xref: /openbmc/linux/arch/x86/kvm/x86.c (revision cbadaf71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 #include <linux/suspend.h>
61 
62 #include <trace/events/kvm.h>
63 
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <asm/pkru.h>
69 #include <linux/kernel_stat.h>
70 #include <asm/fpu/api.h>
71 #include <asm/fpu/xcr.h>
72 #include <asm/fpu/xstate.h>
73 #include <asm/pvclock.h>
74 #include <asm/div64.h>
75 #include <asm/irq_remapping.h>
76 #include <asm/mshyperv.h>
77 #include <asm/hypervisor.h>
78 #include <asm/tlbflush.h>
79 #include <asm/intel_pt.h>
80 #include <asm/emulate_prefix.h>
81 #include <asm/sgx.h>
82 #include <clocksource/hyperv_timer.h>
83 
84 #define CREATE_TRACE_POINTS
85 #include "trace.h"
86 
87 #define MAX_IO_MSRS 256
88 #define KVM_MAX_MCE_BANKS 32
89 
90 struct kvm_caps kvm_caps __read_mostly = {
91 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
92 };
93 EXPORT_SYMBOL_GPL(kvm_caps);
94 
95 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
96 
97 #define emul_to_vcpu(ctxt) \
98 	((struct kvm_vcpu *)(ctxt)->vcpu)
99 
100 /* EFER defaults:
101  * - enable syscall per default because its emulated by KVM
102  * - enable LME and LMA per default on 64 bit KVM
103  */
104 #ifdef CONFIG_X86_64
105 static
106 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
107 #else
108 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
109 #endif
110 
111 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
112 
113 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
114 
115 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
116 
117 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
118                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
119 
120 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
121 static void process_nmi(struct kvm_vcpu *vcpu);
122 static void process_smi(struct kvm_vcpu *vcpu);
123 static void enter_smm(struct kvm_vcpu *vcpu);
124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
125 static void store_regs(struct kvm_vcpu *vcpu);
126 static int sync_regs(struct kvm_vcpu *vcpu);
127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
128 
129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131 
132 struct kvm_x86_ops kvm_x86_ops __read_mostly;
133 
134 #define KVM_X86_OP(func)					     \
135 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
136 				*(((struct kvm_x86_ops *)0)->func));
137 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
138 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
139 #include <asm/kvm-x86-ops.h>
140 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
141 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
142 
143 static bool __read_mostly ignore_msrs = 0;
144 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
145 
146 bool __read_mostly report_ignored_msrs = true;
147 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
148 EXPORT_SYMBOL_GPL(report_ignored_msrs);
149 
150 unsigned int min_timer_period_us = 200;
151 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
152 
153 static bool __read_mostly kvmclock_periodic_sync = true;
154 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
155 
156 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
157 static u32 __read_mostly tsc_tolerance_ppm = 250;
158 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
159 
160 /*
161  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
162  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
163  * advancement entirely.  Any other value is used as-is and disables adaptive
164  * tuning, i.e. allows privileged userspace to set an exact advancement time.
165  */
166 static int __read_mostly lapic_timer_advance_ns = -1;
167 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
168 
169 static bool __read_mostly vector_hashing = true;
170 module_param(vector_hashing, bool, S_IRUGO);
171 
172 bool __read_mostly enable_vmware_backdoor = false;
173 module_param(enable_vmware_backdoor, bool, S_IRUGO);
174 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
175 
176 /*
177  * Flags to manipulate forced emulation behavior (any non-zero value will
178  * enable forced emulation).
179  */
180 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
181 static int __read_mostly force_emulation_prefix;
182 module_param(force_emulation_prefix, int, 0644);
183 
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186 
187 /* Enable/disable PMU virtualization */
188 bool __read_mostly enable_pmu = true;
189 EXPORT_SYMBOL_GPL(enable_pmu);
190 module_param(enable_pmu, bool, 0444);
191 
192 bool __read_mostly eager_page_split = true;
193 module_param(eager_page_split, bool, 0644);
194 
195 /*
196  * Restoring the host value for MSRs that are only consumed when running in
197  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
198  * returns to userspace, i.e. the kernel can run with the guest's value.
199  */
200 #define KVM_MAX_NR_USER_RETURN_MSRS 16
201 
202 struct kvm_user_return_msrs {
203 	struct user_return_notifier urn;
204 	bool registered;
205 	struct kvm_user_return_msr_values {
206 		u64 host;
207 		u64 curr;
208 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
209 };
210 
211 u32 __read_mostly kvm_nr_uret_msrs;
212 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
213 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
214 static struct kvm_user_return_msrs __percpu *user_return_msrs;
215 
216 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
217 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
218 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
219 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
220 
221 u64 __read_mostly host_efer;
222 EXPORT_SYMBOL_GPL(host_efer);
223 
224 bool __read_mostly allow_smaller_maxphyaddr = 0;
225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
226 
227 bool __read_mostly enable_apicv = true;
228 EXPORT_SYMBOL_GPL(enable_apicv);
229 
230 u64 __read_mostly host_xss;
231 EXPORT_SYMBOL_GPL(host_xss);
232 
233 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
234 	KVM_GENERIC_VM_STATS(),
235 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
236 	STATS_DESC_COUNTER(VM, mmu_pte_write),
237 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
238 	STATS_DESC_COUNTER(VM, mmu_flooded),
239 	STATS_DESC_COUNTER(VM, mmu_recycled),
240 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
241 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
242 	STATS_DESC_ICOUNTER(VM, pages_4k),
243 	STATS_DESC_ICOUNTER(VM, pages_2m),
244 	STATS_DESC_ICOUNTER(VM, pages_1g),
245 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
246 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
247 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
248 };
249 
250 const struct kvm_stats_header kvm_vm_stats_header = {
251 	.name_size = KVM_STATS_NAME_SIZE,
252 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
253 	.id_offset = sizeof(struct kvm_stats_header),
254 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
255 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
256 		       sizeof(kvm_vm_stats_desc),
257 };
258 
259 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
260 	KVM_GENERIC_VCPU_STATS(),
261 	STATS_DESC_COUNTER(VCPU, pf_taken),
262 	STATS_DESC_COUNTER(VCPU, pf_fixed),
263 	STATS_DESC_COUNTER(VCPU, pf_emulate),
264 	STATS_DESC_COUNTER(VCPU, pf_spurious),
265 	STATS_DESC_COUNTER(VCPU, pf_fast),
266 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
267 	STATS_DESC_COUNTER(VCPU, pf_guest),
268 	STATS_DESC_COUNTER(VCPU, tlb_flush),
269 	STATS_DESC_COUNTER(VCPU, invlpg),
270 	STATS_DESC_COUNTER(VCPU, exits),
271 	STATS_DESC_COUNTER(VCPU, io_exits),
272 	STATS_DESC_COUNTER(VCPU, mmio_exits),
273 	STATS_DESC_COUNTER(VCPU, signal_exits),
274 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
275 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
276 	STATS_DESC_COUNTER(VCPU, l1d_flush),
277 	STATS_DESC_COUNTER(VCPU, halt_exits),
278 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
279 	STATS_DESC_COUNTER(VCPU, irq_exits),
280 	STATS_DESC_COUNTER(VCPU, host_state_reload),
281 	STATS_DESC_COUNTER(VCPU, fpu_reload),
282 	STATS_DESC_COUNTER(VCPU, insn_emulation),
283 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
284 	STATS_DESC_COUNTER(VCPU, hypercalls),
285 	STATS_DESC_COUNTER(VCPU, irq_injections),
286 	STATS_DESC_COUNTER(VCPU, nmi_injections),
287 	STATS_DESC_COUNTER(VCPU, req_event),
288 	STATS_DESC_COUNTER(VCPU, nested_run),
289 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
290 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
291 	STATS_DESC_COUNTER(VCPU, preemption_reported),
292 	STATS_DESC_COUNTER(VCPU, preemption_other),
293 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
294 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
295 };
296 
297 const struct kvm_stats_header kvm_vcpu_stats_header = {
298 	.name_size = KVM_STATS_NAME_SIZE,
299 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
300 	.id_offset = sizeof(struct kvm_stats_header),
301 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
302 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
303 		       sizeof(kvm_vcpu_stats_desc),
304 };
305 
306 u64 __read_mostly host_xcr0;
307 
308 static struct kmem_cache *x86_emulator_cache;
309 
310 /*
311  * When called, it means the previous get/set msr reached an invalid msr.
312  * Return true if we want to ignore/silent this failed msr access.
313  */
314 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
315 {
316 	const char *op = write ? "wrmsr" : "rdmsr";
317 
318 	if (ignore_msrs) {
319 		if (report_ignored_msrs)
320 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
321 				      op, msr, data);
322 		/* Mask the error */
323 		return true;
324 	} else {
325 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
326 				      op, msr, data);
327 		return false;
328 	}
329 }
330 
331 static struct kmem_cache *kvm_alloc_emulator_cache(void)
332 {
333 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
334 	unsigned int size = sizeof(struct x86_emulate_ctxt);
335 
336 	return kmem_cache_create_usercopy("x86_emulator", size,
337 					  __alignof__(struct x86_emulate_ctxt),
338 					  SLAB_ACCOUNT, useroffset,
339 					  size - useroffset, NULL);
340 }
341 
342 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
343 
344 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
345 {
346 	int i;
347 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
348 		vcpu->arch.apf.gfns[i] = ~0;
349 }
350 
351 static void kvm_on_user_return(struct user_return_notifier *urn)
352 {
353 	unsigned slot;
354 	struct kvm_user_return_msrs *msrs
355 		= container_of(urn, struct kvm_user_return_msrs, urn);
356 	struct kvm_user_return_msr_values *values;
357 	unsigned long flags;
358 
359 	/*
360 	 * Disabling irqs at this point since the following code could be
361 	 * interrupted and executed through kvm_arch_hardware_disable()
362 	 */
363 	local_irq_save(flags);
364 	if (msrs->registered) {
365 		msrs->registered = false;
366 		user_return_notifier_unregister(urn);
367 	}
368 	local_irq_restore(flags);
369 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
370 		values = &msrs->values[slot];
371 		if (values->host != values->curr) {
372 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
373 			values->curr = values->host;
374 		}
375 	}
376 }
377 
378 static int kvm_probe_user_return_msr(u32 msr)
379 {
380 	u64 val;
381 	int ret;
382 
383 	preempt_disable();
384 	ret = rdmsrl_safe(msr, &val);
385 	if (ret)
386 		goto out;
387 	ret = wrmsrl_safe(msr, val);
388 out:
389 	preempt_enable();
390 	return ret;
391 }
392 
393 int kvm_add_user_return_msr(u32 msr)
394 {
395 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
396 
397 	if (kvm_probe_user_return_msr(msr))
398 		return -1;
399 
400 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
401 	return kvm_nr_uret_msrs++;
402 }
403 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
404 
405 int kvm_find_user_return_msr(u32 msr)
406 {
407 	int i;
408 
409 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
410 		if (kvm_uret_msrs_list[i] == msr)
411 			return i;
412 	}
413 	return -1;
414 }
415 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
416 
417 static void kvm_user_return_msr_cpu_online(void)
418 {
419 	unsigned int cpu = smp_processor_id();
420 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
421 	u64 value;
422 	int i;
423 
424 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
425 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
426 		msrs->values[i].host = value;
427 		msrs->values[i].curr = value;
428 	}
429 }
430 
431 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
432 {
433 	unsigned int cpu = smp_processor_id();
434 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
435 	int err;
436 
437 	value = (value & mask) | (msrs->values[slot].host & ~mask);
438 	if (value == msrs->values[slot].curr)
439 		return 0;
440 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
441 	if (err)
442 		return 1;
443 
444 	msrs->values[slot].curr = value;
445 	if (!msrs->registered) {
446 		msrs->urn.on_user_return = kvm_on_user_return;
447 		user_return_notifier_register(&msrs->urn);
448 		msrs->registered = true;
449 	}
450 	return 0;
451 }
452 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
453 
454 static void drop_user_return_notifiers(void)
455 {
456 	unsigned int cpu = smp_processor_id();
457 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
458 
459 	if (msrs->registered)
460 		kvm_on_user_return(&msrs->urn);
461 }
462 
463 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
464 {
465 	return vcpu->arch.apic_base;
466 }
467 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
468 
469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
470 {
471 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
472 }
473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
474 
475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
476 {
477 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
478 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
479 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
480 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
481 
482 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
483 		return 1;
484 	if (!msr_info->host_initiated) {
485 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
486 			return 1;
487 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
488 			return 1;
489 	}
490 
491 	kvm_lapic_set_base(vcpu, msr_info->data);
492 	kvm_recalculate_apic_map(vcpu->kvm);
493 	return 0;
494 }
495 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
496 
497 /*
498  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
499  *
500  * Hardware virtualization extension instructions may fault if a reboot turns
501  * off virtualization while processes are running.  Usually after catching the
502  * fault we just panic; during reboot instead the instruction is ignored.
503  */
504 noinstr void kvm_spurious_fault(void)
505 {
506 	/* Fault while not rebooting.  We want the trace. */
507 	BUG_ON(!kvm_rebooting);
508 }
509 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
510 
511 #define EXCPT_BENIGN		0
512 #define EXCPT_CONTRIBUTORY	1
513 #define EXCPT_PF		2
514 
515 static int exception_class(int vector)
516 {
517 	switch (vector) {
518 	case PF_VECTOR:
519 		return EXCPT_PF;
520 	case DE_VECTOR:
521 	case TS_VECTOR:
522 	case NP_VECTOR:
523 	case SS_VECTOR:
524 	case GP_VECTOR:
525 		return EXCPT_CONTRIBUTORY;
526 	default:
527 		break;
528 	}
529 	return EXCPT_BENIGN;
530 }
531 
532 #define EXCPT_FAULT		0
533 #define EXCPT_TRAP		1
534 #define EXCPT_ABORT		2
535 #define EXCPT_INTERRUPT		3
536 #define EXCPT_DB		4
537 
538 static int exception_type(int vector)
539 {
540 	unsigned int mask;
541 
542 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
543 		return EXCPT_INTERRUPT;
544 
545 	mask = 1 << vector;
546 
547 	/*
548 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
549 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
550 	 */
551 	if (mask & (1 << DB_VECTOR))
552 		return EXCPT_DB;
553 
554 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
555 		return EXCPT_TRAP;
556 
557 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
558 		return EXCPT_ABORT;
559 
560 	/* Reserved exceptions will result in fault */
561 	return EXCPT_FAULT;
562 }
563 
564 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
565 				   struct kvm_queued_exception *ex)
566 {
567 	if (!ex->has_payload)
568 		return;
569 
570 	switch (ex->vector) {
571 	case DB_VECTOR:
572 		/*
573 		 * "Certain debug exceptions may clear bit 0-3.  The
574 		 * remaining contents of the DR6 register are never
575 		 * cleared by the processor".
576 		 */
577 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
578 		/*
579 		 * In order to reflect the #DB exception payload in guest
580 		 * dr6, three components need to be considered: active low
581 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
582 		 * DR6_BS and DR6_BT)
583 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
584 		 * In the target guest dr6:
585 		 * FIXED_1 bits should always be set.
586 		 * Active low bits should be cleared if 1-setting in payload.
587 		 * Active high bits should be set if 1-setting in payload.
588 		 *
589 		 * Note, the payload is compatible with the pending debug
590 		 * exceptions/exit qualification under VMX, that active_low bits
591 		 * are active high in payload.
592 		 * So they need to be flipped for DR6.
593 		 */
594 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
595 		vcpu->arch.dr6 |= ex->payload;
596 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
597 
598 		/*
599 		 * The #DB payload is defined as compatible with the 'pending
600 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
601 		 * defined in the 'pending debug exceptions' field (enabled
602 		 * breakpoint), it is reserved and must be zero in DR6.
603 		 */
604 		vcpu->arch.dr6 &= ~BIT(12);
605 		break;
606 	case PF_VECTOR:
607 		vcpu->arch.cr2 = ex->payload;
608 		break;
609 	}
610 
611 	ex->has_payload = false;
612 	ex->payload = 0;
613 }
614 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
615 
616 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
617 				       bool has_error_code, u32 error_code,
618 				       bool has_payload, unsigned long payload)
619 {
620 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
621 
622 	ex->vector = vector;
623 	ex->injected = false;
624 	ex->pending = true;
625 	ex->has_error_code = has_error_code;
626 	ex->error_code = error_code;
627 	ex->has_payload = has_payload;
628 	ex->payload = payload;
629 }
630 
631 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
632 		unsigned nr, bool has_error, u32 error_code,
633 	        bool has_payload, unsigned long payload, bool reinject)
634 {
635 	u32 prev_nr;
636 	int class1, class2;
637 
638 	kvm_make_request(KVM_REQ_EVENT, vcpu);
639 
640 	/*
641 	 * If the exception is destined for L2 and isn't being reinjected,
642 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
643 	 * previously injected exception is not checked because it was checked
644 	 * when it was original queued, and re-checking is incorrect if _L1_
645 	 * injected the exception, in which case it's exempt from interception.
646 	 */
647 	if (!reinject && is_guest_mode(vcpu) &&
648 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
649 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
650 					   has_payload, payload);
651 		return;
652 	}
653 
654 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
655 	queue:
656 		if (reinject) {
657 			/*
658 			 * On VM-Entry, an exception can be pending if and only
659 			 * if event injection was blocked by nested_run_pending.
660 			 * In that case, however, vcpu_enter_guest() requests an
661 			 * immediate exit, and the guest shouldn't proceed far
662 			 * enough to need reinjection.
663 			 */
664 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
665 			vcpu->arch.exception.injected = true;
666 			if (WARN_ON_ONCE(has_payload)) {
667 				/*
668 				 * A reinjected event has already
669 				 * delivered its payload.
670 				 */
671 				has_payload = false;
672 				payload = 0;
673 			}
674 		} else {
675 			vcpu->arch.exception.pending = true;
676 			vcpu->arch.exception.injected = false;
677 		}
678 		vcpu->arch.exception.has_error_code = has_error;
679 		vcpu->arch.exception.vector = nr;
680 		vcpu->arch.exception.error_code = error_code;
681 		vcpu->arch.exception.has_payload = has_payload;
682 		vcpu->arch.exception.payload = payload;
683 		if (!is_guest_mode(vcpu))
684 			kvm_deliver_exception_payload(vcpu,
685 						      &vcpu->arch.exception);
686 		return;
687 	}
688 
689 	/* to check exception */
690 	prev_nr = vcpu->arch.exception.vector;
691 	if (prev_nr == DF_VECTOR) {
692 		/* triple fault -> shutdown */
693 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
694 		return;
695 	}
696 	class1 = exception_class(prev_nr);
697 	class2 = exception_class(nr);
698 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
699 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
700 		/*
701 		 * Synthesize #DF.  Clear the previously injected or pending
702 		 * exception so as not to incorrectly trigger shutdown.
703 		 */
704 		vcpu->arch.exception.injected = false;
705 		vcpu->arch.exception.pending = false;
706 
707 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
708 	} else {
709 		/* replace previous exception with a new one in a hope
710 		   that instruction re-execution will regenerate lost
711 		   exception */
712 		goto queue;
713 	}
714 }
715 
716 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
717 {
718 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
719 }
720 EXPORT_SYMBOL_GPL(kvm_queue_exception);
721 
722 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
723 {
724 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
725 }
726 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
727 
728 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
729 			   unsigned long payload)
730 {
731 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
732 }
733 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
734 
735 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
736 				    u32 error_code, unsigned long payload)
737 {
738 	kvm_multiple_exception(vcpu, nr, true, error_code,
739 			       true, payload, false);
740 }
741 
742 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
743 {
744 	if (err)
745 		kvm_inject_gp(vcpu, 0);
746 	else
747 		return kvm_skip_emulated_instruction(vcpu);
748 
749 	return 1;
750 }
751 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
752 
753 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
754 {
755 	if (err) {
756 		kvm_inject_gp(vcpu, 0);
757 		return 1;
758 	}
759 
760 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
761 				       EMULTYPE_COMPLETE_USER_EXIT);
762 }
763 
764 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
765 {
766 	++vcpu->stat.pf_guest;
767 
768 	/*
769 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
770 	 * whether or not L1 wants to intercept "regular" #PF.
771 	 */
772 	if (is_guest_mode(vcpu) && fault->async_page_fault)
773 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
774 					   true, fault->error_code,
775 					   true, fault->address);
776 	else
777 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
778 					fault->address);
779 }
780 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
781 
782 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
783 				    struct x86_exception *fault)
784 {
785 	struct kvm_mmu *fault_mmu;
786 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
787 
788 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
789 					       vcpu->arch.walk_mmu;
790 
791 	/*
792 	 * Invalidate the TLB entry for the faulting address, if it exists,
793 	 * else the access will fault indefinitely (and to emulate hardware).
794 	 */
795 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
796 	    !(fault->error_code & PFERR_RSVD_MASK))
797 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
798 				       fault_mmu->root.hpa);
799 
800 	fault_mmu->inject_page_fault(vcpu, fault);
801 }
802 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
803 
804 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
805 {
806 	atomic_inc(&vcpu->arch.nmi_queued);
807 	kvm_make_request(KVM_REQ_NMI, vcpu);
808 }
809 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
810 
811 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
812 {
813 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
814 }
815 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
816 
817 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
818 {
819 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
820 }
821 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
822 
823 /*
824  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
825  * a #GP and return false.
826  */
827 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
828 {
829 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
830 		return true;
831 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
832 	return false;
833 }
834 EXPORT_SYMBOL_GPL(kvm_require_cpl);
835 
836 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
837 {
838 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
839 		return true;
840 
841 	kvm_queue_exception(vcpu, UD_VECTOR);
842 	return false;
843 }
844 EXPORT_SYMBOL_GPL(kvm_require_dr);
845 
846 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
847 {
848 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
849 }
850 
851 /*
852  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
853  */
854 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
855 {
856 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
857 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
858 	gpa_t real_gpa;
859 	int i;
860 	int ret;
861 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
862 
863 	/*
864 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
865 	 * to an L1 GPA.
866 	 */
867 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
868 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
869 	if (real_gpa == INVALID_GPA)
870 		return 0;
871 
872 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
873 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
874 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
875 	if (ret < 0)
876 		return 0;
877 
878 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
879 		if ((pdpte[i] & PT_PRESENT_MASK) &&
880 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
881 			return 0;
882 		}
883 	}
884 
885 	/*
886 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
887 	 * Shadow page roots need to be reconstructed instead.
888 	 */
889 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
890 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
891 
892 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
893 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
894 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
895 	vcpu->arch.pdptrs_from_userspace = false;
896 
897 	return 1;
898 }
899 EXPORT_SYMBOL_GPL(load_pdptrs);
900 
901 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
902 {
903 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
904 		kvm_clear_async_pf_completion_queue(vcpu);
905 		kvm_async_pf_hash_reset(vcpu);
906 
907 		/*
908 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
909 		 * perspective.
910 		 */
911 		if (!(cr0 & X86_CR0_PG))
912 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
913 	}
914 
915 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
916 		kvm_mmu_reset_context(vcpu);
917 
918 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
919 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
920 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
921 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
922 }
923 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
924 
925 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
926 {
927 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
928 
929 	cr0 |= X86_CR0_ET;
930 
931 #ifdef CONFIG_X86_64
932 	if (cr0 & 0xffffffff00000000UL)
933 		return 1;
934 #endif
935 
936 	cr0 &= ~CR0_RESERVED_BITS;
937 
938 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
939 		return 1;
940 
941 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
942 		return 1;
943 
944 #ifdef CONFIG_X86_64
945 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
946 	    (cr0 & X86_CR0_PG)) {
947 		int cs_db, cs_l;
948 
949 		if (!is_pae(vcpu))
950 			return 1;
951 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
952 		if (cs_l)
953 			return 1;
954 	}
955 #endif
956 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
957 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
958 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
959 		return 1;
960 
961 	if (!(cr0 & X86_CR0_PG) &&
962 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
963 		return 1;
964 
965 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
966 
967 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
968 
969 	return 0;
970 }
971 EXPORT_SYMBOL_GPL(kvm_set_cr0);
972 
973 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
974 {
975 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
976 }
977 EXPORT_SYMBOL_GPL(kvm_lmsw);
978 
979 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
980 {
981 	if (vcpu->arch.guest_state_protected)
982 		return;
983 
984 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
985 
986 		if (vcpu->arch.xcr0 != host_xcr0)
987 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
988 
989 		if (vcpu->arch.xsaves_enabled &&
990 		    vcpu->arch.ia32_xss != host_xss)
991 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
992 	}
993 
994 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
995 	if (static_cpu_has(X86_FEATURE_PKU) &&
996 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
997 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
998 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
999 		write_pkru(vcpu->arch.pkru);
1000 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1001 }
1002 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1003 
1004 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1005 {
1006 	if (vcpu->arch.guest_state_protected)
1007 		return;
1008 
1009 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1010 	if (static_cpu_has(X86_FEATURE_PKU) &&
1011 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1012 	     kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1013 		vcpu->arch.pkru = rdpkru();
1014 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1015 			write_pkru(vcpu->arch.host_pkru);
1016 	}
1017 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1018 
1019 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1020 
1021 		if (vcpu->arch.xcr0 != host_xcr0)
1022 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1023 
1024 		if (vcpu->arch.xsaves_enabled &&
1025 		    vcpu->arch.ia32_xss != host_xss)
1026 			wrmsrl(MSR_IA32_XSS, host_xss);
1027 	}
1028 
1029 }
1030 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1031 
1032 #ifdef CONFIG_X86_64
1033 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1034 {
1035 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1036 }
1037 #endif
1038 
1039 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1040 {
1041 	u64 xcr0 = xcr;
1042 	u64 old_xcr0 = vcpu->arch.xcr0;
1043 	u64 valid_bits;
1044 
1045 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1046 	if (index != XCR_XFEATURE_ENABLED_MASK)
1047 		return 1;
1048 	if (!(xcr0 & XFEATURE_MASK_FP))
1049 		return 1;
1050 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1051 		return 1;
1052 
1053 	/*
1054 	 * Do not allow the guest to set bits that we do not support
1055 	 * saving.  However, xcr0 bit 0 is always set, even if the
1056 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1057 	 */
1058 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1059 	if (xcr0 & ~valid_bits)
1060 		return 1;
1061 
1062 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1063 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1064 		return 1;
1065 
1066 	if (xcr0 & XFEATURE_MASK_AVX512) {
1067 		if (!(xcr0 & XFEATURE_MASK_YMM))
1068 			return 1;
1069 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1070 			return 1;
1071 	}
1072 
1073 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1074 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1075 		return 1;
1076 
1077 	vcpu->arch.xcr0 = xcr0;
1078 
1079 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1080 		kvm_update_cpuid_runtime(vcpu);
1081 	return 0;
1082 }
1083 
1084 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1085 {
1086 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1087 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1088 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1089 		kvm_inject_gp(vcpu, 0);
1090 		return 1;
1091 	}
1092 
1093 	return kvm_skip_emulated_instruction(vcpu);
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1096 
1097 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1098 {
1099 	if (cr4 & cr4_reserved_bits)
1100 		return false;
1101 
1102 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1103 		return false;
1104 
1105 	return true;
1106 }
1107 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1108 
1109 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1110 {
1111 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1112 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1113 }
1114 
1115 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1116 {
1117 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1118 		kvm_mmu_reset_context(vcpu);
1119 
1120 	/*
1121 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1122 	 * according to the SDM; however, stale prev_roots could be reused
1123 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1124 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1125 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1126 	 * so fall through.
1127 	 */
1128 	if (!tdp_enabled &&
1129 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1130 		kvm_mmu_unload(vcpu);
1131 
1132 	/*
1133 	 * The TLB has to be flushed for all PCIDs if any of the following
1134 	 * (architecturally required) changes happen:
1135 	 * - CR4.PCIDE is changed from 1 to 0
1136 	 * - CR4.PGE is toggled
1137 	 *
1138 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1139 	 */
1140 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1141 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1142 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1143 
1144 	/*
1145 	 * The TLB has to be flushed for the current PCID if any of the
1146 	 * following (architecturally required) changes happen:
1147 	 * - CR4.SMEP is changed from 0 to 1
1148 	 * - CR4.PAE is toggled
1149 	 */
1150 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1151 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1152 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1153 
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1156 
1157 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1158 {
1159 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1160 
1161 	if (!kvm_is_valid_cr4(vcpu, cr4))
1162 		return 1;
1163 
1164 	if (is_long_mode(vcpu)) {
1165 		if (!(cr4 & X86_CR4_PAE))
1166 			return 1;
1167 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1168 			return 1;
1169 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1170 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1171 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1172 		return 1;
1173 
1174 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1175 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1176 			return 1;
1177 
1178 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1179 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1180 			return 1;
1181 	}
1182 
1183 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1184 
1185 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1186 
1187 	return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1190 
1191 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1192 {
1193 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1194 	unsigned long roots_to_free = 0;
1195 	int i;
1196 
1197 	/*
1198 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1199 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1200 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1201 	 * the invalidation, but the guest's TLB entries need to be flushed as
1202 	 * the CPU may have cached entries in its TLB for the target PCID.
1203 	 */
1204 	if (unlikely(tdp_enabled)) {
1205 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1206 		return;
1207 	}
1208 
1209 	/*
1210 	 * If neither the current CR3 nor any of the prev_roots use the given
1211 	 * PCID, then nothing needs to be done here because a resync will
1212 	 * happen anyway before switching to any other CR3.
1213 	 */
1214 	if (kvm_get_active_pcid(vcpu) == pcid) {
1215 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1216 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1217 	}
1218 
1219 	/*
1220 	 * If PCID is disabled, there is no need to free prev_roots even if the
1221 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1222 	 * with PCIDE=0.
1223 	 */
1224 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1225 		return;
1226 
1227 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1228 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1229 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1230 
1231 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1232 }
1233 
1234 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1235 {
1236 	bool skip_tlb_flush = false;
1237 	unsigned long pcid = 0;
1238 #ifdef CONFIG_X86_64
1239 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1240 
1241 	if (pcid_enabled) {
1242 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1243 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1244 		pcid = cr3 & X86_CR3_PCID_MASK;
1245 	}
1246 #endif
1247 
1248 	/* PDPTRs are always reloaded for PAE paging. */
1249 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1250 		goto handle_tlb_flush;
1251 
1252 	/*
1253 	 * Do not condition the GPA check on long mode, this helper is used to
1254 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1255 	 * the current vCPU mode is accurate.
1256 	 */
1257 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1258 		return 1;
1259 
1260 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1261 		return 1;
1262 
1263 	if (cr3 != kvm_read_cr3(vcpu))
1264 		kvm_mmu_new_pgd(vcpu, cr3);
1265 
1266 	vcpu->arch.cr3 = cr3;
1267 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1268 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1269 
1270 handle_tlb_flush:
1271 	/*
1272 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1273 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1274 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1275 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1276 	 * i.e. only PCID=0 can be relevant.
1277 	 */
1278 	if (!skip_tlb_flush)
1279 		kvm_invalidate_pcid(vcpu, pcid);
1280 
1281 	return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1284 
1285 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1286 {
1287 	if (cr8 & CR8_RESERVED_BITS)
1288 		return 1;
1289 	if (lapic_in_kernel(vcpu))
1290 		kvm_lapic_set_tpr(vcpu, cr8);
1291 	else
1292 		vcpu->arch.cr8 = cr8;
1293 	return 0;
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1296 
1297 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1298 {
1299 	if (lapic_in_kernel(vcpu))
1300 		return kvm_lapic_get_cr8(vcpu);
1301 	else
1302 		return vcpu->arch.cr8;
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1305 
1306 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1307 {
1308 	int i;
1309 
1310 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1311 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1312 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1313 	}
1314 }
1315 
1316 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1317 {
1318 	unsigned long dr7;
1319 
1320 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1321 		dr7 = vcpu->arch.guest_debug_dr7;
1322 	else
1323 		dr7 = vcpu->arch.dr7;
1324 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1325 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1326 	if (dr7 & DR7_BP_EN_MASK)
1327 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1330 
1331 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1332 {
1333 	u64 fixed = DR6_FIXED_1;
1334 
1335 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1336 		fixed |= DR6_RTM;
1337 
1338 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1339 		fixed |= DR6_BUS_LOCK;
1340 	return fixed;
1341 }
1342 
1343 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1344 {
1345 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1346 
1347 	switch (dr) {
1348 	case 0 ... 3:
1349 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1350 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1351 			vcpu->arch.eff_db[dr] = val;
1352 		break;
1353 	case 4:
1354 	case 6:
1355 		if (!kvm_dr6_valid(val))
1356 			return 1; /* #GP */
1357 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1358 		break;
1359 	case 5:
1360 	default: /* 7 */
1361 		if (!kvm_dr7_valid(val))
1362 			return 1; /* #GP */
1363 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1364 		kvm_update_dr7(vcpu);
1365 		break;
1366 	}
1367 
1368 	return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(kvm_set_dr);
1371 
1372 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1373 {
1374 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1375 
1376 	switch (dr) {
1377 	case 0 ... 3:
1378 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1379 		break;
1380 	case 4:
1381 	case 6:
1382 		*val = vcpu->arch.dr6;
1383 		break;
1384 	case 5:
1385 	default: /* 7 */
1386 		*val = vcpu->arch.dr7;
1387 		break;
1388 	}
1389 }
1390 EXPORT_SYMBOL_GPL(kvm_get_dr);
1391 
1392 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1393 {
1394 	u32 ecx = kvm_rcx_read(vcpu);
1395 	u64 data;
1396 
1397 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1398 		kvm_inject_gp(vcpu, 0);
1399 		return 1;
1400 	}
1401 
1402 	kvm_rax_write(vcpu, (u32)data);
1403 	kvm_rdx_write(vcpu, data >> 32);
1404 	return kvm_skip_emulated_instruction(vcpu);
1405 }
1406 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1407 
1408 /*
1409  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1410  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1411  *
1412  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1413  * extract the supported MSRs from the related const lists.
1414  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1415  * capabilities of the host cpu. This capabilities test skips MSRs that are
1416  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1417  * may depend on host virtualization features rather than host cpu features.
1418  */
1419 
1420 static const u32 msrs_to_save_all[] = {
1421 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1422 	MSR_STAR,
1423 #ifdef CONFIG_X86_64
1424 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1425 #endif
1426 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1427 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1428 	MSR_IA32_SPEC_CTRL,
1429 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1430 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1431 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1432 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1433 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1434 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1435 	MSR_IA32_UMWAIT_CONTROL,
1436 
1437 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1438 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1439 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1440 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1441 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1442 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1443 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1444 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1445 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1446 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1447 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1448 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1449 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1450 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1451 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1452 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1453 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1454 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1455 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1456 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1457 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1458 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1459 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1460 
1461 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1462 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1463 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1464 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1465 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1466 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1467 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1468 };
1469 
1470 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1471 static unsigned num_msrs_to_save;
1472 
1473 static const u32 emulated_msrs_all[] = {
1474 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1475 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1476 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1477 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1478 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1479 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1480 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1481 	HV_X64_MSR_RESET,
1482 	HV_X64_MSR_VP_INDEX,
1483 	HV_X64_MSR_VP_RUNTIME,
1484 	HV_X64_MSR_SCONTROL,
1485 	HV_X64_MSR_STIMER0_CONFIG,
1486 	HV_X64_MSR_VP_ASSIST_PAGE,
1487 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1488 	HV_X64_MSR_TSC_EMULATION_STATUS,
1489 	HV_X64_MSR_SYNDBG_OPTIONS,
1490 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1491 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1492 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1493 
1494 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1495 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1496 
1497 	MSR_IA32_TSC_ADJUST,
1498 	MSR_IA32_TSC_DEADLINE,
1499 	MSR_IA32_ARCH_CAPABILITIES,
1500 	MSR_IA32_PERF_CAPABILITIES,
1501 	MSR_IA32_MISC_ENABLE,
1502 	MSR_IA32_MCG_STATUS,
1503 	MSR_IA32_MCG_CTL,
1504 	MSR_IA32_MCG_EXT_CTL,
1505 	MSR_IA32_SMBASE,
1506 	MSR_SMI_COUNT,
1507 	MSR_PLATFORM_INFO,
1508 	MSR_MISC_FEATURES_ENABLES,
1509 	MSR_AMD64_VIRT_SPEC_CTRL,
1510 	MSR_AMD64_TSC_RATIO,
1511 	MSR_IA32_POWER_CTL,
1512 	MSR_IA32_UCODE_REV,
1513 
1514 	/*
1515 	 * The following list leaves out MSRs whose values are determined
1516 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1517 	 * We always support the "true" VMX control MSRs, even if the host
1518 	 * processor does not, so I am putting these registers here rather
1519 	 * than in msrs_to_save_all.
1520 	 */
1521 	MSR_IA32_VMX_BASIC,
1522 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1523 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1524 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1525 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1526 	MSR_IA32_VMX_MISC,
1527 	MSR_IA32_VMX_CR0_FIXED0,
1528 	MSR_IA32_VMX_CR4_FIXED0,
1529 	MSR_IA32_VMX_VMCS_ENUM,
1530 	MSR_IA32_VMX_PROCBASED_CTLS2,
1531 	MSR_IA32_VMX_EPT_VPID_CAP,
1532 	MSR_IA32_VMX_VMFUNC,
1533 
1534 	MSR_K7_HWCR,
1535 	MSR_KVM_POLL_CONTROL,
1536 };
1537 
1538 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1539 static unsigned num_emulated_msrs;
1540 
1541 /*
1542  * List of msr numbers which are used to expose MSR-based features that
1543  * can be used by a hypervisor to validate requested CPU features.
1544  */
1545 static const u32 msr_based_features_all[] = {
1546 	MSR_IA32_VMX_BASIC,
1547 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1548 	MSR_IA32_VMX_PINBASED_CTLS,
1549 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1550 	MSR_IA32_VMX_PROCBASED_CTLS,
1551 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1552 	MSR_IA32_VMX_EXIT_CTLS,
1553 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1554 	MSR_IA32_VMX_ENTRY_CTLS,
1555 	MSR_IA32_VMX_MISC,
1556 	MSR_IA32_VMX_CR0_FIXED0,
1557 	MSR_IA32_VMX_CR0_FIXED1,
1558 	MSR_IA32_VMX_CR4_FIXED0,
1559 	MSR_IA32_VMX_CR4_FIXED1,
1560 	MSR_IA32_VMX_VMCS_ENUM,
1561 	MSR_IA32_VMX_PROCBASED_CTLS2,
1562 	MSR_IA32_VMX_EPT_VPID_CAP,
1563 	MSR_IA32_VMX_VMFUNC,
1564 
1565 	MSR_F10H_DECFG,
1566 	MSR_IA32_UCODE_REV,
1567 	MSR_IA32_ARCH_CAPABILITIES,
1568 	MSR_IA32_PERF_CAPABILITIES,
1569 };
1570 
1571 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1572 static unsigned int num_msr_based_features;
1573 
1574 /*
1575  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1576  * does not yet virtualize. These include:
1577  *   10 - MISC_PACKAGE_CTRLS
1578  *   11 - ENERGY_FILTERING_CTL
1579  *   12 - DOITM
1580  *   18 - FB_CLEAR_CTRL
1581  *   21 - XAPIC_DISABLE_STATUS
1582  *   23 - OVERCLOCKING_STATUS
1583  */
1584 
1585 #define KVM_SUPPORTED_ARCH_CAP \
1586 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1587 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1588 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1589 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1590 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1591 
1592 static u64 kvm_get_arch_capabilities(void)
1593 {
1594 	u64 data = 0;
1595 
1596 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1597 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1598 		data &= KVM_SUPPORTED_ARCH_CAP;
1599 	}
1600 
1601 	/*
1602 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1603 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1604 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1605 	 * L1 guests, so it need not worry about its own (L2) guests.
1606 	 */
1607 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1608 
1609 	/*
1610 	 * If we're doing cache flushes (either "always" or "cond")
1611 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1612 	 * If an outer hypervisor is doing the cache flush for us
1613 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1614 	 * capability to the guest too, and if EPT is disabled we're not
1615 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1616 	 * require a nested hypervisor to do a flush of its own.
1617 	 */
1618 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1619 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1620 
1621 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1622 		data |= ARCH_CAP_RDCL_NO;
1623 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1624 		data |= ARCH_CAP_SSB_NO;
1625 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1626 		data |= ARCH_CAP_MDS_NO;
1627 
1628 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1629 		/*
1630 		 * If RTM=0 because the kernel has disabled TSX, the host might
1631 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1632 		 * and therefore knows that there cannot be TAA) but keep
1633 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1634 		 * and we want to allow migrating those guests to tsx=off hosts.
1635 		 */
1636 		data &= ~ARCH_CAP_TAA_NO;
1637 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1638 		data |= ARCH_CAP_TAA_NO;
1639 	} else {
1640 		/*
1641 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1642 		 * host so the guest can choose between disabling TSX or
1643 		 * using VERW to clear CPU buffers.
1644 		 */
1645 	}
1646 
1647 	return data;
1648 }
1649 
1650 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1651 {
1652 	switch (msr->index) {
1653 	case MSR_IA32_ARCH_CAPABILITIES:
1654 		msr->data = kvm_get_arch_capabilities();
1655 		break;
1656 	case MSR_IA32_UCODE_REV:
1657 		rdmsrl_safe(msr->index, &msr->data);
1658 		break;
1659 	default:
1660 		return static_call(kvm_x86_get_msr_feature)(msr);
1661 	}
1662 	return 0;
1663 }
1664 
1665 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1666 {
1667 	struct kvm_msr_entry msr;
1668 	int r;
1669 
1670 	msr.index = index;
1671 	r = kvm_get_msr_feature(&msr);
1672 
1673 	if (r == KVM_MSR_RET_INVALID) {
1674 		/* Unconditionally clear the output for simplicity */
1675 		*data = 0;
1676 		if (kvm_msr_ignored_check(index, 0, false))
1677 			r = 0;
1678 	}
1679 
1680 	if (r)
1681 		return r;
1682 
1683 	*data = msr.data;
1684 
1685 	return 0;
1686 }
1687 
1688 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1689 {
1690 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1691 		return false;
1692 
1693 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1694 		return false;
1695 
1696 	if (efer & (EFER_LME | EFER_LMA) &&
1697 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1698 		return false;
1699 
1700 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1701 		return false;
1702 
1703 	return true;
1704 
1705 }
1706 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1707 {
1708 	if (efer & efer_reserved_bits)
1709 		return false;
1710 
1711 	return __kvm_valid_efer(vcpu, efer);
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1714 
1715 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1716 {
1717 	u64 old_efer = vcpu->arch.efer;
1718 	u64 efer = msr_info->data;
1719 	int r;
1720 
1721 	if (efer & efer_reserved_bits)
1722 		return 1;
1723 
1724 	if (!msr_info->host_initiated) {
1725 		if (!__kvm_valid_efer(vcpu, efer))
1726 			return 1;
1727 
1728 		if (is_paging(vcpu) &&
1729 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1730 			return 1;
1731 	}
1732 
1733 	efer &= ~EFER_LMA;
1734 	efer |= vcpu->arch.efer & EFER_LMA;
1735 
1736 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1737 	if (r) {
1738 		WARN_ON(r > 0);
1739 		return r;
1740 	}
1741 
1742 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1743 		kvm_mmu_reset_context(vcpu);
1744 
1745 	return 0;
1746 }
1747 
1748 void kvm_enable_efer_bits(u64 mask)
1749 {
1750        efer_reserved_bits &= ~mask;
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1753 
1754 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1755 {
1756 	struct kvm_x86_msr_filter *msr_filter;
1757 	struct msr_bitmap_range *ranges;
1758 	struct kvm *kvm = vcpu->kvm;
1759 	bool allowed;
1760 	int idx;
1761 	u32 i;
1762 
1763 	/* x2APIC MSRs do not support filtering. */
1764 	if (index >= 0x800 && index <= 0x8ff)
1765 		return true;
1766 
1767 	idx = srcu_read_lock(&kvm->srcu);
1768 
1769 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1770 	if (!msr_filter) {
1771 		allowed = true;
1772 		goto out;
1773 	}
1774 
1775 	allowed = msr_filter->default_allow;
1776 	ranges = msr_filter->ranges;
1777 
1778 	for (i = 0; i < msr_filter->count; i++) {
1779 		u32 start = ranges[i].base;
1780 		u32 end = start + ranges[i].nmsrs;
1781 		u32 flags = ranges[i].flags;
1782 		unsigned long *bitmap = ranges[i].bitmap;
1783 
1784 		if ((index >= start) && (index < end) && (flags & type)) {
1785 			allowed = !!test_bit(index - start, bitmap);
1786 			break;
1787 		}
1788 	}
1789 
1790 out:
1791 	srcu_read_unlock(&kvm->srcu, idx);
1792 
1793 	return allowed;
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1796 
1797 /*
1798  * Write @data into the MSR specified by @index.  Select MSR specific fault
1799  * checks are bypassed if @host_initiated is %true.
1800  * Returns 0 on success, non-0 otherwise.
1801  * Assumes vcpu_load() was already called.
1802  */
1803 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1804 			 bool host_initiated)
1805 {
1806 	struct msr_data msr;
1807 
1808 	switch (index) {
1809 	case MSR_FS_BASE:
1810 	case MSR_GS_BASE:
1811 	case MSR_KERNEL_GS_BASE:
1812 	case MSR_CSTAR:
1813 	case MSR_LSTAR:
1814 		if (is_noncanonical_address(data, vcpu))
1815 			return 1;
1816 		break;
1817 	case MSR_IA32_SYSENTER_EIP:
1818 	case MSR_IA32_SYSENTER_ESP:
1819 		/*
1820 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1821 		 * non-canonical address is written on Intel but not on
1822 		 * AMD (which ignores the top 32-bits, because it does
1823 		 * not implement 64-bit SYSENTER).
1824 		 *
1825 		 * 64-bit code should hence be able to write a non-canonical
1826 		 * value on AMD.  Making the address canonical ensures that
1827 		 * vmentry does not fail on Intel after writing a non-canonical
1828 		 * value, and that something deterministic happens if the guest
1829 		 * invokes 64-bit SYSENTER.
1830 		 */
1831 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1832 		break;
1833 	case MSR_TSC_AUX:
1834 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1835 			return 1;
1836 
1837 		if (!host_initiated &&
1838 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1839 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1840 			return 1;
1841 
1842 		/*
1843 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1844 		 * incomplete and conflicting architectural behavior.  Current
1845 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1846 		 * reserved and always read as zeros.  Enforce Intel's reserved
1847 		 * bits check if and only if the guest CPU is Intel, and clear
1848 		 * the bits in all other cases.  This ensures cross-vendor
1849 		 * migration will provide consistent behavior for the guest.
1850 		 */
1851 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1852 			return 1;
1853 
1854 		data = (u32)data;
1855 		break;
1856 	}
1857 
1858 	msr.data = data;
1859 	msr.index = index;
1860 	msr.host_initiated = host_initiated;
1861 
1862 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1863 }
1864 
1865 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1866 				     u32 index, u64 data, bool host_initiated)
1867 {
1868 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1869 
1870 	if (ret == KVM_MSR_RET_INVALID)
1871 		if (kvm_msr_ignored_check(index, data, true))
1872 			ret = 0;
1873 
1874 	return ret;
1875 }
1876 
1877 /*
1878  * Read the MSR specified by @index into @data.  Select MSR specific fault
1879  * checks are bypassed if @host_initiated is %true.
