1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 #include "lapic.h" 33 #include "xen.h" 34 #include "smm.h" 35 36 #include <linux/clocksource.h> 37 #include <linux/interrupt.h> 38 #include <linux/kvm.h> 39 #include <linux/fs.h> 40 #include <linux/vmalloc.h> 41 #include <linux/export.h> 42 #include <linux/moduleparam.h> 43 #include <linux/mman.h> 44 #include <linux/highmem.h> 45 #include <linux/iommu.h> 46 #include <linux/cpufreq.h> 47 #include <linux/user-return-notifier.h> 48 #include <linux/srcu.h> 49 #include <linux/slab.h> 50 #include <linux/perf_event.h> 51 #include <linux/uaccess.h> 52 #include <linux/hash.h> 53 #include <linux/pci.h> 54 #include <linux/timekeeper_internal.h> 55 #include <linux/pvclock_gtod.h> 56 #include <linux/kvm_irqfd.h> 57 #include <linux/irqbypass.h> 58 #include <linux/sched/stat.h> 59 #include <linux/sched/isolation.h> 60 #include <linux/mem_encrypt.h> 61 #include <linux/entry-kvm.h> 62 #include <linux/suspend.h> 63 64 #include <trace/events/kvm.h> 65 66 #include <asm/debugreg.h> 67 #include <asm/msr.h> 68 #include <asm/desc.h> 69 #include <asm/mce.h> 70 #include <asm/pkru.h> 71 #include <linux/kernel_stat.h> 72 #include <asm/fpu/api.h> 73 #include <asm/fpu/xcr.h> 74 #include <asm/fpu/xstate.h> 75 #include <asm/pvclock.h> 76 #include <asm/div64.h> 77 #include <asm/irq_remapping.h> 78 #include <asm/mshyperv.h> 79 #include <asm/hypervisor.h> 80 #include <asm/tlbflush.h> 81 #include <asm/intel_pt.h> 82 #include <asm/emulate_prefix.h> 83 #include <asm/sgx.h> 84 #include <clocksource/hyperv_timer.h> 85 86 #define CREATE_TRACE_POINTS 87 #include "trace.h" 88 89 #define MAX_IO_MSRS 256 90 #define KVM_MAX_MCE_BANKS 32 91 92 struct kvm_caps kvm_caps __read_mostly = { 93 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 94 }; 95 EXPORT_SYMBOL_GPL(kvm_caps); 96 97 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 98 99 #define emul_to_vcpu(ctxt) \ 100 ((struct kvm_vcpu *)(ctxt)->vcpu) 101 102 /* EFER defaults: 103 * - enable syscall per default because its emulated by KVM 104 * - enable LME and LMA per default on 64 bit KVM 105 */ 106 #ifdef CONFIG_X86_64 107 static 108 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 109 #else 110 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 111 #endif 112 113 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 114 115 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 116 117 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 118 119 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 120 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 121 122 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 123 static void process_nmi(struct kvm_vcpu *vcpu); 124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 125 static void store_regs(struct kvm_vcpu *vcpu); 126 static int sync_regs(struct kvm_vcpu *vcpu); 127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 128 129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 131 132 static DEFINE_MUTEX(vendor_module_lock); 133 struct kvm_x86_ops kvm_x86_ops __read_mostly; 134 135 #define KVM_X86_OP(func) \ 136 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 137 *(((struct kvm_x86_ops *)0)->func)); 138 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 139 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 140 #include <asm/kvm-x86-ops.h> 141 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 142 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 143 144 static bool __read_mostly ignore_msrs = 0; 145 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 146 147 bool __read_mostly report_ignored_msrs = true; 148 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 149 EXPORT_SYMBOL_GPL(report_ignored_msrs); 150 151 unsigned int min_timer_period_us = 200; 152 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 153 154 static bool __read_mostly kvmclock_periodic_sync = true; 155 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 156 157 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 158 static u32 __read_mostly tsc_tolerance_ppm = 250; 159 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 160 161 /* 162 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 163 * adaptive tuning starting from default advancement of 1000ns. '0' disables 164 * advancement entirely. Any other value is used as-is and disables adaptive 165 * tuning, i.e. allows privileged userspace to set an exact advancement time. 166 */ 167 static int __read_mostly lapic_timer_advance_ns = -1; 168 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 169 170 static bool __read_mostly vector_hashing = true; 171 module_param(vector_hashing, bool, S_IRUGO); 172 173 bool __read_mostly enable_vmware_backdoor = false; 174 module_param(enable_vmware_backdoor, bool, S_IRUGO); 175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 176 177 /* 178 * Flags to manipulate forced emulation behavior (any non-zero value will 179 * enable forced emulation). 180 */ 181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 182 static int __read_mostly force_emulation_prefix; 183 module_param(force_emulation_prefix, int, 0644); 184 185 int __read_mostly pi_inject_timer = -1; 186 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 187 188 /* Enable/disable PMU virtualization */ 189 bool __read_mostly enable_pmu = true; 190 EXPORT_SYMBOL_GPL(enable_pmu); 191 module_param(enable_pmu, bool, 0444); 192 193 bool __read_mostly eager_page_split = true; 194 module_param(eager_page_split, bool, 0644); 195 196 /* Enable/disable SMT_RSB bug mitigation */ 197 bool __read_mostly mitigate_smt_rsb; 198 module_param(mitigate_smt_rsb, bool, 0444); 199 200 /* 201 * Restoring the host value for MSRs that are only consumed when running in 202 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 203 * returns to userspace, i.e. the kernel can run with the guest's value. 204 */ 205 #define KVM_MAX_NR_USER_RETURN_MSRS 16 206 207 struct kvm_user_return_msrs { 208 struct user_return_notifier urn; 209 bool registered; 210 struct kvm_user_return_msr_values { 211 u64 host; 212 u64 curr; 213 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 214 }; 215 216 u32 __read_mostly kvm_nr_uret_msrs; 217 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 218 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 219 static struct kvm_user_return_msrs __percpu *user_return_msrs; 220 221 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 222 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 223 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 224 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 225 226 u64 __read_mostly host_efer; 227 EXPORT_SYMBOL_GPL(host_efer); 228 229 bool __read_mostly allow_smaller_maxphyaddr = 0; 230 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 231 232 bool __read_mostly enable_apicv = true; 233 EXPORT_SYMBOL_GPL(enable_apicv); 234 235 u64 __read_mostly host_xss; 236 EXPORT_SYMBOL_GPL(host_xss); 237 238 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 239 KVM_GENERIC_VM_STATS(), 240 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 241 STATS_DESC_COUNTER(VM, mmu_pte_write), 242 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 243 STATS_DESC_COUNTER(VM, mmu_flooded), 244 STATS_DESC_COUNTER(VM, mmu_recycled), 245 STATS_DESC_COUNTER(VM, mmu_cache_miss), 246 STATS_DESC_ICOUNTER(VM, mmu_unsync), 247 STATS_DESC_ICOUNTER(VM, pages_4k), 248 STATS_DESC_ICOUNTER(VM, pages_2m), 249 STATS_DESC_ICOUNTER(VM, pages_1g), 250 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 251 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 252 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 253 }; 254 255 const struct kvm_stats_header kvm_vm_stats_header = { 256 .name_size = KVM_STATS_NAME_SIZE, 257 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 258 .id_offset = sizeof(struct kvm_stats_header), 259 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 260 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 261 sizeof(kvm_vm_stats_desc), 262 }; 263 264 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 265 KVM_GENERIC_VCPU_STATS(), 266 STATS_DESC_COUNTER(VCPU, pf_taken), 267 STATS_DESC_COUNTER(VCPU, pf_fixed), 268 STATS_DESC_COUNTER(VCPU, pf_emulate), 269 STATS_DESC_COUNTER(VCPU, pf_spurious), 270 STATS_DESC_COUNTER(VCPU, pf_fast), 271 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 272 STATS_DESC_COUNTER(VCPU, pf_guest), 273 STATS_DESC_COUNTER(VCPU, tlb_flush), 274 STATS_DESC_COUNTER(VCPU, invlpg), 275 STATS_DESC_COUNTER(VCPU, exits), 276 STATS_DESC_COUNTER(VCPU, io_exits), 277 STATS_DESC_COUNTER(VCPU, mmio_exits), 278 STATS_DESC_COUNTER(VCPU, signal_exits), 279 STATS_DESC_COUNTER(VCPU, irq_window_exits), 280 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 281 STATS_DESC_COUNTER(VCPU, l1d_flush), 282 STATS_DESC_COUNTER(VCPU, halt_exits), 283 STATS_DESC_COUNTER(VCPU, request_irq_exits), 284 STATS_DESC_COUNTER(VCPU, irq_exits), 285 STATS_DESC_COUNTER(VCPU, host_state_reload), 286 STATS_DESC_COUNTER(VCPU, fpu_reload), 287 STATS_DESC_COUNTER(VCPU, insn_emulation), 288 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 289 STATS_DESC_COUNTER(VCPU, hypercalls), 290 STATS_DESC_COUNTER(VCPU, irq_injections), 291 STATS_DESC_COUNTER(VCPU, nmi_injections), 292 STATS_DESC_COUNTER(VCPU, req_event), 293 STATS_DESC_COUNTER(VCPU, nested_run), 294 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 295 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 296 STATS_DESC_COUNTER(VCPU, preemption_reported), 297 STATS_DESC_COUNTER(VCPU, preemption_other), 298 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 299 STATS_DESC_COUNTER(VCPU, notify_window_exits), 300 }; 301 302 const struct kvm_stats_header kvm_vcpu_stats_header = { 303 .name_size = KVM_STATS_NAME_SIZE, 304 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 305 .id_offset = sizeof(struct kvm_stats_header), 306 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 307 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 308 sizeof(kvm_vcpu_stats_desc), 309 }; 310 311 u64 __read_mostly host_xcr0; 312 313 static struct kmem_cache *x86_emulator_cache; 314 315 /* 316 * When called, it means the previous get/set msr reached an invalid msr. 317 * Return true if we want to ignore/silent this failed msr access. 318 */ 319 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 320 { 321 const char *op = write ? "wrmsr" : "rdmsr"; 322 323 if (ignore_msrs) { 324 if (report_ignored_msrs) 325 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 326 op, msr, data); 327 /* Mask the error */ 328 return true; 329 } else { 330 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 331 op, msr, data); 332 return false; 333 } 334 } 335 336 static struct kmem_cache *kvm_alloc_emulator_cache(void) 337 { 338 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 339 unsigned int size = sizeof(struct x86_emulate_ctxt); 340 341 return kmem_cache_create_usercopy("x86_emulator", size, 342 __alignof__(struct x86_emulate_ctxt), 343 SLAB_ACCOUNT, useroffset, 344 size - useroffset, NULL); 345 } 346 347 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 348 349 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 350 { 351 int i; 352 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 353 vcpu->arch.apf.gfns[i] = ~0; 354 } 355 356 static void kvm_on_user_return(struct user_return_notifier *urn) 357 { 358 unsigned slot; 359 struct kvm_user_return_msrs *msrs 360 = container_of(urn, struct kvm_user_return_msrs, urn); 361 struct kvm_user_return_msr_values *values; 362 unsigned long flags; 363 364 /* 365 * Disabling irqs at this point since the following code could be 366 * interrupted and executed through kvm_arch_hardware_disable() 367 */ 368 local_irq_save(flags); 369 if (msrs->registered) { 370 msrs->registered = false; 371 user_return_notifier_unregister(urn); 372 } 373 local_irq_restore(flags); 374 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 375 values = &msrs->values[slot]; 376 if (values->host != values->curr) { 377 wrmsrl(kvm_uret_msrs_list[slot], values->host); 378 values->curr = values->host; 379 } 380 } 381 } 382 383 static int kvm_probe_user_return_msr(u32 msr) 384 { 385 u64 val; 386 int ret; 387 388 preempt_disable(); 389 ret = rdmsrl_safe(msr, &val); 390 if (ret) 391 goto out; 392 ret = wrmsrl_safe(msr, val); 393 out: 394 preempt_enable(); 395 return ret; 396 } 397 398 int kvm_add_user_return_msr(u32 msr) 399 { 400 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 401 402 if (kvm_probe_user_return_msr(msr)) 403 return -1; 404 405 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 406 return kvm_nr_uret_msrs++; 407 } 408 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 409 410 int kvm_find_user_return_msr(u32 msr) 411 { 412 int i; 413 414 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 415 if (kvm_uret_msrs_list[i] == msr) 416 return i; 417 } 418 return -1; 419 } 420 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 421 422 static void kvm_user_return_msr_cpu_online(void) 423 { 424 unsigned int cpu = smp_processor_id(); 425 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 426 u64 value; 427 int i; 428 429 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 430 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 431 msrs->values[i].host = value; 432 msrs->values[i].curr = value; 433 } 434 } 435 436 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 437 { 438 unsigned int cpu = smp_processor_id(); 439 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 440 int err; 441 442 value = (value & mask) | (msrs->values[slot].host & ~mask); 443 if (value == msrs->values[slot].curr) 444 return 0; 445 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 446 if (err) 447 return 1; 448 449 msrs->values[slot].curr = value; 450 if (!msrs->registered) { 451 msrs->urn.on_user_return = kvm_on_user_return; 452 user_return_notifier_register(&msrs->urn); 453 msrs->registered = true; 454 } 455 return 0; 456 } 457 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 458 459 static void drop_user_return_notifiers(void) 460 { 461 unsigned int cpu = smp_processor_id(); 462 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 463 464 if (msrs->registered) 465 kvm_on_user_return(&msrs->urn); 466 } 467 468 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 469 { 470 return vcpu->arch.apic_base; 471 } 472 473 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 474 { 475 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 476 } 477 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 478 479 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 480 { 481 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 482 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 483 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 484 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 485 486 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 487 return 1; 488 if (!msr_info->host_initiated) { 489 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 490 return 1; 491 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 492 return 1; 493 } 494 495 kvm_lapic_set_base(vcpu, msr_info->data); 496 kvm_recalculate_apic_map(vcpu->kvm); 497 return 0; 498 } 499 500 /* 501 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 502 * 503 * Hardware virtualization extension instructions may fault if a reboot turns 504 * off virtualization while processes are running. Usually after catching the 505 * fault we just panic; during reboot instead the instruction is ignored. 506 */ 507 noinstr void kvm_spurious_fault(void) 508 { 509 /* Fault while not rebooting. We want the trace. */ 510 BUG_ON(!kvm_rebooting); 511 } 512 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 513 514 #define EXCPT_BENIGN 0 515 #define EXCPT_CONTRIBUTORY 1 516 #define EXCPT_PF 2 517 518 static int exception_class(int vector) 519 { 520 switch (vector) { 521 case PF_VECTOR: 522 return EXCPT_PF; 523 case DE_VECTOR: 524 case TS_VECTOR: 525 case NP_VECTOR: 526 case SS_VECTOR: 527 case GP_VECTOR: 528 return EXCPT_CONTRIBUTORY; 529 default: 530 break; 531 } 532 return EXCPT_BENIGN; 533 } 534 535 #define EXCPT_FAULT 0 536 #define EXCPT_TRAP 1 537 #define EXCPT_ABORT 2 538 #define EXCPT_INTERRUPT 3 539 #define EXCPT_DB 4 540 541 static int exception_type(int vector) 542 { 543 unsigned int mask; 544 545 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 546 return EXCPT_INTERRUPT; 547 548 mask = 1 << vector; 549 550 /* 551 * #DBs can be trap-like or fault-like, the caller must check other CPU 552 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 553 */ 554 if (mask & (1 << DB_VECTOR)) 555 return EXCPT_DB; 556 557 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 558 return EXCPT_TRAP; 559 560 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 561 return EXCPT_ABORT; 562 563 /* Reserved exceptions will result in fault */ 564 return EXCPT_FAULT; 565 } 566 567 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 568 struct kvm_queued_exception *ex) 569 { 570 if (!ex->has_payload) 571 return; 572 573 switch (ex->vector) { 574 case DB_VECTOR: 575 /* 576 * "Certain debug exceptions may clear bit 0-3. The 577 * remaining contents of the DR6 register are never 578 * cleared by the processor". 579 */ 580 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 581 /* 582 * In order to reflect the #DB exception payload in guest 583 * dr6, three components need to be considered: active low 584 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 585 * DR6_BS and DR6_BT) 586 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 587 * In the target guest dr6: 588 * FIXED_1 bits should always be set. 589 * Active low bits should be cleared if 1-setting in payload. 590 * Active high bits should be set if 1-setting in payload. 591 * 592 * Note, the payload is compatible with the pending debug 593 * exceptions/exit qualification under VMX, that active_low bits 594 * are active high in payload. 595 * So they need to be flipped for DR6. 596 */ 597 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 598 vcpu->arch.dr6 |= ex->payload; 599 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 600 601 /* 602 * The #DB payload is defined as compatible with the 'pending 603 * debug exceptions' field under VMX, not DR6. While bit 12 is 604 * defined in the 'pending debug exceptions' field (enabled 605 * breakpoint), it is reserved and must be zero in DR6. 606 */ 607 vcpu->arch.dr6 &= ~BIT(12); 608 break; 609 case PF_VECTOR: 610 vcpu->arch.cr2 = ex->payload; 611 break; 612 } 613 614 ex->has_payload = false; 615 ex->payload = 0; 616 } 617 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 618 619 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 620 bool has_error_code, u32 error_code, 621 bool has_payload, unsigned long payload) 622 { 623 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 624 625 ex->vector = vector; 626 ex->injected = false; 627 ex->pending = true; 628 ex->has_error_code = has_error_code; 629 ex->error_code = error_code; 630 ex->has_payload = has_payload; 631 ex->payload = payload; 632 } 633 634 /* Forcibly leave the nested mode in cases like a vCPU reset */ 635 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 636 { 637 kvm_x86_ops.nested_ops->leave_nested(vcpu); 638 } 639 640 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 641 unsigned nr, bool has_error, u32 error_code, 642 bool has_payload, unsigned long payload, bool reinject) 643 { 644 u32 prev_nr; 645 int class1, class2; 646 647 kvm_make_request(KVM_REQ_EVENT, vcpu); 648 649 /* 650 * If the exception is destined for L2 and isn't being reinjected, 651 * morph it to a VM-Exit if L1 wants to intercept the exception. A 652 * previously injected exception is not checked because it was checked 653 * when it was original queued, and re-checking is incorrect if _L1_ 654 * injected the exception, in which case it's exempt from interception. 655 */ 656 if (!reinject && is_guest_mode(vcpu) && 657 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 658 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 659 has_payload, payload); 660 return; 661 } 662 663 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 664 queue: 665 if (reinject) { 666 /* 667 * On VM-Entry, an exception can be pending if and only 668 * if event injection was blocked by nested_run_pending. 669 * In that case, however, vcpu_enter_guest() requests an 670 * immediate exit, and the guest shouldn't proceed far 671 * enough to need reinjection. 672 */ 673 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 674 vcpu->arch.exception.injected = true; 675 if (WARN_ON_ONCE(has_payload)) { 676 /* 677 * A reinjected event has already 678 * delivered its payload. 679 */ 680 has_payload = false; 681 payload = 0; 682 } 683 } else { 684 vcpu->arch.exception.pending = true; 685 vcpu->arch.exception.injected = false; 686 } 687 vcpu->arch.exception.has_error_code = has_error; 688 vcpu->arch.exception.vector = nr; 689 vcpu->arch.exception.error_code = error_code; 690 vcpu->arch.exception.has_payload = has_payload; 691 vcpu->arch.exception.payload = payload; 692 if (!is_guest_mode(vcpu)) 693 kvm_deliver_exception_payload(vcpu, 694 &vcpu->arch.exception); 695 return; 696 } 697 698 /* to check exception */ 699 prev_nr = vcpu->arch.exception.vector; 700 if (prev_nr == DF_VECTOR) { 701 /* triple fault -> shutdown */ 702 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 703 return; 704 } 705 class1 = exception_class(prev_nr); 706 class2 = exception_class(nr); 707 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 708 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 709 /* 710 * Synthesize #DF. Clear the previously injected or pending 711 * exception so as not to incorrectly trigger shutdown. 712 */ 713 vcpu->arch.exception.injected = false; 714 vcpu->arch.exception.pending = false; 715 716 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 717 } else { 718 /* replace previous exception with a new one in a hope 719 that instruction re-execution will regenerate lost 720 exception */ 721 goto queue; 722 } 723 } 724 725 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 726 { 727 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 728 } 729 EXPORT_SYMBOL_GPL(kvm_queue_exception); 730 731 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 732 { 733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 734 } 735 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 736 737 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 738 unsigned long payload) 739 { 740 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 741 } 742 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 743 744 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 745 u32 error_code, unsigned long payload) 746 { 747 kvm_multiple_exception(vcpu, nr, true, error_code, 748 true, payload, false); 749 } 750 751 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 752 { 753 if (err) 754 kvm_inject_gp(vcpu, 0); 755 else 756 return kvm_skip_emulated_instruction(vcpu); 757 758 return 1; 759 } 760 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 761 762 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 763 { 764 if (err) { 765 kvm_inject_gp(vcpu, 0); 766 return 1; 767 } 768 769 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 770 EMULTYPE_COMPLETE_USER_EXIT); 771 } 772 773 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 774 { 775 ++vcpu->stat.pf_guest; 776 777 /* 778 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 779 * whether or not L1 wants to intercept "regular" #PF. 780 */ 781 if (is_guest_mode(vcpu) && fault->async_page_fault) 782 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 783 true, fault->error_code, 784 true, fault->address); 785 else 786 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 787 fault->address); 788 } 789 790 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 791 struct x86_exception *fault) 792 { 793 struct kvm_mmu *fault_mmu; 794 WARN_ON_ONCE(fault->vector != PF_VECTOR); 795 796 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 797 vcpu->arch.walk_mmu; 798 799 /* 800 * Invalidate the TLB entry for the faulting address, if it exists, 801 * else the access will fault indefinitely (and to emulate hardware). 802 */ 803 if ((fault->error_code & PFERR_PRESENT_MASK) && 804 !(fault->error_code & PFERR_RSVD_MASK)) 805 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 806 fault_mmu->root.hpa); 807 808 fault_mmu->inject_page_fault(vcpu, fault); 809 } 810 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 811 812 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 813 { 814 atomic_inc(&vcpu->arch.nmi_queued); 815 kvm_make_request(KVM_REQ_NMI, vcpu); 816 } 817 818 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 819 { 820 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 821 } 822 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 823 824 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 825 { 826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 827 } 828 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 829 830 /* 831 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 832 * a #GP and return false. 833 */ 834 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 835 { 836 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 837 return true; 838 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 839 return false; 840 } 841 842 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 843 { 844 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 845 return true; 846 847 kvm_queue_exception(vcpu, UD_VECTOR); 848 return false; 849 } 850 EXPORT_SYMBOL_GPL(kvm_require_dr); 851 852 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 853 { 854 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 855 } 856 857 /* 858 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 859 */ 860 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 861 { 862 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 863 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 864 gpa_t real_gpa; 865 int i; 866 int ret; 867 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 868 869 /* 870 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 871 * to an L1 GPA. 872 */ 873 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 874 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 875 if (real_gpa == INVALID_GPA) 876 return 0; 877 878 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 879 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 880 cr3 & GENMASK(11, 5), sizeof(pdpte)); 881 if (ret < 0) 882 return 0; 883 884 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 885 if ((pdpte[i] & PT_PRESENT_MASK) && 886 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 887 return 0; 888 } 889 } 890 891 /* 892 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 893 * Shadow page roots need to be reconstructed instead. 894 */ 895 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 896 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 897 898 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 899 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 900 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 901 vcpu->arch.pdptrs_from_userspace = false; 902 903 return 1; 904 } 905 EXPORT_SYMBOL_GPL(load_pdptrs); 906 907 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 908 { 909 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 910 kvm_clear_async_pf_completion_queue(vcpu); 911 kvm_async_pf_hash_reset(vcpu); 912 913 /* 914 * Clearing CR0.PG is defined to flush the TLB from the guest's 915 * perspective. 916 */ 917 if (!(cr0 & X86_CR0_PG)) 918 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 919 } 920 921 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 922 kvm_mmu_reset_context(vcpu); 923 924 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 925 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 926 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 927 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 928 } 929 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 930 931 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 932 { 933 unsigned long old_cr0 = kvm_read_cr0(vcpu); 934 935 cr0 |= X86_CR0_ET; 936 937 #ifdef CONFIG_X86_64 938 if (cr0 & 0xffffffff00000000UL) 939 return 1; 940 #endif 941 942 cr0 &= ~CR0_RESERVED_BITS; 943 944 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 945 return 1; 946 947 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 948 return 1; 949 950 #ifdef CONFIG_X86_64 951 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 952 (cr0 & X86_CR0_PG)) { 953 int cs_db, cs_l; 954 955 if (!is_pae(vcpu)) 956 return 1; 957 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 958 if (cs_l) 959 return 1; 960 } 961 #endif 962 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 963 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 964 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 965 return 1; 966 967 if (!(cr0 & X86_CR0_PG) && 968 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 969 return 1; 970 971 static_call(kvm_x86_set_cr0)(vcpu, cr0); 972 973 kvm_post_set_cr0(vcpu, old_cr0, cr0); 974 975 return 0; 976 } 977 EXPORT_SYMBOL_GPL(kvm_set_cr0); 978 979 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 980 { 981 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 982 } 983 EXPORT_SYMBOL_GPL(kvm_lmsw); 984 985 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 986 { 987 if (vcpu->arch.guest_state_protected) 988 return; 989 990 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 991 992 if (vcpu->arch.xcr0 != host_xcr0) 993 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 994 995 if (vcpu->arch.xsaves_enabled && 996 vcpu->arch.ia32_xss != host_xss) 997 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 998 } 999 1000 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1001 if (static_cpu_has(X86_FEATURE_PKU) && 1002 vcpu->arch.pkru != vcpu->arch.host_pkru && 1003 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1004 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 1005 write_pkru(vcpu->arch.pkru); 1006 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1007 } 1008 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1009 1010 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1011 { 1012 if (vcpu->arch.guest_state_protected) 1013 return; 1014 1015 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1016 if (static_cpu_has(X86_FEATURE_PKU) && 1017 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1018 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1019 vcpu->arch.pkru = rdpkru(); 1020 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1021 write_pkru(vcpu->arch.host_pkru); 1022 } 1023 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1024 1025 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1026 1027 if (vcpu->arch.xcr0 != host_xcr0) 1028 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1029 1030 if (vcpu->arch.xsaves_enabled && 1031 vcpu->arch.ia32_xss != host_xss) 1032 wrmsrl(MSR_IA32_XSS, host_xss); 1033 } 1034 1035 } 1036 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1037 1038 #ifdef CONFIG_X86_64 1039 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1040 { 1041 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1042 } 1043 #endif 1044 1045 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1046 { 1047 u64 xcr0 = xcr; 1048 u64 old_xcr0 = vcpu->arch.xcr0; 1049 u64 valid_bits; 1050 1051 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1052 if (index != XCR_XFEATURE_ENABLED_MASK) 1053 return 1; 1054 if (!(xcr0 & XFEATURE_MASK_FP)) 1055 return 1; 1056 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1057 return 1; 1058 1059 /* 1060 * Do not allow the guest to set bits that we do not support 1061 * saving. However, xcr0 bit 0 is always set, even if the 1062 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1063 */ 1064 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1065 if (xcr0 & ~valid_bits) 1066 return 1; 1067 1068 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1069 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1070 return 1; 1071 1072 if (xcr0 & XFEATURE_MASK_AVX512) { 1073 if (!(xcr0 & XFEATURE_MASK_YMM)) 1074 return 1; 1075 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1076 return 1; 1077 } 1078 1079 if ((xcr0 & XFEATURE_MASK_XTILE) && 1080 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1081 return 1; 1082 1083 vcpu->arch.xcr0 = xcr0; 1084 1085 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1086 kvm_update_cpuid_runtime(vcpu); 1087 return 0; 1088 } 1089 1090 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1091 { 1092 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1093 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1094 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1095 kvm_inject_gp(vcpu, 0); 1096 return 1; 1097 } 1098 1099 return kvm_skip_emulated_instruction(vcpu); 1100 } 1101 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1102 1103 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1104 { 1105 if (cr4 & cr4_reserved_bits) 1106 return false; 1107 1108 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1109 return false; 1110 1111 return true; 1112 } 1113 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1114 1115 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1116 { 1117 return __kvm_is_valid_cr4(vcpu, cr4) && 1118 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1119 } 1120 1121 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1122 { 1123 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1124 kvm_mmu_reset_context(vcpu); 1125 1126 /* 1127 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1128 * according to the SDM; however, stale prev_roots could be reused 1129 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1130 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1131 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1132 * so fall through. 1133 */ 1134 if (!tdp_enabled && 1135 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1136 kvm_mmu_unload(vcpu); 1137 1138 /* 1139 * The TLB has to be flushed for all PCIDs if any of the following 1140 * (architecturally required) changes happen: 1141 * - CR4.PCIDE is changed from 1 to 0 1142 * - CR4.PGE is toggled 1143 * 1144 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1145 */ 1146 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1147 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1148 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1149 1150 /* 1151 * The TLB has to be flushed for the current PCID if any of the 1152 * following (architecturally required) changes happen: 1153 * - CR4.SMEP is changed from 0 to 1 1154 * - CR4.PAE is toggled 1155 */ 1156 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1157 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1158 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1159 1160 } 1161 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1162 1163 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1164 { 1165 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1166 1167 if (!kvm_is_valid_cr4(vcpu, cr4)) 1168 return 1; 1169 1170 if (is_long_mode(vcpu)) { 1171 if (!(cr4 & X86_CR4_PAE)) 1172 return 1; 1173 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1174 return 1; 1175 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1176 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1177 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1178 return 1; 1179 1180 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1181 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1182 return 1; 1183 1184 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1185 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1186 return 1; 1187 } 1188 1189 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1190 1191 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1192 1193 return 0; 1194 } 1195 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1196 1197 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1198 { 1199 struct kvm_mmu *mmu = vcpu->arch.mmu; 1200 unsigned long roots_to_free = 0; 1201 int i; 1202 1203 /* 1204 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1205 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1206 * also via the emulator. KVM's TDP page tables are not in the scope of 1207 * the invalidation, but the guest's TLB entries need to be flushed as 1208 * the CPU may have cached entries in its TLB for the target PCID. 1209 */ 1210 if (unlikely(tdp_enabled)) { 1211 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1212 return; 1213 } 1214 1215 /* 1216 * If neither the current CR3 nor any of the prev_roots use the given 1217 * PCID, then nothing needs to be done here because a resync will 1218 * happen anyway before switching to any other CR3. 1219 */ 1220 if (kvm_get_active_pcid(vcpu) == pcid) { 1221 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1222 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1223 } 1224 1225 /* 1226 * If PCID is disabled, there is no need to free prev_roots even if the 1227 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1228 * with PCIDE=0. 1229 */ 1230 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1231 return; 1232 1233 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1234 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1235 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1236 1237 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1238 } 1239 1240 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1241 { 1242 bool skip_tlb_flush = false; 1243 unsigned long pcid = 0; 1244 #ifdef CONFIG_X86_64 1245 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1246 1247 if (pcid_enabled) { 1248 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1249 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1250 pcid = cr3 & X86_CR3_PCID_MASK; 1251 } 1252 #endif 1253 1254 /* PDPTRs are always reloaded for PAE paging. */ 1255 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1256 goto handle_tlb_flush; 1257 1258 /* 1259 * Do not condition the GPA check on long mode, this helper is used to 1260 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1261 * the current vCPU mode is accurate. 1262 */ 1263 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1264 return 1; 1265 1266 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1267 return 1; 1268 1269 if (cr3 != kvm_read_cr3(vcpu)) 1270 kvm_mmu_new_pgd(vcpu, cr3); 1271 1272 vcpu->arch.cr3 = cr3; 1273 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1274 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1275 1276 handle_tlb_flush: 1277 /* 1278 * A load of CR3 that flushes the TLB flushes only the current PCID, 1279 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1280 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1281 * and it's impossible to use a non-zero PCID when PCID is disabled, 1282 * i.e. only PCID=0 can be relevant. 1283 */ 1284 if (!skip_tlb_flush) 1285 kvm_invalidate_pcid(vcpu, pcid); 1286 1287 return 0; 1288 } 1289 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1290 1291 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1292 { 1293 if (cr8 & CR8_RESERVED_BITS) 1294 return 1; 1295 if (lapic_in_kernel(vcpu)) 1296 kvm_lapic_set_tpr(vcpu, cr8); 1297 else 1298 vcpu->arch.cr8 = cr8; 1299 return 0; 1300 } 1301 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1302 1303 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1304 { 1305 if (lapic_in_kernel(vcpu)) 1306 return kvm_lapic_get_cr8(vcpu); 1307 else 1308 return vcpu->arch.cr8; 1309 } 1310 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1311 1312 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1313 { 1314 int i; 1315 1316 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1317 for (i = 0; i < KVM_NR_DB_REGS; i++) 1318 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1319 } 1320 } 1321 1322 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1323 { 1324 unsigned long dr7; 1325 1326 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1327 dr7 = vcpu->arch.guest_debug_dr7; 1328 else 1329 dr7 = vcpu->arch.dr7; 1330 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1331 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1332 if (dr7 & DR7_BP_EN_MASK) 1333 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1334 } 1335 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1336 1337 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1338 { 1339 u64 fixed = DR6_FIXED_1; 1340 1341 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1342 fixed |= DR6_RTM; 1343 1344 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1345 fixed |= DR6_BUS_LOCK; 1346 return fixed; 1347 } 1348 1349 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1350 { 1351 size_t size = ARRAY_SIZE(vcpu->arch.db); 1352 1353 switch (dr) { 1354 case 0 ... 3: 1355 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1356 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1357 vcpu->arch.eff_db[dr] = val; 1358 break; 1359 case 4: 1360 case 6: 1361 if (!kvm_dr6_valid(val)) 1362 return 1; /* #GP */ 1363 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1364 break; 1365 case 5: 1366 default: /* 7 */ 1367 if (!kvm_dr7_valid(val)) 1368 return 1; /* #GP */ 1369 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1370 kvm_update_dr7(vcpu); 1371 break; 1372 } 1373 1374 return 0; 1375 } 1376 EXPORT_SYMBOL_GPL(kvm_set_dr); 1377 1378 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1379 { 1380 size_t size = ARRAY_SIZE(vcpu->arch.db); 1381 1382 switch (dr) { 1383 case 0 ... 3: 1384 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1385 break; 1386 case 4: 1387 case 6: 1388 *val = vcpu->arch.dr6; 1389 break; 1390 case 5: 1391 default: /* 7 */ 1392 *val = vcpu->arch.dr7; 1393 break; 1394 } 1395 } 1396 EXPORT_SYMBOL_GPL(kvm_get_dr); 1397 1398 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1399 { 1400 u32 ecx = kvm_rcx_read(vcpu); 1401 u64 data; 1402 1403 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1404 kvm_inject_gp(vcpu, 0); 1405 return 1; 1406 } 1407 1408 kvm_rax_write(vcpu, (u32)data); 1409 kvm_rdx_write(vcpu, data >> 32); 1410 return kvm_skip_emulated_instruction(vcpu); 1411 } 1412 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1413 1414 /* 1415 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1416 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1417 * 1418 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1419 * extract the supported MSRs from the related const lists. 1420 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1421 * capabilities of the host cpu. This capabilities test skips MSRs that are 1422 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1423 * may depend on host virtualization features rather than host cpu features. 1424 */ 1425 1426 static const u32 msrs_to_save_base[] = { 1427 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1428 MSR_STAR, 1429 #ifdef CONFIG_X86_64 1430 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1431 #endif 1432 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1433 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1434 MSR_IA32_SPEC_CTRL, 1435 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1436 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1437 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1438 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1439 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1440 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1441 MSR_IA32_UMWAIT_CONTROL, 1442 1443 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1444 }; 1445 1446 static const u32 msrs_to_save_pmu[] = { 1447 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1448 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1449 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1450 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1451 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1452 1453 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1454 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1455 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1456 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1457 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1458 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1459 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1460 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1461 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1462 1463 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1464 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1465 1466 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1467 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1468 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1469 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1470 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1471 }; 1472 1473 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1474 ARRAY_SIZE(msrs_to_save_pmu)]; 1475 static unsigned num_msrs_to_save; 1476 1477 static const u32 emulated_msrs_all[] = { 1478 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1479 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1480 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1481 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1482 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1483 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1484 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1485 HV_X64_MSR_RESET, 1486 HV_X64_MSR_VP_INDEX, 1487 HV_X64_MSR_VP_RUNTIME, 1488 HV_X64_MSR_SCONTROL, 1489 HV_X64_MSR_STIMER0_CONFIG, 1490 HV_X64_MSR_VP_ASSIST_PAGE, 1491 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1492 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1493 HV_X64_MSR_SYNDBG_OPTIONS, 1494 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1495 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1496 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1497 1498 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1499 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1500 1501 MSR_IA32_TSC_ADJUST, 1502 MSR_IA32_TSC_DEADLINE, 1503 MSR_IA32_ARCH_CAPABILITIES, 1504 MSR_IA32_PERF_CAPABILITIES, 1505 MSR_IA32_MISC_ENABLE, 1506 MSR_IA32_MCG_STATUS, 1507 MSR_IA32_MCG_CTL, 1508 MSR_IA32_MCG_EXT_CTL, 1509 MSR_IA32_SMBASE, 1510 MSR_SMI_COUNT, 1511 MSR_PLATFORM_INFO, 1512 MSR_MISC_FEATURES_ENABLES, 1513 MSR_AMD64_VIRT_SPEC_CTRL, 1514 MSR_AMD64_TSC_RATIO, 1515 MSR_IA32_POWER_CTL, 1516 MSR_IA32_UCODE_REV, 1517 1518 /* 1519 * The following list leaves out MSRs whose values are determined 1520 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1521 * We always support the "true" VMX control MSRs, even if the host 1522 * processor does not, so I am putting these registers here rather 1523 * than in msrs_to_save_all. 1524 */ 1525 MSR_IA32_VMX_BASIC, 1526 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1527 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1528 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1529 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1530 MSR_IA32_VMX_MISC, 1531 MSR_IA32_VMX_CR0_FIXED0, 1532 MSR_IA32_VMX_CR4_FIXED0, 1533 MSR_IA32_VMX_VMCS_ENUM, 1534 MSR_IA32_VMX_PROCBASED_CTLS2, 1535 MSR_IA32_VMX_EPT_VPID_CAP, 1536 MSR_IA32_VMX_VMFUNC, 1537 1538 MSR_K7_HWCR, 1539 MSR_KVM_POLL_CONTROL, 1540 }; 1541 1542 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1543 static unsigned num_emulated_msrs; 1544 1545 /* 1546 * List of msr numbers which are used to expose MSR-based features that 1547 * can be used by a hypervisor to validate requested CPU features. 1548 */ 1549 static const u32 msr_based_features_all[] = { 1550 MSR_IA32_VMX_BASIC, 1551 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1552 MSR_IA32_VMX_PINBASED_CTLS, 1553 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1554 MSR_IA32_VMX_PROCBASED_CTLS, 1555 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1556 MSR_IA32_VMX_EXIT_CTLS, 1557 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1558 MSR_IA32_VMX_ENTRY_CTLS, 1559 MSR_IA32_VMX_MISC, 1560 MSR_IA32_VMX_CR0_FIXED0, 1561 MSR_IA32_VMX_CR0_FIXED1, 1562 MSR_IA32_VMX_CR4_FIXED0, 1563 MSR_IA32_VMX_CR4_FIXED1, 1564 MSR_IA32_VMX_VMCS_ENUM, 1565 MSR_IA32_VMX_PROCBASED_CTLS2, 1566 MSR_IA32_VMX_EPT_VPID_CAP, 1567 MSR_IA32_VMX_VMFUNC, 1568 1569 MSR_AMD64_DE_CFG, 1570 MSR_IA32_UCODE_REV, 1571 MSR_IA32_ARCH_CAPABILITIES, 1572 MSR_IA32_PERF_CAPABILITIES, 1573 }; 1574 1575 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1576 static unsigned int num_msr_based_features; 1577 1578 /* 1579 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1580 * does not yet virtualize. These include: 1581 * 10 - MISC_PACKAGE_CTRLS 1582 * 11 - ENERGY_FILTERING_CTL 1583 * 12 - DOITM 1584 * 18 - FB_CLEAR_CTRL 1585 * 21 - XAPIC_DISABLE_STATUS 1586 * 23 - OVERCLOCKING_STATUS 1587 */ 1588 1589 #define KVM_SUPPORTED_ARCH_CAP \ 1590 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1591 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1592 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1593 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1594 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1595 1596 static u64 kvm_get_arch_capabilities(void) 1597 { 1598 u64 data = 0; 1599 1600 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1601 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1602 data &= KVM_SUPPORTED_ARCH_CAP; 1603 } 1604 1605 /* 1606 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1607 * the nested hypervisor runs with NX huge pages. If it is not, 1608 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1609 * L1 guests, so it need not worry about its own (L2) guests. 1610 */ 1611 data |= ARCH_CAP_PSCHANGE_MC_NO; 1612 1613 /* 1614 * If we're doing cache flushes (either "always" or "cond") 1615 * we will do one whenever the guest does a vmlaunch/vmresume. 1616 * If an outer hypervisor is doing the cache flush for us 1617 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1618 * capability to the guest too, and if EPT is disabled we're not 1619 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1620 * require a nested hypervisor to do a flush of its own. 1621 */ 1622 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1623 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1624 1625 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1626 data |= ARCH_CAP_RDCL_NO; 1627 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1628 data |= ARCH_CAP_SSB_NO; 1629 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1630 data |= ARCH_CAP_MDS_NO; 1631 1632 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1633 /* 1634 * If RTM=0 because the kernel has disabled TSX, the host might 1635 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1636 * and therefore knows that there cannot be TAA) but keep 1637 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1638 * and we want to allow migrating those guests to tsx=off hosts. 