xref: /openbmc/linux/arch/x86/kvm/x86.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58 
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71 
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76 
77 #define emul_to_vcpu(ctxt) \
78 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79 
80 /* EFER defaults:
81  * - enable syscall per default because its emulated by KVM
82  * - enable LME and LMA per default on 64 bit KVM
83  */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90 
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93 
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96 
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101 
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104 
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107 
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110 
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113 
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32  __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64  __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124 
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128 
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132 
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135 
136 static bool __read_mostly backwards_tsc_observed = false;
137 
138 #define KVM_NR_SHARED_MSRS 16
139 
140 struct kvm_shared_msrs_global {
141 	int nr;
142 	u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144 
145 struct kvm_shared_msrs {
146 	struct user_return_notifier urn;
147 	bool registered;
148 	struct kvm_shared_msr_values {
149 		u64 host;
150 		u64 curr;
151 	} values[KVM_NR_SHARED_MSRS];
152 };
153 
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156 
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
159 	{ "pf_guest", VCPU_STAT(pf_guest) },
160 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
161 	{ "invlpg", VCPU_STAT(invlpg) },
162 	{ "exits", VCPU_STAT(exits) },
163 	{ "io_exits", VCPU_STAT(io_exits) },
164 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
165 	{ "signal_exits", VCPU_STAT(signal_exits) },
166 	{ "irq_window", VCPU_STAT(irq_window_exits) },
167 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
168 	{ "halt_exits", VCPU_STAT(halt_exits) },
169 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 	{ "hypercalls", VCPU_STAT(hypercalls) },
174 	{ "request_irq", VCPU_STAT(request_irq_exits) },
175 	{ "irq_exits", VCPU_STAT(irq_exits) },
176 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
177 	{ "efer_reload", VCPU_STAT(efer_reload) },
178 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
179 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
180 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 	{ "irq_injections", VCPU_STAT(irq_injections) },
182 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
183 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
185 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
188 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
189 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
191 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192 	{ "largepages", VM_STAT(lpages) },
193 	{ NULL }
194 };
195 
196 u64 __read_mostly host_xcr0;
197 
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199 
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202 	int i;
203 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204 		vcpu->arch.apf.gfns[i] = ~0;
205 }
206 
207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209 	unsigned slot;
210 	struct kvm_shared_msrs *locals
211 		= container_of(urn, struct kvm_shared_msrs, urn);
212 	struct kvm_shared_msr_values *values;
213 	unsigned long flags;
214 
215 	/*
216 	 * Disabling irqs at this point since the following code could be
217 	 * interrupted and executed through kvm_arch_hardware_disable()
218 	 */
219 	local_irq_save(flags);
220 	if (locals->registered) {
221 		locals->registered = false;
222 		user_return_notifier_unregister(urn);
223 	}
224 	local_irq_restore(flags);
225 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
226 		values = &locals->values[slot];
227 		if (values->host != values->curr) {
228 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
229 			values->curr = values->host;
230 		}
231 	}
232 }
233 
234 static void shared_msr_update(unsigned slot, u32 msr)
235 {
236 	u64 value;
237 	unsigned int cpu = smp_processor_id();
238 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
239 
240 	/* only read, and nobody should modify it at this time,
241 	 * so don't need lock */
242 	if (slot >= shared_msrs_global.nr) {
243 		printk(KERN_ERR "kvm: invalid MSR slot!");
244 		return;
245 	}
246 	rdmsrl_safe(msr, &value);
247 	smsr->values[slot].host = value;
248 	smsr->values[slot].curr = value;
249 }
250 
251 void kvm_define_shared_msr(unsigned slot, u32 msr)
252 {
253 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
254 	shared_msrs_global.msrs[slot] = msr;
255 	if (slot >= shared_msrs_global.nr)
256 		shared_msrs_global.nr = slot + 1;
257 }
258 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
259 
260 static void kvm_shared_msr_cpu_online(void)
261 {
262 	unsigned i;
263 
264 	for (i = 0; i < shared_msrs_global.nr; ++i)
265 		shared_msr_update(i, shared_msrs_global.msrs[i]);
266 }
267 
268 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
269 {
270 	unsigned int cpu = smp_processor_id();
271 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
272 	int err;
273 
274 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
275 		return 0;
276 	smsr->values[slot].curr = value;
277 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
278 	if (err)
279 		return 1;
280 
281 	if (!smsr->registered) {
282 		smsr->urn.on_user_return = kvm_on_user_return;
283 		user_return_notifier_register(&smsr->urn);
284 		smsr->registered = true;
285 	}
286 	return 0;
287 }
288 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
289 
290 static void drop_user_return_notifiers(void)
291 {
292 	unsigned int cpu = smp_processor_id();
293 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
294 
295 	if (smsr->registered)
296 		kvm_on_user_return(&smsr->urn);
297 }
298 
299 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
300 {
301 	return vcpu->arch.apic_base;
302 }
303 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
304 
305 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
306 {
307 	u64 old_state = vcpu->arch.apic_base &
308 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
309 	u64 new_state = msr_info->data &
310 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
312 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
313 
314 	if (!msr_info->host_initiated &&
315 	    ((msr_info->data & reserved_bits) != 0 ||
316 	     new_state == X2APIC_ENABLE ||
317 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
318 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
319 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
320 	      old_state == 0)))
321 		return 1;
322 
323 	kvm_lapic_set_base(vcpu, msr_info->data);
324 	return 0;
325 }
326 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
327 
328 asmlinkage __visible void kvm_spurious_fault(void)
329 {
330 	/* Fault while not rebooting.  We want the trace. */
331 	BUG();
332 }
333 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
334 
335 #define EXCPT_BENIGN		0
336 #define EXCPT_CONTRIBUTORY	1
337 #define EXCPT_PF		2
338 
339 static int exception_class(int vector)
340 {
341 	switch (vector) {
342 	case PF_VECTOR:
343 		return EXCPT_PF;
344 	case DE_VECTOR:
345 	case TS_VECTOR:
346 	case NP_VECTOR:
347 	case SS_VECTOR:
348 	case GP_VECTOR:
349 		return EXCPT_CONTRIBUTORY;
350 	default:
351 		break;
352 	}
353 	return EXCPT_BENIGN;
354 }
355 
356 #define EXCPT_FAULT		0
357 #define EXCPT_TRAP		1
358 #define EXCPT_ABORT		2
359 #define EXCPT_INTERRUPT		3
360 
361 static int exception_type(int vector)
362 {
363 	unsigned int mask;
364 
365 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
366 		return EXCPT_INTERRUPT;
367 
368 	mask = 1 << vector;
369 
370 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
371 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
372 		return EXCPT_TRAP;
373 
374 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
375 		return EXCPT_ABORT;
376 
377 	/* Reserved exceptions will result in fault */
378 	return EXCPT_FAULT;
379 }
380 
381 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
382 		unsigned nr, bool has_error, u32 error_code,
383 		bool reinject)
384 {
385 	u32 prev_nr;
386 	int class1, class2;
387 
388 	kvm_make_request(KVM_REQ_EVENT, vcpu);
389 
390 	if (!vcpu->arch.exception.pending) {
391 	queue:
392 		if (has_error && !is_protmode(vcpu))
393 			has_error = false;
394 		vcpu->arch.exception.pending = true;
395 		vcpu->arch.exception.has_error_code = has_error;
396 		vcpu->arch.exception.nr = nr;
397 		vcpu->arch.exception.error_code = error_code;
398 		vcpu->arch.exception.reinject = reinject;
399 		return;
400 	}
401 
402 	/* to check exception */
403 	prev_nr = vcpu->arch.exception.nr;
404 	if (prev_nr == DF_VECTOR) {
405 		/* triple fault -> shutdown */
406 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
407 		return;
408 	}
409 	class1 = exception_class(prev_nr);
410 	class2 = exception_class(nr);
411 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
412 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
413 		/* generate double fault per SDM Table 5-5 */
414 		vcpu->arch.exception.pending = true;
415 		vcpu->arch.exception.has_error_code = true;
416 		vcpu->arch.exception.nr = DF_VECTOR;
417 		vcpu->arch.exception.error_code = 0;
418 	} else
419 		/* replace previous exception with a new one in a hope
420 		   that instruction re-execution will regenerate lost
421 		   exception */
422 		goto queue;
423 }
424 
425 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
426 {
427 	kvm_multiple_exception(vcpu, nr, false, 0, false);
428 }
429 EXPORT_SYMBOL_GPL(kvm_queue_exception);
430 
431 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
432 {
433 	kvm_multiple_exception(vcpu, nr, false, 0, true);
434 }
435 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
436 
437 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
438 {
439 	if (err)
440 		kvm_inject_gp(vcpu, 0);
441 	else
442 		kvm_x86_ops->skip_emulated_instruction(vcpu);
443 }
444 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
445 
446 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
447 {
448 	++vcpu->stat.pf_guest;
449 	vcpu->arch.cr2 = fault->address;
450 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
451 }
452 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
453 
454 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
455 {
456 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
457 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
458 	else
459 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
460 
461 	return fault->nested_page_fault;
462 }
463 
464 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
465 {
466 	atomic_inc(&vcpu->arch.nmi_queued);
467 	kvm_make_request(KVM_REQ_NMI, vcpu);
468 }
469 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
470 
471 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
472 {
473 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
474 }
475 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
476 
477 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
478 {
479 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
480 }
481 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
482 
483 /*
484  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
485  * a #GP and return false.
486  */
487 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
488 {
489 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
490 		return true;
491 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
492 	return false;
493 }
494 EXPORT_SYMBOL_GPL(kvm_require_cpl);
495 
496 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
497 {
498 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
499 		return true;
500 
501 	kvm_queue_exception(vcpu, UD_VECTOR);
502 	return false;
503 }
504 EXPORT_SYMBOL_GPL(kvm_require_dr);
505 
506 /*
507  * This function will be used to read from the physical memory of the currently
508  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
509  * can read from guest physical or from the guest's guest physical memory.
510  */
511 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
512 			    gfn_t ngfn, void *data, int offset, int len,
513 			    u32 access)
514 {
515 	struct x86_exception exception;
516 	gfn_t real_gfn;
517 	gpa_t ngpa;
518 
519 	ngpa     = gfn_to_gpa(ngfn);
520 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
521 	if (real_gfn == UNMAPPED_GVA)
522 		return -EFAULT;
523 
524 	real_gfn = gpa_to_gfn(real_gfn);
525 
526 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
527 }
528 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
529 
530 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
531 			       void *data, int offset, int len, u32 access)
532 {
533 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
534 				       data, offset, len, access);
535 }
536 
537 /*
538  * Load the pae pdptrs.  Return true is they are all valid.
539  */
540 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
541 {
542 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
543 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
544 	int i;
545 	int ret;
546 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
547 
548 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
549 				      offset * sizeof(u64), sizeof(pdpte),
550 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
551 	if (ret < 0) {
552 		ret = 0;
553 		goto out;
554 	}
555 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
556 		if ((pdpte[i] & PT_PRESENT_MASK) &&
557 		    (pdpte[i] &
558 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
559 			ret = 0;
560 			goto out;
561 		}
562 	}
563 	ret = 1;
564 
565 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
566 	__set_bit(VCPU_EXREG_PDPTR,
567 		  (unsigned long *)&vcpu->arch.regs_avail);
568 	__set_bit(VCPU_EXREG_PDPTR,
569 		  (unsigned long *)&vcpu->arch.regs_dirty);
570 out:
571 
572 	return ret;
573 }
574 EXPORT_SYMBOL_GPL(load_pdptrs);
575 
576 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
577 {
578 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
579 	bool changed = true;
580 	int offset;
581 	gfn_t gfn;
582 	int r;
583 
584 	if (is_long_mode(vcpu) || !is_pae(vcpu))
585 		return false;
586 
587 	if (!test_bit(VCPU_EXREG_PDPTR,
588 		      (unsigned long *)&vcpu->arch.regs_avail))
589 		return true;
590 
591 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
592 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
593 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
594 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
595 	if (r < 0)
596 		goto out;
597 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
598 out:
599 
600 	return changed;
601 }
602 
603 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
604 {
605 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
606 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
607 
608 	cr0 |= X86_CR0_ET;
609 
610 #ifdef CONFIG_X86_64
611 	if (cr0 & 0xffffffff00000000UL)
612 		return 1;
613 #endif
614 
615 	cr0 &= ~CR0_RESERVED_BITS;
616 
617 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
618 		return 1;
619 
620 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
621 		return 1;
622 
623 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
624 #ifdef CONFIG_X86_64
625 		if ((vcpu->arch.efer & EFER_LME)) {
626 			int cs_db, cs_l;
627 
628 			if (!is_pae(vcpu))
629 				return 1;
630 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
631 			if (cs_l)
632 				return 1;
633 		} else
634 #endif
635 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
636 						 kvm_read_cr3(vcpu)))
637 			return 1;
638 	}
639 
640 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
641 		return 1;
642 
643 	kvm_x86_ops->set_cr0(vcpu, cr0);
644 
645 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
646 		kvm_clear_async_pf_completion_queue(vcpu);
647 		kvm_async_pf_hash_reset(vcpu);
648 	}
649 
650 	if ((cr0 ^ old_cr0) & update_bits)
651 		kvm_mmu_reset_context(vcpu);
652 
653 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
654 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
655 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
656 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
657 
658 	return 0;
659 }
660 EXPORT_SYMBOL_GPL(kvm_set_cr0);
661 
662 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
663 {
664 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
665 }
666 EXPORT_SYMBOL_GPL(kvm_lmsw);
667 
668 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
669 {
670 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
671 			!vcpu->guest_xcr0_loaded) {
672 		/* kvm_set_xcr() also depends on this */
673 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
674 		vcpu->guest_xcr0_loaded = 1;
675 	}
676 }
677 
678 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
679 {
680 	if (vcpu->guest_xcr0_loaded) {
681 		if (vcpu->arch.xcr0 != host_xcr0)
682 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
683 		vcpu->guest_xcr0_loaded = 0;
684 	}
685 }
686 
687 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
688 {
689 	u64 xcr0 = xcr;
690 	u64 old_xcr0 = vcpu->arch.xcr0;
691 	u64 valid_bits;
692 
693 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
694 	if (index != XCR_XFEATURE_ENABLED_MASK)
695 		return 1;
696 	if (!(xcr0 & XFEATURE_MASK_FP))
697 		return 1;
698 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
699 		return 1;
700 
701 	/*
702 	 * Do not allow the guest to set bits that we do not support
703 	 * saving.  However, xcr0 bit 0 is always set, even if the
704 	 * emulated CPU does not support XSAVE (see fx_init).
705 	 */
706 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
707 	if (xcr0 & ~valid_bits)
708 		return 1;
709 
710 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
711 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
712 		return 1;
713 
714 	if (xcr0 & XFEATURE_MASK_AVX512) {
715 		if (!(xcr0 & XFEATURE_MASK_YMM))
716 			return 1;
717 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
718 			return 1;
719 	}
720 	vcpu->arch.xcr0 = xcr0;
721 
722 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
723 		kvm_update_cpuid(vcpu);
724 	return 0;
725 }
726 
727 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
728 {
729 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
730 	    __kvm_set_xcr(vcpu, index, xcr)) {
731 		kvm_inject_gp(vcpu, 0);
732 		return 1;
733 	}
734 	return 0;
735 }
736 EXPORT_SYMBOL_GPL(kvm_set_xcr);
737 
738 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
739 {
740 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
741 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
742 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
743 
744 	if (cr4 & CR4_RESERVED_BITS)
745 		return 1;
746 
747 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
748 		return 1;
749 
750 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
751 		return 1;
752 
753 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
754 		return 1;
755 
756 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
757 		return 1;
758 
759 	if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
760 		return 1;
761 
762 	if (is_long_mode(vcpu)) {
763 		if (!(cr4 & X86_CR4_PAE))
764 			return 1;
765 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
766 		   && ((cr4 ^ old_cr4) & pdptr_bits)
767 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
768 				   kvm_read_cr3(vcpu)))
769 		return 1;
770 
771 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
772 		if (!guest_cpuid_has_pcid(vcpu))
773 			return 1;
774 
775 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
776 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
777 			return 1;
778 	}
779 
780 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
781 		return 1;
782 
783 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
784 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
785 		kvm_mmu_reset_context(vcpu);
786 
787 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
788 		kvm_update_cpuid(vcpu);
789 
790 	return 0;
791 }
792 EXPORT_SYMBOL_GPL(kvm_set_cr4);
793 
794 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
795 {
796 #ifdef CONFIG_X86_64
797 	cr3 &= ~CR3_PCID_INVD;
798 #endif
799 
800 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
801 		kvm_mmu_sync_roots(vcpu);
802 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
803 		return 0;
804 	}
805 
806 	if (is_long_mode(vcpu)) {
807 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
808 			return 1;
809 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
810 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
811 		return 1;
812 
813 	vcpu->arch.cr3 = cr3;
814 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
815 	kvm_mmu_new_cr3(vcpu);
816 	return 0;
817 }
818 EXPORT_SYMBOL_GPL(kvm_set_cr3);
819 
820 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
821 {
822 	if (cr8 & CR8_RESERVED_BITS)
823 		return 1;
824 	if (lapic_in_kernel(vcpu))
825 		kvm_lapic_set_tpr(vcpu, cr8);
826 	else
827 		vcpu->arch.cr8 = cr8;
828 	return 0;
829 }
830 EXPORT_SYMBOL_GPL(kvm_set_cr8);
831 
832 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
833 {
834 	if (lapic_in_kernel(vcpu))
835 		return kvm_lapic_get_cr8(vcpu);
836 	else
837 		return vcpu->arch.cr8;
838 }
839 EXPORT_SYMBOL_GPL(kvm_get_cr8);
840 
841 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
842 {
843 	int i;
844 
845 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
846 		for (i = 0; i < KVM_NR_DB_REGS; i++)
847 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
848 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
849 	}
850 }
851 
852 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
853 {
854 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
855 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
856 }
857 
858 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
859 {
860 	unsigned long dr7;
861 
862 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
863 		dr7 = vcpu->arch.guest_debug_dr7;
864 	else
865 		dr7 = vcpu->arch.dr7;
866 	kvm_x86_ops->set_dr7(vcpu, dr7);
867 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
868 	if (dr7 & DR7_BP_EN_MASK)
869 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
870 }
871 
872 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
873 {
874 	u64 fixed = DR6_FIXED_1;
875 
876 	if (!guest_cpuid_has_rtm(vcpu))
877 		fixed |= DR6_RTM;
878 	return fixed;
879 }
880 
881 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
882 {
883 	switch (dr) {
884 	case 0 ... 3:
885 		vcpu->arch.db[dr] = val;
886 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
887 			vcpu->arch.eff_db[dr] = val;
888 		break;
889 	case 4:
890 		/* fall through */
891 	case 6:
892 		if (val & 0xffffffff00000000ULL)
893 			return -1; /* #GP */
894 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
895 		kvm_update_dr6(vcpu);
896 		break;
897 	case 5:
898 		/* fall through */
899 	default: /* 7 */
900 		if (val & 0xffffffff00000000ULL)
901 			return -1; /* #GP */
902 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
903 		kvm_update_dr7(vcpu);
904 		break;
905 	}
906 
907 	return 0;
908 }
909 
910 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
911 {
912 	if (__kvm_set_dr(vcpu, dr, val)) {
913 		kvm_inject_gp(vcpu, 0);
914 		return 1;
915 	}
916 	return 0;
917 }
918 EXPORT_SYMBOL_GPL(kvm_set_dr);
919 
920 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
921 {
922 	switch (dr) {
923 	case 0 ... 3:
924 		*val = vcpu->arch.db[dr];
925 		break;
926 	case 4:
927 		/* fall through */
928 	case 6:
929 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
930 			*val = vcpu->arch.dr6;
931 		else
932 			*val = kvm_x86_ops->get_dr6(vcpu);
933 		break;
934 	case 5:
935 		/* fall through */
936 	default: /* 7 */
937 		*val = vcpu->arch.dr7;
938 		break;
939 	}
940 	return 0;
941 }
942 EXPORT_SYMBOL_GPL(kvm_get_dr);
943 
944 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
945 {
946 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
947 	u64 data;
948 	int err;
949 
950 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
951 	if (err)
952 		return err;
953 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
954 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
955 	return err;
956 }
957 EXPORT_SYMBOL_GPL(kvm_rdpmc);
958 
959 /*
960  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
961  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
962  *
963  * This list is modified at module load time to reflect the
964  * capabilities of the host cpu. This capabilities test skips MSRs that are
965  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
966  * may depend on host virtualization features rather than host cpu features.
967  */
968 
969 static u32 msrs_to_save[] = {
970 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
971 	MSR_STAR,
972 #ifdef CONFIG_X86_64
973 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
974 #endif
975 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
976 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
977 };
978 
979 static unsigned num_msrs_to_save;
980 
981 static u32 emulated_msrs[] = {
982 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
983 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
984 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
985 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
986 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
987 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
988 	HV_X64_MSR_RESET,
989 	HV_X64_MSR_VP_INDEX,
990 	HV_X64_MSR_VP_RUNTIME,
991 	HV_X64_MSR_SCONTROL,
992 	HV_X64_MSR_STIMER0_CONFIG,
993 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
994 	MSR_KVM_PV_EOI_EN,
995 
996 	MSR_IA32_TSC_ADJUST,
997 	MSR_IA32_TSCDEADLINE,
998 	MSR_IA32_MISC_ENABLE,
999 	MSR_IA32_MCG_STATUS,
1000 	MSR_IA32_MCG_CTL,
1001 	MSR_IA32_MCG_EXT_CTL,
1002 	MSR_IA32_SMBASE,
1003 };
1004 
1005 static unsigned num_emulated_msrs;
1006 
1007 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1008 {
1009 	if (efer & efer_reserved_bits)
1010 		return false;
1011 
1012 	if (efer & EFER_FFXSR) {
1013 		struct kvm_cpuid_entry2 *feat;
1014 
1015 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1016 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1017 			return false;
1018 	}
1019 
1020 	if (efer & EFER_SVME) {
1021 		struct kvm_cpuid_entry2 *feat;
1022 
1023 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1024 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1025 			return false;
1026 	}
1027 
1028 	return true;
1029 }
1030 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1031 
1032 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1033 {
1034 	u64 old_efer = vcpu->arch.efer;
1035 
1036 	if (!kvm_valid_efer(vcpu, efer))
1037 		return 1;
1038 
1039 	if (is_paging(vcpu)
1040 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1041 		return 1;
1042 
1043 	efer &= ~EFER_LMA;
1044 	efer |= vcpu->arch.efer & EFER_LMA;
1045 
1046 	kvm_x86_ops->set_efer(vcpu, efer);
1047 
1048 	/* Update reserved bits */
1049 	if ((efer ^ old_efer) & EFER_NX)
1050 		kvm_mmu_reset_context(vcpu);
1051 
1052 	return 0;
1053 }
1054 
1055 void kvm_enable_efer_bits(u64 mask)
1056 {
1057        efer_reserved_bits &= ~mask;
1058 }
1059 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1060 
1061 /*
1062  * Writes msr value into into the appropriate "register".
1063  * Returns 0 on success, non-0 otherwise.
1064  * Assumes vcpu_load() was already called.
1065  */
1066 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1067 {
1068 	switch (msr->index) {
1069 	case MSR_FS_BASE:
1070 	case MSR_GS_BASE:
1071 	case MSR_KERNEL_GS_BASE:
1072 	case MSR_CSTAR:
1073 	case MSR_LSTAR:
1074 		if (is_noncanonical_address(msr->data))
1075 			return 1;
1076 		break;
1077 	case MSR_IA32_SYSENTER_EIP:
1078 	case MSR_IA32_SYSENTER_ESP:
1079 		/*
1080 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1081 		 * non-canonical address is written on Intel but not on
1082 		 * AMD (which ignores the top 32-bits, because it does
1083 		 * not implement 64-bit SYSENTER).
1084 		 *
1085 		 * 64-bit code should hence be able to write a non-canonical
1086 		 * value on AMD.  Making the address canonical ensures that
1087 		 * vmentry does not fail on Intel after writing a non-canonical
1088 		 * value, and that something deterministic happens if the guest
1089 		 * invokes 64-bit SYSENTER.
1090 		 */
1091 		msr->data = get_canonical(msr->data);
1092 	}
1093 	return kvm_x86_ops->set_msr(vcpu, msr);
1094 }
1095 EXPORT_SYMBOL_GPL(kvm_set_msr);
1096 
1097 /*
1098  * Adapt set_msr() to msr_io()'s calling convention
1099  */
1100 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1101 {
1102 	struct msr_data msr;
1103 	int r;
1104 
1105 	msr.index = index;
1106 	msr.host_initiated = true;
1107 	r = kvm_get_msr(vcpu, &msr);
1108 	if (r)
1109 		return r;
1110 
1111 	*data = msr.data;
1112 	return 0;
1113 }
1114 
1115 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1116 {
1117 	struct msr_data msr;
1118 
1119 	msr.data = *data;
1120 	msr.index = index;
1121 	msr.host_initiated = true;
1122 	return kvm_set_msr(vcpu, &msr);
1123 }
1124 
1125 #ifdef CONFIG_X86_64
1126 struct pvclock_gtod_data {
1127 	seqcount_t	seq;
1128 
1129 	struct { /* extract of a clocksource struct */
1130 		int vclock_mode;
1131 		cycle_t	cycle_last;
1132 		cycle_t	mask;
1133 		u32	mult;
1134 		u32	shift;
1135 	} clock;
1136 
1137 	u64		boot_ns;
1138 	u64		nsec_base;
1139 };
1140 
1141 static struct pvclock_gtod_data pvclock_gtod_data;
1142 
1143 static void update_pvclock_gtod(struct timekeeper *tk)
1144 {
1145 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1146 	u64 boot_ns;
1147 
1148 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1149 
1150 	write_seqcount_begin(&vdata->seq);
1151 
1152 	/* copy pvclock gtod data */
1153 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1154 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1155 	vdata->clock.mask		= tk->tkr_mono.mask;
1156 	vdata->clock.mult		= tk->tkr_mono.mult;
1157 	vdata->clock.shift		= tk->tkr_mono.shift;
1158 
1159 	vdata->boot_ns			= boot_ns;
1160 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1161 
1162 	write_seqcount_end(&vdata->seq);
1163 }
1164 #endif
1165 
1166 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1167 {
1168 	/*
1169 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1170 	 * vcpu_enter_guest.  This function is only called from
1171 	 * the physical CPU that is running vcpu.
1172 	 */
1173 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1174 }
1175 
1176 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1177 {
1178 	int version;
1179 	int r;
1180 	struct pvclock_wall_clock wc;
1181 	struct timespec64 boot;
1182 
1183 	if (!wall_clock)
1184 		return;
1185 
1186 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1187 	if (r)
1188 		return;
1189 
1190 	if (version & 1)
1191 		++version;  /* first time write, random junk */
1192 
1193 	++version;
1194 
1195 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1196 		return;
1197 
1198 	/*
1199 	 * The guest calculates current wall clock time by adding
1200 	 * system time (updated by kvm_guest_time_update below) to the
1201 	 * wall clock specified here.  guest system time equals host
1202 	 * system time for us, thus we must fill in host boot time here.
1203 	 */
1204 	getboottime64(&boot);
1205 
1206 	if (kvm->arch.kvmclock_offset) {
1207 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1208 		boot = timespec64_sub(boot, ts);
1209 	}
1210 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1211 	wc.nsec = boot.tv_nsec;
1212 	wc.version = version;
1213 
1214 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1215 
1216 	version++;
1217 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1218 }
1219 
1220 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1221 {
1222 	do_shl32_div32(dividend, divisor);
1223 	return dividend;
1224 }
1225 
1226 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1227 			       s8 *pshift, u32 *pmultiplier)
1228 {
1229 	uint64_t scaled64;
1230 	int32_t  shift = 0;
1231 	uint64_t tps64;
1232 	uint32_t tps32;
1233 
1234 	tps64 = base_hz;
1235 	scaled64 = scaled_hz;
1236 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1237 		tps64 >>= 1;
1238 		shift--;
1239 	}
1240 
1241 	tps32 = (uint32_t)tps64;
1242 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1243 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1244 			scaled64 >>= 1;
1245 		else
1246 			tps32 <<= 1;
1247 		shift++;
1248 	}
1249 
1250 	*pshift = shift;
1251 	*pmultiplier = div_frac(scaled64, tps32);
1252 
1253 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1254 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1255 }
1256 
1257 #ifdef CONFIG_X86_64
1258 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1259 #endif
1260 
1261 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1262 static unsigned long max_tsc_khz;
1263 
1264 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1265 {
1266 	u64 v = (u64)khz * (1000000 + ppm);
1267 	do_div(v, 1000000);
1268 	return v;
1269 }
1270 
1271 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1272 {
1273 	u64 ratio;
1274 
1275 	/* Guest TSC same frequency as host TSC? */
1276 	if (!scale) {
1277 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1278 		return 0;
1279 	}
1280 
1281 	/* TSC scaling supported? */
1282 	if (!kvm_has_tsc_control) {
1283 		if (user_tsc_khz > tsc_khz) {
1284 			vcpu->arch.tsc_catchup = 1;
1285 			vcpu->arch.tsc_always_catchup = 1;
1286 			return 0;
1287 		} else {
1288 			WARN(1, "user requested TSC rate below hardware speed\n");
1289 			return -1;
1290 		}
1291 	}
1292 
1293 	/* TSC scaling required  - calculate ratio */
1294 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1295 				user_tsc_khz, tsc_khz);
1296 
1297 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1298 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1299 			  user_tsc_khz);
1300 		return -1;
1301 	}
1302 
1303 	vcpu->arch.tsc_scaling_ratio = ratio;
1304 	return 0;
1305 }
1306 
1307 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1308 {
1309 	u32 thresh_lo, thresh_hi;
1310 	int use_scaling = 0;
1311 
1312 	/* tsc_khz can be zero if TSC calibration fails */
1313 	if (user_tsc_khz == 0) {
1314 		/* set tsc_scaling_ratio to a safe value */
1315 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1316 		return -1;
1317 	}
1318 
1319 	/* Compute a scale to convert nanoseconds in TSC cycles */
1320 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1321 			   &vcpu->arch.virtual_tsc_shift,
1322 			   &vcpu->arch.virtual_tsc_mult);
1323 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1324 
1325 	/*
1326 	 * Compute the variation in TSC rate which is acceptable
1327 	 * within the range of tolerance and decide if the
1328 	 * rate being applied is within that bounds of the hardware
1329 	 * rate.  If so, no scaling or compensation need be done.