1880  * Returns 0 on success, non-0 otherwise.
1881  * Assumes vcpu_load() was already called.
1882  */
1883 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1884 		  bool host_initiated)
1885 {
1886 	struct msr_data msr;
1887 	int ret;
1888 
1889 	switch (index) {
1890 	case MSR_TSC_AUX:
1891 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1892 			return 1;
1893 
1894 		if (!host_initiated &&
1895 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1896 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1897 			return 1;
1898 		break;
1899 	}
1900 
1901 	msr.index = index;
1902 	msr.host_initiated = host_initiated;
1903 
1904 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1905 	if (!ret)
1906 		*data = msr.data;
1907 	return ret;
1908 }
1909 
1910 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1911 				     u32 index, u64 *data, bool host_initiated)
1912 {
1913 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1914 
1915 	if (ret == KVM_MSR_RET_INVALID) {
1916 		/* Unconditionally clear *data for simplicity */
1917 		*data = 0;
1918 		if (kvm_msr_ignored_check(index, 0, false))
1919 			ret = 0;
1920 	}
1921 
1922 	return ret;
1923 }
1924 
1925 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1926 {
1927 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1928 		return KVM_MSR_RET_FILTERED;
1929 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1930 }
1931 
1932 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1933 {
1934 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1935 		return KVM_MSR_RET_FILTERED;
1936 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1937 }
1938 
1939 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1940 {
1941 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1942 }
1943 EXPORT_SYMBOL_GPL(kvm_get_msr);
1944 
1945 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1946 {
1947 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1948 }
1949 EXPORT_SYMBOL_GPL(kvm_set_msr);
1950 
1951 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1952 {
1953 	if (!vcpu->run->msr.error) {
1954 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1955 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1956 	}
1957 }
1958 
1959 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1960 {
1961 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1962 }
1963 
1964 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1965 {
1966 	complete_userspace_rdmsr(vcpu);
1967 	return complete_emulated_msr_access(vcpu);
1968 }
1969 
1970 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1971 {
1972 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1973 }
1974 
1975 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1976 {
1977 	complete_userspace_rdmsr(vcpu);
1978 	return complete_fast_msr_access(vcpu);
1979 }
1980 
1981 static u64 kvm_msr_reason(int r)
1982 {
1983 	switch (r) {
1984 	case KVM_MSR_RET_INVALID:
1985 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1986 	case KVM_MSR_RET_FILTERED:
1987 		return KVM_MSR_EXIT_REASON_FILTER;
1988 	default:
1989 		return KVM_MSR_EXIT_REASON_INVAL;
1990 	}
1991 }
1992 
1993 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1994 			      u32 exit_reason, u64 data,
1995 			      int (*completion)(struct kvm_vcpu *vcpu),
1996 			      int r)
1997 {
1998 	u64 msr_reason = kvm_msr_reason(r);
1999 
2000 	/* Check if the user wanted to know about this MSR fault */
2001 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2002 		return 0;
2003 
2004 	vcpu->run->exit_reason = exit_reason;
2005 	vcpu->run->msr.error = 0;
2006 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2007 	vcpu->run->msr.reason = msr_reason;
2008 	vcpu->run->msr.index = index;
2009 	vcpu->run->msr.data = data;
2010 	vcpu->arch.complete_userspace_io = completion;
2011 
2012 	return 1;
2013 }
2014 
2015 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2016 {
2017 	u32 ecx = kvm_rcx_read(vcpu);
2018 	u64 data;
2019 	int r;
2020 
2021 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2022 
2023 	if (!r) {
2024 		trace_kvm_msr_read(ecx, data);
2025 
2026 		kvm_rax_write(vcpu, data & -1u);
2027 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2028 	} else {
2029 		/* MSR read failed? See if we should ask user space */
2030 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2031 				       complete_fast_rdmsr, r))
2032 			return 0;
2033 		trace_kvm_msr_read_ex(ecx);
2034 	}
2035 
2036 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2039 
2040 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2041 {
2042 	u32 ecx = kvm_rcx_read(vcpu);
2043 	u64 data = kvm_read_edx_eax(vcpu);
2044 	int r;
2045 
2046 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2047 
2048 	if (!r) {
2049 		trace_kvm_msr_write(ecx, data);
2050 	} else {
2051 		/* MSR write failed? See if we should ask user space */
2052 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2053 				       complete_fast_msr_access, r))
2054 			return 0;
2055 		/* Signal all other negative errors to userspace */
2056 		if (r < 0)
2057 			return r;
2058 		trace_kvm_msr_write_ex(ecx, data);
2059 	}
2060 
2061 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2064 
2065 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2066 {
2067 	return kvm_skip_emulated_instruction(vcpu);
2068 }
2069 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2070 
2071 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2072 {
2073 	/* Treat an INVD instruction as a NOP and just skip it. */
2074 	return kvm_emulate_as_nop(vcpu);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2077 
2078 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2079 {
2080 	kvm_queue_exception(vcpu, UD_VECTOR);
2081 	return 1;
2082 }
2083 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2084 
2085 
2086 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2087 {
2088 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2089 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2090 		return kvm_handle_invalid_op(vcpu);
2091 
2092 	pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn);
2093 	return kvm_emulate_as_nop(vcpu);
2094 }
2095 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2096 {
2097 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2100 
2101 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2102 {
2103 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2104 }
2105 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2106 
2107 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2108 {
2109 	xfer_to_guest_mode_prepare();
2110 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2111 		xfer_to_guest_mode_work_pending();
2112 }
2113 
2114 /*
2115  * The fast path for frequent and performance sensitive wrmsr emulation,
2116  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2117  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2118  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2119  * other cases which must be called after interrupts are enabled on the host.
2120  */
2121 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2122 {
2123 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2124 		return 1;
2125 
2126 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2127 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2128 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2129 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2130 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2131 
2132 	return 1;
2133 }
2134 
2135 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2136 {
2137 	if (!kvm_can_use_hv_timer(vcpu))
2138 		return 1;
2139 
2140 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2141 	return 0;
2142 }
2143 
2144 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2145 {
2146 	u32 msr = kvm_rcx_read(vcpu);
2147 	u64 data;
2148 	fastpath_t ret = EXIT_FASTPATH_NONE;
2149 
2150 	switch (msr) {
2151 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2152 		data = kvm_read_edx_eax(vcpu);
2153 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2154 			kvm_skip_emulated_instruction(vcpu);
2155 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2156 		}
2157 		break;
2158 	case MSR_IA32_TSC_DEADLINE:
2159 		data = kvm_read_edx_eax(vcpu);
2160 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2161 			kvm_skip_emulated_instruction(vcpu);
2162 			ret = EXIT_FASTPATH_REENTER_GUEST;
2163 		}
2164 		break;
2165 	default:
2166 		break;
2167 	}
2168 
2169 	if (ret != EXIT_FASTPATH_NONE)
2170 		trace_kvm_msr_write(msr, data);
2171 
2172 	return ret;
2173 }
2174 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2175 
2176 /*
2177  * Adapt set_msr() to msr_io()'s calling convention
2178  */
2179 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2180 {
2181 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2182 }
2183 
2184 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2185 {
2186 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2187 }
2188 
2189 #ifdef CONFIG_X86_64
2190 struct pvclock_clock {
2191 	int vclock_mode;
2192 	u64 cycle_last;
2193 	u64 mask;
2194 	u32 mult;
2195 	u32 shift;
2196 	u64 base_cycles;
2197 	u64 offset;
2198 };
2199 
2200 struct pvclock_gtod_data {
2201 	seqcount_t	seq;
2202 
2203 	struct pvclock_clock clock; /* extract of a clocksource struct */
2204 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2205 
2206 	ktime_t		offs_boot;
2207 	u64		wall_time_sec;
2208 };
2209 
2210 static struct pvclock_gtod_data pvclock_gtod_data;
2211 
2212 static void update_pvclock_gtod(struct timekeeper *tk)
2213 {
2214 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2215 
2216 	write_seqcount_begin(&vdata->seq);
2217 
2218 	/* copy pvclock gtod data */
2219 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2220 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2221 	vdata->clock.mask		= tk->tkr_mono.mask;
2222 	vdata->clock.mult		= tk->tkr_mono.mult;
2223 	vdata->clock.shift		= tk->tkr_mono.shift;
2224 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2225 	vdata->clock.offset		= tk->tkr_mono.base;
2226 
2227 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2228 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2229 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2230 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2231 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2232 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2233 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2234 
2235 	vdata->wall_time_sec            = tk->xtime_sec;
2236 
2237 	vdata->offs_boot		= tk->offs_boot;
2238 
2239 	write_seqcount_end(&vdata->seq);
2240 }
2241 
2242 static s64 get_kvmclock_base_ns(void)
2243 {
2244 	/* Count up from boot time, but with the frequency of the raw clock.  */
2245 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2246 }
2247 #else
2248 static s64 get_kvmclock_base_ns(void)
2249 {
2250 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2251 	return ktime_get_boottime_ns();
2252 }
2253 #endif
2254 
2255 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2256 {
2257 	int version;
2258 	int r;
2259 	struct pvclock_wall_clock wc;
2260 	u32 wc_sec_hi;
2261 	u64 wall_nsec;
2262 
2263 	if (!wall_clock)
2264 		return;
2265 
2266 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2267 	if (r)
2268 		return;
2269 
2270 	if (version & 1)
2271 		++version;  /* first time write, random junk */
2272 
2273 	++version;
2274 
2275 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2276 		return;
2277 
2278 	/*
2279 	 * The guest calculates current wall clock time by adding
2280 	 * system time (updated by kvm_guest_time_update below) to the
2281 	 * wall clock specified here.  We do the reverse here.
2282 	 */
2283 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2284 
2285 	wc.nsec = do_div(wall_nsec, 1000000000);
2286 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2287 	wc.version = version;
2288 
2289 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2290 
2291 	if (sec_hi_ofs) {
2292 		wc_sec_hi = wall_nsec >> 32;
2293 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2294 				&wc_sec_hi, sizeof(wc_sec_hi));
2295 	}
2296 
2297 	version++;
2298 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2299 }
2300 
2301 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2302 				  bool old_msr, bool host_initiated)
2303 {
2304 	struct kvm_arch *ka = &vcpu->kvm->arch;
2305 
2306 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2307 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2308 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2309 
2310 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2311 	}
2312 
2313 	vcpu->arch.time = system_time;
2314 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2315 
2316 	/* we verify if the enable bit is set... */
2317 	if (system_time & 1) {
2318 		kvm_gpc_activate(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2319 				 KVM_HOST_USES_PFN, system_time & ~1ULL,
2320 				 sizeof(struct pvclock_vcpu_time_info));
2321 	} else {
2322 		kvm_gpc_deactivate(vcpu->kvm, &vcpu->arch.pv_time);
2323 	}
2324 
2325 	return;
2326 }
2327 
2328 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2329 {
2330 	do_shl32_div32(dividend, divisor);
2331 	return dividend;
2332 }
2333 
2334 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2335 			       s8 *pshift, u32 *pmultiplier)
2336 {
2337 	uint64_t scaled64;
2338 	int32_t  shift = 0;
2339 	uint64_t tps64;
2340 	uint32_t tps32;
2341 
2342 	tps64 = base_hz;
2343 	scaled64 = scaled_hz;
2344 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2345 		tps64 >>= 1;
2346 		shift--;
2347 	}
2348 
2349 	tps32 = (uint32_t)tps64;
2350 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2351 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2352 			scaled64 >>= 1;
2353 		else
2354 			tps32 <<= 1;
2355 		shift++;
2356 	}
2357 
2358 	*pshift = shift;
2359 	*pmultiplier = div_frac(scaled64, tps32);
2360 }
2361 
2362 #ifdef CONFIG_X86_64
2363 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2364 #endif
2365 
2366 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2367 static unsigned long max_tsc_khz;
2368 
2369 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2370 {
2371 	u64 v = (u64)khz * (1000000 + ppm);
2372 	do_div(v, 1000000);
2373 	return v;
2374 }
2375 
2376 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2377 
2378 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2379 {
2380 	u64 ratio;
2381 
2382 	/* Guest TSC same frequency as host TSC? */
2383 	if (!scale) {
2384 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2385 		return 0;
2386 	}
2387 
2388 	/* TSC scaling supported? */
2389 	if (!kvm_caps.has_tsc_control) {
2390 		if (user_tsc_khz > tsc_khz) {
2391 			vcpu->arch.tsc_catchup = 1;
2392 			vcpu->arch.tsc_always_catchup = 1;
2393 			return 0;
2394 		} else {
2395 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2396 			return -1;
2397 		}
2398 	}
2399 
2400 	/* TSC scaling required  - calculate ratio */
2401 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2402 				user_tsc_khz, tsc_khz);
2403 
2404 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2405 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2406 			            user_tsc_khz);
2407 		return -1;
2408 	}
2409 
2410 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2411 	return 0;
2412 }
2413 
2414 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2415 {
2416 	u32 thresh_lo, thresh_hi;
2417 	int use_scaling = 0;
2418 
2419 	/* tsc_khz can be zero if TSC calibration fails */
2420 	if (user_tsc_khz == 0) {
2421 		/* set tsc_scaling_ratio to a safe value */
2422 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2423 		return -1;
2424 	}
2425 
2426 	/* Compute a scale to convert nanoseconds in TSC cycles */
2427 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2428 			   &vcpu->arch.virtual_tsc_shift,
2429 			   &vcpu->arch.virtual_tsc_mult);
2430 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2431 
2432 	/*
2433 	 * Compute the variation in TSC rate which is acceptable
2434 	 * within the range of tolerance and decide if the
2435 	 * rate being applied is within that bounds of the hardware
2436 	 * rate.  If so, no scaling or compensation need be done.
2437 	 */
2438 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2439 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2440 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2441 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2442 		use_scaling = 1;
2443 	}
2444 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2445 }
2446 
2447 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2448 {
2449 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2450 				      vcpu->arch.virtual_tsc_mult,
2451 				      vcpu->arch.virtual_tsc_shift);
2452 	tsc += vcpu->arch.this_tsc_write;
2453 	return tsc;
2454 }
2455 
2456 #ifdef CONFIG_X86_64
2457 static inline int gtod_is_based_on_tsc(int mode)
2458 {
2459 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2460 }
2461 #endif
2462 
2463 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2464 {
2465 #ifdef CONFIG_X86_64
2466 	bool vcpus_matched;
2467 	struct kvm_arch *ka = &vcpu->kvm->arch;
2468 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2469 
2470 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2471 			 atomic_read(&vcpu->kvm->online_vcpus));
2472 
2473 	/*
2474 	 * Once the masterclock is enabled, always perform request in
2475 	 * order to update it.
2476 	 *
2477 	 * In order to enable masterclock, the host clocksource must be TSC
2478 	 * and the vcpus need to have matched TSCs.  When that happens,
2479 	 * perform request to enable masterclock.
2480 	 */
2481 	if (ka->use_master_clock ||
2482 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2483 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2484 
2485 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2486 			    atomic_read(&vcpu->kvm->online_vcpus),
2487 		            ka->use_master_clock, gtod->clock.vclock_mode);
2488 #endif
2489 }
2490 
2491 /*
2492  * Multiply tsc by a fixed point number represented by ratio.
2493  *
2494  * The most significant 64-N bits (mult) of ratio represent the
2495  * integral part of the fixed point number; the remaining N bits
2496  * (frac) represent the fractional part, ie. ratio represents a fixed
2497  * point number (mult + frac * 2^(-N)).
2498  *
2499  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2500  */
2501 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2502 {
2503 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2504 }
2505 
2506 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2507 {
2508 	u64 _tsc = tsc;
2509 
2510 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2511 		_tsc = __scale_tsc(ratio, tsc);
2512 
2513 	return _tsc;
2514 }
2515 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2516 
2517 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2518 {
2519 	u64 tsc;
2520 
2521 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2522 
2523 	return target_tsc - tsc;
2524 }
2525 
2526 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2527 {
2528 	return vcpu->arch.l1_tsc_offset +
2529 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2530 }
2531 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2532 
2533 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2534 {
2535 	u64 nested_offset;
2536 
2537 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2538 		nested_offset = l1_offset;
2539 	else
2540 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2541 						kvm_caps.tsc_scaling_ratio_frac_bits);
2542 
2543 	nested_offset += l2_offset;
2544 	return nested_offset;
2545 }
2546 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2547 
2548 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2549 {
2550 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2551 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2552 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2553 
2554 	return l1_multiplier;
2555 }
2556 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2557 
2558 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2559 {
2560 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2561 				   vcpu->arch.l1_tsc_offset,
2562 				   l1_offset);
2563 
2564 	vcpu->arch.l1_tsc_offset = l1_offset;
2565 
2566 	/*
2567 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2568 	 * according to the spec this should set L1's TSC (as opposed to
2569 	 * setting L1's offset for L2).
2570 	 */
2571 	if (is_guest_mode(vcpu))
2572 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2573 			l1_offset,
2574 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2575 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2576 	else
2577 		vcpu->arch.tsc_offset = l1_offset;
2578 
2579 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2580 }
2581 
2582 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2583 {
2584 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2585 
2586 	/* Userspace is changing the multiplier while L2 is active */
2587 	if (is_guest_mode(vcpu))
2588 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2589 			l1_multiplier,
2590 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2591 	else
2592 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2593 
2594 	if (kvm_caps.has_tsc_control)
2595 		static_call(kvm_x86_write_tsc_multiplier)(
2596 			vcpu, vcpu->arch.tsc_scaling_ratio);
2597 }
2598 
2599 static inline bool kvm_check_tsc_unstable(void)
2600 {
2601 #ifdef CONFIG_X86_64
2602 	/*
2603 	 * TSC is marked unstable when we're running on Hyper-V,
2604 	 * 'TSC page' clocksource is good.
2605 	 */
2606 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2607 		return false;
2608 #endif
2609 	return check_tsc_unstable();
2610 }
2611 
2612 /*
2613  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2614  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2615  * participates in.
2616  */
2617 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2618 				  u64 ns, bool matched)
2619 {
2620 	struct kvm *kvm = vcpu->kvm;
2621 
2622 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2623 
2624 	/*
2625 	 * We also track th most recent recorded KHZ, write and time to
2626 	 * allow the matching interval to be extended at each write.
2627 	 */
2628 	kvm->arch.last_tsc_nsec = ns;
2629 	kvm->arch.last_tsc_write = tsc;
2630 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2631 	kvm->arch.last_tsc_offset = offset;
2632 
2633 	vcpu->arch.last_guest_tsc = tsc;
2634 
2635 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2636 
2637 	if (!matched) {
2638 		/*
2639 		 * We split periods of matched TSC writes into generations.
2640 		 * For each generation, we track the original measured
2641 		 * nanosecond time, offset, and write, so if TSCs are in
2642 		 * sync, we can match exact offset, and if not, we can match
2643 		 * exact software computation in compute_guest_tsc()
2644 		 *
2645 		 * These values are tracked in kvm->arch.cur_xxx variables.
2646 		 */
2647 		kvm->arch.cur_tsc_generation++;
2648 		kvm->arch.cur_tsc_nsec = ns;
2649 		kvm->arch.cur_tsc_write = tsc;
2650 		kvm->arch.cur_tsc_offset = offset;
2651 		kvm->arch.nr_vcpus_matched_tsc = 0;
2652 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2653 		kvm->arch.nr_vcpus_matched_tsc++;
2654 	}
2655 
2656 	/* Keep track of which generation this VCPU has synchronized to */
2657 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2658 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2659 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2660 
2661 	kvm_track_tsc_matching(vcpu);
2662 }
2663 
2664 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2665 {
2666 	struct kvm *kvm = vcpu->kvm;
2667 	u64 offset, ns, elapsed;
2668 	unsigned long flags;
2669 	bool matched = false;
2670 	bool synchronizing = false;
2671 
2672 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2673 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2674 	ns = get_kvmclock_base_ns();
2675 	elapsed = ns - kvm->arch.last_tsc_nsec;
2676 
2677 	if (vcpu->arch.virtual_tsc_khz) {
2678 		if (data == 0) {
2679 			/*
2680 			 * detection of vcpu initialization -- need to sync
2681 			 * with other vCPUs. This particularly helps to keep
2682 			 * kvm_clock stable after CPU hotplug
2683 			 */
2684 			synchronizing = true;
2685 		} else {
2686 			u64 tsc_exp = kvm->arch.last_tsc_write +
2687 						nsec_to_cycles(vcpu, elapsed);
2688 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2689 			/*
2690 			 * Special case: TSC write with a small delta (1 second)
2691 			 * of virtual cycle time against real time is
2692 			 * interpreted as an attempt to synchronize the CPU.
2693 			 */
2694 			synchronizing = data < tsc_exp + tsc_hz &&
2695 					data + tsc_hz > tsc_exp;
2696 		}
2697 	}
2698 
2699 	/*
2700 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2701 	 * TSC, we add elapsed time in this computation.  We could let the
2702 	 * compensation code attempt to catch up if we fall behind, but
2703 	 * it's better to try to match offsets from the beginning.
2704          */
2705 	if (synchronizing &&
2706 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2707 		if (!kvm_check_tsc_unstable()) {
2708 			offset = kvm->arch.cur_tsc_offset;
2709 		} else {
2710 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2711 			data += delta;
2712 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2713 		}
2714 		matched = true;
2715 	}
2716 
2717 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2718 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2719 }
2720 
2721 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2722 					   s64 adjustment)
2723 {
2724 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2725 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2726 }
2727 
2728 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2729 {
2730 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2731 		WARN_ON(adjustment < 0);
2732 	adjustment = kvm_scale_tsc((u64) adjustment,
2733 				   vcpu->arch.l1_tsc_scaling_ratio);
2734 	adjust_tsc_offset_guest(vcpu, adjustment);
2735 }
2736 
2737 #ifdef CONFIG_X86_64
2738 
2739 static u64 read_tsc(void)
2740 {
2741 	u64 ret = (u64)rdtsc_ordered();
2742 	u64 last = pvclock_gtod_data.clock.cycle_last;
2743 
2744 	if (likely(ret >= last))
2745 		return ret;
2746 
2747 	/*
2748 	 * GCC likes to generate cmov here, but this branch is extremely
2749 	 * predictable (it's just a function of time and the likely is
2750 	 * very likely) and there's a data dependence, so force GCC
2751 	 * to generate a branch instead.  I don't barrier() because
2752 	 * we don't actually need a barrier, and if this function
2753 	 * ever gets inlined it will generate worse code.
2754 	 */
2755 	asm volatile ("");
2756 	return last;
2757 }
2758 
2759 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2760 			  int *mode)
2761 {
2762 	long v;
2763 	u64 tsc_pg_val;
2764 
2765 	switch (clock->vclock_mode) {
2766 	case VDSO_CLOCKMODE_HVCLOCK:
2767 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2768 						  tsc_timestamp);
2769 		if (tsc_pg_val != U64_MAX) {
2770 			/* TSC page valid */
2771 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2772 			v = (tsc_pg_val - clock->cycle_last) &
2773 				clock->mask;
2774 		} else {
2775 			/* TSC page invalid */
2776 			*mode = VDSO_CLOCKMODE_NONE;
2777 		}
2778 		break;
2779 	case VDSO_CLOCKMODE_TSC:
2780 		*mode = VDSO_CLOCKMODE_TSC;
2781 		*tsc_timestamp = read_tsc();
2782 		v = (*tsc_timestamp - clock->cycle_last) &
2783 			clock->mask;
2784 		break;
2785 	default:
2786 		*mode = VDSO_CLOCKMODE_NONE;
2787 	}
2788 
2789 	if (*mode == VDSO_CLOCKMODE_NONE)
2790 		*tsc_timestamp = v = 0;
2791 
2792 	return v * clock->mult;
2793 }
2794 
2795 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2796 {
2797 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2798 	unsigned long seq;
2799 	int mode;
2800 	u64 ns;
2801 
2802 	do {
2803 		seq = read_seqcount_begin(&gtod->seq);
2804 		ns = gtod->raw_clock.base_cycles;
2805 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2806 		ns >>= gtod->raw_clock.shift;
2807 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2808 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2809 	*t = ns;
2810 
2811 	return mode;
2812 }
2813 
2814 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2815 {
2816 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2817 	unsigned long seq;
2818 	int mode;
2819 	u64 ns;
2820 
2821 	do {
2822 		seq = read_seqcount_begin(&gtod->seq);
2823 		ts->tv_sec = gtod->wall_time_sec;
2824 		ns = gtod->clock.base_cycles;
2825 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2826 		ns >>= gtod->clock.shift;
2827 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2828 
2829 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2830 	ts->tv_nsec = ns;
2831 
2832 	return mode;
2833 }
2834 
2835 /* returns true if host is using TSC based clocksource */
2836 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2837 {
2838 	/* checked again under seqlock below */
2839 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2840 		return false;
2841 
2842 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2843 						      tsc_timestamp));
2844 }
2845 
2846 /* returns true if host is using TSC based clocksource */
2847 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2848 					   u64 *tsc_timestamp)
2849 {
2850 	/* checked again under seqlock below */
2851 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2852 		return false;
2853 
2854 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2855 }
2856 #endif
2857 
2858 /*
2859  *
2860  * Assuming a stable TSC across physical CPUS, and a stable TSC
2861  * across virtual CPUs, the following condition is possible.
2862  * Each numbered line represents an event visible to both
2863  * CPUs at the next numbered event.
2864  *
2865  * "timespecX" represents host monotonic time. "tscX" represents
2866  * RDTSC value.
2867  *
2868  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2869  *
2870  * 1.  read timespec0,tsc0
2871  * 2.					| timespec1 = timespec0 + N
2872  * 					| tsc1 = tsc0 + M
2873  * 3. transition to guest		| transition to guest
2874  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2875  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2876  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2877  *
2878  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2879  *
2880  * 	- ret0 < ret1
2881  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2882  *		...
2883  *	- 0 < N - M => M < N
2884  *
2885  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2886  * always the case (the difference between two distinct xtime instances
2887  * might be smaller then the difference between corresponding TSC reads,
2888  * when updating guest vcpus pvclock areas).
2889  *
2890  * To avoid that problem, do not allow visibility of distinct
2891  * system_timestamp/tsc_timestamp values simultaneously: use a master
2892  * copy of host monotonic time values. Update that master copy
2893  * in lockstep.
2894  *
2895  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2896  *
2897  */
2898 
2899 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2900 {
2901 #ifdef CONFIG_X86_64
2902 	struct kvm_arch *ka = &kvm->arch;
2903 	int vclock_mode;
2904 	bool host_tsc_clocksource, vcpus_matched;
2905 
2906 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2907 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2908 			atomic_read(&kvm->online_vcpus));
2909 
2910 	/*
2911 	 * If the host uses TSC clock, then passthrough TSC as stable
2912 	 * to the guest.
2913 	 */
2914 	host_tsc_clocksource = kvm_get_time_and_clockread(
2915 					&ka->master_kernel_ns,
2916 					&ka->master_cycle_now);
2917 
2918 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2919 				&& !ka->backwards_tsc_observed
2920 				&& !ka->boot_vcpu_runs_old_kvmclock;
2921 
2922 	if (ka->use_master_clock)
2923 		atomic_set(&kvm_guest_has_master_clock, 1);
2924 
2925 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2926 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2927 					vcpus_matched);
2928 #endif
2929 }
2930 
2931 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2932 {
2933 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2934 }
2935 
2936 static void __kvm_start_pvclock_update(struct kvm *kvm)
2937 {
2938 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2939 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2940 }
2941 
2942 static void kvm_start_pvclock_update(struct kvm *kvm)
2943 {
2944 	kvm_make_mclock_inprogress_request(kvm);
2945 
2946 	/* no guest entries from this point */
2947 	__kvm_start_pvclock_update(kvm);
2948 }
2949 
2950 static void kvm_end_pvclock_update(struct kvm *kvm)
2951 {
2952 	struct kvm_arch *ka = &kvm->arch;
2953 	struct kvm_vcpu *vcpu;
2954 	unsigned long i;
2955 
2956 	write_seqcount_end(&ka->pvclock_sc);
2957 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2958 	kvm_for_each_vcpu(i, vcpu, kvm)
2959 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2960 
2961 	/* guest entries allowed */
2962 	kvm_for_each_vcpu(i, vcpu, kvm)
2963 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2964 }
2965 
2966 static void kvm_update_masterclock(struct kvm *kvm)
2967 {
2968 	kvm_hv_request_tsc_page_update(kvm);
2969 	kvm_start_pvclock_update(kvm);
2970 	pvclock_update_vm_gtod_copy(kvm);
2971 	kvm_end_pvclock_update(kvm);
2972 }
2973 
2974 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2975 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2976 {
2977 	struct kvm_arch *ka = &kvm->arch;
2978 	struct pvclock_vcpu_time_info hv_clock;
2979 
2980 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2981 	get_cpu();
2982 
2983 	data->flags = 0;
2984 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2985 #ifdef CONFIG_X86_64
2986 		struct timespec64 ts;
2987 
2988 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2989 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2990 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2991 		} else
2992 #endif
2993 		data->host_tsc = rdtsc();
2994 
2995 		data->flags |= KVM_CLOCK_TSC_STABLE;
2996 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2997 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2998 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2999 				   &hv_clock.tsc_shift,
3000 				   &hv_clock.tsc_to_system_mul);
3001 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3002 	} else {
3003 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3004 	}
3005 
3006 	put_cpu();
3007 }
3008 
3009 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3010 {
3011 	struct kvm_arch *ka = &kvm->arch;
3012 	unsigned seq;
3013 
3014 	do {
3015 		seq = read_seqcount_begin(&ka->pvclock_sc);
3016 		__get_kvmclock(kvm, data);
3017 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3018 }
3019 
3020 u64 get_kvmclock_ns(struct kvm *kvm)
3021 {
3022 	struct kvm_clock_data data;
3023 
3024 	get_kvmclock(kvm, &data);
3025 	return data.clock;
3026 }
3027 
3028 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3029 				    struct gfn_to_pfn_cache *gpc,
3030 				    unsigned int offset)
3031 {
3032 	struct kvm_vcpu_arch *vcpu = &v->arch;
3033 	struct pvclock_vcpu_time_info *guest_hv_clock;
3034 	unsigned long flags;
3035 
3036 	read_lock_irqsave(&gpc->lock, flags);
3037 	while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3038 					   offset + sizeof(*guest_hv_clock))) {
3039 		read_unlock_irqrestore(&gpc->lock, flags);
3040 
3041 		if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3042 						 offset + sizeof(*guest_hv_clock)))
3043 			return;
3044 
3045 		read_lock_irqsave(&gpc->lock, flags);
3046 	}
3047 
3048 	guest_hv_clock = (void *)(gpc->khva + offset);
3049 
3050 	/*
3051 	 * This VCPU is paused, but it's legal for a guest to read another
3052 	 * VCPU's kvmclock, so we really have to follow the specification where
3053 	 * it says that version is odd if data is being modified, and even after
3054 	 * it is consistent.
3055 	 */
3056 
3057 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3058 	smp_wmb();
3059 
3060 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3061 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3062 
3063 	if (vcpu->pvclock_set_guest_stopped_request) {
3064 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3065 		vcpu->pvclock_set_guest_stopped_request = false;
3066 	}
3067 
3068 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3069 	smp_wmb();
3070 
3071 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3072 
3073 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3074 	read_unlock_irqrestore(&gpc->lock, flags);
3075 
3076 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3077 }
3078 
3079 static int kvm_guest_time_update(struct kvm_vcpu *v)
3080 {
3081 	unsigned long flags, tgt_tsc_khz;
3082 	unsigned seq;
3083 	struct kvm_vcpu_arch *vcpu = &v->arch;
3084 	struct kvm_arch *ka = &v->kvm->arch;
3085 	s64 kernel_ns;
3086 	u64 tsc_timestamp, host_tsc;
3087 	u8 pvclock_flags;
3088 	bool use_master_clock;
3089 
3090 	kernel_ns = 0;
3091 	host_tsc = 0;
3092 
3093 	/*
3094 	 * If the host uses TSC clock, then passthrough TSC as stable
3095 	 * to the guest.
3096 	 */
3097 	do {
3098 		seq = read_seqcount_begin(&ka->pvclock_sc);
3099 		use_master_clock = ka->use_master_clock;
3100 		if (use_master_clock) {
3101 			host_tsc = ka->master_cycle_now;
3102 			kernel_ns = ka->master_kernel_ns;
3103 		}
3104 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3105 
3106 	/* Keep irq disabled to prevent changes to the clock */
3107 	local_irq_save(flags);
3108 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3109 	if (unlikely(tgt_tsc_khz == 0)) {
3110 		local_irq_restore(flags);
3111 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3112 		return 1;
3113 	}
3114 	if (!use_master_clock) {
3115 		host_tsc = rdtsc();
3116 		kernel_ns = get_kvmclock_base_ns();
3117 	}
3118 
3119 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3120 
3121 	/*
3122 	 * We may have to catch up the TSC to match elapsed wall clock
3123 	 * time for two reasons, even if kvmclock is used.
3124 	 *   1) CPU could have been running below the maximum TSC rate
3125 	 *   2) Broken TSC compensation resets the base at each VCPU
3126 	 *      entry to avoid unknown leaps of TSC even when running
3127 	 *      again on the same CPU.  This may cause apparent elapsed
3128 	 *      time to disappear, and the guest to stand still or run
3129 	 *	very slowly.
3130 	 */
3131 	if (vcpu->tsc_catchup) {
3132 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3133 		if (tsc > tsc_timestamp) {
3134 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3135 			tsc_timestamp = tsc;
3136 		}
3137 	}
3138 
3139 	local_irq_restore(flags);
3140 
3141 	/* With all the info we got, fill in the values */
3142 
3143 	if (kvm_caps.has_tsc_control)
3144 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3145 					    v->arch.l1_tsc_scaling_ratio);
3146 
3147 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3148 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3149 				   &vcpu->hv_clock.tsc_shift,
3150 				   &vcpu->hv_clock.tsc_to_system_mul);
3151 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3152 	}
3153 
3154 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3155 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3156 	vcpu->last_guest_tsc = tsc_timestamp;
3157 
3158 	/* If the host uses TSC clocksource, then it is stable */
3159 	pvclock_flags = 0;
3160 	if (use_master_clock)
3161 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3162 
3163 	vcpu->hv_clock.flags = pvclock_flags;
3164 
3165 	if (vcpu->pv_time.active)
3166 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3167 	if (vcpu->xen.vcpu_info_cache.active)
3168 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3169 					offsetof(struct compat_vcpu_info, time));
3170 	if (vcpu->xen.vcpu_time_info_cache.active)
3171 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3172 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3173 	return 0;
3174 }
3175 
3176 /*
3177  * kvmclock updates which are isolated to a given vcpu, such as
3178  * vcpu->cpu migration, should not allow system_timestamp from
3179  * the rest of the vcpus to remain static. Otherwise ntp frequency
3180  * correction applies to one vcpu's system_timestamp but not
3181  * the others.
3182  *
3183  * So in those cases, request a kvmclock update for all vcpus.
3184  * We need to rate-limit these requests though, as they can
3185  * considerably slow guests that have a large number of vcpus.
3186  * The time for a remote vcpu to update its kvmclock is bound
3187  * by the delay we use to rate-limit the updates.
3188  */
3189 
3190 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3191 
3192 static void kvmclock_update_fn(struct work_struct *work)
3193 {
3194 	unsigned long i;
3195 	struct delayed_work *dwork = to_delayed_work(work);
3196 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3197 					   kvmclock_update_work);
3198 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3199 	struct kvm_vcpu *vcpu;
3200 
3201 	kvm_for_each_vcpu(i, vcpu, kvm) {
3202 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3203 		kvm_vcpu_kick(vcpu);
3204 	}
3205 }
3206 
3207 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3208 {
3209 	struct kvm *kvm = v->kvm;
3210 
3211 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3212 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3213 					KVMCLOCK_UPDATE_DELAY);
3214 }
3215 
3216 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3217 
3218 static void kvmclock_sync_fn(struct work_struct *work)
3219 {
3220 	struct delayed_work *dwork = to_delayed_work(work);
3221 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3222 					   kvmclock_sync_work);
3223 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3224 
3225 	if (!kvmclock_periodic_sync)
3226 		return;
3227 
3228 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3229 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3230 					KVMCLOCK_SYNC_PERIOD);
3231 }
3232 
3233 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3234 static bool is_mci_control_msr(u32 msr)
3235 {
3236 	return (msr & 3) == 0;
3237 }
3238 static bool is_mci_status_msr(u32 msr)
3239 {
3240 	return (msr & 3) == 1;
3241 }
3242 
3243 /*
3244  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3245  */
3246 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3247 {
3248 	/* McStatusWrEn enabled? */
3249 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3250 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3251 
3252 	return false;
3253 }
3254 
3255 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3256 {
3257 	u64 mcg_cap = vcpu->arch.mcg_cap;
3258 	unsigned bank_num = mcg_cap & 0xff;
3259 	u32 msr = msr_info->index;
3260 	u64 data = msr_info->data;
3261 	u32 offset, last_msr;
3262 
3263 	switch (msr) {
3264 	case MSR_IA32_MCG_STATUS:
3265 		vcpu->arch.mcg_status = data;
3266 		break;
3267 	case MSR_IA32_MCG_CTL:
3268 		if (!(mcg_cap & MCG_CTL_P) &&
3269 		    (data || !msr_info->host_initiated))
3270 			return 1;
3271 		if (data != 0 && data != ~(u64)0)
3272 			return 1;
3273 		vcpu->arch.mcg_ctl = data;
3274 		break;
3275 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3276 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3277 		if (msr > last_msr)
3278 			return 1;
3279 
3280 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3281 			return 1;
3282 		/* An attempt to write a 1 to a reserved bit raises #GP */
3283 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3284 			return 1;
3285 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3286 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3287 		vcpu->arch.mci_ctl2_banks[offset] = data;
3288 		break;
3289 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3290 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3291 		if (msr > last_msr)
3292 			return 1;
3293 
3294 		/*
3295 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3296 		 * values are architecturally undefined.  But, some Linux
3297 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3298 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3299 		 * other bits in order to avoid an uncaught #GP in the guest.
3300 		 *
3301 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3302 		 * single-bit ECC data errors.
3303 		 */
3304 		if (is_mci_control_msr(msr) &&
3305 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3306 			return 1;
3307 
3308 		/*
3309 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3310 		 * AMD-based CPUs allow non-zero values, but if and only if
3311 		 * HWCR[McStatusWrEn] is set.
3312 		 */
3313 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3314 		    data != 0 && !can_set_mci_status(vcpu))
3315 			return 1;
3316 
3317 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3318 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3319 		vcpu->arch.mce_banks[offset] = data;
3320 		break;
3321 	default:
3322 		return 1;
3323 	}
3324 	return 0;
3325 }
3326 
3327 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3328 {
3329 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3330 
3331 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3332 }
3333 
3334 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3335 {
3336 	gpa_t gpa = data & ~0x3f;
3337 
3338 	/* Bits 4:5 are reserved, Should be zero */
3339 	if (data & 0x30)
3340 		return 1;
3341 
3342 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3343 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3344 		return 1;
3345 
3346 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3347 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3348 		return 1;
3349 
3350 	if (!lapic_in_kernel(vcpu))
3351 		return data ? 1 : 0;
3352 
3353 	vcpu->arch.apf.msr_en_val = data;
3354 
3355 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3356 		kvm_clear_async_pf_completion_queue(vcpu);
3357 		kvm_async_pf_hash_reset(vcpu);
3358 		return 0;
3359 	}
3360 
3361 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3362 					sizeof(u64)))
3363 		return 1;
3364 
3365 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3366 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3367 
3368 	kvm_async_pf_wakeup_all(vcpu);
3369 
3370 	return 0;
3371 }
3372 
3373 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3374 {
3375 	/* Bits 8-63 are reserved */
3376 	if (data >> 8)
3377 		return 1;
3378 
3379 	if (!lapic_in_kernel(vcpu))
3380 		return 1;
3381 
3382 	vcpu->arch.apf.msr_int_val = data;
3383 
3384 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3385 
3386 	return 0;
3387 }
3388 
3389 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3390 {
3391 	kvm_gpc_deactivate(vcpu->kvm, &vcpu->arch.pv_time);
3392 	vcpu->arch.time = 0;
3393 }
3394 
3395 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3396 {
3397 	++vcpu->stat.tlb_flush;
3398 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3399 }
3400 
3401 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3402 {
3403 	++vcpu->stat.tlb_flush;
3404 
3405 	if (!tdp_enabled) {
3406 		/*
3407 		 * A TLB flush on behalf of the guest is equivalent to
3408 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3409 		 * a forced sync of the shadow page tables.  Ensure all the
3410 		 * roots are synced and the guest TLB in hardware is clean.
3411 		 */
3412 		kvm_mmu_sync_roots(vcpu);
3413 		kvm_mmu_sync_prev_roots(vcpu);
3414 	}
3415 
3416 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3417 }
3418 
3419 
3420 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3421 {
3422 	++vcpu->stat.tlb_flush;
3423 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3424 }
3425 
3426 /*
3427  * Service "local" TLB flush requests, which are specific to the current MMU
3428  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3429  * TLB flushes that are targeted at an MMU context also need to be serviced
3430  * prior before nested VM-Enter/VM-Exit.
3431  */
3432 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3433 {
3434 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3435 		kvm_vcpu_flush_tlb_current(vcpu);
3436 
3437 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3438 		kvm_vcpu_flush_tlb_guest(vcpu);
3439 }
3440 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3441 
3442 static void record_steal_time(struct kvm_vcpu *vcpu)
3443 {
3444 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3445 	struct kvm_steal_time __user *st;
3446 	struct kvm_memslots *slots;
3447 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3448 	u64 steal;
3449 	u32 version;
3450 
3451 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3452 		kvm_xen_runstate_set_running(vcpu);
3453 		return;
3454 	}
3455 
3456 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3457 		return;
3458 
3459 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3460 		return;
3461 
3462 	slots = kvm_memslots(vcpu->kvm);
3463 
3464 	if (unlikely(slots->generation != ghc->generation ||
3465 		     gpa != ghc->gpa ||
3466 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3467 		/* We rely on the fact that it fits in a single page. */
3468 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3469 
3470 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3471 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3472 			return;
3473 	}
3474 
3475 	st = (struct kvm_steal_time __user *)ghc->hva;
3476 	/*
3477 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3478 	 * expensive IPIs.
3479 	 */
3480 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3481 		u8 st_preempted = 0;
3482 		int err = -EFAULT;
3483 
3484 		if (!user_access_begin(st, sizeof(*st)))
3485 			return;
3486 
3487 		asm volatile("1: xchgb %0, %2\n"
3488 			     "xor %1, %1\n"
3489 			     "2:\n"
3490 			     _ASM_EXTABLE_UA(1b, 2b)
3491 			     : "+q" (st_preempted),
3492 			       "+&r" (err),
3493 			       "+m" (st->preempted));
3494 		if (err)
3495 			goto out;
3496 
3497 		user_access_end();
3498 
3499 		vcpu->arch.st.preempted = 0;
3500 
3501 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3502 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3503 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3504 			kvm_vcpu_flush_tlb_guest(vcpu);
3505 
3506 		if (!user_access_begin(st, sizeof(*st)))
3507 			goto dirty;
3508 	} else {
3509 		if (!user_access_begin(st, sizeof(*st)))
3510 			return;
3511 
3512 		unsafe_put_user(0, &st->preempted, out);
3513 		vcpu->arch.st.preempted = 0;
3514 	}
3515 
3516 	unsafe_get_user(version, &st->version, out);
3517 	if (version & 1)
3518 		version += 1;  /* first time write, random junk */
3519 
3520 	version += 1;
3521 	unsafe_put_user(version, &st->version, out);
3522 
3523 	smp_wmb();
3524 
3525 	unsafe_get_user(steal, &st->steal, out);
3526 	steal += current->sched_info.run_delay -
3527 		vcpu->arch.st.last_steal;
3528 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3529 	unsafe_put_user(steal, &st->steal, out);
3530 
3531 	version += 1;
3532 	unsafe_put_user(version, &st->version, out);
3533 
3534  out:
3535 	user_access_end();
3536  dirty:
3537 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3538 }
3539 
3540 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3541 {
3542 	bool pr = false;
3543 	u32 msr = msr_info->index;
3544 	u64 data = msr_info->data;
3545 
3546 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3547 		return kvm_xen_write_hypercall_page(vcpu, data);
3548 
3549 	switch (msr) {
3550 	case MSR_AMD64_NB_CFG:
3551 	case MSR_IA32_UCODE_WRITE:
3552 	case MSR_VM_HSAVE_PA:
3553 	case MSR_AMD64_PATCH_LOADER:
3554 	case MSR_AMD64_BU_CFG2:
3555 	case MSR_AMD64_DC_CFG:
3556 	case MSR_F15H_EX_CFG:
3557 		break;
3558 
3559 	case MSR_IA32_UCODE_REV:
3560 		if (msr_info->host_initiated)
3561 			vcpu->arch.microcode_version = data;
3562 		break;
3563 	case MSR_IA32_ARCH_CAPABILITIES:
3564 		if (!msr_info->host_initiated)
3565 			return 1;
3566 		vcpu->arch.arch_capabilities = data;
3567 		break;
3568 	case MSR_IA32_PERF_CAPABILITIES: {
3569 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3570 
3571 		if (!msr_info->host_initiated)
3572 			return 1;
3573 		if (kvm_get_msr_feature(&msr_ent))
3574 			return 1;
3575 		if (data & ~msr_ent.data)
3576 			return 1;
3577 
3578 		vcpu->arch.perf_capabilities = data;
3579 		kvm_pmu_refresh(vcpu);
3580 		return 0;
3581 	}
3582 	case MSR_EFER:
3583 		return set_efer(vcpu, msr_info);
3584 	case MSR_K7_HWCR:
3585 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3586 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3587 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3588 
3589 		/* Handle McStatusWrEn */
3590 		if (data == BIT_ULL(18)) {
3591 			vcpu->arch.msr_hwcr = data;
3592 		} else if (data != 0) {
3593 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3594 				    data);
3595 			return 1;
3596 		}
3597 		break;
3598 	case MSR_FAM10H_MMIO_CONF_BASE:
3599 		if (data != 0) {
3600 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3601 				    "0x%llx\n", data);
3602 			return 1;
3603 		}
3604 		break;
3605 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3606 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3607 		return kvm_mtrr_set_msr(vcpu, msr, data);
3608 	case MSR_IA32_APICBASE:
3609 		return kvm_set_apic_base(vcpu, msr_info);
3610 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3611 		return kvm_x2apic_msr_write(vcpu, msr, data);
3612 	case MSR_IA32_TSC_DEADLINE:
3613 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3614 		break;
3615 	case MSR_IA32_TSC_ADJUST:
3616 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3617 			if (!msr_info->host_initiated) {
3618 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3619 				adjust_tsc_offset_guest(vcpu, adj);
3620 				/* Before back to guest, tsc_timestamp must be adjusted
3621 				 * as well, otherwise guest's percpu pvclock time could jump.
