 	sregs->cr8 = kvm_get_cr8(vcpu);
11335 	sregs->efer = vcpu->arch.efer;
11336 	sregs->apic_base = kvm_get_apic_base(vcpu);
11337 }
11338 
11339 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11340 {
11341 	__get_sregs_common(vcpu, sregs);
11342 
11343 	if (vcpu->arch.guest_state_protected)
11344 		return;
11345 
11346 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11347 		set_bit(vcpu->arch.interrupt.nr,
11348 			(unsigned long *)sregs->interrupt_bitmap);
11349 }
11350 
11351 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11352 {
11353 	int i;
11354 
11355 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11356 
11357 	if (vcpu->arch.guest_state_protected)
11358 		return;
11359 
11360 	if (is_pae_paging(vcpu)) {
11361 		for (i = 0 ; i < 4 ; i++)
11362 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11363 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11364 	}
11365 }
11366 
11367 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11368 				  struct kvm_sregs *sregs)
11369 {
11370 	vcpu_load(vcpu);
11371 	__get_sregs(vcpu, sregs);
11372 	vcpu_put(vcpu);
11373 	return 0;
11374 }
11375 
11376 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11377 				    struct kvm_mp_state *mp_state)
11378 {
11379 	int r;
11380 
11381 	vcpu_load(vcpu);
11382 	if (kvm_mpx_supported())
11383 		kvm_load_guest_fpu(vcpu);
11384 
11385 	r = kvm_apic_accept_events(vcpu);
11386 	if (r < 0)
11387 		goto out;
11388 	r = 0;
11389 
11390 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11391 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11392 	    vcpu->arch.pv.pv_unhalted)
11393 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11394 	else
11395 		mp_state->mp_state = vcpu->arch.mp_state;
11396 
11397 out:
11398 	if (kvm_mpx_supported())
11399 		kvm_put_guest_fpu(vcpu);
11400 	vcpu_put(vcpu);
11401 	return r;
11402 }
11403 
11404 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11405 				    struct kvm_mp_state *mp_state)
11406 {
11407 	int ret = -EINVAL;
11408 
11409 	vcpu_load(vcpu);
11410 
11411 	switch (mp_state->mp_state) {
11412 	case KVM_MP_STATE_UNINITIALIZED:
11413 	case KVM_MP_STATE_HALTED:
11414 	case KVM_MP_STATE_AP_RESET_HOLD:
11415 	case KVM_MP_STATE_INIT_RECEIVED:
11416 	case KVM_MP_STATE_SIPI_RECEIVED:
11417 		if (!lapic_in_kernel(vcpu))
11418 			goto out;
11419 		break;
11420 
11421 	case KVM_MP_STATE_RUNNABLE:
11422 		break;
11423 
11424 	default:
11425 		goto out;
11426 	}
11427 
11428 	/*
11429 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11430 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11431 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11432 	 * if an SMI is pending as well.
11433 	 */
11434 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11435 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11436 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11437 		goto out;
11438 
11439 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11440 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11441 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11442 	} else
11443 		vcpu->arch.mp_state = mp_state->mp_state;
11444 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11445 
11446 	ret = 0;
11447 out:
11448 	vcpu_put(vcpu);
11449 	return ret;
11450 }
11451 
11452 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11453 		    int reason, bool has_error_code, u32 error_code)
11454 {
11455 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11456 	int ret;
11457 
11458 	init_emulate_ctxt(vcpu);
11459 
11460 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11461 				   has_error_code, error_code);
11462 	if (ret) {
11463 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11464 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11465 		vcpu->run->internal.ndata = 0;
11466 		return 0;
11467 	}
11468 
11469 	kvm_rip_write(vcpu, ctxt->eip);
11470 	kvm_set_rflags(vcpu, ctxt->eflags);
11471 	return 1;
11472 }
11473 EXPORT_SYMBOL_GPL(kvm_task_switch);
11474 
11475 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11476 {
11477 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11478 		/*
11479 		 * When EFER.LME and CR0.PG are set, the processor is in
11480 		 * 64-bit mode (though maybe in a 32-bit code segment).
11481 		 * CR4.PAE and EFER.LMA must be set.
11482 		 */
11483 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11484 			return false;
11485 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11486 			return false;
11487 	} else {
11488 		/*
11489 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11490 		 * segment cannot be 64-bit.
11491 		 */
11492 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11493 			return false;
11494 	}
11495 
11496 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11497 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11498 }
11499 
11500 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11501 		int *mmu_reset_needed, bool update_pdptrs)
11502 {
11503 	struct msr_data apic_base_msr;
11504 	int idx;
11505 	struct desc_ptr dt;
11506 
11507 	if (!kvm_is_valid_sregs(vcpu, sregs))
11508 		return -EINVAL;
11509 
11510 	apic_base_msr.data = sregs->apic_base;
11511 	apic_base_msr.host_initiated = true;
11512 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11513 		return -EINVAL;
11514 
11515 	if (vcpu->arch.guest_state_protected)
11516 		return 0;
11517 
11518 	dt.size = sregs->idt.limit;
11519 	dt.address = sregs->idt.base;
11520 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11521 	dt.size = sregs->gdt.limit;
11522 	dt.address = sregs->gdt.base;
11523 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11524 
11525 	vcpu->arch.cr2 = sregs->cr2;
11526 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11527 	vcpu->arch.cr3 = sregs->cr3;
11528 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11529 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11530 
11531 	kvm_set_cr8(vcpu, sregs->cr8);
11532 
11533 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11534 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11535 
11536 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11537 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11538 	vcpu->arch.cr0 = sregs->cr0;
11539 
11540 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11541 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11542 
11543 	if (update_pdptrs) {
11544 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11545 		if (is_pae_paging(vcpu)) {
11546 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11547 			*mmu_reset_needed = 1;
11548 		}
11549 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11550 	}
11551 
11552 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11553 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11554 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11555 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11556 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11557 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11558 
11559 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11560 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11561 
11562 	update_cr8_intercept(vcpu);
11563 
11564 	/* Older userspace won't unhalt the vcpu on reset. */
11565 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11566 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11567 	    !is_protmode(vcpu))
11568 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11569 
11570 	return 0;
11571 }
11572 
11573 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11574 {
11575 	int pending_vec, max_bits;
11576 	int mmu_reset_needed = 0;
11577 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11578 
11579 	if (ret)
11580 		return ret;
11581 
11582 	if (mmu_reset_needed)
11583 		kvm_mmu_reset_context(vcpu);
11584 
11585 	max_bits = KVM_NR_INTERRUPTS;
11586 	pending_vec = find_first_bit(
11587 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11588 
11589 	if (pending_vec < max_bits) {
11590 		kvm_queue_interrupt(vcpu, pending_vec, false);
11591 		pr_debug("Set back pending irq %d\n", pending_vec);
11592 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11593 	}
11594 	return 0;
11595 }
11596 
11597 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11598 {
11599 	int mmu_reset_needed = 0;
11600 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11601 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11602 		!(sregs2->efer & EFER_LMA);
11603 	int i, ret;
11604 
11605 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11606 		return -EINVAL;
11607 
11608 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11609 		return -EINVAL;
11610 
11611 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11612 				 &mmu_reset_needed, !valid_pdptrs);
11613 	if (ret)
11614 		return ret;
11615 
11616 	if (valid_pdptrs) {
11617 		for (i = 0; i < 4 ; i++)
11618 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11619 
11620 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11621 		mmu_reset_needed = 1;
11622 		vcpu->arch.pdptrs_from_userspace = true;
11623 	}
11624 	if (mmu_reset_needed)
11625 		kvm_mmu_reset_context(vcpu);
11626 	return 0;
11627 }
11628 
11629 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11630 				  struct kvm_sregs *sregs)
11631 {
11632 	int ret;
11633 
11634 	vcpu_load(vcpu);
11635 	ret = __set_sregs(vcpu, sregs);
11636 	vcpu_put(vcpu);
11637 	return ret;
11638 }
11639 
11640 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11641 {
11642 	bool set = false;
11643 	struct kvm_vcpu *vcpu;
11644 	unsigned long i;
11645 
11646 	if (!enable_apicv)
11647 		return;
11648 
11649 	down_write(&kvm->arch.apicv_update_lock);
11650 
11651 	kvm_for_each_vcpu(i, vcpu, kvm) {
11652 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11653 			set = true;
11654 			break;
11655 		}
11656 	}
11657 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11658 	up_write(&kvm->arch.apicv_update_lock);
11659 }
11660 
11661 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11662 					struct kvm_guest_debug *dbg)
11663 {
11664 	unsigned long rflags;
11665 	int i, r;
11666 
11667 	if (vcpu->arch.guest_state_protected)
11668 		return -EINVAL;
11669 
11670 	vcpu_load(vcpu);
11671 
11672 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11673 		r = -EBUSY;
11674 		if (kvm_is_exception_pending(vcpu))
11675 			goto out;
11676 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11677 			kvm_queue_exception(vcpu, DB_VECTOR);
11678 		else
11679 			kvm_queue_exception(vcpu, BP_VECTOR);
11680 	}
11681 
11682 	/*
11683 	 * Read rflags as long as potentially injected trace flags are still
11684 	 * filtered out.