1639 */ 1640 data &= ~ARCH_CAP_TAA_NO; 1641 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1642 data |= ARCH_CAP_TAA_NO; 1643 } else { 1644 /* 1645 * Nothing to do here; we emulate TSX_CTRL if present on the 1646 * host so the guest can choose between disabling TSX or 1647 * using VERW to clear CPU buffers. 1648 */ 1649 } 1650 1651 return data; 1652 } 1653 1654 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1655 { 1656 switch (msr->index) { 1657 case MSR_IA32_ARCH_CAPABILITIES: 1658 msr->data = kvm_get_arch_capabilities(); 1659 break; 1660 case MSR_IA32_PERF_CAPABILITIES: 1661 msr->data = kvm_caps.supported_perf_cap; 1662 break; 1663 case MSR_IA32_UCODE_REV: 1664 rdmsrl_safe(msr->index, &msr->data); 1665 break; 1666 default: 1667 return static_call(kvm_x86_get_msr_feature)(msr); 1668 } 1669 return 0; 1670 } 1671 1672 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1673 { 1674 struct kvm_msr_entry msr; 1675 int r; 1676 1677 msr.index = index; 1678 r = kvm_get_msr_feature(&msr); 1679 1680 if (r == KVM_MSR_RET_INVALID) { 1681 /* Unconditionally clear the output for simplicity */ 1682 *data = 0; 1683 if (kvm_msr_ignored_check(index, 0, false)) 1684 r = 0; 1685 } 1686 1687 if (r) 1688 return r; 1689 1690 *data = msr.data; 1691 1692 return 0; 1693 } 1694 1695 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1696 { 1697 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1698 return false; 1699 1700 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1701 return false; 1702 1703 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1704 return false; 1705 1706 if (efer & (EFER_LME | EFER_LMA) && 1707 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1708 return false; 1709 1710 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1711 return false; 1712 1713 return true; 1714 1715 } 1716 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1717 { 1718 if (efer & efer_reserved_bits) 1719 return false; 1720 1721 return __kvm_valid_efer(vcpu, efer); 1722 } 1723 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1724 1725 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1726 { 1727 u64 old_efer = vcpu->arch.efer; 1728 u64 efer = msr_info->data; 1729 int r; 1730 1731 if (efer & efer_reserved_bits) 1732 return 1; 1733 1734 if (!msr_info->host_initiated) { 1735 if (!__kvm_valid_efer(vcpu, efer)) 1736 return 1; 1737 1738 if (is_paging(vcpu) && 1739 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1740 return 1; 1741 } 1742 1743 efer &= ~EFER_LMA; 1744 efer |= vcpu->arch.efer & EFER_LMA; 1745 1746 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1747 if (r) { 1748 WARN_ON(r > 0); 1749 return r; 1750 } 1751 1752 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1753 kvm_mmu_reset_context(vcpu); 1754 1755 return 0; 1756 } 1757 1758 void kvm_enable_efer_bits(u64 mask) 1759 { 1760 efer_reserved_bits &= ~mask; 1761 } 1762 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1763 1764 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1765 { 1766 struct kvm_x86_msr_filter *msr_filter; 1767 struct msr_bitmap_range *ranges; 1768 struct kvm *kvm = vcpu->kvm; 1769 bool allowed; 1770 int idx; 1771 u32 i; 1772 1773 /* x2APIC MSRs do not support filtering. */ 1774 if (index >= 0x800 && index <= 0x8ff) 1775 return true; 1776 1777 idx = srcu_read_lock(&kvm->srcu); 1778 1779 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1780 if (!msr_filter) { 1781 allowed = true; 1782 goto out; 1783 } 1784 1785 allowed = msr_filter->default_allow; 1786 ranges = msr_filter->ranges; 1787 1788 for (i = 0; i < msr_filter->count; i++) { 1789 u32 start = ranges[i].base; 1790 u32 end = start + ranges[i].nmsrs; 1791 u32 flags = ranges[i].flags; 1792 unsigned long *bitmap = ranges[i].bitmap; 1793 1794 if ((index >= start) && (index < end) && (flags & type)) { 1795 allowed = !!test_bit(index - start, bitmap); 1796 break; 1797 } 1798 } 1799 1800 out: 1801 srcu_read_unlock(&kvm->srcu, idx); 1802 1803 return allowed; 1804 } 1805 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1806 1807 /* 1808 * Write @data into the MSR specified by @index. Select MSR specific fault 1809 * checks are bypassed if @host_initiated is %true. 1810 * Returns 0 on success, non-0 otherwise. 1811 * Assumes vcpu_load() was already called. 1812 */ 1813 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1814 bool host_initiated) 1815 { 1816 struct msr_data msr; 1817 1818 switch (index) { 1819 case MSR_FS_BASE: 1820 case MSR_GS_BASE: 1821 case MSR_KERNEL_GS_BASE: 1822 case MSR_CSTAR: 1823 case MSR_LSTAR: 1824 if (is_noncanonical_address(data, vcpu)) 1825 return 1; 1826 break; 1827 case MSR_IA32_SYSENTER_EIP: 1828 case MSR_IA32_SYSENTER_ESP: 1829 /* 1830 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1831 * non-canonical address is written on Intel but not on 1832 * AMD (which ignores the top 32-bits, because it does 1833 * not implement 64-bit SYSENTER). 1834 * 1835 * 64-bit code should hence be able to write a non-canonical 1836 * value on AMD. Making the address canonical ensures that 1837 * vmentry does not fail on Intel after writing a non-canonical 1838 * value, and that something deterministic happens if the guest 1839 * invokes 64-bit SYSENTER. 1840 */ 1841 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1842 break; 1843 case MSR_TSC_AUX: 1844 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1845 return 1; 1846 1847 if (!host_initiated && 1848 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1849 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1850 return 1; 1851 1852 /* 1853 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1854 * incomplete and conflicting architectural behavior. Current 1855 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1856 * reserved and always read as zeros. Enforce Intel's reserved 1857 * bits check if and only if the guest CPU is Intel, and clear 1858 * the bits in all other cases. This ensures cross-vendor 1859 * migration will provide consistent behavior for the guest. 1860 */ 1861 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1862 return 1; 1863 1864 data = (u32)data; 1865 break; 1866 } 1867 1868 msr.data = data; 1869 msr.index = index; 1870 msr.host_initiated = host_initiated; 1871 1872 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1873 } 1874 1875 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1876 u32 index, u64 data, bool host_initiated) 1877 { 1878 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1879 1880 if (ret == KVM_MSR_RET_INVALID) 1881 if (kvm_msr_ignored_check(index, data, true)) 1882 ret = 0; 1883 1884 return ret; 1885 } 1886 1887 /* 1888 * Read the MSR specified by @index into @data. Select MSR specific fault 1889 * checks are bypassed if @host_initiated is %true. 1890 * Returns 0 on success, non-0 otherwise. 1891 * Assumes vcpu_load() was already called. 1892 */ 1893 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1894 bool host_initiated) 1895 { 1896 struct msr_data msr; 1897 int ret; 1898 1899 switch (index) { 1900 case MSR_TSC_AUX: 1901 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1902 return 1; 1903 1904 if (!host_initiated && 1905 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1906 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1907 return 1; 1908 break; 1909 } 1910 1911 msr.index = index; 1912 msr.host_initiated = host_initiated; 1913 1914 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1915 if (!ret) 1916 *data = msr.data; 1917 return ret; 1918 } 1919 1920 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1921 u32 index, u64 *data, bool host_initiated) 1922 { 1923 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1924 1925 if (ret == KVM_MSR_RET_INVALID) { 1926 /* Unconditionally clear *data for simplicity */ 1927 *data = 0; 1928 if (kvm_msr_ignored_check(index, 0, false)) 1929 ret = 0; 1930 } 1931 1932 return ret; 1933 } 1934 1935 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1936 { 1937 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1938 return KVM_MSR_RET_FILTERED; 1939 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1940 } 1941 1942 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1943 { 1944 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1945 return KVM_MSR_RET_FILTERED; 1946 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1947 } 1948 1949 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1950 { 1951 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1952 } 1953 EXPORT_SYMBOL_GPL(kvm_get_msr); 1954 1955 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1956 { 1957 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1958 } 1959 EXPORT_SYMBOL_GPL(kvm_set_msr); 1960 1961 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1962 { 1963 if (!vcpu->run->msr.error) { 1964 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1965 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1966 } 1967 } 1968 1969 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1970 { 1971 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1972 } 1973 1974 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1975 { 1976 complete_userspace_rdmsr(vcpu); 1977 return complete_emulated_msr_access(vcpu); 1978 } 1979 1980 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1981 { 1982 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1983 } 1984 1985 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1986 { 1987 complete_userspace_rdmsr(vcpu); 1988 return complete_fast_msr_access(vcpu); 1989 } 1990 1991 static u64 kvm_msr_reason(int r) 1992 { 1993 switch (r) { 1994 case KVM_MSR_RET_INVALID: 1995 return KVM_MSR_EXIT_REASON_UNKNOWN; 1996 case KVM_MSR_RET_FILTERED: 1997 return KVM_MSR_EXIT_REASON_FILTER; 1998 default: 1999 return KVM_MSR_EXIT_REASON_INVAL; 2000 } 2001 } 2002 2003 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2004 u32 exit_reason, u64 data, 2005 int (*completion)(struct kvm_vcpu *vcpu), 2006 int r) 2007 { 2008 u64 msr_reason = kvm_msr_reason(r); 2009 2010 /* Check if the user wanted to know about this MSR fault */ 2011 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2012 return 0; 2013 2014 vcpu->run->exit_reason = exit_reason; 2015 vcpu->run->msr.error = 0; 2016 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2017 vcpu->run->msr.reason = msr_reason; 2018 vcpu->run->msr.index = index; 2019 vcpu->run->msr.data = data; 2020 vcpu->arch.complete_userspace_io = completion; 2021 2022 return 1; 2023 } 2024 2025 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2026 { 2027 u32 ecx = kvm_rcx_read(vcpu); 2028 u64 data; 2029 int r; 2030 2031 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2032 2033 if (!r) { 2034 trace_kvm_msr_read(ecx, data); 2035 2036 kvm_rax_write(vcpu, data & -1u); 2037 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2038 } else { 2039 /* MSR read failed? See if we should ask user space */ 2040 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2041 complete_fast_rdmsr, r)) 2042 return 0; 2043 trace_kvm_msr_read_ex(ecx); 2044 } 2045 2046 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2047 } 2048 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2049 2050 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2051 { 2052 u32 ecx = kvm_rcx_read(vcpu); 2053 u64 data = kvm_read_edx_eax(vcpu); 2054 int r; 2055 2056 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2057 2058 if (!r) { 2059 trace_kvm_msr_write(ecx, data); 2060 } else { 2061 /* MSR write failed? See if we should ask user space */ 2062 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2063 complete_fast_msr_access, r)) 2064 return 0; 2065 /* Signal all other negative errors to userspace */ 2066 if (r < 0) 2067 return r; 2068 trace_kvm_msr_write_ex(ecx, data); 2069 } 2070 2071 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2072 } 2073 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2074 2075 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2076 { 2077 return kvm_skip_emulated_instruction(vcpu); 2078 } 2079 2080 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2081 { 2082 /* Treat an INVD instruction as a NOP and just skip it. */ 2083 return kvm_emulate_as_nop(vcpu); 2084 } 2085 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2086 2087 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2088 { 2089 kvm_queue_exception(vcpu, UD_VECTOR); 2090 return 1; 2091 } 2092 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2093 2094 2095 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2096 { 2097 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2098 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2099 return kvm_handle_invalid_op(vcpu); 2100 2101 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2102 return kvm_emulate_as_nop(vcpu); 2103 } 2104 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2105 { 2106 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2107 } 2108 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2109 2110 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2111 { 2112 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2113 } 2114 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2115 2116 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2117 { 2118 xfer_to_guest_mode_prepare(); 2119 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2120 xfer_to_guest_mode_work_pending(); 2121 } 2122 2123 /* 2124 * The fast path for frequent and performance sensitive wrmsr emulation, 2125 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2126 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2127 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2128 * other cases which must be called after interrupts are enabled on the host. 2129 */ 2130 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2131 { 2132 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2133 return 1; 2134 2135 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2136 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2137 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2138 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2139 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2140 2141 return 1; 2142 } 2143 2144 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2145 { 2146 if (!kvm_can_use_hv_timer(vcpu)) 2147 return 1; 2148 2149 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2150 return 0; 2151 } 2152 2153 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2154 { 2155 u32 msr = kvm_rcx_read(vcpu); 2156 u64 data; 2157 fastpath_t ret = EXIT_FASTPATH_NONE; 2158 2159 switch (msr) { 2160 case APIC_BASE_MSR + (APIC_ICR >> 4): 2161 data = kvm_read_edx_eax(vcpu); 2162 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2163 kvm_skip_emulated_instruction(vcpu); 2164 ret = EXIT_FASTPATH_EXIT_HANDLED; 2165 } 2166 break; 2167 case MSR_IA32_TSC_DEADLINE: 2168 data = kvm_read_edx_eax(vcpu); 2169 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2170 kvm_skip_emulated_instruction(vcpu); 2171 ret = EXIT_FASTPATH_REENTER_GUEST; 2172 } 2173 break; 2174 default: 2175 break; 2176 } 2177 2178 if (ret != EXIT_FASTPATH_NONE) 2179 trace_kvm_msr_write(msr, data); 2180 2181 return ret; 2182 } 2183 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2184 2185 /* 2186 * Adapt set_msr() to msr_io()'s calling convention 2187 */ 2188 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2189 { 2190 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2191 } 2192 2193 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2194 { 2195 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2196 } 2197 2198 #ifdef CONFIG_X86_64 2199 struct pvclock_clock { 2200 int vclock_mode; 2201 u64 cycle_last; 2202 u64 mask; 2203 u32 mult; 2204 u32 shift; 2205 u64 base_cycles; 2206 u64 offset; 2207 }; 2208 2209 struct pvclock_gtod_data { 2210 seqcount_t seq; 2211 2212 struct pvclock_clock clock; /* extract of a clocksource struct */ 2213 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2214 2215 ktime_t offs_boot; 2216 u64 wall_time_sec; 2217 }; 2218 2219 static struct pvclock_gtod_data pvclock_gtod_data; 2220 2221 static void update_pvclock_gtod(struct timekeeper *tk) 2222 { 2223 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2224 2225 write_seqcount_begin(&vdata->seq); 2226 2227 /* copy pvclock gtod data */ 2228 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2229 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2230 vdata->clock.mask = tk->tkr_mono.mask; 2231 vdata->clock.mult = tk->tkr_mono.mult; 2232 vdata->clock.shift = tk->tkr_mono.shift; 2233 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2234 vdata->clock.offset = tk->tkr_mono.base; 2235 2236 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2237 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2238 vdata->raw_clock.mask = tk->tkr_raw.mask; 2239 vdata->raw_clock.mult = tk->tkr_raw.mult; 2240 vdata->raw_clock.shift = tk->tkr_raw.shift; 2241 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2242 vdata->raw_clock.offset = tk->tkr_raw.base; 2243 2244 vdata->wall_time_sec = tk->xtime_sec; 2245 2246 vdata->offs_boot = tk->offs_boot; 2247 2248 write_seqcount_end(&vdata->seq); 2249 } 2250 2251 static s64 get_kvmclock_base_ns(void) 2252 { 2253 /* Count up from boot time, but with the frequency of the raw clock. */ 2254 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2255 } 2256 #else 2257 static s64 get_kvmclock_base_ns(void) 2258 { 2259 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2260 return ktime_get_boottime_ns(); 2261 } 2262 #endif 2263 2264 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2265 { 2266 int version; 2267 int r; 2268 struct pvclock_wall_clock wc; 2269 u32 wc_sec_hi; 2270 u64 wall_nsec; 2271 2272 if (!wall_clock) 2273 return; 2274 2275 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2276 if (r) 2277 return; 2278 2279 if (version & 1) 2280 ++version; /* first time write, random junk */ 2281 2282 ++version; 2283 2284 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2285 return; 2286 2287 /* 2288 * The guest calculates current wall clock time by adding 2289 * system time (updated by kvm_guest_time_update below) to the 2290 * wall clock specified here. We do the reverse here. 2291 */ 2292 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2293 2294 wc.nsec = do_div(wall_nsec, 1000000000); 2295 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2296 wc.version = version; 2297 2298 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2299 2300 if (sec_hi_ofs) { 2301 wc_sec_hi = wall_nsec >> 32; 2302 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2303 &wc_sec_hi, sizeof(wc_sec_hi)); 2304 } 2305 2306 version++; 2307 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2308 } 2309 2310 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2311 bool old_msr, bool host_initiated) 2312 { 2313 struct kvm_arch *ka = &vcpu->kvm->arch; 2314 2315 if (vcpu->vcpu_id == 0 && !host_initiated) { 2316 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2317 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2318 2319 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2320 } 2321 2322 vcpu->arch.time = system_time; 2323 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2324 2325 /* we verify if the enable bit is set... */ 2326 if (system_time & 1) 2327 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2328 sizeof(struct pvclock_vcpu_time_info)); 2329 else 2330 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2331 2332 return; 2333 } 2334 2335 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2336 { 2337 do_shl32_div32(dividend, divisor); 2338 return dividend; 2339 } 2340 2341 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2342 s8 *pshift, u32 *pmultiplier) 2343 { 2344 uint64_t scaled64; 2345 int32_t shift = 0; 2346 uint64_t tps64; 2347 uint32_t tps32; 2348 2349 tps64 = base_hz; 2350 scaled64 = scaled_hz; 2351 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2352 tps64 >>= 1; 2353 shift--; 2354 } 2355 2356 tps32 = (uint32_t)tps64; 2357 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2358 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2359 scaled64 >>= 1; 2360 else 2361 tps32 <<= 1; 2362 shift++; 2363 } 2364 2365 *pshift = shift; 2366 *pmultiplier = div_frac(scaled64, tps32); 2367 } 2368 2369 #ifdef CONFIG_X86_64 2370 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2371 #endif 2372 2373 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2374 static unsigned long max_tsc_khz; 2375 2376 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2377 { 2378 u64 v = (u64)khz * (1000000 + ppm); 2379 do_div(v, 1000000); 2380 return v; 2381 } 2382 2383 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2384 2385 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2386 { 2387 u64 ratio; 2388 2389 /* Guest TSC same frequency as host TSC? */ 2390 if (!scale) { 2391 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2392 return 0; 2393 } 2394 2395 /* TSC scaling supported? */ 2396 if (!kvm_caps.has_tsc_control) { 2397 if (user_tsc_khz > tsc_khz) { 2398 vcpu->arch.tsc_catchup = 1; 2399 vcpu->arch.tsc_always_catchup = 1; 2400 return 0; 2401 } else { 2402 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2403 return -1; 2404 } 2405 } 2406 2407 /* TSC scaling required - calculate ratio */ 2408 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2409 user_tsc_khz, tsc_khz); 2410 2411 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2412 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2413 user_tsc_khz); 2414 return -1; 2415 } 2416 2417 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2418 return 0; 2419 } 2420 2421 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2422 { 2423 u32 thresh_lo, thresh_hi; 2424 int use_scaling = 0; 2425 2426 /* tsc_khz can be zero if TSC calibration fails */ 2427 if (user_tsc_khz == 0) { 2428 /* set tsc_scaling_ratio to a safe value */ 2429 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2430 return -1; 2431 } 2432 2433 /* Compute a scale to convert nanoseconds in TSC cycles */ 2434 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2435 &vcpu->arch.virtual_tsc_shift, 2436 &vcpu->arch.virtual_tsc_mult); 2437 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2438 2439 /* 2440 * Compute the variation in TSC rate which is acceptable 2441 * within the range of tolerance and decide if the 2442 * rate being applied is within that bounds of the hardware 2443 * rate. If so, no scaling or compensation need be done. 2444 */ 2445 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2446 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2447 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2448 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2449 user_tsc_khz, thresh_lo, thresh_hi); 2450 use_scaling = 1; 2451 } 2452 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2453 } 2454 2455 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2456 { 2457 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2458 vcpu->arch.virtual_tsc_mult, 2459 vcpu->arch.virtual_tsc_shift); 2460 tsc += vcpu->arch.this_tsc_write; 2461 return tsc; 2462 } 2463 2464 #ifdef CONFIG_X86_64 2465 static inline int gtod_is_based_on_tsc(int mode) 2466 { 2467 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2468 } 2469 #endif 2470 2471 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2472 { 2473 #ifdef CONFIG_X86_64 2474 bool vcpus_matched; 2475 struct kvm_arch *ka = &vcpu->kvm->arch; 2476 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2477 2478 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2479 atomic_read(&vcpu->kvm->online_vcpus)); 2480 2481 /* 2482 * Once the masterclock is enabled, always perform request in 2483 * order to update it. 2484 * 2485 * In order to enable masterclock, the host clocksource must be TSC 2486 * and the vcpus need to have matched TSCs. When that happens, 2487 * perform request to enable masterclock. 2488 */ 2489 if (ka->use_master_clock || 2490 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2491 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2492 2493 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2494 atomic_read(&vcpu->kvm->online_vcpus), 2495 ka->use_master_clock, gtod->clock.vclock_mode); 2496 #endif 2497 } 2498 2499 /* 2500 * Multiply tsc by a fixed point number represented by ratio. 2501 * 2502 * The most significant 64-N bits (mult) of ratio represent the 2503 * integral part of the fixed point number; the remaining N bits 2504 * (frac) represent the fractional part, ie. ratio represents a fixed 2505 * point number (mult + frac * 2^(-N)). 2506 * 2507 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2508 */ 2509 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2510 { 2511 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2512 } 2513 2514 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2515 { 2516 u64 _tsc = tsc; 2517 2518 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2519 _tsc = __scale_tsc(ratio, tsc); 2520 2521 return _tsc; 2522 } 2523 2524 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2525 { 2526 u64 tsc; 2527 2528 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2529 2530 return target_tsc - tsc; 2531 } 2532 2533 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2534 { 2535 return vcpu->arch.l1_tsc_offset + 2536 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2537 } 2538 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2539 2540 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2541 { 2542 u64 nested_offset; 2543 2544 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2545 nested_offset = l1_offset; 2546 else 2547 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2548 kvm_caps.tsc_scaling_ratio_frac_bits); 2549 2550 nested_offset += l2_offset; 2551 return nested_offset; 2552 } 2553 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2554 2555 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2556 { 2557 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2558 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2559 kvm_caps.tsc_scaling_ratio_frac_bits); 2560 2561 return l1_multiplier; 2562 } 2563 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2564 2565 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2566 { 2567 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2568 vcpu->arch.l1_tsc_offset, 2569 l1_offset); 2570 2571 vcpu->arch.l1_tsc_offset = l1_offset; 2572 2573 /* 2574 * If we are here because L1 chose not to trap WRMSR to TSC then 2575 * according to the spec this should set L1's TSC (as opposed to 2576 * setting L1's offset for L2). 2577 */ 2578 if (is_guest_mode(vcpu)) 2579 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2580 l1_offset, 2581 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2582 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2583 else 2584 vcpu->arch.tsc_offset = l1_offset; 2585 2586 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2587 } 2588 2589 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2590 { 2591 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2592 2593 /* Userspace is changing the multiplier while L2 is active */ 2594 if (is_guest_mode(vcpu)) 2595 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2596 l1_multiplier, 2597 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2598 else 2599 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2600 2601 if (kvm_caps.has_tsc_control) 2602 static_call(kvm_x86_write_tsc_multiplier)( 2603 vcpu, vcpu->arch.tsc_scaling_ratio); 2604 } 2605 2606 static inline bool kvm_check_tsc_unstable(void) 2607 { 2608 #ifdef CONFIG_X86_64 2609 /* 2610 * TSC is marked unstable when we're running on Hyper-V, 2611 * 'TSC page' clocksource is good. 2612 */ 2613 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2614 return false; 2615 #endif 2616 return check_tsc_unstable(); 2617 } 2618 2619 /* 2620 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2621 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2622 * participates in. 2623 */ 2624 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2625 u64 ns, bool matched) 2626 { 2627 struct kvm *kvm = vcpu->kvm; 2628 2629 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2630 2631 /* 2632 * We also track th most recent recorded KHZ, write and time to 2633 * allow the matching interval to be extended at each write. 2634 */ 2635 kvm->arch.last_tsc_nsec = ns; 2636 kvm->arch.last_tsc_write = tsc; 2637 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2638 kvm->arch.last_tsc_offset = offset; 2639 2640 vcpu->arch.last_guest_tsc = tsc; 2641 2642 kvm_vcpu_write_tsc_offset(vcpu, offset); 2643 2644 if (!matched) { 2645 /* 2646 * We split periods of matched TSC writes into generations. 2647 * For each generation, we track the original measured 2648 * nanosecond time, offset, and write, so if TSCs are in 2649 * sync, we can match exact offset, and if not, we can match 2650 * exact software computation in compute_guest_tsc() 2651 * 2652 * These values are tracked in kvm->arch.cur_xxx variables. 2653 */ 2654 kvm->arch.cur_tsc_generation++; 2655 kvm->arch.cur_tsc_nsec = ns; 2656 kvm->arch.cur_tsc_write = tsc; 2657 kvm->arch.cur_tsc_offset = offset; 2658 kvm->arch.nr_vcpus_matched_tsc = 0; 2659 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2660 kvm->arch.nr_vcpus_matched_tsc++; 2661 } 2662 2663 /* Keep track of which generation this VCPU has synchronized to */ 2664 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2665 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2666 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2667 2668 kvm_track_tsc_matching(vcpu); 2669 } 2670 2671 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2672 { 2673 struct kvm *kvm = vcpu->kvm; 2674 u64 offset, ns, elapsed; 2675 unsigned long flags; 2676 bool matched = false; 2677 bool synchronizing = false; 2678 2679 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2680 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2681 ns = get_kvmclock_base_ns(); 2682 elapsed = ns - kvm->arch.last_tsc_nsec; 2683 2684 if (vcpu->arch.virtual_tsc_khz) { 2685 if (data == 0) { 2686 /* 2687 * detection of vcpu initialization -- need to sync 2688 * with other vCPUs. This particularly helps to keep 2689 * kvm_clock stable after CPU hotplug 2690 */ 2691 synchronizing = true; 2692 } else { 2693 u64 tsc_exp = kvm->arch.last_tsc_write + 2694 nsec_to_cycles(vcpu, elapsed); 2695 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2696 /* 2697 * Special case: TSC write with a small delta (1 second) 2698 * of virtual cycle time against real time is 2699 * interpreted as an attempt to synchronize the CPU. 2700 */ 2701 synchronizing = data < tsc_exp + tsc_hz && 2702 data + tsc_hz > tsc_exp; 2703 } 2704 } 2705 2706 /* 2707 * For a reliable TSC, we can match TSC offsets, and for an unstable 2708 * TSC, we add elapsed time in this computation. We could let the 2709 * compensation code attempt to catch up if we fall behind, but 2710 * it's better to try to match offsets from the beginning. 2711 */ 2712 if (synchronizing && 2713 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2714 if (!kvm_check_tsc_unstable()) { 2715 offset = kvm->arch.cur_tsc_offset; 2716 } else { 2717 u64 delta = nsec_to_cycles(vcpu, elapsed); 2718 data += delta; 2719 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2720 } 2721 matched = true; 2722 } 2723 2724 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2725 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2726 } 2727 2728 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2729 s64 adjustment) 2730 { 2731 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2732 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2733 } 2734 2735 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2736 { 2737 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2738 WARN_ON(adjustment < 0); 2739 adjustment = kvm_scale_tsc((u64) adjustment, 2740 vcpu->arch.l1_tsc_scaling_ratio); 2741 adjust_tsc_offset_guest(vcpu, adjustment); 2742 } 2743 2744 #ifdef CONFIG_X86_64 2745 2746 static u64 read_tsc(void) 2747 { 2748 u64 ret = (u64)rdtsc_ordered(); 2749 u64 last = pvclock_gtod_data.clock.cycle_last; 2750 2751 if (likely(ret >= last)) 2752 return ret; 2753 2754 /* 2755 * GCC likes to generate cmov here, but this branch is extremely 2756 * predictable (it's just a function of time and the likely is 2757 * very likely) and there's a data dependence, so force GCC 2758 * to generate a branch instead. I don't barrier() because 2759 * we don't actually need a barrier, and if this function 2760 * ever gets inlined it will generate worse code. 2761 */ 2762 asm volatile (""); 2763 return last; 2764 } 2765 2766 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2767 int *mode) 2768 { 2769 long v; 2770 u64 tsc_pg_val; 2771 2772 switch (clock->vclock_mode) { 2773 case VDSO_CLOCKMODE_HVCLOCK: 2774 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2775 tsc_timestamp); 2776 if (tsc_pg_val != U64_MAX) { 2777 /* TSC page valid */ 2778 *mode = VDSO_CLOCKMODE_HVCLOCK; 2779 v = (tsc_pg_val - clock->cycle_last) & 2780 clock->mask; 2781 } else { 2782 /* TSC page invalid */ 2783 *mode = VDSO_CLOCKMODE_NONE; 2784 } 2785 break; 2786 case VDSO_CLOCKMODE_TSC: 2787 *mode = VDSO_CLOCKMODE_TSC; 2788 *tsc_timestamp = read_tsc(); 2789 v = (*tsc_timestamp - clock->cycle_last) & 2790 clock->mask; 2791 break; 2792 default: 2793 *mode = VDSO_CLOCKMODE_NONE; 2794 } 2795 2796 if (*mode == VDSO_CLOCKMODE_NONE) 2797 *tsc_timestamp = v = 0; 2798 2799 return v * clock->mult; 2800 } 2801 2802 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2803 { 2804 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2805 unsigned long seq; 2806 int mode; 2807 u64 ns; 2808 2809 do { 2810 seq = read_seqcount_begin(>od->seq); 2811 ns = gtod->raw_clock.base_cycles; 2812 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2813 ns >>= gtod->raw_clock.shift; 2814 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2815 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2816 *t = ns; 2817 2818 return mode; 2819 } 2820 2821 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2822 { 2823 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2824 unsigned long seq; 2825 int mode; 2826 u64 ns; 2827 2828 do { 2829 seq = read_seqcount_begin(>od->seq); 2830 ts->tv_sec = gtod->wall_time_sec; 2831 ns = gtod->clock.base_cycles; 2832 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2833 ns >>= gtod->clock.shift; 2834 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2835 2836 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2837 ts->tv_nsec = ns; 2838 2839 return mode; 2840 } 2841 2842 /* returns true if host is using TSC based clocksource */ 2843 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2844 { 2845 /* checked again under seqlock below */ 2846 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2847 return false; 2848 2849 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2850 tsc_timestamp)); 2851 } 2852 2853 /* returns true if host is using TSC based clocksource */ 2854 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2855 u64 *tsc_timestamp) 2856 { 2857 /* checked again under seqlock below */ 2858 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2859 return false; 2860 2861 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2862 } 2863 #endif 2864 2865 /* 2866 * 2867 * Assuming a stable TSC across physical CPUS, and a stable TSC 2868 * across virtual CPUs, the following condition is possible. 2869 * Each numbered line represents an event visible to both 2870 * CPUs at the next numbered event. 2871 * 2872 * "timespecX" represents host monotonic time. "tscX" represents 2873 * RDTSC value. 2874 * 2875 * VCPU0 on CPU0 | VCPU1 on CPU1 2876 * 2877 * 1. read timespec0,tsc0 2878 * 2. | timespec1 = timespec0 + N 2879 * | tsc1 = tsc0 + M 2880 * 3. transition to guest | transition to guest 2881 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2882 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2883 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2884 * 2885 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2886 * 2887 * - ret0 < ret1 2888 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2889 * ... 2890 * - 0 < N - M => M < N 2891 * 2892 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2893 * always the case (the difference between two distinct xtime instances 2894 * might be smaller then the difference between corresponding TSC reads, 2895 * when updating guest vcpus pvclock areas). 2896 * 2897 * To avoid that problem, do not allow visibility of distinct 2898 * system_timestamp/tsc_timestamp values simultaneously: use a master 2899 * copy of host monotonic time values. Update that master copy 2900 * in lockstep. 2901 * 2902 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2903 * 2904 */ 2905 2906 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2907 { 2908 #ifdef CONFIG_X86_64 2909 struct kvm_arch *ka = &kvm->arch; 2910 int vclock_mode; 2911 bool host_tsc_clocksource, vcpus_matched; 2912 2913 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2914 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2915 atomic_read(&kvm->online_vcpus)); 2916 2917 /* 2918 * If the host uses TSC clock, then passthrough TSC as stable 2919 * to the guest. 2920 */ 2921 host_tsc_clocksource = kvm_get_time_and_clockread( 2922 &ka->master_kernel_ns, 2923 &ka->master_cycle_now); 2924 2925 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2926 && !ka->backwards_tsc_observed 2927 && !ka->boot_vcpu_runs_old_kvmclock; 2928 2929 if (ka->use_master_clock) 2930 atomic_set(&kvm_guest_has_master_clock, 1); 2931 2932 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2933 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2934 vcpus_matched); 2935 #endif 2936 } 2937 2938 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2939 { 2940 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2941 } 2942 2943 static void __kvm_start_pvclock_update(struct kvm *kvm) 2944 { 2945 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2946 write_seqcount_begin(&kvm->arch.pvclock_sc); 2947 } 2948 2949 static void kvm_start_pvclock_update(struct kvm *kvm) 2950 { 2951 kvm_make_mclock_inprogress_request(kvm); 2952 2953 /* no guest entries from this point */ 2954 __kvm_start_pvclock_update(kvm); 2955 } 2956 2957 static void kvm_end_pvclock_update(struct kvm *kvm) 2958 { 2959 struct kvm_arch *ka = &kvm->arch; 2960 struct kvm_vcpu *vcpu; 2961 unsigned long i; 2962 2963 write_seqcount_end(&ka->pvclock_sc); 2964 raw_spin_unlock_irq(&ka->tsc_write_lock); 2965 kvm_for_each_vcpu(i, vcpu, kvm) 2966 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2967 2968 /* guest entries allowed */ 2969 kvm_for_each_vcpu(i, vcpu, kvm) 2970 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2971 } 2972 2973 static void kvm_update_masterclock(struct kvm *kvm) 2974 { 2975 kvm_hv_request_tsc_page_update(kvm); 2976 kvm_start_pvclock_update(kvm); 2977 pvclock_update_vm_gtod_copy(kvm); 2978 kvm_end_pvclock_update(kvm); 2979 } 2980 2981 /* 2982 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 2983 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 2984 * can change during boot even if the TSC is constant, as it's possible for KVM 2985 * to be loaded before TSC calibration completes. Ideally, KVM would get a 2986 * notification when calibration completes, but practically speaking calibration 2987 * will complete before userspace is alive enough to create VMs. 2988 */ 2989 static unsigned long get_cpu_tsc_khz(void) 2990 { 2991 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 2992 return tsc_khz; 2993 else 2994 return __this_cpu_read(cpu_tsc_khz); 2995 } 2996 2997 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2998 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2999 { 3000 struct kvm_arch *ka = &kvm->arch; 3001 struct pvclock_vcpu_time_info hv_clock; 3002 3003 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3004 get_cpu(); 3005 3006 data->flags = 0; 3007 if (ka->use_master_clock && 3008 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3009 #ifdef CONFIG_X86_64 3010 struct timespec64 ts; 3011 3012 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3013 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3014 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3015 } else 3016 #endif 3017 data->host_tsc = rdtsc(); 3018 3019 data->flags |= KVM_CLOCK_TSC_STABLE; 3020 hv_clock.tsc_timestamp = ka->master_cycle_now; 3021 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3022 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3023 &hv_clock.tsc_shift, 3024 &hv_clock.tsc_to_system_mul); 3025 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3026 } else { 3027 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3028 } 3029 3030 put_cpu(); 3031 } 3032 3033 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3034 { 3035 struct kvm_arch *ka = &kvm->arch; 3036 unsigned seq; 3037 3038 do { 3039 seq = read_seqcount_begin(&ka->pvclock_sc); 3040 __get_kvmclock(kvm, data); 3041 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3042 } 3043 3044 u64 get_kvmclock_ns(struct kvm *kvm) 3045 { 3046 struct kvm_clock_data data; 3047 3048 get_kvmclock(kvm, &data); 3049 return data.clock; 3050 } 3051 3052 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3053 struct gfn_to_pfn_cache *gpc, 3054 unsigned int offset) 3055 { 3056 struct kvm_vcpu_arch *vcpu = &v->arch; 3057 struct pvclock_vcpu_time_info *guest_hv_clock; 3058 unsigned long flags; 3059 3060 read_lock_irqsave(&gpc->lock, flags); 3061 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3062 read_unlock_irqrestore(&gpc->lock, flags); 3063 3064 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3065 return; 3066 3067 read_lock_irqsave(&gpc->lock, flags); 3068 } 3069 3070 guest_hv_clock = (void *)(gpc->khva + offset); 3071 3072 /* 3073 * This VCPU is paused, but it's legal for a guest to read another 3074 * VCPU's kvmclock, so we really have to follow the specification where 3075 * it says that version is odd if data is being modified, and even after 3076 * it is consistent. 3077 */ 3078 3079 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3080 smp_wmb(); 3081 3082 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3083 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3084 3085 if (vcpu->pvclock_set_guest_stopped_request) { 3086 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3087 vcpu->pvclock_set_guest_stopped_request = false; 3088 } 3089 3090 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3091 smp_wmb(); 3092 3093 guest_hv_clock->version = ++vcpu->hv_clock.version; 3094 3095 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3096 read_unlock_irqrestore(&gpc->lock, flags); 3097 3098 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3099 } 3100 3101 static int kvm_guest_time_update(struct kvm_vcpu *v) 3102 { 3103 unsigned long flags, tgt_tsc_khz; 3104 unsigned seq; 3105 struct kvm_vcpu_arch *vcpu = &v->arch; 3106 struct kvm_arch *ka = &v->kvm->arch; 3107 s64 kernel_ns; 3108 u64 tsc_timestamp, host_tsc; 3109 u8 pvclock_flags; 3110 bool use_master_clock; 3111 3112 kernel_ns = 0; 3113 host_tsc = 0; 3114 3115 /* 3116 * If the host uses TSC clock, then passthrough TSC as stable 3117 * to the guest. 3118 */ 3119 do { 3120 seq = read_seqcount_begin(&ka->pvclock_sc); 3121 use_master_clock = ka->use_master_clock; 3122 if (use_master_clock) { 3123 host_tsc = ka->master_cycle_now; 3124 kernel_ns = ka->master_kernel_ns; 3125 } 3126 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3127 3128 /* Keep irq disabled to prevent changes to the clock */ 3129 local_irq_save(flags); 3130 tgt_tsc_khz = get_cpu_tsc_khz(); 3131 if (unlikely(tgt_tsc_khz == 0)) { 3132 local_irq_restore(flags); 3133 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3134 return 1; 3135 } 3136 if (!use_master_clock) { 3137 host_tsc = rdtsc(); 3138 kernel_ns = get_kvmclock_base_ns(); 3139 } 3140 3141 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3142 3143 /* 3144 * We may have to catch up the TSC to match elapsed wall clock 3145 * time for two reasons, even if kvmclock is used. 3146 * 1) CPU could have been running below the maximum TSC rate 3147 * 2) Broken TSC compensation resets the base at each VCPU 3148 * entry to avoid unknown leaps of TSC even when running 3149 * again on the same CPU. This may cause apparent elapsed 3150 * time to disappear, and the guest to stand still or run 3151 * very slowly. 3152 */ 3153 if (vcpu->tsc_catchup) { 3154 u64 tsc = compute_guest_tsc(v, kernel_ns); 3155 if (tsc > tsc_timestamp) { 3156 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3157 tsc_timestamp = tsc; 3158 } 3159 } 3160 3161 local_irq_restore(flags); 3162 3163 /* With all the info we got, fill in the values */ 3164 3165 if (kvm_caps.has_tsc_control) 3166 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3167 v->arch.l1_tsc_scaling_ratio); 3168 3169 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3170 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3171 &vcpu->hv_clock.tsc_shift, 3172 &vcpu->hv_clock.tsc_to_system_mul); 3173 vcpu->hw_tsc_khz = tgt_tsc_khz; 3174 kvm_xen_update_tsc_info(v); 3175 } 3176 3177 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3178 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3179 vcpu->last_guest_tsc = tsc_timestamp; 3180 3181 /* If the host uses TSC clocksource, then it is stable */ 3182 pvclock_flags = 0; 3183 if (use_master_clock) 3184 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3185 3186 vcpu->hv_clock.flags = pvclock_flags; 3187 3188 if (vcpu->pv_time.active) 3189 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3190 if (vcpu->xen.vcpu_info_cache.active) 3191 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3192 offsetof(struct compat_vcpu_info, time)); 3193 if (vcpu->xen.vcpu_time_info_cache.active) 3194 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3195 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3196 return 0; 3197 } 3198 3199 /* 3200 * kvmclock updates which are isolated to a given vcpu, such as 3201 * vcpu->cpu migration, should not allow system_timestamp from 3202 * the rest of the vcpus to remain static. Otherwise ntp frequency 3203 * correction applies to one vcpu's system_timestamp but not 3204 * the others. 3205 * 3206 * So in those cases, request a kvmclock update for all vcpus. 3207 * We need to rate-limit these requests though, as they can 3208 * considerably slow guests that have a large number of vcpus. 3209 * The time for a remote vcpu to update its kvmclock is bound 3210 * by the delay we use to rate-limit the updates. 3211 */ 3212 3213 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3214 3215 static void kvmclock_update_fn(struct work_struct *work) 3216 { 3217 unsigned long i; 3218 struct delayed_work *dwork = to_delayed_work(work); 3219 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3220 kvmclock_update_work); 3221 struct kvm *kvm = container_of(ka, struct kvm, arch); 3222 struct kvm_vcpu *vcpu; 3223 3224 kvm_for_each_vcpu(i, vcpu, kvm) { 3225 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3226 kvm_vcpu_kick(vcpu); 3227 } 3228 } 3229 3230 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3231 { 3232 struct kvm *kvm = v->kvm; 3233 3234 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3235 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3236 KVMCLOCK_UPDATE_DELAY); 3237 } 3238 3239 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3240 3241 static void kvmclock_sync_fn(struct work_struct *work) 3242 { 3243 struct delayed_work *dwork = to_delayed_work(work); 3244 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3245 kvmclock_sync_work); 3246 struct kvm *kvm = container_of(ka, struct kvm, arch); 3247 3248 if (!kvmclock_periodic_sync) 3249 return; 3250 3251 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3252 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3253 KVMCLOCK_SYNC_PERIOD); 3254 } 3255 3256 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3257 static bool is_mci_control_msr(u32 msr) 3258 { 3259 return (msr & 3) == 0; 3260 } 3261 static bool is_mci_status_msr(u32 msr) 3262 { 3263 return (msr & 3) == 1; 3264 } 3265 3266 /* 3267 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3268 */ 3269 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3270 { 3271 /* McStatusWrEn enabled? */ 3272 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3273 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3274 3275 return false; 3276 } 3277 3278 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3279 { 3280 u64 mcg_cap = vcpu->arch.mcg_cap; 3281 unsigned bank_num = mcg_cap & 0xff; 3282 u32 msr = msr_info->index; 3283 u64 data = msr_info->data; 3284 u32 offset, last_msr; 3285 3286 switch (msr) { 3287 case MSR_IA32_MCG_STATUS: 3288 vcpu->arch.mcg_status = data; 3289 break; 3290 case MSR_IA32_MCG_CTL: 3291 if (!(mcg_cap & MCG_CTL_P) && 3292 (data || !msr_info->host_initiated)) 3293 return 1; 3294 if (data != 0 && data != ~(u64)0) 3295 return 1; 3296 vcpu->arch.mcg_ctl = data; 3297 break; 3298 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3299 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3300 if (msr > last_msr) 3301 return 1; 3302 3303 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3304 return 1; 3305 /* An attempt to write a 1 to a reserved bit raises #GP */ 3306 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3307 return 1; 3308 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3309 last_msr + 1 - MSR_IA32_MC0_CTL2); 3310 vcpu->arch.mci_ctl2_banks[offset] = data; 3311 break; 3312 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3313 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3314 if (msr > last_msr) 3315 return 1; 3316 3317 /* 3318 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3319 * values are architecturally undefined. But, some Linux 3320 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3321 * issue on AMD K8s, allow bit 10 to be clear when setting all 3322 * other bits in order to avoid an uncaught #GP in the guest. 3323 * 3324 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3325 * single-bit ECC data errors. 3326 */ 3327 if (is_mci_control_msr(msr) && 3328 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3329 return 1; 3330 3331 /* 3332 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3333 * AMD-based CPUs allow non-zero values, but if and only if 3334 * HWCR[McStatusWrEn] is set. 3335 */ 3336 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3337 data != 0 && !can_set_mci_status(vcpu)) 3338 return 1; 3339 3340 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3341 last_msr + 1 - MSR_IA32_MC0_CTL); 3342 vcpu->arch.mce_banks[offset] = data; 3343 break; 3344 default: 3345 return 1; 3346 } 3347 return 0; 3348 } 3349 3350 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3351 { 3352 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3353 3354 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3355 } 3356 3357 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3358 { 3359 gpa_t gpa = data & ~0x3f; 3360 3361 /* Bits 4:5 are reserved, Should be zero */ 3362 if (data & 0x30) 3363 return 1; 3364 3365 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3366 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3367 return 1; 3368 3369 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3370 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3371 return 1; 3372 3373 if (!lapic_in_kernel(vcpu)) 3374 return data ? 