1330 	 */
1331 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1332 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1333 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1334 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1335 		use_scaling = 1;
1336 	}
1337 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1338 }
1339 
1340 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1341 {
1342 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1343 				      vcpu->arch.virtual_tsc_mult,
1344 				      vcpu->arch.virtual_tsc_shift);
1345 	tsc += vcpu->arch.this_tsc_write;
1346 	return tsc;
1347 }
1348 
1349 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1350 {
1351 #ifdef CONFIG_X86_64
1352 	bool vcpus_matched;
1353 	struct kvm_arch *ka = &vcpu->kvm->arch;
1354 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1355 
1356 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1357 			 atomic_read(&vcpu->kvm->online_vcpus));
1358 
1359 	/*
1360 	 * Once the masterclock is enabled, always perform request in
1361 	 * order to update it.
1362 	 *
1363 	 * In order to enable masterclock, the host clocksource must be TSC
1364 	 * and the vcpus need to have matched TSCs.  When that happens,
1365 	 * perform request to enable masterclock.
1366 	 */
1367 	if (ka->use_master_clock ||
1368 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1369 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1370 
1371 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1372 			    atomic_read(&vcpu->kvm->online_vcpus),
1373 		            ka->use_master_clock, gtod->clock.vclock_mode);
1374 #endif
1375 }
1376 
1377 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1378 {
1379 	u64 curr_offset = vcpu->arch.tsc_offset;
1380 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1381 }
1382 
1383 /*
1384  * Multiply tsc by a fixed point number represented by ratio.
1385  *
1386  * The most significant 64-N bits (mult) of ratio represent the
1387  * integral part of the fixed point number; the remaining N bits
1388  * (frac) represent the fractional part, ie. ratio represents a fixed
1389  * point number (mult + frac * 2^(-N)).
1390  *
1391  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1392  */
1393 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1394 {
1395 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1396 }
1397 
1398 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1399 {
1400 	u64 _tsc = tsc;
1401 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1402 
1403 	if (ratio != kvm_default_tsc_scaling_ratio)
1404 		_tsc = __scale_tsc(ratio, tsc);
1405 
1406 	return _tsc;
1407 }
1408 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1409 
1410 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1411 {
1412 	u64 tsc;
1413 
1414 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1415 
1416 	return target_tsc - tsc;
1417 }
1418 
1419 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1420 {
1421 	return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1424 
1425 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1426 {
1427 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1428 	vcpu->arch.tsc_offset = offset;
1429 }
1430 
1431 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1432 {
1433 	struct kvm *kvm = vcpu->kvm;
1434 	u64 offset, ns, elapsed;
1435 	unsigned long flags;
1436 	s64 usdiff;
1437 	bool matched;
1438 	bool already_matched;
1439 	u64 data = msr->data;
1440 
1441 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1442 	offset = kvm_compute_tsc_offset(vcpu, data);
1443 	ns = ktime_get_boot_ns();
1444 	elapsed = ns - kvm->arch.last_tsc_nsec;
1445 
1446 	if (vcpu->arch.virtual_tsc_khz) {
1447 		int faulted = 0;
1448 
1449 		/* n.b - signed multiplication and division required */
1450 		usdiff = data - kvm->arch.last_tsc_write;
1451 #ifdef CONFIG_X86_64
1452 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1453 #else
1454 		/* do_div() only does unsigned */
1455 		asm("1: idivl %[divisor]\n"
1456 		    "2: xor %%edx, %%edx\n"
1457 		    "   movl $0, %[faulted]\n"
1458 		    "3:\n"
1459 		    ".section .fixup,\"ax\"\n"
1460 		    "4: movl $1, %[faulted]\n"
1461 		    "   jmp  3b\n"
1462 		    ".previous\n"
1463 
1464 		_ASM_EXTABLE(1b, 4b)
1465 
1466 		: "=A"(usdiff), [faulted] "=r" (faulted)
1467 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1468 
1469 #endif
1470 		do_div(elapsed, 1000);
1471 		usdiff -= elapsed;
1472 		if (usdiff < 0)
1473 			usdiff = -usdiff;
1474 
1475 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1476 		if (faulted)
1477 			usdiff = USEC_PER_SEC;
1478 	} else
1479 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1480 
1481 	/*
1482 	 * Special case: TSC write with a small delta (1 second) of virtual
1483 	 * cycle time against real time is interpreted as an attempt to
1484 	 * synchronize the CPU.
1485          *
1486 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1487 	 * TSC, we add elapsed time in this computation.  We could let the
1488 	 * compensation code attempt to catch up if we fall behind, but
1489 	 * it's better to try to match offsets from the beginning.
1490          */
1491 	if (usdiff < USEC_PER_SEC &&
1492 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1493 		if (!check_tsc_unstable()) {
1494 			offset = kvm->arch.cur_tsc_offset;
1495 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1496 		} else {
1497 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1498 			data += delta;
1499 			offset = kvm_compute_tsc_offset(vcpu, data);
1500 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1501 		}
1502 		matched = true;
1503 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1504 	} else {
1505 		/*
1506 		 * We split periods of matched TSC writes into generations.
1507 		 * For each generation, we track the original measured
1508 		 * nanosecond time, offset, and write, so if TSCs are in
1509 		 * sync, we can match exact offset, and if not, we can match
1510 		 * exact software computation in compute_guest_tsc()
1511 		 *
1512 		 * These values are tracked in kvm->arch.cur_xxx variables.
1513 		 */
1514 		kvm->arch.cur_tsc_generation++;
1515 		kvm->arch.cur_tsc_nsec = ns;
1516 		kvm->arch.cur_tsc_write = data;
1517 		kvm->arch.cur_tsc_offset = offset;
1518 		matched = false;
1519 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1520 			 kvm->arch.cur_tsc_generation, data);
1521 	}
1522 
1523 	/*
1524 	 * We also track th most recent recorded KHZ, write and time to
1525 	 * allow the matching interval to be extended at each write.
1526 	 */
1527 	kvm->arch.last_tsc_nsec = ns;
1528 	kvm->arch.last_tsc_write = data;
1529 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1530 
1531 	vcpu->arch.last_guest_tsc = data;
1532 
1533 	/* Keep track of which generation this VCPU has synchronized to */
1534 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1535 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1536 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1537 
1538 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1539 		update_ia32_tsc_adjust_msr(vcpu, offset);
1540 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1541 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1542 
1543 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1544 	if (!matched) {
1545 		kvm->arch.nr_vcpus_matched_tsc = 0;
1546 	} else if (!already_matched) {
1547 		kvm->arch.nr_vcpus_matched_tsc++;
1548 	}
1549 
1550 	kvm_track_tsc_matching(vcpu);
1551 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1552 }
1553 
1554 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1555 
1556 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1557 					   s64 adjustment)
1558 {
1559 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1560 }
1561 
1562 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1563 {
1564 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1565 		WARN_ON(adjustment < 0);
1566 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1567 	adjust_tsc_offset_guest(vcpu, adjustment);
1568 }
1569 
1570 #ifdef CONFIG_X86_64
1571 
1572 static cycle_t read_tsc(void)
1573 {
1574 	cycle_t ret = (cycle_t)rdtsc_ordered();
1575 	u64 last = pvclock_gtod_data.clock.cycle_last;
1576 
1577 	if (likely(ret >= last))
1578 		return ret;
1579 
1580 	/*
1581 	 * GCC likes to generate cmov here, but this branch is extremely
1582 	 * predictable (it's just a function of time and the likely is
1583 	 * very likely) and there's a data dependence, so force GCC
1584 	 * to generate a branch instead.  I don't barrier() because
1585 	 * we don't actually need a barrier, and if this function
1586 	 * ever gets inlined it will generate worse code.
1587 	 */
1588 	asm volatile ("");
1589 	return last;
1590 }
1591 
1592 static inline u64 vgettsc(cycle_t *cycle_now)
1593 {
1594 	long v;
1595 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1596 
1597 	*cycle_now = read_tsc();
1598 
1599 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1600 	return v * gtod->clock.mult;
1601 }
1602 
1603 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1604 {
1605 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1606 	unsigned long seq;
1607 	int mode;
1608 	u64 ns;
1609 
1610 	do {
1611 		seq = read_seqcount_begin(&gtod->seq);
1612 		mode = gtod->clock.vclock_mode;
1613 		ns = gtod->nsec_base;
1614 		ns += vgettsc(cycle_now);
1615 		ns >>= gtod->clock.shift;
1616 		ns += gtod->boot_ns;
1617 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1618 	*t = ns;
1619 
1620 	return mode;
1621 }
1622 
1623 /* returns true if host is using tsc clocksource */
1624 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1625 {
1626 	/* checked again under seqlock below */
1627 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1628 		return false;
1629 
1630 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1631 }
1632 #endif
1633 
1634 /*
1635  *
1636  * Assuming a stable TSC across physical CPUS, and a stable TSC
1637  * across virtual CPUs, the following condition is possible.
1638  * Each numbered line represents an event visible to both
1639  * CPUs at the next numbered event.
1640  *
1641  * "timespecX" represents host monotonic time. "tscX" represents
1642  * RDTSC value.
1643  *
1644  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1645  *
1646  * 1.  read timespec0,tsc0
1647  * 2.					| timespec1 = timespec0 + N
1648  * 					| tsc1 = tsc0 + M
1649  * 3. transition to guest		| transition to guest
1650  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1651  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1652  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1653  *
1654  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1655  *
1656  * 	- ret0 < ret1
1657  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1658  *		...
1659  *	- 0 < N - M => M < N
1660  *
1661  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1662  * always the case (the difference between two distinct xtime instances
1663  * might be smaller then the difference between corresponding TSC reads,
1664  * when updating guest vcpus pvclock areas).
1665  *
1666  * To avoid that problem, do not allow visibility of distinct
1667  * system_timestamp/tsc_timestamp values simultaneously: use a master
1668  * copy of host monotonic time values. Update that master copy
1669  * in lockstep.
1670  *
1671  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1672  *
1673  */
1674 
1675 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1676 {
1677 #ifdef CONFIG_X86_64
1678 	struct kvm_arch *ka = &kvm->arch;
1679 	int vclock_mode;
1680 	bool host_tsc_clocksource, vcpus_matched;
1681 
1682 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1683 			atomic_read(&kvm->online_vcpus));
1684 
1685 	/*
1686 	 * If the host uses TSC clock, then passthrough TSC as stable
1687 	 * to the guest.
1688 	 */
1689 	host_tsc_clocksource = kvm_get_time_and_clockread(
1690 					&ka->master_kernel_ns,
1691 					&ka->master_cycle_now);
1692 
1693 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1694 				&& !backwards_tsc_observed
1695 				&& !ka->boot_vcpu_runs_old_kvmclock;
1696 
1697 	if (ka->use_master_clock)
1698 		atomic_set(&kvm_guest_has_master_clock, 1);
1699 
1700 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1701 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1702 					vcpus_matched);
1703 #endif
1704 }
1705 
1706 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1707 {
1708 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1709 }
1710 
1711 static void kvm_gen_update_masterclock(struct kvm *kvm)
1712 {
1713 #ifdef CONFIG_X86_64
1714 	int i;
1715 	struct kvm_vcpu *vcpu;
1716 	struct kvm_arch *ka = &kvm->arch;
1717 
1718 	spin_lock(&ka->pvclock_gtod_sync_lock);
1719 	kvm_make_mclock_inprogress_request(kvm);
1720 	/* no guest entries from this point */
1721 	pvclock_update_vm_gtod_copy(kvm);
1722 
1723 	kvm_for_each_vcpu(i, vcpu, kvm)
1724 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1725 
1726 	/* guest entries allowed */
1727 	kvm_for_each_vcpu(i, vcpu, kvm)
1728 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1729 
1730 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1731 #endif
1732 }
1733 
1734 static u64 __get_kvmclock_ns(struct kvm *kvm)
1735 {
1736 	struct kvm_arch *ka = &kvm->arch;
1737 	struct pvclock_vcpu_time_info hv_clock;
1738 
1739 	spin_lock(&ka->pvclock_gtod_sync_lock);
1740 	if (!ka->use_master_clock) {
1741 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1742 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1743 	}
1744 
1745 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1746 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1747 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1748 
1749 	kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1750 			   &hv_clock.tsc_shift,
1751 			   &hv_clock.tsc_to_system_mul);
1752 	return __pvclock_read_cycles(&hv_clock, rdtsc());
1753 }
1754 
1755 u64 get_kvmclock_ns(struct kvm *kvm)
1756 {
1757 	unsigned long flags;
1758 	s64 ns;
1759 
1760 	local_irq_save(flags);
1761 	ns = __get_kvmclock_ns(kvm);
1762 	local_irq_restore(flags);
1763 
1764 	return ns;
1765 }
1766 
1767 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1768 {
1769 	struct kvm_vcpu_arch *vcpu = &v->arch;
1770 	struct pvclock_vcpu_time_info guest_hv_clock;
1771 
1772 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1773 		&guest_hv_clock, sizeof(guest_hv_clock))))
1774 		return;
1775 
1776 	/* This VCPU is paused, but it's legal for a guest to read another
1777 	 * VCPU's kvmclock, so we really have to follow the specification where
1778 	 * it says that version is odd if data is being modified, and even after
1779 	 * it is consistent.
1780 	 *
1781 	 * Version field updates must be kept separate.  This is because
1782 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1783 	 * writes within a string instruction are weakly ordered.  So there
1784 	 * are three writes overall.
1785 	 *
1786 	 * As a small optimization, only write the version field in the first
1787 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1788 	 * version field is the first in the struct.
1789 	 */
1790 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1791 
1792 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1793 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1794 				&vcpu->hv_clock,
1795 				sizeof(vcpu->hv_clock.version));
1796 
1797 	smp_wmb();
1798 
1799 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1800 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1801 
1802 	if (vcpu->pvclock_set_guest_stopped_request) {
1803 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1804 		vcpu->pvclock_set_guest_stopped_request = false;
1805 	}
1806 
1807 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1808 
1809 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1810 				&vcpu->hv_clock,
1811 				sizeof(vcpu->hv_clock));
1812 
1813 	smp_wmb();
1814 
1815 	vcpu->hv_clock.version++;
1816 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1817 				&vcpu->hv_clock,
1818 				sizeof(vcpu->hv_clock.version));
1819 }
1820 
1821 static int kvm_guest_time_update(struct kvm_vcpu *v)
1822 {
1823 	unsigned long flags, tgt_tsc_khz;
1824 	struct kvm_vcpu_arch *vcpu = &v->arch;
1825 	struct kvm_arch *ka = &v->kvm->arch;
1826 	s64 kernel_ns;
1827 	u64 tsc_timestamp, host_tsc;
1828 	u8 pvclock_flags;
1829 	bool use_master_clock;
1830 
1831 	kernel_ns = 0;
1832 	host_tsc = 0;
1833 
1834 	/*
1835 	 * If the host uses TSC clock, then passthrough TSC as stable
1836 	 * to the guest.
1837 	 */
1838 	spin_lock(&ka->pvclock_gtod_sync_lock);
1839 	use_master_clock = ka->use_master_clock;
1840 	if (use_master_clock) {
1841 		host_tsc = ka->master_cycle_now;
1842 		kernel_ns = ka->master_kernel_ns;
1843 	}
1844 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1845 
1846 	/* Keep irq disabled to prevent changes to the clock */
1847 	local_irq_save(flags);
1848 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1849 	if (unlikely(tgt_tsc_khz == 0)) {
1850 		local_irq_restore(flags);
1851 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1852 		return 1;
1853 	}
1854 	if (!use_master_clock) {
1855 		host_tsc = rdtsc();
1856 		kernel_ns = ktime_get_boot_ns();
1857 	}
1858 
1859 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1860 
1861 	/*
1862 	 * We may have to catch up the TSC to match elapsed wall clock
1863 	 * time for two reasons, even if kvmclock is used.
1864 	 *   1) CPU could have been running below the maximum TSC rate
1865 	 *   2) Broken TSC compensation resets the base at each VCPU
1866 	 *      entry to avoid unknown leaps of TSC even when running
1867 	 *      again on the same CPU.  This may cause apparent elapsed
1868 	 *      time to disappear, and the guest to stand still or run
1869 	 *	very slowly.
1870 	 */
1871 	if (vcpu->tsc_catchup) {
1872 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1873 		if (tsc > tsc_timestamp) {
1874 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1875 			tsc_timestamp = tsc;
1876 		}
1877 	}
1878 
1879 	local_irq_restore(flags);
1880 
1881 	/* With all the info we got, fill in the values */
1882 
1883 	if (kvm_has_tsc_control)
1884 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1885 
1886 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1887 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1888 				   &vcpu->hv_clock.tsc_shift,
1889 				   &vcpu->hv_clock.tsc_to_system_mul);
1890 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1891 	}
1892 
1893 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1894 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1895 	vcpu->last_guest_tsc = tsc_timestamp;
1896 
1897 	/* If the host uses TSC clocksource, then it is stable */
1898 	pvclock_flags = 0;
1899 	if (use_master_clock)
1900 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1901 
1902 	vcpu->hv_clock.flags = pvclock_flags;
1903 
1904 	if (vcpu->pv_time_enabled)
1905 		kvm_setup_pvclock_page(v);
1906 	if (v == kvm_get_vcpu(v->kvm, 0))
1907 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1908 	return 0;
1909 }
1910 
1911 /*
1912  * kvmclock updates which are isolated to a given vcpu, such as
1913  * vcpu->cpu migration, should not allow system_timestamp from
1914  * the rest of the vcpus to remain static. Otherwise ntp frequency
1915  * correction applies to one vcpu's system_timestamp but not
1916  * the others.
1917  *
1918  * So in those cases, request a kvmclock update for all vcpus.
1919  * We need to rate-limit these requests though, as they can
1920  * considerably slow guests that have a large number of vcpus.
1921  * The time for a remote vcpu to update its kvmclock is bound
1922  * by the delay we use to rate-limit the updates.
1923  */
1924 
1925 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1926 
1927 static void kvmclock_update_fn(struct work_struct *work)
1928 {
1929 	int i;
1930 	struct delayed_work *dwork = to_delayed_work(work);
1931 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1932 					   kvmclock_update_work);
1933 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1934 	struct kvm_vcpu *vcpu;
1935 
1936 	kvm_for_each_vcpu(i, vcpu, kvm) {
1937 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1938 		kvm_vcpu_kick(vcpu);
1939 	}
1940 }
1941 
1942 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1943 {
1944 	struct kvm *kvm = v->kvm;
1945 
1946 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1947 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1948 					KVMCLOCK_UPDATE_DELAY);
1949 }
1950 
1951 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1952 
1953 static void kvmclock_sync_fn(struct work_struct *work)
1954 {
1955 	struct delayed_work *dwork = to_delayed_work(work);
1956 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1957 					   kvmclock_sync_work);
1958 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1959 
1960 	if (!kvmclock_periodic_sync)
1961 		return;
1962 
1963 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1964 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1965 					KVMCLOCK_SYNC_PERIOD);
1966 }
1967 
1968 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1969 {
1970 	u64 mcg_cap = vcpu->arch.mcg_cap;
1971 	unsigned bank_num = mcg_cap & 0xff;
1972 
1973 	switch (msr) {
1974 	case MSR_IA32_MCG_STATUS:
1975 		vcpu->arch.mcg_status = data;
1976 		break;
1977 	case MSR_IA32_MCG_CTL:
1978 		if (!(mcg_cap & MCG_CTL_P))
1979 			return 1;
1980 		if (data != 0 && data != ~(u64)0)
1981 			return -1;
1982 		vcpu->arch.mcg_ctl = data;
1983 		break;
1984 	default:
1985 		if (msr >= MSR_IA32_MC0_CTL &&
1986 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1987 			u32 offset = msr - MSR_IA32_MC0_CTL;
1988 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1989 			 * some Linux kernels though clear bit 10 in bank 4 to
1990 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1991 			 * this to avoid an uncatched #GP in the guest
1992 			 */
1993 			if ((offset & 0x3) == 0 &&
1994 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1995 				return -1;
1996 			vcpu->arch.mce_banks[offset] = data;
1997 			break;
1998 		}
1999 		return 1;
2000 	}
2001 	return 0;
2002 }
2003 
2004 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2005 {
2006 	struct kvm *kvm = vcpu->kvm;
2007 	int lm = is_long_mode(vcpu);
2008 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2009 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2010 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2011 		: kvm->arch.xen_hvm_config.blob_size_32;
2012 	u32 page_num = data & ~PAGE_MASK;
2013 	u64 page_addr = data & PAGE_MASK;
2014 	u8 *page;
2015 	int r;
2016 
2017 	r = -E2BIG;
2018 	if (page_num >= blob_size)
2019 		goto out;
2020 	r = -ENOMEM;
2021 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2022 	if (IS_ERR(page)) {
2023 		r = PTR_ERR(page);
2024 		goto out;
2025 	}
2026 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2027 		goto out_free;
2028 	r = 0;
2029 out_free:
2030 	kfree(page);
2031 out:
2032 	return r;
2033 }
2034 
2035 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2036 {
2037 	gpa_t gpa = data & ~0x3f;
2038 
2039 	/* Bits 2:5 are reserved, Should be zero */
2040 	if (data & 0x3c)
2041 		return 1;
2042 
2043 	vcpu->arch.apf.msr_val = data;
2044 
2045 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2046 		kvm_clear_async_pf_completion_queue(vcpu);
2047 		kvm_async_pf_hash_reset(vcpu);
2048 		return 0;
2049 	}
2050 
2051 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2052 					sizeof(u32)))
2053 		return 1;
2054 
2055 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2056 	kvm_async_pf_wakeup_all(vcpu);
2057 	return 0;
2058 }
2059 
2060 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2061 {
2062 	vcpu->arch.pv_time_enabled = false;
2063 }
2064 
2065 static void record_steal_time(struct kvm_vcpu *vcpu)
2066 {
2067 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2068 		return;
2069 
2070 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2071 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2072 		return;
2073 
2074 	if (vcpu->arch.st.steal.version & 1)
2075 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2076 
2077 	vcpu->arch.st.steal.version += 1;
2078 
2079 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2080 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2081 
2082 	smp_wmb();
2083 
2084 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2085 		vcpu->arch.st.last_steal;
2086 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2087 
2088 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2089 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2090 
2091 	smp_wmb();
2092 
2093 	vcpu->arch.st.steal.version += 1;
2094 
2095 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2096 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2097 }
2098 
2099 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2100 {
2101 	bool pr = false;
2102 	u32 msr = msr_info->index;
2103 	u64 data = msr_info->data;
2104 
2105 	switch (msr) {
2106 	case MSR_AMD64_NB_CFG:
2107 	case MSR_IA32_UCODE_REV:
2108 	case MSR_IA32_UCODE_WRITE:
2109 	case MSR_VM_HSAVE_PA:
2110 	case MSR_AMD64_PATCH_LOADER:
2111 	case MSR_AMD64_BU_CFG2:
2112 		break;
2113 
2114 	case MSR_EFER:
2115 		return set_efer(vcpu, data);
2116 	case MSR_K7_HWCR:
2117 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2118 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2119 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2120 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2121 		if (data != 0) {
2122 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2123 				    data);
2124 			return 1;
2125 		}
2126 		break;
2127 	case MSR_FAM10H_MMIO_CONF_BASE:
2128 		if (data != 0) {
2129 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2130 				    "0x%llx\n", data);
2131 			return 1;
2132 		}
2133 		break;
2134 	case MSR_IA32_DEBUGCTLMSR:
2135 		if (!data) {
2136 			/* We support the non-activated case already */
2137 			break;
2138 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2139 			/* Values other than LBR and BTF are vendor-specific,
2140 			   thus reserved and should throw a #GP */
2141 			return 1;
2142 		}
2143 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2144 			    __func__, data);
2145 		break;
2146 	case 0x200 ... 0x2ff:
2147 		return kvm_mtrr_set_msr(vcpu, msr, data);
2148 	case MSR_IA32_APICBASE:
2149 		return kvm_set_apic_base(vcpu, msr_info);
2150 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2151 		return kvm_x2apic_msr_write(vcpu, msr, data);
2152 	case MSR_IA32_TSCDEADLINE:
2153 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2154 		break;
2155 	case MSR_IA32_TSC_ADJUST:
2156 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2157 			if (!msr_info->host_initiated) {
2158 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2159 				adjust_tsc_offset_guest(vcpu, adj);
2160 			}
2161 			vcpu->arch.ia32_tsc_adjust_msr = data;
2162 		}
2163 		break;
2164 	case MSR_IA32_MISC_ENABLE:
2165 		vcpu->arch.ia32_misc_enable_msr = data;
2166 		break;
2167 	case MSR_IA32_SMBASE:
2168 		if (!msr_info->host_initiated)
2169 			return 1;
2170 		vcpu->arch.smbase = data;
2171 		break;
2172 	case MSR_KVM_WALL_CLOCK_NEW:
2173 	case MSR_KVM_WALL_CLOCK:
2174 		vcpu->kvm->arch.wall_clock = data;
2175 		kvm_write_wall_clock(vcpu->kvm, data);
2176 		break;
2177 	case MSR_KVM_SYSTEM_TIME_NEW:
2178 	case MSR_KVM_SYSTEM_TIME: {
2179 		u64 gpa_offset;
2180 		struct kvm_arch *ka = &vcpu->kvm->arch;
2181 
2182 		kvmclock_reset(vcpu);
2183 
2184 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2185 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2186 
2187 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2188 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2189 					&vcpu->requests);
2190 
2191 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2192 		}
2193 
2194 		vcpu->arch.time = data;
2195 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2196 
2197 		/* we verify if the enable bit is set... */
2198 		if (!(data & 1))
2199 			break;
2200 
2201 		gpa_offset = data & ~(PAGE_MASK | 1);
2202 
2203 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2204 		     &vcpu->arch.pv_time, data & ~1ULL,
2205 		     sizeof(struct pvclock_vcpu_time_info)))
2206 			vcpu->arch.pv_time_enabled = false;
2207 		else
2208 			vcpu->arch.pv_time_enabled = true;
2209 
2210 		break;
2211 	}
2212 	case MSR_KVM_ASYNC_PF_EN:
2213 		if (kvm_pv_enable_async_pf(vcpu, data))
2214 			return 1;
2215 		break;
2216 	case MSR_KVM_STEAL_TIME:
2217 
2218 		if (unlikely(!sched_info_on()))
2219 			return 1;
2220 
2221 		if (data & KVM_STEAL_RESERVED_MASK)
2222 			return 1;
2223 
2224 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2225 						data & KVM_STEAL_VALID_BITS,
2226 						sizeof(struct kvm_steal_time)))
2227 			return 1;
2228 
2229 		vcpu->arch.st.msr_val = data;
2230 
2231 		if (!(data & KVM_MSR_ENABLED))
2232 			break;
2233 
2234 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2235 
2236 		break;
2237 	case MSR_KVM_PV_EOI_EN:
2238 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2239 			return 1;
2240 		break;
2241 
2242 	case MSR_IA32_MCG_CTL:
2243 	case MSR_IA32_MCG_STATUS:
2244 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2245 		return set_msr_mce(vcpu, msr, data);
2246 
2247 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2248 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2249 		pr = true; /* fall through */
2250 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2251 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2252 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2253 			return kvm_pmu_set_msr(vcpu, msr_info);
2254 
2255 		if (pr || data != 0)
2256 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2257 				    "0x%x data 0x%llx\n", msr, data);
2258 		break;
2259 	case MSR_K7_CLK_CTL:
2260 		/*
2261 		 * Ignore all writes to this no longer documented MSR.
2262 		 * Writes are only relevant for old K7 processors,
2263 		 * all pre-dating SVM, but a recommended workaround from
2264 		 * AMD for these chips. It is possible to specify the
2265 		 * affected processor models on the command line, hence
2266 		 * the need to ignore the workaround.
2267 		 */
2268 		break;
2269 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2270 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2271 	case HV_X64_MSR_CRASH_CTL:
2272 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2273 		return kvm_hv_set_msr_common(vcpu, msr, data,
2274 					     msr_info->host_initiated);
2275 	case MSR_IA32_BBL_CR_CTL3:
2276 		/* Drop writes to this legacy MSR -- see rdmsr
2277 		 * counterpart for further detail.