11685 	 */
11686 	rflags = kvm_get_rflags(vcpu);
11687 
11688 	vcpu->guest_debug = dbg->control;
11689 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11690 		vcpu->guest_debug = 0;
11691 
11692 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11693 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11694 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11695 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11696 	} else {
11697 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11698 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11699 	}
11700 	kvm_update_dr7(vcpu);
11701 
11702 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11703 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11704 
11705 	/*
11706 	 * Trigger an rflags update that will inject or remove the trace
11707 	 * flags.
11708 	 */
11709 	kvm_set_rflags(vcpu, rflags);
11710 
11711 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11712 
11713 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11714 
11715 	r = 0;
11716 
11717 out:
11718 	vcpu_put(vcpu);
11719 	return r;
11720 }
11721 
11722 /*
11723  * Translate a guest virtual address to a guest physical address.
11724  */
11725 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11726 				    struct kvm_translation *tr)
11727 {
11728 	unsigned long vaddr = tr->linear_address;
11729 	gpa_t gpa;
11730 	int idx;
11731 
11732 	vcpu_load(vcpu);
11733 
11734 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11735 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11736 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11737 	tr->physical_address = gpa;
11738 	tr->valid = gpa != INVALID_GPA;
11739 	tr->writeable = 1;
11740 	tr->usermode = 0;
11741 
11742 	vcpu_put(vcpu);
11743 	return 0;
11744 }
11745 
11746 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11747 {
11748 	struct fxregs_state *fxsave;
11749 
11750 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11751 		return 0;
11752 
11753 	vcpu_load(vcpu);
11754 
11755 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11756 	memcpy(fpu->fpr, fxsave->st_space, 128);
11757 	fpu->fcw = fxsave->cwd;
11758 	fpu->fsw = fxsave->swd;
11759 	fpu->ftwx = fxsave->twd;
11760 	fpu->last_opcode = fxsave->fop;
11761 	fpu->last_ip = fxsave->rip;
11762 	fpu->last_dp = fxsave->rdp;
11763 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11764 
11765 	vcpu_put(vcpu);
11766 	return 0;
11767 }
11768 
11769 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11770 {
11771 	struct fxregs_state *fxsave;
11772 
11773 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11774 		return 0;
11775 
11776 	vcpu_load(vcpu);
11777 
11778 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11779 
11780 	memcpy(fxsave->st_space, fpu->fpr, 128);
11781 	fxsave->cwd = fpu->fcw;
11782 	fxsave->swd = fpu->fsw;
11783 	fxsave->twd = fpu->ftwx;
11784 	fxsave->fop = fpu->last_opcode;
11785 	fxsave->rip = fpu->last_ip;
11786 	fxsave->rdp = fpu->last_dp;
11787 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11788 
11789 	vcpu_put(vcpu);
11790 	return 0;
11791 }
11792 
11793 static void store_regs(struct kvm_vcpu *vcpu)
11794 {
11795 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11796 
11797 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11798 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11799 
11800 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11801 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11802 
11803 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11804 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11805 				vcpu, &vcpu->run->s.regs.events);
11806 }
11807 
11808 static int sync_regs(struct kvm_vcpu *vcpu)
11809 {
11810 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11811 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11812 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11813 	}
11814 
11815 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11816 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11817 
11818 		if (__set_sregs(vcpu, &sregs))
11819 			return -EINVAL;
11820 
11821 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11822 	}
11823 
11824 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11825 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
11826 
11827 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
11828 			return -EINVAL;
11829 
11830 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11831 	}
11832 
11833 	return 0;
11834 }
11835 
11836 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11837 {
11838 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11839 		pr_warn_once("SMP vm created on host with unstable TSC; "
11840 			     "guest TSC will not be reliable\n");
11841 
11842 	if (!kvm->arch.max_vcpu_ids)
11843 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11844 
11845 	if (id >= kvm->arch.max_vcpu_ids)
11846 		return -EINVAL;
11847 
11848 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11849 }
11850 
11851 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11852 {
11853 	struct page *page;
11854 	int r;
11855 
11856 	vcpu->arch.last_vmentry_cpu = -1;
11857 	vcpu->arch.regs_avail = ~0;
11858 	vcpu->arch.regs_dirty = ~0;
11859 
11860 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11861 
11862 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11863 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11864 	else
11865 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11866 
11867 	r = kvm_mmu_create(vcpu);
11868 	if (r < 0)
11869 		return r;
11870 
11871 	if (irqchip_in_kernel(vcpu->kvm)) {
11872 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11873 		if (r < 0)
11874 			goto fail_mmu_destroy;
11875 
11876 		/*
11877 		 * Defer evaluating inhibits until the vCPU is first run, as
11878 		 * this vCPU will not get notified of any changes until this
11879 		 * vCPU is visible to other vCPUs (marked online and added to
11880 		 * the set of vCPUs).  Opportunistically mark APICv active as
11881 		 * VMX in particularly is highly unlikely to have inhibits.
11882 		 * Ignore the current per-VM APICv state so that vCPU creation
11883 		 * is guaranteed to run with a deterministic value, the request
11884 		 * will ensure the vCPU gets the correct state before VM-Entry.