1 : 0; 3375 3376 vcpu->arch.apf.msr_en_val = data; 3377 3378 if (!kvm_pv_async_pf_enabled(vcpu)) { 3379 kvm_clear_async_pf_completion_queue(vcpu); 3380 kvm_async_pf_hash_reset(vcpu); 3381 return 0; 3382 } 3383 3384 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3385 sizeof(u64))) 3386 return 1; 3387 3388 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3389 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3390 3391 kvm_async_pf_wakeup_all(vcpu); 3392 3393 return 0; 3394 } 3395 3396 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3397 { 3398 /* Bits 8-63 are reserved */ 3399 if (data >> 8) 3400 return 1; 3401 3402 if (!lapic_in_kernel(vcpu)) 3403 return 1; 3404 3405 vcpu->arch.apf.msr_int_val = data; 3406 3407 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3408 3409 return 0; 3410 } 3411 3412 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3413 { 3414 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3415 vcpu->arch.time = 0; 3416 } 3417 3418 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3419 { 3420 ++vcpu->stat.tlb_flush; 3421 static_call(kvm_x86_flush_tlb_all)(vcpu); 3422 3423 /* Flushing all ASIDs flushes the current ASID... */ 3424 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3425 } 3426 3427 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3428 { 3429 ++vcpu->stat.tlb_flush; 3430 3431 if (!tdp_enabled) { 3432 /* 3433 * A TLB flush on behalf of the guest is equivalent to 3434 * INVPCID(all), toggling CR4.PGE, etc., which requires 3435 * a forced sync of the shadow page tables. Ensure all the 3436 * roots are synced and the guest TLB in hardware is clean. 3437 */ 3438 kvm_mmu_sync_roots(vcpu); 3439 kvm_mmu_sync_prev_roots(vcpu); 3440 } 3441 3442 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3443 3444 /* 3445 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3446 * grained flushing. 3447 */ 3448 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3449 } 3450 3451 3452 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3453 { 3454 ++vcpu->stat.tlb_flush; 3455 static_call(kvm_x86_flush_tlb_current)(vcpu); 3456 } 3457 3458 /* 3459 * Service "local" TLB flush requests, which are specific to the current MMU 3460 * context. In addition to the generic event handling in vcpu_enter_guest(), 3461 * TLB flushes that are targeted at an MMU context also need to be serviced 3462 * prior before nested VM-Enter/VM-Exit. 3463 */ 3464 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3465 { 3466 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3467 kvm_vcpu_flush_tlb_current(vcpu); 3468 3469 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3470 kvm_vcpu_flush_tlb_guest(vcpu); 3471 } 3472 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3473 3474 static void record_steal_time(struct kvm_vcpu *vcpu) 3475 { 3476 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3477 struct kvm_steal_time __user *st; 3478 struct kvm_memslots *slots; 3479 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3480 u64 steal; 3481 u32 version; 3482 3483 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3484 kvm_xen_runstate_set_running(vcpu); 3485 return; 3486 } 3487 3488 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3489 return; 3490 3491 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3492 return; 3493 3494 slots = kvm_memslots(vcpu->kvm); 3495 3496 if (unlikely(slots->generation != ghc->generation || 3497 gpa != ghc->gpa || 3498 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3499 /* We rely on the fact that it fits in a single page. */ 3500 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3501 3502 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3503 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3504 return; 3505 } 3506 3507 st = (struct kvm_steal_time __user *)ghc->hva; 3508 /* 3509 * Doing a TLB flush here, on the guest's behalf, can avoid 3510 * expensive IPIs. 3511 */ 3512 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3513 u8 st_preempted = 0; 3514 int err = -EFAULT; 3515 3516 if (!user_access_begin(st, sizeof(*st))) 3517 return; 3518 3519 asm volatile("1: xchgb %0, %2\n" 3520 "xor %1, %1\n" 3521 "2:\n" 3522 _ASM_EXTABLE_UA(1b, 2b) 3523 : "+q" (st_preempted), 3524 "+&r" (err), 3525 "+m" (st->preempted)); 3526 if (err) 3527 goto out; 3528 3529 user_access_end(); 3530 3531 vcpu->arch.st.preempted = 0; 3532 3533 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3534 st_preempted & KVM_VCPU_FLUSH_TLB); 3535 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3536 kvm_vcpu_flush_tlb_guest(vcpu); 3537 3538 if (!user_access_begin(st, sizeof(*st))) 3539 goto dirty; 3540 } else { 3541 if (!user_access_begin(st, sizeof(*st))) 3542 return; 3543 3544 unsafe_put_user(0, &st->preempted, out); 3545 vcpu->arch.st.preempted = 0; 3546 } 3547 3548 unsafe_get_user(version, &st->version, out); 3549 if (version & 1) 3550 version += 1; /* first time write, random junk */ 3551 3552 version += 1; 3553 unsafe_put_user(version, &st->version, out); 3554 3555 smp_wmb(); 3556 3557 unsafe_get_user(steal, &st->steal, out); 3558 steal += current->sched_info.run_delay - 3559 vcpu->arch.st.last_steal; 3560 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3561 unsafe_put_user(steal, &st->steal, out); 3562 3563 version += 1; 3564 unsafe_put_user(version, &st->version, out); 3565 3566 out: 3567 user_access_end(); 3568 dirty: 3569 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3570 } 3571 3572 static bool kvm_is_msr_to_save(u32 msr_index) 3573 { 3574 unsigned int i; 3575 3576 for (i = 0; i < num_msrs_to_save; i++) { 3577 if (msrs_to_save[i] == msr_index) 3578 return true; 3579 } 3580 3581 return false; 3582 } 3583 3584 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3585 { 3586 u32 msr = msr_info->index; 3587 u64 data = msr_info->data; 3588 3589 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3590 return kvm_xen_write_hypercall_page(vcpu, data); 3591 3592 switch (msr) { 3593 case MSR_AMD64_NB_CFG: 3594 case MSR_IA32_UCODE_WRITE: 3595 case MSR_VM_HSAVE_PA: 3596 case MSR_AMD64_PATCH_LOADER: 3597 case MSR_AMD64_BU_CFG2: 3598 case MSR_AMD64_DC_CFG: 3599 case MSR_F15H_EX_CFG: 3600 break; 3601 3602 case MSR_IA32_UCODE_REV: 3603 if (msr_info->host_initiated) 3604 vcpu->arch.microcode_version = data; 3605 break; 3606 case MSR_IA32_ARCH_CAPABILITIES: 3607 if (!msr_info->host_initiated) 3608 return 1; 3609 vcpu->arch.arch_capabilities = data; 3610 break; 3611 case MSR_IA32_PERF_CAPABILITIES: 3612 if (!msr_info->host_initiated) 3613 return 1; 3614 if (data & ~kvm_caps.supported_perf_cap) 3615 return 1; 3616 3617 vcpu->arch.perf_capabilities = data; 3618 kvm_pmu_refresh(vcpu); 3619 return 0; 3620 case MSR_EFER: 3621 return set_efer(vcpu, msr_info); 3622 case MSR_K7_HWCR: 3623 data &= ~(u64)0x40; /* ignore flush filter disable */ 3624 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3625 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3626 3627 /* Handle McStatusWrEn */ 3628 if (data == BIT_ULL(18)) { 3629 vcpu->arch.msr_hwcr = data; 3630 } else if (data != 0) { 3631 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3632 return 1; 3633 } 3634 break; 3635 case MSR_FAM10H_MMIO_CONF_BASE: 3636 if (data != 0) { 3637 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3638 return 1; 3639 } 3640 break; 3641 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3642 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3643 return kvm_mtrr_set_msr(vcpu, msr, data); 3644 case MSR_IA32_APICBASE: 3645 return kvm_set_apic_base(vcpu, msr_info); 3646 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3647 return kvm_x2apic_msr_write(vcpu, msr, data); 3648 case MSR_IA32_TSC_DEADLINE: 3649 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3650 break; 3651 case MSR_IA32_TSC_ADJUST: 3652 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3653 if (!msr_info->host_initiated) { 3654 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3655 adjust_tsc_offset_guest(vcpu, adj); 3656 /* Before back to guest, tsc_timestamp must be adjusted 3657 * as well, otherwise guest's percpu pvclock time could jump. 3658 */ 3659 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3660 } 3661 vcpu->arch.ia32_tsc_adjust_msr = data; 3662 } 3663 break; 3664 case MSR_IA32_MISC_ENABLE: { 3665 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3666 3667 if (!msr_info->host_initiated) { 3668 /* RO bits */ 3669 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3670 return 1; 3671 3672 /* R bits, i.e. writes are ignored, but don't fault. */ 3673 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3674 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3675 } 3676 3677 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3678 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3679 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3680 return 1; 3681 vcpu->arch.ia32_misc_enable_msr = data; 3682 kvm_update_cpuid_runtime(vcpu); 3683 } else { 3684 vcpu->arch.ia32_misc_enable_msr = data; 3685 } 3686 break; 3687 } 3688 case MSR_IA32_SMBASE: 3689 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3690 return 1; 3691 vcpu->arch.smbase = data; 3692 break; 3693 case MSR_IA32_POWER_CTL: 3694 vcpu->arch.msr_ia32_power_ctl = data; 3695 break; 3696 case MSR_IA32_TSC: 3697 if (msr_info->host_initiated) { 3698 kvm_synchronize_tsc(vcpu, data); 3699 } else { 3700 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3701 adjust_tsc_offset_guest(vcpu, adj); 3702 vcpu->arch.ia32_tsc_adjust_msr += adj; 3703 } 3704 break; 3705 case MSR_IA32_XSS: 3706 if (!msr_info->host_initiated && 3707 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3708 return 1; 3709 /* 3710 * KVM supports exposing PT to the guest, but does not support 3711 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3712 * XSAVES/XRSTORS to save/restore PT MSRs. 3713 */ 3714 if (data & ~kvm_caps.supported_xss) 3715 return 1; 3716 vcpu->arch.ia32_xss = data; 3717 kvm_update_cpuid_runtime(vcpu); 3718 break; 3719 case MSR_SMI_COUNT: 3720 if (!msr_info->host_initiated) 3721 return 1; 3722 vcpu->arch.smi_count = data; 3723 break; 3724 case MSR_KVM_WALL_CLOCK_NEW: 3725 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3726 return 1; 3727 3728 vcpu->kvm->arch.wall_clock = data; 3729 kvm_write_wall_clock(vcpu->kvm, data, 0); 3730 break; 3731 case MSR_KVM_WALL_CLOCK: 3732 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3733 return 1; 3734 3735 vcpu->kvm->arch.wall_clock = data; 3736 kvm_write_wall_clock(vcpu->kvm, data, 0); 3737 break; 3738 case MSR_KVM_SYSTEM_TIME_NEW: 3739 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3740 return 1; 3741 3742 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3743 break; 3744 case MSR_KVM_SYSTEM_TIME: 3745 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3746 return 1; 3747 3748 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3749 break; 3750 case MSR_KVM_ASYNC_PF_EN: 3751 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3752 return 1; 3753 3754 if (kvm_pv_enable_async_pf(vcpu, data)) 3755 return 1; 3756 break; 3757 case MSR_KVM_ASYNC_PF_INT: 3758 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3759 return 1; 3760 3761 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3762 return 1; 3763 break; 3764 case MSR_KVM_ASYNC_PF_ACK: 3765 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3766 return 1; 3767 if (data & 0x1) { 3768 vcpu->arch.apf.pageready_pending = false; 3769 kvm_check_async_pf_completion(vcpu); 3770 } 3771 break; 3772 case MSR_KVM_STEAL_TIME: 3773 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3774 return 1; 3775 3776 if (unlikely(!sched_info_on())) 3777 return 1; 3778 3779 if (data & KVM_STEAL_RESERVED_MASK) 3780 return 1; 3781 3782 vcpu->arch.st.msr_val = data; 3783 3784 if (!(data & KVM_MSR_ENABLED)) 3785 break; 3786 3787 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3788 3789 break; 3790 case MSR_KVM_PV_EOI_EN: 3791 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3792 return 1; 3793 3794 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3795 return 1; 3796 break; 3797 3798 case MSR_KVM_POLL_CONTROL: 3799 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3800 return 1; 3801 3802 /* only enable bit supported */ 3803 if (data & (-1ULL << 1)) 3804 return 1; 3805 3806 vcpu->arch.msr_kvm_poll_control = data; 3807 break; 3808 3809 case MSR_IA32_MCG_CTL: 3810 case MSR_IA32_MCG_STATUS: 3811 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3812 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3813 return set_msr_mce(vcpu, msr_info); 3814 3815 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3816 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3817 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3818 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3819 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3820 return kvm_pmu_set_msr(vcpu, msr_info); 3821 3822 if (data) 3823 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3824 break; 3825 case MSR_K7_CLK_CTL: 3826 /* 3827 * Ignore all writes to this no longer documented MSR. 3828 * Writes are only relevant for old K7 processors, 3829 * all pre-dating SVM, but a recommended workaround from 3830 * AMD for these chips. It is possible to specify the 3831 * affected processor models on the command line, hence 3832 * the need to ignore the workaround. 3833 */ 3834 break; 3835 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3836 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3837 case HV_X64_MSR_SYNDBG_OPTIONS: 3838 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3839 case HV_X64_MSR_CRASH_CTL: 3840 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3841 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3842 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3843 case HV_X64_MSR_TSC_EMULATION_STATUS: 3844 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3845 return kvm_hv_set_msr_common(vcpu, msr, data, 3846 msr_info->host_initiated); 3847 case MSR_IA32_BBL_CR_CTL3: 3848 /* Drop writes to this legacy MSR -- see rdmsr 3849 * counterpart for further detail. 3850 */ 3851 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3852 break; 3853 case MSR_AMD64_OSVW_ID_LENGTH: 3854 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3855 return 1; 3856 vcpu->arch.osvw.length = data; 3857 break; 3858 case MSR_AMD64_OSVW_STATUS: 3859 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3860 return 1; 3861 vcpu->arch.osvw.status = data; 3862 break; 3863 case MSR_PLATFORM_INFO: 3864 if (!msr_info->host_initiated || 3865 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3866 cpuid_fault_enabled(vcpu))) 3867 return 1; 3868 vcpu->arch.msr_platform_info = data; 3869 break; 3870 case MSR_MISC_FEATURES_ENABLES: 3871 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3872 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3873 !supports_cpuid_fault(vcpu))) 3874 return 1; 3875 vcpu->arch.msr_misc_features_enables = data; 3876 break; 3877 #ifdef CONFIG_X86_64 3878 case MSR_IA32_XFD: 3879 if (!msr_info->host_initiated && 3880 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3881 return 1; 3882 3883 if (data & ~kvm_guest_supported_xfd(vcpu)) 3884 return 1; 3885 3886 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3887 break; 3888 case MSR_IA32_XFD_ERR: 3889 if (!msr_info->host_initiated && 3890 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3891 return 1; 3892 3893 if (data & ~kvm_guest_supported_xfd(vcpu)) 3894 return 1; 3895 3896 vcpu->arch.guest_fpu.xfd_err = data; 3897 break; 3898 #endif 3899 default: 3900 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3901 return kvm_pmu_set_msr(vcpu, msr_info); 3902 3903 /* 3904 * Userspace is allowed to write '0' to MSRs that KVM reports 3905 * as to-be-saved, even if an MSRs isn't fully supported. 3906 */ 3907 if (msr_info->host_initiated && !data && 3908 kvm_is_msr_to_save(msr)) 3909 break; 3910 3911 return KVM_MSR_RET_INVALID; 3912 } 3913 return 0; 3914 } 3915 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3916 3917 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3918 { 3919 u64 data; 3920 u64 mcg_cap = vcpu->arch.mcg_cap; 3921 unsigned bank_num = mcg_cap & 0xff; 3922 u32 offset, last_msr; 3923 3924 switch (msr) { 3925 case MSR_IA32_P5_MC_ADDR: 3926 case MSR_IA32_P5_MC_TYPE: 3927 data = 0; 3928 break; 3929 case MSR_IA32_MCG_CAP: 3930 data = vcpu->arch.mcg_cap; 3931 break; 3932 case MSR_IA32_MCG_CTL: 3933 if (!(mcg_cap & MCG_CTL_P) && !host) 3934 return 1; 3935 data = vcpu->arch.mcg_ctl; 3936 break; 3937 case MSR_IA32_MCG_STATUS: 3938 data = vcpu->arch.mcg_status; 3939 break; 3940 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3941 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3942 if (msr > last_msr) 3943 return 1; 3944 3945 if (!(mcg_cap & MCG_CMCI_P) && !host) 3946 return 1; 3947 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3948 last_msr + 1 - MSR_IA32_MC0_CTL2); 3949 data = vcpu->arch.mci_ctl2_banks[offset]; 3950 break; 3951 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3952 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3953 if (msr > last_msr) 3954 return 1; 3955 3956 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3957 last_msr + 1 - MSR_IA32_MC0_CTL); 3958 data = vcpu->arch.mce_banks[offset]; 3959 break; 3960 default: 3961 return 1; 3962 } 3963 *pdata = data; 3964 return 0; 3965 } 3966 3967 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3968 { 3969 switch (msr_info->index) { 3970 case MSR_IA32_PLATFORM_ID: 3971 case MSR_IA32_EBL_CR_POWERON: 3972 case MSR_IA32_LASTBRANCHFROMIP: 3973 case MSR_IA32_LASTBRANCHTOIP: 3974 case MSR_IA32_LASTINTFROMIP: 3975 case MSR_IA32_LASTINTTOIP: 3976 case MSR_AMD64_SYSCFG: 3977 case MSR_K8_TSEG_ADDR: 3978 case MSR_K8_TSEG_MASK: 3979 case MSR_VM_HSAVE_PA: 3980 case MSR_K8_INT_PENDING_MSG: 3981 case MSR_AMD64_NB_CFG: 3982 case MSR_FAM10H_MMIO_CONF_BASE: 3983 case MSR_AMD64_BU_CFG2: 3984 case MSR_IA32_PERF_CTL: 3985 case MSR_AMD64_DC_CFG: 3986 case MSR_F15H_EX_CFG: 3987 /* 3988 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3989 * limit) MSRs. Just return 0, as we do not want to expose the host 3990 * data here. Do not conditionalize this on CPUID, as KVM does not do 3991 * so for existing CPU-specific MSRs. 3992 */ 3993 case MSR_RAPL_POWER_UNIT: 3994 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3995 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3996 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3997 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3998 msr_info->data = 0; 3999 break; 4000 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4001 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4002 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4003 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4004 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4005 return kvm_pmu_get_msr(vcpu, msr_info); 4006 msr_info->data = 0; 4007 break; 4008 case MSR_IA32_UCODE_REV: 4009 msr_info->data = vcpu->arch.microcode_version; 4010 break; 4011 case MSR_IA32_ARCH_CAPABILITIES: 4012 if (!msr_info->host_initiated && 4013 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4014 return 1; 4015 msr_info->data = vcpu->arch.arch_capabilities; 4016 break; 4017 case MSR_IA32_PERF_CAPABILITIES: 4018 if (!msr_info->host_initiated && 4019 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4020 return 1; 4021 msr_info->data = vcpu->arch.perf_capabilities; 4022 break; 4023 case MSR_IA32_POWER_CTL: 4024 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4025 break; 4026 case MSR_IA32_TSC: { 4027 /* 4028 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4029 * even when not intercepted. AMD manual doesn't explicitly 4030 * state this but appears to behave the same. 4031 * 4032 * On userspace reads and writes, however, we unconditionally 4033 * return L1's TSC value to ensure backwards-compatible 4034 * behavior for migration. 4035 */ 4036 u64 offset, ratio; 4037 4038 if (msr_info->host_initiated) { 4039 offset = vcpu->arch.l1_tsc_offset; 4040 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4041 } else { 4042 offset = vcpu->arch.tsc_offset; 4043 ratio = vcpu->arch.tsc_scaling_ratio; 4044 } 4045 4046 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4047 break; 4048 } 4049 case MSR_MTRRcap: 4050 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4051 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4052 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4053 case 0xcd: /* fsb frequency */ 4054 msr_info->data = 3; 4055 break; 4056 /* 4057 * MSR_EBC_FREQUENCY_ID 4058 * Conservative value valid for even the basic CPU models. 4059 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4060 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4061 * and 266MHz for model 3, or 4. Set Core Clock 4062 * Frequency to System Bus Frequency Ratio to 1 (bits 4063 * 31:24) even though these are only valid for CPU 4064 * models > 2, however guests may end up dividing or 4065 * multiplying by zero otherwise. 4066 */ 4067 case MSR_EBC_FREQUENCY_ID: 4068 msr_info->data = 1 << 24; 4069 break; 4070 case MSR_IA32_APICBASE: 4071 msr_info->data = kvm_get_apic_base(vcpu); 4072 break; 4073 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4074 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4075 case MSR_IA32_TSC_DEADLINE: 4076 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4077 break; 4078 case MSR_IA32_TSC_ADJUST: 4079 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4080 break; 4081 case MSR_IA32_MISC_ENABLE: 4082 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4083 break; 4084 case MSR_IA32_SMBASE: 4085 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4086 return 1; 4087 msr_info->data = vcpu->arch.smbase; 4088 break; 4089 case MSR_SMI_COUNT: 4090 msr_info->data = vcpu->arch.smi_count; 4091 break; 4092 case MSR_IA32_PERF_STATUS: 4093 /* TSC increment by tick */ 4094 msr_info->data = 1000ULL; 4095 /* CPU multiplier */ 4096 msr_info->data |= (((uint64_t)4ULL) << 40); 4097 break; 4098 case MSR_EFER: 4099 msr_info->data = vcpu->arch.efer; 4100 break; 4101 case MSR_KVM_WALL_CLOCK: 4102 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4103 return 1; 4104 4105 msr_info->data = vcpu->kvm->arch.wall_clock; 4106 break; 4107 case MSR_KVM_WALL_CLOCK_NEW: 4108 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4109 return 1; 4110 4111 msr_info->data = vcpu->kvm->arch.wall_clock; 4112 break; 4113 case MSR_KVM_SYSTEM_TIME: 4114 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4115 return 1; 4116 4117 msr_info->data = vcpu->arch.time; 4118 break; 4119 case MSR_KVM_SYSTEM_TIME_NEW: 4120 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4121 return 1; 4122 4123 msr_info->data = vcpu->arch.time; 4124 break; 4125 case MSR_KVM_ASYNC_PF_EN: 4126 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4127 return 1; 4128 4129 msr_info->data = vcpu->arch.apf.msr_en_val; 4130 break; 4131 case MSR_KVM_ASYNC_PF_INT: 4132 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4133 return 1; 4134 4135 msr_info->data = vcpu->arch.apf.msr_int_val; 4136 break; 4137 case MSR_KVM_ASYNC_PF_ACK: 4138 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4139 return 1; 4140 4141 msr_info->data = 0; 4142 break; 4143 case MSR_KVM_STEAL_TIME: 4144 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4145 return 1; 4146 4147 msr_info->data = vcpu->arch.st.msr_val; 4148 break; 4149 case MSR_KVM_PV_EOI_EN: 4150 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4151 return 1; 4152 4153 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4154 break; 4155 case MSR_KVM_POLL_CONTROL: 4156 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4157 return 1; 4158 4159 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4160 break; 4161 case MSR_IA32_P5_MC_ADDR: 4162 case MSR_IA32_P5_MC_TYPE: 4163 case MSR_IA32_MCG_CAP: 4164 case MSR_IA32_MCG_CTL: 4165 case MSR_IA32_MCG_STATUS: 4166 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4167 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4168 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4169 msr_info->host_initiated); 4170 case MSR_IA32_XSS: 4171 if (!msr_info->host_initiated && 4172 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4173 return 1; 4174 msr_info->data = vcpu->arch.ia32_xss; 4175 break; 4176 case MSR_K7_CLK_CTL: 4177 /* 4178 * Provide expected ramp-up count for K7. All other 4179 * are set to zero, indicating minimum divisors for 4180 * every field. 4181 * 4182 * This prevents guest kernels on AMD host with CPU 4183 * type 6, model 8 and higher from exploding due to 4184 * the rdmsr failing. 4185 */ 4186 msr_info->data = 0x20000000; 4187 break; 4188 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4189 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4190 case HV_X64_MSR_SYNDBG_OPTIONS: 4191 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4192 case HV_X64_MSR_CRASH_CTL: 4193 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4194 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4195 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4196 case HV_X64_MSR_TSC_EMULATION_STATUS: 4197 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4198 return kvm_hv_get_msr_common(vcpu, 4199 msr_info->index, &msr_info->data, 4200 msr_info->host_initiated); 4201 case MSR_IA32_BBL_CR_CTL3: 4202 /* This legacy MSR exists but isn't fully documented in current 4203 * silicon. It is however accessed by winxp in very narrow 4204 * scenarios where it sets bit #19, itself documented as 4205 * a "reserved" bit. Best effort attempt to source coherent 4206 * read data here should the balance of the register be 4207 * interpreted by the guest: 4208 * 4209 * L2 cache control register 3: 64GB range, 256KB size, 4210 * enabled, latency 0x1, configured 4211 */ 4212 msr_info->data = 0xbe702111; 4213 break; 4214 case MSR_AMD64_OSVW_ID_LENGTH: 4215 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4216 return 1; 4217 msr_info->data = vcpu->arch.osvw.length; 4218 break; 4219 case MSR_AMD64_OSVW_STATUS: 4220 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4221 return 1; 4222 msr_info->data = vcpu->arch.osvw.status; 4223 break; 4224 case MSR_PLATFORM_INFO: 4225 if (!msr_info->host_initiated && 4226 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4227 return 1; 4228 msr_info->data = vcpu->arch.msr_platform_info; 4229 break; 4230 case MSR_MISC_FEATURES_ENABLES: 4231 msr_info->data = vcpu->arch.msr_misc_features_enables; 4232 break; 4233 case MSR_K7_HWCR: 4234 msr_info->data = vcpu->arch.msr_hwcr; 4235 break; 4236 #ifdef CONFIG_X86_64 4237 case MSR_IA32_XFD: 4238 if (!msr_info->host_initiated && 4239 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4240 return 1; 4241 4242 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4243 break; 4244 case MSR_IA32_XFD_ERR: 4245 if (!msr_info->host_initiated && 4246 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4247 return 1; 4248 4249 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4250 break; 4251 #endif 4252 default: 4253 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4254 return kvm_pmu_get_msr(vcpu, msr_info); 4255 4256 /* 4257 * Userspace is allowed to read MSRs that KVM reports as 4258 * to-be-saved, even if an MSR isn't fully supported. 4259 */ 4260 if (msr_info->host_initiated && 4261 kvm_is_msr_to_save(msr_info->index)) { 4262 msr_info->data = 0; 4263 break; 4264 } 4265 4266 return KVM_MSR_RET_INVALID; 4267 } 4268 return 0; 4269 } 4270 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4271 4272 /* 4273 * Read or write a bunch of msrs. All parameters are kernel addresses. 4274 * 4275 * @return number of msrs set successfully. 4276 */ 4277 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4278 struct kvm_msr_entry *entries, 4279 int (*do_msr)(struct kvm_vcpu *vcpu, 4280 unsigned index, u64 *data)) 4281 { 4282 int i; 4283 4284 for (i = 0; i < msrs->nmsrs; ++i) 4285 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4286 break; 4287 4288 return i; 4289 } 4290 4291 /* 4292 * Read or write a bunch of msrs. Parameters are user addresses. 4293 * 4294 * @return number of msrs set successfully. 4295 */ 4296 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4297 int (*do_msr)(struct kvm_vcpu *vcpu, 4298 unsigned index, u64 *data), 4299 int writeback) 4300 { 4301 struct kvm_msrs msrs; 4302 struct kvm_msr_entry *entries; 4303 unsigned size; 4304 int r; 4305 4306 r = -EFAULT; 4307 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4308 goto out; 4309 4310 r = -E2BIG; 4311 if (msrs.nmsrs >= MAX_IO_MSRS) 4312 goto out; 4313 4314 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4315 entries = memdup_user(user_msrs->entries, size); 4316 if (IS_ERR(entries)) { 4317 r = PTR_ERR(entries); 4318 goto out; 4319 } 4320 4321 r = __msr_io(vcpu, &msrs, entries, do_msr); 4322 4323 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4324 r = -EFAULT; 4325 4326 kfree(entries); 4327 out: 4328 return r; 4329 } 4330 4331 static inline bool kvm_can_mwait_in_guest(void) 4332 { 4333 return boot_cpu_has(X86_FEATURE_MWAIT) && 4334 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4335 boot_cpu_has(X86_FEATURE_ARAT); 4336 } 4337 4338 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4339 struct kvm_cpuid2 __user *cpuid_arg) 4340 { 4341 struct kvm_cpuid2 cpuid; 4342 int r; 4343 4344 r = -EFAULT; 4345 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4346 return r; 4347 4348 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4349 if (r) 4350 return r; 4351 4352 r = -EFAULT; 4353 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4354 return r; 4355 4356 return 0; 4357 } 4358 4359 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4360 { 4361 int r = 0; 4362 4363 switch (ext) { 4364 case KVM_CAP_IRQCHIP: 4365 case KVM_CAP_HLT: 4366 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4367 case KVM_CAP_SET_TSS_ADDR: 4368 case KVM_CAP_EXT_CPUID: 4369 case KVM_CAP_EXT_EMUL_CPUID: 4370 case KVM_CAP_CLOCKSOURCE: 4371 case KVM_CAP_PIT: 4372 case KVM_CAP_NOP_IO_DELAY: 4373 case KVM_CAP_MP_STATE: 4374 case KVM_CAP_SYNC_MMU: 4375 case KVM_CAP_USER_NMI: 4376 case KVM_CAP_REINJECT_CONTROL: 4377 case KVM_CAP_IRQ_INJECT_STATUS: 4378 case KVM_CAP_IOEVENTFD: 4379 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4380 case KVM_CAP_PIT2: 4381 case KVM_CAP_PIT_STATE2: 4382 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4383 case KVM_CAP_VCPU_EVENTS: 4384 case KVM_CAP_HYPERV: 4385 case KVM_CAP_HYPERV_VAPIC: 4386 case KVM_CAP_HYPERV_SPIN: 4387 case KVM_CAP_HYPERV_SYNIC: 4388 case KVM_CAP_HYPERV_SYNIC2: 4389 case KVM_CAP_HYPERV_VP_INDEX: 4390 case KVM_CAP_HYPERV_EVENTFD: 4391 case KVM_CAP_HYPERV_TLBFLUSH: 4392 case KVM_CAP_HYPERV_SEND_IPI: 4393 case KVM_CAP_HYPERV_CPUID: 4394 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4395 case KVM_CAP_SYS_HYPERV_CPUID: 4396 case KVM_CAP_PCI_SEGMENT: 4397 case KVM_CAP_DEBUGREGS: 4398 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4399 case KVM_CAP_XSAVE: 4400 case KVM_CAP_ASYNC_PF: 4401 case KVM_CAP_ASYNC_PF_INT: 4402 case KVM_CAP_GET_TSC_KHZ: 4403 case KVM_CAP_KVMCLOCK_CTRL: 4404 case KVM_CAP_READONLY_MEM: 4405 case KVM_CAP_HYPERV_TIME: 4406 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4407 case KVM_CAP_TSC_DEADLINE_TIMER: 4408 case KVM_CAP_DISABLE_QUIRKS: 4409 case KVM_CAP_SET_BOOT_CPU_ID: 4410 case KVM_CAP_SPLIT_IRQCHIP: 4411 case KVM_CAP_IMMEDIATE_EXIT: 4412 case KVM_CAP_PMU_EVENT_FILTER: 4413 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4414 case KVM_CAP_GET_MSR_FEATURES: 4415 case KVM_CAP_MSR_PLATFORM_INFO: 4416 case KVM_CAP_EXCEPTION_PAYLOAD: 4417 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4418 case KVM_CAP_SET_GUEST_DEBUG: 4419 case KVM_CAP_LAST_CPU: 4420 case KVM_CAP_X86_USER_SPACE_MSR: 4421 case KVM_CAP_X86_MSR_FILTER: 4422 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4423 #ifdef CONFIG_X86_SGX_KVM 4424 case KVM_CAP_SGX_ATTRIBUTE: 4425 #endif 4426 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4427 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4428 case KVM_CAP_SREGS2: 4429 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4430 case KVM_CAP_VCPU_ATTRIBUTES: 4431 case KVM_CAP_SYS_ATTRIBUTES: 4432 case KVM_CAP_VAPIC: 4433 case KVM_CAP_ENABLE_CAP: 4434 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4435 r = 1; 4436 break; 4437 case KVM_CAP_EXIT_HYPERCALL: 4438 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4439 break; 4440 case KVM_CAP_SET_GUEST_DEBUG2: 4441 return KVM_GUESTDBG_VALID_MASK; 4442 #ifdef CONFIG_KVM_XEN 4443 case KVM_CAP_XEN_HVM: 4444 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4445 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4446 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4447 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4448 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4449 if (sched_info_on()) 4450 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4451 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4452 break; 4453 #endif 4454 case KVM_CAP_SYNC_REGS: 4455 r = KVM_SYNC_X86_VALID_FIELDS; 4456 break; 4457 case KVM_CAP_ADJUST_CLOCK: 4458 r = KVM_CLOCK_VALID_FLAGS; 4459 break; 4460 case KVM_CAP_X86_DISABLE_EXITS: 4461 r = KVM_X86_DISABLE_EXITS_PAUSE; 4462 4463 if (!mitigate_smt_rsb) { 4464 r |= KVM_X86_DISABLE_EXITS_HLT | 4465 KVM_X86_DISABLE_EXITS_CSTATE; 4466 4467 if (kvm_can_mwait_in_guest()) 4468 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4469 } 4470 break; 4471 case KVM_CAP_X86_SMM: 4472 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4473 break; 4474 4475 /* SMBASE is usually relocated above 1M on modern chipsets, 4476 * and SMM handlers might indeed rely on 4G segment limits, 4477 * so do not report SMM to be available if real mode is 4478 * emulated via vm86 mode. Still, do not go to great lengths 4479 * to avoid userspace's usage of the feature, because it is a 4480 * fringe case that is not enabled except via specific settings 4481 * of the module parameters. 4482 */ 4483 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4484 break; 4485 case KVM_CAP_NR_VCPUS: 4486 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4487 break; 4488 case KVM_CAP_MAX_VCPUS: 4489 r = KVM_MAX_VCPUS; 4490 break; 4491 case KVM_CAP_MAX_VCPU_ID: 4492 r = KVM_MAX_VCPU_IDS; 4493 break; 4494 case KVM_CAP_PV_MMU: /* obsolete */ 4495 r = 0; 4496 break; 4497 case KVM_CAP_MCE: 4498 r = KVM_MAX_MCE_BANKS; 4499 break; 4500 case KVM_CAP_XCRS: 4501 r = boot_cpu_has(X86_FEATURE_XSAVE); 4502 break; 4503 case KVM_CAP_TSC_CONTROL: 4504 case KVM_CAP_VM_TSC_CONTROL: 4505 r = kvm_caps.has_tsc_control; 4506 break; 4507 case KVM_CAP_X2APIC_API: 4508 r = KVM_X2APIC_API_VALID_FLAGS; 4509 break; 4510 case KVM_CAP_NESTED_STATE: 4511 r = kvm_x86_ops.nested_ops->get_state ? 4512 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4513 break; 4514 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4515 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4516 break; 4517 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4518 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4519 break; 4520 case KVM_CAP_SMALLER_MAXPHYADDR: 4521 r = (int) allow_smaller_maxphyaddr; 4522 break; 4523 case KVM_CAP_STEAL_TIME: 4524 r = sched_info_on(); 4525 break; 4526 case KVM_CAP_X86_BUS_LOCK_EXIT: 4527 if (kvm_caps.has_bus_lock_exit) 4528 r = KVM_BUS_LOCK_DETECTION_OFF | 4529 KVM_BUS_LOCK_DETECTION_EXIT; 4530 else 4531 r = 0; 4532 break; 4533 case KVM_CAP_XSAVE2: { 4534 u64 guest_perm = xstate_get_guest_group_perm(); 4535 4536 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4537 if (r < sizeof(struct kvm_xsave)) 4538 r = sizeof(struct kvm_xsave); 4539 break; 4540 } 4541 case KVM_CAP_PMU_CAPABILITY: 4542 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4543 break; 4544 case KVM_CAP_DISABLE_QUIRKS2: 4545 r = KVM_X86_VALID_QUIRKS; 4546 break; 4547 case KVM_CAP_X86_NOTIFY_VMEXIT: 4548 r = kvm_caps.has_notify_vmexit; 4549 break; 4550 default: 4551 break; 4552 } 4553 return r; 4554 } 4555 4556 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4557 { 4558 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4559 4560 if ((u64)(unsigned long)uaddr != attr->addr) 4561 return ERR_PTR_USR(-EFAULT); 4562 return uaddr; 4563 } 4564 4565 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4566 { 4567 u64 __user *uaddr = kvm_get_attr_addr(attr); 4568 4569 if (attr->group) 4570 return -ENXIO; 4571 4572 if (IS_ERR(uaddr)) 4573 return PTR_ERR(uaddr); 4574 4575 switch (attr->attr) { 4576 case KVM_X86_XCOMP_GUEST_SUPP: 4577 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4578 return -EFAULT; 4579 return 0; 4580 default: 4581 return -ENXIO; 4582 break; 4583 } 4584 } 4585 4586 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4587 { 4588 if (attr->group) 4589 return -ENXIO; 4590 4591 switch (attr->attr) { 4592 case KVM_X86_XCOMP_GUEST_SUPP: 4593 return 0; 4594 default: 4595 return -ENXIO; 4596 } 4597 } 4598 4599 long kvm_arch_dev_ioctl(struct file *filp, 4600 unsigned int ioctl, unsigned long arg) 4601 { 4602 void __user *argp = (void __user *)arg; 4603 long r; 4604 4605 switch (ioctl) { 4606 case KVM_GET_MSR_INDEX_LIST: { 4607 struct kvm_msr_list __user *user_msr_list = argp; 4608 struct kvm_msr_list msr_list; 4609 unsigned n; 4610 4611 r = -EFAULT; 4612 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4613 goto out; 4614 n = msr_list.nmsrs; 4615 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4616 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4617 goto out; 4618 r = -E2BIG; 4619 if (n < msr_list.nmsrs) 4620 goto out; 4621 r = -EFAULT; 4622 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4623 num_msrs_to_save * sizeof(u32))) 4624 goto out; 4625 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4626 &emulated_msrs, 4627 num_emulated_msrs * sizeof(u32))) 4628 goto out; 4629 r = 0; 4630 break; 4631 } 4632 case KVM_GET_SUPPORTED_CPUID: 4633 case KVM_GET_EMULATED_CPUID: { 4634 struct kvm_cpuid2 __user *cpuid_arg = argp; 4635 struct kvm_cpuid2 cpuid; 4636 4637 r = -EFAULT; 4638 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4639 goto out; 4640 4641 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4642 ioctl); 4643 if (r) 4644 goto out; 4645 4646 r = -EFAULT; 4647 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4648 goto out; 4649 r = 0; 4650 break; 4651 } 4652 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4653 r = -EFAULT; 4654 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4655 sizeof(kvm_caps.supported_mce_cap))) 4656 goto out; 4657 r = 0; 4658 break; 4659 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4660 struct kvm_msr_list __user *user_msr_list = argp; 4661 struct kvm_msr_list msr_list; 4662 unsigned int n; 4663 4664 r = -EFAULT; 4665 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4666 goto out; 4667 n = msr_list.nmsrs; 4668 msr_list.nmsrs = num_msr_based_features; 4669 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4670 goto out; 4671 r = -E2BIG; 4672 if (n < msr_list.nmsrs) 4673 goto out; 4674 r = -EFAULT; 4675 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4676 num_msr_based_features * sizeof(u32))) 4677 goto out; 4678 r = 0; 4679 break; 4680 } 4681 case KVM_GET_MSRS: 4682 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4683 break; 4684 case KVM_GET_SUPPORTED_HV_CPUID: 4685 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4686 break; 4687 case KVM_GET_DEVICE_ATTR: { 4688 struct kvm_device_attr attr; 4689 r = -EFAULT; 4690 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4691 break; 4692 r = kvm_x86_dev_get_attr(&attr); 4693 break; 4694 } 4695 case KVM_HAS_DEVICE_ATTR: { 4696 struct kvm_device_attr attr; 4697 r = -EFAULT; 4698 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4699 break; 4700 r = kvm_x86_dev_has_attr(&attr); 4701 break; 4702 } 4703 default: 4704 r = -EINVAL; 4705 break; 4706 } 4707 out: 4708 return r; 4709 } 4710 4711 static void wbinvd_ipi(void *garbage) 4712 { 4713 wbinvd(); 4714 } 4715 4716 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4717 { 4718 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4719 } 4720 4721 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4722 { 4723 /* Address WBINVD may be executed by guest */ 4724 if (need_emulate_wbinvd(vcpu)) { 4725 if (static_call(kvm_x86_has_wbinvd_exit)()) 4726 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4727 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4728 smp_call_function_single(vcpu->cpu, 4729 wbinvd_ipi, NULL, 1); 4730 } 4731 4732 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4733 4734 /* Save host pkru register if supported */ 4735 vcpu->arch.host_pkru = read_pkru(); 4736 4737 /* Apply any externally detected TSC adjustments (due to suspend) */ 4738 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4739 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4740 vcpu->arch.tsc_offset_adjustment = 0; 4741 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4742 } 4743 4744 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4745 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4746 rdtsc() - vcpu->arch.last_host_tsc; 4747 if (tsc_delta < 0) 4748 mark_tsc_unstable("KVM discovered backwards TSC"); 4749 4750 if (kvm_check_tsc_unstable()) { 4751 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4752 vcpu->arch.last_guest_tsc); 4753 kvm_vcpu_write_tsc_offset(vcpu, offset); 4754 vcpu->arch.tsc_catchup = 1; 4755 } 4756 4757 if (kvm_lapic_hv_timer_in_use(vcpu)) 4758 kvm_lapic_restart_hv_timer(vcpu); 4759 4760 /* 4761 * On a host with synchronized TSC, there is no need to update 4762 * kvmclock on vcpu->cpu migration 4763 */ 4764 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4765 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4766 if (vcpu->cpu != cpu) 4767 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4768 vcpu->cpu = cpu; 4769 } 4770 4771 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4772 } 4773 4774 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4775 { 4776 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4777 struct kvm_steal_time __user *st; 4778 struct kvm_memslots *slots; 4779 static const u8 preempted = KVM_VCPU_PREEMPTED; 4780 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4781 4782 /* 4783 * The vCPU can be marked preempted if and only if the VM-Exit was on 4784 * an instruction boundary and will not trigger guest emulation of any 4785 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4786 * when this is true, for example allowing the vCPU to be marked 4787 * preempted if and only if the VM-Exit was due to a host interrupt. 4788 */ 4789 if (!vcpu->arch.at_instruction_boundary) { 4790 vcpu->stat.preemption_other++; 4791 return; 4792 } 4793 4794 vcpu->stat.preemption_reported++; 4795 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4796 return; 4797 4798 if (vcpu->arch.st.preempted) 4799 return; 4800 4801 /* This happens on process exit */ 4802 if (unlikely(current->mm != vcpu->kvm->mm)) 4803 return; 4804 4805 slots = kvm_memslots(vcpu->kvm); 4806 4807 if (unlikely(slots->generation != ghc->generation || 4808 gpa != ghc->gpa || 4809 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4810 return; 4811 4812 st = (struct kvm_steal_time __user *)ghc->hva; 4813 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4814 4815 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4816 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4817 4818 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4819 } 4820 4821 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4822 { 4823 int idx; 4824 4825 if (vcpu->preempted) { 4826 if (!vcpu->arch.guest_state_protected) 4827 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4828 4829 /* 4830 * Take the srcu lock as memslots will be accessed to check the gfn 4831 * cache generation against the memslots generation. 4832 */ 4833 idx = srcu_read_lock(&vcpu->kvm->srcu); 4834 if (kvm_xen_msr_enabled(vcpu->kvm)) 4835 kvm_xen_runstate_set_preempted(vcpu); 4836 else 4837 kvm_steal_time_set_preempted(vcpu); 4838 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4839 } 4840 4841 static_call(kvm_x86_vcpu_put)(vcpu); 4842 vcpu->arch.last_host_tsc = rdtsc(); 4843 } 4844 4845 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4846 struct kvm_lapic_state *s) 4847 { 4848 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4849 4850 return kvm_apic_get_state(vcpu, s); 4851 } 4852 4853 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4854 struct kvm_lapic_state *s) 4855 { 4856 int r; 4857 4858 r = kvm_apic_set_state(vcpu, s); 4859 if (r) 4860 return r; 4861 update_cr8_intercept(vcpu); 4862 4863 return 0; 4864 } 4865 4866 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4867 { 4868 /* 4869 * We can accept userspace's request for interrupt injection 4870 * as long as we have a place to store the interrupt number. 4871 * The actual injection will happen when the CPU is able to 4872 * deliver the interrupt. 4873 */ 4874 if (kvm_cpu_has_extint(vcpu)) 4875 return false; 4876 4877 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4878 return (!lapic_in_kernel(vcpu) || 4879 kvm_apic_accept_pic_intr(vcpu)); 4880 } 4881 4882 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4883 { 4884 /* 4885 * Do not cause an interrupt window exit if an exception 4886 * is pending or an event needs reinjection; userspace 4887 * might want to inject the interrupt manually using KVM_SET_REGS 4888 * or KVM_SET_SREGS. For that to work, we must be at an 4889 * instruction boundary and with no events half-injected. 4890 */ 4891 return (kvm_arch_interrupt_allowed(vcpu) && 4892 kvm_cpu_accept_dm_intr(vcpu) && 4893 !kvm_event_needs_reinjection(vcpu) && 4894 !kvm_is_exception_pending(vcpu)); 4895 } 4896 4897 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4898 struct kvm_interrupt *irq) 4899 { 4900 if (irq->irq >= KVM_NR_INTERRUPTS) 4901 return -EINVAL; 4902 4903 if (!irqchip_in_kernel(vcpu->kvm)) { 4904 kvm_queue_interrupt(vcpu, irq->irq, false); 4905 kvm_make_request(KVM_REQ_EVENT, vcpu); 4906 return 0; 4907 } 4908 4909 /* 4910 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4911 * fail for in-kernel 8259. 4912 */ 4913 if (pic_in_kernel(vcpu->kvm)) 4914 return -ENXIO; 4915 4916 if (vcpu->arch.pending_external_vector != -1) 4917 return -EEXIST; 4918 4919 vcpu->arch.pending_external_vector = irq->irq; 4920 kvm_make_request(KVM_REQ_EVENT, vcpu); 4921 return 0; 4922 } 4923 4924 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4925 { 4926 kvm_inject_nmi(vcpu); 4927 4928 return 0; 4929 } 4930 4931 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4932 struct kvm_tpr_access_ctl *tac) 4933 { 4934 if (tac->flags) 4935 return -EINVAL; 4936 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4937 return 0; 4938 } 4939 4940 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4941 u64 mcg_cap) 4942 { 4943 int r; 4944 unsigned bank_num = mcg_cap & 0xff, bank; 4945 4946 r = -EINVAL; 4947 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4948 goto out; 4949 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4950 goto out; 4951 r = 0; 4952 vcpu->arch.mcg_cap = mcg_cap; 4953 /* Init IA32_MCG_CTL to all 1s */ 4954 if (mcg_cap & MCG_CTL_P) 4955 vcpu->arch.mcg_ctl = ~(u64)0; 4956 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4957 for (bank = 0; bank < bank_num; bank++) { 4958 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4959 if (mcg_cap & MCG_CMCI_P) 4960 vcpu->arch.mci_ctl2_banks[bank] = 0; 4961 } 4962 4963 kvm_apic_after_set_mcg_cap(vcpu); 4964 4965 static_call(kvm_x86_setup_mce)(vcpu); 4966 out: 4967 return r; 4968 } 4969 4970 /* 4971 * Validate this is an UCNA (uncorrectable no action) error by checking the 4972 * MCG_STATUS and MCi_STATUS registers: 4973 * - none of the bits for Machine Check Exceptions are set 4974 * - both the VAL (valid) and UC (uncorrectable) bits are set 4975 * MCI_STATUS_PCC - Processor Context Corrupted 4976 * MCI_STATUS_S - Signaled as a Machine Check Exception 4977 * MCI_STATUS_AR - Software recoverable Action Required 4978 */ 4979 static bool is_ucna(struct kvm_x86_mce *mce) 4980 { 4981 return !mce->mcg_status && 4982 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4983 (mce->status & MCI_STATUS_VAL) && 4984 (mce->status & MCI_STATUS_UC); 4985 } 4986 4987 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4988 { 4989 u64 mcg_cap = vcpu->arch.mcg_cap; 4990 4991 banks[1] = mce->status; 4992 banks[2] = mce->addr; 4993 banks[3] = mce->misc; 4994 vcpu->arch.mcg_status = mce->mcg_status; 4995 4996 if (!(mcg_cap & MCG_CMCI_P) || 4997 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4998 return 0; 4999 5000 if (lapic_in_kernel(vcpu)) 5001 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5002 5003 return 0; 5004 } 5005 5006 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5007 struct kvm_x86_mce *mce) 5008 { 5009 u64 mcg_cap = vcpu->arch.mcg_cap; 5010 unsigned bank_num = mcg_cap & 0xff; 5011 u64 *banks = vcpu->arch.mce_banks; 5012 5013 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5014 return -EINVAL; 5015 5016 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5017 5018 if (is_ucna(mce)) 5019 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5020 5021 /* 5022 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5023 * reporting is disabled 5024 */ 5025 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5026 vcpu->arch.mcg_ctl != ~(u64)0) 5027 return 0; 5028 /* 5029 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5030 * reporting is disabled for the bank 5031 */ 5032 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5033 return 0; 5034 if (mce->status & MCI_STATUS_UC) { 5035 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5036 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5037 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5038 return 0; 5039 } 5040 if (banks[1] & MCI_STATUS_VAL) 5041 mce->status |= MCI_STATUS_OVER; 5042 banks[2] = mce->addr; 5043 banks[3] = mce->misc; 5044 vcpu->arch.mcg_status = mce->mcg_status; 5045 banks[1] = mce->status; 5046 kvm_queue_exception(vcpu, MC_VECTOR); 5047 } else if (!(banks[1] & MCI_STATUS_VAL) 5048 || !