2278 		 */
2279 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2280 		break;
2281 	case MSR_AMD64_OSVW_ID_LENGTH:
2282 		if (!guest_cpuid_has_osvw(vcpu))
2283 			return 1;
2284 		vcpu->arch.osvw.length = data;
2285 		break;
2286 	case MSR_AMD64_OSVW_STATUS:
2287 		if (!guest_cpuid_has_osvw(vcpu))
2288 			return 1;
2289 		vcpu->arch.osvw.status = data;
2290 		break;
2291 	default:
2292 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2293 			return xen_hvm_config(vcpu, data);
2294 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2295 			return kvm_pmu_set_msr(vcpu, msr_info);
2296 		if (!ignore_msrs) {
2297 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2298 				    msr, data);
2299 			return 1;
2300 		} else {
2301 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2302 				    msr, data);
2303 			break;
2304 		}
2305 	}
2306 	return 0;
2307 }
2308 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2309 
2310 
2311 /*
2312  * Reads an msr value (of 'msr_index') into 'pdata'.
2313  * Returns 0 on success, non-0 otherwise.
2314  * Assumes vcpu_load() was already called.
2315  */
2316 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2317 {
2318 	return kvm_x86_ops->get_msr(vcpu, msr);
2319 }
2320 EXPORT_SYMBOL_GPL(kvm_get_msr);
2321 
2322 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2323 {
2324 	u64 data;
2325 	u64 mcg_cap = vcpu->arch.mcg_cap;
2326 	unsigned bank_num = mcg_cap & 0xff;
2327 
2328 	switch (msr) {
2329 	case MSR_IA32_P5_MC_ADDR:
2330 	case MSR_IA32_P5_MC_TYPE:
2331 		data = 0;
2332 		break;
2333 	case MSR_IA32_MCG_CAP:
2334 		data = vcpu->arch.mcg_cap;
2335 		break;
2336 	case MSR_IA32_MCG_CTL:
2337 		if (!(mcg_cap & MCG_CTL_P))
2338 			return 1;
2339 		data = vcpu->arch.mcg_ctl;
2340 		break;
2341 	case MSR_IA32_MCG_STATUS:
2342 		data = vcpu->arch.mcg_status;
2343 		break;
2344 	default:
2345 		if (msr >= MSR_IA32_MC0_CTL &&
2346 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2347 			u32 offset = msr - MSR_IA32_MC0_CTL;
2348 			data = vcpu->arch.mce_banks[offset];
2349 			break;
2350 		}
2351 		return 1;
2352 	}
2353 	*pdata = data;
2354 	return 0;
2355 }
2356 
2357 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2358 {
2359 	switch (msr_info->index) {
2360 	case MSR_IA32_PLATFORM_ID:
2361 	case MSR_IA32_EBL_CR_POWERON:
2362 	case MSR_IA32_DEBUGCTLMSR:
2363 	case MSR_IA32_LASTBRANCHFROMIP:
2364 	case MSR_IA32_LASTBRANCHTOIP:
2365 	case MSR_IA32_LASTINTFROMIP:
2366 	case MSR_IA32_LASTINTTOIP:
2367 	case MSR_K8_SYSCFG:
2368 	case MSR_K8_TSEG_ADDR:
2369 	case MSR_K8_TSEG_MASK:
2370 	case MSR_K7_HWCR:
2371 	case MSR_VM_HSAVE_PA:
2372 	case MSR_K8_INT_PENDING_MSG:
2373 	case MSR_AMD64_NB_CFG:
2374 	case MSR_FAM10H_MMIO_CONF_BASE:
2375 	case MSR_AMD64_BU_CFG2:
2376 	case MSR_IA32_PERF_CTL:
2377 		msr_info->data = 0;
2378 		break;
2379 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2380 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2381 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2382 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2383 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2384 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2385 		msr_info->data = 0;
2386 		break;
2387 	case MSR_IA32_UCODE_REV:
2388 		msr_info->data = 0x100000000ULL;
2389 		break;
2390 	case MSR_MTRRcap:
2391 	case 0x200 ... 0x2ff:
2392 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2393 	case 0xcd: /* fsb frequency */
2394 		msr_info->data = 3;
2395 		break;
2396 		/*
2397 		 * MSR_EBC_FREQUENCY_ID
2398 		 * Conservative value valid for even the basic CPU models.
2399 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2400 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2401 		 * and 266MHz for model 3, or 4. Set Core Clock
2402 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2403 		 * 31:24) even though these are only valid for CPU
2404 		 * models > 2, however guests may end up dividing or
2405 		 * multiplying by zero otherwise.
2406 		 */
2407 	case MSR_EBC_FREQUENCY_ID:
2408 		msr_info->data = 1 << 24;
2409 		break;
2410 	case MSR_IA32_APICBASE:
2411 		msr_info->data = kvm_get_apic_base(vcpu);
2412 		break;
2413 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2414 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2415 		break;
2416 	case MSR_IA32_TSCDEADLINE:
2417 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2418 		break;
2419 	case MSR_IA32_TSC_ADJUST:
2420 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2421 		break;
2422 	case MSR_IA32_MISC_ENABLE:
2423 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2424 		break;
2425 	case MSR_IA32_SMBASE:
2426 		if (!msr_info->host_initiated)
2427 			return 1;
2428 		msr_info->data = vcpu->arch.smbase;
2429 		break;
2430 	case MSR_IA32_PERF_STATUS:
2431 		/* TSC increment by tick */
2432 		msr_info->data = 1000ULL;
2433 		/* CPU multiplier */
2434 		msr_info->data |= (((uint64_t)4ULL) << 40);
2435 		break;
2436 	case MSR_EFER:
2437 		msr_info->data = vcpu->arch.efer;
2438 		break;
2439 	case MSR_KVM_WALL_CLOCK:
2440 	case MSR_KVM_WALL_CLOCK_NEW:
2441 		msr_info->data = vcpu->kvm->arch.wall_clock;
2442 		break;
2443 	case MSR_KVM_SYSTEM_TIME:
2444 	case MSR_KVM_SYSTEM_TIME_NEW:
2445 		msr_info->data = vcpu->arch.time;
2446 		break;
2447 	case MSR_KVM_ASYNC_PF_EN:
2448 		msr_info->data = vcpu->arch.apf.msr_val;
2449 		break;
2450 	case MSR_KVM_STEAL_TIME:
2451 		msr_info->data = vcpu->arch.st.msr_val;
2452 		break;
2453 	case MSR_KVM_PV_EOI_EN:
2454 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2455 		break;
2456 	case MSR_IA32_P5_MC_ADDR:
2457 	case MSR_IA32_P5_MC_TYPE:
2458 	case MSR_IA32_MCG_CAP:
2459 	case MSR_IA32_MCG_CTL:
2460 	case MSR_IA32_MCG_STATUS:
2461 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2462 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2463 	case MSR_K7_CLK_CTL:
2464 		/*
2465 		 * Provide expected ramp-up count for K7. All other
2466 		 * are set to zero, indicating minimum divisors for
2467 		 * every field.
2468 		 *
2469 		 * This prevents guest kernels on AMD host with CPU
2470 		 * type 6, model 8 and higher from exploding due to
2471 		 * the rdmsr failing.
2472 		 */
2473 		msr_info->data = 0x20000000;
2474 		break;
2475 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2476 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2477 	case HV_X64_MSR_CRASH_CTL:
2478 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2479 		return kvm_hv_get_msr_common(vcpu,
2480 					     msr_info->index, &msr_info->data);
2481 		break;
2482 	case MSR_IA32_BBL_CR_CTL3:
2483 		/* This legacy MSR exists but isn't fully documented in current
2484 		 * silicon.  It is however accessed by winxp in very narrow
2485 		 * scenarios where it sets bit #19, itself documented as
2486 		 * a "reserved" bit.  Best effort attempt to source coherent
2487 		 * read data here should the balance of the register be
2488 		 * interpreted by the guest:
2489 		 *
2490 		 * L2 cache control register 3: 64GB range, 256KB size,
2491 		 * enabled, latency 0x1, configured
2492 		 */
2493 		msr_info->data = 0xbe702111;
2494 		break;
2495 	case MSR_AMD64_OSVW_ID_LENGTH:
2496 		if (!guest_cpuid_has_osvw(vcpu))
2497 			return 1;
2498 		msr_info->data = vcpu->arch.osvw.length;
2499 		break;
2500 	case MSR_AMD64_OSVW_STATUS:
2501 		if (!guest_cpuid_has_osvw(vcpu))
2502 			return 1;
2503 		msr_info->data = vcpu->arch.osvw.status;
2504 		break;
2505 	default:
2506 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2507 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2508 		if (!ignore_msrs) {
2509 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2510 			return 1;
2511 		} else {
2512 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2513 			msr_info->data = 0;
2514 		}
2515 		break;
2516 	}
2517 	return 0;
2518 }
2519 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2520 
2521 /*
2522  * Read or write a bunch of msrs. All parameters are kernel addresses.
2523  *
2524  * @return number of msrs set successfully.
2525  */
2526 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2527 		    struct kvm_msr_entry *entries,
2528 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2529 				  unsigned index, u64 *data))
2530 {
2531 	int i, idx;
2532 
2533 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2534 	for (i = 0; i < msrs->nmsrs; ++i)
2535 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2536 			break;
2537 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2538 
2539 	return i;
2540 }
2541 
2542 /*
2543  * Read or write a bunch of msrs. Parameters are user addresses.
2544  *
2545  * @return number of msrs set successfully.
2546  */
2547 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2548 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2549 				unsigned index, u64 *data),
2550 		  int writeback)
2551 {
2552 	struct kvm_msrs msrs;
2553 	struct kvm_msr_entry *entries;
2554 	int r, n;
2555 	unsigned size;
2556 
2557 	r = -EFAULT;
2558 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2559 		goto out;
2560 
2561 	r = -E2BIG;
2562 	if (msrs.nmsrs >= MAX_IO_MSRS)
2563 		goto out;
2564 
2565 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2566 	entries = memdup_user(user_msrs->entries, size);
2567 	if (IS_ERR(entries)) {
2568 		r = PTR_ERR(entries);
2569 		goto out;
2570 	}
2571 
2572 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2573 	if (r < 0)
2574 		goto out_free;
2575 
2576 	r = -EFAULT;
2577 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2578 		goto out_free;
2579 
2580 	r = n;
2581 
2582 out_free:
2583 	kfree(entries);
2584 out:
2585 	return r;
2586 }
2587 
2588 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2589 {
2590 	int r;
2591 
2592 	switch (ext) {
2593 	case KVM_CAP_IRQCHIP:
2594 	case KVM_CAP_HLT:
2595 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2596 	case KVM_CAP_SET_TSS_ADDR:
2597 	case KVM_CAP_EXT_CPUID:
2598 	case KVM_CAP_EXT_EMUL_CPUID:
2599 	case KVM_CAP_CLOCKSOURCE:
2600 	case KVM_CAP_PIT:
2601 	case KVM_CAP_NOP_IO_DELAY:
2602 	case KVM_CAP_MP_STATE:
2603 	case KVM_CAP_SYNC_MMU:
2604 	case KVM_CAP_USER_NMI:
2605 	case KVM_CAP_REINJECT_CONTROL:
2606 	case KVM_CAP_IRQ_INJECT_STATUS:
2607 	case KVM_CAP_IOEVENTFD:
2608 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2609 	case KVM_CAP_PIT2:
2610 	case KVM_CAP_PIT_STATE2:
2611 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2612 	case KVM_CAP_XEN_HVM:
2613 	case KVM_CAP_VCPU_EVENTS:
2614 	case KVM_CAP_HYPERV:
2615 	case KVM_CAP_HYPERV_VAPIC:
2616 	case KVM_CAP_HYPERV_SPIN:
2617 	case KVM_CAP_HYPERV_SYNIC:
2618 	case KVM_CAP_PCI_SEGMENT:
2619 	case KVM_CAP_DEBUGREGS:
2620 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2621 	case KVM_CAP_XSAVE:
2622 	case KVM_CAP_ASYNC_PF:
2623 	case KVM_CAP_GET_TSC_KHZ:
2624 	case KVM_CAP_KVMCLOCK_CTRL:
2625 	case KVM_CAP_READONLY_MEM:
2626 	case KVM_CAP_HYPERV_TIME:
2627 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2628 	case KVM_CAP_TSC_DEADLINE_TIMER:
2629 	case KVM_CAP_ENABLE_CAP_VM:
2630 	case KVM_CAP_DISABLE_QUIRKS:
2631 	case KVM_CAP_SET_BOOT_CPU_ID:
2632  	case KVM_CAP_SPLIT_IRQCHIP:
2633 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2634 	case KVM_CAP_ASSIGN_DEV_IRQ:
2635 	case KVM_CAP_PCI_2_3:
2636 #endif
2637 		r = 1;
2638 		break;
2639 	case KVM_CAP_ADJUST_CLOCK:
2640 		r = KVM_CLOCK_TSC_STABLE;
2641 		break;
2642 	case KVM_CAP_X86_SMM:
2643 		/* SMBASE is usually relocated above 1M on modern chipsets,
2644 		 * and SMM handlers might indeed rely on 4G segment limits,
2645 		 * so do not report SMM to be available if real mode is
2646 		 * emulated via vm86 mode.  Still, do not go to great lengths
2647 		 * to avoid userspace's usage of the feature, because it is a
2648 		 * fringe case that is not enabled except via specific settings
2649 		 * of the module parameters.
2650 		 */
2651 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2652 		break;
2653 	case KVM_CAP_COALESCED_MMIO:
2654 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2655 		break;
2656 	case KVM_CAP_VAPIC:
2657 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2658 		break;
2659 	case KVM_CAP_NR_VCPUS:
2660 		r = KVM_SOFT_MAX_VCPUS;
2661 		break;
2662 	case KVM_CAP_MAX_VCPUS:
2663 		r = KVM_MAX_VCPUS;
2664 		break;
2665 	case KVM_CAP_NR_MEMSLOTS:
2666 		r = KVM_USER_MEM_SLOTS;
2667 		break;
2668 	case KVM_CAP_PV_MMU:	/* obsolete */
2669 		r = 0;
2670 		break;
2671 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2672 	case KVM_CAP_IOMMU:
2673 		r = iommu_present(&pci_bus_type);
2674 		break;
2675 #endif
2676 	case KVM_CAP_MCE:
2677 		r = KVM_MAX_MCE_BANKS;
2678 		break;
2679 	case KVM_CAP_XCRS:
2680 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2681 		break;
2682 	case KVM_CAP_TSC_CONTROL:
2683 		r = kvm_has_tsc_control;
2684 		break;
2685 	case KVM_CAP_X2APIC_API:
2686 		r = KVM_X2APIC_API_VALID_FLAGS;
2687 		break;
2688 	default:
2689 		r = 0;
2690 		break;
2691 	}
2692 	return r;
2693 
2694 }
2695 
2696 long kvm_arch_dev_ioctl(struct file *filp,
2697 			unsigned int ioctl, unsigned long arg)
2698 {
2699 	void __user *argp = (void __user *)arg;
2700 	long r;
2701 
2702 	switch (ioctl) {
2703 	case KVM_GET_MSR_INDEX_LIST: {
2704 		struct kvm_msr_list __user *user_msr_list = argp;
2705 		struct kvm_msr_list msr_list;
2706 		unsigned n;
2707 
2708 		r = -EFAULT;
2709 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2710 			goto out;
2711 		n = msr_list.nmsrs;
2712 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2713 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2714 			goto out;
2715 		r = -E2BIG;
2716 		if (n < msr_list.nmsrs)
2717 			goto out;
2718 		r = -EFAULT;
2719 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2720 				 num_msrs_to_save * sizeof(u32)))
2721 			goto out;
2722 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2723 				 &emulated_msrs,
2724 				 num_emulated_msrs * sizeof(u32)))
2725 			goto out;
2726 		r = 0;
2727 		break;
2728 	}
2729 	case KVM_GET_SUPPORTED_CPUID:
2730 	case KVM_GET_EMULATED_CPUID: {
2731 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2732 		struct kvm_cpuid2 cpuid;
2733 
2734 		r = -EFAULT;
2735 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2736 			goto out;
2737 
2738 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2739 					    ioctl);
2740 		if (r)
2741 			goto out;
2742 
2743 		r = -EFAULT;
2744 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2745 			goto out;
2746 		r = 0;
2747 		break;
2748 	}
2749 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2750 		r = -EFAULT;
2751 		if (copy_to_user(argp, &kvm_mce_cap_supported,
2752 				 sizeof(kvm_mce_cap_supported)))
2753 			goto out;
2754 		r = 0;
2755 		break;
2756 	}
2757 	default:
2758 		r = -EINVAL;
2759 	}
2760 out:
2761 	return r;
2762 }
2763 
2764 static void wbinvd_ipi(void *garbage)
2765 {
2766 	wbinvd();
2767 }
2768 
2769 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2770 {
2771 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2772 }
2773 
2774 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2775 {
2776 	set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2777 }
2778 
2779 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2780 {
2781 	/* Address WBINVD may be executed by guest */
2782 	if (need_emulate_wbinvd(vcpu)) {
2783 		if (kvm_x86_ops->has_wbinvd_exit())
2784 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2785 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2786 			smp_call_function_single(vcpu->cpu,
2787 					wbinvd_ipi, NULL, 1);
2788 	}
2789 
2790 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2791 
2792 	/* Apply any externally detected TSC adjustments (due to suspend) */
2793 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2794 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2795 		vcpu->arch.tsc_offset_adjustment = 0;
2796 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2797 	}
2798 
2799 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2800 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2801 				rdtsc() - vcpu->arch.last_host_tsc;
2802 		if (tsc_delta < 0)
2803 			mark_tsc_unstable("KVM discovered backwards TSC");
2804 
2805 		if (check_tsc_unstable()) {
2806 			u64 offset = kvm_compute_tsc_offset(vcpu,
2807 						vcpu->arch.last_guest_tsc);
2808 			kvm_vcpu_write_tsc_offset(vcpu, offset);
2809 			vcpu->arch.tsc_catchup = 1;
2810 		}
2811 		if (kvm_lapic_hv_timer_in_use(vcpu) &&
2812 				kvm_x86_ops->set_hv_timer(vcpu,
2813 					kvm_get_lapic_tscdeadline_msr(vcpu)))
2814 			kvm_lapic_switch_to_sw_timer(vcpu);
2815 		/*
2816 		 * On a host with synchronized TSC, there is no need to update
2817 		 * kvmclock on vcpu->cpu migration
2818 		 */
2819 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2820 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2821 		if (vcpu->cpu != cpu)
2822 			kvm_migrate_timers(vcpu);
2823 		vcpu->cpu = cpu;
2824 	}
2825 
2826 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2827 }
2828 
2829 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2830 {
2831 	kvm_x86_ops->vcpu_put(vcpu);
2832 	kvm_put_guest_fpu(vcpu);
2833 	vcpu->arch.last_host_tsc = rdtsc();
2834 }
2835 
2836 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2837 				    struct kvm_lapic_state *s)
2838 {
2839 	if (vcpu->arch.apicv_active)
2840 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2841 
2842 	return kvm_apic_get_state(vcpu, s);
2843 }
2844 
2845 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2846 				    struct kvm_lapic_state *s)
2847 {
2848 	int r;
2849 
2850 	r = kvm_apic_set_state(vcpu, s);
2851 	if (r)
2852 		return r;
2853 	update_cr8_intercept(vcpu);
2854 
2855 	return 0;
2856 }
2857 
2858 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2859 {
2860 	return (!lapic_in_kernel(vcpu) ||
2861 		kvm_apic_accept_pic_intr(vcpu));
2862 }
2863 
2864 /*
2865  * if userspace requested an interrupt window, check that the
2866  * interrupt window is open.
2867  *
2868  * No need to exit to userspace if we already have an interrupt queued.
2869  */
2870 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2871 {
2872 	return kvm_arch_interrupt_allowed(vcpu) &&
2873 		!kvm_cpu_has_interrupt(vcpu) &&
2874 		!kvm_event_needs_reinjection(vcpu) &&
2875 		kvm_cpu_accept_dm_intr(vcpu);
2876 }
2877 
2878 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2879 				    struct kvm_interrupt *irq)
2880 {
2881 	if (irq->irq >= KVM_NR_INTERRUPTS)
2882 		return -EINVAL;
2883 
2884 	if (!irqchip_in_kernel(vcpu->kvm)) {
2885 		kvm_queue_interrupt(vcpu, irq->irq, false);
2886 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2887 		return 0;
2888 	}
2889 
2890 	/*
2891 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2892 	 * fail for in-kernel 8259.
2893 	 */
2894 	if (pic_in_kernel(vcpu->kvm))
2895 		return -ENXIO;
2896 
2897 	if (vcpu->arch.pending_external_vector != -1)
2898 		return -EEXIST;
2899 
2900 	vcpu->arch.pending_external_vector = irq->irq;
2901 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2902 	return 0;
2903 }
2904 
2905 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2906 {
2907 	kvm_inject_nmi(vcpu);
2908 
2909 	return 0;
2910 }
2911 
2912 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2913 {
2914 	kvm_make_request(KVM_REQ_SMI, vcpu);
2915 
2916 	return 0;
2917 }
2918 
2919 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2920 					   struct kvm_tpr_access_ctl *tac)
2921 {
2922 	if (tac->flags)
2923 		return -EINVAL;
2924 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2925 	return 0;
2926 }
2927 
2928 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2929 					u64 mcg_cap)
2930 {
2931 	int r;
2932 	unsigned bank_num = mcg_cap & 0xff, bank;
2933 
2934 	r = -EINVAL;
2935 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2936 		goto out;
2937 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2938 		goto out;
2939 	r = 0;
2940 	vcpu->arch.mcg_cap = mcg_cap;
2941 	/* Init IA32_MCG_CTL to all 1s */
2942 	if (mcg_cap & MCG_CTL_P)
2943 		vcpu->arch.mcg_ctl = ~(u64)0;
2944 	/* Init IA32_MCi_CTL to all 1s */
2945 	for (bank = 0; bank < bank_num; bank++)
2946 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2947 
2948 	if (kvm_x86_ops->setup_mce)
2949 		kvm_x86_ops->setup_mce(vcpu);
2950 out:
2951 	return r;
2952 }
2953 
2954 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2955 				      struct kvm_x86_mce *mce)
2956 {
2957 	u64 mcg_cap = vcpu->arch.mcg_cap;
2958 	unsigned bank_num = mcg_cap & 0xff;
2959 	u64 *banks = vcpu->arch.mce_banks;
2960 
2961 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2962 		return -EINVAL;
2963 	/*
2964 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2965 	 * reporting is disabled
2966 	 */
2967 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2968 	    vcpu->arch.mcg_ctl != ~(u64)0)
2969 		return 0;
2970 	banks += 4 * mce->bank;
2971 	/*
2972 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2973 	 * reporting is disabled for the bank
2974 	 */
2975 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2976 		return 0;
2977 	if (mce->status & MCI_STATUS_UC) {
2978 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2979 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2980 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2981 			return 0;
2982 		}
2983 		if (banks[1] & MCI_STATUS_VAL)
2984 			mce->status |= MCI_STATUS_OVER;
2985 		banks[2] = mce->addr;
2986 		banks[3] = mce->misc;
2987 		vcpu->arch.mcg_status = mce->mcg_status;
2988 		banks[1] = mce->status;
2989 		kvm_queue_exception(vcpu, MC_VECTOR);
2990 	} else if (!(banks[1] & MCI_STATUS_VAL)
2991 		   || !(banks[1] & MCI_STATUS_UC)) {
2992 		if (banks[1] & MCI_STATUS_VAL)
2993 			mce->status |= MCI_STATUS_OVER;
2994 		banks[2] = mce->addr;
2995 		banks[3] = mce->misc;
2996 		banks[1] = mce->status;
2997 	} else
2998 		banks[1] |= MCI_STATUS_OVER;
2999 	return 0;
3000 }
3001 
3002 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3003 					       struct kvm_vcpu_events *events)
3004 {
3005 	process_nmi(vcpu);
3006 	events->exception.injected =
3007 		vcpu->arch.exception.pending &&
3008 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3009 	events->exception.nr = vcpu->arch.exception.nr;
3010 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3011 	events->exception.pad = 0;
3012 	events->exception.error_code = vcpu->arch.exception.error_code;
3013 
3014 	events->interrupt.injected =
3015 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3016 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3017 	events->interrupt.soft = 0;
3018 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3019 
3020 	events->nmi.injected = vcpu->arch.nmi_injected;
3021 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3022 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3023 	events->nmi.pad = 0;
3024 
3025 	events->sipi_vector = 0; /* never valid when reporting to user space */
3026 
3027 	events->smi.smm = is_smm(vcpu);
3028 	events->smi.pending = vcpu->arch.smi_pending;
3029 	events->smi.smm_inside_nmi =
3030 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3031 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3032 
3033 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3034 			 | KVM_VCPUEVENT_VALID_SHADOW
3035 			 | KVM_VCPUEVENT_VALID_SMM);
3036 	memset(&events->reserved, 0, sizeof(events->reserved));
3037 }
3038 
3039 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3040 					      struct kvm_vcpu_events *events)
3041 {
3042 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3043 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3044 			      | KVM_VCPUEVENT_VALID_SHADOW
3045 			      | KVM_VCPUEVENT_VALID_SMM))
3046 		return -EINVAL;
3047 
3048 	if (events->exception.injected &&
3049 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3050 		return -EINVAL;
3051 
3052 	process_nmi(vcpu);
3053 	vcpu->arch.exception.pending = events->exception.injected;
3054 	vcpu->arch.exception.nr = events->exception.nr;
3055 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3056 	vcpu->arch.exception.error_code = events->exception.error_code;
3057 
3058 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3059 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3060 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3061 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3062 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3063 						  events->interrupt.shadow);
3064 
3065 	vcpu->arch.nmi_injected = events->nmi.injected;
3066 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3067 		vcpu->arch.nmi_pending = events->nmi.pending;
3068 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3069 
3070 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3071 	    lapic_in_kernel(vcpu))
3072 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3073 
3074 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3075 		if (events->smi.smm)
3076 			vcpu->arch.hflags |= HF_SMM_MASK;
3077 		else
3078 			vcpu->arch.hflags &= ~HF_SMM_MASK;
3079 		vcpu->arch.smi_pending = events->smi.pending;
3080 		if (events->smi.smm_inside_nmi)
3081 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3082 		else
3083 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3084 		if (lapic_in_kernel(vcpu)) {
3085 			if (events->smi.latched_init)
3086 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3087 			else
3088 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3089 		}
3090 	}
3091 
3092 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3093 
3094 	return 0;
3095 }
3096 
3097 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3098 					     struct kvm_debugregs *dbgregs)
3099 {
3100 	unsigned long val;
3101 
3102 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3103 	kvm_get_dr(vcpu, 6, &val);
3104 	dbgregs->dr6 = val;
3105 	dbgregs->dr7 = vcpu->arch.dr7;
3106 	dbgregs->flags = 0;
3107 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3108 }
3109 
3110 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3111 					    struct kvm_debugregs *dbgregs)
3112 {
3113 	if (dbgregs->flags)
3114 		return -EINVAL;
3115 
3116 	if (dbgregs->dr6 & ~0xffffffffull)
3117 		return -EINVAL;
3118 	if (dbgregs->dr7 & ~0xffffffffull)
3119 		return -EINVAL;
3120 
3121 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3122 	kvm_update_dr0123(vcpu);
3123 	vcpu->arch.dr6 = dbgregs->dr6;
3124 	kvm_update_dr6(vcpu);
3125 	vcpu->arch.dr7 = dbgregs->dr7;
3126 	kvm_update_dr7(vcpu);
3127 
3128 	return 0;
3129 }
3130 
3131 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3132 
3133 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3134 {
3135 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3136 	u64 xstate_bv = xsave->header.xfeatures;
3137 	u64 valid;
3138 
3139 	/*
3140 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3141 	 * leaves 0 and 1 in the loop below.
3142 	 */
3143 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3144 
3145 	/* Set XSTATE_BV */
3146 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3147 
3148 	/*
3149 	 * Copy each region from the possibly compacted offset to the
3150 	 * non-compacted offset.
3151 	 */
3152 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3153 	while (valid) {
3154 		u64 feature = valid & -valid;
3155 		int index = fls64(feature) - 1;
3156 		void *src = get_xsave_addr(xsave, feature);
3157 
3158 		if (src) {
3159 			u32 size, offset, ecx, edx;
3160 			cpuid_count(XSTATE_CPUID, index,
3161 				    &size, &offset, &ecx, &edx);
3162 			memcpy(dest + offset, src, size);
3163 		}
3164 
3165 		valid -= feature;
3166 	}
3167 }
3168 
3169 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3170 {
3171 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3172 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3173 	u64 valid;
3174 
3175 	/*
3176 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3177 	 * leaves 0 and 1 in the loop below.
3178 	 */
3179 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3180 
3181 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3182 	xsave->header.xfeatures = xstate_bv;
3183 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3184 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3185 
3186 	/*
3187 	 * Copy each region from the non-compacted offset to the
3188 	 * possibly compacted offset.