3622 				 */
3623 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3624 			}
3625 			vcpu->arch.ia32_tsc_adjust_msr = data;
3626 		}
3627 		break;
3628 	case MSR_IA32_MISC_ENABLE: {
3629 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3630 
3631 		if (!msr_info->host_initiated) {
3632 			/* RO bits */
3633 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3634 				return 1;
3635 
3636 			/* R bits, i.e. writes are ignored, but don't fault. */
3637 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3638 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3639 		}
3640 
3641 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3642 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3643 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3644 				return 1;
3645 			vcpu->arch.ia32_misc_enable_msr = data;
3646 			kvm_update_cpuid_runtime(vcpu);
3647 		} else {
3648 			vcpu->arch.ia32_misc_enable_msr = data;
3649 		}
3650 		break;
3651 	}
3652 	case MSR_IA32_SMBASE:
3653 		if (!msr_info->host_initiated)
3654 			return 1;
3655 		vcpu->arch.smbase = data;
3656 		break;
3657 	case MSR_IA32_POWER_CTL:
3658 		vcpu->arch.msr_ia32_power_ctl = data;
3659 		break;
3660 	case MSR_IA32_TSC:
3661 		if (msr_info->host_initiated) {
3662 			kvm_synchronize_tsc(vcpu, data);
3663 		} else {
3664 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3665 			adjust_tsc_offset_guest(vcpu, adj);
3666 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3667 		}
3668 		break;
3669 	case MSR_IA32_XSS:
3670 		if (!msr_info->host_initiated &&
3671 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3672 			return 1;
3673 		/*
3674 		 * KVM supports exposing PT to the guest, but does not support
3675 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3676 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3677 		 */
3678 		if (data & ~kvm_caps.supported_xss)
3679 			return 1;
3680 		vcpu->arch.ia32_xss = data;
3681 		kvm_update_cpuid_runtime(vcpu);
3682 		break;
3683 	case MSR_SMI_COUNT:
3684 		if (!msr_info->host_initiated)
3685 			return 1;
3686 		vcpu->arch.smi_count = data;
3687 		break;
3688 	case MSR_KVM_WALL_CLOCK_NEW:
3689 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3690 			return 1;
3691 
3692 		vcpu->kvm->arch.wall_clock = data;
3693 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3694 		break;
3695 	case MSR_KVM_WALL_CLOCK:
3696 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3697 			return 1;
3698 
3699 		vcpu->kvm->arch.wall_clock = data;
3700 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3701 		break;
3702 	case MSR_KVM_SYSTEM_TIME_NEW:
3703 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3704 			return 1;
3705 
3706 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3707 		break;
3708 	case MSR_KVM_SYSTEM_TIME:
3709 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3710 			return 1;
3711 
3712 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3713 		break;
3714 	case MSR_KVM_ASYNC_PF_EN:
3715 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3716 			return 1;
3717 
3718 		if (kvm_pv_enable_async_pf(vcpu, data))
3719 			return 1;
3720 		break;
3721 	case MSR_KVM_ASYNC_PF_INT:
3722 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3723 			return 1;
3724 
3725 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3726 			return 1;
3727 		break;
3728 	case MSR_KVM_ASYNC_PF_ACK:
3729 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3730 			return 1;
3731 		if (data & 0x1) {
3732 			vcpu->arch.apf.pageready_pending = false;
3733 			kvm_check_async_pf_completion(vcpu);
3734 		}
3735 		break;
3736 	case MSR_KVM_STEAL_TIME:
3737 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3738 			return 1;
3739 
3740 		if (unlikely(!sched_info_on()))
3741 			return 1;
3742 
3743 		if (data & KVM_STEAL_RESERVED_MASK)
3744 			return 1;
3745 
3746 		vcpu->arch.st.msr_val = data;
3747 
3748 		if (!(data & KVM_MSR_ENABLED))
3749 			break;
3750 
3751 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3752 
3753 		break;
3754 	case MSR_KVM_PV_EOI_EN:
3755 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3756 			return 1;
3757 
3758 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3759 			return 1;
3760 		break;
3761 
3762 	case MSR_KVM_POLL_CONTROL:
3763 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3764 			return 1;
3765 
3766 		/* only enable bit supported */
3767 		if (data & (-1ULL << 1))
3768 			return 1;
3769 
3770 		vcpu->arch.msr_kvm_poll_control = data;
3771 		break;
3772 
3773 	case MSR_IA32_MCG_CTL:
3774 	case MSR_IA32_MCG_STATUS:
3775 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3776 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3777 		return set_msr_mce(vcpu, msr_info);
3778 
3779 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3780 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3781 		pr = true;
3782 		fallthrough;
3783 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3784 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3785 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3786 			return kvm_pmu_set_msr(vcpu, msr_info);
3787 
3788 		if (pr || data != 0)
3789 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3790 				    "0x%x data 0x%llx\n", msr, data);
3791 		break;
3792 	case MSR_K7_CLK_CTL:
3793 		/*
3794 		 * Ignore all writes to this no longer documented MSR.
3795 		 * Writes are only relevant for old K7 processors,
3796 		 * all pre-dating SVM, but a recommended workaround from
3797 		 * AMD for these chips. It is possible to specify the
3798 		 * affected processor models on the command line, hence
3799 		 * the need to ignore the workaround.
3800 		 */
3801 		break;
3802 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3803 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3804 	case HV_X64_MSR_SYNDBG_OPTIONS:
3805 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3806 	case HV_X64_MSR_CRASH_CTL:
3807 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3808 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3809 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3810 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3811 		return kvm_hv_set_msr_common(vcpu, msr, data,
3812 					     msr_info->host_initiated);
3813 	case MSR_IA32_BBL_CR_CTL3:
3814 		/* Drop writes to this legacy MSR -- see rdmsr
3815 		 * counterpart for further detail.
3816 		 */
3817 		if (report_ignored_msrs)
3818 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3819 				msr, data);
3820 		break;
3821 	case MSR_AMD64_OSVW_ID_LENGTH:
3822 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3823 			return 1;
3824 		vcpu->arch.osvw.length = data;
3825 		break;
3826 	case MSR_AMD64_OSVW_STATUS:
3827 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3828 			return 1;
3829 		vcpu->arch.osvw.status = data;
3830 		break;
3831 	case MSR_PLATFORM_INFO:
3832 		if (!msr_info->host_initiated ||
3833 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3834 		     cpuid_fault_enabled(vcpu)))
3835 			return 1;
3836 		vcpu->arch.msr_platform_info = data;
3837 		break;
3838 	case MSR_MISC_FEATURES_ENABLES:
3839 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3840 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3841 		     !supports_cpuid_fault(vcpu)))
3842 			return 1;
3843 		vcpu->arch.msr_misc_features_enables = data;
3844 		break;
3845 #ifdef CONFIG_X86_64
3846 	case MSR_IA32_XFD:
3847 		if (!msr_info->host_initiated &&
3848 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3849 			return 1;
3850 
3851 		if (data & ~kvm_guest_supported_xfd(vcpu))
3852 			return 1;
3853 
3854 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3855 		break;
3856 	case MSR_IA32_XFD_ERR:
3857 		if (!msr_info->host_initiated &&
3858 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3859 			return 1;
3860 
3861 		if (data & ~kvm_guest_supported_xfd(vcpu))
3862 			return 1;
3863 
3864 		vcpu->arch.guest_fpu.xfd_err = data;
3865 		break;
3866 #endif
3867 	case MSR_IA32_PEBS_ENABLE:
3868 	case MSR_IA32_DS_AREA:
3869 	case MSR_PEBS_DATA_CFG:
3870 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3871 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3872 			return kvm_pmu_set_msr(vcpu, msr_info);
3873 		/*
3874 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3875 		 * as to-be-saved, even if an MSRs isn't fully supported.
3876 		 */
3877 		return !msr_info->host_initiated || data;
3878 	default:
3879 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3880 			return kvm_pmu_set_msr(vcpu, msr_info);
3881 		return KVM_MSR_RET_INVALID;
3882 	}
3883 	return 0;
3884 }
3885 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3886 
3887 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3888 {
3889 	u64 data;
3890 	u64 mcg_cap = vcpu->arch.mcg_cap;
3891 	unsigned bank_num = mcg_cap & 0xff;
3892 	u32 offset, last_msr;
3893 
3894 	switch (msr) {
3895 	case MSR_IA32_P5_MC_ADDR:
3896 	case MSR_IA32_P5_MC_TYPE:
3897 		data = 0;
3898 		break;
3899 	case MSR_IA32_MCG_CAP:
3900 		data = vcpu->arch.mcg_cap;
3901 		break;
3902 	case MSR_IA32_MCG_CTL:
3903 		if (!(mcg_cap & MCG_CTL_P) && !host)
3904 			return 1;
3905 		data = vcpu->arch.mcg_ctl;
3906 		break;
3907 	case MSR_IA32_MCG_STATUS:
3908 		data = vcpu->arch.mcg_status;
3909 		break;
3910 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3911 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3912 		if (msr > last_msr)
3913 			return 1;
3914 
3915 		if (!(mcg_cap & MCG_CMCI_P) && !host)
3916 			return 1;
3917 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3918 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3919 		data = vcpu->arch.mci_ctl2_banks[offset];
3920 		break;
3921 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3922 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3923 		if (msr > last_msr)
3924 			return 1;
3925 
3926 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3927 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3928 		data = vcpu->arch.mce_banks[offset];
3929 		break;
3930 	default:
3931 		return 1;
3932 	}
3933 	*pdata = data;
3934 	return 0;
3935 }
3936 
3937 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3938 {
3939 	switch (msr_info->index) {
3940 	case MSR_IA32_PLATFORM_ID:
3941 	case MSR_IA32_EBL_CR_POWERON:
3942 	case MSR_IA32_LASTBRANCHFROMIP:
3943 	case MSR_IA32_LASTBRANCHTOIP:
3944 	case MSR_IA32_LASTINTFROMIP:
3945 	case MSR_IA32_LASTINTTOIP:
3946 	case MSR_AMD64_SYSCFG:
3947 	case MSR_K8_TSEG_ADDR:
3948 	case MSR_K8_TSEG_MASK:
3949 	case MSR_VM_HSAVE_PA:
3950 	case MSR_K8_INT_PENDING_MSG:
3951 	case MSR_AMD64_NB_CFG:
3952 	case MSR_FAM10H_MMIO_CONF_BASE:
3953 	case MSR_AMD64_BU_CFG2:
3954 	case MSR_IA32_PERF_CTL:
3955 	case MSR_AMD64_DC_CFG:
3956 	case MSR_F15H_EX_CFG:
3957 	/*
3958 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3959 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3960 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3961 	 * so for existing CPU-specific MSRs.
3962 	 */
3963 	case MSR_RAPL_POWER_UNIT:
3964 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3965 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3966 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3967 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3968 		msr_info->data = 0;
3969 		break;
3970 	case MSR_IA32_PEBS_ENABLE:
3971 	case MSR_IA32_DS_AREA:
3972 	case MSR_PEBS_DATA_CFG:
3973 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3974 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3975 			return kvm_pmu_get_msr(vcpu, msr_info);
3976 		/*
3977 		 * Userspace is allowed to read MSRs that KVM reports as
3978 		 * to-be-saved, even if an MSR isn't fully supported.
3979 		 */
3980 		if (!msr_info->host_initiated)
3981 			return 1;
3982 		msr_info->data = 0;
3983 		break;
3984 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3985 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3986 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3987 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3988 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3989 			return kvm_pmu_get_msr(vcpu, msr_info);
3990 		msr_info->data = 0;
3991 		break;
3992 	case MSR_IA32_UCODE_REV:
3993 		msr_info->data = vcpu->arch.microcode_version;
3994 		break;
3995 	case MSR_IA32_ARCH_CAPABILITIES:
3996 		if (!msr_info->host_initiated &&
3997 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3998 			return 1;
3999 		msr_info->data = vcpu->arch.arch_capabilities;
4000 		break;
4001 	case MSR_IA32_PERF_CAPABILITIES:
4002 		if (!msr_info->host_initiated &&
4003 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4004 			return 1;
4005 		msr_info->data = vcpu->arch.perf_capabilities;
4006 		break;
4007 	case MSR_IA32_POWER_CTL:
4008 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4009 		break;
4010 	case MSR_IA32_TSC: {
4011 		/*
4012 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4013 		 * even when not intercepted. AMD manual doesn't explicitly
4014 		 * state this but appears to behave the same.
4015 		 *
4016 		 * On userspace reads and writes, however, we unconditionally
4017 		 * return L1's TSC value to ensure backwards-compatible
4018 		 * behavior for migration.
4019 		 */
4020 		u64 offset, ratio;
4021 
4022 		if (msr_info->host_initiated) {
4023 			offset = vcpu->arch.l1_tsc_offset;
4024 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4025 		} else {
4026 			offset = vcpu->arch.tsc_offset;
4027 			ratio = vcpu->arch.tsc_scaling_ratio;
4028 		}
4029 
4030 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4031 		break;
4032 	}
4033 	case MSR_MTRRcap:
4034 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4035 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4036 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4037 	case 0xcd: /* fsb frequency */
4038 		msr_info->data = 3;
4039 		break;
4040 		/*
4041 		 * MSR_EBC_FREQUENCY_ID
4042 		 * Conservative value valid for even the basic CPU models.
4043 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4044 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4045 		 * and 266MHz for model 3, or 4. Set Core Clock
4046 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4047 		 * 31:24) even though these are only valid for CPU
4048 		 * models > 2, however guests may end up dividing or
4049 		 * multiplying by zero otherwise.
4050 		 */
4051 	case MSR_EBC_FREQUENCY_ID:
4052 		msr_info->data = 1 << 24;
4053 		break;
4054 	case MSR_IA32_APICBASE:
4055 		msr_info->data = kvm_get_apic_base(vcpu);
4056 		break;
4057 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4058 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4059 	case MSR_IA32_TSC_DEADLINE:
4060 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4061 		break;
4062 	case MSR_IA32_TSC_ADJUST:
4063 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4064 		break;
4065 	case MSR_IA32_MISC_ENABLE:
4066 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4067 		break;
4068 	case MSR_IA32_SMBASE:
4069 		if (!msr_info->host_initiated)
4070 			return 1;
4071 		msr_info->data = vcpu->arch.smbase;
4072 		break;
4073 	case MSR_SMI_COUNT:
4074 		msr_info->data = vcpu->arch.smi_count;
4075 		break;
4076 	case MSR_IA32_PERF_STATUS:
4077 		/* TSC increment by tick */
4078 		msr_info->data = 1000ULL;
4079 		/* CPU multiplier */
4080 		msr_info->data |= (((uint64_t)4ULL) << 40);
4081 		break;
4082 	case MSR_EFER:
4083 		msr_info->data = vcpu->arch.efer;
4084 		break;
4085 	case MSR_KVM_WALL_CLOCK:
4086 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4087 			return 1;
4088 
4089 		msr_info->data = vcpu->kvm->arch.wall_clock;
4090 		break;
4091 	case MSR_KVM_WALL_CLOCK_NEW:
4092 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4093 			return 1;
4094 
4095 		msr_info->data = vcpu->kvm->arch.wall_clock;
4096 		break;
4097 	case MSR_KVM_SYSTEM_TIME:
4098 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4099 			return 1;
4100 
4101 		msr_info->data = vcpu->arch.time;
4102 		break;
4103 	case MSR_KVM_SYSTEM_TIME_NEW:
4104 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4105 			return 1;
4106 
4107 		msr_info->data = vcpu->arch.time;
4108 		break;
4109 	case MSR_KVM_ASYNC_PF_EN:
4110 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4111 			return 1;
4112 
4113 		msr_info->data = vcpu->arch.apf.msr_en_val;
4114 		break;
4115 	case MSR_KVM_ASYNC_PF_INT:
4116 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4117 			return 1;
4118 
4119 		msr_info->data = vcpu->arch.apf.msr_int_val;
4120 		break;
4121 	case MSR_KVM_ASYNC_PF_ACK:
4122 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4123 			return 1;
4124 
4125 		msr_info->data = 0;
4126 		break;
4127 	case MSR_KVM_STEAL_TIME:
4128 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4129 			return 1;
4130 
4131 		msr_info->data = vcpu->arch.st.msr_val;
4132 		break;
4133 	case MSR_KVM_PV_EOI_EN:
4134 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4135 			return 1;
4136 
4137 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4138 		break;
4139 	case MSR_KVM_POLL_CONTROL:
4140 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4141 			return 1;
4142 
4143 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4144 		break;
4145 	case MSR_IA32_P5_MC_ADDR:
4146 	case MSR_IA32_P5_MC_TYPE:
4147 	case MSR_IA32_MCG_CAP:
4148 	case MSR_IA32_MCG_CTL:
4149 	case MSR_IA32_MCG_STATUS:
4150 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4151 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4152 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4153 				   msr_info->host_initiated);
4154 	case MSR_IA32_XSS:
4155 		if (!msr_info->host_initiated &&
4156 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4157 			return 1;
4158 		msr_info->data = vcpu->arch.ia32_xss;
4159 		break;
4160 	case MSR_K7_CLK_CTL:
4161 		/*
4162 		 * Provide expected ramp-up count for K7. All other
4163 		 * are set to zero, indicating minimum divisors for
4164 		 * every field.
4165 		 *
4166 		 * This prevents guest kernels on AMD host with CPU
4167 		 * type 6, model 8 and higher from exploding due to
4168 		 * the rdmsr failing.
4169 		 */
4170 		msr_info->data = 0x20000000;
4171 		break;
4172 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4173 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4174 	case HV_X64_MSR_SYNDBG_OPTIONS:
4175 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4176 	case HV_X64_MSR_CRASH_CTL:
4177 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4178 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4179 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4180 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4181 		return kvm_hv_get_msr_common(vcpu,
4182 					     msr_info->index, &msr_info->data,
4183 					     msr_info->host_initiated);
4184 	case MSR_IA32_BBL_CR_CTL3:
4185 		/* This legacy MSR exists but isn't fully documented in current
4186 		 * silicon.  It is however accessed by winxp in very narrow
4187 		 * scenarios where it sets bit #19, itself documented as
4188 		 * a "reserved" bit.  Best effort attempt to source coherent
4189 		 * read data here should the balance of the register be
4190 		 * interpreted by the guest:
4191 		 *
4192 		 * L2 cache control register 3: 64GB range, 256KB size,
4193 		 * enabled, latency 0x1, configured
4194 		 */
4195 		msr_info->data = 0xbe702111;
4196 		break;
4197 	case MSR_AMD64_OSVW_ID_LENGTH:
4198 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4199 			return 1;
4200 		msr_info->data = vcpu->arch.osvw.length;
4201 		break;
4202 	case MSR_AMD64_OSVW_STATUS:
4203 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4204 			return 1;
4205 		msr_info->data = vcpu->arch.osvw.status;
4206 		break;
4207 	case MSR_PLATFORM_INFO:
4208 		if (!msr_info->host_initiated &&
4209 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4210 			return 1;
4211 		msr_info->data = vcpu->arch.msr_platform_info;
4212 		break;
4213 	case MSR_MISC_FEATURES_ENABLES:
4214 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4215 		break;
4216 	case MSR_K7_HWCR:
4217 		msr_info->data = vcpu->arch.msr_hwcr;
4218 		break;
4219 #ifdef CONFIG_X86_64
4220 	case MSR_IA32_XFD:
4221 		if (!msr_info->host_initiated &&
4222 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4223 			return 1;
4224 
4225 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4226 		break;
4227 	case MSR_IA32_XFD_ERR:
4228 		if (!msr_info->host_initiated &&
4229 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4230 			return 1;
4231 
4232 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4233 		break;
4234 #endif
4235 	default:
4236 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4237 			return kvm_pmu_get_msr(vcpu, msr_info);
4238 		return KVM_MSR_RET_INVALID;
4239 	}
4240 	return 0;
4241 }
4242 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4243 
4244 /*
4245  * Read or write a bunch of msrs. All parameters are kernel addresses.
4246  *
4247  * @return number of msrs set successfully.
4248  */
4249 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4250 		    struct kvm_msr_entry *entries,
4251 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4252 				  unsigned index, u64 *data))
4253 {
4254 	int i;
4255 
4256 	for (i = 0; i < msrs->nmsrs; ++i)
4257 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4258 			break;
4259 
4260 	return i;
4261 }
4262 
4263 /*
4264  * Read or write a bunch of msrs. Parameters are user addresses.
4265  *
4266  * @return number of msrs set successfully.
4267  */
4268 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4269 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4270 				unsigned index, u64 *data),
4271 		  int writeback)
4272 {
4273 	struct kvm_msrs msrs;
4274 	struct kvm_msr_entry *entries;
4275 	int r, n;
4276 	unsigned size;
4277 
4278 	r = -EFAULT;
4279 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4280 		goto out;
4281 
4282 	r = -E2BIG;
4283 	if (msrs.nmsrs >= MAX_IO_MSRS)
4284 		goto out;
4285 
4286 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4287 	entries = memdup_user(user_msrs->entries, size);
4288 	if (IS_ERR(entries)) {
4289 		r = PTR_ERR(entries);
4290 		goto out;
4291 	}
4292 
4293 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4294 	if (r < 0)
4295 		goto out_free;
4296 
4297 	r = -EFAULT;
4298 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4299 		goto out_free;
4300 
4301 	r = n;
4302 
4303 out_free:
4304 	kfree(entries);
4305 out:
4306 	return r;
4307 }
4308 
4309 static inline bool kvm_can_mwait_in_guest(void)
4310 {
4311 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4312 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4313 		boot_cpu_has(X86_FEATURE_ARAT);
4314 }
4315 
4316 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4317 					    struct kvm_cpuid2 __user *cpuid_arg)
4318 {
4319 	struct kvm_cpuid2 cpuid;
4320 	int r;
4321 
4322 	r = -EFAULT;
4323 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4324 		return r;
4325 
4326 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4327 	if (r)
4328 		return r;
4329 
4330 	r = -EFAULT;
4331 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4332 		return r;
4333 
4334 	return 0;
4335 }
4336 
4337 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4338 {
4339 	int r = 0;
4340 
4341 	switch (ext) {
4342 	case KVM_CAP_IRQCHIP:
4343 	case KVM_CAP_HLT:
4344 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4345 	case KVM_CAP_SET_TSS_ADDR:
4346 	case KVM_CAP_EXT_CPUID:
4347 	case KVM_CAP_EXT_EMUL_CPUID:
4348 	case KVM_CAP_CLOCKSOURCE:
4349 	case KVM_CAP_PIT:
4350 	case KVM_CAP_NOP_IO_DELAY:
4351 	case KVM_CAP_MP_STATE:
4352 	case KVM_CAP_SYNC_MMU:
4353 	case KVM_CAP_USER_NMI:
4354 	case KVM_CAP_REINJECT_CONTROL:
4355 	case KVM_CAP_IRQ_INJECT_STATUS:
4356 	case KVM_CAP_IOEVENTFD:
4357 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4358 	case KVM_CAP_PIT2:
4359 	case KVM_CAP_PIT_STATE2:
4360 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4361 	case KVM_CAP_VCPU_EVENTS:
4362 	case KVM_CAP_HYPERV:
4363 	case KVM_CAP_HYPERV_VAPIC:
4364 	case KVM_CAP_HYPERV_SPIN:
4365 	case KVM_CAP_HYPERV_SYNIC:
4366 	case KVM_CAP_HYPERV_SYNIC2:
4367 	case KVM_CAP_HYPERV_VP_INDEX:
4368 	case KVM_CAP_HYPERV_EVENTFD:
4369 	case KVM_CAP_HYPERV_TLBFLUSH:
4370 	case KVM_CAP_HYPERV_SEND_IPI:
4371 	case KVM_CAP_HYPERV_CPUID:
4372 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4373 	case KVM_CAP_SYS_HYPERV_CPUID:
4374 	case KVM_CAP_PCI_SEGMENT:
4375 	case KVM_CAP_DEBUGREGS:
4376 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4377 	case KVM_CAP_XSAVE:
4378 	case KVM_CAP_ASYNC_PF:
4379 	case KVM_CAP_ASYNC_PF_INT:
4380 	case KVM_CAP_GET_TSC_KHZ:
4381 	case KVM_CAP_KVMCLOCK_CTRL:
4382 	case KVM_CAP_READONLY_MEM:
4383 	case KVM_CAP_HYPERV_TIME:
4384 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4385 	case KVM_CAP_TSC_DEADLINE_TIMER:
4386 	case KVM_CAP_DISABLE_QUIRKS:
4387 	case KVM_CAP_SET_BOOT_CPU_ID:
4388  	case KVM_CAP_SPLIT_IRQCHIP:
4389 	case KVM_CAP_IMMEDIATE_EXIT:
4390 	case KVM_CAP_PMU_EVENT_FILTER:
4391 	case KVM_CAP_GET_MSR_FEATURES:
4392 	case KVM_CAP_MSR_PLATFORM_INFO:
4393 	case KVM_CAP_EXCEPTION_PAYLOAD:
4394 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4395 	case KVM_CAP_SET_GUEST_DEBUG:
4396 	case KVM_CAP_LAST_CPU:
4397 	case KVM_CAP_X86_USER_SPACE_MSR:
4398 	case KVM_CAP_X86_MSR_FILTER:
4399 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4400 #ifdef CONFIG_X86_SGX_KVM
4401 	case KVM_CAP_SGX_ATTRIBUTE:
4402 #endif
4403 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4404 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4405 	case KVM_CAP_SREGS2:
4406 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4407 	case KVM_CAP_VCPU_ATTRIBUTES:
4408 	case KVM_CAP_SYS_ATTRIBUTES:
4409 	case KVM_CAP_VAPIC:
4410 	case KVM_CAP_ENABLE_CAP:
4411 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4412 		r = 1;
4413 		break;
4414 	case KVM_CAP_EXIT_HYPERCALL:
4415 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4416 		break;
4417 	case KVM_CAP_SET_GUEST_DEBUG2:
4418 		return KVM_GUESTDBG_VALID_MASK;
4419 #ifdef CONFIG_KVM_XEN
4420 	case KVM_CAP_XEN_HVM:
4421 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4422 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4423 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4424 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4425 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4426 		if (sched_info_on())
4427 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4428 		break;
4429 #endif
4430 	case KVM_CAP_SYNC_REGS:
4431 		r = KVM_SYNC_X86_VALID_FIELDS;
4432 		break;
4433 	case KVM_CAP_ADJUST_CLOCK:
4434 		r = KVM_CLOCK_VALID_FLAGS;
4435 		break;
4436 	case KVM_CAP_X86_DISABLE_EXITS:
4437 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4438 		      KVM_X86_DISABLE_EXITS_CSTATE;
4439 		if(kvm_can_mwait_in_guest())
4440 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4441 		break;
4442 	case KVM_CAP_X86_SMM:
4443 		/* SMBASE is usually relocated above 1M on modern chipsets,
4444 		 * and SMM handlers might indeed rely on 4G segment limits,
4445 		 * so do not report SMM to be available if real mode is
4446 		 * emulated via vm86 mode.  Still, do not go to great lengths
4447 		 * to avoid userspace's usage of the feature, because it is a
4448 		 * fringe case that is not enabled except via specific settings
4449 		 * of the module parameters.
4450 		 */
4451 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4452 		break;
4453 	case KVM_CAP_NR_VCPUS:
4454 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4455 		break;
4456 	case KVM_CAP_MAX_VCPUS:
4457 		r = KVM_MAX_VCPUS;
4458 		break;
4459 	case KVM_CAP_MAX_VCPU_ID:
4460 		r = KVM_MAX_VCPU_IDS;
4461 		break;
4462 	case KVM_CAP_PV_MMU:	/* obsolete */
4463 		r = 0;
4464 		break;
4465 	case KVM_CAP_MCE:
4466 		r = KVM_MAX_MCE_BANKS;
4467 		break;
4468 	case KVM_CAP_XCRS:
4469 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4470 		break;
4471 	case KVM_CAP_TSC_CONTROL:
4472 	case KVM_CAP_VM_TSC_CONTROL:
4473 		r = kvm_caps.has_tsc_control;
4474 		break;
4475 	case KVM_CAP_X2APIC_API:
4476 		r = KVM_X2APIC_API_VALID_FLAGS;
4477 		break;
4478 	case KVM_CAP_NESTED_STATE:
4479 		r = kvm_x86_ops.nested_ops->get_state ?
4480 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4481 		break;
4482 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4483 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4484 		break;
4485 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4486 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4487 		break;
4488 	case KVM_CAP_SMALLER_MAXPHYADDR:
4489 		r = (int) allow_smaller_maxphyaddr;
4490 		break;
4491 	case KVM_CAP_STEAL_TIME:
4492 		r = sched_info_on();
4493 		break;
4494 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4495 		if (kvm_caps.has_bus_lock_exit)
4496 			r = KVM_BUS_LOCK_DETECTION_OFF |
4497 			    KVM_BUS_LOCK_DETECTION_EXIT;
4498 		else
4499 			r = 0;
4500 		break;
4501 	case KVM_CAP_XSAVE2: {
4502 		u64 guest_perm = xstate_get_guest_group_perm();
4503 
4504 		r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4505 		if (r < sizeof(struct kvm_xsave))
4506 			r = sizeof(struct kvm_xsave);
4507 		break;
4508 	}
4509 	case KVM_CAP_PMU_CAPABILITY:
4510 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4511 		break;
4512 	case KVM_CAP_DISABLE_QUIRKS2:
4513 		r = KVM_X86_VALID_QUIRKS;
4514 		break;
4515 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4516 		r = kvm_caps.has_notify_vmexit;
4517 		break;
4518 	default:
4519 		break;
4520 	}
4521 	return r;
4522 }
4523 
4524 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4525 {
4526 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4527 
4528 	if ((u64)(unsigned long)uaddr != attr->addr)
4529 		return ERR_PTR_USR(-EFAULT);
4530 	return uaddr;
4531 }
4532 
4533 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4534 {
4535 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4536 
4537 	if (attr->group)
4538 		return -ENXIO;
4539 
4540 	if (IS_ERR(uaddr))
4541 		return PTR_ERR(uaddr);
4542 
4543 	switch (attr->attr) {
4544 	case KVM_X86_XCOMP_GUEST_SUPP:
4545 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4546 			return -EFAULT;
4547 		return 0;
4548 	default:
4549 		return -ENXIO;
4550 		break;
4551 	}
4552 }
4553 
4554 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4555 {
4556 	if (attr->group)
4557 		return -ENXIO;
4558 
4559 	switch (attr->attr) {
4560 	case KVM_X86_XCOMP_GUEST_SUPP:
4561 		return 0;
4562 	default:
4563 		return -ENXIO;
4564 	}
4565 }
4566 
4567 long kvm_arch_dev_ioctl(struct file *filp,
4568 			unsigned int ioctl, unsigned long arg)
4569 {
4570 	void __user *argp = (void __user *)arg;
4571 	long r;
4572 
4573 	switch (ioctl) {
4574 	case KVM_GET_MSR_INDEX_LIST: {
4575 		struct kvm_msr_list __user *user_msr_list = argp;
4576 		struct kvm_msr_list msr_list;
4577 		unsigned n;
4578 
4579 		r = -EFAULT;
4580 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4581 			goto out;
4582 		n = msr_list.nmsrs;
4583 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4584 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4585 			goto out;
4586 		r = -E2BIG;
4587 		if (n < msr_list.nmsrs)
4588 			goto out;
4589 		r = -EFAULT;
4590 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4591 				 num_msrs_to_save * sizeof(u32)))
4592 			goto out;
4593 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4594 				 &emulated_msrs,
4595 				 num_emulated_msrs * sizeof(u32)))
4596 			goto out;
4597 		r = 0;
4598 		break;
4599 	}
4600 	case KVM_GET_SUPPORTED_CPUID:
4601 	case KVM_GET_EMULATED_CPUID: {
4602 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4603 		struct kvm_cpuid2 cpuid;
4604 
4605 		r = -EFAULT;
4606 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4607 			goto out;
4608 
4609 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4610 					    ioctl);
4611 		if (r)
4612 			goto out;
4613 
4614 		r = -EFAULT;
4615 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4616 			goto out;
4617 		r = 0;
4618 		break;
4619 	}
4620 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4621 		r = -EFAULT;
4622 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4623 				 sizeof(kvm_caps.supported_mce_cap)))
4624 			goto out;
4625 		r = 0;
4626 		break;
4627 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4628 		struct kvm_msr_list __user *user_msr_list = argp;
4629 		struct kvm_msr_list msr_list;
4630 		unsigned int n;
4631 
4632 		r = -EFAULT;
4633 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4634 			goto out;
4635 		n = msr_list.nmsrs;
4636 		msr_list.nmsrs = num_msr_based_features;
4637 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4638 			goto out;
4639 		r = -E2BIG;
4640 		if (n < msr_list.nmsrs)
4641 			goto out;
4642 		r = -EFAULT;
4643 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4644 				 num_msr_based_features * sizeof(u32)))
4645 			goto out;
4646 		r = 0;
4647 		break;
4648 	}
4649 	case KVM_GET_MSRS:
4650 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4651 		break;
4652 	case KVM_GET_SUPPORTED_HV_CPUID:
4653 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4654 		break;
4655 	case KVM_GET_DEVICE_ATTR: {
4656 		struct kvm_device_attr attr;
4657 		r = -EFAULT;
4658 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4659 			break;
4660 		r = kvm_x86_dev_get_attr(&attr);
4661 		break;
4662 	}
4663 	case KVM_HAS_DEVICE_ATTR: {
4664 		struct kvm_device_attr attr;
4665 		r = -EFAULT;
4666 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4667 			break;
4668 		r = kvm_x86_dev_has_attr(&attr);
4669 		break;
4670 	}
4671 	default:
4672 		r = -EINVAL;
4673 		break;
4674 	}
4675 out:
4676 	return r;
4677 }
4678 
4679 static void wbinvd_ipi(void *garbage)
4680 {
4681 	wbinvd();
4682 }
4683 
4684 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4685 {
4686 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4687 }
4688 
4689 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4690 {
4691 	/* Address WBINVD may be executed by guest */
4692 	if (need_emulate_wbinvd(vcpu)) {
4693 		if (static_call(kvm_x86_has_wbinvd_exit)())
4694 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4695 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4696 			smp_call_function_single(vcpu->cpu,
4697 					wbinvd_ipi, NULL, 1);
4698 	}
4699 
4700 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4701 
4702 	/* Save host pkru register if supported */
4703 	vcpu->arch.host_pkru = read_pkru();
4704 
4705 	/* Apply any externally detected TSC adjustments (due to suspend) */
4706 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4707 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4708 		vcpu->arch.tsc_offset_adjustment = 0;
4709 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4710 	}
4711 
4712 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4713 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4714 				rdtsc() - vcpu->arch.last_host_tsc;
4715 		if (tsc_delta < 0)
4716 			mark_tsc_unstable("KVM discovered backwards TSC");
4717 
4718 		if (kvm_check_tsc_unstable()) {
4719 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4720 						vcpu->arch.last_guest_tsc);
4721 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4722 			vcpu->arch.tsc_catchup = 1;
4723 		}
4724 
4725 		if (kvm_lapic_hv_timer_in_use(vcpu))
4726 			kvm_lapic_restart_hv_timer(vcpu);
4727 
4728 		/*
4729 		 * On a host with synchronized TSC, there is no need to update
4730 		 * kvmclock on vcpu->cpu migration
4731 		 */
4732 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4733 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4734 		if (vcpu->cpu != cpu)
4735 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4736 		vcpu->cpu = cpu;
4737 	}
4738 
4739 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4740 }
4741 
4742 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4743 {
4744 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4745 	struct kvm_steal_time __user *st;
4746 	struct kvm_memslots *slots;
4747 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4748 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4749 
4750 	/*
4751 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4752 	 * an instruction boundary and will not trigger guest emulation of any
4753 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4754 	 * when this is true, for example allowing the vCPU to be marked
4755 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4756 	 */
4757 	if (!vcpu->arch.at_instruction_boundary) {
4758 		vcpu->stat.preemption_other++;
4759 		return;
4760 	}
4761 
4762 	vcpu->stat.preemption_reported++;
4763 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4764 		return;
4765 
4766 	if (vcpu->arch.st.preempted)
4767 		return;
4768 
4769 	/* This happens on process exit */
4770 	if (unlikely(current->mm != vcpu->kvm->mm))
4771 		return;
4772 
4773 	slots = kvm_memslots(vcpu->kvm);
4774 
4775 	if (unlikely(slots->generation != ghc->generation ||
4776 		     gpa != ghc->gpa ||
4777 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4778 		return;
4779 
4780 	st = (struct kvm_steal_time __user *)ghc->hva;
4781 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4782 
4783 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4784 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4785 
4786 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4787 }
4788 
4789 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4790 {
4791 	int idx;
4792 
4793 	if (vcpu->preempted) {
4794 		if (!vcpu->arch.guest_state_protected)
4795 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4796 
4797 		/*
4798 		 * Take the srcu lock as memslots will be accessed to check the gfn
4799 		 * cache generation against the memslots generation.
4800 		 */
4801 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4802 		if (kvm_xen_msr_enabled(vcpu->kvm))
4803 			kvm_xen_runstate_set_preempted(vcpu);
4804 		else
4805 			kvm_steal_time_set_preempted(vcpu);
4806 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4807 	}
4808 
4809 	static_call(kvm_x86_vcpu_put)(vcpu);
4810 	vcpu->arch.last_host_tsc = rdtsc();
4811 }
4812 
4813 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4814 				    struct kvm_lapic_state *s)
4815 {
4816 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4817 
4818 	return kvm_apic_get_state(vcpu, s);
4819 }
4820 
4821 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4822 				    struct kvm_lapic_state *s)
4823 {
4824 	int r;
4825 
4826 	r = kvm_apic_set_state(vcpu, s);
4827 	if (r)
4828 		return r;
4829 	update_cr8_intercept(vcpu);
4830 
4831 	return 0;
4832 }
4833 
4834 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4835 {
4836 	/*
4837 	 * We can accept userspace's request for interrupt injection
4838 	 * as long as we have a place to store the interrupt number.
4839 	 * The actual injection will happen when the CPU is able to
4840 	 * deliver the interrupt.
4841 	 */
4842 	if (kvm_cpu_has_extint(vcpu))
4843 		return false;
4844 
4845 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4846 	return (!lapic_in_kernel(vcpu) ||
4847 		kvm_apic_accept_pic_intr(vcpu));
4848 }
4849 
4850 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4851 {
4852 	/*
4853 	 * Do not cause an interrupt window exit if an exception
4854 	 * is pending or an event needs reinjection; userspace
4855 	 * might want to inject the interrupt manually using KVM_SET_REGS
4856 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4857 	 * instruction boundary and with no events half-injected.
4858 	 */
4859 	return (kvm_arch_interrupt_allowed(vcpu) &&
4860 		kvm_cpu_accept_dm_intr(vcpu) &&
4861 		!kvm_event_needs_reinjection(vcpu) &&
4862 		!kvm_is_exception_pending(vcpu));
4863 }
4864 
4865 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4866 				    struct kvm_interrupt *irq)
4867 {
4868 	if (irq->irq >= KVM_NR_INTERRUPTS)
4869 		return -EINVAL;
4870 
4871 	if (!irqchip_in_kernel(vcpu->kvm)) {
4872 		kvm_queue_interrupt(vcpu, irq->irq, false);
4873 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4874 		return 0;
4875 	}
4876 
4877 	/*
4878 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4879 	 * fail for in-kernel 8259.
4880 	 */
4881 	if (pic_in_kernel(vcpu->kvm))
4882 		return -ENXIO;
4883 
4884 	if (vcpu->arch.pending_external_vector != -1)
4885 		return -EEXIST;
4886 
4887 	vcpu->arch.pending_external_vector = irq->irq;
4888 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4889 	return 0;
4890 }
4891 
4892 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4893 {
4894 	kvm_inject_nmi(vcpu);
4895 
4896 	return 0;
4897 }
4898 
4899 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4900 {
4901 	kvm_make_request(KVM_REQ_SMI, vcpu);
4902 
4903 	return 0;
4904 }
4905 
4906 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4907 					   struct kvm_tpr_access_ctl *tac)
4908 {
4909 	if (tac->flags)
4910 		return -EINVAL;
4911 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4912 	return 0;
4913 }
4914 
4915 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4916 					u64 mcg_cap)
4917 {
4918 	int r;
4919 	unsigned bank_num = mcg_cap & 0xff, bank;
4920 
4921 	r = -EINVAL;
4922 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4923 		goto out;
4924 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4925 		goto out;
4926 	r = 0;
4927 	vcpu->arch.mcg_cap = mcg_cap;
4928 	/* Init IA32_MCG_CTL to all 1s */
4929 	if (mcg_cap & MCG_CTL_P)
4930 		vcpu->arch.mcg_ctl = ~(u64)0;
4931 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4932 	for (bank = 0; bank < bank_num; bank++) {
4933 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4934 		if (mcg_cap & MCG_CMCI_P)
4935 			vcpu->arch.mci_ctl2_banks[bank] = 0;
4936 	}
4937 
4938 	kvm_apic_after_set_mcg_cap(vcpu);
4939 
4940 	static_call(kvm_x86_setup_mce)(vcpu);
4941 out:
4942 	return r;
4943 }
4944 
4945 /*
4946  * Validate this is an UCNA (uncorrectable no action) error by checking the
4947  * MCG_STATUS and MCi_STATUS registers:
4948  * - none of the bits for Machine Check Exceptions are set
4949  * - both the VAL (valid) and UC (uncorrectable) bits are set
4950  * MCI_STATUS_PCC - Processor Context Corrupted
4951  * MCI_STATUS_S - Signaled as a Machine Check Exception
4952  * MCI_STATUS_AR - Software recoverable Action Required
4953  */
4954 static bool is_ucna(struct kvm_x86_mce *mce)
4955 {
4956 	return	!mce->mcg_status &&
4957 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4958 		(mce->status & MCI_STATUS_VAL) &&
4959 		(mce->status & MCI_STATUS_UC);
4960 }
4961 
4962 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4963 {
4964 	u64 mcg_cap = vcpu->arch.mcg_cap;
4965 
4966 	banks[1] = mce->status;
4967 	banks[2] = mce->addr;
4968 	banks[3] = mce->misc;
4969 	vcpu->arch.mcg_status = mce->mcg_status;
4970 
4971 	if (!(mcg_cap & MCG_CMCI_P) ||
4972 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4973 		return 0;
4974 
4975 	if (lapic_in_kernel(vcpu))
4976 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4977 
4978 	return 0;
4979 }
4980 
4981 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4982 				      struct kvm_x86_mce *mce)
4983 {
4984 	u64 mcg_cap = vcpu->arch.mcg_cap;
4985 	unsigned bank_num = mcg_cap & 0xff;
4986 	u64 *banks = vcpu->arch.mce_banks;
4987 
4988 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4989 		return -EINVAL;
4990 
4991 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
4992 
4993 	if (is_ucna(mce))
4994 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
4995 
4996 	/*
4997 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4998 	 * reporting is disabled
4999 	 */
5000 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5001 	    vcpu->arch.mcg_ctl != ~(u64)0)
5002 		return 0;
5003 	/*
5004 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5005 	 * reporting is disabled for the bank
5006 	 */
5007 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5008 		return 0;
5009 	if (mce->status & MCI_STATUS_UC) {
5010 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5011 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
5012 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5013 			return 0;
5014 		}
5015 		if (banks[1] & MCI_STATUS_VAL)
5016 			mce->status |= MCI_STATUS_OVER;
5017 		banks[2] = mce->addr;
5018 		banks[3] = mce->misc;
5019 		vcpu->arch.mcg_status = mce->mcg_status;
5020 		banks[1] = mce->status;
5021 		kvm_queue_exception(vcpu, MC_VECTOR);
5022 	} else if (!(banks[1] & MCI_STATUS_VAL)
5023 		   || !(banks[1] & MCI_STATUS_UC)) {
5024 		if (banks[1] & MCI_STATUS_VAL)
5025 			mce->status |= MCI_STATUS_OVER;
5026 		banks[2] = mce->addr;
5027 		banks[3] = mce->misc;
5028 		banks[1] = mce->status;
5029 	} else
5030 		banks[1] |= MCI_STATUS_OVER;
5031 	return 0;
5032 }
5033 
5034 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5035 					       struct kvm_vcpu_events *events)
5036 {
5037 	struct kvm_queued_exception *ex;
5038 
5039 	process_nmi(vcpu);
5040 
5041 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5042 		process_smi(vcpu);
5043 
5044 	/*
5045 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5046 	 * the only time there can be two queued exceptions is if there's a
5047 	 * non-exiting _injected_ exception, and a pending exiting exception.
5048 	 * In that case, ignore the VM-Exiting exception as it's an extension
5049 	 * of the injected exception.
5050 	 */
5051 	if (vcpu->arch.exception_vmexit.pending &&
5052 	    !vcpu->arch.exception.pending &&
5053 	    !vcpu->arch.exception.injected)
5054 		ex = &vcpu->arch.exception_vmexit;
5055 	else
5056 		ex = &vcpu->arch.exception;
5057 
5058 	/*
5059 	 * In guest mode, payload delivery should be deferred if the exception
5060 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5061 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5062 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5063 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5064 	 * the payload if the capability hasn't been requested.
5065 	 */
5066 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5067 	    ex->pending && ex->has_payload)
5068 		kvm_deliver_exception_payload(vcpu, ex);
5069 
5070 	/*
5071 	 * The API doesn't provide the instruction length for software
5072 	 * exceptions, so don't report them. As long as the guest RIP
5073 	 * isn't advanced, we should expect to encounter the exception
5074 	 * again.
5075 	 */
5076 	if (kvm_exception_is_soft(ex->vector)) {
5077 		events->exception.injected = 0;
5078 		events->exception.pending = 0;
5079 	} else {
5080 		events->exception.injected = ex->injected;
5081 		events->exception.pending = ex->pending;
5082 		/*
5083 		 * For ABI compatibility, deliberately conflate
5084 		 * pending and injected exceptions when
5085 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5086 		 */
5087 		if (!vcpu->kvm->arch.exception_payload_enabled)
5088 			events->exception.injected |= ex->pending;
5089 	}
5090 	events->exception.nr = ex->vector;
5091 	events->exception.has_error_code = ex->has_error_code;
5092 	events->exception.error_code = ex->error_code;
5093 	events->exception_has_payload = ex->has_payload;
5094 	events->exception_payload = ex->payload;
5095 
5096 	events->interrupt.injected =
5097 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5098 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5099 	events->interrupt.soft = 0;
5100 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5101 
5102 	events->nmi.injected = vcpu->arch.nmi_injected;
5103 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
5104 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5105 	events->nmi.pad = 0;
5106 
5107 	events->sipi_vector = 0; /* never valid when reporting to user space */
5108 
5109 	events->smi.smm = is_smm(vcpu);
5110 	events->smi.pending = vcpu->arch.smi_pending;
5111 	events->smi.smm_inside_nmi =
5112 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5113 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5114 
5115 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5116 			 | KVM_VCPUEVENT_VALID_SHADOW
5117 			 | KVM_VCPUEVENT_VALID_SMM);
5118 	if (vcpu->kvm->arch.exception_payload_enabled)
5119 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5120 	if (vcpu->kvm->arch.triple_fault_event) {
5121 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5122 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5123 	}
5124 
5125 	memset(&events->reserved, 0, sizeof(events->reserved));
5126 }
5127 
5128 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
5129 
5130 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5131 					      struct kvm_vcpu_events *events)
5132 {
5133 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5134 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5135 			      | KVM_VCPUEVENT_VALID_SHADOW
5136 			      | KVM_VCPUEVENT_VALID_SMM
5137 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5138 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5139 		return -EINVAL;
5140 
5141 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5142 		if (!vcpu->kvm->arch.exception_payload_enabled)
5143 			return -EINVAL;
5144 		if (events->exception.pending)
5145 			events->exception.injected = 0;
5146 		else
5147 			events->exception_has_payload = 0;
5148 	} else {
5149 		events->exception.pending = 0;
5150 		events->exception_has_payload = 0;
5151 	}
5152 
5153 	if ((events->exception.injected || events->exception.pending) &&
5154 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5155 		return -EINVAL;
5156 
5157 	/* INITs are latched while in SMM */
5158 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5159 	    (events->smi.smm || events->smi.pending) &&
5160 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5161 		return -EINVAL;
5162 
5163 	process_nmi(vcpu);
5164 
5165 	/*
5166 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5167 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5168 	 * pending exceptions, already-injected exceptions are not subject to
5169 	 * intercpetion.  Note, userspace that conflates pending and injected
5170 	 * is hosed, and will incorrectly convert an injected exception into a
5171 	 * pending exception, which in turn may cause a spurious VM-Exit.