(banks[1] & MCI_STATUS_UC)) { 5049 if (banks[1] & MCI_STATUS_VAL) 5050 mce->status |= MCI_STATUS_OVER; 5051 banks[2] = mce->addr; 5052 banks[3] = mce->misc; 5053 banks[1] = mce->status; 5054 } else 5055 banks[1] |= MCI_STATUS_OVER; 5056 return 0; 5057 } 5058 5059 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5060 struct kvm_vcpu_events *events) 5061 { 5062 struct kvm_queued_exception *ex; 5063 5064 process_nmi(vcpu); 5065 5066 #ifdef CONFIG_KVM_SMM 5067 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5068 process_smi(vcpu); 5069 #endif 5070 5071 /* 5072 * KVM's ABI only allows for one exception to be migrated. Luckily, 5073 * the only time there can be two queued exceptions is if there's a 5074 * non-exiting _injected_ exception, and a pending exiting exception. 5075 * In that case, ignore the VM-Exiting exception as it's an extension 5076 * of the injected exception. 5077 */ 5078 if (vcpu->arch.exception_vmexit.pending && 5079 !vcpu->arch.exception.pending && 5080 !vcpu->arch.exception.injected) 5081 ex = &vcpu->arch.exception_vmexit; 5082 else 5083 ex = &vcpu->arch.exception; 5084 5085 /* 5086 * In guest mode, payload delivery should be deferred if the exception 5087 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5088 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5089 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5090 * propagate the payload and so it cannot be safely deferred. Deliver 5091 * the payload if the capability hasn't been requested. 5092 */ 5093 if (!vcpu->kvm->arch.exception_payload_enabled && 5094 ex->pending && ex->has_payload) 5095 kvm_deliver_exception_payload(vcpu, ex); 5096 5097 memset(events, 0, sizeof(*events)); 5098 5099 /* 5100 * The API doesn't provide the instruction length for software 5101 * exceptions, so don't report them. As long as the guest RIP 5102 * isn't advanced, we should expect to encounter the exception 5103 * again. 5104 */ 5105 if (!kvm_exception_is_soft(ex->vector)) { 5106 events->exception.injected = ex->injected; 5107 events->exception.pending = ex->pending; 5108 /* 5109 * For ABI compatibility, deliberately conflate 5110 * pending and injected exceptions when 5111 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5112 */ 5113 if (!vcpu->kvm->arch.exception_payload_enabled) 5114 events->exception.injected |= ex->pending; 5115 } 5116 events->exception.nr = ex->vector; 5117 events->exception.has_error_code = ex->has_error_code; 5118 events->exception.error_code = ex->error_code; 5119 events->exception_has_payload = ex->has_payload; 5120 events->exception_payload = ex->payload; 5121 5122 events->interrupt.injected = 5123 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5124 events->interrupt.nr = vcpu->arch.interrupt.nr; 5125 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5126 5127 events->nmi.injected = vcpu->arch.nmi_injected; 5128 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5129 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5130 5131 /* events->sipi_vector is never valid when reporting to user space */ 5132 5133 #ifdef CONFIG_KVM_SMM 5134 events->smi.smm = is_smm(vcpu); 5135 events->smi.pending = vcpu->arch.smi_pending; 5136 events->smi.smm_inside_nmi = 5137 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5138 #endif 5139 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5140 5141 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5142 | KVM_VCPUEVENT_VALID_SHADOW 5143 | KVM_VCPUEVENT_VALID_SMM); 5144 if (vcpu->kvm->arch.exception_payload_enabled) 5145 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5146 if (vcpu->kvm->arch.triple_fault_event) { 5147 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5148 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5149 } 5150 } 5151 5152 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5153 struct kvm_vcpu_events *events) 5154 { 5155 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5156 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5157 | KVM_VCPUEVENT_VALID_SHADOW 5158 | KVM_VCPUEVENT_VALID_SMM 5159 | KVM_VCPUEVENT_VALID_PAYLOAD 5160 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5161 return -EINVAL; 5162 5163 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5164 if (!vcpu->kvm->arch.exception_payload_enabled) 5165 return -EINVAL; 5166 if (events->exception.pending) 5167 events->exception.injected = 0; 5168 else 5169 events->exception_has_payload = 0; 5170 } else { 5171 events->exception.pending = 0; 5172 events->exception_has_payload = 0; 5173 } 5174 5175 if ((events->exception.injected || events->exception.pending) && 5176 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5177 return -EINVAL; 5178 5179 /* INITs are latched while in SMM */ 5180 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5181 (events->smi.smm || events->smi.pending) && 5182 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5183 return -EINVAL; 5184 5185 process_nmi(vcpu); 5186 5187 /* 5188 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5189 * morph the exception to a VM-Exit if appropriate. Do this only for 5190 * pending exceptions, already-injected exceptions are not subject to 5191 * intercpetion. Note, userspace that conflates pending and injected 5192 * is hosed, and will incorrectly convert an injected exception into a 5193 * pending exception, which in turn may cause a spurious VM-Exit. 5194 */ 5195 vcpu->arch.exception_from_userspace = events->exception.pending; 5196 5197 vcpu->arch.exception_vmexit.pending = false; 5198 5199 vcpu->arch.exception.injected = events->exception.injected; 5200 vcpu->arch.exception.pending = events->exception.pending; 5201 vcpu->arch.exception.vector = events->exception.nr; 5202 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5203 vcpu->arch.exception.error_code = events->exception.error_code; 5204 vcpu->arch.exception.has_payload = events->exception_has_payload; 5205 vcpu->arch.exception.payload = events->exception_payload; 5206 5207 vcpu->arch.interrupt.injected = events->interrupt.injected; 5208 vcpu->arch.interrupt.nr = events->interrupt.nr; 5209 vcpu->arch.interrupt.soft = events->interrupt.soft; 5210 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5211 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5212 events->interrupt.shadow); 5213 5214 vcpu->arch.nmi_injected = events->nmi.injected; 5215 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5216 vcpu->arch.nmi_pending = events->nmi.pending; 5217 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5218 5219 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5220 lapic_in_kernel(vcpu)) 5221 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5222 5223 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5224 #ifdef CONFIG_KVM_SMM 5225 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5226 kvm_leave_nested(vcpu); 5227 kvm_smm_changed(vcpu, events->smi.smm); 5228 } 5229 5230 vcpu->arch.smi_pending = events->smi.pending; 5231 5232 if (events->smi.smm) { 5233 if (events->smi.smm_inside_nmi) 5234 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5235 else 5236 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5237 } 5238 5239 #else 5240 if (events->smi.smm || events->smi.pending || 5241 events->smi.smm_inside_nmi) 5242 return -EINVAL; 5243 #endif 5244 5245 if (lapic_in_kernel(vcpu)) { 5246 if (events->smi.latched_init) 5247 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5248 else 5249 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5250 } 5251 } 5252 5253 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5254 if (!vcpu->kvm->arch.triple_fault_event) 5255 return -EINVAL; 5256 if (events->triple_fault.pending) 5257 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5258 else 5259 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5260 } 5261 5262 kvm_make_request(KVM_REQ_EVENT, vcpu); 5263 5264 return 0; 5265 } 5266 5267 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5268 struct kvm_debugregs *dbgregs) 5269 { 5270 unsigned long val; 5271 5272 memset(dbgregs, 0, sizeof(*dbgregs)); 5273 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5274 kvm_get_dr(vcpu, 6, &val); 5275 dbgregs->dr6 = val; 5276 dbgregs->dr7 = vcpu->arch.dr7; 5277 } 5278 5279 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5280 struct kvm_debugregs *dbgregs) 5281 { 5282 if (dbgregs->flags) 5283 return -EINVAL; 5284 5285 if (!kvm_dr6_valid(dbgregs->dr6)) 5286 return -EINVAL; 5287 if (!kvm_dr7_valid(dbgregs->dr7)) 5288 return -EINVAL; 5289 5290 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5291 kvm_update_dr0123(vcpu); 5292 vcpu->arch.dr6 = dbgregs->dr6; 5293 vcpu->arch.dr7 = dbgregs->dr7; 5294 kvm_update_dr7(vcpu); 5295 5296 return 0; 5297 } 5298 5299 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5300 struct kvm_xsave *guest_xsave) 5301 { 5302 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5303 return; 5304 5305 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5306 guest_xsave->region, 5307 sizeof(guest_xsave->region), 5308 vcpu->arch.pkru); 5309 } 5310 5311 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5312 u8 *state, unsigned int size) 5313 { 5314 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5315 return; 5316 5317 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5318 state, size, vcpu->arch.pkru); 5319 } 5320 5321 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5322 struct kvm_xsave *guest_xsave) 5323 { 5324 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5325 return 0; 5326 5327 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5328 guest_xsave->region, 5329 kvm_caps.supported_xcr0, 5330 &vcpu->arch.pkru); 5331 } 5332 5333 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5334 struct kvm_xcrs *guest_xcrs) 5335 { 5336 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5337 guest_xcrs->nr_xcrs = 0; 5338 return; 5339 } 5340 5341 guest_xcrs->nr_xcrs = 1; 5342 guest_xcrs->flags = 0; 5343 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5344 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5345 } 5346 5347 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5348 struct kvm_xcrs *guest_xcrs) 5349 { 5350 int i, r = 0; 5351 5352 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5353 return -EINVAL; 5354 5355 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5356 return -EINVAL; 5357 5358 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5359 /* Only support XCR0 currently */ 5360 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5361 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5362 guest_xcrs->xcrs[i].value); 5363 break; 5364 } 5365 if (r) 5366 r = -EINVAL; 5367 return r; 5368 } 5369 5370 /* 5371 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5372 * stopped by the hypervisor. This function will be called from the host only. 5373 * EINVAL is returned when the host attempts to set the flag for a guest that 5374 * does not support pv clocks. 5375 */ 5376 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5377 { 5378 if (!vcpu->arch.pv_time.active) 5379 return -EINVAL; 5380 vcpu->arch.pvclock_set_guest_stopped_request = true; 5381 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5382 return 0; 5383 } 5384 5385 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5386 struct kvm_device_attr *attr) 5387 { 5388 int r; 5389 5390 switch (attr->attr) { 5391 case KVM_VCPU_TSC_OFFSET: 5392 r = 0; 5393 break; 5394 default: 5395 r = -ENXIO; 5396 } 5397 5398 return r; 5399 } 5400 5401 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5402 struct kvm_device_attr *attr) 5403 { 5404 u64 __user *uaddr = kvm_get_attr_addr(attr); 5405 int r; 5406 5407 if (IS_ERR(uaddr)) 5408 return PTR_ERR(uaddr); 5409 5410 switch (attr->attr) { 5411 case KVM_VCPU_TSC_OFFSET: 5412 r = -EFAULT; 5413 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5414 break; 5415 r = 0; 5416 break; 5417 default: 5418 r = -ENXIO; 5419 } 5420 5421 return r; 5422 } 5423 5424 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5425 struct kvm_device_attr *attr) 5426 { 5427 u64 __user *uaddr = kvm_get_attr_addr(attr); 5428 struct kvm *kvm = vcpu->kvm; 5429 int r; 5430 5431 if (IS_ERR(uaddr)) 5432 return PTR_ERR(uaddr); 5433 5434 switch (attr->attr) { 5435 case KVM_VCPU_TSC_OFFSET: { 5436 u64 offset, tsc, ns; 5437 unsigned long flags; 5438 bool matched; 5439 5440 r = -EFAULT; 5441 if (get_user(offset, uaddr)) 5442 break; 5443 5444 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5445 5446 matched = (vcpu->arch.virtual_tsc_khz && 5447 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5448 kvm->arch.last_tsc_offset == offset); 5449 5450 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5451 ns = get_kvmclock_base_ns(); 5452 5453 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5454 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5455 5456 r = 0; 5457 break; 5458 } 5459 default: 5460 r = -ENXIO; 5461 } 5462 5463 return r; 5464 } 5465 5466 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5467 unsigned int ioctl, 5468 void __user *argp) 5469 { 5470 struct kvm_device_attr attr; 5471 int r; 5472 5473 if (copy_from_user(&attr, argp, sizeof(attr))) 5474 return -EFAULT; 5475 5476 if (attr.group != KVM_VCPU_TSC_CTRL) 5477 return -ENXIO; 5478 5479 switch (ioctl) { 5480 case KVM_HAS_DEVICE_ATTR: 5481 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5482 break; 5483 case KVM_GET_DEVICE_ATTR: 5484 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5485 break; 5486 case KVM_SET_DEVICE_ATTR: 5487 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5488 break; 5489 } 5490 5491 return r; 5492 } 5493 5494 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5495 struct kvm_enable_cap *cap) 5496 { 5497 int r; 5498 uint16_t vmcs_version; 5499 void __user *user_ptr; 5500 5501 if (cap->flags) 5502 return -EINVAL; 5503 5504 switch (cap->cap) { 5505 case KVM_CAP_HYPERV_SYNIC2: 5506 if (cap->args[0]) 5507 return -EINVAL; 5508 fallthrough; 5509 5510 case KVM_CAP_HYPERV_SYNIC: 5511 if (!irqchip_in_kernel(vcpu->kvm)) 5512 return -EINVAL; 5513 return kvm_hv_activate_synic(vcpu, cap->cap == 5514 KVM_CAP_HYPERV_SYNIC2); 5515 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5516 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5517 return -ENOTTY; 5518 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5519 if (!r) { 5520 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5521 if (copy_to_user(user_ptr, &vmcs_version, 5522 sizeof(vmcs_version))) 5523 r = -EFAULT; 5524 } 5525 return r; 5526 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5527 if (!kvm_x86_ops.enable_l2_tlb_flush) 5528 return -ENOTTY; 5529 5530 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5531 5532 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5533 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5534 5535 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5536 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5537 if (vcpu->arch.pv_cpuid.enforce) 5538 kvm_update_pv_runtime(vcpu); 5539 5540 return 0; 5541 default: 5542 return -EINVAL; 5543 } 5544 } 5545 5546 long kvm_arch_vcpu_ioctl(struct file *filp, 5547 unsigned int ioctl, unsigned long arg) 5548 { 5549 struct kvm_vcpu *vcpu = filp->private_data; 5550 void __user *argp = (void __user *)arg; 5551 int r; 5552 union { 5553 struct kvm_sregs2 *sregs2; 5554 struct kvm_lapic_state *lapic; 5555 struct kvm_xsave *xsave; 5556 struct kvm_xcrs *xcrs; 5557 void *buffer; 5558 } u; 5559 5560 vcpu_load(vcpu); 5561 5562 u.buffer = NULL; 5563 switch (ioctl) { 5564 case KVM_GET_LAPIC: { 5565 r = -EINVAL; 5566 if (!lapic_in_kernel(vcpu)) 5567 goto out; 5568 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5569 GFP_KERNEL_ACCOUNT); 5570 5571 r = -ENOMEM; 5572 if (!u.lapic) 5573 goto out; 5574 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5575 if (r) 5576 goto out; 5577 r = -EFAULT; 5578 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5579 goto out; 5580 r = 0; 5581 break; 5582 } 5583 case KVM_SET_LAPIC: { 5584 r = -EINVAL; 5585 if (!lapic_in_kernel(vcpu)) 5586 goto out; 5587 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5588 if (IS_ERR(u.lapic)) { 5589 r = PTR_ERR(u.lapic); 5590 goto out_nofree; 5591 } 5592 5593 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5594 break; 5595 } 5596 case KVM_INTERRUPT: { 5597 struct kvm_interrupt irq; 5598 5599 r = -EFAULT; 5600 if (copy_from_user(&irq, argp, sizeof(irq))) 5601 goto out; 5602 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5603 break; 5604 } 5605 case KVM_NMI: { 5606 r = kvm_vcpu_ioctl_nmi(vcpu); 5607 break; 5608 } 5609 case KVM_SMI: { 5610 r = kvm_inject_smi(vcpu); 5611 break; 5612 } 5613 case KVM_SET_CPUID: { 5614 struct kvm_cpuid __user *cpuid_arg = argp; 5615 struct kvm_cpuid cpuid; 5616 5617 r = -EFAULT; 5618 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5619 goto out; 5620 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5621 break; 5622 } 5623 case KVM_SET_CPUID2: { 5624 struct kvm_cpuid2 __user *cpuid_arg = argp; 5625 struct kvm_cpuid2 cpuid; 5626 5627 r = -EFAULT; 5628 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5629 goto out; 5630 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5631 cpuid_arg->entries); 5632 break; 5633 } 5634 case KVM_GET_CPUID2: { 5635 struct kvm_cpuid2 __user *cpuid_arg = argp; 5636 struct kvm_cpuid2 cpuid; 5637 5638 r = -EFAULT; 5639 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5640 goto out; 5641 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5642 cpuid_arg->entries); 5643 if (r) 5644 goto out; 5645 r = -EFAULT; 5646 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5647 goto out; 5648 r = 0; 5649 break; 5650 } 5651 case KVM_GET_MSRS: { 5652 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5653 r = msr_io(vcpu, argp, do_get_msr, 1); 5654 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5655 break; 5656 } 5657 case KVM_SET_MSRS: { 5658 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5659 r = msr_io(vcpu, argp, do_set_msr, 0); 5660 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5661 break; 5662 } 5663 case KVM_TPR_ACCESS_REPORTING: { 5664 struct kvm_tpr_access_ctl tac; 5665 5666 r = -EFAULT; 5667 if (copy_from_user(&tac, argp, sizeof(tac))) 5668 goto out; 5669 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5670 if (r) 5671 goto out; 5672 r = -EFAULT; 5673 if (copy_to_user(argp, &tac, sizeof(tac))) 5674 goto out; 5675 r = 0; 5676 break; 5677 }; 5678 case KVM_SET_VAPIC_ADDR: { 5679 struct kvm_vapic_addr va; 5680 int idx; 5681 5682 r = -EINVAL; 5683 if (!lapic_in_kernel(vcpu)) 5684 goto out; 5685 r = -EFAULT; 5686 if (copy_from_user(&va, argp, sizeof(va))) 5687 goto out; 5688 idx = srcu_read_lock(&vcpu->kvm->srcu); 5689 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5690 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5691 break; 5692 } 5693 case KVM_X86_SETUP_MCE: { 5694 u64 mcg_cap; 5695 5696 r = -EFAULT; 5697 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5698 goto out; 5699 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5700 break; 5701 } 5702 case KVM_X86_SET_MCE: { 5703 struct kvm_x86_mce mce; 5704 5705 r = -EFAULT; 5706 if (copy_from_user(&mce, argp, sizeof(mce))) 5707 goto out; 5708 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5709 break; 5710 } 5711 case KVM_GET_VCPU_EVENTS: { 5712 struct kvm_vcpu_events events; 5713 5714 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5715 5716 r = -EFAULT; 5717 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5718 break; 5719 r = 0; 5720 break; 5721 } 5722 case KVM_SET_VCPU_EVENTS: { 5723 struct kvm_vcpu_events events; 5724 5725 r = -EFAULT; 5726 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5727 break; 5728 5729 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5730 break; 5731 } 5732 case KVM_GET_DEBUGREGS: { 5733 struct kvm_debugregs dbgregs; 5734 5735 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5736 5737 r = -EFAULT; 5738 if (copy_to_user(argp, &dbgregs, 5739 sizeof(struct kvm_debugregs))) 5740 break; 5741 r = 0; 5742 break; 5743 } 5744 case KVM_SET_DEBUGREGS: { 5745 struct kvm_debugregs dbgregs; 5746 5747 r = -EFAULT; 5748 if (copy_from_user(&dbgregs, argp, 5749 sizeof(struct kvm_debugregs))) 5750 break; 5751 5752 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5753 break; 5754 } 5755 case KVM_GET_XSAVE: { 5756 r = -EINVAL; 5757 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5758 break; 5759 5760 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5761 r = -ENOMEM; 5762 if (!u.xsave) 5763 break; 5764 5765 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5766 5767 r = -EFAULT; 5768 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5769 break; 5770 r = 0; 5771 break; 5772 } 5773 case KVM_SET_XSAVE: { 5774 int size = vcpu->arch.guest_fpu.uabi_size; 5775 5776 u.xsave = memdup_user(argp, size); 5777 if (IS_ERR(u.xsave)) { 5778 r = PTR_ERR(u.xsave); 5779 goto out_nofree; 5780 } 5781 5782 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5783 break; 5784 } 5785 5786 case KVM_GET_XSAVE2: { 5787 int size = vcpu->arch.guest_fpu.uabi_size; 5788 5789 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5790 r = -ENOMEM; 5791 if (!u.xsave) 5792 break; 5793 5794 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5795 5796 r = -EFAULT; 5797 if (copy_to_user(argp, u.xsave, size)) 5798 break; 5799 5800 r = 0; 5801 break; 5802 } 5803 5804 case KVM_GET_XCRS: { 5805 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5806 r = -ENOMEM; 5807 if (!u.xcrs) 5808 break; 5809 5810 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5811 5812 r = -EFAULT; 5813 if (copy_to_user(argp, u.xcrs, 5814 sizeof(struct kvm_xcrs))) 5815 break; 5816 r = 0; 5817 break; 5818 } 5819 case KVM_SET_XCRS: { 5820 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5821 if (IS_ERR(u.xcrs)) { 5822 r = PTR_ERR(u.xcrs); 5823 goto out_nofree; 5824 } 5825 5826 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5827 break; 5828 } 5829 case KVM_SET_TSC_KHZ: { 5830 u32 user_tsc_khz; 5831 5832 r = -EINVAL; 5833 user_tsc_khz = (u32)arg; 5834 5835 if (kvm_caps.has_tsc_control && 5836 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5837 goto out; 5838 5839 if (user_tsc_khz == 0) 5840 user_tsc_khz = tsc_khz; 5841 5842 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5843 r = 0; 5844 5845 goto out; 5846 } 5847 case KVM_GET_TSC_KHZ: { 5848 r = vcpu->arch.virtual_tsc_khz; 5849 goto out; 5850 } 5851 case KVM_KVMCLOCK_CTRL: { 5852 r = kvm_set_guest_paused(vcpu); 5853 goto out; 5854 } 5855 case KVM_ENABLE_CAP: { 5856 struct kvm_enable_cap cap; 5857 5858 r = -EFAULT; 5859 if (copy_from_user(&cap, argp, sizeof(cap))) 5860 goto out; 5861 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5862 break; 5863 } 5864 case KVM_GET_NESTED_STATE: { 5865 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5866 u32 user_data_size; 5867 5868 r = -EINVAL; 5869 if (!kvm_x86_ops.nested_ops->get_state) 5870 break; 5871 5872 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5873 r = -EFAULT; 5874 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5875 break; 5876 5877 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5878 user_data_size); 5879 if (r < 0) 5880 break; 5881 5882 if (r > user_data_size) { 5883 if (put_user(r, &user_kvm_nested_state->size)) 5884 r = -EFAULT; 5885 else 5886 r = -E2BIG; 5887 break; 5888 } 5889 5890 r = 0; 5891 break; 5892 } 5893 case KVM_SET_NESTED_STATE: { 5894 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5895 struct kvm_nested_state kvm_state; 5896 int idx; 5897 5898 r = -EINVAL; 5899 if (!kvm_x86_ops.nested_ops->set_state) 5900 break; 5901 5902 r = -EFAULT; 5903 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5904 break; 5905 5906 r = -EINVAL; 5907 if (kvm_state.size < sizeof(kvm_state)) 5908 break; 5909 5910 if (kvm_state.flags & 5911 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5912 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5913 | KVM_STATE_NESTED_GIF_SET)) 5914 break; 5915 5916 /* nested_run_pending implies guest_mode. */ 5917 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5918 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5919 break; 5920 5921 idx = srcu_read_lock(&vcpu->kvm->srcu); 5922 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5923 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5924 break; 5925 } 5926 case KVM_GET_SUPPORTED_HV_CPUID: 5927 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5928 break; 5929 #ifdef CONFIG_KVM_XEN 5930 case KVM_XEN_VCPU_GET_ATTR: { 5931 struct kvm_xen_vcpu_attr xva; 5932 5933 r = -EFAULT; 5934 if (copy_from_user(&xva, argp, sizeof(xva))) 5935 goto out; 5936 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5937 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5938 r = -EFAULT; 5939 break; 5940 } 5941 case KVM_XEN_VCPU_SET_ATTR: { 5942 struct kvm_xen_vcpu_attr xva; 5943 5944 r = -EFAULT; 5945 if (copy_from_user(&xva, argp, sizeof(xva))) 5946 goto out; 5947 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5948 break; 5949 } 5950 #endif 5951 case KVM_GET_SREGS2: { 5952 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5953 r = -ENOMEM; 5954 if (!u.sregs2) 5955 goto out; 5956 __get_sregs2(vcpu, u.sregs2); 5957 r = -EFAULT; 5958 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5959 goto out; 5960 r = 0; 5961 break; 5962 } 5963 case KVM_SET_SREGS2: { 5964 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5965 if (IS_ERR(u.sregs2)) { 5966 r = PTR_ERR(u.sregs2); 5967 u.sregs2 = NULL; 5968 goto out; 5969 } 5970 r = __set_sregs2(vcpu, u.sregs2); 5971 break; 5972 } 5973 case KVM_HAS_DEVICE_ATTR: 5974 case KVM_GET_DEVICE_ATTR: 5975 case KVM_SET_DEVICE_ATTR: 5976 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5977 break; 5978 default: 5979 r = -EINVAL; 5980 } 5981 out: 5982 kfree(u.buffer); 5983 out_nofree: 5984 vcpu_put(vcpu); 5985 return r; 5986 } 5987 5988 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5989 { 5990 return VM_FAULT_SIGBUS; 5991 } 5992 5993 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5994 { 5995 int ret; 5996 5997 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5998 return -EINVAL; 5999 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6000 return ret; 6001 } 6002 6003 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6004 u64 ident_addr) 6005 { 6006 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6007 } 6008 6009 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6010 unsigned long kvm_nr_mmu_pages) 6011 { 6012 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6013 return -EINVAL; 6014 6015 mutex_lock(&kvm->slots_lock); 6016 6017 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6018 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6019 6020 mutex_unlock(&kvm->slots_lock); 6021 return 0; 6022 } 6023 6024 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 6025 { 6026 return kvm->arch.n_max_mmu_pages; 6027 } 6028 6029 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6030 { 6031 struct kvm_pic *pic = kvm->arch.vpic; 6032 int r; 6033 6034 r = 0; 6035 switch (chip->chip_id) { 6036 case KVM_IRQCHIP_PIC_MASTER: 6037 memcpy(&chip->chip.pic, &pic->pics[0], 6038 sizeof(struct kvm_pic_state)); 6039 break; 6040 case KVM_IRQCHIP_PIC_SLAVE: 6041 memcpy(&chip->chip.pic, &pic->pics[1], 6042 sizeof(struct kvm_pic_state)); 6043 break; 6044 case KVM_IRQCHIP_IOAPIC: 6045 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6046 break; 6047 default: 6048 r = -EINVAL; 6049 break; 6050 } 6051 return r; 6052 } 6053 6054 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6055 { 6056 struct kvm_pic *pic = kvm->arch.vpic; 6057 int r; 6058 6059 r = 0; 6060 switch (chip->chip_id) { 6061 case KVM_IRQCHIP_PIC_MASTER: 6062 spin_lock(&pic->lock); 6063 memcpy(&pic->pics[0], &chip->chip.pic, 6064 sizeof(struct kvm_pic_state)); 6065 spin_unlock(&pic->lock); 6066 break; 6067 case KVM_IRQCHIP_PIC_SLAVE: 6068 spin_lock(&pic->lock); 6069 memcpy(&pic->pics[1], &chip->chip.pic, 6070 sizeof(struct kvm_pic_state)); 6071 spin_unlock(&pic->lock); 6072 break; 6073 case KVM_IRQCHIP_IOAPIC: 6074 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6075 break; 6076 default: 6077 r = -EINVAL; 6078 break; 6079 } 6080 kvm_pic_update_irq(pic); 6081 return r; 6082 } 6083 6084 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6085 { 6086 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6087 6088 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6089 6090 mutex_lock(&kps->lock); 6091 memcpy(ps, &kps->channels, sizeof(*ps)); 6092 mutex_unlock(&kps->lock); 6093 return 0; 6094 } 6095 6096 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6097 { 6098 int i; 6099 struct kvm_pit *pit = kvm->arch.vpit; 6100 6101 mutex_lock(&pit->pit_state.lock); 6102 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6103 for (i = 0; i < 3; i++) 6104 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6105 mutex_unlock(&pit->pit_state.lock); 6106 return 0; 6107 } 6108 6109 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6110 { 6111 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6112 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6113 sizeof(ps->channels)); 6114 ps->flags = kvm->arch.vpit->pit_state.flags; 6115 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6116 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6117 return 0; 6118 } 6119 6120 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6121 { 6122 int start = 0; 6123 int i; 6124 u32 prev_legacy, cur_legacy; 6125 struct kvm_pit *pit = kvm->arch.vpit; 6126 6127 mutex_lock(&pit->pit_state.lock); 6128 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6129 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6130 if (!prev_legacy && cur_legacy) 6131 start = 1; 6132 memcpy(&pit->pit_state.channels, &ps->channels, 6133 sizeof(pit->pit_state.channels)); 6134 pit->pit_state.flags = ps->flags; 6135 for (i = 0; i < 3; i++) 6136 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6137 start && i == 0); 6138 mutex_unlock(&pit->pit_state.lock); 6139 return 0; 6140 } 6141 6142 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6143 struct kvm_reinject_control *control) 6144 { 6145 struct kvm_pit *pit = kvm->arch.vpit; 6146 6147 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6148 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6149 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6150 */ 6151 mutex_lock(&pit->pit_state.lock); 6152 kvm_pit_set_reinject(pit, control->pit_reinject); 6153 mutex_unlock(&pit->pit_state.lock); 6154 6155 return 0; 6156 } 6157 6158 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6159 { 6160 6161 /* 6162 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6163 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6164 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6165 * VM-Exit. 6166 */ 6167 struct kvm_vcpu *vcpu; 6168 unsigned long i; 6169 6170 kvm_for_each_vcpu(i, vcpu, kvm) 6171 kvm_vcpu_kick(vcpu); 6172 } 6173 6174 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6175 bool line_status) 6176 { 6177 if (!irqchip_in_kernel(kvm)) 6178 return -ENXIO; 6179 6180 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6181 irq_event->irq, irq_event->level, 6182 line_status); 6183 return 0; 6184 } 6185 6186 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6187 struct kvm_enable_cap *cap) 6188 { 6189 int r; 6190 6191 if (cap->flags) 6192 return -EINVAL; 6193 6194 switch (cap->cap) { 6195 case KVM_CAP_DISABLE_QUIRKS2: 6196 r = -EINVAL; 6197 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6198 break; 6199 fallthrough; 6200 case KVM_CAP_DISABLE_QUIRKS: 6201 kvm->arch.disabled_quirks = cap->args[0]; 6202 r = 0; 6203 break; 6204 case KVM_CAP_SPLIT_IRQCHIP: { 6205 mutex_lock(&kvm->lock); 6206 r = -EINVAL; 6207 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6208 goto split_irqchip_unlock; 6209 r = -EEXIST; 6210 if (irqchip_in_kernel(kvm)) 6211 goto split_irqchip_unlock; 6212 if (kvm->created_vcpus) 6213 goto split_irqchip_unlock; 6214 r = kvm_setup_empty_irq_routing(kvm); 6215 if (r) 6216 goto split_irqchip_unlock; 6217 /* Pairs with irqchip_in_kernel. */ 6218 smp_wmb(); 6219 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6220 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6221 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6222 r = 0; 6223 split_irqchip_unlock: 6224 mutex_unlock(&kvm->lock); 6225 break; 6226 } 6227 case KVM_CAP_X2APIC_API: 6228 r = -EINVAL; 6229 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6230 break; 6231 6232 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6233 kvm->arch.x2apic_format = true; 6234 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6235 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6236 6237 r = 0; 6238 break; 6239 case KVM_CAP_X86_DISABLE_EXITS: 6240 r = -EINVAL; 6241 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6242 break; 6243 6244 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6245 kvm->arch.pause_in_guest = true; 6246 6247 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6248 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6249 6250 if (!mitigate_smt_rsb) { 6251 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6252 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6253 pr_warn_once(SMT_RSB_MSG); 6254 6255 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6256 kvm_can_mwait_in_guest()) 6257 kvm->arch.mwait_in_guest = true; 6258 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6259 kvm->arch.hlt_in_guest = true; 6260 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6261 kvm->arch.cstate_in_guest = true; 6262 } 6263 6264 r = 0; 6265 break; 6266 case KVM_CAP_MSR_PLATFORM_INFO: 6267 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6268 r = 0; 6269 break; 6270 case KVM_CAP_EXCEPTION_PAYLOAD: 6271 kvm->arch.exception_payload_enabled = cap->args[0]; 6272 r = 0; 6273 break; 6274 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6275 kvm->arch.triple_fault_event = cap->args[0]; 6276 r = 0; 6277 break; 6278 case KVM_CAP_X86_USER_SPACE_MSR: 6279 r = -EINVAL; 6280 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6281 break; 6282 kvm->arch.user_space_msr_mask = cap->args[0]; 6283 r = 0; 6284 break; 6285 case KVM_CAP_X86_BUS_LOCK_EXIT: 6286 r = -EINVAL; 6287 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6288 break; 6289 6290 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6291 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6292 break; 6293 6294 if (kvm_caps.has_bus_lock_exit && 6295 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6296 kvm->arch.bus_lock_detection_enabled = true; 6297 r = 0; 6298 break; 6299 #ifdef CONFIG_X86_SGX_KVM 6300 case KVM_CAP_SGX_ATTRIBUTE: { 6301 unsigned long allowed_attributes = 0; 6302 6303 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6304 if (r) 6305 break; 6306 6307 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6308 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6309 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6310 kvm->arch.sgx_provisioning_allowed = true; 6311 else 6312 r = -EINVAL; 6313 break; 6314 } 6315 #endif 6316 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6317 r = -EINVAL; 6318 if (!kvm_x86_ops.vm_copy_enc_context_from) 6319 break; 6320 6321 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6322 break; 6323 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6324 r = -EINVAL; 6325 if (!kvm_x86_ops.vm_move_enc_context_from) 6326 break; 6327 6328 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6329 break; 6330 case KVM_CAP_EXIT_HYPERCALL: 6331 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6332 r = -EINVAL; 6333 break; 6334 } 6335 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6336 r = 0; 6337 break; 6338 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6339 r = -EINVAL; 6340 if (cap->args[0] & ~1) 6341 break; 6342 kvm->arch.exit_on_emulation_error = cap->args[0]; 6343 r = 0; 6344 break; 6345 case KVM_CAP_PMU_CAPABILITY: 6346 r = -EINVAL; 6347 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6348 break; 6349 6350 mutex_lock(&kvm->lock); 6351 if (!kvm->created_vcpus) { 6352 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6353 r = 0; 6354 } 6355 mutex_unlock(&kvm->lock); 6356 break; 6357 case KVM_CAP_MAX_VCPU_ID: 6358 r = -EINVAL; 6359 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6360 break; 6361 6362 mutex_lock(&kvm->lock); 6363 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6364 r = 0; 6365 } else if (!kvm->arch.max_vcpu_ids) { 6366 kvm->arch.max_vcpu_ids = cap->args[0]; 6367 r = 0; 6368 } 6369 mutex_unlock(&kvm->lock); 6370 break; 6371 case KVM_CAP_X86_NOTIFY_VMEXIT: 6372 r = -EINVAL; 6373 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6374 break; 6375 if (!kvm_caps.has_notify_vmexit) 6376 break; 6377 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6378 break; 6379 mutex_lock(&kvm->lock); 6380 if (!kvm->created_vcpus) { 6381 kvm->arch.notify_window = cap->args[0] >> 32; 6382 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6383 r = 0; 6384 } 6385 mutex_unlock(&kvm->lock); 6386 break; 6387 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6388 r = -EINVAL; 6389 6390 /* 6391 * Since the risk of disabling NX hugepages is a guest crashing 6392 * the system, ensure the userspace process has permission to 6393 * reboot the system. 6394 * 6395 * Note that unlike the reboot() syscall, the process must have 6396 * this capability in the root namespace because exposing 6397 * /dev/kvm into a container does not limit the scope of the 6398 * iTLB multihit bug to that container. In other words, 6399 * this must use capable(), not ns_capable(). 6400 */ 6401 if (!capable(CAP_SYS_BOOT)) { 6402 r = -EPERM; 6403 break; 6404 } 6405 6406 if (cap->args[0]) 6407 break; 6408 6409 mutex_lock(&kvm->lock); 6410 if (!kvm->created_vcpus) { 6411 kvm->arch.disable_nx_huge_pages = true; 6412 r = 0; 6413 } 6414 mutex_unlock(&kvm->lock); 6415 break; 6416 default: 6417 r = -EINVAL; 6418 break; 6419 } 6420 return r; 6421 } 6422 6423 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6424 { 6425 struct kvm_x86_msr_filter *msr_filter; 6426 6427 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6428 if (!msr_filter) 6429 return NULL; 6430 6431 msr_filter->default_allow = default_allow; 6432 return msr_filter; 6433 } 6434 6435 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6436 { 6437 u32 i; 6438 6439 if (!msr_filter) 6440 return; 6441 6442 for (i = 0; i < msr_filter->count; i++) 6443 kfree(msr_filter->ranges[i].bitmap); 6444 6445 kfree(msr_filter); 6446 } 6447 6448 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6449 struct kvm_msr_filter_range *user_range) 6450 { 6451 unsigned long *bitmap = NULL; 6452 size_t bitmap_size; 6453 6454 if (!user_range->nmsrs) 6455 return 0; 6456 6457 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6458 return -EINVAL; 6459 6460 if (!user_range->flags) 6461 return -EINVAL; 6462 6463 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6464 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6465 return -EINVAL; 6466 6467 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6468 if (IS_ERR(bitmap)) 6469 return PTR_ERR(bitmap); 6470 6471 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6472 .flags = user_range->flags, 6473 .base = user_range->base, 6474 .nmsrs = user_range->nmsrs, 6475 .bitmap = bitmap, 6476 }; 6477 6478 msr_filter->count++; 6479 return 0; 6480 } 6481 6482 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6483 struct kvm_msr_filter *filter) 6484 { 6485 struct kvm_x86_msr_filter *new_filter, *old_filter; 6486 bool default_allow; 6487 bool empty = true; 6488 int r; 6489 u32 i; 6490 6491 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6492 return -EINVAL; 6493 6494 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6495 empty &= !filter->ranges[i].nmsrs; 6496 6497 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6498 if (empty && !default_allow) 6499 return -EINVAL; 6500 6501 new_filter = kvm_alloc_msr_filter(default_allow); 6502 if (!new_filter) 6503 return -ENOMEM; 6504 6505 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6506 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6507 if (r) { 6508 kvm_free_msr_filter(new_filter); 6509 return r; 6510 } 6511 } 6512 6513 mutex_lock(&kvm->lock); 6514 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6515 mutex_is_locked(&kvm->lock)); 6516 mutex_unlock(&kvm->lock); 6517 synchronize_srcu(&kvm->srcu); 6518 6519 kvm_free_msr_filter(old_filter); 6520 6521 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6522 6523 return 0; 6524 } 6525 6526 #ifdef CONFIG_KVM_COMPAT 6527 /* for KVM_X86_SET_MSR_FILTER */ 6528 struct kvm_msr_filter_range_compat { 6529 __u32 flags; 6530 __u32 nmsrs; 6531 __u32 base; 6532 __u32 bitmap; 6533 }; 6534 6535 struct kvm_msr_filter_compat { 6536 __u32 flags; 6537 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6538 }; 6539 6540 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6541 6542 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6543 unsigned long arg) 6544 { 6545 void __user *argp = (void __user *)arg; 6546 struct kvm *kvm = filp->private_data; 6547 long r = -ENOTTY; 6548 6549 switch (ioctl) { 6550 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6551 struct kvm_msr_filter __user *user_msr_filter = argp; 6552 struct kvm_msr_filter_compat filter_compat; 6553 struct kvm_msr_filter filter; 6554 int i; 6555 6556 if (copy_from_user(&filter_compat, user_msr_filter, 6557 sizeof(filter_compat))) 6558 return -EFAULT; 6559 6560 filter.flags = filter_compat.flags; 6561 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6562 struct kvm_msr_filter_range_compat *cr; 6563 6564 cr = &filter_compat.ranges[i]; 6565 filter.ranges[i] = (struct kvm_msr_filter_range) { 6566 .flags = cr->flags, 6567 .nmsrs = cr->nmsrs, 6568 .base = cr->base, 6569 .bitmap = (__u8 *)(ulong)cr->bitmap, 6570 }; 6571 } 6572 6573 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6574 break; 6575 } 6576 } 6577 6578 return r; 6579 } 6580 #endif 6581 6582 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6583 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6584 { 6585 struct kvm_vcpu *vcpu; 6586 unsigned long i; 6587 int ret = 0; 6588 6589 mutex_lock(&kvm->lock); 6590 kvm_for_each_vcpu(i, vcpu, kvm) { 6591 if (!vcpu->arch.pv_time.active) 6592 continue; 6593 6594 ret = kvm_set_guest_paused(vcpu); 6595 if (ret) { 6596 kvm_err("Failed to pause guest VCPU%d: %d\n", 6597 vcpu->vcpu_id, ret); 6598 break; 6599 } 6600 } 6601 mutex_unlock(&kvm->lock); 6602 6603 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6604 } 6605 6606 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6607 { 6608 switch (state) { 6609 case PM_HIBERNATION_PREPARE: 6610 case PM_SUSPEND_PREPARE: 6611 return kvm_arch_suspend_notifier(kvm); 6612 } 6613 6614 return NOTIFY_DONE; 6615 } 6616 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6617 6618 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6619 { 6620 struct kvm_clock_data data = { 0 }; 6621 6622 get_kvmclock(kvm, &data); 6623 if (copy_to_user(argp, &data, sizeof(data))) 6624 return -EFAULT; 6625 6626 return 0; 6627 } 6628 6629 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6630 { 6631 struct kvm_arch *ka = &kvm->arch; 6632 struct kvm_clock_data data; 6633 u64 now_raw_ns; 6634 6635 if (copy_from_user(&data, argp, sizeof(data))) 6636 return -EFAULT; 6637 6638 /* 6639 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6640 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6641 */ 6642 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6643 return -EINVAL; 6644 6645 kvm_hv_request_tsc_page_update(kvm); 6646 kvm_start_pvclock_update(kvm); 6647 pvclock_update_vm_gtod_copy(kvm); 6648 6649 /* 6650 * This pairs with kvm_guest_time_update(): when masterclock is 6651 * in use, we use master_kernel_ns + kvmclock_offset to set 6652 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6653 * is slightly ahead) here we risk going negative on unsigned 6654 * 'system_time' when 'data.clock' is very small. 6655 */ 6656 if (data.flags & KVM_CLOCK_REALTIME) { 6657 u64 now_real_ns = ktime_get_real_ns(); 6658 6659 /* 6660 * Avoid stepping the kvmclock backwards. 6661 */ 6662 if (now_real_ns > data.realtime) 6663 data.clock += now_real_ns - data.realtime; 6664 } 6665 6666 if (ka->use_master_clock) 6667 now_raw_ns = ka->master_kernel_ns; 6668 else 6669 now_raw_ns = get_kvmclock_base_ns(); 6670 ka->kvmclock_offset = data.clock - now_raw_ns; 6671 kvm_end_pvclock_update(kvm); 6672 return 0; 6673 } 6674 6675 long kvm_arch_vm_ioctl(struct file *filp, 6676 unsigned int ioctl, unsigned long arg) 6677 { 6678 struct kvm *kvm = filp->private_data; 6679 void __user *argp = (void __user *)arg; 6680 int r = -ENOTTY; 6681 /* 6682 * This union makes it completely explicit to gcc-3.x 6683 * that these two variables' stack usage should be 6684 * combined, not added together. 6685 */ 6686 union { 6687 struct kvm_pit_state ps; 6688 struct kvm_pit_state2 ps2; 6689 struct kvm_pit_config pit_config; 6690 } u; 6691 6692 switch (ioctl) { 6693 case KVM_SET_TSS_ADDR: 6694 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6695 break; 6696 case KVM_SET_IDENTITY_MAP_ADDR: { 6697 u64 ident_addr; 6698 6699 mutex_lock(&kvm->lock); 6700 r = -EINVAL; 6701 if (kvm->created_vcpus) 6702 goto set_identity_unlock; 6703 r = -EFAULT; 6704 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6705 goto set_identity_unlock; 6706 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6707 set_identity_unlock: 6708 mutex_unlock(&kvm->lock); 6709 break; 6710 } 6711 case KVM_SET_NR_MMU_PAGES: 6712 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6713 break; 6714 case KVM_GET_NR_MMU_PAGES: 6715 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6716 break; 6717 case KVM_CREATE_IRQCHIP: { 6718 mutex_lock(&kvm->lock); 6719 6720 r = -EEXIST; 6721 if (irqchip_in_kernel(kvm)) 6722 goto create_irqchip_unlock; 6723 6724 r = -EINVAL; 6725 if (kvm->created_vcpus) 6726 goto create_irqchip_unlock; 6727 6728 r = kvm_pic_init(kvm); 6729 if (r) 6730 goto create_irqchip_unlock; 6731 6732 r = kvm_ioapic_init(kvm); 6733 if (r) { 6734 kvm_pic_destroy(kvm); 6735 goto create_irqchip_unlock; 6736 } 6737 6738 r = kvm_setup_default_irq_routing(kvm); 6739 if (r) { 6740 kvm_ioapic_destroy(kvm); 6741 kvm_pic_destroy(kvm); 6742 goto create_irqchip_unlock; 6743 } 6744 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6745 smp_wmb(); 6746 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6747 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6748 create_irqchip_unlock: 6749 mutex_unlock(&kvm->lock); 6750 break; 6751 } 6752 case KVM_CREATE_PIT: 6753 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6754 goto create_pit; 6755 case KVM_CREATE_PIT2: 6756 r = -EFAULT; 6757 if (copy_from_user(&u.pit_config, argp, 6758 sizeof(struct kvm_pit_config))) 6759 goto out; 6760 create_pit: 6761 mutex_lock(&kvm->lock); 6762 r = -EEXIST; 6763 if (kvm->arch.vpit) 6764 goto create_pit_unlock; 6765 r = -ENOMEM; 6766 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6767 if (kvm->arch.vpit) 6768 r = 0; 6769 create_pit_unlock: 6770 mutex_unlock(&kvm->lock); 6771 break; 6772 case KVM_GET_IRQCHIP: { 6773 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6774 struct kvm_irqchip *chip; 6775 6776 chip = memdup_user(argp, sizeof(*chip)); 6777 if (IS_ERR(chip)) { 6778 r = PTR_ERR(chip); 6779 goto out; 6780 } 6781 6782 r = -ENXIO; 6783 if (!irqchip_kernel(kvm)) 6784 goto get_irqchip_out; 6785 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6786 if (r) 6787 goto get_irqchip_out; 6788 r = -EFAULT; 6789 if (copy_to_user(argp, chip, sizeof(*chip))) 6790 goto get_irqchip_out; 6791 r = 0; 6792 get_irqchip_out: 6793 kfree(chip); 6794 break; 6795 } 6796 case KVM_SET_IRQCHIP: { 6797 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6798 struct kvm_irqchip *chip; 6799 6800 chip = memdup_user(argp, sizeof(*chip)); 6801 if (IS_ERR(chip)) { 6802 r = PTR_ERR(chip); 6803 goto out; 6804 } 6805 6806 r = -ENXIO; 6807 if (!irqchip_kernel(kvm)) 6808 goto set_irqchip_out; 6809 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6810 set_irqchip_out: 6811 kfree(chip); 6812 break; 6813 } 6814 case KVM_GET_PIT: { 6815 r = -EFAULT; 6816 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6817 goto out; 6818 r = -ENXIO; 6819 if (!kvm->arch.vpit) 6820 goto out; 6821 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6822 if (r) 6823 goto out; 6824 r = -EFAULT; 6825 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6826 goto out; 6827 r = 0; 6828 break; 6829 } 6830 case KVM_SET_PIT: { 6831 r = -EFAULT; 6832 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6833 goto out; 6834 mutex_lock(&kvm->lock); 6835 r = -ENXIO; 6836 if (!kvm->arch.vpit) 6837 goto set_pit_out; 6838 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6839 set_pit_out: 6840 mutex_unlock(&kvm->lock); 6841 break; 6842 } 6843 case KVM_GET_PIT2: { 6844 r = -ENXIO; 6845 if (!kvm->arch.vpit) 6846 goto out; 6847 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6848 if (r) 6849 goto out; 6850 r = -EFAULT; 6851 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6852 goto out; 6853 r = 0; 6854 break; 6855 } 6856 case KVM_SET_PIT2: { 6857 r = -EFAULT; 6858 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6859 goto out; 6860 mutex_lock(&kvm->lock); 6861 r = -ENXIO; 6862 if (!kvm->arch.vpit) 6863 goto set_pit2_out; 6864 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6865 set_pit2_out: 6866 mutex_unlock(&kvm->lock); 6867 break; 6868 } 6869 case KVM_REINJECT_CONTROL: { 6870 struct kvm_reinject_control control; 6871 r = -EFAULT; 6872 if (copy_from_user(&control, argp, sizeof(control))) 6873 goto out; 6874 r = -ENXIO; 6875 if (!kvm->arch.vpit) 6876 goto out; 6877 r = kvm_vm_ioctl_reinject(kvm, &control); 6878 break; 6879 } 6880 case KVM_SET_BOOT_CPU_ID: 6881 r = 0; 6882 mutex_lock(&kvm->lock); 6883 if (kvm->created_vcpus) 6884 r = -EBUSY; 6885 else 6886 kvm->arch.bsp_vcpu_id = arg; 6887 mutex_unlock(&kvm->lock); 6888 break; 6889 #ifdef CONFIG_KVM_XEN 6890 case KVM_XEN_HVM_CONFIG: { 6891 struct kvm_xen_hvm_config xhc; 6892 r = -EFAULT; 6893 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6894 goto out; 6895 r = kvm_xen_hvm_config(kvm, &xhc); 6896 break; 6897 } 6898 case KVM_XEN_HVM_GET_ATTR: { 6899 struct kvm_xen_hvm_attr xha; 6900 6901 r = -EFAULT; 6902 if (copy_from_user(&xha, argp, sizeof(xha))) 6903 goto out; 6904 r = kvm_xen_hvm_get_attr(kvm, &xha); 6905 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6906 r = -EFAULT; 6907 break; 6908 } 6909 case KVM_XEN_HVM_SET_ATTR: { 6910 struct kvm_xen_hvm_attr xha; 6911 6912 r = -EFAULT; 6913 if (copy_from_user(&xha, argp, sizeof(xha))) 6914 goto out; 6915 r = kvm_xen_hvm_set_attr(kvm, &xha); 6916 break; 6917 } 6918 case KVM_XEN_HVM_EVTCHN_SEND: { 6919 struct kvm_irq_routing_xen_evtchn uxe; 6920 6921 r = -EFAULT; 6922 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6923 goto out; 6924 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6925 break; 6926 } 6927 #endif 6928 case KVM_SET_CLOCK: 6929 r = kvm_vm_ioctl_set_clock(kvm, argp); 6930 break; 6931 case KVM_GET_CLOCK: 6932 r = kvm_vm_ioctl_get_clock(kvm, argp); 6933 break; 6934 case KVM_SET_TSC_KHZ: { 6935 u32 user_tsc_khz; 6936 6937 r = -EINVAL; 6938 user_tsc_khz = (u32)arg; 6939 6940 if (kvm_caps.has_tsc_control && 6941 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6942 goto out; 6943 6944 if (user_tsc_khz == 0) 6945 user_tsc_khz = tsc_khz; 6946 6947 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6948 r = 0; 6949 6950 goto out; 6951 } 6952 case KVM_GET_TSC_KHZ: { 6953 r = READ_ONCE(kvm->arch.default_tsc_khz); 6954 goto out; 6955 } 6956 case KVM_MEMORY_ENCRYPT_OP: { 6957 r = -ENOTTY; 6958 if (!kvm_x86_ops.mem_enc_ioctl) 6959 goto out; 6960 6961 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6962 break; 6963 } 6964 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6965 struct kvm_enc_region region; 6966 6967 r = -EFAULT; 6968 if (copy_from_user(®ion, argp, sizeof(region))) 6969 goto out; 6970 6971 r = -ENOTTY; 6972 if (!kvm_x86_ops.mem_enc_register_region) 6973 goto out; 6974 6975 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6976 break; 6977 } 6978 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6979 struct kvm_enc_region region; 6980 6981 r = -EFAULT; 6982 if (copy_from_user(®ion, argp, sizeof(region))) 6983 goto out; 6984 6985 r = -ENOTTY; 6986 if (!kvm_x86_ops.mem_enc_unregister_region) 6987 goto out; 6988 6989 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6990 break; 6991 } 6992 case KVM_HYPERV_EVENTFD: { 6993 struct kvm_hyperv_eventfd hvevfd; 6994 6995 r = -EFAULT; 6996 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6997 goto out; 6998 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6999 break; 7000 } 7001 case KVM_SET_PMU_EVENT_FILTER: 7002 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7003 break; 7004 case KVM_X86_SET_MSR_FILTER: { 7005 struct kvm_msr_filter __user *user_msr_filter = argp; 7006 struct kvm_msr_filter filter; 7007 7008 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7009 return -EFAULT; 7010 7011 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7012 break; 7013 } 7014 default: 7015 r = -ENOTTY; 7016 } 7017 out: 7018 return r; 7019 } 7020 7021 static void kvm_probe_msr_to_save(u32 msr_index) 7022 { 7023 u32 dummy[2]; 7024 7025 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7026 return; 7027 7028 /* 7029 * Even MSRs that are valid in the host may not be exposed to guests in 7030 * some cases. 