11885 		 */
11886 		if (enable_apicv) {
11887 			vcpu->arch.apic->apicv_active = true;
11888 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11889 		}
11890 	} else
11891 		static_branch_inc(&kvm_has_noapic_vcpu);
11892 
11893 	r = -ENOMEM;
11894 
11895 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11896 	if (!page)
11897 		goto fail_free_lapic;
11898 	vcpu->arch.pio_data = page_address(page);
11899 
11900 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11901 				       GFP_KERNEL_ACCOUNT);
11902 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11903 					    GFP_KERNEL_ACCOUNT);
11904 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11905 		goto fail_free_mce_banks;
11906 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11907 
11908 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11909 				GFP_KERNEL_ACCOUNT))
11910 		goto fail_free_mce_banks;
11911 
11912 	if (!alloc_emulate_ctxt(vcpu))
11913 		goto free_wbinvd_dirty_mask;
11914 
11915 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11916 		pr_err("failed to allocate vcpu's fpu\n");
11917 		goto free_emulate_ctxt;
11918 	}
11919 
11920 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11921 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11922 
11923 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11924 
11925 	kvm_async_pf_hash_reset(vcpu);
11926 
11927 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11928 	kvm_pmu_init(vcpu);
11929 
11930 	vcpu->arch.pending_external_vector = -1;
11931 	vcpu->arch.preempted_in_kernel = false;
11932 
11933 #if IS_ENABLED(CONFIG_HYPERV)
11934 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11935 #endif
11936 
11937 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11938 	if (r)
11939 		goto free_guest_fpu;
11940 
11941 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11942 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11943 	kvm_xen_init_vcpu(vcpu);
11944 	kvm_vcpu_mtrr_init(vcpu);
11945 	vcpu_load(vcpu);
11946 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11947 	kvm_vcpu_reset(vcpu, false);
11948 	kvm_init_mmu(vcpu);
11949 	vcpu_put(vcpu);
11950 	return 0;
11951 
11952 free_guest_fpu:
11953 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11954 free_emulate_ctxt:
11955 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11956 free_wbinvd_dirty_mask:
11957 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11958 fail_free_mce_banks:
11959 	kfree(vcpu->arch.mce_banks);
11960 	kfree(vcpu->arch.mci_ctl2_banks);
11961 	free_page((unsigned long)vcpu->arch.pio_data);
11962 fail_free_lapic:
11963 	kvm_free_lapic(vcpu);
11964 fail_mmu_destroy:
11965 	kvm_mmu_destroy(vcpu);
11966 	return r;
11967 }
11968 
11969 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11970 {
11971 	struct kvm *kvm = vcpu->kvm;
11972 
11973 	if (mutex_lock_killable(&vcpu->mutex))
11974 		return;
11975 	vcpu_load(vcpu);
11976 	kvm_synchronize_tsc(vcpu, 0);
11977 	vcpu_put(vcpu);
11978 
11979 	/* poll control enabled by default */
11980 	vcpu->arch.msr_kvm_poll_control = 1;
11981 
11982 	mutex_unlock(&vcpu->mutex);
11983 
11984 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11985 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11986 						KVMCLOCK_SYNC_PERIOD);
11987 }
11988 
11989 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11990 {
11991 	int idx;
11992 
11993 	kvmclock_reset(vcpu);
11994 
11995 	static_call(kvm_x86_vcpu_free)(vcpu);
11996 
11997 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11998 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11999 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12000 
12001 	kvm_xen_destroy_vcpu(vcpu);
12002 	kvm_hv_vcpu_uninit(vcpu);
12003 	kvm_pmu_destroy(vcpu);
12004 	kfree(vcpu->arch.mce_banks);
12005 	kfree(vcpu->arch.mci_ctl2_banks);
12006 	kvm_free_lapic(vcpu);
12007 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12008 	kvm_mmu_destroy(vcpu);
12009 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12010 	free_page((unsigned long)vcpu->arch.pio_data);
12011 	kvfree(vcpu->arch.cpuid_entries);
12012 	if (!lapic_in_kernel(vcpu))
12013 		static_branch_dec(&kvm_has_noapic_vcpu);
12014 }
12015 
12016 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12017 {
12018 	struct kvm_cpuid_entry2 *cpuid_0x1;
12019 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12020 	unsigned long new_cr0;
12021 
12022 	/*
12023 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12024 	 * to handle side effects.  RESET emulation hits those flows and relies
12025 	 * on emulated/virtualized registers, including those that are loaded
12026 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12027 	 * to detect improper or missing initialization.
12028 	 */
12029 	WARN_ON_ONCE(!init_event &&
12030 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12031 
12032 	/*
12033 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12034 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12035 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12036 	 * bits), i.e. virtualization is disabled.
12037 	 */
12038 	if (is_guest_mode(vcpu))
12039 		kvm_leave_nested(vcpu);
12040 
12041 	kvm_lapic_reset(vcpu, init_event);
12042 
12043 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12044 	vcpu->arch.hflags = 0;
12045 
12046 	vcpu->arch.smi_pending = 0;
12047 	vcpu->arch.smi_count = 0;
12048 	atomic_set(&vcpu->arch.nmi_queued, 0);
12049 	vcpu->arch.nmi_pending = 0;
12050 	vcpu->arch.nmi_injected = false;
12051 	kvm_clear_interrupt_queue(vcpu);
12052 	kvm_clear_exception_queue(vcpu);
12053 
12054 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12055 	kvm_update_dr0123(vcpu);
12056 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12057 	vcpu->arch.dr7 = DR7_FIXED_1;
12058 	kvm_update_dr7(vcpu);
12059 
12060 	vcpu->arch.cr2 = 0;
12061 
12062 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12063 	vcpu->arch.apf.msr_en_val = 0;
12064 	vcpu->arch.apf.msr_int_val = 0;
12065 	vcpu->arch.st.msr_val = 0;
12066 
12067 	kvmclock_reset(vcpu);
12068 
12069 	kvm_clear_async_pf_completion_queue(vcpu);
12070 	kvm_async_pf_hash_reset(vcpu);
12071 	vcpu->arch.apf.halted = false;
12072 
12073 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12074 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12075 
12076 		/*
12077 		 * All paths that lead to INIT are required to load the guest's
12078 		 * FPU state (because most paths are buried in KVM_RUN).
12079 		 */
12080 		if (init_event)
12081 			kvm_put_guest_fpu(vcpu);
12082 
12083 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12084 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12085 
12086 		if (init_event)
12087 			kvm_load_guest_fpu(vcpu);
12088 	}
12089 
12090 	if (!init_event) {
12091 		kvm_pmu_reset(vcpu);
12092 		vcpu->arch.smbase = 0x30000;
12093 
12094 		vcpu->arch.msr_misc_features_enables = 0;
12095 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12096 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12097 
12098 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12099 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12100 	}
12101 
12102 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12103 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12104 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12105 
12106 	/*
12107 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12108 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12109 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12110 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12111 	 * on RESET.  But, go through the motions in case that's ever remedied.
12112 	 */
12113 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12114 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12115 
12116 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12117 
12118 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12119 	kvm_rip_write(vcpu, 0xfff0);
12120 
12121 	vcpu->arch.cr3 = 0;
12122 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12123 
12124 	/*
12125 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12126 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12127 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12128 	 */
12129 	new_cr0 = X86_CR0_ET;
12130 	if (init_event)
12131 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12132 	else
12133 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12134 
12135 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12136 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12137 	static_call(kvm_x86_set_efer)(vcpu, 0);
12138 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12139 
12140 	/*
12141 	 * On the standard CR0/CR4/EFER modification paths, there are several
12142 	 * complex conditions determining whether the MMU has to be reset and/or
12143 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12144 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12145 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12146 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12147 	 */
12148 	if (old_cr0 & X86_CR0_PG) {
12149 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12150 		kvm_mmu_reset_context(vcpu);
12151 	}
12152 
12153 	/*
12154 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12155 	 * APM states the TLBs are untouched by INIT, but it also states that
12156 	 * the TLBs are flushed on "External initialization of the processor."
12157 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12158 	 * benefit in relying on the guest to flush the TLB immediately after
12159 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12160 	 * performance perspective.
12161 	 */
12162 	if (init_event)
12163 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12164 }
12165 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12166 
12167 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12168 {
12169 	struct kvm_segment cs;
12170 
12171 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12172 	cs.selector = vector << 8;
12173 	cs.base = vector << 12;
12174 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12175 	kvm_rip_write(vcpu, 0);
12176 }
12177 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12178 
12179 int kvm_arch_hardware_enable(void)
12180 {
12181 	struct kvm *kvm;
12182 	struct kvm_vcpu *vcpu;
12183 	unsigned long i;
12184 	int ret;
12185 	u64 local_tsc;
12186 	u64 max_tsc = 0;
12187 	bool stable, backwards_tsc = false;
12188 
12189 	kvm_user_return_msr_cpu_online();
12190 
12191 	ret = kvm_x86_check_processor_compatibility();
12192 	if (ret)
12193 		return ret;
12194 
12195 	ret = static_call(kvm_x86_hardware_enable)();
12196 	if (ret != 0)
12197 		return ret;
12198 
12199 	local_tsc = rdtsc();
12200 	stable = !kvm_check_tsc_unstable();
12201 	list_for_each_entry(kvm, &vm_list, vm_list) {
12202 		kvm_for_each_vcpu(i, vcpu, kvm) {
12203 			if (!stable && vcpu->cpu == smp_processor_id())
12204 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12205 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12206 				backwards_tsc = true;
12207 				if (vcpu->arch.last_host_tsc > max_tsc)
12208 					max_tsc = vcpu->arch.last_host_tsc;
12209 			}
12210 		}
12211 	}
12212 
12213 	/*
12214 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12215 	 * platforms that reset TSC during suspend or hibernate actions, but
12216 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12217 	 * detect that condition here, which happens early in CPU bringup,
12218 	 * before any KVM threads can be running.  Unfortunately, we can't
12219 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12220 	 * enough into CPU bringup that we know how much real time has actually
12221 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12222 	 * variables that haven't been updated yet.