5172 	 */
5173 	vcpu->arch.exception_from_userspace = events->exception.pending;
5174 
5175 	vcpu->arch.exception_vmexit.pending = false;
5176 
5177 	vcpu->arch.exception.injected = events->exception.injected;
5178 	vcpu->arch.exception.pending = events->exception.pending;
5179 	vcpu->arch.exception.vector = events->exception.nr;
5180 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5181 	vcpu->arch.exception.error_code = events->exception.error_code;
5182 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5183 	vcpu->arch.exception.payload = events->exception_payload;
5184 
5185 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5186 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5187 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5188 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5189 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5190 						events->interrupt.shadow);
5191 
5192 	vcpu->arch.nmi_injected = events->nmi.injected;
5193 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5194 		vcpu->arch.nmi_pending = events->nmi.pending;
5195 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5196 
5197 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5198 	    lapic_in_kernel(vcpu))
5199 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5200 
5201 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5202 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5203 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
5204 			kvm_smm_changed(vcpu, events->smi.smm);
5205 		}
5206 
5207 		vcpu->arch.smi_pending = events->smi.pending;
5208 
5209 		if (events->smi.smm) {
5210 			if (events->smi.smm_inside_nmi)
5211 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5212 			else
5213 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5214 		}
5215 
5216 		if (lapic_in_kernel(vcpu)) {
5217 			if (events->smi.latched_init)
5218 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5219 			else
5220 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5221 		}
5222 	}
5223 
5224 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5225 		if (!vcpu->kvm->arch.triple_fault_event)
5226 			return -EINVAL;
5227 		if (events->triple_fault.pending)
5228 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5229 		else
5230 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5231 	}
5232 
5233 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5234 
5235 	return 0;
5236 }
5237 
5238 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5239 					     struct kvm_debugregs *dbgregs)
5240 {
5241 	unsigned long val;
5242 
5243 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5244 	kvm_get_dr(vcpu, 6, &val);
5245 	dbgregs->dr6 = val;
5246 	dbgregs->dr7 = vcpu->arch.dr7;
5247 	dbgregs->flags = 0;
5248 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5249 }
5250 
5251 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5252 					    struct kvm_debugregs *dbgregs)
5253 {
5254 	if (dbgregs->flags)
5255 		return -EINVAL;
5256 
5257 	if (!kvm_dr6_valid(dbgregs->dr6))
5258 		return -EINVAL;
5259 	if (!kvm_dr7_valid(dbgregs->dr7))
5260 		return -EINVAL;
5261 
5262 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5263 	kvm_update_dr0123(vcpu);
5264 	vcpu->arch.dr6 = dbgregs->dr6;
5265 	vcpu->arch.dr7 = dbgregs->dr7;
5266 	kvm_update_dr7(vcpu);
5267 
5268 	return 0;
5269 }
5270 
5271 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5272 					 struct kvm_xsave *guest_xsave)
5273 {
5274 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5275 		return;
5276 
5277 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5278 				       guest_xsave->region,
5279 				       sizeof(guest_xsave->region),
5280 				       vcpu->arch.pkru);
5281 }
5282 
5283 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5284 					  u8 *state, unsigned int size)
5285 {
5286 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5287 		return;
5288 
5289 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5290 				       state, size, vcpu->arch.pkru);
5291 }
5292 
5293 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5294 					struct kvm_xsave *guest_xsave)
5295 {
5296 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5297 		return 0;
5298 
5299 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5300 					      guest_xsave->region,
5301 					      kvm_caps.supported_xcr0,
5302 					      &vcpu->arch.pkru);
5303 }
5304 
5305 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5306 					struct kvm_xcrs *guest_xcrs)
5307 {
5308 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5309 		guest_xcrs->nr_xcrs = 0;
5310 		return;
5311 	}
5312 
5313 	guest_xcrs->nr_xcrs = 1;
5314 	guest_xcrs->flags = 0;
5315 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5316 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5317 }
5318 
5319 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5320 				       struct kvm_xcrs *guest_xcrs)
5321 {
5322 	int i, r = 0;
5323 
5324 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5325 		return -EINVAL;
5326 
5327 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5328 		return -EINVAL;
5329 
5330 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5331 		/* Only support XCR0 currently */
5332 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5333 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5334 				guest_xcrs->xcrs[i].value);
5335 			break;
5336 		}
5337 	if (r)
5338 		r = -EINVAL;
5339 	return r;
5340 }
5341 
5342 /*
5343  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5344  * stopped by the hypervisor.  This function will be called from the host only.
5345  * EINVAL is returned when the host attempts to set the flag for a guest that
5346  * does not support pv clocks.
5347  */
5348 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5349 {
5350 	if (!vcpu->arch.pv_time.active)
5351 		return -EINVAL;
5352 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5353 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5354 	return 0;
5355 }
5356 
5357 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5358 				 struct kvm_device_attr *attr)
5359 {
5360 	int r;
5361 
5362 	switch (attr->attr) {
5363 	case KVM_VCPU_TSC_OFFSET:
5364 		r = 0;
5365 		break;
5366 	default:
5367 		r = -ENXIO;
5368 	}
5369 
5370 	return r;
5371 }
5372 
5373 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5374 				 struct kvm_device_attr *attr)
5375 {
5376 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5377 	int r;
5378 
5379 	if (IS_ERR(uaddr))
5380 		return PTR_ERR(uaddr);
5381 
5382 	switch (attr->attr) {
5383 	case KVM_VCPU_TSC_OFFSET:
5384 		r = -EFAULT;
5385 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5386 			break;
5387 		r = 0;
5388 		break;
5389 	default:
5390 		r = -ENXIO;
5391 	}
5392 
5393 	return r;
5394 }
5395 
5396 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5397 				 struct kvm_device_attr *attr)
5398 {
5399 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5400 	struct kvm *kvm = vcpu->kvm;
5401 	int r;
5402 
5403 	if (IS_ERR(uaddr))
5404 		return PTR_ERR(uaddr);
5405 
5406 	switch (attr->attr) {
5407 	case KVM_VCPU_TSC_OFFSET: {
5408 		u64 offset, tsc, ns;
5409 		unsigned long flags;
5410 		bool matched;
5411 
5412 		r = -EFAULT;
5413 		if (get_user(offset, uaddr))
5414 			break;
5415 
5416 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5417 
5418 		matched = (vcpu->arch.virtual_tsc_khz &&
5419 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5420 			   kvm->arch.last_tsc_offset == offset);
5421 
5422 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5423 		ns = get_kvmclock_base_ns();
5424 
5425 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5426 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5427 
5428 		r = 0;
5429 		break;
5430 	}
5431 	default:
5432 		r = -ENXIO;
5433 	}
5434 
5435 	return r;
5436 }
5437 
5438 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5439 				      unsigned int ioctl,
5440 				      void __user *argp)
5441 {
5442 	struct kvm_device_attr attr;
5443 	int r;
5444 
5445 	if (copy_from_user(&attr, argp, sizeof(attr)))
5446 		return -EFAULT;
5447 
5448 	if (attr.group != KVM_VCPU_TSC_CTRL)
5449 		return -ENXIO;
5450 
5451 	switch (ioctl) {
5452 	case KVM_HAS_DEVICE_ATTR:
5453 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5454 		break;
5455 	case KVM_GET_DEVICE_ATTR:
5456 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5457 		break;
5458 	case KVM_SET_DEVICE_ATTR:
5459 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5460 		break;
5461 	}
5462 
5463 	return r;
5464 }
5465 
5466 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5467 				     struct kvm_enable_cap *cap)
5468 {
5469 	int r;
5470 	uint16_t vmcs_version;
5471 	void __user *user_ptr;
5472 
5473 	if (cap->flags)
5474 		return -EINVAL;
5475 
5476 	switch (cap->cap) {
5477 	case KVM_CAP_HYPERV_SYNIC2:
5478 		if (cap->args[0])
5479 			return -EINVAL;
5480 		fallthrough;
5481 
5482 	case KVM_CAP_HYPERV_SYNIC:
5483 		if (!irqchip_in_kernel(vcpu->kvm))
5484 			return -EINVAL;
5485 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5486 					     KVM_CAP_HYPERV_SYNIC2);
5487 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5488 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5489 			return -ENOTTY;
5490 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5491 		if (!r) {
5492 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5493 			if (copy_to_user(user_ptr, &vmcs_version,
5494 					 sizeof(vmcs_version)))
5495 				r = -EFAULT;
5496 		}
5497 		return r;
5498 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5499 		if (!kvm_x86_ops.enable_direct_tlbflush)
5500 			return -ENOTTY;
5501 
5502 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5503 
5504 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5505 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5506 
5507 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5508 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5509 		if (vcpu->arch.pv_cpuid.enforce)
5510 			kvm_update_pv_runtime(vcpu);
5511 
5512 		return 0;
5513 	default:
5514 		return -EINVAL;
5515 	}
5516 }
5517 
5518 long kvm_arch_vcpu_ioctl(struct file *filp,
5519 			 unsigned int ioctl, unsigned long arg)
5520 {
5521 	struct kvm_vcpu *vcpu = filp->private_data;
5522 	void __user *argp = (void __user *)arg;
5523 	int r;
5524 	union {
5525 		struct kvm_sregs2 *sregs2;
5526 		struct kvm_lapic_state *lapic;
5527 		struct kvm_xsave *xsave;
5528 		struct kvm_xcrs *xcrs;
5529 		void *buffer;
5530 	} u;
5531 
5532 	vcpu_load(vcpu);
5533 
5534 	u.buffer = NULL;
5535 	switch (ioctl) {
5536 	case KVM_GET_LAPIC: {
5537 		r = -EINVAL;
5538 		if (!lapic_in_kernel(vcpu))
5539 			goto out;
5540 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5541 				GFP_KERNEL_ACCOUNT);
5542 
5543 		r = -ENOMEM;
5544 		if (!u.lapic)
5545 			goto out;
5546 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5547 		if (r)
5548 			goto out;
5549 		r = -EFAULT;
5550 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5551 			goto out;
5552 		r = 0;
5553 		break;
5554 	}
5555 	case KVM_SET_LAPIC: {
5556 		r = -EINVAL;
5557 		if (!lapic_in_kernel(vcpu))
5558 			goto out;
5559 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5560 		if (IS_ERR(u.lapic)) {
5561 			r = PTR_ERR(u.lapic);
5562 			goto out_nofree;
5563 		}
5564 
5565 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5566 		break;
5567 	}
5568 	case KVM_INTERRUPT: {
5569 		struct kvm_interrupt irq;
5570 
5571 		r = -EFAULT;
5572 		if (copy_from_user(&irq, argp, sizeof(irq)))
5573 			goto out;
5574 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5575 		break;
5576 	}
5577 	case KVM_NMI: {
5578 		r = kvm_vcpu_ioctl_nmi(vcpu);
5579 		break;
5580 	}
5581 	case KVM_SMI: {
5582 		r = kvm_vcpu_ioctl_smi(vcpu);
5583 		break;
5584 	}
5585 	case KVM_SET_CPUID: {
5586 		struct kvm_cpuid __user *cpuid_arg = argp;
5587 		struct kvm_cpuid cpuid;
5588 
5589 		r = -EFAULT;
5590 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5591 			goto out;
5592 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5593 		break;
5594 	}
5595 	case KVM_SET_CPUID2: {
5596 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5597 		struct kvm_cpuid2 cpuid;
5598 
5599 		r = -EFAULT;
5600 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5601 			goto out;
5602 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5603 					      cpuid_arg->entries);
5604 		break;
5605 	}
5606 	case KVM_GET_CPUID2: {
5607 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5608 		struct kvm_cpuid2 cpuid;
5609 
5610 		r = -EFAULT;
5611 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5612 			goto out;
5613 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5614 					      cpuid_arg->entries);
5615 		if (r)
5616 			goto out;
5617 		r = -EFAULT;
5618 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5619 			goto out;
5620 		r = 0;
5621 		break;
5622 	}
5623 	case KVM_GET_MSRS: {
5624 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5625 		r = msr_io(vcpu, argp, do_get_msr, 1);
5626 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5627 		break;
5628 	}
5629 	case KVM_SET_MSRS: {
5630 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5631 		r = msr_io(vcpu, argp, do_set_msr, 0);
5632 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5633 		break;
5634 	}
5635 	case KVM_TPR_ACCESS_REPORTING: {
5636 		struct kvm_tpr_access_ctl tac;
5637 
5638 		r = -EFAULT;
5639 		if (copy_from_user(&tac, argp, sizeof(tac)))
5640 			goto out;
5641 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5642 		if (r)
5643 			goto out;
5644 		r = -EFAULT;
5645 		if (copy_to_user(argp, &tac, sizeof(tac)))
5646 			goto out;
5647 		r = 0;
5648 		break;
5649 	};
5650 	case KVM_SET_VAPIC_ADDR: {
5651 		struct kvm_vapic_addr va;
5652 		int idx;
5653 
5654 		r = -EINVAL;
5655 		if (!lapic_in_kernel(vcpu))
5656 			goto out;
5657 		r = -EFAULT;
5658 		if (copy_from_user(&va, argp, sizeof(va)))
5659 			goto out;
5660 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5661 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5662 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5663 		break;
5664 	}
5665 	case KVM_X86_SETUP_MCE: {
5666 		u64 mcg_cap;
5667 
5668 		r = -EFAULT;
5669 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5670 			goto out;
5671 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5672 		break;
5673 	}
5674 	case KVM_X86_SET_MCE: {
5675 		struct kvm_x86_mce mce;
5676 
5677 		r = -EFAULT;
5678 		if (copy_from_user(&mce, argp, sizeof(mce)))
5679 			goto out;
5680 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5681 		break;
5682 	}
5683 	case KVM_GET_VCPU_EVENTS: {
5684 		struct kvm_vcpu_events events;
5685 
5686 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5687 
5688 		r = -EFAULT;
5689 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5690 			break;
5691 		r = 0;
5692 		break;
5693 	}
5694 	case KVM_SET_VCPU_EVENTS: {
5695 		struct kvm_vcpu_events events;
5696 
5697 		r = -EFAULT;
5698 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5699 			break;
5700 
5701 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5702 		break;
5703 	}
5704 	case KVM_GET_DEBUGREGS: {
5705 		struct kvm_debugregs dbgregs;
5706 
5707 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5708 
5709 		r = -EFAULT;
5710 		if (copy_to_user(argp, &dbgregs,
5711 				 sizeof(struct kvm_debugregs)))
5712 			break;
5713 		r = 0;
5714 		break;
5715 	}
5716 	case KVM_SET_DEBUGREGS: {
5717 		struct kvm_debugregs dbgregs;
5718 
5719 		r = -EFAULT;
5720 		if (copy_from_user(&dbgregs, argp,
5721 				   sizeof(struct kvm_debugregs)))
5722 			break;
5723 
5724 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5725 		break;
5726 	}
5727 	case KVM_GET_XSAVE: {
5728 		r = -EINVAL;
5729 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5730 			break;
5731 
5732 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5733 		r = -ENOMEM;
5734 		if (!u.xsave)
5735 			break;
5736 
5737 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5738 
5739 		r = -EFAULT;
5740 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5741 			break;
5742 		r = 0;
5743 		break;
5744 	}
5745 	case KVM_SET_XSAVE: {
5746 		int size = vcpu->arch.guest_fpu.uabi_size;
5747 
5748 		u.xsave = memdup_user(argp, size);
5749 		if (IS_ERR(u.xsave)) {
5750 			r = PTR_ERR(u.xsave);
5751 			goto out_nofree;
5752 		}
5753 
5754 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5755 		break;
5756 	}
5757 
5758 	case KVM_GET_XSAVE2: {
5759 		int size = vcpu->arch.guest_fpu.uabi_size;
5760 
5761 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5762 		r = -ENOMEM;
5763 		if (!u.xsave)
5764 			break;
5765 
5766 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5767 
5768 		r = -EFAULT;
5769 		if (copy_to_user(argp, u.xsave, size))
5770 			break;
5771 
5772 		r = 0;
5773 		break;
5774 	}
5775 
5776 	case KVM_GET_XCRS: {
5777 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5778 		r = -ENOMEM;
5779 		if (!u.xcrs)
5780 			break;
5781 
5782 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5783 
5784 		r = -EFAULT;
5785 		if (copy_to_user(argp, u.xcrs,
5786 				 sizeof(struct kvm_xcrs)))
5787 			break;
5788 		r = 0;
5789 		break;
5790 	}
5791 	case KVM_SET_XCRS: {
5792 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5793 		if (IS_ERR(u.xcrs)) {
5794 			r = PTR_ERR(u.xcrs);
5795 			goto out_nofree;
5796 		}
5797 
5798 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5799 		break;
5800 	}
5801 	case KVM_SET_TSC_KHZ: {
5802 		u32 user_tsc_khz;
5803 
5804 		r = -EINVAL;
5805 		user_tsc_khz = (u32)arg;
5806 
5807 		if (kvm_caps.has_tsc_control &&
5808 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5809 			goto out;
5810 
5811 		if (user_tsc_khz == 0)
5812 			user_tsc_khz = tsc_khz;
5813 
5814 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5815 			r = 0;
5816 
5817 		goto out;
5818 	}
5819 	case KVM_GET_TSC_KHZ: {
5820 		r = vcpu->arch.virtual_tsc_khz;
5821 		goto out;
5822 	}
5823 	case KVM_KVMCLOCK_CTRL: {
5824 		r = kvm_set_guest_paused(vcpu);
5825 		goto out;
5826 	}
5827 	case KVM_ENABLE_CAP: {
5828 		struct kvm_enable_cap cap;
5829 
5830 		r = -EFAULT;
5831 		if (copy_from_user(&cap, argp, sizeof(cap)))
5832 			goto out;
5833 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5834 		break;
5835 	}
5836 	case KVM_GET_NESTED_STATE: {
5837 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5838 		u32 user_data_size;
5839 
5840 		r = -EINVAL;
5841 		if (!kvm_x86_ops.nested_ops->get_state)
5842 			break;
5843 
5844 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5845 		r = -EFAULT;
5846 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5847 			break;
5848 
5849 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5850 						     user_data_size);
5851 		if (r < 0)
5852 			break;
5853 
5854 		if (r > user_data_size) {
5855 			if (put_user(r, &user_kvm_nested_state->size))
5856 				r = -EFAULT;
5857 			else
5858 				r = -E2BIG;
5859 			break;
5860 		}
5861 
5862 		r = 0;
5863 		break;
5864 	}
5865 	case KVM_SET_NESTED_STATE: {
5866 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5867 		struct kvm_nested_state kvm_state;
5868 		int idx;
5869 
5870 		r = -EINVAL;
5871 		if (!kvm_x86_ops.nested_ops->set_state)
5872 			break;
5873 
5874 		r = -EFAULT;
5875 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5876 			break;
5877 
5878 		r = -EINVAL;
5879 		if (kvm_state.size < sizeof(kvm_state))
5880 			break;
5881 
5882 		if (kvm_state.flags &
5883 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5884 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5885 		      | KVM_STATE_NESTED_GIF_SET))
5886 			break;
5887 
5888 		/* nested_run_pending implies guest_mode.  */
5889 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5890 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5891 			break;
5892 
5893 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5894 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5895 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5896 		break;
5897 	}
5898 	case KVM_GET_SUPPORTED_HV_CPUID:
5899 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5900 		break;
5901 #ifdef CONFIG_KVM_XEN
5902 	case KVM_XEN_VCPU_GET_ATTR: {
5903 		struct kvm_xen_vcpu_attr xva;
5904 
5905 		r = -EFAULT;
5906 		if (copy_from_user(&xva, argp, sizeof(xva)))
5907 			goto out;
5908 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5909 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5910 			r = -EFAULT;
5911 		break;
5912 	}
5913 	case KVM_XEN_VCPU_SET_ATTR: {
5914 		struct kvm_xen_vcpu_attr xva;
5915 
5916 		r = -EFAULT;
5917 		if (copy_from_user(&xva, argp, sizeof(xva)))
5918 			goto out;
5919 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5920 		break;
5921 	}
5922 #endif
5923 	case KVM_GET_SREGS2: {
5924 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5925 		r = -ENOMEM;
5926 		if (!u.sregs2)
5927 			goto out;
5928 		__get_sregs2(vcpu, u.sregs2);
5929 		r = -EFAULT;
5930 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5931 			goto out;
5932 		r = 0;
5933 		break;
5934 	}
5935 	case KVM_SET_SREGS2: {
5936 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5937 		if (IS_ERR(u.sregs2)) {
5938 			r = PTR_ERR(u.sregs2);
5939 			u.sregs2 = NULL;
5940 			goto out;
5941 		}
5942 		r = __set_sregs2(vcpu, u.sregs2);
5943 		break;
5944 	}
5945 	case KVM_HAS_DEVICE_ATTR:
5946 	case KVM_GET_DEVICE_ATTR:
5947 	case KVM_SET_DEVICE_ATTR:
5948 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5949 		break;
5950 	default:
5951 		r = -EINVAL;
5952 	}
5953 out:
5954 	kfree(u.buffer);
5955 out_nofree:
5956 	vcpu_put(vcpu);
5957 	return r;
5958 }
5959 
5960 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5961 {
5962 	return VM_FAULT_SIGBUS;
5963 }
5964 
5965 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5966 {
5967 	int ret;
5968 
5969 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5970 		return -EINVAL;
5971 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5972 	return ret;
5973 }
5974 
5975 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5976 					      u64 ident_addr)
5977 {
5978 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5979 }
5980 
5981 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5982 					 unsigned long kvm_nr_mmu_pages)
5983 {
5984 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5985 		return -EINVAL;
5986 
5987 	mutex_lock(&kvm->slots_lock);
5988 
5989 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5990 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5991 
5992 	mutex_unlock(&kvm->slots_lock);
5993 	return 0;
5994 }
5995 
5996 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5997 {
5998 	return kvm->arch.n_max_mmu_pages;
5999 }
6000 
6001 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6002 {
6003 	struct kvm_pic *pic = kvm->arch.vpic;
6004 	int r;
6005 
6006 	r = 0;
6007 	switch (chip->chip_id) {
6008 	case KVM_IRQCHIP_PIC_MASTER:
6009 		memcpy(&chip->chip.pic, &pic->pics[0],
6010 			sizeof(struct kvm_pic_state));
6011 		break;
6012 	case KVM_IRQCHIP_PIC_SLAVE:
6013 		memcpy(&chip->chip.pic, &pic->pics[1],
6014 			sizeof(struct kvm_pic_state));
6015 		break;
6016 	case KVM_IRQCHIP_IOAPIC:
6017 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6018 		break;
6019 	default:
6020 		r = -EINVAL;
6021 		break;
6022 	}
6023 	return r;
6024 }
6025 
6026 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6027 {
6028 	struct kvm_pic *pic = kvm->arch.vpic;
6029 	int r;
6030 
6031 	r = 0;
6032 	switch (chip->chip_id) {
6033 	case KVM_IRQCHIP_PIC_MASTER:
6034 		spin_lock(&pic->lock);
6035 		memcpy(&pic->pics[0], &chip->chip.pic,
6036 			sizeof(struct kvm_pic_state));
6037 		spin_unlock(&pic->lock);
6038 		break;
6039 	case KVM_IRQCHIP_PIC_SLAVE:
6040 		spin_lock(&pic->lock);
6041 		memcpy(&pic->pics[1], &chip->chip.pic,
6042 			sizeof(struct kvm_pic_state));
6043 		spin_unlock(&pic->lock);
6044 		break;
6045 	case KVM_IRQCHIP_IOAPIC:
6046 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6047 		break;
6048 	default:
6049 		r = -EINVAL;
6050 		break;
6051 	}
6052 	kvm_pic_update_irq(pic);
6053 	return r;
6054 }
6055 
6056 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6057 {
6058 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6059 
6060 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6061 
6062 	mutex_lock(&kps->lock);
6063 	memcpy(ps, &kps->channels, sizeof(*ps));
6064 	mutex_unlock(&kps->lock);
6065 	return 0;
6066 }
6067 
6068 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6069 {
6070 	int i;
6071 	struct kvm_pit *pit = kvm->arch.vpit;
6072 
6073 	mutex_lock(&pit->pit_state.lock);
6074 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6075 	for (i = 0; i < 3; i++)
6076 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6077 	mutex_unlock(&pit->pit_state.lock);
6078 	return 0;
6079 }
6080 
6081 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6082 {
6083 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6084 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6085 		sizeof(ps->channels));
6086 	ps->flags = kvm->arch.vpit->pit_state.flags;
6087 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6088 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6089 	return 0;
6090 }
6091 
6092 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6093 {
6094 	int start = 0;
6095 	int i;
6096 	u32 prev_legacy, cur_legacy;
6097 	struct kvm_pit *pit = kvm->arch.vpit;
6098 
6099 	mutex_lock(&pit->pit_state.lock);
6100 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6101 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6102 	if (!prev_legacy && cur_legacy)
6103 		start = 1;
6104 	memcpy(&pit->pit_state.channels, &ps->channels,
6105 	       sizeof(pit->pit_state.channels));
6106 	pit->pit_state.flags = ps->flags;
6107 	for (i = 0; i < 3; i++)
6108 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6109 				   start && i == 0);
6110 	mutex_unlock(&pit->pit_state.lock);
6111 	return 0;
6112 }
6113 
6114 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6115 				 struct kvm_reinject_control *control)
6116 {
6117 	struct kvm_pit *pit = kvm->arch.vpit;
6118 
6119 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6120 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6121 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6122 	 */
6123 	mutex_lock(&pit->pit_state.lock);
6124 	kvm_pit_set_reinject(pit, control->pit_reinject);
6125 	mutex_unlock(&pit->pit_state.lock);
6126 
6127 	return 0;
6128 }
6129 
6130 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6131 {
6132 
6133 	/*
6134 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6135 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6136 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6137 	 * VM-Exit.
6138 	 */
6139 	struct kvm_vcpu *vcpu;
6140 	unsigned long i;
6141 
6142 	kvm_for_each_vcpu(i, vcpu, kvm)
6143 		kvm_vcpu_kick(vcpu);
6144 }
6145 
6146 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6147 			bool line_status)
6148 {
6149 	if (!irqchip_in_kernel(kvm))
6150 		return -ENXIO;
6151 
6152 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6153 					irq_event->irq, irq_event->level,
6154 					line_status);
6155 	return 0;
6156 }
6157 
6158 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6159 			    struct kvm_enable_cap *cap)
6160 {
6161 	int r;
6162 
6163 	if (cap->flags)
6164 		return -EINVAL;
6165 
6166 	switch (cap->cap) {
6167 	case KVM_CAP_DISABLE_QUIRKS2:
6168 		r = -EINVAL;
6169 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6170 			break;
6171 		fallthrough;
6172 	case KVM_CAP_DISABLE_QUIRKS:
6173 		kvm->arch.disabled_quirks = cap->args[0];
6174 		r = 0;
6175 		break;
6176 	case KVM_CAP_SPLIT_IRQCHIP: {
6177 		mutex_lock(&kvm->lock);
6178 		r = -EINVAL;
6179 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6180 			goto split_irqchip_unlock;
6181 		r = -EEXIST;
6182 		if (irqchip_in_kernel(kvm))
6183 			goto split_irqchip_unlock;
6184 		if (kvm->created_vcpus)
6185 			goto split_irqchip_unlock;
6186 		r = kvm_setup_empty_irq_routing(kvm);
6187 		if (r)
6188 			goto split_irqchip_unlock;
6189 		/* Pairs with irqchip_in_kernel. */
6190 		smp_wmb();
6191 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6192 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6193 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6194 		r = 0;
6195 split_irqchip_unlock:
6196 		mutex_unlock(&kvm->lock);
6197 		break;
6198 	}
6199 	case KVM_CAP_X2APIC_API:
6200 		r = -EINVAL;
6201 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6202 			break;
6203 
6204 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6205 			kvm->arch.x2apic_format = true;
6206 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6207 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6208 
6209 		r = 0;
6210 		break;
6211 	case KVM_CAP_X86_DISABLE_EXITS:
6212 		r = -EINVAL;
6213 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6214 			break;
6215 
6216 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6217 			kvm_can_mwait_in_guest())
6218 			kvm->arch.mwait_in_guest = true;
6219 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6220 			kvm->arch.hlt_in_guest = true;
6221 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6222 			kvm->arch.pause_in_guest = true;
6223 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6224 			kvm->arch.cstate_in_guest = true;
6225 		r = 0;
6226 		break;
6227 	case KVM_CAP_MSR_PLATFORM_INFO:
6228 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6229 		r = 0;
6230 		break;
6231 	case KVM_CAP_EXCEPTION_PAYLOAD:
6232 		kvm->arch.exception_payload_enabled = cap->args[0];
6233 		r = 0;
6234 		break;
6235 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6236 		kvm->arch.triple_fault_event = cap->args[0];
6237 		r = 0;
6238 		break;
6239 	case KVM_CAP_X86_USER_SPACE_MSR:
6240 		r = -EINVAL;
6241 		if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
6242 				     KVM_MSR_EXIT_REASON_UNKNOWN |
6243 				     KVM_MSR_EXIT_REASON_FILTER))
6244 			break;
6245 		kvm->arch.user_space_msr_mask = cap->args[0];
6246 		r = 0;
6247 		break;
6248 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6249 		r = -EINVAL;
6250 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6251 			break;
6252 
6253 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6254 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6255 			break;
6256 
6257 		if (kvm_caps.has_bus_lock_exit &&
6258 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6259 			kvm->arch.bus_lock_detection_enabled = true;
6260 		r = 0;
6261 		break;
6262 #ifdef CONFIG_X86_SGX_KVM
6263 	case KVM_CAP_SGX_ATTRIBUTE: {
6264 		unsigned long allowed_attributes = 0;
6265 
6266 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6267 		if (r)
6268 			break;
6269 
6270 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6271 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6272 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6273 			kvm->arch.sgx_provisioning_allowed = true;
6274 		else
6275 			r = -EINVAL;
6276 		break;
6277 	}
6278 #endif
6279 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6280 		r = -EINVAL;
6281 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6282 			break;
6283 
6284 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6285 		break;
6286 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6287 		r = -EINVAL;
6288 		if (!kvm_x86_ops.vm_move_enc_context_from)
6289 			break;
6290 
6291 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6292 		break;
6293 	case KVM_CAP_EXIT_HYPERCALL:
6294 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6295 			r = -EINVAL;
6296 			break;
6297 		}
6298 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6299 		r = 0;
6300 		break;
6301 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6302 		r = -EINVAL;
6303 		if (cap->args[0] & ~1)
6304 			break;
6305 		kvm->arch.exit_on_emulation_error = cap->args[0];
6306 		r = 0;
6307 		break;
6308 	case KVM_CAP_PMU_CAPABILITY:
6309 		r = -EINVAL;
6310 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6311 			break;
6312 
6313 		mutex_lock(&kvm->lock);
6314 		if (!kvm->created_vcpus) {
6315 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6316 			r = 0;
6317 		}
6318 		mutex_unlock(&kvm->lock);
6319 		break;
6320 	case KVM_CAP_MAX_VCPU_ID:
6321 		r = -EINVAL;
6322 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6323 			break;
6324 
6325 		mutex_lock(&kvm->lock);
6326 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6327 			r = 0;
6328 		} else if (!kvm->arch.max_vcpu_ids) {
6329 			kvm->arch.max_vcpu_ids = cap->args[0];
6330 			r = 0;
6331 		}
6332 		mutex_unlock(&kvm->lock);
6333 		break;
6334 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6335 		r = -EINVAL;
6336 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6337 			break;
6338 		if (!kvm_caps.has_notify_vmexit)
6339 			break;
6340 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6341 			break;
6342 		mutex_lock(&kvm->lock);
6343 		if (!kvm->created_vcpus) {
6344 			kvm->arch.notify_window = cap->args[0] >> 32;
6345 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6346 			r = 0;
6347 		}
6348 		mutex_unlock(&kvm->lock);
6349 		break;
6350 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6351 		r = -EINVAL;
6352 
6353 		/*
6354 		 * Since the risk of disabling NX hugepages is a guest crashing
6355 		 * the system, ensure the userspace process has permission to
6356 		 * reboot the system.
6357 		 *
6358 		 * Note that unlike the reboot() syscall, the process must have
6359 		 * this capability in the root namespace because exposing
6360 		 * /dev/kvm into a container does not limit the scope of the
6361 		 * iTLB multihit bug to that container. In other words,
6362 		 * this must use capable(), not ns_capable().
6363 		 */
6364 		if (!capable(CAP_SYS_BOOT)) {
6365 			r = -EPERM;
6366 			break;
6367 		}
6368 
6369 		if (cap->args[0])
6370 			break;
6371 
6372 		mutex_lock(&kvm->lock);
6373 		if (!kvm->created_vcpus) {
6374 			kvm->arch.disable_nx_huge_pages = true;
6375 			r = 0;
6376 		}
6377 		mutex_unlock(&kvm->lock);
6378 		break;
6379 	default:
6380 		r = -EINVAL;
6381 		break;
6382 	}
6383 	return r;
6384 }
6385 
6386 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6387 {
6388 	struct kvm_x86_msr_filter *msr_filter;
6389 
6390 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6391 	if (!msr_filter)
6392 		return NULL;
6393 
6394 	msr_filter->default_allow = default_allow;
6395 	return msr_filter;
6396 }
6397 
6398 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6399 {
6400 	u32 i;
6401 
6402 	if (!msr_filter)
6403 		return;
6404 
6405 	for (i = 0; i < msr_filter->count; i++)
6406 		kfree(msr_filter->ranges[i].bitmap);
6407 
6408 	kfree(msr_filter);
6409 }
6410 
6411 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6412 			      struct kvm_msr_filter_range *user_range)
6413 {
6414 	unsigned long *bitmap = NULL;
6415 	size_t bitmap_size;
6416 
6417 	if (!user_range->nmsrs)
6418 		return 0;
6419 
6420 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6421 		return -EINVAL;
6422 
6423 	if (!user_range->flags)
6424 		return -EINVAL;
6425 
6426 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6427 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6428 		return -EINVAL;
6429 
6430 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6431 	if (IS_ERR(bitmap))
6432 		return PTR_ERR(bitmap);
6433 
6434 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6435 		.flags = user_range->flags,
6436 		.base = user_range->base,
6437 		.nmsrs = user_range->nmsrs,
6438 		.bitmap = bitmap,
6439 	};
6440 
6441 	msr_filter->count++;
6442 	return 0;
6443 }
6444 
6445 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6446 				       struct kvm_msr_filter *filter)
6447 {
6448 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6449 	bool default_allow;
6450 	bool empty = true;
6451 	int r = 0;
6452 	u32 i;
6453 
6454 	if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
6455 		return -EINVAL;
6456 
6457 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6458 		empty &= !filter->ranges[i].nmsrs;
6459 
6460 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6461 	if (empty && !default_allow)
6462 		return -EINVAL;
6463 
6464 	new_filter = kvm_alloc_msr_filter(default_allow);
6465 	if (!new_filter)
6466 		return -ENOMEM;
6467 
6468 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6469 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6470 		if (r) {
6471 			kvm_free_msr_filter(new_filter);
6472 			return r;
6473 		}
6474 	}
6475 
6476 	mutex_lock(&kvm->lock);
6477 
6478 	/* The per-VM filter is protected by kvm->lock... */
6479 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6480 
6481 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6482 	synchronize_srcu(&kvm->srcu);
6483 
6484 	kvm_free_msr_filter(old_filter);
6485 
6486 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6487 	mutex_unlock(&kvm->lock);
6488 
6489 	return 0;
6490 }
6491 
6492 #ifdef CONFIG_KVM_COMPAT
6493 /* for KVM_X86_SET_MSR_FILTER */
6494 struct kvm_msr_filter_range_compat {
6495 	__u32 flags;
6496 	__u32 nmsrs;
6497 	__u32 base;
6498 	__u32 bitmap;
6499 };
6500 
6501 struct kvm_msr_filter_compat {
6502 	__u32 flags;
6503 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6504 };
6505 
6506 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6507 
6508 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6509 			      unsigned long arg)
6510 {
6511 	void __user *argp = (void __user *)arg;
6512 	struct kvm *kvm = filp->private_data;
6513 	long r = -ENOTTY;
6514 
6515 	switch (ioctl) {
6516 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6517 		struct kvm_msr_filter __user *user_msr_filter = argp;
6518 		struct kvm_msr_filter_compat filter_compat;
6519 		struct kvm_msr_filter filter;
6520 		int i;
6521 
6522 		if (copy_from_user(&filter_compat, user_msr_filter,
6523 				   sizeof(filter_compat)))
6524 			return -EFAULT;
6525 
6526 		filter.flags = filter_compat.flags;
6527 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6528 			struct kvm_msr_filter_range_compat *cr;
6529 
6530 			cr = &filter_compat.ranges[i];
6531 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6532 				.flags = cr->flags,
6533 				.nmsrs = cr->nmsrs,
6534 				.base = cr->base,
6535 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6536 			};
6537 		}
6538 
6539 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6540 		break;
6541 	}
6542 	}
6543 
6544 	return r;
6545 }
6546 #endif
6547 
6548 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6549 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6550 {
6551 	struct kvm_vcpu *vcpu;
6552 	unsigned long i;
6553 	int ret = 0;
6554 
6555 	mutex_lock(&kvm->lock);
6556 	kvm_for_each_vcpu(i, vcpu, kvm) {
6557 		if (!vcpu->arch.pv_time.active)
6558 			continue;
6559 
6560 		ret = kvm_set_guest_paused(vcpu);
6561 		if (ret) {
6562 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6563 				vcpu->vcpu_id, ret);
6564 			break;
6565 		}
6566 	}
6567 	mutex_unlock(&kvm->lock);
6568 
6569 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6570 }
6571 
6572 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6573 {
6574 	switch (state) {
6575 	case PM_HIBERNATION_PREPARE:
6576 	case PM_SUSPEND_PREPARE:
6577 		return kvm_arch_suspend_notifier(kvm);
6578 	}
6579 
6580 	return NOTIFY_DONE;
6581 }
6582 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6583 
6584 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6585 {
6586 	struct kvm_clock_data data = { 0 };
6587 
6588 	get_kvmclock(kvm, &data);
6589 	if (copy_to_user(argp, &data, sizeof(data)))
6590 		return -EFAULT;
6591 
6592 	return 0;
6593 }
6594 
6595 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6596 {
6597 	struct kvm_arch *ka = &kvm->arch;
6598 	struct kvm_clock_data data;
6599 	u64 now_raw_ns;
6600 
6601 	if (copy_from_user(&data, argp, sizeof(data)))
6602 		return -EFAULT;
6603 
6604 	/*
6605 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6606 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6607 	 */
6608 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6609 		return -EINVAL;
6610 
6611 	kvm_hv_request_tsc_page_update(kvm);
6612 	kvm_start_pvclock_update(kvm);
6613 	pvclock_update_vm_gtod_copy(kvm);
6614 
6615 	/*
6616 	 * This pairs with kvm_guest_time_update(): when masterclock is
6617 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6618 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6619 	 * is slightly ahead) here we risk going negative on unsigned
6620 	 * 'system_time' when 'data.clock' is very small.
6621 	 */
6622 	if (data.flags & KVM_CLOCK_REALTIME) {
6623 		u64 now_real_ns = ktime_get_real_ns();
6624 
6625 		/*
6626 		 * Avoid stepping the kvmclock backwards.
6627 		 */
6628 		if (now_real_ns > data.realtime)
6629 			data.clock += now_real_ns - data.realtime;
6630 	}
6631 
6632 	if (ka->use_master_clock)
6633 		now_raw_ns = ka->master_kernel_ns;
6634 	else
6635 		now_raw_ns = get_kvmclock_base_ns();
6636 	ka->kvmclock_offset = data.clock - now_raw_ns;
6637 	kvm_end_pvclock_update(kvm);
6638 	return 0;
6639 }
6640 
6641 long kvm_arch_vm_ioctl(struct file *filp,
6642 		       unsigned int ioctl, unsigned long arg)
6643 {
6644 	struct kvm *kvm = filp->private_data;
6645 	void __user *argp = (void __user *)arg;
6646 	int r = -ENOTTY;
6647 	/*
6648 	 * This union makes it completely explicit to gcc-3.x
6649 	 * that these two variables' stack usage should be
6650 	 * combined, not added together.
6651 	 */
6652 	union {
6653 		struct kvm_pit_state ps;
6654 		struct kvm_pit_state2 ps2;
6655 		struct kvm_pit_config pit_config;
6656 	} u;
6657 
6658 	switch (ioctl) {
6659 	case KVM_SET_TSS_ADDR:
6660 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6661 		break;
6662 	case KVM_SET_IDENTITY_MAP_ADDR: {
6663 		u64 ident_addr;
6664 
6665 		mutex_lock(&kvm->lock);
6666 		r = -EINVAL;
6667 		if (kvm->created_vcpus)
6668 			goto set_identity_unlock;
6669 		r = -EFAULT;
6670 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6671 			goto set_identity_unlock;
6672 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6673 set_identity_unlock:
6674 		mutex_unlock(&kvm->lock);
6675 		break;
6676 	}
6677 	case KVM_SET_NR_MMU_PAGES:
6678 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6679 		break;
6680 	case KVM_GET_NR_MMU_PAGES:
6681 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6682 		break;
6683 	case KVM_CREATE_IRQCHIP: {
6684 		mutex_lock(&kvm->lock);
6685 
6686 		r = -EEXIST;
6687 		if (irqchip_in_kernel(kvm))
6688 			goto create_irqchip_unlock;
6689 
6690 		r = -EINVAL;
6691 		if (kvm->created_vcpus)
6692 			goto create_irqchip_unlock;
6693 
6694 		r = kvm_pic_init(kvm);
6695 		if (r)
6696 			goto create_irqchip_unlock;
6697 
6698 		r = kvm_ioapic_init(kvm);
6699 		if (r) {
6700 			kvm_pic_destroy(kvm);
6701 			goto create_irqchip_unlock;
6702 		}
6703 
6704 		r = kvm_setup_default_irq_routing(kvm);
6705 		if (r) {
6706 			kvm_ioapic_destroy(kvm);
6707 			kvm_pic_destroy(kvm);
6708 			goto create_irqchip_unlock;
6709 		}
6710 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6711 		smp_wmb();
6712 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6713 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6714 	create_irqchip_unlock:
6715 		mutex_unlock(&kvm->lock);
6716 		break;
6717 	}
6718 	case KVM_CREATE_PIT:
6719 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6720 		goto create_pit;
6721 	case KVM_CREATE_PIT2:
6722 		r = -EFAULT;
6723 		if (copy_from_user(&u.pit_config, argp,
6724 				   sizeof(struct kvm_pit_config)))
6725 			goto out;
6726 	create_pit:
6727 		mutex_lock(&kvm->lock);
6728 		r = -EEXIST;
6729 		if (kvm->arch.vpit)
6730 			goto create_pit_unlock;
6731 		r = -ENOMEM;
6732 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6733 		if (kvm->arch.vpit)
6734 			r = 0;
6735 	create_pit_unlock:
6736 		mutex_unlock(&kvm->lock);
6737 		break;
6738 	case KVM_GET_IRQCHIP: {
6739 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6740 		struct kvm_irqchip *chip;
6741 
6742 		chip = memdup_user(argp, sizeof(*chip));
6743 		if (IS_ERR(chip)) {
6744 			r = PTR_ERR(chip);
6745 			goto out;
6746 		}
6747 
6748 		r = -ENXIO;
6749 		if (!irqchip_kernel(kvm))
6750 			goto get_irqchip_out;
6751 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6752 		if (r)
6753 			goto get_irqchip_out;
6754 		r = -EFAULT;
6755 		if (copy_to_user(argp, chip, sizeof(*chip)))
6756 			goto get_irqchip_out;
6757 		r = 0;
6758 	get_irqchip_out:
6759 		kfree(chip);
6760 		break;
6761 	}
6762 	case KVM_SET_IRQCHIP: {
6763 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6764 		struct kvm_irqchip *chip;
6765 
6766 		chip = memdup_user(argp, sizeof(*chip));
6767 		if (IS_ERR(chip)) {
6768 			r = PTR_ERR(chip);
6769 			goto out;
6770 		}
6771 
6772 		r = -ENXIO;
6773 		if (!irqchip_kernel(kvm))
6774 			goto set_irqchip_out;
6775 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6776 	set_irqchip_out:
6777 		kfree(chip);
6778 		break;
6779 	}
6780 	case KVM_GET_PIT: {
6781 		r = -EFAULT;
6782 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6783 			goto out;
6784 		r = -ENXIO;
6785 		if (!kvm->arch.vpit)
6786 			goto out;
6787 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6788 		if (r)
6789 			goto out;
6790 		r = -EFAULT;
6791 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6792 			goto out;
6793 		r = 0;
6794 		break;
6795 	}
6796 	case KVM_SET_PIT: {
6797 		r = -EFAULT;
6798 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6799 			goto out;
6800 		mutex_lock(&kvm->lock);
6801 		r = -ENXIO;
6802 		if (!kvm->arch.vpit)
6803 			goto set_pit_out;
6804 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6805 set_pit_out:
6806 		mutex_unlock(&kvm->lock);
6807 		break;
6808 	}
6809 	case KVM_GET_PIT2: {
6810 		r = -ENXIO;
6811 		if (!kvm->arch.vpit)
6812 			goto out;
6813 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6814 		if (r)
6815 			goto out;
6816 		r = -EFAULT;
6817 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6818 			goto out;
6819 		r = 0;
6820 		break;
6821 	}
6822 	case KVM_SET_PIT2: {
6823 		r = -EFAULT;
6824 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6825 			goto out;
6826 		mutex_lock(&kvm->lock);
6827 		r = -ENXIO;
6828 		if (!kvm->arch.vpit)
6829 			goto set_pit2_out;
6830 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6831 set_pit2_out:
6832 		mutex_unlock(&kvm->lock);
6833 		break;
6834 	}
6835 	case KVM_REINJECT_CONTROL: {
6836 		struct kvm_reinject_control control;
6837 		r =  -EFAULT;
6838 		if (copy_from_user(&control, argp, sizeof(control)))
6839 			goto out;
6840 		r = -ENXIO;
6841 		if (!kvm->arch.vpit)
6842 			goto out;
6843 		r = kvm_vm_ioctl_reinject(kvm, &control);
6844 		break;
6845 	}
6846 	case KVM_SET_BOOT_CPU_ID:
6847 		r = 0;
6848 		mutex_lock(&kvm->lock);
6849 		if (kvm->created_vcpus)
6850 			r = -EBUSY;
6851 		else
6852 			kvm->arch.bsp_vcpu_id = arg;
6853 		mutex_unlock(&kvm->lock);
6854 		break;
6855 #ifdef CONFIG_KVM_XEN
6856 	case KVM_XEN_HVM_CONFIG: {
6857 		struct kvm_xen_hvm_config xhc;
6858 		r = -EFAULT;
6859 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6860 			goto out;
6861 		r = kvm_xen_hvm_config(kvm, &xhc);
6862 		break;
6863 	}
6864 	case KVM_XEN_HVM_GET_ATTR: {
6865 		struct kvm_xen_hvm_attr xha;
6866 
6867 		r = -EFAULT;
6868 		if (copy_from_user(&xha, argp, sizeof(xha)))
6869 			goto out;
6870 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6871 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6872 			r = -EFAULT;
6873 		break;
6874 	}
6875 	case KVM_XEN_HVM_SET_ATTR: {
6876 		struct kvm_xen_hvm_attr xha;
6877 
6878 		r = -EFAULT;
6879 		if (copy_from_user(&xha, argp, sizeof(xha)))
6880 			goto out;
6881 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6882 		break;
6883 	}
6884 	case KVM_XEN_HVM_EVTCHN_SEND: {
6885 		struct kvm_irq_routing_xen_evtchn uxe;
6886 
6887 		r = -EFAULT;
6888 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6889 			goto out;
6890 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6891 		break;
6892 	}
6893 #endif
6894 	case KVM_SET_CLOCK:
6895 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6896 		break;
6897 	case KVM_GET_CLOCK:
6898 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6899 		break;
6900 	case KVM_SET_TSC_KHZ: {
6901 		u32 user_tsc_khz;
6902 
6903 		r = -EINVAL;
6904 		user_tsc_khz = (u32)arg;
6905 
6906 		if (kvm_caps.has_tsc_control &&
6907 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6908 			goto out;
6909 
6910 		if (user_tsc_khz == 0)
6911 			user_tsc_khz = tsc_khz;
6912 
6913 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6914 		r = 0;
6915 
6916 		goto out;
6917 	}
6918 	case KVM_GET_TSC_KHZ: {
6919 		r = READ_ONCE(kvm->arch.default_tsc_khz);
6920 		goto out;
6921 	}
6922 	case KVM_MEMORY_ENCRYPT_OP: {
6923 		r = -ENOTTY;
6924 		if (!kvm_x86_ops.mem_enc_ioctl)
6925 			goto out;
6926 
6927 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6928 		break;
6929 	}
6930 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6931 		struct kvm_enc_region region;
6932 
6933 		r = -EFAULT;
6934 		if (copy_from_user(&region, argp, sizeof(region)))
6935 			goto out;
6936 
6937 		r = -ENOTTY;
6938 		if (!kvm_x86_ops.mem_enc_register_region)
6939 			goto out;
6940 
6941 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6942 		break;
6943 	}
6944 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6945 		struct kvm_enc_region region;
6946 
6947 		r = -EFAULT;
6948 		if (copy_from_user(&region, argp, sizeof(region)))
6949 			goto out;
6950 
6951 		r = -ENOTTY;
6952 		if (!kvm_x86_ops.mem_enc_unregister_region)
6953 			goto out;
6954 
6955 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6956 		break;
6957 	}
6958 	case KVM_HYPERV_EVENTFD: {
6959 		struct kvm_hyperv_eventfd hvevfd;
6960 
6961 		r = -EFAULT;
6962 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6963 			goto out;
6964 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6965 		break;
6966 	}
6967 	case KVM_SET_PMU_EVENT_FILTER:
6968 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6969 		break;
6970 	case KVM_X86_SET_MSR_FILTER: {
6971 		struct kvm_msr_filter __user *user_msr_filter = argp;
6972 		struct kvm_msr_filter filter;
6973 
6974 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6975 			return -EFAULT;
6976 
6977 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6978 		break;
6979 	}
6980 	default:
6981 		r = -ENOTTY;
6982 	}
6983 out:
6984 	return r;
6985 }
6986 
6987 static void kvm_init_msr_list(void)
6988 {
6989 	u32 dummy[2];
6990 	unsigned i;
6991 
6992 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6993 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6994 
6995 	num_msrs_to_save = 0;
6996 	num_emulated_msrs = 0;
6997 	num_msr_based_features = 0;
6998 
6999 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
7000 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
7001 			continue;
7002 
7003 		/*
7004 		 * Even MSRs that are valid in the host may not be exposed
7005 		 * to the guests in some cases.