7031 */ 7032 switch (msr_index) { 7033 case MSR_IA32_BNDCFGS: 7034 if (!kvm_mpx_supported()) 7035 return; 7036 break; 7037 case MSR_TSC_AUX: 7038 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7039 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7040 return; 7041 break; 7042 case MSR_IA32_UMWAIT_CONTROL: 7043 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7044 return; 7045 break; 7046 case MSR_IA32_RTIT_CTL: 7047 case MSR_IA32_RTIT_STATUS: 7048 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7049 return; 7050 break; 7051 case MSR_IA32_RTIT_CR3_MATCH: 7052 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7053 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7054 return; 7055 break; 7056 case MSR_IA32_RTIT_OUTPUT_BASE: 7057 case MSR_IA32_RTIT_OUTPUT_MASK: 7058 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7059 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7060 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7061 return; 7062 break; 7063 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7064 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7065 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7066 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7067 return; 7068 break; 7069 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7070 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7071 kvm_pmu_cap.num_counters_gp) 7072 return; 7073 break; 7074 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7075 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7076 kvm_pmu_cap.num_counters_gp) 7077 return; 7078 break; 7079 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7080 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7081 kvm_pmu_cap.num_counters_fixed) 7082 return; 7083 break; 7084 case MSR_IA32_XFD: 7085 case MSR_IA32_XFD_ERR: 7086 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7087 return; 7088 break; 7089 default: 7090 break; 7091 } 7092 7093 msrs_to_save[num_msrs_to_save++] = msr_index; 7094 } 7095 7096 static void kvm_init_msr_list(void) 7097 { 7098 unsigned i; 7099 7100 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7101 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7102 7103 num_msrs_to_save = 0; 7104 num_emulated_msrs = 0; 7105 num_msr_based_features = 0; 7106 7107 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7108 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7109 7110 if (enable_pmu) { 7111 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7112 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7113 } 7114 7115 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7116 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7117 continue; 7118 7119 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7120 } 7121 7122 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7123 struct kvm_msr_entry msr; 7124 7125 msr.index = msr_based_features_all[i]; 7126 if (kvm_get_msr_feature(&msr)) 7127 continue; 7128 7129 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7130 } 7131 } 7132 7133 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7134 const void *v) 7135 { 7136 int handled = 0; 7137 int n; 7138 7139 do { 7140 n = min(len, 8); 7141 if (!(lapic_in_kernel(vcpu) && 7142 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7143 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7144 break; 7145 handled += n; 7146 addr += n; 7147 len -= n; 7148 v += n; 7149 } while (len); 7150 7151 return handled; 7152 } 7153 7154 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7155 { 7156 int handled = 0; 7157 int n; 7158 7159 do { 7160 n = min(len, 8); 7161 if (!(lapic_in_kernel(vcpu) && 7162 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7163 addr, n, v)) 7164 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7165 break; 7166 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7167 handled += n; 7168 addr += n; 7169 len -= n; 7170 v += n; 7171 } while (len); 7172 7173 return handled; 7174 } 7175 7176 void kvm_set_segment(struct kvm_vcpu *vcpu, 7177 struct kvm_segment *var, int seg) 7178 { 7179 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7180 } 7181 7182 void kvm_get_segment(struct kvm_vcpu *vcpu, 7183 struct kvm_segment *var, int seg) 7184 { 7185 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7186 } 7187 7188 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7189 struct x86_exception *exception) 7190 { 7191 struct kvm_mmu *mmu = vcpu->arch.mmu; 7192 gpa_t t_gpa; 7193 7194 BUG_ON(!mmu_is_nested(vcpu)); 7195 7196 /* NPT walks are always user-walks */ 7197 access |= PFERR_USER_MASK; 7198 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7199 7200 return t_gpa; 7201 } 7202 7203 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7204 struct x86_exception *exception) 7205 { 7206 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7207 7208 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7209 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7210 } 7211 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7212 7213 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7214 struct x86_exception *exception) 7215 { 7216 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7217 7218 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7219 access |= PFERR_WRITE_MASK; 7220 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7221 } 7222 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7223 7224 /* uses this to access any guest's mapped memory without checking CPL */ 7225 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7226 struct x86_exception *exception) 7227 { 7228 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7229 7230 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7231 } 7232 7233 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7234 struct kvm_vcpu *vcpu, u64 access, 7235 struct x86_exception *exception) 7236 { 7237 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7238 void *data = val; 7239 int r = X86EMUL_CONTINUE; 7240 7241 while (bytes) { 7242 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7243 unsigned offset = addr & (PAGE_SIZE-1); 7244 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7245 int ret; 7246 7247 if (gpa == INVALID_GPA) 7248 return X86EMUL_PROPAGATE_FAULT; 7249 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7250 offset, toread); 7251 if (ret < 0) { 7252 r = X86EMUL_IO_NEEDED; 7253 goto out; 7254 } 7255 7256 bytes -= toread; 7257 data += toread; 7258 addr += toread; 7259 } 7260 out: 7261 return r; 7262 } 7263 7264 /* used for instruction fetching */ 7265 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7266 gva_t addr, void *val, unsigned int bytes, 7267 struct x86_exception *exception) 7268 { 7269 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7270 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7271 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7272 unsigned offset; 7273 int ret; 7274 7275 /* Inline kvm_read_guest_virt_helper for speed. */ 7276 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7277 exception); 7278 if (unlikely(gpa == INVALID_GPA)) 7279 return X86EMUL_PROPAGATE_FAULT; 7280 7281 offset = addr & (PAGE_SIZE-1); 7282 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7283 bytes = (unsigned)PAGE_SIZE - offset; 7284 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7285 offset, bytes); 7286 if (unlikely(ret < 0)) 7287 return X86EMUL_IO_NEEDED; 7288 7289 return X86EMUL_CONTINUE; 7290 } 7291 7292 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7293 gva_t addr, void *val, unsigned int bytes, 7294 struct x86_exception *exception) 7295 { 7296 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7297 7298 /* 7299 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7300 * is returned, but our callers are not ready for that and they blindly 7301 * call kvm_inject_page_fault. Ensure that they at least do not leak 7302 * uninitialized kernel stack memory into cr2 and error code. 7303 */ 7304 memset(exception, 0, sizeof(*exception)); 7305 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7306 exception); 7307 } 7308 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7309 7310 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7311 gva_t addr, void *val, unsigned int bytes, 7312 struct x86_exception *exception, bool system) 7313 { 7314 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7315 u64 access = 0; 7316 7317 if (system) 7318 access |= PFERR_IMPLICIT_ACCESS; 7319 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7320 access |= PFERR_USER_MASK; 7321 7322 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7323 } 7324 7325 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7326 struct kvm_vcpu *vcpu, u64 access, 7327 struct x86_exception *exception) 7328 { 7329 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7330 void *data = val; 7331 int r = X86EMUL_CONTINUE; 7332 7333 while (bytes) { 7334 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7335 unsigned offset = addr & (PAGE_SIZE-1); 7336 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7337 int ret; 7338 7339 if (gpa == INVALID_GPA) 7340 return X86EMUL_PROPAGATE_FAULT; 7341 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7342 if (ret < 0) { 7343 r = X86EMUL_IO_NEEDED; 7344 goto out; 7345 } 7346 7347 bytes -= towrite; 7348 data += towrite; 7349 addr += towrite; 7350 } 7351 out: 7352 return r; 7353 } 7354 7355 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7356 unsigned int bytes, struct x86_exception *exception, 7357 bool system) 7358 { 7359 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7360 u64 access = PFERR_WRITE_MASK; 7361 7362 if (system) 7363 access |= PFERR_IMPLICIT_ACCESS; 7364 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7365 access |= PFERR_USER_MASK; 7366 7367 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7368 access, exception); 7369 } 7370 7371 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7372 unsigned int bytes, struct x86_exception *exception) 7373 { 7374 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7375 vcpu->arch.l1tf_flush_l1d = true; 7376 7377 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7378 PFERR_WRITE_MASK, exception); 7379 } 7380 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7381 7382 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7383 void *insn, int insn_len) 7384 { 7385 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7386 insn, insn_len); 7387 } 7388 7389 int handle_ud(struct kvm_vcpu *vcpu) 7390 { 7391 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7392 int fep_flags = READ_ONCE(force_emulation_prefix); 7393 int emul_type = EMULTYPE_TRAP_UD; 7394 char sig[5]; /* ud2; .ascii "kvm" */ 7395 struct x86_exception e; 7396 7397 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7398 return 1; 7399 7400 if (fep_flags && 7401 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7402 sig, sizeof(sig), &e) == 0 && 7403 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7404 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7405 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7406 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7407 emul_type = EMULTYPE_TRAP_UD_FORCED; 7408 } 7409 7410 return kvm_emulate_instruction(vcpu, emul_type); 7411 } 7412 EXPORT_SYMBOL_GPL(handle_ud); 7413 7414 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7415 gpa_t gpa, bool write) 7416 { 7417 /* For APIC access vmexit */ 7418 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7419 return 1; 7420 7421 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7422 trace_vcpu_match_mmio(gva, gpa, write, true); 7423 return 1; 7424 } 7425 7426 return 0; 7427 } 7428 7429 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7430 gpa_t *gpa, struct x86_exception *exception, 7431 bool write) 7432 { 7433 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7434 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7435 | (write ? PFERR_WRITE_MASK : 0); 7436 7437 /* 7438 * currently PKRU is only applied to ept enabled guest so 7439 * there is no pkey in EPT page table for L1 guest or EPT 7440 * shadow page table for L2 guest. 7441 */ 7442 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7443 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7444 vcpu->arch.mmio_access, 0, access))) { 7445 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7446 (gva & (PAGE_SIZE - 1)); 7447 trace_vcpu_match_mmio(gva, *gpa, write, false); 7448 return 1; 7449 } 7450 7451 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7452 7453 if (*gpa == INVALID_GPA) 7454 return -1; 7455 7456 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7457 } 7458 7459 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7460 const void *val, int bytes) 7461 { 7462 int ret; 7463 7464 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7465 if (ret < 0) 7466 return 0; 7467 kvm_page_track_write(vcpu, gpa, val, bytes); 7468 return 1; 7469 } 7470 7471 struct read_write_emulator_ops { 7472 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7473 int bytes); 7474 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7475 void *val, int bytes); 7476 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7477 int bytes, void *val); 7478 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7479 void *val, int bytes); 7480 bool write; 7481 }; 7482 7483 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7484 { 7485 if (vcpu->mmio_read_completed) { 7486 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7487 vcpu->mmio_fragments[0].gpa, val); 7488 vcpu->mmio_read_completed = 0; 7489 return 1; 7490 } 7491 7492 return 0; 7493 } 7494 7495 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7496 void *val, int bytes) 7497 { 7498 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7499 } 7500 7501 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7502 void *val, int bytes) 7503 { 7504 return emulator_write_phys(vcpu, gpa, val, bytes); 7505 } 7506 7507 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7508 { 7509 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7510 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7511 } 7512 7513 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7514 void *val, int bytes) 7515 { 7516 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7517 return X86EMUL_IO_NEEDED; 7518 } 7519 7520 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7521 void *val, int bytes) 7522 { 7523 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7524 7525 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7526 return X86EMUL_CONTINUE; 7527 } 7528 7529 static const struct read_write_emulator_ops read_emultor = { 7530 .read_write_prepare = read_prepare, 7531 .read_write_emulate = read_emulate, 7532 .read_write_mmio = vcpu_mmio_read, 7533 .read_write_exit_mmio = read_exit_mmio, 7534 }; 7535 7536 static const struct read_write_emulator_ops write_emultor = { 7537 .read_write_emulate = write_emulate, 7538 .read_write_mmio = write_mmio, 7539 .read_write_exit_mmio = write_exit_mmio, 7540 .write = true, 7541 }; 7542 7543 static int emulator_read_write_onepage(unsigned long addr, void *val, 7544 unsigned int bytes, 7545 struct x86_exception *exception, 7546 struct kvm_vcpu *vcpu, 7547 const struct read_write_emulator_ops *ops) 7548 { 7549 gpa_t gpa; 7550 int handled, ret; 7551 bool write = ops->write; 7552 struct kvm_mmio_fragment *frag; 7553 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7554 7555 /* 7556 * If the exit was due to a NPF we may already have a GPA. 7557 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7558 * Note, this cannot be used on string operations since string 7559 * operation using rep will only have the initial GPA from the NPF 7560 * occurred. 7561 */ 7562 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7563 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7564 gpa = ctxt->gpa_val; 7565 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7566 } else { 7567 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7568 if (ret < 0) 7569 return X86EMUL_PROPAGATE_FAULT; 7570 } 7571 7572 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7573 return X86EMUL_CONTINUE; 7574 7575 /* 7576 * Is this MMIO handled locally? 7577 */ 7578 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7579 if (handled == bytes) 7580 return X86EMUL_CONTINUE; 7581 7582 gpa += handled; 7583 bytes -= handled; 7584 val += handled; 7585 7586 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7587 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7588 frag->gpa = gpa; 7589 frag->data = val; 7590 frag->len = bytes; 7591 return X86EMUL_CONTINUE; 7592 } 7593 7594 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7595 unsigned long addr, 7596 void *val, unsigned int bytes, 7597 struct x86_exception *exception, 7598 const struct read_write_emulator_ops *ops) 7599 { 7600 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7601 gpa_t gpa; 7602 int rc; 7603 7604 if (ops->read_write_prepare && 7605 ops->read_write_prepare(vcpu, val, bytes)) 7606 return X86EMUL_CONTINUE; 7607 7608 vcpu->mmio_nr_fragments = 0; 7609 7610 /* Crossing a page boundary? */ 7611 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7612 int now; 7613 7614 now = -addr & ~PAGE_MASK; 7615 rc = emulator_read_write_onepage(addr, val, now, exception, 7616 vcpu, ops); 7617 7618 if (rc != X86EMUL_CONTINUE) 7619 return rc; 7620 addr += now; 7621 if (ctxt->mode != X86EMUL_MODE_PROT64) 7622 addr = (u32)addr; 7623 val += now; 7624 bytes -= now; 7625 } 7626 7627 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7628 vcpu, ops); 7629 if (rc != X86EMUL_CONTINUE) 7630 return rc; 7631 7632 if (!vcpu->mmio_nr_fragments) 7633 return rc; 7634 7635 gpa = vcpu->mmio_fragments[0].gpa; 7636 7637 vcpu->mmio_needed = 1; 7638 vcpu->mmio_cur_fragment = 0; 7639 7640 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7641 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7642 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7643 vcpu->run->mmio.phys_addr = gpa; 7644 7645 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7646 } 7647 7648 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7649 unsigned long addr, 7650 void *val, 7651 unsigned int bytes, 7652 struct x86_exception *exception) 7653 { 7654 return emulator_read_write(ctxt, addr, val, bytes, 7655 exception, &read_emultor); 7656 } 7657 7658 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7659 unsigned long addr, 7660 const void *val, 7661 unsigned int bytes, 7662 struct x86_exception *exception) 7663 { 7664 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7665 exception, &write_emultor); 7666 } 7667 7668 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7669 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7670 7671 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7672 unsigned long addr, 7673 const void *old, 7674 const void *new, 7675 unsigned int bytes, 7676 struct x86_exception *exception) 7677 { 7678 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7679 u64 page_line_mask; 7680 unsigned long hva; 7681 gpa_t gpa; 7682 int r; 7683 7684 /* guests cmpxchg8b have to be emulated atomically */ 7685 if (bytes > 8 || (bytes & (bytes - 1))) 7686 goto emul_write; 7687 7688 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7689 7690 if (gpa == INVALID_GPA || 7691 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7692 goto emul_write; 7693 7694 /* 7695 * Emulate the atomic as a straight write to avoid #AC if SLD is 7696 * enabled in the host and the access splits a cache line. 7697 */ 7698 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7699 page_line_mask = ~(cache_line_size() - 1); 7700 else 7701 page_line_mask = PAGE_MASK; 7702 7703 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7704 goto emul_write; 7705 7706 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7707 if (kvm_is_error_hva(hva)) 7708 goto emul_write; 7709 7710 hva += offset_in_page(gpa); 7711 7712 switch (bytes) { 7713 case 1: 7714 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7715 break; 7716 case 2: 7717 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7718 break; 7719 case 4: 7720 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7721 break; 7722 case 8: 7723 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7724 break; 7725 default: 7726 BUG(); 7727 } 7728 7729 if (r < 0) 7730 return X86EMUL_UNHANDLEABLE; 7731 if (r) 7732 return X86EMUL_CMPXCHG_FAILED; 7733 7734 kvm_page_track_write(vcpu, gpa, new, bytes); 7735 7736 return X86EMUL_CONTINUE; 7737 7738 emul_write: 7739 pr_warn_once("emulating exchange as write\n"); 7740 7741 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7742 } 7743 7744 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7745 unsigned short port, void *data, 7746 unsigned int count, bool in) 7747 { 7748 unsigned i; 7749 int r; 7750 7751 WARN_ON_ONCE(vcpu->arch.pio.count); 7752 for (i = 0; i < count; i++) { 7753 if (in) 7754 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7755 else 7756 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7757 7758 if (r) { 7759 if (i == 0) 7760 goto userspace_io; 7761 7762 /* 7763 * Userspace must have unregistered the device while PIO 7764 * was running. Drop writes / read as 0. 7765 */ 7766 if (in) 7767 memset(data, 0, size * (count - i)); 7768 break; 7769 } 7770 7771 data += size; 7772 } 7773 return 1; 7774 7775 userspace_io: 7776 vcpu->arch.pio.port = port; 7777 vcpu->arch.pio.in = in; 7778 vcpu->arch.pio.count = count; 7779 vcpu->arch.pio.size = size; 7780 7781 if (in) 7782 memset(vcpu->arch.pio_data, 0, size * count); 7783 else 7784 memcpy(vcpu->arch.pio_data, data, size * count); 7785 7786 vcpu->run->exit_reason = KVM_EXIT_IO; 7787 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7788 vcpu->run->io.size = size; 7789 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7790 vcpu->run->io.count = count; 7791 vcpu->run->io.port = port; 7792 return 0; 7793 } 7794 7795 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7796 unsigned short port, void *val, unsigned int count) 7797 { 7798 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7799 if (r) 7800 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7801 7802 return r; 7803 } 7804 7805 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7806 { 7807 int size = vcpu->arch.pio.size; 7808 unsigned int count = vcpu->arch.pio.count; 7809 memcpy(val, vcpu->arch.pio_data, size * count); 7810 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7811 vcpu->arch.pio.count = 0; 7812 } 7813 7814 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7815 int size, unsigned short port, void *val, 7816 unsigned int count) 7817 { 7818 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7819 if (vcpu->arch.pio.count) { 7820 /* 7821 * Complete a previous iteration that required userspace I/O. 7822 * Note, @count isn't guaranteed to match pio.count as userspace 7823 * can modify ECX before rerunning the vCPU. Ignore any such 7824 * shenanigans as KVM doesn't support modifying the rep count, 7825 * and the emulator ensures @count doesn't overflow the buffer. 7826 */ 7827 complete_emulator_pio_in(vcpu, val); 7828 return 1; 7829 } 7830 7831 return emulator_pio_in(vcpu, size, port, val, count); 7832 } 7833 7834 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7835 unsigned short port, const void *val, 7836 unsigned int count) 7837 { 7838 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7839 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7840 } 7841 7842 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7843 int size, unsigned short port, 7844 const void *val, unsigned int count) 7845 { 7846 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7847 } 7848 7849 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7850 { 7851 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7852 } 7853 7854 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7855 { 7856 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7857 } 7858 7859 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7860 { 7861 if (!need_emulate_wbinvd(vcpu)) 7862 return X86EMUL_CONTINUE; 7863 7864 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7865 int cpu = get_cpu(); 7866 7867 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7868 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7869 wbinvd_ipi, NULL, 1); 7870 put_cpu(); 7871 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7872 } else 7873 wbinvd(); 7874 return X86EMUL_CONTINUE; 7875 } 7876 7877 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7878 { 7879 kvm_emulate_wbinvd_noskip(vcpu); 7880 return kvm_skip_emulated_instruction(vcpu); 7881 } 7882 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7883 7884 7885 7886 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7887 { 7888 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7889 } 7890 7891 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7892 unsigned long *dest) 7893 { 7894 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7895 } 7896 7897 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7898 unsigned long value) 7899 { 7900 7901 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7902 } 7903 7904 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7905 { 7906 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7907 } 7908 7909 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7910 { 7911 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7912 unsigned long value; 7913 7914 switch (cr) { 7915 case 0: 7916 value = kvm_read_cr0(vcpu); 7917 break; 7918 case 2: 7919 value = vcpu->arch.cr2; 7920 break; 7921 case 3: 7922 value = kvm_read_cr3(vcpu); 7923 break; 7924 case 4: 7925 value = kvm_read_cr4(vcpu); 7926 break; 7927 case 8: 7928 value = kvm_get_cr8(vcpu); 7929 break; 7930 default: 7931 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7932 return 0; 7933 } 7934 7935 return value; 7936 } 7937 7938 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7939 { 7940 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7941 int res = 0; 7942 7943 switch (cr) { 7944 case 0: 7945 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7946 break; 7947 case 2: 7948 vcpu->arch.cr2 = val; 7949 break; 7950 case 3: 7951 res = kvm_set_cr3(vcpu, val); 7952 break; 7953 case 4: 7954 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7955 break; 7956 case 8: 7957 res = kvm_set_cr8(vcpu, val); 7958 break; 7959 default: 7960 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7961 res = -1; 7962 } 7963 7964 return res; 7965 } 7966 7967 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7968 { 7969 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7970 } 7971 7972 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7973 { 7974 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7975 } 7976 7977 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7978 { 7979 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7980 } 7981 7982 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7983 { 7984 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7985 } 7986 7987 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7988 { 7989 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7990 } 7991 7992 static unsigned long emulator_get_cached_segment_base( 7993 struct x86_emulate_ctxt *ctxt, int seg) 7994 { 7995 return get_segment_base(emul_to_vcpu(ctxt), seg); 7996 } 7997 7998 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7999 struct desc_struct *desc, u32 *base3, 8000 int seg) 8001 { 8002 struct kvm_segment var; 8003 8004 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8005 *selector = var.selector; 8006 8007 if (var.unusable) { 8008 memset(desc, 0, sizeof(*desc)); 8009 if (base3) 8010 *base3 = 0; 8011 return false; 8012 } 8013 8014 if (var.g) 8015 var.limit >>= 12; 8016 set_desc_limit(desc, var.limit); 8017 set_desc_base(desc, (unsigned long)var.base); 8018 #ifdef CONFIG_X86_64 8019 if (base3) 8020 *base3 = var.base >> 32; 8021 #endif 8022 desc->type = var.type; 8023 desc->s = var.s; 8024 desc->dpl = var.dpl; 8025 desc->p = var.present; 8026 desc->avl = var.avl; 8027 desc->l = var.l; 8028 desc->d = var.db; 8029 desc->g = var.g; 8030 8031 return true; 8032 } 8033 8034 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8035 struct desc_struct *desc, u32 base3, 8036 int seg) 8037 { 8038 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8039 struct kvm_segment var; 8040 8041 var.selector = selector; 8042 var.base = get_desc_base(desc); 8043 #ifdef CONFIG_X86_64 8044 var.base |= ((u64)base3) << 32; 8045 #endif 8046 var.limit = get_desc_limit(desc); 8047 if (desc->g) 8048 var.limit = (var.limit << 12) | 0xfff; 8049 var.type = desc->type; 8050 var.dpl = desc->dpl; 8051 var.db = desc->d; 8052 var.s = desc->s; 8053 var.l = desc->l; 8054 var.g = desc->g; 8055 var.avl = desc->avl; 8056 var.present = desc->p; 8057 var.unusable = !var.present; 8058 var.padding = 0; 8059 8060 kvm_set_segment(vcpu, &var, seg); 8061 return; 8062 } 8063 8064 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8065 u32 msr_index, u64 *pdata) 8066 { 8067 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8068 int r; 8069 8070 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8071 if (r < 0) 8072 return X86EMUL_UNHANDLEABLE; 8073 8074 if (r) { 8075 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8076 complete_emulated_rdmsr, r)) 8077 return X86EMUL_IO_NEEDED; 8078 8079 trace_kvm_msr_read_ex(msr_index); 8080 return X86EMUL_PROPAGATE_FAULT; 8081 } 8082 8083 trace_kvm_msr_read(msr_index, *pdata); 8084 return X86EMUL_CONTINUE; 8085 } 8086 8087 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8088 u32 msr_index, u64 data) 8089 { 8090 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8091 int r; 8092 8093 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8094 if (r < 0) 8095 return X86EMUL_UNHANDLEABLE; 8096 8097 if (r) { 8098 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8099 complete_emulated_msr_access, r)) 8100 return X86EMUL_IO_NEEDED; 8101 8102 trace_kvm_msr_write_ex(msr_index, data); 8103 return X86EMUL_PROPAGATE_FAULT; 8104 } 8105 8106 trace_kvm_msr_write(msr_index, data); 8107 return X86EMUL_CONTINUE; 8108 } 8109 8110 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8111 u32 msr_index, u64 *pdata) 8112 { 8113 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8114 } 8115 8116 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8117 u32 pmc) 8118 { 8119 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8120 return 0; 8121 return -EINVAL; 8122 } 8123 8124 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8125 u32 pmc, u64 *pdata) 8126 { 8127 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8128 } 8129 8130 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8131 { 8132 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8133 } 8134 8135 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8136 struct x86_instruction_info *info, 8137 enum x86_intercept_stage stage) 8138 { 8139 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8140 &ctxt->exception); 8141 } 8142 8143 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8144 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8145 bool exact_only) 8146 { 8147 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8148 } 8149 8150 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8151 { 8152 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8153 } 8154 8155 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8156 { 8157 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8158 } 8159 8160 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8161 { 8162 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8163 } 8164 8165 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8166 { 8167 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8168 } 8169 8170 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8171 { 8172 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8173 } 8174 8175 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8176 { 8177 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8178 } 8179 8180 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8181 { 8182 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8183 } 8184 8185 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8186 { 8187 return is_smm(emul_to_vcpu(ctxt)); 8188 } 8189 8190 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8191 { 8192 return is_guest_mode(emul_to_vcpu(ctxt)); 8193 } 8194 8195 #ifndef CONFIG_KVM_SMM 8196 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8197 { 8198 WARN_ON_ONCE(1); 8199 return X86EMUL_UNHANDLEABLE; 8200 } 8201 #endif 8202 8203 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8204 { 8205 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8206 } 8207 8208 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8209 { 8210 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8211 } 8212 8213 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8214 { 8215 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8216 8217 if (!kvm->vm_bugged) 8218 kvm_vm_bugged(kvm); 8219 } 8220 8221 static const struct x86_emulate_ops emulate_ops = { 8222 .vm_bugged = emulator_vm_bugged, 8223 .read_gpr = emulator_read_gpr, 8224 .write_gpr = emulator_write_gpr, 8225 .read_std = emulator_read_std, 8226 .write_std = emulator_write_std, 8227 .fetch = kvm_fetch_guest_virt, 8228 .read_emulated = emulator_read_emulated, 8229 .write_emulated = emulator_write_emulated, 8230 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8231 .invlpg = emulator_invlpg, 8232 .pio_in_emulated = emulator_pio_in_emulated, 8233 .pio_out_emulated = emulator_pio_out_emulated, 8234 .get_segment = emulator_get_segment, 8235 .set_segment = emulator_set_segment, 8236 .get_cached_segment_base = emulator_get_cached_segment_base, 8237 .get_gdt = emulator_get_gdt, 8238 .get_idt = emulator_get_idt, 8239 .set_gdt = emulator_set_gdt, 8240 .set_idt = emulator_set_idt, 8241 .get_cr = emulator_get_cr, 8242 .set_cr = emulator_set_cr, 8243 .cpl = emulator_get_cpl, 8244 .get_dr = emulator_get_dr, 8245 .set_dr = emulator_set_dr, 8246 .set_msr_with_filter = emulator_set_msr_with_filter, 8247 .get_msr_with_filter = emulator_get_msr_with_filter, 8248 .get_msr = emulator_get_msr, 8249 .check_pmc = emulator_check_pmc, 8250 .read_pmc = emulator_read_pmc, 8251 .halt = emulator_halt, 8252 .wbinvd = emulator_wbinvd, 8253 .fix_hypercall = emulator_fix_hypercall, 8254 .intercept = emulator_intercept, 8255 .get_cpuid = emulator_get_cpuid, 8256 .guest_has_long_mode = emulator_guest_has_long_mode, 8257 .guest_has_movbe = emulator_guest_has_movbe, 8258 .guest_has_fxsr = emulator_guest_has_fxsr, 8259 .guest_has_rdpid = emulator_guest_has_rdpid, 8260 .set_nmi_mask = emulator_set_nmi_mask, 8261 .is_smm = emulator_is_smm, 8262 .is_guest_mode = emulator_is_guest_mode, 8263 .leave_smm = emulator_leave_smm, 8264 .triple_fault = emulator_triple_fault, 8265 .set_xcr = emulator_set_xcr, 8266 }; 8267 8268 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8269 { 8270 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8271 /* 8272 * an sti; sti; sequence only disable interrupts for the first 8273 * instruction. So, if the last instruction, be it emulated or 8274 * not, left the system with the INT_STI flag enabled, it 8275 * means that the last instruction is an sti. We should not 8276 * leave the flag on in this case. The same goes for mov ss 8277 */ 8278 if (int_shadow & mask) 8279 mask = 0; 8280 if (unlikely(int_shadow || mask)) { 8281 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8282 if (!mask) 8283 kvm_make_request(KVM_REQ_EVENT, vcpu); 8284 } 8285 } 8286 8287 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8288 { 8289 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8290 8291 if (ctxt->exception.vector == PF_VECTOR) 8292 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8293 else if (ctxt->exception.error_code_valid) 8294 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8295 ctxt->exception.error_code); 8296 else 8297 kvm_queue_exception(vcpu, ctxt->exception.vector); 8298 } 8299 8300 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8301 { 8302 struct x86_emulate_ctxt *ctxt; 8303 8304 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8305 if (!ctxt) { 8306 pr_err("failed to allocate vcpu's emulator\n"); 8307 return NULL; 8308 } 8309 8310 ctxt->vcpu = vcpu; 8311 ctxt->ops = &emulate_ops; 8312 vcpu->arch.emulate_ctxt = ctxt; 8313 8314 return ctxt; 8315 } 8316 8317 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8318 { 8319 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8320 int cs_db, cs_l; 8321 8322 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8323 8324 ctxt->gpa_available = false; 8325 ctxt->eflags = kvm_get_rflags(vcpu); 8326 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8327 8328 ctxt->eip = kvm_rip_read(vcpu); 8329 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8330 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8331 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8332 cs_db ? X86EMUL_MODE_PROT32 : 8333 X86EMUL_MODE_PROT16; 8334 ctxt->interruptibility = 0; 8335 ctxt->have_exception = false; 8336 ctxt->exception.vector = -1; 8337 ctxt->perm_ok = false; 8338 8339 init_decode_cache(ctxt); 8340 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8341 } 8342 8343 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8344 { 8345 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8346 int ret; 8347 8348 init_emulate_ctxt(vcpu); 8349 8350 ctxt->op_bytes = 2; 8351 ctxt->ad_bytes = 2; 8352 ctxt->_eip = ctxt->eip + inc_eip; 8353 ret = emulate_int_real(ctxt, irq); 8354 8355 if (ret != X86EMUL_CONTINUE) { 8356 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8357 } else { 8358 ctxt->eip = ctxt->_eip; 8359 kvm_rip_write(vcpu, ctxt->eip); 8360 kvm_set_rflags(vcpu, ctxt->eflags); 8361 } 8362 } 8363 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8364 8365 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8366 u8 ndata, u8 *insn_bytes, u8 insn_size) 8367 { 8368 struct kvm_run *run = vcpu->run; 8369 u64 info[5]; 8370 u8 info_start; 8371 8372 /* 8373 * Zero the whole array used to retrieve the exit info, as casting to 8374 * u32 for select entries will leave some chunks uninitialized. 8375 */ 8376 memset(&info, 0, sizeof(info)); 8377 8378 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8379 &info[2], (u32 *)&info[3], 8380 (u32 *)&info[4]); 8381 8382 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8383 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8384 8385 /* 8386 * There's currently space for 13 entries, but 5 are used for the exit 8387 * reason and info. Restrict to 4 to reduce the maintenance burden 8388 * when expanding kvm_run.emulation_failure in the future. 8389 */ 8390 if (WARN_ON_ONCE(ndata > 4)) 8391 ndata = 4; 8392 8393 /* Always include the flags as a 'data' entry. */ 8394 info_start = 1; 8395 run->emulation_failure.flags = 0; 8396 8397 if (insn_size) { 8398 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8399 sizeof(run->emulation_failure.insn_bytes) != 16)); 8400 info_start += 2; 8401 run->emulation_failure.flags |= 8402 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8403 run->emulation_failure.insn_size = insn_size; 8404 memset(run->emulation_failure.insn_bytes, 0x90, 8405 sizeof(run->emulation_failure.insn_bytes)); 8406 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8407 } 8408 8409 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8410 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8411 ndata * sizeof(data[0])); 8412 8413 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8414 } 8415 8416 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8417 { 8418 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8419 8420 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8421 ctxt->fetch.end - ctxt->fetch.data); 8422 } 8423 8424 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8425 u8 ndata) 8426 { 8427 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8428 } 8429 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8430 8431 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8432 { 8433 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8434 } 8435 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8436 8437 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8438 { 8439 struct kvm *kvm = vcpu->kvm; 8440 8441 ++vcpu->stat.insn_emulation_fail; 8442 trace_kvm_emulate_insn_failed(vcpu); 8443 8444 if (emulation_type & EMULTYPE_VMWARE_GP) { 8445 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8446 return 1; 8447 } 8448 8449 if (kvm->arch.exit_on_emulation_error || 8450 (emulation_type & EMULTYPE_SKIP)) { 8451 prepare_emulation_ctxt_failure_exit(vcpu); 8452 return 0; 8453 } 8454 8455 kvm_queue_exception(vcpu, UD_VECTOR); 8456 8457 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8458 prepare_emulation_ctxt_failure_exit(vcpu); 8459 return 0; 8460 } 8461 8462 return 1; 8463 } 8464 8465 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8466 bool write_fault_to_shadow_pgtable, 8467 int emulation_type) 8468 { 8469 gpa_t gpa = cr2_or_gpa; 8470 kvm_pfn_t pfn; 8471 8472 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8473 return false; 8474 8475 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8476 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8477 return false; 8478 8479 if (!vcpu->arch.mmu->root_role.direct) { 8480 /* 8481 * Write permission should be allowed since only 8482 * write access need to be emulated. 8483 */ 8484 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8485 8486 /* 8487 * If the mapping is invalid in guest, let cpu retry 8488 * it to generate fault. 8489 */ 8490 if (gpa == INVALID_GPA) 8491 return true; 8492 } 8493 8494 /* 8495 * Do not retry the unhandleable instruction if it faults on the 8496 * readonly host memory, otherwise it will goto a infinite loop: 8497 * retry instruction -> write #PF -> emulation fail -> retry 8498 * instruction -> ... 8499 */ 8500 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8501 8502 /* 8503 * If the instruction failed on the error pfn, it can not be fixed, 8504 * report the error to userspace. 8505 */ 8506 if (is_error_noslot_pfn(pfn)) 8507 return false; 8508 8509 kvm_release_pfn_clean(pfn); 8510 8511 /* The instructions are well-emulated on direct mmu. */ 8512 if (vcpu->arch.mmu->root_role.direct) { 8513 unsigned int indirect_shadow_pages; 8514 8515 write_lock(&vcpu->kvm->mmu_lock); 8516 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8517 write_unlock(&vcpu->kvm->mmu_lock); 8518 8519 if (indirect_shadow_pages) 8520 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8521 8522 return true; 8523 } 8524 8525 /* 8526 * if emulation was due to access to shadowed page table 8527 * and it failed try to unshadow page and re-enter the 8528 * guest to let CPU execute the instruction. 8529 */ 8530 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8531 8532 /* 8533 * If the access faults on its page table, it can not 8534 * be fixed by unprotecting shadow page and it should 8535 * be reported to userspace. 8536 */ 8537 return !write_fault_to_shadow_pgtable; 8538 } 8539 8540 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8541 gpa_t cr2_or_gpa, int emulation_type) 8542 { 8543 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8544 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8545 8546 last_retry_eip = vcpu->arch.last_retry_eip; 8547 last_retry_addr = vcpu->arch.last_retry_addr; 8548 8549 /* 8550 * If the emulation is caused by #PF and it is non-page_table 8551 * writing instruction, it means the VM-EXIT is caused by shadow 8552 * page protected, we can zap the shadow page and retry this 8553 * instruction directly. 8554 * 8555 * Note: if the guest uses a non-page-table modifying instruction 8556 * on the PDE that points to the instruction, then we will unmap 8557 * the instruction and go to an infinite loop. So, we cache the 8558 * last retried eip and the last fault address, if we meet the eip 8559 * and the address again, we can break out of the potential infinite 8560 * loop. 8561 */ 8562 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8563 8564 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8565 return false; 8566 8567 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8568 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8569 return false; 8570 8571 if (x86_page_table_writing_insn(ctxt)) 8572 return false; 8573 8574 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8575 return false; 8576 8577 vcpu->arch.last_retry_eip = ctxt->eip; 8578 vcpu->arch.last_retry_addr = cr2_or_gpa; 8579 8580 if (!vcpu->arch.mmu->root_role.direct) 8581 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8582 8583 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8584 8585 return true; 8586 } 8587 8588 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8589 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8590 8591 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8592 unsigned long *db) 8593 { 8594 u32 dr6 = 0; 8595 int i; 8596 u32 enable, rwlen; 8597 8598 enable = dr7; 8599 rwlen = dr7 >> 16; 8600 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8601 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8602 dr6 |= (1 << i); 8603 return dr6; 8604 } 8605 8606 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8607 { 8608 struct kvm_run *kvm_run = vcpu->run; 8609 8610 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8611 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8612 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8613 kvm_run->debug.arch.exception = DB_VECTOR; 8614 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8615 return 0; 8616 } 8617 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8618 return 1; 8619 } 8620 8621 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8622 { 8623 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8624 int r; 8625 8626 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8627 if (unlikely(!r)) 8628 return 0; 8629 8630 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8631 8632 /* 8633 * rflags is the old, "raw" value of the flags. The new value has 8634 * not been saved yet. 8635 * 8636 * This is correct even for TF set by the guest, because "the 8637 * processor will not generate this exception after the instruction 8638 * that sets the TF flag". 8639 */ 8640 if (unlikely(rflags & X86_EFLAGS_TF)) 8641 r = kvm_vcpu_do_singlestep(vcpu); 8642 return r; 8643 } 8644 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8645 8646 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8647 { 8648 u32 shadow; 8649 8650 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8651 return true; 8652 8653 /* 8654 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8655 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8656 * to avoid the relatively expensive CPUID lookup. 8657 */ 8658 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8659 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8660 guest_cpuid_is_intel(vcpu); 8661 } 8662 8663 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8664 int emulation_type, int *r) 8665 { 8666 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8667 8668 /* 8669 * Do not check for code breakpoints if hardware has already done the 8670 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8671 * the instruction has passed all exception checks, and all intercepted 8672 * exceptions that trigger emulation have lower priority than code 8673 * breakpoints, i.e. the fact that the intercepted exception occurred 8674 * means any code breakpoints have already been serviced. 8675 * 8676 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8677 * hardware has checked the RIP of the magic prefix, but not the RIP of 8678 * the instruction being emulated. The intent of forced emulation is 8679 * to behave as if KVM intercepted the instruction without an exception 8680 * and without a prefix. 