3189 	 */
3190 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3191 	while (valid) {
3192 		u64 feature = valid & -valid;
3193 		int index = fls64(feature) - 1;
3194 		void *dest = get_xsave_addr(xsave, feature);
3195 
3196 		if (dest) {
3197 			u32 size, offset, ecx, edx;
3198 			cpuid_count(XSTATE_CPUID, index,
3199 				    &size, &offset, &ecx, &edx);
3200 			memcpy(dest, src + offset, size);
3201 		}
3202 
3203 		valid -= feature;
3204 	}
3205 }
3206 
3207 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3208 					 struct kvm_xsave *guest_xsave)
3209 {
3210 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3211 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3212 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3213 	} else {
3214 		memcpy(guest_xsave->region,
3215 			&vcpu->arch.guest_fpu.state.fxsave,
3216 			sizeof(struct fxregs_state));
3217 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3218 			XFEATURE_MASK_FPSSE;
3219 	}
3220 }
3221 
3222 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3223 					struct kvm_xsave *guest_xsave)
3224 {
3225 	u64 xstate_bv =
3226 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3227 
3228 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3229 		/*
3230 		 * Here we allow setting states that are not present in
3231 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3232 		 * with old userspace.
3233 		 */
3234 		if (xstate_bv & ~kvm_supported_xcr0())
3235 			return -EINVAL;
3236 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3237 	} else {
3238 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3239 			return -EINVAL;
3240 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3241 			guest_xsave->region, sizeof(struct fxregs_state));
3242 	}
3243 	return 0;
3244 }
3245 
3246 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3247 					struct kvm_xcrs *guest_xcrs)
3248 {
3249 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3250 		guest_xcrs->nr_xcrs = 0;
3251 		return;
3252 	}
3253 
3254 	guest_xcrs->nr_xcrs = 1;
3255 	guest_xcrs->flags = 0;
3256 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3257 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3258 }
3259 
3260 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3261 				       struct kvm_xcrs *guest_xcrs)
3262 {
3263 	int i, r = 0;
3264 
3265 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3266 		return -EINVAL;
3267 
3268 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3269 		return -EINVAL;
3270 
3271 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3272 		/* Only support XCR0 currently */
3273 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3274 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3275 				guest_xcrs->xcrs[i].value);
3276 			break;
3277 		}
3278 	if (r)
3279 		r = -EINVAL;
3280 	return r;
3281 }
3282 
3283 /*
3284  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3285  * stopped by the hypervisor.  This function will be called from the host only.
3286  * EINVAL is returned when the host attempts to set the flag for a guest that
3287  * does not support pv clocks.
3288  */
3289 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3290 {
3291 	if (!vcpu->arch.pv_time_enabled)
3292 		return -EINVAL;
3293 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3294 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3295 	return 0;
3296 }
3297 
3298 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3299 				     struct kvm_enable_cap *cap)
3300 {
3301 	if (cap->flags)
3302 		return -EINVAL;
3303 
3304 	switch (cap->cap) {
3305 	case KVM_CAP_HYPERV_SYNIC:
3306 		return kvm_hv_activate_synic(vcpu);
3307 	default:
3308 		return -EINVAL;
3309 	}
3310 }
3311 
3312 long kvm_arch_vcpu_ioctl(struct file *filp,
3313 			 unsigned int ioctl, unsigned long arg)
3314 {
3315 	struct kvm_vcpu *vcpu = filp->private_data;
3316 	void __user *argp = (void __user *)arg;
3317 	int r;
3318 	union {
3319 		struct kvm_lapic_state *lapic;
3320 		struct kvm_xsave *xsave;
3321 		struct kvm_xcrs *xcrs;
3322 		void *buffer;
3323 	} u;
3324 
3325 	u.buffer = NULL;
3326 	switch (ioctl) {
3327 	case KVM_GET_LAPIC: {
3328 		r = -EINVAL;
3329 		if (!lapic_in_kernel(vcpu))
3330 			goto out;
3331 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3332 
3333 		r = -ENOMEM;
3334 		if (!u.lapic)
3335 			goto out;
3336 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3337 		if (r)
3338 			goto out;
3339 		r = -EFAULT;
3340 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3341 			goto out;
3342 		r = 0;
3343 		break;
3344 	}
3345 	case KVM_SET_LAPIC: {
3346 		r = -EINVAL;
3347 		if (!lapic_in_kernel(vcpu))
3348 			goto out;
3349 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3350 		if (IS_ERR(u.lapic))
3351 			return PTR_ERR(u.lapic);
3352 
3353 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3354 		break;
3355 	}
3356 	case KVM_INTERRUPT: {
3357 		struct kvm_interrupt irq;
3358 
3359 		r = -EFAULT;
3360 		if (copy_from_user(&irq, argp, sizeof irq))
3361 			goto out;
3362 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3363 		break;
3364 	}
3365 	case KVM_NMI: {
3366 		r = kvm_vcpu_ioctl_nmi(vcpu);
3367 		break;
3368 	}
3369 	case KVM_SMI: {
3370 		r = kvm_vcpu_ioctl_smi(vcpu);
3371 		break;
3372 	}
3373 	case KVM_SET_CPUID: {
3374 		struct kvm_cpuid __user *cpuid_arg = argp;
3375 		struct kvm_cpuid cpuid;
3376 
3377 		r = -EFAULT;
3378 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3379 			goto out;
3380 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3381 		break;
3382 	}
3383 	case KVM_SET_CPUID2: {
3384 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3385 		struct kvm_cpuid2 cpuid;
3386 
3387 		r = -EFAULT;
3388 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3389 			goto out;
3390 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3391 					      cpuid_arg->entries);
3392 		break;
3393 	}
3394 	case KVM_GET_CPUID2: {
3395 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3396 		struct kvm_cpuid2 cpuid;
3397 
3398 		r = -EFAULT;
3399 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3400 			goto out;
3401 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3402 					      cpuid_arg->entries);
3403 		if (r)
3404 			goto out;
3405 		r = -EFAULT;
3406 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3407 			goto out;
3408 		r = 0;
3409 		break;
3410 	}
3411 	case KVM_GET_MSRS:
3412 		r = msr_io(vcpu, argp, do_get_msr, 1);
3413 		break;
3414 	case KVM_SET_MSRS:
3415 		r = msr_io(vcpu, argp, do_set_msr, 0);
3416 		break;
3417 	case KVM_TPR_ACCESS_REPORTING: {
3418 		struct kvm_tpr_access_ctl tac;
3419 
3420 		r = -EFAULT;
3421 		if (copy_from_user(&tac, argp, sizeof tac))
3422 			goto out;
3423 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3424 		if (r)
3425 			goto out;
3426 		r = -EFAULT;
3427 		if (copy_to_user(argp, &tac, sizeof tac))
3428 			goto out;
3429 		r = 0;
3430 		break;
3431 	};
3432 	case KVM_SET_VAPIC_ADDR: {
3433 		struct kvm_vapic_addr va;
3434 		int idx;
3435 
3436 		r = -EINVAL;
3437 		if (!lapic_in_kernel(vcpu))
3438 			goto out;
3439 		r = -EFAULT;
3440 		if (copy_from_user(&va, argp, sizeof va))
3441 			goto out;
3442 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3443 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3444 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3445 		break;
3446 	}
3447 	case KVM_X86_SETUP_MCE: {
3448 		u64 mcg_cap;
3449 
3450 		r = -EFAULT;
3451 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3452 			goto out;
3453 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3454 		break;
3455 	}
3456 	case KVM_X86_SET_MCE: {
3457 		struct kvm_x86_mce mce;
3458 
3459 		r = -EFAULT;
3460 		if (copy_from_user(&mce, argp, sizeof mce))
3461 			goto out;
3462 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3463 		break;
3464 	}
3465 	case KVM_GET_VCPU_EVENTS: {
3466 		struct kvm_vcpu_events events;
3467 
3468 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3469 
3470 		r = -EFAULT;
3471 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3472 			break;
3473 		r = 0;
3474 		break;
3475 	}
3476 	case KVM_SET_VCPU_EVENTS: {
3477 		struct kvm_vcpu_events events;
3478 
3479 		r = -EFAULT;
3480 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3481 			break;
3482 
3483 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3484 		break;
3485 	}
3486 	case KVM_GET_DEBUGREGS: {
3487 		struct kvm_debugregs dbgregs;
3488 
3489 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3490 
3491 		r = -EFAULT;
3492 		if (copy_to_user(argp, &dbgregs,
3493 				 sizeof(struct kvm_debugregs)))
3494 			break;
3495 		r = 0;
3496 		break;
3497 	}
3498 	case KVM_SET_DEBUGREGS: {
3499 		struct kvm_debugregs dbgregs;
3500 
3501 		r = -EFAULT;
3502 		if (copy_from_user(&dbgregs, argp,
3503 				   sizeof(struct kvm_debugregs)))
3504 			break;
3505 
3506 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3507 		break;
3508 	}
3509 	case KVM_GET_XSAVE: {
3510 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3511 		r = -ENOMEM;
3512 		if (!u.xsave)
3513 			break;
3514 
3515 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3516 
3517 		r = -EFAULT;
3518 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3519 			break;
3520 		r = 0;
3521 		break;
3522 	}
3523 	case KVM_SET_XSAVE: {
3524 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3525 		if (IS_ERR(u.xsave))
3526 			return PTR_ERR(u.xsave);
3527 
3528 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3529 		break;
3530 	}
3531 	case KVM_GET_XCRS: {
3532 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3533 		r = -ENOMEM;
3534 		if (!u.xcrs)
3535 			break;
3536 
3537 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3538 
3539 		r = -EFAULT;
3540 		if (copy_to_user(argp, u.xcrs,
3541 				 sizeof(struct kvm_xcrs)))
3542 			break;
3543 		r = 0;
3544 		break;
3545 	}
3546 	case KVM_SET_XCRS: {
3547 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3548 		if (IS_ERR(u.xcrs))
3549 			return PTR_ERR(u.xcrs);
3550 
3551 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3552 		break;
3553 	}
3554 	case KVM_SET_TSC_KHZ: {
3555 		u32 user_tsc_khz;
3556 
3557 		r = -EINVAL;
3558 		user_tsc_khz = (u32)arg;
3559 
3560 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3561 			goto out;
3562 
3563 		if (user_tsc_khz == 0)
3564 			user_tsc_khz = tsc_khz;
3565 
3566 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3567 			r = 0;
3568 
3569 		goto out;
3570 	}
3571 	case KVM_GET_TSC_KHZ: {
3572 		r = vcpu->arch.virtual_tsc_khz;
3573 		goto out;
3574 	}
3575 	case KVM_KVMCLOCK_CTRL: {
3576 		r = kvm_set_guest_paused(vcpu);
3577 		goto out;
3578 	}
3579 	case KVM_ENABLE_CAP: {
3580 		struct kvm_enable_cap cap;
3581 
3582 		r = -EFAULT;
3583 		if (copy_from_user(&cap, argp, sizeof(cap)))
3584 			goto out;
3585 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3586 		break;
3587 	}
3588 	default:
3589 		r = -EINVAL;
3590 	}
3591 out:
3592 	kfree(u.buffer);
3593 	return r;
3594 }
3595 
3596 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3597 {
3598 	return VM_FAULT_SIGBUS;
3599 }
3600 
3601 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3602 {
3603 	int ret;
3604 
3605 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3606 		return -EINVAL;
3607 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3608 	return ret;
3609 }
3610 
3611 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3612 					      u64 ident_addr)
3613 {
3614 	kvm->arch.ept_identity_map_addr = ident_addr;
3615 	return 0;
3616 }
3617 
3618 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3619 					  u32 kvm_nr_mmu_pages)
3620 {
3621 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3622 		return -EINVAL;
3623 
3624 	mutex_lock(&kvm->slots_lock);
3625 
3626 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3627 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3628 
3629 	mutex_unlock(&kvm->slots_lock);
3630 	return 0;
3631 }
3632 
3633 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3634 {
3635 	return kvm->arch.n_max_mmu_pages;
3636 }
3637 
3638 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3639 {
3640 	int r;
3641 
3642 	r = 0;
3643 	switch (chip->chip_id) {
3644 	case KVM_IRQCHIP_PIC_MASTER:
3645 		memcpy(&chip->chip.pic,
3646 			&pic_irqchip(kvm)->pics[0],
3647 			sizeof(struct kvm_pic_state));
3648 		break;
3649 	case KVM_IRQCHIP_PIC_SLAVE:
3650 		memcpy(&chip->chip.pic,
3651 			&pic_irqchip(kvm)->pics[1],
3652 			sizeof(struct kvm_pic_state));
3653 		break;
3654 	case KVM_IRQCHIP_IOAPIC:
3655 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3656 		break;
3657 	default:
3658 		r = -EINVAL;
3659 		break;
3660 	}
3661 	return r;
3662 }
3663 
3664 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3665 {
3666 	int r;
3667 
3668 	r = 0;
3669 	switch (chip->chip_id) {
3670 	case KVM_IRQCHIP_PIC_MASTER:
3671 		spin_lock(&pic_irqchip(kvm)->lock);
3672 		memcpy(&pic_irqchip(kvm)->pics[0],
3673 			&chip->chip.pic,
3674 			sizeof(struct kvm_pic_state));
3675 		spin_unlock(&pic_irqchip(kvm)->lock);
3676 		break;
3677 	case KVM_IRQCHIP_PIC_SLAVE:
3678 		spin_lock(&pic_irqchip(kvm)->lock);
3679 		memcpy(&pic_irqchip(kvm)->pics[1],
3680 			&chip->chip.pic,
3681 			sizeof(struct kvm_pic_state));
3682 		spin_unlock(&pic_irqchip(kvm)->lock);
3683 		break;
3684 	case KVM_IRQCHIP_IOAPIC:
3685 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3686 		break;
3687 	default:
3688 		r = -EINVAL;
3689 		break;
3690 	}
3691 	kvm_pic_update_irq(pic_irqchip(kvm));
3692 	return r;
3693 }
3694 
3695 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3696 {
3697 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3698 
3699 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3700 
3701 	mutex_lock(&kps->lock);
3702 	memcpy(ps, &kps->channels, sizeof(*ps));
3703 	mutex_unlock(&kps->lock);
3704 	return 0;
3705 }
3706 
3707 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3708 {
3709 	int i;
3710 	struct kvm_pit *pit = kvm->arch.vpit;
3711 
3712 	mutex_lock(&pit->pit_state.lock);
3713 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3714 	for (i = 0; i < 3; i++)
3715 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3716 	mutex_unlock(&pit->pit_state.lock);
3717 	return 0;
3718 }
3719 
3720 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3721 {
3722 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3723 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3724 		sizeof(ps->channels));
3725 	ps->flags = kvm->arch.vpit->pit_state.flags;
3726 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3727 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3728 	return 0;
3729 }
3730 
3731 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3732 {
3733 	int start = 0;
3734 	int i;
3735 	u32 prev_legacy, cur_legacy;
3736 	struct kvm_pit *pit = kvm->arch.vpit;
3737 
3738 	mutex_lock(&pit->pit_state.lock);
3739 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3740 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3741 	if (!prev_legacy && cur_legacy)
3742 		start = 1;
3743 	memcpy(&pit->pit_state.channels, &ps->channels,
3744 	       sizeof(pit->pit_state.channels));
3745 	pit->pit_state.flags = ps->flags;
3746 	for (i = 0; i < 3; i++)
3747 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3748 				   start && i == 0);
3749 	mutex_unlock(&pit->pit_state.lock);
3750 	return 0;
3751 }
3752 
3753 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3754 				 struct kvm_reinject_control *control)
3755 {
3756 	struct kvm_pit *pit = kvm->arch.vpit;
3757 
3758 	if (!pit)
3759 		return -ENXIO;
3760 
3761 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3762 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3763 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3764 	 */
3765 	mutex_lock(&pit->pit_state.lock);
3766 	kvm_pit_set_reinject(pit, control->pit_reinject);
3767 	mutex_unlock(&pit->pit_state.lock);
3768 
3769 	return 0;
3770 }
3771 
3772 /**
3773  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3774  * @kvm: kvm instance
3775  * @log: slot id and address to which we copy the log
3776  *
3777  * Steps 1-4 below provide general overview of dirty page logging. See
3778  * kvm_get_dirty_log_protect() function description for additional details.
3779  *
3780  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3781  * always flush the TLB (step 4) even if previous step failed  and the dirty
3782  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3783  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3784  * writes will be marked dirty for next log read.
3785  *
3786  *   1. Take a snapshot of the bit and clear it if needed.
3787  *   2. Write protect the corresponding page.
3788  *   3. Copy the snapshot to the userspace.
3789  *   4. Flush TLB's if needed.
3790  */
3791 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3792 {
3793 	bool is_dirty = false;
3794 	int r;
3795 
3796 	mutex_lock(&kvm->slots_lock);
3797 
3798 	/*
3799 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3800 	 */
3801 	if (kvm_x86_ops->flush_log_dirty)
3802 		kvm_x86_ops->flush_log_dirty(kvm);
3803 
3804 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3805 
3806 	/*
3807 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3808 	 * kvm_mmu_slot_remove_write_access().
3809 	 */
3810 	lockdep_assert_held(&kvm->slots_lock);
3811 	if (is_dirty)
3812 		kvm_flush_remote_tlbs(kvm);
3813 
3814 	mutex_unlock(&kvm->slots_lock);
3815 	return r;
3816 }
3817 
3818 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3819 			bool line_status)
3820 {
3821 	if (!irqchip_in_kernel(kvm))
3822 		return -ENXIO;
3823 
3824 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3825 					irq_event->irq, irq_event->level,
3826 					line_status);
3827 	return 0;
3828 }
3829 
3830 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3831 				   struct kvm_enable_cap *cap)
3832 {
3833 	int r;
3834 
3835 	if (cap->flags)
3836 		return -EINVAL;
3837 
3838 	switch (cap->cap) {
3839 	case KVM_CAP_DISABLE_QUIRKS:
3840 		kvm->arch.disabled_quirks = cap->args[0];
3841 		r = 0;
3842 		break;
3843 	case KVM_CAP_SPLIT_IRQCHIP: {
3844 		mutex_lock(&kvm->lock);
3845 		r = -EINVAL;
3846 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3847 			goto split_irqchip_unlock;
3848 		r = -EEXIST;
3849 		if (irqchip_in_kernel(kvm))
3850 			goto split_irqchip_unlock;
3851 		if (kvm->created_vcpus)
3852 			goto split_irqchip_unlock;
3853 		r = kvm_setup_empty_irq_routing(kvm);
3854 		if (r)
3855 			goto split_irqchip_unlock;
3856 		/* Pairs with irqchip_in_kernel. */
3857 		smp_wmb();
3858 		kvm->arch.irqchip_split = true;
3859 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3860 		r = 0;
3861 split_irqchip_unlock:
3862 		mutex_unlock(&kvm->lock);
3863 		break;
3864 	}
3865 	case KVM_CAP_X2APIC_API:
3866 		r = -EINVAL;
3867 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3868 			break;
3869 
3870 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3871 			kvm->arch.x2apic_format = true;
3872 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3873 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
3874 
3875 		r = 0;
3876 		break;
3877 	default:
3878 		r = -EINVAL;
3879 		break;
3880 	}
3881 	return r;
3882 }
3883 
3884 long kvm_arch_vm_ioctl(struct file *filp,
3885 		       unsigned int ioctl, unsigned long arg)
3886 {
3887 	struct kvm *kvm = filp->private_data;
3888 	void __user *argp = (void __user *)arg;
3889 	int r = -ENOTTY;
3890 	/*
3891 	 * This union makes it completely explicit to gcc-3.x
3892 	 * that these two variables' stack usage should be
3893 	 * combined, not added together.
3894 	 */
3895 	union {
3896 		struct kvm_pit_state ps;
3897 		struct kvm_pit_state2 ps2;
3898 		struct kvm_pit_config pit_config;
3899 	} u;
3900 
3901 	switch (ioctl) {
3902 	case KVM_SET_TSS_ADDR:
3903 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3904 		break;
3905 	case KVM_SET_IDENTITY_MAP_ADDR: {
3906 		u64 ident_addr;
3907 
3908 		r = -EFAULT;
3909 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3910 			goto out;
3911 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3912 		break;
3913 	}
3914 	case KVM_SET_NR_MMU_PAGES:
3915 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3916 		break;
3917 	case KVM_GET_NR_MMU_PAGES:
3918 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3919 		break;
3920 	case KVM_CREATE_IRQCHIP: {
3921 		struct kvm_pic *vpic;
3922 
3923 		mutex_lock(&kvm->lock);
3924 		r = -EEXIST;
3925 		if (kvm->arch.vpic)
3926 			goto create_irqchip_unlock;
3927 		r = -EINVAL;
3928 		if (kvm->created_vcpus)
3929 			goto create_irqchip_unlock;
3930 		r = -ENOMEM;
3931 		vpic = kvm_create_pic(kvm);
3932 		if (vpic) {
3933 			r = kvm_ioapic_init(kvm);
3934 			if (r) {
3935 				mutex_lock(&kvm->slots_lock);
3936 				kvm_destroy_pic(vpic);
3937 				mutex_unlock(&kvm->slots_lock);
3938 				goto create_irqchip_unlock;
3939 			}
3940 		} else
3941 			goto create_irqchip_unlock;
3942 		r = kvm_setup_default_irq_routing(kvm);
3943 		if (r) {
3944 			mutex_lock(&kvm->slots_lock);
3945 			mutex_lock(&kvm->irq_lock);
3946 			kvm_ioapic_destroy(kvm);
3947 			kvm_destroy_pic(vpic);
3948 			mutex_unlock(&kvm->irq_lock);
3949 			mutex_unlock(&kvm->slots_lock);
3950 			goto create_irqchip_unlock;
3951 		}
3952 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3953 		smp_wmb();
3954 		kvm->arch.vpic = vpic;
3955 	create_irqchip_unlock:
3956 		mutex_unlock(&kvm->lock);
3957 		break;
3958 	}
3959 	case KVM_CREATE_PIT:
3960 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3961 		goto create_pit;
3962 	case KVM_CREATE_PIT2:
3963 		r = -EFAULT;
3964 		if (copy_from_user(&u.pit_config, argp,
3965 				   sizeof(struct kvm_pit_config)))
3966 			goto out;
3967 	create_pit:
3968 		mutex_lock(&kvm->lock);
3969 		r = -EEXIST;
3970 		if (kvm->arch.vpit)
3971 			goto create_pit_unlock;
3972 		r = -ENOMEM;
3973 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3974 		if (kvm->arch.vpit)
3975 			r = 0;
3976 	create_pit_unlock:
3977 		mutex_unlock(&kvm->lock);
3978 		break;
3979 	case KVM_GET_IRQCHIP: {
3980 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3981 		struct kvm_irqchip *chip;
3982 
3983 		chip = memdup_user(argp, sizeof(*chip));
3984 		if (IS_ERR(chip)) {
3985 			r = PTR_ERR(chip);
3986 			goto out;
3987 		}
3988 
3989 		r = -ENXIO;
3990 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3991 			goto get_irqchip_out;
3992 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3993 		if (r)
3994 			goto get_irqchip_out;
3995 		r = -EFAULT;
3996 		if (copy_to_user(argp, chip, sizeof *chip))
3997 			goto get_irqchip_out;
3998 		r = 0;
3999 	get_irqchip_out:
4000 		kfree(chip);
4001 		break;
4002 	}
4003 	case KVM_SET_IRQCHIP: {
4004 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4005 		struct kvm_irqchip *chip;
4006 
4007 		chip = memdup_user(argp, sizeof(*chip));
4008 		if (IS_ERR(chip)) {
4009 			r = PTR_ERR(chip);
4010 			goto out;
4011 		}
4012 
4013 		r = -ENXIO;
4014 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4015 			goto set_irqchip_out;
4016 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4017 		if (r)
4018 			goto set_irqchip_out;
4019 		r = 0;
4020 	set_irqchip_out:
4021 		kfree(chip);
4022 		break;
4023 	}
4024 	case KVM_GET_PIT: {
4025 		r = -EFAULT;
4026 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4027 			goto out;
4028 		r = -ENXIO;
4029 		if (!kvm->arch.vpit)
4030 			goto out;
4031 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4032 		if (r)
4033 			goto out;
4034 		r = -EFAULT;
4035 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4036 			goto out;
4037 		r = 0;
4038 		break;
4039 	}
4040 	case KVM_SET_PIT: {
4041 		r = -EFAULT;
4042 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4043 			goto out;
4044 		r = -ENXIO;
4045 		if (!kvm->arch.vpit)
4046 			goto out;
4047 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4048 		break;
4049 	}
4050 	case KVM_GET_PIT2: {
4051 		r = -ENXIO;
4052 		if (!kvm->arch.vpit)
4053 			goto out;
4054 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4055 		if (r)
4056 			goto out;
4057 		r = -EFAULT;
4058 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4059 			goto out;
4060 		r = 0;
4061 		break;
4062 	}
4063 	case KVM_SET_PIT2: {
4064 		r = -EFAULT;
4065 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4066 			goto out;
4067 		r = -ENXIO;
4068 		if (!kvm->arch.vpit)
4069 			goto out;
4070 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4071 		break;
4072 	}
4073 	case KVM_REINJECT_CONTROL: {
4074 		struct kvm_reinject_control control;
4075 		r =  -EFAULT;
4076 		if (copy_from_user(&control, argp, sizeof(control)))
4077 			goto out;
4078 		r = kvm_vm_ioctl_reinject(kvm, &control);
4079 		break;
4080 	}
4081 	case KVM_SET_BOOT_CPU_ID:
4082 		r = 0;
4083 		mutex_lock(&kvm->lock);
4084 		if (kvm->created_vcpus)
4085 			r = -EBUSY;
4086 		else
4087 			kvm->arch.bsp_vcpu_id = arg;
4088 		mutex_unlock(&kvm->lock);
4089 		break;
4090 	case KVM_XEN_HVM_CONFIG: {
4091 		r = -EFAULT;
4092 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4093 				   sizeof(struct kvm_xen_hvm_config)))
4094 			goto out;
4095 		r = -EINVAL;
4096 		if (kvm->arch.xen_hvm_config.flags)
4097 			goto out;
4098 		r = 0;
4099 		break;
4100 	}
4101 	case KVM_SET_CLOCK: {
4102 		struct kvm_clock_data user_ns;
4103 		u64 now_ns;
4104 
4105 		r = -EFAULT;
4106 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4107 			goto out;
4108 
4109 		r = -EINVAL;
4110 		if (user_ns.flags)
4111 			goto out;
4112 
4113 		r = 0;
4114 		local_irq_disable();
4115 		now_ns = __get_kvmclock_ns(kvm);
4116 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4117 		local_irq_enable();
4118 		kvm_gen_update_masterclock(kvm);
4119 		break;
4120 	}
4121 	case KVM_GET_CLOCK: {
4122 		struct kvm_clock_data user_ns;
4123 		u64 now_ns;
4124 
4125 		local_irq_disable();
4126 		now_ns = __get_kvmclock_ns(kvm);
4127 		user_ns.clock = now_ns;
4128 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4129 		local_irq_enable();
4130 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4131 
4132 		r = -EFAULT;
4133 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4134 			goto out;
4135 		r = 0;
4136 		break;
4137 	}
4138 	case KVM_ENABLE_CAP: {
4139 		struct kvm_enable_cap cap;
4140 
4141 		r = -EFAULT;
4142 		if (copy_from_user(&cap, argp, sizeof(cap)))
4143 			goto out;
4144 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4145 		break;
4146 	}
4147 	default:
4148 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4149 	}
4150 out:
4151 	return r;
4152 }
4153 
4154 static void kvm_init_msr_list(void)
4155 {
4156 	u32 dummy[2];
4157 	unsigned i, j;
4158 
4159 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4160 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4161 			continue;
4162 
4163 		/*
4164 		 * Even MSRs that are valid in the host may not be exposed
4165 		 * to the guests in some cases.