12223 	 *
12224 	 * So we simply find the maximum observed TSC above, then record the
12225 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12226 	 * the adjustment will be applied.  Note that we accumulate
12227 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12228 	 * gets a chance to run again.  In the event that no KVM threads get a
12229 	 * chance to run, we will miss the entire elapsed period, as we'll have
12230 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12231 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12232 	 * uniform across all VCPUs (not to mention the scenario is extremely
12233 	 * unlikely). It is possible that a second hibernate recovery happens
12234 	 * much faster than a first, causing the observed TSC here to be
12235 	 * smaller; this would require additional padding adjustment, which is
12236 	 * why we set last_host_tsc to the local tsc observed here.
12237 	 *
12238 	 * N.B. - this code below runs only on platforms with reliable TSC,
12239 	 * as that is the only way backwards_tsc is set above.  Also note
12240 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12241 	 * have the same delta_cyc adjustment applied if backwards_tsc
12242 	 * is detected.  Note further, this adjustment is only done once,
12243 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12244 	 * called multiple times (one for each physical CPU bringup).
12245 	 *
12246 	 * Platforms with unreliable TSCs don't have to deal with this, they
12247 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12248 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12249 	 * guarantee that they stay in perfect synchronization.
12250 	 */
12251 	if (backwards_tsc) {
12252 		u64 delta_cyc = max_tsc - local_tsc;
12253 		list_for_each_entry(kvm, &vm_list, vm_list) {
12254 			kvm->arch.backwards_tsc_observed = true;
12255 			kvm_for_each_vcpu(i, vcpu, kvm) {
12256 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12257 				vcpu->arch.last_host_tsc = local_tsc;
12258 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12259 			}
12260 
12261 			/*
12262 			 * We have to disable TSC offset matching.. if you were
12263 			 * booting a VM while issuing an S4 host suspend....
12264 			 * you may have some problem.  Solving this issue is
12265 			 * left as an exercise to the reader.
12266 			 */
12267 			kvm->arch.last_tsc_nsec = 0;
12268 			kvm->arch.last_tsc_write = 0;
12269 		}
12270 
12271 	}
12272 	return 0;
12273 }
12274 
12275 void kvm_arch_hardware_disable(void)
12276 {
12277 	static_call(kvm_x86_hardware_disable)();
12278 	drop_user_return_notifiers();
12279 }
12280 
12281 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12282 {
12283 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12284 }
12285 
12286 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12287 {
12288 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12289 }
12290 
12291 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12292 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12293 
12294 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12295 {
12296 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12297 
12298 	vcpu->arch.l1tf_flush_l1d = true;
12299 	if (pmu->version && unlikely(pmu->event_count)) {
12300 		pmu->need_cleanup = true;
12301 		kvm_make_request(KVM_REQ_PMU, vcpu);
12302 	}
12303 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12304 }
12305 
12306 void kvm_arch_free_vm(struct kvm *kvm)
12307 {
12308 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12309 	__kvm_arch_free_vm(kvm);
12310 }
12311 
12312 
12313 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12314 {
12315 	int ret;
12316 	unsigned long flags;
12317 
12318 	if (type)
12319 		return -EINVAL;
12320 
12321 	ret = kvm_page_track_init(kvm);
12322 	if (ret)
12323 		goto out;
12324 
12325 	kvm_mmu_init_vm(kvm);
12326 
12327 	ret = static_call(kvm_x86_vm_init)(kvm);
12328 	if (ret)
12329 		goto out_uninit_mmu;
12330 
12331 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12332 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12333 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12334 
12335 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12336 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12337 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12338 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12339 		&kvm->arch.irq_sources_bitmap);
12340 
12341 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12342 	mutex_init(&kvm->arch.apic_map_lock);
12343 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12344 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12345 
12346 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12347 	pvclock_update_vm_gtod_copy(kvm);
12348 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12349 
12350 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12351 	kvm->arch.guest_can_read_msr_platform_info = true;
12352 	kvm->arch.enable_pmu = enable_pmu;
12353 
12354 #if IS_ENABLED(CONFIG_HYPERV)
12355 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12356 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12357 #endif
12358 
12359 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12360 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12361 
12362 	kvm_apicv_init(kvm);
12363 	kvm_hv_init_vm(kvm);
12364 	kvm_xen_init_vm(kvm);
12365 
12366 	return 0;
12367 
12368 out_uninit_mmu:
12369 	kvm_mmu_uninit_vm(kvm);
12370 	kvm_page_track_cleanup(kvm);
12371 out:
12372 	return ret;
12373 }
12374 
12375 int kvm_arch_post_init_vm(struct kvm *kvm)
12376 {
12377 	return kvm_mmu_post_init_vm(kvm);
12378 }
12379 
12380 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12381 {
12382 	vcpu_load(vcpu);
12383 	kvm_mmu_unload(vcpu);
12384 	vcpu_put(vcpu);
12385 }
12386 
12387 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12388 {
12389 	unsigned long i;
12390 	struct kvm_vcpu *vcpu;
12391 
12392 	kvm_for_each_vcpu(i, vcpu, kvm) {
12393 		kvm_clear_async_pf_completion_queue(vcpu);
12394 		kvm_unload_vcpu_mmu(vcpu);
12395 	}
12396 }
12397 
12398 void kvm_arch_sync_events(struct kvm *kvm)
12399 {
12400 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12401 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12402 	kvm_free_pit(kvm);
12403 }
12404 
12405 /**
12406  * __x86_set_memory_region: Setup KVM internal memory slot
12407  *
12408  * @kvm: the kvm pointer to the VM.
12409  * @id: the slot ID to setup.
12410  * @gpa: the GPA to install the slot (unused when @size == 0).
12411  * @size: the size of the slot. Set to zero to uninstall a slot.
12412  *
12413  * This function helps to setup a KVM internal memory slot.  Specify
12414  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12415  * slot.  The return code can be one of the following:
12416  *
12417  *   HVA:           on success (uninstall will return a bogus HVA)
12418  *   -errno:        on error
12419  *
12420  * The caller should always use IS_ERR() to check the return value
12421  * before use.  Note, the KVM internal memory slots are guaranteed to
12422  * remain valid and unchanged until the VM is destroyed, i.e., the
12423  * GPA->HVA translation will not change.  However, the HVA is a user
12424  * address, i.e. its accessibility is not guaranteed, and must be
12425  * accessed via __copy_{to,from}_user().
12426  */
12427 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12428 				      u32 size)
12429 {
12430 	int i, r;
12431 	unsigned long hva, old_npages;
12432 	struct kvm_memslots *slots = kvm_memslots(kvm);
12433 	struct kvm_memory_slot *slot;
12434 
12435 	/* Called with kvm->slots_lock held.  */
12436 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12437 		return ERR_PTR_USR(-EINVAL);
12438 
12439 	slot = id_to_memslot(slots, id);
12440 	if (size) {
12441 		if (slot && slot->npages)
12442 			return ERR_PTR_USR(-EEXIST);
12443 
12444 		/*
12445 		 * MAP_SHARED to prevent internal slot pages from being moved
12446 		 * by fork()/COW.
12447 		 */
12448 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12449 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12450 		if (IS_ERR_VALUE(hva))
12451 			return (void __user *)hva;
12452 	} else {
12453 		if (!slot || !slot->npages)
12454 			return NULL;
12455 
12456 		old_npages = slot->npages;
12457 		hva = slot->userspace_addr;
12458 	}
12459 
12460 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12461 		struct kvm_userspace_memory_region m;
12462 
12463 		m.slot = id | (i << 16);
12464 		m.flags = 0;
12465 		m.guest_phys_addr = gpa;
12466 		m.userspace_addr = hva;
12467 		m.memory_size = size;
12468 		r = __kvm_set_memory_region(kvm, &m);
12469 		if (r < 0)
12470 			return ERR_PTR_USR(r);
12471 	}
12472 
12473 	if (!size)
12474 		vm_munmap(hva, old_npages * PAGE_SIZE);
12475 
12476 	return (void __user *)hva;
12477 }
12478 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12479 
12480 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12481 {
12482 	kvm_mmu_pre_destroy_vm(kvm);
12483 }
12484 
12485 void kvm_arch_destroy_vm(struct kvm *kvm)
12486 {
12487 	if (current->mm == kvm->mm) {
12488 		/*
12489 		 * Free memory regions allocated on behalf of userspace,
12490 		 * unless the memory map has changed due to process exit
12491 		 * or fd copying.