8681 */ 8682 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8683 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8684 return false; 8685 8686 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8687 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8688 struct kvm_run *kvm_run = vcpu->run; 8689 unsigned long eip = kvm_get_linear_rip(vcpu); 8690 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8691 vcpu->arch.guest_debug_dr7, 8692 vcpu->arch.eff_db); 8693 8694 if (dr6 != 0) { 8695 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8696 kvm_run->debug.arch.pc = eip; 8697 kvm_run->debug.arch.exception = DB_VECTOR; 8698 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8699 *r = 0; 8700 return true; 8701 } 8702 } 8703 8704 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8705 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8706 unsigned long eip = kvm_get_linear_rip(vcpu); 8707 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8708 vcpu->arch.dr7, 8709 vcpu->arch.db); 8710 8711 if (dr6 != 0) { 8712 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8713 *r = 1; 8714 return true; 8715 } 8716 } 8717 8718 return false; 8719 } 8720 8721 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8722 { 8723 switch (ctxt->opcode_len) { 8724 case 1: 8725 switch (ctxt->b) { 8726 case 0xe4: /* IN */ 8727 case 0xe5: 8728 case 0xec: 8729 case 0xed: 8730 case 0xe6: /* OUT */ 8731 case 0xe7: 8732 case 0xee: 8733 case 0xef: 8734 case 0x6c: /* INS */ 8735 case 0x6d: 8736 case 0x6e: /* OUTS */ 8737 case 0x6f: 8738 return true; 8739 } 8740 break; 8741 case 2: 8742 switch (ctxt->b) { 8743 case 0x33: /* RDPMC */ 8744 return true; 8745 } 8746 break; 8747 } 8748 8749 return false; 8750 } 8751 8752 /* 8753 * Decode an instruction for emulation. The caller is responsible for handling 8754 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8755 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8756 * code breakpoints have higher priority and thus have already been done by 8757 * hardware. 8758 * 8759 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8760 * response to a machine check. 8761 */ 8762 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8763 void *insn, int insn_len) 8764 { 8765 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8766 int r; 8767 8768 init_emulate_ctxt(vcpu); 8769 8770 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8771 8772 trace_kvm_emulate_insn_start(vcpu); 8773 ++vcpu->stat.insn_emulation; 8774 8775 return r; 8776 } 8777 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8778 8779 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8780 int emulation_type, void *insn, int insn_len) 8781 { 8782 int r; 8783 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8784 bool writeback = true; 8785 bool write_fault_to_spt; 8786 8787 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8788 return 1; 8789 8790 vcpu->arch.l1tf_flush_l1d = true; 8791 8792 /* 8793 * Clear write_fault_to_shadow_pgtable here to ensure it is 8794 * never reused. 8795 */ 8796 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8797 vcpu->arch.write_fault_to_shadow_pgtable = false; 8798 8799 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8800 kvm_clear_exception_queue(vcpu); 8801 8802 /* 8803 * Return immediately if RIP hits a code breakpoint, such #DBs 8804 * are fault-like and are higher priority than any faults on 8805 * the code fetch itself. 8806 */ 8807 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8808 return r; 8809 8810 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8811 insn, insn_len); 8812 if (r != EMULATION_OK) { 8813 if ((emulation_type & EMULTYPE_TRAP_UD) || 8814 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8815 kvm_queue_exception(vcpu, UD_VECTOR); 8816 return 1; 8817 } 8818 if (reexecute_instruction(vcpu, cr2_or_gpa, 8819 write_fault_to_spt, 8820 emulation_type)) 8821 return 1; 8822 8823 if (ctxt->have_exception && 8824 !(emulation_type & EMULTYPE_SKIP)) { 8825 /* 8826 * #UD should result in just EMULATION_FAILED, and trap-like 8827 * exception should not be encountered during decode. 8828 */ 8829 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8830 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8831 inject_emulated_exception(vcpu); 8832 return 1; 8833 } 8834 return handle_emulation_failure(vcpu, emulation_type); 8835 } 8836 } 8837 8838 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8839 !is_vmware_backdoor_opcode(ctxt)) { 8840 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8841 return 1; 8842 } 8843 8844 /* 8845 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8846 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8847 * The caller is responsible for updating interruptibility state and 8848 * injecting single-step #DBs. 8849 */ 8850 if (emulation_type & EMULTYPE_SKIP) { 8851 if (ctxt->mode != X86EMUL_MODE_PROT64) 8852 ctxt->eip = (u32)ctxt->_eip; 8853 else 8854 ctxt->eip = ctxt->_eip; 8855 8856 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8857 r = 1; 8858 goto writeback; 8859 } 8860 8861 kvm_rip_write(vcpu, ctxt->eip); 8862 if (ctxt->eflags & X86_EFLAGS_RF) 8863 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8864 return 1; 8865 } 8866 8867 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8868 return 1; 8869 8870 /* this is needed for vmware backdoor interface to work since it 8871 changes registers values during IO operation */ 8872 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8873 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8874 emulator_invalidate_register_cache(ctxt); 8875 } 8876 8877 restart: 8878 if (emulation_type & EMULTYPE_PF) { 8879 /* Save the faulting GPA (cr2) in the address field */ 8880 ctxt->exception.address = cr2_or_gpa; 8881 8882 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8883 if (vcpu->arch.mmu->root_role.direct) { 8884 ctxt->gpa_available = true; 8885 ctxt->gpa_val = cr2_or_gpa; 8886 } 8887 } else { 8888 /* Sanitize the address out of an abundance of paranoia. */ 8889 ctxt->exception.address = 0; 8890 } 8891 8892 r = x86_emulate_insn(ctxt); 8893 8894 if (r == EMULATION_INTERCEPTED) 8895 return 1; 8896 8897 if (r == EMULATION_FAILED) { 8898 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8899 emulation_type)) 8900 return 1; 8901 8902 return handle_emulation_failure(vcpu, emulation_type); 8903 } 8904 8905 if (ctxt->have_exception) { 8906 r = 1; 8907 inject_emulated_exception(vcpu); 8908 } else if (vcpu->arch.pio.count) { 8909 if (!vcpu->arch.pio.in) { 8910 /* FIXME: return into emulator if single-stepping. */ 8911 vcpu->arch.pio.count = 0; 8912 } else { 8913 writeback = false; 8914 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8915 } 8916 r = 0; 8917 } else if (vcpu->mmio_needed) { 8918 ++vcpu->stat.mmio_exits; 8919 8920 if (!vcpu->mmio_is_write) 8921 writeback = false; 8922 r = 0; 8923 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8924 } else if (vcpu->arch.complete_userspace_io) { 8925 writeback = false; 8926 r = 0; 8927 } else if (r == EMULATION_RESTART) 8928 goto restart; 8929 else 8930 r = 1; 8931 8932 writeback: 8933 if (writeback) { 8934 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8935 toggle_interruptibility(vcpu, ctxt->interruptibility); 8936 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8937 8938 /* 8939 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8940 * only supports code breakpoints and general detect #DB, both 8941 * of which are fault-like. 8942 */ 8943 if (!ctxt->have_exception || 8944 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8945 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8946 if (ctxt->is_branch) 8947 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8948 kvm_rip_write(vcpu, ctxt->eip); 8949 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8950 r = kvm_vcpu_do_singlestep(vcpu); 8951 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8952 __kvm_set_rflags(vcpu, ctxt->eflags); 8953 } 8954 8955 /* 8956 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8957 * do nothing, and it will be requested again as soon as 8958 * the shadow expires. But we still need to check here, 8959 * because POPF has no interrupt shadow. 8960 */ 8961 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8962 kvm_make_request(KVM_REQ_EVENT, vcpu); 8963 } else 8964 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8965 8966 return r; 8967 } 8968 8969 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8970 { 8971 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8972 } 8973 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8974 8975 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8976 void *insn, int insn_len) 8977 { 8978 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8979 } 8980 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8981 8982 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8983 { 8984 vcpu->arch.pio.count = 0; 8985 return 1; 8986 } 8987 8988 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8989 { 8990 vcpu->arch.pio.count = 0; 8991 8992 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8993 return 1; 8994 8995 return kvm_skip_emulated_instruction(vcpu); 8996 } 8997 8998 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8999 unsigned short port) 9000 { 9001 unsigned long val = kvm_rax_read(vcpu); 9002 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9003 9004 if (ret) 9005 return ret; 9006 9007 /* 9008 * Workaround userspace that relies on old KVM behavior of %rip being 9009 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9010 */ 9011 if (port == 0x7e && 9012 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9013 vcpu->arch.complete_userspace_io = 9014 complete_fast_pio_out_port_0x7e; 9015 kvm_skip_emulated_instruction(vcpu); 9016 } else { 9017 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9018 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9019 } 9020 return 0; 9021 } 9022 9023 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9024 { 9025 unsigned long val; 9026 9027 /* We should only ever be called with arch.pio.count equal to 1 */ 9028 BUG_ON(vcpu->arch.pio.count != 1); 9029 9030 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9031 vcpu->arch.pio.count = 0; 9032 return 1; 9033 } 9034 9035 /* For size less than 4 we merge, else we zero extend */ 9036 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9037 9038 complete_emulator_pio_in(vcpu, &val); 9039 kvm_rax_write(vcpu, val); 9040 9041 return kvm_skip_emulated_instruction(vcpu); 9042 } 9043 9044 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9045 unsigned short port) 9046 { 9047 unsigned long val; 9048 int ret; 9049 9050 /* For size less than 4 we merge, else we zero extend */ 9051 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9052 9053 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9054 if (ret) { 9055 kvm_rax_write(vcpu, val); 9056 return ret; 9057 } 9058 9059 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9060 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9061 9062 return 0; 9063 } 9064 9065 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9066 { 9067 int ret; 9068 9069 if (in) 9070 ret = kvm_fast_pio_in(vcpu, size, port); 9071 else 9072 ret = kvm_fast_pio_out(vcpu, size, port); 9073 return ret && kvm_skip_emulated_instruction(vcpu); 9074 } 9075 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9076 9077 static int kvmclock_cpu_down_prep(unsigned int cpu) 9078 { 9079 __this_cpu_write(cpu_tsc_khz, 0); 9080 return 0; 9081 } 9082 9083 static void tsc_khz_changed(void *data) 9084 { 9085 struct cpufreq_freqs *freq = data; 9086 unsigned long khz = 0; 9087 9088 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9089 9090 if (data) 9091 khz = freq->new; 9092 else 9093 khz = cpufreq_quick_get(raw_smp_processor_id()); 9094 if (!khz) 9095 khz = tsc_khz; 9096 __this_cpu_write(cpu_tsc_khz, khz); 9097 } 9098 9099 #ifdef CONFIG_X86_64 9100 static void kvm_hyperv_tsc_notifier(void) 9101 { 9102 struct kvm *kvm; 9103 int cpu; 9104 9105 mutex_lock(&kvm_lock); 9106 list_for_each_entry(kvm, &vm_list, vm_list) 9107 kvm_make_mclock_inprogress_request(kvm); 9108 9109 /* no guest entries from this point */ 9110 hyperv_stop_tsc_emulation(); 9111 9112 /* TSC frequency always matches when on Hyper-V */ 9113 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9114 for_each_present_cpu(cpu) 9115 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9116 } 9117 kvm_caps.max_guest_tsc_khz = tsc_khz; 9118 9119 list_for_each_entry(kvm, &vm_list, vm_list) { 9120 __kvm_start_pvclock_update(kvm); 9121 pvclock_update_vm_gtod_copy(kvm); 9122 kvm_end_pvclock_update(kvm); 9123 } 9124 9125 mutex_unlock(&kvm_lock); 9126 } 9127 #endif 9128 9129 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9130 { 9131 struct kvm *kvm; 9132 struct kvm_vcpu *vcpu; 9133 int send_ipi = 0; 9134 unsigned long i; 9135 9136 /* 9137 * We allow guests to temporarily run on slowing clocks, 9138 * provided we notify them after, or to run on accelerating 9139 * clocks, provided we notify them before. Thus time never 9140 * goes backwards. 9141 * 9142 * However, we have a problem. We can't atomically update 9143 * the frequency of a given CPU from this function; it is 9144 * merely a notifier, which can be called from any CPU. 9145 * Changing the TSC frequency at arbitrary points in time 9146 * requires a recomputation of local variables related to 9147 * the TSC for each VCPU. We must flag these local variables 9148 * to be updated and be sure the update takes place with the 9149 * new frequency before any guests proceed. 9150 * 9151 * Unfortunately, the combination of hotplug CPU and frequency 9152 * change creates an intractable locking scenario; the order 9153 * of when these callouts happen is undefined with respect to 9154 * CPU hotplug, and they can race with each other. As such, 9155 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9156 * undefined; you can actually have a CPU frequency change take 9157 * place in between the computation of X and the setting of the 9158 * variable. To protect against this problem, all updates of 9159 * the per_cpu tsc_khz variable are done in an interrupt 9160 * protected IPI, and all callers wishing to update the value 9161 * must wait for a synchronous IPI to complete (which is trivial 9162 * if the caller is on the CPU already). This establishes the 9163 * necessary total order on variable updates. 9164 * 9165 * Note that because a guest time update may take place 9166 * anytime after the setting of the VCPU's request bit, the 9167 * correct TSC value must be set before the request. However, 9168 * to ensure the update actually makes it to any guest which 9169 * starts running in hardware virtualization between the set 9170 * and the acquisition of the spinlock, we must also ping the 9171 * CPU after setting the request bit. 9172 * 9173 */ 9174 9175 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9176 9177 mutex_lock(&kvm_lock); 9178 list_for_each_entry(kvm, &vm_list, vm_list) { 9179 kvm_for_each_vcpu(i, vcpu, kvm) { 9180 if (vcpu->cpu != cpu) 9181 continue; 9182 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9183 if (vcpu->cpu != raw_smp_processor_id()) 9184 send_ipi = 1; 9185 } 9186 } 9187 mutex_unlock(&kvm_lock); 9188 9189 if (freq->old < freq->new && send_ipi) { 9190 /* 9191 * We upscale the frequency. Must make the guest 9192 * doesn't see old kvmclock values while running with 9193 * the new frequency, otherwise we risk the guest sees 9194 * time go backwards. 9195 * 9196 * In case we update the frequency for another cpu 9197 * (which might be in guest context) send an interrupt 9198 * to kick the cpu out of guest context. Next time 9199 * guest context is entered kvmclock will be updated, 9200 * so the guest will not see stale values. 9201 */ 9202 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9203 } 9204 } 9205 9206 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9207 void *data) 9208 { 9209 struct cpufreq_freqs *freq = data; 9210 int cpu; 9211 9212 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9213 return 0; 9214 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9215 return 0; 9216 9217 for_each_cpu(cpu, freq->policy->cpus) 9218 __kvmclock_cpufreq_notifier(freq, cpu); 9219 9220 return 0; 9221 } 9222 9223 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9224 .notifier_call = kvmclock_cpufreq_notifier 9225 }; 9226 9227 static int kvmclock_cpu_online(unsigned int cpu) 9228 { 9229 tsc_khz_changed(NULL); 9230 return 0; 9231 } 9232 9233 static void kvm_timer_init(void) 9234 { 9235 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9236 max_tsc_khz = tsc_khz; 9237 9238 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9239 struct cpufreq_policy *policy; 9240 int cpu; 9241 9242 cpu = get_cpu(); 9243 policy = cpufreq_cpu_get(cpu); 9244 if (policy) { 9245 if (policy->cpuinfo.max_freq) 9246 max_tsc_khz = policy->cpuinfo.max_freq; 9247 cpufreq_cpu_put(policy); 9248 } 9249 put_cpu(); 9250 } 9251 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9252 CPUFREQ_TRANSITION_NOTIFIER); 9253 9254 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9255 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9256 } 9257 } 9258 9259 #ifdef CONFIG_X86_64 9260 static void pvclock_gtod_update_fn(struct work_struct *work) 9261 { 9262 struct kvm *kvm; 9263 struct kvm_vcpu *vcpu; 9264 unsigned long i; 9265 9266 mutex_lock(&kvm_lock); 9267 list_for_each_entry(kvm, &vm_list, vm_list) 9268 kvm_for_each_vcpu(i, vcpu, kvm) 9269 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9270 atomic_set(&kvm_guest_has_master_clock, 0); 9271 mutex_unlock(&kvm_lock); 9272 } 9273 9274 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9275 9276 /* 9277 * Indirection to move queue_work() out of the tk_core.seq write held 9278 * region to prevent possible deadlocks against time accessors which 9279 * are invoked with work related locks held. 9280 */ 9281 static void pvclock_irq_work_fn(struct irq_work *w) 9282 { 9283 queue_work(system_long_wq, &pvclock_gtod_work); 9284 } 9285 9286 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9287 9288 /* 9289 * Notification about pvclock gtod data update. 9290 */ 9291 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9292 void *priv) 9293 { 9294 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9295 struct timekeeper *tk = priv; 9296 9297 update_pvclock_gtod(tk); 9298 9299 /* 9300 * Disable master clock if host does not trust, or does not use, 9301 * TSC based clocksource. Delegate queue_work() to irq_work as 9302 * this is invoked with tk_core.seq write held. 9303 */ 9304 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9305 atomic_read(&kvm_guest_has_master_clock) != 0) 9306 irq_work_queue(&pvclock_irq_work); 9307 return 0; 9308 } 9309 9310 static struct notifier_block pvclock_gtod_notifier = { 9311 .notifier_call = pvclock_gtod_notify, 9312 }; 9313 #endif 9314 9315 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9316 { 9317 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9318 9319 #define __KVM_X86_OP(func) \ 9320 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9321 #define KVM_X86_OP(func) \ 9322 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9323 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9324 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9325 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9326 (void *)__static_call_return0); 9327 #include <asm/kvm-x86-ops.h> 9328 #undef __KVM_X86_OP 9329 9330 kvm_pmu_ops_update(ops->pmu_ops); 9331 } 9332 9333 static int kvm_x86_check_processor_compatibility(void) 9334 { 9335 int cpu = smp_processor_id(); 9336 struct cpuinfo_x86 *c = &cpu_data(cpu); 9337 9338 /* 9339 * Compatibility checks are done when loading KVM and when enabling 9340 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9341 * compatible, i.e. KVM should never perform a compatibility check on 9342 * an offline CPU. 9343 */ 9344 WARN_ON(!cpu_online(cpu)); 9345 9346 if (__cr4_reserved_bits(cpu_has, c) != 9347 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9348 return -EIO; 9349 9350 return static_call(kvm_x86_check_processor_compatibility)(); 9351 } 9352 9353 static void kvm_x86_check_cpu_compat(void *ret) 9354 { 9355 *(int *)ret = kvm_x86_check_processor_compatibility(); 9356 } 9357 9358 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9359 { 9360 u64 host_pat; 9361 int r, cpu; 9362 9363 if (kvm_x86_ops.hardware_enable) { 9364 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9365 return -EEXIST; 9366 } 9367 9368 /* 9369 * KVM explicitly assumes that the guest has an FPU and 9370 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9371 * vCPU's FPU state as a fxregs_state struct. 9372 */ 9373 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9374 pr_err("inadequate fpu\n"); 9375 return -EOPNOTSUPP; 9376 } 9377 9378 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9379 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9380 return -EOPNOTSUPP; 9381 } 9382 9383 /* 9384 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9385 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9386 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9387 * with an exception. PAT[0] is set to WB on RESET and also by the 9388 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9389 */ 9390 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9391 (host_pat & GENMASK(2, 0)) != 6) { 9392 pr_err("host PAT[0] is not WB\n"); 9393 return -EIO; 9394 } 9395 9396 x86_emulator_cache = kvm_alloc_emulator_cache(); 9397 if (!x86_emulator_cache) { 9398 pr_err("failed to allocate cache for x86 emulator\n"); 9399 return -ENOMEM; 9400 } 9401 9402 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9403 if (!user_return_msrs) { 9404 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9405 r = -ENOMEM; 9406 goto out_free_x86_emulator_cache; 9407 } 9408 kvm_nr_uret_msrs = 0; 9409 9410 r = kvm_mmu_vendor_module_init(); 9411 if (r) 9412 goto out_free_percpu; 9413 9414 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9415 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9416 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9417 } 9418 9419 rdmsrl_safe(MSR_EFER, &host_efer); 9420 9421 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9422 rdmsrl(MSR_IA32_XSS, host_xss); 9423 9424 kvm_init_pmu_capability(ops->pmu_ops); 9425 9426 r = ops->hardware_setup(); 9427 if (r != 0) 9428 goto out_mmu_exit; 9429 9430 kvm_ops_update(ops); 9431 9432 for_each_online_cpu(cpu) { 9433 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9434 if (r < 0) 9435 goto out_unwind_ops; 9436 } 9437 9438 /* 9439 * Point of no return! DO NOT add error paths below this point unless 9440 * absolutely necessary, as most operations from this point forward 9441 * require unwinding. 9442 */ 9443 kvm_timer_init(); 9444 9445 if (pi_inject_timer == -1) 9446 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9447 #ifdef CONFIG_X86_64 9448 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9449 9450 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9451 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9452 #endif 9453 9454 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9455 9456 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9457 kvm_caps.supported_xss = 0; 9458 9459 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9460 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9461 #undef __kvm_cpu_cap_has 9462 9463 if (kvm_caps.has_tsc_control) { 9464 /* 9465 * Make sure the user can only configure tsc_khz values that 9466 * fit into a signed integer. 9467 * A min value is not calculated because it will always 9468 * be 1 on all machines. 9469 */ 9470 u64 max = min(0x7fffffffULL, 9471 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9472 kvm_caps.max_guest_tsc_khz = max; 9473 } 9474 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9475 kvm_init_msr_list(); 9476 return 0; 9477 9478 out_unwind_ops: 9479 kvm_x86_ops.hardware_enable = NULL; 9480 static_call(kvm_x86_hardware_unsetup)(); 9481 out_mmu_exit: 9482 kvm_mmu_vendor_module_exit(); 9483 out_free_percpu: 9484 free_percpu(user_return_msrs); 9485 out_free_x86_emulator_cache: 9486 kmem_cache_destroy(x86_emulator_cache); 9487 return r; 9488 } 9489 9490 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9491 { 9492 int r; 9493 9494 mutex_lock(&vendor_module_lock); 9495 r = __kvm_x86_vendor_init(ops); 9496 mutex_unlock(&vendor_module_lock); 9497 9498 return r; 9499 } 9500 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9501 9502 void kvm_x86_vendor_exit(void) 9503 { 9504 kvm_unregister_perf_callbacks(); 9505 9506 #ifdef CONFIG_X86_64 9507 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9508 clear_hv_tscchange_cb(); 9509 #endif 9510 kvm_lapic_exit(); 9511 9512 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9513 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9514 CPUFREQ_TRANSITION_NOTIFIER); 9515 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9516 } 9517 #ifdef CONFIG_X86_64 9518 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9519 irq_work_sync(&pvclock_irq_work); 9520 cancel_work_sync(&pvclock_gtod_work); 9521 #endif 9522 static_call(kvm_x86_hardware_unsetup)(); 9523 kvm_mmu_vendor_module_exit(); 9524 free_percpu(user_return_msrs); 9525 kmem_cache_destroy(x86_emulator_cache); 9526 #ifdef CONFIG_KVM_XEN 9527 static_key_deferred_flush(&kvm_xen_enabled); 9528 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9529 #endif 9530 mutex_lock(&vendor_module_lock); 9531 kvm_x86_ops.hardware_enable = NULL; 9532 mutex_unlock(&vendor_module_lock); 9533 } 9534 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9535 9536 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9537 { 9538 /* 9539 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9540 * local APIC is in-kernel, the run loop will detect the non-runnable 9541 * state and halt the vCPU. Exit to userspace if the local APIC is 9542 * managed by userspace, in which case userspace is responsible for 9543 * handling wake events. 9544 */ 9545 ++vcpu->stat.halt_exits; 9546 if (lapic_in_kernel(vcpu)) { 9547 vcpu->arch.mp_state = state; 9548 return 1; 9549 } else { 9550 vcpu->run->exit_reason = reason; 9551 return 0; 9552 } 9553 } 9554 9555 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9556 { 9557 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9558 } 9559 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9560 9561 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9562 { 9563 int ret = kvm_skip_emulated_instruction(vcpu); 9564 /* 9565 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9566 * KVM_EXIT_DEBUG here. 9567 */ 9568 return kvm_emulate_halt_noskip(vcpu) && ret; 9569 } 9570 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9571 9572 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9573 { 9574 int ret = kvm_skip_emulated_instruction(vcpu); 9575 9576 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9577 KVM_EXIT_AP_RESET_HOLD) && ret; 9578 } 9579 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9580 9581 #ifdef CONFIG_X86_64 9582 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9583 unsigned long clock_type) 9584 { 9585 struct kvm_clock_pairing clock_pairing; 9586 struct timespec64 ts; 9587 u64 cycle; 9588 int ret; 9589 9590 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9591 return -KVM_EOPNOTSUPP; 9592 9593 /* 9594 * When tsc is in permanent catchup mode guests won't be able to use 9595 * pvclock_read_retry loop to get consistent view of pvclock 9596 */ 9597 if (vcpu->arch.tsc_always_catchup) 9598 return -KVM_EOPNOTSUPP; 9599 9600 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9601 return -KVM_EOPNOTSUPP; 9602 9603 clock_pairing.sec = ts.tv_sec; 9604 clock_pairing.nsec = ts.tv_nsec; 9605 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9606 clock_pairing.flags = 0; 9607 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9608 9609 ret = 0; 9610 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9611 sizeof(struct kvm_clock_pairing))) 9612 ret = -KVM_EFAULT; 9613 9614 return ret; 9615 } 9616 #endif 9617 9618 /* 9619 * kvm_pv_kick_cpu_op: Kick a vcpu. 9620 * 9621 * @apicid - apicid of vcpu to be kicked. 9622 */ 9623 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9624 { 9625 /* 9626 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9627 * common code, e.g. for tracing. Defer initialization to the compiler. 9628 */ 9629 struct kvm_lapic_irq lapic_irq = { 9630 .delivery_mode = APIC_DM_REMRD, 9631 .dest_mode = APIC_DEST_PHYSICAL, 9632 .shorthand = APIC_DEST_NOSHORT, 9633 .dest_id = apicid, 9634 }; 9635 9636 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9637 } 9638 9639 bool kvm_apicv_activated(struct kvm *kvm) 9640 { 9641 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9642 } 9643 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9644 9645 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9646 { 9647 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9648 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9649 9650 return (vm_reasons | vcpu_reasons) == 0; 9651 } 9652 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9653 9654 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9655 enum kvm_apicv_inhibit reason, bool set) 9656 { 9657 if (set) 9658 __set_bit(reason, inhibits); 9659 else 9660 __clear_bit(reason, inhibits); 9661 9662 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9663 } 9664 9665 static void kvm_apicv_init(struct kvm *kvm) 9666 { 9667 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9668 9669 init_rwsem(&kvm->arch.apicv_update_lock); 9670 9671 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9672 9673 if (!enable_apicv) 9674 set_or_clear_apicv_inhibit(inhibits, 9675 APICV_INHIBIT_REASON_DISABLE, true); 9676 } 9677 9678 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9679 { 9680 struct kvm_vcpu *target = NULL; 9681 struct kvm_apic_map *map; 9682 9683 vcpu->stat.directed_yield_attempted++; 9684 9685 if (single_task_running()) 9686 goto no_yield; 9687 9688 rcu_read_lock(); 9689 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9690 9691 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9692 target = map->phys_map[dest_id]->vcpu; 9693 9694 rcu_read_unlock(); 9695 9696 if (!target || !READ_ONCE(target->ready)) 9697 goto no_yield; 9698 9699 /* Ignore requests to yield to self */ 9700 if (vcpu == target) 9701 goto no_yield; 9702 9703 if (kvm_vcpu_yield_to(target) <= 0) 9704 goto no_yield; 9705 9706 vcpu->stat.directed_yield_successful++; 9707 9708 no_yield: 9709 return; 9710 } 9711 9712 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9713 { 9714 u64 ret = vcpu->run->hypercall.ret; 9715 9716 if (!is_64_bit_mode(vcpu)) 9717 ret = (u32)ret; 9718 kvm_rax_write(vcpu, ret); 9719 ++vcpu->stat.hypercalls; 9720 return kvm_skip_emulated_instruction(vcpu); 9721 } 9722 9723 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9724 { 9725 unsigned long nr, a0, a1, a2, a3, ret; 9726 int op_64_bit; 9727 9728 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9729 return kvm_xen_hypercall(vcpu); 9730 9731 if (kvm_hv_hypercall_enabled(vcpu)) 9732 return kvm_hv_hypercall(vcpu); 9733 9734 nr = kvm_rax_read(vcpu); 9735 a0 = kvm_rbx_read(vcpu); 9736 a1 = kvm_rcx_read(vcpu); 9737 a2 = kvm_rdx_read(vcpu); 9738 a3 = kvm_rsi_read(vcpu); 9739 9740 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9741 9742 op_64_bit = is_64_bit_hypercall(vcpu); 9743 if (!op_64_bit) { 9744 nr &= 0xFFFFFFFF; 9745 a0 &= 0xFFFFFFFF; 9746 a1 &= 0xFFFFFFFF; 9747 a2 &= 0xFFFFFFFF; 9748 a3 &= 0xFFFFFFFF; 9749 } 9750 9751 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9752 ret = -KVM_EPERM; 9753 goto out; 9754 } 9755 9756 ret = -KVM_ENOSYS; 9757 9758 switch (nr) { 9759 case KVM_HC_VAPIC_POLL_IRQ: 9760 ret = 0; 9761 break; 9762 case KVM_HC_KICK_CPU: 9763 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9764 break; 9765 9766 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9767 kvm_sched_yield(vcpu, a1); 9768 ret = 0; 9769 break; 9770 #ifdef CONFIG_X86_64 9771 case KVM_HC_CLOCK_PAIRING: 9772 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9773 break; 9774 #endif 9775 case KVM_HC_SEND_IPI: 9776 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9777 break; 9778 9779 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9780 break; 9781 case KVM_HC_SCHED_YIELD: 9782 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9783 break; 9784 9785 kvm_sched_yield(vcpu, a0); 9786 ret = 0; 9787 break; 9788 case KVM_HC_MAP_GPA_RANGE: { 9789 u64 gpa = a0, npages = a1, attrs = a2; 9790 9791 ret = -KVM_ENOSYS; 9792 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9793 break; 9794 9795 if (!PAGE_ALIGNED(gpa) || !npages || 9796 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9797 ret = -KVM_EINVAL; 9798 break; 9799 } 9800 9801 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9802 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9803 vcpu->run->hypercall.args[0] = gpa; 9804 vcpu->run->hypercall.args[1] = npages; 9805 vcpu->run->hypercall.args[2] = attrs; 9806 vcpu->run->hypercall.longmode = op_64_bit; 9807 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9808 return 0; 9809 } 9810 default: 9811 ret = -KVM_ENOSYS; 9812 break; 9813 } 9814 out: 9815 if (!op_64_bit) 9816 ret = (u32)ret; 9817 kvm_rax_write(vcpu, ret); 9818 9819 ++vcpu->stat.hypercalls; 9820 return kvm_skip_emulated_instruction(vcpu); 9821 } 9822 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9823 9824 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9825 { 9826 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9827 char instruction[3]; 9828 unsigned long rip = kvm_rip_read(vcpu); 9829 9830 /* 9831 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9832 * the pieces. 9833 */ 9834 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9835 ctxt->exception.error_code_valid = false; 9836 ctxt->exception.vector = UD_VECTOR; 9837 ctxt->have_exception = true; 9838 return X86EMUL_PROPAGATE_FAULT; 9839 } 9840 9841 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9842 9843 return emulator_write_emulated(ctxt, rip, instruction, 3, 9844 &ctxt->exception); 9845 } 9846 9847 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9848 { 9849 return vcpu->run->request_interrupt_window && 9850 likely(!pic_in_kernel(vcpu->kvm)); 9851 } 9852 9853 /* Called within kvm->srcu read side. */ 9854 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9855 { 9856 struct kvm_run *kvm_run = vcpu->run; 9857 9858 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9859 kvm_run->cr8 = kvm_get_cr8(vcpu); 9860 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9861 9862 kvm_run->ready_for_interrupt_injection = 9863 pic_in_kernel(vcpu->kvm) || 9864 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9865 9866 if (is_smm(vcpu)) 9867 kvm_run->flags |= KVM_RUN_X86_SMM; 9868 } 9869 9870 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9871 { 9872 int max_irr, tpr; 9873 9874 if (!kvm_x86_ops.update_cr8_intercept) 9875 return; 9876 9877 if (!lapic_in_kernel(vcpu)) 9878 return; 9879 9880 if (vcpu->arch.apic->apicv_active) 9881 return; 9882 9883 if (!vcpu->arch.apic->vapic_addr) 9884 max_irr = kvm_lapic_find_highest_irr(vcpu); 9885 else 9886 max_irr = -1; 9887 9888 if (max_irr != -1) 9889 max_irr >>= 4; 9890 9891 tpr = kvm_lapic_get_cr8(vcpu); 9892 9893 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9894 } 9895 9896 9897 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9898 { 9899 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9900 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9901 return 1; 9902 } 9903 9904 return kvm_x86_ops.nested_ops->check_events(vcpu); 9905 } 9906 9907 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9908 { 9909 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9910 vcpu->arch.exception.has_error_code, 9911 vcpu->arch.exception.error_code, 9912 vcpu->arch.exception.injected); 9913 9914 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9915 vcpu->arch.exception.error_code = false; 9916 static_call(kvm_x86_inject_exception)(vcpu); 9917 } 9918 9919 /* 9920 * Check for any event (interrupt or exception) that is ready to be injected, 9921 * and if there is at least one event, inject the event with the highest 9922 * priority. This handles both "pending" events, i.e. events that have never 9923 * been injected into the guest, and "injected" events, i.e. events that were 9924 * injected as part of a previous VM-Enter, but weren't successfully delivered 9925 * and need to be re-injected. 9926 * 9927 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9928 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9929 * be able to inject exceptions in the "middle" of an instruction, and so must 9930 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9931 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9932 * boundaries is necessary and correct. 9933 * 9934 * For simplicity, KVM uses a single path to inject all events (except events 9935 * that are injected directly from L1 to L2) and doesn't explicitly track 9936 * instruction boundaries for asynchronous events. However, because VM-Exits 9937 * that can occur during instruction execution typically result in KVM skipping 9938 * the instruction or injecting an exception, e.g. instruction and exception 9939 * intercepts, and because pending exceptions have higher priority than pending 9940 * interrupts, KVM still honors instruction boundaries in most scenarios. 9941 * 9942 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9943 * the instruction or inject an exception, then KVM can incorrecty inject a new 9944 * asynchrounous event if the event became pending after the CPU fetched the 9945 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9946 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9947 * injected on the restarted instruction instead of being deferred until the 9948 * instruction completes. 9949 * 9950 * In practice, this virtualization hole is unlikely to be observed by the 9951 * guest, and even less likely to cause functional problems. To detect the 9952 * hole, the guest would have to trigger an event on a side effect of an early 9953 * phase of instruction execution, e.g. on the instruction fetch from memory. 9954 * And for it to be a functional problem, the guest would need to depend on the 9955 * ordering between that side effect, the instruction completing, _and_ the 9956 * delivery of the asynchronous event. 9957 */ 9958 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9959 bool *req_immediate_exit) 9960 { 9961 bool can_inject; 9962 int r; 9963 9964 /* 9965 * Process nested events first, as nested VM-Exit supercedes event 9966 * re-injection. If there's an event queued for re-injection, it will 9967 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9968 */ 9969 if (is_guest_mode(vcpu)) 9970 r = kvm_check_nested_events(vcpu); 9971 else 9972 r = 0; 9973 9974 /* 9975 * Re-inject exceptions and events *especially* if immediate entry+exit 9976 * to/from L2 is needed, as any event that has already been injected 9977 * into L2 needs to complete its lifecycle before injecting a new event. 9978 * 9979 * Don't re-inject an NMI or interrupt if there is a pending exception. 9980 * This collision arises if an exception occurred while vectoring the 9981 * injected event, KVM intercepted said exception, and KVM ultimately 9982 * determined the fault belongs to the guest and queues the exception 9983 * for injection back into the guest. 9984 * 9985 * "Injected" interrupts can also collide with pending exceptions if 9986 * userspace ignores the "ready for injection" flag and blindly queues 9987 * an interrupt. In that case, prioritizing the exception is correct, 9988 * as the exception "occurred" before the exit to userspace. Trap-like 9989 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9990 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9991 * priority, they're only generated (pended) during instruction 9992 * execution, and interrupts are recognized at instruction boundaries. 9993 * Thus a pending fault-like exception means the fault occurred on the 9994 * *previous* instruction and must be serviced prior to recognizing any 9995 * new events in order to fully complete the previous instruction. 9996 */ 9997 if (vcpu->arch.exception.injected) 9998 kvm_inject_exception(vcpu); 9999 else if (kvm_is_exception_pending(vcpu)) 10000 ; /* see above */ 10001 else if (vcpu->arch.nmi_injected) 10002 static_call(kvm_x86_inject_nmi)(vcpu); 10003 else if (vcpu->arch.interrupt.injected) 10004 static_call(kvm_x86_inject_irq)(vcpu, true); 10005 10006 /* 10007 * Exceptions that morph to VM-Exits are handled above, and pending 10008 * exceptions on top of injected exceptions that do not VM-Exit should 10009 * either morph to #DF or, sadly, override the injected exception. 10010 */ 10011 WARN_ON_ONCE(vcpu->arch.exception.injected && 10012 vcpu->arch.exception.pending); 10013 10014 /* 10015 * Bail if immediate entry+exit to/from the guest is needed to complete 10016 * nested VM-Enter or event re-injection so that a different pending 10017 * event can be serviced (or if KVM needs to exit to userspace). 10018 * 10019 * Otherwise, continue processing events even if VM-Exit occurred. The 10020 * VM-Exit will have cleared exceptions that were meant for L2, but 10021 * there may now be events that can be injected into L1. 10022 */ 10023 if (r < 0) 10024 goto out; 10025 10026 /* 10027 * A pending exception VM-Exit should either result in nested VM-Exit 10028 * or force an immediate re-entry and exit to/from L2, and exception 10029 * VM-Exits cannot be injected (flag should _never_ be set). 10030 */ 10031 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10032 vcpu->arch.exception_vmexit.pending); 10033 10034 /* 10035 * New events, other than exceptions, cannot be injected if KVM needs 10036 * to re-inject a previous event. See above comments on re-injecting 10037 * for why pending exceptions get priority. 10038 */ 10039 can_inject = !kvm_event_needs_reinjection(vcpu); 10040 10041 if (vcpu->arch.exception.pending) { 10042 /* 10043 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10044 * value pushed on the stack. Trap-like exception and all #DBs 10045 * leave RF as-is (KVM follows Intel's behavior in this regard; 10046 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10047 * 10048 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10049 * describe the behavior of General Detect #DBs, which are 10050 * fault-like. They do _not_ set RF, a la code breakpoints. 10051 */ 10052 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10053 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10054 X86_EFLAGS_RF); 10055 10056 if (vcpu->arch.exception.vector == DB_VECTOR) { 10057 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10058 if (vcpu->arch.dr7 & DR7_GD) { 10059 vcpu->arch.dr7 &= ~DR7_GD; 10060 kvm_update_dr7(vcpu); 10061 } 10062 } 10063 10064 kvm_inject_exception(vcpu); 10065 10066 vcpu->arch.exception.pending = false; 10067 vcpu->arch.exception.injected = true; 10068 10069 can_inject = false; 10070 } 10071 10072 /* Don't inject interrupts if the user asked to avoid doing so */ 10073 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10074 return 0; 10075 10076 /* 10077 * Finally, inject interrupt events. If an event cannot be injected 10078 * due to architectural conditions (e.g. IF=0) a window-open exit 10079 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10080 * and can architecturally be injected, but we cannot do it right now: 10081 * an interrupt could have arrived just now and we have to inject it 10082 * as a vmexit, or there could already an event in the queue, which is 10083 * indicated by can_inject. In that case we request an immediate exit 10084 * in order to make progress and get back here for another iteration. 10085 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10086 */ 10087 #ifdef CONFIG_KVM_SMM 10088 if (vcpu->arch.smi_pending) { 10089 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10090 if (r < 0) 10091 goto out; 10092 if (r) { 10093 vcpu->arch.smi_pending = false; 10094 ++vcpu->arch.smi_count; 10095 enter_smm(vcpu); 10096 can_inject = false; 10097 } else 10098 static_call(kvm_x86_enable_smi_window)(vcpu); 10099 } 10100 #endif 10101 10102 if (vcpu->arch.nmi_pending) { 10103 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10104 if (r < 0) 10105 goto out; 10106 if (r) { 10107 --vcpu->arch.nmi_pending; 10108 vcpu->arch.nmi_injected = true; 10109 static_call(kvm_x86_inject_nmi)(vcpu); 10110 can_inject = false; 10111 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10112 } 10113 if (vcpu->arch.nmi_pending) 10114 static_call(kvm_x86_enable_nmi_window)(vcpu); 10115 } 10116 10117 if (kvm_cpu_has_injectable_intr(vcpu)) { 10118 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10119 if (r < 0) 10120 goto out; 10121 if (r) { 10122 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10123 static_call(kvm_x86_inject_irq)(vcpu, false); 10124 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10125 } 10126 if (kvm_cpu_has_injectable_intr(vcpu)) 10127 static_call(kvm_x86_enable_irq_window)(vcpu); 10128 } 10129 10130 if (is_guest_mode(vcpu) && 10131 kvm_x86_ops.nested_ops->has_events && 10132 kvm_x86_ops.nested_ops->has_events(vcpu)) 10133 *req_immediate_exit = true; 10134 10135 /* 10136 * KVM must never queue a new exception while injecting an event; KVM 10137 * is done emulating and should only propagate the to-be-injected event 10138 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10139 * infinite loop as KVM will bail from VM-Enter to inject the pending 10140 * exception and start the cycle all over. 10141 * 10142 * Exempt triple faults as they have special handling and won't put the 10143 * vCPU into an infinite loop. Triple fault can be queued when running 10144 * VMX without unrestricted guest, as that requires KVM to emulate Real 10145 * Mode events (see kvm_inject_realmode_interrupt()). 10146 */ 10147 WARN_ON_ONCE(vcpu->arch.exception.pending || 10148 vcpu->arch.exception_vmexit.pending); 10149 return 0; 10150 10151 out: 10152 if (r == -EBUSY) { 10153 *req_immediate_exit = true; 10154 r = 0; 10155 } 10156 return r; 10157 } 10158 10159 static void process_nmi(struct kvm_vcpu *vcpu) 10160 { 10161 unsigned limit = 2; 10162 10163 /* 10164 * x86 is limited to one NMI running, and one NMI pending after it. 10165 * If an NMI is already in progress, limit further NMIs to just one. 10166 * Otherwise, allow two (and we'll inject the first one immediately). 10167 */ 10168 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10169 limit = 1; 10170 10171 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10172 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10173 kvm_make_request(KVM_REQ_EVENT, vcpu); 10174 } 10175 10176 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10177 unsigned long *vcpu_bitmap) 10178 { 10179 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10180 } 10181 10182 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10183 { 10184 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10185 } 10186 10187 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10188 { 10189 struct kvm_lapic *apic = vcpu->arch.apic; 10190 bool activate; 10191 10192 if (!lapic_in_kernel(vcpu)) 10193 return; 10194 10195 down_read(&vcpu->kvm->arch.apicv_update_lock); 10196 preempt_disable(); 10197 10198 /* Do not activate APICV when APIC is disabled */ 10199 activate = kvm_vcpu_apicv_activated(vcpu) && 10200 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10201 10202 if (apic->apicv_active == activate) 10203 goto out; 10204 10205 apic->apicv_active = activate; 10206 kvm_apic_update_apicv(vcpu); 10207 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10208 10209 /* 10210 * When APICv gets disabled, we may still have injected interrupts 10211 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10212 * still active when the interrupt got accepted. Make sure 10213 * kvm_check_and_inject_events() is called to check for that. 10214 */ 10215 if (!apic->apicv_active) 10216 kvm_make_request(KVM_REQ_EVENT, vcpu); 10217 10218 out: 10219 preempt_enable(); 10220 up_read(&vcpu->kvm->arch.apicv_update_lock); 10221 } 10222 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10223 10224 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10225 { 10226 if (!lapic_in_kernel(vcpu)) 10227 return; 10228 10229 /* 10230 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10231 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10232 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10233 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10234 * this case so that KVM can the AVIC doorbell to inject interrupts to 10235 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10236 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10237 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10238 * access page is sticky. 10239 */ 10240 if (apic_x2apic_mode(vcpu->arch.apic) && 10241 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10242 kvm_inhibit_apic_access_page(vcpu); 10243 10244 __kvm_vcpu_update_apicv(vcpu); 10245 } 10246 10247 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10248 enum kvm_apicv_inhibit reason, bool set) 10249 { 10250 unsigned long old, new; 10251 10252 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10253 10254 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10255 return; 10256 10257 old = new = kvm->arch.apicv_inhibit_reasons; 10258 10259 set_or_clear_apicv_inhibit(&new, reason, set); 10260 10261 if (!!old != !!new) { 10262 /* 10263 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10264 * false positives in the sanity check WARN in svm_vcpu_run(). 10265 * This task will wait for all vCPUs to ack the kick IRQ before 10266 * updating apicv_inhibit_reasons, and all other vCPUs will 10267 * block on acquiring apicv_update_lock so that vCPUs can't 10268 * redo svm_vcpu_run() without seeing the new inhibit state. 10269 * 10270 * Note, holding apicv_update_lock and taking it in the read 10271 * side (handling the request) also prevents other vCPUs from 10272 * servicing the request with a stale apicv_inhibit_reasons. 10273 */ 10274 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10275 kvm->arch.apicv_inhibit_reasons = new; 10276 if (new) { 10277 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10278 int idx = srcu_read_lock(&kvm->srcu); 10279 10280 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10281 srcu_read_unlock(&kvm->srcu, idx); 10282 } 10283 } else { 10284 kvm->arch.apicv_inhibit_reasons = new; 10285 } 10286 } 10287 10288 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10289 enum kvm_apicv_inhibit reason, bool set) 10290 { 10291 if (!enable_apicv) 10292 return; 10293 10294 down_write(&kvm->arch.apicv_update_lock); 10295 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10296 up_write(&kvm->arch.apicv_update_lock); 10297 } 10298 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10299 10300 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10301 { 10302 if (!kvm_apic_present(vcpu)) 10303 return; 10304 10305 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10306 10307 if (irqchip_split(vcpu->kvm)) 10308 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10309 else { 10310 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10311 if (ioapic_in_kernel(vcpu->kvm)) 10312 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10313 } 10314 10315 if (is_guest_mode(vcpu)) 10316 vcpu->arch.load_eoi_exitmap_pending = true; 10317 else 10318 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10319 } 10320 10321 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10322 { 10323 u64 eoi_exit_bitmap[4]; 10324 10325 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10326 return; 10327 10328 if (to_hv_vcpu(vcpu)) { 10329 bitmap_or((ulong *)eoi_exit_bitmap, 10330 vcpu->arch.ioapic_handled_vectors, 10331 to_hv_synic(vcpu)->vec_bitmap, 256); 10332 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10333 return; 10334 } 10335 10336 static_call_cond(kvm_x86_load_eoi_exitmap)( 10337 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10338 } 10339 10340 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10341 unsigned long start, unsigned long end) 10342 { 10343 unsigned long apic_address; 10344 10345 /* 10346 * The physical address of apic access page is stored in the VMCS. 10347 * Update it when it becomes invalid. 