4166 		 */
4167 		switch (msrs_to_save[i]) {
4168 		case MSR_IA32_BNDCFGS:
4169 			if (!kvm_x86_ops->mpx_supported())
4170 				continue;
4171 			break;
4172 		case MSR_TSC_AUX:
4173 			if (!kvm_x86_ops->rdtscp_supported())
4174 				continue;
4175 			break;
4176 		default:
4177 			break;
4178 		}
4179 
4180 		if (j < i)
4181 			msrs_to_save[j] = msrs_to_save[i];
4182 		j++;
4183 	}
4184 	num_msrs_to_save = j;
4185 
4186 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4187 		switch (emulated_msrs[i]) {
4188 		case MSR_IA32_SMBASE:
4189 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4190 				continue;
4191 			break;
4192 		default:
4193 			break;
4194 		}
4195 
4196 		if (j < i)
4197 			emulated_msrs[j] = emulated_msrs[i];
4198 		j++;
4199 	}
4200 	num_emulated_msrs = j;
4201 }
4202 
4203 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4204 			   const void *v)
4205 {
4206 	int handled = 0;
4207 	int n;
4208 
4209 	do {
4210 		n = min(len, 8);
4211 		if (!(lapic_in_kernel(vcpu) &&
4212 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4213 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4214 			break;
4215 		handled += n;
4216 		addr += n;
4217 		len -= n;
4218 		v += n;
4219 	} while (len);
4220 
4221 	return handled;
4222 }
4223 
4224 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4225 {
4226 	int handled = 0;
4227 	int n;
4228 
4229 	do {
4230 		n = min(len, 8);
4231 		if (!(lapic_in_kernel(vcpu) &&
4232 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4233 					 addr, n, v))
4234 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4235 			break;
4236 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4237 		handled += n;
4238 		addr += n;
4239 		len -= n;
4240 		v += n;
4241 	} while (len);
4242 
4243 	return handled;
4244 }
4245 
4246 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4247 			struct kvm_segment *var, int seg)
4248 {
4249 	kvm_x86_ops->set_segment(vcpu, var, seg);
4250 }
4251 
4252 void kvm_get_segment(struct kvm_vcpu *vcpu,
4253 		     struct kvm_segment *var, int seg)
4254 {
4255 	kvm_x86_ops->get_segment(vcpu, var, seg);
4256 }
4257 
4258 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4259 			   struct x86_exception *exception)
4260 {
4261 	gpa_t t_gpa;
4262 
4263 	BUG_ON(!mmu_is_nested(vcpu));
4264 
4265 	/* NPT walks are always user-walks */
4266 	access |= PFERR_USER_MASK;
4267 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4268 
4269 	return t_gpa;
4270 }
4271 
4272 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4273 			      struct x86_exception *exception)
4274 {
4275 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4276 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4277 }
4278 
4279  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4280 				struct x86_exception *exception)
4281 {
4282 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4283 	access |= PFERR_FETCH_MASK;
4284 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4285 }
4286 
4287 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4288 			       struct x86_exception *exception)
4289 {
4290 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4291 	access |= PFERR_WRITE_MASK;
4292 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4293 }
4294 
4295 /* uses this to access any guest's mapped memory without checking CPL */
4296 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4297 				struct x86_exception *exception)
4298 {
4299 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4300 }
4301 
4302 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4303 				      struct kvm_vcpu *vcpu, u32 access,
4304 				      struct x86_exception *exception)
4305 {
4306 	void *data = val;
4307 	int r = X86EMUL_CONTINUE;
4308 
4309 	while (bytes) {
4310 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4311 							    exception);
4312 		unsigned offset = addr & (PAGE_SIZE-1);
4313 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4314 		int ret;
4315 
4316 		if (gpa == UNMAPPED_GVA)
4317 			return X86EMUL_PROPAGATE_FAULT;
4318 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4319 					       offset, toread);
4320 		if (ret < 0) {
4321 			r = X86EMUL_IO_NEEDED;
4322 			goto out;
4323 		}
4324 
4325 		bytes -= toread;
4326 		data += toread;
4327 		addr += toread;
4328 	}
4329 out:
4330 	return r;
4331 }
4332 
4333 /* used for instruction fetching */
4334 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4335 				gva_t addr, void *val, unsigned int bytes,
4336 				struct x86_exception *exception)
4337 {
4338 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4339 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4340 	unsigned offset;
4341 	int ret;
4342 
4343 	/* Inline kvm_read_guest_virt_helper for speed.  */
4344 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4345 						    exception);
4346 	if (unlikely(gpa == UNMAPPED_GVA))
4347 		return X86EMUL_PROPAGATE_FAULT;
4348 
4349 	offset = addr & (PAGE_SIZE-1);
4350 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4351 		bytes = (unsigned)PAGE_SIZE - offset;
4352 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4353 				       offset, bytes);
4354 	if (unlikely(ret < 0))
4355 		return X86EMUL_IO_NEEDED;
4356 
4357 	return X86EMUL_CONTINUE;
4358 }
4359 
4360 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4361 			       gva_t addr, void *val, unsigned int bytes,
4362 			       struct x86_exception *exception)
4363 {
4364 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4365 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4366 
4367 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4368 					  exception);
4369 }
4370 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4371 
4372 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4373 				      gva_t addr, void *val, unsigned int bytes,
4374 				      struct x86_exception *exception)
4375 {
4376 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4377 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4378 }
4379 
4380 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4381 		unsigned long addr, void *val, unsigned int bytes)
4382 {
4383 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4384 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4385 
4386 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4387 }
4388 
4389 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4390 				       gva_t addr, void *val,
4391 				       unsigned int bytes,
4392 				       struct x86_exception *exception)
4393 {
4394 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4395 	void *data = val;
4396 	int r = X86EMUL_CONTINUE;
4397 
4398 	while (bytes) {
4399 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4400 							     PFERR_WRITE_MASK,
4401 							     exception);
4402 		unsigned offset = addr & (PAGE_SIZE-1);
4403 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4404 		int ret;
4405 
4406 		if (gpa == UNMAPPED_GVA)
4407 			return X86EMUL_PROPAGATE_FAULT;
4408 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4409 		if (ret < 0) {
4410 			r = X86EMUL_IO_NEEDED;
4411 			goto out;
4412 		}
4413 
4414 		bytes -= towrite;
4415 		data += towrite;
4416 		addr += towrite;
4417 	}
4418 out:
4419 	return r;
4420 }
4421 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4422 
4423 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4424 				gpa_t *gpa, struct x86_exception *exception,
4425 				bool write)
4426 {
4427 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4428 		| (write ? PFERR_WRITE_MASK : 0);
4429 
4430 	/*
4431 	 * currently PKRU is only applied to ept enabled guest so
4432 	 * there is no pkey in EPT page table for L1 guest or EPT
4433 	 * shadow page table for L2 guest.
4434 	 */
4435 	if (vcpu_match_mmio_gva(vcpu, gva)
4436 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4437 				 vcpu->arch.access, 0, access)) {
4438 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4439 					(gva & (PAGE_SIZE - 1));
4440 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4441 		return 1;
4442 	}
4443 
4444 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4445 
4446 	if (*gpa == UNMAPPED_GVA)
4447 		return -1;
4448 
4449 	/* For APIC access vmexit */
4450 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4451 		return 1;
4452 
4453 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4454 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4455 		return 1;
4456 	}
4457 
4458 	return 0;
4459 }
4460 
4461 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4462 			const void *val, int bytes)
4463 {
4464 	int ret;
4465 
4466 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4467 	if (ret < 0)
4468 		return 0;
4469 	kvm_page_track_write(vcpu, gpa, val, bytes);
4470 	return 1;
4471 }
4472 
4473 struct read_write_emulator_ops {
4474 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4475 				  int bytes);
4476 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4477 				  void *val, int bytes);
4478 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4479 			       int bytes, void *val);
4480 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4481 				    void *val, int bytes);
4482 	bool write;
4483 };
4484 
4485 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4486 {
4487 	if (vcpu->mmio_read_completed) {
4488 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4489 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4490 		vcpu->mmio_read_completed = 0;
4491 		return 1;
4492 	}
4493 
4494 	return 0;
4495 }
4496 
4497 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4498 			void *val, int bytes)
4499 {
4500 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4501 }
4502 
4503 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4504 			 void *val, int bytes)
4505 {
4506 	return emulator_write_phys(vcpu, gpa, val, bytes);
4507 }
4508 
4509 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4510 {
4511 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4512 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4513 }
4514 
4515 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4516 			  void *val, int bytes)
4517 {
4518 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4519 	return X86EMUL_IO_NEEDED;
4520 }
4521 
4522 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4523 			   void *val, int bytes)
4524 {
4525 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4526 
4527 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4528 	return X86EMUL_CONTINUE;
4529 }
4530 
4531 static const struct read_write_emulator_ops read_emultor = {
4532 	.read_write_prepare = read_prepare,
4533 	.read_write_emulate = read_emulate,
4534 	.read_write_mmio = vcpu_mmio_read,
4535 	.read_write_exit_mmio = read_exit_mmio,
4536 };
4537 
4538 static const struct read_write_emulator_ops write_emultor = {
4539 	.read_write_emulate = write_emulate,
4540 	.read_write_mmio = write_mmio,
4541 	.read_write_exit_mmio = write_exit_mmio,
4542 	.write = true,
4543 };
4544 
4545 static int emulator_read_write_onepage(unsigned long addr, void *val,
4546 				       unsigned int bytes,
4547 				       struct x86_exception *exception,
4548 				       struct kvm_vcpu *vcpu,
4549 				       const struct read_write_emulator_ops *ops)
4550 {
4551 	gpa_t gpa;
4552 	int handled, ret;
4553 	bool write = ops->write;
4554 	struct kvm_mmio_fragment *frag;
4555 
4556 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4557 
4558 	if (ret < 0)
4559 		return X86EMUL_PROPAGATE_FAULT;
4560 
4561 	/* For APIC access vmexit */
4562 	if (ret)
4563 		goto mmio;
4564 
4565 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4566 		return X86EMUL_CONTINUE;
4567 
4568 mmio:
4569 	/*
4570 	 * Is this MMIO handled locally?
4571 	 */
4572 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4573 	if (handled == bytes)
4574 		return X86EMUL_CONTINUE;
4575 
4576 	gpa += handled;
4577 	bytes -= handled;
4578 	val += handled;
4579 
4580 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4581 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4582 	frag->gpa = gpa;
4583 	frag->data = val;
4584 	frag->len = bytes;
4585 	return X86EMUL_CONTINUE;
4586 }
4587 
4588 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4589 			unsigned long addr,
4590 			void *val, unsigned int bytes,
4591 			struct x86_exception *exception,
4592 			const struct read_write_emulator_ops *ops)
4593 {
4594 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4595 	gpa_t gpa;
4596 	int rc;
4597 
4598 	if (ops->read_write_prepare &&
4599 		  ops->read_write_prepare(vcpu, val, bytes))
4600 		return X86EMUL_CONTINUE;
4601 
4602 	vcpu->mmio_nr_fragments = 0;
4603 
4604 	/* Crossing a page boundary? */
4605 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4606 		int now;
4607 
4608 		now = -addr & ~PAGE_MASK;
4609 		rc = emulator_read_write_onepage(addr, val, now, exception,
4610 						 vcpu, ops);
4611 
4612 		if (rc != X86EMUL_CONTINUE)
4613 			return rc;
4614 		addr += now;
4615 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4616 			addr = (u32)addr;
4617 		val += now;
4618 		bytes -= now;
4619 	}
4620 
4621 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4622 					 vcpu, ops);
4623 	if (rc != X86EMUL_CONTINUE)
4624 		return rc;
4625 
4626 	if (!vcpu->mmio_nr_fragments)
4627 		return rc;
4628 
4629 	gpa = vcpu->mmio_fragments[0].gpa;
4630 
4631 	vcpu->mmio_needed = 1;
4632 	vcpu->mmio_cur_fragment = 0;
4633 
4634 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4635 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4636 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4637 	vcpu->run->mmio.phys_addr = gpa;
4638 
4639 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4640 }
4641 
4642 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4643 				  unsigned long addr,
4644 				  void *val,
4645 				  unsigned int bytes,
4646 				  struct x86_exception *exception)
4647 {
4648 	return emulator_read_write(ctxt, addr, val, bytes,
4649 				   exception, &read_emultor);
4650 }
4651 
4652 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4653 			    unsigned long addr,
4654 			    const void *val,
4655 			    unsigned int bytes,
4656 			    struct x86_exception *exception)
4657 {
4658 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4659 				   exception, &write_emultor);
4660 }
4661 
4662 #define CMPXCHG_TYPE(t, ptr, old, new) \
4663 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4664 
4665 #ifdef CONFIG_X86_64
4666 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4667 #else
4668 #  define CMPXCHG64(ptr, old, new) \
4669 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4670 #endif
4671 
4672 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4673 				     unsigned long addr,
4674 				     const void *old,
4675 				     const void *new,
4676 				     unsigned int bytes,
4677 				     struct x86_exception *exception)
4678 {
4679 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4680 	gpa_t gpa;
4681 	struct page *page;
4682 	char *kaddr;
4683 	bool exchanged;
4684 
4685 	/* guests cmpxchg8b have to be emulated atomically */
4686 	if (bytes > 8 || (bytes & (bytes - 1)))
4687 		goto emul_write;
4688 
4689 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4690 
4691 	if (gpa == UNMAPPED_GVA ||
4692 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4693 		goto emul_write;
4694 
4695 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4696 		goto emul_write;
4697 
4698 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4699 	if (is_error_page(page))
4700 		goto emul_write;
4701 
4702 	kaddr = kmap_atomic(page);
4703 	kaddr += offset_in_page(gpa);
4704 	switch (bytes) {
4705 	case 1:
4706 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4707 		break;
4708 	case 2:
4709 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4710 		break;
4711 	case 4:
4712 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4713 		break;
4714 	case 8:
4715 		exchanged = CMPXCHG64(kaddr, old, new);
4716 		break;
4717 	default:
4718 		BUG();
4719 	}
4720 	kunmap_atomic(kaddr);
4721 	kvm_release_page_dirty(page);
4722 
4723 	if (!exchanged)
4724 		return X86EMUL_CMPXCHG_FAILED;
4725 
4726 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4727 	kvm_page_track_write(vcpu, gpa, new, bytes);
4728 
4729 	return X86EMUL_CONTINUE;
4730 
4731 emul_write:
4732 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4733 
4734 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4735 }
4736 
4737 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4738 {
4739 	/* TODO: String I/O for in kernel device */
4740 	int r;
4741 
4742 	if (vcpu->arch.pio.in)
4743 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4744 				    vcpu->arch.pio.size, pd);
4745 	else
4746 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4747 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4748 				     pd);
4749 	return r;
4750 }
4751 
4752 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4753 			       unsigned short port, void *val,
4754 			       unsigned int count, bool in)
4755 {
4756 	vcpu->arch.pio.port = port;
4757 	vcpu->arch.pio.in = in;
4758 	vcpu->arch.pio.count  = count;
4759 	vcpu->arch.pio.size = size;
4760 
4761 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4762 		vcpu->arch.pio.count = 0;
4763 		return 1;
4764 	}
4765 
4766 	vcpu->run->exit_reason = KVM_EXIT_IO;
4767 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4768 	vcpu->run->io.size = size;
4769 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4770 	vcpu->run->io.count = count;
4771 	vcpu->run->io.port = port;
4772 
4773 	return 0;
4774 }
4775 
4776 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4777 				    int size, unsigned short port, void *val,
4778 				    unsigned int count)
4779 {
4780 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4781 	int ret;
4782 
4783 	if (vcpu->arch.pio.count)
4784 		goto data_avail;
4785 
4786 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4787 	if (ret) {
4788 data_avail:
4789 		memcpy(val, vcpu->arch.pio_data, size * count);
4790 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4791 		vcpu->arch.pio.count = 0;
4792 		return 1;
4793 	}
4794 
4795 	return 0;
4796 }
4797 
4798 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4799 				     int size, unsigned short port,
4800 				     const void *val, unsigned int count)
4801 {
4802 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4803 
4804 	memcpy(vcpu->arch.pio_data, val, size * count);
4805 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4806 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4807 }
4808 
4809 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4810 {
4811 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4812 }
4813 
4814 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4815 {
4816 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4817 }
4818 
4819 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4820 {
4821 	if (!need_emulate_wbinvd(vcpu))
4822 		return X86EMUL_CONTINUE;
4823 
4824 	if (kvm_x86_ops->has_wbinvd_exit()) {
4825 		int cpu = get_cpu();
4826 
4827 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4828 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4829 				wbinvd_ipi, NULL, 1);
4830 		put_cpu();
4831 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4832 	} else
4833 		wbinvd();
4834 	return X86EMUL_CONTINUE;
4835 }
4836 
4837 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4838 {
4839 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4840 	return kvm_emulate_wbinvd_noskip(vcpu);
4841 }
4842 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4843 
4844 
4845 
4846 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4847 {
4848 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4849 }
4850 
4851 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4852 			   unsigned long *dest)
4853 {
4854 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4855 }
4856 
4857 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4858 			   unsigned long value)
4859 {
4860 
4861 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4862 }
4863 
4864 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4865 {
4866 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4867 }
4868 
4869 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4870 {
4871 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4872 	unsigned long value;
4873 
4874 	switch (cr) {
4875 	case 0:
4876 		value = kvm_read_cr0(vcpu);
4877 		break;
4878 	case 2:
4879 		value = vcpu->arch.cr2;
4880 		break;
4881 	case 3:
4882 		value = kvm_read_cr3(vcpu);
4883 		break;
4884 	case 4:
4885 		value = kvm_read_cr4(vcpu);
4886 		break;
4887 	case 8:
4888 		value = kvm_get_cr8(vcpu);
4889 		break;
4890 	default:
4891 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4892 		return 0;
4893 	}
4894 
4895 	return value;
4896 }
4897 
4898 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4899 {
4900 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4901 	int res = 0;
4902 
4903 	switch (cr) {
4904 	case 0:
4905 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4906 		break;
4907 	case 2:
4908 		vcpu->arch.cr2 = val;
4909 		break;
4910 	case 3:
4911 		res = kvm_set_cr3(vcpu, val);
4912 		break;
4913 	case 4:
4914 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4915 		break;
4916 	case 8:
4917 		res = kvm_set_cr8(vcpu, val);
4918 		break;
4919 	default:
4920 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4921 		res = -1;
4922 	}
4923 
4924 	return res;
4925 }
4926 
4927 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4928 {
4929 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4930 }
4931 
4932 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4933 {
4934 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4935 }
4936 
4937 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4938 {
4939 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4940 }
4941 
4942 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4943 {
4944 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4945 }
4946 
4947 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4948 {
4949 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4950 }
4951 
4952 static unsigned long emulator_get_cached_segment_base(
4953 	struct x86_emulate_ctxt *ctxt, int seg)
4954 {
4955 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4956 }
4957 
4958 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4959 				 struct desc_struct *desc, u32 *base3,
4960 				 int seg)
4961 {
4962 	struct kvm_segment var;
4963 
4964 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4965 	*selector = var.selector;
4966 
4967 	if (var.unusable) {
4968 		memset(desc, 0, sizeof(*desc));
4969 		return false;
4970 	}
4971 
4972 	if (var.g)
4973 		var.limit >>= 12;
4974 	set_desc_limit(desc, var.limit);
4975 	set_desc_base(desc, (unsigned long)var.base);
4976 #ifdef CONFIG_X86_64
4977 	if (base3)
4978 		*base3 = var.base >> 32;
4979 #endif
4980 	desc->type = var.type;
4981 	desc->s = var.s;
4982 	desc->dpl = var.dpl;
4983 	desc->p = var.present;
4984 	desc->avl = var.avl;
4985 	desc->l = var.l;
4986 	desc->d = var.db;
4987 	desc->g = var.g;
4988 
4989 	return true;
4990 }
4991 
4992 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4993 				 struct desc_struct *desc, u32 base3,
4994 				 int seg)
4995 {
4996 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4997 	struct kvm_segment var;
4998 
4999 	var.selector = selector;
5000 	var.base = get_desc_base(desc);
5001 #ifdef CONFIG_X86_64
5002 	var.base |= ((u64)base3) << 32;
5003 #endif
5004 	var.limit = get_desc_limit(desc);
5005 	if (desc->g)
5006 		var.limit = (var.limit << 12) | 0xfff;
5007 	var.type = desc->type;
5008 	var.dpl = desc->dpl;
5009 	var.db = desc->d;
5010 	var.s = desc->s;
5011 	var.l = desc->l;
5012 	var.g = desc->g;
5013 	var.avl = desc->avl;
5014 	var.present = desc->p;
5015 	var.unusable = !var.present;
5016 	var.padding = 0;
5017 
5018 	kvm_set_segment(vcpu, &var, seg);
5019 	return;
5020 }
5021 
5022 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5023 			    u32 msr_index, u64 *pdata)
5024 {
5025 	struct msr_data msr;
5026 	int r;
5027 
5028 	msr.index = msr_index;
5029 	msr.host_initiated = false;
5030 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5031 	if (r)
5032 		return r;
5033 
5034 	*pdata = msr.data;
5035 	return 0;
5036 }
5037 
5038 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5039 			    u32 msr_index, u64 data)
5040 {
5041 	struct msr_data msr;
5042 
5043 	msr.data = data;
5044 	msr.index = msr_index;
5045 	msr.host_initiated = false;
5046 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5047 }
5048 
5049 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5050 {
5051 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5052 
5053 	return vcpu->arch.smbase;
5054 }
5055 
5056 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5057 {
5058 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5059 
5060 	vcpu->arch.smbase = smbase;
5061 }
5062 
5063 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5064 			      u32 pmc)
5065 {
5066 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5067 }
5068 
5069 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5070 			     u32 pmc, u64 *pdata)
5071 {
5072 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5073 }
5074 
5075 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5076 {
5077 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5078 }
5079 
5080 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5081 {
5082 	preempt_disable();
5083 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5084 	/*
5085 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
5086 	 * so it may be clear at this point.
5087 	 */
5088 	clts();
5089 }
5090 
5091 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5092 {
5093 	preempt_enable();
5094 }
5095 
5096 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5097 			      struct x86_instruction_info *info,
5098 			      enum x86_intercept_stage stage)
5099 {
5100 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5101 }
5102 
5103 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5104 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5105 {
5106 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5107 }
5108 
5109 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5110 {
5111 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5112 }
5113 
5114 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5115 {
5116 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5117 }
5118 
5119 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5120 {
5121 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5122 }
5123 
5124 static const struct x86_emulate_ops emulate_ops = {
5125 	.read_gpr            = emulator_read_gpr,
5126 	.write_gpr           = emulator_write_gpr,
5127 	.read_std            = kvm_read_guest_virt_system,
5128 	.write_std           = kvm_write_guest_virt_system,
5129 	.read_phys           = kvm_read_guest_phys_system,
5130 	.fetch               = kvm_fetch_guest_virt,
5131 	.read_emulated       = emulator_read_emulated,
5132 	.write_emulated      = emulator_write_emulated,
5133 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5134 	.invlpg              = emulator_invlpg,
5135 	.pio_in_emulated     = emulator_pio_in_emulated,
5136 	.pio_out_emulated    = emulator_pio_out_emulated,
5137 	.get_segment         = emulator_get_segment,
5138 	.set_segment         = emulator_set_segment,
5139 	.get_cached_segment_base = emulator_get_cached_segment_base,
5140 	.get_gdt             = emulator_get_gdt,
5141 	.get_idt	     = emulator_get_idt,
5142 	.set_gdt             = emulator_set_gdt,
5143 	.set_idt	     = emulator_set_idt,
5144 	.get_cr              = emulator_get_cr,
5145 	.set_cr              = emulator_set_cr,
5146 	.cpl                 = emulator_get_cpl,
5147 	.get_dr              = emulator_get_dr,
5148 	.set_dr              = emulator_set_dr,
5149 	.get_smbase          = emulator_get_smbase,
5150 	.set_smbase          = emulator_set_smbase,
5151 	.set_msr             = emulator_set_msr,
5152 	.get_msr             = emulator_get_msr,
5153 	.check_pmc	     = emulator_check_pmc,
5154 	.read_pmc            = emulator_read_pmc,
5155 	.halt                = emulator_halt,
5156 	.wbinvd              = emulator_wbinvd,
5157 	.fix_hypercall       = emulator_fix_hypercall,
5158 	.get_fpu             = emulator_get_fpu,
5159 	.put_fpu             = emulator_put_fpu,
5160 	.intercept           = emulator_intercept,
5161 	.get_cpuid           = emulator_get_cpuid,
5162 	.set_nmi_mask        = emulator_set_nmi_mask,
5163 };
5164 
5165 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5166 {
5167 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5168 	/*
5169 	 * an sti; sti; sequence only disable interrupts for the first
5170 	 * instruction. So, if the last instruction, be it emulated or
5171 	 * not, left the system with the INT_STI flag enabled, it
5172 	 * means that the last instruction is an sti. We should not
5173 	 * leave the flag on in this case. The same goes for mov ss
5174 	 */
5175 	if (int_shadow & mask)
5176 		mask = 0;
5177 	if (unlikely(int_shadow || mask)) {
5178 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5179 		if (!mask)
5180 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5181 	}
5182 }
5183 
5184 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5185 {
5186 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5187 	if (ctxt->exception.vector == PF_VECTOR)
5188 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5189 
5190 	if (ctxt->exception.error_code_valid)
5191 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5192 				      ctxt->exception.error_code);
5193 	else
5194 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5195 	return false;
5196 }
5197 
5198 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5199 {
5200 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5201 	int cs_db, cs_l;
5202 
5203 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5204 
5205 	ctxt->eflags = kvm_get_rflags(vcpu);
5206 	ctxt->eip = kvm_rip_read(vcpu);
5207 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5208 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5209 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5210 		     cs_db				? X86EMUL_MODE_PROT32 :
5211 							  X86EMUL_MODE_PROT16;
5212 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5213 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5214 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5215 	ctxt->emul_flags = vcpu->arch.hflags;
5216 
5217 	init_decode_cache(ctxt);
5218 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5219 }
5220 
5221 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5222 {
5223 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5224 	int ret;
5225 
5226 	init_emulate_ctxt(vcpu);
5227 
5228 	ctxt->op_bytes = 2;
5229 	ctxt->ad_bytes = 2;
5230 	ctxt->_eip = ctxt->eip + inc_eip;
5231 	ret = emulate_int_real(ctxt, irq);
5232 
5233 	if (ret != X86EMUL_CONTINUE)
5234 		return EMULATE_FAIL;
5235 
5236 	ctxt->eip = ctxt->_eip;
5237 	kvm_rip_write(vcpu, ctxt->eip);
5238 	kvm_set_rflags(vcpu, ctxt->eflags);
5239 
5240 	if (irq == NMI_VECTOR)
5241 		vcpu->arch.nmi_pending = 0;
5242 	else
5243 		vcpu->arch.interrupt.pending = false;
5244 
5245 	return EMULATE_DONE;
5246 }
5247 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5248 
5249 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5250 {
5251 	int r = EMULATE_DONE;
5252 
5253 	++vcpu->stat.insn_emulation_fail;
5254 	trace_kvm_emulate_insn_failed(vcpu);
5255 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5256 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5257 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5258 		vcpu->run->internal.ndata = 0;
5259 		r = EMULATE_FAIL;
5260 	}
5261 	kvm_queue_exception(vcpu, UD_VECTOR);
5262 
5263 	return r;
5264 }
5265 
5266 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5267 				  bool write_fault_to_shadow_pgtable,
5268 				  int emulation_type)
5269 {
5270 	gpa_t gpa = cr2;
5271 	kvm_pfn_t pfn;
5272 
5273 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5274 		return false;
5275 
5276 	if (!vcpu->arch.mmu.direct_map) {
5277 		/*
5278 		 * Write permission should be allowed since only
5279 		 * write access need to be emulated.
5280 		 */
5281 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5282 
5283 		/*
5284 		 * If the mapping is invalid in guest, let cpu retry
5285 		 * it to generate fault.
5286 		 */
5287 		if (gpa == UNMAPPED_GVA)
5288 			return true;
5289 	}
5290 
5291 	/*
5292 	 * Do not retry the unhandleable instruction if it faults on the
5293 	 * readonly host memory, otherwise it will goto a infinite loop:
5294 	 * retry instruction -> write #PF -> emulation fail -> retry
5295 	 * instruction -> ...
5296 	 */
5297 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5298 
5299 	/*
5300 	 * If the instruction failed on the error pfn, it can not be fixed,
5301 	 * report the error to userspace.
5302 	 */
5303 	if (is_error_noslot_pfn(pfn))
5304 		return false;
5305 
5306 	kvm_release_pfn_clean(pfn);
5307 
5308 	/* The instructions are well-emulated on direct mmu. */
5309 	if (vcpu->arch.mmu.direct_map) {
5310 		unsigned int indirect_shadow_pages;
5311 
5312 		spin_lock(&vcpu->kvm->mmu_lock);
5313 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5314 		spin_unlock(&vcpu->kvm->mmu_lock);
5315 
5316 		if (indirect_shadow_pages)
5317 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5318 
5319 		return true;
5320 	}
5321 
5322 	/*
5323 	 * if emulation was due to access to shadowed page table
5324 	 * and it failed try to unshadow page and re-enter the
5325 	 * guest to let CPU execute the instruction.
5326 	 */
5327 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5328 
5329 	/*
5330 	 * If the access faults on its page table, it can not
5331 	 * be fixed by unprotecting shadow page and it should
5332 	 * be reported to userspace.
5333 	 */
5334 	return !write_fault_to_shadow_pgtable;
5335 }
5336 
5337 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5338 			      unsigned long cr2,  int emulation_type)
5339 {
5340 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5341 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5342 
5343 	last_retry_eip = vcpu->arch.last_retry_eip;
5344 	last_retry_addr = vcpu->arch.last_retry_addr;
5345 
5346 	/*
5347 	 * If the emulation is caused by #PF and it is non-page_table
5348 	 * writing instruction, it means the VM-EXIT is caused by shadow
5349 	 * page protected, we can zap the shadow page and retry this
5350 	 * instruction directly.
5351 	 *
5352 	 * Note: if the guest uses a non-page-table modifying instruction
5353 	 * on the PDE that points to the instruction, then we will unmap
5354 	 * the instruction and go to an infinite loop. So, we cache the
5355 	 * last retried eip and the last fault address, if we meet the eip
5356 	 * and the address again, we can break out of the potential infinite
5357 	 * loop.