7006 		 */
7007 		switch (msrs_to_save_all[i]) {
7008 		case MSR_IA32_BNDCFGS:
7009 			if (!kvm_mpx_supported())
7010 				continue;
7011 			break;
7012 		case MSR_TSC_AUX:
7013 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7014 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7015 				continue;
7016 			break;
7017 		case MSR_IA32_UMWAIT_CONTROL:
7018 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7019 				continue;
7020 			break;
7021 		case MSR_IA32_RTIT_CTL:
7022 		case MSR_IA32_RTIT_STATUS:
7023 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7024 				continue;
7025 			break;
7026 		case MSR_IA32_RTIT_CR3_MATCH:
7027 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7028 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7029 				continue;
7030 			break;
7031 		case MSR_IA32_RTIT_OUTPUT_BASE:
7032 		case MSR_IA32_RTIT_OUTPUT_MASK:
7033 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7034 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7035 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7036 				continue;
7037 			break;
7038 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7039 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7040 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
7041 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
7042 				continue;
7043 			break;
7044 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
7045 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
7046 			    min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7047 				continue;
7048 			break;
7049 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
7050 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
7051 			    min(INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7052 				continue;
7053 			break;
7054 		case MSR_IA32_XFD:
7055 		case MSR_IA32_XFD_ERR:
7056 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7057 				continue;
7058 			break;
7059 		default:
7060 			break;
7061 		}
7062 
7063 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
7064 	}
7065 
7066 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7067 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7068 			continue;
7069 
7070 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7071 	}
7072 
7073 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
7074 		struct kvm_msr_entry msr;
7075 
7076 		msr.index = msr_based_features_all[i];
7077 		if (kvm_get_msr_feature(&msr))
7078 			continue;
7079 
7080 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
7081 	}
7082 }
7083 
7084 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7085 			   const void *v)
7086 {
7087 	int handled = 0;
7088 	int n;
7089 
7090 	do {
7091 		n = min(len, 8);
7092 		if (!(lapic_in_kernel(vcpu) &&
7093 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7094 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7095 			break;
7096 		handled += n;
7097 		addr += n;
7098 		len -= n;
7099 		v += n;
7100 	} while (len);
7101 
7102 	return handled;
7103 }
7104 
7105 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7106 {
7107 	int handled = 0;
7108 	int n;
7109 
7110 	do {
7111 		n = min(len, 8);
7112 		if (!(lapic_in_kernel(vcpu) &&
7113 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7114 					 addr, n, v))
7115 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7116 			break;
7117 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7118 		handled += n;
7119 		addr += n;
7120 		len -= n;
7121 		v += n;
7122 	} while (len);
7123 
7124 	return handled;
7125 }
7126 
7127 static void kvm_set_segment(struct kvm_vcpu *vcpu,
7128 			struct kvm_segment *var, int seg)
7129 {
7130 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7131 }
7132 
7133 void kvm_get_segment(struct kvm_vcpu *vcpu,
7134 		     struct kvm_segment *var, int seg)
7135 {
7136 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7137 }
7138 
7139 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7140 			   struct x86_exception *exception)
7141 {
7142 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7143 	gpa_t t_gpa;
7144 
7145 	BUG_ON(!mmu_is_nested(vcpu));
7146 
7147 	/* NPT walks are always user-walks */
7148 	access |= PFERR_USER_MASK;
7149 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7150 
7151 	return t_gpa;
7152 }
7153 
7154 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7155 			      struct x86_exception *exception)
7156 {
7157 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7158 
7159 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7160 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7161 }
7162 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7163 
7164  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
7165 				struct x86_exception *exception)
7166 {
7167 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7168 
7169 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7170 	access |= PFERR_FETCH_MASK;
7171 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7172 }
7173 
7174 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7175 			       struct x86_exception *exception)
7176 {
7177 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7178 
7179 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7180 	access |= PFERR_WRITE_MASK;
7181 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7182 }
7183 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7184 
7185 /* uses this to access any guest's mapped memory without checking CPL */
7186 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7187 				struct x86_exception *exception)
7188 {
7189 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7190 
7191 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7192 }
7193 
7194 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7195 				      struct kvm_vcpu *vcpu, u64 access,
7196 				      struct x86_exception *exception)
7197 {
7198 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7199 	void *data = val;
7200 	int r = X86EMUL_CONTINUE;
7201 
7202 	while (bytes) {
7203 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7204 		unsigned offset = addr & (PAGE_SIZE-1);
7205 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7206 		int ret;
7207 
7208 		if (gpa == INVALID_GPA)
7209 			return X86EMUL_PROPAGATE_FAULT;
7210 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7211 					       offset, toread);
7212 		if (ret < 0) {
7213 			r = X86EMUL_IO_NEEDED;
7214 			goto out;
7215 		}
7216 
7217 		bytes -= toread;
7218 		data += toread;
7219 		addr += toread;
7220 	}
7221 out:
7222 	return r;
7223 }
7224 
7225 /* used for instruction fetching */
7226 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7227 				gva_t addr, void *val, unsigned int bytes,
7228 				struct x86_exception *exception)
7229 {
7230 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7231 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7232 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7233 	unsigned offset;
7234 	int ret;
7235 
7236 	/* Inline kvm_read_guest_virt_helper for speed.  */
7237 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7238 				    exception);
7239 	if (unlikely(gpa == INVALID_GPA))
7240 		return X86EMUL_PROPAGATE_FAULT;
7241 
7242 	offset = addr & (PAGE_SIZE-1);
7243 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7244 		bytes = (unsigned)PAGE_SIZE - offset;
7245 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7246 				       offset, bytes);
7247 	if (unlikely(ret < 0))
7248 		return X86EMUL_IO_NEEDED;
7249 
7250 	return X86EMUL_CONTINUE;
7251 }
7252 
7253 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7254 			       gva_t addr, void *val, unsigned int bytes,
7255 			       struct x86_exception *exception)
7256 {
7257 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7258 
7259 	/*
7260 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7261 	 * is returned, but our callers are not ready for that and they blindly
7262 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7263 	 * uninitialized kernel stack memory into cr2 and error code.
7264 	 */
7265 	memset(exception, 0, sizeof(*exception));
7266 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7267 					  exception);
7268 }
7269 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7270 
7271 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7272 			     gva_t addr, void *val, unsigned int bytes,
7273 			     struct x86_exception *exception, bool system)
7274 {
7275 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7276 	u64 access = 0;
7277 
7278 	if (system)
7279 		access |= PFERR_IMPLICIT_ACCESS;
7280 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7281 		access |= PFERR_USER_MASK;
7282 
7283 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7284 }
7285 
7286 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
7287 		unsigned long addr, void *val, unsigned int bytes)
7288 {
7289 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7290 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
7291 
7292 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
7293 }
7294 
7295 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7296 				      struct kvm_vcpu *vcpu, u64 access,
7297 				      struct x86_exception *exception)
7298 {
7299 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7300 	void *data = val;
7301 	int r = X86EMUL_CONTINUE;
7302 
7303 	while (bytes) {
7304 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7305 		unsigned offset = addr & (PAGE_SIZE-1);
7306 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7307 		int ret;
7308 
7309 		if (gpa == INVALID_GPA)
7310 			return X86EMUL_PROPAGATE_FAULT;
7311 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7312 		if (ret < 0) {
7313 			r = X86EMUL_IO_NEEDED;
7314 			goto out;
7315 		}
7316 
7317 		bytes -= towrite;
7318 		data += towrite;
7319 		addr += towrite;
7320 	}
7321 out:
7322 	return r;
7323 }
7324 
7325 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7326 			      unsigned int bytes, struct x86_exception *exception,
7327 			      bool system)
7328 {
7329 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7330 	u64 access = PFERR_WRITE_MASK;
7331 
7332 	if (system)
7333 		access |= PFERR_IMPLICIT_ACCESS;
7334 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7335 		access |= PFERR_USER_MASK;
7336 
7337 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7338 					   access, exception);
7339 }
7340 
7341 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7342 				unsigned int bytes, struct x86_exception *exception)
7343 {
7344 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7345 	vcpu->arch.l1tf_flush_l1d = true;
7346 
7347 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7348 					   PFERR_WRITE_MASK, exception);
7349 }
7350 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7351 
7352 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7353 				void *insn, int insn_len)
7354 {
7355 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7356 							    insn, insn_len);
7357 }
7358 
7359 int handle_ud(struct kvm_vcpu *vcpu)
7360 {
7361 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7362 	int fep_flags = READ_ONCE(force_emulation_prefix);
7363 	int emul_type = EMULTYPE_TRAP_UD;
7364 	char sig[5]; /* ud2; .ascii "kvm" */
7365 	struct x86_exception e;
7366 
7367 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7368 		return 1;
7369 
7370 	if (fep_flags &&
7371 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7372 				sig, sizeof(sig), &e) == 0 &&
7373 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7374 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7375 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7376 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7377 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7378 	}
7379 
7380 	return kvm_emulate_instruction(vcpu, emul_type);
7381 }
7382 EXPORT_SYMBOL_GPL(handle_ud);
7383 
7384 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7385 			    gpa_t gpa, bool write)
7386 {
7387 	/* For APIC access vmexit */
7388 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7389 		return 1;
7390 
7391 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7392 		trace_vcpu_match_mmio(gva, gpa, write, true);
7393 		return 1;
7394 	}
7395 
7396 	return 0;
7397 }
7398 
7399 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7400 				gpa_t *gpa, struct x86_exception *exception,
7401 				bool write)
7402 {
7403 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7404 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7405 		| (write ? PFERR_WRITE_MASK : 0);
7406 
7407 	/*
7408 	 * currently PKRU is only applied to ept enabled guest so
7409 	 * there is no pkey in EPT page table for L1 guest or EPT
7410 	 * shadow page table for L2 guest.
7411 	 */
7412 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7413 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7414 			      vcpu->arch.mmio_access, 0, access))) {
7415 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7416 					(gva & (PAGE_SIZE - 1));
7417 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7418 		return 1;
7419 	}
7420 
7421 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7422 
7423 	if (*gpa == INVALID_GPA)
7424 		return -1;
7425 
7426 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7427 }
7428 
7429 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7430 			const void *val, int bytes)
7431 {
7432 	int ret;
7433 
7434 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7435 	if (ret < 0)
7436 		return 0;
7437 	kvm_page_track_write(vcpu, gpa, val, bytes);
7438 	return 1;
7439 }
7440 
7441 struct read_write_emulator_ops {
7442 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7443 				  int bytes);
7444 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7445 				  void *val, int bytes);
7446 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7447 			       int bytes, void *val);
7448 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7449 				    void *val, int bytes);
7450 	bool write;
7451 };
7452 
7453 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7454 {
7455 	if (vcpu->mmio_read_completed) {
7456 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7457 			       vcpu->mmio_fragments[0].gpa, val);
7458 		vcpu->mmio_read_completed = 0;
7459 		return 1;
7460 	}
7461 
7462 	return 0;
7463 }
7464 
7465 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7466 			void *val, int bytes)
7467 {
7468 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7469 }
7470 
7471 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7472 			 void *val, int bytes)
7473 {
7474 	return emulator_write_phys(vcpu, gpa, val, bytes);
7475 }
7476 
7477 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7478 {
7479 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7480 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7481 }
7482 
7483 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7484 			  void *val, int bytes)
7485 {
7486 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7487 	return X86EMUL_IO_NEEDED;
7488 }
7489 
7490 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7491 			   void *val, int bytes)
7492 {
7493 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7494 
7495 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7496 	return X86EMUL_CONTINUE;
7497 }
7498 
7499 static const struct read_write_emulator_ops read_emultor = {
7500 	.read_write_prepare = read_prepare,
7501 	.read_write_emulate = read_emulate,
7502 	.read_write_mmio = vcpu_mmio_read,
7503 	.read_write_exit_mmio = read_exit_mmio,
7504 };
7505 
7506 static const struct read_write_emulator_ops write_emultor = {
7507 	.read_write_emulate = write_emulate,
7508 	.read_write_mmio = write_mmio,
7509 	.read_write_exit_mmio = write_exit_mmio,
7510 	.write = true,
7511 };
7512 
7513 static int emulator_read_write_onepage(unsigned long addr, void *val,
7514 				       unsigned int bytes,
7515 				       struct x86_exception *exception,
7516 				       struct kvm_vcpu *vcpu,
7517 				       const struct read_write_emulator_ops *ops)
7518 {
7519 	gpa_t gpa;
7520 	int handled, ret;
7521 	bool write = ops->write;
7522 	struct kvm_mmio_fragment *frag;
7523 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7524 
7525 	/*
7526 	 * If the exit was due to a NPF we may already have a GPA.
7527 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7528 	 * Note, this cannot be used on string operations since string
7529 	 * operation using rep will only have the initial GPA from the NPF
7530 	 * occurred.
7531 	 */
7532 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7533 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7534 		gpa = ctxt->gpa_val;
7535 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7536 	} else {
7537 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7538 		if (ret < 0)
7539 			return X86EMUL_PROPAGATE_FAULT;
7540 	}
7541 
7542 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7543 		return X86EMUL_CONTINUE;
7544 
7545 	/*
7546 	 * Is this MMIO handled locally?
7547 	 */
7548 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7549 	if (handled == bytes)
7550 		return X86EMUL_CONTINUE;
7551 
7552 	gpa += handled;
7553 	bytes -= handled;
7554 	val += handled;
7555 
7556 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7557 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7558 	frag->gpa = gpa;
7559 	frag->data = val;
7560 	frag->len = bytes;
7561 	return X86EMUL_CONTINUE;
7562 }
7563 
7564 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7565 			unsigned long addr,
7566 			void *val, unsigned int bytes,
7567 			struct x86_exception *exception,
7568 			const struct read_write_emulator_ops *ops)
7569 {
7570 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7571 	gpa_t gpa;
7572 	int rc;
7573 
7574 	if (ops->read_write_prepare &&
7575 		  ops->read_write_prepare(vcpu, val, bytes))
7576 		return X86EMUL_CONTINUE;
7577 
7578 	vcpu->mmio_nr_fragments = 0;
7579 
7580 	/* Crossing a page boundary? */
7581 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7582 		int now;
7583 
7584 		now = -addr & ~PAGE_MASK;
7585 		rc = emulator_read_write_onepage(addr, val, now, exception,
7586 						 vcpu, ops);
7587 
7588 		if (rc != X86EMUL_CONTINUE)
7589 			return rc;
7590 		addr += now;
7591 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7592 			addr = (u32)addr;
7593 		val += now;
7594 		bytes -= now;
7595 	}
7596 
7597 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7598 					 vcpu, ops);
7599 	if (rc != X86EMUL_CONTINUE)
7600 		return rc;
7601 
7602 	if (!vcpu->mmio_nr_fragments)
7603 		return rc;
7604 
7605 	gpa = vcpu->mmio_fragments[0].gpa;
7606 
7607 	vcpu->mmio_needed = 1;
7608 	vcpu->mmio_cur_fragment = 0;
7609 
7610 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7611 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7612 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7613 	vcpu->run->mmio.phys_addr = gpa;
7614 
7615 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7616 }
7617 
7618 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7619 				  unsigned long addr,
7620 				  void *val,
7621 				  unsigned int bytes,
7622 				  struct x86_exception *exception)
7623 {
7624 	return emulator_read_write(ctxt, addr, val, bytes,
7625 				   exception, &read_emultor);
7626 }
7627 
7628 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7629 			    unsigned long addr,
7630 			    const void *val,
7631 			    unsigned int bytes,
7632 			    struct x86_exception *exception)
7633 {
7634 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7635 				   exception, &write_emultor);
7636 }
7637 
7638 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7639 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7640 
7641 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7642 				     unsigned long addr,
7643 				     const void *old,
7644 				     const void *new,
7645 				     unsigned int bytes,
7646 				     struct x86_exception *exception)
7647 {
7648 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7649 	u64 page_line_mask;
7650 	unsigned long hva;
7651 	gpa_t gpa;
7652 	int r;
7653 
7654 	/* guests cmpxchg8b have to be emulated atomically */
7655 	if (bytes > 8 || (bytes & (bytes - 1)))
7656 		goto emul_write;
7657 
7658 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7659 
7660 	if (gpa == INVALID_GPA ||
7661 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7662 		goto emul_write;
7663 
7664 	/*
7665 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7666 	 * enabled in the host and the access splits a cache line.
7667 	 */
7668 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7669 		page_line_mask = ~(cache_line_size() - 1);
7670 	else
7671 		page_line_mask = PAGE_MASK;
7672 
7673 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7674 		goto emul_write;
7675 
7676 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7677 	if (kvm_is_error_hva(hva))
7678 		goto emul_write;
7679 
7680 	hva += offset_in_page(gpa);
7681 
7682 	switch (bytes) {
7683 	case 1:
7684 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7685 		break;
7686 	case 2:
7687 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7688 		break;
7689 	case 4:
7690 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7691 		break;
7692 	case 8:
7693 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7694 		break;
7695 	default:
7696 		BUG();
7697 	}
7698 
7699 	if (r < 0)
7700 		return X86EMUL_UNHANDLEABLE;
7701 	if (r)
7702 		return X86EMUL_CMPXCHG_FAILED;
7703 
7704 	kvm_page_track_write(vcpu, gpa, new, bytes);
7705 
7706 	return X86EMUL_CONTINUE;
7707 
7708 emul_write:
7709 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7710 
7711 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7712 }
7713 
7714 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7715 			       unsigned short port, void *data,
7716 			       unsigned int count, bool in)
7717 {
7718 	unsigned i;
7719 	int r;
7720 
7721 	WARN_ON_ONCE(vcpu->arch.pio.count);
7722 	for (i = 0; i < count; i++) {
7723 		if (in)
7724 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7725 		else
7726 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7727 
7728 		if (r) {
7729 			if (i == 0)
7730 				goto userspace_io;
7731 
7732 			/*
7733 			 * Userspace must have unregistered the device while PIO
7734 			 * was running.  Drop writes / read as 0.
7735 			 */
7736 			if (in)
7737 				memset(data, 0, size * (count - i));
7738 			break;
7739 		}
7740 
7741 		data += size;
7742 	}
7743 	return 1;
7744 
7745 userspace_io:
7746 	vcpu->arch.pio.port = port;
7747 	vcpu->arch.pio.in = in;
7748 	vcpu->arch.pio.count = count;
7749 	vcpu->arch.pio.size = size;
7750 
7751 	if (in)
7752 		memset(vcpu->arch.pio_data, 0, size * count);
7753 	else
7754 		memcpy(vcpu->arch.pio_data, data, size * count);
7755 
7756 	vcpu->run->exit_reason = KVM_EXIT_IO;
7757 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7758 	vcpu->run->io.size = size;
7759 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7760 	vcpu->run->io.count = count;
7761 	vcpu->run->io.port = port;
7762 	return 0;
7763 }
7764 
7765 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7766       			   unsigned short port, void *val, unsigned int count)
7767 {
7768 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7769 	if (r)
7770 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7771 
7772 	return r;
7773 }
7774 
7775 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7776 {
7777 	int size = vcpu->arch.pio.size;
7778 	unsigned int count = vcpu->arch.pio.count;
7779 	memcpy(val, vcpu->arch.pio_data, size * count);
7780 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7781 	vcpu->arch.pio.count = 0;
7782 }
7783 
7784 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7785 				    int size, unsigned short port, void *val,
7786 				    unsigned int count)
7787 {
7788 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7789 	if (vcpu->arch.pio.count) {
7790 		/*
7791 		 * Complete a previous iteration that required userspace I/O.
7792 		 * Note, @count isn't guaranteed to match pio.count as userspace
7793 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7794 		 * shenanigans as KVM doesn't support modifying the rep count,
7795 		 * and the emulator ensures @count doesn't overflow the buffer.
7796 		 */
7797 		complete_emulator_pio_in(vcpu, val);
7798 		return 1;
7799 	}
7800 
7801 	return emulator_pio_in(vcpu, size, port, val, count);
7802 }
7803 
7804 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7805 			    unsigned short port, const void *val,
7806 			    unsigned int count)
7807 {
7808 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7809 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7810 }
7811 
7812 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7813 				     int size, unsigned short port,
7814 				     const void *val, unsigned int count)
7815 {
7816 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7817 }
7818 
7819 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7820 {
7821 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7822 }
7823 
7824 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7825 {
7826 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7827 }
7828 
7829 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7830 {
7831 	if (!need_emulate_wbinvd(vcpu))
7832 		return X86EMUL_CONTINUE;
7833 
7834 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7835 		int cpu = get_cpu();
7836 
7837 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7838 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7839 				wbinvd_ipi, NULL, 1);
7840 		put_cpu();
7841 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7842 	} else
7843 		wbinvd();
7844 	return X86EMUL_CONTINUE;
7845 }
7846 
7847 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7848 {
7849 	kvm_emulate_wbinvd_noskip(vcpu);
7850 	return kvm_skip_emulated_instruction(vcpu);
7851 }
7852 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7853 
7854 
7855 
7856 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7857 {
7858 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7859 }
7860 
7861 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7862 			    unsigned long *dest)
7863 {
7864 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7865 }
7866 
7867 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7868 			   unsigned long value)
7869 {
7870 
7871 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7872 }
7873 
7874 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7875 {
7876 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7877 }
7878 
7879 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7880 {
7881 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7882 	unsigned long value;
7883 
7884 	switch (cr) {
7885 	case 0:
7886 		value = kvm_read_cr0(vcpu);
7887 		break;
7888 	case 2:
7889 		value = vcpu->arch.cr2;
7890 		break;
7891 	case 3:
7892 		value = kvm_read_cr3(vcpu);
7893 		break;
7894 	case 4:
7895 		value = kvm_read_cr4(vcpu);
7896 		break;
7897 	case 8:
7898 		value = kvm_get_cr8(vcpu);
7899 		break;
7900 	default:
7901 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7902 		return 0;
7903 	}
7904 
7905 	return value;
7906 }
7907 
7908 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7909 {
7910 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7911 	int res = 0;
7912 
7913 	switch (cr) {
7914 	case 0:
7915 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7916 		break;
7917 	case 2:
7918 		vcpu->arch.cr2 = val;
7919 		break;
7920 	case 3:
7921 		res = kvm_set_cr3(vcpu, val);
7922 		break;
7923 	case 4:
7924 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7925 		break;
7926 	case 8:
7927 		res = kvm_set_cr8(vcpu, val);
7928 		break;
7929 	default:
7930 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7931 		res = -1;
7932 	}
7933 
7934 	return res;
7935 }
7936 
7937 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7938 {
7939 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7940 }
7941 
7942 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7943 {
7944 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7945 }
7946 
7947 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7948 {
7949 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7950 }
7951 
7952 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7953 {
7954 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7955 }
7956 
7957 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7958 {
7959 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7960 }
7961 
7962 static unsigned long emulator_get_cached_segment_base(
7963 	struct x86_emulate_ctxt *ctxt, int seg)
7964 {
7965 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7966 }
7967 
7968 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7969 				 struct desc_struct *desc, u32 *base3,
7970 				 int seg)
7971 {
7972 	struct kvm_segment var;
7973 
7974 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7975 	*selector = var.selector;
7976 
7977 	if (var.unusable) {
7978 		memset(desc, 0, sizeof(*desc));
7979 		if (base3)
7980 			*base3 = 0;
7981 		return false;
7982 	}
7983 
7984 	if (var.g)
7985 		var.limit >>= 12;
7986 	set_desc_limit(desc, var.limit);
7987 	set_desc_base(desc, (unsigned long)var.base);
7988 #ifdef CONFIG_X86_64
7989 	if (base3)
7990 		*base3 = var.base >> 32;
7991 #endif
7992 	desc->type = var.type;
7993 	desc->s = var.s;
7994 	desc->dpl = var.dpl;
7995 	desc->p = var.present;
7996 	desc->avl = var.avl;
7997 	desc->l = var.l;
7998 	desc->d = var.db;
7999 	desc->g = var.g;
8000 
8001 	return true;
8002 }
8003 
8004 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8005 				 struct desc_struct *desc, u32 base3,
8006 				 int seg)
8007 {
8008 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8009 	struct kvm_segment var;
8010 
8011 	var.selector = selector;
8012 	var.base = get_desc_base(desc);
8013 #ifdef CONFIG_X86_64
8014 	var.base |= ((u64)base3) << 32;
8015 #endif
8016 	var.limit = get_desc_limit(desc);
8017 	if (desc->g)
8018 		var.limit = (var.limit << 12) | 0xfff;
8019 	var.type = desc->type;
8020 	var.dpl = desc->dpl;
8021 	var.db = desc->d;
8022 	var.s = desc->s;
8023 	var.l = desc->l;
8024 	var.g = desc->g;
8025 	var.avl = desc->avl;
8026 	var.present = desc->p;
8027 	var.unusable = !var.present;
8028 	var.padding = 0;
8029 
8030 	kvm_set_segment(vcpu, &var, seg);
8031 	return;
8032 }
8033 
8034 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8035 					u32 msr_index, u64 *pdata)
8036 {
8037 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8038 	int r;
8039 
8040 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8041 	if (r < 0)
8042 		return X86EMUL_UNHANDLEABLE;
8043 
8044 	if (r) {
8045 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8046 				       complete_emulated_rdmsr, r))
8047 			return X86EMUL_IO_NEEDED;
8048 
8049 		trace_kvm_msr_read_ex(msr_index);
8050 		return X86EMUL_PROPAGATE_FAULT;
8051 	}
8052 
8053 	trace_kvm_msr_read(msr_index, *pdata);
8054 	return X86EMUL_CONTINUE;
8055 }
8056 
8057 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8058 					u32 msr_index, u64 data)
8059 {
8060 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8061 	int r;
8062 
8063 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8064 	if (r < 0)
8065 		return X86EMUL_UNHANDLEABLE;
8066 
8067 	if (r) {
8068 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8069 				       complete_emulated_msr_access, r))
8070 			return X86EMUL_IO_NEEDED;
8071 
8072 		trace_kvm_msr_write_ex(msr_index, data);
8073 		return X86EMUL_PROPAGATE_FAULT;
8074 	}
8075 
8076 	trace_kvm_msr_write(msr_index, data);
8077 	return X86EMUL_CONTINUE;
8078 }
8079 
8080 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8081 			    u32 msr_index, u64 *pdata)
8082 {
8083 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8084 }
8085 
8086 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
8087 			    u32 msr_index, u64 data)
8088 {
8089 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
8090 }
8091 
8092 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
8093 {
8094 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8095 
8096 	return vcpu->arch.smbase;
8097 }
8098 
8099 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
8100 {
8101 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8102 
8103 	vcpu->arch.smbase = smbase;
8104 }
8105 
8106 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8107 			      u32 pmc)
8108 {
8109 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8110 		return 0;
8111 	return -EINVAL;
8112 }
8113 
8114 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8115 			     u32 pmc, u64 *pdata)
8116 {
8117 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8118 }
8119 
8120 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8121 {
8122 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8123 }
8124 
8125 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8126 			      struct x86_instruction_info *info,
8127 			      enum x86_intercept_stage stage)
8128 {
8129 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8130 					    &ctxt->exception);
8131 }
8132 
8133 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8134 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8135 			      bool exact_only)
8136 {
8137 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8138 }
8139 
8140 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8141 {
8142 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8143 }
8144 
8145 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8146 {
8147 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8148 }
8149 
8150 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8151 {
8152 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8153 }
8154 
8155 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8156 {
8157 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8158 }
8159 
8160 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8161 {
8162 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8163 }
8164 
8165 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8166 {
8167 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8168 }
8169 
8170 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8171 {
8172 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8173 }
8174 
8175 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8176 {
8177 	return emul_to_vcpu(ctxt)->arch.hflags;
8178 }
8179 
8180 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
8181 {
8182 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8183 
8184 	kvm_smm_changed(vcpu, false);
8185 }
8186 
8187 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
8188 				  const char *smstate)
8189 {
8190 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
8191 }
8192 
8193 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8194 {
8195 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8196 }
8197 
8198 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8199 {
8200 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8201 }
8202 
8203 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8204 {
8205 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8206 
8207 	if (!kvm->vm_bugged)
8208 		kvm_vm_bugged(kvm);
8209 }
8210 
8211 static const struct x86_emulate_ops emulate_ops = {
8212 	.vm_bugged           = emulator_vm_bugged,
8213 	.read_gpr            = emulator_read_gpr,
8214 	.write_gpr           = emulator_write_gpr,
8215 	.read_std            = emulator_read_std,
8216 	.write_std           = emulator_write_std,
8217 	.read_phys           = kvm_read_guest_phys_system,
8218 	.fetch               = kvm_fetch_guest_virt,
8219 	.read_emulated       = emulator_read_emulated,
8220 	.write_emulated      = emulator_write_emulated,
8221 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8222 	.invlpg              = emulator_invlpg,
8223 	.pio_in_emulated     = emulator_pio_in_emulated,
8224 	.pio_out_emulated    = emulator_pio_out_emulated,
8225 	.get_segment         = emulator_get_segment,
8226 	.set_segment         = emulator_set_segment,
8227 	.get_cached_segment_base = emulator_get_cached_segment_base,
8228 	.get_gdt             = emulator_get_gdt,
8229 	.get_idt	     = emulator_get_idt,
8230 	.set_gdt             = emulator_set_gdt,
8231 	.set_idt	     = emulator_set_idt,
8232 	.get_cr              = emulator_get_cr,
8233 	.set_cr              = emulator_set_cr,
8234 	.cpl                 = emulator_get_cpl,
8235 	.get_dr              = emulator_get_dr,
8236 	.set_dr              = emulator_set_dr,
8237 	.get_smbase          = emulator_get_smbase,
8238 	.set_smbase          = emulator_set_smbase,
8239 	.set_msr_with_filter = emulator_set_msr_with_filter,
8240 	.get_msr_with_filter = emulator_get_msr_with_filter,
8241 	.set_msr             = emulator_set_msr,
8242 	.get_msr             = emulator_get_msr,
8243 	.check_pmc	     = emulator_check_pmc,
8244 	.read_pmc            = emulator_read_pmc,
8245 	.halt                = emulator_halt,
8246 	.wbinvd              = emulator_wbinvd,
8247 	.fix_hypercall       = emulator_fix_hypercall,
8248 	.intercept           = emulator_intercept,
8249 	.get_cpuid           = emulator_get_cpuid,
8250 	.guest_has_long_mode = emulator_guest_has_long_mode,
8251 	.guest_has_movbe     = emulator_guest_has_movbe,
8252 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8253 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8254 	.set_nmi_mask        = emulator_set_nmi_mask,
8255 	.get_hflags          = emulator_get_hflags,
8256 	.exiting_smm         = emulator_exiting_smm,
8257 	.leave_smm           = emulator_leave_smm,
8258 	.triple_fault        = emulator_triple_fault,
8259 	.set_xcr             = emulator_set_xcr,
8260 };
8261 
8262 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8263 {
8264 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8265 	/*
8266 	 * an sti; sti; sequence only disable interrupts for the first
8267 	 * instruction. So, if the last instruction, be it emulated or
8268 	 * not, left the system with the INT_STI flag enabled, it
8269 	 * means that the last instruction is an sti. We should not
8270 	 * leave the flag on in this case. The same goes for mov ss
8271 	 */
8272 	if (int_shadow & mask)
8273 		mask = 0;
8274 	if (unlikely(int_shadow || mask)) {
8275 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8276 		if (!mask)
8277 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8278 	}
8279 }
8280 
8281 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8282 {
8283 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8284 
8285 	if (ctxt->exception.vector == PF_VECTOR)
8286 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8287 	else if (ctxt->exception.error_code_valid)
8288 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8289 				      ctxt->exception.error_code);
8290 	else
8291 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8292 }
8293 
8294 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8295 {
8296 	struct x86_emulate_ctxt *ctxt;
8297 
8298 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8299 	if (!ctxt) {
8300 		pr_err("kvm: failed to allocate vcpu's emulator\n");
8301 		return NULL;
8302 	}
8303 
8304 	ctxt->vcpu = vcpu;
8305 	ctxt->ops = &emulate_ops;
8306 	vcpu->arch.emulate_ctxt = ctxt;
8307 
8308 	return ctxt;
8309 }
8310 
8311 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8312 {
8313 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8314 	int cs_db, cs_l;
8315 
8316 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8317 
8318 	ctxt->gpa_available = false;
8319 	ctxt->eflags = kvm_get_rflags(vcpu);
8320 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8321 
8322 	ctxt->eip = kvm_rip_read(vcpu);
8323 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8324 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8325 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8326 		     cs_db				? X86EMUL_MODE_PROT32 :
8327 							  X86EMUL_MODE_PROT16;
8328 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8329 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
8330 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
8331 
8332 	ctxt->interruptibility = 0;
8333 	ctxt->have_exception = false;
8334 	ctxt->exception.vector = -1;
8335 	ctxt->perm_ok = false;
8336 
8337 	init_decode_cache(ctxt);
8338 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8339 }
8340 
8341 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8342 {
8343 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8344 	int ret;
8345 
8346 	init_emulate_ctxt(vcpu);
8347 
8348 	ctxt->op_bytes = 2;
8349 	ctxt->ad_bytes = 2;
8350 	ctxt->_eip = ctxt->eip + inc_eip;
8351 	ret = emulate_int_real(ctxt, irq);
8352 
8353 	if (ret != X86EMUL_CONTINUE) {
8354 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8355 	} else {
8356 		ctxt->eip = ctxt->_eip;
8357 		kvm_rip_write(vcpu, ctxt->eip);
8358 		kvm_set_rflags(vcpu, ctxt->eflags);
8359 	}
8360 }
8361 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8362 
8363 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8364 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8365 {
8366 	struct kvm_run *run = vcpu->run;
8367 	u64 info[5];
8368 	u8 info_start;
8369 
8370 	/*
8371 	 * Zero the whole array used to retrieve the exit info, as casting to
8372 	 * u32 for select entries will leave some chunks uninitialized.
8373 	 */
8374 	memset(&info, 0, sizeof(info));
8375 
8376 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8377 					   &info[2], (u32 *)&info[3],
8378 					   (u32 *)&info[4]);
8379 
8380 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8381 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8382 
8383 	/*
8384 	 * There's currently space for 13 entries, but 5 are used for the exit
8385 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8386 	 * when expanding kvm_run.emulation_failure in the future.
8387 	 */
8388 	if (WARN_ON_ONCE(ndata > 4))
8389 		ndata = 4;
8390 
8391 	/* Always include the flags as a 'data' entry. */
8392 	info_start = 1;
8393 	run->emulation_failure.flags = 0;
8394 
8395 	if (insn_size) {
8396 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8397 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8398 		info_start += 2;
8399 		run->emulation_failure.flags |=
8400 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8401 		run->emulation_failure.insn_size = insn_size;
8402 		memset(run->emulation_failure.insn_bytes, 0x90,
8403 		       sizeof(run->emulation_failure.insn_bytes));
8404 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8405 	}
8406 
8407 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8408 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8409 	       ndata * sizeof(data[0]));
8410 
8411 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8412 }
8413 
8414 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8415 {
8416 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8417 
8418 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8419 				       ctxt->fetch.end - ctxt->fetch.data);
8420 }
8421 
8422 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8423 					  u8 ndata)
8424 {
8425 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8426 }
8427 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8428 
8429 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8430 {
8431 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8432 }
8433 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8434 
8435 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8436 {
8437 	struct kvm *kvm = vcpu->kvm;
8438 
8439 	++vcpu->stat.insn_emulation_fail;
8440 	trace_kvm_emulate_insn_failed(vcpu);
8441 
8442 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8443 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8444 		return 1;
8445 	}
8446 
8447 	if (kvm->arch.exit_on_emulation_error ||
8448 	    (emulation_type & EMULTYPE_SKIP)) {
8449 		prepare_emulation_ctxt_failure_exit(vcpu);
8450 		return 0;
8451 	}
8452 
8453 	kvm_queue_exception(vcpu, UD_VECTOR);
8454 
8455 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8456 		prepare_emulation_ctxt_failure_exit(vcpu);
8457 		return 0;
8458 	}
8459 
8460 	return 1;
8461 }
8462 
8463 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8464 				  bool write_fault_to_shadow_pgtable,
8465 				  int emulation_type)
8466 {
8467 	gpa_t gpa = cr2_or_gpa;
8468 	kvm_pfn_t pfn;
8469 
8470 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8471 		return false;
8472 
8473 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8474 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8475 		return false;
8476 
8477 	if (!vcpu->arch.mmu->root_role.direct) {
8478 		/*
8479 		 * Write permission should be allowed since only
8480 		 * write access need to be emulated.
8481 		 */
8482 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8483 
8484 		/*
8485 		 * If the mapping is invalid in guest, let cpu retry
8486 		 * it to generate fault.
8487 		 */
8488 		if (gpa == INVALID_GPA)
8489 			return true;
8490 	}
8491 
8492 	/*
8493 	 * Do not retry the unhandleable instruction if it faults on the
8494 	 * readonly host memory, otherwise it will goto a infinite loop:
8495 	 * retry instruction -> write #PF -> emulation fail -> retry
8496 	 * instruction -> ...
8497 	 */
8498 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8499 
8500 	/*
8501 	 * If the instruction failed on the error pfn, it can not be fixed,
8502 	 * report the error to userspace.
8503 	 */
8504 	if (is_error_noslot_pfn(pfn))
8505 		return false;
8506 
8507 	kvm_release_pfn_clean(pfn);
8508 
8509 	/* The instructions are well-emulated on direct mmu. */
8510 	if (vcpu->arch.mmu->root_role.direct) {
8511 		unsigned int indirect_shadow_pages;
8512 
8513 		write_lock(&vcpu->kvm->mmu_lock);
8514 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8515 		write_unlock(&vcpu->kvm->mmu_lock);
8516 
8517 		if (indirect_shadow_pages)
8518 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8519 
8520 		return true;
8521 	}
8522 
8523 	/*
8524 	 * if emulation was due to access to shadowed page table
8525 	 * and it failed try to unshadow page and re-enter the
8526 	 * guest to let CPU execute the instruction.
8527 	 */
8528 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8529 
8530 	/*
8531 	 * If the access faults on its page table, it can not
8532 	 * be fixed by unprotecting shadow page and it should
8533 	 * be reported to userspace.
8534 	 */
8535 	return !write_fault_to_shadow_pgtable;
8536 }
8537 
8538 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8539 			      gpa_t cr2_or_gpa,  int emulation_type)
8540 {
8541 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8542 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8543 
8544 	last_retry_eip = vcpu->arch.last_retry_eip;
8545 	last_retry_addr = vcpu->arch.last_retry_addr;
8546 
8547 	/*
8548 	 * If the emulation is caused by #PF and it is non-page_table
8549 	 * writing instruction, it means the VM-EXIT is caused by shadow
8550 	 * page protected, we can zap the shadow page and retry this
8551 	 * instruction directly.
8552 	 *
8553 	 * Note: if the guest uses a non-page-table modifying instruction
8554 	 * on the PDE that points to the instruction, then we will unmap
8555 	 * the instruction and go to an infinite loop. So, we cache the
8556 	 * last retried eip and the last fault address, if we meet the eip
8557 	 * and the address again, we can break out of the potential infinite
8558 	 * loop.
8559 	 */
8560 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8561 
8562 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8563 		return false;
8564 
8565 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8566 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8567 		return false;
8568 
8569 	if (x86_page_table_writing_insn(ctxt))
8570 		return false;
8571 
8572 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8573 		return false;
8574 
8575 	vcpu->arch.last_retry_eip = ctxt->eip;
8576 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8577 
8578 	if (!vcpu->arch.mmu->root_role.direct)
8579 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8580 
8581 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8582 
8583 	return true;
8584 }
8585 
8586 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8587 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8588 
8589 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8590 {
8591 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8592 
8593 	if (entering_smm) {
8594 		vcpu->arch.hflags |= HF_SMM_MASK;
8595 	} else {
8596 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8597 
8598 		/* Process a latched INIT or SMI, if any.  */
8599 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8600 
8601 		/*
8602 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8603 		 * on SMM exit we still need to reload them from
8604 		 * guest memory
8605 		 */
8606 		vcpu->arch.pdptrs_from_userspace = false;
8607 	}
8608 
8609 	kvm_mmu_reset_context(vcpu);
8610 }
8611 
8612 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8613 				unsigned long *db)
8614 {
8615 	u32 dr6 = 0;
8616 	int i;
8617 	u32 enable, rwlen;
8618 
8619 	enable = dr7;
8620 	rwlen = dr7 >> 16;
8621 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8622 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8623 			dr6 |= (1 << i);
8624 	return dr6;
8625 }
8626 
8627 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8628 {
8629 	struct kvm_run *kvm_run = vcpu->run;
8630 
8631 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8632 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8633 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8634 		kvm_run->debug.arch.exception = DB_VECTOR;
8635 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8636 		return 0;
8637 	}
8638 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8639 	return 1;
8640 }
8641 
8642 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8643 {
8644 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8645 	int r;
8646 
8647 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8648 	if (unlikely(!r))
8649 		return 0;
8650 
8651 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8652 
8653 	/*
8654 	 * rflags is the old, "raw" value of the flags.  The new value has
8655 	 * not been saved yet.
8656 	 *
8657 	 * This is correct even for TF set by the guest, because "the
8658 	 * processor will not generate this exception after the instruction
8659 	 * that sets the TF flag".
8660 	 */
8661 	if (unlikely(rflags & X86_EFLAGS_TF))
8662 		r = kvm_vcpu_do_singlestep(vcpu);
8663 	return r;
8664 }
8665 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8666 
8667 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8668 {
8669 	u32 shadow;
8670 
8671 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8672 		return true;
8673 
8674 	/*
8675 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8676 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8677 	 * to avoid the relatively expensive CPUID lookup.
8678 	 */
8679 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8680 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8681 	       guest_cpuid_is_intel(vcpu);
8682 }
8683 
8684 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8685 					   int emulation_type, int *r)
8686 {
8687 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8688 
8689 	/*
8690 	 * Do not check for code breakpoints if hardware has already done the
8691 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8692 	 * the instruction has passed all exception checks, and all intercepted
8693 	 * exceptions that trigger emulation have lower priority than code
8694 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8695 	 * means any code breakpoints have already been serviced.
8696 	 *
8697 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8698 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8699 	 * the instruction being emulated.  The intent of forced emulation is
8700 	 * to behave as if KVM intercepted the instruction without an exception
8701 	 * and without a prefix.