12492 		 */
12493 		mutex_lock(&kvm->slots_lock);
12494 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12495 					0, 0);
12496 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12497 					0, 0);
12498 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12499 		mutex_unlock(&kvm->slots_lock);
12500 	}
12501 	kvm_unload_vcpu_mmus(kvm);
12502 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12503 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12504 	kvm_pic_destroy(kvm);
12505 	kvm_ioapic_destroy(kvm);
12506 	kvm_destroy_vcpus(kvm);
12507 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12508 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12509 	kvm_mmu_uninit_vm(kvm);
12510 	kvm_page_track_cleanup(kvm);
12511 	kvm_xen_destroy_vm(kvm);
12512 	kvm_hv_destroy_vm(kvm);
12513 }
12514 
12515 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12516 {
12517 	int i;
12518 
12519 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12520 		kvfree(slot->arch.rmap[i]);
12521 		slot->arch.rmap[i] = NULL;
12522 	}
12523 }
12524 
12525 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12526 {
12527 	int i;
12528 
12529 	memslot_rmap_free(slot);
12530 
12531 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12532 		kvfree(slot->arch.lpage_info[i - 1]);
12533 		slot->arch.lpage_info[i - 1] = NULL;
12534 	}
12535 
12536 	kvm_page_track_free_memslot(slot);
12537 }
12538 
12539 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12540 {
12541 	const int sz = sizeof(*slot->arch.rmap[0]);
12542 	int i;
12543 
12544 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12545 		int level = i + 1;
12546 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12547 
12548 		if (slot->arch.rmap[i])
12549 			continue;
12550 
12551 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12552 		if (!slot->arch.rmap[i]) {
12553 			memslot_rmap_free(slot);
12554 			return -ENOMEM;
12555 		}
12556 	}
12557 
12558 	return 0;
12559 }
12560 
12561 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12562 				      struct kvm_memory_slot *slot)
12563 {
12564 	unsigned long npages = slot->npages;
12565 	int i, r;
12566 
12567 	/*
12568 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12569 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12570 	 * the new memslot is successful.
12571 	 */
12572 	memset(&slot->arch, 0, sizeof(slot->arch));
12573 
12574 	if (kvm_memslots_have_rmaps(kvm)) {
12575 		r = memslot_rmap_alloc(slot, npages);
12576 		if (r)
12577 			return r;
12578 	}
12579 
12580 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12581 		struct kvm_lpage_info *linfo;
12582 		unsigned long ugfn;
12583 		int lpages;
12584 		int level = i + 1;
12585 
12586 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12587 
12588 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12589 		if (!linfo)
12590 			goto out_free;
12591 
12592 		slot->arch.lpage_info[i - 1] = linfo;
12593 
12594 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12595 			linfo[0].disallow_lpage = 1;
12596 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12597 			linfo[lpages - 1].disallow_lpage = 1;
12598 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12599 		/*
12600 		 * If the gfn and userspace address are not aligned wrt each
12601 		 * other, disable large page support for this slot.
12602 		 */
12603 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12604 			unsigned long j;
12605 
12606 			for (j = 0; j < lpages; ++j)
12607 				linfo[j].disallow_lpage = 1;
12608 		}
12609 	}
12610 
12611 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12612 		goto out_free;
12613 
12614 	return 0;
12615 
12616 out_free:
12617 	memslot_rmap_free(slot);
12618 
12619 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12620 		kvfree(slot->arch.lpage_info[i - 1]);
12621 		slot->arch.lpage_info[i - 1] = NULL;
12622 	}
12623 	return -ENOMEM;
12624 }
12625 
12626 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12627 {
12628 	struct kvm_vcpu *vcpu;
12629 	unsigned long i;
12630 
12631 	/*
12632 	 * memslots->generation has been incremented.
12633 	 * mmio generation may have reached its maximum value.
12634 	 */
12635 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12636 
12637 	/* Force re-initialization of steal_time cache */
12638 	kvm_for_each_vcpu(i, vcpu, kvm)
12639 		kvm_vcpu_kick(vcpu);
12640 }
12641 
12642 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12643 				   const struct kvm_memory_slot *old,
12644 				   struct kvm_memory_slot *new,
12645 				   enum kvm_mr_change change)
12646 {
12647 	/*
12648 	 * KVM doesn't support moving memslots when there are external page
12649 	 * trackers attached to the VM, i.e. if KVMGT is in use.
12650 	 */
12651 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12652 		return -EINVAL;
12653 
12654 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12655 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12656 			return -EINVAL;
12657 
12658 		return kvm_alloc_memslot_metadata(kvm, new);
12659 	}
12660 
12661 	if (change == KVM_MR_FLAGS_ONLY)
12662 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12663 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12664 		return -EIO;
12665 
12666 	return 0;
12667 }
12668 
12669 
12670 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12671 {
12672 	int nr_slots;
12673 
12674 	if (!kvm_x86_ops.cpu_dirty_log_size)
12675 		return;
12676 
12677 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12678 	if ((enable && nr_slots == 1) || !nr_slots)
12679 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12680 }
12681 
12682 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12683 				     struct kvm_memory_slot *old,
12684 				     const struct kvm_memory_slot *new,
12685 				     enum kvm_mr_change change)
12686 {
12687 	u32 old_flags = old ? old->flags : 0;
12688 	u32 new_flags = new ? new->flags : 0;
12689 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12690 
12691 	/*
12692 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12693 	 * applies to all operations.
12694 	 */
12695 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12696 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12697 
12698 	/*
12699 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12700 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12701 	 *
12702 	 * For a memslot with dirty logging disabled:
12703 	 * CREATE:      No dirty mappings will already exist.
12704 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12705 	 *		kvm_arch_flush_shadow_memslot()
12706 	 *
12707 	 * For a memslot with dirty logging enabled:
12708 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12709 	 *		and no dirty bits to clear.
12710 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12711 	 *		kvm_arch_flush_shadow_memslot().
12712 	 */
12713 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12714 		return;
12715 
12716 	/*
12717 	 * READONLY and non-flags changes were filtered out above, and the only
12718 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12719 	 * logging isn't being toggled on or off.
12720 	 */
12721 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12722 		return;
12723 
12724 	if (!log_dirty_pages) {
12725 		/*
12726 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12727 		 * large sptes have to be split.  If live migration succeeds,
12728 		 * the guest in the source machine will be destroyed and large
12729 		 * sptes will be created in the destination.  However, if the
12730 		 * guest continues to run in the source machine (for example if
12731 		 * live migration fails), small sptes will remain around and
12732 		 * cause bad performance.
12733 		 *
12734 		 * Scan sptes if dirty logging has been stopped, dropping those
12735 		 * which can be collapsed into a single large-page spte.  Later
12736 		 * page faults will create the large-page sptes.
12737 		 */
12738 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12739 	} else {
12740 		/*
12741 		 * Initially-all-set does not require write protecting any page,
12742 		 * because they're all assumed to be dirty.
12743 		 */
12744 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12745 			return;
12746 
12747 		if (READ_ONCE(eager_page_split))
12748 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12749 
12750 		if (kvm_x86_ops.cpu_dirty_log_size) {
12751 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12752 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12753 		} else {
12754 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12755 		}
12756 
12757 		/*
12758 		 * Unconditionally flush the TLBs after enabling dirty logging.
12759 		 * A flush is almost always going to be necessary (see below),
12760 		 * and unconditionally flushing allows the helpers to omit
12761 		 * the subtly complex checks when removing write access.
12762 		 *
12763 		 * Do the flush outside of mmu_lock to reduce the amount of
12764 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12765 		 * safe as KVM only needs to guarantee the slot is fully
12766 		 * write-protected before returning to userspace, i.e. before
12767 		 * userspace can consume the dirty status.