5358 	 */
5359 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5360 
5361 	if (!(emulation_type & EMULTYPE_RETRY))
5362 		return false;
5363 
5364 	if (x86_page_table_writing_insn(ctxt))
5365 		return false;
5366 
5367 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5368 		return false;
5369 
5370 	vcpu->arch.last_retry_eip = ctxt->eip;
5371 	vcpu->arch.last_retry_addr = cr2;
5372 
5373 	if (!vcpu->arch.mmu.direct_map)
5374 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5375 
5376 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5377 
5378 	return true;
5379 }
5380 
5381 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5382 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5383 
5384 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5385 {
5386 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5387 		/* This is a good place to trace that we are exiting SMM.  */
5388 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5389 
5390 		/* Process a latched INIT or SMI, if any.  */
5391 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5392 	}
5393 
5394 	kvm_mmu_reset_context(vcpu);
5395 }
5396 
5397 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5398 {
5399 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5400 
5401 	vcpu->arch.hflags = emul_flags;
5402 
5403 	if (changed & HF_SMM_MASK)
5404 		kvm_smm_changed(vcpu);
5405 }
5406 
5407 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5408 				unsigned long *db)
5409 {
5410 	u32 dr6 = 0;
5411 	int i;
5412 	u32 enable, rwlen;
5413 
5414 	enable = dr7;
5415 	rwlen = dr7 >> 16;
5416 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5417 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5418 			dr6 |= (1 << i);
5419 	return dr6;
5420 }
5421 
5422 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5423 {
5424 	struct kvm_run *kvm_run = vcpu->run;
5425 
5426 	/*
5427 	 * rflags is the old, "raw" value of the flags.  The new value has
5428 	 * not been saved yet.
5429 	 *
5430 	 * This is correct even for TF set by the guest, because "the
5431 	 * processor will not generate this exception after the instruction
5432 	 * that sets the TF flag".
5433 	 */
5434 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5435 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5436 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5437 						  DR6_RTM;
5438 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5439 			kvm_run->debug.arch.exception = DB_VECTOR;
5440 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5441 			*r = EMULATE_USER_EXIT;
5442 		} else {
5443 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5444 			/*
5445 			 * "Certain debug exceptions may clear bit 0-3.  The
5446 			 * remaining contents of the DR6 register are never
5447 			 * cleared by the processor".
5448 			 */
5449 			vcpu->arch.dr6 &= ~15;
5450 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5451 			kvm_queue_exception(vcpu, DB_VECTOR);
5452 		}
5453 	}
5454 }
5455 
5456 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5457 {
5458 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5459 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5460 		struct kvm_run *kvm_run = vcpu->run;
5461 		unsigned long eip = kvm_get_linear_rip(vcpu);
5462 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5463 					   vcpu->arch.guest_debug_dr7,
5464 					   vcpu->arch.eff_db);
5465 
5466 		if (dr6 != 0) {
5467 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5468 			kvm_run->debug.arch.pc = eip;
5469 			kvm_run->debug.arch.exception = DB_VECTOR;
5470 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5471 			*r = EMULATE_USER_EXIT;
5472 			return true;
5473 		}
5474 	}
5475 
5476 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5477 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5478 		unsigned long eip = kvm_get_linear_rip(vcpu);
5479 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5480 					   vcpu->arch.dr7,
5481 					   vcpu->arch.db);
5482 
5483 		if (dr6 != 0) {
5484 			vcpu->arch.dr6 &= ~15;
5485 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5486 			kvm_queue_exception(vcpu, DB_VECTOR);
5487 			*r = EMULATE_DONE;
5488 			return true;
5489 		}
5490 	}
5491 
5492 	return false;
5493 }
5494 
5495 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5496 			    unsigned long cr2,
5497 			    int emulation_type,
5498 			    void *insn,
5499 			    int insn_len)
5500 {
5501 	int r;
5502 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5503 	bool writeback = true;
5504 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5505 
5506 	/*
5507 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5508 	 * never reused.
5509 	 */
5510 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5511 	kvm_clear_exception_queue(vcpu);
5512 
5513 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5514 		init_emulate_ctxt(vcpu);
5515 
5516 		/*
5517 		 * We will reenter on the same instruction since
5518 		 * we do not set complete_userspace_io.  This does not
5519 		 * handle watchpoints yet, those would be handled in
5520 		 * the emulate_ops.
5521 		 */
5522 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5523 			return r;
5524 
5525 		ctxt->interruptibility = 0;
5526 		ctxt->have_exception = false;
5527 		ctxt->exception.vector = -1;
5528 		ctxt->perm_ok = false;
5529 
5530 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5531 
5532 		r = x86_decode_insn(ctxt, insn, insn_len);
5533 
5534 		trace_kvm_emulate_insn_start(vcpu);
5535 		++vcpu->stat.insn_emulation;
5536 		if (r != EMULATION_OK)  {
5537 			if (emulation_type & EMULTYPE_TRAP_UD)
5538 				return EMULATE_FAIL;
5539 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5540 						emulation_type))
5541 				return EMULATE_DONE;
5542 			if (emulation_type & EMULTYPE_SKIP)
5543 				return EMULATE_FAIL;
5544 			return handle_emulation_failure(vcpu);
5545 		}
5546 	}
5547 
5548 	if (emulation_type & EMULTYPE_SKIP) {
5549 		kvm_rip_write(vcpu, ctxt->_eip);
5550 		if (ctxt->eflags & X86_EFLAGS_RF)
5551 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5552 		return EMULATE_DONE;
5553 	}
5554 
5555 	if (retry_instruction(ctxt, cr2, emulation_type))
5556 		return EMULATE_DONE;
5557 
5558 	/* this is needed for vmware backdoor interface to work since it
5559 	   changes registers values  during IO operation */
5560 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5561 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5562 		emulator_invalidate_register_cache(ctxt);
5563 	}
5564 
5565 restart:
5566 	r = x86_emulate_insn(ctxt);
5567 
5568 	if (r == EMULATION_INTERCEPTED)
5569 		return EMULATE_DONE;
5570 
5571 	if (r == EMULATION_FAILED) {
5572 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5573 					emulation_type))
5574 			return EMULATE_DONE;
5575 
5576 		return handle_emulation_failure(vcpu);
5577 	}
5578 
5579 	if (ctxt->have_exception) {
5580 		r = EMULATE_DONE;
5581 		if (inject_emulated_exception(vcpu))
5582 			return r;
5583 	} else if (vcpu->arch.pio.count) {
5584 		if (!vcpu->arch.pio.in) {
5585 			/* FIXME: return into emulator if single-stepping.  */
5586 			vcpu->arch.pio.count = 0;
5587 		} else {
5588 			writeback = false;
5589 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5590 		}
5591 		r = EMULATE_USER_EXIT;
5592 	} else if (vcpu->mmio_needed) {
5593 		if (!vcpu->mmio_is_write)
5594 			writeback = false;
5595 		r = EMULATE_USER_EXIT;
5596 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5597 	} else if (r == EMULATION_RESTART)
5598 		goto restart;
5599 	else
5600 		r = EMULATE_DONE;
5601 
5602 	if (writeback) {
5603 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5604 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5605 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5606 		if (vcpu->arch.hflags != ctxt->emul_flags)
5607 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5608 		kvm_rip_write(vcpu, ctxt->eip);
5609 		if (r == EMULATE_DONE)
5610 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5611 		if (!ctxt->have_exception ||
5612 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5613 			__kvm_set_rflags(vcpu, ctxt->eflags);
5614 
5615 		/*
5616 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5617 		 * do nothing, and it will be requested again as soon as
5618 		 * the shadow expires.  But we still need to check here,
5619 		 * because POPF has no interrupt shadow.
5620 		 */
5621 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5622 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5623 	} else
5624 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5625 
5626 	return r;
5627 }
5628 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5629 
5630 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5631 {
5632 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5633 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5634 					    size, port, &val, 1);
5635 	/* do not return to emulator after return from userspace */
5636 	vcpu->arch.pio.count = 0;
5637 	return ret;
5638 }
5639 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5640 
5641 static int kvmclock_cpu_down_prep(unsigned int cpu)
5642 {
5643 	__this_cpu_write(cpu_tsc_khz, 0);
5644 	return 0;
5645 }
5646 
5647 static void tsc_khz_changed(void *data)
5648 {
5649 	struct cpufreq_freqs *freq = data;
5650 	unsigned long khz = 0;
5651 
5652 	if (data)
5653 		khz = freq->new;
5654 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5655 		khz = cpufreq_quick_get(raw_smp_processor_id());
5656 	if (!khz)
5657 		khz = tsc_khz;
5658 	__this_cpu_write(cpu_tsc_khz, khz);
5659 }
5660 
5661 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5662 				     void *data)
5663 {
5664 	struct cpufreq_freqs *freq = data;
5665 	struct kvm *kvm;
5666 	struct kvm_vcpu *vcpu;
5667 	int i, send_ipi = 0;
5668 
5669 	/*
5670 	 * We allow guests to temporarily run on slowing clocks,
5671 	 * provided we notify them after, or to run on accelerating
5672 	 * clocks, provided we notify them before.  Thus time never
5673 	 * goes backwards.
5674 	 *
5675 	 * However, we have a problem.  We can't atomically update
5676 	 * the frequency of a given CPU from this function; it is
5677 	 * merely a notifier, which can be called from any CPU.
5678 	 * Changing the TSC frequency at arbitrary points in time
5679 	 * requires a recomputation of local variables related to
5680 	 * the TSC for each VCPU.  We must flag these local variables
5681 	 * to be updated and be sure the update takes place with the
5682 	 * new frequency before any guests proceed.
5683 	 *
5684 	 * Unfortunately, the combination of hotplug CPU and frequency
5685 	 * change creates an intractable locking scenario; the order
5686 	 * of when these callouts happen is undefined with respect to
5687 	 * CPU hotplug, and they can race with each other.  As such,
5688 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5689 	 * undefined; you can actually have a CPU frequency change take
5690 	 * place in between the computation of X and the setting of the
5691 	 * variable.  To protect against this problem, all updates of
5692 	 * the per_cpu tsc_khz variable are done in an interrupt
5693 	 * protected IPI, and all callers wishing to update the value
5694 	 * must wait for a synchronous IPI to complete (which is trivial
5695 	 * if the caller is on the CPU already).  This establishes the
5696 	 * necessary total order on variable updates.
5697 	 *
5698 	 * Note that because a guest time update may take place
5699 	 * anytime after the setting of the VCPU's request bit, the
5700 	 * correct TSC value must be set before the request.  However,
5701 	 * to ensure the update actually makes it to any guest which
5702 	 * starts running in hardware virtualization between the set
5703 	 * and the acquisition of the spinlock, we must also ping the
5704 	 * CPU after setting the request bit.
5705 	 *
5706 	 */
5707 
5708 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5709 		return 0;
5710 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5711 		return 0;
5712 
5713 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5714 
5715 	spin_lock(&kvm_lock);
5716 	list_for_each_entry(kvm, &vm_list, vm_list) {
5717 		kvm_for_each_vcpu(i, vcpu, kvm) {
5718 			if (vcpu->cpu != freq->cpu)
5719 				continue;
5720 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5721 			if (vcpu->cpu != smp_processor_id())
5722 				send_ipi = 1;
5723 		}
5724 	}
5725 	spin_unlock(&kvm_lock);
5726 
5727 	if (freq->old < freq->new && send_ipi) {
5728 		/*
5729 		 * We upscale the frequency.  Must make the guest
5730 		 * doesn't see old kvmclock values while running with
5731 		 * the new frequency, otherwise we risk the guest sees
5732 		 * time go backwards.
5733 		 *
5734 		 * In case we update the frequency for another cpu
5735 		 * (which might be in guest context) send an interrupt
5736 		 * to kick the cpu out of guest context.  Next time
5737 		 * guest context is entered kvmclock will be updated,
5738 		 * so the guest will not see stale values.
5739 		 */
5740 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5741 	}
5742 	return 0;
5743 }
5744 
5745 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5746 	.notifier_call  = kvmclock_cpufreq_notifier
5747 };
5748 
5749 static int kvmclock_cpu_online(unsigned int cpu)
5750 {
5751 	tsc_khz_changed(NULL);
5752 	return 0;
5753 }
5754 
5755 static void kvm_timer_init(void)
5756 {
5757 	max_tsc_khz = tsc_khz;
5758 
5759 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5760 #ifdef CONFIG_CPU_FREQ
5761 		struct cpufreq_policy policy;
5762 		int cpu;
5763 
5764 		memset(&policy, 0, sizeof(policy));
5765 		cpu = get_cpu();
5766 		cpufreq_get_policy(&policy, cpu);
5767 		if (policy.cpuinfo.max_freq)
5768 			max_tsc_khz = policy.cpuinfo.max_freq;
5769 		put_cpu();
5770 #endif
5771 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5772 					  CPUFREQ_TRANSITION_NOTIFIER);
5773 	}
5774 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5775 
5776 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE",
5777 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
5778 }
5779 
5780 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5781 
5782 int kvm_is_in_guest(void)
5783 {
5784 	return __this_cpu_read(current_vcpu) != NULL;
5785 }
5786 
5787 static int kvm_is_user_mode(void)
5788 {
5789 	int user_mode = 3;
5790 
5791 	if (__this_cpu_read(current_vcpu))
5792 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5793 
5794 	return user_mode != 0;
5795 }
5796 
5797 static unsigned long kvm_get_guest_ip(void)
5798 {
5799 	unsigned long ip = 0;
5800 
5801 	if (__this_cpu_read(current_vcpu))
5802 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5803 
5804 	return ip;
5805 }
5806 
5807 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5808 	.is_in_guest		= kvm_is_in_guest,
5809 	.is_user_mode		= kvm_is_user_mode,
5810 	.get_guest_ip		= kvm_get_guest_ip,
5811 };
5812 
5813 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5814 {
5815 	__this_cpu_write(current_vcpu, vcpu);
5816 }
5817 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5818 
5819 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5820 {
5821 	__this_cpu_write(current_vcpu, NULL);
5822 }
5823 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5824 
5825 static void kvm_set_mmio_spte_mask(void)
5826 {
5827 	u64 mask;
5828 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5829 
5830 	/*
5831 	 * Set the reserved bits and the present bit of an paging-structure
5832 	 * entry to generate page fault with PFER.RSV = 1.
5833 	 */
5834 	 /* Mask the reserved physical address bits. */
5835 	mask = rsvd_bits(maxphyaddr, 51);
5836 
5837 	/* Bit 62 is always reserved for 32bit host. */
5838 	mask |= 0x3ull << 62;
5839 
5840 	/* Set the present bit. */
5841 	mask |= 1ull;
5842 
5843 #ifdef CONFIG_X86_64
5844 	/*
5845 	 * If reserved bit is not supported, clear the present bit to disable
5846 	 * mmio page fault.
5847 	 */
5848 	if (maxphyaddr == 52)
5849 		mask &= ~1ull;
5850 #endif
5851 
5852 	kvm_mmu_set_mmio_spte_mask(mask);
5853 }
5854 
5855 #ifdef CONFIG_X86_64
5856 static void pvclock_gtod_update_fn(struct work_struct *work)
5857 {
5858 	struct kvm *kvm;
5859 
5860 	struct kvm_vcpu *vcpu;
5861 	int i;
5862 
5863 	spin_lock(&kvm_lock);
5864 	list_for_each_entry(kvm, &vm_list, vm_list)
5865 		kvm_for_each_vcpu(i, vcpu, kvm)
5866 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5867 	atomic_set(&kvm_guest_has_master_clock, 0);
5868 	spin_unlock(&kvm_lock);
5869 }
5870 
5871 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5872 
5873 /*
5874  * Notification about pvclock gtod data update.
5875  */
5876 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5877 			       void *priv)
5878 {
5879 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5880 	struct timekeeper *tk = priv;
5881 
5882 	update_pvclock_gtod(tk);
5883 
5884 	/* disable master clock if host does not trust, or does not
5885 	 * use, TSC clocksource
5886 	 */
5887 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5888 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5889 		queue_work(system_long_wq, &pvclock_gtod_work);
5890 
5891 	return 0;
5892 }
5893 
5894 static struct notifier_block pvclock_gtod_notifier = {
5895 	.notifier_call = pvclock_gtod_notify,
5896 };
5897 #endif
5898 
5899 int kvm_arch_init(void *opaque)
5900 {
5901 	int r;
5902 	struct kvm_x86_ops *ops = opaque;
5903 
5904 	if (kvm_x86_ops) {
5905 		printk(KERN_ERR "kvm: already loaded the other module\n");
5906 		r = -EEXIST;
5907 		goto out;
5908 	}
5909 
5910 	if (!ops->cpu_has_kvm_support()) {
5911 		printk(KERN_ERR "kvm: no hardware support\n");
5912 		r = -EOPNOTSUPP;
5913 		goto out;
5914 	}
5915 	if (ops->disabled_by_bios()) {
5916 		printk(KERN_ERR "kvm: disabled by bios\n");
5917 		r = -EOPNOTSUPP;
5918 		goto out;
5919 	}
5920 
5921 	r = -ENOMEM;
5922 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5923 	if (!shared_msrs) {
5924 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5925 		goto out;
5926 	}
5927 
5928 	r = kvm_mmu_module_init();
5929 	if (r)
5930 		goto out_free_percpu;
5931 
5932 	kvm_set_mmio_spte_mask();
5933 
5934 	kvm_x86_ops = ops;
5935 
5936 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5937 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
5938 			PT_PRESENT_MASK);
5939 	kvm_timer_init();
5940 
5941 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5942 
5943 	if (boot_cpu_has(X86_FEATURE_XSAVE))
5944 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5945 
5946 	kvm_lapic_init();
5947 #ifdef CONFIG_X86_64
5948 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5949 #endif
5950 
5951 	return 0;
5952 
5953 out_free_percpu:
5954 	free_percpu(shared_msrs);
5955 out:
5956 	return r;
5957 }
5958 
5959 void kvm_arch_exit(void)
5960 {
5961 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5962 
5963 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5964 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5965 					    CPUFREQ_TRANSITION_NOTIFIER);
5966 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
5967 #ifdef CONFIG_X86_64
5968 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5969 #endif
5970 	kvm_x86_ops = NULL;
5971 	kvm_mmu_module_exit();
5972 	free_percpu(shared_msrs);
5973 }
5974 
5975 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5976 {
5977 	++vcpu->stat.halt_exits;
5978 	if (lapic_in_kernel(vcpu)) {
5979 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5980 		return 1;
5981 	} else {
5982 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5983 		return 0;
5984 	}
5985 }
5986 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5987 
5988 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5989 {
5990 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5991 	return kvm_vcpu_halt(vcpu);
5992 }
5993 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5994 
5995 /*
5996  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5997  *
5998  * @apicid - apicid of vcpu to be kicked.
5999  */
6000 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6001 {
6002 	struct kvm_lapic_irq lapic_irq;
6003 
6004 	lapic_irq.shorthand = 0;
6005 	lapic_irq.dest_mode = 0;
6006 	lapic_irq.dest_id = apicid;
6007 	lapic_irq.msi_redir_hint = false;
6008 
6009 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6010 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6011 }
6012 
6013 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6014 {
6015 	vcpu->arch.apicv_active = false;
6016 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6017 }
6018 
6019 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6020 {
6021 	unsigned long nr, a0, a1, a2, a3, ret;
6022 	int op_64_bit, r = 1;
6023 
6024 	kvm_x86_ops->skip_emulated_instruction(vcpu);
6025 
6026 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6027 		return kvm_hv_hypercall(vcpu);
6028 
6029 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6030 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6031 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6032 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6033 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6034 
6035 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6036 
6037 	op_64_bit = is_64_bit_mode(vcpu);
6038 	if (!op_64_bit) {
6039 		nr &= 0xFFFFFFFF;
6040 		a0 &= 0xFFFFFFFF;
6041 		a1 &= 0xFFFFFFFF;
6042 		a2 &= 0xFFFFFFFF;
6043 		a3 &= 0xFFFFFFFF;
6044 	}
6045 
6046 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6047 		ret = -KVM_EPERM;
6048 		goto out;
6049 	}
6050 
6051 	switch (nr) {
6052 	case KVM_HC_VAPIC_POLL_IRQ:
6053 		ret = 0;
6054 		break;
6055 	case KVM_HC_KICK_CPU:
6056 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6057 		ret = 0;
6058 		break;
6059 	default:
6060 		ret = -KVM_ENOSYS;
6061 		break;
6062 	}
6063 out:
6064 	if (!op_64_bit)
6065 		ret = (u32)ret;
6066 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6067 	++vcpu->stat.hypercalls;
6068 	return r;
6069 }
6070 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6071 
6072 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6073 {
6074 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6075 	char instruction[3];
6076 	unsigned long rip = kvm_rip_read(vcpu);
6077 
6078 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6079 
6080 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6081 }
6082 
6083 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6084 {
6085 	return vcpu->run->request_interrupt_window &&
6086 		likely(!pic_in_kernel(vcpu->kvm));
6087 }
6088 
6089 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6090 {
6091 	struct kvm_run *kvm_run = vcpu->run;
6092 
6093 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6094 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6095 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6096 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6097 	kvm_run->ready_for_interrupt_injection =
6098 		pic_in_kernel(vcpu->kvm) ||
6099 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6100 }
6101 
6102 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6103 {
6104 	int max_irr, tpr;
6105 
6106 	if (!kvm_x86_ops->update_cr8_intercept)
6107 		return;
6108 
6109 	if (!lapic_in_kernel(vcpu))
6110 		return;
6111 
6112 	if (vcpu->arch.apicv_active)
6113 		return;
6114 
6115 	if (!vcpu->arch.apic->vapic_addr)
6116 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6117 	else
6118 		max_irr = -1;
6119 
6120 	if (max_irr != -1)
6121 		max_irr >>= 4;
6122 
6123 	tpr = kvm_lapic_get_cr8(vcpu);
6124 
6125 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6126 }
6127 
6128 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6129 {
6130 	int r;
6131 
6132 	/* try to reinject previous events if any */
6133 	if (vcpu->arch.exception.pending) {
6134 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6135 					vcpu->arch.exception.has_error_code,
6136 					vcpu->arch.exception.error_code);
6137 
6138 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6139 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6140 					     X86_EFLAGS_RF);
6141 
6142 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6143 		    (vcpu->arch.dr7 & DR7_GD)) {
6144 			vcpu->arch.dr7 &= ~DR7_GD;
6145 			kvm_update_dr7(vcpu);
6146 		}
6147 
6148 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6149 					  vcpu->arch.exception.has_error_code,
6150 					  vcpu->arch.exception.error_code,
6151 					  vcpu->arch.exception.reinject);
6152 		return 0;
6153 	}
6154 
6155 	if (vcpu->arch.nmi_injected) {
6156 		kvm_x86_ops->set_nmi(vcpu);
6157 		return 0;
6158 	}
6159 
6160 	if (vcpu->arch.interrupt.pending) {
6161 		kvm_x86_ops->set_irq(vcpu);
6162 		return 0;
6163 	}
6164 
6165 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6166 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6167 		if (r != 0)
6168 			return r;
6169 	}
6170 
6171 	/* try to inject new event if pending */
6172 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6173 		vcpu->arch.smi_pending = false;
6174 		enter_smm(vcpu);
6175 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6176 		--vcpu->arch.nmi_pending;
6177 		vcpu->arch.nmi_injected = true;
6178 		kvm_x86_ops->set_nmi(vcpu);
6179 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6180 		/*
6181 		 * Because interrupts can be injected asynchronously, we are
6182 		 * calling check_nested_events again here to avoid a race condition.
6183 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6184 		 * proposal and current concerns.  Perhaps we should be setting
6185 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6186 		 */
6187 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6188 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6189 			if (r != 0)
6190 				return r;
6191 		}
6192 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6193 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6194 					    false);
6195 			kvm_x86_ops->set_irq(vcpu);
6196 		}
6197 	}
6198 
6199 	return 0;
6200 }
6201 
6202 static void process_nmi(struct kvm_vcpu *vcpu)
6203 {
6204 	unsigned limit = 2;
6205 
6206 	/*
6207 	 * x86 is limited to one NMI running, and one NMI pending after it.
6208 	 * If an NMI is already in progress, limit further NMIs to just one.
6209 	 * Otherwise, allow two (and we'll inject the first one immediately).
6210 	 */
6211 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6212 		limit = 1;
6213 
6214 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6215 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6216 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6217 }
6218 
6219 #define put_smstate(type, buf, offset, val)			  \
6220 	*(type *)((buf) + (offset) - 0x7e00) = val
6221 
6222 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6223 {
6224 	u32 flags = 0;
6225 	flags |= seg->g       << 23;
6226 	flags |= seg->db      << 22;
6227 	flags |= seg->l       << 21;
6228 	flags |= seg->avl     << 20;
6229 	flags |= seg->present << 15;
6230 	flags |= seg->dpl     << 13;
6231 	flags |= seg->s       << 12;
6232 	flags |= seg->type    << 8;
6233 	return flags;
6234 }
6235 
6236 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6237 {
6238 	struct kvm_segment seg;
6239 	int offset;
6240 
6241 	kvm_get_segment(vcpu, &seg, n);
6242 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6243 
6244 	if (n < 3)
6245 		offset = 0x7f84 + n * 12;
6246 	else
6247 		offset = 0x7f2c + (n - 3) * 12;
6248 
6249 	put_smstate(u32, buf, offset + 8, seg.base);
6250 	put_smstate(u32, buf, offset + 4, seg.limit);
6251 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6252 }
6253 
6254 #ifdef CONFIG_X86_64
6255 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6256 {
6257 	struct kvm_segment seg;
6258 	int offset;
6259 	u16 flags;
6260 
6261 	kvm_get_segment(vcpu, &seg, n);
6262 	offset = 0x7e00 + n * 16;
6263 
6264 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6265 	put_smstate(u16, buf, offset, seg.selector);
6266 	put_smstate(u16, buf, offset + 2, flags);
6267 	put_smstate(u32, buf, offset + 4, seg.limit);
6268 	put_smstate(u64, buf, offset + 8, seg.base);
6269 }
6270 #endif
6271 
6272 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6273 {
6274 	struct desc_ptr dt;
6275 	struct kvm_segment seg;
6276 	unsigned long val;
6277 	int i;
6278 
6279 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6280 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6281 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6282 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6283 
6284 	for (i = 0; i < 8; i++)
6285 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6286 
6287 	kvm_get_dr(vcpu, 6, &val);
6288 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6289 	kvm_get_dr(vcpu, 7, &val);
6290 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6291 
6292 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6293 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6294 	put_smstate(u32, buf, 0x7f64, seg.base);
6295 	put_smstate(u32, buf, 0x7f60, seg.limit);
6296 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6297 
6298 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6299 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6300 	put_smstate(u32, buf, 0x7f80, seg.base);
6301 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6302 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6303 
6304 	kvm_x86_ops->get_gdt(vcpu, &dt);
6305 	put_smstate(u32, buf, 0x7f74, dt.address);
6306 	put_smstate(u32, buf, 0x7f70, dt.size);
6307 
6308 	kvm_x86_ops->get_idt(vcpu, &dt);
6309 	put_smstate(u32, buf, 0x7f58, dt.address);
6310 	put_smstate(u32, buf, 0x7f54, dt.size);
6311 
6312 	for (i = 0; i < 6; i++)
6313 		enter_smm_save_seg_32(vcpu, buf, i);
6314 
6315 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6316 
6317 	/* revision id */
6318 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6319 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6320 }
6321 
6322 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6323 {
6324 #ifdef CONFIG_X86_64
6325 	struct desc_ptr dt;
6326 	struct kvm_segment seg;
6327 	unsigned long val;
6328 	int i;
6329 
6330 	for (i = 0; i < 16; i++)
6331 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6332 
6333 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6334 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6335 
6336 	kvm_get_dr(vcpu, 6, &val);
6337 	put_smstate(u64, buf, 0x7f68, val);
6338 	kvm_get_dr(vcpu, 7, &val);
6339 	put_smstate(u64, buf, 0x7f60, val);
6340 
6341 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6342 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6343 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6344 
6345 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6346 
6347 	/* revision id */
6348 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6349 
6350 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6351 
6352 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6353 	put_smstate(u16, buf, 0x7e90, seg.selector);
6354 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6355 	put_smstate(u32, buf, 0x7e94, seg.limit);
6356 	put_smstate(u64, buf, 0x7e98, seg.base);
6357 
6358 	kvm_x86_ops->get_idt(vcpu, &dt);
6359 	put_smstate(u32, buf, 0x7e84, dt.size);
6360 	put_smstate(u64, buf, 0x7e88, dt.address);
6361 
6362 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6363 	put_smstate(u16, buf, 0x7e70, seg.selector);
6364 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6365 	put_smstate(u32, buf, 0x7e74, seg.limit);
6366 	put_smstate(u64, buf, 0x7e78, seg.base);
6367 
6368 	kvm_x86_ops->get_gdt(vcpu, &dt);
6369 	put_smstate(u32, buf, 0x7e64, dt.size);
6370 	put_smstate(u64, buf, 0x7e68, dt.address);
6371 
6372 	for (i = 0; i < 6; i++)
6373 		enter_smm_save_seg_64(vcpu, buf, i);
6374 #else
6375 	WARN_ON_ONCE(1);
6376 #endif
6377 }
6378 
6379 static void enter_smm(struct kvm_vcpu *vcpu)
6380 {
6381 	struct kvm_segment cs, ds;
6382 	struct desc_ptr dt;
6383 	char buf[512];
6384 	u32 cr0;
6385 
6386 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6387 	vcpu->arch.hflags |= HF_SMM_MASK;
6388 	memset(buf, 0, 512);
6389 	if (guest_cpuid_has_longmode(vcpu))
6390 		enter_smm_save_state_64(vcpu, buf);
6391 	else
6392 		enter_smm_save_state_32(vcpu, buf);
6393 
6394 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6395 
6396 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6397 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6398 	else
6399 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6400 
6401 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6402 	kvm_rip_write(vcpu, 0x8000);
6403 
6404 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6405 	kvm_x86_ops->set_cr0(vcpu, cr0);
6406 	vcpu->arch.cr0 = cr0;
6407 
6408 	kvm_x86_ops->set_cr4(vcpu, 0);
6409 
6410 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6411 	dt.address = dt.size = 0;
6412 	kvm_x86_ops->set_idt(vcpu, &dt);
6413 
6414 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6415 
6416 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6417 	cs.base = vcpu->arch.smbase;
6418 
6419 	ds.selector = 0;
6420 	ds.base = 0;
6421 
6422 	cs.limit    = ds.limit = 0xffffffff;
6423 	cs.type     = ds.type = 0x3;
6424 	cs.dpl      = ds.dpl = 0;
6425 	cs.db       = ds.db = 0;
6426 	cs.s        = ds.s = 1;
6427 	cs.l        = ds.l = 0;
6428 	cs.g        = ds.g = 1;
6429 	cs.avl      = ds.avl = 0;
6430 	cs.present  = ds.present = 1;
6431 	cs.unusable = ds.unusable = 0;
6432 	cs.padding  = ds.padding = 0;
6433 
6434 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6435 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6436 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6437 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6438 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6439 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6440 
6441 	if (guest_cpuid_has_longmode(vcpu))
6442 		kvm_x86_ops->set_efer(vcpu, 0);
6443 
6444 	kvm_update_cpuid(vcpu);
6445 	kvm_mmu_reset_context(vcpu);
6446 }
6447 
6448 static void process_smi(struct kvm_vcpu *vcpu)
6449 {
6450 	vcpu->arch.smi_pending = true;
6451 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6452 }
6453 
6454 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6455 {
6456 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6457 }
6458 
6459 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6460 {
6461 	u64 eoi_exit_bitmap[4];
6462 
6463 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6464 		return;
6465 
6466 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6467 
6468 	if (irqchip_split(vcpu->kvm))
6469 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6470 	else {
6471 		if (vcpu->arch.apicv_active)
6472 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6473 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6474 	}
6475 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6476 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6477 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6478 }
6479 
6480 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6481 {
6482 	++vcpu->stat.tlb_flush;
6483 	kvm_x86_ops->tlb_flush(vcpu);
6484 }
6485 
6486 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6487 {
6488 	struct page *page = NULL;
6489 
6490 	if (!lapic_in_kernel(vcpu))
6491 		return;
6492 
6493 	if (!kvm_x86_ops->set_apic_access_page_addr)
6494 		return;
6495 
6496 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6497 	if (is_error_page(page))
6498 		return;
6499 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6500 
6501 	/*
6502 	 * Do not pin apic access page in memory, the MMU notifier
6503 	 * will call us again if it is migrated or swapped out.