8702 	 */
8703 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8704 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8705 		return false;
8706 
8707 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8708 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8709 		struct kvm_run *kvm_run = vcpu->run;
8710 		unsigned long eip = kvm_get_linear_rip(vcpu);
8711 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8712 					   vcpu->arch.guest_debug_dr7,
8713 					   vcpu->arch.eff_db);
8714 
8715 		if (dr6 != 0) {
8716 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8717 			kvm_run->debug.arch.pc = eip;
8718 			kvm_run->debug.arch.exception = DB_VECTOR;
8719 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8720 			*r = 0;
8721 			return true;
8722 		}
8723 	}
8724 
8725 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8726 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8727 		unsigned long eip = kvm_get_linear_rip(vcpu);
8728 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8729 					   vcpu->arch.dr7,
8730 					   vcpu->arch.db);
8731 
8732 		if (dr6 != 0) {
8733 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8734 			*r = 1;
8735 			return true;
8736 		}
8737 	}
8738 
8739 	return false;
8740 }
8741 
8742 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8743 {
8744 	switch (ctxt->opcode_len) {
8745 	case 1:
8746 		switch (ctxt->b) {
8747 		case 0xe4:	/* IN */
8748 		case 0xe5:
8749 		case 0xec:
8750 		case 0xed:
8751 		case 0xe6:	/* OUT */
8752 		case 0xe7:
8753 		case 0xee:
8754 		case 0xef:
8755 		case 0x6c:	/* INS */
8756 		case 0x6d:
8757 		case 0x6e:	/* OUTS */
8758 		case 0x6f:
8759 			return true;
8760 		}
8761 		break;
8762 	case 2:
8763 		switch (ctxt->b) {
8764 		case 0x33:	/* RDPMC */
8765 			return true;
8766 		}
8767 		break;
8768 	}
8769 
8770 	return false;
8771 }
8772 
8773 /*
8774  * Decode an instruction for emulation.  The caller is responsible for handling
8775  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8776  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8777  * code breakpoints have higher priority and thus have already been done by
8778  * hardware.
8779  *
8780  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8781  *     response to a machine check.
8782  */
8783 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8784 				    void *insn, int insn_len)
8785 {
8786 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8787 	int r;
8788 
8789 	init_emulate_ctxt(vcpu);
8790 
8791 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8792 
8793 	trace_kvm_emulate_insn_start(vcpu);
8794 	++vcpu->stat.insn_emulation;
8795 
8796 	return r;
8797 }
8798 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8799 
8800 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8801 			    int emulation_type, void *insn, int insn_len)
8802 {
8803 	int r;
8804 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8805 	bool writeback = true;
8806 	bool write_fault_to_spt;
8807 
8808 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8809 		return 1;
8810 
8811 	vcpu->arch.l1tf_flush_l1d = true;
8812 
8813 	/*
8814 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8815 	 * never reused.
8816 	 */
8817 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8818 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8819 
8820 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8821 		kvm_clear_exception_queue(vcpu);
8822 
8823 		/*
8824 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8825 		 * are fault-like and are higher priority than any faults on
8826 		 * the code fetch itself.
8827 		 */
8828 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8829 			return r;
8830 
8831 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8832 						    insn, insn_len);
8833 		if (r != EMULATION_OK)  {
8834 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8835 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8836 				kvm_queue_exception(vcpu, UD_VECTOR);
8837 				return 1;
8838 			}
8839 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8840 						  write_fault_to_spt,
8841 						  emulation_type))
8842 				return 1;
8843 			if (ctxt->have_exception) {
8844 				/*
8845 				 * #UD should result in just EMULATION_FAILED, and trap-like
8846 				 * exception should not be encountered during decode.
8847 				 */
8848 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8849 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8850 				inject_emulated_exception(vcpu);
8851 				return 1;
8852 			}
8853 			return handle_emulation_failure(vcpu, emulation_type);
8854 		}
8855 	}
8856 
8857 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8858 	    !is_vmware_backdoor_opcode(ctxt)) {
8859 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8860 		return 1;
8861 	}
8862 
8863 	/*
8864 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8865 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8866 	 * The caller is responsible for updating interruptibility state and
8867 	 * injecting single-step #DBs.
8868 	 */
8869 	if (emulation_type & EMULTYPE_SKIP) {
8870 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8871 			ctxt->eip = (u32)ctxt->_eip;
8872 		else
8873 			ctxt->eip = ctxt->_eip;
8874 
8875 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8876 			r = 1;
8877 			goto writeback;
8878 		}
8879 
8880 		kvm_rip_write(vcpu, ctxt->eip);
8881 		if (ctxt->eflags & X86_EFLAGS_RF)
8882 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8883 		return 1;
8884 	}
8885 
8886 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8887 		return 1;
8888 
8889 	/* this is needed for vmware backdoor interface to work since it
8890 	   changes registers values  during IO operation */
8891 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8892 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8893 		emulator_invalidate_register_cache(ctxt);
8894 	}
8895 
8896 restart:
8897 	if (emulation_type & EMULTYPE_PF) {
8898 		/* Save the faulting GPA (cr2) in the address field */
8899 		ctxt->exception.address = cr2_or_gpa;
8900 
8901 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8902 		if (vcpu->arch.mmu->root_role.direct) {
8903 			ctxt->gpa_available = true;
8904 			ctxt->gpa_val = cr2_or_gpa;
8905 		}
8906 	} else {
8907 		/* Sanitize the address out of an abundance of paranoia. */
8908 		ctxt->exception.address = 0;
8909 	}
8910 
8911 	r = x86_emulate_insn(ctxt);
8912 
8913 	if (r == EMULATION_INTERCEPTED)
8914 		return 1;
8915 
8916 	if (r == EMULATION_FAILED) {
8917 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8918 					emulation_type))
8919 			return 1;
8920 
8921 		return handle_emulation_failure(vcpu, emulation_type);
8922 	}
8923 
8924 	if (ctxt->have_exception) {
8925 		r = 1;
8926 		inject_emulated_exception(vcpu);
8927 	} else if (vcpu->arch.pio.count) {
8928 		if (!vcpu->arch.pio.in) {
8929 			/* FIXME: return into emulator if single-stepping.  */
8930 			vcpu->arch.pio.count = 0;
8931 		} else {
8932 			writeback = false;
8933 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8934 		}
8935 		r = 0;
8936 	} else if (vcpu->mmio_needed) {
8937 		++vcpu->stat.mmio_exits;
8938 
8939 		if (!vcpu->mmio_is_write)
8940 			writeback = false;
8941 		r = 0;
8942 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8943 	} else if (vcpu->arch.complete_userspace_io) {
8944 		writeback = false;
8945 		r = 0;
8946 	} else if (r == EMULATION_RESTART)
8947 		goto restart;
8948 	else
8949 		r = 1;
8950 
8951 writeback:
8952 	if (writeback) {
8953 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8954 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8955 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8956 
8957 		/*
8958 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
8959 		 * only supports code breakpoints and general detect #DB, both
8960 		 * of which are fault-like.
8961 		 */
8962 		if (!ctxt->have_exception ||
8963 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8964 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8965 			if (ctxt->is_branch)
8966 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8967 			kvm_rip_write(vcpu, ctxt->eip);
8968 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8969 				r = kvm_vcpu_do_singlestep(vcpu);
8970 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8971 			__kvm_set_rflags(vcpu, ctxt->eflags);
8972 		}
8973 
8974 		/*
8975 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8976 		 * do nothing, and it will be requested again as soon as
8977 		 * the shadow expires.  But we still need to check here,
8978 		 * because POPF has no interrupt shadow.
8979 		 */
8980 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8981 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8982 	} else
8983 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8984 
8985 	return r;
8986 }
8987 
8988 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8989 {
8990 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8991 }
8992 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8993 
8994 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8995 					void *insn, int insn_len)
8996 {
8997 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8998 }
8999 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9000 
9001 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9002 {
9003 	vcpu->arch.pio.count = 0;
9004 	return 1;
9005 }
9006 
9007 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9008 {
9009 	vcpu->arch.pio.count = 0;
9010 
9011 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9012 		return 1;
9013 
9014 	return kvm_skip_emulated_instruction(vcpu);
9015 }
9016 
9017 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9018 			    unsigned short port)
9019 {
9020 	unsigned long val = kvm_rax_read(vcpu);
9021 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9022 
9023 	if (ret)
9024 		return ret;
9025 
9026 	/*
9027 	 * Workaround userspace that relies on old KVM behavior of %rip being
9028 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9029 	 */
9030 	if (port == 0x7e &&
9031 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9032 		vcpu->arch.complete_userspace_io =
9033 			complete_fast_pio_out_port_0x7e;
9034 		kvm_skip_emulated_instruction(vcpu);
9035 	} else {
9036 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9037 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9038 	}
9039 	return 0;
9040 }
9041 
9042 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9043 {
9044 	unsigned long val;
9045 
9046 	/* We should only ever be called with arch.pio.count equal to 1 */
9047 	BUG_ON(vcpu->arch.pio.count != 1);
9048 
9049 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9050 		vcpu->arch.pio.count = 0;
9051 		return 1;
9052 	}
9053 
9054 	/* For size less than 4 we merge, else we zero extend */
9055 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9056 
9057 	complete_emulator_pio_in(vcpu, &val);
9058 	kvm_rax_write(vcpu, val);
9059 
9060 	return kvm_skip_emulated_instruction(vcpu);
9061 }
9062 
9063 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9064 			   unsigned short port)
9065 {
9066 	unsigned long val;
9067 	int ret;
9068 
9069 	/* For size less than 4 we merge, else we zero extend */
9070 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9071 
9072 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9073 	if (ret) {
9074 		kvm_rax_write(vcpu, val);
9075 		return ret;
9076 	}
9077 
9078 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9079 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9080 
9081 	return 0;
9082 }
9083 
9084 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9085 {
9086 	int ret;
9087 
9088 	if (in)
9089 		ret = kvm_fast_pio_in(vcpu, size, port);
9090 	else
9091 		ret = kvm_fast_pio_out(vcpu, size, port);
9092 	return ret && kvm_skip_emulated_instruction(vcpu);
9093 }
9094 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9095 
9096 static int kvmclock_cpu_down_prep(unsigned int cpu)
9097 {
9098 	__this_cpu_write(cpu_tsc_khz, 0);
9099 	return 0;
9100 }
9101 
9102 static void tsc_khz_changed(void *data)
9103 {
9104 	struct cpufreq_freqs *freq = data;
9105 	unsigned long khz = 0;
9106 
9107 	if (data)
9108 		khz = freq->new;
9109 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9110 		khz = cpufreq_quick_get(raw_smp_processor_id());
9111 	if (!khz)
9112 		khz = tsc_khz;
9113 	__this_cpu_write(cpu_tsc_khz, khz);
9114 }
9115 
9116 #ifdef CONFIG_X86_64
9117 static void kvm_hyperv_tsc_notifier(void)
9118 {
9119 	struct kvm *kvm;
9120 	int cpu;
9121 
9122 	mutex_lock(&kvm_lock);
9123 	list_for_each_entry(kvm, &vm_list, vm_list)
9124 		kvm_make_mclock_inprogress_request(kvm);
9125 
9126 	/* no guest entries from this point */
9127 	hyperv_stop_tsc_emulation();
9128 
9129 	/* TSC frequency always matches when on Hyper-V */
9130 	for_each_present_cpu(cpu)
9131 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9132 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9133 
9134 	list_for_each_entry(kvm, &vm_list, vm_list) {
9135 		__kvm_start_pvclock_update(kvm);
9136 		pvclock_update_vm_gtod_copy(kvm);
9137 		kvm_end_pvclock_update(kvm);
9138 	}
9139 
9140 	mutex_unlock(&kvm_lock);
9141 }
9142 #endif
9143 
9144 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9145 {
9146 	struct kvm *kvm;
9147 	struct kvm_vcpu *vcpu;
9148 	int send_ipi = 0;
9149 	unsigned long i;
9150 
9151 	/*
9152 	 * We allow guests to temporarily run on slowing clocks,
9153 	 * provided we notify them after, or to run on accelerating
9154 	 * clocks, provided we notify them before.  Thus time never
9155 	 * goes backwards.
9156 	 *
9157 	 * However, we have a problem.  We can't atomically update
9158 	 * the frequency of a given CPU from this function; it is
9159 	 * merely a notifier, which can be called from any CPU.
9160 	 * Changing the TSC frequency at arbitrary points in time
9161 	 * requires a recomputation of local variables related to
9162 	 * the TSC for each VCPU.  We must flag these local variables
9163 	 * to be updated and be sure the update takes place with the
9164 	 * new frequency before any guests proceed.
9165 	 *
9166 	 * Unfortunately, the combination of hotplug CPU and frequency
9167 	 * change creates an intractable locking scenario; the order
9168 	 * of when these callouts happen is undefined with respect to
9169 	 * CPU hotplug, and they can race with each other.  As such,
9170 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9171 	 * undefined; you can actually have a CPU frequency change take
9172 	 * place in between the computation of X and the setting of the
9173 	 * variable.  To protect against this problem, all updates of
9174 	 * the per_cpu tsc_khz variable are done in an interrupt
9175 	 * protected IPI, and all callers wishing to update the value
9176 	 * must wait for a synchronous IPI to complete (which is trivial
9177 	 * if the caller is on the CPU already).  This establishes the
9178 	 * necessary total order on variable updates.
9179 	 *
9180 	 * Note that because a guest time update may take place
9181 	 * anytime after the setting of the VCPU's request bit, the
9182 	 * correct TSC value must be set before the request.  However,
9183 	 * to ensure the update actually makes it to any guest which
9184 	 * starts running in hardware virtualization between the set
9185 	 * and the acquisition of the spinlock, we must also ping the
9186 	 * CPU after setting the request bit.
9187 	 *
9188 	 */
9189 
9190 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9191 
9192 	mutex_lock(&kvm_lock);
9193 	list_for_each_entry(kvm, &vm_list, vm_list) {
9194 		kvm_for_each_vcpu(i, vcpu, kvm) {
9195 			if (vcpu->cpu != cpu)
9196 				continue;
9197 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9198 			if (vcpu->cpu != raw_smp_processor_id())
9199 				send_ipi = 1;
9200 		}
9201 	}
9202 	mutex_unlock(&kvm_lock);
9203 
9204 	if (freq->old < freq->new && send_ipi) {
9205 		/*
9206 		 * We upscale the frequency.  Must make the guest
9207 		 * doesn't see old kvmclock values while running with
9208 		 * the new frequency, otherwise we risk the guest sees
9209 		 * time go backwards.
9210 		 *
9211 		 * In case we update the frequency for another cpu
9212 		 * (which might be in guest context) send an interrupt
9213 		 * to kick the cpu out of guest context.  Next time
9214 		 * guest context is entered kvmclock will be updated,
9215 		 * so the guest will not see stale values.
9216 		 */
9217 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9218 	}
9219 }
9220 
9221 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9222 				     void *data)
9223 {
9224 	struct cpufreq_freqs *freq = data;
9225 	int cpu;
9226 
9227 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9228 		return 0;
9229 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9230 		return 0;
9231 
9232 	for_each_cpu(cpu, freq->policy->cpus)
9233 		__kvmclock_cpufreq_notifier(freq, cpu);
9234 
9235 	return 0;
9236 }
9237 
9238 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9239 	.notifier_call  = kvmclock_cpufreq_notifier
9240 };
9241 
9242 static int kvmclock_cpu_online(unsigned int cpu)
9243 {
9244 	tsc_khz_changed(NULL);
9245 	return 0;
9246 }
9247 
9248 static void kvm_timer_init(void)
9249 {
9250 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9251 		max_tsc_khz = tsc_khz;
9252 
9253 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9254 			struct cpufreq_policy *policy;
9255 			int cpu;
9256 
9257 			cpu = get_cpu();
9258 			policy = cpufreq_cpu_get(cpu);
9259 			if (policy) {
9260 				if (policy->cpuinfo.max_freq)
9261 					max_tsc_khz = policy->cpuinfo.max_freq;
9262 				cpufreq_cpu_put(policy);
9263 			}
9264 			put_cpu();
9265 		}
9266 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9267 					  CPUFREQ_TRANSITION_NOTIFIER);
9268 	}
9269 
9270 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9271 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9272 }
9273 
9274 #ifdef CONFIG_X86_64
9275 static void pvclock_gtod_update_fn(struct work_struct *work)
9276 {
9277 	struct kvm *kvm;
9278 	struct kvm_vcpu *vcpu;
9279 	unsigned long i;
9280 
9281 	mutex_lock(&kvm_lock);
9282 	list_for_each_entry(kvm, &vm_list, vm_list)
9283 		kvm_for_each_vcpu(i, vcpu, kvm)
9284 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9285 	atomic_set(&kvm_guest_has_master_clock, 0);
9286 	mutex_unlock(&kvm_lock);
9287 }
9288 
9289 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9290 
9291 /*
9292  * Indirection to move queue_work() out of the tk_core.seq write held
9293  * region to prevent possible deadlocks against time accessors which
9294  * are invoked with work related locks held.
9295  */
9296 static void pvclock_irq_work_fn(struct irq_work *w)
9297 {
9298 	queue_work(system_long_wq, &pvclock_gtod_work);
9299 }
9300 
9301 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9302 
9303 /*
9304  * Notification about pvclock gtod data update.
9305  */
9306 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9307 			       void *priv)
9308 {
9309 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9310 	struct timekeeper *tk = priv;
9311 
9312 	update_pvclock_gtod(tk);
9313 
9314 	/*
9315 	 * Disable master clock if host does not trust, or does not use,
9316 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9317 	 * this is invoked with tk_core.seq write held.
9318 	 */
9319 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9320 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9321 		irq_work_queue(&pvclock_irq_work);
9322 	return 0;
9323 }
9324 
9325 static struct notifier_block pvclock_gtod_notifier = {
9326 	.notifier_call = pvclock_gtod_notify,
9327 };
9328 #endif
9329 
9330 int kvm_arch_init(void *opaque)
9331 {
9332 	struct kvm_x86_init_ops *ops = opaque;
9333 	u64 host_pat;
9334 	int r;
9335 
9336 	if (kvm_x86_ops.hardware_enable) {
9337 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
9338 		return -EEXIST;
9339 	}
9340 
9341 	if (!ops->cpu_has_kvm_support()) {
9342 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
9343 				   ops->runtime_ops->name);
9344 		return -EOPNOTSUPP;
9345 	}
9346 	if (ops->disabled_by_bios()) {
9347 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
9348 				   ops->runtime_ops->name);
9349 		return -EOPNOTSUPP;
9350 	}
9351 
9352 	/*
9353 	 * KVM explicitly assumes that the guest has an FPU and
9354 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9355 	 * vCPU's FPU state as a fxregs_state struct.
9356 	 */
9357 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9358 		printk(KERN_ERR "kvm: inadequate fpu\n");
9359 		return -EOPNOTSUPP;
9360 	}
9361 
9362 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9363 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9364 		return -EOPNOTSUPP;
9365 	}
9366 
9367 	/*
9368 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9369 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9370 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9371 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9372 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9373 	 */
9374 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9375 	    (host_pat & GENMASK(2, 0)) != 6) {
9376 		pr_err("kvm: host PAT[0] is not WB\n");
9377 		return -EIO;
9378 	}
9379 
9380 	x86_emulator_cache = kvm_alloc_emulator_cache();
9381 	if (!x86_emulator_cache) {
9382 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
9383 		return -ENOMEM;
9384 	}
9385 
9386 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9387 	if (!user_return_msrs) {
9388 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9389 		r = -ENOMEM;
9390 		goto out_free_x86_emulator_cache;
9391 	}
9392 	kvm_nr_uret_msrs = 0;
9393 
9394 	r = kvm_mmu_vendor_module_init();
9395 	if (r)
9396 		goto out_free_percpu;
9397 
9398 	kvm_timer_init();
9399 
9400 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9401 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9402 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9403 	}
9404 
9405 	if (pi_inject_timer == -1)
9406 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9407 #ifdef CONFIG_X86_64
9408 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9409 
9410 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9411 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9412 #endif
9413 
9414 	return 0;
9415 
9416 out_free_percpu:
9417 	free_percpu(user_return_msrs);
9418 out_free_x86_emulator_cache:
9419 	kmem_cache_destroy(x86_emulator_cache);
9420 	return r;
9421 }
9422 
9423 void kvm_arch_exit(void)
9424 {
9425 #ifdef CONFIG_X86_64
9426 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9427 		clear_hv_tscchange_cb();
9428 #endif
9429 	kvm_lapic_exit();
9430 
9431 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9432 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9433 					    CPUFREQ_TRANSITION_NOTIFIER);
9434 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9435 #ifdef CONFIG_X86_64
9436 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9437 	irq_work_sync(&pvclock_irq_work);
9438 	cancel_work_sync(&pvclock_gtod_work);
9439 #endif
9440 	kvm_x86_ops.hardware_enable = NULL;
9441 	kvm_mmu_vendor_module_exit();
9442 	free_percpu(user_return_msrs);
9443 	kmem_cache_destroy(x86_emulator_cache);
9444 #ifdef CONFIG_KVM_XEN
9445 	static_key_deferred_flush(&kvm_xen_enabled);
9446 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9447 #endif
9448 }
9449 
9450 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9451 {
9452 	/*
9453 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9454 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9455 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9456 	 * managed by userspace, in which case userspace is responsible for
9457 	 * handling wake events.
9458 	 */
9459 	++vcpu->stat.halt_exits;
9460 	if (lapic_in_kernel(vcpu)) {
9461 		vcpu->arch.mp_state = state;
9462 		return 1;
9463 	} else {
9464 		vcpu->run->exit_reason = reason;
9465 		return 0;
9466 	}
9467 }
9468 
9469 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9470 {
9471 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9472 }
9473 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9474 
9475 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9476 {
9477 	int ret = kvm_skip_emulated_instruction(vcpu);
9478 	/*
9479 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9480 	 * KVM_EXIT_DEBUG here.
9481 	 */
9482 	return kvm_emulate_halt_noskip(vcpu) && ret;
9483 }
9484 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9485 
9486 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9487 {
9488 	int ret = kvm_skip_emulated_instruction(vcpu);
9489 
9490 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9491 					KVM_EXIT_AP_RESET_HOLD) && ret;
9492 }
9493 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9494 
9495 #ifdef CONFIG_X86_64
9496 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9497 			        unsigned long clock_type)
9498 {
9499 	struct kvm_clock_pairing clock_pairing;
9500 	struct timespec64 ts;
9501 	u64 cycle;
9502 	int ret;
9503 
9504 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9505 		return -KVM_EOPNOTSUPP;
9506 
9507 	/*
9508 	 * When tsc is in permanent catchup mode guests won't be able to use
9509 	 * pvclock_read_retry loop to get consistent view of pvclock
9510 	 */
9511 	if (vcpu->arch.tsc_always_catchup)
9512 		return -KVM_EOPNOTSUPP;
9513 
9514 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9515 		return -KVM_EOPNOTSUPP;
9516 
9517 	clock_pairing.sec = ts.tv_sec;
9518 	clock_pairing.nsec = ts.tv_nsec;
9519 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9520 	clock_pairing.flags = 0;
9521 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9522 
9523 	ret = 0;
9524 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9525 			    sizeof(struct kvm_clock_pairing)))
9526 		ret = -KVM_EFAULT;
9527 
9528 	return ret;
9529 }
9530 #endif
9531 
9532 /*
9533  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9534  *
9535  * @apicid - apicid of vcpu to be kicked.
9536  */
9537 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9538 {
9539 	/*
9540 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9541 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9542 	 */
9543 	struct kvm_lapic_irq lapic_irq = {
9544 		.delivery_mode = APIC_DM_REMRD,
9545 		.dest_mode = APIC_DEST_PHYSICAL,
9546 		.shorthand = APIC_DEST_NOSHORT,
9547 		.dest_id = apicid,
9548 	};
9549 
9550 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9551 }
9552 
9553 bool kvm_apicv_activated(struct kvm *kvm)
9554 {
9555 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9556 }
9557 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9558 
9559 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9560 {
9561 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9562 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9563 
9564 	return (vm_reasons | vcpu_reasons) == 0;
9565 }
9566 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9567 
9568 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9569 				       enum kvm_apicv_inhibit reason, bool set)
9570 {
9571 	if (set)
9572 		__set_bit(reason, inhibits);
9573 	else
9574 		__clear_bit(reason, inhibits);
9575 
9576 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9577 }
9578 
9579 static void kvm_apicv_init(struct kvm *kvm)
9580 {
9581 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9582 
9583 	init_rwsem(&kvm->arch.apicv_update_lock);
9584 
9585 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9586 
9587 	if (!enable_apicv)
9588 		set_or_clear_apicv_inhibit(inhibits,
9589 					   APICV_INHIBIT_REASON_DISABLE, true);
9590 }
9591 
9592 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9593 {
9594 	struct kvm_vcpu *target = NULL;
9595 	struct kvm_apic_map *map;
9596 
9597 	vcpu->stat.directed_yield_attempted++;
9598 
9599 	if (single_task_running())
9600 		goto no_yield;
9601 
9602 	rcu_read_lock();
9603 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9604 
9605 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9606 		target = map->phys_map[dest_id]->vcpu;
9607 
9608 	rcu_read_unlock();
9609 
9610 	if (!target || !READ_ONCE(target->ready))
9611 		goto no_yield;
9612 
9613 	/* Ignore requests to yield to self */
9614 	if (vcpu == target)
9615 		goto no_yield;
9616 
9617 	if (kvm_vcpu_yield_to(target) <= 0)
9618 		goto no_yield;
9619 
9620 	vcpu->stat.directed_yield_successful++;
9621 
9622 no_yield:
9623 	return;
9624 }
9625 
9626 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9627 {
9628 	u64 ret = vcpu->run->hypercall.ret;
9629 
9630 	if (!is_64_bit_mode(vcpu))
9631 		ret = (u32)ret;
9632 	kvm_rax_write(vcpu, ret);
9633 	++vcpu->stat.hypercalls;
9634 	return kvm_skip_emulated_instruction(vcpu);
9635 }
9636 
9637 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9638 {
9639 	unsigned long nr, a0, a1, a2, a3, ret;
9640 	int op_64_bit;
9641 
9642 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9643 		return kvm_xen_hypercall(vcpu);
9644 
9645 	if (kvm_hv_hypercall_enabled(vcpu))
9646 		return kvm_hv_hypercall(vcpu);
9647 
9648 	nr = kvm_rax_read(vcpu);
9649 	a0 = kvm_rbx_read(vcpu);
9650 	a1 = kvm_rcx_read(vcpu);
9651 	a2 = kvm_rdx_read(vcpu);
9652 	a3 = kvm_rsi_read(vcpu);
9653 
9654 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9655 
9656 	op_64_bit = is_64_bit_hypercall(vcpu);
9657 	if (!op_64_bit) {
9658 		nr &= 0xFFFFFFFF;
9659 		a0 &= 0xFFFFFFFF;
9660 		a1 &= 0xFFFFFFFF;
9661 		a2 &= 0xFFFFFFFF;
9662 		a3 &= 0xFFFFFFFF;
9663 	}
9664 
9665 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9666 		ret = -KVM_EPERM;
9667 		goto out;
9668 	}
9669 
9670 	ret = -KVM_ENOSYS;
9671 
9672 	switch (nr) {
9673 	case KVM_HC_VAPIC_POLL_IRQ:
9674 		ret = 0;
9675 		break;
9676 	case KVM_HC_KICK_CPU:
9677 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9678 			break;
9679 
9680 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9681 		kvm_sched_yield(vcpu, a1);
9682 		ret = 0;
9683 		break;
9684 #ifdef CONFIG_X86_64
9685 	case KVM_HC_CLOCK_PAIRING:
9686 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9687 		break;
9688 #endif
9689 	case KVM_HC_SEND_IPI:
9690 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9691 			break;
9692 
9693 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9694 		break;
9695 	case KVM_HC_SCHED_YIELD:
9696 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9697 			break;
9698 
9699 		kvm_sched_yield(vcpu, a0);
9700 		ret = 0;
9701 		break;
9702 	case KVM_HC_MAP_GPA_RANGE: {
9703 		u64 gpa = a0, npages = a1, attrs = a2;
9704 
9705 		ret = -KVM_ENOSYS;
9706 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9707 			break;
9708 
9709 		if (!PAGE_ALIGNED(gpa) || !npages ||
9710 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9711 			ret = -KVM_EINVAL;
9712 			break;
9713 		}
9714 
9715 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9716 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9717 		vcpu->run->hypercall.args[0]  = gpa;
9718 		vcpu->run->hypercall.args[1]  = npages;
9719 		vcpu->run->hypercall.args[2]  = attrs;
9720 		vcpu->run->hypercall.longmode = op_64_bit;
9721 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9722 		return 0;
9723 	}
9724 	default:
9725 		ret = -KVM_ENOSYS;
9726 		break;
9727 	}
9728 out:
9729 	if (!op_64_bit)
9730 		ret = (u32)ret;
9731 	kvm_rax_write(vcpu, ret);
9732 
9733 	++vcpu->stat.hypercalls;
9734 	return kvm_skip_emulated_instruction(vcpu);
9735 }
9736 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9737 
9738 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9739 {
9740 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9741 	char instruction[3];
9742 	unsigned long rip = kvm_rip_read(vcpu);
9743 
9744 	/*
9745 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9746 	 * the pieces.
9747 	 */
9748 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9749 		ctxt->exception.error_code_valid = false;
9750 		ctxt->exception.vector = UD_VECTOR;
9751 		ctxt->have_exception = true;
9752 		return X86EMUL_PROPAGATE_FAULT;
9753 	}
9754 
9755 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9756 
9757 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9758 		&ctxt->exception);
9759 }
9760 
9761 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9762 {
9763 	return vcpu->run->request_interrupt_window &&
9764 		likely(!pic_in_kernel(vcpu->kvm));
9765 }
9766 
9767 /* Called within kvm->srcu read side.  */
9768 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9769 {
9770 	struct kvm_run *kvm_run = vcpu->run;
9771 
9772 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9773 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9774 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9775 
9776 	kvm_run->ready_for_interrupt_injection =
9777 		pic_in_kernel(vcpu->kvm) ||
9778 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9779 
9780 	if (is_smm(vcpu))
9781 		kvm_run->flags |= KVM_RUN_X86_SMM;
9782 }
9783 
9784 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9785 {
9786 	int max_irr, tpr;
9787 
9788 	if (!kvm_x86_ops.update_cr8_intercept)
9789 		return;
9790 
9791 	if (!lapic_in_kernel(vcpu))
9792 		return;
9793 
9794 	if (vcpu->arch.apic->apicv_active)
9795 		return;
9796 
9797 	if (!vcpu->arch.apic->vapic_addr)
9798 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9799 	else
9800 		max_irr = -1;
9801 
9802 	if (max_irr != -1)
9803 		max_irr >>= 4;
9804 
9805 	tpr = kvm_lapic_get_cr8(vcpu);
9806 
9807 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9808 }
9809 
9810 
9811 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9812 {
9813 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9814 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9815 		return 1;
9816 	}
9817 
9818 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9819 }
9820 
9821 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9822 {
9823 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
9824 				vcpu->arch.exception.has_error_code,
9825 				vcpu->arch.exception.error_code,
9826 				vcpu->arch.exception.injected);
9827 
9828 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9829 		vcpu->arch.exception.error_code = false;
9830 	static_call(kvm_x86_inject_exception)(vcpu);
9831 }
9832 
9833 /*
9834  * Check for any event (interrupt or exception) that is ready to be injected,
9835  * and if there is at least one event, inject the event with the highest
9836  * priority.  This handles both "pending" events, i.e. events that have never
9837  * been injected into the guest, and "injected" events, i.e. events that were
9838  * injected as part of a previous VM-Enter, but weren't successfully delivered
9839  * and need to be re-injected.
9840  *
9841  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9842  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
9843  * be able to inject exceptions in the "middle" of an instruction, and so must
9844  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
9845  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
9846  * boundaries is necessary and correct.
9847  *
9848  * For simplicity, KVM uses a single path to inject all events (except events
9849  * that are injected directly from L1 to L2) and doesn't explicitly track
9850  * instruction boundaries for asynchronous events.  However, because VM-Exits
9851  * that can occur during instruction execution typically result in KVM skipping
9852  * the instruction or injecting an exception, e.g. instruction and exception
9853  * intercepts, and because pending exceptions have higher priority than pending
9854  * interrupts, KVM still honors instruction boundaries in most scenarios.
9855  *
9856  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
9857  * the instruction or inject an exception, then KVM can incorrecty inject a new
9858  * asynchrounous event if the event became pending after the CPU fetched the
9859  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
9860  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
9861  * injected on the restarted instruction instead of being deferred until the
9862  * instruction completes.
9863  *
9864  * In practice, this virtualization hole is unlikely to be observed by the
9865  * guest, and even less likely to cause functional problems.  To detect the
9866  * hole, the guest would have to trigger an event on a side effect of an early
9867  * phase of instruction execution, e.g. on the instruction fetch from memory.
9868  * And for it to be a functional problem, the guest would need to depend on the
9869  * ordering between that side effect, the instruction completing, _and_ the
9870  * delivery of the asynchronous event.
9871  */
9872 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
9873 				       bool *req_immediate_exit)
9874 {
9875 	bool can_inject;
9876 	int r;
9877 
9878 	/*
9879 	 * Process nested events first, as nested VM-Exit supercedes event
9880 	 * re-injection.  If there's an event queued for re-injection, it will
9881 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
9882 	 */
9883 	if (is_guest_mode(vcpu))
9884 		r = kvm_check_nested_events(vcpu);
9885 	else
9886 		r = 0;
9887 
9888 	/*
9889 	 * Re-inject exceptions and events *especially* if immediate entry+exit
9890 	 * to/from L2 is needed, as any event that has already been injected
9891 	 * into L2 needs to complete its lifecycle before injecting a new event.
9892 	 *
9893 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
9894 	 * This collision arises if an exception occurred while vectoring the
9895 	 * injected event, KVM intercepted said exception, and KVM ultimately
9896 	 * determined the fault belongs to the guest and queues the exception
9897 	 * for injection back into the guest.
9898 	 *
9899 	 * "Injected" interrupts can also collide with pending exceptions if
9900 	 * userspace ignores the "ready for injection" flag and blindly queues
9901 	 * an interrupt.  In that case, prioritizing the exception is correct,
9902 	 * as the exception "occurred" before the exit to userspace.  Trap-like
9903 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
9904 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
9905 	 * priority, they're only generated (pended) during instruction
9906 	 * execution, and interrupts are recognized at instruction boundaries.
9907 	 * Thus a pending fault-like exception means the fault occurred on the
9908 	 * *previous* instruction and must be serviced prior to recognizing any
9909 	 * new events in order to fully complete the previous instruction.
9910 	 */
9911 	if (vcpu->arch.exception.injected)
9912 		kvm_inject_exception(vcpu);
9913 	else if (kvm_is_exception_pending(vcpu))
9914 		; /* see above */
9915 	else if (vcpu->arch.nmi_injected)
9916 		static_call(kvm_x86_inject_nmi)(vcpu);
9917 	else if (vcpu->arch.interrupt.injected)
9918 		static_call(kvm_x86_inject_irq)(vcpu, true);
9919 
9920 	/*
9921 	 * Exceptions that morph to VM-Exits are handled above, and pending
9922 	 * exceptions on top of injected exceptions that do not VM-Exit should
9923 	 * either morph to #DF or, sadly, override the injected exception.
9924 	 */
9925 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9926 		     vcpu->arch.exception.pending);
9927 
9928 	/*
9929 	 * Bail if immediate entry+exit to/from the guest is needed to complete
9930 	 * nested VM-Enter or event re-injection so that a different pending
9931 	 * event can be serviced (or if KVM needs to exit to userspace).
9932 	 *
9933 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
9934 	 * VM-Exit will have cleared exceptions that were meant for L2, but
9935 	 * there may now be events that can be injected into L1.
9936 	 */
9937 	if (r < 0)
9938 		goto out;
9939 
9940 	/*
9941 	 * A pending exception VM-Exit should either result in nested VM-Exit
9942 	 * or force an immediate re-entry and exit to/from L2, and exception
9943 	 * VM-Exits cannot be injected (flag should _never_ be set).
9944 	 */
9945 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
9946 		     vcpu->arch.exception_vmexit.pending);
9947 
9948 	/*
9949 	 * New events, other than exceptions, cannot be injected if KVM needs
9950 	 * to re-inject a previous event.  See above comments on re-injecting
9951 	 * for why pending exceptions get priority.
9952 	 */
9953 	can_inject = !kvm_event_needs_reinjection(vcpu);
9954 
9955 	if (vcpu->arch.exception.pending) {
9956 		/*
9957 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
9958 		 * value pushed on the stack.  Trap-like exception and all #DBs
9959 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
9960 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
9961 		 *
9962 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
9963 		 * describe the behavior of General Detect #DBs, which are
9964 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
9965 		 */
9966 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
9967 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9968 					     X86_EFLAGS_RF);
9969 
9970 		if (vcpu->arch.exception.vector == DB_VECTOR) {
9971 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
9972 			if (vcpu->arch.dr7 & DR7_GD) {
9973 				vcpu->arch.dr7 &= ~DR7_GD;
9974 				kvm_update_dr7(vcpu);
9975 			}
9976 		}
9977 
9978 		kvm_inject_exception(vcpu);
9979 
9980 		vcpu->arch.exception.pending = false;
9981 		vcpu->arch.exception.injected = true;
9982 
9983 		can_inject = false;
9984 	}
9985 
9986 	/* Don't inject interrupts if the user asked to avoid doing so */
9987 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9988 		return 0;
9989 
9990 	/*
9991 	 * Finally, inject interrupt events.  If an event cannot be injected
9992 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9993 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9994 	 * and can architecturally be injected, but we cannot do it right now:
9995 	 * an interrupt could have arrived just now and we have to inject it
9996 	 * as a vmexit, or there could already an event in the queue, which is
9997 	 * indicated by can_inject.  In that case we request an immediate exit
9998 	 * in order to make progress and get back here for another iteration.
9999 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10000 	 */
10001 	if (vcpu->arch.smi_pending) {
10002 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10003 		if (r < 0)
10004 			goto out;
10005 		if (r) {
10006 			vcpu->arch.smi_pending = false;
10007 			++vcpu->arch.smi_count;
10008 			enter_smm(vcpu);
10009 			can_inject = false;
10010 		} else
10011 			static_call(kvm_x86_enable_smi_window)(vcpu);
10012 	}
10013 
10014 	if (vcpu->arch.nmi_pending) {
10015 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10016 		if (r < 0)
10017 			goto out;
10018 		if (r) {
10019 			--vcpu->arch.nmi_pending;
10020 			vcpu->arch.nmi_injected = true;
10021 			static_call(kvm_x86_inject_nmi)(vcpu);
10022 			can_inject = false;
10023 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10024 		}
10025 		if (vcpu->arch.nmi_pending)
10026 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10027 	}
10028 
10029 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10030 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10031 		if (r < 0)
10032 			goto out;
10033 		if (r) {
10034 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
10035 			static_call(kvm_x86_inject_irq)(vcpu, false);
10036 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10037 		}
10038 		if (kvm_cpu_has_injectable_intr(vcpu))
10039 			static_call(kvm_x86_enable_irq_window)(vcpu);
10040 	}
10041 
10042 	if (is_guest_mode(vcpu) &&
10043 	    kvm_x86_ops.nested_ops->has_events &&
10044 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10045 		*req_immediate_exit = true;
10046 
10047 	/*
10048 	 * KVM must never queue a new exception while injecting an event; KVM
10049 	 * is done emulating and should only propagate the to-be-injected event
10050 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10051 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10052 	 * exception and start the cycle all over.
10053 	 *
10054 	 * Exempt triple faults as they have special handling and won't put the
10055 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10056 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10057 	 * Mode events (see kvm_inject_realmode_interrupt()).
10058 	 */
10059 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10060 		     vcpu->arch.exception_vmexit.pending);
10061 	return 0;
10062 
10063 out:
10064 	if (r == -EBUSY) {
10065 		*req_immediate_exit = true;
10066 		r = 0;
10067 	}
10068 	return r;
10069 }
10070 
10071 static void process_nmi(struct kvm_vcpu *vcpu)
10072 {
10073 	unsigned limit = 2;
10074 
10075 	/*
10076 	 * x86 is limited to one NMI running, and one NMI pending after it.
10077 	 * If an NMI is already in progress, limit further NMIs to just one.
10078 	 * Otherwise, allow two (and we'll inject the first one immediately).
10079 	 */
10080 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10081 		limit = 1;
10082 
10083 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10084 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10085 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10086 }
10087 
10088 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
10089 {
10090 	u32 flags = 0;
10091 	flags |= seg->g       << 23;
10092 	flags |= seg->db      << 22;
10093 	flags |= seg->l       << 21;
10094 	flags |= seg->avl     << 20;
10095 	flags |= seg->present << 15;
10096 	flags |= seg->dpl     << 13;
10097 	flags |= seg->s       << 12;
10098 	flags |= seg->type    << 8;
10099 	return flags;
10100 }
10101 
10102 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
10103 {
10104 	struct kvm_segment seg;
10105 	int offset;
10106 
10107 	kvm_get_segment(vcpu, &seg, n);
10108 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
10109 
10110 	if (n < 3)
10111 		offset = 0x7f84 + n * 12;
10112 	else
10113 		offset = 0x7f2c + (n - 3) * 12;
10114 
10115 	put_smstate(u32, buf, offset + 8, seg.base);
10116 	put_smstate(u32, buf, offset + 4, seg.limit);
10117 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
10118 }
10119 
10120 #ifdef CONFIG_X86_64
10121 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
10122 {
10123 	struct kvm_segment seg;
10124 	int offset;
10125 	u16 flags;
10126 
10127 	kvm_get_segment(vcpu, &seg, n);
10128 	offset = 0x7e00 + n * 16;
10129 
10130 	flags = enter_smm_get_segment_flags(&seg) >> 8;
10131 	put_smstate(u16, buf, offset, seg.selector);
10132 	put_smstate(u16, buf, offset + 2, flags);
10133 	put_smstate(u32, buf, offset + 4, seg.limit);
10134 	put_smstate(u64, buf, offset + 8, seg.base);
10135 }
10136 #endif
10137 
10138 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
10139 {
10140 	struct desc_ptr dt;
10141 	struct kvm_segment seg;
10142 	unsigned long val;
10143 	int i;
10144 
10145 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
10146 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
10147 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
10148 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
10149 
10150 	for (i = 0; i < 8; i++)
10151 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
10152 
10153 	kvm_get_dr(vcpu, 6, &val);
10154 	put_smstate(u32, buf, 0x7fcc, (u32)val);
10155 	kvm_get_dr(vcpu, 7, &val);
10156 	put_smstate(u32, buf, 0x7fc8, (u32)val);
10157 
10158 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
10159 	put_smstate(u32, buf, 0x7fc4, seg.selector);
10160 	put_smstate(u32, buf, 0x7f64, seg.base);
10161 	put_smstate(u32, buf, 0x7f60, seg.limit);
10162 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
10163 
10164 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
10165 	put_smstate(u32, buf, 0x7fc0, seg.selector);
10166 	put_smstate(u32, buf, 0x7f80, seg.base);
10167 	put_smstate(u32, buf, 0x7f7c, seg.limit);
10168 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
10169 
10170 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10171 	put_smstate(u32, buf, 0x7f74, dt.address);
10172 	put_smstate(u32, buf, 0x7f70, dt.size);
10173 
10174 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10175 	put_smstate(u32, buf, 0x7f58, dt.address);
10176 	put_smstate(u32, buf, 0x7f54, dt.size);
10177 
10178 	for (i = 0; i < 6; i++)
10179 		enter_smm_save_seg_32(vcpu, buf, i);
10180 
10181 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
10182 
10183 	/* revision id */
10184 	put_smstate(u32, buf, 0x7efc, 0x00020000);
10185 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
10186 }
10187 
10188 #ifdef CONFIG_X86_64
10189 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
10190 {
10191 	struct desc_ptr dt;
10192 	struct kvm_segment seg;
10193 	unsigned long val;
10194 	int i;
10195 
10196 	for (i = 0; i < 16; i++)
10197 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
10198 
10199 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
10200 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
10201 
10202 	kvm_get_dr(vcpu, 6, &val);
10203 	put_smstate(u64, buf, 0x7f68, val);
10204 	kvm_get_dr(vcpu, 7, &val);
10205 	put_smstate(u64, buf, 0x7f60, val);
10206 
10207 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
10208 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
10209 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
10210 
10211 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
10212 
10213 	/* revision id */
10214 	put_smstate(u32, buf, 0x7efc, 0x00020064);
10215 
10216 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
10217 
10218 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
10219 	put_smstate(u16, buf, 0x7e90, seg.selector);
10220 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
10221 	put_smstate(u32, buf, 0x7e94, seg.limit);
10222 	put_smstate(u64, buf, 0x7e98, seg.base);
10223 
10224 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10225 	put_smstate(u32, buf, 0x7e84, dt.size);
10226 	put_smstate(u64, buf, 0x7e88, dt.address);
10227 
10228 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
10229 	put_smstate(u16, buf, 0x7e70, seg.selector);
10230 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
10231 	put_smstate(u32, buf, 0x7e74, seg.limit);
10232 	put_smstate(u64, buf, 0x7e78, seg.base);
10233 
10234 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10235 	put_smstate(u32, buf, 0x7e64, dt.size);
10236 	put_smstate(u64, buf, 0x7e68, dt.address);
10237 
10238 	for (i = 0; i < 6; i++)
10239 		enter_smm_save_seg_64(vcpu, buf, i);
10240 }
10241 #endif
10242 
10243 static void enter_smm(struct kvm_vcpu *vcpu)
10244 {
10245 	struct kvm_segment cs, ds;
10246 	struct desc_ptr dt;
10247 	unsigned long cr0;
10248 	char buf[512];
10249 
10250 	memset(buf, 0, 512);
10251 #ifdef CONFIG_X86_64
10252 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10253 		enter_smm_save_state_64(vcpu, buf);
10254 	else
10255 #endif
10256 		enter_smm_save_state_32(vcpu, buf);
10257 
10258 	/*
10259 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
10260 	 * state (e.g. leave guest mode) after we've saved the state into the
10261 	 * SMM state-save area.
10262 	 */
10263 	static_call(kvm_x86_enter_smm)(vcpu, buf);
10264 
10265 	kvm_smm_changed(vcpu, true);
10266 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
10267 
10268 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
10269 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
10270 	else
10271 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
10272 
10273 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10274 	kvm_rip_write(vcpu, 0x8000);
10275 
10276 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
10277 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
10278 	vcpu->arch.cr0 = cr0;
10279 
10280 	static_call(kvm_x86_set_cr4)(vcpu, 0);
10281 
10282 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
10283 	dt.address = dt.size = 0;
10284 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10285 
10286 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
10287 
10288 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
10289 	cs.base = vcpu->arch.smbase;
10290 
10291 	ds.selector = 0;
10292 	ds.base = 0;
10293 
10294 	cs.limit    = ds.limit = 0xffffffff;
10295 	cs.type     = ds.type = 0x3;
10296 	cs.dpl      = ds.dpl = 0;
10297 	cs.db       = ds.db = 0;
10298 	cs.s        = ds.s = 1;
10299 	cs.l        = ds.l = 0;
10300 	cs.g        = ds.g = 1;
10301 	cs.avl      = ds.avl = 0;
10302 	cs.present  = ds.present = 1;
10303 	cs.unusable = ds.unusable = 0;
10304 	cs.padding  = ds.padding = 0;
10305 
10306 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10307 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
10308 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
10309 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
10310 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
10311 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
10312 
10313 #ifdef CONFIG_X86_64
10314 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10315 		static_call(kvm_x86_set_efer)(vcpu, 0);
10316 #endif
10317 
10318 	kvm_update_cpuid_runtime(vcpu);
10319 	kvm_mmu_reset_context(vcpu);
10320 }
10321 
10322 static void process_smi(struct kvm_vcpu *vcpu)
10323 {
10324 	vcpu->arch.smi_pending = true;
10325 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10326 }
10327 
10328 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10329 				       unsigned long *vcpu_bitmap)
10330 {
10331 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10332 }
10333 
10334 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10335 {
10336 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10337 }
10338 
10339 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10340 {
10341 	struct kvm_lapic *apic = vcpu->arch.apic;
10342 	bool activate;
10343 
10344 	if (!lapic_in_kernel(vcpu))
10345 		return;
10346 
10347 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10348 	preempt_disable();
10349 
10350 	/* Do not activate APICV when APIC is disabled */
10351 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10352 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10353 
10354 	if (apic->apicv_active == activate)
10355 		goto out;
10356 
10357 	apic->apicv_active = activate;
10358 	kvm_apic_update_apicv(vcpu);
10359 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10360 
10361 	/*
10362 	 * When APICv gets disabled, we may still have injected interrupts
10363 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10364 	 * still active when the interrupt got accepted. Make sure
10365 	 * kvm_check_and_inject_events() is called to check for that.