12768 		 *
12769 		 * Flushing outside of mmu_lock requires KVM to be careful when
12770 		 * making decisions based on writable status of an SPTE, e.g. a
12771 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12772 		 *
12773 		 * Specifically, KVM also write-protects guest page tables to
12774 		 * monitor changes when using shadow paging, and must guarantee
12775 		 * no CPUs can write to those page before mmu_lock is dropped.
12776 		 * Because CPUs may have stale TLB entries at this point, a
12777 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12778 		 *
12779 		 * KVM also allows making SPTES writable outside of mmu_lock,
12780 		 * e.g. to allow dirty logging without taking mmu_lock.
12781 		 *
12782 		 * To handle these scenarios, KVM uses a separate software-only
12783 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12784 		 * a guest page table being write-protected (KVM clears the
12785 		 * MMU-writable flag when write-protecting for shadow paging).
12786 		 *
12787 		 * The use of MMU-writable is also the primary motivation for
12788 		 * the unconditional flush.  Because KVM must guarantee that a
12789 		 * CPU doesn't contain stale, writable TLB entries for a
12790 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12791 		 * MMU-writable SPTE regardless of whether the actual hardware
12792 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12793 		 * to flush, while unconditionally flushing allows the "remove
12794 		 * write access" helpers to ignore MMU-writable entirely.
12795 		 *
12796 		 * See is_writable_pte() for more details (the case involving
12797 		 * access-tracked SPTEs is particularly relevant).
12798 		 */
12799 		kvm_flush_remote_tlbs_memslot(kvm, new);
12800 	}
12801 }
12802 
12803 void kvm_arch_commit_memory_region(struct kvm *kvm,
12804 				struct kvm_memory_slot *old,
12805 				const struct kvm_memory_slot *new,
12806 				enum kvm_mr_change change)
12807 {
12808 	if (change == KVM_MR_DELETE)
12809 		kvm_page_track_delete_slot(kvm, old);
12810 
12811 	if (!kvm->arch.n_requested_mmu_pages &&
12812 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12813 		unsigned long nr_mmu_pages;
12814 
12815 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12816 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12817 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12818 	}
12819 
12820 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12821 
12822 	/* Free the arrays associated with the old memslot. */
12823 	if (change == KVM_MR_MOVE)
12824 		kvm_arch_free_memslot(kvm, old);
12825 }
12826 
12827 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12828 {
12829 	return (is_guest_mode(vcpu) &&
12830 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12831 }
12832 
12833 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12834 {
12835 	if (!list_empty_careful(&vcpu->async_pf.done))
12836 		return true;
12837 
12838 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12839 	    kvm_apic_init_sipi_allowed(vcpu))
12840 		return true;
12841 
12842 	if (vcpu->arch.pv.pv_unhalted)
12843 		return true;
12844 
12845 	if (kvm_is_exception_pending(vcpu))
12846 		return true;
12847 
12848 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12849 	    (vcpu->arch.nmi_pending &&
12850 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12851 		return true;
12852 
12853 #ifdef CONFIG_KVM_SMM
12854 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12855 	    (vcpu->arch.smi_pending &&
12856 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12857 		return true;
12858 #endif
12859 
12860 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
12861 		return true;
12862 
12863 	if (kvm_arch_interrupt_allowed(vcpu) &&
12864 	    (kvm_cpu_has_interrupt(vcpu) ||
12865 	    kvm_guest_apic_has_interrupt(vcpu)))
12866 		return true;
12867 
12868 	if (kvm_hv_has_stimer_pending(vcpu))
12869 		return true;
12870 
12871 	if (is_guest_mode(vcpu) &&
12872 	    kvm_x86_ops.nested_ops->has_events &&
12873 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12874 		return true;
12875 
12876 	if (kvm_xen_has_pending_events(vcpu))
12877 		return true;
12878 
12879 	return false;
12880 }
12881 
12882 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12883 {
12884 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12885 }
12886 
12887 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12888 {
12889 	if (kvm_vcpu_apicv_active(vcpu) &&
12890 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12891 		return true;
12892 
12893 	return false;
12894 }
12895 
12896 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12897 {
12898 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12899 		return true;
12900 
12901 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12902 #ifdef CONFIG_KVM_SMM
12903 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12904 #endif
12905 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12906 		return true;
12907 
12908 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12909 }
12910 
12911 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12912 {
12913 	if (vcpu->arch.guest_state_protected)
12914 		return true;
12915 
12916 	return vcpu->arch.preempted_in_kernel;
12917 }
12918 
12919 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12920 {
12921 	return kvm_rip_read(vcpu);
12922 }
12923 
12924 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12925 {
12926 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12927 }
12928 
12929 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12930 {
12931 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12932 }
12933 
12934 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12935 {
12936 	/* Can't read the RIP when guest state is protected, just return 0 */
12937 	if (vcpu->arch.guest_state_protected)
12938 		return 0;
12939 
12940 	if (is_64_bit_mode(vcpu))
12941 		return kvm_rip_read(vcpu);
12942 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12943 		     kvm_rip_read(vcpu));
12944 }
12945 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12946 
12947 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12948 {
12949 	return kvm_get_linear_rip(vcpu) == linear_rip;
12950 }
12951 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12952 
12953 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12954 {
12955 	unsigned long rflags;
12956 
12957 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12958 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12959 		rflags &= ~X86_EFLAGS_TF;
12960 	return rflags;
12961 }
12962 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12963 
12964 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12965 {
12966 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12967 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12968 		rflags |= X86_EFLAGS_TF;
12969 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12970 }
12971 
12972 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12973 {
12974 	__kvm_set_rflags(vcpu, rflags);
12975 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12976 }
12977 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12978 
12979 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12980 {
12981 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12982 
12983 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12984 }
12985 
12986 static inline u32 kvm_async_pf_next_probe(u32 key)
12987 {
12988 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12989 }
12990 
12991 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12992 {
12993 	u32 key = kvm_async_pf_hash_fn(gfn);
12994 
12995 	while (vcpu->arch.apf.gfns[key] != ~0)
12996 		key = kvm_async_pf_next_probe(key);
12997 
12998 	vcpu->arch.apf.gfns[key] = gfn;
12999 }
13000 
13001 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13002 {
13003 	int i;
13004 	u32 key = kvm_async_pf_hash_fn(gfn);
13005 
13006 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13007 		     (vcpu->arch.apf.gfns[key] != gfn &&
13008 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13009 		key = kvm_async_pf_next_probe(key);
13010 
13011 	return key;
13012 }
13013 
13014 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13015 {
13016 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13017 }
13018 
13019 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13020 {
13021 	u32 i, j, k;
13022 
13023 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13024 
13025 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13026 		return;
13027 
13028 	while (true) {
13029 		vcpu->arch.apf.gfns[i] = ~0;
13030 		do {
13031 			j = kvm_async_pf_next_probe(j);
13032 			if (vcpu->arch.apf.gfns[j] == ~0)
13033 				return;
13034 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13035 			/*
13036 			 * k lies cyclically in ]i,j]
13037 			 * |    i.k.j |
13038 			 * |....j i.k.| or  |.k..j i...|
13039 			 */
13040 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13041 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13042 		i = j;
13043 	}
13044 }
13045 
13046 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13047 {
13048 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13049 
13050 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13051 				      sizeof(reason));
13052 }
13053 
13054 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13055 {
13056 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13057 
13058 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13059 					     &token, offset, sizeof(token));
13060 }
13061 
13062 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13063 {
13064 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13065 	u32 val;
13066 
13067 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13068 					 &val, offset, sizeof(val)))
13069 		return false;
13070 
13071 	return !val;
13072 }
13073 
13074 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13075 {
13076 
13077 	if (!kvm_pv_async_pf_enabled(vcpu))
13078 		return false;
13079 
13080 	if (vcpu->arch.apf.send_user_only &&
13081 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13082 		return false;
13083 
13084 	if (is_guest_mode(vcpu)) {
13085 		/*
13086 		 * L1 needs to opt into the special #PF vmexits that are
13087 		 * used to deliver async page faults.
13088 		 */
13089 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13090 	} else {
13091 		/*
13092 		 * Play it safe in case the guest temporarily disables paging.
13093 		 * The real mode IDT in particular is unlikely to have a #PF
13094 		 * exception setup.