10348 */ 10349 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10350 if (start <= apic_address && apic_address < end) 10351 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10352 } 10353 10354 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10355 { 10356 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10357 } 10358 10359 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10360 { 10361 if (!lapic_in_kernel(vcpu)) 10362 return; 10363 10364 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10365 } 10366 10367 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10368 { 10369 smp_send_reschedule(vcpu->cpu); 10370 } 10371 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10372 10373 /* 10374 * Called within kvm->srcu read side. 10375 * Returns 1 to let vcpu_run() continue the guest execution loop without 10376 * exiting to the userspace. Otherwise, the value will be returned to the 10377 * userspace. 10378 */ 10379 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10380 { 10381 int r; 10382 bool req_int_win = 10383 dm_request_for_irq_injection(vcpu) && 10384 kvm_cpu_accept_dm_intr(vcpu); 10385 fastpath_t exit_fastpath; 10386 10387 bool req_immediate_exit = false; 10388 10389 if (kvm_request_pending(vcpu)) { 10390 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10391 r = -EIO; 10392 goto out; 10393 } 10394 10395 if (kvm_dirty_ring_check_request(vcpu)) { 10396 r = 0; 10397 goto out; 10398 } 10399 10400 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10401 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10402 r = 0; 10403 goto out; 10404 } 10405 } 10406 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10407 kvm_mmu_free_obsolete_roots(vcpu); 10408 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10409 __kvm_migrate_timers(vcpu); 10410 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10411 kvm_update_masterclock(vcpu->kvm); 10412 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10413 kvm_gen_kvmclock_update(vcpu); 10414 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10415 r = kvm_guest_time_update(vcpu); 10416 if (unlikely(r)) 10417 goto out; 10418 } 10419 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10420 kvm_mmu_sync_roots(vcpu); 10421 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10422 kvm_mmu_load_pgd(vcpu); 10423 10424 /* 10425 * Note, the order matters here, as flushing "all" TLB entries 10426 * also flushes the "current" TLB entries, i.e. servicing the 10427 * flush "all" will clear any request to flush "current". 10428 */ 10429 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10430 kvm_vcpu_flush_tlb_all(vcpu); 10431 10432 kvm_service_local_tlb_flush_requests(vcpu); 10433 10434 /* 10435 * Fall back to a "full" guest flush if Hyper-V's precise 10436 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10437 * the flushes are considered "remote" and not "local" because 10438 * the requests can be initiated from other vCPUs. 10439 */ 10440 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10441 kvm_hv_vcpu_flush_tlb(vcpu)) 10442 kvm_vcpu_flush_tlb_guest(vcpu); 10443 10444 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10445 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10446 r = 0; 10447 goto out; 10448 } 10449 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10450 if (is_guest_mode(vcpu)) 10451 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10452 10453 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10454 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10455 vcpu->mmio_needed = 0; 10456 r = 0; 10457 goto out; 10458 } 10459 } 10460 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10461 /* Page is swapped out. Do synthetic halt */ 10462 vcpu->arch.apf.halted = true; 10463 r = 1; 10464 goto out; 10465 } 10466 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10467 record_steal_time(vcpu); 10468 #ifdef CONFIG_KVM_SMM 10469 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10470 process_smi(vcpu); 10471 #endif 10472 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10473 process_nmi(vcpu); 10474 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10475 kvm_pmu_handle_event(vcpu); 10476 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10477 kvm_pmu_deliver_pmi(vcpu); 10478 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10479 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10480 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10481 vcpu->arch.ioapic_handled_vectors)) { 10482 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10483 vcpu->run->eoi.vector = 10484 vcpu->arch.pending_ioapic_eoi; 10485 r = 0; 10486 goto out; 10487 } 10488 } 10489 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10490 vcpu_scan_ioapic(vcpu); 10491 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10492 vcpu_load_eoi_exitmap(vcpu); 10493 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10494 kvm_vcpu_reload_apic_access_page(vcpu); 10495 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10496 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10497 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10498 vcpu->run->system_event.ndata = 0; 10499 r = 0; 10500 goto out; 10501 } 10502 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10503 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10504 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10505 vcpu->run->system_event.ndata = 0; 10506 r = 0; 10507 goto out; 10508 } 10509 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10510 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10511 10512 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10513 vcpu->run->hyperv = hv_vcpu->exit; 10514 r = 0; 10515 goto out; 10516 } 10517 10518 /* 10519 * KVM_REQ_HV_STIMER has to be processed after 10520 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10521 * depend on the guest clock being up-to-date 10522 */ 10523 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10524 kvm_hv_process_stimers(vcpu); 10525 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10526 kvm_vcpu_update_apicv(vcpu); 10527 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10528 kvm_check_async_pf_completion(vcpu); 10529 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10530 static_call(kvm_x86_msr_filter_changed)(vcpu); 10531 10532 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10533 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10534 } 10535 10536 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10537 kvm_xen_has_interrupt(vcpu)) { 10538 ++vcpu->stat.req_event; 10539 r = kvm_apic_accept_events(vcpu); 10540 if (r < 0) { 10541 r = 0; 10542 goto out; 10543 } 10544 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10545 r = 1; 10546 goto out; 10547 } 10548 10549 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10550 if (r < 0) { 10551 r = 0; 10552 goto out; 10553 } 10554 if (req_int_win) 10555 static_call(kvm_x86_enable_irq_window)(vcpu); 10556 10557 if (kvm_lapic_enabled(vcpu)) { 10558 update_cr8_intercept(vcpu); 10559 kvm_lapic_sync_to_vapic(vcpu); 10560 } 10561 } 10562 10563 r = kvm_mmu_reload(vcpu); 10564 if (unlikely(r)) { 10565 goto cancel_injection; 10566 } 10567 10568 preempt_disable(); 10569 10570 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10571 10572 /* 10573 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10574 * IPI are then delayed after guest entry, which ensures that they 10575 * result in virtual interrupt delivery. 10576 */ 10577 local_irq_disable(); 10578 10579 /* Store vcpu->apicv_active before vcpu->mode. */ 10580 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10581 10582 kvm_vcpu_srcu_read_unlock(vcpu); 10583 10584 /* 10585 * 1) We should set ->mode before checking ->requests. Please see 10586 * the comment in kvm_vcpu_exiting_guest_mode(). 10587 * 10588 * 2) For APICv, we should set ->mode before checking PID.ON. This 10589 * pairs with the memory barrier implicit in pi_test_and_set_on 10590 * (see vmx_deliver_posted_interrupt). 10591 * 10592 * 3) This also orders the write to mode from any reads to the page 10593 * tables done while the VCPU is running. Please see the comment 10594 * in kvm_flush_remote_tlbs. 10595 */ 10596 smp_mb__after_srcu_read_unlock(); 10597 10598 /* 10599 * Process pending posted interrupts to handle the case where the 10600 * notification IRQ arrived in the host, or was never sent (because the 10601 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10602 * status, KVM doesn't update assigned devices when APICv is inhibited, 10603 * i.e. they can post interrupts even if APICv is temporarily disabled. 10604 */ 10605 if (kvm_lapic_enabled(vcpu)) 10606 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10607 10608 if (kvm_vcpu_exit_request(vcpu)) { 10609 vcpu->mode = OUTSIDE_GUEST_MODE; 10610 smp_wmb(); 10611 local_irq_enable(); 10612 preempt_enable(); 10613 kvm_vcpu_srcu_read_lock(vcpu); 10614 r = 1; 10615 goto cancel_injection; 10616 } 10617 10618 if (req_immediate_exit) { 10619 kvm_make_request(KVM_REQ_EVENT, vcpu); 10620 static_call(kvm_x86_request_immediate_exit)(vcpu); 10621 } 10622 10623 fpregs_assert_state_consistent(); 10624 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10625 switch_fpu_return(); 10626 10627 if (vcpu->arch.guest_fpu.xfd_err) 10628 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10629 10630 if (unlikely(vcpu->arch.switch_db_regs)) { 10631 set_debugreg(0, 7); 10632 set_debugreg(vcpu->arch.eff_db[0], 0); 10633 set_debugreg(vcpu->arch.eff_db[1], 1); 10634 set_debugreg(vcpu->arch.eff_db[2], 2); 10635 set_debugreg(vcpu->arch.eff_db[3], 3); 10636 } else if (unlikely(hw_breakpoint_active())) { 10637 set_debugreg(0, 7); 10638 } 10639 10640 guest_timing_enter_irqoff(); 10641 10642 for (;;) { 10643 /* 10644 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10645 * update must kick and wait for all vCPUs before toggling the 10646 * per-VM state, and responsing vCPUs must wait for the update 10647 * to complete before servicing KVM_REQ_APICV_UPDATE. 10648 */ 10649 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10650 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10651 10652 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10653 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10654 break; 10655 10656 if (kvm_lapic_enabled(vcpu)) 10657 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10658 10659 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10660 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10661 break; 10662 } 10663 } 10664 10665 /* 10666 * Do this here before restoring debug registers on the host. And 10667 * since we do this before handling the vmexit, a DR access vmexit 10668 * can (a) read the correct value of the debug registers, (b) set 10669 * KVM_DEBUGREG_WONT_EXIT again. 10670 */ 10671 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10672 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10673 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10674 kvm_update_dr0123(vcpu); 10675 kvm_update_dr7(vcpu); 10676 } 10677 10678 /* 10679 * If the guest has used debug registers, at least dr7 10680 * will be disabled while returning to the host. 10681 * If we don't have active breakpoints in the host, we don't 10682 * care about the messed up debug address registers. But if 10683 * we have some of them active, restore the old state. 10684 */ 10685 if (hw_breakpoint_active()) 10686 hw_breakpoint_restore(); 10687 10688 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10689 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10690 10691 vcpu->mode = OUTSIDE_GUEST_MODE; 10692 smp_wmb(); 10693 10694 /* 10695 * Sync xfd before calling handle_exit_irqoff() which may 10696 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10697 * in #NM irqoff handler). 10698 */ 10699 if (vcpu->arch.xfd_no_write_intercept) 10700 fpu_sync_guest_vmexit_xfd_state(); 10701 10702 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10703 10704 if (vcpu->arch.guest_fpu.xfd_err) 10705 wrmsrl(MSR_IA32_XFD_ERR, 0); 10706 10707 /* 10708 * Consume any pending interrupts, including the possible source of 10709 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10710 * An instruction is required after local_irq_enable() to fully unblock 10711 * interrupts on processors that implement an interrupt shadow, the 10712 * stat.exits increment will do nicely. 10713 */ 10714 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10715 local_irq_enable(); 10716 ++vcpu->stat.exits; 10717 local_irq_disable(); 10718 kvm_after_interrupt(vcpu); 10719 10720 /* 10721 * Wait until after servicing IRQs to account guest time so that any 10722 * ticks that occurred while running the guest are properly accounted 10723 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10724 * of accounting via context tracking, but the loss of accuracy is 10725 * acceptable for all known use cases. 10726 */ 10727 guest_timing_exit_irqoff(); 10728 10729 local_irq_enable(); 10730 preempt_enable(); 10731 10732 kvm_vcpu_srcu_read_lock(vcpu); 10733 10734 /* 10735 * Profile KVM exit RIPs: 10736 */ 10737 if (unlikely(prof_on == KVM_PROFILING)) { 10738 unsigned long rip = kvm_rip_read(vcpu); 10739 profile_hit(KVM_PROFILING, (void *)rip); 10740 } 10741 10742 if (unlikely(vcpu->arch.tsc_always_catchup)) 10743 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10744 10745 if (vcpu->arch.apic_attention) 10746 kvm_lapic_sync_from_vapic(vcpu); 10747 10748 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10749 return r; 10750 10751 cancel_injection: 10752 if (req_immediate_exit) 10753 kvm_make_request(KVM_REQ_EVENT, vcpu); 10754 static_call(kvm_x86_cancel_injection)(vcpu); 10755 if (unlikely(vcpu->arch.apic_attention)) 10756 kvm_lapic_sync_from_vapic(vcpu); 10757 out: 10758 return r; 10759 } 10760 10761 /* Called within kvm->srcu read side. */ 10762 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10763 { 10764 bool hv_timer; 10765 10766 if (!kvm_arch_vcpu_runnable(vcpu)) { 10767 /* 10768 * Switch to the software timer before halt-polling/blocking as 10769 * the guest's timer may be a break event for the vCPU, and the 10770 * hypervisor timer runs only when the CPU is in guest mode. 10771 * Switch before halt-polling so that KVM recognizes an expired 10772 * timer before blocking. 10773 */ 10774 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10775 if (hv_timer) 10776 kvm_lapic_switch_to_sw_timer(vcpu); 10777 10778 kvm_vcpu_srcu_read_unlock(vcpu); 10779 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10780 kvm_vcpu_halt(vcpu); 10781 else 10782 kvm_vcpu_block(vcpu); 10783 kvm_vcpu_srcu_read_lock(vcpu); 10784 10785 if (hv_timer) 10786 kvm_lapic_switch_to_hv_timer(vcpu); 10787 10788 /* 10789 * If the vCPU is not runnable, a signal or another host event 10790 * of some kind is pending; service it without changing the 10791 * vCPU's activity state. 10792 */ 10793 if (!kvm_arch_vcpu_runnable(vcpu)) 10794 return 1; 10795 } 10796 10797 /* 10798 * Evaluate nested events before exiting the halted state. This allows 10799 * the halt state to be recorded properly in the VMCS12's activity 10800 * state field (AMD does not have a similar field and a VM-Exit always 10801 * causes a spurious wakeup from HLT). 10802 */ 10803 if (is_guest_mode(vcpu)) { 10804 if (kvm_check_nested_events(vcpu) < 0) 10805 return 0; 10806 } 10807 10808 if (kvm_apic_accept_events(vcpu) < 0) 10809 return 0; 10810 switch(vcpu->arch.mp_state) { 10811 case KVM_MP_STATE_HALTED: 10812 case KVM_MP_STATE_AP_RESET_HOLD: 10813 vcpu->arch.pv.pv_unhalted = false; 10814 vcpu->arch.mp_state = 10815 KVM_MP_STATE_RUNNABLE; 10816 fallthrough; 10817 case KVM_MP_STATE_RUNNABLE: 10818 vcpu->arch.apf.halted = false; 10819 break; 10820 case KVM_MP_STATE_INIT_RECEIVED: 10821 break; 10822 default: 10823 WARN_ON_ONCE(1); 10824 break; 10825 } 10826 return 1; 10827 } 10828 10829 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10830 { 10831 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10832 !vcpu->arch.apf.halted); 10833 } 10834 10835 /* Called within kvm->srcu read side. */ 10836 static int vcpu_run(struct kvm_vcpu *vcpu) 10837 { 10838 int r; 10839 10840 vcpu->arch.l1tf_flush_l1d = true; 10841 10842 for (;;) { 10843 /* 10844 * If another guest vCPU requests a PV TLB flush in the middle 10845 * of instruction emulation, the rest of the emulation could 10846 * use a stale page translation. Assume that any code after 10847 * this point can start executing an instruction. 10848 */ 10849 vcpu->arch.at_instruction_boundary = false; 10850 if (kvm_vcpu_running(vcpu)) { 10851 r = vcpu_enter_guest(vcpu); 10852 } else { 10853 r = vcpu_block(vcpu); 10854 } 10855 10856 if (r <= 0) 10857 break; 10858 10859 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10860 if (kvm_xen_has_pending_events(vcpu)) 10861 kvm_xen_inject_pending_events(vcpu); 10862 10863 if (kvm_cpu_has_pending_timer(vcpu)) 10864 kvm_inject_pending_timer_irqs(vcpu); 10865 10866 if (dm_request_for_irq_injection(vcpu) && 10867 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10868 r = 0; 10869 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10870 ++vcpu->stat.request_irq_exits; 10871 break; 10872 } 10873 10874 if (__xfer_to_guest_mode_work_pending()) { 10875 kvm_vcpu_srcu_read_unlock(vcpu); 10876 r = xfer_to_guest_mode_handle_work(vcpu); 10877 kvm_vcpu_srcu_read_lock(vcpu); 10878 if (r) 10879 return r; 10880 } 10881 } 10882 10883 return r; 10884 } 10885 10886 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10887 { 10888 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10889 } 10890 10891 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10892 { 10893 BUG_ON(!vcpu->arch.pio.count); 10894 10895 return complete_emulated_io(vcpu); 10896 } 10897 10898 /* 10899 * Implements the following, as a state machine: 10900 * 10901 * read: 10902 * for each fragment 10903 * for each mmio piece in the fragment 10904 * write gpa, len 10905 * exit 10906 * copy data 10907 * execute insn 10908 * 10909 * write: 10910 * for each fragment 10911 * for each mmio piece in the fragment 10912 * write gpa, len 10913 * copy data 10914 * exit 10915 */ 10916 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10917 { 10918 struct kvm_run *run = vcpu->run; 10919 struct kvm_mmio_fragment *frag; 10920 unsigned len; 10921 10922 BUG_ON(!vcpu->mmio_needed); 10923 10924 /* Complete previous fragment */ 10925 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10926 len = min(8u, frag->len); 10927 if (!vcpu->mmio_is_write) 10928 memcpy(frag->data, run->mmio.data, len); 10929 10930 if (frag->len <= 8) { 10931 /* Switch to the next fragment. */ 10932 frag++; 10933 vcpu->mmio_cur_fragment++; 10934 } else { 10935 /* Go forward to the next mmio piece. */ 10936 frag->data += len; 10937 frag->gpa += len; 10938 frag->len -= len; 10939 } 10940 10941 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10942 vcpu->mmio_needed = 0; 10943 10944 /* FIXME: return into emulator if single-stepping. */ 10945 if (vcpu->mmio_is_write) 10946 return 1; 10947 vcpu->mmio_read_completed = 1; 10948 return complete_emulated_io(vcpu); 10949 } 10950 10951 run->exit_reason = KVM_EXIT_MMIO; 10952 run->mmio.phys_addr = frag->gpa; 10953 if (vcpu->mmio_is_write) 10954 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10955 run->mmio.len = min(8u, frag->len); 10956 run->mmio.is_write = vcpu->mmio_is_write; 10957 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10958 return 0; 10959 } 10960 10961 /* Swap (qemu) user FPU context for the guest FPU context. */ 10962 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10963 { 10964 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10965 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10966 trace_kvm_fpu(1); 10967 } 10968 10969 /* When vcpu_run ends, restore user space FPU context. */ 10970 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10971 { 10972 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10973 ++vcpu->stat.fpu_reload; 10974 trace_kvm_fpu(0); 10975 } 10976 10977 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10978 { 10979 struct kvm_queued_exception *ex = &vcpu->arch.exception; 10980 struct kvm_run *kvm_run = vcpu->run; 10981 int r; 10982 10983 vcpu_load(vcpu); 10984 kvm_sigset_activate(vcpu); 10985 kvm_run->flags = 0; 10986 kvm_load_guest_fpu(vcpu); 10987 10988 kvm_vcpu_srcu_read_lock(vcpu); 10989 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10990 if (kvm_run->immediate_exit) { 10991 r = -EINTR; 10992 goto out; 10993 } 10994 /* 10995 * It should be impossible for the hypervisor timer to be in 10996 * use before KVM has ever run the vCPU. 10997 */ 10998 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10999 11000 kvm_vcpu_srcu_read_unlock(vcpu); 11001 kvm_vcpu_block(vcpu); 11002 kvm_vcpu_srcu_read_lock(vcpu); 11003 11004 if (kvm_apic_accept_events(vcpu) < 0) { 11005 r = 0; 11006 goto out; 11007 } 11008 r = -EAGAIN; 11009 if (signal_pending(current)) { 11010 r = -EINTR; 11011 kvm_run->exit_reason = KVM_EXIT_INTR; 11012 ++vcpu->stat.signal_exits; 11013 } 11014 goto out; 11015 } 11016 11017 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11018 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11019 r = -EINVAL; 11020 goto out; 11021 } 11022 11023 if (kvm_run->kvm_dirty_regs) { 11024 r = sync_regs(vcpu); 11025 if (r != 0) 11026 goto out; 11027 } 11028 11029 /* re-sync apic's tpr */ 11030 if (!lapic_in_kernel(vcpu)) { 11031 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11032 r = -EINVAL; 11033 goto out; 11034 } 11035 } 11036 11037 /* 11038 * If userspace set a pending exception and L2 is active, convert it to 11039 * a pending VM-Exit if L1 wants to intercept the exception. 11040 */ 11041 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11042 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11043 ex->error_code)) { 11044 kvm_queue_exception_vmexit(vcpu, ex->vector, 11045 ex->has_error_code, ex->error_code, 11046 ex->has_payload, ex->payload); 11047 ex->injected = false; 11048 ex->pending = false; 11049 } 11050 vcpu->arch.exception_from_userspace = false; 11051 11052 if (unlikely(vcpu->arch.complete_userspace_io)) { 11053 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11054 vcpu->arch.complete_userspace_io = NULL; 11055 r = cui(vcpu); 11056 if (r <= 0) 11057 goto out; 11058 } else { 11059 WARN_ON_ONCE(vcpu->arch.pio.count); 11060 WARN_ON_ONCE(vcpu->mmio_needed); 11061 } 11062 11063 if (kvm_run->immediate_exit) { 11064 r = -EINTR; 11065 goto out; 11066 } 11067 11068 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11069 if (r <= 0) 11070 goto out; 11071 11072 r = vcpu_run(vcpu); 11073 11074 out: 11075 kvm_put_guest_fpu(vcpu); 11076 if (kvm_run->kvm_valid_regs) 11077 store_regs(vcpu); 11078 post_kvm_run_save(vcpu); 11079 kvm_vcpu_srcu_read_unlock(vcpu); 11080 11081 kvm_sigset_deactivate(vcpu); 11082 vcpu_put(vcpu); 11083 return r; 11084 } 11085 11086 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11087 { 11088 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11089 /* 11090 * We are here if userspace calls get_regs() in the middle of 11091 * instruction emulation. Registers state needs to be copied 11092 * back from emulation context to vcpu. Userspace shouldn't do 11093 * that usually, but some bad designed PV devices (vmware 11094 * backdoor interface) need this to work 11095 */ 11096 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11097 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11098 } 11099 regs->rax = kvm_rax_read(vcpu); 11100 regs->rbx = kvm_rbx_read(vcpu); 11101 regs->rcx = kvm_rcx_read(vcpu); 11102 regs->rdx = kvm_rdx_read(vcpu); 11103 regs->rsi = kvm_rsi_read(vcpu); 11104 regs->rdi = kvm_rdi_read(vcpu); 11105 regs->rsp = kvm_rsp_read(vcpu); 11106 regs->rbp = kvm_rbp_read(vcpu); 11107 #ifdef CONFIG_X86_64 11108 regs->r8 = kvm_r8_read(vcpu); 11109 regs->r9 = kvm_r9_read(vcpu); 11110 regs->r10 = kvm_r10_read(vcpu); 11111 regs->r11 = kvm_r11_read(vcpu); 11112 regs->r12 = kvm_r12_read(vcpu); 11113 regs->r13 = kvm_r13_read(vcpu); 11114 regs->r14 = kvm_r14_read(vcpu); 11115 regs->r15 = kvm_r15_read(vcpu); 11116 #endif 11117 11118 regs->rip = kvm_rip_read(vcpu); 11119 regs->rflags = kvm_get_rflags(vcpu); 11120 } 11121 11122 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11123 { 11124 vcpu_load(vcpu); 11125 __get_regs(vcpu, regs); 11126 vcpu_put(vcpu); 11127 return 0; 11128 } 11129 11130 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11131 { 11132 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11133 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11134 11135 kvm_rax_write(vcpu, regs->rax); 11136 kvm_rbx_write(vcpu, regs->rbx); 11137 kvm_rcx_write(vcpu, regs->rcx); 11138 kvm_rdx_write(vcpu, regs->rdx); 11139 kvm_rsi_write(vcpu, regs->rsi); 11140 kvm_rdi_write(vcpu, regs->rdi); 11141 kvm_rsp_write(vcpu, regs->rsp); 11142 kvm_rbp_write(vcpu, regs->rbp); 11143 #ifdef CONFIG_X86_64 11144 kvm_r8_write(vcpu, regs->r8); 11145 kvm_r9_write(vcpu, regs->r9); 11146 kvm_r10_write(vcpu, regs->r10); 11147 kvm_r11_write(vcpu, regs->r11); 11148 kvm_r12_write(vcpu, regs->r12); 11149 kvm_r13_write(vcpu, regs->r13); 11150 kvm_r14_write(vcpu, regs->r14); 11151 kvm_r15_write(vcpu, regs->r15); 11152 #endif 11153 11154 kvm_rip_write(vcpu, regs->rip); 11155 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11156 11157 vcpu->arch.exception.pending = false; 11158 vcpu->arch.exception_vmexit.pending = false; 11159 11160 kvm_make_request(KVM_REQ_EVENT, vcpu); 11161 } 11162 11163 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11164 { 11165 vcpu_load(vcpu); 11166 __set_regs(vcpu, regs); 11167 vcpu_put(vcpu); 11168 return 0; 11169 } 11170 11171 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11172 { 11173 struct desc_ptr dt; 11174 11175 if (vcpu->arch.guest_state_protected) 11176 goto skip_protected_regs; 11177 11178 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11179 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11180 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11181 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11182 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11183 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11184 11185 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11186 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11187 11188 static_call(kvm_x86_get_idt)(vcpu, &dt); 11189 sregs->idt.limit = dt.size; 11190 sregs->idt.base = dt.address; 11191 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11192 sregs->gdt.limit = dt.size; 11193 sregs->gdt.base = dt.address; 11194 11195 sregs->cr2 = vcpu->arch.cr2; 11196 sregs->cr3 = kvm_read_cr3(vcpu); 11197 11198 skip_protected_regs: 11199 sregs->cr0 = kvm_read_cr0(vcpu); 11200 sregs->cr4 = kvm_read_cr4(vcpu); 11201 sregs->cr8 = kvm_get_cr8(vcpu); 11202 sregs->efer = vcpu->arch.efer; 11203 sregs->apic_base = kvm_get_apic_base(vcpu); 11204 } 11205 11206 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11207 { 11208 __get_sregs_common(vcpu, sregs); 11209 11210 if (vcpu->arch.guest_state_protected) 11211 return; 11212 11213 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11214 set_bit(vcpu->arch.interrupt.nr, 11215 (unsigned long *)sregs->interrupt_bitmap); 11216 } 11217 11218 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11219 { 11220 int i; 11221 11222 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11223 11224 if (vcpu->arch.guest_state_protected) 11225 return; 11226 11227 if (is_pae_paging(vcpu)) { 11228 for (i = 0 ; i < 4 ; i++) 11229 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11230 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11231 } 11232 } 11233 11234 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11235 struct kvm_sregs *sregs) 11236 { 11237 vcpu_load(vcpu); 11238 __get_sregs(vcpu, sregs); 11239 vcpu_put(vcpu); 11240 return 0; 11241 } 11242 11243 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11244 struct kvm_mp_state *mp_state) 11245 { 11246 int r; 11247 11248 vcpu_load(vcpu); 11249 if (kvm_mpx_supported()) 11250 kvm_load_guest_fpu(vcpu); 11251 11252 r = kvm_apic_accept_events(vcpu); 11253 if (r < 0) 11254 goto out; 11255 r = 0; 11256 11257 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11258 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11259 vcpu->arch.pv.pv_unhalted) 11260 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11261 else 11262 mp_state->mp_state = vcpu->arch.mp_state; 11263 11264 out: 11265 if (kvm_mpx_supported()) 11266 kvm_put_guest_fpu(vcpu); 11267 vcpu_put(vcpu); 11268 return r; 11269 } 11270 11271 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11272 struct kvm_mp_state *mp_state) 11273 { 11274 int ret = -EINVAL; 11275 11276 vcpu_load(vcpu); 11277 11278 switch (mp_state->mp_state) { 11279 case KVM_MP_STATE_UNINITIALIZED: 11280 case KVM_MP_STATE_HALTED: 11281 case KVM_MP_STATE_AP_RESET_HOLD: 11282 case KVM_MP_STATE_INIT_RECEIVED: 11283 case KVM_MP_STATE_SIPI_RECEIVED: 11284 if (!lapic_in_kernel(vcpu)) 11285 goto out; 11286 break; 11287 11288 case KVM_MP_STATE_RUNNABLE: 11289 break; 11290 11291 default: 11292 goto out; 11293 } 11294 11295 /* 11296 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11297 * forcing the guest into INIT/SIPI if those events are supposed to be 11298 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11299 * if an SMI is pending as well. 11300 */ 11301 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11302 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11303 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11304 goto out; 11305 11306 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11307 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11308 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11309 } else 11310 vcpu->arch.mp_state = mp_state->mp_state; 11311 kvm_make_request(KVM_REQ_EVENT, vcpu); 11312 11313 ret = 0; 11314 out: 11315 vcpu_put(vcpu); 11316 return ret; 11317 } 11318 11319 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11320 int reason, bool has_error_code, u32 error_code) 11321 { 11322 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11323 int ret; 11324 11325 init_emulate_ctxt(vcpu); 11326 11327 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11328 has_error_code, error_code); 11329 if (ret) { 11330 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11331 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11332 vcpu->run->internal.ndata = 0; 11333 return 0; 11334 } 11335 11336 kvm_rip_write(vcpu, ctxt->eip); 11337 kvm_set_rflags(vcpu, ctxt->eflags); 11338 return 1; 11339 } 11340 EXPORT_SYMBOL_GPL(kvm_task_switch); 11341 11342 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11343 { 11344 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11345 /* 11346 * When EFER.LME and CR0.PG are set, the processor is in 11347 * 64-bit mode (though maybe in a 32-bit code segment). 11348 * CR4.PAE and EFER.LMA must be set. 11349 */ 11350 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11351 return false; 11352 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11353 return false; 11354 } else { 11355 /* 11356 * Not in 64-bit mode: EFER.LMA is clear and the code 11357 * segment cannot be 64-bit. 11358 */ 11359 if (sregs->efer & EFER_LMA || sregs->cs.l) 11360 return false; 11361 } 11362 11363 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11364 } 11365 11366 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11367 int *mmu_reset_needed, bool update_pdptrs) 11368 { 11369 struct msr_data apic_base_msr; 11370 int idx; 11371 struct desc_ptr dt; 11372 11373 if (!kvm_is_valid_sregs(vcpu, sregs)) 11374 return -EINVAL; 11375 11376 apic_base_msr.data = sregs->apic_base; 11377 apic_base_msr.host_initiated = true; 11378 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11379 return -EINVAL; 11380 11381 if (vcpu->arch.guest_state_protected) 11382 return 0; 11383 11384 dt.size = sregs->idt.limit; 11385 dt.address = sregs->idt.base; 11386 static_call(kvm_x86_set_idt)(vcpu, &dt); 11387 dt.size = sregs->gdt.limit; 11388 dt.address = sregs->gdt.base; 11389 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11390 11391 vcpu->arch.cr2 = sregs->cr2; 11392 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11393 vcpu->arch.cr3 = sregs->cr3; 11394 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11395 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11396 11397 kvm_set_cr8(vcpu, sregs->cr8); 11398 11399 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11400 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11401 11402 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11403 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11404 vcpu->arch.cr0 = sregs->cr0; 11405 11406 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11407 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11408 11409 if (update_pdptrs) { 11410 idx = srcu_read_lock(&vcpu->kvm->srcu); 11411 if (is_pae_paging(vcpu)) { 11412 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11413 *mmu_reset_needed = 1; 11414 } 11415 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11416 } 11417 11418 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11419 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11420 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11421 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11422 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11423 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11424 11425 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11426 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11427 11428 update_cr8_intercept(vcpu); 11429 11430 /* Older userspace won't unhalt the vcpu on reset. */ 11431 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11432 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11433 !is_protmode(vcpu)) 11434 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11435 11436 return 0; 11437 } 11438 11439 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11440 { 11441 int pending_vec, max_bits; 11442 int mmu_reset_needed = 0; 11443 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11444 11445 if (ret) 11446 return ret; 11447 11448 if (mmu_reset_needed) 11449 kvm_mmu_reset_context(vcpu); 11450 11451 max_bits = KVM_NR_INTERRUPTS; 11452 pending_vec = find_first_bit( 11453 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11454 11455 if (pending_vec < max_bits) { 11456 kvm_queue_interrupt(vcpu, pending_vec, false); 11457 pr_debug("Set back pending irq %d\n", pending_vec); 11458 kvm_make_request(KVM_REQ_EVENT, vcpu); 11459 } 11460 return 0; 11461 } 11462 11463 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11464 { 11465 int mmu_reset_needed = 0; 11466 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11467 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11468 !(sregs2->efer & EFER_LMA); 11469 int i, ret; 11470 11471 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11472 return -EINVAL; 11473 11474 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11475 return -EINVAL; 11476 11477 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11478 &mmu_reset_needed, !valid_pdptrs); 11479 if (ret) 11480 return ret; 11481 11482 if (valid_pdptrs) { 11483 for (i = 0; i < 4 ; i++) 11484 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11485 11486 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11487 mmu_reset_needed = 1; 11488 vcpu->arch.pdptrs_from_userspace = true; 11489 } 11490 if (mmu_reset_needed) 11491 kvm_mmu_reset_context(vcpu); 11492 return 0; 11493 } 11494 11495 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11496 struct kvm_sregs *sregs) 11497 { 11498 int ret; 11499 11500 vcpu_load(vcpu); 11501 ret = __set_sregs(vcpu, sregs); 11502 vcpu_put(vcpu); 11503 return ret; 11504 } 11505 11506 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11507 { 11508 bool set = false; 11509 struct kvm_vcpu *vcpu; 11510 unsigned long i; 11511 11512 if (!enable_apicv) 11513 return; 11514 11515 down_write(&kvm->arch.apicv_update_lock); 11516 11517 kvm_for_each_vcpu(i, vcpu, kvm) { 11518 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11519 set = true; 11520 break; 11521 } 11522 } 11523 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11524 up_write(&kvm->arch.apicv_update_lock); 11525 } 11526 11527 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11528 struct kvm_guest_debug *dbg) 11529 { 11530 unsigned long rflags; 11531 int i, r; 11532 11533 if (vcpu->arch.guest_state_protected) 11534 return -EINVAL; 11535 11536 vcpu_load(vcpu); 11537 11538 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11539 r = -EBUSY; 11540 if (kvm_is_exception_pending(vcpu)) 11541 goto out; 11542 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11543 kvm_queue_exception(vcpu, DB_VECTOR); 11544 else 11545 kvm_queue_exception(vcpu, BP_VECTOR); 11546 } 11547 11548 /* 11549 * Read rflags as long as potentially injected trace flags are still 11550 * filtered out. 11551 */ 11552 rflags = kvm_get_rflags(vcpu); 11553 11554 vcpu->guest_debug = dbg->control; 11555 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11556 vcpu->guest_debug = 0; 11557 11558 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11559 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11560 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11561 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11562 } else { 11563 for (i = 0; i < KVM_NR_DB_REGS; i++) 11564 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11565 } 11566 kvm_update_dr7(vcpu); 11567 11568 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11569 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11570 11571 /* 11572 * Trigger an rflags update that will inject or remove the trace 11573 * flags. 11574 */ 11575 kvm_set_rflags(vcpu, rflags); 11576 11577 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11578 11579 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11580 11581 r = 0; 11582 11583 out: 11584 vcpu_put(vcpu); 11585 return r; 11586 } 11587 11588 /* 11589 * Translate a guest virtual address to a guest physical address. 11590 */ 11591 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11592 struct kvm_translation *tr) 11593 { 11594 unsigned long vaddr = tr->linear_address; 11595 gpa_t gpa; 11596 int idx; 11597 11598 vcpu_load(vcpu); 11599 11600 idx = srcu_read_lock(&vcpu->kvm->srcu); 11601 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11602 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11603 tr->physical_address = gpa; 11604 tr->valid = gpa != INVALID_GPA; 11605 tr->writeable = 1; 11606 tr->usermode = 0; 11607 11608 vcpu_put(vcpu); 11609 return 0; 11610 } 11611 11612 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11613 { 11614 struct fxregs_state *fxsave; 11615 11616 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11617 return 0; 11618 11619 vcpu_load(vcpu); 11620 11621 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11622 memcpy(fpu->fpr, fxsave->st_space, 128); 11623 fpu->fcw = fxsave->cwd; 11624 fpu->fsw = fxsave->swd; 11625 fpu->ftwx = fxsave->twd; 11626 fpu->last_opcode = fxsave->fop; 11627 fpu->last_ip = fxsave->rip; 11628 fpu->last_dp = fxsave->rdp; 11629 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11630 11631 vcpu_put(vcpu); 11632 return 0; 11633 } 11634 11635 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11636 { 11637 struct fxregs_state *fxsave; 11638 11639 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11640 return 0; 11641 11642 vcpu_load(vcpu); 11643 11644 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11645 11646 memcpy(fxsave->st_space, fpu->fpr, 128); 11647 fxsave->cwd = fpu->fcw; 11648 fxsave->swd = fpu->fsw; 11649 fxsave->twd = fpu->ftwx; 11650 fxsave->fop = fpu->last_opcode; 11651 fxsave->rip = fpu->last_ip; 11652 fxsave->rdp = fpu->last_dp; 11653 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11654 11655 vcpu_put(vcpu); 11656 return 0; 11657 } 11658 11659 static void store_regs(struct kvm_vcpu *vcpu) 11660 { 11661 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11662 11663 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11664 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11665 11666 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11667 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11668 11669 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11670 kvm_vcpu_ioctl_x86_get_vcpu_events( 11671 vcpu, &vcpu->run->s.regs.events); 11672 } 11673 11674 static int sync_regs(struct kvm_vcpu *vcpu) 11675 { 11676 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11677 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11678 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11679 } 11680 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11681 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11682 return -EINVAL; 11683 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11684 } 11685 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11686 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11687 vcpu, &vcpu->run->s.regs.events)) 11688 return -EINVAL; 11689 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11690 } 11691 11692 return 0; 11693 } 11694 11695 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11696 { 11697 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11698 pr_warn_once("SMP vm created on host with unstable TSC; " 11699 "guest TSC will not be reliable\n"); 11700 11701 if (!kvm->arch.max_vcpu_ids) 11702 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11703 11704 if (id >= kvm->arch.max_vcpu_ids) 11705 return -EINVAL; 11706 11707 return static_call(kvm_x86_vcpu_precreate)(kvm); 11708 } 11709 11710 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11711 { 11712 struct page *page; 11713 int r; 11714 11715 vcpu->arch.last_vmentry_cpu = -1; 11716 vcpu->arch.regs_avail = ~0; 11717 vcpu->arch.regs_dirty = ~0; 11718 11719 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11720 11721 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11722 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11723 else 11724 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11725 11726 r = kvm_mmu_create(vcpu); 11727 if (r < 0) 11728 return r; 11729 11730 if (irqchip_in_kernel(vcpu->kvm)) { 11731 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11732 if (r < 0) 11733 goto fail_mmu_destroy; 11734 11735 /* 11736 * Defer evaluating inhibits until the vCPU is first run, as 11737 * this vCPU will not get notified of any changes until this 11738 * vCPU is visible to other vCPUs (marked online and added to 11739 * the set of vCPUs). Opportunistically mark APICv active as 11740 * VMX in particularly is highly unlikely to have inhibits. 11741 * Ignore the current per-VM APICv state so that vCPU creation 11742 * is guaranteed to run with a deterministic value, the request 11743 * will ensure the vCPU gets the correct state before VM-Entry. 11744 */ 11745 if (enable_apicv) { 11746 vcpu->arch.apic->apicv_active = true; 11747 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11748 } 11749 } else 11750 static_branch_inc(&kvm_has_noapic_vcpu); 11751 11752 r = -ENOMEM; 11753 11754 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11755 if (!page) 11756 goto fail_free_lapic; 11757 vcpu->arch.pio_data = page_address(page); 11758 11759 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11760 GFP_KERNEL_ACCOUNT); 11761 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11762 GFP_KERNEL_ACCOUNT); 11763 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11764 goto fail_free_mce_banks; 11765 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11766 11767 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11768 GFP_KERNEL_ACCOUNT)) 11769 goto fail_free_mce_banks; 11770 11771 if (!alloc_emulate_ctxt(vcpu)) 11772 goto free_wbinvd_dirty_mask; 11773 11774 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11775 pr_err("failed to allocate vcpu's fpu\n"); 11776 goto free_emulate_ctxt; 11777 } 11778 11779 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11780 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11781 11782 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11783 11784 kvm_async_pf_hash_reset(vcpu); 11785 11786 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11787 kvm_pmu_init(vcpu); 11788 11789 vcpu->arch.pending_external_vector = -1; 11790 vcpu->arch.preempted_in_kernel = false; 11791 11792 #if IS_ENABLED(CONFIG_HYPERV) 11793 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11794 #endif 11795 11796 r = static_call(kvm_x86_vcpu_create)(vcpu); 11797 if (r) 11798 goto free_guest_fpu; 11799 11800 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11801 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11802 kvm_xen_init_vcpu(vcpu); 11803 kvm_vcpu_mtrr_init(vcpu); 11804 vcpu_load(vcpu); 11805 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11806 kvm_vcpu_reset(vcpu, false); 11807 kvm_init_mmu(vcpu); 11808 vcpu_put(vcpu); 11809 return 0; 11810 11811 free_guest_fpu: 11812 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11813 free_emulate_ctxt: 11814 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11815 free_wbinvd_dirty_mask: 11816 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11817 fail_free_mce_banks: 11818 kfree(vcpu->arch.mce_banks); 11819 kfree(vcpu->arch.mci_ctl2_banks); 11820 free_page((unsigned long)vcpu->arch.pio_data); 11821 fail_free_lapic: 11822 kvm_free_lapic(vcpu); 11823 fail_mmu_destroy: 11824 kvm_mmu_destroy(vcpu); 11825 return r; 11826 } 11827 11828 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11829 { 11830 struct kvm *kvm = vcpu->kvm; 11831 11832 if (mutex_lock_killable(&vcpu->mutex)) 11833 return; 11834 vcpu_load(vcpu); 11835 kvm_synchronize_tsc(vcpu, 0); 11836 vcpu_put(vcpu); 11837 11838 /* poll control enabled by default */ 11839 vcpu->arch.msr_kvm_poll_control = 1; 11840 11841 mutex_unlock(&vcpu->mutex); 11842 11843 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11844 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11845 KVMCLOCK_SYNC_PERIOD); 11846 } 11847 11848 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11849 { 11850 int idx; 11851 11852 kvmclock_reset(vcpu); 11853 11854 static_call(kvm_x86_vcpu_free)(vcpu); 11855 11856 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11857 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11858 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11859 11860 kvm_xen_destroy_vcpu(vcpu); 11861 kvm_hv_vcpu_uninit(vcpu); 11862 kvm_pmu_destroy(vcpu); 11863 kfree(vcpu->arch.mce_banks); 11864 kfree(vcpu->arch.mci_ctl2_banks); 11865 kvm_free_lapic(vcpu); 11866 idx = srcu_read_lock(&vcpu->kvm->srcu); 11867 kvm_mmu_destroy(vcpu); 11868 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11869 free_page((unsigned long)vcpu->arch.pio_data); 11870 kvfree(vcpu->arch.cpuid_entries); 11871 if (!lapic_in_kernel(vcpu)) 11872 static_branch_dec(&kvm_has_noapic_vcpu); 11873 } 11874 11875 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11876 { 11877 struct kvm_cpuid_entry2 *cpuid_0x1; 11878 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11879 unsigned long new_cr0; 11880 11881 /* 11882 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11883 * to handle side effects. RESET emulation hits those flows and relies 11884 * on emulated/virtualized registers, including those that are loaded 11885 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11886 * to detect improper or missing initialization. 11887 */ 11888 WARN_ON_ONCE(!init_event && 11889 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11890 11891 /* 11892 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11893 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11894 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11895 * bits), i.e. virtualization is disabled. 11896 */ 11897 if (is_guest_mode(vcpu)) 11898 kvm_leave_nested(vcpu); 11899 11900 kvm_lapic_reset(vcpu, init_event); 11901 11902 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 11903 vcpu->arch.hflags = 0; 11904 11905 vcpu->arch.smi_pending = 0; 11906 vcpu->arch.smi_count = 0; 11907 atomic_set(&vcpu->arch.nmi_queued, 0); 11908 vcpu->arch.nmi_pending = 0; 11909 vcpu->arch.nmi_injected = false; 11910 kvm_clear_interrupt_queue(vcpu); 11911 kvm_clear_exception_queue(vcpu); 11912 11913 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11914 kvm_update_dr0123(vcpu); 11915 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11916 vcpu->arch.dr7 = DR7_FIXED_1; 11917 kvm_update_dr7(vcpu); 11918 11919 vcpu->arch.cr2 = 0; 11920 11921 kvm_make_request(KVM_REQ_EVENT, vcpu); 11922 vcpu->arch.apf.msr_en_val = 0; 11923 vcpu->arch.apf.msr_int_val = 0; 11924 vcpu->arch.st.msr_val = 0; 11925 11926 kvmclock_reset(vcpu); 11927 11928 kvm_clear_async_pf_completion_queue(vcpu); 11929 kvm_async_pf_hash_reset(vcpu); 11930 vcpu->arch.apf.halted = false; 11931 11932 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11933 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11934 11935 /* 11936 * All paths that lead to INIT are required to load the guest's 11937 * FPU state (because most paths are buried in KVM_RUN). 11938 */ 11939 if (init_event) 11940 kvm_put_guest_fpu(vcpu); 11941 11942 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11943 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11944 11945 if (init_event) 11946 kvm_load_guest_fpu(vcpu); 11947 } 11948 11949 if (!init_event) { 11950 kvm_pmu_reset(vcpu); 11951 vcpu->arch.smbase = 0x30000; 11952 11953 vcpu->arch.msr_misc_features_enables = 0; 11954 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11955 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11956 11957 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11958 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11959 } 11960 11961 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11962 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11963 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11964 11965 /* 11966 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11967 * if no CPUID match is found. Note, it's impossible to get a match at 11968 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11969 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11970 * on RESET. But, go through the motions in case that's ever remedied. 