10366 	 */
10367 	if (!apic->apicv_active)
10368 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10369 
10370 out:
10371 	preempt_enable();
10372 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10373 }
10374 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
10375 
10376 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10377 				      enum kvm_apicv_inhibit reason, bool set)
10378 {
10379 	unsigned long old, new;
10380 
10381 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10382 
10383 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
10384 		return;
10385 
10386 	old = new = kvm->arch.apicv_inhibit_reasons;
10387 
10388 	set_or_clear_apicv_inhibit(&new, reason, set);
10389 
10390 	if (!!old != !!new) {
10391 		/*
10392 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10393 		 * false positives in the sanity check WARN in svm_vcpu_run().
10394 		 * This task will wait for all vCPUs to ack the kick IRQ before
10395 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10396 		 * block on acquiring apicv_update_lock so that vCPUs can't
10397 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10398 		 *
10399 		 * Note, holding apicv_update_lock and taking it in the read
10400 		 * side (handling the request) also prevents other vCPUs from
10401 		 * servicing the request with a stale apicv_inhibit_reasons.
10402 		 */
10403 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10404 		kvm->arch.apicv_inhibit_reasons = new;
10405 		if (new) {
10406 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10407 			int idx = srcu_read_lock(&kvm->srcu);
10408 
10409 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10410 			srcu_read_unlock(&kvm->srcu, idx);
10411 		}
10412 	} else {
10413 		kvm->arch.apicv_inhibit_reasons = new;
10414 	}
10415 }
10416 
10417 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10418 				    enum kvm_apicv_inhibit reason, bool set)
10419 {
10420 	if (!enable_apicv)
10421 		return;
10422 
10423 	down_write(&kvm->arch.apicv_update_lock);
10424 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10425 	up_write(&kvm->arch.apicv_update_lock);
10426 }
10427 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10428 
10429 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10430 {
10431 	if (!kvm_apic_present(vcpu))
10432 		return;
10433 
10434 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10435 
10436 	if (irqchip_split(vcpu->kvm))
10437 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10438 	else {
10439 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10440 		if (ioapic_in_kernel(vcpu->kvm))
10441 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10442 	}
10443 
10444 	if (is_guest_mode(vcpu))
10445 		vcpu->arch.load_eoi_exitmap_pending = true;
10446 	else
10447 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10448 }
10449 
10450 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10451 {
10452 	u64 eoi_exit_bitmap[4];
10453 
10454 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10455 		return;
10456 
10457 	if (to_hv_vcpu(vcpu)) {
10458 		bitmap_or((ulong *)eoi_exit_bitmap,
10459 			  vcpu->arch.ioapic_handled_vectors,
10460 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10461 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10462 		return;
10463 	}
10464 
10465 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10466 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10467 }
10468 
10469 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10470 					    unsigned long start, unsigned long end)
10471 {
10472 	unsigned long apic_address;
10473 
10474 	/*
10475 	 * The physical address of apic access page is stored in the VMCS.
10476 	 * Update it when it becomes invalid.
10477 	 */
10478 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10479 	if (start <= apic_address && apic_address < end)
10480 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10481 }
10482 
10483 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10484 {
10485 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10486 }
10487 
10488 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10489 {
10490 	if (!lapic_in_kernel(vcpu))
10491 		return;
10492 
10493 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10494 }
10495 
10496 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10497 {
10498 	smp_send_reschedule(vcpu->cpu);
10499 }
10500 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10501 
10502 /*
10503  * Called within kvm->srcu read side.
10504  * Returns 1 to let vcpu_run() continue the guest execution loop without
10505  * exiting to the userspace.  Otherwise, the value will be returned to the
10506  * userspace.
10507  */
10508 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10509 {
10510 	int r;
10511 	bool req_int_win =
10512 		dm_request_for_irq_injection(vcpu) &&
10513 		kvm_cpu_accept_dm_intr(vcpu);
10514 	fastpath_t exit_fastpath;
10515 
10516 	bool req_immediate_exit = false;
10517 
10518 	/* Forbid vmenter if vcpu dirty ring is soft-full */
10519 	if (unlikely(vcpu->kvm->dirty_ring_size &&
10520 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10521 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10522 		trace_kvm_dirty_ring_exit(vcpu);
10523 		r = 0;
10524 		goto out;
10525 	}
10526 
10527 	if (kvm_request_pending(vcpu)) {
10528 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10529 			r = -EIO;
10530 			goto out;
10531 		}
10532 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10533 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10534 				r = 0;
10535 				goto out;
10536 			}
10537 		}
10538 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10539 			kvm_mmu_free_obsolete_roots(vcpu);
10540 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10541 			__kvm_migrate_timers(vcpu);
10542 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10543 			kvm_update_masterclock(vcpu->kvm);
10544 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10545 			kvm_gen_kvmclock_update(vcpu);
10546 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10547 			r = kvm_guest_time_update(vcpu);
10548 			if (unlikely(r))
10549 				goto out;
10550 		}
10551 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10552 			kvm_mmu_sync_roots(vcpu);
10553 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10554 			kvm_mmu_load_pgd(vcpu);
10555 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10556 			kvm_vcpu_flush_tlb_all(vcpu);
10557 
10558 			/* Flushing all ASIDs flushes the current ASID... */
10559 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10560 		}
10561 		kvm_service_local_tlb_flush_requests(vcpu);
10562 
10563 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10564 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10565 			r = 0;
10566 			goto out;
10567 		}
10568 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10569 			if (is_guest_mode(vcpu)) {
10570 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10571 			} else {
10572 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10573 				vcpu->mmio_needed = 0;
10574 				r = 0;
10575 				goto out;
10576 			}
10577 		}
10578 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10579 			/* Page is swapped out. Do synthetic halt */
10580 			vcpu->arch.apf.halted = true;
10581 			r = 1;
10582 			goto out;
10583 		}
10584 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10585 			record_steal_time(vcpu);
10586 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10587 			process_smi(vcpu);
10588 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10589 			process_nmi(vcpu);
10590 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10591 			kvm_pmu_handle_event(vcpu);
10592 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10593 			kvm_pmu_deliver_pmi(vcpu);
10594 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10595 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10596 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10597 				     vcpu->arch.ioapic_handled_vectors)) {
10598 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10599 				vcpu->run->eoi.vector =
10600 						vcpu->arch.pending_ioapic_eoi;
10601 				r = 0;
10602 				goto out;
10603 			}
10604 		}
10605 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10606 			vcpu_scan_ioapic(vcpu);
10607 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10608 			vcpu_load_eoi_exitmap(vcpu);
10609 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10610 			kvm_vcpu_reload_apic_access_page(vcpu);
10611 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10612 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10613 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10614 			vcpu->run->system_event.ndata = 0;
10615 			r = 0;
10616 			goto out;
10617 		}
10618 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10619 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10620 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10621 			vcpu->run->system_event.ndata = 0;
10622 			r = 0;
10623 			goto out;
10624 		}
10625 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10626 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10627 
10628 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10629 			vcpu->run->hyperv = hv_vcpu->exit;
10630 			r = 0;
10631 			goto out;
10632 		}
10633 
10634 		/*
10635 		 * KVM_REQ_HV_STIMER has to be processed after
10636 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10637 		 * depend on the guest clock being up-to-date
10638 		 */
10639 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10640 			kvm_hv_process_stimers(vcpu);
10641 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10642 			kvm_vcpu_update_apicv(vcpu);
10643 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10644 			kvm_check_async_pf_completion(vcpu);
10645 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10646 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10647 
10648 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10649 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10650 	}
10651 
10652 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10653 	    kvm_xen_has_interrupt(vcpu)) {
10654 		++vcpu->stat.req_event;
10655 		r = kvm_apic_accept_events(vcpu);
10656 		if (r < 0) {
10657 			r = 0;
10658 			goto out;
10659 		}
10660 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10661 			r = 1;
10662 			goto out;
10663 		}
10664 
10665 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10666 		if (r < 0) {
10667 			r = 0;
10668 			goto out;
10669 		}
10670 		if (req_int_win)
10671 			static_call(kvm_x86_enable_irq_window)(vcpu);
10672 
10673 		if (kvm_lapic_enabled(vcpu)) {
10674 			update_cr8_intercept(vcpu);
10675 			kvm_lapic_sync_to_vapic(vcpu);
10676 		}
10677 	}
10678 
10679 	r = kvm_mmu_reload(vcpu);
10680 	if (unlikely(r)) {
10681 		goto cancel_injection;
10682 	}
10683 
10684 	preempt_disable();
10685 
10686 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10687 
10688 	/*
10689 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10690 	 * IPI are then delayed after guest entry, which ensures that they
10691 	 * result in virtual interrupt delivery.
10692 	 */
10693 	local_irq_disable();
10694 
10695 	/* Store vcpu->apicv_active before vcpu->mode.  */
10696 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10697 
10698 	kvm_vcpu_srcu_read_unlock(vcpu);
10699 
10700 	/*
10701 	 * 1) We should set ->mode before checking ->requests.  Please see
10702 	 * the comment in kvm_vcpu_exiting_guest_mode().
10703 	 *
10704 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10705 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10706 	 * (see vmx_deliver_posted_interrupt).
10707 	 *
10708 	 * 3) This also orders the write to mode from any reads to the page
10709 	 * tables done while the VCPU is running.  Please see the comment
10710 	 * in kvm_flush_remote_tlbs.
10711 	 */
10712 	smp_mb__after_srcu_read_unlock();
10713 
10714 	/*
10715 	 * Process pending posted interrupts to handle the case where the
10716 	 * notification IRQ arrived in the host, or was never sent (because the
10717 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10718 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10719 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10720 	 */
10721 	if (kvm_lapic_enabled(vcpu))
10722 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10723 
10724 	if (kvm_vcpu_exit_request(vcpu)) {
10725 		vcpu->mode = OUTSIDE_GUEST_MODE;
10726 		smp_wmb();
10727 		local_irq_enable();
10728 		preempt_enable();
10729 		kvm_vcpu_srcu_read_lock(vcpu);
10730 		r = 1;
10731 		goto cancel_injection;
10732 	}
10733 
10734 	if (req_immediate_exit) {
10735 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10736 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10737 	}
10738 
10739 	fpregs_assert_state_consistent();
10740 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10741 		switch_fpu_return();
10742 
10743 	if (vcpu->arch.guest_fpu.xfd_err)
10744 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10745 
10746 	if (unlikely(vcpu->arch.switch_db_regs)) {
10747 		set_debugreg(0, 7);
10748 		set_debugreg(vcpu->arch.eff_db[0], 0);
10749 		set_debugreg(vcpu->arch.eff_db[1], 1);
10750 		set_debugreg(vcpu->arch.eff_db[2], 2);
10751 		set_debugreg(vcpu->arch.eff_db[3], 3);
10752 	} else if (unlikely(hw_breakpoint_active())) {
10753 		set_debugreg(0, 7);
10754 	}
10755 
10756 	guest_timing_enter_irqoff();
10757 
10758 	for (;;) {
10759 		/*
10760 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10761 		 * update must kick and wait for all vCPUs before toggling the
10762 		 * per-VM state, and responsing vCPUs must wait for the update
10763 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10764 		 */
10765 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10766 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10767 
10768 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10769 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10770 			break;
10771 
10772 		if (kvm_lapic_enabled(vcpu))
10773 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10774 
10775 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10776 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10777 			break;
10778 		}
10779 	}
10780 
10781 	/*
10782 	 * Do this here before restoring debug registers on the host.  And
10783 	 * since we do this before handling the vmexit, a DR access vmexit
10784 	 * can (a) read the correct value of the debug registers, (b) set
10785 	 * KVM_DEBUGREG_WONT_EXIT again.
10786 	 */
10787 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10788 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10789 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10790 		kvm_update_dr0123(vcpu);
10791 		kvm_update_dr7(vcpu);
10792 	}
10793 
10794 	/*
10795 	 * If the guest has used debug registers, at least dr7
10796 	 * will be disabled while returning to the host.
10797 	 * If we don't have active breakpoints in the host, we don't
10798 	 * care about the messed up debug address registers. But if
10799 	 * we have some of them active, restore the old state.
10800 	 */
10801 	if (hw_breakpoint_active())
10802 		hw_breakpoint_restore();
10803 
10804 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10805 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10806 
10807 	vcpu->mode = OUTSIDE_GUEST_MODE;
10808 	smp_wmb();
10809 
10810 	/*
10811 	 * Sync xfd before calling handle_exit_irqoff() which may
10812 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10813 	 * in #NM irqoff handler).
10814 	 */
10815 	if (vcpu->arch.xfd_no_write_intercept)
10816 		fpu_sync_guest_vmexit_xfd_state();
10817 
10818 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10819 
10820 	if (vcpu->arch.guest_fpu.xfd_err)
10821 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10822 
10823 	/*
10824 	 * Consume any pending interrupts, including the possible source of
10825 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10826 	 * An instruction is required after local_irq_enable() to fully unblock
10827 	 * interrupts on processors that implement an interrupt shadow, the
10828 	 * stat.exits increment will do nicely.
10829 	 */
10830 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10831 	local_irq_enable();
10832 	++vcpu->stat.exits;
10833 	local_irq_disable();
10834 	kvm_after_interrupt(vcpu);
10835 
10836 	/*
10837 	 * Wait until after servicing IRQs to account guest time so that any
10838 	 * ticks that occurred while running the guest are properly accounted
10839 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10840 	 * of accounting via context tracking, but the loss of accuracy is
10841 	 * acceptable for all known use cases.
10842 	 */
10843 	guest_timing_exit_irqoff();
10844 
10845 	local_irq_enable();
10846 	preempt_enable();
10847 
10848 	kvm_vcpu_srcu_read_lock(vcpu);
10849 
10850 	/*
10851 	 * Profile KVM exit RIPs:
10852 	 */
10853 	if (unlikely(prof_on == KVM_PROFILING)) {
10854 		unsigned long rip = kvm_rip_read(vcpu);
10855 		profile_hit(KVM_PROFILING, (void *)rip);
10856 	}
10857 
10858 	if (unlikely(vcpu->arch.tsc_always_catchup))
10859 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10860 
10861 	if (vcpu->arch.apic_attention)
10862 		kvm_lapic_sync_from_vapic(vcpu);
10863 
10864 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10865 	return r;
10866 
10867 cancel_injection:
10868 	if (req_immediate_exit)
10869 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10870 	static_call(kvm_x86_cancel_injection)(vcpu);
10871 	if (unlikely(vcpu->arch.apic_attention))
10872 		kvm_lapic_sync_from_vapic(vcpu);
10873 out:
10874 	return r;
10875 }
10876 
10877 /* Called within kvm->srcu read side.  */
10878 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10879 {
10880 	bool hv_timer;
10881 
10882 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10883 		/*
10884 		 * Switch to the software timer before halt-polling/blocking as
10885 		 * the guest's timer may be a break event for the vCPU, and the
10886 		 * hypervisor timer runs only when the CPU is in guest mode.
10887 		 * Switch before halt-polling so that KVM recognizes an expired
10888 		 * timer before blocking.
10889 		 */
10890 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10891 		if (hv_timer)
10892 			kvm_lapic_switch_to_sw_timer(vcpu);
10893 
10894 		kvm_vcpu_srcu_read_unlock(vcpu);
10895 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10896 			kvm_vcpu_halt(vcpu);
10897 		else
10898 			kvm_vcpu_block(vcpu);
10899 		kvm_vcpu_srcu_read_lock(vcpu);
10900 
10901 		if (hv_timer)
10902 			kvm_lapic_switch_to_hv_timer(vcpu);
10903 
10904 		/*
10905 		 * If the vCPU is not runnable, a signal or another host event
10906 		 * of some kind is pending; service it without changing the
10907 		 * vCPU's activity state.
10908 		 */
10909 		if (!kvm_arch_vcpu_runnable(vcpu))
10910 			return 1;
10911 	}
10912 
10913 	/*
10914 	 * Evaluate nested events before exiting the halted state.  This allows
10915 	 * the halt state to be recorded properly in the VMCS12's activity
10916 	 * state field (AMD does not have a similar field and a VM-Exit always
10917 	 * causes a spurious wakeup from HLT).
10918 	 */
10919 	if (is_guest_mode(vcpu)) {
10920 		if (kvm_check_nested_events(vcpu) < 0)
10921 			return 0;
10922 	}
10923 
10924 	if (kvm_apic_accept_events(vcpu) < 0)
10925 		return 0;
10926 	switch(vcpu->arch.mp_state) {
10927 	case KVM_MP_STATE_HALTED:
10928 	case KVM_MP_STATE_AP_RESET_HOLD:
10929 		vcpu->arch.pv.pv_unhalted = false;
10930 		vcpu->arch.mp_state =
10931 			KVM_MP_STATE_RUNNABLE;
10932 		fallthrough;
10933 	case KVM_MP_STATE_RUNNABLE:
10934 		vcpu->arch.apf.halted = false;
10935 		break;
10936 	case KVM_MP_STATE_INIT_RECEIVED:
10937 		break;
10938 	default:
10939 		WARN_ON_ONCE(1);
10940 		break;
10941 	}
10942 	return 1;
10943 }
10944 
10945 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10946 {
10947 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10948 		!vcpu->arch.apf.halted);
10949 }
10950 
10951 /* Called within kvm->srcu read side.  */
10952 static int vcpu_run(struct kvm_vcpu *vcpu)
10953 {
10954 	int r;
10955 
10956 	vcpu->arch.l1tf_flush_l1d = true;
10957 
10958 	for (;;) {
10959 		/*
10960 		 * If another guest vCPU requests a PV TLB flush in the middle
10961 		 * of instruction emulation, the rest of the emulation could
10962 		 * use a stale page translation. Assume that any code after
10963 		 * this point can start executing an instruction.
10964 		 */
10965 		vcpu->arch.at_instruction_boundary = false;
10966 		if (kvm_vcpu_running(vcpu)) {
10967 			r = vcpu_enter_guest(vcpu);
10968 		} else {
10969 			r = vcpu_block(vcpu);
10970 		}
10971 
10972 		if (r <= 0)
10973 			break;
10974 
10975 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10976 		if (kvm_xen_has_pending_events(vcpu))
10977 			kvm_xen_inject_pending_events(vcpu);
10978 
10979 		if (kvm_cpu_has_pending_timer(vcpu))
10980 			kvm_inject_pending_timer_irqs(vcpu);
10981 
10982 		if (dm_request_for_irq_injection(vcpu) &&
10983 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10984 			r = 0;
10985 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10986 			++vcpu->stat.request_irq_exits;
10987 			break;
10988 		}
10989 
10990 		if (__xfer_to_guest_mode_work_pending()) {
10991 			kvm_vcpu_srcu_read_unlock(vcpu);
10992 			r = xfer_to_guest_mode_handle_work(vcpu);
10993 			kvm_vcpu_srcu_read_lock(vcpu);
10994 			if (r)
10995 				return r;
10996 		}
10997 	}
10998 
10999 	return r;
11000 }
11001 
11002 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11003 {
11004 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11005 }
11006 
11007 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11008 {
11009 	BUG_ON(!vcpu->arch.pio.count);
11010 
11011 	return complete_emulated_io(vcpu);
11012 }
11013 
11014 /*
11015  * Implements the following, as a state machine:
11016  *
11017  * read:
11018  *   for each fragment
11019  *     for each mmio piece in the fragment
11020  *       write gpa, len
11021  *       exit
11022  *       copy data
11023  *   execute insn
11024  *
11025  * write:
11026  *   for each fragment
11027  *     for each mmio piece in the fragment
11028  *       write gpa, len
11029  *       copy data
11030  *       exit
11031  */
11032 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11033 {
11034 	struct kvm_run *run = vcpu->run;
11035 	struct kvm_mmio_fragment *frag;
11036 	unsigned len;
11037 
11038 	BUG_ON(!vcpu->mmio_needed);
11039 
11040 	/* Complete previous fragment */
11041 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11042 	len = min(8u, frag->len);
11043 	if (!vcpu->mmio_is_write)
11044 		memcpy(frag->data, run->mmio.data, len);
11045 
11046 	if (frag->len <= 8) {
11047 		/* Switch to the next fragment. */
11048 		frag++;
11049 		vcpu->mmio_cur_fragment++;
11050 	} else {
11051 		/* Go forward to the next mmio piece. */
11052 		frag->data += len;
11053 		frag->gpa += len;
11054 		frag->len -= len;
11055 	}
11056 
11057 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11058 		vcpu->mmio_needed = 0;
11059 
11060 		/* FIXME: return into emulator if single-stepping.  */
11061 		if (vcpu->mmio_is_write)
11062 			return 1;
11063 		vcpu->mmio_read_completed = 1;
11064 		return complete_emulated_io(vcpu);
11065 	}
11066 
11067 	run->exit_reason = KVM_EXIT_MMIO;
11068 	run->mmio.phys_addr = frag->gpa;
11069 	if (vcpu->mmio_is_write)
11070 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11071 	run->mmio.len = min(8u, frag->len);
11072 	run->mmio.is_write = vcpu->mmio_is_write;
11073 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11074 	return 0;
11075 }
11076 
11077 /* Swap (qemu) user FPU context for the guest FPU context. */
11078 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11079 {
11080 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11081 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11082 	trace_kvm_fpu(1);
11083 }
11084 
11085 /* When vcpu_run ends, restore user space FPU context. */
11086 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11087 {
11088 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11089 	++vcpu->stat.fpu_reload;
11090 	trace_kvm_fpu(0);
11091 }
11092 
11093 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11094 {
11095 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11096 	struct kvm_run *kvm_run = vcpu->run;
11097 	int r;
11098 
11099 	vcpu_load(vcpu);
11100 	kvm_sigset_activate(vcpu);
11101 	kvm_run->flags = 0;
11102 	kvm_load_guest_fpu(vcpu);
11103 
11104 	kvm_vcpu_srcu_read_lock(vcpu);
11105 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11106 		if (kvm_run->immediate_exit) {
11107 			r = -EINTR;
11108 			goto out;
11109 		}
11110 		/*
11111 		 * It should be impossible for the hypervisor timer to be in
11112 		 * use before KVM has ever run the vCPU.
11113 		 */
11114 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
11115 
11116 		kvm_vcpu_srcu_read_unlock(vcpu);
11117 		kvm_vcpu_block(vcpu);
11118 		kvm_vcpu_srcu_read_lock(vcpu);
11119 
11120 		if (kvm_apic_accept_events(vcpu) < 0) {
11121 			r = 0;
11122 			goto out;
11123 		}
11124 		r = -EAGAIN;
11125 		if (signal_pending(current)) {
11126 			r = -EINTR;
11127 			kvm_run->exit_reason = KVM_EXIT_INTR;
11128 			++vcpu->stat.signal_exits;
11129 		}
11130 		goto out;
11131 	}
11132 
11133 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11134 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11135 		r = -EINVAL;
11136 		goto out;
11137 	}
11138 
11139 	if (kvm_run->kvm_dirty_regs) {
11140 		r = sync_regs(vcpu);
11141 		if (r != 0)
11142 			goto out;
11143 	}
11144 
11145 	/* re-sync apic's tpr */
11146 	if (!lapic_in_kernel(vcpu)) {
11147 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11148 			r = -EINVAL;
11149 			goto out;
11150 		}
11151 	}
11152 
11153 	/*
11154 	 * If userspace set a pending exception and L2 is active, convert it to
11155 	 * a pending VM-Exit if L1 wants to intercept the exception.
11156 	 */
11157 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11158 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11159 							ex->error_code)) {
11160 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11161 					   ex->has_error_code, ex->error_code,
11162 					   ex->has_payload, ex->payload);
11163 		ex->injected = false;
11164 		ex->pending = false;
11165 	}
11166 	vcpu->arch.exception_from_userspace = false;
11167 
11168 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11169 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11170 		vcpu->arch.complete_userspace_io = NULL;
11171 		r = cui(vcpu);
11172 		if (r <= 0)
11173 			goto out;
11174 	} else {
11175 		WARN_ON_ONCE(vcpu->arch.pio.count);
11176 		WARN_ON_ONCE(vcpu->mmio_needed);
11177 	}
11178 
11179 	if (kvm_run->immediate_exit) {
11180 		r = -EINTR;
11181 		goto out;
11182 	}
11183 
11184 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11185 	if (r <= 0)
11186 		goto out;
11187 
11188 	r = vcpu_run(vcpu);
11189 
11190 out:
11191 	kvm_put_guest_fpu(vcpu);
11192 	if (kvm_run->kvm_valid_regs)
11193 		store_regs(vcpu);
11194 	post_kvm_run_save(vcpu);
11195 	kvm_vcpu_srcu_read_unlock(vcpu);
11196 
11197 	kvm_sigset_deactivate(vcpu);
11198 	vcpu_put(vcpu);
11199 	return r;
11200 }
11201 
11202 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11203 {
11204 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11205 		/*
11206 		 * We are here if userspace calls get_regs() in the middle of
11207 		 * instruction emulation. Registers state needs to be copied
11208 		 * back from emulation context to vcpu. Userspace shouldn't do
11209 		 * that usually, but some bad designed PV devices (vmware
11210 		 * backdoor interface) need this to work
11211 		 */
11212 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11213 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11214 	}
11215 	regs->rax = kvm_rax_read(vcpu);
11216 	regs->rbx = kvm_rbx_read(vcpu);
11217 	regs->rcx = kvm_rcx_read(vcpu);
11218 	regs->rdx = kvm_rdx_read(vcpu);
11219 	regs->rsi = kvm_rsi_read(vcpu);
11220 	regs->rdi = kvm_rdi_read(vcpu);
11221 	regs->rsp = kvm_rsp_read(vcpu);
11222 	regs->rbp = kvm_rbp_read(vcpu);
11223 #ifdef CONFIG_X86_64
11224 	regs->r8 = kvm_r8_read(vcpu);
11225 	regs->r9 = kvm_r9_read(vcpu);
11226 	regs->r10 = kvm_r10_read(vcpu);
11227 	regs->r11 = kvm_r11_read(vcpu);
11228 	regs->r12 = kvm_r12_read(vcpu);
11229 	regs->r13 = kvm_r13_read(vcpu);
11230 	regs->r14 = kvm_r14_read(vcpu);
11231 	regs->r15 = kvm_r15_read(vcpu);
11232 #endif
11233 
11234 	regs->rip = kvm_rip_read(vcpu);
11235 	regs->rflags = kvm_get_rflags(vcpu);
11236 }
11237 
11238 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11239 {
11240 	vcpu_load(vcpu);
11241 	__get_regs(vcpu, regs);
11242 	vcpu_put(vcpu);
11243 	return 0;
11244 }
11245 
11246 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11247 {
11248 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11249 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11250 
11251 	kvm_rax_write(vcpu, regs->rax);
11252 	kvm_rbx_write(vcpu, regs->rbx);
11253 	kvm_rcx_write(vcpu, regs->rcx);
11254 	kvm_rdx_write(vcpu, regs->rdx);
11255 	kvm_rsi_write(vcpu, regs->rsi);
11256 	kvm_rdi_write(vcpu, regs->rdi);
11257 	kvm_rsp_write(vcpu, regs->rsp);
11258 	kvm_rbp_write(vcpu, regs->rbp);
11259 #ifdef CONFIG_X86_64
11260 	kvm_r8_write(vcpu, regs->r8);
11261 	kvm_r9_write(vcpu, regs->r9);
11262 	kvm_r10_write(vcpu, regs->r10);
11263 	kvm_r11_write(vcpu, regs->r11);
11264 	kvm_r12_write(vcpu, regs->r12);
11265 	kvm_r13_write(vcpu, regs->r13);
11266 	kvm_r14_write(vcpu, regs->r14);
11267 	kvm_r15_write(vcpu, regs->r15);
11268 #endif
11269 
11270 	kvm_rip_write(vcpu, regs->rip);
11271 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11272 
11273 	vcpu->arch.exception.pending = false;
11274 	vcpu->arch.exception_vmexit.pending = false;
11275 
11276 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11277 }
11278 
11279 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11280 {
11281 	vcpu_load(vcpu);
11282 	__set_regs(vcpu, regs);
11283 	vcpu_put(vcpu);
11284 	return 0;
11285 }
11286 
11287 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11288 {
11289 	struct desc_ptr dt;
11290 
11291 	if (vcpu->arch.guest_state_protected)
11292 		goto skip_protected_regs;
11293 
11294 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11295 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11296 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11297 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11298 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11299 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11300 
11301 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11302 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11303 
11304 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11305 	sregs->idt.limit = dt.size;
11306 	sregs->idt.base = dt.address;
11307 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11308 	sregs->gdt.limit = dt.size;
11309 	sregs->gdt.base = dt.address;
11310 
11311 	sregs->cr2 = vcpu->arch.cr2;
11312 	sregs->cr3 = kvm_read_cr3(vcpu);
11313 
11314 skip_protected_regs:
11315 	sregs->cr0 = kvm_read_cr0(vcpu);
11316 	sregs->cr4 = kvm_read_cr4(vcpu);
11317 	sregs->cr8 = kvm_get_cr8(vcpu);
11318 	sregs->efer = vcpu->arch.efer;
11319 	sregs->apic_base = kvm_get_apic_base(vcpu);
11320 }
11321 
11322 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11323 {
11324 	__get_sregs_common(vcpu, sregs);
11325 
11326 	if (vcpu->arch.guest_state_protected)
11327 		return;
11328 
11329 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11330 		set_bit(vcpu->arch.interrupt.nr,
11331 			(unsigned long *)sregs->interrupt_bitmap);
11332 }
11333 
11334 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11335 {
11336 	int i;
11337 
11338 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11339 
11340 	if (vcpu->arch.guest_state_protected)
11341 		return;
11342 
11343 	if (is_pae_paging(vcpu)) {
11344 		for (i = 0 ; i < 4 ; i++)
11345 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11346 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11347 	}
11348 }
11349 
11350 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11351 				  struct kvm_sregs *sregs)
11352 {
11353 	vcpu_load(vcpu);
11354 	__get_sregs(vcpu, sregs);
11355 	vcpu_put(vcpu);
11356 	return 0;
11357 }
11358 
11359 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11360 				    struct kvm_mp_state *mp_state)
11361 {
11362 	int r;
11363 
11364 	vcpu_load(vcpu);
11365 	if (kvm_mpx_supported())
11366 		kvm_load_guest_fpu(vcpu);
11367 
11368 	r = kvm_apic_accept_events(vcpu);
11369 	if (r < 0)
11370 		goto out;
11371 	r = 0;
11372 
11373 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11374 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11375 	    vcpu->arch.pv.pv_unhalted)
11376 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11377 	else
11378 		mp_state->mp_state = vcpu->arch.mp_state;
11379 
11380 out:
11381 	if (kvm_mpx_supported())
11382 		kvm_put_guest_fpu(vcpu);
11383 	vcpu_put(vcpu);
11384 	return r;
11385 }
11386 
11387 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11388 				    struct kvm_mp_state *mp_state)
11389 {
11390 	int ret = -EINVAL;
11391 
11392 	vcpu_load(vcpu);
11393 
11394 	switch (mp_state->mp_state) {
11395 	case KVM_MP_STATE_UNINITIALIZED:
11396 	case KVM_MP_STATE_HALTED:
11397 	case KVM_MP_STATE_AP_RESET_HOLD:
11398 	case KVM_MP_STATE_INIT_RECEIVED:
11399 	case KVM_MP_STATE_SIPI_RECEIVED:
11400 		if (!lapic_in_kernel(vcpu))
11401 			goto out;
11402 		break;
11403 
11404 	case KVM_MP_STATE_RUNNABLE:
11405 		break;
11406 
11407 	default:
11408 		goto out;
11409 	}
11410 
11411 	/*
11412 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11413 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11414 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11415 	 * if an SMI is pending as well.
11416 	 */
11417 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11418 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11419 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11420 		goto out;
11421 
11422 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11423 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11424 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11425 	} else
11426 		vcpu->arch.mp_state = mp_state->mp_state;
11427 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11428 
11429 	ret = 0;
11430 out:
11431 	vcpu_put(vcpu);
11432 	return ret;
11433 }
11434 
11435 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11436 		    int reason, bool has_error_code, u32 error_code)
11437 {
11438 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11439 	int ret;
11440 
11441 	init_emulate_ctxt(vcpu);
11442 
11443 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11444 				   has_error_code, error_code);
11445 	if (ret) {
11446 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11447 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11448 		vcpu->run->internal.ndata = 0;
11449 		return 0;
11450 	}
11451 
11452 	kvm_rip_write(vcpu, ctxt->eip);
11453 	kvm_set_rflags(vcpu, ctxt->eflags);
11454 	return 1;
11455 }
11456 EXPORT_SYMBOL_GPL(kvm_task_switch);
11457 
11458 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11459 {
11460 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11461 		/*
11462 		 * When EFER.LME and CR0.PG are set, the processor is in
11463 		 * 64-bit mode (though maybe in a 32-bit code segment).
11464 		 * CR4.PAE and EFER.LMA must be set.
11465 		 */
11466 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11467 			return false;
11468 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11469 			return false;
11470 	} else {
11471 		/*
11472 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11473 		 * segment cannot be 64-bit.
11474 		 */
11475 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11476 			return false;
11477 	}
11478 
11479 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11480 }
11481 
11482 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11483 		int *mmu_reset_needed, bool update_pdptrs)
11484 {
11485 	struct msr_data apic_base_msr;
11486 	int idx;
11487 	struct desc_ptr dt;
11488 
11489 	if (!kvm_is_valid_sregs(vcpu, sregs))
11490 		return -EINVAL;
11491 
11492 	apic_base_msr.data = sregs->apic_base;
11493 	apic_base_msr.host_initiated = true;
11494 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11495 		return -EINVAL;
11496 
11497 	if (vcpu->arch.guest_state_protected)
11498 		return 0;
11499 
11500 	dt.size = sregs->idt.limit;
11501 	dt.address = sregs->idt.base;
11502 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11503 	dt.size = sregs->gdt.limit;
11504 	dt.address = sregs->gdt.base;
11505 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11506 
11507 	vcpu->arch.cr2 = sregs->cr2;
11508 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11509 	vcpu->arch.cr3 = sregs->cr3;
11510 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11511 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11512 
11513 	kvm_set_cr8(vcpu, sregs->cr8);
11514 
11515 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11516 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11517 
11518 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11519 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11520 	vcpu->arch.cr0 = sregs->cr0;
11521 
11522 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11523 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11524 
11525 	if (update_pdptrs) {
11526 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11527 		if (is_pae_paging(vcpu)) {
11528 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11529 			*mmu_reset_needed = 1;
11530 		}
11531 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11532 	}
11533 
11534 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11535 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11536 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11537 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11538 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11539 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11540 
11541 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11542 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11543 
11544 	update_cr8_intercept(vcpu);
11545 
11546 	/* Older userspace won't unhalt the vcpu on reset. */
11547 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11548 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11549 	    !is_protmode(vcpu))
11550 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11551 
11552 	return 0;
11553 }
11554 
11555 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11556 {
11557 	int pending_vec, max_bits;
11558 	int mmu_reset_needed = 0;
11559 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11560 
11561 	if (ret)
11562 		return ret;
11563 
11564 	if (mmu_reset_needed)
11565 		kvm_mmu_reset_context(vcpu);
11566 
11567 	max_bits = KVM_NR_INTERRUPTS;
11568 	pending_vec = find_first_bit(
11569 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11570 
11571 	if (pending_vec < max_bits) {
11572 		kvm_queue_interrupt(vcpu, pending_vec, false);
11573 		pr_debug("Set back pending irq %d\n", pending_vec);
11574 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11575 	}
11576 	return 0;
11577 }
11578 
11579 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11580 {
11581 	int mmu_reset_needed = 0;
11582 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11583 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11584 		!(sregs2->efer & EFER_LMA);
11585 	int i, ret;
11586 
11587 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11588 		return -EINVAL;
11589 
11590 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11591 		return -EINVAL;
11592 
11593 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11594 				 &mmu_reset_needed, !valid_pdptrs);
11595 	if (ret)
11596 		return ret;
11597 
11598 	if (valid_pdptrs) {
11599 		for (i = 0; i < 4 ; i++)
11600 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11601 
11602 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11603 		mmu_reset_needed = 1;
11604 		vcpu->arch.pdptrs_from_userspace = true;
11605 	}
11606 	if (mmu_reset_needed)
11607 		kvm_mmu_reset_context(vcpu);
11608 	return 0;
11609 }
11610 
11611 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11612 				  struct kvm_sregs *sregs)
11613 {
11614 	int ret;
11615 
11616 	vcpu_load(vcpu);
11617 	ret = __set_sregs(vcpu, sregs);
11618 	vcpu_put(vcpu);
11619 	return ret;
11620 }
11621 
11622 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11623 {
11624 	bool set = false;
11625 	struct kvm_vcpu *vcpu;
11626 	unsigned long i;
11627 
11628 	if (!enable_apicv)
11629 		return;
11630 
11631 	down_write(&kvm->arch.apicv_update_lock);
11632 
11633 	kvm_for_each_vcpu(i, vcpu, kvm) {
11634 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11635 			set = true;
11636 			break;
11637 		}
11638 	}
11639 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11640 	up_write(&kvm->arch.apicv_update_lock);
11641 }
11642 
11643 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11644 					struct kvm_guest_debug *dbg)
11645 {
11646 	unsigned long rflags;
11647 	int i, r;
11648 
11649 	if (vcpu->arch.guest_state_protected)
11650 		return -EINVAL;
11651 
11652 	vcpu_load(vcpu);
11653 
11654 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11655 		r = -EBUSY;
11656 		if (kvm_is_exception_pending(vcpu))
11657 			goto out;
11658 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11659 			kvm_queue_exception(vcpu, DB_VECTOR);
11660 		else
11661 			kvm_queue_exception(vcpu, BP_VECTOR);
11662 	}
11663 
11664 	/*
11665 	 * Read rflags as long as potentially injected trace flags are still
11666 	 * filtered out.
11667 	 */
11668 	rflags = kvm_get_rflags(vcpu);
11669 
11670 	vcpu->guest_debug = dbg->control;
11671 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11672 		vcpu->guest_debug = 0;
11673 
11674 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11675 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11676 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11677 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11678 	} else {
11679 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11680 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11681 	}
11682 	kvm_update_dr7(vcpu);
11683 
11684 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11685 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11686 
11687 	/*
11688 	 * Trigger an rflags update that will inject or remove the trace
11689 	 * flags.
11690 	 */
11691 	kvm_set_rflags(vcpu, rflags);
11692 
11693 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11694 
11695 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11696 
11697 	r = 0;
11698 
11699 out:
11700 	vcpu_put(vcpu);
11701 	return r;
11702 }
11703 
11704 /*
11705  * Translate a guest virtual address to a guest physical address.
11706  */
11707 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11708 				    struct kvm_translation *tr)
11709 {
11710 	unsigned long vaddr = tr->linear_address;
11711 	gpa_t gpa;
11712 	int idx;
11713 
11714 	vcpu_load(vcpu);
11715 
11716 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11717 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11718 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11719 	tr->physical_address = gpa;
11720 	tr->valid = gpa != INVALID_GPA;
11721 	tr->writeable = 1;
11722 	tr->usermode = 0;
11723 
11724 	vcpu_put(vcpu);
11725 	return 0;
11726 }
11727 
11728 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11729 {
11730 	struct fxregs_state *fxsave;
11731 
11732 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11733 		return 0;
11734 
11735 	vcpu_load(vcpu);
11736 
11737 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11738 	memcpy(fpu->fpr, fxsave->st_space, 128);
11739 	fpu->fcw = fxsave->cwd;
11740 	fpu->fsw = fxsave->swd;
11741 	fpu->ftwx = fxsave->twd;
11742 	fpu->last_opcode = fxsave->fop;
11743 	fpu->last_ip = fxsave->rip;
11744 	fpu->last_dp = fxsave->rdp;
11745 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11746 
11747 	vcpu_put(vcpu);
11748 	return 0;
11749 }
11750 
11751 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11752 {
11753 	struct fxregs_state *fxsave;
11754 
11755 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11756 		return 0;
11757 
11758 	vcpu_load(vcpu);
11759 
11760 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11761 
11762 	memcpy(fxsave->st_space, fpu->fpr, 128);
11763 	fxsave->cwd = fpu->fcw;
11764 	fxsave->swd = fpu->fsw;
11765 	fxsave->twd = fpu->ftwx;
11766 	fxsave->fop = fpu->last_opcode;
11767 	fxsave->rip = fpu->last_ip;
11768 	fxsave->rdp = fpu->last_dp;
11769 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11770 
11771 	vcpu_put(vcpu);
11772 	return 0;
11773 }
11774 
11775 static void store_regs(struct kvm_vcpu *vcpu)
11776 {
11777 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11778 
11779 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11780 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11781 
11782 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11783 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11784 
11785 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11786 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11787 				vcpu, &vcpu->run->s.regs.events);
11788 }
11789 
11790 static int sync_regs(struct kvm_vcpu *vcpu)
11791 {
11792 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11793 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11794 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11795 	}
11796 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11797 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11798 			return -EINVAL;
11799 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11800 	}
11801 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11802 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11803 				vcpu, &vcpu->run->s.regs.events))
11804 			return -EINVAL;
11805 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11806 	}
11807 
11808 	return 0;
11809 }
11810 
11811 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11812 {
11813 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11814 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11815 			     "guest TSC will not be reliable\n");
11816 
11817 	if (!kvm->arch.max_vcpu_ids)
11818 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11819 
11820 	if (id >= kvm->arch.max_vcpu_ids)
11821 		return -EINVAL;
11822 
11823 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11824 }
11825 
11826 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11827 {
11828 	struct page *page;
11829 	int r;
11830 
11831 	vcpu->arch.last_vmentry_cpu = -1;
11832 	vcpu->arch.regs_avail = ~0;
11833 	vcpu->arch.regs_dirty = ~0;
11834 
11835 	kvm_gpc_init(&vcpu->arch.pv_time);
11836 
11837 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11838 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11839 	else
11840 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11841 
11842 	r = kvm_mmu_create(vcpu);
11843 	if (r < 0)
11844 		return r;
11845 
11846 	if (irqchip_in_kernel(vcpu->kvm)) {
11847 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11848 		if (r < 0)
11849 			goto fail_mmu_destroy;
11850 
11851 		/*
11852 		 * Defer evaluating inhibits until the vCPU is first run, as
11853 		 * this vCPU will not get notified of any changes until this
11854 		 * vCPU is visible to other vCPUs (marked online and added to
11855 		 * the set of vCPUs).  Opportunistically mark APICv active as
11856 		 * VMX in particularly is highly unlikely to have inhibits.
11857 		 * Ignore the current per-VM APICv state so that vCPU creation
11858 		 * is guaranteed to run with a deterministic value, the request
11859 		 * will ensure the vCPU gets the correct state before VM-Entry.
11860 		 */
11861 		if (enable_apicv) {
11862 			vcpu->arch.apic->apicv_active = true;
11863 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11864 		}
11865 	} else
11866 		static_branch_inc(&kvm_has_noapic_vcpu);
11867 
11868 	r = -ENOMEM;
11869 
11870 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11871 	if (!page)
11872 		goto fail_free_lapic;
11873 	vcpu->arch.pio_data = page_address(page);
11874 
11875 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11876 				       GFP_KERNEL_ACCOUNT);
11877 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11878 					    GFP_KERNEL_ACCOUNT);
11879 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11880 		goto fail_free_mce_banks;
11881 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11882 
11883 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11884 				GFP_KERNEL_ACCOUNT))
11885 		goto fail_free_mce_banks;
11886 
11887 	if (!alloc_emulate_ctxt(vcpu))
11888 		goto free_wbinvd_dirty_mask;
11889 
11890 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11891 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11892 		goto free_emulate_ctxt;
11893 	}
11894 
11895 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11896 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11897 
11898 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11899 
11900 	kvm_async_pf_hash_reset(vcpu);
11901 	kvm_pmu_init(vcpu);
11902 
11903 	vcpu->arch.pending_external_vector = -1;
11904 	vcpu->arch.preempted_in_kernel = false;
11905 
11906 #if IS_ENABLED(CONFIG_HYPERV)
11907 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11908 #endif
11909 
11910 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11911 	if (r)
11912 		goto free_guest_fpu;
11913 
11914 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11915 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11916 	kvm_xen_init_vcpu(vcpu);
11917 	kvm_vcpu_mtrr_init(vcpu);
11918 	vcpu_load(vcpu);
11919 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11920 	kvm_vcpu_reset(vcpu, false);
11921 	kvm_init_mmu(vcpu);
11922 	vcpu_put(vcpu);
11923 	return 0;
11924 
11925 free_guest_fpu:
11926 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11927 free_emulate_ctxt:
11928 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11929 free_wbinvd_dirty_mask:
11930 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11931 fail_free_mce_banks:
11932 	kfree(vcpu->arch.mce_banks);
11933 	kfree(vcpu->arch.mci_ctl2_banks);
11934 	free_page((unsigned long)vcpu->arch.pio_data);
11935 fail_free_lapic:
11936 	kvm_free_lapic(vcpu);
11937 fail_mmu_destroy:
11938 	kvm_mmu_destroy(vcpu);
11939 	return r;
11940 }
11941 
11942 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11943 {
11944 	struct kvm *kvm = vcpu->kvm;
11945 
11946 	if (mutex_lock_killable(&vcpu->mutex))
11947 		return;
11948 	vcpu_load(vcpu);
11949 	kvm_synchronize_tsc(vcpu, 0);
11950 	vcpu_put(vcpu);
11951 
11952 	/* poll control enabled by default */
11953 	vcpu->arch.msr_kvm_poll_control = 1;
11954 
11955 	mutex_unlock(&vcpu->mutex);
11956 
11957 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11958 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11959 						KVMCLOCK_SYNC_PERIOD);
11960 }
11961 
11962 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11963 {
11964 	int idx;
11965 
11966 	kvmclock_reset(vcpu);
11967 
11968 	static_call(kvm_x86_vcpu_free)(vcpu);
11969 
11970 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11971 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11972 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11973 
11974 	kvm_xen_destroy_vcpu(vcpu);
11975 	kvm_hv_vcpu_uninit(vcpu);
11976 	kvm_pmu_destroy(vcpu);
11977 	kfree(vcpu->arch.mce_banks);
11978 	kfree(vcpu->arch.mci_ctl2_banks);
11979 	kvm_free_lapic(vcpu);
11980 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11981 	kvm_mmu_destroy(vcpu);
11982 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11983 	free_page((unsigned long)vcpu->arch.pio_data);
11984 	kvfree(vcpu->arch.cpuid_entries);
11985 	if (!lapic_in_kernel(vcpu))
11986 		static_branch_dec(&kvm_has_noapic_vcpu);
11987 }
11988 
11989 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11990 {
11991 	struct kvm_cpuid_entry2 *cpuid_0x1;
11992 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11993 	unsigned long new_cr0;
11994 
11995 	/*
11996 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11997 	 * to handle side effects.  RESET emulation hits those flows and relies
11998 	 * on emulated/virtualized registers, including those that are loaded
11999 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12000 	 * to detect improper or missing initialization.