13095 		 */
13096 		return is_paging(vcpu);
13097 	}
13098 }
13099 
13100 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13101 {
13102 	if (unlikely(!lapic_in_kernel(vcpu) ||
13103 		     kvm_event_needs_reinjection(vcpu) ||
13104 		     kvm_is_exception_pending(vcpu)))
13105 		return false;
13106 
13107 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13108 		return false;
13109 
13110 	/*
13111 	 * If interrupts are off we cannot even use an artificial
13112 	 * halt state.
13113 	 */
13114 	return kvm_arch_interrupt_allowed(vcpu);
13115 }
13116 
13117 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13118 				     struct kvm_async_pf *work)
13119 {
13120 	struct x86_exception fault;
13121 
13122 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13123 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13124 
13125 	if (kvm_can_deliver_async_pf(vcpu) &&
13126 	    !apf_put_user_notpresent(vcpu)) {
13127 		fault.vector = PF_VECTOR;
13128 		fault.error_code_valid = true;
13129 		fault.error_code = 0;
13130 		fault.nested_page_fault = false;
13131 		fault.address = work->arch.token;
13132 		fault.async_page_fault = true;
13133 		kvm_inject_page_fault(vcpu, &fault);
13134 		return true;
13135 	} else {
13136 		/*
13137 		 * It is not possible to deliver a paravirtualized asynchronous
13138 		 * page fault, but putting the guest in an artificial halt state
13139 		 * can be beneficial nevertheless: if an interrupt arrives, we
13140 		 * can deliver it timely and perhaps the guest will schedule
13141 		 * another process.  When the instruction that triggered a page
13142 		 * fault is retried, hopefully the page will be ready in the host.
13143 		 */
13144 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13145 		return false;
13146 	}
13147 }
13148 
13149 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13150 				 struct kvm_async_pf *work)
13151 {
13152 	struct kvm_lapic_irq irq = {
13153 		.delivery_mode = APIC_DM_FIXED,
13154 		.vector = vcpu->arch.apf.vec
13155 	};
13156 
13157 	if (work->wakeup_all)
13158 		work->arch.token = ~0; /* broadcast wakeup */
13159 	else
13160 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13161 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13162 
13163 	if ((work->wakeup_all || work->notpresent_injected) &&
13164 	    kvm_pv_async_pf_enabled(vcpu) &&
13165 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13166 		vcpu->arch.apf.pageready_pending = true;
13167 		kvm_apic_set_irq(vcpu, &irq, NULL);
13168 	}
13169 
13170 	vcpu->arch.apf.halted = false;
13171 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13172 }
13173 
13174 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13175 {
13176 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13177 	if (!vcpu->arch.apf.pageready_pending)
13178 		kvm_vcpu_kick(vcpu);
13179 }
13180 
13181 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13182 {
13183 	if (!kvm_pv_async_pf_enabled(vcpu))
13184 		return true;
13185 	else
13186 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13187 }
13188 
13189 void kvm_arch_start_assignment(struct kvm *kvm)
13190 {
13191 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13192 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13193 }
13194 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13195 
13196 void kvm_arch_end_assignment(struct kvm *kvm)
13197 {
13198 	atomic_dec(&kvm->arch.assigned_device_count);
13199 }
13200 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13201 
13202 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13203 {
13204 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13205 }
13206 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13207 
13208 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13209 {
13210 	atomic_inc(&kvm->arch.noncoherent_dma_count);
13211 }
13212 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13213 
13214 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13215 {
13216 	atomic_dec(&kvm->arch.noncoherent_dma_count);
13217 }
13218 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13219 
13220 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13221 {
13222 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13223 }
13224 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13225 
13226 bool kvm_arch_has_irq_bypass(void)
13227 {
13228 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13229 }
13230 
13231 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13232 				      struct irq_bypass_producer *prod)
13233 {
13234 	struct kvm_kernel_irqfd *irqfd =
13235 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13236 	int ret;
13237 
13238 	irqfd->producer = prod;
13239 	kvm_arch_start_assignment(irqfd->kvm);
13240 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13241 					 prod->irq, irqfd->gsi, 1);
13242 
13243 	if (ret)
13244 		kvm_arch_end_assignment(irqfd->kvm);
13245 
13246 	return ret;
13247 }
13248 
13249 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13250 				      struct irq_bypass_producer *prod)
13251 {
13252 	int ret;
13253 	struct kvm_kernel_irqfd *irqfd =
13254 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13255 
13256 	WARN_ON(irqfd->producer != prod);
13257 	irqfd->producer = NULL;
13258 
13259 	/*
13260 	 * When producer of consumer is unregistered, we change back to
13261 	 * remapped mode, so we can re-use the current implementation
13262 	 * when the irq is masked/disabled or the consumer side (KVM
13263 	 * int this case doesn't want to receive the interrupts.
13264 	*/
13265 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13266 	if (ret)
13267 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13268 		       " fails: %d\n", irqfd->consumer.token, ret);
13269 
13270 	kvm_arch_end_assignment(irqfd->kvm);
13271 }
13272 
13273 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13274 				   uint32_t guest_irq, bool set)
13275 {
13276 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13277 }
13278 
13279 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13280 				  struct kvm_kernel_irq_routing_entry *new)
13281 {
13282 	if (new->type != KVM_IRQ_ROUTING_MSI)
13283 		return true;
13284 
13285 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13286 }
13287 
13288 bool kvm_vector_hashing_enabled(void)
13289 {
13290 	return vector_hashing;
13291 }
13292 
13293 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13294 {
13295 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13296 }
13297 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13298 
13299 
13300 int kvm_spec_ctrl_test_value(u64 value)
13301 {
13302 	/*
13303 	 * test that setting IA32_SPEC_CTRL to given value
13304 	 * is allowed by the host processor
13305 	 */
13306 
13307 	u64 saved_value;
13308 	unsigned long flags;
13309 	int ret = 0;
13310 
13311 	local_irq_save(flags);
13312 
13313 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13314 		ret = 1;
13315 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13316 		ret = 1;
13317 	else
13318 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13319 
13320 	local_irq_restore(flags);
13321 
13322 	return ret;
13323 }
13324 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13325 
13326 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13327 {
13328 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13329 	struct x86_exception fault;
13330 	u64 access = error_code &
13331 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13332 
13333 	if (!(error_code & PFERR_PRESENT_MASK) ||
13334 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13335 		/*
13336 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13337 		 * tables probably do not match the TLB.  Just proceed
13338 		 * with the error code that the processor gave.
13339 		 */
13340 		fault.vector = PF_VECTOR;
13341 		fault.error_code_valid = true;
13342 		fault.error_code = error_code;
13343 		fault.nested_page_fault = false;
13344 		fault.address = gva;
13345 		fault.async_page_fault = false;
13346 	}
13347 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13348 }
13349 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13350 
13351 /*
13352  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13353  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13354  * indicates whether exit to userspace is needed.
13355  */
13356 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13357 			      struct x86_exception *e)
13358 {
13359 	if (r == X86EMUL_PROPAGATE_FAULT) {
13360 		if (KVM_BUG_ON(!e, vcpu->kvm))
13361 			return -EIO;
13362 
13363 		kvm_inject_emulated_page_fault(vcpu, e);
13364 		return 1;
13365 	}
13366 
13367 	/*
13368 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13369 	 * while handling a VMX instruction KVM could've handled the request
13370 	 * correctly by exiting to userspace and performing I/O but there
13371 	 * doesn't seem to be a real use-case behind such requests, just return
13372 	 * KVM_EXIT_INTERNAL_ERROR for now.