6504 	 */
6505 	put_page(page);
6506 }
6507 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6508 
6509 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6510 					   unsigned long address)
6511 {
6512 	/*
6513 	 * The physical address of apic access page is stored in the VMCS.
6514 	 * Update it when it becomes invalid.
6515 	 */
6516 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6517 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6518 }
6519 
6520 /*
6521  * Returns 1 to let vcpu_run() continue the guest execution loop without
6522  * exiting to the userspace.  Otherwise, the value will be returned to the
6523  * userspace.
6524  */
6525 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6526 {
6527 	int r;
6528 	bool req_int_win =
6529 		dm_request_for_irq_injection(vcpu) &&
6530 		kvm_cpu_accept_dm_intr(vcpu);
6531 
6532 	bool req_immediate_exit = false;
6533 
6534 	if (vcpu->requests) {
6535 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6536 			kvm_mmu_unload(vcpu);
6537 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6538 			__kvm_migrate_timers(vcpu);
6539 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6540 			kvm_gen_update_masterclock(vcpu->kvm);
6541 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6542 			kvm_gen_kvmclock_update(vcpu);
6543 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6544 			r = kvm_guest_time_update(vcpu);
6545 			if (unlikely(r))
6546 				goto out;
6547 		}
6548 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6549 			kvm_mmu_sync_roots(vcpu);
6550 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6551 			kvm_vcpu_flush_tlb(vcpu);
6552 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6553 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6554 			r = 0;
6555 			goto out;
6556 		}
6557 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6558 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6559 			r = 0;
6560 			goto out;
6561 		}
6562 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6563 			vcpu->fpu_active = 0;
6564 			kvm_x86_ops->fpu_deactivate(vcpu);
6565 		}
6566 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6567 			/* Page is swapped out. Do synthetic halt */
6568 			vcpu->arch.apf.halted = true;
6569 			r = 1;
6570 			goto out;
6571 		}
6572 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6573 			record_steal_time(vcpu);
6574 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6575 			process_smi(vcpu);
6576 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6577 			process_nmi(vcpu);
6578 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6579 			kvm_pmu_handle_event(vcpu);
6580 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6581 			kvm_pmu_deliver_pmi(vcpu);
6582 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6583 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6584 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6585 				     vcpu->arch.ioapic_handled_vectors)) {
6586 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6587 				vcpu->run->eoi.vector =
6588 						vcpu->arch.pending_ioapic_eoi;
6589 				r = 0;
6590 				goto out;
6591 			}
6592 		}
6593 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6594 			vcpu_scan_ioapic(vcpu);
6595 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6596 			kvm_vcpu_reload_apic_access_page(vcpu);
6597 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6598 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6599 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6600 			r = 0;
6601 			goto out;
6602 		}
6603 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6604 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6605 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6606 			r = 0;
6607 			goto out;
6608 		}
6609 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6610 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6611 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6612 			r = 0;
6613 			goto out;
6614 		}
6615 
6616 		/*
6617 		 * KVM_REQ_HV_STIMER has to be processed after
6618 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6619 		 * depend on the guest clock being up-to-date
6620 		 */
6621 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6622 			kvm_hv_process_stimers(vcpu);
6623 	}
6624 
6625 	/*
6626 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6627 	 * VT-d hardware, so we have to update RVI unconditionally.
6628 	 */
6629 	if (kvm_lapic_enabled(vcpu)) {
6630 		/*
6631 		 * Update architecture specific hints for APIC
6632 		 * virtual interrupt delivery.
6633 		 */
6634 		if (vcpu->arch.apicv_active)
6635 			kvm_x86_ops->hwapic_irr_update(vcpu,
6636 				kvm_lapic_find_highest_irr(vcpu));
6637 	}
6638 
6639 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6640 		kvm_apic_accept_events(vcpu);
6641 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6642 			r = 1;
6643 			goto out;
6644 		}
6645 
6646 		if (inject_pending_event(vcpu, req_int_win) != 0)
6647 			req_immediate_exit = true;
6648 		else {
6649 			/* Enable NMI/IRQ window open exits if needed.
6650 			 *
6651 			 * SMIs have two cases: 1) they can be nested, and
6652 			 * then there is nothing to do here because RSM will
6653 			 * cause a vmexit anyway; 2) or the SMI can be pending
6654 			 * because inject_pending_event has completed the
6655 			 * injection of an IRQ or NMI from the previous vmexit,
6656 			 * and then we request an immediate exit to inject the SMI.
6657 			 */
6658 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
6659 				req_immediate_exit = true;
6660 			if (vcpu->arch.nmi_pending)
6661 				kvm_x86_ops->enable_nmi_window(vcpu);
6662 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6663 				kvm_x86_ops->enable_irq_window(vcpu);
6664 		}
6665 
6666 		if (kvm_lapic_enabled(vcpu)) {
6667 			update_cr8_intercept(vcpu);
6668 			kvm_lapic_sync_to_vapic(vcpu);
6669 		}
6670 	}
6671 
6672 	r = kvm_mmu_reload(vcpu);
6673 	if (unlikely(r)) {
6674 		goto cancel_injection;
6675 	}
6676 
6677 	preempt_disable();
6678 
6679 	kvm_x86_ops->prepare_guest_switch(vcpu);
6680 	if (vcpu->fpu_active)
6681 		kvm_load_guest_fpu(vcpu);
6682 	vcpu->mode = IN_GUEST_MODE;
6683 
6684 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6685 
6686 	/*
6687 	 * We should set ->mode before check ->requests,
6688 	 * Please see the comment in kvm_make_all_cpus_request.
6689 	 * This also orders the write to mode from any reads
6690 	 * to the page tables done while the VCPU is running.
6691 	 * Please see the comment in kvm_flush_remote_tlbs.
6692 	 */
6693 	smp_mb__after_srcu_read_unlock();
6694 
6695 	local_irq_disable();
6696 
6697 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6698 	    || need_resched() || signal_pending(current)) {
6699 		vcpu->mode = OUTSIDE_GUEST_MODE;
6700 		smp_wmb();
6701 		local_irq_enable();
6702 		preempt_enable();
6703 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6704 		r = 1;
6705 		goto cancel_injection;
6706 	}
6707 
6708 	kvm_load_guest_xcr0(vcpu);
6709 
6710 	if (req_immediate_exit) {
6711 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6712 		smp_send_reschedule(vcpu->cpu);
6713 	}
6714 
6715 	trace_kvm_entry(vcpu->vcpu_id);
6716 	wait_lapic_expire(vcpu);
6717 	guest_enter_irqoff();
6718 
6719 	if (unlikely(vcpu->arch.switch_db_regs)) {
6720 		set_debugreg(0, 7);
6721 		set_debugreg(vcpu->arch.eff_db[0], 0);
6722 		set_debugreg(vcpu->arch.eff_db[1], 1);
6723 		set_debugreg(vcpu->arch.eff_db[2], 2);
6724 		set_debugreg(vcpu->arch.eff_db[3], 3);
6725 		set_debugreg(vcpu->arch.dr6, 6);
6726 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6727 	}
6728 
6729 	kvm_x86_ops->run(vcpu);
6730 
6731 	/*
6732 	 * Do this here before restoring debug registers on the host.  And
6733 	 * since we do this before handling the vmexit, a DR access vmexit
6734 	 * can (a) read the correct value of the debug registers, (b) set
6735 	 * KVM_DEBUGREG_WONT_EXIT again.
6736 	 */
6737 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6738 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6739 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6740 		kvm_update_dr0123(vcpu);
6741 		kvm_update_dr6(vcpu);
6742 		kvm_update_dr7(vcpu);
6743 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6744 	}
6745 
6746 	/*
6747 	 * If the guest has used debug registers, at least dr7
6748 	 * will be disabled while returning to the host.
6749 	 * If we don't have active breakpoints in the host, we don't
6750 	 * care about the messed up debug address registers. But if
6751 	 * we have some of them active, restore the old state.
6752 	 */
6753 	if (hw_breakpoint_active())
6754 		hw_breakpoint_restore();
6755 
6756 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6757 
6758 	vcpu->mode = OUTSIDE_GUEST_MODE;
6759 	smp_wmb();
6760 
6761 	kvm_put_guest_xcr0(vcpu);
6762 
6763 	kvm_x86_ops->handle_external_intr(vcpu);
6764 
6765 	++vcpu->stat.exits;
6766 
6767 	guest_exit_irqoff();
6768 
6769 	local_irq_enable();
6770 	preempt_enable();
6771 
6772 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6773 
6774 	/*
6775 	 * Profile KVM exit RIPs:
6776 	 */
6777 	if (unlikely(prof_on == KVM_PROFILING)) {
6778 		unsigned long rip = kvm_rip_read(vcpu);
6779 		profile_hit(KVM_PROFILING, (void *)rip);
6780 	}
6781 
6782 	if (unlikely(vcpu->arch.tsc_always_catchup))
6783 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6784 
6785 	if (vcpu->arch.apic_attention)
6786 		kvm_lapic_sync_from_vapic(vcpu);
6787 
6788 	r = kvm_x86_ops->handle_exit(vcpu);
6789 	return r;
6790 
6791 cancel_injection:
6792 	kvm_x86_ops->cancel_injection(vcpu);
6793 	if (unlikely(vcpu->arch.apic_attention))
6794 		kvm_lapic_sync_from_vapic(vcpu);
6795 out:
6796 	return r;
6797 }
6798 
6799 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6800 {
6801 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6802 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6803 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6804 		kvm_vcpu_block(vcpu);
6805 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6806 
6807 		if (kvm_x86_ops->post_block)
6808 			kvm_x86_ops->post_block(vcpu);
6809 
6810 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6811 			return 1;
6812 	}
6813 
6814 	kvm_apic_accept_events(vcpu);
6815 	switch(vcpu->arch.mp_state) {
6816 	case KVM_MP_STATE_HALTED:
6817 		vcpu->arch.pv.pv_unhalted = false;
6818 		vcpu->arch.mp_state =
6819 			KVM_MP_STATE_RUNNABLE;
6820 	case KVM_MP_STATE_RUNNABLE:
6821 		vcpu->arch.apf.halted = false;
6822 		break;
6823 	case KVM_MP_STATE_INIT_RECEIVED:
6824 		break;
6825 	default:
6826 		return -EINTR;
6827 		break;
6828 	}
6829 	return 1;
6830 }
6831 
6832 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6833 {
6834 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6835 		!vcpu->arch.apf.halted);
6836 }
6837 
6838 static int vcpu_run(struct kvm_vcpu *vcpu)
6839 {
6840 	int r;
6841 	struct kvm *kvm = vcpu->kvm;
6842 
6843 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6844 
6845 	for (;;) {
6846 		if (kvm_vcpu_running(vcpu)) {
6847 			r = vcpu_enter_guest(vcpu);
6848 		} else {
6849 			r = vcpu_block(kvm, vcpu);
6850 		}
6851 
6852 		if (r <= 0)
6853 			break;
6854 
6855 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6856 		if (kvm_cpu_has_pending_timer(vcpu))
6857 			kvm_inject_pending_timer_irqs(vcpu);
6858 
6859 		if (dm_request_for_irq_injection(vcpu) &&
6860 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6861 			r = 0;
6862 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6863 			++vcpu->stat.request_irq_exits;
6864 			break;
6865 		}
6866 
6867 		kvm_check_async_pf_completion(vcpu);
6868 
6869 		if (signal_pending(current)) {
6870 			r = -EINTR;
6871 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6872 			++vcpu->stat.signal_exits;
6873 			break;
6874 		}
6875 		if (need_resched()) {
6876 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6877 			cond_resched();
6878 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6879 		}
6880 	}
6881 
6882 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6883 
6884 	return r;
6885 }
6886 
6887 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6888 {
6889 	int r;
6890 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6891 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6892 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6893 	if (r != EMULATE_DONE)
6894 		return 0;
6895 	return 1;
6896 }
6897 
6898 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6899 {
6900 	BUG_ON(!vcpu->arch.pio.count);
6901 
6902 	return complete_emulated_io(vcpu);
6903 }
6904 
6905 /*
6906  * Implements the following, as a state machine:
6907  *
6908  * read:
6909  *   for each fragment
6910  *     for each mmio piece in the fragment
6911  *       write gpa, len
6912  *       exit
6913  *       copy data
6914  *   execute insn
6915  *
6916  * write:
6917  *   for each fragment
6918  *     for each mmio piece in the fragment
6919  *       write gpa, len
6920  *       copy data
6921  *       exit
6922  */
6923 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6924 {
6925 	struct kvm_run *run = vcpu->run;
6926 	struct kvm_mmio_fragment *frag;
6927 	unsigned len;
6928 
6929 	BUG_ON(!vcpu->mmio_needed);
6930 
6931 	/* Complete previous fragment */
6932 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6933 	len = min(8u, frag->len);
6934 	if (!vcpu->mmio_is_write)
6935 		memcpy(frag->data, run->mmio.data, len);
6936 
6937 	if (frag->len <= 8) {
6938 		/* Switch to the next fragment. */
6939 		frag++;
6940 		vcpu->mmio_cur_fragment++;
6941 	} else {
6942 		/* Go forward to the next mmio piece. */
6943 		frag->data += len;
6944 		frag->gpa += len;
6945 		frag->len -= len;
6946 	}
6947 
6948 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6949 		vcpu->mmio_needed = 0;
6950 
6951 		/* FIXME: return into emulator if single-stepping.  */
6952 		if (vcpu->mmio_is_write)
6953 			return 1;
6954 		vcpu->mmio_read_completed = 1;
6955 		return complete_emulated_io(vcpu);
6956 	}
6957 
6958 	run->exit_reason = KVM_EXIT_MMIO;
6959 	run->mmio.phys_addr = frag->gpa;
6960 	if (vcpu->mmio_is_write)
6961 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6962 	run->mmio.len = min(8u, frag->len);
6963 	run->mmio.is_write = vcpu->mmio_is_write;
6964 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6965 	return 0;
6966 }
6967 
6968 
6969 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6970 {
6971 	struct fpu *fpu = &current->thread.fpu;
6972 	int r;
6973 	sigset_t sigsaved;
6974 
6975 	fpu__activate_curr(fpu);
6976 
6977 	if (vcpu->sigset_active)
6978 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6979 
6980 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6981 		kvm_vcpu_block(vcpu);
6982 		kvm_apic_accept_events(vcpu);
6983 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6984 		r = -EAGAIN;
6985 		goto out;
6986 	}
6987 
6988 	/* re-sync apic's tpr */
6989 	if (!lapic_in_kernel(vcpu)) {
6990 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6991 			r = -EINVAL;
6992 			goto out;
6993 		}
6994 	}
6995 
6996 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6997 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6998 		vcpu->arch.complete_userspace_io = NULL;
6999 		r = cui(vcpu);
7000 		if (r <= 0)
7001 			goto out;
7002 	} else
7003 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7004 
7005 	r = vcpu_run(vcpu);
7006 
7007 out:
7008 	post_kvm_run_save(vcpu);
7009 	if (vcpu->sigset_active)
7010 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7011 
7012 	return r;
7013 }
7014 
7015 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7016 {
7017 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7018 		/*
7019 		 * We are here if userspace calls get_regs() in the middle of
7020 		 * instruction emulation. Registers state needs to be copied
7021 		 * back from emulation context to vcpu. Userspace shouldn't do
7022 		 * that usually, but some bad designed PV devices (vmware
7023 		 * backdoor interface) need this to work
7024 		 */
7025 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7026 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7027 	}
7028 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7029 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7030 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7031 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7032 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7033 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7034 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7035 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7036 #ifdef CONFIG_X86_64
7037 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7038 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7039 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7040 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7041 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7042 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7043 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7044 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7045 #endif
7046 
7047 	regs->rip = kvm_rip_read(vcpu);
7048 	regs->rflags = kvm_get_rflags(vcpu);
7049 
7050 	return 0;
7051 }
7052 
7053 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7054 {
7055 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7056 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7057 
7058 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7059 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7060 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7061 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7062 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7063 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7064 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7065 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7066 #ifdef CONFIG_X86_64
7067 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7068 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7069 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7070 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7071 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7072 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7073 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7074 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7075 #endif
7076 
7077 	kvm_rip_write(vcpu, regs->rip);
7078 	kvm_set_rflags(vcpu, regs->rflags);
7079 
7080 	vcpu->arch.exception.pending = false;
7081 
7082 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7083 
7084 	return 0;
7085 }
7086 
7087 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7088 {
7089 	struct kvm_segment cs;
7090 
7091 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7092 	*db = cs.db;
7093 	*l = cs.l;
7094 }
7095 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7096 
7097 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7098 				  struct kvm_sregs *sregs)
7099 {
7100 	struct desc_ptr dt;
7101 
7102 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7103 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7104 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7105 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7106 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7107 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7108 
7109 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7110 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7111 
7112 	kvm_x86_ops->get_idt(vcpu, &dt);
7113 	sregs->idt.limit = dt.size;
7114 	sregs->idt.base = dt.address;
7115 	kvm_x86_ops->get_gdt(vcpu, &dt);
7116 	sregs->gdt.limit = dt.size;
7117 	sregs->gdt.base = dt.address;
7118 
7119 	sregs->cr0 = kvm_read_cr0(vcpu);
7120 	sregs->cr2 = vcpu->arch.cr2;
7121 	sregs->cr3 = kvm_read_cr3(vcpu);
7122 	sregs->cr4 = kvm_read_cr4(vcpu);
7123 	sregs->cr8 = kvm_get_cr8(vcpu);
7124 	sregs->efer = vcpu->arch.efer;
7125 	sregs->apic_base = kvm_get_apic_base(vcpu);
7126 
7127 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7128 
7129 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7130 		set_bit(vcpu->arch.interrupt.nr,
7131 			(unsigned long *)sregs->interrupt_bitmap);
7132 
7133 	return 0;
7134 }
7135 
7136 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7137 				    struct kvm_mp_state *mp_state)
7138 {
7139 	kvm_apic_accept_events(vcpu);
7140 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7141 					vcpu->arch.pv.pv_unhalted)
7142 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7143 	else
7144 		mp_state->mp_state = vcpu->arch.mp_state;
7145 
7146 	return 0;
7147 }
7148 
7149 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7150 				    struct kvm_mp_state *mp_state)
7151 {
7152 	if (!lapic_in_kernel(vcpu) &&
7153 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7154 		return -EINVAL;
7155 
7156 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7157 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7158 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7159 	} else
7160 		vcpu->arch.mp_state = mp_state->mp_state;
7161 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7162 	return 0;
7163 }
7164 
7165 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7166 		    int reason, bool has_error_code, u32 error_code)
7167 {
7168 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7169 	int ret;
7170 
7171 	init_emulate_ctxt(vcpu);
7172 
7173 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7174 				   has_error_code, error_code);
7175 
7176 	if (ret)
7177 		return EMULATE_FAIL;
7178 
7179 	kvm_rip_write(vcpu, ctxt->eip);
7180 	kvm_set_rflags(vcpu, ctxt->eflags);
7181 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7182 	return EMULATE_DONE;
7183 }
7184 EXPORT_SYMBOL_GPL(kvm_task_switch);
7185 
7186 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7187 				  struct kvm_sregs *sregs)
7188 {
7189 	struct msr_data apic_base_msr;
7190 	int mmu_reset_needed = 0;
7191 	int pending_vec, max_bits, idx;
7192 	struct desc_ptr dt;
7193 
7194 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7195 		return -EINVAL;
7196 
7197 	dt.size = sregs->idt.limit;
7198 	dt.address = sregs->idt.base;
7199 	kvm_x86_ops->set_idt(vcpu, &dt);
7200 	dt.size = sregs->gdt.limit;
7201 	dt.address = sregs->gdt.base;
7202 	kvm_x86_ops->set_gdt(vcpu, &dt);
7203 
7204 	vcpu->arch.cr2 = sregs->cr2;
7205 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7206 	vcpu->arch.cr3 = sregs->cr3;
7207 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7208 
7209 	kvm_set_cr8(vcpu, sregs->cr8);
7210 
7211 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7212 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7213 	apic_base_msr.data = sregs->apic_base;
7214 	apic_base_msr.host_initiated = true;
7215 	kvm_set_apic_base(vcpu, &apic_base_msr);
7216 
7217 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7218 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7219 	vcpu->arch.cr0 = sregs->cr0;
7220 
7221 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7222 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7223 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7224 		kvm_update_cpuid(vcpu);
7225 
7226 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7227 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7228 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7229 		mmu_reset_needed = 1;
7230 	}
7231 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7232 
7233 	if (mmu_reset_needed)
7234 		kvm_mmu_reset_context(vcpu);
7235 
7236 	max_bits = KVM_NR_INTERRUPTS;
7237 	pending_vec = find_first_bit(
7238 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7239 	if (pending_vec < max_bits) {
7240 		kvm_queue_interrupt(vcpu, pending_vec, false);
7241 		pr_debug("Set back pending irq %d\n", pending_vec);
7242 	}
7243 
7244 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7245 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7246 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7247 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7248 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7249 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7250 
7251 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7252 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7253 
7254 	update_cr8_intercept(vcpu);
7255 
7256 	/* Older userspace won't unhalt the vcpu on reset. */
7257 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7258 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7259 	    !is_protmode(vcpu))
7260 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7261 
7262 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7263 
7264 	return 0;
7265 }
7266 
7267 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7268 					struct kvm_guest_debug *dbg)
7269 {
7270 	unsigned long rflags;
7271 	int i, r;
7272 
7273 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7274 		r = -EBUSY;
7275 		if (vcpu->arch.exception.pending)
7276 			goto out;
7277 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7278 			kvm_queue_exception(vcpu, DB_VECTOR);
7279 		else
7280 			kvm_queue_exception(vcpu, BP_VECTOR);
7281 	}
7282 
7283 	/*
7284 	 * Read rflags as long as potentially injected trace flags are still
7285 	 * filtered out.
7286 	 */
7287 	rflags = kvm_get_rflags(vcpu);
7288 
7289 	vcpu->guest_debug = dbg->control;
7290 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7291 		vcpu->guest_debug = 0;
7292 
7293 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7294 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7295 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7296 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7297 	} else {
7298 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7299 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7300 	}
7301 	kvm_update_dr7(vcpu);
7302 
7303 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7304 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7305 			get_segment_base(vcpu, VCPU_SREG_CS);
7306 
7307 	/*
7308 	 * Trigger an rflags update that will inject or remove the trace
7309 	 * flags.
7310 	 */
7311 	kvm_set_rflags(vcpu, rflags);
7312 
7313 	kvm_x86_ops->update_bp_intercept(vcpu);
7314 
7315 	r = 0;
7316 
7317 out:
7318 
7319 	return r;
7320 }
7321 
7322 /*
7323  * Translate a guest virtual address to a guest physical address.
7324  */
7325 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7326 				    struct kvm_translation *tr)
7327 {
7328 	unsigned long vaddr = tr->linear_address;
7329 	gpa_t gpa;
7330 	int idx;
7331 
7332 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7333 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7334 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7335 	tr->physical_address = gpa;
7336 	tr->valid = gpa != UNMAPPED_GVA;
7337 	tr->writeable = 1;
7338 	tr->usermode = 0;
7339 
7340 	return 0;
7341 }
7342 
7343 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7344 {
7345 	struct fxregs_state *fxsave =
7346 			&vcpu->arch.guest_fpu.state.fxsave;
7347 
7348 	memcpy(fpu->fpr, fxsave->st_space, 128);
7349 	fpu->fcw = fxsave->cwd;
7350 	fpu->fsw = fxsave->swd;
7351 	fpu->ftwx = fxsave->twd;
7352 	fpu->last_opcode = fxsave->fop;
7353 	fpu->last_ip = fxsave->rip;
7354 	fpu->last_dp = fxsave->rdp;
7355 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7356 
7357 	return 0;
7358 }
7359 
7360 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7361 {
7362 	struct fxregs_state *fxsave =
7363 			&vcpu->arch.guest_fpu.state.fxsave;
7364 
7365 	memcpy(fxsave->st_space, fpu->fpr, 128);
7366 	fxsave->cwd = fpu->fcw;
7367 	fxsave->swd = fpu->fsw;
7368 	fxsave->twd = fpu->ftwx;
7369 	fxsave->fop = fpu->last_opcode;
7370 	fxsave->rip = fpu->last_ip;
7371 	fxsave->rdp = fpu->last_dp;
7372 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7373 
7374 	return 0;
7375 }
7376 
7377 static void fx_init(struct kvm_vcpu *vcpu)
7378 {
7379 	fpstate_init(&vcpu->arch.guest_fpu.state);
7380 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7381 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7382 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7383 
7384 	/*
7385 	 * Ensure guest xcr0 is valid for loading
7386 	 */
7387 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7388 
7389 	vcpu->arch.cr0 |= X86_CR0_ET;
7390 }
7391 
7392 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7393 {
7394 	if (vcpu->guest_fpu_loaded)
7395 		return;
7396 
7397 	/*
7398 	 * Restore all possible states in the guest,
7399 	 * and assume host would use all available bits.
7400 	 * Guest xcr0 would be loaded later.
7401 	 */
7402 	vcpu->guest_fpu_loaded = 1;
7403 	__kernel_fpu_begin();
7404 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7405 	trace_kvm_fpu(1);
7406 }
7407 
7408 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7409 {
7410 	if (!vcpu->guest_fpu_loaded) {
7411 		vcpu->fpu_counter = 0;
7412 		return;
7413 	}
7414 
7415 	vcpu->guest_fpu_loaded = 0;
7416 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7417 	__kernel_fpu_end();
7418 	++vcpu->stat.fpu_reload;
7419 	/*
7420 	 * If using eager FPU mode, or if the guest is a frequent user
7421 	 * of the FPU, just leave the FPU active for next time.
7422 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7423 	 * the FPU in bursts will revert to loading it on demand.