11971 */ 11972 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11973 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11974 11975 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11976 11977 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11978 kvm_rip_write(vcpu, 0xfff0); 11979 11980 vcpu->arch.cr3 = 0; 11981 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11982 11983 /* 11984 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11985 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11986 * (or qualify) that with a footnote stating that CD/NW are preserved. 11987 */ 11988 new_cr0 = X86_CR0_ET; 11989 if (init_event) 11990 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11991 else 11992 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11993 11994 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11995 static_call(kvm_x86_set_cr4)(vcpu, 0); 11996 static_call(kvm_x86_set_efer)(vcpu, 0); 11997 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11998 11999 /* 12000 * On the standard CR0/CR4/EFER modification paths, there are several 12001 * complex conditions determining whether the MMU has to be reset and/or 12002 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12003 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12004 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12005 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12006 */ 12007 if (old_cr0 & X86_CR0_PG) { 12008 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12009 kvm_mmu_reset_context(vcpu); 12010 } 12011 12012 /* 12013 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12014 * APM states the TLBs are untouched by INIT, but it also states that 12015 * the TLBs are flushed on "External initialization of the processor." 12016 * Flush the guest TLB regardless of vendor, there is no meaningful 12017 * benefit in relying on the guest to flush the TLB immediately after 12018 * INIT. A spurious TLB flush is benign and likely negligible from a 12019 * performance perspective. 12020 */ 12021 if (init_event) 12022 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12023 } 12024 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12025 12026 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12027 { 12028 struct kvm_segment cs; 12029 12030 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12031 cs.selector = vector << 8; 12032 cs.base = vector << 12; 12033 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12034 kvm_rip_write(vcpu, 0); 12035 } 12036 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12037 12038 int kvm_arch_hardware_enable(void) 12039 { 12040 struct kvm *kvm; 12041 struct kvm_vcpu *vcpu; 12042 unsigned long i; 12043 int ret; 12044 u64 local_tsc; 12045 u64 max_tsc = 0; 12046 bool stable, backwards_tsc = false; 12047 12048 kvm_user_return_msr_cpu_online(); 12049 12050 ret = kvm_x86_check_processor_compatibility(); 12051 if (ret) 12052 return ret; 12053 12054 ret = static_call(kvm_x86_hardware_enable)(); 12055 if (ret != 0) 12056 return ret; 12057 12058 local_tsc = rdtsc(); 12059 stable = !kvm_check_tsc_unstable(); 12060 list_for_each_entry(kvm, &vm_list, vm_list) { 12061 kvm_for_each_vcpu(i, vcpu, kvm) { 12062 if (!stable && vcpu->cpu == smp_processor_id()) 12063 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12064 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12065 backwards_tsc = true; 12066 if (vcpu->arch.last_host_tsc > max_tsc) 12067 max_tsc = vcpu->arch.last_host_tsc; 12068 } 12069 } 12070 } 12071 12072 /* 12073 * Sometimes, even reliable TSCs go backwards. This happens on 12074 * platforms that reset TSC during suspend or hibernate actions, but 12075 * maintain synchronization. We must compensate. Fortunately, we can 12076 * detect that condition here, which happens early in CPU bringup, 12077 * before any KVM threads can be running. Unfortunately, we can't 12078 * bring the TSCs fully up to date with real time, as we aren't yet far 12079 * enough into CPU bringup that we know how much real time has actually 12080 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12081 * variables that haven't been updated yet. 12082 * 12083 * So we simply find the maximum observed TSC above, then record the 12084 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12085 * the adjustment will be applied. Note that we accumulate 12086 * adjustments, in case multiple suspend cycles happen before some VCPU 12087 * gets a chance to run again. In the event that no KVM threads get a 12088 * chance to run, we will miss the entire elapsed period, as we'll have 12089 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12090 * loose cycle time. This isn't too big a deal, since the loss will be 12091 * uniform across all VCPUs (not to mention the scenario is extremely 12092 * unlikely). It is possible that a second hibernate recovery happens 12093 * much faster than a first, causing the observed TSC here to be 12094 * smaller; this would require additional padding adjustment, which is 12095 * why we set last_host_tsc to the local tsc observed here. 12096 * 12097 * N.B. - this code below runs only on platforms with reliable TSC, 12098 * as that is the only way backwards_tsc is set above. Also note 12099 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12100 * have the same delta_cyc adjustment applied if backwards_tsc 12101 * is detected. Note further, this adjustment is only done once, 12102 * as we reset last_host_tsc on all VCPUs to stop this from being 12103 * called multiple times (one for each physical CPU bringup). 12104 * 12105 * Platforms with unreliable TSCs don't have to deal with this, they 12106 * will be compensated by the logic in vcpu_load, which sets the TSC to 12107 * catchup mode. This will catchup all VCPUs to real time, but cannot 12108 * guarantee that they stay in perfect synchronization. 12109 */ 12110 if (backwards_tsc) { 12111 u64 delta_cyc = max_tsc - local_tsc; 12112 list_for_each_entry(kvm, &vm_list, vm_list) { 12113 kvm->arch.backwards_tsc_observed = true; 12114 kvm_for_each_vcpu(i, vcpu, kvm) { 12115 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12116 vcpu->arch.last_host_tsc = local_tsc; 12117 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12118 } 12119 12120 /* 12121 * We have to disable TSC offset matching.. if you were 12122 * booting a VM while issuing an S4 host suspend.... 12123 * you may have some problem. Solving this issue is 12124 * left as an exercise to the reader. 12125 */ 12126 kvm->arch.last_tsc_nsec = 0; 12127 kvm->arch.last_tsc_write = 0; 12128 } 12129 12130 } 12131 return 0; 12132 } 12133 12134 void kvm_arch_hardware_disable(void) 12135 { 12136 static_call(kvm_x86_hardware_disable)(); 12137 drop_user_return_notifiers(); 12138 } 12139 12140 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12141 { 12142 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12143 } 12144 12145 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12146 { 12147 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12148 } 12149 12150 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12151 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12152 12153 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12154 { 12155 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12156 12157 vcpu->arch.l1tf_flush_l1d = true; 12158 if (pmu->version && unlikely(pmu->event_count)) { 12159 pmu->need_cleanup = true; 12160 kvm_make_request(KVM_REQ_PMU, vcpu); 12161 } 12162 static_call(kvm_x86_sched_in)(vcpu, cpu); 12163 } 12164 12165 void kvm_arch_free_vm(struct kvm *kvm) 12166 { 12167 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12168 __kvm_arch_free_vm(kvm); 12169 } 12170 12171 12172 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12173 { 12174 int ret; 12175 unsigned long flags; 12176 12177 if (type) 12178 return -EINVAL; 12179 12180 ret = kvm_page_track_init(kvm); 12181 if (ret) 12182 goto out; 12183 12184 ret = kvm_mmu_init_vm(kvm); 12185 if (ret) 12186 goto out_page_track; 12187 12188 ret = static_call(kvm_x86_vm_init)(kvm); 12189 if (ret) 12190 goto out_uninit_mmu; 12191 12192 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12193 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12194 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12195 12196 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12197 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12198 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12199 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12200 &kvm->arch.irq_sources_bitmap); 12201 12202 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12203 mutex_init(&kvm->arch.apic_map_lock); 12204 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12205 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12206 12207 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12208 pvclock_update_vm_gtod_copy(kvm); 12209 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12210 12211 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12212 kvm->arch.guest_can_read_msr_platform_info = true; 12213 kvm->arch.enable_pmu = enable_pmu; 12214 12215 #if IS_ENABLED(CONFIG_HYPERV) 12216 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12217 kvm->arch.hv_root_tdp = INVALID_PAGE; 12218 #endif 12219 12220 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12221 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12222 12223 kvm_apicv_init(kvm); 12224 kvm_hv_init_vm(kvm); 12225 kvm_xen_init_vm(kvm); 12226 12227 return 0; 12228 12229 out_uninit_mmu: 12230 kvm_mmu_uninit_vm(kvm); 12231 out_page_track: 12232 kvm_page_track_cleanup(kvm); 12233 out: 12234 return ret; 12235 } 12236 12237 int kvm_arch_post_init_vm(struct kvm *kvm) 12238 { 12239 return kvm_mmu_post_init_vm(kvm); 12240 } 12241 12242 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12243 { 12244 vcpu_load(vcpu); 12245 kvm_mmu_unload(vcpu); 12246 vcpu_put(vcpu); 12247 } 12248 12249 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12250 { 12251 unsigned long i; 12252 struct kvm_vcpu *vcpu; 12253 12254 kvm_for_each_vcpu(i, vcpu, kvm) { 12255 kvm_clear_async_pf_completion_queue(vcpu); 12256 kvm_unload_vcpu_mmu(vcpu); 12257 } 12258 } 12259 12260 void kvm_arch_sync_events(struct kvm *kvm) 12261 { 12262 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12263 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12264 kvm_free_pit(kvm); 12265 } 12266 12267 /** 12268 * __x86_set_memory_region: Setup KVM internal memory slot 12269 * 12270 * @kvm: the kvm pointer to the VM. 12271 * @id: the slot ID to setup. 12272 * @gpa: the GPA to install the slot (unused when @size == 0). 12273 * @size: the size of the slot. Set to zero to uninstall a slot. 12274 * 12275 * This function helps to setup a KVM internal memory slot. Specify 12276 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12277 * slot. The return code can be one of the following: 12278 * 12279 * HVA: on success (uninstall will return a bogus HVA) 12280 * -errno: on error 12281 * 12282 * The caller should always use IS_ERR() to check the return value 12283 * before use. Note, the KVM internal memory slots are guaranteed to 12284 * remain valid and unchanged until the VM is destroyed, i.e., the 12285 * GPA->HVA translation will not change. However, the HVA is a user 12286 * address, i.e. its accessibility is not guaranteed, and must be 12287 * accessed via __copy_{to,from}_user(). 12288 */ 12289 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12290 u32 size) 12291 { 12292 int i, r; 12293 unsigned long hva, old_npages; 12294 struct kvm_memslots *slots = kvm_memslots(kvm); 12295 struct kvm_memory_slot *slot; 12296 12297 /* Called with kvm->slots_lock held. */ 12298 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12299 return ERR_PTR_USR(-EINVAL); 12300 12301 slot = id_to_memslot(slots, id); 12302 if (size) { 12303 if (slot && slot->npages) 12304 return ERR_PTR_USR(-EEXIST); 12305 12306 /* 12307 * MAP_SHARED to prevent internal slot pages from being moved 12308 * by fork()/COW. 12309 */ 12310 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12311 MAP_SHARED | MAP_ANONYMOUS, 0); 12312 if (IS_ERR_VALUE(hva)) 12313 return (void __user *)hva; 12314 } else { 12315 if (!slot || !slot->npages) 12316 return NULL; 12317 12318 old_npages = slot->npages; 12319 hva = slot->userspace_addr; 12320 } 12321 12322 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12323 struct kvm_userspace_memory_region m; 12324 12325 m.slot = id | (i << 16); 12326 m.flags = 0; 12327 m.guest_phys_addr = gpa; 12328 m.userspace_addr = hva; 12329 m.memory_size = size; 12330 r = __kvm_set_memory_region(kvm, &m); 12331 if (r < 0) 12332 return ERR_PTR_USR(r); 12333 } 12334 12335 if (!size) 12336 vm_munmap(hva, old_npages * PAGE_SIZE); 12337 12338 return (void __user *)hva; 12339 } 12340 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12341 12342 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12343 { 12344 kvm_mmu_pre_destroy_vm(kvm); 12345 } 12346 12347 void kvm_arch_destroy_vm(struct kvm *kvm) 12348 { 12349 if (current->mm == kvm->mm) { 12350 /* 12351 * Free memory regions allocated on behalf of userspace, 12352 * unless the memory map has changed due to process exit 12353 * or fd copying. 12354 */ 12355 mutex_lock(&kvm->slots_lock); 12356 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12357 0, 0); 12358 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12359 0, 0); 12360 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12361 mutex_unlock(&kvm->slots_lock); 12362 } 12363 kvm_unload_vcpu_mmus(kvm); 12364 static_call_cond(kvm_x86_vm_destroy)(kvm); 12365 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12366 kvm_pic_destroy(kvm); 12367 kvm_ioapic_destroy(kvm); 12368 kvm_destroy_vcpus(kvm); 12369 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12370 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12371 kvm_mmu_uninit_vm(kvm); 12372 kvm_page_track_cleanup(kvm); 12373 kvm_xen_destroy_vm(kvm); 12374 kvm_hv_destroy_vm(kvm); 12375 } 12376 12377 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12378 { 12379 int i; 12380 12381 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12382 kvfree(slot->arch.rmap[i]); 12383 slot->arch.rmap[i] = NULL; 12384 } 12385 } 12386 12387 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12388 { 12389 int i; 12390 12391 memslot_rmap_free(slot); 12392 12393 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12394 kvfree(slot->arch.lpage_info[i - 1]); 12395 slot->arch.lpage_info[i - 1] = NULL; 12396 } 12397 12398 kvm_page_track_free_memslot(slot); 12399 } 12400 12401 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12402 { 12403 const int sz = sizeof(*slot->arch.rmap[0]); 12404 int i; 12405 12406 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12407 int level = i + 1; 12408 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12409 12410 if (slot->arch.rmap[i]) 12411 continue; 12412 12413 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12414 if (!slot->arch.rmap[i]) { 12415 memslot_rmap_free(slot); 12416 return -ENOMEM; 12417 } 12418 } 12419 12420 return 0; 12421 } 12422 12423 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12424 struct kvm_memory_slot *slot) 12425 { 12426 unsigned long npages = slot->npages; 12427 int i, r; 12428 12429 /* 12430 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12431 * old arrays will be freed by __kvm_set_memory_region() if installing 12432 * the new memslot is successful. 12433 */ 12434 memset(&slot->arch, 0, sizeof(slot->arch)); 12435 12436 if (kvm_memslots_have_rmaps(kvm)) { 12437 r = memslot_rmap_alloc(slot, npages); 12438 if (r) 12439 return r; 12440 } 12441 12442 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12443 struct kvm_lpage_info *linfo; 12444 unsigned long ugfn; 12445 int lpages; 12446 int level = i + 1; 12447 12448 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12449 12450 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12451 if (!linfo) 12452 goto out_free; 12453 12454 slot->arch.lpage_info[i - 1] = linfo; 12455 12456 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12457 linfo[0].disallow_lpage = 1; 12458 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12459 linfo[lpages - 1].disallow_lpage = 1; 12460 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12461 /* 12462 * If the gfn and userspace address are not aligned wrt each 12463 * other, disable large page support for this slot. 12464 */ 12465 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12466 unsigned long j; 12467 12468 for (j = 0; j < lpages; ++j) 12469 linfo[j].disallow_lpage = 1; 12470 } 12471 } 12472 12473 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12474 goto out_free; 12475 12476 return 0; 12477 12478 out_free: 12479 memslot_rmap_free(slot); 12480 12481 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12482 kvfree(slot->arch.lpage_info[i - 1]); 12483 slot->arch.lpage_info[i - 1] = NULL; 12484 } 12485 return -ENOMEM; 12486 } 12487 12488 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12489 { 12490 struct kvm_vcpu *vcpu; 12491 unsigned long i; 12492 12493 /* 12494 * memslots->generation has been incremented. 12495 * mmio generation may have reached its maximum value. 12496 */ 12497 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12498 12499 /* Force re-initialization of steal_time cache */ 12500 kvm_for_each_vcpu(i, vcpu, kvm) 12501 kvm_vcpu_kick(vcpu); 12502 } 12503 12504 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12505 const struct kvm_memory_slot *old, 12506 struct kvm_memory_slot *new, 12507 enum kvm_mr_change change) 12508 { 12509 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12510 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12511 return -EINVAL; 12512 12513 return kvm_alloc_memslot_metadata(kvm, new); 12514 } 12515 12516 if (change == KVM_MR_FLAGS_ONLY) 12517 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12518 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12519 return -EIO; 12520 12521 return 0; 12522 } 12523 12524 12525 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12526 { 12527 int nr_slots; 12528 12529 if (!kvm_x86_ops.cpu_dirty_log_size) 12530 return; 12531 12532 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12533 if ((enable && nr_slots == 1) || !nr_slots) 12534 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12535 } 12536 12537 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12538 struct kvm_memory_slot *old, 12539 const struct kvm_memory_slot *new, 12540 enum kvm_mr_change change) 12541 { 12542 u32 old_flags = old ? old->flags : 0; 12543 u32 new_flags = new ? new->flags : 0; 12544 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12545 12546 /* 12547 * Update CPU dirty logging if dirty logging is being toggled. This 12548 * applies to all operations. 12549 */ 12550 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12551 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12552 12553 /* 12554 * Nothing more to do for RO slots (which can't be dirtied and can't be 12555 * made writable) or CREATE/MOVE/DELETE of a slot. 12556 * 12557 * For a memslot with dirty logging disabled: 12558 * CREATE: No dirty mappings will already exist. 12559 * MOVE/DELETE: The old mappings will already have been cleaned up by 12560 * kvm_arch_flush_shadow_memslot() 12561 * 12562 * For a memslot with dirty logging enabled: 12563 * CREATE: No shadow pages exist, thus nothing to write-protect 12564 * and no dirty bits to clear. 12565 * MOVE/DELETE: The old mappings will already have been cleaned up by 12566 * kvm_arch_flush_shadow_memslot(). 12567 */ 12568 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12569 return; 12570 12571 /* 12572 * READONLY and non-flags changes were filtered out above, and the only 12573 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12574 * logging isn't being toggled on or off. 12575 */ 12576 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12577 return; 12578 12579 if (!log_dirty_pages) { 12580 /* 12581 * Dirty logging tracks sptes in 4k granularity, meaning that 12582 * large sptes have to be split. If live migration succeeds, 12583 * the guest in the source machine will be destroyed and large 12584 * sptes will be created in the destination. However, if the 12585 * guest continues to run in the source machine (for example if 12586 * live migration fails), small sptes will remain around and 12587 * cause bad performance. 12588 * 12589 * Scan sptes if dirty logging has been stopped, dropping those 12590 * which can be collapsed into a single large-page spte. Later 12591 * page faults will create the large-page sptes. 12592 */ 12593 kvm_mmu_zap_collapsible_sptes(kvm, new); 12594 } else { 12595 /* 12596 * Initially-all-set does not require write protecting any page, 12597 * because they're all assumed to be dirty. 12598 */ 12599 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12600 return; 12601 12602 if (READ_ONCE(eager_page_split)) 12603 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12604 12605 if (kvm_x86_ops.cpu_dirty_log_size) { 12606 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12607 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12608 } else { 12609 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12610 } 12611 12612 /* 12613 * Unconditionally flush the TLBs after enabling dirty logging. 12614 * A flush is almost always going to be necessary (see below), 12615 * and unconditionally flushing allows the helpers to omit 12616 * the subtly complex checks when removing write access. 12617 * 12618 * Do the flush outside of mmu_lock to reduce the amount of 12619 * time mmu_lock is held. Flushing after dropping mmu_lock is 12620 * safe as KVM only needs to guarantee the slot is fully 12621 * write-protected before returning to userspace, i.e. before 12622 * userspace can consume the dirty status. 12623 * 12624 * Flushing outside of mmu_lock requires KVM to be careful when 12625 * making decisions based on writable status of an SPTE, e.g. a 12626 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12627 * 12628 * Specifically, KVM also write-protects guest page tables to 12629 * monitor changes when using shadow paging, and must guarantee 12630 * no CPUs can write to those page before mmu_lock is dropped. 12631 * Because CPUs may have stale TLB entries at this point, a 12632 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12633 * 12634 * KVM also allows making SPTES writable outside of mmu_lock, 12635 * e.g. to allow dirty logging without taking mmu_lock. 12636 * 12637 * To handle these scenarios, KVM uses a separate software-only 12638 * bit (MMU-writable) to track if a SPTE is !writable due to 12639 * a guest page table being write-protected (KVM clears the 12640 * MMU-writable flag when write-protecting for shadow paging). 12641 * 12642 * The use of MMU-writable is also the primary motivation for 12643 * the unconditional flush. Because KVM must guarantee that a 12644 * CPU doesn't contain stale, writable TLB entries for a 12645 * !MMU-writable SPTE, KVM must flush if it encounters any 12646 * MMU-writable SPTE regardless of whether the actual hardware 12647 * writable bit was set. I.e. KVM is almost guaranteed to need 12648 * to flush, while unconditionally flushing allows the "remove 12649 * write access" helpers to ignore MMU-writable entirely. 12650 * 12651 * See is_writable_pte() for more details (the case involving 12652 * access-tracked SPTEs is particularly relevant). 12653 */ 12654 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12655 } 12656 } 12657 12658 void kvm_arch_commit_memory_region(struct kvm *kvm, 12659 struct kvm_memory_slot *old, 12660 const struct kvm_memory_slot *new, 12661 enum kvm_mr_change change) 12662 { 12663 if (!kvm->arch.n_requested_mmu_pages && 12664 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12665 unsigned long nr_mmu_pages; 12666 12667 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12668 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12669 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12670 } 12671 12672 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12673 12674 /* Free the arrays associated with the old memslot. */ 12675 if (change == KVM_MR_MOVE) 12676 kvm_arch_free_memslot(kvm, old); 12677 } 12678 12679 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12680 { 12681 kvm_mmu_zap_all(kvm); 12682 } 12683 12684 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12685 struct kvm_memory_slot *slot) 12686 { 12687 kvm_page_track_flush_slot(kvm, slot); 12688 } 12689 12690 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12691 { 12692 return (is_guest_mode(vcpu) && 12693 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12694 } 12695 12696 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12697 { 12698 if (!list_empty_careful(&vcpu->async_pf.done)) 12699 return true; 12700 12701 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12702 kvm_apic_init_sipi_allowed(vcpu)) 12703 return true; 12704 12705 if (vcpu->arch.pv.pv_unhalted) 12706 return true; 12707 12708 if (kvm_is_exception_pending(vcpu)) 12709 return true; 12710 12711 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12712 (vcpu->arch.nmi_pending && 12713 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12714 return true; 12715 12716 #ifdef CONFIG_KVM_SMM 12717 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12718 (vcpu->arch.smi_pending && 12719 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12720 return true; 12721 #endif 12722 12723 if (kvm_arch_interrupt_allowed(vcpu) && 12724 (kvm_cpu_has_interrupt(vcpu) || 12725 kvm_guest_apic_has_interrupt(vcpu))) 12726 return true; 12727 12728 if (kvm_hv_has_stimer_pending(vcpu)) 12729 return true; 12730 12731 if (is_guest_mode(vcpu) && 12732 kvm_x86_ops.nested_ops->has_events && 12733 kvm_x86_ops.nested_ops->has_events(vcpu)) 12734 return true; 12735 12736 if (kvm_xen_has_pending_events(vcpu)) 12737 return true; 12738 12739 return false; 12740 } 12741 12742 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12743 { 12744 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12745 } 12746 12747 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12748 { 12749 if (kvm_vcpu_apicv_active(vcpu) && 12750 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12751 return true; 12752 12753 return false; 12754 } 12755 12756 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12757 { 12758 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12759 return true; 12760 12761 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12762 #ifdef CONFIG_KVM_SMM 12763 kvm_test_request(KVM_REQ_SMI, vcpu) || 12764 #endif 12765 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12766 return true; 12767 12768 return kvm_arch_dy_has_pending_interrupt(vcpu); 12769 } 12770 12771 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12772 { 12773 if (vcpu->arch.guest_state_protected) 12774 return true; 12775 12776 return vcpu->arch.preempted_in_kernel; 12777 } 12778 12779 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12780 { 12781 return kvm_rip_read(vcpu); 12782 } 12783 12784 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12785 { 12786 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12787 } 12788 12789 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12790 { 12791 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12792 } 12793 12794 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12795 { 12796 /* Can't read the RIP when guest state is protected, just return 0 */ 12797 if (vcpu->arch.guest_state_protected) 12798 return 0; 12799 12800 if (is_64_bit_mode(vcpu)) 12801 return kvm_rip_read(vcpu); 12802 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12803 kvm_rip_read(vcpu)); 12804 } 12805 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12806 12807 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12808 { 12809 return kvm_get_linear_rip(vcpu) == linear_rip; 12810 } 12811 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12812 12813 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12814 { 12815 unsigned long rflags; 12816 12817 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12818 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12819 rflags &= ~X86_EFLAGS_TF; 12820 return rflags; 12821 } 12822 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12823 12824 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12825 { 12826 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12827 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12828 rflags |= X86_EFLAGS_TF; 12829 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12830 } 12831 12832 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12833 { 12834 __kvm_set_rflags(vcpu, rflags); 12835 kvm_make_request(KVM_REQ_EVENT, vcpu); 12836 } 12837 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12838 12839 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12840 { 12841 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12842 12843 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12844 } 12845 12846 static inline u32 kvm_async_pf_next_probe(u32 key) 12847 { 12848 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12849 } 12850 12851 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12852 { 12853 u32 key = kvm_async_pf_hash_fn(gfn); 12854 12855 while (vcpu->arch.apf.gfns[key] != ~0) 12856 key = kvm_async_pf_next_probe(key); 12857 12858 vcpu->arch.apf.gfns[key] = gfn; 12859 } 12860 12861 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12862 { 12863 int i; 12864 u32 key = kvm_async_pf_hash_fn(gfn); 12865 12866 for (i = 0; i < ASYNC_PF_PER_VCPU && 12867 (vcpu->arch.apf.gfns[key] != gfn && 12868 vcpu->arch.apf.gfns[key] != ~0); i++) 12869 key = kvm_async_pf_next_probe(key); 12870 12871 return key; 12872 } 12873 12874 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12875 { 12876 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12877 } 12878 12879 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12880 { 12881 u32 i, j, k; 12882 12883 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12884 12885 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12886 return; 12887 12888 while (true) { 12889 vcpu->arch.apf.gfns[i] = ~0; 12890 do { 12891 j = kvm_async_pf_next_probe(j); 12892 if (vcpu->arch.apf.gfns[j] == ~0) 12893 return; 12894 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12895 /* 12896 * k lies cyclically in ]i,j] 12897 * | i.k.j | 12898 * |....j i.k.| or |.k..j i...| 12899 */ 12900 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12901 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12902 i = j; 12903 } 12904 } 12905 12906 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12907 { 12908 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12909 12910 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12911 sizeof(reason)); 12912 } 12913 12914 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12915 { 12916 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12917 12918 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12919 &token, offset, sizeof(token)); 12920 } 12921 12922 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12923 { 12924 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12925 u32 val; 12926 12927 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12928 &val, offset, sizeof(val))) 12929 return false; 12930 12931 return !val; 12932 } 12933 12934 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12935 { 12936 12937 if (!kvm_pv_async_pf_enabled(vcpu)) 12938 return false; 12939 12940 if (vcpu->arch.apf.send_user_only && 12941 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12942 return false; 12943 12944 if (is_guest_mode(vcpu)) { 12945 /* 12946 * L1 needs to opt into the special #PF vmexits that are 12947 * used to deliver async page faults. 12948 */ 12949 return vcpu->arch.apf.delivery_as_pf_vmexit; 12950 } else { 12951 /* 12952 * Play it safe in case the guest temporarily disables paging. 12953 * The real mode IDT in particular is unlikely to have a #PF 12954 * exception setup. 12955 */ 12956 return is_paging(vcpu); 12957 } 12958 } 12959 12960 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12961 { 12962 if (unlikely(!lapic_in_kernel(vcpu) || 12963 kvm_event_needs_reinjection(vcpu) || 12964 kvm_is_exception_pending(vcpu))) 12965 return false; 12966 12967 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12968 return false; 12969 12970 /* 12971 * If interrupts are off we cannot even use an artificial 12972 * halt state. 12973 */ 12974 return kvm_arch_interrupt_allowed(vcpu); 12975 } 12976 12977 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12978 struct kvm_async_pf *work) 12979 { 12980 struct x86_exception fault; 12981 12982 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12983 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12984 12985 if (kvm_can_deliver_async_pf(vcpu) && 12986 !apf_put_user_notpresent(vcpu)) { 12987 fault.vector = PF_VECTOR; 12988 fault.error_code_valid = true; 12989 fault.error_code = 0; 12990 fault.nested_page_fault = false; 12991 fault.address = work->arch.token; 12992 fault.async_page_fault = true; 12993 kvm_inject_page_fault(vcpu, &fault); 12994 return true; 12995 } else { 12996 /* 12997 * It is not possible to deliver a paravirtualized asynchronous 12998 * page fault, but putting the guest in an artificial halt state 12999 * can be beneficial nevertheless: if an interrupt arrives, we 13000 * can deliver it timely and perhaps the guest will schedule 13001 * another process. When the instruction that triggered a page 13002 * fault is retried, hopefully the page will be ready in the host. 13003 */ 13004 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13005 return false; 13006 } 13007 } 13008 13009 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13010 struct kvm_async_pf *work) 13011 { 13012 struct kvm_lapic_irq irq = { 13013 .delivery_mode = APIC_DM_FIXED, 13014 .vector = vcpu->arch.apf.vec 13015 }; 13016 13017 if (work->wakeup_all) 13018 work->arch.token = ~0; /* broadcast wakeup */ 13019 else 13020 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13021 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13022 13023 if ((work->wakeup_all || work->notpresent_injected) && 13024 kvm_pv_async_pf_enabled(vcpu) && 13025 !apf_put_user_ready(vcpu, work->arch.token)) { 13026 vcpu->arch.apf.pageready_pending = true; 13027 kvm_apic_set_irq(vcpu, &irq, NULL); 13028 } 13029 13030 vcpu->arch.apf.halted = false; 13031 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13032 } 13033 13034 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13035 { 13036 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13037 if (!vcpu->arch.apf.pageready_pending) 13038 kvm_vcpu_kick(vcpu); 13039 } 13040 13041 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13042 { 13043 if (!kvm_pv_async_pf_enabled(vcpu)) 13044 return true; 13045 else 13046 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13047 } 13048 13049 void kvm_arch_start_assignment(struct kvm *kvm) 13050 { 13051 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13052 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13053 } 13054 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13055 13056 void kvm_arch_end_assignment(struct kvm *kvm) 13057 { 13058 atomic_dec(&kvm->arch.assigned_device_count); 13059 } 13060 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13061 13062 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13063 { 13064 return arch_atomic_read(&kvm->arch.assigned_device_count); 13065 } 13066 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13067 13068 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13069 { 13070 atomic_inc(&kvm->arch.noncoherent_dma_count); 13071 } 13072 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13073 13074 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13075 { 13076 atomic_dec(&kvm->arch.noncoherent_dma_count); 13077 } 13078 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13079 13080 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13081 { 13082 return atomic_read(&kvm->arch.noncoherent_dma_count); 13083 } 13084 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13085 13086 bool kvm_arch_has_irq_bypass(void) 13087 { 13088 return true; 13089 } 13090 13091 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13092 struct irq_bypass_producer *prod) 13093 { 13094 struct kvm_kernel_irqfd *irqfd = 13095 container_of(cons, struct kvm_kernel_irqfd, consumer); 13096 int ret; 13097 13098 irqfd->producer = prod; 13099 kvm_arch_start_assignment(irqfd->kvm); 13100 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13101 prod->irq, irqfd->gsi, 1); 13102 13103 if (ret) 13104 kvm_arch_end_assignment(irqfd->kvm); 13105 13106 return ret; 13107 } 13108 13109 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13110 struct irq_bypass_producer *prod) 13111 { 13112 int ret; 13113 struct kvm_kernel_irqfd *irqfd = 13114 container_of(cons, struct kvm_kernel_irqfd, consumer); 13115 13116 WARN_ON(irqfd->producer != prod); 13117 irqfd->producer = NULL; 13118 13119 /* 13120 * When producer of consumer is unregistered, we change back to 13121 * remapped mode, so we can re-use the current implementation 13122 * when the irq is masked/disabled or the consumer side (KVM 13123 * int this case doesn't want to receive the interrupts. 13124 */ 13125 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13126 if (ret) 13127 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13128 " fails: %d\n", irqfd->consumer.token, ret); 13129 13130 kvm_arch_end_assignment(irqfd->kvm); 13131 } 13132 13133 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13134 uint32_t guest_irq, bool set) 13135 { 13136 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13137 } 13138 13139 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13140 struct kvm_kernel_irq_routing_entry *new) 13141 { 13142 if (new->type != KVM_IRQ_ROUTING_MSI) 13143 return true; 13144 13145 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13146 } 13147 13148 bool kvm_vector_hashing_enabled(void) 13149 { 13150 return vector_hashing; 13151 } 13152 13153 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13154 { 13155 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13156 } 13157 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13158 13159 13160 int kvm_spec_ctrl_test_value(u64 value) 13161 { 13162 /* 13163 * test that setting IA32_SPEC_CTRL to given value 13164 * is allowed by the host processor 13165 */ 13166 13167 u64 saved_value; 13168 unsigned long flags; 13169 int ret = 0; 13170 13171 local_irq_save(flags); 13172 13173 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13174 ret = 1; 13175 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13176 ret = 1; 13177 else 13178 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13179 13180 local_irq_restore(flags); 13181 13182 return ret; 13183 } 13184 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13185 13186 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13187 { 13188 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13189 struct x86_exception fault; 13190 u64 access = error_code & 13191 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13192 13193 if (!(error_code & PFERR_PRESENT_MASK) || 13194 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13195 /* 13196 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13197 * tables probably do not match the TLB. Just proceed 13198 * with the error code that the processor gave. 13199 */ 13200 fault.vector = PF_VECTOR; 13201 fault.error_code_valid = true; 13202 fault.error_code = error_code; 13203 fault.nested_page_fault = false; 13204 fault.address = gva; 13205 fault.async_page_fault = false; 13206 } 13207 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13208 } 13209 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13210 13211 /* 13212 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13213 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13214 * indicates whether exit to userspace is needed. 13215 */ 13216 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13217 struct x86_exception *e) 13218 { 13219 if (r == X86EMUL_PROPAGATE_FAULT) { 13220 if (KVM_BUG_ON(!e, vcpu->kvm)) 13221 return -EIO; 13222 13223 kvm_inject_emulated_page_fault(vcpu, e); 13224 return 1; 13225 } 13226 13227 /* 13228 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13229 * while handling a VMX instruction KVM could've handled the request 13230 * correctly by exiting to userspace and performing I/O but there 13231 * doesn't seem to be a real use-case behind such requests, just return 13232 * KVM_EXIT_INTERNAL_ERROR for now. 13233 */ 13234 kvm_prepare_emulation_failure_exit(vcpu); 13235 13236 return 0; 13237 } 13238 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13239 13240 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13241 { 13242 bool pcid_enabled; 13243 struct x86_exception e; 13244 struct { 13245 u64 pcid; 13246 u64 gla; 13247 } operand; 13248 int r; 13249 13250 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13251 if (r != X86EMUL_CONTINUE) 13252 return kvm_handle_memory_failure(vcpu, r, &e); 13253 13254 if (operand.pcid >> 12 != 0) { 13255 kvm_inject_gp(vcpu, 0); 13256 return 1; 13257 } 13258 13259 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13260 13261 switch (type) { 13262 case INVPCID_TYPE_INDIV_ADDR: 13263 if ((!pcid_enabled && (operand.pcid != 0)) || 13264 is_noncanonical_address(operand.gla, vcpu)) { 13265 kvm_inject_gp(vcpu, 0); 13266 return 1; 13267 } 13268 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13269 return kvm_skip_emulated_instruction(vcpu); 13270 13271 case INVPCID_TYPE_SINGLE_CTXT: 13272 if (!pcid_enabled && (operand.pcid != 0)) { 13273 kvm_inject_gp(vcpu, 0); 13274 return 1; 13275 } 13276 13277 kvm_invalidate_pcid(vcpu, operand.pcid); 13278 return kvm_skip_emulated_instruction(vcpu); 13279 13280 case INVPCID_TYPE_ALL_NON_GLOBAL: 13281 /* 13282 * Currently, KVM doesn't mark global entries in the shadow 13283 * page tables, so a non-global flush just degenerates to a 13284 * global flush. If needed, we could optimize this later by 13285 * keeping track of global entries in shadow page tables. 13286 */ 13287 13288 fallthrough; 13289 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13290 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13291 return kvm_skip_emulated_instruction(vcpu); 13292 13293 default: 13294 kvm_inject_gp(vcpu, 0); 13295 return 1; 13296 } 13297 } 13298 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13299 13300 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13301 { 13302 struct kvm_run *run = vcpu->run; 13303 struct kvm_mmio_fragment *frag; 13304 unsigned int len; 13305 13306 BUG_ON(!vcpu->mmio_needed); 13307 13308 /* Complete previous fragment */ 13309 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13310 len = min(8u, frag->len); 13311 if (!vcpu->mmio_is_write) 13312 memcpy(frag->data, run->mmio.data, len); 13313 13314 if (frag->len <= 8) { 13315 /* Switch to the next fragment. */ 13316 frag++; 13317 vcpu->mmio_cur_fragment++; 13318 } else { 13319 /* Go forward to the next mmio piece. */ 13320 frag->data += len; 13321 frag->gpa += len; 13322 frag->len -= len; 13323 } 13324 13325 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13326 vcpu->mmio_needed = 0; 13327 13328 // VMG change, at this point, we're always done 13329 // RIP has already been advanced 13330 return 1; 13331 } 13332 13333 // More MMIO is needed 13334 run->mmio.phys_addr = frag->gpa; 13335 run->mmio.len = min(8u, frag->len); 13336 run->mmio.is_write = vcpu->mmio_is_write; 13337 if (run->mmio.is_write) 13338 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13339 run->exit_reason = KVM_EXIT_MMIO; 13340 13341 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13342 13343 return 0; 13344 } 13345 13346 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13347 void *data) 13348 { 13349 int handled; 13350 struct kvm_mmio_fragment *frag; 13351 13352 if (!data) 13353 return -EINVAL; 13354 13355 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13356 if (handled == bytes) 13357 return 1; 13358 13359 bytes -= handled; 13360 gpa += handled; 13361 data += handled; 13362 13363 /*TODO: Check if need to increment number of frags */ 13364 frag = vcpu->mmio_fragments; 13365 vcpu->mmio_nr_fragments = 1; 13366 frag->len = bytes; 13367 frag->gpa = gpa; 13368 frag->data = data; 13369 13370 vcpu->mmio_needed = 1; 13371 vcpu->mmio_cur_fragment = 0; 13372 13373 vcpu->run->mmio.phys_addr = gpa; 13374 vcpu->run->mmio.len = min(8u, frag->len); 13375 vcpu->run->mmio.is_write = 1; 13376 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13377 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13378 13379 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13380 13381 return 0; 13382 } 13383 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13384 13385 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13386 void *data) 13387 { 13388 int handled; 13389 struct kvm_mmio_fragment *frag; 13390 13391 if (!data) 13392 return -EINVAL; 13393 13394 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13395 if (handled == bytes) 13396 return 1; 13397 13398 bytes -= handled; 13399 gpa += handled; 13400 data += handled; 13401 13402 /*TODO: Check if need to increment number of frags */ 13403 frag = vcpu->mmio_fragments; 13404 vcpu->mmio_nr_fragments = 1; 13405 frag->len = bytes; 13406 frag->gpa = gpa; 13407 frag->data = data; 13408 13409 vcpu->mmio_needed = 1; 13410 vcpu->mmio_cur_fragment = 0; 13411 13412 vcpu->run->mmio.phys_addr = gpa; 13413 vcpu->run->mmio.len = min(8u, frag->len); 13414 vcpu->run->mmio.is_write = 0; 13415 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13416 13417 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13418 13419 return 0; 13420 } 13421 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13422 13423 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13424 { 13425 vcpu->arch.sev_pio_count -= count; 13426 vcpu->arch.sev_pio_data += count * size; 13427 } 13428 13429 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13430 unsigned int port); 13431 13432 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13433 { 13434 int size = vcpu->arch.pio.size; 13435 int port = vcpu->arch.pio.port; 13436 13437 vcpu->arch.pio.count = 0; 13438 if (vcpu->arch.sev_pio_count) 13439 return kvm_sev_es_outs(vcpu, size, port); 13440 return 1; 13441 } 13442 13443 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13444 unsigned int port) 13445 { 13446 for (;;) { 13447 unsigned int count = 13448 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13449 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13450 13451 /* memcpy done already by emulator_pio_out. */ 13452 advance_sev_es_emulated_pio(vcpu, count, size); 13453 if (!ret) 13454 break; 13455 13456 /* Emulation done by the kernel. */ 13457 if (!vcpu->arch.sev_pio_count) 13458 return 1; 13459 } 13460 13461 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13462 return 0; 13463 } 13464 13465 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13466 unsigned int port); 13467 13468 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13469 { 13470 unsigned count = vcpu->arch.pio.count; 13471 int size = vcpu->arch.pio.size; 13472 int port = vcpu->arch.pio.port; 13473 13474 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13475 advance_sev_es_emulated_pio(vcpu, count, size); 13476 if (vcpu->arch.sev_pio_count) 13477 return kvm_sev_es_ins(vcpu, size, port); 13478 return 1; 13479 } 13480 13481 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13482 unsigned int port) 13483 { 13484 for (;;) { 13485 unsigned int count = 13486 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13487 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13488 break; 13489 13490 /* Emulation done by the kernel. */ 13491 advance_sev_es_emulated_pio(vcpu, count, size); 13492 if (!vcpu->arch.sev_pio_count) 13493 return 1; 13494 } 13495 13496 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13497 return 0; 13498 } 13499 13500 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13501 unsigned int port, void *data, unsigned int count, 13502 int in) 13503 { 13504 vcpu->arch.sev_pio_data = data; 13505 vcpu->arch.sev_pio_count = count; 13506 return in ? kvm_sev_es_ins(vcpu, size, port) 13507 : kvm_sev_es_outs(vcpu, size, port); 13508 } 13509 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13510 13511 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13512 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13513 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13514 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13515 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13516 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13517 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13518 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13519 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13520 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13521 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13522 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13523 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13524 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13525 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13526 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13527 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13528 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13529 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13530 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13531 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13532 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13533 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13534 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13535 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13536 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13537 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13538 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13539 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13540 13541 static int __init kvm_x86_init(void) 13542 { 13543 kvm_mmu_x86_module_init(); 13544 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13545 return 0; 13546 } 13547 module_init(kvm_x86_init); 13548 13549 static void __exit kvm_x86_exit(void) 13550 { 13551 /* 13552 * If module_init() is implemented, module_exit() must also be 13553 * implemented to allow module unload. 13554 */ 13555 } 13556 module_exit(kvm_x86_exit); 13557