13373 	 */
13374 	kvm_prepare_emulation_failure_exit(vcpu);
13375 
13376 	return 0;
13377 }
13378 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13379 
13380 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13381 {
13382 	bool pcid_enabled;
13383 	struct x86_exception e;
13384 	struct {
13385 		u64 pcid;
13386 		u64 gla;
13387 	} operand;
13388 	int r;
13389 
13390 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13391 	if (r != X86EMUL_CONTINUE)
13392 		return kvm_handle_memory_failure(vcpu, r, &e);
13393 
13394 	if (operand.pcid >> 12 != 0) {
13395 		kvm_inject_gp(vcpu, 0);
13396 		return 1;
13397 	}
13398 
13399 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13400 
13401 	switch (type) {
13402 	case INVPCID_TYPE_INDIV_ADDR:
13403 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13404 		    is_noncanonical_address(operand.gla, vcpu)) {
13405 			kvm_inject_gp(vcpu, 0);
13406 			return 1;
13407 		}
13408 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13409 		return kvm_skip_emulated_instruction(vcpu);
13410 
13411 	case INVPCID_TYPE_SINGLE_CTXT:
13412 		if (!pcid_enabled && (operand.pcid != 0)) {
13413 			kvm_inject_gp(vcpu, 0);
13414 			return 1;
13415 		}
13416 
13417 		kvm_invalidate_pcid(vcpu, operand.pcid);
13418 		return kvm_skip_emulated_instruction(vcpu);
13419 
13420 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13421 		/*
13422 		 * Currently, KVM doesn't mark global entries in the shadow
13423 		 * page tables, so a non-global flush just degenerates to a
13424 		 * global flush. If needed, we could optimize this later by
13425 		 * keeping track of global entries in shadow page tables.
13426 		 */
13427 
13428 		fallthrough;
13429 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13430 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13431 		return kvm_skip_emulated_instruction(vcpu);
13432 
13433 	default:
13434 		kvm_inject_gp(vcpu, 0);
13435 		return 1;
13436 	}
13437 }
13438 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13439 
13440 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13441 {
13442 	struct kvm_run *run = vcpu->run;
13443 	struct kvm_mmio_fragment *frag;
13444 	unsigned int len;
13445 
13446 	BUG_ON(!vcpu->mmio_needed);
13447 
13448 	/* Complete previous fragment */
13449 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13450 	len = min(8u, frag->len);
13451 	if (!vcpu->mmio_is_write)
13452 		memcpy(frag->data, run->mmio.data, len);
13453 
13454 	if (frag->len <= 8) {
13455 		/* Switch to the next fragment. */
13456 		frag++;
13457 		vcpu->mmio_cur_fragment++;
13458 	} else {
13459 		/* Go forward to the next mmio piece. */
13460 		frag->data += len;
13461 		frag->gpa += len;
13462 		frag->len -= len;
13463 	}
13464 
13465 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13466 		vcpu->mmio_needed = 0;
13467 
13468 		// VMG change, at this point, we're always done
13469 		// RIP has already been advanced
13470 		return 1;
13471 	}
13472 
13473 	// More MMIO is needed
13474 	run->mmio.phys_addr = frag->gpa;
13475 	run->mmio.len = min(8u, frag->len);
13476 	run->mmio.is_write = vcpu->mmio_is_write;
13477 	if (run->mmio.is_write)
13478 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13479 	run->exit_reason = KVM_EXIT_MMIO;
13480 
13481 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13482 
13483 	return 0;
13484 }
13485 
13486 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13487 			  void *data)
13488 {
13489 	int handled;
13490 	struct kvm_mmio_fragment *frag;
13491 
13492 	if (!data)
13493 		return -EINVAL;
13494 
13495 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13496 	if (handled == bytes)
13497 		return 1;
13498 
13499 	bytes -= handled;
13500 	gpa += handled;
13501 	data += handled;
13502 
13503 	/*TODO: Check if need to increment number of frags */
13504 	frag = vcpu->mmio_fragments;
13505 	vcpu->mmio_nr_fragments = 1;
13506 	frag->len = bytes;
13507 	frag->gpa = gpa;
13508 	frag->data = data;
13509 
13510 	vcpu->mmio_needed = 1;
13511 	vcpu->mmio_cur_fragment = 0;
13512 
13513 	vcpu->run->mmio.phys_addr = gpa;
13514 	vcpu->run->mmio.len = min(8u, frag->len);
13515 	vcpu->run->mmio.is_write = 1;
13516 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13517 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13518 
13519 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13520 
13521 	return 0;
13522 }
13523 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13524 
13525 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13526 			 void *data)
13527 {
13528 	int handled;
13529 	struct kvm_mmio_fragment *frag;
13530 
13531 	if (!data)
13532 		return -EINVAL;
13533 
13534 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13535 	if (handled == bytes)
13536 		return 1;
13537 
13538 	bytes -= handled;
13539 	gpa += handled;
13540 	data += handled;
13541 
13542 	/*TODO: Check if need to increment number of frags */
13543 	frag = vcpu->mmio_fragments;
13544 	vcpu->mmio_nr_fragments = 1;
13545 	frag->len = bytes;
13546 	frag->gpa = gpa;
13547 	frag->data = data;
13548 
13549 	vcpu->mmio_needed = 1;
13550 	vcpu->mmio_cur_fragment = 0;
13551 
13552 	vcpu->run->mmio.phys_addr = gpa;
13553 	vcpu->run->mmio.len = min(8u, frag->len);
13554 	vcpu->run->mmio.is_write = 0;
13555 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13556 
13557 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13558 
13559 	return 0;
13560 }
13561 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13562 
13563 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13564 {
13565 	vcpu->arch.sev_pio_count -= count;
13566 	vcpu->arch.sev_pio_data += count * size;
13567 }
13568 
13569 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13570 			   unsigned int port);
13571 
13572 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13573 {
13574 	int size = vcpu->arch.pio.size;
13575 	int port = vcpu->arch.pio.port;
13576 
13577 	vcpu->arch.pio.count = 0;
13578 	if (vcpu->arch.sev_pio_count)
13579 		return kvm_sev_es_outs(vcpu, size, port);
13580 	return 1;
13581 }
13582 
13583 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13584 			   unsigned int port)
13585 {
13586 	for (;;) {
13587 		unsigned int count =
13588 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13589 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13590 
13591 		/* memcpy done already by emulator_pio_out.  */
13592 		advance_sev_es_emulated_pio(vcpu, count, size);
13593 		if (!ret)
13594 			break;
13595 
13596 		/* Emulation done by the kernel.  */
13597 		if (!vcpu->arch.sev_pio_count)
13598 			return 1;
13599 	}
13600 
13601 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13602 	return 0;
13603 }
13604 
13605 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13606 			  unsigned int port);
13607 
13608 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13609 {
13610 	unsigned count = vcpu->arch.pio.count;
13611 	int size = vcpu->arch.pio.size;
13612 	int port = vcpu->arch.pio.port;
13613 
13614 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13615 	advance_sev_es_emulated_pio(vcpu, count, size);
13616 	if (vcpu->arch.sev_pio_count)
13617 		return kvm_sev_es_ins(vcpu, size, port);
13618 	return 1;
13619 }
13620 
13621 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13622 			  unsigned int port)
13623 {
13624 	for (;;) {
13625 		unsigned int count =
13626 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13627 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13628 			break;
13629 
13630 		/* Emulation done by the kernel.  */
13631 		advance_sev_es_emulated_pio(vcpu, count, size);
13632 		if (!vcpu->arch.sev_pio_count)
13633 			return 1;
13634 	}
13635 
13636 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13637 	return 0;
13638 }
13639 
13640 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13641 			 unsigned int port, void *data,  unsigned int count,
13642 			 int in)
13643 {
13644 	vcpu->arch.sev_pio_data = data;
13645 	vcpu->arch.sev_pio_count = count;
13646 	return in ? kvm_sev_es_ins(vcpu, size, port)
13647 		  : kvm_sev_es_outs(vcpu, size, port);
13648 }
13649 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13650 
13651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13654 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13658 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13659 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13660 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13661 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13662 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13663 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13664 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13665 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13667 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13668 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13669 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13670 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13671 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13674 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13677 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13678 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13679 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13680 
13681 static int __init kvm_x86_init(void)
13682 {
13683 	kvm_mmu_x86_module_init();
13684 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13685 	return 0;
13686 }
13687 module_init(kvm_x86_init);
13688 
13689 static void __exit kvm_x86_exit(void)
13690 {
13691 	/*
13692 	 * If module_init() is implemented, module_exit() must also be
13693 	 * implemented to allow module unload.
13694 	 */
13695 }
13696 module_exit(kvm_x86_exit);
13697