7424 	 */
7425 	if (!use_eager_fpu()) {
7426 		if (++vcpu->fpu_counter < 5)
7427 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7428 	}
7429 	trace_kvm_fpu(0);
7430 }
7431 
7432 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7433 {
7434 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7435 
7436 	kvmclock_reset(vcpu);
7437 
7438 	kvm_x86_ops->vcpu_free(vcpu);
7439 	free_cpumask_var(wbinvd_dirty_mask);
7440 }
7441 
7442 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7443 						unsigned int id)
7444 {
7445 	struct kvm_vcpu *vcpu;
7446 
7447 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7448 		printk_once(KERN_WARNING
7449 		"kvm: SMP vm created on host with unstable TSC; "
7450 		"guest TSC will not be reliable\n");
7451 
7452 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7453 
7454 	return vcpu;
7455 }
7456 
7457 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7458 {
7459 	int r;
7460 
7461 	kvm_vcpu_mtrr_init(vcpu);
7462 	r = vcpu_load(vcpu);
7463 	if (r)
7464 		return r;
7465 	kvm_vcpu_reset(vcpu, false);
7466 	kvm_mmu_setup(vcpu);
7467 	vcpu_put(vcpu);
7468 	return r;
7469 }
7470 
7471 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7472 {
7473 	struct msr_data msr;
7474 	struct kvm *kvm = vcpu->kvm;
7475 
7476 	if (vcpu_load(vcpu))
7477 		return;
7478 	msr.data = 0x0;
7479 	msr.index = MSR_IA32_TSC;
7480 	msr.host_initiated = true;
7481 	kvm_write_tsc(vcpu, &msr);
7482 	vcpu_put(vcpu);
7483 
7484 	if (!kvmclock_periodic_sync)
7485 		return;
7486 
7487 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7488 					KVMCLOCK_SYNC_PERIOD);
7489 }
7490 
7491 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7492 {
7493 	int r;
7494 	vcpu->arch.apf.msr_val = 0;
7495 
7496 	r = vcpu_load(vcpu);
7497 	BUG_ON(r);
7498 	kvm_mmu_unload(vcpu);
7499 	vcpu_put(vcpu);
7500 
7501 	kvm_x86_ops->vcpu_free(vcpu);
7502 }
7503 
7504 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7505 {
7506 	vcpu->arch.hflags = 0;
7507 
7508 	vcpu->arch.smi_pending = 0;
7509 	atomic_set(&vcpu->arch.nmi_queued, 0);
7510 	vcpu->arch.nmi_pending = 0;
7511 	vcpu->arch.nmi_injected = false;
7512 	kvm_clear_interrupt_queue(vcpu);
7513 	kvm_clear_exception_queue(vcpu);
7514 
7515 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7516 	kvm_update_dr0123(vcpu);
7517 	vcpu->arch.dr6 = DR6_INIT;
7518 	kvm_update_dr6(vcpu);
7519 	vcpu->arch.dr7 = DR7_FIXED_1;
7520 	kvm_update_dr7(vcpu);
7521 
7522 	vcpu->arch.cr2 = 0;
7523 
7524 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7525 	vcpu->arch.apf.msr_val = 0;
7526 	vcpu->arch.st.msr_val = 0;
7527 
7528 	kvmclock_reset(vcpu);
7529 
7530 	kvm_clear_async_pf_completion_queue(vcpu);
7531 	kvm_async_pf_hash_reset(vcpu);
7532 	vcpu->arch.apf.halted = false;
7533 
7534 	if (!init_event) {
7535 		kvm_pmu_reset(vcpu);
7536 		vcpu->arch.smbase = 0x30000;
7537 	}
7538 
7539 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7540 	vcpu->arch.regs_avail = ~0;
7541 	vcpu->arch.regs_dirty = ~0;
7542 
7543 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7544 }
7545 
7546 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7547 {
7548 	struct kvm_segment cs;
7549 
7550 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7551 	cs.selector = vector << 8;
7552 	cs.base = vector << 12;
7553 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7554 	kvm_rip_write(vcpu, 0);
7555 }
7556 
7557 int kvm_arch_hardware_enable(void)
7558 {
7559 	struct kvm *kvm;
7560 	struct kvm_vcpu *vcpu;
7561 	int i;
7562 	int ret;
7563 	u64 local_tsc;
7564 	u64 max_tsc = 0;
7565 	bool stable, backwards_tsc = false;
7566 
7567 	kvm_shared_msr_cpu_online();
7568 	ret = kvm_x86_ops->hardware_enable();
7569 	if (ret != 0)
7570 		return ret;
7571 
7572 	local_tsc = rdtsc();
7573 	stable = !check_tsc_unstable();
7574 	list_for_each_entry(kvm, &vm_list, vm_list) {
7575 		kvm_for_each_vcpu(i, vcpu, kvm) {
7576 			if (!stable && vcpu->cpu == smp_processor_id())
7577 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7578 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7579 				backwards_tsc = true;
7580 				if (vcpu->arch.last_host_tsc > max_tsc)
7581 					max_tsc = vcpu->arch.last_host_tsc;
7582 			}
7583 		}
7584 	}
7585 
7586 	/*
7587 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7588 	 * platforms that reset TSC during suspend or hibernate actions, but
7589 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7590 	 * detect that condition here, which happens early in CPU bringup,
7591 	 * before any KVM threads can be running.  Unfortunately, we can't
7592 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7593 	 * enough into CPU bringup that we know how much real time has actually
7594 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7595 	 * variables that haven't been updated yet.
7596 	 *
7597 	 * So we simply find the maximum observed TSC above, then record the
7598 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7599 	 * the adjustment will be applied.  Note that we accumulate
7600 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7601 	 * gets a chance to run again.  In the event that no KVM threads get a
7602 	 * chance to run, we will miss the entire elapsed period, as we'll have
7603 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7604 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7605 	 * uniform across all VCPUs (not to mention the scenario is extremely
7606 	 * unlikely). It is possible that a second hibernate recovery happens
7607 	 * much faster than a first, causing the observed TSC here to be
7608 	 * smaller; this would require additional padding adjustment, which is
7609 	 * why we set last_host_tsc to the local tsc observed here.
7610 	 *
7611 	 * N.B. - this code below runs only on platforms with reliable TSC,
7612 	 * as that is the only way backwards_tsc is set above.  Also note
7613 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7614 	 * have the same delta_cyc adjustment applied if backwards_tsc
7615 	 * is detected.  Note further, this adjustment is only done once,
7616 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7617 	 * called multiple times (one for each physical CPU bringup).
7618 	 *
7619 	 * Platforms with unreliable TSCs don't have to deal with this, they
7620 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7621 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7622 	 * guarantee that they stay in perfect synchronization.
7623 	 */
7624 	if (backwards_tsc) {
7625 		u64 delta_cyc = max_tsc - local_tsc;
7626 		backwards_tsc_observed = true;
7627 		list_for_each_entry(kvm, &vm_list, vm_list) {
7628 			kvm_for_each_vcpu(i, vcpu, kvm) {
7629 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7630 				vcpu->arch.last_host_tsc = local_tsc;
7631 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7632 			}
7633 
7634 			/*
7635 			 * We have to disable TSC offset matching.. if you were
7636 			 * booting a VM while issuing an S4 host suspend....
7637 			 * you may have some problem.  Solving this issue is
7638 			 * left as an exercise to the reader.
7639 			 */
7640 			kvm->arch.last_tsc_nsec = 0;
7641 			kvm->arch.last_tsc_write = 0;
7642 		}
7643 
7644 	}
7645 	return 0;
7646 }
7647 
7648 void kvm_arch_hardware_disable(void)
7649 {
7650 	kvm_x86_ops->hardware_disable();
7651 	drop_user_return_notifiers();
7652 }
7653 
7654 int kvm_arch_hardware_setup(void)
7655 {
7656 	int r;
7657 
7658 	r = kvm_x86_ops->hardware_setup();
7659 	if (r != 0)
7660 		return r;
7661 
7662 	if (kvm_has_tsc_control) {
7663 		/*
7664 		 * Make sure the user can only configure tsc_khz values that
7665 		 * fit into a signed integer.
7666 		 * A min value is not calculated needed because it will always
7667 		 * be 1 on all machines.
7668 		 */
7669 		u64 max = min(0x7fffffffULL,
7670 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7671 		kvm_max_guest_tsc_khz = max;
7672 
7673 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7674 	}
7675 
7676 	kvm_init_msr_list();
7677 	return 0;
7678 }
7679 
7680 void kvm_arch_hardware_unsetup(void)
7681 {
7682 	kvm_x86_ops->hardware_unsetup();
7683 }
7684 
7685 void kvm_arch_check_processor_compat(void *rtn)
7686 {
7687 	kvm_x86_ops->check_processor_compatibility(rtn);
7688 }
7689 
7690 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7691 {
7692 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7693 }
7694 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7695 
7696 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7697 {
7698 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7699 }
7700 
7701 struct static_key kvm_no_apic_vcpu __read_mostly;
7702 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7703 
7704 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7705 {
7706 	struct page *page;
7707 	struct kvm *kvm;
7708 	int r;
7709 
7710 	BUG_ON(vcpu->kvm == NULL);
7711 	kvm = vcpu->kvm;
7712 
7713 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7714 	vcpu->arch.pv.pv_unhalted = false;
7715 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7716 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7717 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7718 	else
7719 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7720 
7721 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7722 	if (!page) {
7723 		r = -ENOMEM;
7724 		goto fail;
7725 	}
7726 	vcpu->arch.pio_data = page_address(page);
7727 
7728 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7729 
7730 	r = kvm_mmu_create(vcpu);
7731 	if (r < 0)
7732 		goto fail_free_pio_data;
7733 
7734 	if (irqchip_in_kernel(kvm)) {
7735 		r = kvm_create_lapic(vcpu);
7736 		if (r < 0)
7737 			goto fail_mmu_destroy;
7738 	} else
7739 		static_key_slow_inc(&kvm_no_apic_vcpu);
7740 
7741 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7742 				       GFP_KERNEL);
7743 	if (!vcpu->arch.mce_banks) {
7744 		r = -ENOMEM;
7745 		goto fail_free_lapic;
7746 	}
7747 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7748 
7749 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7750 		r = -ENOMEM;
7751 		goto fail_free_mce_banks;
7752 	}
7753 
7754 	fx_init(vcpu);
7755 
7756 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7757 	vcpu->arch.pv_time_enabled = false;
7758 
7759 	vcpu->arch.guest_supported_xcr0 = 0;
7760 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7761 
7762 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7763 
7764 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7765 
7766 	kvm_async_pf_hash_reset(vcpu);
7767 	kvm_pmu_init(vcpu);
7768 
7769 	vcpu->arch.pending_external_vector = -1;
7770 
7771 	kvm_hv_vcpu_init(vcpu);
7772 
7773 	return 0;
7774 
7775 fail_free_mce_banks:
7776 	kfree(vcpu->arch.mce_banks);
7777 fail_free_lapic:
7778 	kvm_free_lapic(vcpu);
7779 fail_mmu_destroy:
7780 	kvm_mmu_destroy(vcpu);
7781 fail_free_pio_data:
7782 	free_page((unsigned long)vcpu->arch.pio_data);
7783 fail:
7784 	return r;
7785 }
7786 
7787 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7788 {
7789 	int idx;
7790 
7791 	kvm_hv_vcpu_uninit(vcpu);
7792 	kvm_pmu_destroy(vcpu);
7793 	kfree(vcpu->arch.mce_banks);
7794 	kvm_free_lapic(vcpu);
7795 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7796 	kvm_mmu_destroy(vcpu);
7797 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7798 	free_page((unsigned long)vcpu->arch.pio_data);
7799 	if (!lapic_in_kernel(vcpu))
7800 		static_key_slow_dec(&kvm_no_apic_vcpu);
7801 }
7802 
7803 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7804 {
7805 	kvm_x86_ops->sched_in(vcpu, cpu);
7806 }
7807 
7808 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7809 {
7810 	if (type)
7811 		return -EINVAL;
7812 
7813 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7814 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7815 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7816 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7817 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7818 
7819 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7820 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7821 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7822 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7823 		&kvm->arch.irq_sources_bitmap);
7824 
7825 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7826 	mutex_init(&kvm->arch.apic_map_lock);
7827 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7828 
7829 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
7830 	pvclock_update_vm_gtod_copy(kvm);
7831 
7832 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7833 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7834 
7835 	kvm_page_track_init(kvm);
7836 	kvm_mmu_init_vm(kvm);
7837 
7838 	if (kvm_x86_ops->vm_init)
7839 		return kvm_x86_ops->vm_init(kvm);
7840 
7841 	return 0;
7842 }
7843 
7844 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7845 {
7846 	int r;
7847 	r = vcpu_load(vcpu);
7848 	BUG_ON(r);
7849 	kvm_mmu_unload(vcpu);
7850 	vcpu_put(vcpu);
7851 }
7852 
7853 static void kvm_free_vcpus(struct kvm *kvm)
7854 {
7855 	unsigned int i;
7856 	struct kvm_vcpu *vcpu;
7857 
7858 	/*
7859 	 * Unpin any mmu pages first.
7860 	 */
7861 	kvm_for_each_vcpu(i, vcpu, kvm) {
7862 		kvm_clear_async_pf_completion_queue(vcpu);
7863 		kvm_unload_vcpu_mmu(vcpu);
7864 	}
7865 	kvm_for_each_vcpu(i, vcpu, kvm)
7866 		kvm_arch_vcpu_free(vcpu);
7867 
7868 	mutex_lock(&kvm->lock);
7869 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7870 		kvm->vcpus[i] = NULL;
7871 
7872 	atomic_set(&kvm->online_vcpus, 0);
7873 	mutex_unlock(&kvm->lock);
7874 }
7875 
7876 void kvm_arch_sync_events(struct kvm *kvm)
7877 {
7878 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7879 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7880 	kvm_free_all_assigned_devices(kvm);
7881 	kvm_free_pit(kvm);
7882 }
7883 
7884 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7885 {
7886 	int i, r;
7887 	unsigned long hva;
7888 	struct kvm_memslots *slots = kvm_memslots(kvm);
7889 	struct kvm_memory_slot *slot, old;
7890 
7891 	/* Called with kvm->slots_lock held.  */
7892 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7893 		return -EINVAL;
7894 
7895 	slot = id_to_memslot(slots, id);
7896 	if (size) {
7897 		if (slot->npages)
7898 			return -EEXIST;
7899 
7900 		/*
7901 		 * MAP_SHARED to prevent internal slot pages from being moved
7902 		 * by fork()/COW.
7903 		 */
7904 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7905 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7906 		if (IS_ERR((void *)hva))
7907 			return PTR_ERR((void *)hva);
7908 	} else {
7909 		if (!slot->npages)
7910 			return 0;
7911 
7912 		hva = 0;
7913 	}
7914 
7915 	old = *slot;
7916 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7917 		struct kvm_userspace_memory_region m;
7918 
7919 		m.slot = id | (i << 16);
7920 		m.flags = 0;
7921 		m.guest_phys_addr = gpa;
7922 		m.userspace_addr = hva;
7923 		m.memory_size = size;
7924 		r = __kvm_set_memory_region(kvm, &m);
7925 		if (r < 0)
7926 			return r;
7927 	}
7928 
7929 	if (!size) {
7930 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7931 		WARN_ON(r < 0);
7932 	}
7933 
7934 	return 0;
7935 }
7936 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7937 
7938 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7939 {
7940 	int r;
7941 
7942 	mutex_lock(&kvm->slots_lock);
7943 	r = __x86_set_memory_region(kvm, id, gpa, size);
7944 	mutex_unlock(&kvm->slots_lock);
7945 
7946 	return r;
7947 }
7948 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7949 
7950 void kvm_arch_destroy_vm(struct kvm *kvm)
7951 {
7952 	if (current->mm == kvm->mm) {
7953 		/*
7954 		 * Free memory regions allocated on behalf of userspace,
7955 		 * unless the the memory map has changed due to process exit
7956 		 * or fd copying.
7957 		 */
7958 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7959 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7960 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7961 	}
7962 	if (kvm_x86_ops->vm_destroy)
7963 		kvm_x86_ops->vm_destroy(kvm);
7964 	kvm_iommu_unmap_guest(kvm);
7965 	kfree(kvm->arch.vpic);
7966 	kfree(kvm->arch.vioapic);
7967 	kvm_free_vcpus(kvm);
7968 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7969 	kvm_mmu_uninit_vm(kvm);
7970 }
7971 
7972 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7973 			   struct kvm_memory_slot *dont)
7974 {
7975 	int i;
7976 
7977 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7978 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7979 			kvfree(free->arch.rmap[i]);
7980 			free->arch.rmap[i] = NULL;
7981 		}
7982 		if (i == 0)
7983 			continue;
7984 
7985 		if (!dont || free->arch.lpage_info[i - 1] !=
7986 			     dont->arch.lpage_info[i - 1]) {
7987 			kvfree(free->arch.lpage_info[i - 1]);
7988 			free->arch.lpage_info[i - 1] = NULL;
7989 		}
7990 	}
7991 
7992 	kvm_page_track_free_memslot(free, dont);
7993 }
7994 
7995 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7996 			    unsigned long npages)
7997 {
7998 	int i;
7999 
8000 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8001 		struct kvm_lpage_info *linfo;
8002 		unsigned long ugfn;
8003 		int lpages;
8004 		int level = i + 1;
8005 
8006 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8007 				      slot->base_gfn, level) + 1;
8008 
8009 		slot->arch.rmap[i] =
8010 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8011 		if (!slot->arch.rmap[i])
8012 			goto out_free;
8013 		if (i == 0)
8014 			continue;
8015 
8016 		linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8017 		if (!linfo)
8018 			goto out_free;
8019 
8020 		slot->arch.lpage_info[i - 1] = linfo;
8021 
8022 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8023 			linfo[0].disallow_lpage = 1;
8024 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8025 			linfo[lpages - 1].disallow_lpage = 1;
8026 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8027 		/*
8028 		 * If the gfn and userspace address are not aligned wrt each
8029 		 * other, or if explicitly asked to, disable large page
8030 		 * support for this slot
8031 		 */
8032 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8033 		    !kvm_largepages_enabled()) {
8034 			unsigned long j;
8035 
8036 			for (j = 0; j < lpages; ++j)
8037 				linfo[j].disallow_lpage = 1;
8038 		}
8039 	}
8040 
8041 	if (kvm_page_track_create_memslot(slot, npages))
8042 		goto out_free;
8043 
8044 	return 0;
8045 
8046 out_free:
8047 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8048 		kvfree(slot->arch.rmap[i]);
8049 		slot->arch.rmap[i] = NULL;
8050 		if (i == 0)
8051 			continue;
8052 
8053 		kvfree(slot->arch.lpage_info[i - 1]);
8054 		slot->arch.lpage_info[i - 1] = NULL;
8055 	}
8056 	return -ENOMEM;
8057 }
8058 
8059 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8060 {
8061 	/*
8062 	 * memslots->generation has been incremented.
8063 	 * mmio generation may have reached its maximum value.
8064 	 */
8065 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8066 }
8067 
8068 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8069 				struct kvm_memory_slot *memslot,
8070 				const struct kvm_userspace_memory_region *mem,
8071 				enum kvm_mr_change change)
8072 {
8073 	return 0;
8074 }
8075 
8076 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8077 				     struct kvm_memory_slot *new)
8078 {
8079 	/* Still write protect RO slot */
8080 	if (new->flags & KVM_MEM_READONLY) {
8081 		kvm_mmu_slot_remove_write_access(kvm, new);
8082 		return;
8083 	}
8084 
8085 	/*
8086 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8087 	 *
8088 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8089 	 *
8090 	 *  - KVM_MR_CREATE with dirty logging is disabled
8091 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8092 	 *
8093 	 * The reason is, in case of PML, we need to set D-bit for any slots
8094 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8095 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8096 	 * guarantees leaving PML enabled during guest's lifetime won't have
8097 	 * any additonal overhead from PML when guest is running with dirty
8098 	 * logging disabled for memory slots.
8099 	 *
8100 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8101 	 * to dirty logging mode.
8102 	 *
8103 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8104 	 *
8105 	 * In case of write protect:
8106 	 *
8107 	 * Write protect all pages for dirty logging.
8108 	 *
8109 	 * All the sptes including the large sptes which point to this
8110 	 * slot are set to readonly. We can not create any new large
8111 	 * spte on this slot until the end of the logging.
8112 	 *
8113 	 * See the comments in fast_page_fault().
8114 	 */
8115 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8116 		if (kvm_x86_ops->slot_enable_log_dirty)
8117 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8118 		else
8119 			kvm_mmu_slot_remove_write_access(kvm, new);
8120 	} else {
8121 		if (kvm_x86_ops->slot_disable_log_dirty)
8122 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8123 	}
8124 }
8125 
8126 void kvm_arch_commit_memory_region(struct kvm *kvm,
8127 				const struct kvm_userspace_memory_region *mem,
8128 				const struct kvm_memory_slot *old,
8129 				const struct kvm_memory_slot *new,
8130 				enum kvm_mr_change change)
8131 {
8132 	int nr_mmu_pages = 0;
8133 
8134 	if (!kvm->arch.n_requested_mmu_pages)
8135 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8136 
8137 	if (nr_mmu_pages)
8138 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8139 
8140 	/*
8141 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8142 	 * sptes have to be split.  If live migration is successful, the guest
8143 	 * in the source machine will be destroyed and large sptes will be
8144 	 * created in the destination. However, if the guest continues to run
8145 	 * in the source machine (for example if live migration fails), small
8146 	 * sptes will remain around and cause bad performance.
8147 	 *
8148 	 * Scan sptes if dirty logging has been stopped, dropping those
8149 	 * which can be collapsed into a single large-page spte.  Later
8150 	 * page faults will create the large-page sptes.
8151 	 */
8152 	if ((change != KVM_MR_DELETE) &&
8153 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8154 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8155 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8156 
8157 	/*
8158 	 * Set up write protection and/or dirty logging for the new slot.
8159 	 *
8160 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8161 	 * been zapped so no dirty logging staff is needed for old slot. For
8162 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8163 	 * new and it's also covered when dealing with the new slot.
8164 	 *
8165 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8166 	 */
8167 	if (change != KVM_MR_DELETE)
8168 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8169 }
8170 
8171 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8172 {
8173 	kvm_mmu_invalidate_zap_all_pages(kvm);
8174 }
8175 
8176 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8177 				   struct kvm_memory_slot *slot)
8178 {
8179 	kvm_mmu_invalidate_zap_all_pages(kvm);
8180 }
8181 
8182 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8183 {
8184 	if (!list_empty_careful(&vcpu->async_pf.done))
8185 		return true;
8186 
8187 	if (kvm_apic_has_events(vcpu))
8188 		return true;
8189 
8190 	if (vcpu->arch.pv.pv_unhalted)
8191 		return true;
8192 
8193 	if (atomic_read(&vcpu->arch.nmi_queued))
8194 		return true;
8195 
8196 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8197 		return true;
8198 
8199 	if (kvm_arch_interrupt_allowed(vcpu) &&
8200 	    kvm_cpu_has_interrupt(vcpu))
8201 		return true;
8202 
8203 	if (kvm_hv_has_stimer_pending(vcpu))
8204 		return true;
8205 
8206 	return false;
8207 }
8208 
8209 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8210 {
8211 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8212 		kvm_x86_ops->check_nested_events(vcpu, false);
8213 
8214 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8215 }
8216 
8217 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8218 {
8219 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8220 }
8221 
8222 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8223 {
8224 	return kvm_x86_ops->interrupt_allowed(vcpu);
8225 }
8226 
8227 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8228 {
8229 	if (is_64_bit_mode(vcpu))
8230 		return kvm_rip_read(vcpu);
8231 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8232 		     kvm_rip_read(vcpu));
8233 }
8234 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8235 
8236 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8237 {
8238 	return kvm_get_linear_rip(vcpu) == linear_rip;
8239 }
8240 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8241 
8242 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8243 {
8244 	unsigned long rflags;
8245 
8246 	rflags = kvm_x86_ops->get_rflags(vcpu);
8247 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8248 		rflags &= ~X86_EFLAGS_TF;
8249 	return rflags;
8250 }
8251 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8252 
8253 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8254 {
8255 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8256 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8257 		rflags |= X86_EFLAGS_TF;
8258 	kvm_x86_ops->set_rflags(vcpu, rflags);
8259 }
8260 
8261 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8262 {
8263 	__kvm_set_rflags(vcpu, rflags);
8264 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8265 }
8266 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8267 
8268 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8269 {
8270 	int r;
8271 
8272 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8273 	      work->wakeup_all)
8274 		return;
8275 
8276 	r = kvm_mmu_reload(vcpu);
8277 	if (unlikely(r))
8278 		return;
8279 
8280 	if (!vcpu->arch.mmu.direct_map &&
8281 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8282 		return;
8283 
8284 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8285 }
8286 
8287 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8288 {
8289 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8290 }
8291 
8292 static inline u32 kvm_async_pf_next_probe(u32 key)
8293 {
8294 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8295 }
8296 
8297 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8298 {
8299 	u32 key = kvm_async_pf_hash_fn(gfn);
8300 
8301 	while (vcpu->arch.apf.gfns[key] != ~0)
8302 		key = kvm_async_pf_next_probe(key);
8303 
8304 	vcpu->arch.apf.gfns[key] = gfn;
8305 }
8306 
8307 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8308 {
8309 	int i;
8310 	u32 key = kvm_async_pf_hash_fn(gfn);
8311 
8312 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8313 		     (vcpu->arch.apf.gfns[key] != gfn &&
8314 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8315 		key = kvm_async_pf_next_probe(key);
8316 
8317 	return key;
8318 }
8319 
8320 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8321 {
8322 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8323 }
8324 
8325 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8326 {
8327 	u32 i, j, k;
8328 
8329 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8330 	while (true) {
8331 		vcpu->arch.apf.gfns[i] = ~0;
8332 		do {
8333 			j = kvm_async_pf_next_probe(j);
8334 			if (vcpu->arch.apf.gfns[j] == ~0)
8335 				return;
8336 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8337 			/*
8338 			 * k lies cyclically in ]i,j]
8339 			 * |    i.k.j |
8340 			 * |....j i.k.| or  |.k..j i...|
8341 			 */
8342 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8343 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8344 		i = j;
8345 	}
8346 }
8347 
8348 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8349 {
8350 
8351 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8352 				      sizeof(val));
8353 }
8354 
8355 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8356 				     struct kvm_async_pf *work)
8357 {
8358 	struct x86_exception fault;
8359 
8360 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8361 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8362 
8363 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8364 	    (vcpu->arch.apf.send_user_only &&
8365 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8366 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8367 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8368 		fault.vector = PF_VECTOR;
8369 		fault.error_code_valid = true;
8370 		fault.error_code = 0;
8371 		fault.nested_page_fault = false;
8372 		fault.address = work->arch.token;
8373 		kvm_inject_page_fault(vcpu, &fault);
8374 	}
8375 }
8376 
8377 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8378 				 struct kvm_async_pf *work)
8379 {
8380 	struct x86_exception fault;
8381 
8382 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8383 	if (work->wakeup_all)
8384 		work->arch.token = ~0; /* broadcast wakeup */
8385 	else
8386 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8387 
8388 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8389 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8390 		fault.vector = PF_VECTOR;
8391 		fault.error_code_valid = true;
8392 		fault.error_code = 0;
8393 		fault.nested_page_fault = false;
8394 		fault.address = work->arch.token;
8395 		kvm_inject_page_fault(vcpu, &fault);
8396 	}
8397 	vcpu->arch.apf.halted = false;
8398 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8399 }
8400 
8401 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8402 {
8403 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8404 		return true;
8405 	else
8406 		return !kvm_event_needs_reinjection(vcpu) &&
8407 			kvm_x86_ops->interrupt_allowed(vcpu);
8408 }
8409 
8410 void kvm_arch_start_assignment(struct kvm *kvm)
8411 {
8412 	atomic_inc(&kvm->arch.assigned_device_count);
8413 }
8414 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8415 
8416 void kvm_arch_end_assignment(struct kvm *kvm)
8417 {
8418 	atomic_dec(&kvm->arch.assigned_device_count);
8419 }
8420 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8421 
8422 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8423 {
8424 	return atomic_read(&kvm->arch.assigned_device_count);
8425 }
8426 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8427 
8428 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8429 {
8430 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8431 }
8432 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8433 
8434 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8435 {
8436 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8437 }
8438 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8439 
8440 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8441 {
8442 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8443 }
8444 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8445 
8446 bool kvm_arch_has_irq_bypass(void)
8447 {
8448 	return kvm_x86_ops->update_pi_irte != NULL;
8449 }
8450 
8451 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8452 				      struct irq_bypass_producer *prod)
8453 {
8454 	struct kvm_kernel_irqfd *irqfd =
8455 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8456 
8457 	irqfd->producer = prod;
8458 
8459 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8460 					   prod->irq, irqfd->gsi, 1);
8461 }
8462 
8463 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8464 				      struct irq_bypass_producer *prod)
8465 {
8466 	int ret;
8467 	struct kvm_kernel_irqfd *irqfd =
8468 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8469 
8470 	WARN_ON(irqfd->producer != prod);
8471 	irqfd->producer = NULL;
8472 
8473 	/*
8474 	 * When producer of consumer is unregistered, we change back to
8475 	 * remapped mode, so we can re-use the current implementation
8476 	 * when the irq is masked/disabled or the consumer side (KVM
8477 	 * int this case doesn't want to receive the interrupts.
8478 	*/
8479 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8480 	if (ret)
8481 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8482 		       " fails: %d\n", irqfd->consumer.token, ret);
8483 }
8484 
8485 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8486 				   uint32_t guest_irq, bool set)
8487 {
8488 	if (!kvm_x86_ops->update_pi_irte)
8489 		return -EINVAL;
8490 
8491 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8492 }
8493 
8494 bool kvm_vector_hashing_enabled(void)
8495 {
8496 	return vector_hashing;
8497 }
8498 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8499 
8500 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8501 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8502 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8503 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8504 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8505 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8506 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8507 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8508 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8509 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8510 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8511 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8512 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8513 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8514 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8515 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8516 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8517 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8518 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8519