12001 	 */
12002 	WARN_ON_ONCE(!init_event &&
12003 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12004 
12005 	kvm_lapic_reset(vcpu, init_event);
12006 
12007 	vcpu->arch.hflags = 0;
12008 
12009 	vcpu->arch.smi_pending = 0;
12010 	vcpu->arch.smi_count = 0;
12011 	atomic_set(&vcpu->arch.nmi_queued, 0);
12012 	vcpu->arch.nmi_pending = 0;
12013 	vcpu->arch.nmi_injected = false;
12014 	kvm_clear_interrupt_queue(vcpu);
12015 	kvm_clear_exception_queue(vcpu);
12016 
12017 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12018 	kvm_update_dr0123(vcpu);
12019 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12020 	vcpu->arch.dr7 = DR7_FIXED_1;
12021 	kvm_update_dr7(vcpu);
12022 
12023 	vcpu->arch.cr2 = 0;
12024 
12025 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12026 	vcpu->arch.apf.msr_en_val = 0;
12027 	vcpu->arch.apf.msr_int_val = 0;
12028 	vcpu->arch.st.msr_val = 0;
12029 
12030 	kvmclock_reset(vcpu);
12031 
12032 	kvm_clear_async_pf_completion_queue(vcpu);
12033 	kvm_async_pf_hash_reset(vcpu);
12034 	vcpu->arch.apf.halted = false;
12035 
12036 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12037 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12038 
12039 		/*
12040 		 * All paths that lead to INIT are required to load the guest's
12041 		 * FPU state (because most paths are buried in KVM_RUN).
12042 		 */
12043 		if (init_event)
12044 			kvm_put_guest_fpu(vcpu);
12045 
12046 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12047 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12048 
12049 		if (init_event)
12050 			kvm_load_guest_fpu(vcpu);
12051 	}
12052 
12053 	if (!init_event) {
12054 		kvm_pmu_reset(vcpu);
12055 		vcpu->arch.smbase = 0x30000;
12056 
12057 		vcpu->arch.msr_misc_features_enables = 0;
12058 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12059 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12060 
12061 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12062 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12063 	}
12064 
12065 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12066 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12067 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12068 
12069 	/*
12070 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12071 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12072 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12073 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12074 	 * on RESET.  But, go through the motions in case that's ever remedied.
12075 	 */
12076 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12077 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12078 
12079 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12080 
12081 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12082 	kvm_rip_write(vcpu, 0xfff0);
12083 
12084 	vcpu->arch.cr3 = 0;
12085 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12086 
12087 	/*
12088 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12089 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12090 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12091 	 */
12092 	new_cr0 = X86_CR0_ET;
12093 	if (init_event)
12094 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12095 	else
12096 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12097 
12098 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12099 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12100 	static_call(kvm_x86_set_efer)(vcpu, 0);
12101 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12102 
12103 	/*
12104 	 * On the standard CR0/CR4/EFER modification paths, there are several
12105 	 * complex conditions determining whether the MMU has to be reset and/or
12106 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12107 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12108 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12109 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12110 	 */
12111 	if (old_cr0 & X86_CR0_PG) {
12112 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12113 		kvm_mmu_reset_context(vcpu);
12114 	}
12115 
12116 	/*
12117 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12118 	 * APM states the TLBs are untouched by INIT, but it also states that
12119 	 * the TLBs are flushed on "External initialization of the processor."
12120 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12121 	 * benefit in relying on the guest to flush the TLB immediately after
12122 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12123 	 * performance perspective.
12124 	 */
12125 	if (init_event)
12126 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12127 }
12128 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12129 
12130 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12131 {
12132 	struct kvm_segment cs;
12133 
12134 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12135 	cs.selector = vector << 8;
12136 	cs.base = vector << 12;
12137 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12138 	kvm_rip_write(vcpu, 0);
12139 }
12140 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12141 
12142 int kvm_arch_hardware_enable(void)
12143 {
12144 	struct kvm *kvm;
12145 	struct kvm_vcpu *vcpu;
12146 	unsigned long i;
12147 	int ret;
12148 	u64 local_tsc;
12149 	u64 max_tsc = 0;
12150 	bool stable, backwards_tsc = false;
12151 
12152 	kvm_user_return_msr_cpu_online();
12153 	ret = static_call(kvm_x86_hardware_enable)();
12154 	if (ret != 0)
12155 		return ret;
12156 
12157 	local_tsc = rdtsc();
12158 	stable = !kvm_check_tsc_unstable();
12159 	list_for_each_entry(kvm, &vm_list, vm_list) {
12160 		kvm_for_each_vcpu(i, vcpu, kvm) {
12161 			if (!stable && vcpu->cpu == smp_processor_id())
12162 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12163 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12164 				backwards_tsc = true;
12165 				if (vcpu->arch.last_host_tsc > max_tsc)
12166 					max_tsc = vcpu->arch.last_host_tsc;
12167 			}
12168 		}
12169 	}
12170 
12171 	/*
12172 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12173 	 * platforms that reset TSC during suspend or hibernate actions, but
12174 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12175 	 * detect that condition here, which happens early in CPU bringup,
12176 	 * before any KVM threads can be running.  Unfortunately, we can't
12177 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12178 	 * enough into CPU bringup that we know how much real time has actually
12179 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12180 	 * variables that haven't been updated yet.
12181 	 *
12182 	 * So we simply find the maximum observed TSC above, then record the
12183 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12184 	 * the adjustment will be applied.  Note that we accumulate
12185 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12186 	 * gets a chance to run again.  In the event that no KVM threads get a
12187 	 * chance to run, we will miss the entire elapsed period, as we'll have
12188 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12189 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12190 	 * uniform across all VCPUs (not to mention the scenario is extremely
12191 	 * unlikely). It is possible that a second hibernate recovery happens
12192 	 * much faster than a first, causing the observed TSC here to be
12193 	 * smaller; this would require additional padding adjustment, which is
12194 	 * why we set last_host_tsc to the local tsc observed here.
12195 	 *
12196 	 * N.B. - this code below runs only on platforms with reliable TSC,
12197 	 * as that is the only way backwards_tsc is set above.  Also note
12198 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12199 	 * have the same delta_cyc adjustment applied if backwards_tsc
12200 	 * is detected.  Note further, this adjustment is only done once,
12201 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12202 	 * called multiple times (one for each physical CPU bringup).
12203 	 *
12204 	 * Platforms with unreliable TSCs don't have to deal with this, they
12205 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12206 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12207 	 * guarantee that they stay in perfect synchronization.
12208 	 */
12209 	if (backwards_tsc) {
12210 		u64 delta_cyc = max_tsc - local_tsc;
12211 		list_for_each_entry(kvm, &vm_list, vm_list) {
12212 			kvm->arch.backwards_tsc_observed = true;
12213 			kvm_for_each_vcpu(i, vcpu, kvm) {
12214 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12215 				vcpu->arch.last_host_tsc = local_tsc;
12216 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12217 			}
12218 
12219 			/*
12220 			 * We have to disable TSC offset matching.. if you were
12221 			 * booting a VM while issuing an S4 host suspend....
12222 			 * you may have some problem.  Solving this issue is
12223 			 * left as an exercise to the reader.
12224 			 */
12225 			kvm->arch.last_tsc_nsec = 0;
12226 			kvm->arch.last_tsc_write = 0;
12227 		}
12228 
12229 	}
12230 	return 0;
12231 }
12232 
12233 void kvm_arch_hardware_disable(void)
12234 {
12235 	static_call(kvm_x86_hardware_disable)();
12236 	drop_user_return_notifiers();
12237 }
12238 
12239 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
12240 {
12241 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
12242 
12243 #define __KVM_X86_OP(func) \
12244 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
12245 #define KVM_X86_OP(func) \
12246 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
12247 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
12248 #define KVM_X86_OP_OPTIONAL_RET0(func) \
12249 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
12250 					   (void *)__static_call_return0);
12251 #include <asm/kvm-x86-ops.h>
12252 #undef __KVM_X86_OP
12253 
12254 	kvm_pmu_ops_update(ops->pmu_ops);
12255 }
12256 
12257 int kvm_arch_hardware_setup(void *opaque)
12258 {
12259 	struct kvm_x86_init_ops *ops = opaque;
12260 	int r;
12261 
12262 	rdmsrl_safe(MSR_EFER, &host_efer);
12263 
12264 	if (boot_cpu_has(X86_FEATURE_XSAVES))
12265 		rdmsrl(MSR_IA32_XSS, host_xss);
12266 
12267 	kvm_init_pmu_capability();
12268 
12269 	r = ops->hardware_setup();
12270 	if (r != 0)
12271 		return r;
12272 
12273 	kvm_ops_update(ops);
12274 
12275 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
12276 
12277 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
12278 		kvm_caps.supported_xss = 0;
12279 
12280 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
12281 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
12282 #undef __kvm_cpu_cap_has
12283 
12284 	if (kvm_caps.has_tsc_control) {
12285 		/*
12286 		 * Make sure the user can only configure tsc_khz values that
12287 		 * fit into a signed integer.
12288 		 * A min value is not calculated because it will always
12289 		 * be 1 on all machines.
12290 		 */
12291 		u64 max = min(0x7fffffffULL,
12292 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
12293 		kvm_caps.max_guest_tsc_khz = max;
12294 	}
12295 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
12296 	kvm_init_msr_list();
12297 	return 0;
12298 }
12299 
12300 void kvm_arch_hardware_unsetup(void)
12301 {
12302 	kvm_unregister_perf_callbacks();
12303 
12304 	static_call(kvm_x86_hardware_unsetup)();
12305 }
12306 
12307 int kvm_arch_check_processor_compat(void *opaque)
12308 {
12309 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
12310 	struct kvm_x86_init_ops *ops = opaque;
12311 
12312 	WARN_ON(!irqs_disabled());
12313 
12314 	if (__cr4_reserved_bits(cpu_has, c) !=
12315 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
12316 		return -EIO;
12317 
12318 	return ops->check_processor_compatibility();
12319 }
12320 
12321 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12322 {
12323 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12324 }
12325 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
12326 
12327 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12328 {
12329 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12330 }
12331 
12332 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12333 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12334 
12335 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12336 {
12337 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12338 
12339 	vcpu->arch.l1tf_flush_l1d = true;
12340 	if (pmu->version && unlikely(pmu->event_count)) {
12341 		pmu->need_cleanup = true;
12342 		kvm_make_request(KVM_REQ_PMU, vcpu);
12343 	}
12344 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12345 }
12346 
12347 void kvm_arch_free_vm(struct kvm *kvm)
12348 {
12349 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12350 	__kvm_arch_free_vm(kvm);
12351 }
12352 
12353 
12354 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12355 {
12356 	int ret;
12357 	unsigned long flags;
12358 
12359 	if (type)
12360 		return -EINVAL;
12361 
12362 	ret = kvm_page_track_init(kvm);
12363 	if (ret)
12364 		goto out;
12365 
12366 	ret = kvm_mmu_init_vm(kvm);
12367 	if (ret)
12368 		goto out_page_track;
12369 
12370 	ret = static_call(kvm_x86_vm_init)(kvm);
12371 	if (ret)
12372 		goto out_uninit_mmu;
12373 
12374 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12375 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12376 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12377 
12378 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12379 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12380 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12381 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12382 		&kvm->arch.irq_sources_bitmap);
12383 
12384 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12385 	mutex_init(&kvm->arch.apic_map_lock);
12386 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12387 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12388 
12389 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12390 	pvclock_update_vm_gtod_copy(kvm);
12391 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12392 
12393 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12394 	kvm->arch.guest_can_read_msr_platform_info = true;
12395 	kvm->arch.enable_pmu = enable_pmu;
12396 
12397 #if IS_ENABLED(CONFIG_HYPERV)
12398 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12399 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12400 #endif
12401 
12402 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12403 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12404 
12405 	kvm_apicv_init(kvm);
12406 	kvm_hv_init_vm(kvm);
12407 	kvm_xen_init_vm(kvm);
12408 
12409 	return 0;
12410 
12411 out_uninit_mmu:
12412 	kvm_mmu_uninit_vm(kvm);
12413 out_page_track:
12414 	kvm_page_track_cleanup(kvm);
12415 out:
12416 	return ret;
12417 }
12418 
12419 int kvm_arch_post_init_vm(struct kvm *kvm)
12420 {
12421 	return kvm_mmu_post_init_vm(kvm);
12422 }
12423 
12424 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12425 {
12426 	vcpu_load(vcpu);
12427 	kvm_mmu_unload(vcpu);
12428 	vcpu_put(vcpu);
12429 }
12430 
12431 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12432 {
12433 	unsigned long i;
12434 	struct kvm_vcpu *vcpu;
12435 
12436 	kvm_for_each_vcpu(i, vcpu, kvm) {
12437 		kvm_clear_async_pf_completion_queue(vcpu);
12438 		kvm_unload_vcpu_mmu(vcpu);
12439 	}
12440 }
12441 
12442 void kvm_arch_sync_events(struct kvm *kvm)
12443 {
12444 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12445 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12446 	kvm_free_pit(kvm);
12447 }
12448 
12449 /**
12450  * __x86_set_memory_region: Setup KVM internal memory slot
12451  *
12452  * @kvm: the kvm pointer to the VM.
12453  * @id: the slot ID to setup.
12454  * @gpa: the GPA to install the slot (unused when @size == 0).
12455  * @size: the size of the slot. Set to zero to uninstall a slot.
12456  *
12457  * This function helps to setup a KVM internal memory slot.  Specify
12458  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12459  * slot.  The return code can be one of the following:
12460  *
12461  *   HVA:           on success (uninstall will return a bogus HVA)
12462  *   -errno:        on error
12463  *
12464  * The caller should always use IS_ERR() to check the return value
12465  * before use.  Note, the KVM internal memory slots are guaranteed to
12466  * remain valid and unchanged until the VM is destroyed, i.e., the
12467  * GPA->HVA translation will not change.  However, the HVA is a user
12468  * address, i.e. its accessibility is not guaranteed, and must be
12469  * accessed via __copy_{to,from}_user().
12470  */
12471 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12472 				      u32 size)
12473 {
12474 	int i, r;
12475 	unsigned long hva, old_npages;
12476 	struct kvm_memslots *slots = kvm_memslots(kvm);
12477 	struct kvm_memory_slot *slot;
12478 
12479 	/* Called with kvm->slots_lock held.  */
12480 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12481 		return ERR_PTR_USR(-EINVAL);
12482 
12483 	slot = id_to_memslot(slots, id);
12484 	if (size) {
12485 		if (slot && slot->npages)
12486 			return ERR_PTR_USR(-EEXIST);
12487 
12488 		/*
12489 		 * MAP_SHARED to prevent internal slot pages from being moved
12490 		 * by fork()/COW.
12491 		 */
12492 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12493 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12494 		if (IS_ERR((void *)hva))
12495 			return (void __user *)hva;
12496 	} else {
12497 		if (!slot || !slot->npages)
12498 			return NULL;
12499 
12500 		old_npages = slot->npages;
12501 		hva = slot->userspace_addr;
12502 	}
12503 
12504 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12505 		struct kvm_userspace_memory_region m;
12506 
12507 		m.slot = id | (i << 16);
12508 		m.flags = 0;
12509 		m.guest_phys_addr = gpa;
12510 		m.userspace_addr = hva;
12511 		m.memory_size = size;
12512 		r = __kvm_set_memory_region(kvm, &m);
12513 		if (r < 0)
12514 			return ERR_PTR_USR(r);
12515 	}
12516 
12517 	if (!size)
12518 		vm_munmap(hva, old_npages * PAGE_SIZE);
12519 
12520 	return (void __user *)hva;
12521 }
12522 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12523 
12524 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12525 {
12526 	kvm_mmu_pre_destroy_vm(kvm);
12527 }
12528 
12529 void kvm_arch_destroy_vm(struct kvm *kvm)
12530 {
12531 	if (current->mm == kvm->mm) {
12532 		/*
12533 		 * Free memory regions allocated on behalf of userspace,
12534 		 * unless the memory map has changed due to process exit
12535 		 * or fd copying.
12536 		 */
12537 		mutex_lock(&kvm->slots_lock);
12538 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12539 					0, 0);
12540 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12541 					0, 0);
12542 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12543 		mutex_unlock(&kvm->slots_lock);
12544 	}
12545 	kvm_unload_vcpu_mmus(kvm);
12546 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12547 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12548 	kvm_pic_destroy(kvm);
12549 	kvm_ioapic_destroy(kvm);
12550 	kvm_destroy_vcpus(kvm);
12551 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12552 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12553 	kvm_mmu_uninit_vm(kvm);
12554 	kvm_page_track_cleanup(kvm);
12555 	kvm_xen_destroy_vm(kvm);
12556 	kvm_hv_destroy_vm(kvm);
12557 }
12558 
12559 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12560 {
12561 	int i;
12562 
12563 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12564 		kvfree(slot->arch.rmap[i]);
12565 		slot->arch.rmap[i] = NULL;
12566 	}
12567 }
12568 
12569 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12570 {
12571 	int i;
12572 
12573 	memslot_rmap_free(slot);
12574 
12575 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12576 		kvfree(slot->arch.lpage_info[i - 1]);
12577 		slot->arch.lpage_info[i - 1] = NULL;
12578 	}
12579 
12580 	kvm_page_track_free_memslot(slot);
12581 }
12582 
12583 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12584 {
12585 	const int sz = sizeof(*slot->arch.rmap[0]);
12586 	int i;
12587 
12588 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12589 		int level = i + 1;
12590 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12591 
12592 		if (slot->arch.rmap[i])
12593 			continue;
12594 
12595 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12596 		if (!slot->arch.rmap[i]) {
12597 			memslot_rmap_free(slot);
12598 			return -ENOMEM;
12599 		}
12600 	}
12601 
12602 	return 0;
12603 }
12604 
12605 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12606 				      struct kvm_memory_slot *slot)
12607 {
12608 	unsigned long npages = slot->npages;
12609 	int i, r;
12610 
12611 	/*
12612 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12613 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12614 	 * the new memslot is successful.
12615 	 */
12616 	memset(&slot->arch, 0, sizeof(slot->arch));
12617 
12618 	if (kvm_memslots_have_rmaps(kvm)) {
12619 		r = memslot_rmap_alloc(slot, npages);
12620 		if (r)
12621 			return r;
12622 	}
12623 
12624 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12625 		struct kvm_lpage_info *linfo;
12626 		unsigned long ugfn;
12627 		int lpages;
12628 		int level = i + 1;
12629 
12630 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12631 
12632 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12633 		if (!linfo)
12634 			goto out_free;
12635 
12636 		slot->arch.lpage_info[i - 1] = linfo;
12637 
12638 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12639 			linfo[0].disallow_lpage = 1;
12640 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12641 			linfo[lpages - 1].disallow_lpage = 1;
12642 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12643 		/*
12644 		 * If the gfn and userspace address are not aligned wrt each
12645 		 * other, disable large page support for this slot.
12646 		 */
12647 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12648 			unsigned long j;
12649 
12650 			for (j = 0; j < lpages; ++j)
12651 				linfo[j].disallow_lpage = 1;
12652 		}
12653 	}
12654 
12655 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12656 		goto out_free;
12657 
12658 	return 0;
12659 
12660 out_free:
12661 	memslot_rmap_free(slot);
12662 
12663 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12664 		kvfree(slot->arch.lpage_info[i - 1]);
12665 		slot->arch.lpage_info[i - 1] = NULL;
12666 	}
12667 	return -ENOMEM;
12668 }
12669 
12670 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12671 {
12672 	struct kvm_vcpu *vcpu;
12673 	unsigned long i;
12674 
12675 	/*
12676 	 * memslots->generation has been incremented.
12677 	 * mmio generation may have reached its maximum value.
12678 	 */
12679 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12680 
12681 	/* Force re-initialization of steal_time cache */
12682 	kvm_for_each_vcpu(i, vcpu, kvm)
12683 		kvm_vcpu_kick(vcpu);
12684 }
12685 
12686 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12687 				   const struct kvm_memory_slot *old,
12688 				   struct kvm_memory_slot *new,
12689 				   enum kvm_mr_change change)
12690 {
12691 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12692 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12693 			return -EINVAL;
12694 
12695 		return kvm_alloc_memslot_metadata(kvm, new);
12696 	}
12697 
12698 	if (change == KVM_MR_FLAGS_ONLY)
12699 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12700 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12701 		return -EIO;
12702 
12703 	return 0;
12704 }
12705 
12706 
12707 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12708 {
12709 	struct kvm_arch *ka = &kvm->arch;
12710 
12711 	if (!kvm_x86_ops.cpu_dirty_log_size)
12712 		return;
12713 
12714 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12715 	    (!enable && --ka->cpu_dirty_logging_count == 0))
12716 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12717 
12718 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12719 }
12720 
12721 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12722 				     struct kvm_memory_slot *old,
12723 				     const struct kvm_memory_slot *new,
12724 				     enum kvm_mr_change change)
12725 {
12726 	u32 old_flags = old ? old->flags : 0;
12727 	u32 new_flags = new ? new->flags : 0;
12728 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12729 
12730 	/*
12731 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12732 	 * applies to all operations.
12733 	 */
12734 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12735 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12736 
12737 	/*
12738 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12739 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12740 	 *
12741 	 * For a memslot with dirty logging disabled:
12742 	 * CREATE:      No dirty mappings will already exist.
12743 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12744 	 *		kvm_arch_flush_shadow_memslot()
12745 	 *
12746 	 * For a memslot with dirty logging enabled:
12747 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12748 	 *		and no dirty bits to clear.
12749 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12750 	 *		kvm_arch_flush_shadow_memslot().
12751 	 */
12752 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12753 		return;
12754 
12755 	/*
12756 	 * READONLY and non-flags changes were filtered out above, and the only
12757 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12758 	 * logging isn't being toggled on or off.
12759 	 */
12760 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12761 		return;
12762 
12763 	if (!log_dirty_pages) {
12764 		/*
12765 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12766 		 * large sptes have to be split.  If live migration succeeds,
12767 		 * the guest in the source machine will be destroyed and large
12768 		 * sptes will be created in the destination.  However, if the
12769 		 * guest continues to run in the source machine (for example if
12770 		 * live migration fails), small sptes will remain around and
12771 		 * cause bad performance.
12772 		 *
12773 		 * Scan sptes if dirty logging has been stopped, dropping those
12774 		 * which can be collapsed into a single large-page spte.  Later
12775 		 * page faults will create the large-page sptes.
12776 		 */
12777 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12778 	} else {
12779 		/*
12780 		 * Initially-all-set does not require write protecting any page,
12781 		 * because they're all assumed to be dirty.
12782 		 */
12783 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12784 			return;
12785 
12786 		if (READ_ONCE(eager_page_split))
12787 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12788 
12789 		if (kvm_x86_ops.cpu_dirty_log_size) {
12790 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12791 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12792 		} else {
12793 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12794 		}
12795 
12796 		/*
12797 		 * Unconditionally flush the TLBs after enabling dirty logging.
12798 		 * A flush is almost always going to be necessary (see below),
12799 		 * and unconditionally flushing allows the helpers to omit
12800 		 * the subtly complex checks when removing write access.
12801 		 *
12802 		 * Do the flush outside of mmu_lock to reduce the amount of
12803 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12804 		 * safe as KVM only needs to guarantee the slot is fully
12805 		 * write-protected before returning to userspace, i.e. before
12806 		 * userspace can consume the dirty status.
12807 		 *
12808 		 * Flushing outside of mmu_lock requires KVM to be careful when
12809 		 * making decisions based on writable status of an SPTE, e.g. a
12810 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12811 		 *
12812 		 * Specifically, KVM also write-protects guest page tables to
12813 		 * monitor changes when using shadow paging, and must guarantee
12814 		 * no CPUs can write to those page before mmu_lock is dropped.
12815 		 * Because CPUs may have stale TLB entries at this point, a
12816 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12817 		 *
12818 		 * KVM also allows making SPTES writable outside of mmu_lock,
12819 		 * e.g. to allow dirty logging without taking mmu_lock.
12820 		 *
12821 		 * To handle these scenarios, KVM uses a separate software-only
12822 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12823 		 * a guest page table being write-protected (KVM clears the
12824 		 * MMU-writable flag when write-protecting for shadow paging).
12825 		 *
12826 		 * The use of MMU-writable is also the primary motivation for
12827 		 * the unconditional flush.  Because KVM must guarantee that a
12828 		 * CPU doesn't contain stale, writable TLB entries for a
12829 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12830 		 * MMU-writable SPTE regardless of whether the actual hardware
12831 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12832 		 * to flush, while unconditionally flushing allows the "remove
12833 		 * write access" helpers to ignore MMU-writable entirely.
12834 		 *
12835 		 * See is_writable_pte() for more details (the case involving
12836 		 * access-tracked SPTEs is particularly relevant).
12837 		 */
12838 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12839 	}
12840 }
12841 
12842 void kvm_arch_commit_memory_region(struct kvm *kvm,
12843 				struct kvm_memory_slot *old,
12844 				const struct kvm_memory_slot *new,
12845 				enum kvm_mr_change change)
12846 {
12847 	if (!kvm->arch.n_requested_mmu_pages &&
12848 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12849 		unsigned long nr_mmu_pages;
12850 
12851 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12852 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12853 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12854 	}
12855 
12856 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12857 
12858 	/* Free the arrays associated with the old memslot. */
12859 	if (change == KVM_MR_MOVE)
12860 		kvm_arch_free_memslot(kvm, old);
12861 }
12862 
12863 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12864 {
12865 	kvm_mmu_zap_all(kvm);
12866 }
12867 
12868 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12869 				   struct kvm_memory_slot *slot)
12870 {
12871 	kvm_page_track_flush_slot(kvm, slot);
12872 }
12873 
12874 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12875 {
12876 	return (is_guest_mode(vcpu) &&
12877 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12878 }
12879 
12880 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12881 {
12882 	if (!list_empty_careful(&vcpu->async_pf.done))
12883 		return true;
12884 
12885 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12886 	    kvm_apic_init_sipi_allowed(vcpu))
12887 		return true;
12888 
12889 	if (vcpu->arch.pv.pv_unhalted)
12890 		return true;
12891 
12892 	if (kvm_is_exception_pending(vcpu))
12893 		return true;
12894 
12895 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12896 	    (vcpu->arch.nmi_pending &&
12897 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12898 		return true;
12899 
12900 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12901 	    (vcpu->arch.smi_pending &&
12902 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12903 		return true;
12904 
12905 	if (kvm_arch_interrupt_allowed(vcpu) &&
12906 	    (kvm_cpu_has_interrupt(vcpu) ||
12907 	    kvm_guest_apic_has_interrupt(vcpu)))
12908 		return true;
12909 
12910 	if (kvm_hv_has_stimer_pending(vcpu))
12911 		return true;
12912 
12913 	if (is_guest_mode(vcpu) &&
12914 	    kvm_x86_ops.nested_ops->has_events &&
12915 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12916 		return true;
12917 
12918 	if (kvm_xen_has_pending_events(vcpu))
12919 		return true;
12920 
12921 	return false;
12922 }
12923 
12924 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12925 {
12926 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12927 }
12928 
12929 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12930 {
12931 	if (kvm_vcpu_apicv_active(vcpu) &&
12932 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12933 		return true;
12934 
12935 	return false;
12936 }
12937 
12938 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12939 {
12940 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12941 		return true;
12942 
12943 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12944 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12945 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12946 		return true;
12947 
12948 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12949 }
12950 
12951 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12952 {
12953 	if (vcpu->arch.guest_state_protected)
12954 		return true;
12955 
12956 	return vcpu->arch.preempted_in_kernel;
12957 }
12958 
12959 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12960 {
12961 	return kvm_rip_read(vcpu);
12962 }
12963 
12964 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12965 {
12966 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12967 }
12968 
12969 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12970 {
12971 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12972 }
12973 
12974 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12975 {
12976 	/* Can't read the RIP when guest state is protected, just return 0 */
12977 	if (vcpu->arch.guest_state_protected)
12978 		return 0;
12979 
12980 	if (is_64_bit_mode(vcpu))
12981 		return kvm_rip_read(vcpu);
12982 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12983 		     kvm_rip_read(vcpu));
12984 }
12985 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12986 
12987 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12988 {
12989 	return kvm_get_linear_rip(vcpu) == linear_rip;
12990 }
12991 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12992 
12993 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12994 {
12995 	unsigned long rflags;
12996 
12997 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12998 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12999 		rflags &= ~X86_EFLAGS_TF;
13000 	return rflags;
13001 }
13002 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13003 
13004 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13005 {
13006 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13007 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13008 		rflags |= X86_EFLAGS_TF;
13009 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
13010 }
13011 
13012 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13013 {
13014 	__kvm_set_rflags(vcpu, rflags);
13015 	kvm_make_request(KVM_REQ_EVENT, vcpu);
13016 }
13017 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13018 
13019 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13020 {
13021 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13022 
13023 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13024 }
13025 
13026 static inline u32 kvm_async_pf_next_probe(u32 key)
13027 {
13028 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13029 }
13030 
13031 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13032 {
13033 	u32 key = kvm_async_pf_hash_fn(gfn);
13034 
13035 	while (vcpu->arch.apf.gfns[key] != ~0)
13036 		key = kvm_async_pf_next_probe(key);
13037 
13038 	vcpu->arch.apf.gfns[key] = gfn;
13039 }
13040 
13041 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13042 {
13043 	int i;
13044 	u32 key = kvm_async_pf_hash_fn(gfn);
13045 
13046 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13047 		     (vcpu->arch.apf.gfns[key] != gfn &&
13048 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13049 		key = kvm_async_pf_next_probe(key);
13050 
13051 	return key;
13052 }
13053 
13054 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13055 {
13056 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13057 }
13058 
13059 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13060 {
13061 	u32 i, j, k;
13062 
13063 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13064 
13065 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13066 		return;
13067 
13068 	while (true) {
13069 		vcpu->arch.apf.gfns[i] = ~0;
13070 		do {
13071 			j = kvm_async_pf_next_probe(j);
13072 			if (vcpu->arch.apf.gfns[j] == ~0)
13073 				return;
13074 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13075 			/*
13076 			 * k lies cyclically in ]i,j]
13077 			 * |    i.k.j |
13078 			 * |....j i.k.| or  |.k..j i...|
13079 			 */
13080 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13081 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13082 		i = j;
13083 	}
13084 }
13085 
13086 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13087 {
13088 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13089 
13090 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13091 				      sizeof(reason));
13092 }
13093 
13094 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13095 {
13096 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13097 
13098 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13099 					     &token, offset, sizeof(token));
13100 }
13101 
13102 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13103 {
13104 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13105 	u32 val;
13106 
13107 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13108 					 &val, offset, sizeof(val)))
13109 		return false;
13110 
13111 	return !val;
13112 }
13113 
13114 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13115 {
13116 
13117 	if (!kvm_pv_async_pf_enabled(vcpu))
13118 		return false;
13119 
13120 	if (vcpu->arch.apf.send_user_only &&
13121 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13122 		return false;
13123 
13124 	if (is_guest_mode(vcpu)) {
13125 		/*
13126 		 * L1 needs to opt into the special #PF vmexits that are
13127 		 * used to deliver async page faults.
13128 		 */
13129 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13130 	} else {
13131 		/*
13132 		 * Play it safe in case the guest temporarily disables paging.
13133 		 * The real mode IDT in particular is unlikely to have a #PF
13134 		 * exception setup.
13135 		 */
13136 		return is_paging(vcpu);
13137 	}
13138 }
13139 
13140 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13141 {
13142 	if (unlikely(!lapic_in_kernel(vcpu) ||
13143 		     kvm_event_needs_reinjection(vcpu) ||
13144 		     kvm_is_exception_pending(vcpu)))
13145 		return false;
13146 
13147 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13148 		return false;
13149 
13150 	/*
13151 	 * If interrupts are off we cannot even use an artificial
13152 	 * halt state.
13153 	 */
13154 	return kvm_arch_interrupt_allowed(vcpu);
13155 }
13156 
13157 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13158 				     struct kvm_async_pf *work)
13159 {
13160 	struct x86_exception fault;
13161 
13162 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13163 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13164 
13165 	if (kvm_can_deliver_async_pf(vcpu) &&
13166 	    !apf_put_user_notpresent(vcpu)) {
13167 		fault.vector = PF_VECTOR;
13168 		fault.error_code_valid = true;
13169 		fault.error_code = 0;
13170 		fault.nested_page_fault = false;
13171 		fault.address = work->arch.token;
13172 		fault.async_page_fault = true;
13173 		kvm_inject_page_fault(vcpu, &fault);
13174 		return true;
13175 	} else {
13176 		/*
13177 		 * It is not possible to deliver a paravirtualized asynchronous
13178 		 * page fault, but putting the guest in an artificial halt state
13179 		 * can be beneficial nevertheless: if an interrupt arrives, we
13180 		 * can deliver it timely and perhaps the guest will schedule
13181 		 * another process.  When the instruction that triggered a page
13182 		 * fault is retried, hopefully the page will be ready in the host.
13183 		 */
13184 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13185 		return false;
13186 	}
13187 }
13188 
13189 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13190 				 struct kvm_async_pf *work)
13191 {
13192 	struct kvm_lapic_irq irq = {
13193 		.delivery_mode = APIC_DM_FIXED,
13194 		.vector = vcpu->arch.apf.vec
13195 	};
13196 
13197 	if (work->wakeup_all)
13198 		work->arch.token = ~0; /* broadcast wakeup */
13199 	else
13200 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13201 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13202 
13203 	if ((work->wakeup_all || work->notpresent_injected) &&
13204 	    kvm_pv_async_pf_enabled(vcpu) &&
13205 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13206 		vcpu->arch.apf.pageready_pending = true;
13207 		kvm_apic_set_irq(vcpu, &irq, NULL);
13208 	}
13209 
13210 	vcpu->arch.apf.halted = false;
13211 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13212 }
13213 
13214 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13215 {
13216 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13217 	if (!vcpu->arch.apf.pageready_pending)
13218 		kvm_vcpu_kick(vcpu);
13219 }
13220 
13221 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13222 {
13223 	if (!kvm_pv_async_pf_enabled(vcpu))
13224 		return true;
13225 	else
13226 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13227 }
13228 
13229 void kvm_arch_start_assignment(struct kvm *kvm)
13230 {
13231 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13232 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13233 }
13234 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13235 
13236 void kvm_arch_end_assignment(struct kvm *kvm)
13237 {
13238 	atomic_dec(&kvm->arch.assigned_device_count);
13239 }
13240 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13241 
13242 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13243 {
13244 	return arch_atomic_read(&kvm->arch.assigned_device_count);
13245 }
13246 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13247 
13248 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13249 {
13250 	atomic_inc(&kvm->arch.noncoherent_dma_count);
13251 }
13252 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13253 
13254 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13255 {
13256 	atomic_dec(&kvm->arch.noncoherent_dma_count);
13257 }
13258 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13259 
13260 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13261 {
13262 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13263 }
13264 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13265 
13266 bool kvm_arch_has_irq_bypass(void)
13267 {
13268 	return true;
13269 }
13270 
13271 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13272 				      struct irq_bypass_producer *prod)
13273 {
13274 	struct kvm_kernel_irqfd *irqfd =
13275 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13276 	int ret;
13277 
13278 	irqfd->producer = prod;
13279 	kvm_arch_start_assignment(irqfd->kvm);
13280 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13281 					 prod->irq, irqfd->gsi, 1);
13282 
13283 	if (ret)
13284 		kvm_arch_end_assignment(irqfd->kvm);
13285 
13286 	return ret;
13287 }
13288 
13289 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13290 				      struct irq_bypass_producer *prod)
13291 {
13292 	int ret;
13293 	struct kvm_kernel_irqfd *irqfd =
13294 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13295 
13296 	WARN_ON(irqfd->producer != prod);
13297 	irqfd->producer = NULL;
13298 
13299 	/*
13300 	 * When producer of consumer is unregistered, we change back to
13301 	 * remapped mode, so we can re-use the current implementation
13302 	 * when the irq is masked/disabled or the consumer side (KVM
13303 	 * int this case doesn't want to receive the interrupts.
13304 	*/
13305 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13306 	if (ret)
13307 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13308 		       " fails: %d\n", irqfd->consumer.token, ret);
13309 
13310 	kvm_arch_end_assignment(irqfd->kvm);
13311 }
13312 
13313 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13314 				   uint32_t guest_irq, bool set)
13315 {
13316 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13317 }
13318 
13319 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13320 				  struct kvm_kernel_irq_routing_entry *new)
13321 {
13322 	if (new->type != KVM_IRQ_ROUTING_MSI)
13323 		return true;
13324 
13325 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13326 }
13327 
13328 bool kvm_vector_hashing_enabled(void)
13329 {
13330 	return vector_hashing;
13331 }
13332 
13333 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13334 {
13335 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13336 }
13337 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13338 
13339 
13340 int kvm_spec_ctrl_test_value(u64 value)
13341 {
13342 	/*
13343 	 * test that setting IA32_SPEC_CTRL to given value
13344 	 * is allowed by the host processor
13345 	 */
13346 
13347 	u64 saved_value;
13348 	unsigned long flags;
13349 	int ret = 0;
13350 
13351 	local_irq_save(flags);
13352 
13353 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13354 		ret = 1;
13355 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13356 		ret = 1;
13357 	else
13358 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13359 
13360 	local_irq_restore(flags);
13361 
13362 	return ret;
13363 }
13364 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13365 
13366 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13367 {
13368 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13369 	struct x86_exception fault;
13370 	u64 access = error_code &
13371 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13372 
13373 	if (!(error_code & PFERR_PRESENT_MASK) ||
13374 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13375 		/*
13376 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13377 		 * tables probably do not match the TLB.  Just proceed
13378 		 * with the error code that the processor gave.
13379 		 */
13380 		fault.vector = PF_VECTOR;
13381 		fault.error_code_valid = true;
13382 		fault.error_code = error_code;
13383 		fault.nested_page_fault = false;
13384 		fault.address = gva;
13385 		fault.async_page_fault = false;
13386 	}
13387 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13388 }
13389 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13390 
13391 /*
13392  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13393  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13394  * indicates whether exit to userspace is needed.
13395  */
13396 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13397 			      struct x86_exception *e)
13398 {
13399 	if (r == X86EMUL_PROPAGATE_FAULT) {
13400 		kvm_inject_emulated_page_fault(vcpu, e);
13401 		return 1;
13402 	}
13403 
13404 	/*
13405 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13406 	 * while handling a VMX instruction KVM could've handled the request
13407 	 * correctly by exiting to userspace and performing I/O but there
13408 	 * doesn't seem to be a real use-case behind such requests, just return
13409 	 * KVM_EXIT_INTERNAL_ERROR for now.
13410 	 */
13411 	kvm_prepare_emulation_failure_exit(vcpu);
13412 
13413 	return 0;
13414 }
13415 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13416 
13417 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13418 {
13419 	bool pcid_enabled;
13420 	struct x86_exception e;
13421 	struct {
13422 		u64 pcid;
13423 		u64 gla;
13424 	} operand;
13425 	int r;
13426 
13427 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13428 	if (r != X86EMUL_CONTINUE)
13429 		return kvm_handle_memory_failure(vcpu, r, &e);
13430 
13431 	if (operand.pcid >> 12 != 0) {
13432 		kvm_inject_gp(vcpu, 0);
13433 		return 1;
13434 	}
13435 
13436 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13437 
13438 	switch (type) {
13439 	case INVPCID_TYPE_INDIV_ADDR:
13440 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13441 		    is_noncanonical_address(operand.gla, vcpu)) {
13442 			kvm_inject_gp(vcpu, 0);
13443 			return 1;
13444 		}
13445 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13446 		return kvm_skip_emulated_instruction(vcpu);
13447 
13448 	case INVPCID_TYPE_SINGLE_CTXT:
13449 		if (!pcid_enabled && (operand.pcid != 0)) {
13450 			kvm_inject_gp(vcpu, 0);
13451 			return 1;
13452 		}
13453 
13454 		kvm_invalidate_pcid(vcpu, operand.pcid);
13455 		return kvm_skip_emulated_instruction(vcpu);
13456 
13457 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13458 		/*
13459 		 * Currently, KVM doesn't mark global entries in the shadow
13460 		 * page tables, so a non-global flush just degenerates to a
13461 		 * global flush. If needed, we could optimize this later by
13462 		 * keeping track of global entries in shadow page tables.
13463 		 */
13464 
13465 		fallthrough;
13466 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13467 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13468 		return kvm_skip_emulated_instruction(vcpu);
13469 
13470 	default:
13471 		kvm_inject_gp(vcpu, 0);
13472 		return 1;
13473 	}
13474 }
13475 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13476 
13477 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13478 {
13479 	struct kvm_run *run = vcpu->run;
13480 	struct kvm_mmio_fragment *frag;
13481 	unsigned int len;
13482 
13483 	BUG_ON(!vcpu->mmio_needed);
13484 
13485 	/* Complete previous fragment */
13486 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13487 	len = min(8u, frag->len);
13488 	if (!vcpu->mmio_is_write)
13489 		memcpy(frag->data, run->mmio.data, len);
13490 
13491 	if (frag->len <= 8) {
13492 		/* Switch to the next fragment. */
13493 		frag++;
13494 		vcpu->mmio_cur_fragment++;
13495 	} else {
13496 		/* Go forward to the next mmio piece. */
13497 		frag->data += len;
13498 		frag->gpa += len;
13499 		frag->len -= len;
13500 	}
13501 
13502 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13503 		vcpu->mmio_needed = 0;
13504 
13505 		// VMG change, at this point, we're always done
13506 		// RIP has already been advanced
13507 		return 1;
13508 	}
13509 
13510 	// More MMIO is needed
13511 	run->mmio.phys_addr = frag->gpa;
13512 	run->mmio.len = min(8u, frag->len);
13513 	run->mmio.is_write = vcpu->mmio_is_write;
13514 	if (run->mmio.is_write)
13515 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13516 	run->exit_reason = KVM_EXIT_MMIO;
13517 
13518 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13519 
13520 	return 0;
13521 }
13522 
13523 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13524 			  void *data)
13525 {
13526 	int handled;
13527 	struct kvm_mmio_fragment *frag;
13528 
13529 	if (!data)
13530 		return -EINVAL;
13531 
13532 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13533 	if (handled == bytes)
13534 		return 1;
13535 
13536 	bytes -= handled;
13537 	gpa += handled;
13538 	data += handled;
13539 
13540 	/*TODO: Check if need to increment number of frags */
13541 	frag = vcpu->mmio_fragments;
13542 	vcpu->mmio_nr_fragments = 1;
13543 	frag->len = bytes;
13544 	frag->gpa = gpa;
13545 	frag->data = data;
13546 
13547 	vcpu->mmio_needed = 1;
13548 	vcpu->mmio_cur_fragment = 0;
13549 
13550 	vcpu->run->mmio.phys_addr = gpa;
13551 	vcpu->run->mmio.len = min(8u, frag->len);
13552 	vcpu->run->mmio.is_write = 1;
13553 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13554 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13555 
13556 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13557 
13558 	return 0;
13559 }
13560 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13561 
13562 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13563 			 void *data)
13564 {
13565 	int handled;
13566 	struct kvm_mmio_fragment *frag;
13567 
13568 	if (!data)
13569 		return -EINVAL;
13570 
13571 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13572 	if (handled == bytes)
13573 		return 1;
13574 
13575 	bytes -= handled;
13576 	gpa += handled;
13577 	data += handled;
13578 
13579 	/*TODO: Check if need to increment number of frags */
13580 	frag = vcpu->mmio_fragments;
13581 	vcpu->mmio_nr_fragments = 1;
13582 	frag->len = bytes;
13583 	frag->gpa = gpa;
13584 	frag->data = data;
13585 
13586 	vcpu->mmio_needed = 1;
13587 	vcpu->mmio_cur_fragment = 0;
13588 
13589 	vcpu->run->mmio.phys_addr = gpa;
13590 	vcpu->run->mmio.len = min(8u, frag->len);
13591 	vcpu->run->mmio.is_write = 0;
13592 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13593 
13594 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13595 
13596 	return 0;
13597 }
13598 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13599 
13600 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13601 {
13602 	vcpu->arch.sev_pio_count -= count;
13603 	vcpu->arch.sev_pio_data += count * size;
13604 }
13605 
13606 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13607 			   unsigned int port);
13608 
13609 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13610 {
13611 	int size = vcpu->arch.pio.size;
13612 	int port = vcpu->arch.pio.port;
13613 
13614 	vcpu->arch.pio.count = 0;
13615 	if (vcpu->arch.sev_pio_count)
13616 		return kvm_sev_es_outs(vcpu, size, port);
13617 	return 1;
13618 }
13619 
13620 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13621 			   unsigned int port)
13622 {
13623 	for (;;) {
13624 		unsigned int count =
13625 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13626 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13627 
13628 		/* memcpy done already by emulator_pio_out.  */
13629 		advance_sev_es_emulated_pio(vcpu, count, size);
13630 		if (!ret)
13631 			break;
13632 
13633 		/* Emulation done by the kernel.  */
13634 		if (!vcpu->arch.sev_pio_count)
13635 			return 1;
13636 	}
13637 
13638 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13639 	return 0;
13640 }
13641 
13642 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13643 			  unsigned int port);
13644 
13645 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13646 {
13647 	unsigned count = vcpu->arch.pio.count;
13648 	int size = vcpu->arch.pio.size;
13649 	int port = vcpu->arch.pio.port;
13650 
13651 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13652 	advance_sev_es_emulated_pio(vcpu, count, size);
13653 	if (vcpu->arch.sev_pio_count)
13654 		return kvm_sev_es_ins(vcpu, size, port);
13655 	return 1;
13656 }
13657 
13658 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13659 			  unsigned int port)
13660 {
13661 	for (;;) {
13662 		unsigned int count =
13663 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13664 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13665 			break;
13666 
13667 		/* Emulation done by the kernel.  */
13668 		advance_sev_es_emulated_pio(vcpu, count, size);
13669 		if (!vcpu->arch.sev_pio_count)
13670 			return 1;
13671 	}
13672 
13673 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13674 	return 0;
13675 }
13676 
13677 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13678 			 unsigned int port, void *data,  unsigned int count,
13679 			 int in)
13680 {
13681 	vcpu->arch.sev_pio_data = data;
13682 	vcpu->arch.sev_pio_count = count;
13683 	return in ? kvm_sev_es_ins(vcpu, size, port)
13684 		  : kvm_sev_es_outs(vcpu, size, port);
13685 }
13686 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13687 
13688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13717 
13718 static int __init kvm_x86_init(void)
13719 {
13720 	kvm_mmu_x86_module_init();
13721 	return 0;
13722 }
13723 module_init(kvm_x86_init);
13724 
13725 static void __exit kvm_x86_exit(void)
13726 {
13727 	/*
13728 	 * If module_init() is implemented, module_exit() must also be
13729 	 * implemented to allow module unload.
13730 	 */
13731 }
13732 module_exit(kvm_x86_exit);
13733